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Abstract: 

Parkinson's disease in reality arises as a result of a complex series of events, however it is 

strongly linked to the loss of a specific cellular population of midbrain dopaminergic neurons 

making it a candidate for stem cell based research. Stem cells can be cultured in vitro and via 

asymmetric cell division possess the capacity for both self renewal and the production of 

differentiated derivatives. The use of specific molecules and culture conditions can be 

applied to promote the differentiation of them towards particular cellular fates, in turn 

facilitating the possibility of producing enriched populations of cells displaying 

characteristics of a certain phenotype of interest. 

There has been much research focussed on the in vitro generation of dopaminergic neurons 

from various stem cell types. In this work the Tera2.cl.SP12 embryonal carcinoma stem cell 

line was the primary vehicle investigated for its ability to produce cells that were reflective of 

a dopaminergic phenotype. Retinoic acid was found to be able to up regulate the expression 

of a range of dopaminergic markers in the Tera2.cl.SP12 cell line over time. However it was 

clear that lowered oxygen culture, a method known to promote the production of neurons 

reflective of a dopaminergic phenotype in mesencephalic cultures, had no effect on the 

dopaminergic differentiation capacity of the embryonal carcinoma stem cells. 

The glycoprotein Wntl when applied to Tera2.cl.SP12 cultures in concert with retinoic acid 

was shown to increase the number and percentage of cells positive for the neuronal marker 

Beta I I I tubulin approximately 1.5 fold. This was accompanied by a concomitant rise in the 

mRNA expression of this marker, thus suggesting that the use of Wntl may be a means to 

produce cultures derived from embryonal carcinoma cells that are more neuronal, based on 

marker expression data. Other established methods to achieve dopaminergic differentiation 

such as suspension culture, stromal cell co-culture and the application of Sonic hedgehog and 

Fibroblast growth factor 8 are also able to induce a degree of neuronal and dopaminergic 

marker expression in Tera2.cl.SP12 cultures. Overall these results suggest that the 

Tera2.cl.SP12 cell line might be one vehicle for the study of dopaminergic neurogenesis in 

vitro, in particular when Wntl and retinoic acid are used as a means to favourably enrich the 

population of cells displaying neuronal characteristics. 
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Chapter 1 

Literature Review 



1.1 Introduction 

The primary aim of this thesis is to try to assess the potential o f the human embryonal 

carcinoma stem cell line Tera2.cl.SP12 as a model for the study o f dopaminergic 

differentiation in vitro. This cellular system in itself is of value mainly as a tool for 

basic research that may help extend our knowledge o f the processes specifying a 

dopaminergic fate and potentially i f deemed viable, it may be suitable for applied 

usage in the context of toxicological and pharmacological screening assays. However 

the study of dopaminergic neurogenesis is of broader significance due to the 

substantial loss o f midbrain dopaminergic neurons from the substantia nigra pars 

compacta that are associated with and recognised as one o f the major traits o f 

Parkinson's disease. It is the direct relevance to this condition that drives the body of 

research focussed upon the generation o f dopaminergic neurons in vitro. As such the 

introduction to this work starts with a brief appraisal and background to Parkinson's 

disease, prior to considering the role o f stem cells as a research tool particularly in 

relation to neurogenesis, before finally concentrating in greater depth on the current 

understanding o f dopaminergic differentiation in vitro as this essentially forms the 

heart o f this disquisition. 



1.2 Overview of Parkinson's disease 

The hallmark o f Parkinson's disease is the loss o f dopaminergic neurons from the 

substantia nigra pars compacta and the concomitant depigmentation o f it (Devine & 

Lewis, 2008). The condition affects roughly 100 - 180/100,000 o f the population, 

although estimates vary significantly, and becomes increasingly prevalent with the 

onset o f old age. It presents a considerable economic burden o f around £6 bil l ion a 

year in the United Kingdom alone (Findley et al., 2003) which is only likely to 

increase given the demographic trend towards an increasingly elderly population. 

However the condition is not just linked to the dopaminergic system of the substantia 

nigra pars compacta, with the earliest changes taking place in the medulla 

oblongata/pontine tegmentum as well as the olfactory bulb (Braak et al., 2006). In the 

initial steps, Braak stages 1 and 2 sufferers do not display any symptoms, subsequent 

to this though in Braak stages 3 and 4 the more well known areas such as the 

substantia nigra pars compacta become implicated, along with sections o f the 

midbrain and basal forebrain, prior to the neocortex displaying pathological changes 

(Davie, 2008). 

At present Parkinson's disease is typically thought o f as being idiopathic, in other 

words it may arise without a known cause (Di Monte et al., 2002); however there may 

be genetic elements and envirormiental exposures that increase the risk, on balance 

though it is likely to occur as a result o f a range of factors, such as ageing, exposure to 

toxins in the environment and potential genetic susceptibility (Samii et al., 2004). 

Alongside loss o f dopaminergic neurons another key pathological trait seen in many 

cases o f Parkinson's disease is the detection o f a-synuclein rich Lewy bodies 

(Spillantini et al., 1998). It has been proposed that exposure to toxins could affect not 

only the structure of a-synuclein but also its ability to bind ubiquitin and be processed 

by the 26S proteasome (Figure 1.1). In turn this may further enhance its aggregation 

and subsequently add to the impairment o f the process o f abnormal protein 

degradation (Di Monte et al., 2002). In work by Uversky et al., 2001 it was 

demonstrated that when certain pesticides were incubated in the presence of a-



synuclein its rate of fibrillation in vitro was accelerated. Like wise similar findings 

were presented in work carried out in vivo (Manning-Bog et al., 2002). These studies 

give support to the concept that environmental exposure to particular toxins may have 

a direct role in the pathogenesis of Parkinson's disease via a mechanism involving a-

synuclein (Di Monte et al., 2002). 

Figure 1.1: Potential Interactions of a-Synuclein with environmental toxins 

(redrawn from Di Monte et al, 2002) 

TOXIC Insult 

a-synuclein 

Key: 

^ a-synuclein 

O Ubiquitin 

B Proteasome 

Ubiquitinisation 

Proteasomal 
Degradation 

Figure 1.1: a-synuclein could be directly damaged by a toxic insult; such an 
event could alter the covalent binding of it with ubiquitin; and in turn hamper its 
degradation by the 268 proteasome (Di Monte et al., 2002). 

However this molecule may not only play a role in forms of Parkinson's disease that 

may be attributable to envirormiental exposures, as the gene encoding it was the first 

site to be identified as possessing a mutation in it (an alanine to threonine substitution) 

that could cause the condition (Polymeropoulos et al., 1997). Two additional point 



mutations of this gene, along with gene duplications and triplications give rise to a 

rare, autosomal dominant type o f Parkinson's disease (Kruger et al., 1998; Zarranz et 

al., 2004; Singleton et al., 2003; Nishioka et al., 2006). It is of interest that sufferers 

with duplications o f the gene display a later age o f onset and less severe phenotype 

than their counterparts possessing triplications, suggesting that disease severity may 

be linked to a-synuclein expression (Nishioka et al., 2006; Eriksen et al., 2005; Savitt 

et al., 2006). 

The importance o f this phosphoprotein is further underlined by the observation that 

polymorphisms in the promoter for a-synuclein are accompanied by an increase in the 

risk o f developing Parkinson's disease (Pals et al., 2004; Hadjigeorgiou et al., 2005; 

Tan et al., 2004). In addition a-synuclein null mice display resistance to the toxin 

MPTP that is often used to induce Parkinsonism in models o f the disease (Dauer et 

al., 2002). This relates neatly to the concept defined earlier whereby exposure to 

certain toxins may via a mechanism involving a-synuclein lead to the pathogenesis o f 

Parkinson's disease. 

There have though been mutations identified such as those in the protein known as 

Parkin that give rise to a form of Parkinsonism independent o f Lewy body formation 

in juvenile cases, indicating that this protein may play a role in the development o f 

such structures (reviewed in Davie, 2008). Parkin is an E3 ligase that is involved in 

the attachment o f ubiquitin molecules to target proteins that are as such marked for 

degradation by the proteasome (Zhang et al., 2000). One protein that Parkin may add 

ubiquitin to is the a-synuclein interacting protein Synphilin-1 in turn facilitating the 

production o f Lewy bodies (Chung et al., 2001). Thus supporting the above concept 

that Parkin may be involved in the process o f Lewy body formation which would 

explain why mutations in it that often lead to the early onset forms of Parkinson's 

disease usually, with rare exception, display an absence of such structures (Mori et al., 

1998; Farrer et al., 2001; Sasaki et al., 2004; Savitt et al., 2006). 

Despite most cases o f Parkinson's disease being sporadic in nature other mutations in 

single genes have been observed that may enhance our understanding o f the 

mechanisms responsible for the condition. Mutations in the DJ-1 gene are somewhat 

akin to those in Parkin and give rise to an autosomal recessive, early onset form of the 



disease (Bonifati et al., 2003). The function o f DJ-1 protein is not precisely defined at 

present but it can prevent via its interaction with a-synuclein, when in a specific 

oxidised state, the formation o f fibrils (Zhou et al., 2006). Thus suggesting that it acts 

as a redox sensitive chaperone that can shield cells exposed to oxidative stress from 

the potentially detrimental effects of a-synuclein misfolding (Savitt et al., 2006). 

In a similar fashion to DJ-1, mutations in PINK-1 result in an autosomal recessive, 

early onset form of Parkinson's disease (Valente et al., 2004). Both factors are also 

present in the mitochondria; given that abnormalities, in Complex 1 o f the oxidative 

phosphorylation enzyme pathway are a regular trait of sporadic forms of the disease 

(Abou-Sleiman et al., 2006) and have been described in other complexes (Schapira, 

2008), as well as the susceptibility o f neurons in the substantia nigra pars compacta to 

oxidative damage, it would appear that malfunction o f this organelle may have a role 

in the pathogenesis o f Parkinson's disease (Savitt et al., 2006; Davie, 2008). 

One final set o f mutations o f relevance were identified in the gene for leucine rich 

repeat kinase 2 (LRRK2) (Zimprich et al., 2004; Paisan-Ruiz et al., 2004). These are 

the most frequent genetic cause of Parkinson's disease with one mutation involving a 

glycine to serine substitution being responsible for between 2 and 40%, depending on 

the study population, o f all cases of this condition (Bonifati, 2006; Devine & Lewis, 

2008). At present the role o f LRRK2 is unknown but work in rat neurons suggests it 

may have a function in regulating the morphology o f neuritic processes (Macleod et 

al., 2006). In addition when a mutant form of it is expressed in SH-SY5Y cells the 

result is a shortening o f neurites that is linked to increased autophagic vacuole content 

(Plowey et al., 2008). It may also interact with Parkin in vitro (Smith et al., 2005), as 

well as possessing a ROC (Ras o f complex proteins) domain that can similarly relate 

to (3-tubulin a component of microtubules and Moesin (Gandhi et al., 2008; Jaleel et 

al., 2007). These findings together suggest that LRRK2 may interact with pathways 

that could themselves form part o f the mechanism o f the onset of Parkinson's disease 

(Devine & Lewis, 2008). 

After this brief consideration o f the possible causes of Parkinson's disease the 

question is raised o f what therapeutic interventions have been used to try and 

ameliorate the symptoms of it? The initial link between Parkinson's disease and 



dopamine deficiency lead to early efforts to rectify this, via the use o f the dopamine 

precursor levodopa (Cotzias et al., 1969). This was then utilised in conjunction with a 

peripheral decarboxylase inhibitor, for example carbidopa or benserazide (Rinne & 

Sonninen, 1973; Rinne et al., 1972) that facilitated the entry of more o f it into the 

brain (Savitt et al., 2006). In a comparable fashion catechol-o-methyl transferase 

inhibitors that act to elongate the half life o f levodopa and dopamine were found to 

augment the effects o f levodopa administration (Ericsson, 1971; Myl ly la et al., 1993; 

Roberts etal., 1993). 

In contrast to trying to increase the availability o f dopamine precursors, efforts were 

also made to curb the decrease in endogenous levels o f the neurotransmitter. 

Monoamine oxidase type B inhibitors such as Selegiline act in such a manner (Chrisp 

et al., 1991). Elsewhere other efforts have focussed on producing dopamine agonists 

that bypass the need for synthesis o f this compound, by acting directly on 

postsynaptic dopamine receptors (Gopinathan et al., 1981; Calne et al., 1974). 

Before the arrival o f levodopa treatment, surgical therapies had also been used to 

reduce the tremor and rigidity seen in patients with the disease, but their usage 

became less common as administration of the drug became more widespread (Brophy, 

1998). However more recently still there has been a resurgence towards surgical 

based strategies, founded on the use o f deep brain stimulation (Benabid et al., 2000; 

Stefani et al., 2007). 

Although all o f the treatments outlined are of value their capacity to provide a 

satisfactory quality o f l iving for Parkinson's disease sufferers tends to diminish with 

time. In addition they are unable to address the problem of the continual degeneration 

evident in both the dopaminergic and non dopaminergic systems. As such a 

significant amount o f recent research has concentrated on identifying the reasons 

underlying the loss o f dopaminergic cells. In addition to investigating the potential 

for neuroprotective, restorative or possibly cell replacement based strategies (Savitt et 

al., 2006). These approaches may well involve the use o f stem cells which are the 

focus of the next section o f this Chapter. 



1.3 Stem cells as a tool to study neurogenesis 

There are a wide variety o f stem cell types that may be o f use both as research tools to 

further our understanding o f development or as potential sources of cells for use in 

therapeutic strategies such as cell transplantation that may help in the treatment of 

certain diseases. Like wise they may also provide a supply o f cells for in vitro assays 

to screen for example novel compounds for a specific activity that may help in drug 

based remedies for known conditions. Individual areas o f research tend to have 

associated with them, varieties of stem cell that are particularly pertinent for use in the 

context o f the topic being studied. This thesis is primarily focussed on the use of 

embryonal carcinoma stem cells as a model to study the formation o f dopaminergic 

neurons. However there are additional cell types that are often generally utilised for 

the study o f neurogenesis and these are discussed briefly along with embryonal 

carcinoma cells in this Section. 

When studying neurogenesis it is unsurprising to find multipotent neural stem cells 

that exist in both the developing as well as the adult mammalian brain are often used. 

Broadly speaking these cell types are derived f rom the nervous system and/or can 

generate neural tissue, possess some degree o f ability for self renewal and can give 

rise to cells that differ f rom them via asymmetric cell division. It is also possible to 

derive such cells f rom other more primitive cell types that are capable o f generating 

neural stem cells as well as those o f alternative tissues (Figure 1.2) (Gage, 2000). The 

distinction between multipotent stem cells and neural progenitors as identified in 

Figure 1.2 is still somewhat hazy as there are instances where cells described as 

neural progenitors are obtained from; for example embryonic brain that are 

proliferated post isolation, prior to differentiation in a manner analogous to that 

utilised for neural stem cells (Gage, 2000). I t is always advisable therefore to try and 

assess any effects on such cells relative to the specific developmental stage they were 

isolated at and in relation to the species from which they were obtained. 
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Figure 1.2: Stem cells from which neurons may be derived (based on Gage, 2000) 
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Figure 1.2: A hierarchy of mammalian stem cells that may give rise to neurons. The 
least restricted cells are at the top with the degree of restriction increasing going down 
the page. The small arrows pointing up the page allow for the potential of stem cells 
to dedifferentiate (Gage, 2000). 
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Mesenchymal stem cells are another type o f multipotent stem cell that have been 

evaluated as a source f rom which neurons may be generated in vitro. However there 

utilisation is less widespread and would require them to possess the capacity to trans 

differentiate given their mesodermal origins. This process has been brought into 

question and is an area o f some controversy (Hardy et al., 2008), which perhaps 

accounts for their limited employment in this context. 

Also in widespread usage for the study o f neurogenesis in vitro are the pluripotent 

embryonic stem cells derived f rom the blastocyst inner cell mass, which have now 

been isolated from a number o f species such as mouse (Evans & Kaufman, 1981) and 

human (Thomson et al., 1998). Embryonal carcinoma stem cells arise from germ cell 

tumours and given their resemblance to the pluripotent embryonic stem cells o f the 

inner cell mass are considered an apposite model system to them. Both systems 

possess certain advantages and these often dictate the choice o f cell decided upon for 

use. There are a number of human embryonal carcinoma cell types such as the 

Ntera2.Dl (Andrews et al., 1984) and Tera2.cl.SP12 cell lines (Przyborski, 2001) that 

can grow independently o f feeder layers associated with embryonic stem cell culture, 

that provide a possible model o f human development. This was seen as an advantage 

of such cells, however there are now protocols that facilitate the culture o f human 

embryonic stem cells in the absence of feeder layers (Amit & Itskovitz Eldor, 2006), 

which promote the embryonic stem cell cause. In the context o f the embryonal 

carcinoma versus embryonic stem cell dichotomy, embryonal carcinoma cells were 

also seen as a more ethical option, although once again new methods were developed 

for the extraction of human embryonic stem cells that left the embryo f rom which 

they were derived intact (Klimanskaya et al., 2006). In turn promoting still further the 

case for using embryonic stem cells, which also possess a greater more diversified 

differentiation capacity and are not o f cancerous origin, which is an undeniable 

drawback of embryonal carcinoma cells that limits their potential usage particularly in 

regard to transplantation based approaches. However embryonal carcinoma cells are 

robust, easy to manipulate and relatively inexpensive to culture and are thus attractive 

in vitro tools. In addition they can be rapidly expanded to give large numbers of cells 

and indeed given their more restricted differentiation capability, might be better 

viewed as a source o f cells with a strong propensity for neural differentiation. To this 

end eariy indications using the Tera2.cl.SP12 line obtained via immunomagnetic 



sorting (Przyborski, 2001) were that it may possess a greater disposition than its 

counterpart Ntera2 for such neural development (Przyborski et al., 2000; Przyborski 

et al., 2004). 

Both Embryonal carcinoma and embryonic stem cell models may be valuable tools for 

studying neurogenesis, embryonic stem cells appear more regularly in the literature 

but when embryonal carcinoma cells are used they tend to react similarly to their 

embryonic stem cell counterparts in response to many dopaminergic phenotype 

inducing agents in some of the widely used protocols aimed at generating 

dopaminergic neurons in vitro (Schwartz et al., 2005; Ravindran & Rao, 2006). It is 

such procedures that are focussed on in the final section o f this Chapter as they unite 

the use of stem cells with the desire to produce dopaminergic neurons for application 

in developing improved therapies for Parkinson's disease. 
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1.4 In Vitro Methods to Generate Dopaminergic Neurons 

Introduction 

Dopamine although originally thought to merely be a precursor in the synthesis o f 

noradrenaline and adrenaline was after the discovery o f it in the mammalian brain 

(Montagu, 1957) shown to be a significant catecholaminergic neurotransmitter of the 

vertebrate central nervous system. Many populations o f dopaminergic cells exist for 

example in the retina, olfactory bulb, retrorubral field and those o f the ventral 

tegmental area that are implicated in obsessive compulsive disorder and schizophrenia 

(Lin & Rosenthal, 2003). These mesencephalic ventral tegmental area dopaminergic 

neurons that form the mesolimbic system are one o f the two most significant groups 

of this neuronal subtype. The other being the nigrostriatal dopaminergic neurons o f 

the substantia nigra pars compacta. 

The discovery o f dopamine deficiency in the substantia nigra and corpus striatum of 

brains from Parkinson's disease patients (Ehringer & Homykiewicz, 1960) and 

subsequent link between the striatum and substantia nigra lead to the understanding 

that loss o f the dopamine producing cells there, lead to a loss o f dopaminergic 

innervation to the corpus striatum and thus a deficit of the chemical was observed in 

this location (Poirier & Sourkes, 1965). Parkinson's disease can therefore be linked 

to a specific brain region and to a specific abnormality in one neurotransmitter. 

Although the disease is in fact more complex with many stages, o f which the loss of 

midbrain substantia nigra dopaminergic neurons is just one, it does make the 

condifion a suitable target for cell based therapies, i f an enriched populafion of the 

phenotype of interest can be produced. Though the primary focus o f such strategies 

tends to be on cell replacement, there are many obstacles to this. For example 

survival o f grafted cells, the location o f the graft which is generally into the striatum 

not the substantia nigra itself, loss o f transplanted cells due to immune rejection or 

toxic factors that have already caused loss of the native dopaminergic neurons having 

the same effect on their grafted counterparts (Svendsen, 2008). There is also the 

possibility o f aberrant cells that could give rise to teratomas being transplanted, and 

the process o f transplantation itself may physically damage the relatively delicate 
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neuronal cells, in particular any neuritic extensions. Some of these hurdles may be 

overcome through studies in cell based systems utilising the variety o f currently 

available and developing technologies. However in vitro methods also have potential 

not only as basic tools for furthering our understanding o f the developmental 

mechanisms o f specific cellular phenotypes, but may provide a range of models for 

pharmacological screening. In addition such approaches may afford an understanding 

that facilitates the design of novel compounds that can stimulate endogenous repair 

mechanisms in the brain. This is exemplified by work using neural stem cells from 

the sub ventricular zone o f adult rats where dopamine D3 receptors are known to be 

expressed. When cultures of these cells were treated with a dopamine D3 receptor 

selective agonist 7-hydroxy-dipropylaminotetralin there was an increase in cell 

number (Coronas et al., 2004), which gives support to the concept that it may be 

possible to influence the inherent ability of certain cellular populations in the brain to 

assist in the self repair o f this organ. 

The demographic trend towards an increasingly elderly population in much of society, 

issues with current methods for treating Parkinson's disease particularly in the later 

stages, the specificity o f the neuronal subtype affected and the array o f potential 

therapeutic options they may offer have lead to much investigation into the possible 

methods to generate dopaminergic neurons in vitro, it is these that form the main basis 

o f this section. However a brief description o f the work on the developmental 

processes that specify midbrain dopaminergic neurons in vivo is first given, as this has 

provided the foundation for many of the in vitro studies. 

Specification of Mesencephalic Dopaminergic Precursors 

A myriad o f intricate interactions between a host of transcription factors and a 

cascade of signalling events give rise to the induction o f midbrain dopaminergic 

neurons. Principally though they form from interacting signals provided by two 

different organising centres. Sonic hedgehog arising f rom the floor plate and 

Fibroblast growth factor 8 arising from the isthmic organiser, which acts as a 

boundary between the mid and hindbrain. Sonic hedgehog is the primary soluble 

signalling molecule along the dorsoventral axis and can induce the formation of 

dopaminergic neurons in explants from the fore and midbrain (Hynes et al., 1995; 
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Wang et al., 1995), whilst Fibroblast growth factor 8 is produced in a discrete region 

that corresponds to the midbrain hindbrain boundary (Crossley et al., 1996; Lee et al., 

1997; Ye et al., 1998). The intersection and combination o f signals provided by these 

two molecules gives rise to the induction o f dopaminergic precursors rostrally to the 

isthmic organiser (Figure 1.3), (reviewed in Wallen & Perlmann, 2003; Arenas, 2002; 

Maxwell & L i , 2005). 

The strength o f the developmental influence o f these two factors on the production o f 

a midbrain dopaminergic cell fate is also recognised in the widespread usage o f them 

in a variety o f cell based methods and as such approaches founded on their usage 

offer a suitable starting point when considering dopaminergic differentiation in vitro. 

Figure 1.3: Dopaminergic development in the mouse embryo (based on Simon et 

ah 2003 

Figure 1.3: The intersection of Sonic hedgehog and Fibroblast growth factor 8 
causes the induction of midbrain dopaminergic neurons in the mouse embryo at E8 to 
E9. FP = Floor Plate, is = isthmus, F = forebrain, H =hindbrain, M = midbrain, mDA 
= midbrain dopaminergic neurons (Simon et al., 2003). 
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The use of Sonic Hedgehog and Fibroblast Growth Factor 8 as tools to promote 
dopaminergic differentiation in vitro 

These two key signalling molecules have been a part o f many protocols aimed at 

generating dopaminergic neurons in vitro. Many of these methods have attempted to 

make use o f these factors in synergy with other approaches or molecules known to 

have favourable effects on the induction o f a dopaminergic cell fate and as such their 

use w i l l also be referred to in later sections. However there are some key issues to 

their successful application which are to be focussed on here. Early work in mouse 

embryonic stem cells showed that neural differentiation could be achieved via 

formation o f 3D aggregates in suspension culture, known as embryoid bodies, either 

in the presence o f retinoic acid (Bain et al., 1995), or absence o f it in serum free 

conditions (Okabe et al., 1996). Subsequently Lee et al., 2000 used a sequenfial 

protocol beginning with embryoid body formation f rom an expanded population o f 

undifferentiated murine embryonic stem cells to act as a starting point to generate an 

enriched population o f dopaminergic neurons. After the embryoid body stage nestin 

positive neural precursors were obtained via a medium based selection process, these 

cells were then expanded prior to a final differentiation step (Lee et al., 2000). The 

combined administration o f Sonic hedgehog and Fibroblast growth factor 8 during the 

expansion phase (Stage 4 in Lee et al., 2000) gave rise to a more than twofold 

increase in the number o f cells that were positive for tyrosine hydroxylase the rate 

limiting enzyme in dopamine biosynthesis. Interestingly treatment with either factor 

alone at this point showed a less significant effect than when both molecules were 

applied in a concerted manner. This is strongly indicative that as is the case in vivo, 

the presence of both signals is required to induce a dopaminergic phenotype. Another 

critical finding was that the collective application o f these two molecules at other 

preceding or latter steps o f the process had no effect on the yield o f tyrosine 

hydroxylase positive cells obtained (Lee et al., 2000). 

Further work in human embryonic stem and embryonal carcinoma cells further 

substantiated the importance o f temporal factors when trying to elicit dopaminergic 

differenfiation in vitro. Firstly using the human embryonal carcinoma stem cell line 

Ntera2, i t was shown that Sonic hedgehog and Fibroblast growth factor 8 were not 

able to induce tyrosine hydroxylase expression. However this was in Ntera2 
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embryonal carcinoma cells pre treated with retinoic acid. Such culture o f Ntera2 cells 

with retinoic acid results in the production o f neurons with various neurotransmitter 

phenotypes and it is these hNT neurons that were the subject o f investigation. Only 

small percentages (2%) o f neurons were tyrosine hydroxylase immunopositive 

fol lowing application o f Sonic hedgehog and fibroblast growth factor 8. Again 

highlighting the importance o f developmental stage on the ability o f cells in culture to 

respond to the cues provided (Stull & lacovitti, 2001). Given that Sonic hedgehog 

and Fibroblast growth factor 8 are thought to act in the earlier stages o f dopaminergic 

neuron development an approach involving their use to manipulate the embryonal 

carcinoma stem cell system towards a dopaminergic fate cannot be discounted i f the 

exogenous application o f them can be optimised to an appropriate temporal window. 

Indeed in a similar protocol to that o f Lee et al., 2000, the Ntera2.Dl cell line was 

used to first generate aggregates in suspension that appeared akin to embryoid bodies. 

Medium based selection for nestin positive precursors followed, prior to expansion 

and then sorting using neuronal cell adhesion molecule to enrich the neuroprogenitor 

pool. Finally differentiation was induced using a cocktail containing glial cell line 

derived neurotrophic factor and interleukin-ip both agents being known to promote a 

dopaminergic phenotype (Ravindran & Rao, 2006). Interestingly unlike most other 

protocols involving experimentation using the embryonal carcinoma cell system, 

refinoic acid treatment is not involved. Although retinoic acid may possess a role in 

the specification of a dopaminergic phenotype it is also implicated in specifying other 

cellular fates and indeed can cause formation o f both neurons and glia f rom certain 

embryonal carcinoma cell lines such as Tera2.cl.SP12 (Stewart et al., 2003). 

Therefore its use could be brought into question; however Sonic hedgehog itself is 

known to have a role in the formation o f serotonergic hindbrain neurons. In 

conjunction with Fibroblast growth factor 8 in the protocol o f Lee et al., 2000, it 

causes a fourteen fold increase in the number o f serotonin positive cells when applied 

during the expansion phase. Even when Sonic hedgehog is applied alone a similar 

effect is observed (Lee et al., 2000). Therefore although it may be seen as desirable to 

avoid the use o f certain molecules like retinoic acid, it is probably more important to 

control when and how they are used. Sonic hedgehog is regularly a constituent o f 

procedures trying to induce dopaminergic neurons but it still has the ability to help 

generate alternative neuronal fates. 
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It is, though, noteworthy that embryonal carcinoma stem cells can be used in the 

absence of retinoic acid to generate dopaminergic neurons. It also demonstrates that 

Fibroblast growth factor 8 and Sonic hedgehog can be used effectively in the Ntera2 

embryonal carcinoma cell system, and that using this embryoid body based method 

they do act in a similar fashion to the embryonic stem cells, for which they act as a 

model (reviewed in Przyborski et al., 2004). 

In addition to their use in mouse embryonic stem and human embryonal carcinoma 

cells. Sonic hedgehog and Fibroblast growth factor 8 have also been utilised in human 

embryonic stem cells. This work highlighted the importance o f the correct timing o f 

application of exogenous compounds (Figure 1.4). When Fibroblast growth factor 8 

was applied alongside Sonic hedgehog to Soxl positive neuroepithelial cells, the 

output was a set o f tyrosine hydroxylase positive, y-aminobutyric acid co-expressing, 

bipolar cells that lacked expression o f the midbrain marker Engrailed 1. However i f 

Fibroblast growth factor 8 was administered to Soxl negative precursors, followed by 

combined Sonic Hedgehog/Fibroblast growth factor 8 treatment then a distinctly 

different population o f tyrosine hydroxylase positive. Engrailed 1 co-expressing 

midbrain type dopaminergic neurons, with complex processes and large cell bodies 

were produced (Yan et al., 2005). 
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Figure 1.4; The temporal effects of Shh and F G F 8 on the acquisition of a 

dopaminergic phenotype (based on Yan et al, 2005) 
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Figure 1.4: The effect of timing of administration of certain molecules is key in influencing 
the specification of particular cellular phenotypes, as exemplified here for Fibroblast growth 
factor 8 and Sonic hedgehog. When human embryonic stem cell derived neural precursors are 
given an early dose of Fibroblast growth factor 8 prior to Soxl expression they are capable of 
generating midbrain type dopaminergic neurons, when this molecule is applied in conjunction 
with Sonic hedgehog after Soxl expression is detectable, the resultant output is dopaminergic 
neurons characteristic of a forebrain identity (based on Yan et al., 2005). 

In another protocol based on that o f Lee et al., 2000, Sonic hedgehog and Fibroblast 

growth factor 8 were used to try and influence murine adult neural stem cells o f the 

sub ventricular zone to produce midbrain phenotype dopaminergic neurons. The two 

factors were able to induce expression o f midbrain markers but the adult neural stem 

cells still maintained a forebrain identity, giving rise to mixed phenotype neurons. 

However in their absence no tyrosine hydroxylase positive neurons were found, 

indicating that Sonic hedgehog/Fibroblast growth factor 8 were responsible for the 

induction o f T H posifive neurons and that aduft neural stem cells do not default to, or 

show no predisposition to produce dopaminergic neurons. High performance liquid 

chromatography also showed that although adult neural stem cells could release 

dopamine, depolarisation with potassium ions (K"^) did not significantly increase this 

effect. In contrast neurons positive for tyrosine hydroxylase derived from embryonic 

stem cells displayed an evoked release o f dopamine upon depolarisation 

(Papanikolaou et al., 2008). 
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Functional testing such as that carried out by high performance liquid 

chromatography is key i f the dopaminergic neurons generated are to be validated for 

use in applications such as toxicological and pharmacological screens or i f they are to 

be used in any kind o f potential cell transplantation based strategy in the future. To 

this end dopaminergic neurons derived using Sonic hedgehog/Fibroblast growth 

factor 8 based approaches f rom a variety o f sources do tend to display biological 

function. For example dopamine production, an ability to respond to 

neurotransmitters and spontaneous synaptic activity are all seen in mouse embryonic 

stem cell derived tyrosine hydroxylase positive neurons (Lee et al., 2000). Likewise 

human embryonic stem cell derived neurons exhibit activity dependent release o f 

dopamine and electrophysiological properties, although the in vitro dopaminergic 

neurons derived in this human embryonic stem cell system convey the notion o f a 

slow process o f maturation as evidenced by atypical electrophysiology and poor 

uptake activity o f dopamine. This may be due to a lack o f signals and targets for the 

human cells in the culture conditions used (Yan et al., 2005). 

Beyond the level o f functional testing transplantation o f enriched human Ntera2 

derived neural cell adhesion molecule positive cells into the substantia nigra of a 6-

hydroxydopamine treated rat model o f Parkinson's disease resulted in behavioural 

improvement. Although the sample size was small, neural cell adhesion molecule 

positive sorted cells did not give rise to any tumours. Transplanted cells were both 

able to survive in the substantia nigra and differentiate as shown by expression o f 

tyrosine hydroxylase and anti human nuclei, the presence of tyrosine hydroxylase 

being indicative o f the dopaminergic differentiation o f the transplanted cells. Though 

tyrosine hydroxylase could also be a marker o f other neuronal phenotypes, the locality 

of the graft and procedure used to derive the transplanted cells would suggest a 

dopaminergic identity. Ideally as in any study a panel o f dopaminergic markers 

would be used as supporting evidence. In vitro however neural cell adhesion 

molecule positive neuroprogenitors when differentiated did not express dopamine p 

hydroxylase as would be expected of non dopaminergic tyrosine hydroxylase positive 

neurons and did express Engrailed 1, N u r r l , and a range o f other dopaminergic 

neuron associated elements. Therefore there is promise in this technique which 

underlines the importance of cell sorting prior to transplantation (Ravindran & Rao, 
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2006), to avoid the problem of teratoma formation as was found with mouse 

embryonic stem cell derived transplanted dopaminergic neurons. In this study one 

animal was found to have a teratoma in its brain post transplantation (Nishimura et al., 

2003). Overcoming this safety issue is one o f the many challenges facing the 

successful use o f embryonic stem cells. Given the malignant nature o f embryonal 

carcinoma stem cells their role is more realistically confined to more basic 

fundamental research to refine the procedures that could then be applied elsewhere. 

Co-culture Methods to Achieve Dopaminergic Differentiation 

For all the variety o f strategies used to generate dopaminergic neurons in vitro, most 

of them at their core i f not based on Sonic hedgehog and Fibroblast growth factor 8 

are founded on co-culture approaches. In particular involving the use o f bone marrow 

derived murine PA6 cells. Although alternative stromal cells, for example MS5 

(Perrier et al., 2004), in addition to other cell types such as glia o f the ventral 

midbrain (Castelo-Branco et al., 2006) and Sertoli (Yue et al., 2006) as well as 

meningeal (Hayashi et al., 2008) cells have been used. The general advantages o f 

such protocols are the relative ease of the technique and usually short time course 

needed to achieve induction o f dopaminergic differentiation. The main drawback is 

in the use of animal cells that are coming into contact with or are in close proximity 

( i f a membrane is used) to the cells o f interest. This would need to be addressed 

before application in a clinical setting, and is prohibitive in the context o f any kind o f 

screening assay as the cellular population in direct co-culture approaches is 

heterogenous. Another key question that remains is what is the identity o f the 

inductive molecules in such approaches in particular with PA6 cells what constitutes 

the Stromal Derived Inducing Activity known as SDIA? 

In early work using mouse embryonic stem cells the nature o f the stromal derived 

inducing activity was investigated. It was found that even after fixation with 

paraformaldehyde, PA6 cells could still cause neural differentiation. Similariy other 

stromal cell types also exhibited a comparable activity fol lowing fixation but prior to 

it only exerted a weak or intangible neural inducing effect, where as PA6 cells pre or 

post fixation displayed posifive effects on neural cell specification. The speculation 

in this work was that other stromal cells produce a mixture o f inductive and inhibitory 
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factors. PA6 cells lack the latter component that is lost upon fixation o f alternative 

stromal cell types. Hence why PA6 cells can exert an effect in both conditions not 

just post fixation as is the case for their counterparts. The other important aspect of 

this work was it highlighted that at least in part the inductive activity arose from or 

was mediated by something on the cell surface, as fixed cells lack the capacity to 

secrete soluble factors. 

However when a 0.4^M filter membrane was used to alleviate any physical contact 

between the embryonic stem and PA6 cells significant neural induction was observed. 

This is indicative that there is also a soluble constituent to the PA6 stromal derived 

inducing activity. Interestingly though media conditioned by PA6 cells was unable to 

exert a similar effect. Overall the initial suggestions were that the stromal derived 

inducing activity possessed two components, a membrane bound and soluble factor, 

or that there was an initial secretion o f a product that then subsequently had an 

interaction at the cell surface. Although the identity o f the stromal derived inducing 

activity is unknown, one intriguing aspect o f this protocol is that detection o f tyrosine 

hydroxylase occurs between day six to day eight o f induction. Embryonic stem cells 

are equivalent to E4 cells o f the inner cell mass and in foetal mouse midbrain tyrosine 

hydroxylase is first expressed at E l 1.5 (Foster et al., 1988). Therefore there is a 

seemingly comparable temporal schedule in vitro to that seen in vivo (Kawasaki et al., 

2000). 

Similar PA6 based protocols have also been investigated in embryonic stem cells 

from other species and in alternative cell types. From this there have arisen some 

consistent but also some contradictory findings. This may not only be accounted for 

by species specific differences but by the stromal derived inducing activity consisting 

of a number o f factors, possibly more than the two identified using murine embryonic 

stem cells, however it may be that there are multiple activities that can either be 

classified as soluble or membrane bound. Different aspects o f the stromal derived 

inducing activity may be crifical depending on the system used. 

Firstly in primate embryonic stem cells a similar ability was shown by PA6 cells to 

induce a broadly neuronal and more specifically a dopaminergic fate. There was a 

slightly longer period o f induction required before the appearance of expression of 
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dopaminergic markers like tyrosine hydroxylase, and the efficiency o f neural 

differentiation was approximately 50% of that found using mouse cells. However the 

process did work and was more rapid in its time course in vitro than might have been 

predicted f rom the in vivo setting, this rapidity is one advantage o f the method 

(Kawasaki et al., 2002). 

The PA6 based approach has also been tested in human embryonic stem cells, in 

addition to human embryonal carcinoma stem cells. Zeng et al., 2004 used the BGOl 

human embryonic stem cell line in conjunction with PA6 cells to generate tyrosine 

hydroxylase positive cells in just under 90% of embryonic stem cell colonies over a 

time course o f three weeks. The differentiated cells expressed a range of 

dopaminergic markers such as dopamine transporter, N u r r l , and aromatic amino acid 

decarboxylase. They were dopamine (3 hydroxylase negative indicating that they were 

not noradrenergic and could release dopamine upon depolarisation by potassium ions 

(Zeng et al., 2004). Park et al., 2005 tested three other human embryonic stem cell 

lines in the PA6 co-culture system, only one o f the three displayed neural precursor 

differentiation. After one week nestin and p I I I - tubulin expression were present in 

more than 90% o f the HSF-6 derived cells, but given the same conditions the other 

two lines tested (SNU-hES3 and Miz-hESl) showed less than 10% of cells to be 

comparable in the expression o f these markers (Park et al., 2005, reviewed in Taylor 

& Minger, 2005). 

Given the variability in outcomes using human embryonic stem cells, at around the 

same period the observation was made that PA6 cells could influence the 

dopaminergic differentiation o f the Ntera2 human embryonal carcinoma stem cell line 

(Schwartz et al., 2005). The efficiency and time course o f this generation mirrored 

closely that in human embryonic stem cells, which is not dissimilar to the scenario 

found when using Sonic hedgehog/Fibroblast growth factor 8 based protocols. This 

offers promise in that the robust nature and relatively basic inexpensive methods for 

human embryonal carcinoma stem cell culture, combined with a clear likeness to the 

human embryonic stem cell system in relation to dopaminergic differentiation, could 

make embryonal carcinoma cells a useful tool to study dopaminergic neurogenesis 

whilst greater control and charcterisation of human embryonic stem cell systems is 

developed. The findings could then be translated from one system into the other, 
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although subtle differences may be found, there are still advantages to be gained from 

the tandem use o f both human cell systems; especially given the species specific 

differences that are observed between human and animal neuronal progenitor cells 

(Jin et al., 2006) that really underline the need for balanced experimentation across a 

range o f models. 

The work by Schwartz et al., 2005 using the Ntera2 cell line epitomised this, as PA6 

driven differentiation occurred over a similar period to a comparable level and 

showed a sequence o f marker expression resembling that in human embryonic stem 

cells (Zeng et al., 2004). However subtle variations were seen, for example the 

embryonal carcinoma cells developed as packed colonies upon seeding and remained 

as such during differentiation on a monolayer o f confluent PA6 cells (Schwartz et al., 

2005). Human embryonic stem cells in comparison normally migrate out o f the 

colonies as differentiation proceeds (Zeng et al., 2004). In addition fewer tyrosine 

hydroxylase positive processes were seen after three weeks of Ntera2-PA6 co-culture 

(Schwartz et al., 2005) further highlighting the minor but noticeable disparity between 

the two systems. 

The investigations in the Ntera2 embryonal carcinoma cell system though provided 

some interesting findings. First o f all to reduce the stress on the cells in culture when 

differentiating, mitomycin C treated mitotically inactivated PA6 cells were used. 

These treated cells could produce dopaminergic differentiation in a manner analogous 

to their untreated counterparts. It was also possible to achieve dopaminergic neuron 

generation using media conditioned by PA6 cells exposed to mitomycin C, however 

more tyrosine hydroxylase positive cells were formed using standard co-culture than 

with conditioned medium (Schwartz et al., 2005). The observed effects with 

conditioned medium are though in contrast to the findings using murine embryonic 

stem cells where conditioned medium did not markedly induce tyrosine hydroxylase 

expression (Kawasaki et al., 2000). 

This could be due to poor protein solubility (Kawasaki et al., 2002) or Ntera2 cells 

possessing a greater sensitivity to insoluble glyco or lipoglycoproteins for example 

Wnts, it may also reflect a species specific divergence in terms o f responsiveness to 

stromal derived inducing activity as Schwartz et al in an unpublished observation. 
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2005 found a comparable result using human embryonic stem cells. It does however 

add support to the notion that secreted factors are a part o f the dopaminergic 

differentiation enhancing ability o f the stromal derived inducing activity o f PA6 cells 

(Schwartz et al., 2005). 

In a recent paper utilising human embryonic stem cells there was the suggestion that it 

is the secreted factors provided by the PA6 cells that are required to define a specific 

dopaminergic cell fate. In this work they found that fixed PA6 cells although in 

possession of a cell surface neural differentiation capacity lacked the ability to induce 

a significant number o f tyrosine hydroxylase positive cells. This was recognised by a 

three fold decrease in tyrosine hydroxylase expression relative to co-culture with 

untreated PA6 cells. Irradiation and mitomycin C treatment also had strong effects in 

a congruous manner. However mitomycin C exposure had only a minor and fixation 

an extremely minimal effect on the neural inducing activity, assessed by P-III-tubulin 

expression. Irradiation though decreased it by 50%, thus indicating that the neural 

inducing ability was linked to the cell surface. Conditioned medium alone was 

ineffective as for mouse embryonic stem cells (Kawasaki et al., 2000) but in contrast 

to human embryonal carcinoma stem cells (Schwartz et al., 2005) in generating 

positive tyrosine hydroxylase expression. However when combined wi th heparin 

and/or fixed PA6 cells differenfiation o f tyrosine hydroxylase positive cells could be 

achieved, the extent o f this though was still not as great as for untreated PA6 co-

culture. In addition conditioned medium was also able to elicit two other effects, 

firstly it promoted the survival o f human embryonic stem cells and secondly it was 

able to preserve Oct3/4 expression (Vazin et al., 2008). Other evidence has 

previously suggested that sustained Oct3/4 expression could be implicated in early 

neuronal differentiation (Shimozaki et al., 2003; Burgess et al., 2002). Together these 

findings reinforce the concept that the stromal derived inducing activity may be a 

compilation o f multiple factors (Figure 1.5) that can exert an assortment o f effects that 

may elicit varied responses in different experimental systems. 
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Figure 1.5: A summary of the elements of the stromal derived inducing activity 
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Figure 1.5: The different aspects of the stromal derived inducing activity that may have an effect on its 
neural or dopaminergic differentiation ability are shown in blue. Possible candidates that may comprise 
part of the SDIA are shown in red. It may be that factors such as Wnts or Fibroblast growth factor family 
members are involved in more than one of the aspects outlined in blue, for example Wnt 5a could 
potentially be a soluble factor, interact with the cell surface and have a specific effect on promoting the 
acquisition of a dopaminergic phenotype. 

In fact the stromal derived inducing activity may have a temporal component to its 

action. It appears that the stromal derived inducing activity can instruct a 

dopaminergic fate in embryonic stem cell derived neural progenitors before or at the 

point o f expression o f Soxl . However it does not seem to exert an effect during the 

latter stages o f neuronal differentiation (Parmar & L i , 2007). This is comparable to 

the situation where early Fibroblast growth factor 8 application prior to Soxl 

expression is critical to the specification o f a midbrain dopaminergic neuronal fate 

(Yan et al., 2005). Members o f the Fibroblast growth factor family may be secreted 

then subsequently interact wi th the cell surface (Bemfield et al., 1999; lozzo et al., 

1998). This being one o f the possible mechanisms o f the stromal derived inducing 

activity identified by Kawasaki et al., 2000, who like Parmar & L i , 2007 carried out 

their work on murine embryonic stem cells. Therefore there is a strong suggestion 



26 

that Fibroblast growth factor 8 or an associated molecule could be a part o f the 

instructive activity o f the stromal derived inducing activity when using this embryonic 

stem cell system. However one would speculate that i f Fibroblast growth factor 8 or a 

relation o f it is involved, then it w i l l most probably be acting in concert with at least 

one other factor, as when applied alone its effect was significantly less than when 

added in conjunction with Sonic hedgehog at stage four in the protocol o f Lee et al., 

2000. 

Regardless o f the molecular nature o f the PA6 stromal derived inducing activity, any 

dopaminergic type cells derived using this approach must be able to show functional 

properties i f they are ever to be able to be utilised in any relevant application. To this 

end the neuronal derivatives o f mouse embryonic stem cells co-cultured with PA6 

cells showed secretion o f dopamine, assessed by high performance liquid 

chromatography and could upon transplantation maintain a tyrosine hydroxylase 

positive phenotype as well as integrate into the mouse striatum. There was around a 

22% survival rate o f such tyrosine hydroxylase positive cells in this 6-

hydroxydopamine model after two weeks. In a similar 6-hydroxydopamine model the 

transplantation o f neural precursors derived from a range of mouse and somatic cell 

nuclear transfer derived embryonic stem cells cultured on primary stromal cells or 

stromal cell lines, was able to show reasonable numbers o f tyrosine hydroxylase 

positive cells surviving eight weeks after transplantation. In this model administration 

of 6-hydroxydopamine into the striatum causes a selective loss o f dopaminergic 

neurons in the midbrain and a resulting deinnervation o f the striatum. Apomorphine 

or amphetamine is then given to cause motor disturbances that lead to fu l l body 

rotations depending on the drug used. Any measure that involves replacement o f 

dopamine w i l l give a recognisable decrease in the rotational behaviour. Within eight 

weeks o f transplantation more than 70% of animals showed significantly diminished 

apomorphine or amphetamine induced rotational asymmetry (Barberi et al., 2003, 

reviewed in Taylor & Minger, 2005). 

Like their murine counterparts primate embryonic stem cells showed dopamine 

release fol lowing potassium ion induced depolarisation. Again in a 6-

hydroxydopamine mouse model two weeks post implantation there were some 

(approximately 8%)) surviving tyrosine hydroxylase positive neurons (Kawasaki et al.. 
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2002). The PA6 method has also been utilised to create progenitors with the capacity 

to differentiate into dopaminergic neurons. l-methyl-4-phenyl-l,2,3,6-

tetrahydropyridine (MPTP) lesioned primates acting as a Parkinsonian model, upon 

receipt o f transplants o f these populations o f cells, showed significantly reduced 

lesion related neurological defects and augmented fluorodopa uptake assessed by 

positron emission tomography relative to controls (Takagi et al., 2005). The 

percentage o f dopaminergic cells surviving fourteen weeks post transplantation was 

also significantly increased over the levels observed using grafts o f tissue from the 

post mitotic foetal midbrain (Taylor & Minger, 2005). 

Finally when using human embryonic stem cell derived neurons for transplantation in 

a 6-hydroxydopamine model only small numbers (approximately 8 - 9%) o f tyrosine 

hydroxylase positive cells survived five weeks post implantation (Zeng et al., 2004). 

Similarly HSF-6 derived cells although able to show funcfional signs and molecular 

markers o f a dopaminergic phenotype, survived poorly upon transplantation; with few 

tyrosine hydroxylase positive cells remaining six weeks post implantation (Park et al., 

2005; reviewed in Taylor & Minger). Therefore there are still clearly a large number 

of obstacles to overcome before cell transplantation can ever be effectively and safely 

used. However there have been attempts to address some of the issues. 

Dopaminergic neurons are particularly sensitive to enzymatic treatment and physical 

dissociation procedures. This means that loss of some of the cells o f interest is likely 

in any protocol based on their derivation from a stem or progenitor cell population 

growTi in standard adherent conditions, as the cells prior to transplantation have to be 

removed by some method from the culture surface used. By growing mouse 

embryonic stem cells in hollow fibres using PA6 conditioned medium for sixteen days 

Yamazoe & Iwata, 2006, were able to generate P-III-tubulin and tyrosine hydroxylase 

positive cells that could release dopamine upon depolarisation with potassium ions. 

This method allowed the formation o f dopaminergic neurons without loss o f cells as 

the fibres act to protect the neurons from mechanical pressures. Such fibres may also 

serve an additional role in protecting cells from the host immune system i f they were 

to be transplanted (Yamazoe & Iwata, 2006). Such strategies offer a starting point for 

improvements in cell transplantation procedures. 
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Ultimately though for cell transplantation therapy and ideally for screening based 

assays it is both essential and desirable to remove the need for co-culture by 

elucidating the molecular nature o f the stromal derived inducing activity of PA6 cells. 

This would eliminate possible transfer o f murine pathogens which at present makes 

PA6 based approaches unviable in a clinical setting. To this end a comparison o f PA6 

and meningeal cells was made. Meningeal cells are able to induce dopaminergic 

differentiation in mouse and human embryonic stem cells, the derivatives express 

markers o f a dopaminergic phenotype and potassium ion evoked dopamine release. 

Interestingly the developmental stage o f the meningeal cells affects their 

dopaminergic neuron inducing activity wi th E l 8 cells displaying the greatest effect on 

the acquisition o f a dopaminergic phenotype in comparison to their E14 and P4 

counterparts. When expression o f six soluble factors implicated in the differentiation 

of dopaminergic neurons (Fibroblast growth factor 8, Sonic hedgehog, W n t l , Wnt3a, 

Wnt5a and transforming growth factor-p3) was assessed only Wnt5a and 

transforming growth factor-pS mRNA were found to be expressed. Real time RT-

PCR showed that transforming growth factor-P3 expression increased with 

developmental stage and was greater in meningeal than PA6 cells; whilst E l8 

meningeal cells, which possessed the greatest inducing activity shared a similar level 

of Wnt5a expression to their PA6 counterparts, where as the less potent E l 4 and P4 

stage meningeal cells expressed lower levels of this particular component. 

The effects o f Wnt5a as a soluble aspect of the stromal derived inducing activity were 

investigated further. PA6 conditioned medium could induce dopaminergic 

differentiation o f mouse embryonic stem cells grown on matrigel relative to a control 

differentiation medium. I f a Wnt5a neutralising antibody was added to the 

conditioned medium the levels o f dopaminergic induction were decreased to control 

levels. However addition o f recombinant Wnt5a to the differentiation medium could 

elicit an increase in the percentage of cells acquiring a dopaminergic phenotype. 

Therefore it appears that Wnt5a is an important part o f the mechanism of the stromal 

derived inducing activity (Hayashi et al., 2008). 

These findings are also consistent with other work that demonstrates that ventral 

midbrain glia express region specific transcription factors such as Engrailed 1 and 

Otx2 as well as secreting Wnt5a. In turn they are able to amplify the differentiation 
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of both mesencephalic and cortical Nur r l positive precursors into tyrosine 

hydroxylase positive cells. Again using a Wnt5a neutralising antibody it was shown 

that at least part o f the effect o f ventral midbrain glia on Nur r l positive precursors 

was attributable to the effects o f Wnt5a (Castelo-Branco et al., 2006). Likewise 

earlier work had indicated that Wnt5a had a specific instructive role in driving Nurr l 

positive precursors towards the acquisition of a dopaminergic phenotype (Castelo-

Branco et al., 2003). When using human embryonic stem cells as described earlier it 

was observed that the specific dopaminergic inducing activity appeared to lie in the 

soluble factors produced by PA6 cells. When heparin was used to try and increase the 

activity o f any secreted factors using conditioned medium there was a noticeable 

effect on dopaminergic differentiation (Vazin et al., 2008). Similarly in the study o f 

Hayashi et al., 2008, condifioned medium was collected fol lowing incubation o f PA6 

cells for twenty four hours in a differentiation medium containing heparin. In this 

work Wnt5a was highlighted as one possible heparin binding soluble factor capable o f 

causing dopaminergic differentiafion (Hayashi et al., 2008). By analogy one might 

suspect that Wnt5a exerts a similar effect in human as well as mouse embryonic stem 

cells. Perhaps when considering possible constituents o f the stromal derived inducing 

activity it may be worth examining dopaminergic inducing elements that share a high 

degree o f conservation between species, as the stromal derived inducing activity can 

have an effect in murine, primate and human cell systems, despite there being 

evidence that there are species specific differences. Therefore it is logical that at least 

some o f the aspects o f the stromal derived inducing activity might be highly 

conserved. In addition the PA6 mediated stromal derived inducing activity i f multi 

factorial as it appears to be opens up the question o f whether a cell can be engineered 

to express in a spatially and temporally controlled manner, neurotrophic factors 

following implantation that could sfimulate endogenous repair in a disease model. 

Beyond the methods considered thus far, dopaminergic differentiation has also been 

achieved f rom primate embryonic stem cells in co-culture with Sertoli cells. This 

protocol showed temporal efficiency and produced cells expressing a range of 

dopaminergic markers that could release dopamine upon potassium ion 

depolarisation. After transplantation into a 6-hydroxydopamine model tyrosine 

hydroxylase positive neurons were observed to survive for at least two months. When 

a filter membrane was used significant neural differentiation facilitated by the Sertoli 
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cells was seen. This is indicative o f soluble factors being responsible for the 

inductive effect. Interestingly though Sertoli cell conditioned medium did not cause a 

significant level o f differentiation. This could be indicative o f two different 

components, one at the cell surface and one a labile soluble factor (Yue et al., 2006), 

this is analogous to the situation found with PA6 stromal derived inducing activity. 

However the neural inducing activity o f Sertoli cells could be highly attributable to 

glial cell line derived neurotrophic factor. Not only was it found in Sertoli cell 

conditioned medium but fol lowing a weak dose o f anti-glial cell line derived 

neurotrophic factor antibody, to act as a blocker o f its activity, neural differentiation 

was reduced. Glial cell line derived neurotrophic factor may therefore act to assist or 

augment the efficiency o f other factors in promoting differentiation (Yue et al., 2006). 

This is reflected in its usage in a number o f protocols aimed at optimising the 

synergistic interactions between different known inducers o f a dopaminergic 

phenotype. It is also worthy o f note that a rapid differentiation o f the human 

embryonal carcinoma cell line Ntera2.Dl can be achieved by growing tissue 

constructs o f Sertoli cells in conjunction with Ntera2 in a rotating wall bioreactor 

(Saporta et al., 2004). This is again analogous to the PA6 method in that the inductive 

factors may be highly conserved so as to be able to exert an effect on cell lines from 

different species. It also shows that retinoic acid is not necessarily an essential 

requirement when working with embryonal carcinoma stem cells, as was also the case 

in the work o f Ravindran & Rao, 2006. 

The role of Wnts in dopaminergic neurogenesis 

This family o f lipoglycoproteins consists o f nineteen members, some of which have 

been shown to have effects on the development o f dopaminergic neurons (for review 

see Arenas, 2005) and as such they are an area o f great interest in the context o f this 

thesis. Wnt5a as has been discussed may form part o f the stromal derived inducing 

activity o f PA6 cells and is secreted by ventral midbrain glia. However other Wnt 

family members may also play critical roles in the specification of a dopaminergic 

cell fate. In mice W n t l causes an increase in the expression o f Otx2 which acts as a 

repressor o f Nkx2-2, down regulating its activity. This then limits the acquisition of 

alternative neuronal fates and as such creates a permissive environment for other 

dopaminergic inducing agents such as Fibroblast growth factor 8 and Sonic hedgehog 
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to act (Prakash et al., 2006, reviewed in Burbach & Smidt, 2006). Wnt l has also been 

shown to increase the number o f Tuj 1 positive cells in rat ventral midbrain precursor 

cultures (Castelo-Branco et al., 2003). Such an effect would be highly desirable to 

reproduce in other systems where mixed cell populations could be increasingly driven 

towards a neuronal fate to enrich them prior to their guidance towards a specific 

neurotransmitter phenotype. The same molecule is also capable o f increasing the 

number o f Nur r l positive precursors in the rat E14.5 ventral midbrain cellular model. 

In addition it can have an effect on the differentiation o f precursors into more mature 

dopaminergic neurons. This implies that it possesses a dual role controlling both the 

proliferation and differentiation o f dopaminergic precursor cells (Castelo-Branco et 

al., 2003). 

Another family member Wnt3a actually caused the number o f dopaminergic neurons 

to decrease but increased the proliferation and helped to maintain the Nur r l positive 

precursor pool. This was in contrast to Wnt5a which had little effect on the 

proliferation o f the N u r r l positive precursors but drove the differentiation o f them 

towards a dopaminergic phenotype (Figure 1.6). Interestingly Wnt5a promoted the 

levels o f the glial cell line derived neurotrophic factor receptor cRET mRNA in these 

cultures and maintained the expression o f the m R N A for two glial cell line derived 

neurotrophic factor co receptors neural cell adhesion molecule and glial cell line 

derived neurotrophic factor family receptor a l (Castelo-Branco et al., 2003). Glial 

cell line derived neurotrophic factor is involved in the post natal stages o f 

development o f dopaminergic neurons (Granholm et al., 2000). This is indicative 

therefore that as is the case in vivo it may be possible to carefully control the 

acquisition and maintenance o f a dopaminergic phenotype in vitro i f the correct 

combination o f molecules can be utilised in concert or at least more optimally than 

has been achieved at present. 

The assessment o f patterns o f receptor expression may help provide a better 

understanding o f how and when molecules known to influence dopaminergic 

differentiation act. In turn this may aid the design o f new or adapted experimental 

protocols to achieve enriched populations o f dopaminergic neurons in vitro. This is in 

principle neatly demonstrated in work using human embryonic stem cells 

differentiated towards a dopaminergic fate using co-culture with astrocytes or PA6 
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cells. First o f all it was shown that co-culture o f astrocytes f rom the embryonic 

striatum resulted in the production of more tyrosine hydroxylase positive cells in 

comparison to co-culture wi th astrocytes f rom the embryonic mesencephalon, 

indicating that there are region specific differences between cell types, at least in 

relation to their dopaminergic inducing activity. Secondly though co-culture wi th 

PA6 cells that may possess Wnt5a as a part o f their stromal derived inducing activity 

(Hayashi et al., 2008) i f carried out in the presence o f glial cell line derived 

neurotrophic factor causes the number o f tyrosine hydroxylase positive cells obtained 

to double. It also increased the size and survival o f embryonic stem cell colonies 

containing the enhanced levels o f tyrosine hydroxylase positive cells (Buytaert-

Hoefen et al., 2004). Thus i f Wnt5a is part o f the stromal derived inducing activity i t 

is possible in theory that it may be up regulating glial cell line derived neurotrophic 

factor receptor expression, and as such i f the cells are primed to receive glial cell line 

derived neurotrophic factor then this would provide a plausible reason for the 

increased dopaminergic differentiation. 

Figure 1.6: The roles of Wnt family members in specifying a dopaminergic fate 

(redrawn from Castelo-Branco et al, 2003) 
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Figure 1.6: Specific Wnt proteins display different effects on the proliferation of Nurrl 
positive precursors and their differentiation towards a more mature tyrosine hydroxylase 
positive neuronal phenotype. The greater the size of the arrow head the stronger the 
observed effect (based on Castelo-Branco et al., 2003). 
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Recently it has also been shown that Wnts may help in cell replacement strategies. 

Over expression o f W n t l and WntSa in murine ventral midbrain cultures enhanced 

Nur r l expression, and in the case o f Wnt5a also increased the levels o f tyrosine 

hydroxylase. This is indicative o f W n t l up regulafing the number o f dopaminergic 

precursors but would suggest that Wnt5a plays a greater role in the specific 

differentiation of dopaminergic neurons, which is similar to the findings of Castelo-

Branco et al., 2003. The effect o f Wnt5a over expression is matched by exogenous 

application o f the molecule and can be blocked by an antibody to it. Inhibitor 

experiments showed the effects o f Wnt5a to be mediated by a non canonical 

signalling pathway, which is supported by other work in a dopaminergic cell line 

(Schulte et al., 2005; Parish et al., 2008). In addition to displaying markers o f and an 

electrophysiological profile akin to midbrain dopaminergic neurons, WntSa treated 

cells upon transplantation into a 6-hydroxydopamine mouse model resulted in a 

marked recovery. They also showed enhanced integration and differentiation and 

could therefore be a highly efficient source of dopaminergic neurons for use in cell 

based replacement strategies (Parish et al., 2008). 

Similarly posidve effects were seen when Wnt5a in conjunction with Fibroblast 

growth factor 2 and 20 were used in the final stage o f the in vitro dopaminergic 

differentiation o f a parthenogenetic non human primate embryonic stem cell line. The 

stem cell derived neurons when transplanted into a 6-hydroxydopamine model 

displayed improved survival and enhanced the degree o f motor recovery. In this and 

the work o f Parish et al., 2008 there was no detectable tumour formation which is o f 

great importance i f this is to be developed further for clinical use (Sanchez-Pernaute 

et al., 2008). 

Suspension and Lowered Oxygen Culture as mediators in the acquisition of a 

dopaminergic phenotype in vitro 

Both the use o f a physiological oxygen culture environment and growth o f cells in 

suspension have provided a means of producing or even enhancing the generation o f 

dopaminergic neurons in vitro. At the core o f many protocols using embryonic stem 

cells is embryoid body formation. This has been extended to the generation o f 
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homogenous structures referred to as spherical neural masses (Cho et al., 2008). 
These can subsequently be rapidly and efficiently differentiated into dopaminergic 
neurons using a protocol involving Fibroblast growth factor 8/Sonic hedgehog and 
ascorbic acid. In addition to this no feeder cells are required during the differentiation 
process and long term passaging is possible without the spherical neural masses losing 
their capacity for dopaminergic differentiation. When transplanted into a 6-
hydroxydopamine model behavioural recovery is apparent and no tumour formation is 
observed. No Oct 4 positive cells were detected suggesting the efficient 
differentiation protocol eliminates any residual undifferentiated embryonic stem cells, 
thus providing a solid foundation for future development (Cho et al., 2008). 

In an earlier study also using human embryonic stem cells dopaminergic 

differentiation was achieved in a serum free suspension culture system without 

addition o f any dopaminergic phenotype inducing agents. This would suggest that 

there was sufficient signalling within the cellular aggregates to drive the process o f 

differentiation. In addition bone morphogenetic protein 4 could be used to manipulate 

the system, demonstrating the potential for use of other exogenous factors to drive the 

system towards specific cellular fates (Schulz et al., 2004). 

This highlights the flexibility o f the suspension culture model. By mimicking the 3D 

environment in vivo, 3D cell growth in vitro not only allows for more cell-cell 

interactions but also creates a more complex microenvironment whereby diffusible 

factors may more readily access their targets; in turn creating a situation that may 

more closely resemble the scenario in vivo. The fact that the determination o f cell fate 

in this system though can still be orchestrated by the application o f exogenous 

compounds, adds to the potential benefits o f it. A case may be made that suspension 

cultures are due to the more complex intrinsic interactions o f which they may be 

capable subsequently more able to respond to external stimuli. However the opposite 

may also be true as gaining control o f an increasingly intricate system might not so 

easily be achieved. 

In the context o f dopaminergic differentiation suspension culture may not only be 

advantageous in that it provides an in vitro representation o f 3D cell growth but in 

doing so it creates a physical variable, oxygen pressure, known to have an effect on 
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the acquisition o f a dopaminergic phenotype. When cells are grown as aggregates 

they are likely to be subjected to different ambient conditions depending on their local 

position. Cells at the edge o f a sphere are likely to receive a greater oxygen pressure 

than those in the centre (Figure 1.7), (Gassmann et al., 1996). It is therefore possible 

that at least in part suspension culture favours production o f neural cell types as 

oxygen pressures in the brain are typically lower (Silver & Erecinska, 1998) than 

those used in standard in vitro culture, and this situation may be to some degree 

recapitulated in the centre o f a cellular aggregate. 

Figure 1.7: The variation in oxygen pressure within a spherical cellular 

aggregate (based on Gassmann et al, 1996) 
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Figure 1.7: Oxygen tension is greatest at the periphery and decreases towards the 
centre of a spherical cellular aggregate (based on Gassmann et al., 1996) 
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There has indeed been evidence that may be indicative o f this in E12 rat ventral 

midbrain cultures. In this work a mix of growth factors and a fusion protein TAT-

Pax6 were used to promote dopaminergic differentiation of either intact neurospheres 

or dissociated neurosphere derived cells. Intact neurospheres treated with a 

combination o f growth factors and TAT-Pax6 yielded a significantly higher 

percentage o f tyrosine hydroxylase positive neurons than their dissociated 

neurosphere derived cell counterparts. Interestingly the tyrosine hydroxylase positive 

neurons were concentrated in the central region of the neurospheres with long axonal 

tyrosine hydroxylase positive projections protruding away from them. In contrast 

more limited axonal projections and a random distribution o f tyrosine hydroxylase 

positive neurons were observed in the dissociated cell cultures (Spitere et al., 2008). 

This suggests there to be some advantageous effects on dopaminergic differentiation 

that are attributable to the growth of cells in 3D and the seemingly favourable 

environment that this provides. It is possible that these effects may be at least in part 

due to oxygen pressure as the centre o f a sphere where dopaminergic differentiation 

was most pronounced in the work o f Spitere et al., 2008 is also the region that would 

be predicted to receive the lowest partial pressure o f oxygen. Other earlier work 

carried out in an essentially comparable rat E l 2 mesencephalic precursor model 

demonstrated a substantially increased capacity for dopaminergic differentiation in 

3±2% oxygen in comparison to standard 20% oxygen culture. Thus although there 

may be an array o f other factors involved the notion that 3D growth supports 

dopaminergic differentiation through a mechanism involving oxygen pressure is 

feasible, at least in the rat E l 2 midbrain precursor cell model. 

In fact lowered oxygen has a number o f favourable effects in the rat E l 2 

mesencephalic cell system. These include increased proliferation o f progenitors and a 

reduction in apoptosis, both o f which lead to an increase in total cell number. There 

was also an increase in the percentage o f cells specifically acquiring a dopaminergic 

phenotype (56% in 3±2% oxygen versus 18% in 20% oxygen). The combined effect 

o f all these factors being a highly desirable nine fold increase in the yield of 

dopaminergic neurons produced. Progress towards a differentiated state was also 

hastened (Studer et al., 2000), which is in itself valuable in the context o f temporal 

efficiency, which may be a key requisite in the design o f any type of assay system. 
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It has also been shown that lowered (3%) oxygen can facilitate long term human 

mesencephalic precursor cell proliferation giving rise to a larger yield o f cells that can 

be subsequently differentiated (Storch et al., 2001). Similarly murine mesencephalic 

neurospheres were viable and able to proliferate in 3% oxygen for a number o f weeks. 

Contrastingly a 2 1 % oxygen culture environment was prohibitive to long term 

expansion. It appears f rom microarray data that a range o f genes implicated in cell 

maturation, the cell cycle and apoptosis are regulated in a differential manner in 

precursors exposed to 3 as against 2 1 % oxygen over a one to two month period 

(Milosevic et al., 2005). Differential gene expression was also seen in lowered 

oxygen cultures in the work o f Studer et al., 2000. In particular there was an up 

regulation o f the erythropoietin transcript in 3±2% oxygen, as well as that o f 

Fibroblast growth factor 8. When recombinant Fibroblast growth factor 8b and 

erythropoietin were applied to the system under 20% oxygen it was found that 

Fibroblast growth factor 8b increased proliferation in the precursors and that 

erythropoietin caused a notable dose dependent increase in the number o f tyrosine 

hydroxylase positive cells. A blocking antibody to erythropoietin markedly reduced 

the dopaminergic neuron yield in both oxygen environments suggesting that 

application o f erythropoietin can mimic the effects o f lowered oxygen on the 

production o f dopaminergic neurons (Studer et al., 2000) 

The higher oxygen tensions in standard culture conditions are likely to cause the 

production o f reactive oxygen species which may be damaging to sensitive midbrain 

cell types. Thus it is unsurprising that the survival o f embryonic rat mesencephalic 

neurons is enhanced when they are protected f rom oxidative stress. Survival of 

tyrosine hydroxylase positive neurons was increased approximately twofold in 5% 

oxygen culture conditions. In addition in the presence of three different antioxidants 

there was also a favourable effect in terms of the number o f tyrosine hydroxylase 

positive cells. The combination o f 5% oxygen culture and one o f the three 

antioxidants N-acetyl cysteine promoted tyrosine hydroxylase positive cell numbers 

further giving a four fo ld increase (Colton et al., 1995). Therefore it would appear 

that when dealing wi th mesencephalic cultures, the use o f lowered oxygen is likely to 

assist in the production o f dopaminergic neurons via a range o f possible mechanisms. 
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The employment o f lowered oxygen has also recently been applied to mouse 

embryonic stem cell derived neural precursors in a bid to elicit dopaminergic 

differentiation. In this work 3.5% oxygen culture resulted in a 1.34 fold increase in 

tyrosine hydroxylase positive cells; there was an increase in the number o f colonies 

positive for tyrosine hydroxylase expression; however colony size was reduced in 

comparison to 20% oxygen. In addition expression o f tyrosine hydroxylase mRNA 

was up regulated 1.68 fold in lowered oxygen conditions ( K i m et al., 2008). 

Therefore it would appear that the use o f more physiologically matched oxygen 

culture environments may be o f use in other cell systems, which may in turn justify a 

more widespread usage o f the technology. 

Engineering a Dopaminergic Phenotype in vitro 

There are many factors involved in the specification of a dopaminergic fate (Figure 

1.8), some o f which have been successfully utilised to engineer a dopaminergic 

phenotype in vitro. The transcription factor N u r r l a member o f the orphan nuclear 

receptor family exemplifies this and has been employed in conjunction with a number 

of other methods to elicit doparriinergic differentiation. Firstly using the protocol o f 

Lee et al., 2000 involving Sonic hedgehog/Fibroblast growth factor 8 and ascorbic 

acid, it was possible to increase the production of tyrosine hydroxylase positive 

neurons via over expression o f N u r r l . This was also reflected by a greater ability to 

produce and release dopamine in Nur r l transduced cells (Chung et al., 2002). A 

similar study again in mouse embryonic stem cells demonstrated a consistent 

enhancement in dopamine release in stage five cultures o f Nur r l transfected 

embryonic stem cells relative to their wi ld type counterparts. In this study the 

percentage o f tyrosine hydroxylase positive neurons was increased from 5 to 50%) by 

over expression o f N u r r l alone and this effect was augmented in the presence of 

Sonic hedgehog and Fibroblast growth factor 8 (Kim et al., 2002). Such positive 

synergistic effects were built upon in subsequent work involving PA6 co-culture of 

murine embryonic stem cells in tandem with Nur r l over expression. This procedure 

led to an approximately twofold rise in the number o f neurons in relation to wi ld type 

controls, as well as increasing the proportion o f these neurons that were tyrosine 

hydroxylase positive to more than 50%. When Sonic hedgehog/Fibroblast growth 

factor 8 and ascorbic acid were added to further facilitate this differentiation around 
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90% o f T u j l positive neurons were found to be tyrosine hydroxylase positive, 

indicating not only that PA6 stromal derived inducing activity and Nur r l can act 

synergistically but that the addition o f other dopaminergic inducing agents can 

supplement this effect ( K i m et al., 2006a). 

Investigations in a mouse neural stem cell model using N u r r l over expression were 

also able to show that Fibroblast growth factor 8 and Sonic hedgehog could act in 

concert with Nur r l to yield a large number of cells displaying positive 

immunoreactivity for tyrosine hydroxylase. In the same study human foetal 

astrocytes could elicit a smaller but significant effect which could be slightly 

amplified by addition o f forskolin and retinoic acid. These two molecules alone 

though could not exert any tangible effects in this system. The observations with 

Sonic hedgehog and Fibroblast growth factor 8 intimate that Nur r l may not act down 

stream of these molecules, but rather it may operate independently o f or in synergy 

with them to stipulate a dopaminergic phenotype ( K i m et al., 2003). 

The use o f N u r r l over expression has in addition been coupled to that o f other known 

determinants o f a mesencephalic dopaminergic cell fate. The use o f retroviral gene 

delivery to express neurogenin 2 in foetal mouse ventral midbrain progenitors caused 

increased neuronal differentiation, but did not in itself boost formation of 

dopaminergic neurons. Generation of cells expressing tyrosine hydroxylase but with 

an immature morphology and a lack of dopaminergic marker co-marker expression 

was mediated by expression o f Nur r l alone; however when combined, neurogenin 2 

and N u r r l over expression produce mature tyrosine hydroxylase positive neurons that 

express a range o f other markers (Andersson et al., 2007). These two factors have 

also been investigated in rat as well as mouse neural precursors. In rat cultures Nur r l 

over expression could efficiently yield tyrosine hydroxylase positive cells. However 

in the murine system generation o f tyrosine hydroxylase positive cells was diminished 

and showed a large disparity dependent upon the embryonic age and brain regions 

from which the precursors were derived. The variability between the two systems 

was sustained upon co-expression with neurogenin 2. In rat cultures the production of 

tyrosine hydroxylase positive cells induced by Nur r l was curbed in the presence of 

neurogenin 2. The opposite was true in murine cultures where the dual action 

enhanced the output o f dopaminergic cells (Park et al., 2008), which is similar to the 
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findings of Andersson et al., 2007; the critical aspect of the work o f Park et al., 2008, 

being to identify clear species specific differences in the development o f midbrain 

dopaminergic neurons. This again highlights the necessity o f a range o f experimental 

systems to provide a broad and balanced overview of the process of dopaminergic 

differenfiation in different models. 

On this theme Nur r l over expression has also been utilised to induce a dopaminergic 

phenotype in rodent adult neural precursor cells from the subventricular zone and 

white matter. The use o f adult cells carries not only ethical advantages but practical 

ones such as a lack o f problems with tumour formation. The diff icul ty though lies in 

having the ability to instruct such cells towards specific neurotransmitter phenotypes. 

Therefore N u r r l over expression in this instance is to be favoured, especially given 

that it can be combined with co-expression o f Mashl as well as brain derived 

neurotrophic factor and neurotrophin 3 treatment to increase the yield o f 

dopaminergic neurons which display functional properties. Although to a limited 

extent Nur r l and Nur r l plus Mashl engineered subventricular zone adult neural 

precursor cells were also able to help reverse the behavioural deficit in a Parkinsonian 

rat model having shown an ability to survive, integrate and differentiate into tyrosine 

hydroxylase positive neurons in vivo. This study gives support to the notion that 

autologous cell transplantation may in the future be possible (Shim et al., 2007). 

Furthermore in both murine and human embryonic stem cell models Nur r l has been 

shown to cooperate wi th Pitx3, a homeodomain transcription factor, in promoting the 

terminal maturation o f such cultures to a midbrain dopaminergic phenotype (Martinat 

et al., 2006). Moreover these components were investigated in work using neural 

stem cells f rom rat, where neither N u r r l nor Pitx3 expression alone was capable of 

initiating the production of dopaminergic neurons, indicating that they are both 

necessary but not sufficient to cause dopaminergic differentiation in this model. 

When cultured in the presence o f E l 1 ventral midbrain explants, Pitx3 but not N u r r l 

transduced neurospheres displayed a clear increase in the number o f dopaminergic 

neurons present. O f these neurons in the explant cultures over half were attributable 

to the Pitx3 expressing neurospheres (O'Keeffe et al., 2008). This is one case where 

Nurr l seems to exhibit little effect, in contrast to what has been found elsewhere, 

although it reinforces the usage o f Pitx3 to achieve acquisition o f a dopaminergic 
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phenotype. A Pitx3-eGFP knock in mouse embryonic stem cell line united with 

fluorescence activated cell sorting has also been successfully used to purify out an 

enriched population o f dopaminergic neurons f rom a mixed population o f the in vitro 

differentiated embryonic stem cells. This type o f selection holds future promise in 

helping to produce refined populations o f cells for use in transplantation strategies 

(Hedlund et al., 2008). 



Figure 1.8: Factors and Signals involved in the specification of a dopaminergic fate (redrawn from Arenas, 2008) 
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Figure 1.8: Some of the myriad of factors that may play a role in defining a dopaminergic phenotype. This scheme is a reflection of 
the current understanding of the process and will most probably change with time as new developments continue to arise (redrawn 
from Arenas, 2008). 
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Another key determinant o f a dopaminergic phenotype L m x l a was successfully over 
expressed in mouse embryonic stem cells in an expression vector driven by a nestin 
enhancer that is active in neuronal progenitor cells. The undifferentiated mouse 
embryonic stem cells were differentiated into nestin positive neuroprogenitors by 
culturing them on gelatin coated culture ware in the presence of Fibroblast growth 
factor 2, Fibroblast growth factor 8 and a 1.7mM dose o f Sonic hedgehog. The 
concomitant use o f this differentiation protocol and L m x l a over expression lead to a 
strong inducfion o f M s x l , an accompanying reducfion in Nkx 6-1 and the production 
o f a substantial number o f T u j l positive neurons that also expressed tyrosine 
hydroxylase. More importantly these neurons co expressed a panel o f other markers 
that together give a signature unique to dopaminergic neurons. It was also o f interest 
that ventralisation by Sonic hedgehog was essential for L m x l a to induce the 
formation o f dopaminergic neurons, as mouse embryonic stem cells cultured in 
conditions where this signalling molecule was omitted expressed the dorsal marker 
Pax7 the expression o f which was absent in Sonic hedgehog treated samples, the 
result o f this absence being an induction in M s x l expression but not in tyrosine 
hydroxylase positive neurons (Andersson et al., 2006). In the same study L m x l b and 
M s x l were also over expressed. L m x l b transfection gave rise to only a small number 
of tyrosine hydroxylase posifive neurons, indicating that it is not as potent an inducer 
of them as Lmxla . M s x l in a comparable fashion to that observed m vivo was able to 
induce neurogenin2 but not dopaminergic neurons when used alone, but when co-
transfected with L m x l a was capable o f causing a noficeable induction in tyrosine 
hydroxylase positive neurons after only 6 days o f culture, suggesting it may possess a 
temporal effect on the dopaminergic differentiation process (Andersson et al., 2006). 

When L m x l a had its expression reduced by siRNA in human embryonic stem cell 

derived neural precursors, there was a congruous decline in the expression o f a range 

of other dopaminergic markers, suggesting that this particular transcription factor is 

essential for the acquisition o f a mature dopaminergic phenotype in human embryonic 

stem cell derived neural precursors (Cai et al., 2008). This evidence is not only 

consistent with that detailed previously in defining L m x l a as an important 

determinant o f a dopaminergic fate but also indicates that it plays a role in both 

murine and human systems, although its activity may be slightly different between 

species. In the work o f Cai et al., 2008 the lack o f efficient methods for the 
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transfection o f L m x l a expression vectors into human embryonic stem cell colonies 

leads to a situation whereby it is still at present unclear i f L m x l a is able to induce a 

dopaminergic phenotype in human embryonic stem cell derived neural precursors. 

Therefore in the same study monolayers o f a human neuroblastoma cell line and 

primary human neural precursor cells were used to investigate the effects of L m x l a 

over expression. In contrast to the findings in mouse embryonic stem cells 

(Andersson et al., 2006), transfected cells did not display an induction in 

dopaminergic marker expression. This may be due to the human neuroblastoma cell 

line used being derived from post natal tissue and the primary cultures from 

midgestational foetal brain. Given the importance o f using/applying dopaminergic 

inducing agents at the optimal temporal window, usually early in development it is 

possible the cell types used were too far progressed in their development to be 

responsive to the effects o f L m x l a over expression. Alternatively it may be there is a 

species specific difference with other inductive partners being required for L m x l a to 

exert an effect in the human system (Cai et al., 2008). 

In other work using retroviral mediated transgene delivery, the over expression of 

L m x l a and M s x l was investigated in the human embryonic derived progenitor cell 

line NGC-407. L m x l a , but not M s x l , was able to cause a threefold increase in the 

yield o f tyrosine hydroxylase immunopositive cells, although this rise represented 3% 

as opposed to 1% o f the population, in essence meaning the quantity o f such cells was 

too minimal to be o f value in the context o f any potential applied usage. These two 

factors along with Pitx3 and neurogenin2 were also over expressed in neurospheres 

obtained f rom El4.5 rat ventral mesencephalic progenitor cells. Neurogenin2 in 

accordance with it possessing a proneural function exhibited a strong effect on 

neuronal induction. Pitx3 was able to reduce expression o f Sox2 and nestin, markers 

of more immature neural cells, but displayed no clear effect on neuronal or glial 

differentiation. O f further interest were the observations that L m x l a caused very few 

cells to form neurons and over expression o f Msx l resulted in increased 

oligodendrocytic rather than neuronal differentiation. In addition over expression of 

any o f these four factors either alone or in concert with each other had no effect on the 

ability o f the rat neural stem cells to acquire a dopaminergic phenotype (Roybon et 

al., 2008). This work along with that described previously again reinforces the 

concept o f the need for awareness o f species specific differences, the methods of over 



45 

expression used and the developmental stage o f the cell type chosen for 

experimentation. It also highlights that certain factors are more optimal in some 

model systems than others, even so such work is important in helping to highlight 

idiosyncrasies, such as L m x l a over expression having effects on cell proliferation that 

are not easy to predict (Roybon et al., 2008). In turn this may temper the usage of 

comparable approaches in other cell types where this factor exerts a greater effect, i f 

for example the aim was to produce neurons for transplantation, as such cells may 

have a propensity for tumour formation based on the findings o f Roybon et al., 2008. 

That is not to say though in other models this would be the case but given the 

potentially large number o f unknown variables, it is perhaps still advantageous to try 

and gain as broad an understanding as possible across the entire range o f available 

experimental systems. 

One other possible component o f the pathway(s) specifying a dopaminergic fate that 

has successfully been over expressed to help engineer such a phenotype in vitro is 

Foxa2. An expression plasmid containing it was transferred into cultured murine 

E10.5 mesencephalic explants, resulting in a 4 fold increase in the ratio o f tyrosine 

hydroxylase positive cells. In a similar manner a mouse embryonic stem cell line that 

had been designed to inducibly express a Foxa2 transgene was able to show a 7 fold 

enhancement in the production of tyrosine hydroxylase positive cells (Kittappa et al., 

2007). 

In an alternative spin on the over expression strategy method, human neural 

progenitor cells were produced that could release either glial cell line derived 

neurotrophic factor or insulin like growth factor 1 which may both have 

neuroprotective effects. These cells were then implanted into a rat 6-

hydroxydopamine Parkinsonian model. The cells secreting these two factors upon 

transplantation were shown relative to human neural precursor or sham controls to 

help diminish the loss of dopaminergic neurons (Ebert et al., 2008). This approach 

gives support to the concept that when transplanting cells that possess properties of 

dopaminergic neurons to try and directly combat the loss o f them in models of 

Parkinson's disease, you could also transfer some supporting cells that express neuro 

protective or neurotrophic factors. It may even be possible to engineer dopaminergic 

type cells to f u l f i l this role, eradicating the need for a secondary cell population. In 
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turn such approaches may offer synergy with the capacity for endogenous repair 

within the brain. 

Overall therefore efforts to engineer a dopaminergic phenotype in vitro or even to 

support or protect one in vivo hold some potential. It may be seen as undesirable to 

transplant cells that are genetically engineered, but this is debateable and does not 

restrict the value o f such approaches in broadening our understanding o f the 

mechanisms of dopaminergic differentiation in a variety o f cellular models. 

Alternative means to achieve or augment dopaminergic differentiation 

Although for the purposes o f this work the procedures used to attempt to achieve a 

dopaminergic phenotype in vitro have been classified into distinct sections, the 

complexity o f the process o f dopaminergic differentiation and the myriad o f factors 

involved, mean the vast majority o f such methods fall into more than one category. 

There are also some studies that do not discretely fit into any such banding and these 

are to be focussed upon here. 

First of all ascorbic acid can restore the dopaminergic differentiation efficiency of 

mesencephalic precursors that is lost when such cells are proliferated or passaged over 

an extended duration in vitro. It also gives rise to a more than 10 fold increase in 

tyrosine hydroxylase positive cells relative to untreated controls (Yan et al,, 2001). 

As such the use o f this molecule is often associated with other protocols for example 

that o f Cho et al., 2008 who used it alongside Sonic hedgehog and Fibroblast growth 

factor 8 as part o f a highly efficient procedure to generate dopaminergic neurons. 

Like wise it was used in conjunction with these two molecules, along with a cocktail 

o f other dopaminergic inducing agents, including glial cell line derived neurotrophic 

factor, brain derived neurotrophic factor, transforming growth factor type p3 and 

dibutyryl cAMP as well as an initial stromal cell co-culture step in the work of Perrier 

et al., 2004. The transgenic MS5-Wnt l stromal cell line used as part o f the Perrier et 

al., 2004 study was also utilised in concert with the bone morphogenetic protein 

antagonist noggin to enhance the differentiation o f two human embryonic stem cell 

lines into neuroepithelial progenitors which were subsequently driven towards a 

dopaminergic phenotype in conditions similar to those described in Perrier et al., 
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2004, that favour such differentiation (Sonntag et al., 2007). In a comparable fashion 

formation o f dopaminergic neurons f rom mouse and human embryonic stem cells via 

co-culture wi th PA6 cells was enhanced in the presence of noggin (Chiba et al., 

2008). The production o f tyrosine hydroxylase positive neurons f rom human 

embryonic stem cells grown in co-culture with PA6 cells can also be enhanced 5 fold, 

f rom 3 to 15% when the culture medium is supplemented with Fibroblast growth 

factor 20 (Correia et al., 2008). One possible advantage o f the use o f molecules like 

Fibroblast growth factor 20 and noggin is that they can be exogenously applied or 

withdrawn at key points in a differentiation protocol to try and optimise their effect, 

where as co-culture based methods are far less controlled in that there may be any 

number o f unknown factors being secreted but there is no means to try and control 

their action to achieve the maximal desired output. There have though quite recently 

been efforts to reduce or remove the need for the use o f co-culture, conditioned media 

and the often complex culture media containing undefined components that are often 

associated with dopaminergic differentiation procedures. lacovitti et al., 2007 used a 

range o f human embryonic stem cell lines to produce neurons expressing markers o f a 

dopaminergic phenotype in just three weeks in vitro using a sequential method that 

involves only the use o f chemically defined media additives and substrata that are 

derived f rom human sources. Molecules such as noggin and dibutyryl cAMP used in 

the work outlined previously feature in this strategy, as does a suspension culture step. 

Although it was not possible to successfully harvest the more mature cells exhibiting 

a dopaminergic phenotype at the terminus o f the differentiation protocol, earlier stage 

neuronal progenitor cells were able to be collected for transplantation into a 6-

hydroxydopamine rat model and after two to three weeks in vivo exhibited attributes 

associated with a dopaminergic phenotype (lacovitfi et al., 2007). 

This work by lacovitti et al., 2007, also highlights the need for an adequate number o f 

neurons or neuroprogenitors for use in transplantation strategies. However cell 

number may be important in terms o f the seeding density used when setting up 

cultures for differentiation in vitro as well. This was exemplified in the work of Ko et 

al., 2005 using rat mesencephalic precursors, which gave rise to an enhanced yield o f 

neurons displaying dopaminergic characteristics when the cells were plated out at 

higher densities. 
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Cell seeding density is just one factor that may influence the dopaminergic 

differentiation o f cells in vitro, the substratum on which they grow may also have an 

effect and this is reflected in a wide number of protocols. O f interest though is the 

work o f Yu et al., 2007 who showed using rat neural stem cells that in the presence o f 

basic Fibroblast growth factor. Heparin and Laminin there was greater dopaminergic 

differentiation than when the adherent substrate Laminin was omitted. In addition in 

the work o f lacovitti et al., 2007 the human embryonic stem cell derived embryoid 

bodies were plated out onto collagen IV coated flasks as opposed to gelatin coated 

dishes as is the case in many published protocols. This alteration strongly enhanced 

the number o f embryoid bodies that became adherent meaning there was less o f a loss 

of neural progenitors at this stage, essentially enhancing overall cell number (lacovitti 

et al., 2007). 

In other recent work a range o f factors have been identified that may be o f value in 

promoting dopaminergic differentiation in vitro. The a-chemokines C X C L l , 6 and 8 

have been shown via a range o f mechanisms to promote the number o f dopaminergic 

neurons formed in rodent ventral midbrain precursor and neurosphere cultures 

(Edman et al., 2008a). In a similar fashion the P-chemokines CCL2 and CCL7 appear 

able to promote the dopaminergic differentiation o f rat ventral midbrain precursors. 

These molecules also demonstrated the capacity to enhance neuritogenesis in both the 

rat ventral midbrain precursor model and in neurosphere cultures o f murine origin 

(Edman et al., 2008b). 

Another possible determinant o f a dopaminergic phenotype is the Delta/Notch protein 

family member Delta like 1. Treatment with this agent during the expansion o f 

murine ventral midbrain progenitors was able to increase the proliferation o f such 

cells and the amount o f N u r r l positive neurons that expressed tyrosine hydroxylase 

following subsequent differentiation. However when Delta like 1 was applied during 

this differentiation phase it had no effect on the number o f tyrosine hydroxylase 

positive neurons. When endogenous levels o f this molecule were down regulated 

there was some concomitant loss of dopaminergic marker expression, supporting the 

concept that it may play a role in or have a permissive effect on the process of 

dopaminergic differentiation (Bauer et al., 2008). 
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An additional group of factors that may also possess a role and be o f use in driving 

future attempts to achieve dopaminergic differentiation in vitro are the glial cell line 

derived neurotrophic factor family ligands. In a murine model neurturin and 

persephin in the presence o f endogenous Transforming Growth Factor - p are able to 

induce dopaminergic neurons, notably when Transforming Growth Factor - P was 

utilised alongside persephin tyrosine hydroxylase positive cells were produced that 

appeared less susceptible to the effects o f MPP+ (l-methyl-4-phenyl pyridinium ion) 

toxicity (Roussa et al., 2008). 

One final distinctly different approach has been based on endeavours to produce cells 

displaying a dopaminergic phenotype from mesenchymal stem cells. Bone marrow 

derived adult human mesenchymal stem cells were induced over 12 days in vitro 

using a differentiation procedure that involved the use of Sonic hedgehog and 

Fibroblast growth factor 8 to form cells reflective o f a dopaminergic phenotype based 

on their marker expression profile. In addition such cells demonstrated an ability to 

produce and release dopamine in a depolarisation independent fashion, suggesting 

they are relatively developmentally immature (Trzaska et al., 2007). When RE-1 

silencing factor a suppressor o f mature neuronal genes in neuronal progenitors was 

silenced in mesenchymal stem cells which were then differentiated using the Sonic 

hedgehog/Fibroblast growth factor 8 based approach, more functionally mature cells 

exhibiting properties o f dopaminergic neurons were produced (Trzaska et al., 2008). 

Like wise using a differentiation cocktail including an array o f dopaminergic 

phenotype inducing agents, Barzilay et al., 2008 were able to produce derivatives 

from mesenchymal stem cells that expressed markers indicative o f a neuronal and 

more specifically a dopaminergic fate. In this work the cells produced were also able 

to secrete dopamine upon depolarisation (Barzilay et al., 2008). Such approaches 

however rely on the ability o f mesenchymal stem cells to trans differentiate, this 

competence o f such cells is an area o f some controversy and therefore at present these 

findings though promising need to be viewed in the light o f other evidence on this 

contentious issue (for a broader review see for example Hardy et al., 2008). It may 

even be that mesenchymal stem cells are capable o f acting in a similar manner to 

stromal cell lines such as PA6 and MS5 whereby they can exert an effect through the 

secretion o f neurotrophic factors. When combined with Sonic hedgehog and 

Fibroblast growth factor 8 application bone marrow stromal cells f rom adult mice 
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were able to help influence embryonic stem cells to form tyrosine hydroxylase 
positive neurons that were most probably dopaminergic given that they were negative 
in their expression for the noradrenergic and adrenergic marker dopamine (3 
hydroxylase (Shintani et al., 2008). Overall therefore it can be seen that although 
some procedures to produce dopaminergic neurons in vitro can be classified into 
generalised categories, many of them rely on the interplay o f a number o f factors, 
reflecting the possible diversity between species and universal complexity o f the 
process o f dopaminergic differentiation. This is neatly exemplified in two recent 
papers, one o f which combines the use o f PA6 co-culture, growth of cells as 
aggregates and Fibroblast growth factor 20 application (Shimada et al., 2009). Whilst 
the other is based upon L m x l a over expression in conjunction with Sonic hedgehog 
and Fibroblast growth factor 8 administration as a means to influence the 
differentiation o f murine and human embryonic stem cells towards a dopaminergic 
fate (Friling et al., 2009). 

Concluding Remarks 

There has been a wide array o f strategies employed to achieve the production of 

dopaminergic neurons f rom a variety o f cell types in vitro, many o f which have been 

reviewed in this Chapter. There may still be a range o f obstacles to overcome in 

recognising the potential o f such in vitro derived dopaminergic neurons to act as 

possible therapeutic agents in transplantation based treatments for Parkinson's 

disease. However the diversity o f cellular based models gives a broad foundation for 

furthering our understanding o f the process o f dopaminergic differentiation. They 

also often neatly complement much of the in vivo work that has been carried out 

elsewhere. I f the various means available to promote dopaminergic differentiation 

and the currently available technologies such as cell sorting are optimised in their 

usage, i t is not too hard to envisage that in vitro stem cell derived dopaminergic 

neurons could be produced, that i f shown to be functional may be suitable for use in 

pharmacological screening o f test compounds, that may be o f benefit in developing 

novel drug based therapies for Parkinson's disease in the not inconceivable future. In 

turn this may help reduce the number o f animals used in research and as such this is a 

highly desirable goal. In addition the process o f refining the current protocols and 

where possible maximising any potential synergistic interactions may help further our 
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understanding o f the underlying developmental process, which may again result in 

even more productive methods being designed to enhance the yields o f dopaminergic 

neurons it is possible to obtain in vitro. There are also as described in the previous 

section, different factors being identified which themselves may offer fresh insights 

into the specification o f a dopaminergic fate that may subsequently be able to be 

translated into new protocols aimed at producing more enriched populations o f 

dopaminergic neurons in vitro. This area due to its direct relevance to Parkinson's 

disease is one o f active research and may well remain so for the coming years, 

especially given the many avenues for potential investigation on offer. Some of these 

routes are pursued experimentally in the remainder o f this thesis which is primarily 

focussed on furthering our current understanding o f the process o f dopaminergic 

differentiation in vitro. The Tera2.cl.SP12 cell line is the primary vehicle for these 

studies as it may both help elucidate further details about the pathways involved in the 

specification o f this particular neurotransmitter phenotype and in addition give further 

insight into embryonal carcinoma cells as a means to study dopaminergic 

differentiation for those who have ethical objections to the use o f human embryonic 

stem cells. 
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Chapter 2 

Materials and Methods 
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2.1 Cell Culture 

Maintenance of Tera2.cl.SP12 and Ntera2 Embryonal Carcinoma cell cultures 

Embryonal carcinoma cells (clone Tera2.cl.SP12 and Ntera2.cl.Dl) were maintained 

in Dulbecco's modified Eagle's medium ( D M E M ; Sigma or P A A ) supplemented with 

10% (v/v) fetal calf serum (Gibco or Sigma), 2 m M L-glutamine (Cambrex) and 

lOOU/ml penicillin/streptomycin (Gibco) (referred to here in as D M E M F G ) in T75 

culture flasks (Nunc) at 37°C in a 5% CO2 incubator (Sanyo) (Przyborski et al., 2000; 

Przyborski, 2001). Beads were used to passage cells 1:3, every 2-3 days, once they 

had grown to a confluent state. 

Passage 46, 47, 49, 50, 51 and 54 Ntera2 cells were used as these passages were most 

available and all the passages showed characteristic embryonal carcinoma cell 

morphology as in Figure 2.1. Figure 2.2 shows the range of passages of 

Tera2.cl.SP12 cells used during this project. The bulk o f the cells used came from 

passages 15 to 24 and were deemed suitable for use based on their morphology and 

the time taken for them to reach a confluent state. A flask o f cells reaching a 

confluent state in a T75 in 2 to 3 days after passaging or growing from frozen was 

seen as viable for use ( i f the morphology was consistent with that in Figure 2.1). 

Maintenance of MG63 cell cultures 

The MG63 Osteoblast human cell line (Hattar et al., 2002; L iu et al., 2004) was used 

as a negative control. Cells were cultured in D M E M F G in T75 culture flasks (Nunc) 

at 37°C in a 5% CO2 incubator (Sanyo). Cells were passaged either 1:2 or 1:3, by 

incubating them at 3 7 ^ in a 5% CO2 incubator (Sanyo), for 5 minutes, in 1ml of 

0.25% (w/v) Trypsin/0.1% (w/v) EDTA (in HBSS) (Cambrex). Passage 9, 13, 16, 24, 

25, 26 and 27 cells were used experimentally as these passages were readily available 

in the laboratory at the time of carrying out the work using this cell type. 

Please note culture methods for PA6 and mesenchymal stem cells are covered in 
Chapter 6. 
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Figure 2.1; Characteristic EC cell morphology 

Figure 2 .1 : A moq)hological image o f a confluent culture o f Tera2.cl.SP12 embryonal 
carcinoma stem cells, this kind o f morphology i f observed would have been deemed 
suitable for use based on the advice given o f those in the laboratory at Durham who had 
significant experience o f working with this cell line. 

Figure 2.2: The di f ferent passages of Tera2.cI.SP12 cells used in this project 

The usage of different passage numbers of Tera2.cl.SP12 EC cells 

P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 

Passage number 

Figure 2.2: The frequency o f use o f different passage numbers o f Tera2.cl.SP12 
embryonal carcinoma stem cells in this project. Some o f these cells may have been 
disposed o f i f not suitable for use judged against the guidelines outlined in the main 
text and some may have been generated in triplicate due to the process o f passaging 
1 in 3, this figure though gives an idea o f the spread o f passage numbers used. In 
general low passage numbers are preferred as this was seen as good practice in the 
laboratory at Durham. 
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2.2 Intracellular staining for Flow Cytometry 

Note: All solutions in this and the subsequent methods are made up in sterile distilled 

water unless stated otherwise in the particular method. 

Cultures of Tera2.cl.SP12 EC cells and their differentiated derivatives as well as 

MG63 controls were examined by f low cytometry. The media they were 

differentiating or proliferating in was removed and a Ix PBS wash was given, before 

incubation in 1ml o f 0.25% (w/v) Trypsin/0.1% (w/v) EDTA (in HBSS) for 5 minutes 

in a 37°C, 5% CO2 incubator (Sanyo), to release the cells f rom the surface o f the 

culture flask. The Trypsin was then neutralized by addition o f 4ml o f D M E M F G and 

any cells remaining loosely bound washed o f f the surface o f the flask by pipetting the 

DMEMFG/Trypsin-EDTA mix against the side o f the flask where cell attachment 

occurs. A further wash wi th Phosphate Buffered Saline (PBS) was carried out to 

optimize the retrieval o f the cells o f interest. The cell containing mix was then 

transferred to a 15ml Falcon tube and spun in a centrifuge (Eppendorf 581 OR (swing 

bucket rotor A-4-62)) at SOOrpm, 4°C, for 2 minutes and excess fluid was removed to 

leave a cell pellet. This was re-suspended in PBS and cell number was determined by 

using a haemocytometer. Once cell number was known the appropriate volume of 

PBS containing the cells o f interest was aliquoted into the required number o f Falcon 

tubes to give 1 mil l ion cells per tube. Samples were then centrifuged using the 

settings above, the supernatant aspirated and the cells re-suspended in 0.875ml o f cold 

PBS. 0.125ml of cold 2Vo (w/v) paraformaldehyde (Sigma) was added prior to a brief 

vortex o f the mixture. The suspension was incubated for at least 4 hours at 4°C before 

further centrifugation at 250g for 5 minutes after which the supernatant was removed 

and the samples were permeabilised as follows. 

Pellets were gently re-suspended in permeabilising solution (0.2% (v/v) Triton X-100 

(Fisher Scientific) in PBS for cytoskeletal or cytoplasmic antigens, 0.5-1% (v/v) 

Triton X-100 in PBS for nuclear antigens) at room temperature. Prior to incubation 

for 30 minutes at 37°C in a water bath, followed by addition of 1ml o f blocking buffer 

( 1 % (v/v) goat serum (Sigma), 0.2% (v/v) Tween 20 (Sigma), 0 .1% (w/v) sodium 

azide (Sigma) in PBS) before another round o f centrifugation at 250g for 5 minutes. 
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The supernatant was removed and pellets were dispersed in lOO^il volumes o f diluted 

primary antibody (see Table 2.1 for dilutions) in blocking buffer or blocking buffer 

alone for controls, this solution was then transferred to a 96 well plate, where samples 

were left to incubate in primary antibody for 30 minutes on ice. Post incubation cells 

were washed 3 times by adding blocking buffer before centrifuging at 250g for 5 

minutes (4°C) and removing the supernatant. After the final wash samples were 

dispersed in 100|il o f appropriate secondary antibody diluted in blocking buffer (see 

Table 2.2), and left to incubate in the dark for 30 minutes on ice. Samples were then 

washed 3 times using the above method. After washing cell samples were re-

suspended in 200^1 of blocking buffer and transferred to FACS tubes (BD 

Biosciences). The volume in each sample tube was then made up to 400|al by adding 

a further 200|al o f blocking buffer to give an ample volume for analysis. This was 

carried out on a B D Biosciences FACS Calibur machine used in accordance with the 

manufacturer's guidelines. 

Table 2.1: Primary Antibody Dilutions for Flow Cytometry 

Antibody Name Dilution 

Nestin (Chemicon) (mouse) 1:600 

Nurr l (Cambridge Bioscience) (rabbit) 1:200 

Tuj 1 (Covance) (rabbit) 1:1000 

Tyrosine Hydroxylase (Sigma) (mouse) 1:1000 

Table 2.2: Secondary Antibody Dilutions for Flow Cytometry 

Antibody Dilution 

AUophycocyanin conjugated anti-mouse IgG (Jackson Laboratories) 1:600 

Allophycocyanin conjugated anti-rabbit IgG (Jackson Laboratories) 1:600 
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2.3 Cell Surface Antigen Detection Flow Cytometry 

Cultures o f Tera2.cl.SP12 EC cells and their differentiated derivatives were examined 

by f low cytometry. The media they were differentiating or proliferating in was 

removed and a I x PBS wash was given, before incubation in 1ml o f 0.25% (w/v) 

Trypsin/0.1% (w/v) E D T A (in HBSS) for 5 minutes in a 37°C, 5% CO2 incubator 

(Sanyo), to release the cells from the surface o f the culture flask. The Trypsin was 

then neutralized by addition o f 4ml o f D M E M F G and any cells remaining loosely 

bound washed o f f the surface o f the flask by pipetting the DMEMFG/Trypsin-EDTA 

mix against the side o f the flask where cell attachment occurs. A further wash with 

Phosphate Buffered Saline (PBS) was carried out to optimize the retrieval o f the cells 

of interest. The cell containing mix was then transferred to a 15ml Falcon tube and 

spun in a centrifuge (Eppendorf 581 OR (swing bucket rotor A-4-62)) at SOOrpm, 4°C, 

for 2 minutes and excess fluid was removed to leave a cell pellet. This was re-

suspended in PBS and cell number was determined by using a haemocytometer. Once 

cell number was known the appropriate volume of PBS containing the cells o f interest 

was aliquoted into the required number of Falcon tubes to give 1 mil l ion cells per 

tube. Samples were then centrifuged using the settings above, the supernatant 

aspirated and the cells re-suspended in 1ml o f blocking buffer ( 1 % (v/v) goat serum, 

0.2% (v/v) Tween 20, 0 . 1 % (w/v) sodium azide in PBS) before centrifugation at 250g 

for 5 minutes to wash the cells. The supernatant was removed and cells were re-

suspended in lOOi^l o f primary antibody diluted in blocking buffer (see Table 2.3 for 

dilutions) or blocking buffer alone for controls, this solution was then transferred to a 

96 well round bottomed plate, where samples were left to incubate in primary 

antibody for 30 minutes on ice. Post incubation cells were washed 3 times by adding 

blocking buffer before centrifuging at 250g for 5 minutes (4°C) and removing the 

supernatant. After the final wash samples were dispersed in lOOial o f appropriate 

secondary antibody diluted in blocking buffer (see Table 2.4), and left to incubate in 

the dark for 30 minutes on ice. Samples were then washed 3 times using the above 

method. After washing cell samples were re-suspended in 200^1 o f blocking buffer 

and transferred to FACS tubes (BD Biosciences) on ice. The volume in each sample 

tube was then made up to 400|al by adding a further 200\x\ o f blocking buffer to give 

an ample volume for analysis. 10|.il propidium iodide solution (l.Omg/ml, Sigma) 
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was also added to each sample to label dead cells. The remaining live cell population 

was analysed using a BD Biosciences FACS Calibur machine used in accordance with 

the manufacturer's guidelines. 

Table 2.3: Primary Antibody Dilutions for Live Cell Flow Cytometry 

Antibody Dilution 

SSEA-3 ( IgM, Developmental Studies Hybridoma Bank) 1:5 

TRA-1-60 ( IgM, a gi f t f rom Prof P. Andrews, University o f Sheffield) 1:6 

VIN-IS-53 (IgG, Developmental Studies Hybridoma Bank) 1:5 

A2B5 ( IgM, R & D Systems) 1:100 

Table 2.4; Secondary Antibody Dilutions for Live Cell Flow Cytometry 

Antibody Dilution 

a-mouse IgG (Cappell) 1:100 

a-mouse I g M (Cappell) 1:100 
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2.4 Immunocytochemistry 

Immunocytochemical detection o f proteins was performed according to previous 

methods (Stewart et al., 2003). Cells were cultured on 22mm poly-D-lysine ( lO^g / j i l 

(Sigma)) coated glass coverslips in the wells o f a six well plate, under a variety o f 

induction conditions. Alternatively they were grown in 12 or 24 well plates (Nunc). 

Once cells had received the relevant treatment and were ready for analysis they were 

rinsed in PBS (Cambrex). They were subsequently fixed in ice cold methanol (BDH 

Biosciences) for 5 minutes, prior to 3 further washes in PBS. The cells were then 

permeabilised by incubation in 0 .1% (w/v) saponin (Sigma), and 0.3% (w/v) bovine 

serum albumin (Sigma) in PBS (referred to here in as SBP) for 60 minutes at room 

temperature. Following this the cells were incubated with either primary mouse or 

primary rabbit monoclonal antibodies diluted in SBP, overnight at 4°C or for 2 hours 

at room temperature. The fol lowing dilutions were used, nestin (mouse, 1:400, 

Chemicon), T H (mouse, 1:600, Sigma), T u j l (rabbit, 1:600, Covance). Cells then 

received three further 5 minute washes in SBP before incubation with fluorescein-

isothiocyanate-conjugated anti-mouse or anti-rabbit IgG secondary antibody (Sigma, 

diluted 1:400 in SBP) as appropriate for the primary antibody used, for 1 hour at room 

temperature. To remove unbound secondary antibodies cells were given five 3 

minute washes in PBS. Stained coverslips were inverted and mounted onto 

microscope slides using Vectashield (Vector Laboratories, Inc.) with added Hoescht 

nuclear stain. Samples were analysed by fluorescence microscopy using an inverted 

Nikon Diaphot 300 microscope. For cells grown in 12 or 24 well plates Hoescht 

nuclear stain was added to one o f the final PBS washes, prior to analysis via 

fluorescence microscopy. 

Cell Counts 

Cell counts based on immunocytochemical observations were made using Image J 
software with the cell counter add in installed (http://rsbweb.nih.gov/ij/plugins/cell-
counter.html). 
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2.5 Western Blotting Protocol 

Cultures o f Tera2.cl.SP12 EC cells and their differentiated derivatives as well as 

MG63 controls were examined by Western Blot Analysis. The media they were 

differentiating or proliferating in was removed and a Ix PBS wash was given, before 

incubation in 1ml o f 0.25% (w/v) Trypsin/0.1% (w/v) EDTA (in HBSS) for 5 minutes 

in a 37°C, 5% CO2 incubator (Sanyo), to release the cells f rom the surface o f the 

culture flask or six well plates (Nunc). The Trypsin was then neutralized by addition 

of 4ml o f D M E M F G and any cells remaining loosely bound washed o f f the surface of 

the flask by pipetting the DMEMFG/Trypsin-EDTA mix against the side of the flask 

where cell attachment occurs. A further wash with Phosphate Buffered Saline (PBS) 

was carried out to optimize the retrieval o f the cells o f interest. The cell containing 

mix was then transferred to a 15ml Falcon tube and spun in a centrifuge (Eppendorf 

581 OR (swing bucket rotor A-4-62)) at SOOrpm, 4°C, for 2 minutes and excess fluid 

was removed to leave a cell pellet. This was resuspended in 1ml of PBS and 

transferred to a 1.5 ml eppendorf tube, prior to being spun down in a bench top 

centrifuge (Eppendorf Minispin Plus (rotor F45-12-11)) at SOOrpm for 2 minutes. The 

supernatant was removed to leave a cell pellet that was subsequently snap frozen in 

liquid nitrogen, whilst awaiting analysis such samples were stored at -SOX. 

Western blot analysis was carried out in accordance with previous methods (Stewart 

et al., 2003). Collected samples were treated with protein isolation buffer ( 1 % IgePal 

(Sigma), 50mM Tris-HCl (pH 8.0), 150mM HCl, I m M MgCb and protease inhibitors 

(Roche) in distilled water). Protein concentrations were determined using a Bradford 

based assay, bovine serum albumin (Sigma) was used as a standard; sample volumes 

were adjusted as appropriate. Sodium dodecyl sulphate-PAGE gels were made 

according to the method of Laemmli, 1970, using the Bio-rad mini gel system. 

Loading gels (4% (w/v) polyacrylamide) and separating gels (10% (w/v) 

polyacrylamide) were poured to a thickness of 0.75mm. Before samples were loaded 

20|ig of protein were denatured for 3 minutes at 95°C in sample loading buffer 

(0.5mM Tris-HCl (pH 6.8), 10% (v/v) glycerol, 70mM sodium dodecyl sulphate, 5% 

(v/v) 2-mercaptoethanol, \5\xM bromophenol blue in distilled water). Samples were 

electrophoresed for 1 hour at 100 volts, prior to the immediate transfer o f resolved 
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proteins onto a nitrocellulose membrane (Whatman) at 100 volts for 2 - 2 . 5 hours (on 

ice) using the Bio-Rad mini gel transfer apparatus. Transfer o f protein was confirmed 

by staining membranes with amido black (in distilled water), this was washed out by 

diluting in water. 

For immunoblotting nitrocellulose membranes were blocked in a solution o f 5% (w/v) 

bovine serum albumin or 5% (w/v) dried milk powder (Tesco) in Ix TBS (Appendix 

A) for 30-45 minutes at room temperature, before being incubated overnight at 4°C 

with the primary antibody of interest, diluted in either 5% (w/v) bovine serum 

albumin or 5% (w/v) dried mi lk powder in I x TBS as outlined in Table 2.5. 

Nitrocellulose membranes were subsequently washed every 10 minutes for 1 hour in 

Ix TBS or I x TBS-T when using the Nur r l antibody (Appendix A ) . Prior to 

incubation for 45 minutes at room temperature with either mouse or rabbit IgG-

horseradish peroxidase linked secondary antibody (Amersham) diluted 1:2000 in 

either 5% (w/v) bovine serum albumin or 5% (w/v) dried milk powder in Ix TBS. 

This was followed by three five minute washes in I x TBS, before the membrane was 

gently dried using soft tissue and treated with a mixture o f equal volumes o f ECL 

detection reagents 1 and 2 (Amersham), that facilitated imaging o f the membrane, 

which was carried out in a Fu j i f i lm LAS 1000 Intelligent Dark Box. Images were 

also taken o f the molecular weight marker ladder to allow confirmation o f band size 

where detected. 

Membranes were blocked once again in a solution o f 5% (w/v) bovine serum albumin 

or 5% (w/v) dried milk powder in Ix TBS for 10-15 minutes at room temperature, 

before being incubated for 1 hour at room temperature in the presence o f a primary 

antibody for Beta-actin diluted in either 5% (w/v) bovine serum albumin or 5% (w/v) 

dried mi lk powder in Ix TBS. Blots were then washed every 10 minutes for 40-50 

minutes in Ix TBS, before incubation for 45 minutes at room temperature with mouse 

IgG-horseradish peroxidase linked secondary antibody (Amersham) diluted 1.2000 in 

either 5% (w/v) bovine serum albumin or 5% (w/v) dried milk powder in Ix TBS. 

This was followed by three five minute washes in Ix TBS, before the membrane was 

gently dried using soft tissue and treated with a mixture o f equal volumes of ECL 

detection reagents 1 and 2 (Amersham), prior to imaging o f the membrane, which was 

carried out in a Fu j i f i lm LAS 1000 Intelligent Dark Box. 
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Antibody Name Dilution Blocking/Antibody 

Incubation Solution 

Molecular 

weight (kDa) 

Beta-actin (Sigma) 

(mouse) 

1:5000 5% (w/v) milk powder/5% 

(w/v) bovine serum 

albumin 

42 

Nur r l (Cambridge 

Bioscience) (rabbit) 

1:500 5% (w/v) bovine serum 

albumin 

67 

T u j l (Covance) 

(rabbit) 

1:5000 5% (w/v) bovine serum 

albumin 

55 

Tyrosine 

Hydroxylase (Sigma) 

(mouse) 

1:10000 5% (w/v) mi lk powder 62 
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2.6 M T S Assay 

To assess cell proliferation, the commercially available colorimetric CellTiter 96® 

Aqueous One Solution Cell Proliferation Assay kit (Promega) was used. This assay 

contains a tetrazolium compound, 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine 

ethosulfate (PES), which combine to make a stable solution. Cells reduce the reagent 

and this gives a coloured formazan compound. 

The amount o f product formed was quantified using a Nanodrop spectrophotometer at 

an absorbance o f 490nm, with the measured absorbance being directly proportional to 

the number o f viable cells in culture. For every 1ml o f media, 200|il o f MTS reagent 

was added to the culture well o f a 24 well plate containing the sample o f interest and 

left to incubate for 4 hours at 37°C. Media was changed prior to adding the MTS 

reagent to remove variation in the colour o f the media that was covering the cells. A 

control well that did not contain any cells was set up to take into account the 

background absorbance of the MTS reagent. After the 4 hour incubation, absorbance 

was measured at 490nm. The absorbance reading for the highest (on average) 

expressing sample was normalised to an arbitrary value o f 100 when presenting the 

data. 
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2.7 RNA Isolation Using Tri-Reagent® (Sigma) 
Homogenisation 

Cultures o f Tera2.cl.SP12 EC cells and their differentiated derivatives as well as 

MG63 controls grown as monolayers had the media in which they were differentiating 

or proliferating in removed, prior to being washed in Ix PBS. Suspension culture 

samples were collected by collecting the media containing the cellular aggregates into 

a Falcon tube, prior to centrifugation at SOOrpm, 4°C, for 2 minutes (Eppendorf 5810R 

(swing bucket rotor A-4-62)), to give a sample pellet. This was resuspended once in 

I x PBS, before further centrifugation at SOOrpm, 4°C, for 2 minutes (Eppendorf 

5S10R (swing bucket rotor A-4-62)). Cells (or aggregates o f them) were then lysed 

by incubating them for 10 minutes at room temperature in an appropriate volume of 

Tri-Reagent (1ml for a single well o f a six well plate, T25, or Falcon tube, 3ml for a 

T75). The cell lysate was then passed through a pipette several times before 1ml of it 

was transferred to a 1.5ml eppendorf tube. Insoluble materials were removed from 

the homogenate by centrifugation at 12,000g for 10 minutes at 4°C (Eppendorf 5415R 

(cooled standard rotor F45-24-11) all subsequent centrifugation steps recorded with a 

g value were carried out using this centrifuge and rotor combination). The 

supernatant (containing R N A ) was transferred to a fresh tube. 

Phase Separation 

0.2ml o f Chloroform (Fisher Scientific) was added (per 1ml o f Tri-reagent used in the 

homogenisation step) to the sample containing eppendorf tubes, which were securely 

capped and shaken vigorously by hand for 15 seconds. Samples were then incubated 

at room temperature to allow separation into layers, prior to being spun in a cooled 

bench top centrifuge at 12000g for 15 minutes at 4°C. After this centrifugation, 3 

layers were present; the RNA resides exclusively in the uppermost aqueous phase. 
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RNA Precipitation 

The RNA containing aqueous phase was carefully transferred to a fresh tube, with 

care being taken, not to carry over material from the other D N A and protein 

containing phases. 0.5ml o f isopropanol (Fisher Scientific) (per 1ml o f Tri-Reagent 

used in the homogenisation step) was added to the aqueous phase to precipitate the 

RNA and this sample was mixed by inverting it 2-3 fimes, before incubating for 10 

minutes at room temperature, prior to centrifugation at 12000g for 10 minutes at 4°C. 

A pellet containing the RNA precipitate is formed on the outer side o f the sample 

containing eppendorf tube. 

RNA Wash 

The supernatant was removed to leave the pellet which was then washed once with 

75% (v/v) ethanol (made up from a mix of 3 parts 100% ethanol (Sigma) to 1 part 

RNase free water (Sigma)) (at least 1ml of 75% (v/v) ethanol was used per 1ml o f Tri 

Reagent used in the homogenisation step). The pellet in 75% (v/v) ethanol washing 

solufion was centrifuged at lOOOOg for 10 minutes at 4°C. 

Redissolving the R N A 

After centrifugation the supernatant was removed to leave just the RNA pellet which 

was briefly air dried for 5-10 minutes. The RNA was then dissolved in RNase free 

water (15-75|xl) by passing the solution through an RNase free pipette tip a few times 

or by flick mixing. Samples were then incubated for 5 minutes at 55-60°C. The 

purity (A260/280nm) and concentration (A260nm) of the R N A sample were then 

measured using a Nanodrop 1000 spectrophotometer. RNA samples were stored at -

80°C prior to subsequent usage. 
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2.8 Reverse transcription & Real Time Polymerase Chain Reaction 

For mRNA expression analysis by real time PCR, total RNA was obtained from three 

different passages o f cells. Total RNA was isolated using Tri-Reagent (Sigma) 

according to the method presented previously, which was based upon the 

manufacturers' instructions. The amount of RNA was quantified (A260nm) and the 

purity (A260/280 ratio) assessed using a Nanodrop analyser. Purity values were 

deemed suitable within the range 1 .7 -2 .1 . 4\xg of total RNA was reverse transcribed 

to cDNA using the commercially available Taqman reverse transcription kit (Applied 

Biosystems) in accordance with the manufacturer's instructions. Real time PCR was 

performed on an Applied Biosystems 7500 Fast Real Time PCR instrument using 

SYBR green technology. Primers were synthesised by V H B i o (sequences are 

provided in Table 2.6) for the following genes: P-actin, P-catenin, D l , D2, D A T , 

Dopa Decarboxylase, Engrailed 1, FGFR4, Frizzled 8, GAPDH, L m x l a , M s x l , 

Nestin, Ngn2, Nkx 6-1, N u r r l , Oct4, Otx2, Patched, SLC23A1, Soxl , TBP, T H , 

T u j l (Beta I I I tubulin). A standard curve was constructed for each primer set to 

facilitate absolute quantification o f sample cDNA; samples were normalised by 

comparing the mean quantity o f the gene of interest against the mean quantity of the 

housekeeping gene GAPDH. To further clarify that the expression o f this gene 

(GAPDH) was relatively consistent and thus suitable for use samples were also 

normalised against another house keeping gene which possessed a broadly different 

cellular funcfion usually P-actin but on occasion TBP. The results for the gene of 

interest were compared to see i f the trends were comparable when normalised against 

the different housekeeping genes, to try to remove some of the uncertainty that the 

housekeeping gene normalisation process was not affecting the results due to 

differences in its expression that could have arisen f rom the varying sample growth 

conditions. Each standard curve was constructed f rom a range o f dilutions (1:5, 1:10, 

1:20, 1:50, 1:100, 1:1000 and NTC), with R" values exceeding 0.99. Standards and 

samples were amplified on the same reaction plate. Three technical repeats of three 

biologically independent samples were run; results show the average across the three 

independent biological samples. Each individual reaction mix consisted of the 

following: 5^1 SYBR green mastermix (Applied Biosystems), 3.2|al RNase free water 

(Sigma), 0.4|il o f forward and reverse primer (made up in RNase free water) and 1 | i l 
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of cDNA diluted 1:5 in RNase fi-ee water. The thermal cycling parameters were as 

follows: 50°C for 2 minutes, 95°C for 10 minutes, 95°C for 15 seconds followed by 

60°C for 1 minute (x40 cycles or x50 cycles for Otx2 only), a dissociation step o f 

95°C for 15 seconds, 60°C for 15 seconds and 95°C for 15 seconds was also added. 

This additional stage was included to check primer specificity and for the absence o f 

primer dimers. PCR product size and specificity were also checked on an agarose gel, 

as shown in Figure 2.3. 

Figure 2.3: Dissociation Curve and Agarose gel image for GAPDH 
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266 base pair band as expected 
for the GAPDH primer set used. 
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The hyper ladder marker gives a size reference, and the presence o f a single band at 

266 base pairs indicates that there is only one product o f the predicted correct size. 

This is in agreement wi th the single peak on the dissociation curve that indicates one 

specific product has been formed. 

Note: This method was used to produce the real time PCR data in Figures 3.1, 3.2, 

3.3, 3.4, 4.4, 4.6, 4.7, 4.10, 4.11, 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.30, 5.3, 5.4, 5.5, 

5.6, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 6.2, 6.3, 

6.4, 6.5, 6.16 and 6.17. 

This method and method 2.9 that follows have never been used in tandem; they 

have only ever been used in isolation hence why both are included separately in this 

Thesis. 



Table 2.6: Primer Sequences 

Gene Forward Reverse Source/Reference 
B-actin 5' CGCCCCAGGCACCAGGGC 3' 5' GCTGGGGTGTTGAAGGT 3' RTPrimer DB ID:2238 

B-catenin 5' TGCAGTTCGCCTTCACTATG 3' 5' ACTAGTCGTGGAATGGCACC 3' Tulac et al., 2003 

Dl 5' ATCCTCACTGCCTGTTTC 3' 5' TGTCGGAACCTGATAACG 3' Dr. V. Lakics 

D2 5' TGAATCTGTCCTGGTATGATGATG 3' 5' GTGTGGCATAGTAGTTGTAGTGG 3' Dr. V. Lakics 

DAT 5' TACCTGAGCGTTGACTTC 3' 5' TGGTGAACTTGTTGTAGC 3' Dr. V. Lakics 

Dopa 

Decarboxylase 

5' TGTCCAGCTGTCCCATGAGTT3' 5' GAATGACTTCCACACAGATTTCAAA 3' 

Engrailed 1 5'-CCCTGGTTTCTCTGGGACTT-3' 5'-GCAGTCTGTGGGGTCGTATT-3' Yan et al., 2005 

FGFR4 5' GGGTCCTGCTGAGTGTGC 3' 5' TGGGTAACTGTGCCTATTCG 3' Mawrin et a!., 2006 

Frizzled 8 5' GACACTTGATGGGCTGAGGT 3' 5' CAAATCTCGGGTTCTGGAAA 3' Rozen & Skaletsky, 2000 

GAPDH 5'ATGGGGAAGGTGAAGGTCGGAG 3' 5'TCGCCCCACTTGATTTTGGAGG 3' RTPrimer DB ID:2072 

Lmxla 5' TGAGGAAGGCAAGGACCATAA 3' 5' ATGCTCGCCTCTGTTGAGTTG 3' 

Msxl 5' AAGAGACTACAAGAGGCAGAG 3' 5' CCGAGAGGGAAGGAGAGG 3' Dr. V. Lakics 

Nestin 5' CAGCGTTGGAACAGAGGTTGG 3' 5' TGGCACAGGTGTCTCAAGGGTAG 3' Strojnik et al., 2007 

Ngn2 5'TGTCCTCCAATTCCACCTC 3' 5' CTGCCAATAGTCCATGTCTG 3' Dr. V. Lakics 

Nkx6-1 5' AAGAAGCAGGACTCGGAGACAG 3' 5' CAGAGGCTTATTGTAGTCGTCGTC 3' Dr. V. Lakics 



Nurrl 5' CCTGGCTGTTGGGATGGTC 3' 5' TGTGGGCTCTTCGGTTTCG 3' Dr. V. Lakics 

Oct4 5' GAGAACCGAGTGAGAGGCAACC 3' 5' CATAGTCGCTGCTTGATCGCTTG 3' Willems et al., 2006 

Otx2 5' AGAGGAGGTGGCACTGAAAA 3' 5' ATTGGCCACTTGTTCCACTC 3' Boon et al., 2003 

Patched 5' TCCTCGTGTGCGCTGTCTTCCTTC 3' 5' CGTCAGAAAGGCCAAAGCAACGTGA 3' Regl et al., 2002 

SLC23A1 5' AAAGCCTTGCAGCATACCTACAT 3' 5' TGTCAGCATCTAGGAAGAACAGCT3' RTPrimer DB ID:2566 

Soxl 5' CAATGCGGGGAGGAGAAGTC 3' 5' CTCTGGACCAAACTGTGGCG 3' Kim et al., 2006b 

TBP 5' TGCACAGGAGCCAAGAGTGAA 3' 5' CACATCACAGCTCCCCACCA 3' RTPrimer DB ID:2627 

TH 5' CCTGCTTCTCAGCGCAACAG 3' 5' GAGCCAGGACAGGACCTCAC 3' Dr. V. Lakics 

Beta I I I tubulin 5' GGCCAAGTTCTGGGAAGTC 3' 5' CGTTGTAGTAGACGCTGATCC 3' Kumar et al., 2007 

Table 2.6: Primer sequences and sources of reference, RTPrimer DB refers to primers found at 
http://medgen.ugent.be/rtprimerdb/. Primers with no source/reference were designed using Primer Express 3.0 
(https://products.appnedbiosystems.com/ab/en/US/adirect/ab;jsessionid=JXpzKJFHZ2hLvpyFdddbpnspMfPNm7XB23jTFLy0y 
w61GKSQsgz4!950160382?cmd=catNavigate2«&catID=605537). 
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2.9 Real Time Polymerase Chain Reaction (Lilly) 

For mRNA expression analysis by real time PCR, total RNA was obtained from three 

different passages of cells. Total RNA was isolated using Tri-Reagent (Sigma) 

according to the method presented previously, which was based upon the 

manufacturers' instructions. The amount of RNA was quantified (A260nm) and the 

purity (A260/280 ratio) assessed using a Nanodrop analyser. Purity values were 

deemed suitable i f they lay within the range 1.7 - 2.1. Samples were then DNase 

treated with the commercially available Turbo DNA-free'^'^ Kit. After this the 

TaqMan Reverse Transcription Kit (Applied Biosystems) was used to synthesise first 

strand cDNA. The final concentration of RNA in the reaction was 1 \ig I lOOfal for all 

samples. Quantitative real-time RT-PCR was performed using SYBR Green 

chemistry with a final concentration of 1000 ng/ml template in the PCR on an ABI 

Prism 7900HT real-time PCR system (Applied Biosystems, 384-well plate, 5 ml final 

reaction volume, in quadruplicates). The following cycling conditions were used: 

50°C for 2min (stage 1); 95°C for lOmin (stage 2); 95°C for 15sec; 60''C for Imin 

(stage 3) X 40. At the end of the run threshold cycles (Ct) were determined for each 

PCR reaction on the plate. To establish the relative expression of TH, Nurrl , Nkx6-1, 

Msxl , DAT, D l and D2 genes in various samples, the normalisation procedure 

described by Vandesompele et al., 2002 has been used. Briefly, dCt values of a given 

target gene were calculated for each sample, relative to a selected calibrator (the 

highest expresser sample for that gene), then converted into fold differences by 

raising them to the power of 2. Similarly, the dCt values of selected reference genes 

(beta-actin, RNA-polymerase2, PSMB2), were created for each sample, relative to the 

same calibrator sample used for the respective target gene, and were also converted to 

fold differences. The expression of the target gene was then normalized with a factor 

created by using the geometric mean of the fold difference values of the 3 reference 

genes in each sample. Finally, the relative quantities of the various samples have been 

expressed as a percentage relative to the chosen calibrator sample, which was 

arbitrarily set to 100%. 

Note: This method was used to generate the data presented in Figures 3.5, 3.6, 4.8, 

4.12, 4.13, 4.14 and Appendix B. My thanks go to Dr. V. Lakics for providing this 

method and carrying out this analysis as mentioned in the acknowledgements. 
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2.10 Statistical Analysis 

All bar charts were produced in Microsoft Excel; custom error bars representing either 

the standard deviation or standard error of the mean were added using this package. 

All statistical analyses were performed using SPSS 15.0 for Windows; the line graph 

shown in Chapter 3 was also produced using this package. 

The statistical tests used can be categorised as a Student's T-test, a one way anova 

including Tukey post hoc analysis to compare differences between groups, or a two 

way anova. Significance is attributed in all these tests at a Sig. value < 0.05. T-test 

outputs where significant are shown on bar charts by lines linking the samples 

between which there is a statistically relevant difference, an exemplar T-test data 

output is shown in Figure 2.4. From here on in a one way anova output refers to the 

one way anova including Tukey post hoc analysis, for presentation purposes an 

example is given in Figure 2.5. Significant differences determined using this test are 

indicated by lines linking the samples between which there is a statistically relevant 

difference. Two way anova outputs are exemplified in Figure 2.6 which also 

highlights the relevance of the line graph (used in Chapter 3) to support such analysis. 



Figure 2.4 Example T-test output 

73 

Independent Samples Test 

Levene's Test for 
Equality of Variances 

_Sig_ t df 

l-test for Equalily of Means 

Sifl(2-'ailed) 
Mean 

Difference 
Std. En-or 
Difference 

95% Confidence 
Interval of the 

Difference 
Lower 

Expression Equal variances 
assumed 
Equal variances 
not assumed 

.033 -6.460 

-6.460 

4 

2.067 .021 

-1093.660 

-1093.660 

169.30746 

169.30746 

-1563.73 

-1799.88 

-623.587 

-387.443 

If the S ig . value for the 
Levene 's test Is greater than 
0.10 then the var iances can 

be a s s u m e d to be equal. 
Here it is not, s o unequal 
var iances are assumed . 

In this example unequal var iances are assumed 
based on the result of the Levene 's test (blue box), 

the red box highlights the result is significant on this 
occas ion . If equal var iances had been assumed (i.e. 
if there was a value greater than 0.10 in the blue box) 

then the upper figure 0.03 would be used a s an 
indicator of signif icance. 



Figure 2.5: Example one way anova output 

The condition column s h o w s the 
condit ions being compared . 

Dependent Variable: Expression 
Tukey HSD 

Multiple Comparisons 

Mean 
Difference 

(l-J) Std. Error 
95% Confidence Interval 

(1) Condition (J) Condition 

Mean 
Difference 

(l-J) Std. Error Sig. 
95% Confidence Interval 

(1) Condition (J) Condition 

Mean 
Difference 

(l-J) Std. Error Sig. Lower Bound Upper Bound 
E C 17Day(R .A .+ Wnt1) 

3W R.A. 
-1.56700 

-11.28167* 
2.71339 
2.71339 

.837 

.014 
-9.8924 

-19.6071 
6.7584 

-2.9562 
17Day (R.A. + Wnti) E C 

3W R.A. 
1.56700 

-9.71467* 
2.71339 
2.71339 

.837 

.027 
-6.7584 

-18.0401 
9.8924 

-1.3892 
3W R.A. E C 

17 Day (R.A.+ Wnt1) 
11.28167* 
9,71467/ 

2.71339 
2.71339 

.014 

.027 
2.9562 
1.3892 

19.6071 
18.0401 

*• The mean difference is significant at the .05 level. 

The mean difference column highlights any di f ferences 
(between the s a m p l e s outlined In the condition co lumn 

(blue box)) that are signif icant at the 0.05 level, where an 
aster isk Is p resent there is a correlation with the value in 

the S ig . co lumn (red) being l e s s than 0.05 a s c a n be s e e n in 
this example. 

The S i g . column s h o w s whether there 
are signif icant d i f ferences between the 

sample g roups outlined in the condition 
column (blue box). 



Figure 2.6: Example two way anova output 
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Tests of Between-Subjects Effects 

Dependent Variable: Expression 
Type III Sum Type III Sum 1 

Bource 1 of Squares df Mean Square F Sio. 1 
Con'ected Model 1667.109= 3 555.703 .204 .891 
Intercept 84097.139 1 84097.139 30.841 .001 
Pressure 1293.179 1 1293.179 .474 .511 
rime 372.604 1 372.604 .137 .721 
Pressure • Time 1.326 1 1.326 .000 .983 
Error Error 21814.080 8 2726.760 
Total 107578.329 12 
Corrected Total 23481.189 11 

a R Squared .071 (Adjusted R Squared = -.277) 

- The S ig . values in the red box if < 
0.05 would be deemed significant 
(in this c a s e they are not). They 

display significance in relation to 
the variables defined in ttie 
S o u r c e column (blue), both 

individually for time and pressure 
and for the two combined, to see 
if there is an interaction between 

the variables being a s s e s s e d . 

Parallel l ines on the line graph are 
indicative that there is no 

interaction between the variables 
(pressure and time). The almost 

perfectly parallel lines in this 
example correspond with the 

almost total lack of significance 
(Sig. value of 0.983) in the two way 

anova output above. 
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Chapter 3 

Characterisation of the 
Tera2.cLSP12 Human E C 
cell system as a model to 

study dopaminergic 
neurogenesis, in the 

presence of retinoic acid 
and in a lowered oxygen 

culture enyironment 
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3.1 Introduction 

In any cell culture system there are a number of variables, such as the media and physical 

environment. There are already well established protocols (for example Stewart et al., 

2003) for the culture of Tera2.cl.SP12 cells and their retinoic acid treated derivatives, 

therefore a logical first step in this project was to characterise the embryonal carcinoma 

stem cell system pre and post retinoic acid differentiation to begin to gain an 

understanding of its potential as a model to study dopaminergic neurogenesis and this 

forms the basis of this Chapter. In addition given the availability and ease of use of 

lowered oxygen cell culture technology in the laboratory and the findings of Studer et al., 

2000, who were able to show enhanced dopaminergic differentiation from rat 

mesencephalic precursor cells cultured in physiological oxygen conditions, it was also 

decided that the Tera2.cl.SP12 system would be investigated in a 5% oxygen environment 

as well. The rationale for doing these extra experiments being that i f 5% oxygen could 

enhance dopaminergic differentiation of the embryonal carcinoma stem cells then it could 

be easily utilised to try and augment subsequent efforts to achieve the production of an 

enriched population of dopaminergic neurons. The evidence provided by Colton et al., 

1995, that 5% oxygen culture could provide an approximately twofold increase in 

survival of tyrosine hydroxylase positive neurons in primary cultures of embryonic rat 

midbrain gave further support to the argument for using lowered oxygen, as in the initial 

stages of experimentation it is impossible to know when expression of dopaminergic 

markers by the cells under study will occur or peak, so any variable that may stabilise this 

expression to a detectable level at a measured time point is highly favourable. 

This also highlights the need to define the time period of retinoic acid induced 

differentiation. Work using the four and five week old retinoic acid differentiated 

derivatives of the human embryonal carcinoma stem cell line Ntera2.Dl showed that 

there was significantly more tyrosine hydroxylase positive cells (60%) in four week 

retinoic acid treated cultures than in their five week (<15%) counterparts (Zigova et al., 

2000). This finding, combined with the need for temporal efficiency i f the Tera2.cl.SP12 

system were to be viable for use in screening assays, lead to the decision that the longest 

time point to be used in this study would be four weeks of retinoic acid treatment. A two 

week retinoic acid treatment time point was included to bridge the gap between the 
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embryonal carcinoma stem cell and four week retinoic acid treated samples in the studies 

into the effects of different oxygen concentrations, and a series of short time points, 1,3, 

5 and 7 days were used to investigate the possible favourable effects of retinoic acid in 

normoxic conditions, as well as to gain greater insight into, and understanding of the 

Tera2.cl.SP12 cell line in the context of it as a model to study dopaminergic neurogenesis. 

The next two sections aim to outline the purpose of and background to the investigations 

that are subsequently reported in this Chapter. 

The Induction of Nurrl with Retinoic Acid 

The transcription factor Nurrl is expressed in a variety of regions of the brain such as the 

hippocampus, hypothalamus and cerebellum (Zetterstrom et al., 1996) and is a member of 

the orphan nuclear receptor family. In mouse the mRNA is expressed from embryonic 

day El0.5 in the ventral mesencephalic flexure and continues into adulthood (Zetterstrom 

et al., 1997). This study also showed by immunological methods that tyrosine 

hydroxylase (the rate limiting enzyme in dopamine biosynthesis) was not expressed in the 

ventral mesencephalon of Nurrl' '" mice where it is usually found. Other dopaminergic 

cell groups for example those of the pontine locus coeruleus (A6), displayed no 

differences in tyrosine hydroxylase immunoreactivity between wild type and Nurrl 

deficient mice. This coupled with an absence of positive tyrosine hydroxylase 

immunostaining at all pre-natal stages in the developing midbrain when it would normally 

be expected from El 1.5 in mouse (Foster et al., 1988) strongly indicate Nurrl as a critical 

determinant in the differentiation of ventral midbrain dopaminergic neurons (Groups A8-

AlO) (Zetterstrom et al., 1997). 

High performance liquid chromatography analysis of the levels of dopamine and its 

metabolite DOPAC in portions of ventral mesencephalon and striatum showed an absence 

of dopamine in Nurrl deficient mice, and a reduction in the amount of the metabolites in 

heterozygous new born animals, indicative of a gene dosage effect on nigrostriatal 

dopamine levels. This second group though appeared healthy and were not hypoactive as 

was the case for the Nurrl"'" population which also died soon after birth (Zetterstrom et 

al., 1997). Overall these results suggest Nurrl is not only a key factor in the production 
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of a ventral midbrain dopaminergic phenotype but is also a contributor to the maintenance 

of a differentiated phenotype in adult mice. 

In a similar fashion Nurrl is expressed in human Ntera2 embryonal carcinoma cells and 

their 3, 4 and 5 week retinoic acid differentiated derivatives. In addition all the observed 

tyrosine hydroxylase positive Ntera2 derived neurons in these cultures were Nurrl 

positive (Misiuta et al., 2003). These findings therefore suggest that Nurrl expression is 

maintained to some level throughout the retinoic acid driven differentiation process and 

that the human embryonal carcinoma cell system may possess similarities to the mouse 

model where tyrosine hydroxylase expression may be linked to that of Nurrl . Subsequent 

work also showed that after 1 day of retinoic acid treatment of Ntera2 cells it was possible 

to achieve a significant rise in expression of Nurrl from approximately 12 to 20% 

(Misiuta et al., 2006). This is a rapid and therefore potentially desirable effect especially 

given the importance of time as a variable. Another study where Nurrl was over 

expressed again carried out in the Ntera2 cell line showed that cultured Ntera2.Nurrl 

transfected cells were nestin negative despite the fact 'wild type' Ntera2 cells are nestin 

immunopositive indicating that Nurrl may trigger an early commitment towards the 

neuronal lineage. It was observed that after 4 weeks of retinoic acid treatment Ntera2 

cells over expressing Nurrl exhibited greater tyrosine hydroxylase expression than their 

non-transfected Ntera2 counterparts (Hara et al., 2007). These findings give additional 

support to the concept that Nurrl may influence tyrosine hydroxylase expression in 

human embryonal carcinoma stem cells, this is in stark contrast to observations in human 

neural progenitor cells where tyrosine hydroxylase gene regulation appears to be 

independent of Nurrl (Jin et al., 2006), showing there may not just be species specific 

differences in dopaminergic neurogenesis but cell type specific idiosyncrasies within a 

species. They also indicate that Nurrl may help promote neuronal differentiation which 

is highly desirable given the mixture of cell types produced following retinoic acid 

treatment of Tera2.cl.SP12 cultures. Therefore the key aspects to test for were: can Nurrl 

be induced rapidly with retinoic acid treatment in the Tera2.cl.SP12 system and if so does 

this have any effect on enhancing neuronal differentiation or can it be linked to the 

stimulation of neurogenesis in this cell line? 
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Cell Culture at Lower Oxygen Tensions 

The use of lowered oxygen culture is founded on the principle that greater mimicry of the 

in vivo environment of the mammalian brain where oxygen pressures are much lower, 

around 1 to 5% (Silver & Erecinska, 1998) than those used in standard (20 to 21% 

oxygen) cell culture; may enhance the production of neuronal cell types. The main 

evidence that showed physiological oxygen conditions could help promote acquisition of 

a dopaminergic phenotype was provided by Studer et al., 2000, who used rat 

mesencephalic precursor cells to demonstrate four clear effects of 3±2% oxygen culture. 

First of all in lowered oxygen apoptosis was reduced, secondly progenitor cell 

proliferation was increased, with both of these factors helping to contribute to increased 

precursor cell numbers. A differentiated state was also achieved more rapidly in 

physiological oxygen conditions which would be a highly desirable effect to reproduce 

given the need for temporal efficiency. Finally lowered oxygen was able to alter the 

proportions of neurons displaying particular neurotransmitter phenotypes. The 

percentage of dopaminergic neurons increased from 18% in 20% oxygen to 56% in 3±2 

oxygen. The combined effect of the increases in absolute cell number and the percentage 

of neurons of a dopaminergic phenotype gave rise to a nine fold increase in yield of 

dopaminergic neurons (Studer et al., 2000). Given that Tera2.cl.SP12 embryonal 

carcinoma stem cells are very highly proliferative and robust the first two effects are of 

lesser importance. However the ability to rapidly produce cells reflective of a 

differentiated state and the capacity to increase specifically the yield of dopaminergic 

neurons were both favourable concepts to attempt to duplicate in the context of the 

Tera2.cl.SP12 system. The main reasons being that the lowered oxygen conditions may 

act in synergy with retinoic acid to promote cells to adopt a differentiated, more mature 

phenotype and when set against the back drop of retinoic acid treated embryonal 

carcinoma stem cells producing a mixture of neural cell types, the capacity of 

physiological oxygen levels to influence a large proportion of cells to take up a 

dopaminergic phenotype was extremely appealing. 

In the light of advice provided by other members of the Przyborski lab group and the 

technician for the lowered oxygen incubator, an oxygen pressure of 5Vo was chosen, as 

below this level the oxygen pressure may be susceptible to fluctuations. Although this is 

higher than in the work of Studer et al., 2000 it is in the range of oxygen pressures they 
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used in this work as 3±2% = 1-5% oxygen. In addition Colton et al., 1995 showed 

positive effects on tyrosine hydroxylase positive cell survival when using 5% oxygen. It 

therefore seemed reasonable especially given the effects in the work of Studer et al., 2000 

were striking to think that using 5% oxygen would at least highlight any major 

differences between it and standard oxygen culture on the acquisition of a dopaminergic 

phenotype by retinoic acid treated Tera2.cl.SP12 embryonal carcinoma stem cells. 

When set against the background of available knowledge a number of hypotheses could 

then be set up to test. The most basic of these are can retinoic acid induce expression of 

dopaminergic markers over time and do embryonal carcinoma stem cells themselves 

express any of these markers? To build on this is there any pattern to the way particular 

markers or sets of them are regulated? Also how are some of the key mechanistic 

determinants of a dopaminergic phenotype regulated in this system? In addition can 

lowered oxygen culture enhance the dopaminergic differentiation of retinoic acid treated 

Tera2.cl.SPI2 embryonal carcinoma stem cells in vitro? By growing the Tera2.cl.SP12 

cells under a range of conditions and by carrying out a range of molecular analyses these 

theories were investigated. Section 3.2 describes the specific culture methods and section 

3.3 outlines the results obtained. 
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3.2 Cell Culture Methods 

Retinoic Acid Induced Differentiation of E C cell cultures 

Cultures of Tera2.cl.SP12 EC cells were grown to confluency, the media aspirated from 

them, before being washed with Ix PBS, prior to treatment for 5 minutes with 0.25% 

(w/v) Trypsin/0.1% (w/v) EDTA (in HBSS) (Cambrex), to release the cells from the 

surface of the culture flask. The Trypsin was then neutralized by addition of 4ml of 

DMEMFG and any cells remaining loosely bound washed off the surface of the flask by 

pipetting the DMEMFG/Trypsin-EDTA mix against the side of the flask where cell 

attachment occurs. A further wash with Ix PBS was carried out to optimize the retrieval 

of EC cells for use. The cell suspension was then transferred to a 15ml Falcon tube and 

spun in a centrifuge (Eppendorf 581 OR (swing bucket rotor A-4-62)) at 800rpm, 4°C, for 

2 minutes. The excess fluid was removed to leave an EC cell pellet. This was 

resuspended in DMEMFG and cell number was obtained by using a haemocytometer. 

Once the cell number was known the EC cells were seeded out at the following densities 

depending on the culture ware used: 

• For a T75-1.5x10* cells per flask, 

• For a T25 (Nunc) - 0.5x10* cells per flask, 

• For a single well of a 6 well plate (Nunc) containing a 22mm poly-D-lysine coated 

glass coverslip - 0.2x10^ cells per well. 

Cultures were induced to differentiate by exposure to a final concentration of lO^iM all 

trans retinoic acid (made up in dimethyl sulfoxide (both Sigma)). They were then placed 

into either the same atmospheric (normal, 21%) oxygen, 5% CO2 incubator that the EC 

cells were maintained in or depending on the investigations being undertaken a 5% O2, 

5% CO2 incubator (Sanyo) (for the studies into the effect of oxygen tension on the 

dopaminergic differentiation potential of retinoic acid induced EC cells). Media was 

changed every 2 - 4 days. 
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3.3 Results 

Before starting to characterise the embryonal carcinoma stem cell system Tera2.cl.SP12 

in both its undifferentiated state and in the presence of retinoic acid at different oxygen 

concentrations, some classical experiments were performed to act as controls to show that 

the cells were exhibiting predictable patterns of behaviour. The first experiment involved 

using real time PGR to show the drop in expression of Oct4 mRNA following retinoic 

acid treatment of the embryonal carcinoma cells (Figure 3.1 A). This yielded similar 

results to those in Przyborski, 2001, where Northern blotting was used to demonstrate 

how this marker of human pluripotent stem cells was reduced following retinoic acid 

induction. 

Figure 3.IB then shows the results of a flow cytometry based analysis of markers of 

human pluripotent stem cells and neural phenotypes. Undifferentiated Tera2.cl.SP12 

embryonal carcinoma stem cells express high levels of SSEA-3 and Tra 1-60 (markers 

associated with pluripotent stem cells) (Andrews et al, 1982; Andrews et al, 1984) but 

express only minimal levels of A2B5 and VINIS-53 (markers of a neural phenotype) 

(Eisenbarth et al, 1979; Andrews et al, 1990). In contrast following treatment with 

retinoic acid for two weeks, the pattern of regulation is switched with high expression of 

the neural markers and low levels of the stem cell markers being observed in a consistent 

manner with earlier work (Przyborski, 2001). These results were therefore positive as 

they indicated that the embryonal carcinoma stem cells were behaving in a characteristic 

fashion and could respond to retinoic acid as expected, which in turn suggested any 

subsequent work with them would hopefully be representative of them acting in a similar 

way to that in previous studies. Different passages of cells were used and there did not 

appear to be any major passage number related effects. 
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Figure 3.1; Characterisation of stem cell differentiation 
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Figure 3.1A: The relative levels of Oct4 mRNA expression assessed by real time PCR in 
Tera2.cI.SP12 cells and their derivatives following 10(xM retinoic acid treatment at different 
time points up to two weeks. B: A flow cytometry based analysis of changes in the pattern of 
human pluripotent stem cell and neural marker expression in Tera2.cl.SP12 cultures pre and 
post two weeks of lOjiM retinoic acid induced differentiation. In all experiments n=3. Error 
bars represent the S.D. of the mean. C: Flow cytometry traces, first of all to gate out dead 
cells propidium iodide is used. This penetrates dead or dying cells and its signal can be 
detected using the 488nM argon-ion laser, live cells negative for propidium iodide (below a 
threshold) are gated out and further analysed by the flow cytometer. Prior to analysing the 
test samples a background fluorescence threshold is determined by analysing cells stained 
with only secondary antibody that are not stained for the antigen of interest. These control 
samples are used to define the threshold which identifies i f a cell is antigen positive or not, 
any cell that shows a fluorescence value above this threshold is counted as positive. The 
traces above on the left hand side show how the secondary only control peak sits to the left of 
the threshold and essentially all the EC cells in these experiments are negative. In the upper 
right quadrant the single peak has moved to the right and shows positive expression of Tra 1-
60 a marker that would be expected to be expressed by EC cells. The lower right quadrant 
shows that there is only a small movement of the peak to the right for VrNIS-53, this results in 
only a few EC cells being positive for this marker which would be expected as it is more 
normally associated with cells showing characteristics of neural differentiation hence its 
greater expression after 2 weeks of exposure of the EC cells to retinoic acid. 
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After the initial experiments, the next step was to start to assess the dopaminergic 

differentiation potential o f the Tera2.cl.SP12 cell line pre and post retinoic acid treatment. 

This was first undertaken at the mRNA level using real time PCR. In the light o f the 

work o f Misiuta et al., 2006 where retinoic acid caused a significant increase in Nur r l 

protein expression in the Ntera2.Dl embryonal carcinoma stem cell line investigations 

were undertaken to assess i f an analogous peak in mRNA expression was seen using the 

Tera2.cl.SP12 system. Figure 3.2 shows that there is a peak in N u r r l mRNA expression 

after 1 day o f retinoic acid exposure. It is not a statistically significant effect however 

which may be due to the variation in the expression o f this transcription factor in the 

Tera2.cl.SP12 cells themselves. The trend though is consistent wi th the earlier 

observations o f Misiuta et al., 2006 and it is also noticeable that expression although 

variable persists until the final two week time point. This is again a compatible trend wi th 

the concept that N u r r l expression may persist throughout different stages o f development 

wi th the transcription factor possibly possessing a range o f time dependent roles. 

Figure 3.2: N u r r l m R N A Expression i n Tera2.cl.SP12 cells and their derivatives 

» 120 

EC Day 1 EC + R A Day 3 EC + R A Day 5 EC + R A Day 7 EC + R A 2 Week EC + R A 

Sample 

Figure 3.2: Real time PCR data showing the changes in the relative expression levels of 
Nurrl mRNA in undifferentiated cultures of Tera2.cl.SP12 embryonal carcinoma stem cells 
and their lO^iM retinoic treated derivatives over a two week period (n=3). Error bars 
represent the S.D. of the mean. Student's T-test revealed that there was not a statistically 
significant difference between EC and 1 day R.A. treated samples. 
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With a mind to future work the next factor to be assessed was Otx2, a homeodomain 

transcription factor expressed in dividing midbrain dopaminergic precursors that is 

essential for their formation (Puelles et al., 2004). In a mouse model W n t l was able to up 

regulate Otx2, in turn repressing expression o f Nkx2-2 which is involved in the 

acquisition o f alternative non dopaminergic neuronal fates (Prakash et al., 2006). W n t l 

could also help expand the number of Nur r l positive precursors in rat mesencephalic 

cultures (Castelo Branco et al., 2003). Given the peak in Nur r l expression at 1 day o f 

retinoic acid treatment, the combined use o f W n t l and retinoic acid was seen as a possible 

area for subsequent investigations. Therefore given the favourable effects Otx2 could 

potentially possess, its m R N A expression pattern fol lowing retinoic acid treatment was 

studied, see Figure 3.3. In the untreated embryonal carcinoma stem cells Otx2 mRNA is 

present, which would suggest that i f it is a part o f the machinery required to specify a 

dopaminergic fate, then it may be the case that embryonal carcinoma cells are a viable 

model for use in the study o f dopaminergic neurogenesis. However upon retinoic acid 

treatment as is clearly seen in Figure 3.3, expression plummets and shows no signs o f 

recovery within the two week time frame. Although this appears to be a negative finding 

it does pose the question o f whether expression o f Otx2 can be rescued fol lowing addition 

of retinoic acid by adding another compound such as W n t l . It is also an interesting 

observation alongside the Nur r l result in the sense that embryonal carcinoma stem cells 

are seemingly able to express markers that may indicate they are further towards a 

differentiated state than the embryonic stem cells for which they act as a model. 



Figure 3.3: Otx2 m R N A Expression in Tera2.cl.SP12 cells and their derivatives 
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Figure 3.3: Real time PCR data showing the changes in the relative expression levels of Otx2 
mRNA in undifferentiated cultures of Tera2.cl.SP12 embryonal carcinoma stem cells and their 
10(4,M retinoic treated derivatives over a two week period (n=3). Error bars represent the S.D. 
of the mean. 
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Figure 3.4: Soxl m R N A Expression in Tera2.cl.SP12 cells and their derivatives 
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Figure 3.4: Real time PCR data showing the changes in the relative expression levels of Soxl 
mRNA in undifferentiated cultures of Tera2.cl.SP12 embryonal carcinoma stem cells and their 
10|xM retinoic treated derivatives over a two week period (n=3). Error bars represent the S.D. of the 
mean. 

Further analysis by the same technique o f the embryonal carcinoma plus retinoic acid 

system focussed on Sox l , a marker o f dividing neural precursors that is strongly 

associated with neuronal fate acquisition both in vivo and in vitro (Pevny et al., 1998). 

The expression o f which was highlighted as being an important factor when studying the 

dopaminergic differentiation o f human embryonic stem cells in the presence o f Sonic 

hedgehog and Fibroblast growth factor 8 (Yan et al., 2005). The effect in this work was 

temporal and given the likelihood o f using these molecules in later studies especially 

given that W n t l which was possibly another factor to be investigated may interact or 

create permissive conditions for them (Burbach & Smidt, 2006), it seemed prudent to gain 

an understanding o f the regulation o f Soxl expression. Figure 3.4 clearly demonstrates 
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that expression is low in the embryonal carcinoma stem cells and rises in a predictable 

almost linear fashion with increasing exposure time to retinoic acid over the two week 

period o f study. This is indicative that i f Sonic hedgehog and Fibroblast growth factor 8 

are to be utilised effectively then it is probably going to be necessary to apply them 

reasonably early in the differentiation process. It also illustrates that in general as was the 

case in Figure 3 . IB , retinoic acid can cause increased neural marker expression over time. 

When real time PCR was put to further use to investigate the effects o f retinoic acid over 

both two and four weeks in both normal and 5% oxygen, similar trends were observed for 

other markers associated with a dopaminergic cell fate. This work also started to give an 

insight into the effects o f oxygen pressure as a dopaminergic phenotype inducing agent in 

Tera2.cl.SP12 embryonal carcinoma stem cells. Figure 3.5 shows that there is a 

predictable rise in the expression o f tyrosine hydroxylase over time, up to four weeks in 

both oxygen environments. However there is no real difference in the expression o f 

tyrosine hydroxylase between 5 and 2 1 % oxygen cultures. The output of the two way 

anova performed to assess i f there are any statistically significant effects indicates that 

between two and four weeks o f retinoic acid application there is almost a significant 

effect due to time (p value o f 0.051). Oxygen pressure though alone has no effect and 

there does not appear to be any favourable interaction between pressure and time. 

Figure 3.6 illustrates the pattern o f expression for dopamine receptor 2 under the same 

conditions; however although the trend here is the same as for tyrosine hydroxylase, the 

time o f exposure to retinoic acid from two to four weeks has a less significant effect upon 

expression. Again oxygen pressure exhibits no statistically significant or tangible effect 

and the slight trend observed is that normal oxygen is the favourable condition at both 

two and four weeks which contradicts the hypothesis that lowered oxygen is likely to up 

regulate dopaminergic marker expression and the acquisition o f that specific 

neurotransmitter phenotype. The parallel lines on the line graph (Figure 3.6) also neatly 

indicate that there is no obvious interaction between oxygen pressure and time period o f 

retinoic acid treatment. 
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Figure 3.5: The effect of oxygen pressure and durat ion o f R.A. exposure on the 

relative expression of tyrosine hydroxylase m R N A in Tera2.cl.SP12 cultures 
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Figure 3.5: The relative expression of tyrosine hydroxylase mRNA in undifferentiated 
Tera2.cl.SP12 cells and their derivatives exposed to \0\iM retinoic acid for 2 or 4 weeks in 
either a 5% or normal (21%) oxygen culture environment. The output of the 2 way anova 
indicated that between 2 and 4 weeks there is almost a statistically significant effect (p value 
of 0.51) due to time period of retinoic acid exposure but that there is no effect due to oxygen 
pressure. In addition it also shows that there is no significant synergistic interaction between 
oxygen pressure and the duration of retinoic acid treatment. Error bars represent the S.D. of 
the mean. In all experiments n=3. 



Figure 3.6: The effect o f oxygen pressure and durat ion o f R.A. exposure on the relative expression of D2 m R N A in Tera2.cl.SP12 

cells 
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F i g u r e 3.6: The relative expression of dopamine receptor 2 (D2) mRNA in undifferentiated Tera2.cl.SP12 cells and their derivatives exposed to lOuM retinoic acid for 2 or 4 weeks 
in either a 5% or normal (21%) oxygen culture environment. The output of the 2 way anova performed indicated that between 2 and 4 weeks there is no statistically significant effect 
due to time period of retinoic acid exposure and that there is also no effect due to oxygen pressure. In addition it indicates that there is no significant synergistic interaction between 
oxygen pressure and the duration of retinoic acid treatment. The almost perfectly parallel nature of the lines on the lower graph neatly supports this observation as this would be the 
expected result if there were no interaction between the two factors under investigation. Error bars represent the S.D. of the mean. In all experiments n=3. 
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Figure 3.7: Morphological Images 
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Figure 3.7: Morphological phase images of Tera2.cl.SP12 EC cells in their undifferentiated 
state and their 4 week 10)a.M retinoic acid induced derivatives in 5% and normal oxygen 
environments. The Tera2.cl.SP12 cells were viewed using a 40x objective lens (scale bar 
represents 25nm) and have a characteristic reasonably uniform appearance. Their 4 week 
retinoic acid treated derivatives were viewed using a lOx objective lens (scale bars represent 100 
l^m). There are no clear morphological differences between the 4 week cuhures in the different 
oxygen conditions but it is apparent that the cultures have lost their uniformity during the 
process of differentiation producing a mixture of cell types. 

Some additional real time PCR was also performed on R N A samples sent to Dr. V . 

Lakics (Appendix B). These analyses indicated that in the embryonal carcinoma cells and 

their 1, 3, 5 and 7 day retinoic acid treated derivatives there was a generally low 

expression o f the dopaminergic markers tyrosine hydroxylase, dopamine receptor 1, 

dopamine receptor 2, dopamine transporter and N u r r l . However dopamine receptor 1, 

dopamine transporter and Nur r l could all be detected at four weeks in both 5 and 2 1 % 

oxygen samples. These findings are congruous with the observations shown previously in 

that retinoic acid treatment o f Tera2.cl.SP12 embryonal carcinoma stem cells is able to 

induce expression o f a range o f dopaminergic markers in such samples. Once again the 
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use o f lowered (5%) oxygen as for tyrosine hydroxylase and dopamine receptor 2 has 

seemingly no effect in this cell system, at least at the oxygen pressure tested. 

Figure 3.7 shows some morphological images of the embryonal carcinoma cells 

themselves and fol lowing four weeks o f retinoic acid induced differentiation in both 

oxygen environments. Retinoic acid causes a mix o f cell types to form from the original 

embryonal carcinoma stem cells but there are no obvious differences at the basic level o f 

observable cell morphology. This too is in keeping with the results from the real time 

PCR analyses. 

After making an assessment o f the effects o f retinoic acid and physiological oxygen at the 

morphological and m R N A level and in the light o f the fact that proteins are the functional 

components o f a cell the next step experimentally was to start to gain an understanding of 

the patterns o f protein expression. Indeed although the mRNA was present for several 

dopaminergic markers this is not proof that the translated protein is expressed. Flow 

cytometry, Western blotting and immunocytochemistry were employed to confirm the 

expression o f known neuronal and dopaminergic phenotypic indicators, as well as to gain 

an insight into the levels at which they are present ( f low cytometry) and their cellular 

distribution (immunocytochemistry). After having seen a peak in the expression of Nurr l 

mRNA this protein was the first to be investigated. In the light o f this finding and the 

work o f Misiuta et al., 2006, where N u r r l protein expression rose significantly after one 

day o f exposure o f Ntera2.Dl embryonal carcinoma stem cells to retinoic acid, the 

expectation was that a peak may also be observed in the Tera2.cl.SP12 system. However 

using both flow cytometry and Western blotting as can be seen in Figure 3.8 it was 

impossible to gain any meaningful data. There are large fluctuations in the percentage o f 

cells expressing N u r r l and the intensity o f expression is very low being comparable to 

that o f negative controls. There is in addition little to no detection o f the protein via 

Western blotting. There are a number o f possible reasons for these results; one option is 

that in the Tera2.cl.SP12 cells the mRNA is expressed but the protein is not. Another is 

that the antibody used did not work particularly well . The antibody was however tested 

on some brain material where expression o f Nur r l is normally expected to be detectable. 

The data from this (Appendix C) display a quite diffuse band on a Western blot. This 

would suggest that it may well be the case that the immunological reagent used was part 

o f the problem, as a positive control would usually be expected to give a strong clear band 
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and this was not obtainable after a number o f attempts. Beta-actin used as a loading 

control was clearly detectable and amido black staining o f the nitrocellulose membrane 

confirmed there was protein present, giving support to the notion that the antibody was 

the limiting factor. There is also the possibility that the expression o f the mRNA and 

protein do not correlate and thus different patterns are seen. The only small trends that 

can be seen from the flow cytometry results are that on average Nur r l protein is 

expressed in more cells at a slightly greater intensity fol lowing one day o f retinoic acid 

treatment than after three, five or seven days. The data though are too ambiguous to 

make any real conclusions from. 

This is particularly highlighted by the Western blot data in Figure 3.8 which show that 

there is seemingly a faint non specific binding o f the antibody resulting in detection o f 

multiple bands. These could be break down products or complexes o f proteins containing 

N u r r l but there is a strong possibility that given the technical problems with the antibody 

that they result f rom non specific binding o f it to non-target proteins. This reinforces the 

notion that the data provide insufficient evidence on which to make any f i rm judgements. 

The expression o f tyrosine hydroxylase, the rate l imit ing enzyme in dopamine 

biosynthesis was also assessed using the same techniques as for N u r r l . Figure 3.9 shows 

there are generally large numbers o f cells expressing this protein. The intensity o f this 

expression varies in the initial seven days o f retinoic acid exposure but over time retinoic 

acid has an inductive effect. The Western blot (Figure 3.9C) is indicative o f weak levels 

o f expression where there is no major observable difference. The protein data for tyrosine 

hydroxylase show a basic correlation with the findings o f the real time PCR analyses, 

with low expression in the starting material and in the first seven days leading to an 

eventual rise by four weeks. However the faint nature o f the Western blot detection 

although limited to a discrete band may reflect a broad and possibly non specific binding 

o f the antibody, this idea is supported by the widespread expression o f this marker by a 

large number o f cells in the flow cytometry analysis. The detection seen may also be 

more an artefact o f the sensitivity o f the technique than a reflection of a true robust 

expression o f the protein. Overall therefore there is unlikely to be any significant level o f 

tyrosine hydroxylase present at the early stages o f differentiation. 



Figure 3.8: N u r r l protein expression in Tera2.cLSP12 cells and their derivatives 
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Figure 3.8A: Flow cytometric analysis of the number of cells expressing Nurrl in 
Tera2.cl.SP12 cultures and their 10)a.M retinoic acid induced counterparts up to 7 days. Error 
bars represent the S.D. of the mean. B: The intensity of Nurrl expression in such cultures. 
Error bars represent the S.E.M. C: A Western blot showing protein expression in identical 
samples. D: (i) A Western blot probed for Nurrl carried out on 3 different passages of MG63 
cell samples expected to be negative for Nurrl expression. Although a band of Nurrl 
expression is not seen there does appear to be some non specific binding of the antibody in other 
areas, this is also the case in C. above, (ii) Detection of beta-actin in the MG63 cell samples 
used as a loading control. Given the non specific binding of the antibody and technical 
problems with it as mentioned in the main text neither the Western blot nor flow cytometry data 
yielded any meaningful result. In all experiments n=3. 
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Figure 3.9: T H protein expression in Tera2.cl.SP12 cells and their derivatives 
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Figure 3.9A: Flow cytometric analysis of the number of cells expressing tyrosine hydroxylase 
in Tera2.cl.SP12 cultures and their !0|i.M retinoic acid induced counterparts up to 4 weeks. 
Error bars represent the S.D. of the mean. B: The intensity of tyrosine hydroxylase expression 
in such cultures. Error bars represent the S.E.M. C : A Westem blot showing faint but 
detectable tyrosine hydroxylase protein expression in comparable samples up to 7 days of 
retinoic acid driven differentiation. Beta-actin was used as a loading control. In all 
experiments n=3. 



Figure 3.10: Beta I I I tubul in protein expression in Tera2.cl.SP12 cells and their 

derivatives 

A. 

a> 60 

EC 
(Untreated) 

Day 1 Day 3 Day 5 Day? 2 Week 4 Week 

B. 
Duration of R.A. Exposure 

5000 

« 3500 

= 3000 

Sig. <0.05 

A 1500 

EC Day 1 Day 3 Day 5 Day 7 

Duration of R.A. Exposure 

2 Week 4 Week 

Figure 3.10A: Flow cytometric analysis of the number of cells expressing the neuronal 
marker Tuj 1 in Tera2.cl.SPl 2 cultures and their 1 OiiM retinoic acid induced counterparts up to 
4 weeks. Error bars represent the S.D. of the mean. B: The intensity of Tuj 1 expression in 
such cultures. Error bars represent the S.E.M. Student's T-test indicated that there was a 
statistically significant increase in mean fluorescence intensity from the EC cells to their 
derivatives treated with retinoic acid for 1 day. In all experiments n=3. 
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Figure 3.10 shows that the neuronal marker Beta III tubulin when assessed by flow 

cytometry displays a similar pattern of expression. However there are a couple of key 

differences. The first of these is that the starting material expresses tyrosine hydroxylase 

more strongly than the cells after one day of retinoic acid treatment. The opposite is true 

for Beta III tubulin which shows a statistically significant rise in expression following 

induction with retinoic acid for one day. This mirrors the rise in expression of Nurrl and 

is in accordance with the concept that Nurrl may help promote neuronal differentiation. 

The other main difference is that although Beta III tubulin, as for tyrosine hydroxylase, 

appears overall to be induced with lengthening exposure to retinoic acid, at two weeks 

there is a dip in both the amount and intensity of its expression. Therefore although 

predictable almost linear rises in certain markers can be observed upon retinoic acid 

treatment of Tera2.cl.SP12 cultures, this is not always the case and there may be subtle 

effects at different times when assessing the regulation of certain proteins of interest. 

Figure 3.11 summarises the mean fluorescence intensity data for all three markers 

displaying the overall trend of retinoic acid induction by four weeks and the peak in Beta 

III tubulin expression after one day. 

Figure 3.11: Summary mean fluorescence intensity flow cytometry data 
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Figure 3.11: The intensity of Nurrl, TH and Beta III tubulin protein expression assessed by 
flow cytometry, in Tera2.cl.SP12 cultures and their lOuM retinoic acid induced derivatives 
over 4 weeks of differentiation. Error bars represent the S.E.M. (n=3). 
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When the effect of lowered oxygen was also investigated utilising the same techniques a 
pattern of protein expression comparable to that for the mRNA was observed. Figure 
3.12 shows that there is little difference in the number of cells expressing tyrosine 
hydroxylase from two to four weeks but there is a rise in the intensity of this expression. 
Oxygen pressure appears to exert no real or statistically significant effect and at the 
protein level time also has less of an impact on the induction of tyrosine hydroxylase. 
However overall as for the mRNA there is still the trend of oxygen pressure having little 
effect and increased duration of retinoic acid exposure leading to higher levels of 
expression of this dopaminergic marker. 

Figure 3.13 shows that for the neuronal marker Beta I I I tubulin the situation is similar to 

that for tyrosine hydroxylase. There is more of an induction due to retinoic acid exposure 

between two and four weeks although this may in part be due to the observed dip at 2 

weeks. There is also once again no tangible or statistical effect caused by using lowered 

oxygen conditions. 

Western blotting was also used to try and give further support to these observations. 

Figure 3.14 neatly shows that for tyrosine hydroxylase there appears to be an induction of 

expression with retinoic acid treatment over time (although mainly at 4 weeks) and in a 

consistent manner with other techniques, the data indicate that oxygen pressure has no 

effect. Figure 3.15 shows that there is some very faint inconclusive expression of Nurrl 

at two and four weeks but as for the earlier data no firm conclusions can be made for the 

reasons outlined previously, non specific binding of the antibody being one major 

problem as evidenced by the presence of multiple bands. 



Figure 3.12: The effect of oxygen on TH protein expression in Tera2.cl.SP12 cells 
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Figure 3.12A: Flow cytometry was used to assess the percentage of Tera2.cl.SP12 cells 
expressing TH protein after 2 or 4 weeks of lOjiM retinoic acid induced differentiation in 
5% or normal oxygen culture conditions. Error bars = S.D. of mean. B: The intensity of 
TH expression in these cell samples was also measured. Between 2 and 4 weeks neither the 
duration of retinoic acid exposure or oxygen pressure exerted any significant effect, either 
alone or in concert. Error bars represent the S.E.M. (n=3). 
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Figure 3.13: The effect of oxygen on Beta I II tubulin protein expression in 

Tera2.cl.SP12 cells 
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Figure 3.13A: Flow cytometry was used to assess the percentage of Tera2.cl.SP12 cells 
expressing Tuj 1 protein after 2 or 4 weeks of 1 OnM retinoic acid induced differentiation in 
5% or normal oxygen culture conditions. Error bars represent S.D. of mean. B : The intensity 
of TH expression in these cell samples was also measured. Between 2 and 4 weeks neither the 
duration of retinoic acid exposure or oxygen pressure exerted any significant effect, either 
alone or in concert. Error bars represent the S.E.M. (n=3). 
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Figure 3.14: Assessment of T H expression via Western Blotting 
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Figure 3,14: A Western blot showing tyrosine hydroxylase protein expression in 
Tera2.cl.SPI2 stem cells and their 2 and 4 week 10|iM retinoic acid treated derivatives in 
both 5% and normal oxygen culture environments. The best representation of n=3 blots 
each ran using biologically independent samples is shown. Beta-actin was used as a 
loading control. The presence of multiple bands may indicate non specific binding of the 
antibody or be the result of break down products given the bands are smaller in size than 
the main band. Non specific binding is more likely as the products are only slightly 
smaller than the main band of interest. This non specific binding would support the flow 
cytometry data that indicate many cells are antigen positive which could be accounted for 
by the binding of the antibody in a non specific manner. There does though appear to be 
some inductive effect particularly at 4 weeks due to retinoic acid exposure in a consistent 
manner with the flow cytometry (mean fluorescence intensity) and real time PGR data. 
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Figure 3.15: Assessment of N u r r l expression via Western Blotting 
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Figure 3.15: A Western blot showing Nurrl protein expression in Tera2.cl.SP12 stem cells 
and their 2 and 4 week lO^M retinoic acid treated derivatives in both 5% and normal 
oxygen culture environments. The best representation of n=3 blots each ran using 
biologically independent samples is shown. Beta-actin was used as a loading control. The 
presence of multiple bands indicates that there may well be non specific binding of the 
antibody as mentioned previously. This in combination with the technical problems found 
when using the antibody essentially gives rise to a result that is far too ambiguous to base 
any meaningful conclusions on, as was the case in Figure 3.8 where the same reagent was 
used and where no real outcome was found. 
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The final technique used was immunocytochemistry. This gave an insight into the 

changing distribution and expression of Beta II I tubulin and tyrosine hydroxylase. It was 

also used to assess nestin expression as the presence of this neuroprogenitor marker 

would confirm that retinoic acid treated cultures at four weeks were still populated by 

some cells that were less mature and relatively undifferentiated. In the longer term i f 

nestin expression could be down regulated or turned off it may then favour acquisition of 

neuronal phenotypes as in Hara et al., 2007. Figures 3.16 and 3.17 show nestin 

expression in both sub confluent and confluent Tera2.cl.SP12 cultures, both conditions 

were tested as cells exist in both states at some point in their cycle of usage. In both 

scenarios nestin is clearly expressed, however tyrosine hydroxylase is expressed in a 

diffuse pattern and this too is the case for Beta II I tubulin. The expression is so weak it is 

hard to detect in the merged images. This may be due to a degree of non specific binding 

of the antibodies used giving rise to a diffuse but detectable haze when recording the data. 

There is certainly no clear staining associated with neuronal cell body or process like 

structures. In the light of this positive staining is only viewed as such in the remainder of 

this Thesis i f clear detection is observed alongside a characteristic morphological pattern 

indicative of potential neurites in culture (i.e. cell body and process like structures). 

Figure 3.18 shows the expression of these three markers following four weeks of retinoic 

acid treatment in both oxygen environments. Beta II I tubulin staining is more intense and 

generally seen in neuronal process like structures leading from what could be neuronal 

cell bodies. It is hard by eye to discern any major differences due to oxygen tension. For 

tyrosine hydroxylase, which as a cytosolic protein is more diffuse in its appearance than 

the cytoskeletal Beta I I I tubulin, the scenario is somewhat different. There is expression 

associated with small process like structures emanating from possible cell bodies but the 

detection of such cells is scarce. Circles highlight possible candidates as in the merged 

image the Hoescht stained nuclei predominate heavily. This would suggest that there 

may be a low number of tyrosine hydroxylase positive cells that display neuronal type 

morphology present in such cultures. It does though highlight that the high numbers of 

cells detected as antigen positive in the earlier flow cytometry analysis are probably not a 

reflection of a high number of truly tyrosine hydroxylase positive cells of a potentially 

neuronal nature being present but are more likely the result of a broad non specific 

binding of the andbody. This is further supported by the detection of multiple bands in 

the Western blot in Figure 3.14, which are a further indication of non specific binding of 

the antibody. There once again at both time points appears to be little difference between 
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5 and 21 % oxygen culture environments. The presence of nestin at four weeks shows that 

the cultures even after exposure to retinoic acid still possess some relatively immature 

cells. However the pattern of nestin expression as for tyrosine hydroxylase and Beta III 

tubulin is different from the undifferentiated to the differentiated cells which is 

compatible with the idea that as the cultures mature in the presence of retinoic acid there 

is a remodelling of the cellular architecture as more differentiated cell types form. 

Essentially these along with the results outlined previously indicate that retinoic acid can 

induce expression of neuronal as well as dopaminergic markers and give rise to cells 

reflective of a neuronal morphology. In addition they demonstrate that using 5% oxygen 

has no favourable effects over using standard (21%) oxygen culture conditions when 

utilising the Tera2.cl.SP12 cell line as a tool to study dopaminergic neurogenesis. 
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Figure 3.16: Immunostaining of Sub-Confluent Undifferentiated Tera2.cLSP12 E C 
cell cultures 
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Figure 3.16: Immunostaining of sub-confluent Tera2.cl.SP12 cultures for Nestin, TH and 
Tuj 1. Hoescht nuclear stain was used to confirm the presence of cells by staining their nuclei. 
Secondary only controls received no primary antibody treatment just the vehicle that primary 
antibodies were diluted in for the test conditions. All images were merged using Adobe 
Photoshop (scale bars represent 50|im). In all experiments n=3. Nestin is clearly detectable 
in EC cells. However TH and Beta III tubulin are only detectable as a weak haze on the 
image that is barely observable. This background level of detection is almost too faint to 
discern and may arise from a degree of non specific binding of the primary antibodies used. 
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Figure 3.17: Immunostaining of Confluent Undifferentiated Tera2.cl.SP12 E C cell 
cultures 
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Figure 3.17: Immunostaining of confluent Tera2.cl.SP12 cultures for Nestin, TH and Tujl . 
Hoescht nuclear stain was used to confirm the presence of cells by staining their nuclei. 
Secondary only controls received no primary antibody treatment just the vehicle that primary 
antibodies were diluted in for the test conditions. All images were merged using Adobe 
Photoshop (scale bars represent SO îm). In all experiments n=3. Nestin is clearly detectable 
in EC cells. However TH and Beta III tubulin are only detectable as a weak haze on the 
image that is barely observable. This background level of detection is almost too faint to 
discern and may arise from a degree of non specific binding of the primary antibodies used. 
This background detection is slightly more apparent for TH than Beta III tubulin, which is 
consistent with the TH antibody detecting multiple bands on the Western blot in Figure 3.14. 
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Figure 3.18: Immunostaining of 4 week R.A. differentiated E C cells 

Nestin 5% Oxygen Nestin 21 % Oxygen 

Beta III tubulin 5% Oxygen Beta III tubulin 21 % Oxygen 

TH 5% Oxygen TH 21 % Oxygen 

Figure 3.18: Immunostaining for Nestin, TH and Tujl of Tera2.cl.SP12 cultures treated with 
10|iM retinoic acid for 4 weeks in either 5% or normal (21%) oxygen conditions. All images 
were merged using Adobe Photoshop, Hoescht was used to stain cell nuclei (scale bars 
represent SO îm). In all experiments n=3. Nestin is still detectable in EC cell cultures after 4 
weeks of exposure to retinoic acid. Beta 111 tubulin is detectable in structures resembling 
neuronal cell bodies and processes. TH is in areas such as those highlighted with circles 
present in small process like structures associated with potential cell bodies. This staining 
although dominated by the blue Hoescht stain is stronger than the background haze observed 
in Figures 3.16 and 3.17 and may indicate that there are a very small number of cells that are 
tyrosine hydroxylase positive that possess a morphology characteristic of what might be 
expected for a TH positive neurite in culture. 
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3.4 Discussion 

In this Chapter the core objective was to gain an understanding of the human 

Tera2.cl.SP12 embryonal carcinoma stem cell line as a model to study dopaminergic 

neurogenesis. A number of hypotheses based on the literature outlined in the introductory 

Section 3.1 were specifically tested, in addition to a broader characterisation of the system 

being undertaken. The most basic hypothesis to be tested was whether retinoic acid can 

be used to induce expression of dopaminergic markers over time and also do embryonal 

carcinoma stem cells express any of these markers? From the results obtained it can be 

seen that Tera2.cl.SP12 cells do express often low but detectable levels of (at both the 

mRNA and protein level) a range of factors associated with a dopaminergic phenotype. 

However in some cases for proteins this may be questionable due to possible non specific 

binding of the immunological reagents used, but in terms of detecfion of the mRNA 

although detectable expression is often weak, this is a coherent finding in the context of 

embryonal carcinoma cells generally showing a propensity for neural differentiation. It 

appears that although the Tera2.cl.SP12 embryonal carcinoma cells express markers of 

pluripotency in a similar fashion to embryonic stem cells for which they are an apposite 

model system, they also differ in that they appear to be primed for neural differentiation 

and possibly exist in a state between an embryonic stem cell and a neuroprogenitor based 

on the marker expression data obtained (Figure 3.19) (Abeliovich & Hammond, 2007) 
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Figure 3.19: Midbrain dopaminergic neuron development (based on Abeliovich <& 

Hammond. 2007) 
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Figure 3.19: Changes in marker expression during dopaminergic development. Markers 
expressed by embryonal carcinoma cells are shown in red. The fact that such cells express 
markers associated with a range of developmental stages makes it difficult to assess where 
they lie in terms of them acting as a developmental model. It may be that it is the amount of 
certain markers present at any given time that is critical to their effect, based on Abeliovich & 
Hammond, 2007. 

It is also clear from the findings presented in Section 3.3 that retinoic acid can induce and 

generally up regulate a number of factors associated with a dopaminergic phenotype. 

However there are differences in the patterns of regulation seen. Soxl mRNA expression 

for example is controlled in an almost linear, highly predictable manner following retinoic 

acid treatment. In contrast Otx2 mRNA levels are driven to almost zero after just one day 

of expositre to retinoic acid, in an on/off type response. Some determinants of a 

dopaminergic phenotype like Nurrl are seemingly expressed throughout the 

differentiation process, as has been observed elsewhere (Misiuta et al., 2003), with 

possible peaks such as that seen for the mRNA at one day. In addition other markers like 

tyrosine hydroxylase and Beta I I I tubulin show a differential regulation with peaks and 

troughs, such as the peak in Beta II I tubulin expression after one day of retinoic acid 
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induction, the level of these factors though ultimately tends to increase with retinoic acid 

exposure time. 

There also appears to be some correlation between mRNA and protein expression levels. 

This could indicate that a high level of mRNA can rapidly be processed to yield a 

comparably large amount of protein. I f this is the case then the peak seen in Nurrl 

mRNA expression after exposure to retinoic acid for one day, that mirrors the peak seen 

in Nurrl protein expression in the work of Misiuta et al., 2006, where the sister Ntera2.Dl 

cell line is utilised, could correlate with the statistically significant increase observed in 

Beta I I I tubulin protein expression at this time point. Kara et al., 2007 were able to show 

Ntera2 cells over expressing Nurrl were nestin immunonegative which could indicate 

Nurrl may trigger an early commitment towards the neuronal lineage. I f this simple 

correlation exists between mRNA and protein levels and the processing of mRNA to 

protein is rapid then the results obtained here for Nurrl mRNA and Beta III tubulin 

protein may be related, with Nurrl possibly having an effect on the levels of Beta III 

tubulin present. This possible interaction is extremely unlikely to be instantaneous prior 

to the time of sample collection but could feasibly occur in the first day of differentiation. 

Given retinoic acid treatment of Tera2.cl.SP12 cultures results in a mix of cell types, it 

may be that the neuronal lineage is specified early via a mechanism involving Nurrl. 

However there may not be such a simple correlation between mRNA and protein levels. 

I f this is the case then the finding that Nurrl is expressed in the Tera2.cl.SP12 cells 

themselves may be at least part of the reason why this rise in Beta II I tubulin after one 

day of retinoic acid exposure is observed. This is in keeping with the concept that the 

embryonal carcinoma cells are primed for neural and possibly particularly neuronal 

differentiation. I f either of these scenarios is true and the early rise in neuronal marker 

expression is not due to chance or another set of factors not investigated here then there is 

the suggestion that the Tera2.cl.SP12 cell line might be a suitable vehicle for studying 

dopaminergic neurogenesis. 

Oxygen pressure however appears to be unable to exert any effect on the acquisition of a 

dopaminergic phenotype by Tera2.cl.SP12 cells. In the light of the work of Studer et al., 

2000 who showed that this variable can strongly influence the production of 

dopaminergic neurons from rat mesencephalic precursors, the absence of any real 

difference in the Tera2.cl.SP12 system could be viewed as surprising. It may even 
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suggest that the embryonal carcinoma cells are perhaps unsuitable for use or incapable of 

responding in a similar fashion to the rat midbrain cells to oxygen. This however might 

be expected given that rat mesencephalic precursors are very disparate from human 

embryonal carcinoma stem cells, not just in the fact they come from different species but 

also different locations. A midbrain cell may be more responsive to in vitro replication of 

its in vivo environment, where as an embryonal carcinoma stem cell may exhibit no 

preference, as it would not naturally be found in the brain. This is a negative in that 

embryonal carcinoma cells are unresponsive to one factor that may increase the 

production of dopaminergic neurons. It could though be viewed as a positive in that they 

offer a robust system in which other factors can be studied without the variable of oxygen 

having an effect on any findings. Also during the specification of a dopaminergic 

phenotype, a cell bound for this fate may experience a range of oxygen pressures during 

its development, so although the embryonal carcinoma system may appear to simplify the 

possible level of understanding that can be obtained, it may actually in the light of current 

knowledge act as a more realistic base from which to develop. In addition a study by 

Kim et al., 2008 showed only a 1.34 fold increase in the number of tyrosine hydroxylase 

positive cells when a lowered (3.5%) oxygen environment was used to try to enhance the 

dopaminergic differentiation of murine embryonic stem cells. This again supports the 

notion that lowered oxygen may be best reserved for work using mesencephalic cultures, 

where it has a markedly greater effect both alone as in Studer et al., 2000 and in concert 

with other inductive factors (Maciaczyk et al., 2008) . Given the observations in this 

Chapter the decision was made that all future work was to be carried out under standard 

culture conditions. 

Two other observations of interest that may also influence future work are those relating 

to the expression of the mRNA for Soxl and Otx2. First of all it appears that i f Sonic 

hedgehog and Fibroblast growth factor 8 are to be used then as shown for embryonic stem 

cells in Yan et al., 2005 and in the light of the findings of Stull and laccovitti, 2001, it is 

highly probable that they need to be applied reasonably early in the differentiation process 

to try and maximise their effect. Given the steady rise in Soxl, it is likely that no more 

than seven days of retinoic acid treatment will be required. However given that the most 

significant effects of this molecule appear to be at one day, the combined use of retinoic 

acid, Sonic hedgehog and Fibroblast growth factor 8 could be highly optimal, especially 

in a temporal sense. 
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The observation though that retinoic acid strongly down regulates the level of Otx2 

mRNA appears to be a negative indicator in terms of the suitability for use of the 

Tera2.cl.SP12 system in the context of studying dopaminergic differentiation. The 

counter balance to this is the question of whether Wntl or another means could be used to 

rescue Otx2 expression. Wntl has also been shown to possess a range of other effects 

(shown in Figure 3.20), of particular interest are its ability to increase the number of 

Nurrl positive precursors and the number of neurons produced by rat midbrain precursor 

cultures (Castelo Branco et al., 2003). I f these possible effects could augment those of 

retinoic acid on Nurrl and Beta II I tubulin expression already observed then this could be 

one route to enriching the number of neurons particularly those of a dopaminergic 

phenotype produced from Tera2.cl.SP12 cultures and for this reason the effects of Wntl 

were decided upon as the next factor for investigation. 

Figure 3.20: Investigating the potential effects of Wntl on the dopaminergic 

differentiation potential of Tera2.cl.SP12 human E C stem cells 
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Figure 3.20: Potential effects of Wntl that could possibly be exploited in the Tera2.cl.SP12 
cell system, based on the in vitro work of Castelo Branco et al., 2003 (red text), and the in 
vivo work of Prakash et al., 2006 (blue text). 
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Chapter 4 

The effects of Wntl on the 
dopaminergic 

differentiation of the 
Tera2.cl.SP12 cell line 
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4.1 Introduction 

Wnts are a family o f proteins consisting o f nineteen members that are typically 350 to 

500 amino acids in length (Castelo-Branco & Arenas, 2006). They are subject to post 

transcriptional modifications such as glycosylation (Nusse & Varmus, 1992), and 

palmitoylation (Willert et al., 2003) and it is these alterations that account for their 

poor solubility in aqueous solutions, hydrophobic nature and preference for being 

located in cell membranes and the extracellular matrix. These properties may indicate 

that Wnts are likely to possess an action mainly at short range; however they are also 

able to exert an activity on targets at a distance (Zecca et al., 1996). As a family they 

are known to regulate a broad range o f developmental processes including 

proliferation (Taipole & Beachy, 2001), stem cell self renewal (Rega et al., 2003), fate 

specification (Dorsky et al., 1998) and differentiation in neural cells (Rosso et al., 

2005). 

Wnts bind to and can activate two different types of receptor. The first o f these are 

the seven pass transmembrane protein frizzled receptor family which comprises ten 

members. In addition Wnts may also interact wi th two low density lipoprotein related 

receptor proteins, LRP5 and LRP6. Generally Wnt family proteins are classified as 

either canonical or non canonical in relation to the means by which they relay their 

signals. W n t l is a classical example o f a canonical Wnt that transduces its signal 

intracellularly by causing the stabilisation o f beta-catenin, with a subsequent 

activafion at the transcriptional level o f T-cell factor/lymphoid enhancer elements 

(Figure 4.1) (Logan & Nusse, 2004). Non canonical Wnts like Wnt5a may signal in a 

variety o f ways, for example, via activation o f small GTPases, by activation of the c-

Jun N-terminal kinase/planar cell polarity pathway or through increases in the amount 

of intracellular calcium (Veeman et al., 2003). A number o f different processes f rom 

the early to late stages o f neural development are regulated by members o f the Wnt 

family (Castelo-Branco & Arenas, 2006), making it unsurprising that the effects o f 

one such protein were the subject o f investigation in this work. W n t l was chosen as 

the specific target to be studied for a number o f reasons, the background to which is 

detailed below. 



Figure 4.1: Wnt Signalling Pathways (redrawn from Arenas, 2005) 
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Figure 4.1: Canonical and non canonical Wnt signalling pathways, based on Arenas, 
2005. 

To begin, W n t l is expressed in the midbrain/hindbrain boundary by E8 and by E10.5 

the expression o f it has extended specifically to the domain in the ventral midbrain 

where dopaminergic neurons are formed. W n t l null mutant mice display a deletion o f 

the posterior midbrain that includes the area where dopaminergic neurons are located, 

as well as an absence o f the anterior hindbrain (McMahon & Bradley, 1990; Thomas 

& Kapecchi, 1990). Mice mutant for the receptor LRP6 have been reported to display 

a similar phenotype (Pinson et al., 2000). These results together indicate that Wnt l is 

likely to play a key role in the processes specifying neural precursor cells in specific 

brain regions. Theoretically it may exert an effect either on their proliferation, their 

differentiation or possibly even elicit a response based on a combination o f both 

factors (Arenas, 2005). Interestingly when W n t l is over expressed in transgenic 

animals under the control o f the promoter for engrailed 1, the result via a mechanism 

that involves proliferation and differentiation based effects is an increase in the cell 
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numbers and size o f the midbrain/hindbrain structures (Panhuysen et al., 2004). A l l 
o f this evidence is indicative o f W n t l possessing a key role in neural development. 
Further specific effects o f this signalling molecule have also been identified in other 
in vivo as well as in, in vitro systems. 

In a series o f experiments using a murine model and explant cultures, i t was found 

that W n t l exerts two clear effects. First o f all it is implicated in the formation o f the 

mesencephalic dopaminergic progenitor domain. It carries out this function via its 

ability to maintain expression o f Otx2 in the ventral mesencephalon which 

subsequently is involved in repressing the expression o f Nkx2-2 in this area. I f Nkx2-

2 is not repressed in the midbrain floor plate and basal plate, this results in the 

production o f serotonergic neurons rather than their dopaminergic counterparts 

(Prakash et al., 2006). Given the observation in Chapter 3 that retinoic acid causes a 

rapid decrease in Otx2 mRNA expression relative to that seen in the Tera2.cl.SP12 

cells themselves. It appeared prudent to investigate the potential ability o f Wnt l to 

rescue this effect or override the retinoic acid induced down regulation via its facility 

to maintain Otx2 expression. 
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Figure 4.2; Possible Signalling Pathways Implicated in Dopaminergic 
Neurogenesis (Adapted from Abeliovich & Hammond, 2007) 
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Figure 4.2: Transcription factors are in black text and soluble factors are in blue 
text. In the context of this work the question is; does Otx2 effect Lmxla expression 
in the Tera2.ci.SPI2 cell line in the presence of Wntl and retinoic acid? 

In addition in a fate mapping study that utilised fluorescence activated cell sorting 

involving corin, a floor plate specific cell surface marker. One et al., 2007, were able 

to demonstrate that mesencephalic floor plate cells possess a neurogenic activity and 

are able to form midbrain dopaminergic neurons in vitro, but that caudal floor plate 

cells lack this neurogenic potential. By carrying out further work in dreher mutant 

mice that contained a mutation in the locus for L m x l a and via the use o f transgenic 

mice that displayed ectopic expression o f Otx2 in caudal floor plate cells, Ono et al., 

2007 were able to illustrate that Otx2 establishes an anterior identity that imparts 

neurogenic activity to cells o f the floor plate. In turn defining a mesencephalic 

dopaminergic fate at least to some degree via induction of L m x l a (Ono et al., 2007). 

Given the concept that W n t l may create a permissive environment in which inductive 

cues such as Sonic hedgehog and Fibroblast growth factor 8 can operate to specify the 
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formation o f dopaminergic neurons (Burbach & Smidt, 2006) and the finding that 

W n t l can maintain expression o f Otx2 which itself may help specify a dopaminergic 

fate at least in part by a mechanism involving L m x l a . This poses the question o f 

whether W n t l could not only rescue or maintain Otx2 expression in itself but could it 

also display positive effects on the expression o f L m x l a and other downstream 

determinants (Figure 4.2) o f a dopaminergic phenotype? Also Sonic hedgehog pre 

treated mouse embryonic stem cells that have had the L m x l a gene introduced into 

them show a strong capacity for dopaminergic differentiation (Andersson et al., 

2006). This opens up the possibility i f Wnt l is able to exert a positive effect in the 

Tera2.cl.SP12 system that the next investigations to be undertaken could coherently 

link the W n t l studies into new work involving Sonic hedgehog and Fibroblast growth 

factor 8, based on the model presented in Burbach & Smidt, 2006 (Figure 4.3). 

Figure 4.3; Factors & Signals Involved in The Specification of a Dopaminergic 

Neuronal Fate from Neuroepithelial Stem Cells (based on Burbach & Smidt. 

2006) 
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Figure 4.3: Wntl may create a permissive environment in which Sonic hedgehog and 
Fibroblast growth factor 8 can function to drive the sequential development of 
dopaminergic neurons (based on Burbach & Smidt, 2006). 
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On top o f the possibilities for investigation that W n t l offers based on the first clear 

effect seen in Prakash et al., 2006, in this work they were also able to demonstrate that 

this glycoprotein has a secondary activity that is seen later in the process o f 

dopaminergic fate specification. It appears that Wnt l is required for the terminal 

differentiation o f midbrain dopaminergic precursors into mature dopaminergic 

neurons (Prakash et al., 2006). 

In an in vitro system using rat mesencephalic cultures W n t l was likewise able to exert 

two effects. In a similar fashion to WntSa, it was able to promote neurogenesis by a 

mechanism involving proliferation of Nur r l positive precursors. In a comparable 

manner but to a lesser extent than WntSa, it was able to influence the differentiafion 

of such precursors into mature dopaminergic neurons. The general ability o f W n t l to 

increase the number o f T u j l positive cells by two fold but unfortunately not the 

proportion o f tyrosine hydroxylase positive cells within this subpopulation (Castelo 

Branco et al., 2003) was another desirable effect to pursue, as it offered the prospect 

o f at least producing a more heavily neuronal, less mixed culture than those obtained 

using only retinoic acid in conjunction with the Tera2.cl.SP12 embryonal carcinoma 

stem cell system. In the light o f the sharp rise in Nur r l expression seen in this 

retinoic acid only condition after just 1 day o f exposure to it, and given the effects o f 

Wnt l on Nur r l posifive precursor cells, this too opened up the possibility o f whether 

W n t l could augment or cause some sort o f additional complimentary effect to that 

already observed. Therefore given that it may exert two effects rather than just one as 

appeared to be the case for Wnt3a and WntSa, and that any positive potentially 

demonstrable effects may not only tie in wi th previous work but also facilitate further 

study possibly involving the application o f Sonic hedgehog and Fibroblast growth 

factor 8, W n t l seemed a prime factor for investigation. 

The fact that it is a classical example o f a canonical Wnt added fiirther to this 

argument as over expression of beta-catenin in neural stem cells can both enhance 

their proliferation when Fibroblast growth factor 2 is present, as well as helping to 

induce neuronal differentiation when it is absent. As a canonical Wnt, it would be 

expected that W n t l would stabilise expression o f beta-catenin and thus possibly exert 

favourable effects in terms o f achieving production o f a dopaminergic phenotype 

from Tera2.cl.SP12 cells. Further work in rat El4.5 ventral midbrain precursor 
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cultures gave extra support to this idea. In this study the focus was on glycogen 

synthase kinase - 3p a key part o f the canonical signalling pathway. By applying two 

competitive inhibitors o f glycogen synthase kinase - 3p to the precursors, Castelo 

Branco et al., 2004 were able to show in a concentration dependent manner an 

increase in the number o f tyrosine hydroxylase positive cells. Beta-catenin over 

expression in such cultures was also capable o f causing an increase in tyrosine 

hydroxylase positive cell numbers. Interestingly both inhibitors increased the number 

of neurons present as well as the number of tyrosine hydroxylase positive cells within 

the neuronal population (Castelo Branco et al., 2004). One o f the inhibitors, 

KenpauUone, was able to raise the number of N u r r l positive precursors gaining a 

tyrosine hydroxylase positive phenotype, as well as causing an increase in expression 

of the dopaminergic marker c-ret. This compound was then applied to the 

dopaminergic cell line M N 9 D causing significant neurite outgrowth but exerting no 

effect on the proliferation rate of such cultures. Overall these observations suggest 

that the effects o f Wnts on dopaminergic differentiation may be mimicked by 

inhibition o f glycogen synthase kinase - 3p (Castelo Branco & Arenas, 2006). As 

described in Castelo Branco & Arenas, 2006, it is o f interest that inhibition o f 

glycogen synthase kinase - 3p can be achieved via stimulation o f other pathways, for 

example by Sonic hedgehog, giving a possible synergy with beta-catenin signalling 

( M i l l et al., 2005). This raises the question as to whether dopaminergic neurogenesis 

is regulated at key junctions where signals from different pathways intersect and are 

integrated (Castelo Branco & Arenas, 2006). 

A l l o f this evidence points to W n t l potentially possessing a number o f effects that 

could be effectively harnessed to influence the dopaminergic differentiation o f the 

Tera2.cl.SP12 embryonal carcinoma stem cell line. In summary the main hypotheses 

to be tested are; can Otx2 expression be rescued and i f so has this any effect on the 

expression o f L m x l a and its downstream partners? Can W n t l exert any additional 

effect on N u r r l expression in comparison to that already observed using retinoic acid 

in Chapter 3? Can any other dopaminergic markers be up regulated in their 

expression and is it possible to achieve an enhanced yield o f neurons? Also i f any o f 

these effects were achieved might they occur via a mechanism involving regulation o f 

beta-catenin? The methods used to test these theories fol low in the next section and 

the experimental results are described in section 4.3. 
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4.2 Cell Culture Methods 

Treatment of E C cell cultures with Retinoic acid and Wnt l 

Cultures o f Tera2.cl.SP12 EC cells were grown to confluency, the media aspirated 

f rom them, before being washed wi th I x PBS, prior to treatment for 5 minutes with 

0.25% (w/v) Trypsin/0.1% (w/v) EDTA (in HBSS) (Cambrex), to release the cells 

f rom the surface o f the culture flask. The Trypsin was then neutralized by addition o f 

4ml o f D M E M F G and any cells remaining loosely bound washed o f f the surface of 

the flask by pipetting the DMEMFG/Trypsin-EDTA mix against the side o f the flask 

where cell attachment occurs. A further wash with I x PBS was carried out to 

optimize the retrieval o f EC cells for use. The cell suspension was then transferred to 

a 15ml Falcon tube and spun in a centrifuge (Eppendorf 581 OR (swing bucket rotor 

A-4-62)) at SOOrpm, 4°C, for 2 minutes. The excess fluid was removed to leave a 

pellet. This was resuspended in D M E M F G and cell number determined by using a 

haemocytometer. Once the cell number was known the EC cells were subsequently 

seeded out at the fol lowing densities depending on the culture ware used: 

• For a T25-0 .5x10^ cells per flask, 

• For a single well o f a 6 well plate containing a 22mm poly-D-lysine coated 

glass coverslip - 0.2x10^ cells per well. 

Once cells were seeded out at an appropriate density for the culture vessel, they were 

exposed to one o f the fol lowing 3 conditions for varying periods o f time to attempt to 

induce differentiation. The 3 treatment regimes were exposure to a final 

concentration o f l O ^ M all trans retinoic acid (Sigma). Exposure to a final 

concentration o f 10|AM all trans retinoic acid (Sigma) along with Wnt l (Peprotech) 

(made up in sterile autoclaved distilled water) at a final concentration o f 2ng/ml, and 

finally exposure to a final concentration of 2ng/ml of W n t l . Media was changed 

every 2 - 4 days. A l l cells were maintained in standard 37°C, 5% CO2 incubators 

(Sanyo). 
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4.3 Results 

Prior to investigating the potential effects of W n t l , a small control experiment was 

carried out to try and assess i f the commercially available compound that had been 

purchased for use was able to function and exert an effect on the Tera2.cl.SP12 

system. In addition as the W n t l that was to be applied exogenously was dissolved in 

water before use, a vehicle control containing only water was included in the analysis 

to see i f the vehicle was able to cause any effect. In theory i f the vehicle caused little 

or no effect then any results observed were likely to be due to the presence o f W n t l . 

Real time PCR was used to assess expression o f the mRNA for Oct4 and Soxl as 

these two markers had previously been shown to be regulated in a predictable manner. 

Figure 4.4A shows that for Oct4, expression is high in the embryonal carcinoma cells 

and is subsequently down regulated fol lowing exposure o f them to retinoic acid. 

Exposure in the W n t l only condition is almost identical to that in the starting 

material, which may suggest Wnt l can maintain expression o f this stem cell marker or 

more realistically may indicate that Wnt l alone is insufficient to gain control o f the 

highly proliferative embryonal carcinoma cell cultures. The vehicle control appears 

to have no real effect and the embryonal carcinoma cells in practice just become very 

confluent and display continued Oct4 expression. The combined use o f retinoic acid 

and Wnt l shows little difference to the effect observed using retinoic acid alone. This 

may suggest W n t l has no effect in this instance or that retinoic acid is predominant in 

down regulating expression o f markers o f pluripotent stem cells and as such more 

responsible for exercising control over the cell system possibly by driving it towards a 

more differentiated state as was broadly seen in Chapter 3. 

Figure 4.4B shows that Soxl is up regulated as expected fol lowing 7 days of retinoic 

acid treatment o f the Tera2.cl.SP12 cell line in which it is only expressed at a low 

level. The W n t l only and vehicle control conditions show a highly similar result. 

This could indicate that the W n t l is not able to exert a detectable effect. However it 

may indicate that at the dose used W n t l alone is unable to exert any control over Soxl 

mRNA expression in the embryonal carcinoma cells. This latter option appears more 

likely as in the retinoic acid and W n t l condition there is a greater expression of Soxl 

mRNA than that seen in the retinoic acid only sample. This would suggest therefore 
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that W n t l in conjunction with retinoic acid can funcfion and possibly influence the 

differentiation o f the Tera2.cl.SP12 cell line. It also underpins the concept that 

retinoic acid may be necessary to gain control over the proliferative embryonal 

carcinoma stem cell starting material, by acting as an inducer o f differentiation. 

Figure 4.4: Testing f o r an effect due to the exogenously applied W n t l 
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Figure 4.4A: Real time PCR analysis of Soxl expression in Tera2.cl.SP12 cultures under a 
range of treatment conditions involving the application for 7 days of 10|iM retinoic acid, 
2ng/ml Wntl or water in the vehicle control. B: Real time PCR analysis of Oct4 expression 
in Tera2.cl.SP12 cultures under a range of treatment conditions involving the application for 
7 days of lO^M retinoic acid, 2ng/ml Wntl or water in the vehicle control. Error bars 
represent the S.D. of the mean. 
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Figure 4.5 shows the results o f an MTS assay used to assess cell proliferation. After 

seven days in culture the W n t l only condition is nearly identical to that for the 

embryonal carcinoma cell only control. This suggests that W n t l alone has no real 

tangible effect on the cell system. Retinoic acid alone and in combination with Wnt l 

does however show a clear effect after seven days as would be predicted. There is 

though no statistically significant difference between the retinoic acid only and 

retinoic acid plus W n t l conditions. Both these sample sets do display statistically 

significant differences from the Wnt l only condition, thus it appears that retinoic acid 

as suspected is likely to be required in some capacity to induce differentiation and 

gain a basic level o f control when trying to utilise W n t l at the concentration tested in 

this cell system. As a result most subsequent analyses in this Chapter do not include 

Wnt l only samples. When such a condifion is included it is just as a small scale 

screen to see i f W n t l alone can cause a result that may be detectable by one o f the 

range of techniques used. 
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Figure 4.5: Prol i ferat ion of Tera2.cl.SP12 cultures treated w i t h R.A. and W n t l 
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Figure 4.5: MTS assay data showing the differences in cell proliferation between 
untreated Tera2.cl.SP12 cells cultured for 7 days and their counterparts following 
treatment with 2ng/ml Wntl alone, 10 fiM retinoic acid alone, or a combination of both 
reagents for the same time span. In all experiments n=3 and error bars represent the S.D. 
of the mean. The one way anova output indicates that the Wntl only condition differs 
significantly from the retinoic acid only and combined Wntl plus retinoic acid samples, 
but these data sets do not differ significantly from each other. 
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Although W n t l could seemingly exert an effect when used alongside retinoic acid, i f 

it were to do so it would be expected to act via an appropriate receptor and by a 

canonical signalling mechanism. The pattern o f expression o f Frizzled 8, the receptor 

for W n t l , was assessed using real time PCR (Figure 4.6). This confirmed the 

presence of the m R N A for it and was therefore indicative that W n t l may be able to 

apply an effect on Tera2.cl.SP12 cultures. Receptor expression was also assessed in 

7, 14 and 21 day old cultures treated with retinoic acid alone or in combination with 

W n t l . There was a generally variable expression pattern, however at 7 days in the 

presence of both reagents there was almost double the mean expression level seen in 

the retinoic acid only samples. In other work presented later in this Chapter a similar 

effect is apparent at this time point. This may suggest that W n t l in conjunction with 

retinoic acid may regulate its own activity to some degree, possibly by up regulating 

expression o f the receptor for it. The difference though between the retinoic acid only 

and retinoic acid plus W n t l conditions as indicated by the one way anova output, is 

not statisfically significant, nor do the levels o f mRNA expression in either test 

condition at seven days differ to a statistically significant degree f rom those seen in 

the embryonal carcinoma stem cells. Interestingly after three weeks o f exposure to 

retinoic acid there is a noticeable peak in Frizzled 8 expression, this could be due to 

the system being primed at this stage for further neuronal differentiation or maturation 

possibly driven by W n t l . Alternatively it may be due to a difference in expression o f 

the house keeping gene used, however this is not that likely as the same trend is 

observed across two different house keeping genes, which serve different cellular 

fiinctions. Therefore it may reflect that after three weeks o f retinoic acid treatment 

Tera2.cl.SP12 cells are potentially open to manipulation by W n t l . It may be that such 

cultures are themselves producing this molecule in this condition at this time. This 

would be in line theoretically wi th the notion that W n t l may be able to self regulate 

its activity. 
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Figure 4 .6 : The effects of W n t l and R.A. on Frizzled 8 m R N A expression 
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Figure 4.6: The relative expression of Frizzled 8 mRNA in Tera2.cl.SP12 cells and their 
derivatives treated with 10|iM retinoic acid only, or 10|iM retinoic acid plus 2ng/ml Wntl for 7, 
14 and 21 days. The one way anova output indicates there is no statistically significant 
difference between the two test conditions at 7 days and that these samples do not differ to a 
statistically significant level from the embryonal carcinoma stem cell starting material. In all 
experiments n=3 and error bars represent the standard deviation of the mean. 



Figure 4.7: The effects o f W n t l and R.A. on Beta-catenin m R N A expression 
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Figure 4.7: The relative expression of Beta-catenin mRNA in Tera2.cl.SPI2 cells and their 
derivatives treated with lOuM retinoic acid only, or lOfxM retinoic acid plus 2ng/ml Wntl for 7, 
14 and 21 days. The one way anova output indicates there is no statistically significant difference 
between the two test conditions at 7 days and that these samples do not differ to a statistically 
significant level from the embryonal carcinoma stem cell starting material. In all experiments n=3 
and error bars represent the standard deviation of the mean. 
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I f W n t l is having an effect it would be expected to do so via a canonical route, 

involving stabilisation o f beta-catenin. Although there is no statistically significant 

difference in the expression o f beta-catenin mRNA between the two seven day 

conditions tested and the embryonal carcinoma cell starting material, a similar trend 

as is seen for Frizzled 8 expression is observed (Figure 4.7). In the presence of W n t l 

and retinoic acid at seven days there appears to be a greater expression o f beta-

catenin, suggesting W n t l may be exerting any possible effects at this time via a 

canonical signalling mechanism. Beyond seven days though there is little difference 

between samples. Ideally i f possible it would be worthwhile to test for differences in 

protein expression o f this molecule as it is the protein that would be responsible for 

any tangible effect. The m R N A data though imply that there may be positive effects 

due to W n t l that could be mediated by increases in beta-catenin mRNA levels, that 

may logically in theory be related to stabilisation o f this protein. 

In the light o f these initial findings it appears that W n t l may be able to influence the 

dopaminergic differentiation o f Tera2.cl.SP12 embryonal carcinoma cells in the 

presence o f retinoic acid. The next step therefore was to try and test the hypotheses 

outlined in the introductory section 4.1. Given the positive effects on N u r r l mRNA 

expression seen using retinoic acid in Chapter 3 and the work o f Castelo Branco et al., 

2003, who were able to demonstrate that W n t l could increase the number of Nur r l 

positive precursors in rat mesencephalic cultures, this was the first factor to be 

investigated. Figure 4.8 shows that at the mRNA level there is hardly any difference 

in the expression pattern o f this transcription factor. Wnt l may slightly augment the 

relative level o f it at 1 day but given the variation in the results, there is no real 

difference. The W n t l only condition was also included in this analysis and shows a 

highly variable expression profile, supporting the view that W n t l alone is insufficient 

to direct the differentiation o f Tera2.cl.SP12 embryonal carcinoma stem cells. It 

appears in this instance that even in the presence of retinoic acid; Wnt l is unable to or 

does not play a role in the regulation o f N u r r l , a key determinant of a dopaminergic 

phenotype. 
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Figure 4.8: The effects of W n t l and R.A. on N u r r l m R N A expression 
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Figure 4.8: The relative expression of Nurrl mRNA in Tera2.cl.SP12 cells and their derivatives 
treated with lOuM retinoic acid only, 2ng/ml Wntl only, or 10|4,M retinoic acid plus 2ng/m\ Wntl 
for 1, 3, 5, 7, 14 and 21 days. In all experiments n=3, error bars represent the S.D. of the mean. 

Flow cytometry was used to try and assess i f there was any detectable difference 

between test conditions at the protein level. However Figure 4.9 shows that as in 

Chapter 3 technical problems with the antibody used, essentially led to low intensity 

expression that was highly variable between cultures and gave no results on which 

meaningful conclusions could be made. 
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Figure 4.9: N u r r l protein expression in EC cells treated w i t h W n t l and R.A. 
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Figure 4.9A: The number of Nurrl antigen positive cells in Tera2.cl.SP12 cultures treated 
with lOuM retinoic acid only, 2ng/ml Wntl only, or a combination of both reagents after 7, 14 
and 21 days. Error bars represent the S.D. of the mean. B: The intensity of Nurrl expression 
in the same culture conditions outlined above. Error bars represent the standard error of the 
mean. In all experiments n=3. The resuhs from this analysis as discussed in the text are 
essentially meaningless due to the possibility of non specific binding of the antibody and 
technical problems with its use. 
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These results offered little prospect o f providing a route forward, so the focus o f study 

was switched to other variables that may influence the acquisition o f a dopaminergic 

cell fate, starting with Otx2. Wnt l can maintain expression o f this molecule in other 

systems (Prakash et al., 2006) and as such it was hypothesised that it may rescue the 

rapid drop in expression o f Otx2 shown fol lowing retinoic acid treatment of 

Tera2.cl.SP12 embryonal carcinoma stem cells in Chapter 3. Figure 4.10 displays a 

similar trend to that recorded previously whereby Otx2 mRNA expression drops 

rapidly upon retinoic acid induction in the first five days o f culture. However at one 

and three days in the presence of W n t l and retinoic acid there is a small rescue effect 

that appears to be due to W n t l . By the fifth day though expression is almost zero in 

both treatment regimes. The one way anova comparing the two 1 day test conditions 

to each other as well as the embryonal carcinoma cell starting material, demonstrates 

that there is a statistically significant drop in Otx2 mRNA expression in the 

embryonal carcinoma cells after 1 day o f treatment with retinoic acid alone and with 

retinoic acid in combination with W n t l . However there is no statistically significant 

difference between the retinoic acid only and retinoic acid plus W n t l condition at 1 

day. Therefore it appears that although the trend at 1 and 3 days indicates Wnt l may 

be able to cause a rescue of Otx2 expression, this effect is small in magnitude, is not 

statistically significant (at 1 day) and given the almost total absence o f expression at 5 

days in either test sample set, short lived. That is not to say that this effect although 

small and insignificant may not be able to cause a real difference. A minor change as 

is observed may be sufficient to instigate more considerable developments 

downstream of it. As a result the mRNA expression patterns o f L m x l a , M s x l , Ngn2 

and Nkx 6-1 were assessed using real time PGR based on the scheme in Figure 4.2 

showing the possible pathway that Otx2 may influence. 

First o f all L m x l a appears to be up regulated in its expression by increasing the 

duration o f retinoic acid exposure up to 3 weeks (Figure 4.11). O f perhaps greater 

interest is the difference in expression between the retinoic acid only and retinoic acid 

plus W n t l samples at 7 days. Although the one way anova output indicates there is 

no statistically significant difference between these two conditions or between them 

and the embryonal carcinoma cell starting material, the trend o f W n t l augmenting 

expression o f L m x l a in the presence o f retinoic acid is comparable to that seen for 

Frizzled 8 in Figure 4.6 and that seen for beta-catenin (Figure 4.7) as well . The lack 
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of a statistically significant induction at 7 days is consistent with the findings o f 

analyses carried out in collaboration with Dr. V . Lakics mentioned in Chapter 3, 

whereby expression o f dopaminergic markers is generally low in this early time 

period. This lower level o f expression may contribute to the lack o f a statistically 

significant difference as the error is often greater when making small measurements, 

thus making it harder to observe an effect. The trend though of W n t l in combination 

with retinoic acid having a favourable effect at 7 days is reinforced. Figure 4.12 

indicates that for M s x l there is little difference between the retinoic acid only and 

retinoic acid plus W n t l conditions. Although as for Nur r l the retinoic acid plus W n t l 

samples show a slightly higher level of expression at 7 days than their retinoic acid 

only counterparts. The same almost identical trend is seen for Ngn2 expression in 

Figure 4.13 and similarly for Nkx 6-1 in Figure 4.14. For all three o f these markers 

the W n t l only condition shows a highly variable expression supporting the notion that 

it is not suitable for use as no control over the process o f differentiation is possible. 

These findings therefore suggest that the small amount o f Otx2 rescue by W n t l is not 

having a larger effect on the initial downstream targets its expression may influence. 

However at 7 days W n t l in conjunction with retinoic acid may cause small increases 

in expression o f these markers associated with a dopaminergic fate, or in the case of 

Nkx 6-1, a ventral midbrain phenotype. Also retinoic acid alone over the time course 

investigated tends to up regulate expression of all these markers with increasing 

duration o f exposure to i t . This is coherent wi th the observations in Chapter 3 for the 

other markers o f a dopaminergic phenotype studied there. Given the trend seen at 7 

days further analysis was carried out to assess the combined effects o f W n t l and 

retinoic acid on some o f these as well as additional factors in the Tera2.cl.SP12 

system. 



Figure 4.10: The effects of W n t l and R.A. on Otx2 m R N A expression 
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Figure 4.10: The relative expression of Otx2 mRNA in Tera2.cl.SP12 cells and their derivatives 
treated with lO^M retinoic acid only, or \0\iM retinoic acid plus 2ng/ml Wntl for 1, 3 and 5 
days. The one way anova output indicates that although there is no statistically significant 
difference between the two test conditions at 7 days, both of these samples do differ to a 
statistically significant level from the embryonal carcinoma stem cell starting material. In all 
experiments n=3 and error bars represent the standard deviation of the mean. 
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Figure 4.11: The effects of W n t l and R.A. on L m x l a m R N A expression 
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Figure 4.11: The relative expression of Lmxla mRNA in Tera2.cl.SP12 cells and their 
derivatives treated with 10|aM retinoic acid only, or lOfiM retinoic acid plus 2ng/ml Wntl for 
7, 14 and 21 days. The one way anova output indicates there is no statistically significant 
diff"erence between the two test conditions at 7 days and that these samples do not differ to a 
statistically significant level from the embryonal carcinoma stem cell starting material. In all 
experiments n=3 and error bars represent the standard deviation of the mean. 
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Figure 4.12: The effects of W n t l and R.A. on M s x l m R N A expression 
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Figure 4.12: The relative expression of Msxl mRNA in Tera2.cl.SP12 cells and their derivatives 
treated with lOuM retinoic acid only, 2ng/ml Wntl only, or lOjiM retinoic acid plus 2ng/ml Wntl 
for 1, 3, 5, 7, 14 and 21 days. In all experiments n=3, error bars represent the S.D. of the mean. 

Figure 4.13: The effects of W n t l and R.A. on Ngn2 m R N A expression 
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Figure 4.13: The relative expression of Ngn2 mRNA in Tera2.cl.SP12 cells and their derivatives 
treated with lOjuM retinoic acid only, 2ng/ml Wntl only, or lO^iM retinoic acid plus 2ng/ml Wntl 
for 1, 3, 5, 7, 14 and 21 days. In all experiments n=3, error bars represent the S.D. of the mean. 
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Figure 4.14: The effects of W n t l and R.A. on Nkx 6-1 m R N A expression 
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Figure 4.14: The relative expression of Nkx 6-1 mRNA in Tera2.cl.SP12 cells and their derivatives 
treated with lOfxM retinoic acid only, 2ng/ml Wntl only, or lOfiM retinoic acid plus 2ng/ml Wntl for 
1, 3, 5, 7, 14 and 21 days. In all experiments n=3, error bars represent the S.D. of the mean. 

Before any markers associated specifically with a dopaminergic phenotype were 

investigated, the expression o f beta I I I tubulin, a classical indicator o f the presence of 

neurons, was assayed (Figure 4.15). In the presence o f both retinoic acid and W n t l at 

7 days there was almost double the level o f mRNA present in comparison to the 

retinoic acid only condition. This difference was not statistically significant and 

neither test condition at this time showed any statistically relevant difference in 

relation to the embryonal carcinoma cell starting material. The trend though was as 

observed previously, supporting the notion that W n t l may exert an effect early in the 

process o f differentiation. Interestingly the expression seen in the embryonal 

carcinoma cells o f this marker is quite high and variable, perhaps indicating that 

Tera2.cl.SPI2 cells are primed for neural differentiation, or actually slightly more 

differentiated along a neural pathway than might be expected for a cell line that acts 

as a model for embryonic stem cells. As seen in Chapter 3, in the f low cytometry data 

for Beta I I I tubulin, there is a lul l in expression at 2 weeks in the retinoic acid only 
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samples before a subsequent rise as time progresses. This suggests that at both the 

mRNA and protein level there is a non linear regulation o f neuronal differentiation in 

this cell system, under the conditions tested. This may be due to the involvement o f 

different signalling pathways at different times during the process o f differentiation. 

Also it may be that retinoic acid provides the initial signal but that this causes the 

embryonal carcinoma cells to produce factors that subsequently continue to drive the 

cultures towards the acquisition of neural phenotypes. 

Beyond 7 days it is also noticeable that Wnt l appears to exert no effect on the mRNA 

expression levels o f beta I I I tubulin. This is indicative that in the Tera2.cl.SP12 

system Wnt l has an early effect on differentiation but up to 3 weeks of culture may 

not cause any subsequent effects. It may be however that beyond 3 weeks it can have 

an impact; this is a potential area for further work. 

When a panel o f dopaminergic markers had their expression patterns assessed, a very 

strong conserved trend was found. First o f all two components o f the biosynthetic 

machinery involved in the production o f dopamine were discovered to display almost 

identical tendencies in the conditions tested. Figure 4.16 demonstrates that for 

tyrosine hydroxylase in the presence o f retinoic acid alone, expression starts low and 

rises over time as observed in Chapter 3. However when W n t l is included with 

retinoic acid, after 7 days there is approximately double the mRNA expression o f this 

marker. Beyond this time point though, in the combined Wnt l plus refinoic acid 

condition up to 3 weeks there is a plateau in the levels o f mRNA for tyrosine 

hydroxylase. A close to identical trend is seen for dopa decarboxylase in Figure 4.17 

which is unsurprising given it is involved in the same pathway of dopamine 

biosynthesis; indeed it acts on the product o f the reaction catalysed by tyrosine 

hydroxylase. In both instances there is no statistically significant difference between 

the two test conditions at 7 days and neither o f them differs significantly f rom the 

starting material. However the trend is consistent with other data presented 

previously and reinforces the notion that W n t l may play an early role (at around 7 

days) in the differenfiation process o f Tera2.cl.SP12 cells. The plateau effect seen for 

these two markers helps support this. 
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Figure 4.15: The effects of W n t l and R.A. on Beta I I I Tubulin mRNA expression 
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Figure 4.15: The relative expression of beta III tubulin mRNA in Tera2.cl.SPI2 cells and 
their derivatives treated with lOjaM retinoic acid only, or IO|iM retinoic acid plus 2ng/ml 
Wntl for 7, 14 and 21 days. The one way anova output indicates there is no statistically 
significant difference between the two test conditions at 7 days and that these samples do 
not differ to a statistically significant level from the embryonal carcinoma stem cell starting 
material. In all experiments n=3 and error bars represent the standard deviation of the 
mean. 
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Figure 4.16: The effects of W n t l and R.A. on T H mRNA expression 
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Figure 4.16: The relative expression of tyrosine hydroxylase mRNA in Tera2.cl.SP12 cells 
and their derivatives treated with lO^iM retinoic acid only, or 10|iM retinoic acid plus 2ng/ml 
Wntl for 7, 14 and 21 days. The one way anova output indicates there is no statistically 
significant difference between the two test conditions at 7 days and that these samples do not 
differ to a statistically significant level from the embryonal carcinoma stem cell starting 
material. In all experiments n=3 and error bars represent the standard deviation of the mean. 
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Figure 4.17: The effects of Wnt l and R.A. on A A D C mRNA expression 
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Figure 4.17: The relative expression of dopa decarboxylase mRNA in Tera2.cl.SP12 cells 
and their derivatives treated with lO^M retinoic acid only, or lO^M retinoic acid plus 
2ng/ml Wntl for 7, 14 and 21 days. The one way anova output indicates there is no 
statistically significant difference between the two test conditions at 7 days and that these 
samples do not differ to a statistically significant level from the embryonal carcinoma stem 
cell starting material. In all experiments n=3 and error bars represent the standard deviation 
of the mean. 
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Three other indicators o f a dopaminergic phenotype that are involved in a more 

physical aspect o f the dopaminergic system in that they help to detect and respond to 

dopamine in the case o f dopamine receptors 1 and 2, and transport it in the case of the 

dopamine transporter, also show a comparable expression profile to that seen for 

tyrosine hydroxylase and dopa decarboxylase. First of all, as can be seen in Figure 

4.18, dopamine transporter mRNA is up regulated over time fol lowing retinoic acid 

treatment o f Tera2.cl.SP12 cultures. When Wnt l is added in combination with 

retinoic acid there is a higher expression at 7 days but then a plateau at subsequent 

time points up to 3 weeks. Figure 4.19 depicts a similar trend for dopamine receptor 

1, although the expression of this marker appeared weaker, as shown by higher cycle 

threshold values when carrying out the real time PCR. A higher value indicates it has 

taken more cycles for detection to occur and therefore results tend to be more 

erroneous, in this case though the trends still hold true to those for other markers. 

Finally in Figure 4.20 dopamine receptor 2 displays an analogous profile. Although 

here expression in the embryonal carcinoma cells is highly variable and on average 

slightly greater than in the 7 day samples treated with only retinoic acid. The trend 

though between the 7 day retinoic acid only and retinoic acid plus W n t l conditions is 

congruous with that for the other markers tested. Once again for all three o f these 

phenotypic indicators there is no statistically significant difference between the two 7 

day conditions and likewise no relevant statistical distinction between either o f these 

two test samples and the embryonal carcinoma cell starting material. However given 

the trend at 7 days and plateau effect at subsequent time points are repeatedly able to 

be observed, there is a strong case to suggest that W n t l in the presence o f retinoic 

acid exerts an effect on the early stages o f the dopaminergic differentiation of 

Tera2.cl.SP12 embryonal carcinoma cell cultures. 
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Figure 4.18: The effects of W n t l and R.A. on D A T mRNA expression 
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Figure 4.18: The relative expression of dopamine transporter mRNA in Tera2.cl.SP12 cells 
and their derivatives treated with 10|j,M retinoic acid only, or 10|iM retinoic acid plus 2ng/ml 
Wntl for 7, 14 and 21 days. The one way anova output indicates there is no statistically 
significant difference between the two test conditions at 7 days and that these samples do not 
differ to a statistically significant level from the embryonal carcinoma stem cell starting 
material. In all experiments n=3 and error bars represent the standard deviation of the mean. 
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Figure 4.19: The effects of W n t l and R.A. on D l mRNA expression 
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Figure 4.19: The relative expression of dopamine receptor 1 mRNA in Tera2.cl.SP12 cells and 
their derivatives treated with lOuM retinoic acid only, or 10|xlVI retinoic acid plus 2ng/ml Wntl 
for 7, 14 and 21 days. The one way anova output indicates there is no statistically significant 
difference between the two test conditions at 7 days and that these samples do not differ to a 
statistically significant level from the embryonal carcinoma stem cell starting material. In all 
experiments n=3 and error bars represent the standard deviation of the mean. 
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Figure 4.20: The relative expression of dopamine receptor 2 mRNA in Tera2.cl.SP12 cells and 
their derivatives treated with 10|xM retinoic acid only, or 10|aM retinoic acid plus 2ng/ml Wntl 
for 7, 14 and 21 days. The one way anova output indicates there is no statistically significant 
diflFerence between the two test conditions at 7 days and that these samples do not differ to a 
statistically significant level from the embryonal carcinoma stem cell starting material. In all 
experiments n=3 and error bars represent the standard deviation of the mean. 
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Given that W n t l in combination with retinoic acid is seemingly able to influence the 

expression o f the m R N A for neuronal and dopaminergic markers during the process 

of differentiation o f Tera2.cl.SP12 cells under the conditions tested. The next logical 

step appeared to be to investigate i f there were any detectable changes at the 

morphological and protein level. Immunocytochemistry was employed to assess 

expression o f the neuronal marker Beta I I I tubulin at 7 days, as f rom experience 

staining for this cytoskeletal protein was more readily observable than for cytosolic 

dopaminergic marker proteins such as tyrosine hydroxylase. Figure 4.21 shows that 

in the W n t l only condition, cultures are overgrown, messy and display no true 

staining, just patchy blotches where cells are over confluent and physical entrapment 

of the antibodies used probably occurs, hence the fuzzy detection that is seen. The 

retinoic acid only condition displays only very faint staining. However the combined 

Wnt l plus retinoic acid condition demonstrates an enhanced level o f detection relative 

to the retinoic acid only samples. At this stage though there are few neuritic 

processes, therefore staining was carried out after 2 weeks. Figure 4.22 shows that at 

this stage there is some process formation and some positive staining in the retinoic 

acid only and retinoic acid plus W n t l samples. Interestingly as for the mRNA data 

there appears to be little detectable difference in Beta I I I tubulin expression at this 

time. This could be due to the seemingly general lull in expression o f this neuronal 

marker at this particular time point. However when staining is carried out after 3 

weeks, there is again an observable difference. Figures 4.23, 4.24 and 4.25 display 

nestin, Beta I I I tubulin and tyrosine hydroxylase staining at this stage of 

differentiation in the W n t l only, retinoic acid only and retinoic acid plus W n t l 

conditions. The W n t l only condition (Figure 4.23) shows no true staining for Beta I I I 

tubulin or tyrosine hydroxylase, there is some nestin staining as might be predicted 

when using embryonal carcinoma cells. The phase image and Hoescht control panels 

all indicate that the cultures are very confluent to overgrown. This in essence 

confirms earlier findings that the Wnt l only condition is not viable for use. Figure 

4.24 shows that when using only retinoic acid after 3 weeks, there is still expression 

of nestin as expected, tyrosine hydroxylase is detectable but being a cytosolic protein 

its presence is more dif f icul t to define. There is though clear Beta I I I tubulin 

expression with neuronal like cell bodies and neuritic processes being clearly 

observable. Figure 4.25 however shows there are clearly more Beta I I I tubulin 

positive cells present in the combined retinoic acid plus Wnt l treated cultures at 3 
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weeks. There are neuronal cell body type structures with clear processes emanating 

from them. Tyrosine hydroxylase expression is faint but detectable once again and it 

is hard to tell i f there is any difference between conditions for this dopaminergic 

marker. The non specific binding o f the antibody observed in Chapter 3 also makes 

the tyrosine hydroxylase data questionable as it might be that as in the highly 

confluent/overgrown W n t l only condition there is a degree of entrapment o f the 

antibody or non specific binding of it. Hence the tyrosine hydroxylase staining as it is 

not clear and not associated with a morphology one might expect o f a potential neuron 

in culture, is viewed as being negative or at least too inconclusive on which to base 

any conclusions. Nestin is still expressed indicating that there are still some relatively 

immature cells in these cultures. The presence o f nestin may indicate W n t l is having 

less o f an effect on the maturation o f Tera2.cl.SP12 cells. 
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Figure 4.21; Beta I I I tubu l in staining of Tera2.cl.SP12 cultures treated w i t h R.A. . W n t l or a combination of both reagents f o r 7 days 
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Figure 4.22; Beta I I I tubu l in staining of Tera2.cl.SP12 cultures treated w i t h R.A.. W n t l or a combination o f both reagents f o r 14 days 
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Figure 4.22: A, B, and C show Beta HI tubulin staining using a FITC labelled secondary antibody in the three different treatment conditions described 
individually above or below each image. E, F, and G display phase images of the cultures. D shows a FITC labelled secondary antibody control for a 
R.A. only treated culture. H represents Hoescht staining of the corresponding R.A. treated culture to confirm the presence of cells by making their nuclei 
detectable. Wntl only and R.A. + Wntl cultures were also negative in their secondary only control samples and did have cells present confirmed by 
Hoescht staining for cell nuclei. These images were not included. In all experiments n=3. Scale bars represent 100|im in all cases. As in Figure 4.21 
not all cells are antigen positive, these images are included solely to bridge the time lag between one and three weeks. They also serve to show that in the 
retinoic acid only and retinoic acid plus Wntl conditions that there are signs of morphological development of the cultures with Beta III tubulin positive 
cells being detected that appear to be extending possible neuritic type processes. As mentioned previously the Wntl only condition is sub optimal and 
any faint detection is most probably due to non specific binding or physical entrapment of the antibody used. 



Figure 4.23: Immunostaining of Tera2.cl.SP12 cultures treated w i t h W n t l f o r 21 days 
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Figure 4.23: Nestin, Beta III tubulin and tyrosine hydroxylase immunostaining using a FITC labelled secondary antibody, of Tera2.cl.SP12 cultures 
treated with Wntl for 3 weeks. The lOx phase image shows how the cultures are very confluent to overgrown. The mouse secondary FITC labelled 
antibody only control is applicable for the nestin and tyrosine hydroxylase primary antibodies, the rabbit equivalent is for the Beta III tubulin antibody. 
The corresponding Hoescht control images confirm the presence of cells by staining their nuclei. Scale bars represent 100|im in all cases. In all 
experiments n=3. The Wntl only condition shows clear nestin staining suggesting the cultures are relatively immature which would be expected given 
the overgrown nature of them. This is reflected in the cell count data that follow by a high number of total cells relative to the two conditions that 
involve the use of retinoic acid. The TH and Beta III tubulin staining is not true staining and as discussed elsewhere for this sub optimal condition, 
cannot be viewed as positive. It is more likely a product of physical entrapment of the antibody by the overgrown cultures or a result of non specific 
binding of the antibodies used. 



Figure 4.24: Immunostaining of Tera2.ci.SP12 cultures treated w i t h retinoic acid f o r 21 days 
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Figure 4.24: Nestin, Beta III tubulin and tyrosine hydroxylase immunostaining using a FITC labelled secondary antibody, of Tera2.cl.SP12 cultures 
treated with retinoic acid for 3 weeks. The lOx phase image shows that the cultures display a mix of cell morphologies. The mouse secondary FITC 
labelled antibody only control is applicable for the nestin and tyrosine hydroxylase primary antibodies, the rabbit equivalent is for the Beta III tubulin 
antibody. The corresponding Hoescht control images confirm the presence of cells by staining their nuclei. Scale bars represent lOOjim in all cases. 
In all experiments n=3. Appendix D supports this data and that in Figure 4.25, it shows merged images indicating the Beta II I tubulin positive cells 
against a background of the total number of cells detected by Hoescht staining of cell nuclei. These images were used to produce the total cell 
number and Beta II I tubulin positive cell counts in the data that follow (Figures 4.28 and 4.29). Although there are a number of Beta II I tubulin 
positive cells in the image in this figure, clearly from Appendix D and the cell count data it is apparent not all cells are positive for the antigen of 
interest. Nestin expression was detectable but this staining was not carried out for quantifiable purposes and is merely an indicator that the cultures 
still possess some relatively immature cells after this period of differentiation. In further work sorting out of such cells may be desirable. The TH 
staining is diffuse relatively hard to detect and not associated with cells of any kind of morphology that might be expected of a potential neuritic cell 
in culture. Given the possible non specific binding of this antibody observed in Chapter 3 this TH staining is highly inconclusive. 



Figure 4.25: Immunostaining of Tera2.cl.SP12 cultures treated w i t h W n t l plus retinoic acid f o r 21 days 
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Figure 4.25: Nestin, Beta III tubulin and tyrosine hydroxylase immunostaining using a FITC labelled secondary antibody, of Tera2.cl.SP12 cultures treated with Wntl 
plus retinoic acid for 3 weeks. The lOx phase image shows that the cultures display a mix of cell morphologies; however the Tujl staining shows enhanced levels of this 
marker being present relative to retinoic acid only samples. The mouse secondary FITC labelled antibody only control is applicable for the nestin and tyrosine 
hydroxylase primary antibodies, the rabbit equivalent is for the Beta III tubulin antibody. The corresponding Hoescht control images confirm the presence of cells by 
staining their nuclei. Scale bars represent lOOjim in all cases. In all experiments n=3. Appendix D supports this data and that in Figure 4.24, it shows merged images 
indicating the Beta III tubulin positive cells against a background of the total number of cells detected by Hoescht staining of cell nuclei. These images were used to 
produce the total cell number and Beta III tubulin positive cell counts in the data that follow (Figures 4.28 and 4.29). Although there are a number of Beta III tubulin 
positive cells in the image in this figure, clearly trom Appendix D and the cell count data it is apparent not all cells are positive for the antigen of interest. Nestin 
expression was detectable but this staining was not carried out for quantifiable purposes and is merely an indicator that the cultures still possess some relatively 
immature cells after this period of differentiation in this experimental condition. In ftirther work sorting out of such cells may be desirable. The TH staining is diffuse 
relatively hard to detect and not associated with cells of any kind of morphology that might be expected of a potential neuritic cell in culture. Given the possible non 
specific binding of this antibody observed in Chapter 3 this TH staining is highly inconclusive. 
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Flow cytometry was use to try and assess i f there were any differences in the 

expression o f tyrosine hydroxylase and nestin between the test conditions. Figure 

4.26 shows that for tyrosine hydroxylase given the variability in the results there is 

essentially no real difference in the expression o f it between the viable for use retinoic 

acid only and refinoic acid plus W n t l conditions at 7, 14 and 21 days. Interestingly 

though the greatest level o f expression is at 7 days perhaps supporting the notion that 

at this time point there is an effect. However the retinoic acid only and retinoic acid 

plus W n t l samples at this point show little variation and the results are generally 

highly variable so no real conclusion can be made based on the flow cytometry data, 

especially given the possible non specific binding o f the antibody discussed 

previously. Figure 4.27 shows that nestin levels initially rise from 7 to 14 days and 

then fal l o f f by 3 weeks. Given the deviation in the sample readings there appears to 

be little difference between the retinoic acid only and retinoic acid plus Wnt l 

conditions. The embryonal carcinoma cells express nestin at lower levels on average 

(68.44 ± 5.96 (S.E.M.) % positive cells, and 79.58 ± 8.24 (S.E.M.) mean fluorescence 

intensity) than their retinoic acid and retinoic acid plus W n t l treated counterparts, 

which given the small differences between these samples indicates that as might be 

predicted it is mainly retinoic acid that is responsible for the differential regulation of 

nestin expression observed. 



163 

Figure 4.26: T H protein expression in EC cells treated w i t h W n t l and R.A. 
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Figure 4.26A: The number of tyrosine hydroxylase antigen positive cells in Tera2.cl.SP12 cultures treated 
with lOuM retinoic acid only, 2ng/ml Wntl only, or a combination of both reagents after 7, 14 and 21 days. 
Error bars represent the S.D. of the mean. B: The intensity of tyrosine hydroxylase expression in the same 
culture conditions outlined above. Error bars represent the standard error of the mean. In all experiments n=3. 
The data show no real difference in TH expression, this may be due to no such difference existing, or as for 
the TH immunostaining shown previously it may be that the antibody is potentially binding in a non specific 
manner as discussed in Chapter 3 and as a result this is affecting the experimental output. These results 
though are far too inconclusive to make any kind of conclusions from. 
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Figure 4.27: Nestin protein expression in EC cells treated w i t h W n t l and R.A. 
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Figure 4.27A: The number of nestin antigen positive cells in Tera2.cl.SP12 cultures treated 
with lOpM retinoic acid only, 2ng/ml Wntl only, or a combination of both reagents after 7, 
14 and 21 days. Error bars represent the S.D. of the mean. B: The intensity of nestin 
expression in the same culture conditions outlined above. Error bars represent the standard 
error of the mean. In all experiments n=3. 
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In the light o f the variation seen in the f low cytometry data and the obvious disparity 
between retinoic acid only and retinoic acid plus W n t l treated cultures at 3 weeks in 
terms o f their expression o f Beta I I I tubulin, manual counts o f cell number and Beta 
I I I tubulin positive cell number were performed. 5 fields o f view for 3 biologically 
independent samples were counted using Image J. Hoescht stained nuclei were used 
as a measure to obtain total cell number, corresponding Beta I I I tubulin stained cells 
were counted to give a number o f cells positive for this marker. Appendix D shows 
merged images o f Beta I I I tubulin positive cells on a background o f Hoescht stained 
nuclei to exemplify visually the nature o f the counts. Figure 4.28 displays clearly that 
more cells were present in the W n t l only cultures, but that there was no significant 
difference between retinoic acid only and retinoic acid plus W n t l samples. Both of 
these conditions though differed to a statistically significant level from their W n t l 
only counterparts. The W n t l only condition was excluded f rom further statistical 
analysis as this condition by all the techniques used appeared unsuitable for use. 
Figure 4.29 shows both in terms of the average number o f Beta I I I tubulin positive 
cells and percentage o f Beta I I I tubulin positive cells per field o f view that there is a 
statistically significant difference between the retinoic acid only and retinoic acid plus 
W n t l samples. The retinoic acid plus W n t l condition displays approximately double 
the number and percentage o f Beta I I I tubulin positive cells in relation to its retinoic 
acid only counterpart. This is a promising result as it offers the possibility o f 
producing more potentially neuronal (Beta I I I tubulin positive), less phenotypically 
mixed cultures f rom the Tera2.cl.SP12 cell line. 
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Figure 4.28: Cell counts in Tera2.cl.SP12 cultures treated with R.A. , Wnt l or 

both reagents for 3 weeks 
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Figure 4.28: The mean number of cells per field of view at x20 magnification quantified by 
counfing Hoescht stained nuclei in samples of Tera2.cl.SP12 cells treated with retinoic acid, Wntl 
or a combination of both reagents. 5 fields of view for 3 biological repeats were counted to give a 
mean value. The one way anova output indicates there is no statistically significant difference in 
cell numbers between retinoic acid only and Wntl plus retinoic acid cultures. However both of 
these two conditions display a clear statistically significant difference from their Wntl only 
counterparts. 
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Figure 4.29: The number and % of Beta I I I tubulin positive cells in 

Tera2.cl.SP12 cultures treated with R.A. , Wnt l or both reagents for 3 weeks 
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Figure 4.29: The mean number of Beta 111 tubulin positive cells (upper graph) and mean 
percentage of Beta 111 tubulin positive cells (lower graph) per field of view at x20 magnification, 
quantified by counting Beta 111 tubulin positive stained cells to get a mean number of cells 
positive for this marker and by counting Hoescht stained nuclei (a percentage was then taken by 
dividing the number of antigen positive cells by the number of cells) in Tera2.cl.SP12 cultures 
treated with retinoic acid, Wntl or a combination of both reagents. 5 fields of view for 3 
biological repeats were counted to give a mean value. Student's T-test was used to assess if 
there was a statistically significant difference between the viable for use retinoic acid only and 
Wntl plus retinoic acid conditions. In terms of both number and percentage of Beta III tubulin 
positive cells there was a statistically significant difference (Sig. < 0.05) found, indicating that 
the presence of Wntl causes a statistically relevant approximately 1.5-2 fold increase in the 
number and percentage of Beta 111 tubulin positive cells. 
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4.4 Discussion 

The initial objective in this study was to elucidate i f the exogenously applied 

commercially available human W n t l was able to influence the dopaminergic 

differentiation o f the Tera2.cl.SP12 cell line, either alone or in concert with retinoic 

acid. Early indications were that retinoic acid was required and the entire range o f 

techniques were all consistent in supporting this idea as the W n t l only condition 

appeared to be totally unsuitable for use at the concentration tested. Further work 

could be carried out to test the effects o f varying the dose o f this molecule to see i f it 

could alone exert an effect on this cell line under different conditions. This though is 

possibly unlikely as retinoic acid is used in the vast majority o f work using embryonal 

carcinoma cells. Perhaps therefore it would be more worthwhile to study the potential 

of different concentrations o f W n t l in the presence o f this molecule or after a pre-

treatment with it. 

To try and build on the findings in Chapter 3 where retinoic acid caused a peak in 

Nur r l m R N A expression after 1 day in an analogous manner to that observed for 

Nurr l protein in the Ntera2 embryonal carcinoma cell line (Misiuta et al., 2006) and 

given that Castelo Branco et al., 2003 had demonstrated W n t l could have a positive 

effect on N u r r l positive precursors in rat mesencephalic cultures, this key 

dopaminergic transcription factor was investigated. W n t l appeared to have no 

significant effect on N u r r l expression in Tera2.cl.SP12 cells treated with Wnt l and 

retinoic acid and there was no augmentation o f the peak in expression at 1 day when 

both reagents were used. Therefore it appears that W n t l does not directly impact on 

Nur r l expression in Tera2.cl.SP12 cultures. However Prakash et al., 2006 were able 

to demonstrate that W n t l can maintain Otx2 expression and in turn repress Nkx2-2 

expression, helping to promote acquisifion of a dopaminergic phenotype. I f Wnt l 

could rescue the down regulation o f Otx2 caused by retinoic acid seen in Chapter 3 

then potentially via a route independent of N u r r l , up regulation o f dopaminergic 

markers could be achieved. Otx2 caused a minimal amount o f rescue but it appears in 

the embryonal carcinoma cell system that retinoic acid tends to exert the greatest 

influence over Otx2 m R N A expression. In collaboration Dr. V . Lakics tested primers 

for Nkx2-2 that worked on cDNA samples f rom human brain reference RNA 
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(Ambion) in real time PCR analyses, contrastingly in the W n t l , refinoic acid and 
combined Wnt l plus retinoic acid treated samples it was not possible to detect 
expression o f it. Similar analyses were carried out independently by myself and 
yielded no result. Therefore either Nkx2-2 mRNA is not expressed in Tera2.cl.SP12 
cells and their derivatives, or it is not detectable, this may be due to the cancerous 
aberrant nature o f this cell line which may mean that there is a disruption or absence 
of the Nkx2-2 gene. Whatever the scenario the observation that Nkx2-2 is hard or not 
possible to detect may mean that the minimal level o f rescue o f Otx2 is o f lesser 
importance as this system may not favour acquisition o f other non dopaminergic fates 
i f it doesn't possess the molecular machinery to produce them. As a result although 
the Otx2 and N u r r l observations may not display strongly positive effects as might be 
hypothesised, they do not necessarily mean the Tera2.cl.SP12 cell line is an unsuitable 
model as there may be other routes to achieve a dopaminergic cell fate f rom cultures 
o f it. 

In addition Ono et al., 2007 had shown that Otx2 may have an inductive effect on 

Lmxla . It is highly debateable i f the small increases in Otx2 mRNA expression in 

Wnt l plus retinoic acid treated cultures are able to impart such an effect on L m x l a 

levels in the Tera2.cl.SP12 system; although further analysis o f Otx2 protein levels 

would be beneficial in revealing more about this possible process. However L m x l a 

mRNA expression is approximately double in the W n t l plus retinoic acid samples 

relative to their retinoic acid only counterparts at 7 days. So perhaps the minimal 

difference in Otx2 levels observed in the presence of W n t l and retinoic acid at 1 and 

3 days is enough to influence the downstream pathway. Even i f this is not the case a 

range o f dopaminergic markers display an almost identical trend to L m x l a in the 

regulation o f their mRNA expression as does the neuronal marker Beta I I I tubulin. At 

a conceptual level this is in keeping with the in vivo work o f Prakash et al., 2006, 

where W n t l possesses two main effects, the first o f which is an early one where it is 

implicated in the formation o f the mesencephalic dopaminergic progenitor domain. It 

is also congruous wi th the in vitro work o f Castelo Branco et al., 2003, where W n t l 

again plays two possible roles, but the one o f greater magnitude is an early ability to 

promote neurogenesis by a mechanism involving proliferation o f N u r r l positive 

precursors. Although none o f the differences are statistically significant the trend is 

so strongly apparent and reproducible across a panel o f markers that there does appear 
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to be via a mechanism that may or may not involve Otx2 an early dopaminergic 
differentiation enhancing effect at 7 days attributable to the presence of Wnt l in 
cultures o f Tera2.cl.SP12 cells treated with this glycoprotein and retinoic acid. 

This early action o f W n t l in the Tera2.cl.SP12 system is highly desirable not only in 

the context that it may aid in the design o f a temporally efficient assay system using 

this cell line but also in the experimental rationale for ftirther work that may include 

the use o f Sonic hedgehog and Fibroblast growth factor 8. It is known f rom the work 

of Yan et al., 2005 that in human embryonic stem cells prior to any or before a 

threshold o f Soxl expression that Sonic hedgehog and Fibroblast growth factor 8 

application is capable o f promoting the formation o f dopaminergic neurons. I t has 

been suggested that W n t l may create a permissive environment for these inductive 

cues to act (Burbach & Smidt, 2006). After 7 days o f culture Soxl m R N A levels are 

still relatively low in the Tera2.cl.SP12 cell line fol lowing treatment wi th retinoic acid 

alone or in concert wi th W n t l (Figure 4.30). Therefore the positive effects o f W n t l 

after 7 days may be able to be combined with the potentially optimal use o f Sonic 

hedgehog and Fibroblast growth factor 8, with a view to ideally producing an 

enriched population o f dopaminergic neurons, and in turn giving a coherent 

progression to this work. 
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Figure 4.30: The effects of W n t l and R.A. on Soxl mRNA expression 
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Figure 4.30: The relative expression of Soxl mRNA in Tera2.cl.SPI2 cells and their derivatives 
treated with \0\iM retinoic acid only, or 10(iM retinoic acid plus 2ng/ml Wntl for 7, 14 and 21 
days. The one way anova output indicates there is no statistically significant difference between the 
two test conditions at 7 days and that these samples do not differ to a statistically significant level 
from the embryonal carcinoma stem cell starting material. In all experiments n=3 and error bars 
represent the standard deviation of the mean. Due to the relatively low levels of expression of Soxl 
in the samples at 7 days, it may be an optimal temporal window/opportunity to integrate the use of 
Sonic hedgehog and Fibroblast growth factor 8 into the experimental design to try and facilitate the 
production of an enhanced population of dopaminergic neurons. 
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Before contemplating areas for additional study further, there are a couple of 

hypotheses outlined in the introductory section 4.1 to consider. The first o f these is 

can Wnt l enhance the yield o f Beta I I I tubulin positive cells f rom Tera2.cl.SP12 

cultures. In the presence o f retinoic acid at 7 days W n t l appears to be able to up 

regulate the mRNA levels o f the neuronal marker Beta I I I tubulin approximately 2 

fold. Likewise at this time immunostaining for the same marker is much stronger in 

cultures treated with retinoic acid and Wnt l in comparison to those that have been 

induced with retinoic acid alone. The difference between the two conditions is less 

apparent at 2 weeks both in terms o f the immunostaining results and mRNA levels 

observed. It appears f rom this and earlier flow cytometry based work in Chapter 3 

that at this developmental stage there is an interlude in the expression o f this neuronal 

marker, possibly whilst other cell types predominate in the phenotypically mixed cell 

cultures. A t 3 weeks at the mRNA level there again appears to be little difference in 

Beta I I I tubulin expression. However the immunostaining and cell counts reveal a 

different story as there is clearly a more intense expression o f Beta I I I tubulin and 

almost double the number o f cells express this neuronal marker in the retinoic acid 

plus Wnt l samples relative to their retinoic acid only counterparts. This 

approximately 1.5-2 fold increase is in line with that observed in rat mesencephalic 

precursor cells (Castelo Branco et al., 2003) which may suggest W n t l has a conserved 

effect between species. In the work o f Castelo Branco et al., 2003 there was no 

difference in tyrosine hydroxylase expression within the neuronal population, the flow 

cytometry data may possibly support the notion that the same is true in the 

Tera2.cl.SP12 cell line, but the results are too variable to make any firm conclusion. 

The immunostaining for tyrosine hydroxylase in both conditions appears to the naked 

eye to be comparable but is too faint to accurately quantify. Therefore the same effect 

may be present in the Tera2.cl.SP12 cells but this would require further repeats to 

validate this possible finding. 

One interesting quesfion raised by the immunocytochemistry data is; does W n t l in the 

presence of retinoic acid have two separate effects on the dopaminergic differentiation 

of Tera2.cl.SP12 cells? An early one at 7 days and a later activity at 3 weeks, in a 

fashion resembling the dual effects observed in Prakash et al., 2006. Alternatively 

does it have a single main early effect with a minor role later on that is harder to 

detect in a similar way to Castelo Branco et al., 2003, or does it exert an early effect 
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the features o f which are only observed at later stages o f the differentiation process? 

This final option is probably the most likely as the mRNA data indicate a difference 

only at 7 days. This is also seen via the more intense immunostaining. However at 7 

days the Beta I I I tubulin positive staining is not seen in such clear neuronal body like 

and neuritic process type structures as the cultures earlier in the course o f 

differentiation are not as morphologically developed. By 3 weeks the cultures have 

matured in morphology neuron like cells are able to be observed so the effect seen at 

7 days is more apparent and quantifiable. It is possible there may be a lag time 

between the recognition o f differences at the mRNA level being seen at the 

morphological and protein levels. However i t may be that there is actually a 

difference at the protein level demonstrated by the more intense staining in the Wnt l 

plus retinoic acid samples at 7 days, with a lag period to the morphological 

differences becoming more clearly observable at 21 days when the cultures are further 

developed. In the light o f the trend at 7 days in the W n t l plus retinoic acid condition 

relative to retinoic acid only treated samples and the plateau effect observed for other 

markers, on balance it seems more likely that Wnt l exerts its influence early but that 

morphologically this difference is apparent at later stages. 

The final question to try and address given that W n t l appears able to direct the 

dopaminergic differentiation o f Tera2.cl.SP12 cells is does W n t l act via a canonical 

pathway as expected? It appears possible that it does so, as the receptor for it is 

present and up regulated at the point when it exerts its maximum effect indicating 

W n t l in the presence o f retinoic acid in this model system may be capable o f self 

regulation o f its action, mediated via an up regulation o f its receptor. It would be o f 

interest to try and confirm this at the protein level. Also beta-catenin mRNA is more 

prevalent at 7 days in the combined Wnt l plus retinoic acid condition in comparison 

to the retinoic acid only samples. This may correlate wi th more stable beta-catenin 

protein being present, in turn facilitating the effects o f W n t l , although this too would 

need to be confirmed by protein based analysis. However it appears that W n t l is 

acting via a canonical mechanism, given that a part o f this pathway glycogen synthase 

kinase - 3(3 could be a key junction at which signals f rom different pathways that 

could be activated by Wnts or Sonic hedgehog intersect (Castelo Branco & Arenas, 

2006). This finding provides a further basis for study into the effects o f Sonic 

hedgehog and Fibroblast growth factor 8 along with W n t l in the Tera2.cl.SP12 
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model. Therefore along with the other possible reasons discussed earlier there is a 

strong rationale for an experimental strategy devised to facilitate investigations into 

this area. Chapter 5 deals with the construction of this approach to try and elucidate a 

greater understanding o f the potential for dopaminergic differentiation o f the 

Tera2.cl.SP12 ceil line. 
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Chapter 5 

The effects of suspension 
culture. Sonic hedgehog. 

Fibroblast growth factor 8 
and ascorbic acid, on the 

acquisition of a 
dopaminergic phenotype 

by human embryonal 
carcinoma stem cells 
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5.1 Introduction 

In the previous Chapter W n t l in combination with retinoic acid was shown to have 

positive effects on the ability o f Tera2.cl.SP12 embryonal carcinoma stem cells to 

acquire a neuronal and possibly more specifically a dopaminergic fate. Given the 

concept that W n t l may create a permissive environment for inductive factors such as 

Sonic hedgehog and Fibroblast growth factor 8 to act (Burbach & Smidt, 2006) the 

primary purpose o f the experiments reported in this Chapter was to try and utilise 

these molecules in an optimal fashion to potentially yield an enriched population of 

dopaminergic neurons. 

Sonic hedgehog and Fibroblast growth factor 8 have been used widely in attempts to 

try and produce dopaminergic neurons f rom a variety o f stem cells. In the human 

Ntera2 embryonal carcinoma cell line there is conflicting evidence as to whether these 

molecules can exert an effect on the dopaminergic differentiation potential o f this 

model system. StuU & lacovitti, 2001, were only able to detect around 2% of cells 

treated with Sonic hedgehog/Fibroblast growth factor 8 as being tyrosine hydroxylase 

immunopositive. However these Ntera2 cells had already received a period o f 

retinoic acid pre treatment and were possibly not susceptible to the effects o f Sonic 

hedgehog/Fibroblast growth factor 8 application as they may have already become too 

differentiated. In work using human embryonic stem cells Yan et al., 2005 

demonstrated that the early application of these two inductive molecules prior to or at 

a threshold o f Soxl expression was necessary to obtain a population o f neurons 

displaying characteristics o f a midbrain dopaminergic phenotype. Therefore it may be 

that the Ntera2 cells were not incapable o f responding to Sonic hedgehog and 

Fibroblast growth factor 8 but that they were unable to do so due to the period of 

refinoic acid treatment they had previously received. The concept o f there being an 

optimal early temporal window for use of these molecules presented by Yan et al., 

2005 is in support o f this idea. Further work in the Ntera2 cell system carried out in 

the absence of retinoic acid indicated that this system was able to show a positive 

dopaminergic differentiation response when treated with these two molecules in 

concert (Ravindran & Rao, 2006). This work was based on the sequential protocol o f 

Lee et al., 2000, who used mouse embryonic stem cells. Both o f these studies made 
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use of the formation o f aggregates in suspension, termed embryoid bodies in the 

embryonic stem cell work, as part o f the differentiation protocol. 

In a more recent paper using human embryonic stem cells the concept o f growing 

cells as aggregates in suspension was extended to produce structures that resemble 

neurospheres termed spherical neural masses (Cho et al., 2008). When these were 

then treated with Sonic hedgehog and Fibroblast growth factor 8 for 10 days, with 

ascorbic acid being added as well for the final 6 days o f this 10 day period, a high 

percentage o f tyrosine hydroxylase positive cells were formed. Indeed 86% of the 

total number o f neurons were tyrosine hydroxylase positive in test cultures; given that 

W n t l was able to enhance the number o f Beta I I I tubulin positive cells produced from 

Tera2.cl.SP12 cells, i f its use could be linked to this differenfiation protocol, there was 

a possible opportunity not only to enhance the yield o f potential neurons but also the 

number o f them displaying markers o f a dopaminergic phenotype. In addiUon 

Tera2.cl.SP12 embryonal carcinoma stem cells have previously been shown to be able 

to produce neurosphere type structures rapidly when cultured in suspension in the 

presence of refinoic acid (Horrocks et al., 2003). Therefore this posed an interesting 

question, does growth o f Tera2.cl.SP12 cells in suspension in the presence of retinoic 

acid alone or in combination with Wnt l offer the possibility o f enhanced 

dopaminergic differentiation in comparison to adherent culture? In the light o f 

previous findings that Wnt l exerts its greatest effect at 7 days and given that 

neurosphere type structures can be formed in this time frame, this would appear to be 

a logical point at which to test this hypothesis. 

Although the direct approach o f culturing retinoic acid induced Tera2.cl.SP12 cells in 

different oxygen environments seemed to exert no effect on the dopaminergic 

differentiation capacity of such cultures at the oxygen tensions tested in Chapter 3. 

The use o f suspension culture may facilitate some effect i f any is possible due to 

oxygen, as cells at the periphery o f an aggregate are likely to experience a different 

set o f conditions to those in the core, wi th the strong possibility that cells in the centre 

w i l l receive a lower oxygen pressure (Gassmann et al., 1996). Whether or not there is 

an oxygen effect, the growth o f the Tera2.cl.SP12 cells as aggregates essentially 

creates a more complex 3D microenvironment. Where not only may cell - cell 

interactions play a role but also there may be a different regulation o f the extracellular 
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matrix, which itself may influence cell fate decisions, for example laminin in 

conjunction wi th basic Fibroblast growth factor and heparin may help induce the 

formation o f dopaminergic neurons f rom rat neural stem cells (Yu et al., 2007). In 

addition the possibly shorter distances between cells growing in an aggregate may 

facilitate the effects o f any soluble factors the cells under investigation may release, 

which could help drive the process o f differentiation. Therefore there are a number o f 

potentially favourable effects that could arise f rom growth o f the Tera2.cl.SP12 cells 

in suspension. There is even the prospect that W n t l may exert a greater effect than it 

does when used in conjunction with retinoic acid on adherent cultures. 

Once an assessment has been carried out to address the possibility of there being some 

differences between suspension and adherent culture of Tera2.cl.SP12 cells in the 

presence of retinoic acid alone or in combination with W n t l , the premier (most 

favourable in relation to potential for dopaminergic differentiation) condition i f there 

is one w i l l be taken forward to extend the investigations. At this point either the cells 

w i l l be grown in suspension or adherent cultures for 7 days with retinoic acid or 

retinoic acid plus W n t l being applied and then subsequently treated with Sonic 

hedgehog/Fibroblast growth factor 8 and retinoic acid for 4 days wi th ascorbic acid 

being added to this mix for the final 6 days (Figure 5.1) in a similar fashion to Cho et 

al., 2008 who omitted the retinoic acid. The choice to include retinoic acid is based 

on the previous findings in Chapter 4 where its use appeared necessary to drive the 

differentiation o f and give control over the highly proliferative Tera2.cl.SP12 cells. 

However given the work o f Stull & lacovitti, 2001 where retinoic acid treatment o f 

Ntera2 cultures prior to application o f Sonic hedgehog and Fibroblast growth factor 8 

possibly curtailed the effects o f these two molecules, an additional set o f experiments 

is to be included. In these investigations the most optimal (highly neuronal) condition 

w i l l be selected f rom the samples treated as per figure 5.1. This set o f samples w i l l be 

compared to a set o f cultures given an identical treatment for the first 7 days but after 

this time point the retinoic acid w i l l be omitted and the 10 day scheme as per Cho et 

al., 2008 w i l l be used to try and drive the dopaminergic differentiation process. The 

plus and minus retinoic acid condifions defined in Figure 5.2 w i l l then be analysed to 

determine i f this molecule has an inhibitory effect on dopaminergic differentiation in 

the context o f this experimental strategy. 
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In total the duration o f differentiation is no more than 17 days, sampling w i l l also 

occur at 1 Idays to try and build up some impression o f the changes in dopaminergic 

marker expression over time in the presence of the different inductive factors. This 

relatively short 17 day protocol though is designed with a view to downstream 

applications. I f the Tera2.cl.SP12 cell line is a viable tool that can be utilised to carry 

out basic pharmacological screens then the procedures by which dopaminergic 

neurons are produced f rom it need to be temporally efficient. The effects of W n t l at 7 

days, the ability o f the embryonal carcinoma stem cells to rapidly form neurospheres 

and the propensity o f them for neural differentiation may all combine to provide the 

required efficiency, especially i f they can be linked neatly into the 10 day 

differentiation protocol o f Cho et al., 2008. This work w i l l further address the 

question not only o f whether Tera2.cl.SP12 embryonal carcinoma stem cells possess 

the capacity for dopaminergic differentiation but also are they likely to be viable for 

any applied usage, or are they more suited to a role as a basic research tool? Other 

hypotheses may also be tested such as does Sonic hedgehog affect the signalling 

pathway outlined in Figure 4.2 as may be expected and does the initial presence of 

W n t l have any favourable effects in creating a permissive environment in which the 

inductive cues Sonic hedgehog and Fibroblast growth factor 8 can act to influence the 

dopaminergic differentiation o f the embryonal carcinoma stem cells? 
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5.2 Cell Culture Methods 

Suspension culture of E C cells with Retinoic acid and W n t l 

Cultures o f Tera2.cl.SP12 EC cells were grown to confluency, the media aspirated 

from them, before being washed with Ix PBS, prior to treatment for 5 minutes with 

0.25% (w/v) Trypsin/0.1% (w/v) EDTA (in HBSS) (Cambrex), to release the cells 

from the surface o f the culture flask. The Trypsin was then neutralized by addition of 

4ml o f D M E M F G and any cells remaining loosely bound washed o f f the surface o f 

the flask by pipetting the DMEMFG/Trypsin-EDTA mix against the side o f the flask 

where cell attachment occurs. A further wash with I x PBS was carried out to 

optimize the retrieval o f EC cells for use. The cell suspension was then transferred to 

a 15ml Falcon tube and spun in a centrifuge (Eppendorf 581 OR (swing bucket rotor 

A-4-62)) at SOOrpm, 4°C, for 2 minutes. The excess fluid was removed to leave a cell 

pellet. This was resuspended in D M E M F G and cell number was determined using a 

haemocytometer. Once the cell number was known the EC cells were seeded out at a 

density o f 2 x 10^ cells per 90mm bacterial culture dish. They were then exposed to 

either a final concentration o f l O j i M all trans retinoic acid (Sigma), or a final 

concentration o f 1 0 | J M all trans retinoic acid (Sigma) along with W n t l (Peprotech) at 

a final concentration o f 2ng/ml for 7 days. Media was changed every 1-2 days to 

prevent EC cells adhering to the surface o f the culture dish. A new culture dish was 

used for each individual culture every time the media was changed. To perform a 

media change the floating spheres o f EC cells and the media they were differentiating 

in were collected using a serological pipette; transferred to a 15 or 50ml Falcon tube 

prior to being spun down in a centrifuge for 2 minutes at 800 rpm at 4°C. The media 

was then aspirated and the cell pellet resuspended in 10ml o f fresh media. This was 

then pipetted into a fresh 90mm bacterial culture dish and a further 10ml of 

D M E M F G added. The culture was then treated with either retinoic acid alone or in 

combination with W n t l (as appropriate) to give exposure to the final concentrations 

outlined above. 
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Treatment of suspension cultures with Shh/FGF8/A.A. /R.A. 

After 7 days in suspension culture with retinoic acid or W n t l plus retinoic acid 

samples not harvested for analysis at this point were plated out in total into 6 well 

plates or at a 1 in 5 dilution (to account for relative well area) into 24 well plates. 

This was done by collecting the floating spheres o f EC cells and the media they were 

differentiating in using a serological pipette, transferring this mix to a 15 or 50ml 

Falcon tube prior to spinning it down in a centrifuge for 2 minutes at 800 rpm at 4°C. 

The media was then aspirated and the cell pellet resuspended with vigorous 

mechanical agitation (using a pipette to break up the clusters o f treated EC cells) in an 

appropriate volume for the vessel the cells were about to be seeded into. In practice 

3ml o f media were used for samples that were to be plated out in 6 well plates (with 

all 3ml being transferred to the recipient well). Whilst for a 24 well plate the cell 

pellet was ressupended in 5ml o f media, and after agitation 1ml of the solution 

containing approximately one fifth o f the cells was added to the recipient culture 

vessel. 

In the initial experiments immediately after plating out cells were exposed to final 

concentrations o f 200ng/ml Shh ( R & D Systems) (made up in Ix PBS), lOOng/ml 

FGF8 (Peprotech) (made up in lOmM Tris pH 8.0), and lOf iM retinoic acid (Sigma) 

for 4 days, this treatment was continued for a further 6 days but 200| iM ascorbic acid 

(Sigma) (made up in sterile distilled water) was also included. Vehicle controls 

exposed to only I x PBS and lOmM Tris pH 8.0 for the first four days as well as 

sterile distilled water alongside these 2 components for the final 6 days were also run. 

Figure 5.1 gives a summary o f the conditions used for the entire protocol including 

the initial 7 day suspension culture step. At all times cells were maintained at 37°C in 

a standard 5% CO2 incubator. 



Figure 5.1 - Shh/FGF8/A.A. /R.A. Differentiation Protocol (based on Cho et al.. 2008) 

Shh/FGF8/A.A./R.A. Differentiation Protocol 

Control 
Conditions 

Treatment 
Conditions 

R.A. Only 

Day 0 

Vehicle Control 

R.A. + Wnt1 Vehicle Control 

R.A. Only Shh/FGF8/R.A. 

» 

Shh/FGF8/A.A./R.A. 

R.A. + Wnt1 Shh/FGF8/R.A. Shh/FGF8/A.A./R.A. 

Day 7 Day 11 Day 17 

Note: Vehicle control consisted of treatment with 1x PBS and lOmM Tris pH 8.0 for 4 days 
(green arrow), this was continued for a further 6 days but with the addition of autoclaved 

sterile water to the regime as well (orange anrow). 



183 

Subsequent experiments investigated whether the inclusion o f retinoic acid has a 

negative effect on the dopaminergic differentiation potential o f the Tera2.cl.SP12 

model. Samples were prepared as previously outlined for the plus R.A. samples; 

however for the minus R.A. samples as would be expected retinoic acid was omitted. 

This is summarised in Figure 5.2. 

Figure 5.2 - Shh/FGFS/A.A. +/- R .A. Differentiation Protocol (based on Cho et 

al.. 2008 

Shh/FGF8/A.A. +/- R.A. Differentiation Protocol 

Vehicle 
Control 

R.A. + Wnti Vehicle Control 

Minus R.A. 
Condition 

R.A. + Wnt1 Shh/FGF8 Shh/FGFS/A.A. 

Plus R.A. 
Condition 

Day 0 

R.A. * Wnti Shh/FGF8/R.A. Shh/FGF8/A.A./R.A. 

Day 7 Day 11 Day 17 

Note: Vehicle control consisted of treatment with 1 x PBS and 10mM Tris pH 8.0 for 4 days 
(green arrow), this was continued for a further 6 days but with the addition of autoclaved 

sterile water to the regime as well (orange arrow). 
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5.3 Results 

Prior to the assessment o f whether or not Sonic hedgehog, Fibroblast growth factor 8 

and ascorbic acid in the presence or absence of retinoic acid can drive the 

dopaminergic differentiation o f the Tera2.cl.SP12 ceil line. The first step in this study 

was to compare the effects o f retinoic acid alone and in combination with W n t l under 

adherent and suspension culture conditions. I f the suspension based method was 

comparable or favourable the rationale was then to integrate this approach into the 

protocol o f Cho et al., 2008 with the embryonal carcinoma cell derived neurospheres 

replacing the spherical neural masses formed f rom the embryonic stem cells in that 

work. The spherical neural masses in Cho et al., 2008 were shown to express nestin, 

Soxl and Beta I I I tubulin. Therefore the first step in these investigations was to use 

real time PCR analysis to facilitate a quantitative comparison o f the levels o f these 

three markers in Tera2.cl.SP12 cells grown in suspension or adherent conditions in 

the presence of retinoic acid or retinoic acid and W n t l . Figure 5.3A demonstrates that 

there is a clear expression o f nestin as would be expected when using embryonal 

carcinoma cells, and the levels at which this marker is present vary little between the 

condifions. Figure 5.3B indicates that Soxl is present at higher levels in the adherent 

cultures, the lower levels present in the suspension cultures though may be favourable 

in the context o f there being an advantage in applying Sonic hedgehog and Fibroblast 

growth factor 8 prior to or before a threshold o f Soxl expression as described by Yan 

et al., 2005. This was therefore an interesting result as it offered the prospect that 

suspension culture may be advantageous i f pursuing the acquisition o f a dopaminergic 

phenotype using a method involving Sonic hedgehog and Fibroblast growth factor 8 

administration. There appeared however to be little difference in relation to the use of 

Wnt l in conjuncfion with retinoic acid. In contrast Figure 5.3C shows that the 

combined use o f suspension culture and Wnt l plus retinoic acid may give more 

neuronal cultures. Interestingly W n t l in concert wi th retinoic acid does not have the 

same effect as observed previously in Chapter 4 on adherent cultures. Why Wnt l 

may have had an effect in one set o f experiments in Chapter 4 but seemingly does not 

in an identical set here is unknown, as it appears to exert an effect in the suspension 

cultures and this is o f a similar scale to that previously observed. It may be that the 

aberrant nature o f the cell culture model has caused this difference as i f one passage 
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of cells used was more abnormal or flawed than is usual, then they could have been 

subsequently passaged (a number o f times) and used for setting up each of the 3 

repeats for which samples for analysis were collected. I t could also be the W n t l used 

lost its activity, although this may be less likely given that the same batch was used 

for the suspension culture samples where it appears to have had a positive effect. 

However the effect observed may not be due to the application o f exogenous 

compounds at all. I t may be the W n t l did lose its activity or was unable to exert any 

action on this occasion in either adherent or suspension cultures. The differences 

observed in these initial investigations may actually arise f rom differences in gene 

expression profiles that come about f rom the growth o f the embryonal carcinoma cells 

in suspension rather than adherent conditions in a similar manner to that found with 

embryonic stem cells. Indeed the specific method o f suspension culture o f mouse 

embryoid bodies (hanging drop versus static suspension culture) can itself affect the 

gene expression profile observed (Mogi et al, 2009). This too may be the case in the 

embryonal carcinoma cell system and may account for some of the differences 

recorded. 

Figures 5.4A, B and C show a similar pattern to that for Beta I I I tubulin for the 

dopaminergic markers, tyrosine hydroxylase and dopamine receptor 2, as well as the 

ventral midbrain marker Nkx6-1 . The trend though is promising in that dopaminergic 

marker expression is highest in the W n t l plus retinoic acid suspension cultures. 

Figure 5.5A and C show that for L m x l a and neurogenin2 the same trend is apparent; 

however there is little difference between the retinoic acid and retinoic acid plus W n t l 

conditions in relation to M s x l expression. This possible component of the 

dopaminergic specification pathway is though up regulated in suspension cultures. 

Therefore given that both neuronal and dopaminergic phenotypic markers are up 

regulated in the W n t l plus retinoic acid suspension cultures, as are some o f the factors 

( L m x l a and neurogenin2) that may help specify a dopaminergic fate, it would appear 

this is the optimal condition. Although the inclusion o f W n t l does not appear to 

affect Soxl or M s x l levels to any real extent, the use o f suspension culture may give 

favourable levels o f these two markers. The Wnt l plus retinoic acid suspension 

culture condition or possibly even just its retinoic acid only suspension culture 

counterpart are as such likely to enhance the possibility of producing an enriched 
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population o f dopaminergic neurons. Figure 5.6A demonstrates that the mRNA for 

the transporter protein that allows ascorbic acid into cells is present in such cultures, 

as is the receptor for Sonic hedgehog (Figure 5.6B), as is the receptor for Fibroblast 

growth factor 8 (Figure 5.6C), although the mRNA levels for this have declined to a 

statistically significant level from those in the starting material. In an ideal scenario 

the expression o f the Fibroblast growth factor 8 receptor would be studied at the 

protein level as fall ing quantities o f mRNA may be present but the receptor may still 

be expressed and be functional at this stage. Likewise it would be more complete to 

confirm the presence o f the other receptor and transporter protein at this level. 

However the indication is that all three molecules ascorbic acid, Sonic hedgehog and 

Fibroblast grov\^h factor 8 may be able to exert an effect and thus hopefully promote 

the formation o f potential neurons displaying dopaminergic characteristics. Indeed 

the system may be priming itself for a response to ascorbic acid and given the falling 

expression o f the Fibroblast growth factor 8 receptor may be at a point where 

Fibroblast growth factor 8 application is necessary for it to have an effect, or its 

maximum effect on dopaminergic differentiation. 
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Figure 5.3; Nestin, Soxl & Beta I I I tubul in expression in suspension & adherent 

cultures 
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Figure 5.3A: Relative expression of Nestin mRNA in Tera2.cl.SP12 cultures and their derivatives 
grown in the presence of lO\iM retinoic acid alone or in combination with 2ng/ml Wntl for 7 days 
as either adherent monolayers or free floating aggregates in suspension. B: Relative expression of 
Soxl mRNA in the same conditions outlined above. C: Relative expression of Beta I I I tubulin 
mRNA again in the conditions outlined in part A. Error bars = S.D. of mean. In all experiments 
n=3. 
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Figure 5.4: T H , D2 & Nkx 6-1 expression in suspension «& adherent cultures 
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'̂ .A Day? Adhenent ŷ rt̂ t1 + R.A. Day? 
Adherent 

R,A Day? 
buspensi 

Wnti + R A. Day? 

Sample 

C. 

R.A. Day? 
Suspension 

R.A. Day? Adherent WnlH- R.A. Day? 
Adherent 

Sample 

Wnti • R.A. Day? 
Suspension 

Figure 5.4A: Relative expression of TH mRNA in Tera2.cl.SP12 cultures and their derivatives 
grown in the presence of lOuM retinoic acid alone or in combination with 2ng/ml Wnti for 7 days 
as either adherent monolayers or free floating aggregates in suspension. B: Relative expression of 
D2 mRNA in the same conditions outlined above. C: Relative expression of Nkx 6-1 mRNA again 
in the conditions outlined in part A. Error bars = S.D. of mean. In all experiments n=3. 
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Figure 5.5: L m x l a , M s x l & Ngn2 expression in suspension & adherent cultures 
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Figure 5.5A: Relative expression of Lmxla mRNA in Tera2.cl.SP12 cultures and their derivatives 
grown in the presence of lO^iM retinoic acid alone or in combination with 2ng/ml Wntl for 7 days as 
either adherent monolayers or free floating aggregates in suspension. B: Relative expression of Msxl 
mRNA in the same conditions outlined above. C: Relative expression of Ngn2 mRNA again in the 
conditions outlined in part A. Error bars = S.D. of mean, in all experiments n=3. 
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Figure 5.6: Transporter/receptor expression in suspension & adherent cultures 
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Figure 5.6A: Relative expression of SLC23AI mRNA in Tera2.cl.SP12 cultures and their derivatives grown in 
the presence of 10|iM retinoic acid alone or in combination with 2ng/ml Wntl for 7 days as either adherent 
monolayers or free floating aggregates in suspension. B: Relative expression of Patched 1 mRNA in the same 
conditions outlined above. C: Relative expression of FGFR4 mRNA again in the conditions outlined in part A. 
Error bars = S.D. of mean. In all experiments n=3. A one way anova with accompanying Tukey post hoc 
analysis was performed to elucidate the significant differences highlighted in red. 



The 7 day refinoic acid and Wnt l plus retinoic acid treated suspension cultures were 

taken forward as they appeared to offer the greatest chance o f facilitating the 

formation o f potential dopaminergic neurons. In addition the presence and absence of 

Wnt l in the initial step gave rise to the opportunity to assess i f W n t l application prior 

to Sonic hedgehog/Fibroblast growl:h factor 8 usage had any beneficial effects which 

could give support to the concept that it creates a permissive environment in which 

such inductive signals can act (Burbach & Smidt, 2006). When cells are grown in 

suspension and then plated out into adherent conditions as per Figure 5.1 they appear 

from the stage o f entering adherent culture at 7 days more neuronal in appearance. 

Figure 5.7 shows morphological images o f such cells after 1 day o f Sonic 

hedgehog/Fibroblast growth factor 8/retinoic acid application and at the final 17 day 

time point. The cells appear to show more process like structures in the final 10 days 

of differentiation and differ considerably in morphology f rom the vehicle controls. 

Phase images though are not particularly conclusive so some immunocytochemistry 

was carried out to assess expression of the neuronal marker Beta I I I tubulin. Figure 

5.8 shows both control and test cultures stain strongly for Beta I I I tubulin. Despite 

mechanical disruption o f the neurospheres prior to seeding out into adherent culture 

plastic ware there are still some cell aggregates or sections o f cells that remain in 

close proximity to each other. It is as such di f f icul t to make a quantitative assessment 

of the number o f neuronal cells. 



Figure 5.7: Morphological Images of ceils growing in the presence o f a combination of Shh /FGF8 /R.A. & A . A . 
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Figure 5,7: Phase images o f cell morphology in cultures o f Tera2.cl.SP12 cells pre treated for 7 days when grown in 
suspension with lOpM retinoic acid alone or in combination with 2ng/ml W n t i that were then seeded out into adherent 
cell culture plastic ware for the remaining 10 days o f differentiation. Day 8 reflects the cultures following 1 day in 
adherent culture at this stage they were exposed to 200ng/ml Shh, lOOng/ml FGF8 and lO^iM retinoic acid. Day 17 
represents the cultures at the end o f the differentiation protocol outlined in Figure 5.1. Day 17 control reflects the 
morphology o f cultures that received the pre treatments outlined above for 7 days in suspension but that were then left in 
just media with the vehicles used to make the Shh, FGF8 and for the final 6 days A . A . up in prior to application. Scale 
bars represent 100pm. 



Figure 5.8: Beta I I I tubulin immunostaining of Shh/FGF8/R.A. & A.A. treated Tera2.cl.SP12 cultures at 17 davs 
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Figure 5.8: Beta III tubulin immunostaining of Tera2.cl.SP12 cells cultured for 7 days in suspension with lOfiM retinoic acid and 2ng/ml Wntl prior to seeding out into 
24 well plates where they were exposed to 200ng/ml Shh, lOOng/ml FGF8 & lO^M R.A. for 10 days with 200nM A.A. also being added to this cocktail for the final 6 
days of differentiation. Vehicle controls were treated identically for the first 7 days but upon seeding out received only the vehicle solutions that the Shh/FGF8 and for 
the final 6 days A.A. were prepared in. Images were merged in Adobe Photoshop, Hoescht stained nuclei are blue, Beta III tubulin positive cells are represented by 
green (FITC) detection. Neuronal type processes and possible cell bodies are seen and as such this staining is viewed as a positive indicator that potentially neuronal 
cells have been produced. Due to the nature of the cultures it was very difficult to discern individual cells for cell counting but both cultures appeared clearly Beta III 
tubulin immunopositive, some of this clarity was lost upon merging the images due to the strong blue background. Scale bars represent lOOnm. One representative 
image of n=3 biological repeats is shown. 
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Real time PCR was subsequently carried out to try and gain a relative estimate o f how 

neuronal the cultures were based on the expression o f the marker Beta I I I tubulin. 

Samples were taken at both 11 days and 17 days to attempt to gauge whether there 

was any pattern o f neuronal induction. A 3 week retinoic acid treated adherent culture 

sample was also included as a comparative in an effort to relate this study to earlier 

work. First o f all Figure 5.9 indicates that the treated samples vary f rom the vehicle 

controls suggesting the application o f this cocktail o f molecules has an effect. There 

is in addition a clear induction in Beta I I I tubulin expression f rom the untreated 

embryonal carcinoma cells to the 11 day and subsequently the 17 day samples. It is 

interesting that the W n t l plus retinoic acid pre treated samples at 11 days show on 

average almost double the expression o f their retinoic acid only pre treated 

counterparts. This is in support o f the concept that W n t l may create a permissive 

environment for Sonic hedgehog and Fibroblast growth factor 8 to act as inductive 

cues that drive the formation o f dopaminergic neurons. The effect is still present but 

to a lesser degree after 17 days. The 3 week retinoic acid treated sample does not 

differ to a statistically significant level f rom the embryonal carcinoma cell sample, 

however the 17 day (retinoic acid plus W n t l ) sample does. This sample though does 

not differ to a statistically relevant level from the 3 week retinoic acid treated sample. 

The Sig. value o f 0.062 is quite close to reaching a statistically significant value o f < 

0.05 and given the variability which is undoubtedly seen when using embryonal 

carcinoma cell cultures, could be taken as a positive indicator, as often one passage of 

the three used is out o f line with the other two, making it more dif f icul t to observe a 

statistical effect even though the data are indicative o f a strong trend, in this case 

towards a much more neuronal culture. This result is as such a promising start; a 

panel o f dopaminergic markers were then screened to investigate i f they displayed a 

similar expression pattern. Both phenotypic markers and factors that could be 

involved in specifying a dopaminergic fate were investigated. 

In stark contrast to Beta I I I tubulin expression, Figure 5.10 demonstrates that tyrosine 

hydroxylase m R N A levels are down regulated by 17 days to a point below the basal 

expression in the starting material. The 11 and 17 day (retinoic acid) samples show 

slightly higher expression than their retinoic acid plus W n t l pre treated counterparts 

at the equivalent time points, with the effect being less apparent at 17 days. This is 

essentially almost the opposite o f the trend seen for Beta I I I tubulin, posing the 
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question o f how are these molecules that normally drive dopaminergic differentiation 

having a seemingly negative effect? One possible answer is that the presence o f 

retinoic acid may be inhibitory to their function. This was tested subsequently. 

Another alternative is that the presence o f retinoic acid is promoting acquisition of an 

alternative neurotransmitter phenotype. It may also be that the expected peak in 

tyrosine hydroxylase expression has passed and that a lower level o f mRNA 

expression is not necessarily a negative indicator. 

Figure 5.11 shows that for dopa decarboxylase there is an analogous expression 

pattern to that for tyrosine hydroxylase, although in both cases there is no statistically 

significant difference between the embryonal carcinoma cells starting material, 17 day 

((retinoic acid plus W n t l ) most neuronal) sample and the 3 week retinoic acid treated 

comparative. However as is seen for dopamine receptor 1 in Figure 5.12 the 

embryonal carcinoma and 17 day (retinoic acid plus W n t l ) samples differ 

significantly f rom the 3 week comparative, supporting the trend that expression o f a 

range o f markers o f a dopaminergic phenotype is relatively low in the 17 day (retinoic 

acid plus W n t l ) treated samples, despite them appearing highly neuronal in nature 

(assessed by the expression o f Beta I I I tubulin). Figure 5.13 indicates that the trend is 

comparable for dopamine receptor 2, but that there is little difference between the 

mRNA levels observed at 11 and 17 days. 



Figure 5.9: Beta I I I Tubulin mRNA expression in Tera2.cl.SP12 cultures treated with a combination of Shh. F G F 8 . R . A . & A.A. 
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Figure 5.9: Relafive expression o f Beta I I I Tubulin mRNA in Tera2.cI.SP12 cells grown as in Figure 5.1; treated samples were collected at 
11 and 17 days, controls at just the latter time point. The EC cell sample reflects the undifferentiated Tera2.cI.SP12 cells and the 3W R.A. 
sample reflects such cells fol lowing 3 weeks o f retinoic acid induced differentiation in adherent condifions. This 3W R.A. set o f samples 
was included for comparison purposes to try and help relate this work to previous findings. The one way anova output indicates that there is 
a significant difference between the EC and 17 Day (R.A. + W n t l ) samples. Error bars = S.D. o f mean. In all experiments n=3. 



Figure 5.10: T H mRNA expression in Tera2.cLSP12 cultures treated with a combination of Shh. FGF8. R.A. i& A.A. 
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Figure 5,10: Relative expression of TH mRNA in Tera2.cl.SP12 cells grown as in Figure 5.1; treated samples were collected at 11 and 17 days, 
controls at just the latter time point. The EC cell sample reflects the undifferentiated Tera2.cl.SP12 cells and the 3W R.A. sample reflects such 
cells following 3 weeks of retinoic acid induced differentiation in adherent conditions. This 3W R.A. set of samples was included for 
comparison purposes to try and help relate this work to previous findings. The one way anova output indicates that there are no significant 
differences between the EC, 3W R.A. and 17 Day (R.A. + Wntl) samples. Error bars = S.D. of mean. In all experiments n=3. 



Figure 5.11: AADC mRNA expression in Tera2.cLSP12 cultures treated with a combination of Shh. FGF8. R.A. & A.A. 
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Figure 5.11: Relative expression of Dopa decarboxylase mRNA in Tera2.cl.SP12 cells grown as in Figure 5.1; treated samples were collected 
at 11 and 17 days, controls at just the latter time point. The EC cell sample reflects the undifferentiated Tera2.cl.SP12 cells and the 3W R.A. 
sample reflects such cells following 3 weeks of retinoic acid induced differentiation in adherent conditions. This 3W R.A. set of samples was 
included for comparison purposes to try and help relate this work to previous findings. The one way anova output indicates that there are no 
significant differences between the EC, 3W R.A. and 17 Day (R.A. + Wntl) samples. Error bars = S.D. of mean. In all experiments n=3. 



Figure 5.12: D l mRNA expression in Tera2.cl.SP12 cultures treated with a combination of Shh. FGF8. R A . <& A.A. 
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Figure 5.12: Relative expression o f D l m R N A in Tera2.cl.SP12 cells grown as in Figure 5.1; treated samples were collected at 11 and 17 days, controls 
at just the latter time point. The EC ceil sample reflects the undifferentiated Tera2.cl.SPI2 cells and the 3W R.A. sample reflects such cells fo l lowing 3 
weeks o f retinoic acid induced differentiation in adherent conditions. This 3W R.A. set o f samples was included for comparison purposes to try and 
help relate this work to previous findings. The one way anova output indicates that the 3W R.A. samples vary to a statistically significant level f rom 
both the EC and 17 Day (R.A. + W n t i ) samples (not shown on graph). Error bars = S.D. o f mean. In all experiments n=3. 



Figure 5.13: D2 mRNA expression in Tera2.cl.SP12 cultures treated with a combination of Shh. FGF8. R.A. & A.A. 
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Figure 5.13: Relative expression of D2 mRNA in Tera2.cl.SP12 cells grown as in Figure 5.1; treated samples were collected at 11 and 17 days, 
controls at just the latter time point. The EC cell sample reflects the undifferentiated Tera2.cl.SP12 cells and the 3W R.A. sample reflects such 
cells following 3 weeks of retinoic acid induced differentiation in adherent conditions. This 3W R.A. set of samples was included for 
comparison purposes to try and help relate this work to previous findings. The one way anova output highlights the significant difference 
between the EC and 3W R.A. samples. Error bars = S.D. of mean. In all experiments n=3. 
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When factors that may be involved in specifying a dopaminergic fate as per Figure 4.2 

were studied, at first as seen in Figure 5.14, Lmxla within the context of the 

experimental error displayed a similar expression pattern to that observed for the 

markers of a dopaminergic phenotype. The 17 day (retinoic acid plus Wnti) and 

embryonal carcinoma cell starting material differed to a statistically significant degree 

(p < 0.05) from the 3 week comparative supporting the notion that the expression of 

mRNA for the dopaminergic markers tested was low at this time point under the 

treatment conditions used. 

However Figure 5.15 shows that for Msxl the downstream target of Lmxla the 

expression profile is somewhat different. In this instance the 3 week retinoic acid 

treated comparative and 17 day (retinoic acid plus Wnti) sample hardly differ at all, 

but both although not to a statistically significant level display a clear induction above 

the levels observed in the Tera2.cl.SP12 starting material. In fact Msxl expression is 

raised from 11 to 17 days particulariy in the 17 day (retinoic acid plus Wntl) samples 

which appear the most neuronal. It is interesting that the vehicle control samples 

display a particularly high level of Msxl expression in a similar fashion to some other 

markers in these conditions such as Lmxla and Beta I I I tubulin. This may suggest 

that given a pre treatment with retinoic acid alone or in combination with Wntl , that 

Tera2.cl.SP12 cultures are capable of controlled up regulafion of dopaminergic and 

neuronal markers, or they may show a continued response to the earlier treatment with 

such factors. However even though they demonstrate this seemingly favourable 

ability to up regulate indicators of a dopaminergic or neuronal phenotype which is 

promising, it would need to be harnessed in a more controlled manner to potentially 

derive the greatest possible benefit from it. That is i f such high levels of such markers 

are required at all, the process may be more subtle with lower levels being adequate to 

exert more delicate effects. There may even be an interaction between certain key 

dopaminergic inducing factors and metabolites such as dopamine itself; that make the 

process more intricate and mean that merely observing elevated levels of 

dopaminergic markers is not sufficient to produce the desired outcome of an enriched 

population of functional dopaminergic neurons. 

There is though seemingly in the test conditions a difference in the regulation of Msxl 

mRNA levels. Msxl is postulated to act positively on neurogenin2 and to suppress 
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Nkx 6-1. Figure 5.16 shows that although neurogenin2 expression is not as great in 

17 day (retinoic acid plus Wnti) samples as it is in the 3 week retinoic acid treated 

comparatives, it does rise in its expression from 11 to 17 days when retinoic acid and 

Wnti are used in the initial 7 days. When just retinoic acid is used in this preliminary 

stage there is no real difference between the 11 and 17 day samples. This raises the 

possibility that Msxl is at least in the Wnti plus retinoic acid pre treated samples 

having an effect on the up regulation of neurogenin2 from 11 to 17 days, although 

much more thorough investigation would be needed to make any firm conclusion as to 

the viability of this fledgling idea. Of interest though as can be seen in Figure 5.17 is 

that Nkx 6-1 levels drop off from 11 to 17 days, with the lowest expression being in 

the 17 day (retinoic acid plus Wnti) samples, where Msxl levels are relatively high. 

This raises the possibility that Msxl may as expected be exerting an inhibitory effect 

on Nkx 6-1 expression. Nkx 6-1 is induced to a statistically significant level in the 3 

week retinoic acid treated comparative samples in relation to the embryonal 

carcinoma stem cell starting material. Msxl although not to a level of statistical 

relevance is induced in such samples in a comparable manner. Therefore the 

statistically significant difference in expression between 3 week retinoic acid treated 

and 17 day (retinoic acid plus Wnti) samples is interesting not only in that the 17 day 

(retinoic acid plus Wnti) samples express Nkx 6-1 more weakly than in the starting 

material, suggesting something within the system under investigation is having an 

effect, but this is seen when a known suppressor of Nkx 6-1, namely Msxl is in 

relafive terms showing an induction in its levels. Again this possible correlation 

would require further investigation but it does appear that components of the pathway 

described in Figure 4.2 thought to be influenced by Sonic hedgehog are seemingly 

regulated in a predictable fashion in its presence. 



Figure 5.14: Lmxla mRNA expression in Tera2.cl.SP12 cultures treated with a combination of Shh. FGF8. R.A. & A.A. 
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Figure 5.14: Relative expression of Lmxla mRNA in Tera2.cl.SP12 cells grown as in Figure 5.1; treated samples were collected at 11 and 
17 days, controls at just the latter time point. The EC cell sample refiects the undifferentiated Tera2.cl.SP12 cells and the 3W R.A. sample 
refiects such cells following 3 weeks of retinoic acid induced differenfiation in adherent conditions. This 3W R.A. set of samples was 
included for comparison purposes to try and help relate this work to previous findings. The one way anova output indicates that the 3W 
R.A. samples vary to a statistically significant level from both the EC and 17 Day (R.A. + Wntl) samples (not shown on graph). Error 
bars = S.D. of mean. In all experiments n=3. 



Figure 5.15: Msxl mRNA expression in Tera2,ci,SP12 cultures treated with a combination of Shh. FGF8. R,A. & A.A. 
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Figure 5.15: Relafive expression of Msxl mRNA in Tera2.cl.SP12 cells grown as in Figure 5.1; treated samples were collected at 11 and 17 
days, controls at just the latter fime point. The EC cell sample reflects the undifferenfiated Tera2.cl.SP12 cells and the 3W R.A. sample 
reflects such cells following 3 weeks of retinoic acid induced differentiation in adherent conditions. This 3W R.A. set of samples was 
included for comparison purposes to try and help relate this work to previous findings. The one way anova output indicates that there a 
significant differences between the EC, 3W R.A. and 17 Day (R.A. + Wntl) samples. Error bars = S.D. of mean. In all experiments n=3. 
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Figure 5.16: Ngn2 mRNA expression in Tera2.cl.SP12 cultures treated with a combination of Shh, FGF8. R.A. & A.A. 
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Figure 5.16: Relative expression of Ngn2 mRNA in Tera2.cl.SP12 cells grown as in Figure 5.1; treated samples were collected at 11 and 17 
days, controls at just the latter time point. The EC cell sample reflects the undifferentiated Tera2.cl.SP12 cells and the 3W R.A. sample reflects 
such cells following 3 weeks of retinoic acid induced differentiation in adherent conditions. This 3W R.A. set of samples was included for 
comparison purposes to try and help relate this work to previous findings. The one way anova output highlights the significant difference 
between the EC and 3W R.A. samples. Error bars = S.D. of mean. In all experiments n=3. 



Figure 5.17; Nkx 6-1 mRNA expression in Tera2.cl.SP12 cultures treated witii a combination of Shh. FGF8. R.A. & A.A. 
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Figure 5.17: Relative expression o f Nkx 6-1 m R N A in Tera2.c!.SP12 cells grown as in Figure 5.1; treated samples were collected at 11 and 17 days, controls 
at just the latter time point. The EC cell sample reflects the undifferentiated Tera2.cl.SP12 cells and the 3W R.A. sample reflects such cells fo l lowing 3 
weeks o f retinoic acid induced differentiation in adherent conditions. This 3W R.A. set o f samples was included for comparison purposes to try and help 
relate this work to previous findings. The one way anova output indicates that the 3W R.A. samples vary to a statistically significant level f rom both the EC 
and 17 Day (R.A. + W n t l ) samples (the EC to 3W R.A. difference is indicated on the graph, the other difference is not as it is probably o f lesser relevance). 
Error bars = S.D. o f mean. In all experiments n=3. 
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The question though still remains as to why the phenotypic markers appear to be 

relatively down regulated, especially given the suggestion that the pathway for 

dopaminergic specification thought to be influenced by Sonic hedgehog may well be 

active in the presence of this molecule within the context of this experimental 

strategy. One possible reason for this is that retinoic acid was included in the final 10 

days of the differentiation protocol; feasibly this may have an inhibitory effect on 

dopaminergic differentiation or promote the acquisition of other neurotransmitter 

phenotypes. Therefore to address i f this is likely to be the case retinoic acid was 

omitted for the final differentiation stages so as to replicate this part of the method of 

Cho et al., 2008. The cells were grown as per the scheme in Figure 5.2 with the most 

neuronal (as assessed by real time PCR) condition being selected for the initial stage. 

This was the 7 day retinoic acid plus Wntl suspension culture pre treatment followed 

by the 10 day protocol of Cho et al., 2008 termed the minus condition, which was then 

compared to the plus retinoic acid condition (that had previously been identified as the 

most neuronal) as defined in Figure 5.2. The comparison also included samples from 

the embryonal carcinoma cell starting material, the 3 week retinoic acid treated 

comparafive and a 17 day vehicle control, as well as a MG63 sample that was not 

expected to show any dopaminergic or neuronal marker expression and as such this 

would act as a control to check in a non neural cell type that there was not a 

background expression of such markers. 

Figure 5.18 shows that for dopa decarboxylase and dopamine receptor 2 there is 

hardly any difference between the plus and minus retinoic acid condifions. The trends 

are similar to those found previously for the other samples too, suggesting some 

consistency in the results obtained. A similar scenario is found for tyrosine 

hydroxylase and Beta I I I tubulin (Figure 5.19), there does appear to be a higher 

expression of tyrosine hydroxylase in the minus retinoic acid samples but this 

difference is not statistically significant. Figures 5.20 and 5.21 show the situation is 

analogous for the components of the pathway that Sonic hedgehog may affect to 

promote the acquisition of a dopaminergic phenotype. 
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Figure 5.18: AADC & D2 expression in the plus and minus R.A. conditions 
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Figure 5.18A: Relative expression of Dopa decarboxylase mRNA in Tera2.cl.SP12 cultures treated as 
per the conditions defined in Figure 5.2, harvested at the terminus o f the 17 day differentiation protocol. 
The EC cell sample reflects the undifferentiated Tera2.cl.SP12 cells and the 3W R.A. sample reflects 
such cells following 3 weeks of retinoic acid induced differentiation in adherent conditions. The MG63 
condition was included as a control to assess i f dopaminergic markers were expressed in a non neural cell 
line. B: Relative expression of D2 mRNA in identical conditions to those described in part A. Error bars 
= S.D. o f mean. In all experiments n=3. Student's T-test was used to assess i f there was a statistically 
significant difference between the plus and minus R.A. conditions, there was not in either instance. 
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Figure 5.19: T H & Beta III tubulin expression in the plus and minus R.A. 
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Figure 5.19A: Relative expression o f TH mRNA in Tera2.cl.SP12 cultures treated as per the conditions defined in 
Figure 5.2, harvested at the terminus o f the 17 day differentiation protocol. The EC cell sample reflects the 
undifferentiated Tera2.cl.SP12 cells and the 3W R.A. sample reflects such cells following 3 weeks o f retinoic acid 
induced differentiation in adherent conditions. The MG63 condition was included as a control to assess i f 
dopaminergic/neuronal markers were expressed in a non neural cell line. B: Relative expression o f Beta I I I tubulin 
mRNA in identical conditions to those described in part A. Error bars = S.D. o f mean. In all experiments n=3. 
Student's T-test was used to assess i f there was a statistically significant difference between the plus and minus R.A. 
conditions, there was not in either instance. 
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Figure 5.20: Lmxla & Msxl expression in the plus and minus R.A. conditions 

A. 

E C 3 W R.A. M G 6 3 Minus R .A . P lus R.A Vehic le Control 
S a m p l e 

B. 160 

3 120 

(0 100 

3WR.A MG63 Minus R.A. 

Sample 

Plus R.A. Vehicle Control 

Figure 5.20A: Relative expression of Lmxla mRNA in Tera2.ci.SP12 cultures treated as per the conditions 
defined in Figure 5.2, harvested at the terminus of the 17 day differentiation protocol. The EC cell sample 
reflects the undifferenfiated Tera2.cl.SP12 cells and the 3W R.A. sample reflects such cells following 3 
weeks of refinoic acid induced differentiation in adherent conditions. The MG63 condition was included as 
a control to assess i f dopaminergic markers were expressed in a non neural cell line. B: Relative 
expression of Msxl mRNA in identical condifions to those described in part A . Error bars = S.D. of mean, 
in all experiments n=3. Student's T-test was used to assess i f there was a stafisfically significant difference 
between the plus and minus R.A. conditions, there was not in either instance. 



211 

Figure 5.21: Ngn2 & Nkx 6-1 expression in the plus and minus R.A. conditions 
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Figure 5.21A: Relative expression of Ngn2 mRNA in Tera2.cl.SP12 cultures treated as per the conditions 
defined in Figure 5.2, harvested at the terminus of the 17 day differentiation protocol. The EC cell sample 
reflects the undifferentiated Tera2.cl.SP12 cells and the 3W R.A. sample reflects such cells following 3 
weeks o f retinoic acid induced differentiation in adherent conditions. The MG63 condition was included as 
a control to assess i f dopaminergic markers were expressed in a non neural cell line. B: Relative 
expression of Nkx 6-1 mRNA in identical conditions to those described in part A. Error bars = S.D. of 
mean. In all experiments n=3. Student's T-test was used to assess i f there was a statistically significant 
difference between the plus and minus R.A. conditions, there was not in either instance. 



212 

It is also of interest that dopa decarboxylase, tyrosine hydroxylase, Lmxla and 

neurogenin2 are not detectable as would be expected in the non neural MG63 

samples. However dopamine receptor 2, Beta I I I tubulin, Msxl and Nkx 6-1 

expression were detected in such samples. Although dopamine receptor 2 and Msxl 

are relatively only moderately expressed and as is the case for Beta III tubulin and 

Nkx6-1 the variability in their expression is quite high. This may be due to the fact 

that the house keeping gene GAPDH used to normalise the expression data showed a 

highly different expression pattern in these MG63 samples in relation to their 

embryonal carcinoma cell derived counterparts. The raw cycle threshold data 

indicated it took usually around 25-26 cycles for detecfion of GAPDH in the MG63 

cell samples, where as usually only 19-21 cycles were required for the embryonal 

carcinoma cell based samples. This is indicative of weaker expression of GAPDH in 

the MG63 cell samples which in turn could make any detectable expression in the test 

samples (for example Beta II I tubulin) appear greater than it really is in relative terms 

to the expression in embryonal carcinoma cell derived material. Beta-actin the other 

house keeping gene used in this analysis was also expressed differently in MG63 

samples in comparison to embryonal carcinoma cell based samples. The cycle 

threshold values for beta-actin were around 18-20 for embryonal carcinoma cell based 

specimens but ranged from 26-29 for MG63 cell samples. This highlights that even 

when using more than one house keeping gene disparities may arise due to variable 

expression of both the house keeping genes used, giving support to the concept that as 

wide a range as possible of house keeping genes should be utilised. It may however 

be that the data indicate false positives being recorded. For dopamine receptor 2 this 

is highly unlikely as detection occurs at between 36-39 cycles (out of 40). Such weak 

detection at so late a stage in the process is likely to only reflect the presence of a few 

transcripts or even a hint of contamination i f the RNase treatment has not removed all 

the contaminating DNA that may be present. Given this in combination with the 

differences in house keeping gene expression it is possible but highly unlikely that 

false positives are being obtained that would have any effect on the data (this 

argument runs for Msxl (detected at around 33-36 cycles) and Nkx6-1 (detected 

around 37-39 cycles)). There is also the possibility that as MG63 cells are cancerous 

that they may possess a low level aberrant expression of certain markers that would 

not be expected to be detected. 
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In the case o f Beta I I I tubulin it would appear that although the house keeping gene 
issue may be o f some relevance, that there is some detection. This may indicate the 
real time PGR results earlier in this Chapter and in Chapter 4 could be a result of false 
positives. This may be the case but this argument is not well supported by the 
immunostaining in this and the previous Chapter, that indicates cells are present that 
display the morphology expected o f a potential neuron in culture. The variability in 
the level o f expression seen also indicates that a broad false positive detection is less 
likely as more uniformity might be expected amongst the results i f this was the case. 
The neurogenin2 real time PCR data in this Chapter also add support to the notion that 
there is an up regulation o f neuronal marker expression and neurogenin2 was not 
detectable at all in the MG63 cell samples. It may be given their cancerous origins 
that MG63 cells express Beta I I I tubulin even though this may not be predicted. 
Alternatively the possibility o f this seemingly false positive may arise more as a result 
o f Beta I I I tubulin not being a solely neuronal marker, as a member o f the tubulin 
family o f proteins it may be that it is expressed more broadly and that it is not an ideal 
marker o f a neuronal phenotype. In any future work it would be advisable to use a 
panel o f neuronal markers such as microtubule associated protein 2, neurofilament 
200 and Beta I I I tubulin in an analogous manner to the panel o f dopaminergic markers 
tested. Alternatively another cell line expected to be negative for Beta I I I tubulin 
expression could be tested and i f found to be negative could then be used as a 
negative control. I f another cell line was tested and found to be negative in a 
predictable manner it would though raise the question o f what is and isn't suitable for 
use as a negative control and also given the MG63 results just how specific a marker 
is Beta I I I tubulin? This would indicate the need for a panel o f suspected neuronal 
markers to add validity to any further work. 

Flow cytometry was subsequently carried out to try and assess further i f the MG63 

cell line was negative for the expression o f the markers tested using immunological 

reagents. Figure 5.22 shows that for the neuroprogenitor/neuronal and dopaminergic 

markers tested in previous chapters, there is little to no expression in MG63 cells. 

The mean fluorescence intensity values for nestin, Nur r l and tyrosine hydroxylase are 

equivalent to those for secondary only controls; there is a low level o f Beta I I I tubulin 

expression but it is not as high as it would appear to be in the real time PCR analysis 

when related to mean fluorescence data for retinoic acid treated embryonal ceircinoma 
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cells in Chapter 3. Also Beta I I I tubulin as a member o f the tubulin family o f 
cytoskeletal proteins may feasibly be present in other non neuronal cell types, so this 
is not a completely unsurprising result. On balance therefore it would appear that 
dopaminergic markers are not just expressed in any cell type but that they are actually 
able to be induced and regulated in a relatively controlled manner in the 
Tera2.cl.SP12 model under different conditions. 

The finding that there is though some detection in a large number of cells of Beta I I I 

tubulin and a detection o f tyrosine hydroxylase in particular and N u r r l in a smaller 

but noticeable percentage o f cells reinforces the concept discussed earlier that there 

may be some non specific binding o f the antibodies used. The variability in 

expression and morphological features highlighted earlier are therefore critical 

features as they suggest that although there may be broad background detection, some 

specific clear predictable detection is still possible. 
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Figure 5.22: Flow cytometry analysis of MG63 cells 
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Figure 5.22A: The percentage of MG63 cells positive for expression of Nestin, Nurrl, TH and 
Beta III tubulin. The observed readings for Nestin, Nurrl and TH are generally low in 
comparison to those for the retinoic acid treated derivatives of Tera2.cl.SP12 cells detailed in 
Chapters 3 & 4. B: The intensity of Nestin, Nurrl, TH and Beta III tubulin expression in MG63 
cells. For the first 3 markers these values vary little from secondary only controls. For Beta III 
tubulin they reflect a relatively low but detectable level of expression akin to that observed for 
Tera2.cl.SP12 cells in Chapter 3. Error bars = S.D. of mean. In all experiments n=3. C: Flow 
cytometry traces showing how from the secondary only control sample where close to all cells 
were gated out as negative (left hand image) there is a shift to the right of the single peak for the 
test sample (right hand image). This detection of non neural MG63 cells positive for Beta III 
tubulin that is associated with a relatively weak (akin to that for EC cells recorded in Chapter 3 as 
mentioned above) but measurable intensity may reflect non specific binding of the antibody. 
However given that by other means detection in EC cells (which show comparable results to 
MG63 samples) of Beta III tubulin is weak it may be that this is not reflective of a strong 
expression of this marker but one that is detectable partly as a result of the sensitivity of the 
technique. It is though possible that Beta III tubulin is expressed in the non neural MG63 cells as 
it may be that it is not a totally neural specific marker, as neural markers have been found to be 
expressed by non neural cell types (stromal cells) such as in Deng et al, 2006. 
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The question though given that there appears to be little difference in expression at 17 

days between the plus and minus retinoic acid conditions remains as to why there is a 

relatively low amount o f m R N A present for a range o f dopaminergic markers, when 

the embryonal carcinoma cells have been treated with a cocktail o f molecules thought 

to drive dopaminergic differentiation. To probe deeper and change the point o f 

comparison. Western blotting was used to try and gauge i f the expression o f neuronal 

and dopaminergic marker proteins reflected the trends seen in terms o f the mRNA 

levels at the 17 day time point in the plus and minus retinoic acid conditions. Figure 

5.23 shows that tyrosine hydroxylase protein is up regulated in both the plus and 

minus retinoic acid conditions, relative to the Tera2.cl.SP12 starting material. The 

test samples also display greater expression than in the 17 day vehicle control sample, 

supporting the concept that the more controlled approach is the superior method. As 

is the case for the m R N A data there appears to be a slightly greater expression in the 

minus retinoic acid condition. There is however very little correlation between the 

mRNA and protein data, as at the mRNA level tyrosine hydroxylase expression in the 

embryonal carcinoma cells is comparable to that in the vehicle control and plus 

retinoic acid conditions, with slightly more of it present in the minus retinoic acid 

samples. This is clearly not the case in terms o f tyrosine hydroxylase protein 

expression. The minus retinoic acid condition may show a slightly greater induction 

than the vehicle control and plus retinoic acid samples, but in all three cases there is a 

marked inducfion o f tyrosine hydroxylase protein relative to the Tera2.cl.SP12 

starting material. Figure 5.23 also shows that for Beta I I I tubulin there is a slight but 

less tangible induction. This may be due to the fact that embryonal carcinoma stem 

cells show a propensity for neural differentiation and perhaps do express the slightly 

more generic marker Beta I I I tubulin at a basal detectable level. It may however be 

due to a general non specific binding o f the antibody used. Although treatment using 

the protocols outlined in Figure 5.2 may enhance the neuronal nature o f the cultures as 

observed in the real time PCR analyses it may also be the case that there is a 

remodelling o f the Beta I I I tubulin present i n such cultures, along with some 

induction. Further analysis using flow cytometry or the immunostaining shown 

previously (Figure 5.8) may give a better indication o f the changing patterns o f Beta 

I I I tubulin expression in this model system. 
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Figure 5.23: Beta I I I tubulin & T H protein expression in the plus & minus R.A. 

conditions 
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Figure 5.23: A representative Western blot image demonstrating TH and Beta III tubulin protein 
expression in samples harvested at the 17 day terminus of the differentiation protocol defined in 
Figure 5.2. The EC cell sample represents samples derived from cultures of undifferentiated 
Tera2.cl.SP12 embryonal carcinoma stem cells. 20|ug of protein were loaded for each sample (n=3). 
Beta-actin was used as a loading control, as indicated the main bands for each antibody were of the 
predicted size. There is a faint additional band above the band of interest in the Beta 111 tubulin blot 
supporting the concept that there may be some non specific binding of this antibody. This is in 
keeping with the detection of this neural marker in the non neural MG63 cell line by flow cytometry, 
which may be due to non specific binding of the antibody or as a result of Beta 111 tubulin not being a 
totally specific marker of a neuronal phenotype. 
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It is clear though that mRNA and protein levels for markers o f a dopaminergic 

phenotype are not regulated in a simple linear fashion. Figure 5.24 presents one 

possible model o f how mRNA and protein expression for markers o f a dopaminergic 

phenotype such as tyrosine hydroxylase may vary over time based on the data 

obtained. In an ideal scenzirio further protein based analysis using a panel of 

dopaminergic markers would be carried out as the presence of tyrosine hydroxylase 

may indicate the presence of adrenergic or noradrenergic neurons and as such this 

may account for the down regulation of other dopaminergic markers at the mRNA 

level, as indicators o f other phenotypes may be up regulated. This though may not be 

that likely a scenario as tyrosine hydroxylase mRNA is down regulated in a 

comparable fashion to other dopaminergic markers, suggesting a conserved effect, i f it 

was present as an indicator o f another phenotype then it may feasibly be expected to 

be controlled in a different fashion. Further additional work could focus on assessing 

expression o f alternative markers indicative o f other neuronal phenotypes. Overall 

though there is some case to believe that under the conditions tested, in particular the 

minus retinoic acid condition that Tera2.cl.SP12 cells can respond to and be driven 

towards acquisition o f a dopaminergic phenotype using this Sonic 

hedgehog/Fibroblast growth factor 8 based approach. 
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Figure 5.24: A summary of the trends in mRNA & protein expression in E C cells treated with a dopaminergic differentiation cocktail 

A possible model of the trends in mRNA and protein expression for 
dopaminergic markers such as tyrosine hydroxylase in Tera2.cl.SP12 human 

embryonal carcinoma stem cells treated as per the scheme outlined 
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Figure 5.24: A possible model of the trends in mRNA and protein expression for dopaminergic markers such as tyrosine hydroxylase based upon the 
findings in this study. Neuronal marker expression is also shown as broadly increasing over the course of differentiation. There doesn't appear to be a direct 
correlation between mRNA and protein expression under the conditions tested, and there may well be a lag period where there is a rise in levels of protein as 
the mRNA levels start to decline. Both the plus and minus R.A. conditions are postulated to behave in a comparable manner throughout the entire process 
based upon the observation that there is little or no difference between the conditions at the end point of the differentiation protocol. This though would need 
to be verified experimentally if this work were to be extended. 



221 

5.4 Discussion 

The first hypothesis to be addressed in this Chapter was whether suspension culture o f 

the Tera2.cl.SP12 cell line could offer any advantages in the pursuit o f the production 

o f potential dopaminergic neurons relative to the use o f standard adherent conditions. 

In the presence o f retinoic acid alone and particularly in combination wi th W n t l 

suspension culture appears to offer some benefits. First o f all neurospheres formed 

from Tera2.cl.SP12 cells treated with refinoic acid (Horrocks et al, 2003), or this 

molecule and W n t l for 7 days expressed nestin, Soxl and Beta I I I tubulin in a 

comparable fashion to the spherical neural masses formed f rom human embryonic 

stem cells in the work o f Cho et al., 2008. The spherical neural masses were then 

utilised to obtain a high yield o f dopaminergic neurons, so given that the embryonal 

carcinoma cell derived neurospheres displayed a similar pattern o f marker expression 

there was the prospect that they may be an adequate and representative substitute for 

the spherical neural masses when using the Tera2.cl.SP12 model. In addition 

suspension cultures tended to increase Beta I I I tubulin mRNA expression and lowered 

the levels o f Soxl mRNA present. In the light o f the findings o f Yan et al., 2005 that 

suggested when using human embryonic stem cells Sonic hedgehog and Fibroblast 

growth factor 8 should be applied early prior to or at a threshold o f Soxl expression, 

the lower levels o f it in suspension cultures may be favourable in the context o f 

integrating the effective 10 day Sonic hedgehog/Fibroblast growth factor 8 based 

differentiation protocol o f Cho et al., 2008. It would be o f interest in fixture studies to 

assess i f Soxl protein expression reflects the pattern seen for its mRNA. Suspension 

culture also appears to promote broadly neuronal differentiation as seen by elevated 

amounts o f Beta I I I tubulin mRNA. However dopaminergic marker expression at 7 

days appears to be affected less by suspension culture and more by the presence o f 

W n t l as observed in Chapter 4. Some indicators such as M s x l that is thought to be 

involved in the specification o f a dopaminergic fate do though show an up reguladon 

due to the use o f suspension culture. A broader screen at different fime points might 

help to extend this work to see i f at other stages similar effects on factors associated 

with a dopaminergic phenotype are detectable. There is though seemingly promise in 

the use o f suspension culture as part o f the strategy to drive the dopaminergic 

differenfiation o f the Tera2.cl.SP12 cell line, as mentioned in the results this could be 
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via changes in gene expression profiles in a comparable manner to that found in 
mouse embryonic stem cells. This notion is also broadly in keeping wi th the work o f 
Ravindran & Rao, 2006, who used an alternative embryonal carcinoma cell line, 
Ntera2 to produce dopaminergic neurons using a method involving embryoid body 
formation and the application o f Sonic hedgehog/Fibroblast growth factor 8 in a 
similar fashion to the protocol pioneered by Lee et al., 2000 using mouse embryonic 
stem cells. 

One anomaly that arose in these initial investigations though was the lack o f an effect 

due to the presence of W n t l in combination with retinoic acid in adherent conditions. 

Wnt l had previously been shown in Chapter 4 to up regulate dopaminergic marker 

mRNA expression at 7 days in relation to cultures treated with only retinoic acid. In 

suspension cultures at 7 days a comparable trend was seen, indicating that this 

molecule was able to exert an effect. However in the adherent samples tested in this 

chapter i t emerges as having little or no influence on dopaminergic marker 

expression. In the light o f the same stock o f W n t l being used and the observable 

effects on suspension cultures this is unusual as the exogenous Wnt l appears to only 

be inactive in the adherent set o f cultures. This may be due to some flaw in the 

embryonal carcinoma cells used for these particular experiments as i f one bad batch 

was split for use and passaged with a view to subsequent use any abnormality could 

be passed on to each set o f cells utilised to provide the 3 biological repeats. The 

unpredictable, aberrant nature o f the embryonal carcinoma cells makes this a 

possibility and could l imit their use in the context o f them not always providing 

reproducible results. There may be other reasons such as some mRNA may be 

degraded during storage, especially i f for example the storage vessel temperature 

drops, although this may be expected to affect all samples it is possible it may have 

more impact on some than others, the duration o f storage may more realistically have 

an effect. There are a myriad o f other potential reasons but the unpredictable nature 

of the embryonal carcinoma cells is one o f them and is an important consideration 

when contemplating their prospective use. 

The next question was, can Sonic hedgehog and Fibroblast growth factor 8 alone and 

in conjunction with ascorbic acid influence the dopaminergic differentiation of 

Tera2.cl.SP12 embryonal carcinoma stem cells? In the Ntera2 cell line Stull & 
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lacovitti, 2001 made the suggestion that Sonic hedgehog and Fibroblast growth factor 

8 were not alone sufficient to drive the dopaminergic differentiation o f such cultures 

(although here retinoic treated derivatives o f the Ntera2 cells were used as previously 

discussed). However Ravindran & Rao, 2006 presented data indicating that in the 

absence o f retinoic acid these molecules could be used to help form dopaminergic 

neurons f rom the Ntera2 cell line. Sonic hedgehog is thought to act via the 

mechanism outlined in Figure 4.2 and in the Tera2.cl.SP12 system it appears that 

Sonic hedgehog may up regulate the amount o f M s x l mRNA, whilst in turn Nkx 6-1 

is repressed and neurogenin2 levels are slightly elevated. This would be expected i f 

Sonic hedgehog was up regulating M s x l and thus enabling it to act on its downstream 

signalling components. A greater effect may be expected to be seen on L m x l a 

mRNA levels but as the first part o f the signalling cascade perhaps i f there is a peak in 

the expression o f this factor it has already passed prior to the sampling points chosen. 

Further analysis starting with an assessment o f the pattern o f protein expression for 

these key transcription factors would be o f benefit. Also i f more time points could be 

included this would be o f use to give a deeper understanding o f the patterns o f 

regulation o f mRNA and protein for dopaminergic markers when applying Sonic 

hedgehog, Fibroblast growth factor 8 and ascorbic acid to the Tera2.cl.SP12 

embryonal carcinoma stem cell system. 

It is o f interest that M s x l is relatively up regulated and that it may influence 

neurogenin2 m R N A levels as this factor is thought to have broadly pro neural 

properties (Abeliovich & Hammond, 2007). This might be a part o f the reason for the 

enhanced levels o f the neuronal marker Beta I I I tubulin that are observed. The 

induction o f the m R N A for Beta I I I tubulin f rom 11 to 17 days also indicates that the 

ascorbic acid in conjunction with the Sonic hedgehog and Fibroblast grov^h factor 8 

may be having an effect on maturation of the cultures. It is also worthy o f note that 

the Wnt l plus retinoic acid pre treatment followed by 4 days o f Sonic hedgehog and 

Fibroblast growth factor 8 application leads to almost twice the amount o f Beta I I I 

tubulin m R N A expression relative to samples treated with only retinoic acid for the 

first 7 days. This may suggest that Wnt l is creating a permissive environment for 

Sonic hedgehog and Fibroblast growth factor 8 to subsequently act in as inductive 

signals, to drive the dopaminergic differentiation process. Further work would be 

needed to address this in more detail, as it may be that the difference is in part or 
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wholly due to the fact that the W n t l plus retinoic acid combined cultures show higher 
levels o f Beta I I I tubulin expression at 7 days and this may be carried forward to 11 
days. It does though still indicate that there could be a positive synergy in the 
combined use o f all three molecules. 

Therefore given that the pathway thought to be induced by Sonic hedgehog is to some 

degree seemingly influenced by it at the mRNA level and the apparent ability o f this 

molecule in concert wi th Fibroblast growth factor 8 and ascorbic acid to enhance the 

expression o f the neuronal marker Beta I I I tubulin. I t is a little surprising to find that 

a range o f markers o f a dopaminergic phenotype are relatively weakly expressed and 

in fact generally down regulated in terms o f the level o f their mRNA present at the 

terminus o f the 17 day differentiation protocol. There was the possibility that this was 

due to the presence o f retinoic acid, however the minus retinoic acid condition that 

replicates the method o f Cho et al., 2008 shows no difference to its plus retinoic acid 

counterpart. This raises the question as to whether retinoic acid should be omitted i f 

possible f rom the entire process as in Ravindran & Rao, 2006. It also offers the 

opportunity for further investigations into alternatives to retinoic acid, for example 

ascorbic acid which has been shown to enhance the yield o f dopaminergic neurons 

from rat midbrain precursor cultures (Yan et al., 2001). There are also two other clear 

possibilities for this unexpected effect, the first is that false positives are arising when 

detecting Beta I I I tubulin expression giving a false impression o f how neuronal the 

sample cultures are. This as discussed in the results is somewhat debateable 

especially given that neurogenin2 is up regulated and this marker is seen by some as 

broadly neuronal. However it is not impossible that cells reflective o f a neuronal 

phenotype are not being formed at all or certainly to a lesser degree than might appear 

to be the case, in turn explaining the lack o f dopaminergic marker expression. 

Alternatively it may be excess Sonic hedgehog is being applied possibly at a sub 

optimal temporal window in the differentiation process. Too much Sonic hedgehog 

may have an inhibitory effect and lead to fewer neurons o f a potentially dopaminergic 

phenotype (Fasano & Studer, 2009; Joksimovic et al, 2009), giving an alternative 

explanafion o f the findings. 

Another possible reason for the relatively negative effect on dopaminergic marker 

expression may be related to the drop in the levels o f the mRNA for the receptor for 



225 

Fibroblast growth factor 8. Although the mRNA is present and the protein may be too 
perhaps a shorter period o f neurosphere formation would be beneficial or earlier 
Fibroblast growth factor 8 application alongside W n t l and retinoic acid may be 
advantageous. 

It may also be that low levels o f mRNA do not correlate directly with the amount o f 

protein present. This was found to be the case for tyrosine hydroxylase and it would 

be o f use to expand this comparison to other markers in future investigations to try 

and lend support to the model whereby the peak in dopaminergic marker mRNA 

expression has passed prior to the sampling points. Markers o f other phenotypes 

could be assessed for their expression to try and identify i f an alternative neuronal 

population is being formed. 

The MG63 cell control though highlights that such expression profi l ing approaches 

although valid need to be thorough, especially when considering more generic 

markers such as Beta I I I tubulin. On balance it appears that MG63 cells do not 

express dopaminergic markers in a regulated manner, but transcription factors such as 

Msx l can be detected in samples from these cells. It may be the case that certain 

elements associated with a particular phenotype in one cell or tissue play a totally 

different role in another cell or tissue type and this may account for the observation 

that some dopaminergic markers are detected in the non neural MG63 cell samples. 

This though underpins the absolute need i f possible to assess a panel o f markers for 

the phenotype o f interest. I f these can also be identified to be regulated in a 

predictable fashion this is an added bonus, as it helps put any findings into a specific 

context. In an ideal scenario both mRNA and protein data would be obtained because 

as the results in this chapter highlight there is seemingly not always a clear correlation 

between mRNA and protein expression. 

The limitations o f assessing marker expression also point to the need for functional 

testing. A clear development to this work would be to assess dopamine release using 

high performance liquid chromatography. I f there was a clear evoked dopamine 

release in test conditions relative to controls upon treatment wi th potassium ions it 

would suggest that there were dopaminergic neurons present. This would i f it were 

the case correlate wi th the protein data for tyrosine hydroxylase. Proteins are the 
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functional components o f a cell and as such their expression may be viewed as more 
critical than that o f the corresponding mRNA. I f this work was investigated to a 
functional level it could be o f great benefit. In addition i f the Tera2.cl.SP12 cell line 
is to be used such testing is essential as any candidate neurons derived f rom it would 
need to show functional properties i f they were to be utilised in pharmacological 
screening. The assessment o f the electrophysiological properties and possibly even 
the transplantation o f the cells derived in vitro into a Parkinsonian animal model such 
as a 6-hydroxydopamine treated mouse could also be o f value, as they would give a 
fiirther insight into the fianctional potential of embryonal carcinoma stem cell derived 
neurons. 

Although it was hoped that some assessment could be made o f the potential for 

applied usage of the Tera2.cl.SP12 model, the current data are not sufficient to base 

any conclusive decisions on, they do suggest that the 17 day approach could offer the 

prospect o f an enhanced yield o f dopaminergic neurons but further protein expression 

data are needed prior to at least some form of functional test such as a dopamine 

release assay. It appears that there may be idiosyncrasies in such cultures that dictate 

that the patterns o f m R N A and protein expression vary differentially wi th time in the 

complex process o f attempting to achieve dopaminergic differentiation but currently 

the data are still too open to interpretation to really make a judgement on the potential 

o f the Tera2.cl.SP12 cell line as a model to study dopaminergic neurogenesis. 

Therefore to try and gain a better insight into the suitability o f this model system for 

this purpose, it was decided to make a direct comparison o f it relative to the Ntera2 

cell line that has been utilised in the desired context in the available literature, using 

another well established method, that o f co-culture with PA6 cells; this forms the 

basis o f Chapter 6. 
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Chapter 6 

The use of a mesodermal 
cell co-culture method to 
make a comparison of the 

dopaminergic 
differentiation potential of 

the Human E C cell 
systems Tera2.cLSP12 and 

Ntera2.Dl 



228 

6.1 Introduction 

The primary purpose o f this final results Chapter is to compare the Tera2.cl.SP12 

embryonal carcinoma cell line to a suitable counterpart that has been used in the 

published literature to study dopaminergic neurogenesis. The Ntera2 cell line was 

chosen to make the comparison against for a number o f reasons. First o f all, it is an 

embryonal carcinoma cell line so suffers f rom the same generic drawbacks o f being of 

cancerous origin, secondly it is f rom the same species, this purports the use of the 

same primers, antibodies and other reagents used for the Tera2.cl.SP12 cell line is 

feasible; f inally it has been used to produce neurons representative of a dopaminergic 

phenotype using a range o f established methods. For example Ravindran & Rao, 

2006, utilised a Sonic hedgehog based protocol and Schwartz et al., 2005, were able 

to demonstrate dopaminergic differentiation o f this cell line using a PA6 based co-

culture methodology. However Stull & lacovitti, 2001, had questioned the ability o f 

Sonic hedgehog and Fibroblast growth factor 8 to drive the dopaminergic 

differentiation o f the Ntera2 cell line, this though may be due to the use of these 

molecules on Ntera2 cells that had already received a lengthy retinoic acid induction. 

Still this poses some unanswered questions as to the potential o f this cell line i f using 

a Sonic hedgehog based approach, especially when this earlier work is 

compared/contrasted to the findings of Ravindran & Rao, 2006. In addition in 

Chapter 5 the ability of Tera2.cl.SP12 cells to respond to these molecules is 

observable but the means by which they regulate differentiation o f such cells is still 

open to interpretation. Therefore as a result the PA6 based co-culture method was 

chosen as it offered a technically straight forward, reasonably rapid means o f 

comparing the Ntera2 system to the Tera2.cl.SP12 model; that had worked previously 

using the Ntera2 cell line (Schwartz et al., 2005). PA6 co-culture has also been 

shown to influence the dopaminergic differentiation o f mouse (Kawasaki et al., 2000), 

primate (Kawasaki et al., 2002) and human (Zeng et al., 2004, Vazin et al., 2008) 

embryonic stem cells, so would appear to possess a stromal derived inducing activity 

that is sufficiently conserved to have an effect on a range of cells f rom different 

species and sources. Further support for choosing this particular method comes from 

the work o f Hayashi et al., 2008 where Wnt5a was highlighted as a key part of the 

dopaminergic neuron inducing activity o f PA6 cells. In the light of the positive 
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findings in Chapter 4 using W n t l to direct the differentiation o f the Tera2.cl.SP12 cell 
Hne there is a strong possibility that another member o f the Wnt family, namely 
WntSa may be able to exert an effect in this cell system. 

There is the concept that the stromal derived inducing activity o f PA6 cells may 

contain two components one related to the cell surface and the other a soluble element 

(Kawasaki et al., 2000). Vazin et al., 2008, extended this idea suggesting that the cell 

surface activity may account for the neural inducing effect o f PA6 cells on human 

embryonic stem cells, whilst the soluble component is responsible for the specific 

dopaminergic neuron inducing activity (Vazin et al., 2008). Therefore although 

various strategies have been tried for example using PA6 conditioned medium or filter 

membranes to separate the PA6 cells from those under investigation (Kawasaki et al., 

2000), the decision was made to utilise the method of directly co-culturing the PA6 

cells with the embryonal carcinoma stem cells as it offered the greatest number o f 

potential avenues to achieve dopaminergic differentiation. 

To try and eliminate stress on the Ntera2 cells, Schwartz et al., 2005 tested the ability 

o f mitomycin C treated, mitotically inactivated PA6 cells to drive the dopaminergic 

differentiation o f this embryonal carcinoma cell line. Such treatment o f the PA6 cells 

did not detract to any significant degree from the potency o f them to promote 

acquisition o f a dopaminergic phenotype, and helped prevent over crowding, in turn 

reducing the burden on the culture media (Schwartz et al., 2005). The embryonal 

carcinoma cells though are the more highly proliferative cell type, and as such steps to 

control their proliferation and differentiation may be an alternative means by which to 

prevent over grown co-cultures. In Chapter 3 after just 1 day retinoic acid was shown 

to cause a statistically significant increase in expression of the neuronal marker Beta 

I I I tubulin. Therefore although the main focus o f this work is to compare the 

Tera2.cI.SP12 model to its Ntera2 counterpart, an additional hypothesis to investigate 

is whether a short pre treatment o f the Tera2.cl.SP12 cells with retinoic acid has any 

benefits when such cells are subsequently co-cultured with PA6 cells. 

In the light o f work by Perrier et al., 2004, who demonstrated that other stromal cells 

such as the MS5 line could be used in strategies aimed at the production o f 

dopaminergic neurons and given the availability o f primary stromal cells in the 
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laboratory, one final hypothesis was put under scrutiny. This was can rat 
mesenchymal stem cells (otherwise known as bone marrow stromal cells) be used to 
drive the dopaminergic differentiation o f embryonal carcinoma stem cells (or their 
retinoic acid induced derivatives)? 

Mesenchymal stem cells have been reported as a potential source o f material f rom 

which dopaminergic neurons can be derived directly in vitro (Trzaska et al., 2007). 

These cells displayed expression o f dopaminergic markers and were able to secrete 

dopamine (Trzaska et al., 2007). This work was supported by that o f Barzilay et al., 

2008 who were able to demonstrate dopaminergic marker expression and dopamine 

secretion upon depolarisation. Further work where REl - silencing factor, a known 

suppressor o f mature neuronal genes in neuronal progenitors, was artificially reduced 

in mesenchymal stem cells facilitated the production o f more functionally mature 

neurons (Trzaska et al., 2008). This work though promising is based on the premise 

that mesenchymal stem cells can trans-differentiate across the germ layer boundary to 

form cells o f different lineages (normally mesenchymal stem cells would form cells o f 

mesodermal origin such as fat, cartilage and bone, not those o f ectodermal origin such 

as neurons). As such this is an area surrounded by much controversy with a body o f 

evidence being presented that suggests cytoskeletal collapse may be a mechanism by 

which mesenchymal stem cells acquire neuronal morphologies (Hardy et al., 2008). 

There is also work that indicates mesenchymal stem cells may express neural proteins 

in standard culture (Deng et al., 2006). In addition the time course o f neuronal 

differentiation could be brought into question as i t might not be expected that 

production o f dopaminergic neurons is possible in 4-6 days as observed in Barzilay et 

al., 2008, especially given that cells have to cross the germ layer boundary and 

neurogenesis is usually not a particularly rapid process even in neural cell types or 

those cell lines with a propensity for this differentiation pathway. On balance though 

it is not inconceivable that 6 days may be adequate i f the correct inductive cocktail is 

supplied, given that a cell in vitro is highly unlikely to mirror in a precise fashion 

events in vivo, as exemplified by the unexpectedly rapid nature o f PA6 driven 

dopaminergic differentiation in primate embryonic stem cell cultures (Kawasaki et al., 

2002). The functional ability o f cells representative o f a dopaminergic phenotype 

derived f rom mesenchymal stem cells clouds the picture further creating greater 

uncertainty. 
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However one aspect o f the potential o f mesenchymal stem cells for use that can more 

readily be agreed upon appears to be their capacity to provide trophic factors that may 

influence neural and more specifically neuronal development (Hardy et al., 2008). 

Bone marrow stromal cells f rom adult mice were used in conjunction with Sonic 

hedgehog and Fibroblast growth factor 8 to help generate neurons characteristic of a 

dopaminergic phenotype f rom embryonic stem cells (Shintani et al., 2008). Therefore 

to add another dimension to this work, the effects o f primary rat mesenchymal stem 

cells in co-culture on the dopaminergic differentiation potential o f embryonal 

carcinoma cells were decided upon as an area for investigation. The fact the cells are 

of rat origin also opens up the possibility o f at least being able to make an inference as 

to whether highly conserved factors play a role in dopaminergic differentiation across 

a number o f species. In addition i f the mesenchymal stem cells in co-culture can exert 

an effect on the embryonal carcinoma cells they offer an additional means by which to 

compare the dopaminergic differentiation capability o f the two cell lines Ntera2 and 

Tera2.cl.SP12 under investigation, which is the principle focus o f this Chapter. 
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6.2 Cell Culture Methods 
Maintenance of mouse PA6 Stromal Cells 

PA6 cells f rom the Riken Bioresource Centre Japan 

(http://www.brc.riken.go.jp/inf/en/index.shtml) were maintained and grown in alpha-

Minimal Essential Medium ( a M E M ; Invitrogen) supplemented with 10% (v/v) fetal 

calf serum (Sigma), and lOOU/ml penicillin/streptomycin (Gibco) in T25 culture 

flasks (Nunc) at 37°C in a 5% CO2 incubator (Sanyo) prior to use. 0.25% (w/v) 

Trypsin/ 0 .1% (w/v) EDTA (in HBSS) (Cambrex) was used to passage cells 1:4 once 

they had grown to a confluent state, on a weekly basis as per the instructions provided 

upon purchase o f the cell line. Passages U+8 to U+12 cells were used as passage U+8 

cells were provided f rom Riken Bioresource centre and subsequent passaging lead to 

the choice o f passages used. 

Maintenance of Primary Rat Mesenchymal Stem Cells 

Primary rat MSCs (all passage 1) were kindly provided by Steven Allan Hardy o f the 

Przyborski Lab, Durham University. They were maintained in Dulbecco's modified 

Eagle's medium ( D M E M ; PAA) supplemented with 10% (v/v) fetal calf serum 

(Sigma), 2 m M L-glutamine (Cambrex), 1 OOU/ml penicillin/streptomycin (Gibco) and 

I x non essential amino acids (Invitrogen) in T75 culture flasks (Nunc) at 37°C in a 

5% CO2 incubator (Sanyo) prior to use. 

Co-culture Differentiation 

PA6 cells or primary rat MSCs were grown to confluency under the conditions 

outlined above, the media aspirated from them, before being washed with Ix PBS, 

prior to treatment for 5 minutes with 0.25% (w/v) Trypsin/ 0 .1% (w/v) EDTA (in 

HBSS) (Cambrex), to release the cells f rom the surface o f the culture flask. The 

Trypsin was then neutralized by addition o f 4ml o f D M E M F G for MSC cultures or 

a M E M supplemented as described above for PA6 cultures and any cells remaining 

loosely bound washed o f f the surface o f the flask by pipetting the D M E M F G or 
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aMEM/Trypsin-EDTA mix against the side o f the flask where cell attachment occurs. 
A further wash with I x PBS was carried out to optimize the retrieval of cells for use. 
The cell containing mix was then transferred to a 15ml Falcon tube and spun in a 
centrifuge (Eppendorf 581 OR (swing bucket rotor A-4-62)) at lOOOrpm, 4°C, for 3 
minutes for PA6 cells or 250g, 4°C, for 5 minutes for the MSCs. The excess fluid was 
removed to leave a cell pellet. This was resuspended in Glasgow minimum essential 
medium ( G M E M ) (Invitrogen) supplemented with 10% (v/v) Knockout Serum 
Replacement (Invitrogen), O.lx non essential amino acids (Invitrogen), I m M sodium 
pyruvate (Invitrogen) and 0.1 m M P-Mercaptoethanol (Invitrogen) as appropriate and 
cell number was obtained by using a haemocytometer. 

Once cell number was known MSCs or PA6 cells were plated out at a density o f 

5000-10000 cells/cm^ (Schwartz et al., 2005) in 6 or 12 well plates (Nunc) in 

Glasgow minimum essential medium (Invitrogen) supplemented with 10% (v/v) 

Knockout Serum Replacement (Invitrogen), O.lx non essential amino acids 

(Invitrogen), I m M sodium pyruvate (Invitrogen) and O. lmM P-Mercaptoethanol 

(Invitrogen). The cells were allowed to settle whilst the EC cells were prepared for 

use as follows. 

Cultures o f Tera2.cl.SP12 or Ntera2.Dl EC cells were grown to confluency, the 

media aspirated f rom them, before being washed with I x PBS, prior to treatment for 5 

minutes with 0.25% (w/v) Trypsin/ 0 .1% (w/v) EDTA (in HBSS) (Cambrex), to 

release the cells f rom the surface o f the culture flask. The Trypsin was then 

neutralized by addition o f 4ml o f D M E M F G and any cells remaining loosely bound 

washed o f f the surface o f the flask by pipetting the DMEMFG/Trypsin-EDTA mix 

against the side o f the flask where cell attachment occurs. A further wash with Ix 

PBS was carried out to optimize the retrieval o f EC cells for use. The cell containing 

mix was then transferred to a 15ml Falcon tube and spun in a centrifuge (Eppendorf 

581 OR (swing bucket rotor A-4-62)) at SOOrpm, 4°C, for 2 minutes. The excess fluid 

was removed to leave an EC cell pellet. This was resuspended in G M E M 

supplemented as outlined above and cell number was determined using a 

haemocytometer. 
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Once cell number was known Tera2.cl.SP12 or Ntera2.Dl EC cells in G M E M 
supplemented as described above were added at a density o f 2000 cells/cm^ (Schwartz 
et al., 2005) into the wells containing MSCs or PA6 cells. The co-cultures were then 
topped up with media to a final volume of 3-5ml. Media was changed after the first 4 
days and every day thereafter up to 17 days which had previously been shown to be 
sufficient time to achieve robust tyrosine hydroxylase expression (Schwartz et al., 
2005). A l l cultures were maintained at 37°C in a 5% CO2 incubator (Sanyo). 

Retinoic acid pre treatment of Tera2.cl.SP12 cells 

Cultures o f Tera2.cl.SP12 EC cells were grown to confluency, the media aspirated 

from them, before being washed with I x PBS, prior to treatment for 5 minutes with 

0.25% (w/v) Trypsin/ 0 .1% (w/v) EDTA (in HBSS) (Cambrex), to release the cells 

from the surface o f the culture flask. The Trypsin was then neutralized by addition o f 

4ml o f D M E M F G and any cells remaining loosely bound washed o f f the surface o f 

the flask by pipetting the DMEMFG/Trypsin-EDTA mix against the side o f the flask 

where cell attachment occurs. A further wash with Ix PBS was carried out to 

optimize the retrieval o f EC cells for use. The cell containing mix was then 

transferred to a 15ml Falcon tube and spun in a centrifuge (Eppendorf 581 OR (swing 

bucket rotor A-4-62)) at SOOrpm, 4°C, for 2 minutes. The excess fluid was removed 

to leave an EC cell pellet. This was resuspended in D M E M F G and cell number was 

obtained by using a haemocytometer. Once the cell number was known the EC cells 

were seeded out in D M E M F G at 0.5x10^ cells per T25 flask (Nunc). After seeding 

out cells were induced to differentiate by exposure to a final concentration o f l O j i M 

all trans retinoic acid (Sigma) for 3 days. Cells were grown in a standard 37°C, 5% 

CO2 incubator (Sanyo). 

After 3 days cells were seeded out into co-cultures in an identical fashion to their 

untreated embryonal carcinoma cell counterparts (as described previously in the co-

culture differentiation section). Figure 6.1 illustrates the two different approaches. 
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Figure 6.1; Schematic of co-culture studies 
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Note: Not to Scale 
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6.3 Results 

The initial comparison o f the Tera2.cl.SP12 model to the Ntera2 system was made by 

using real time PCR to compare the relative levels o f mRNA for neuronal and 

dopaminergic markers in samples f rom the two embryonal carcinoma cell lines grown 

in co-culture with PA6 cells or mesenchymal stem cells. Figure 6.2A shows that 

dopamine receptor 2 m R N A is most up regulated in its expression in Tera2.cl.SP12 

samples co-cultured with PA6 cells. However the induction due to PA6 cell co-

culture is not statistically significant as there is substantial variation in the results 

obtained. I t is though regardless o f this on average markedly up regulated relative to 

the other conditions. In contrast mesenchymal stem cell or PA6 co-culture o f the 

Ntera2 line for 17 days causes a statistically significant increase in dopamine receptor 

2 mRNA levels, reflecting a difference between the starting material and test samples, 

which show much less variation and as such facilitate the statistical effect. These 

samples though in raw terms are on average displaying an induction that is smaller in 

magnitude than that seen with the Tera2.cl.SP12 cell line co-cultured in the presence 

of PA6 cells. Figure 6.2B shows for dopa decarboxylase there is a large variation in 

its expression in most o f the samples and as such little can be taken from this result. It 

may though suggest given that such co-cultures appear by eye to be very over grown 

that there is insufficient regulation o f the differentiation o f the embryonal carcinoma 

cells. 

Tyrosine hydroxylase expression was also examined in such samples and as can be 

seen in Figure 6.3A the trend is comparable to that for dopamine receptor 2 in that 

PA6 cells in co-culture with the Tera2.cl.SP12 cell line show the greatest average 

induction. However once more the Ntera2 co-culture samples display relatively lower 

mean levels o f mRNA for the marker o f interest but the induction observed is 

statistically significant. Again this is most probably due to less variation between test 

samples. Figure 6.3B demonstrates that for the neuronal marker Beta I I I tubulin the 

trend is comparable to that for indicators o f a dopaminergic phenotype with 

PA6/Tera2.cl.SP12 co-culture offering the greatest increase in mRNA expression. On 

this occasion there is a statistically significant induction from the Tera2.cl.SP12 

starting material to the 17 day PA6/Tera2.cl.SP12 co-culture samples, which in 
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addition display a statistically significant increase in expression relative to the 

PA6/Ntera2 condition. This gives some support to the trend observed that suggests 

PA6/Tera2.cl.SP12 co-culture is producing the most neuronal and possibly more 

specifically dopaminergic cultures, i f higher levels o f marker expression are viewed 

as a positive gauge, which in this relatively simple system is probably the most 

appropriate measure. 

When markers associated with the acquisition o f a dopaminergic phenotype were 

assessed a comparable trend was discovered once again. Figure 6.4A shows that 

L m x l a mRNA is most up regulated in PA6/Tera2.cl.SP12 co-cultures and this 

increase relative to the starting material is in this instance significant. Both Ntera2 co-

culture samples show statistically relevant inductions but much lower mean levels 

relative to the PA6 /Tera2.cl.SP12 co-culture condition. Figure 6.4B demonstrates 

that M s x l is up regulated to a statistically significant degree in all co-culture samples 

relative to the appropriate starting material. The trend though once more points to 

PA6/Tera2.cl.SP12 co-culture offering the greatest opportunity to derive a substantial 

average increase in marker expression. Figure 6.5A indicates that for neurogenin2 the 

same trend o f a strong increase in PA6/Tera2.cl.SP12 co-culture samples holds true. 

Although there is a statistically significant increase in expression in MSC/Ntera2 co-

cultures in relation to the Ntera2 starting material this is probably o f little biological 

relevance in the context o f the broader trends. Likewise Figure 6.5B shows that on 

average PA6/Tera2.cl.SP12 co-culture provides the greatest up regulation in marker 

expression (for Nkx 6-1), yet again it is the Ntera2 co-culture samples that differ 

significantly f rom their respective starting material. One question though to arise 

fi-om this analysis o f Nkx 6-1 mRNA expression is i f Msx l levels are up regulated in 

PA6/Tera2.cl.SP12 co-culture samples and this factor is a suppressor o f Nkx 6-1, then 

why and also how is Nkx 6-1 up regulated as well? One possible explanation is that it 

could be due to different cells within the cultures expressing the two different markers 

independently. This is feasible given that Tera2.cl.SP12 cells have been shown to be 

able to produce a mixture o f cell types (Stewart et al, 2003). 

One other factor to be considered when carrying out co-culture experiments is that the 

interaction between the cell types may operate in both directions. That is to say 

stromal cells may influence the differentiation o f embryonal carcinoma cells but these 
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cells themselves may exert an effect on their stromal cell counterparts. Although the 

dopamine receptor 2 and tyrosine hydroxylase primers are to the best o f our 

knowledge human specific, there is the possibility that for these and the other probes 

that detection o f transcripts for the markers tested may arise f rom the expression o f 

them in the PA6 cells or mesenchymal stem cells that have been potentially activated 

by the presence o f the embryonal carcinoma stem cells in co-culture. In practice this 

may or may not be the case and both stromal cell types appear negative for the 

markers tested when grown in isolation but the prospect o f this two way interaction is 

nonetheless worthy o f consideration. Given that the tyrosine hydroxylase antibody 

used in Figure 6.6 that is able to detect both human and mouse tyrosine hydroxylase 

protein, does so in PA6 cells and it is generally accepted that mRNA needs to be 

present to form protein, then given that no tyrosine hydroxylase transcript is found in 

the stromal cells it is reasonable to think at least for this marker that any result is due 

to stromal cell induction o f the embryonal carcinoma cells (and not the reverse 

scenario). The observation that the trends for tyrosine hydroxylase are seen for other 

markers o f a dopaminergic phenotype lends support to the notion that in this system it 

is the stromal cells primarily exerting an effect on the embryonal carcinoma cells and 

not the reciprocal interaction taking place. The human specific nestin 

immunostaining in Figure 6.13 is also indicative that there are few i f any stromal cells 

present at the point o f harvesting the samples for analysis due to the highly 

proliferative embryonal carcinoma cells dominating the co-cultures. Therefore it 

would not be expected that induction o f markers in the stromal cells due to embryonal 

carcinoma cell co-culture would be likely to occur, but it is still valid to think that this 

is theoretically possible. One way to alleviate this issue in future work would be to 

use conditioned media f rom stromal cell cultures to try and drive the differentiation o f 

the embryonal carcinoma stem cells. 
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Figure 6.2: D2 «& AADC mRNA expression in EC/Stromal cell co-cultures 
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Figure 6.2A: Relative expression of human D2 mRNA in samples from two human EC cell lines 
(Tera2.cl.SP12 & Ntera2), rat MSCs & murine PA6 cells, as well as 17 day old co-cultures of the EC and 
stromal cell types. Statistically significant differences between samples calculated using a one way anova 
with accompanying Tukey post hoc analysis are indicated by black bars where appropriate and indicate a 
significance < 0.05. B: As above but for human dopa decarboxylase (and there are no statistically relevant 
differences). In all cases error bars represent the standard deviation of the mean; n=3. 
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Figure 6.3: T H & Beta III tubulin mRNA expression in EC/Stromal cell co-

cultures 

A. 

Tera2.cl.SP12 PA6 MSC f NTora2 MSC • PA6 * NTena2 PA6 * 
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SampI* 

rera2.cl-SP12 
Tena2.cl.SP12 NTora2.D1 Rat MSC 

Figure 6.3A: Relative expression of human TH mRNA in samples from two human EC cell lines (Tera2.cl.SP12 & 
Ntera2), rat MSCs & murine PA6 cells, as well as 17 day old co-cultures of the EC and stromal cell types. 
Statistically significant differences between samples calculated using a one way anova with accompanying Tukey 
post hoc analysis are indicated by black bars where appropriate and indicate a significance < 0.05. B: As above but 
for human Beta I I I tubulin, the purple bars indicate a significant difference between the untreated Tera2.cl.SP12 cells 
and their 17 day PA6 co-cultured counterparts worked out using a one way anova with Tukey post hoc analysis (sig 
< 0.05). Green bars indicate a statistically significant difference between Ntera2 and Tera2.cl.SPI2 samples co-
cultured with PA6 cells for 17 days, defined using Student's T-test (sig < 0.05). In all cases error bars represent the 
standard deviation of the mean; n=3. 
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Figure 6.4; Lmxla & Msxl mRNA expression in EC/Stromal cell co-cultures 
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Figure 6.4A: Relative expression of human Lmxla mRNA in samples from two human EC cell lines 
(Tera2.cl.SP12 & Ntera2), rat MSCs & murine PA6 cells, as well as 17 day old co-cultures of the EC and 
stromal cell types. Statistically significant differences calculated using a one way anova with 
accompanying Tukey post hoc analysis are indicated by black bars for Ntera2 based samples and purple 
bars for Tera2.cl.SP12 based samples where appropriate and indicate a significance < 0.05. B: As above 
but for human Msxl . In all cases error bars represent the standard deviation of the mean; n=3. 
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Figure 6.5: Ngn2 & Nkx 6-1 mRNA expression in EC/Stromal cell co-cultures 
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Figure 6.5A: Relative expression of human Ngn2 mRNA in samples from two human EC cell lines 
(Tera2.cl.SP12 & Ntera2), rat MSCs & murine PA6 cells, as well as 17 day old co-cultures of the EC 
and stromal cell types. Statistically significant differences between samples calculated using a one way 
anova with accompanying Tukey post hoc analysis are indicated by black bars where appropriate and 
indicate a significance < 0.05. B: As above but for human Nkx 6-1. In all cases error bars represent the 
standard deviation of the mean; n=3. 
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Overall therefore it appears feasible these results may indicate that there is a lack of 
control in the co-culture system with the up regulation observed occurring in a hap 
hazard or less well ordered fashion than is desirable, possibly due to a lack of retinoic 
acid to drive the initial differentiation of the embryonal carcinoma cells. One other 
more basic observation that can be made from all the real time PGR analyses is that 
the primers used were human specific in their detection, as there was no amplification 
in any of the murine PA6 or rat mesenchymal stem cell samples for any of the 
markers investigated. Although this would need to be checked more thoroughly by 
testing the primers on rat or mouse sources known to be positive for the phenotypic 
indicators investigated. Also to check that a comparable quantity of cDNA was used, 
the amount of it in rat, mouse and a representative human sample was quantified. 
Table 6.1 shows a similar amount of cDNA was present for each species supporting 
the concept that the lack of detection was probably due to the primers only being 
suitable for amplification from human sources. 

Table 6.1: Quantification of cDNA 

Sample (n=3) Mean Quantity of cDNA 

(ng/^L) 

Standard Deviation of Mean 

(ng/^L) 
Human (Ntera2) 263.62 8.03 
Mouse (PA6) 247.19 14.53 
Rat (MSC) 247.14 9.63 

To try and build on this initial real time PGR data that suggested Tera2.cl.SP12 cells 

could show a comparable or greater up regulation of dopaminergic marker mRNA 

relative to their Ntera2 counterparts when co-cultured with PA6 cells or mesenchymal 

stem cells, Western blotting was employed to extend the comparison to the level of 

protein expression. Figure 6.6 indicates that there is little difference in Beta I I I 

tubulin protein expression between any of the test co-culture conditions and the two 

types of embryonal carcinoma cell under investigation. There is only a weak to no 

real detection of this marker though in the PA6 or mesenchymal stem cell samples. 

On top of this tyrosine hydroxylase protein expression is not observed in either 
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embryonal carcinoma cell line or the non neural MG63 cell samples as might be 

predicted. However it is only weakly detected in the PA6/Tera2.cl.SP12 co-culture 

samples and is absent in any o f the other co-cuUure conditions. It does appear to be 

detectable in the PA6 cells and may be very weeikly present in the mesenchymal stem 

cells. This observation is not totally unsurprising as stromal cell types have been 

shown previously to express neural markers (Deng et al, 2006). The disparity 

between detection o f tyrosine hydroxylase protein in Figure 6.6 and the lack o f 

detection o f its m R N A in Figure 6.3 most probably arises f rom the antibody used 

being able to detect tyrosine hydroxylase in a range of species including both human 

and mouse, where as the primers supplied for tyrosine hydroxylase are thought on 

reliable grounds to be human specific The observation that the detection o f tyrosine 

hydroxylase is stronger in the PA6 cell only than in the PA6/Ntera2 and PA6 

/Tera2.cl.SP12 co-culture samples would suggest few i f any PA6 cells are left at 17 

days and that the embryonal carcinoma cells comprise close to or the entire culture. 

This is supported further by the human specific nestin staining in Figure 6.13 that 

indicates few i f any non human cells remain at the point o f harvesting the samples for 

analysis and is also consistent with the appearance o f such cultures prior to 

harvesting. This protein data may also support the notion that there is a lack of 

control over the differentiation process as although mRNA levels are up regulated this 

increase is not observable at the protein level. The only trend that could be picked out 

is that tyrosine hydroxylase protein is detectable in the PA6/Tera2.cl.SP12 co-culture 

samples, which show the greatest mean induction o f this and other markers in terms o f 

mRNA expression. Thus it would appear that Tera2.cl.SP12 cells again compare 

favourably to their Ntera2 counterparts, although the conditions for investigation 

could be improved upon. 
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Figure 6.6: T H & Beta I I I tubul in protein expression in EC/Stromal cell co-

cultures 
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Figure 6.6A: TH protein expression assessed by Western blotting in samples from two human 
EC cell lines (Tera2.cl.SP12 & Ntera2), rat MSCs & murine PA6 cells, as well as 17 day old co-
cultures of the EC and stromal cell types. "Non neural MG63 samples were also included as a 
control. 20^L of protein were loaded for each sample. B: As for A. above but this blot 
indicates expression of Beta III tubulin not TH. C: A blot showing beta-actin expression in 
comparable samples to those in A. and B. above, beta-actin was used as a loading control. 
Representative images from n=3 repeats using biologically independent samples are shown. 
The detection of Beta III tubulin in the MG63 cell samples is consistent with the flow cytometry 
analysis in Chapter 5 and may reflect non specific binding of the antibody. An alternative 
theory is that it may be possible to detect neural markers (that are perhaps not totally specific for 
a particular phenotype) in non neural cell types in a similar manner to the detection of neural 
markers in stromal cells in Deng et al, 2006. This would also help explain the detection of TH 
in the stromal PA6 cells. 
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Prior to changing the experimental conditions one final assessment o f the two 
embryonal carcinoma cell lines in co-culture wi th PA6 cells or mesenchymal stem 
cells was made using immunocytochemistry. This facilitated the possibility of 
observing neuronal cell morphology and also the detection o f tyrosine hydroxylase in 
more than just one test condition as a small area o f tyrosine hydroxylase positive cells 
could possibly be detected that may not be sufficient in number to provide a clear 
band on a Western blot. First o f all though the Ntera2, PA6 and mesenchymal stem 
cells had to be screened for their expression o f tyrosine hydroxylase and Beta I I I 
tubulin the two markers that were to be studied in test samples. Figure 6.7 
demonstrates that Ntera2 cells give a diffuse faint stain for Beta I I I tubulin that is 
barely detectable and are essentially negative in their staining for tyrosine 
hydroxylase. Mesenchymal stem cells and PA6 cells showed no real detectable 
staining for tyrosine hydroxylase or Beta I I I tubulin (data not shown). Therefore any 
staining observed is likely to be due to the presence of these markers in embryonal 
carcinoma cell derivatives fol lowing their co-culture driven differentiation. One point 
the lack o f tyrosine hydroxylase staining o f stromal cell cultures highlights though is 
that the strength o f expression and sensitivity o f detection are key factors when 
considering expression data. Tyrosine hydroxylase is detectable given the amount of 
sample loaded in the Western blot analysis in Figure 6.6, however it is not detectable 
by immunostaining. This disparity may arise f rom the differences between the protein 
being detectable and situations where it is truly present in a manner that is 
meaningfiil. I f tyrosine hydroxylase was found in process like structures indicative o f 
a neuronal morphology it may be deemed an indicator o f a dopaminergic phenotype, 
but in stromal cells this is unlikely to be the case and it may be more an artefact o f 
culture and the sensitivity o f detection offered by molecular expression analyses. In 
addition some immunological reagents may perform more effectively for one 
technique such as Western blotting than another such as immunostaining, as a 
cytosolic protein, tyrosine hydroxylase may by its very nature also not lend itself to 
detection by immunocytochemistry. Figure 6.8 shows that Beta I I I tubulin staining is 
detectable in all co-culture conditions. There are some neuronal type cells but there 
are not long clear processes as seen in Chapter 4 when Wnt l was used in conjunction 
with retinoic acid for 3 weeks. In addition only fairly small areas o f the entire culture 
show positive staining, although most areas are extremely confluent wi th cells as can 
be seen from the amount o f Hoescht stained nuclei and phase images. Figure 6.9 
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indicates the same pattern is true for tyrosine hydroxylase staining. It is detectable in 

all co-culture samples but only in very rare patches and the positive cells are a tiny 

proportion o f the entire cultures. It may be these small areas are stromal cells (as 

tyrosine hydroxylase was detected in PA6 cells by Western blot) but given the 

associated morphologies that are more characteristic o f a potential neurite in culture 

along with the nestin staining in Figure 6.13, this is unlikely. Therefore it would 

appear that although the method for co-culturing the cells could be improved upon the 

Tera2.cl.SP12 cell line is seemingly as or more potent than the Ntera2 cell line in 

terms o f its ability to express markers o f a dopaminergic phenotype. It also seems to 

be the case that PA6 cells are more able inducers o f dopaminergic marker expression 

in relation to mesenchymal stem cells, although these cells may possess some 

potential to do this in more refined culture conditions. 
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Figure 6.7: Staining o f Ntera2 EC ceils f o r T H & Beta I I I tubul in 

Beta III tubulin 

Secondary only control Secondary only control 

Phase x10 

Figure 6.7: Immunostaining of the Ntera2 cell line for Beta III tubulin and TH. There is no real 
detection of tyrosine hydroxylase and a faint diffuse background level of detection for Beta 111 tubulin. 
This is very hard to detect in the merged image produced in Adobe Photoshop. The secondary only 
control conditions were not treated with any primary antibody just the vehicle in which antibodies were 
diluted (SBP), prior to treatment with the appropriate secondary antibody for either TH or Beta HI 
tubulin. As expected there is an absence of any detection in the secondary only controls which are 
merged with the corresponding Hoescht images to confirm the presence of cells by staining their nuclei. 
The phase image displays the morphology of the cells after fixation and the staining process. Scale bars 
are approximately equal to 100p.m. Representative images of n=3 repeats are shown. Given that the TH 
and Beta III tubulin staining are so weak it is probably safe to conclude that there is no true detection. 
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Figure 6.8: Beta I I I tubul in staining in EC/Stromal cell co-cultures 
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Figure 6.8: Merged images (produced in Adobe Photoshop) of Beta III tubulin immunostaining (FITC) against a background of Hoescht stained nuclei in 17 
day old co-cultures of stromal and embryonal carcinoma cells. The conditions represent Ntera2 (NT2) cells in co-culture with MSCs or PA6 cells and 
Tera2.cl.SP12 (SP12) cells in comparable co- culture conditions. The secondary only control conditions were not treated with any primary antibody just the 
vehicle in which antibodies were diluted (SBP), prior to treatment with the appropriate secondary antibody for Beta III tubulin, these images were also 
merged with the corresponding Hoescht image to show cells were detectable. As expected there is an absence of any FITC detection in the secondary only 
controls. The phase images show the confluent nature of the cultures at the point of fixation and staining. Scale bars are approximately equal to 100|im. 
Representative sample images of n=3 biological repeats are shown. The merged images highlight that the cultures are very confluent and that only some 
areas of the cultures imaged were positive for Beta III tubulin expression. 
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Figure 6.9: T H staining i n EC/Strotnal cell co-cultures 
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To try and overcome the problem o f the embryonal carcinoma cells predominating in 
the co-cultures, retinoic acid was used to try and direct their differentiation for 3 days, 
prior to subsequent co-culture for 17 days. In these experiments only the 
Tera2.cl.SP12 cell line was used to make the comparison as it had shown in broad 
terms the greatest capacity to up regulate marker expression and as such seemed the 
most promising vehicle to identify any differences that retinoic acid pre treatment o f 
the embryonal carcinoma cells may bring about. Figure 6.10 displays phase images 
that reveal the co-cultures o f retinoic acid pre treated embryonal carcinoma cells with 
PA6 or mesenchymal stem cells are not heavily overgrown. This is not observed 
when using untreated embryonal carcinoma cells which produce very cluttered 
cultures. However in the mesenchymal stem cell cultures at 7 days there are signs o f 
floating, probably dead, cells. Even at day I the mesenchymal stem cells do not show 
the expected morphology and as such may be undergoing a stress response, prior to 
possible death. This is unsurprising given that the protocol has previously been 
used/refined for use with PA6 cells which respond seemingly more favourably to it. 
Although this may be the case even when using PA6 cells with retinoic acid pre 
treated embryonal carcinoma cells, one passage of such cells produced very confluent 
cultures, so their proliferative nature had not in 3 days been fu l ly brought under 
control, the result being one sample that appeared over grown in some areas, with 
clear signs o f dead cells floating in the media. 

Immunocytochemistry was again used to assess Beta I I I tubulin and tyrosine 

hydroxylase expression in co-culture samples. Retinoic acid treated embryonal 

carcinoma cells fol lowing co-culture with PA6 cells or mesenchymal stem cells show 

Beta I I I tubulin expression (Figure 6.11) and a faint but detectable level o f tyrosine 

hydroxylase (Figure 6.12). There appear to be no real differences in these samples 

relative to comparable untreated embryonal carcinoma cell co-cultures. The number 

o f tyrosine hydroxylase positive cells is a tiny proportion o f the entire culture, wi th 

more cells being broadly neuronal (Beta I I I tubulin positive) as might be expected and 

as was found previously. The same technique was also employed to address the 

question as to whether the co-cultures contained any stromal cells at 17 days. A 

human specific nestin antibody was used that would identify the vast 

majority/possibly the whole embryonal carcinoma cell based population. Figure 6.13 

and supporting Appendix E show that the bulk o f the co-cultures were heavily nestin 
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positive (indicated by the upper heavy condition images), where as in less confluent 

areas there appeared in PA6/Tera2.cl.SP12 co-cultures to be nestin negative cells, 

indicated by the presence o f positive Hoescht stained nuclei but a lack o f nestin 

staining that morphologically in the phase images are disparate f rom what one would 

expect for an embryonal carcinoma cell or a derivative o f it. Mesenchymal stem cell 

co-cultures though even in the less confluent areas show nestin staining that correlates 

with the presence o f Hoescht stained nuclei, the supporting phase image also shows 

the samples to have observable characteristic embryonal carcinoma cell type 

morphologies. Therefore it would appear there may be a small number o f stromal 

cells left in the co-cultures at 17 days or possibly particularly in the case of the 

mesenchymal stem cells none at all. Even with the retinoic acid pre treatment the 

embryonal carcinoma cells still seem to predominate to the detriment of the stromal 

cell types. 
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Figure 6.10: The morphology of R.A. treated EC/Stromal cell co-cultures 
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Figure 6.10: Phase images of Tera2.cl.SP12 cells (pre treated for 3 days with lOfiM retinoic 
acid) in co-culture with either murine PA6 or rat mesenchymal stem cells at different time 
points. The bright clumps of cells/debris clearly present at 7 days in MSC/Tera2.cl.SP12 
may represent dead cells. When retinoic acid is used the co-cultures appear far less 
confluent than when it is omitted from the differentiation strategy. Scale bars are 
approximately equal to 10O^m. 
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Figure 6.11: Beta I I I tubul in staining in R.A. treated EC/Stromal cell co-cultures 
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Figure 6.11: Merged FITC/Hoescht images (produced in Adobe Photoshop) showing Beta III 
tubulin immunostaining in Tera2.cl.SP12 cells (pre treated for 3 days with 10|iM retinoic acid) 
then co-cultured with either murine PA6 or rat mesenchymal stem cells for 17 days. The 
secondary only control conditions were not treated with any primary antibody just the vehicle in 
which antibodies were diluted (SBP), prior to treatment with the appropriate secondary antibody 
for Beta III tubulin. As expected there is an absence of any detection in the secondary only 
controls, the merge with the corresponding Hoescht image confirms the presence of cells by 
staining their nuclei. Scale bars are approximately equal to lOOjim. Representative sample 
images of n=3 biological repeats are shown. It is clear that only some of the total cellular 
population are positive for Beta III tubulin, areas were imaged that were relatively sparsely 
populated to try and alleviate the problem of the Hoescht background drowning out the FITC 
detection when the images were merged. 
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Figure 6.12: T H staining in R.A. treated EC/Stromal cell co-cultures 
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Figure 6.13: Nestin staining in R.A. treated EC/Stromal cell co-cultures 
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One final real time PCR screen was carried out to compare mRNA levels of neuronal 
and dopaminergic markers in untreated and 3 day retinoic acid pre treated 
Tera2.cl.SP12 cells co-cultured for 17 days with PA6 cells or mesenchymal stem 
cells. A comparison was also made to Tera2.cl.SP12 embryonal carcinoma cells left 
to grow for 17 days in the medium used for the co-culture step. Figure 6.14A shows 
that for tyrosine hydroxylase there is no real difference between retinoic acid pre 
treated or untreated embryonal carcinoma cells following the co-culture step. The 
mesenchymal stem cell co-cultures appear almost identical to the 17 day embryonal 
carcinoma control suggesting that the mesenchymal stem cells may well be under 
stress and as such exert less o f an effect prior to potentially dying off. Figure 6.14B 
shows that for Beta I I I tubulin the 17 day embryonal carcinoma control samples 
actually display the highest level o f mRNA expression for this neuronal marker, 
though there is a noticeable variation in the results probably due to the total absence 
o f any control over the differentiation process. Within the context of the experimental 
error there is no real difference between the co-culture samples, regardless o f whether 
or not the embryonal carcinoma stem cells are given a retinoic acid pre treatment. 
Figure 6.15A shows that in terms o f dopamine receptor 2 m R N A expression, retinoic 
acid pre treatment o f the embryonal carcinoma cells has no real effect in comparison 
to using their untreated counterparts. In this instance expression in the control is 
greater than in the mesenchymal stem cell co-culture conditions supporting the 
concept that the conditions are sub optimal for using this cell type. Figure 6.15B 
demonstrates similar trends for L m x l a , suggesting once again that retinoic acid pre 
treatment offers no real advantages and that mesenchymal stem cell co-culture o f 
embryonal carcinoma cells is not adequately facilitated using the methods followed in 
this work. Overall therefore exposing the Tera2.cl.SP12 cell line to retinoic acid prior 
to co-culturing it with PA6 cells or mesenchymal stem cells for 17 days using the 
protocol outlined appears to offer no advantages in driving it towards the acquisition 
of a dopaminergic phenotype. 
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Figure 6.14: T H & Beta I I I tubul in expression in R.A. treated EC/Stromal cell 

co-cultures 
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Figure 6.14A: Relative expression of human TH mRNA in either undifferentiated or 3 day lO îM retinoic acid 
pre treated Tera2.cI.SP12 ceils co-cultured with rat MSCs or murine PA6 cells for 17 days. The 17 day E C 
control samples represent Tera2.cl.SP12 cells left to grow for this duration in just the media used for the co-
culture step in the absence of any other cell type. The Tera2.cl.SP12 condition represents the E C cell starting 
material. Although by eye there appears to be the possibility of statistically significant differences between the 
starting material and the test conditions in particular the PA6 + Tera2.cl.SP12 samples this is not the case. B: As 
above but for human Beta III tubulin. In all cases error bars represent the standard deviation of the mean; n=3. 
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Figure 6.15: D2 <& Lmxla expression in R.A. treated EC/Stromal cell co-cultures 

A. 

T e r a 2 . c l , S P 1 2 17 Day E C Control M S C - i - T e n a 2 . c l . S P 1 2 P A 6 - f T e n a 2 . c l . S P 1 2 M S G R . A . P r e P A 6 R . A . P r e 
T rea ted T e r a 2 . c l . S P 1 2 Trea ted T e r a 2 . c l . S P 1 2 

Sample 

B . 

80 4-

T e n a 2 . c l . S P 1 2 17 D a y E C Control M S G T a r a 2 . c l . S P 1 2 P A 6 * T e r a 2 . c l . S P 1 2 M S C * R . A . P r e P A 6 * R . A . P r e 
T r e a t e d T e n a 2 . c l . S P 1 2 Treated T e r a 2 . c l S P 1 2 

Sample 

Figure 6.15A: Relative expression o f iiuman D2 m R N A in either undifferentiated or 3 day \0\iM retinoic acid 
pre treated Tera2.cl.SPI2 cells co-cultured wi th rat MSCs or murine PA6 cells for 17 days. The 17 day EC 
control samples represent Tera2.cl.SP12 cells left to grow for this duration in just the media used for the co-
culture step in the absence o f any other cell type. The Tera2.cl.SP12 condition represents the EC cell starting 
material. B: As above but for human L m x l a . In all cases error bars represent the standard deviation o f the 
mean; n=3. Again although by eye there appear to be some conditions which show variations which could be 
viewed as potentially significant no statistically relevant differences were found. 
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6.4 Discussion 

The main focus of this Chapter was to compare and contrast the Tera2.cl.SP12 cell 

line to its Ntera2 counterpart to try and gauge its potential for dopaminergic 

differentiation; given that the Ntera2 system has been used previously in the published 

literature in the context of studying dopaminergic neurogenesis via a number of 

established protocols such as those used in Ravindran & Rao, 2006, and Schwartz et 

al., 2005. A PA6 co-culture approach similar to that of Schwartz et al., 2005 was 

adopted for use and in the initial investigations, a number of markers associated with a 

neuronal or dopaminergic phenotype displayed an apparent mean up regulation in 

their expression that was particularly marked in PA6/Tera2.c!.SP12 co-cultures, 

however only Beta I I I tubulin, Lmxla and Msxl showed a statistically significant 

increase in their mRNA expression relative to the starting material. In contrast 

PA6/Ntera2 co-cultures displayed statistically significant increases in tyrosine 

hydroxylase, dopamine receptor 2, Lmxla, Msxl and Nkx 6-1 mRNA expression 

relative to the Ntera2 starting material. These samples though, on average, showed a 

relatively low expression of these markers in contrast to their Tera2.cl.SP12 

counterparts. Therefore it would appear that although these may be statistically 

relevant differences in some cases they might not represent biologically meaningful 

variations. It does though suggest that the Ntera2 cells offer a more reproducible 

system that may give more results to which a statistical degree of significance can be 

attributed. In contrast the Tera2.cl.SP12 cells appear to offer a system that shows 

slightly less reproducibility but in absolute terms a greater ability to up regulate 

dopaminergic markers. In essence the two cell lines are probably both suitable for use 

but offer different advantages and disadvantages. 

The Tera2.cl.SP12 cells appear more able to up regulate Beta III tubulin mRNA 

showing a statistically significant difference in this initial screen (Figure 6.3B) to both 

their Ntera2 counterparts when the two cell lines are co-cultured with PA6 cells and to 

the Tera2.cl.SP12 starting material. However in a later screen (Figure 6.14B) 

comparable samples of PA6 co-cultured Tera2.cl.SP12 cells do not differ to such a 

degree in relation to the starting material. This highlights neatly the problem of 

reproducibility found when using the Tera2.cl.SP12 system. This is not dissimilar to 
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the scenario seen in earlier work where in Chapter 4 Wntl in the presence of retinoic 
acid had an effect on dopaminergic and neuronal marker expression at 7 days in 
adherent cultures, whilst in Chapter 5 it exerted little or no impact in comparable 
conditions for no apparent reason. Despite this though, it is not possible to ignore the 
often strong trends seen when using Tera2.cl.SP12 cells and ultimately i f up 
regulation of markers is a positive which it may well be in a simple differentiation 
model then such cells are well suited to this purpose. In comparison it would appear 
that Ntera2 embryonal carcinoma stem cells offer a more reproducible system for the 
purpose investigated, but they are seemingly less able to produce such striking 
differences in relation to those seen for the Tera2.cl.SPl2 cells. 

Primary rat stromal cells were also tested for their ability in co-culture to induce 

dopaminergic marker expression. Only Msxl was up regulated to a statistically 

significant degree in Tera2.cl.SP12 co-cultures, but 6 markers were up regulated to 

such an extent in Ntera2 co-cultures. Subsequent data make it questionable i f any of 

these differences were of biological importance but the statistics do reinforce the 

concept that the Ntera2 system is more measured, controlled and possibly less 

aberrant than the Tera2.cl.SP12 cell line as Ntera2 samples consistently give rise to 

more reproducible results that allow statistical relevance to be more often attributed. 

To some extent this could be an advantage but it is also a risk in that it may give some 

results that are biologically of little value a statistical meaning and this should be 

guarded against. 

In this regard the most interesting observations from the initial real time PCR data are 

the concomitant rises in Msxl and Nkx 6-1 mRNA expression levels. Msxl is 

thought to be a suppressor of Nkx 6-1 (Abeliovich & Hammond, 2007) so i f Msxl is 

up regulated to a statistically significant degree, one would predict Nkx 6-1 levels 

would show a reduction, but this is not the case. This suggests that different cells 

within the culture are up regulating the markers independently or there is a lack of 

control over the system. This concept (of a lack of control) is supported by the total 

lack of tyrosine hydroxylase protein expression and the lack of induction (which 

might be expected) of Beta I I I tubulin at this level. Ultimately i f protein expression is 

not correctly monitored then as proteins are the functional components of a cell, it is 

highly unlikely that the expected behaviour of the cells under investigation wil l occur. 
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In the context of the Msxl observation i f the mRNA for Msxl is not translated into 
protein (as appears to be the scenario for tyrosine hydroxylase) then Nkx 6-1 levels 
are unlikely to be repressed at any level and up regulation of mRNA for markers can 
take place at wil l . To extend this notion it appears that especially in relation to 17 day 
embryonal carcinoma cell only controls that markers are being up regulated over time 
and not in a controlled fashion due to the co-culture. This is not true in all cases but it 
is clear from the amount of nestin expression and seemingly total absence or at best 
minimal presence of stromal cells at 17 days that there is insufficient control over the 
embryonal carcinoma cells. It would appear that given that using retinoic acid to try 
and gain control over the embryonal carcinoma cells helps very little, evidenced by 
the slight drop in marker expression, that perhaps the mitotic inactivation of a 
confluent monolayer of PA6 cells as in Schwartz et al., 2005, is the best way forward, 
to achieve control over the co-culture system. Alternatively as in Hayashi et al., 2008 
key components such as WntSa that constitute the stromal derived inducing activity 
need to be defined and then i f possible applied in an exogenous fashion in a controlled 
way, in an analogous manner to that by which Sonic hedgehog and Fibroblast growth 
factor 8 are often effectively used for example in Yan et al., 2005. Co-culture could 
also be carried out in the presence of Fibroblast growth factor 20 as in Correia et al., 
2008, application of this molecule increased the percentage of tyrosine hydroxylase 
positive neurons obtained from human embryonic stem cells five fold from 3 to 15%. 

The somewhat cluttered nature of the co-cultures at 17 days also detracts from the 

immunocytochemical results, because the presence of Beta III tubulin and tyrosine 

hydroxylase although detectable is only observed in discrete areas, there is no 

consistency or uniformity to the cultures. As such any comparison between 

conditions is difficult to make especially for the more sparsely detectable tyrosine 

hydroxylase. The only real observation that can be made is that there are neuronal 

like structures with cell bodies extending thin neuritic processes that stain positively 

for Beta II I tubulin and tyrosine hydroxylase, this at least supports the concept that the 

PA6 cells and mesenchymal stem cells can secrete neurotrophic factors that may 

cause some differentiation amongst the melee of proliferating embryonal carcinoma 

cells. In addition the high level of nestin expression in the co-cultures is indicative of 

the presence of relatively immature neural cells and as such supports the idea that 
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more stromal cells are necessary to drive the process of embryonal carcinoma cell 
differentiation, this would be a necessity in future work. 

Other aspects to consider in any additional studies building on this Chapter would be 

is the effect of treating the cells with retinoic acid for 3 days undone or undermined 

by disrupting them when seeding them out a second time for the co-culture step? It 

may be better to treat the embryonal carcinoma cells with retinoic acid (possibly for 

longer than 3 days) then seed the stromal cells into the vessel in which the retinoic 

acid treated embryonal carcinoma cells already reside. In addition the protocol used 

is refined for use with the PA6 cells, it may well be the mesenchymal stem cells are 

dying off in the conditions used. Therefore i f extending this work, it would be 

advisable to try and define more optimal conditions in which to grow the 

mesenchymal stem cells in conjunction with the embryonal carcinoma cells. Both 

mesenchymal stem cells and embryonal carcinoma stem cells grow in DMEM but 

when seeded out together in this medium (supplemented as it would be for 

mesenchymal stem cells) neither cell type showed any sign of adhering. This was just 

a small test study and the problem may have been with the plastic ware. Alternatively 

it may be the two cell types do not directly interact well or that one or both cell types 

have a negative effect on each other via the factors they may secrete. Under the 

conditions tested here though it is quite clear that the mesenchymal stem cell co-

cultures are seemingly sub optimal not just for use as a means to try and produce 

dopaminergic neurons but also as a means to study the process. The PA6 based co-

cultures are less sub optimal but the method needs further refinements to try and 

produce more conclusive results. It may be that co-culture methods involving 

mesenchymal stem cells or PA6 cells are best combined with the use of other 

dopaminergic inducing agents such as Sonic hedgehog and Fibroblast growth factor 8 

as in the work of Shintani et al., 2008 using mesenchymal stem cells, or even the use 

of such molecules in conjunction with ascorbic acid application and Nurrl over 

expression as in the work of Kim et al., 2006, using PA6 cells. In the light of the fact 

embryonal carcinoma cells are highly proliferative they may also be viewed as not 

well suited to co-culture based approaches that in themselves by combining the use of 

two cell types potentially create a greater burden on the culture media and possibly a 

more stressful cellular environment. The use of conditioned media may help in this 
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regard and would also eliminate the possibility of embryonal carcinoma cells having 
inductive effects on their stromal cell counterparts. 

In summary it is not possible to make any inference as to whether highly conserved 

factors between species can drive the dopaminergic differentiation of human 

embryonal carcinoma cells as the range of molecules that could be secreted by the two 

stromal cell types is too vast and the method employed in this study too sub optimal 

especially when using the mesenchymal stem cells. In turn it is hard to make any 

conclusive remarks as to whether mesenchymal stem cells can direct the 

dopaminergic differentiation of human embryonal carcinoma stem cells in the 

conditions tested as the mesenchymal stem cells are clearly not behaving in a 

characteristic fashion, exemplified by the observation that they do not show an 

expected morphology even after just 1 day of co-culture. PA6 cells as would be 

expected do seem to be able to cause an induction of dopaminergic markers, 

especially in Tera2.cl.SP12 cells at least at the level of the mRNA. Retinoic acid pre 

treatment of such embryonal carcinoma cells prior to co-culture appears to offer no 

advantage in terms of inducing dopaminergic or neuronal marker expression relative 

to the use of untreated Tera2.cl.SP12 cultures as the starting material. Therefore it 

would appear that the most balanced view of this work is that mesenchymal stem cells 

in more optimised conditions may be able to show positive effects on the 

dopaminergic differentiation of embryonal carcinoma cells, although they appear to 

exert a minimal effect in the conditions tested here. PA6 cells are perhaps more able 

to function in the context of the experimental protocol used but they could possibly 

have a greater effect i f more of them were used. In addition it would appear that 

using the method outlined earlier in this chapter that Tera2.cl.SP12 embryonal 

carcinoma stem cells are as viable and potent a model for the study of dopaminergic 

neurogenesis as the Ntera2 cell line. 
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Chapter 7 
Final Discussion 
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The investigations undertaken in this thesis have attempted to assess the capacity for 
dopaminergic differentiation of the human embryonal carcinoma cell line 
Tera2.cl.SP12. The findings presented offer an insight into the potential of this model 
as a research tool but further work is required to give a broader perspective. 

To begin with it would appear that when treated with retinoic acid the Tera2.cl.SP12 

cell line is able to up regulate the expression of markers associated with a 

dopaminergic phenotype over time. However the dopaminergic differentiation of the 

system is seemingly unaffected by the use of more physiologically relevant oxygen 

pressures, in contrast to work in rat mesencephalic precursor cultures (Studer et al., 

2000). This is most probably due to embryonal carcinoma cells not being derived 

from the brain and as such in vivo mimicry of the environment in this organ is less 

likely to exert an effect on them in comparison to that seen with cells of midbrain 

origin. There is also the possibility that 5% oxygen is not a low enough pressure to 

produce a clear effect as there may be a threshold level above which no tangible 

difference is observed. I f such a situation exists and the 5% oxygen condition lies 

above the critical point for an effect to be detectable then this may explain these 

observations. Alternatively it may be that certain technologies such as lowered 

oxygen culture are more optimal in their usage where they offer the opportunity for 

recapitulation of the in vivo environment, rather than being looked upon as a means to 

induce a dopaminergic phenotype. The finding that when using embryonic stem cells 

3.5% oxygen culture exhibited only a small but positive effect on dopaminergic 

differentiation (Kim et al., 2008) adds support to this concept. It may be that the main 

purpose of physiological oxygen culture is to reduce the oxidative stress that standard 

(21%) oxygen culture may engender. This though would still be of value if a 

relatively pure population of dopaminergic neurons could be generated. 

In the pursuit of an enriched population of potential neurons displaying this particular 

neurotransmitter phenotype one molecule that may be of use is Wntl . Although 

additional experiments to elucidate the mechanism by which it acts in synergy with 

retinoic acid are required, the findings in Chapter 4 are consistent with it having a 

positive effect on the production of Beta II I tubulin positive cells that are potentially 

neurons. In addition it appears to possess the ability to up regulate dopaminergic 

marker expression after a relatively short period of exposure to it in conjunction with 
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retinoic acid in the Tera2.cl.SP12 cell line. Both of these elements are of appeal, in 
that, in an in vitro system where there are mixtures of cell types, the ability to first and 
foremost increase the neuronal population offers a starting point from which further 
more specific differentiation strategies can be focussed. Also in the context of 
creating screening assays, protocols are required that provide temporal efficiency; 
Wntl by displaying an early mode of action may help meet this requirement. 

It could have been postulated that Wntl may have influenced Nurrl expression 

(Castelo-Branco et al., 2003). In Chapter 3 retinoic acid was seen to have positive 

effects on the up regulation of the mRNA for this marker after just one day of 

differentiation, in a similar manner to that seen in Misiuta et al., 2006 for Nurrl 

protein. Therefore one area for advancement of this study would be to over express 

Nurrl to attempt to efficiently produce more neuronal cultures in a manner analogous 

to that in Hara et al., 2007. I f this could be combined with the use of Wntl then 

potentially a very large number of potential neurons could be generated. 

It has also been proposed that Wntl creates a permissive environment for inductive 

signals such as Sonic hedgehog and Fibroblast growth factor 8 to act (Burbach & 

Smidt, 2006). These molecules may offer the ability to produce seemingly highly 

neuronal cultures derived from the Tera2.cl.SP12 cell line, as demonstrated by 

immunostaining and a clear induction of Beta II I tubulin mRNA. However Western 

blotting displays a less apparent induction, in contrast to the situation for 

dopaminergic markers which appear to be down regulated at the mRNA level by the 

terminus of the 17 day differentiation protocols outlined in Chapter 5, despite 

expression of tyrosine hydroxylase protein being clearly induced. The results 

obtained are therefore of interest as they indicate not only the need for further 

experimentation including functional testing but also that there is a complex series of 

interactions that lead to the specification of particular cellular fates that cannot simply 

be recognised or understood via the assessment of rising or falling levels of certain 

phenotypic indicators. Standard reverse transcription PGR is often used to display the 

induction of dopaminergic markers but this relatively simple on/off or at best weak to 

strong based expression analysis is a limiting factor in furthering our knowledge and 

understanding of the process of dopaminergic neurogenesis in vitro, as it does not 

account for the clear idiosyncrasies observed when using real time reverse 



270 

transcription PCR. The more widespread use of this technology could potentially be 
of benefit in broadening our grasp of how the process of generating dopaminergic 
neurons in vitro is regulated by certain molecules. It may be though in the work 
presented in Chapter 5 that the unexpected and varying observations arise from the 
production of other neuronal subtypes. 

The situation is complicated still further in that the high level expression of a 

particular mRNA may reflect a high rate of turnover of the associated protein, which 

might correlate with less protein being detected in relative terms at the point when the 

sample is collected. A cellular system is essentially like a living organism in that it is 

in a state of constant flux. Therefore as such methods that just detect mRNA or 

protein levels for a particular marker are only of value as a starting point. In many 

respects techniques such as immunocytochemistry that can demonstrate the 

distribution of a given protein of interest are of more value, as they at least give an 

insight into the morphology of a culture. Methods that assess overall expression of a 

protein, for example Western blotting are perhaps more prone to error in the 

interpretation of the results they produce. This is exemplified by embryonal 

carcinoma cells appearing to express Beta II I tubulin; it may be that the sensitivity of 

detection is so high that i f a cell line with a propensity for neural differentiation is 

used then any more generic marker can be detected. This may also be influenced by 

loading volume with an excess of protein essentially causing saturation and a signal 

that gives an output of bands on the blot that are essentially indistinguishable. Great 

care therefore is required when putting expression data into context and whenever 

possible some aspect of functional testing is desirable. 

The co-culture study in Chapter 6 reinforces this concept as clearly there is a lack of 

control over the Tera2.cl.SP12 cell line when using this differentiation strategy. This 

is evidenced by the concomitant rise in expression of mRNA for both Msxl and Nkx 

6-1. It would be expected from the model presented in Figure 4.2 that Nkx 6-1 would 

be repressed with rising levels of Msxl ; that is of course i f Msxl mRNA is translated 

into functional protein. The rise in levels of Msxl mRNA does not correlate with a 

fall or even low levels of Nkx 6-1 mRNA. In addition the rise in mRNA levels for 

dopaminergic markers like Msxl and tyrosine hydroxylase is not reflected at least for 

tyrosine hydroxylase at the protein level. I f Msxl protein is similarly not present then 
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normal development cannot occur. Therefore at a number of stages the dopaminergic 
differentiation observed in the Tera2.cl.SP12 cell line using this method is not just 
uncontrolled but unrepresentative of what would be expected in the course of the 
regular development of this neuronal subtype as it is currently understood. The use of 
retinoic acid to try and gain control over this process also exhibits no positive effects. 
Indeed its usage appears to have negative implications for the dopaminergic 
differentiation of the Tera2.cl.SP12 cell line in co-culture with PA6 stromal cells, in a 
similar fashion to that reported for mouse embryonic stem cells in Kawasaki et al., 
2000 though this data was not shown, merely given mention. 

The main question to arise therefore is can a cancerous cell line be used as a 

developmental model? I f cancer is seen simply as the result of an abnormality or 

abnormalities in development then ultimately the answer is no. There is no means to 

justify studying developmental processes in a system that is aberrant in its regulation 

of at least some of them. However the situation is not so simple in the broader 

context. Culture of cells in vitro may result in them evolving genetic and possibly 

other, for example morphological abnormalities. I f animal models are used even 

though certain pathways may be conserved there could be species specific differences. 

Therefore in the light of the alternatives, cell lines like Tera2.cl.SP12 offer a human 

system, that although flawed, i f used in conjunction with other models and in a 

suitably selective manner may be of some value. This is seen in the work that 

combines the use of Wntl and retinoic acid that could perhaps be translated into 

embryonic stem cells for which embryonal carcinoma cells are seen as a model. To 

this end, perhaps embryonal carcinoma cells would be better viewed in the context of 

dopaminergic differentiation strategies as a cell line with a propensity for neural 

differentiation as it is this feature that is being put to use not their more pluripotent 

stem cell like characteristics. In addition any model is essentially, even i f only in a 

very minor way incorrect; an embryonic stem cell in vitro is a model of development 

for such a cell in vivo, and i f an embryonal carcinoma cell is viewed as a model of an 

embryonic stem cell then it is essentially becoming a model of a model. Given the 

cancerous origins of an embryonal carcinoma cell it is unlikely to compensate for the 

flaws in the in vitro embryonic stem cell model and as such would occupy a very 

restricted and questionable niche, which would short sell such cells as they are robust, 

inexpensive to culture and can display quite rapid differentiation. Also dopaminergic 
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differentiation in vitro rarely takes place on the time scales seen in vivo, demonstrated 
in the work of Kawasaki et al., 2002 using primate embryonic stem cells. It would 
thus appear that although idealistic positions are in theory desirable, in practice the 
reality is very different and a compromise is required that encompasses balanced 
experimentation across a range of systems. 

In the light of this the Tera2.cl.SP12 cell line is from the findings presented here most 

effectively utilised in approaches that are more highly controlled and make use of 

exogenously applied molecules such as Wntl , Sonic hedgehog. Fibroblast growth 

factor 8 and ascorbic acid. Any further work in this system may well try to expand on 

the methods tested here, for example ascorbic acid could be investigated as an agent 

to induce differentiation and i f viable for this task could be a replacement for retinoic 

acid. The effect of varying the concentrations of such agents is an additional 

approach not assessed here that could also be beneficial in deepening our 

understanding of the process. There is also the possibility that over expression of key 

determinants of a dopaminergic phenotype such as Lmxla and Msxl could help 

provide the foundations for producing a highly enriched population of dopaminergic 

neurons. I f this is possible, functional testing is required as the current findings are 

not sufficient to make any judgement on the ability of this cell line to act as a source 

of cells for application in screening assays. In the light of the variability sometimes 

seen and the lack of reproducibility observed with the Tera2.cl.SP12 cell line, it may 

be that rather than act as a model for embryonic stem cells, embryonal carcinoma cells 

provide a system that is complimentary to the development of strategies for the 

dopaminergic differentiation of embryonic stem cells. 

Indeed i f the transplantation of dopaminergic neurons derived in vitro is seen as 

desirable in the context of trying to remedy the loss of such cells in Parkinson's 

disease patients, then in keeping with the concept that the implantation of cells from a 

cancerous source is now deemed too precarious to contemplate, it is safe to say that 

embryonal carcinoma cells are never going to be a source of material for use in such 

treatment approaches. It may also be viewed as unlikely that they could provide a 

robust enough system in terms of producing suitably consistent results i f used in 

screening assays, although as part of a range of assays, and given an awareness of 

their inherent limitations, the use of embryonal carcinoma cells in this setting is not so 
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far removed. It may well be that other cellular models are just as variable but this 

could only be assessed i f in fiiture a direct comparison was made. I f this was 

unfavourable with respect to embryonal carcinoma cells then they may be limited to 

basic investigations. At the level of a fundamental research tool though they compare 

reasonably well against another embryonal carcinoma cell line Ntera2 that features in 

the literature and from the findings in this thesis may be a suitable means to 

investigate new and refine current methods aimed at the in vitro generation of 

dopaminergic neurons. I f embryonal carcinoma cells are put to use in this manner and 

i f any findings from their utilisation can be translated into embryonic stem cell or 

other model systems that are then used in an application that may help improve 

current therapies for Parkinson's disease then they are of undoubted value. Figure 7.1 

summarises the potential advantages and disadvantages of the Tera2.cl.SP12 cell line 

as a means to study dopaminergic differentiation in vitro. 

Figure 7.1: The advantages and disadvantages of the Tera2.cl.SP12 cell line as a 

model to study dopaminergic differentiation in vitro 
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Summary of key findings 

• Retinoic acid treatment of Tera2.cl.SP12 cultures can induce expression of a 

range of dopaminergic markers over time. 

• Lowered oxygen culture appears to have little detectable effect on the ability 

of the Tera2.cl.SP12 cell line to acquire a dopaminergic phenotype. 

• Expression of Otx2 a potential determinant of a dopaminergic fate is down 

regulated rapidly by exposure of embryonal carcinoma cells to retinoic acid. 

• Wntl shows a minimal ability to rescue the drop in Otx2 expression caused by 

retinoic acid. 

• The application of Wntl can approximately double the number of Beta I I I 

tubulin positive cells obtained from Tera2.cl.SP12 cultures exposed to retinoic 

acid. It may also augment dopaminergic differentiation as well. 

• Suspension culture of embryonal carcinoma cells may offer advantages when 

trying to promote the acquisition of a neuronal cell fate. 

• Sonic hedgehog may be able to induce dopaminergic marker expression via a 

mechanism congruous with that observed in other experimental systems. 

• The application of retinoic acid, Sonic hedgehog. Fibroblast growth factor 8 

and ascorbic acid to embryonal carcinoma cell derived neurospheres treated 

with retinoic acid and Wntl appears to facilitate the production of cultures that 

are highly positive for the potential neuronal marker Beta I I I tubulin. 

• The use of this cocktail of signalling molecules causes differential regulation 

of the mRNA and protein for dopaminergic markers such as tyrosine 

hydroxylase. 
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PA6 co-culture can induce detectable expression of neuronal and 

dopaminergic markers in embryonal carcinoma cells. 

Co-culture driven differentiation of embryonal carcinoma stem cells does not 

appear to occur in a highly regulated or predictable fashion. 

Pre treatment of Tera2.cl.SP12 cultures with retinoic acid does not appear to 

increase their potential for subsequent co-culture induced dopaminergic 

differentiation. 
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Appendix A 

Buffer compositions for Western blot analysis 

• lOx TBS - 6.1g Tris base (Fisher Scientific) and 43.8g Sodium Chloride 

(BDH Biosciences), dissolved in 500ml of distilled water, (adjust pH to 7.5 

and autoclave). 

• Ix TBS - dilute 100ml of TBS (lOx) with 900ml of distilled water. 

• 1X TBS-T - TBS (1 x) with 0.2% Tween 20 (Sigma). 
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Relative expression (linear scale) of DAerg markers on EC cells (5% oxygen) 

Expression of dopaminergic markers on human EC cells 
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Appendix B: Dopaminergic marker expression in Tera2.ci.SP12 cells cultured for 4 weeks 
in the presence of 1 O^M retinoic acid in a 5% oxygen incubator. 
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Relative expression (linear scale) of DAerg markers on EC cells (21% oxygen) 

Expression of dopaminergic markers on human E C cells 
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Appendix B: Dopaminergic marker expression in Tera2.cl.SP12 cells cultured for 4 weeks 
in the presence of lOuM retinoic acid in a 21% (atmospheric) oxygen incubator. 
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Appendix B: A schematic summary of the trends in dopaminergic marker expression for 
Tera2.cl.SP12 cells treated with lOuM retinoic acid for varying periods up to 4 weeks. Most 
markers are barely detectable or absent in the starting material and are induced by increasing the 
duration of retinoic acid exposure. Some markers such as DAT and Dl are more weakly expressed 
and are detected at higher Ct values than those such as D2 and TH that are more strongly detectable. 
Therefore the line position is only a guide as to the trend and will vary for each specific marker 
investigated. 
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Appendix C 

Western Blot - Nurrl Positive Control 

Rat Brain Material 
(positive control) 

Diffuse Nurrl 
Band 

Discrete 
Beta-actin 

Band 

Appendix C: Post natal adult rat brain material (courtesy of the lab of Dr. P. Chazot, 
Durham University) thought to be positive for expression of Nurrl was used as a 
positive control to test the Nurrl antibody (obtained from Cambridge Bioscience) used 
in the investigations outlined in this thesis. 
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Appendix D 

Cell count merged images 

Retinoic acid only Retinoic acid plus Wnt1 

A Hoescht stained 
nucleus (blue) for 

counting purposes 

A beta III tubulin positive 
cell (green) for counting 

purposes 

Appendix D: A merge of FITC and Hoescht images performed using Adobe 
Photoshop to show the expression of Beta II I tubuhn (FITC detection - green in the 
images above) in some cells against a background of total cell number (defined by 
the presence of Hoescht stained cell nuclei (blue in the images above)). The cell 
count data in Figures 4.28 and 4.29 were based on such immunocytochemical 
observations. The intensity of staining was generally greater in the Wntl plus 
retinoic acid condition, this is refiected in these images but some of the difference 
arises from a stronger background on the Wntl plus reUnoic acid image shown here, 
the difference although apparent was not observed to be this striking in practice and 
may in part arise from the merging process. 



Appendix E : Nestin staining in R.A. treated EC/Stromal cell co-cultures 
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Appendix E: Human specific nestin immunostaining in Tera2.cl.SP12 cells (pre treated for 3 days with 10|iM retinoic acid) then co-cultured with either murine PA6 or rat 
mesenchymal stem cells for 17 days. The upper two rows of images (termed Heavy) display the strong nestin expression seen in the bulk of most cultures, that are highly 
confluent as seen in the corresponding Hoescht and phase images. The two lower rows of images (termed Light) are representative of less confluent areas of such cultures. 
In the case of the PA6/Tera2.ci.SP12 condition it would appear that there are cells (evidenced by their Hoescht stained nuclei) present that are not EC cell like in 
morphology that are nestin negative and as such may well be PA6 cells confirming that some stromal cells are still present in these co-cultures at the terminus of the 
differentiation protocol. However even in the less confluent areas of MSC/Tera2.cl.SP12 co-cultures all the cells appear to be nestin positive and morphologically 
characteristic of EC cells, suggesting few i f any of the original stromal cell population remain at this point. Scale bars are approximately equal to lOO^m. 


