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Abstract 

The thesis documents the investigation of the appUcation of the adjoint method to 

turbomachinery blading design optimization, with emphasis on blading aerodynamic 

design optimization in a multi-bladerow environment and concurrent blading aerody

namic and aeromechanic design optimization for a single bladerow. 

Based on the nonlinear flow equations, a steady adjoint system has been developed 

using the continuous adjoint approach. The capability of the conventional adjoint 

system has been augmented by the introduction of an adjoint mixing-plane treatment. 

This treatment is a counterpart of the flow mixing-plane treatment, enabhng the steady 

adjoint equations to be solved in multi-bladerow computational domains. This allows 

turbomachinery blades to be optimised to enhance their aerodynamic performance in 

a multi-bladerow environment wi th matching between adjacent bladerows dealt with 

in a timely manner. 

The Nonlinear Harmonic Phase Solution method, a neat frequency domain method 

catered specifically for turbomachinery aeromechanics prediction, has been chosen to 

integrate with the adjoint method to calculate objective function sensitivities efficiently 

for concurrent aeromechanic and aerodynamic design optimization for single row tur

bomachinery blades. The Nonlinear Harmonic Phase Solution method, unlike the 

time-linearized methods, solves the unsteady flow equations at two or three carefully 

selected phases of a period of unsteadiness. This approach not only can conveniently 

turn a steady flow solver to one solving the unsteady flow equations efficiently, but also 

provides a good basis on which the corresponding adjoint system can be formulated 

and solved in a similar manner by extending a steady adjoint system. 

In order to resolve the issue of having a good blading performance over a whole oper

ating range at a given operation speed, a multi-operating-point design optimization is 

implemented by formulating an objective function of a weighted sum of performance 

at more than one operating point. 

Keywords: design optimization, aerodynamics, aeromechanics, adjoint method, gra

dient, objective function, blade shape 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Fans, compressors and turbines are typical turbomachines. Fans and compressors are 

designed to impart mechanical energy into their working fluid, while turbines are de

signed to extract energy out of their working fluid. They are also key components 

of gas turbines, which have a wide range of applications in our daily life, e.g. power 

generation in power plants, propulsion systems in aero-engines and mechanical drivers 

in oil & gas industries. No matter what kind of applications they are employed for, gas 

turbines consume a great deal of fuel and produce a lot of emissions. This will defi

nitely have a great impact on our life in the near and far future in terms of the energy 

issue and the environmental issue. Power plants, oil and gas industries and airlines 

want to operate gas turbines with as little fuel and as much output as possible. This 

points to the development of turbomachines of higher efficiency. As a consequence, 

a higher efficiency turbomachine will accordingly generate less emission relieving its 

environmental impact. Therefore the benefit of developing higher efficiency turboma

chines is at least twofold: less fuel consumption and lower emission. For gas turbines 

as propulsion systems, weight and size are also important issues. They are expected 

to be as light and small as possible so that an airplane can take more payload or an 

airplane will consume less fuel with the same payload but less weight. 

The requirements of higher efficiency, lower weight and smaller size translate to the 

development of turbomachines of higher loading and more compact configurations with 

two types of intensified interactions. f̂ ^̂ '̂ 

. 1 . " ^ - ^ 



Chapter 1. Introduction 

The first is the intensified flow field interaction between adjacent blade rows, requiring 

matching between adjacent blade rows be checked simultaneously in a design optimiza

tion process. As one knows, turbomachines usually consist of more than one blade row, 

so that they can do more work than a single row can achieve. If each blade row is op

timised separately, mismatch may be an issue once they are put together to operate. 

A costly iterative approach will normally be required to adjust the matching between 

adjacent rows in an explicit way. This will of course cause delay in a product develop

ment. It is ideal to optimise blades in a multi-bladerow environment, where matching 

between adjacent blade rows can be taken into account timely and implicitly during 

an optimization process. This intensified fiow field makes it more urgent and beneficial 

to perform design optimization in a multi-bladerow environment. 

The second is the intensified interaction between the working fluid inside a turboma-

chine and the blades immersed in the working fluid. The intensified fluid-structure 

interaction makes blades more vulnerable to flow-induced vibration problems. There

fore aeroelasticity/aeromechanics of a blade is brought into the foreground in a design 

optimization process, requiring aerodynamics and aeromechanics be checked simulta

neously. 

Another important issue in turbomachinery blading design optimization is the perfor

mance of optimised designs at their off-design conditions. If a blade is optimised at 

one particular operating point, in principle, there is no insurance about a good perfor

mance of the optimised design at other operating points. In order not to deteriorate the 

performance of a blade at its off-design points unacceptably, performance of a blade at 

several operating points needs to be looked at simultaneously in a design optimization 

process, pointing to the development of a multi-operating-point design optimization. 

1.2 Turbomachinery Blading Design Optimization 

In an enclosed turbomachine, the working fluid is enclosed by structures like casing, 

hub and blades. The change of any of these structures in any form can affect the 

performance of the machine composed of these structures. This kind of change has 

long been exploited as a means to improve the performance of turbomachines. Among 
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these structures, blades are the most crucial components of turbomachines. Blading 

aerodynamic and aeromechanic performance largely defines the performance of turbo-

machines. The focus here is placed on the change of a blade shape to pursue perfor

mance gain. Turbomachinery blades are immersed in their working fluid. The energy 

transfer occurs between rotating blades and the working fluid. Stationary blades tailor 

the flow field by adding or removing swirl for rotating blades following them. The 

shape of a blade has a great deal to do with blading aerodynamic and aeromechanic 

performance. Hence, a great potential exists in changing the shape of blades to achieve 

blading performance improvement. 

Blading performance assessment is the starting point towards blading design optimiza

tion. It provides the criteria according to which alternative blading designs can be 

ranked, with the best one selected. 

In early years, wind tunnel testing was the main, if not only, approach to the assessment 

of aerodynamic performance of aerodynamic configurations. Although nowadays it is 

a standard procedure for each gas turbine to undergo the rig test before its delivery, it 

is far from cost-effective to perform blading design optimization based on the experi

mental performance assessment. For example, the main feature of a flow field inside a 

turbomachine needs to be obtained via experiments. Once the main flow field features 

are obtained, they will be analyzed by engineers with appropriate expertise to decide 

how to change the shape of a blade so that its performance can be improved. Once 

the change is determined, new blades will be manufactured and assembled to form a 

new machine. The performance of the new machine will be tested by experiments to 

see whether an expected improvement has been achieved or not. 

With the advance of computer technologies and numerical methods for fluid dynamics, 

computational fluid dynamics(CFD) has emerged as a new and dominant approach 

to the investigation of fluid motion inside turbomachines. This approach obtains the 

flow field information by solving the partial differential equations governing the fluid 

motion with appropriate boundary conditions. Over decades of extensive development, 

CFD has matured to the point of being able to simulate turbomachinery flow fields 

with desirable engineering accuracy. Modern turbomachinery blade design relies almost 

completely on CFD to explore the three-dimensional features of blades (Horlock and 

•3-
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Denton, 2005). Compared with the rig test approach, well-calibrated CFD is able 

to assess the aerodynamic performance of an aerodynamic configuration with much 

shorter turnaround and much lower cost and more details. Any change to the original 

configuration can be established quickly in a computerized model level together with 

the corresponding performance change by CFD. 

In a gradient-based design optimization method, the sensitivities of blading perfor

mance to parameters describing a blade geometry are required to determine the change 

of a blade shape in a way to improve the blading performance. Modern turbomachin-

ery blades have rich three dimensional features, such as twist, lean, bend, skew and so 

on. Many different parameters can be involved in the description of a blade. A change 

to any of these parameters results in a corresponding change to the blading perfor

mance. If this blading performance change is evaluated by solving the flow governing 

equations or its linearized version, these equations need to be solved for each design 

variable. The time cost of gradient evaluation can be prohibitive at a situation where 

there are hundreds of or even more design variables. In order to apply a design opti

mization system to routine design activities in an industrial environment, the method 

for gradient evaluation should be efficient enough. 

1.3 Essential Elements for Blading Design Optimization 

For a gradient-based design optimization, there are normally five essential elements: 

a flow solver, a gradient evaluation scheme, a shape parameterization scheme, a mesh 

deformation approach and an optimizer. 

• Flow Solver 

In a CFD-based design optimization, the flow solver provides the basis on which the 

whole design system is built. A flow solver serves two roles here. One is to provide 

solution information according to which further information (the value of an objective 

function and its gradients) will be obtained to determine how a blade profile will be 

changed. The other is to verify that a change in the blade profile will deliver an expected 

performance gain. If the flow solver can not predict the performance of interest with 
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sufficient engineering accuracy, then an optimised design can be useless. 

For an aerodynamic design optimization, the Reynolds Averaged Navier-Stokes (RANS) 

equations are solved in a cell-centered finite volume framework. Details about the solu

tion methods for the RANS equations are documented in Chapter 3. For a concurrent 

aeromechanic and aerodynamic design optimization, the Unsteady Reynolds Averaged 

Navier-Stokes (URANS) equations are solved using the frequency domain method of the 

Nonlinear Harmonic Phase Solution method to greatly reduce time cost. This method 

is explained in Chapter 7 with a comparison with the conventional time-linearized 

linear harmonic method in Appendix D. 

• Gradient Evaluation Scheme 

In terms of gradient calculation, there are the finite difference method, the linearized 

method, the complex variable method and the adjoint method. The first three meth

ods have the same drawback of time cost directly proportional to the number of design 

variables, making them unfavorable at situations with a large number of design vari

ables. More design variables give a design system more freedom and more choices to 

get a better design. The adjoint method has an attractive feature of independence of 

time cost for a single objective function gradient evaluation on the number of design 

variables. It is this feature that makes this method be our choice here for efficient 

gradient evaluation. The principle of the adjoint method is explained in Chapter 4 

with the detailed derivation based on the partial differential equations in Chapter 4 for 

an adjoint Euler system and in Appendix A for an adjoint Navier-Stokes system. 

• Shape Parameterization Scheme 

Shape parameterization is vitally important in turbomachinery blading design opti

mization. Different shape parameterizations can lead to different final designs as re

vealed by Wu et al. (2003). A good shape parameterization approach is capable of 

producing realistic blades of a wide range of characteristics with the change of its pa

rameters. In this work, the perturbation to a blade shape, instead of the blade shape 

itself, is parameterized. The shape perturbation parameterization is a popular scheme 
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for airfoil and wing shape design optimizations and is also used to the application of 

turbomachinery blading design optimization. The shape perturbation is usually param

eterized using some mathematically smooth hump functions, based on the assumption 

that the original smooth blade shape plus smooth perturbations is still smooth. As a 

matter of fact, a mathematically smooth blade shape may not be a realistically smooth 

blade. Therefore some remedies are needed to have a realistically smooth blade. The 

details of the shape perturbation parameterization are expounded in Chapter 5. 

• Mesh Perturbation Approach 

Design optimization, no matter in what approach it is conducted, is normally performed 

in an iterative process. At each iteration, the computational mesh will be perturbed for 

the gradient calculation for each design variable. If the mesh is generated in an iterative 

process, it is usually quite costly if the mesh corresponding to the changed geometry 

needs to be regenerated in the same iterative way. It is quite preferable to change 

the mesh due to a geometry change in a much faster way independent of the original 

mesh generation approach. It seems that this kind of mesh perturbation approach 

has been emerging as a separate research topic (Duong et al., 2007). Representative 

approaches include the spring analogy method (Blom, 2000; Kim and Nakahashi, 2005; 

Nielsen and Anderson, 1999) and the transfinite interpolation method (TFI) (Tsai 

et al., 2001). In this work, the original mesh is generated in a fast algebraic way. The 

mesh is regenerated in the same algebraic way after perturbations to a blade geometry 

are calculated. The associated time cost is quite small compared with the whole time 

cost of a design iteration. There is no need to seek other approaches to perturb a 

base-line mesh due to a blade geometry change. 

• Optimizer 

An optimizer is used to obtain the amount change of each design variable according 

to the gradients of an objective function to design variables. Some optimizers, such as 

Newton's methods, Quasi-Newton methods (Health, 2002), need further information, 

such as the Hessian matrix or its approximation, to calculate such change of design 

variables. The determination or approximation of a Hessian matrix usually needs extra 
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calculation resulting in extra time cost which can be considerable. Among all these op>-

timizers, the steepest descent and the conjugate gradient method do not need a Hessian 

matrix. The steepest descent method is the simplest and the most straightforward. It 

takes a step size at the negative gradient direction. The conjugate gradient method 

incorporates gradients at previous design iterations/cycles, therefore it is expected to 

behave better than the steepest descent method in terms of reaching the optimum de

sign with fewer design cycles/iterations. Nevertheless the conjugate method does not 

normally change the final design. The focus of the work is on the application of the 

adjoint method, hence not much attention is paid to the optimizer, once it is delivering 

the right solution. The steepest descent method is our choice here. 

1.4 Key Methodologies 

Two key methodologies are involved in this work. They are the adjoint method and 

the Nonlinear Harmonic Phase Solution method. 

The adjoint method is very efficient in calculating gradients of an objective function 

to a large number of design variables. It requires one flow solution and one adjoint 

solution at each design iteration at a cost roughly equal to two flow solutions. The time 

cost is nearly independent of the number of design variables. This allows a lot of design 

variables to be used even in a routine design optimization. The principle of the adjoint 

formulation and how it can be so efficient are explained concisely in Chapter 4 with 

a detafled review of the development and application of the method in aerodynamic 

design optimization provided in the next chapter. 

The Nonlinear Harmonic Phase Solution method enables the unsteady flow equations 

with temporally periodic unsteadiness to be solved very efficiently for turbomachinery 

aeromechanics predictions. Besides it also provides a good basis on which the cor

responding adjoint system can be formulated in a straightforward way, and then the 

developed adjoint system can be solved by extending a steady adjoint solver without 

much extra effort. The NonUnear Harmonic Phase Solution method is illustrated in 

Chapter 7 with Appendix D giving a comparison with the conventional time-linearized 

linear harmonic method. 



Chapter 1. Introduction 

1.5 Overview of the Thesis 

The research work is aimed at addressing two main issues about the application of 

the adjoint method to turbomachinery blading design optimization: one is the use of 

the adjoint method for blading aerodynamic design optimization in a multi-bladerow 

environment; the other is the use of the adjoint method in a concurrent blading aerome

chanic and aerodynamic design optimization. The first issue is successfully addressed 

with the formulation of an adjoint mixing-plane treatment bridging the solution infor

mation between two adjacent bladerow domains separated by an interface. The other 

issue is completed successfully and efficiently using the Nonlinear Harmonic Phase So

lution method to solve the unsteady flow equations for turbomachinery blading aerome

chanics, laying down a good basis on which an adjoint system can be formulated and 

solved in an efficient manner. 

Centered around the two main issues, the thesis is broken down into ten chapters. The 

background and motivation of the research work and methodologies involved are briefed 

in Chapter 1. Chapter 2 reviews methods for turbomachinery blading aerodynamics 

and aeromechanics calculations and methods for turbomachinery blading design op>-

timization with emphasis on the recent development and applications of the adjoint 

method and the methods for solving the unsteady flow equations for turbomachinery 

blading aeromechanics. The third chapter deals with the steady nonlinear flow model 

and solution methods. The fourth chapter illustrates the adjoint formulation princi

ple, and develops the adjoint systems, including the adjoint equations, their boundary 

conditions and the adjoint mixing-plane treatment based upon the steady nonlinear 

flow equations. The fifth chapter establishes a turbomachinery blading aerodynamic 

design optimization system. The sixth chapter presents verification cases and four de

sign optimization cases to confirm the developed theories in the previous chapters. The 

seventh chapter develops the unsteady flow solver using the Nonhnear Harmonic Phase 

Solution method for unsteady flow field analyses for turbomachinery blading aerome-

chajiics. The eighth chapter formulates the adjoint system for design optimization 

concerning both aeromechanics and aerodynamics. The ninth chapter provides three 

design cases to demonstrate the validity and effectiveness of the developed method-
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ologies for concurrent aeromechanic and aerodynamic design optimizations. The tenth 

chapter concludes the research work and gives some suggestions for further work. 



Chapter 2 

Literature Review 

This chapter reviews the numerical methods for turbomachinery blading aerodynamics, 

aeromechanics and methods for turbomachinery blading design optimization. The em

phasis is given to methods for blading aeromechanics calculations and the development 

and applications of the adjoint method. 

2.1 Blading Aerodynamics Calculation 

In modern turbomachinery the ffow field is inherently unsteady, mainly attributable to 

the relative movement of adjacent blade rows. The flow field also has three dimensional 

features mainly due to the twist of the blades. However, at a prehminary design stage, 

blading aerodynamic design has long been employing steady flow methods (Larosiliere 

et al., 2002; Cumpsty and Greitzer, 2004). The flow field in a stator is considered in 

a stationary reference frame, while the flow field in a rotor is considered in a rotating 

reference frame attached to the rotor. With this consideration, the flow field within a 

blade passage is assumed steady in the corresponding reference frame with the effect 

from adjacent rows seen in an averaged manner. Even at a detailed design stage, the 

solution to the steady flow equations rather than the unsteady flow equations is sought 

ubiquitously for blading aerodjoiamics predictions. This may be due to the two facts. 

Firstly, the unsteadiness in the unsteady flow field inside a turbomachine, particularly 

at its design operating point, is usually small. As a consequence, the influence of the 

unsteadiness on the time-averaged flow solution is small. This can be evidenced by the 

current blade designs which have achieved high aerodynamic performance by largely 
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using the steady flow model. Secondly, a solution of the unsteady flow equations is 

much more costly than that of the steady flow equations (He, 2008), although there has 

been a great advancement of computing power and numerical methods for unsteady 

flows over the last two decades. The huge extra time cost incurred by an unsteady 

flow solution may not be easily justifled for turbomachinery aerodynamics predictions, 

particularly within a multi-disciplinary design environment. 

Historically the Euler flow equations were first investigated to represent a flow field 

(Lieber, 2003). The Euler flow equations describe the motion of ideal fluids, which 

actually do not exist in reality. But the Euler solutions could be effectively used to 

predict loading and pressure distributions, providing a basis for boundary layer analy

ses and loss predictions. At a blading preliminary design stage, the Euler equations are 

normally used in conjunction with some loss models to provide a quick assessment of 

overall blading characteristics. Most turbomachinery fluid flows are highly turbulent 

and viscous. A more complete flow field representation necessarily requires the em

ployment of the RANS equations. Jameson and Martinelli (2000) also point out that 

it is vitally important to take viscous effect into account when performing design op

timization. The RANS equations have become a core method of flow field predictions 

(Molinari and Dawes, 2006). 

2.1.1 Flow Mixing-plane Treatment 

Turbomachines usually consist of more than one blade row with rotors and stators 

arranged alternately. The steady flow analysis employs different reference frames for 

adjacent blades. Meanwhile at an interface, the flow field is not uniform in the circum

ferential direction. With a steady fiow analysis, the instantaneous one-to-one corre

spondence of the flow solution at an interface is lost. This therefore provokes the issue 

of how to pass solution information across an interface. 

As has been mentioned, at an interface between adjacent blade rows, the flow field 

at one blade row is presented to the other row in an averaged sense. Now the issue 

turns to one of how to average what solution information. The solution information 

at an interface is usually averaged circumferentially and required to be equal across 
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an interface. All these methods based upon such an averaging process are classified as 

averaging-plane methods. There are several variations of averaging-plane methods, for 

example, the mixing-out averaging-plane method (Denton and Singh, 1979; Denton, 

1992) , and the kinetic energy averaging-plane method (Chima, 1998). 

The mixing-out averaging-plane method, also known as the mixing-plane treatment, is 

the most popular one among all the averaging-plane methods. The treatment averages 

fluxes of mass, momentum and energy circumferentially representing far downstream 

or upstream uniform flow field. It will inevitably lose the instantaneous flow fleld 

interaction and at the same time introduces artificial mixing losses. So far numerous 

numerical investigations have proved the validity of the mixing-plane treatment in a 

multi-bladerow flow field analysis. 

The conservation requirement of the mixing-plane treatment only sets a target to be 

achieved. How to achieve the conservation requirement is equally important. At the 

start of a flow solution, these averaged quantities are usually not equal across an inter

face. An implementation is needed to drive the difference in these averaged quantities 

across an interface to zero during a solution process. This can be favorably achieved by 

using the general nonreflective boundary condition implementation proposed by Giles 

(1991), which is highly desirable when considering the small intra-row gap between 

adjacent blade rows. The nonreflective implementation allows the flow characteristic 

disturbances to propagate through an interface correctly, guaranteeing the conservation 

requirement without corrupting the flow solution in the interior domains. 

All in all, the mixing-plane treatment has two important features: conservation and 

nonreflectiveness. The conservation is dictated by the conservation laws, while the 

nonreflective implementation will ensure that the conservation across the rotor-stator 

interface is achieved without spurious reflections to spoil the solution in the interior 

domains. The mixing-plane treatment has been widely accepted and has become a 

standard industrial tool for steady multi-bladerow flow analyses. This obviously pro

vides a natural opportunity and sound basis for design optimization to be carried out 

in such an environment. 
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2.2 Blading Aeromechanics Calculation 

Aeromechanics is the branch of mechanics that deals with the motion of gases (espe

cially air) and the structural/mechanical characteristics of the bodies in the fiow. In 

the context of turbomachinery blades, aeromechanics are normally referred to blade 

flutter and forced response. In this work, only blade flutter is considered. Blade flut

ter is a self-excited aeroelasticity instability phenomenon, usually starting from an 

infinitesimal disturbance which can be either aerodynamically or mechanically excited. 

Once a blade starts to vibrate, it tends to induce unsteady aerodynamic forces which 

in return will act on the vibrating blade. In each period of the blade vibration, there is 

a net energy exchange between the vibrating blade and the working fluid in which the 

blade is immersed. If energy is absorbed by the blade, then aeroelasticity instability 

will occur, leading to amplified blade vibration with excessive vibration stress causing 

blade failure eventually. This is actually a dynamic coupling process between the blade 

structure dynamics and the working fluid aerodynamics. 

The prediction of blade flutter naturally requires the coupling solution of the governing 

equations of aerodynamics and structural dynamics (Wu et a l , 2005b; Sadeghi and Liu, 

2005). The solution methods for aerodynamics and structural dynamics have been de

veloped largely independently. The difference embedded in these methods implies that 

it is more convenient and realistic to model aeromechanics using two distinct solvers 

of different methods with appropriate information exchange between them. Unfortu

nately this kind of modeling is extremely time-consuming with time cost dominated 

by the solution of the unsteady flow solution for aerodynamics. It is a valuable tool 

for occasional use for the final verification of a design or for troubleshooting, but the 

coupling modeling is not suitable for frequent use in a design application. This makes 

it impractical to perform an aeromechanic related design optimization based upon 

such modeling techniques, considering that a design optimization is carried out in an 

iterative process. 

It is noted that the coupling effect between aerodynamics and structural dynamics 

for turbomachinery blades is largely determined by the structure/fiuid mass ratio. 
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measured by the mass coefficient defined by 

r -
p7r(C/2)2 

where 
m is the blade mass per unit blade span 
C is the blade chord length 
p is the density of the working fluid 

The mass coefficient is usually quite large indicating a small couphng effect for com

pressor blades. The change of blade vibration mode shapes and frequencies due to the 

small coupling effect is accordingly small and negligible. With this primary observa

tion, the coupling dynamics process can be split into two uncoupled dynamics problems 

in two domains. A blade vibratory movement can be considered the same as it vibrates 

in a vacuum with its vibration mode shape and frequency obtained through a finite 

element (FE) analysis. The unsteady aerodynamic forces induced by a specified blade 

vibration will be obtained through solving the unsteady flow equations. 

The prediction of blade flutter is then based upon the energy method, with the energy 

exchange between the working fluid and a blade determined through an unsteady flow 

solution. The validity of the uncoupled or loosely coupled method has been validated 

by many researchers and has been widely accepted for routine use for turbomachinery 

blading aeromechanics predictions (Huang, 2006; Srivastava et al., 2002; Reddy and 

Srivastava, 1999; Duta, 2002). 

With the splitting of the aeromechanic problem, the focus is now turning to the efli-

cient solution of the unsteady flow equations. It is well known that solving the URANS 

equations in a time domain for predicting aeromechanics/aeroelasticity of turboma

chine blades is still quite time-consuming, though there has been significant research 

effort leading to considerable progresses or even breakthrough in this field. With this 

premise, it is desirable to choose a methodology which, on one hand is efficient for an 

unsteady flow solution for aeromechanics, and on the other hand provides a good basis 

so that other efficient methods for blading design optimization can be incorporated 

without much extra effort. The methods for an efficient prediction of an unsteady flow 

field for aeromechanics are reviewed accordingly. 
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2.2.1 Unsteady Flow Solution Methods for Aeromechanics 

All the solution methods for the unsteady flow equations for turbomachinery blading 

aeromechanics can be generally grouped into two categories: the time domain methods 

and the frequency domain methods. 

2.2.1.1 Time Domain Methods 

The most straightforward way to obtain the solution to the URANS equations is to 

solve these unsteady equations using a time-marching method in the time domain (He, 

1989; He and Denton, 1994). All the flow field features, including nonlinearity, can 

be included in such an unsteady flow solution. Conceptually it is also very straight

forward to formulate the corresponding unsteady adjoint system and solve it in the 

same manner. The drawback of this method is its huge turnaround. Even for the same 

mesh, an unsteady flow solution using this method usually consumes 15-20 times more 

CPU time than a steady flow solution. To model proper circumferential length scales 

will normally require the use of a whole-annulus computational domain, resulting in 

another factor between 20 and 100. Hence, a direct time-domain nonlinear unsteady 

flow solution would typically be by two to three orders of magnitudes more time con

suming than a steady flow solution (He, 2008). The unsteady adjoint equation requires 

backward time-maxching: from the null adjoint field at the final time to the unknown 

adjoint field at the initial time. The backward time-marching demands the history of 

the unsteady flow solution be stored, resulting in considerable memory or disk usage 

(Nadarajah and Jameson, 2002; Mavriplis, 2008). The high computational demand 

from this method makes it highly unfavorable in a design optimization. 

The unsteady flow field in two adjacent blade passages of a blade row is not identical 

as the steady flow field is. However there is a fixed phase difference in the unsteady 

flow field between two adjacent blade passages. In many situations, this phase dif

ference can be known a priori. A phase-shift boundary condition has been employed 

in computations in conjunction with the use of a single blade passage in a blade row 

to significantly reduce time cost. The first effort of this application might attribute 

to Erdos et al. (1977) for the Direct Store method. This method has to store the 
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time history of the flow solution over at least one period at the periodic boundaries, 

which is then recalled to update the flow solution at periodic boundaries taking into 

account the phase shift. The memory usage overhead by this method can become pro

hibitive for 3D calculations. The second method is the time-inclined method proposed 

by Giles (1991). This method employs a coordinate transformation to transfer the 

unsteady flow equation to one in a computational time level determined according to 

the phase difference of interest. W i t h this coordinate transformation, a direct periodic 

boundary condition as for the steady flow equations can be applied. The application 

of this method needs extra coding development because the coordinate transformation 

changes the conservative solution variables. Its application is restricted by the range 

of time lag divided by a blade pitch. The third approach of its kind is the Shape Cor

rection method proposed by He (1989). Instead of storing the time history of the flow 

solution over a period at periodic boundaries, the Shape Correction method represents 

the unsteady flow solution at periodic boundaries in terms of Fourier series. Therefore 

the Fourier coefficients only are stored, leading to a considerable reduction in memory 

usage. 

Even if a single passage solution can significantly reduce the computational cost over 

a whole-annulus solution, the cost is still considerably high. The Shape Correction 

method based on a single passage heis a time cost roughly equal to that of a whole-

annulus calculation wi th 2-2.5 blade passages (Huang, 2006). For the same mesh, an 

unsteady flow solution costs accordingly about 30-50 times more CPU than a steady 

flow solution. W i t h the adjoint solution requiring a backward time-integration, the 

memory or disk usage can still be significant. The high demand of both CPU time and 

memory or disk usage is the biggest obstacle to build up a design optimization system 

based upon even the Shape Correction method employing a single blade passage for 

each blade row. 

2.2.1.2 Frequency Domain Methods 

The frequency domain methods include the time-hnearized linear/nonhnear harmonic 

method, the Harmonic Balance Method, the Nonhnear Frequency Domain method and 

the Nonlinear Harmonic Phase Solution method. A l l these methods are making use of 
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the Fourier series to represent a part or the whole of an unsteady flow solution. The 

time-linearized linear/nonlinear harmonic method splits the unsteady flow equation 

into one time-averaged equation and one time-linearized equation, wi th the unsteady 

perturbation of the flow solution represented in a Fourier series. While the other 

three methods express the whole flow solution in a Fourier series, casting the unsteady 

flow equations into a set of steady-like equations at a series of phases of a period of 

unsteadiness. 

• Time-Linearized l\/lethods 

The unsteadiness of interest in a turbomachinery flow field for aeromechanics can nor

mally be attributed to either time-periodic aerodynamic disturbances (e.g. upstream 

wake, inlet/exit distortion) or time-periodic mechanical disturbances (e.g. blade vibra

tion). As a consequence the induced unsteadiness in the flow field also shows strong 

temporal periodicity. The periodicity feature inside turbomachinery flow fields is very 

important information which can be made use of in the solution of the unsteady flow 

equations to greatly reduce time cost. 

Time-averaging the nonlinear flow equations gives the time-averaged equations con

taining deterministic stress terms (Adamczyk, 1985). Subtracting the time-averaged 

equations from the original unsteady flow equations and neglecting the nonlinear terms 

results in the time-hnearized equations. 

W i t h the assumption that the unsteadiness has a magnitude which is much smaller than 

that of the time averaged flow, the deterministic stress terms in the time-averaged equa

tions can be dropped. The resultant time-averaged equations are effectively steady flow 

equations. They can be solved without any consideration of the time-linearized equa

tions. The steady flow solution forms the variable coefficients of the time-linearized 

equations. The time-linearized equations are still time-dependent. Solving this system 

in the time domain is stiU nontrivial. The dominant period or frequency of the un

steadiness in the unsteady flow field can be known a priori in many situations. W i t h 

this preliminary information, the solution to this unsteady time-linearized equations 

can be expressed as one harmonic. W i t h the harmonic formulation, the time-domain 

unsteady time-linearized equations can be converted into steady like equations about 
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the haxmonic amplitude in the frequency domain. The resulting equations can be 

solved very efficiently, costing about twice the time of a steady flow solution. This 

methodology is called the time-linearized linear harmonic method (Hall and Lorence, 

1993). 

This method is much more efficient in terms of time cost compared wi th the nonlinear 

time-domain method. However, this method is built upon the small disturbance or 

linear assumption. Consequently nonlinear effects can not be captured by this method. 

The nonlinear effect plays an important role i f there is shock or flow separation in the 

flow field. And this is usually the situation for modern high loading and high speed 

turbomachines. 

The problem arising with the linear harmonic method in the context of design opti

mization using the adjoint method is the great difficulty in formulating and solving 

the corresponding adjoint system based upon the split equations: the linear harmonic 

equation, which has already been linearized in time, also needs linearizing with re

spect to a design variable in order to formulate the corresponding adjoint system. 

The resultant adjoint systems include two sets of equations: one corresponding to the 

time-averaged flow equation and the other corresponding to the linear harmonic flow 

equation. The adjoint system, corresponding to the time-averaged flow equation, de

pends on the adjoint system, corresponding to the linear harmonic flow equation. This 

makes i t necessary to solve the linear harmonic adjoint system followed by solving the 

adjoint system corresponding to the time-averaged flow equation, which is consistent 

with the backward integration property of an unsteady adjoint system. Though all 

these are mathematically consistent, i t is quite counter-intuitive, making the problem 

extremely complicated. 

In order to capture the nonhnear unsteady effect in the flow field. He and Ning (He 

and Ning, 1998; Ning, 1998) proposed the time-linearized nonlinear harmonic method. 

As one knows, there are deterministic terms resulting from the time-averaging process 

of the nonlinear time-domain equations and contained in the time-averaged equations. 

W i t h the harmonic formulation of the unsteadiness, the deterministic stress terms can 

be approximated efficiently with the coupling solution of the time-averaged equations 

and the linear harmonic equations. Although this coupling process consumes more 
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computing resources than that of the Unear harmonic method, i t is still much more 

efficient than the time domain method. However, i t becomes more difficult i f the 

number of harmonics is increasing due to the difficulty in calculating the deterministic 

stress terms. The same difficulty as that of the linear harmonic method wi l l arise when 

an adjoint system is built upon the time-linearized nonlinear harmonic method. 

•Fourier Modeling Methods 

Another way to circumvent the huge time cost by the time-domain methods is the use 

of the Fourier transformation technique over the whole computational domain. The use 

of the Fourier transformation technique in solving the nonlinear unsteady flow equa

tions for unsteady turbomachinery flow fields was pioneered by He (1989). He proposed 

the Shape Correction method to transform a time domain flow solution at the periodic 

boundaries of a blade passage to a frequency domain, wi th some Fourier coefficients 

stored for updating the flow solution to ease the huge memory requirement from the 

Direct Store method by Erdos et al. (1977). The use of the Fourier transformation 

technique was further exploited by Hall et al. (2002) and McMullen (2003) to extend 

the use of the technique from periodic boundaries to a whole computational domain. 

The Harmonic Balance Method, which was coined by Hall et al. (2002), expresses an 

unsteady flow solution as a whole in Fourier series, giving rise to work out the time 

derivative in the unsteady flow equations using the flow solution at equally spaced 

phases in a period of unsteadiness. The solution variables are conservative flow vari

ables at those equally spaced phases. Fourier transformation is utilized to get the time 

derivatives of the conservative flow variables in terms of the flow solution variables 

at those discrete phases. While in the Nonlinear Frequency Domain method coined 

by McMullen (2003), both the conservative flow variables and the flow residuals of 

the flow governing equations are expanded in Fourier series. The solution variables 

are the Fourier coefficients of the conservative flow variables. Fourier transformation 

and its inverse transformation are utilized to transfer both the flow solution and the 

flow residual between the time domain and the frequency domain. In a CFD context, 

the cost of doing these transformations can be considerable. Therefore the Nonlin

ear Frequency Domain method generally costs more CPU time and memory than the 
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Harmonic Balance Method. 

The Nonlinear Harmonic Phase Solution method, which is a variant of the Harmonic 

Balance Method (Hall et al., 2002), was proposed by He (2008). Unlike the Harmonic 

Balance Method which uses equally spaced phases. He's harmonic formulation chooses 

the two particular phases (0, | ) for situations of largely linear unsteadiness, or the 

three particular phases: (—| , 0, | ) for including nonlinear unsteadiness. This results in 

further cost reduction (the two-phase scenario), considerable convenience and simplicity 

when working out the time derivative term in terms of the flow solution at the two or 

three phases. The method is a very neat formulation making it highly attractive for 

turbomachinery aeromechanics. Both the Harmonic Balance Method and the Nonlinear 

Harmonic Phase Solution method are as efficient as the time-linearized linear harmonic 

method. However they offer a basis on which the corresponding adjoint systems can 

be formulated and solved wi th greater ease, compared with the conventional time-

linearized linear harmonic method. The Nonlinear Harmonic Phase Solution method is 

explained in Chapter 7 wi th Appendix D providing a comparison between the Nonlinear 

Harmonic Phase Solution method and the time-linearized linear harmonic method. The 

corresponding adjoint solver can be extended f rom a steady adjoint solver without much 

extra code development, as described in Chapter 8. 

2.3 Methods for Turbomachinery Blading Design Optimization 

There have been many different methods used historically for turbomachinery blad

ing design optimization. These methods can also be categorized in many different 

ways. For example, they can be categorized into automated methods and tr ial meth

ods, inverse design methods and direct design methods, deterministic methods and 

non-deterministic methods, gradient-based methods and non-gradient based methods, 

CFD-based methods and non-CFD based methods, high-fidelity methods and low-

fidelity methods, ... One particular method can belong to more than one of the above 

categories. 

Turbomachinery blading aerodynamic design can be divided into two stages: prelimi

nary design and detailed design. The preliminary design defines the main features of 
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blades, while the detailed design verifies the output of the prehminary design and fur

thermore refines the preliminary design to explore potential performance gain. Blading 

design optimization falls on both the preliminary design and the detailed design. At 

the preliminary design stage, i t is now a common practice to use customized airfoils 

obtained by design optimization (Roller et al., 2000; Kiisters et al., 2000; Sieverding 

et al., 2004) instead of airfoil families developed during early years, such as NACA-65 

airfoils, British C4 airfoils, and so on. 

In the early years, design optimization was mainly performed in a trial and error fashion 

by engineers making use of their expertise and experience. The blade surface curvature 

is directly linked to the local flow velocity/Mach number (therefore local loading) and 

can be tailored to obtain desirable local flow fields. Based on a similar principle, L i 

and Wells (1999) analyzed the flow fleld of an existing compressor and redesigned it 

by redistributing the chordwise loading to improve its performance successfully. The 

effect of blade lean, sweep and twist on the performance of a blade has been investigated 

systematically by many researchers to explore potential performance gain (Hah, 1999; 

Wang, 1999; Denton and Xu , 2002). Blade forward sweep tends to broaden the stall 

margin of a blade, but i t has l i t t le contribution to peak efficiency; blade backward 

sweep tends to enhance a blade's peak efficiency, but narrows its stall margin. Blade 

positive lean normally increases peak efficiency. 

In the present work, the attention is focused on automated design optimization methods 

making use of high fidelity ffow field simulations by CFD. In a CFD-based blade shape 

optimization process, CFD is an indispensable part and also the basis part. Other 

elements for design optimization are built upon the reliable results by CFD. A l l the 

CFD-based design optimization methods can be generally categorized into two groups: 

inverse design methods and direct design methods. 

The inverse design methods still have their market nowadays (van Rooij et al., 2007; Hu 

et al., 2006). A n inverse method was recently extended to redesign blades in a multi-

bladerow environment handling blade row matching timely (van Rooij et al., 2007). 

The method requires the specification of a target pressure or velocity distribution on a 

blade surface, providing experienced engineers wi th a direct means to make use of their 

developed experience and insight. Then a computer code is used to calculate the blade 
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geometry which is expected to produce the required performance by the transpiration 

boundary condition. The transpiration boundary condition can be easily incorporated 

with a slip wall boundary condition, however i t is problematic with a non-slip wall 

boundary condition, where the flow velocity is zero relative to the non-slip wall. There 

has been effort circumventing the difficulty and extending this method to applications 

with RANS equations (de Vi to et al., 2003). This method, as i t is claimed, has a 

very short turnaround. The major disadvantage of this method is that i t requires the 

specification of target flow parameters in terms of pressure or velocity distributions on a 

blade surface; hence its success depends largely on a designer's experience and insight. 

Apart from that, i t is usually difficult to apply constraints in an inverse design (Biiche 

et al., 2003), and i t is not possible to consider performance of a blade at off-design 

points in an inverse design (Koller et al., 2000). 

The direct design methods, on the contrary, do not require the specification of target 

pressure or velocity distributions on a blade surface. In a direct design method, an 

initial design is normally changed to a better one lit t le by lit t le in an iterative process 

until no improvement can be made any more. The direct design methods are a very 

big family and can be further classified into two groups: non-deterministic methods 

and deterministic methods. 

Non-deterministic methods, such as the genetic algorithm and the simulated annealing, 

do not need gradients of an objective function, but values of an objective function only. 

In principle, these methods are able to find the global optimum in a design space and 

have long been researched for turbomachinery blading aerodynamic design optimization 

(Benini, 2004; Keskin et al., 2006; Lot f i et al., 2006; Oyama and Liou, 2004). But their 

applications in routine designs are usually restricted due to their huge time costs. 

The response surface method and the evolutionary method with approximate models 

have been gaining increasing attention over last several years mainly due to their easy 

implementation and affordable time cost wi th a few design variables ( Y i et al., 2006; 

Jang et al., 2006). 

Among deterministic methods, some need gradients of an objective function to design 

variables. According to the way in which gradients of an objective function to design 

variables are calculated, there are: the finite difference method, the linearized method. 
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the complex variable method and the adjoint method. The finite difference method 

requires the original nonlinear flow governing equations to be solved after a design 

variable is perturbed a small amount. Gradient results obtained by the finite difference 

method normally suffer from step size dependence. Regardless of its shortcoming, this 

method is used in gradient calculation for design optimization due to its simplicity 

(Burguburu et al., 2004; Harvey et al., 2000). The complex variable method is the 

complex variable implementation of the finite difference method, but i t does not share 

the shortcoming of the finite difference method (Vatsa, 1999). The linearized method 

requires the linearized flow governing equations (with respect to a design variable) to 

be solved and does not have the shortcoming of the finite difference method. The time 

cost for evaluating gradients by the finite difference method or the complex variable 

method or the linearized method is directly proportional to the number of design 

variables, preventing the use of a large number of design variables. However i t is 

usually desirable to have sufficient many design variables so that a reasonably good 

design can be obtained within the design space spanned by the design variables. The 

adjoint method offers a means to calculate gradients of an objective function to a 

large number of design variables at a cost almost independent of the number of design 

variables. I t is this property of the adjoint method that makes i t very attractive for 

design optimization with a large number of design variables. 

2.4 Development and Application of the Adjoint Method 

The adjoint method originated from the field of optimum control theory (Lions, 1971). 

Pironneau (1974) is probably the first researcher who introduced the idea of using the 

adjoint method in the context of fluid mechanics. However, the application of the 

adjoint method in aerodynamic design optimization based on CFD was pioneered by 

Jameson (1988, 1989). The adjoint method has been established as an effective method 

of calculating gradients of an objective function to a large number of design variables 

in CFD-based design optimizations, and i t has been widely accepted in design opti

mization in many disciphnes (Mohammadi and Pironneau, 2004). However i t did not 

gain enough attention t i l l a decade later since its first introduction to the CFD com

munity. As Giles and Pierce (2001) point out, this can be partly due to the complexity 
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of the method in its formulation and implementation. In an aerodynamic design opti

mization, the shape of an aerodynamic configuration, which normally corresponds to a 

viscous solid wall boundary in a CFD calculation, is the control element which can be 

changed in a favorable way to optimise aerodynamic parameters of engineering merit. 

Based on the way in which a final discrete adjoint system is formed, there are two 

variations: the continuous adjoint method and the discrete adjoint method. In the 

continuous adjoint method, the nonlinear flow equations in a partial differential form 

are linearized first wi th respect to a design variable. Then an adjoint system wil l be 

derived f rom the linearized flow equations, followed by discretization. In the discrete 

adjoint method, the flow equations in a partial differential form are discretized first, 

followed by the linearization and adjoint formulation. This difference can also be 

summarized in this way: the linearization and adjoint formulation are performed in 

the partial differential equation level for the continuous adjoint method and in the 

discrete algebraic equation level for the discrete adjoint method. 

The discrete adjoint method can produce exact gradients of a discrete objective function 

wi th respect to design variables, which will ensure a design process converges quickly 

and fully. However i t is very difficult to develop discrete adjoint codes particularly 

by hand and wi th high-order upwind schemes and sophisticated turbulence models 

implemented in a flow solver. There have been efforts to reduce the complexity of 

developing discrete adjoint systems using complex variables (Nielsen and Kleb, 2005) 

and Automatic/Algorithmic Differentiation (AD) (Mohammadi, 1998). The discrete 

adjoint codes usually require more memory and CPU time compared with its continuous 

counterpart (Nadarajah and Jameson, 2000). In particular, the discrete adjoint codes 

obtained with A D would typically consume three times the CPU time compared to 

that by a flow solver (Duta et al., 2007; Thomas et al., 2003), while the time cost of a 

continuous adjoint solver is usually the same as that of its flow solver. To apply A D as 

a black box to a large scale CFD code may generate useless codes consuming enormous 

memory and CPU. I t is advocated by Duta et al. (2007) that making selective use of 

A D can improve the performance of A D generated adjoint codes dramatically. This 

implementation however normally needs a series of code reconstruction or preparation, 

which can require a considerable work depending on the original code structure. In 
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the continuous adjoint method, one is free to discretize the adjoint equations in any 

consistent way, although it is always better to consult the flow solver schemes. The 

gradients by a continuous adjoint solver are subject to two levels of discretization 

errors for both the flow equations and the adjoint equations, which vanish wi th mesh 

refinement. 

Giles and Pierce (Giles et al., 2006; Giles and Pierce, 2000) point out that there is no 

fundamental reason to prefer one approach over the other and the continuous adjoint 

method can produce the same good design as the discrete one if gradients by the 

continuous one is preconditioned. Nadarajah and Jameson (2000) make an exhaustive 

comparison of the two approaches in the derivation level, pointing out that wi th infinite 

fine mesh the continuous adjoint equations can be recovered from the discrete adjoint 

equations by the discrete adjoint method. This reveals the consistency of the two 

adjoint approaches. Nadarajah and Jameson (2000) further suggest that the best 

practice in terms of accuracy and simplicity of formulating an adjoint system is to 

make use of the continuous adjoint method in the interior domain and use the discrete 

adjoint method along the boundary of a computational domain. More details about 

the advantages and disadvantages of the two approaches can be found in (Giles and 

Pierce, 2000) and (Nadarajah and Jameson, 2000). 

When deriving an adjoint system based upon the RANS equations, some choose to 

freeze the eddy viscosity to reduce complexity. The influence of freezing the eddy 

viscosity on gradient accuracy was investigated by some researchers (Kim, 2007; K i m 

and Nakahashi, 2005; Nielsen and Anderson, 1999). The conclusion seems to suggest 

that freezing the eddy viscosity wi l l normally change gradient results obviously if the 

relationship between an objective function and a design variable is highly nonlinear. 

The inaccuracy in gradient results due to a frozen eddy viscosity wi l l generally deter 

the convergence of an optimization process, but not change the final design (Kim, 

2007). Nevertheless, i t has been successfully applied to design optimization by some 

researchers (Nadarajah, 2003; K im, 2001). Freezing the eddy viscosity is somewhat a 

good compromise between accuracy and reduced complexity in developing an adjoint 

system. 
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2.4.1 External Steady Flow Application 

In the context of a CFD based design optimization, the adjoint method (both the 

continuous one and the discrete one) first gained attention in applications to external 

flows (e.g. for airfoil designs). This might be partially due to the fact that the adjoint 

method was first introduced to the external flow community. I t might be partially due 

to the first maturity of CFD in external flow applications which is less complicated and 

more easily simulated wi th engineering accuracy than internal flow applications. 

The development of the adjoint method has progressed through adjoint potential flow 

equations, adjoint Euler flow equations (Jameson, 1988) to adjoint Navier-Stokes flow 

equations (Jameson, 2003). Its application has advanced from 2D airfoils, 3D wings to 

complete aircraft configurations (Jameson, 1988, 1989; Jameson and Kim, 2003; Alonso 

et al., 2002; Jameson, 2003; Jameson and Alonso, 1996; Reuther et al., 1996, 1999a,b). 

Jameson's group also investigated the discrete adjoint method for design optimization 

(Nadarajah and Jameson, 2000). 

There are also a number of other researchers using the adjoint method for design 

optimization (Soto and Lohner, 2000; Nielsen and Kleb, 2005; K im, 2001, 2007; Ander

son and Venkatakrishnan, 1997; Mohammadi, 1998). K i m and Nakahashi (2005) and 

Nielsen and Anderson (1999) developed hand-coded discrete adjoint solvers based on 

flow solvers using unstructured meshes for the ONERA M6 wing design optimization. 

K i m (2007) developed hand-coded discrete adjoint solvers based on flow solvers us

ing structured and overset grids for various design optimizations. Mohammadi (1998) 

used the A D software Odyssee to generate discrete adjoint codes for 2D airfoil and 3D 

aircraft design optimizations. 

In the interior of a domain, both the magnitudes of adjoint variables and the mesh 

perturbation due to a boundary movement decrease quickly wi th the distance to a 

boundary. W i t h this observation, an incomplete gradient approximated through the 

adjoint boundary conditions without solving the adjoint equations has been used to 

further reduce time cost (Soto and Lohner, 2001; Mohammadi and Pironneau, 2004). 

The successful application of incomplete gradients in design optimization also justifies 

freezing eddy viscosity in an adjoint formulation. 
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2.4.2 External Unsteady Flow Application 

Recently the adjoint method has been extended to airfoil designs wi th an unsteady flow 

field involved using the unsteady time domain flow equations (Nadarajah and Jame

son, 2002; Mavriplis, 2008) to control the time-averaged aerodynamic performance, 

unsteady aerodynamics or aeroelasticity. The unsteady adjoint equation requires inte

gration backwards in time from the null adjoint field at the final time to the unknown 

adjoint field at the initial time. This makes i t necessary to record the solution history of 

the unsteady flow solution for later use during the integration of the unsteady adjoint 

equation, which consumes a lot of memory and the memory usage can be prohibitive 

for 3D cases if all data is held in memory. In order to reduce the memory usage over

head, in (Mavriplis, 2008) the flow solution history is written to disk during the flow 

solution process and read back in the reverse time integration of the adjoint solution 

process. The time periodicity of the unsteady flow fleld was exploited by Nadarajah 

and Jameson (2006) to solve both the unsteady flow equations and the corresponding 

adjoint equations using the NonUnear Frequency Domain method. In this application, 

the unsteady adjoint equations are derived from the unsteady flow equations by the 

continuous adjoint approach. The two sets of partial differential equations are solved in 

the same way using the Nonlinear Frequency Domain method. This is a ful l continuous 

adjoint approach. 

2.4.3 Internal Steady Flow Application 

The applications of the adjoint method in design optimization to internal flows have 

been lagging far behind. The status might be indicated by that an adjoint solution 

with the 2D Euler flow equations for turbomachinery blading aerodynamics was still a 

research topic very recently, e.g. (Li et al., 2006b; Arens et al., 2005). There have been 

increasing efforts made in the apphcations of the adjoint method in turbomachinery 

blading aerodynamics. Yang et al. (2003) and Wu et al. (2003) applied the continu

ous adjoint method to 2D turbomachinery blading aerodynamic design optimization. 

Wu et al. (2005a) and Papadimitriou and Giannakoglou (2006) developed the contin

uous adjoint solvers for 3D turbomachinery blading aerodynamic design optimization. 
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Corral and Gisbert (2006) developed a hand-coded discrete adjoint solver for turbine 

endwall profiling to reduce the secondary flow losses. The A D tool-TAPENADE was 

exploited by Duta and Giles (Duta and Giles, 2006; Duta et al., 2007) to generate 

discrete adjoint solvers to save human effort in adjoint coding development for turbo-

machinery aerodynamic design optimization. 

I t is noted that all the reported design optimizations of turbomachinery blades by using 

the adjoint method have been carried out in a single blade row computational domain. 

For multi-bladerow turbomachines, the matching between adjacent blade rows has im

portant effects. There are different levels of computational analysis tools for including 

these bladerow matching/interaction effects, ranging from a fully time-domain URANS 

to a relatively simple circumferentially mixing-out steady flow treatment (the mixing-

plane treatment, first proposed by Denton (1992)). The mixing-plane multi-bladerow 

steady flow analysis has become a standard industrial tool used in a design environ

ment. Given the importance of the multistage matching, it seems natural to argue that 

an aerodynamic design optimization should be carried out in a multi-bladerow environ

ment, in order to make an effective impact on practical design processes. Recognizing 

this need and the current status of the multi-bladerow analysis in practical blading 

designs, the present work is aimed at developing an adjoint mixing-plane method for 

aerodynamic design optimization of blades in a multi-bladerow environment using the 

adjoint method. 

2.4.4 Internal Unsteady Flow Application 

Florea and Hall (2001) are probably among the first ones to make use of the adjoint 

method for efficient sensitivity analysis of an unsteady inviscid flow through turbo-

machinery cascades. The adjoint system is formulated upon the time averaged Euler 

equations and the corresponding linear harmonic equations. The linearization of the 

linear harmonic equations to a design variable is quite complicated because the system 

is already a linearized system. The complexity is dramatically increased if the Navier-

Stokes equations are involved. Thomas et al. (2003) used the A D tool-TAF to develop 

discrete adjoint codes based upon the unsteady flow equations solved by the Harmonic 

Balance Method (Hall et al., 2002) to model unsteady aerodynamic design sensitivities. 
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The linear harmonic adjoint approach was developed by Duta (Duta, 2002; Duta et al., 

2002) for an efficient blade forced response minimization. In Duta's work, the linear 

harmonic adjoint equation is used to replace the linear harmonic flow equation to cal

culate worksum efficiently for a blade undergoing many possible unsteady disturbances 

of the same frequency and inter-blade phase angle. Therefore the application of the 

linear harmonic adjoint equation is playing an analysis role. 

In this work, an adjoint system is formulated based upon the unsteady flow equations 

discretized on three particular phases of a period of a time-periodic unsteadiness by the 

Nonlinear Harmonic Phase Solution method (He, 2008). The adjoint system is used 

to replace a linearized unsteady flow equation wi th respect to a design variable. The 

sensitivities of an objective function representing both aeromechanic and aerodynamic 

performance to arbitrary many geometry changes can be efficiently evaluated by the 

adjoint solution. Different from the linear harmonic adjoint approach, the developed 

adjoint system is able to handle aerodynamics and aeromechanics simultaneously in a 

design role. 

2.5 Summary 

In a practical design optimization, i t is necessary to consider the viscous effect in a 

flow fleld by using the RANS equations for steady flows and the URANS equations 

for unsteady flows. The adjoint method has been established as a popular and effi

cient method for gradient calculation at situations where there are a large number of 

variables and a single objective function. I t is noted that no effort has been reported 

on the use of the adjoint method for blading design optimization in a multi-bladerow 

environment. The adjoint method is exploited in this work for turbomachinery blading 

design optimization in a multi-bladerow environment. 

Among the various efficient solution methods for the solution of the URANS equations 

for turbomachinery blading aeromechanics, the Nonlinear Harmonic Phase Solution 

method is selected to integrate wi th the adjoint method for efficient gradient calcula

tion for turbomachinery blading aeromechanics related design optimizations. Differ

ent from the linear harmonic adjoint formulation by Duta et al. (Duta, 2002; Duta 

•29 



Chapter 2. Literature Review 

et al., 2002), this developed adjoint formulation can handle both blading aerodynamics 

and aeromechanics simultaneously. Compared with the unsteady adjoint approach by 

Nadarajah and Jameson (2006), the adjoint system here is formulated from the un

steady flow equations at three phases of a period of unsteadiness rather than is derived 

from the unsteady flow equations first and then discretized to the three phases. 
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Steady Nonlinear Flow Model and Solution 
Methods 

The steady flow model and the solution methods are presented in this chapter. The 

flow model includes the Reynolds Averaged Navier-Stokes equations and the turbulence 

models for closing the equations. The solution methods include spatial discretization, 

time-integration and boundary condition specifications. 

3.1 Reynolds Averaged Navier-Stokes Equations 

The flow solver was developed at Durham University (He et al., 2002; He and Denton, 

1994). I t has been under extensive development for steady and unsteady flow field 

calculations and has been validated against experimental data, analytic solutions or 

benchmark results for its capability of producing high quality steady and unsteady 

flow fields (He and Ning, 1998; Chen et al., 2001; He et a l , 2002; L i and He, 2003; 

Moffat t et al., 2005; L i and He, 2005). As we all know, turbomachines have rotary 

components rotating around a shaft. Therefore i t is natural and convenient to utilize 

the flow governing equations in a cylindrical coordinate system. A steady flow field 

analysis for turbomachinery employs meshes attached to the corresponding blades wi th 

all unsteady disturbances from adjacent rows truncated. The steady flow solution 

inside the whole annulus domain of a turbomachine usually exhibits spatial periodicity 

if identical blades axe equally spaced in the circumference of a turbomachine. I t saves 

considerable CPU time and memory usage when one blade passage domain is used 

in a computation in conjunction wi th a periodic boundary condition applied along 
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the periodic boundaries. Consequently the use of a cyUndrical coordinate system wil l 

facilitate an easy implementation of the periodic boundary condition (see section 3.3 

for details). The RANS equations wi th velocity components measured in an absolute 

reference frame in a cylindrical coordinate system are given by 

where 
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where p, is the effective viscosity, namely, p = pi + pf is the laminar/molecular 

viscosity, pt is the turbulent/eddy viscosity. In a compressor temperature does not 
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normally vary much. Hence fXi is held constant everywhere in the flow field and is 

calculated via the following formulation: 

^ ' (3-2) 

Iref is the reference length for the determination of Reynolds number [Re). I t is 

usually assigned a value of the axial chord length of a blade at its mid span, pref is the 

reference density, corresponding to the density of the flow fleld at the mid span region 

of the inlet plane of a computational domain. Vref is the reference velocity, which 

is usually set to the relative velocity of the flow field at the mid span region of the 

inlet plane of a computational domain. Re is the Reynolds number, which needs to be 

specified as an input. The eddy viscosity fit is calculated either by the Baldwin-Lomax 

turbulence model (Baldwin and Lomax, 1978) or by the Spalart-Allmaras turbulence 

model (Spalart and Allmaras, 1992). k is the effective heat transfer coefficient, namely, 

k = Cp (^f^^ + • PTI and Pr j are laminar and turbulent Prandtl numbers and take 

values of 0.7 and 0.9 respectively. Vg is the grid velocity due to the rotation of a 

computational domain wi th the corresponding blade. The definitions of total specific 

energy, enthalpy and specific heat ratio and the gas state equation are given as follows 

to close the system of equations: 

Op 

p = pRT 

3.2 Turbulence Models 

There are two turbulence models available in the flow solver. One is the algebraic 

turbulence model - Baldwin Lomax model (Baldwin and Lomax, 1978), the other is 

the one equation turbulence model - Spalart Allmaras model (Spalart and Allmaras, 

1992). 
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3.2.1 Baldwin Lomax Model 

The Baldwin Lomax model is a mixing length model using a two-layer approach to 

calculate the eddy viscosity: 

_ f /̂ tinner 2/ — VcTOSSOver ("^ "X) 
* 1 Aito„ter if y > Vcrossaver 

where ycrossover is the smallest value of y at which /iti„ner = Mtoute.-

The model for the inner region is given by the Prandtl-Van Driest formulation: 

/it = pi^ |V X 'u| 

wi th I being the mixing length. The mixing length normally uses an expression in the 

Van Driest damping function: 

where K = 0.41 is the Von Karman constant; the parameter is suggested to be 26.0 

for zero pressure gradient flow. The non-dimensional space coordinate ?/+ is defined as 

follows: 

+ y I 

Mi 

The outer layer turbulent viscosity is defined by 

lit = O-OmPpIoymaxTmax 

The intermittency function IQ is expressed by 

1 
In = 

1 + 5.5(0.3y/y^ax)^ 

The function F is defined by 

r = y ( l - e ~ ^ ^ |V X u| 

where ymax is the value of y at which F achieves its maximum value Tmax- 0 takes a 

value of 1.6. 
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3.2.2 Spalart Allmaras Model 

The equation governing the transportation, dissipation and generation of the eddy 

viscosity is given by 

+ 1.5{V • [(1 + pi>)ni]yv + Cb2plJiiVu • Aj>} 
2 

where 

C m = 0.1355, ft2 = Q3exp(-Q4x'), S = LO + j ^ ^ U . Cb2 = 0.622 

C . i = ^ + 1.5(1 + 0,2), U = 9 f ^ ^ l \ k = 0.4187 

fti = ctigtexp , ctx = 1.0, ct2 = 2.0 

Ct3 = 1-2, Cti = 0.5, X = pi>, /v2 = 1 - — 7-, c^2 = 0.3, r = 
1 + XU ' ' S{k • dY 

gt = mm(0.1 , ), u = \V x u\, c^g = 2.0, g = r [l + c^2(r^ - 1) 

d is the shortest distance from the wall, ut is the magnitude of vorticity at the boundary 

layer t r ip point, AU is the norm of the difference between the velocity at a field point 

and the velocity at the t r ip point, and Axt is the grid spacing along the wall at the 

trip point. 

D is the solution variable in the turbulence model equation. The eddy viscosity is 

calculated in the following way: 

p,t = pup^ifyi 

with 
_ 

This equation is incorporated into the flow governing equations and discretized and 

solved in the same way as other equations. 
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3.3 Boundary Conditions 

There are four types of boundary conditions in use. They are: the subsonic inlet bound

ary condition, the subsonic exit boundary condition, the viscous solid wall boundary 

condition and the periodic boundary condition. 

The RANS equations are normally solved by adding a pseudo time derivative term to 

form a hyperbolic system. The specification of the boundary conditions at an inlet/exit 

boundary is closely related to the characteristics of the hyperbolic equations. The 

number of the boundary conditions to be specified should be equal to the number of 

characteristics running into a computational domain. This is the basic compatibility 

requirement. The implementation of the inlet/exit boundary conditions in the present 

flow solver is not based upon the flow characteristics and is accordingly reflective, 

though the compatibility requirement is satisfied. This should not be a big issue since 

the inlet/exit can be normally placed sufficiently far away from the blade leading and 

trailing edge. 

Inlet Boundary Condition 

The fiow field at an inlet boundary is usually subsonic, wi th four incoming flow char

acteristics and one outgoing flow characteristic running across the boundary. The four 

incoming flow characteristics are: 1) entropy disturbance, convected downstream at a 

local flow velocity; 2) two vorticity disturbances, also convected downstream at a local 

flow velocity; 3) an acoustic disturbance, convected downstream at a speed of the local 

flow velocity plus the local sound speed. The one outgoing flow characteristic is an 

acoustic disturbance running upstream at a speed of the local flow velocity minus the 

local sound speed. According to the compatibility requirements, the four incoming flow 

characteristics require four boundary conditions to be specified at such an inlet. In this 

present fiow solver, total pressure, total temperature and fiow angles (in terms of swirl 

angles and pitch angles) are required. Static pressure at the boundary is extrapolated 

from the interior domain, then the specified quantities together wi th the isentropic 

relation are used to work out other flow variables at the boundary. 
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Exit Boundary Condition 

A t an exit boundary, there are four outgoing flow characteristics and one incoming 

flow characteristic. The four outgoing flow characteristics are the entropy disturbance, 

two vorticity disturbances and an acoustic disturbance. The one incoming flow charac

teristic is an acoustic disturbance traveling upstream. One boundary condition needs 

to be specified to satisfy the compatibility requirement. In the present flow solver, 

there are three options to specify a static pressure at an exit. One is to specify the 

static pressure at a hub or a tip wi th static pressure at other radial locations worked 

out according to the simple equilibrium equation (Eq.3.5). Another is to specify the 

static pressure at both a t ip and a hub, the static pressure in between is worked out 

by a linear interpolation. The third is to specify a static pressure profile in the radial 

direction. 
dp pv^ 
Sr r P^') 

Solid Wall Boundary Condition 

Along a solid wall, whether i t is viscous or inviscid, the relative velocity normal to a 

wall is zero: 

U • + {V — Vg) • Tie + w • Tlr = 0 

This is realized in the code development by setting the convective fluxes to zero for all 

the five equations, namely, 

U • [u • Tlx + {v - Vg) • ne + w • Tir] = 0 (3.6) 

If the wall is viscous, the log-law is used to calculate the wall shear stress r^, so that 

a slip boundary condition can be applied wi th reduced mesh density in the near wall 

region to save computational resources: 

= ^CfpW (3.7) 

where 

pWAy 

_ Re Re < 125 
""f-] -0.001767 + 5 ^ + Re > 125 

Re = 
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in which W is the velocity magnitude and p the fluid density at the first mesh point 

away from the wall. A y approximates the normal distance A n between the first mesh 

point and the wall. 

I f the wall is adiabatic, then the following condition for temperature is applied: 

on 

otherwise temperature is specified. For pressure, i t is always assumed that pressure 

gradient normal to the wall is zero, namely, 

on 

Periodic Boundary Condition 

The periodic boundary condition is the easiest one to be implemented among the four 

types of boundary conditions for a steady flow solution. As Fig.3.1 shows, the mesh 

employed in the flow solver assumes periodicity at the periodic boundaries ab and dc. 

In the code implementation, a dummy cell is employed for each physical cell along a 

periodic boundary. The periodic boundary condition can be implemented, for example, 

by setting the flow variables at dummy cells along the periodic boundaries ab or dc to 

flow variables at corresponding physical cells along the periodic boundaries dc or ab. 

3.4 Flow Mixing-plane Treatment 

The flow mixing-plane treatment was initially proposed by Denton and Singh (1979) 

and supplemented by other researchers, like Giles (1991). The flow mixing-plane treat

ment features two important properties: conservation, which is fundamental and dic

tated by physical conservation laws, and non-reflectiveness, which is highly desirable 

due to the small intra-row gap between adjacent blade rows. The conservative prop

erty of the treatment requires that the total mass, momentum and energy fluxes be 

equal across an interface. The non-reflective property guides the right propagation of 

the flow solution information across an interface, ensuring the conservation of mass, 

momentum and energy fluxes wi l l be achieved without artificial reflections to corrupt 

the flow solution in the interior domains. 
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upper periodic boundary 

lower periodic boundary 

Figure 3.1: Mesh for the illustration of periodic boundary conditions 

Fig.3.2 is a schematic of an interface between a rotor domain and a stator domain. The 

x and y coordinates correspond to the axial direction and the circumferential direction 

respectively. I t is assumed that an interface is normal to the axial direction resulting 

in the axial-directional flux only through the interface. The mathematical illustration 

of the conservation property is written as 

TT [ pudy = ^ [ pudy 
^1 J y i ^2 J y 2 

^ I {pu^+ P)dy = ^ f {pu^+ p)dy 
11 J y i 12 J y 2 

/ pvudy = ^ f pvudy 
yi J y , y2 J y 2 

— / pwudy = 77 / pwudy 
y^ J y i J y 2 

— / phudy = — I 
^1 J y i 12 J y 2 

(3.8) 

phudy 

where Yi and Y2 are pitch lengthes of domain 1 and domain 2 respectively. The above 
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domain 1 ^ 
Irotor) / f domain 2 

(stator) 

interface 

Figure 3.2: An interface between a rotor and a stator computational domains 

five equalities can be written in the following shorthand: 

^1,1 = -^1,2 

•^2,1 = -^2,2 

•^3,1 = -^3,2 

^4,1 = ^4,2 

^5,1 = -^5,2 

(3.9) 

The second index denotes the side of an interface. On each side of an interface, once 

the five circumferentially averaged fiuxes are obtained, other intermediate/mean flow 

variables can be worked out uniquely: 

w = El 

' = F, 

(3.10) 

P = 

u = 

F2 + y/Fi + (72 - 1 ) ( F | + F | + F2 - 2F1F5) 

7 + 1 
P 

F, 

I f the five fluxes are equal across an interface, then these intermediate flow variables 

should also be equal. This is due to the unique mapping between the fluxes and the 

intermediate flow variables. 
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At the beginning of a solution process, the fluxes are normally not equal across an 

interface. Accordingly the intermediate flow variables are unequal across an interface. 

The difference in these intermediate flow variables can be used to define the corre

sponding difference in flow characteristics (called characteristic jumps) traveling into 

a domain. The flow characteristic jumps are defined by 

01 = -pc5u + 5p (3.11) 

02 = pcSu + Sp 

03 = pcSv 

04 = pc5w 

05 = -c^5p + Sp 

where 5q = q2 - q\. g is an intermediate fiow variable as defined in Eq.3.10. c = 

is the speed of sound. 0 i represents an acoustic disturbance traveling upstream at a 

speed of u - c, 02 represents an acoustic disturbance traveling downstream at a speed 

ol u + c, 03 and 04 both represent vorticity disturbances traveling downstream at a 

speed of u, 05 represents an entropy disturbance traveling downstream at a speed of u. 

In Fig.3.2, across the interface, one flow characteristic (0 i ) travels into domain 1, while 

four (02,03,04 and 05) travel into domain 2. For domain 1, the one incoming flow 

characteristic (0 i ) is calculated using the definition in Eq.3.12, while the other four 

outgoing flow characteristics are extrapolated from the interior domain. For domain 

2, the situation is exactly reversed. The four incoming flow characteristics (02,03,04 

and 05) are calculated using the definition in Eq.3.12, while the one outgoing flow 

characteristic is extrapolated from the interior domain. 

Once the five flow characteristic jumps are obtained for one domain, they can be 

converted to the primitive flow variable perturbations which can be used to update the 
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local flow solution directly: 

= ^ (-<^5 + ^01 + ^</'2 ) (3.12) 

5v = —(pz 
pc 

5w = 04 
pc 

3.5 Discretization of the RANS Equations 

A whole-annulus computational domain of a single blade row can be considered as 

a multiple of identical sub-domains between two adjacent blades. A single passage 

computational domain is decomposed into a set of non-overlapped hexahedra in 3D as 

shown in Fig.3.3. A cell-centred finite volume method is employed to solve the flow 

governing equations. Therefore the control volumes are these hexahedra bounded by 

surfaces formed by mesh hnes. The flow governing equations (Eq.3.1) are integrated 

over a control volume Vi as follows: 

/ [{F - V^) •n. + iG- Uvg - Vg) .ne + {H- K ) • n.] ds - [ Sdv = 0 (3.13) 
JdVi JVi 

The control volume is a hexahedral in 3D, bounded by the surface of dVi and having 

a volume of A V j . A discrete form of the above is given by 

ND 
J2 ( F l u x . ^ i - F l u x , _ i ) - AV,S, = 0 (3.14) 

in which ND is the dimension of a control volume with ND = 3 for 3D control volumes, 

Flux^^.^ is the flux through the bounding surface indexed i + | . 

3.5.1 Spatial Discretization 

The inviscid flux is calculated using the central difference method wi th a second order 

and fourth order blended artificial viscosity. The second order artificial viscosity re

moves non-physical oscillations around shock regions in a flow field, while the fourth 
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Y z 

Blade Suction Surface 

Blade Pressure Surface 

Figure 3.3: A 3D mesh discretizing a blade passage 

order artificial viscosity ensures stability in a smooth region. The formulation of the 

artificial viscosity follows the one introduced by Jameson et al. (1981), but is specially 

catered for turbomachinery flow field simulations, therefore i t is slightly different from 

the original one in terms of some adjustable factors. 

For clarity and simplicity, a 2D mesh is sketched in Fig. 3.4 to illustrate the calculation 

of the convective flux through a bounding surface. The algorithm is equally applicable 

to 3D control volumes. Along the bounding surface indexed {i + of the control 

volume indexed (i-ij), the inviscid flux is expressed as follows: 

F l u x , + i = F,^, j -Sx + iG- Uv,\^,^ • So + H,^,, • 5, + (3.15) 

in which Sx,Sg and 5^ are projections of the area of the bounding surface indexed 

{i + onto the x,0 and r directions respectively. 

(G - Uv,) 

H. 

where 

= \ [G{Uij) + G{Ui+^j) - v,iU,j + t / ,+1 , , ) ] 

= \[H{U,j) + H{Ui+,j)] 

(3.16) 
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i -1 /2 i + 1 / 2 

Figure 3.4: A 2D mesh for the illustration of inviscid flux calculations 

, (2) _ max{min{0.05, C2V^_^_l j), 0.0075) 

(4) / n ^ (2) \ 

where c is a factor to bend the second and fourth order smoothing effects, C2 is the sec

ond order smoothing factor wi th a typical value of 1.0, C4 is the fourth order smoothing 

factor wi th a typical value of ^ . 

t ' i + i j = maa ; ( 'y i_ i j , t ' i j ,Ui+i j , t ; i+2 , j ) 

= Pi+i,j + 2pt,j + Pi-ij 

An auxiliary staggered mesh is used to calculate the viscous fluxes. An auxiliary mesh 

line lies exactly in the middle of two primary mesh lines. In Fig.3.5, the solid lines 

constitute the primary mesh, while dash-dotted lines constitute the auxiliary mesh. 

Viscous fluxes are functions of flow variable spatial derivatives. These flow variable 

spatial derivatives are calculated using Green's theorem. Inside the control volume 

formed by bounding surfaces e f , f g , gh and he, its averaged flow variable spatial 
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Figure 3.5: A primajy mesh (solid lines) and an auxiliary mesh (dash-dotted lines) for the 
illustration of viscous flux calculations 

derivatives can be obtained in the following way: 

^ = TT7 / : ^ ^ ^ = XT7 f u-n^ds (3.17) 
dx AVefgheJv^,^,^dx AVefghe Jefghe 

where 

AV -AV _ ^ ^ W j ± ^ ^ AV^fghe - AVi^x_j -

Along the bounding surfaces e/ and gh, the flow variable u takes the value of U j j and 

Ui+i^j respectively. While along the bounding surfaces of f g and he the flow variable 

takes the arithmetic average of the flow solution at the four control volumes sharing 

the vertex c and d respectively. Replacing u wi th other flow variables and x wi th 

other coordinates, other flow variable spatial derivatives can be obtained in the same 

way. Once those flow variable spatial derivatives are calculated appropriately, i t is 

straightforward to substitute them to those viscous fluxes Vx,Ve and K- as defined in 

Eq.3.1. 

3.5.2 Temporal Discretization 

In order to solve Eqs.3.14 or 3.1 using the time-marching method, a pseudo time 

derivative term is added to these equations: 
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where R{U) represents the left hand side of Eq.3.13 and is called the flow residual. 

The flow residual R{U) is the summation of the net convective/inviscid flux, the net 

viscous flux, the net artificial viscous flux and the source term, namely, 

R{U) = Ri[U) + R,{U) + Ra[U) - S{U) 

Time integration of the above equation is achieved using the four stage Runge-Kutta 

method. In order to reduce time cost, the viscous and artificial viscous residuals are 

evaluated at the first stage only but used at all four stages of a complete Runge-Kutta 

step. 

+Mun + Raiun - s{u^)] 
1 A r _ _ 1 , , 

= U 

= U 

= U 

= U 

1 A r , 
2AV' 
A r _ 
A T / ' 

Techniques, like the local time-stepping and the multi-grid (He and Denton, 1994) are 

implemented in the flow solver to accelerate the solution process. 

3.6 Summary 

The RANS equations in a cylindrical coordinate system are used in turbomachinery 

flow field simulations. The RANS equations are closed by either the Baldwin-Lomax 

turbulence model or the Spalart-Allmaras turbulence model. The flow mixing-plane 

treatment is also implemented in the flow solver to allow a steady flow field analysis 

to be carried out in a multi-bladerow environment. The flow mixing-plane treatment 

features two important properties: conservation and non-reflectiveness. The equations 

are discretized in a cell-centered finite volume framework. The inviscid flux is calculated 

by the central difference method together wi th a blended second order and forth order 

artificial viscosity. Time-marching in the pseudo time is achieved by the four-stage 

Runge-Kutta method with the acceleration approaches of the local time-stepping and 

multi-grid. 
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Chapter 4 

Development of Steady Flow Adjoint System 

The chapter starts wi th a concise illustration of the adjoint formulation principle. Then 

a steady adjoint system based on the Euler flow equations is derived by the continuous 

adjoint approach. The derivation of the adjoint equations follows the same way as that 

by Jameson (2003), Giles and Pierce (2000) and Arens et al. (2005). The eddy viscosity 

is frozen in the adjoint formulation for simplicity. Gradient calculations are conducted 

at a frozen eddy viscosity, whilst i t wi l l be updated in the direct flow solution once in 

every design cycle. An adjoint mixing-plane treatment is introduced corresponding to 

the flow mixing-plane treatment to enable the steady adjoint system to be solved in a 

multi-bladerow environment. The solution methods for the derived adjoint system are 

also presented. 

4.1 Adjoint Formulation Principle 

In a CFD-based design optimization, there is normally a scalar objective function / , 

which is an explicit function of the mesh coordinate vector X axid the flow variable 

vector U: 

i = nx,u) (4.1) 

The mesh coordinate vector X is usually determined by design variables parameterizing 

a blade profile. Let a be a design variable. The total derivative of the objective function 

(Eq.4.1) to the design variable a can be expressed as follows using the chain rule: 

dI__dI_dX^ dI_dU_dX^ 
da ~ dX~d^^ d U d X ^ ^ • 
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The relation between U and X is determined by the nonhnear flow equations which 

can be symbolized as 

R{U,X) = 0 (4.3) 

If a mesh is generated in an algebraic way, then ^ can be obtained efficiently without 

solving any equations. Even if a mesh is generated in an iterative way, there are 

ways, as pointed out in Chapter 1, to obtain this gradient | ^ efficiently (through an 

efficient mesh movement/perturbation strategy without regenerating the new mesh in 

an iterative way). / is an explicit function of X and U, therefore ^ and ^ can 

normally be obtained in an analytic way. The only term left in the gradient expression 

of ^ is 1 ^ . The solution of U is normally achieved through solving Eq.4.3 in a costly 

iterative process, implying an equivalent costly iterative process is required to obtain 

1 ^ . Now U and X are vectors, therefore | ^ is a matrix of a very big size, i.e. having 

millions of elements for a common three dimensional case. The calculation of every 

element of the matrix requires one separate solution of the flow equations. I t is quite 

normal that in a CFD calculation the number of design variables is much fewer than 

the number of all the mesh points. I t is therefore much more efficient to calculate 

the product of in terms of | ^ wi th the number of calculations reduced from the 

magnitude of the square of the number of mesh points to the number of design variables. 

This is also the approach in which the ffow variable sensitivity is usually calculated by 

the finite difference method or the linearized method. The gradient expression (Eq.4.2) 

is rewritten as 

da~ da'^ dU da ^ 

Similar to the definition of | ^ = The gradient usually called the flow 

variable sensitivity, can be either approximated using the finite difference method by 

solving the nonlinear flow equation after a design variable is perturbed a small amount 

of A a : 

da Aa ^ 

or approximated using the complex variable method (Vatsa, 1999) by solving the non

linear flow equation in a complex variable manner after a design variable is perturbed 

a small amount of lAa: 

dU . , ,U{a + iAa)-U(a), , , _ = lma,^A ^ - ^ ) (4.6) 
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with Imag denoting the imaginary part of a complex variable. The gradient can also 

be obtained using the linearized method by solving the linearized flow equation ^: 

dRdU dR ^ 

Among the above three approaches, the finite difference method suffers from step size 

dependence; the complex variable method normally costs twice as the other two. In 

addition, the cost of gradient evaluation by any of the three approaches is directly pro

portional to the number of design variables making i t prohibitive to use these methods 

in a situation wi th a large number of design variables, because both the nonlinear flow 

equations and the linearized flow equations are directly related to design variables. For 

each design variable, these equations need to be solved once to get the flow variable 

sensitivity to that particular design variable. 

To start wi th the adjoint method, multiplying the left hand side of the linearized flow 

equation (Eq.4.7) wi th a vector variable A called the adjoint variable or the Lagrange 

multiplier, and then subtracting this product from the gradient expression (Eq.4.4) 

yields an augmented gradient expression: 

dl dl dU . dl fdRdU . dR\ 
da dU da^ da ^ \dU da^ da) ^^'^^ 

No matter what value the variable A holds, the product A^ ( f ^ | ^ + | f ) is always 

zero because of the vanishing of the other term. Regrouping the augmented gradient 

expression by collecting like terms with | ^ yields 

dl (dl ^T9R\dU dl ,TdR 
3 - = U 7 7 - ^ + ^ - (4-9) da \dU dUJ da da da 

One has the freedom to choose the value of the adjoint variable, i t is therefore chosen 

in such a way that the following equation wil l be satisfied: 

§-^^i = ° (*-̂°) 
This Equation is called the adjoint equation. W i t h the adjoint variable satisfying the 

adjoint equation (Eq.4.10), the gradient expression (Eq.4.9) is reduced to one indepen

dent of the flow variable sensitivity: 

da da da ^ ^ 

^In contrast to the time linearized equation, where the linearization is conducted with respect to 
time, the linearization in this context is done with respect to a design variable. 
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Like the linearized flow equation (Eq.4.7), the adjoint equation (Eq.4.10) is also a set 

of linear system with the flow solution to Eq.4.3 forming the variable coefficients of the 

equation. Different from Eq.4.7 which is related to a particular design variable, Eq.4.10 

is free from any design variable. This meajis only one set of the adjoint equation of 

the same size of the flow equation wil l be solved for all design variables. Though the 

new gradient expression (Eq.4.11) is related to design variables, the calculation of | ^ 

for hundreds of design variables does not normally exceed one flow/adjoint solution. 

The adjoint calculation of objective function gradients is conducted in the following se

quence: the flow equation is solved first, then the adjoint equation is solved accordingly, 

finally the gradients of an objective function can be obtained by some post-processing 

wi th the known flow and adjoint solutions. In a continuous adjoint method, the cost of 

gradient evaluation is dominated by solving the two sets of equations at a cost roughly 

equal to two flow solutions. 

I t should be noted both the flow equation (Eq.4.3) and the adjoint equation (Eq.4.10) 

contain both the field equation and its corresponding boundary condition. In prac

tice, the field equation and its boundary condition are normally treated separately in 

diff'erent ways. Nevertheless the principle is the same: eliminating the dependence of 

relevant terms on the flow variable sensitivity. 

4.2 Steady Adjoint Equations 

This section presents the detailed derivation of the adjoint equations from the flow 

equations in a partial differential equation form. The derivation of the adjoint equations 

based on the RANS equations (Eq.3.1) is given in Appendix A. The following derivation 

is based on the Euler flow equations, aimed at a simpler illustration of the principal 

procedure of a continuous adjoint formulation. 

In the present work, the objective function is a weighted sum of mass flow rate, pressure 

ratio and entropy generation rate, which can be expressed as a boundary integral in 

the following general formulation: 

/ = / M{U,X)ds (4.12) 
JdD 
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where M is a function of the flow variable vector U and the mesh coordinate vector 

X. The gradient of the objective function to a design variable is given by 

in which a is a design variable, ^ = | ^ = | ^ g a n d ^ = | f g , d s = ^ accounts 

for the boundary geometry perturbation due to a perturbation in the design variable. 

In the above gradient expression, ^ and ^ can be obtained without solving any 

equations, thus their corresponding time cost is very small. However the calculation of 

U, which is called the flow variable sensitivity, has to involve solving equations. U can 

be either approximated using the finite difference method ^: 

dU _ U{a + Aa) - U{a) 
da A a 

by solving the nonlinear flow governing equations after the design variable a is per

turbed A a , or obtained by solving the linearized flow equations: 

where A=^,B = ^ , C = ^ and £) = | ^ are Jacobian matrices. / contains the 

linearization of geometric terms in the flow governing equations to the design variable 

a, corresponding to — | ^ in Eq.4.7. Both the finite difference method and the linearized 

method have the drawback of a proportional increase of time cost to the number of 

design variables. This is to say, either the nonlinear flow equations or the linearized 

flow equations have to be solved at least n times for n design variables to get flow 

variable sensitivities to all the n design variables. 

In order to avoid solving Eq.4.14 n times for n design variables, we resort to the adjoint 

method, which offers a means to calculate the objective function sensitivity at a low 

time cost independent of the number of design variables. Mult iplying two sides of 

Eq.4.14 with the adjoint variable A, and rearranging yields 

d(AO) d(BU-VgU) dr(cu) 

ox rod rdr 
= 0 (4.15) 

'The gradient can also be calculated using the central or forward scheme, moreover it can be 
calculated using the complex variable method. All these methods share the same principle. 
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where A = (Ai, A 2 , A 3 , A4 , As)^. A i , A 2 , A 3 , A4 and A5 correspond to the continuity equa

tion, the axial momentum equation, the moment of momentum equation, the radial 

momentum equation and the energy equation, respectively. The transpose of the ad

joint variable A is used because the linearized equation and the adjoint variable are 

both column vectors. The above product yields a scalar quantity. Eq.4.15 is valid 

everywhere in a computational domain, no matter what value the adjoint variable wi l l 

take. Integrating the above equation over the whole computational domain, one has 

'd(^AU^ d[BU-VgU^ dr(cU^ 

JD dx + rde + rdr 
DU-f dv = 0 (4.16) 

Performing integration by parts once yields 

\^[A-n^ + {B - Vgl) -ne + C •nr]Uds 

L 
L dD 

Udv - f X^fdv = 0 (4.17) 
JD 

where / is a 5 x 5 identity matrix. Subtracting the left hand side of Eq.4.17 from the 

gradient expression (Eq.4.13) wi l l not change the gradient value, namely. 

da JdD \ dU da / JQ^ 
^ds+ ! 

J JdL 
Mds 

idD 

L 

A^ [A-na, + {B - Vgl) -ne + C -rir] Uds 

Udv + [ X^fdv (4.18) 
JD 

Grouping the domain integral terms with U and boundary integral terms with U, one 

has 

dl_ _ f 
da JD 

Udv 

dM -I A ^ ^ • + A^ {B - Vgl) • ne + X^C • -
JdD L '^^ 

+ f ^ d s + I Mds+ I X^fdv 
JdD oa JQD JD 

Uds 

(4.19) 

Returning to the original objective of developing an adjoint system, the gradient for n 

design variables can be efficiently evaluated if we do not have to solve the flow field n 

times. This can be achieved if the explicit dependence of the objective function gradient 

on the flow variable sensitivity can be eliminated. In order to achieve this goal, the 
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first two integral terms on the right hand side of Eq.4.19 should vanish, leading to the 

following two equations: 

^ + z:^iB-v,i) + — c + x^D 
aldx rde' ^ ' dr 

Udv = 0 (4.20) 

idD . 
Uds = 0 (4.21) 

dU 

Inside a computational domain, at every point, U cannot always be zero, the necessary 

and sufficient condition to satisfy Eq.4.20 is to vanish the term multiplying U, leading 

to the adjoint Euler equations: 

'-^A^%(B-..I)^'-^C^X-D = 0 (4.22) 

Along the boundary of a computational domain, however U can always be zero some

where, e.g. on a viscous solid wall, the flow velocity is always zero. Therefore i t is 

not necessary, though sufficient, to vanish the term multiplying U in Eq.4.21. The 

flow boundary conditions need to be taken into account to derive the necessary and 

sufficient conditions: adjoint boundary conditions, to satisfy Eq.4.21. These boundary 

conditions will be detailed in the following adjoint boundary condition section. The 

remaining terms including both domain integral terms and boundary integral terms in 

Eq.4.19 are independent of the flow variable sensitivity U. These terms give the final 

expression of the objective function gradient in an intended form, independent of the 

flow variable sensitivity: 

^ = f ^ d s + f Mds+ f X^fdv (4.23) 
JdD da JQD JD 

The values of the adjoint variables are determined through a solution to the adjoint 

equation (Eq.4.22). No matter how many design variables, there are now only two sets 

of equations to be solved within each design cycle: the non-linear flow equations and 

the linear adjoint equations. The time cost of solving the adjoint equations is roughly 

equal to that for the baseline flow equations. Once the adjoint solution is obtained, i t 

can be substituted to the above gradient expression to calculate the gradients efficiently. 
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4.3 Boundary Conditions 

I t should be remembered that the symbolized flow equation (Eq.4.3) contains both 

the field equation inside a domain and its boundary condition. Accordingly the adjoint 

equation (Eq.4.10) also contains both the field equation and its boundary condition. In 

practice, a field equation and its boundary condition are normally treated differently. 

This is why this separate section for the adjoint boundary condition of the adjoint 

system based on the Euler flow equation comes to exist. Nevertheless, the principle 

of the derivation of both the adjoint field equation and its boundary condition is the 

same: eliminating the dependence of relevant terms on the flow variable sensitivity. 

As pointed out in the previous section, the derivation of the adjoint boundary condi

tions is to find the necessary and sufficient conditions which satisfy Eq.4.21 by taking 

into account the relevant flow boundary conditions at a boundary. Corresponding to 

the four sets of flow boundary conditions, there are also four sets of adjoint boundary 

conditions: the subsonic inlet boundary condition, the subsonic exit boundary condi

tion, the solid wall boundary condition and the periodic boundary condition. These 

four sets of boundaries will be derived separately in the following. 

An important element in the boundary condition treatment is the equation and its 

characteristics. Eq.4.22 is usually solved in a time-marching manner wi th a pseudo time 

derivative term added to the equation to form a hyperbolic system. For a hyperboHc 

system, the specification of boundary conditions is based on the propagation of its 

characteristic information. The basic compatibility requirement is that the number of 

boundary conditions specified at a boundary must be the same as the number of the 

characteristics running into a computational domain through this boundary. Hence 

the directions of the characteristics matter. As Giles and Pierce (Giles and Pierce, 

1997, 1998) point out, the sign of each adjoint characteristic velocity is opposite to 

that of its corresponding flow characteristic velocity. I t can also be put in this way: for 

each flow characteristic, there is a corresponding adjoint flow characteristic traveling 

at a speed of the same magnitude but in an opposite direction. Overall i t is useful 

to note that in a simple but consistent sense, the adjoint information propagates in 

exactly the opposite way to the physical flow information. This 'anti-physics' path of 
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information propagation in fact governs all the boundary condition treatments for the 

adjoint equations, described in this section and the next section on the adjoint mixing-

plane treatment. This wi l l also be illustrated further in the numerical examples, to be 

presented in Chapter 6. 

Inlet Boundary Condition 

At a subsonic inlet boundary for the flow equations, there are four incoming character

istics and one outgoing characteristic. Typically the static pressure at the boundary is 

extrapolated from the interior domain, and other flow variables are determined through 

the isentropic relation and specifled quantities. Thus at the inlet boundary, pressure is 

the only independent flow variable. The perturbation of any quantity at this boundary 

can be expressed as the derivative of the quantity to the pressure times the pressure 

perturbation. Eq.4.21 can be rewritten as follows at an inlet boundary: 

/ f^^^ • ^ - - ^ ] p d s = 0 (4.24) 
JdD \ 

.dF_ dM 
dp ^ dp 

in which an inlet plane is assumed to be normal to the x axis, resulting in the x-

directional flux only through the boundary. The corresponding sufficient and necessary 

condition to satisfy the above is applied as follows (p can not always be zero): 

Eq.4.25 is a scalar equation, corresponding to one boundary condition. This is con

sistent wi th one incoming and four outgoing characteristics for the adjoint equations 

at a subsonic inlet boundary. The adjoint variables Ai_2,3,4 are extrapolated from the 

interior domain, while A5 is worked out according to Eq.4.25. The derivative of the flux 

vector to the pressure ( ^ ) can be obtained via the complex variable method (Vatsa, 

1999), while ^ can be normally obtained in an analytic way. 

Exit Boundary Condition 

At a subsonic exit boundary, there is one incoming and four outgoing characteristics for 

the flow equations. In the present flow solver, the density and three velocity components 

are extrapolated from the interior domain, and static pressure is either specified or 
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determined through the static pressure specified at a hub or t ip wi th the simple radial 

equilibrium distribution or by a linear interpolation. This means at a flow exit, density 

and velocity components are independent flow variables. The flux perturbation at an 

exit boundary can be expressed as follows: 

- a F . dF, dF_ dF _ 
F = —p + —u + —V + —w 

dp du dv dw 

At an exit boundary Eq.4.21 is reduced to the following one: 

I dD 
dF 

.^j,dF dM. .^^dF dM. 
(4.26) 

dM 
)w ds = 0 

dv dv dw dw 

The corresponding sufficient and necessary condition takes the following form: 

A — • n.r -
dM 

= 0 q = p,u,v,w (4.27) 
dq dq 

where again an exit plane is assumed to be normal to the x axis. Eq.4.27 represents 4 

scalar equations, corresponding to four boundary conditions. This is in line wi th the 

four incoming and one outgoing adjoint characteristics at a subsonic exit boundary. 

The adjoint variable A5 is extrapolated from the interior domain, other four adjoint 

variables are determined through Eq.4.27. 

Solid Wall Boundary Condition 

At a solid wall boundary, whether i t is slip or non-slip, i t is impermeable. Eq.3.6 can 

also be written in the following shorthand: 

U-Vn = 0 (4.28) 

where Vn = u-nx +{v— Vg)- ne + w-Ur \s the relative velocity normal to a wall surface. 

The flux through a control face can be spUt by 

F-n^ + {G- VgU) -ng + H-rir = U-Vn + 

( 0 \ 

p • r • ng 
p-Ur 

\p-Vg-ng / 

(4.29) 
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A t a solid wall boundary, the above flux is reduced as follows 

/ 0 \ 

F-n^ + {G-VgU)-ng + H-nr = p-r - no 
p-Ur 

\p-Vg-ne / 

(4.30) 

W i t h the above substituted into Eq.4.21, one has 

f ( dM\ 
\ A 2 n x -f- rXjjiQ - I - X^rir - I - X^VgUe — pds = 0 (4-31) 

JdD \ op J 

The corresponding sufficient and necessary condition of the above equality is to vanish 

the term before p: 
Aan^ + rXzUe + X^Ur + X^VgUe = (4.32) 

op 

Corresponding to a slip boundary condition with the log-law for the wall shear stress 

calculation at a viscous solid wall boundary, the following extra conditions need to be 

appUed: 

= ^ ( A a + f i - A s ) 

3X 
-pr— = 0 for an adiabatic wall 
on 

As = 0 for a non-adiabatic wall (4.33) 

Q. is the angular speed of the rotating mesh associated wi th a blade, is the wall 

shear stress calculated by the log-law. W is the magnitude of the velocity along the 

slip wall. Definition of CTX, ag and cjr is given by 

CTj = CTji • Tlx + agiUg + (7^/1^ i = x,9,r (4.34) 

Definition of aij can be found in Appendix A. The derivation of this part should be 

based upon the Navier-Stokes equation and is detailed in Appendix B. 

Periodic Boundary Condition 

Periodic boundaries come in pair. They are not physical boundaries, but artificial 

ones employed to reduce the size of a computational problem. Therefore an objective 
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function does not explicitly depend on the flow variables along periodic boundaries. 

That is to say, M = 0. Eq.4.21 is reduced as 

/ X^[A-n^ + {B- Vgl) -ne + C-rir] Uds = 0 (4.35) 

JdD 

At periodic boundaries, the pair of boundaries should be considered together rather 

than be considered separately. Referring to Fig.3.1, the terms appearing on the bound

aries ab and dc are written by 

lab 
A ^ [A-n^ + {B- Vgl) -ne + C-rir] Uds (4.36) 

+ / A ^ [ A • Tlx + (JB - Vgl) -ne + C-rir] Uds = 0 
Jed 

Along a pair of periodic boundaries, the flow variables are equal. The only difference is 

that the outward norm of one periodic boundary is just opposite to its corresponding 

one, therefore the above is equivalent to 

/ Xl^[A • + {B - Vgl) • ng + C • Url^Uabds (4.37) 
Jab 

= Xl^[A-n^ + {B- Vgl) -ne + C- n,]„^Uahds 
Jab 

I t is apparent that the periodic boundary condition is given by 

The implementation of the adjoint periodic boundary condition is identical to the flow 

periodic boundary condition. 

4.4 Adjoint l\/lixing-plane Treatment 

One of the main novel points of the present work is to enable the adjoint method based 

design optimization to be carried out in a multi-bladerow environment. The basis of 

the present development is the mixing-plane treatment for flow solutions after Denton 

and Singh (1979). There are two basic features in the mixing-plane approach. The 

first is to satisfy the conservation of the total mass, momentum and energy, which is 

fundamentally required. The second is to be non-reflective, which is highly desirable 

when considering the small intra-row gaps. The present adjoint mixing-plane treatment 

is also aimed at having these two features. 
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Along an interface, the boundary integral in Eq.4.21 appears in a pair and needs to 

be eliminated to reach the objective of the final gradient expression free of the flow 

variable sensitivity. I t is quite usual in a turbomachinery flow field calculation that 

an interface is normal to the rotation axis of a turbomachine as sketched in Fig.3.2. 

This leaves x-directional flux only through such an interface. I t is also assumed that 

an objective function of a design optimization does not explicitly depend on the flow 

solution at an interface, implying M = 0. The boundary integral in Eq.4.21 can be 

accordingly reduced to 

/ X^AUdy [ X^AUdy = 0 (4.38) 
^1 Jyl ^2 Jy2 

The appearance of the pitch length accounts for the whole annulus effect. The first 

term in the above belongs to domain 1 in Fig.3.2, and the second term belongs to 

domain 2. 

At a first glance, Eq.4.38 can be satisfied in two ways. One is to make each of them 

vanish. This requires setting A ^ ^ = 0 at every point along an interface, as the flow 

variable sensitivity U is not always zero along an interface. Because the Jacobian 

matrix A usually has a ful l rank, setting X^A = 0 is equivalent to setting A = 0 , 

which is of course sufficient but not necessary. The other way is to satisfy Eq.4.38 as a 

whole across an interface. This means each of the two terms from the two sides of an 

interface may not be zero, but they have the same value, hence cancel out each other. 

Eq.4.38 can be written in the following equivalent form: 

1 f x^Fdy - 1 / X'Fdy = 0 (4.39) 
Jyl ^2 Jy2 

The adjoint variable vector is independent of a design variable, therefore, one has 

XTp = (4.40) 

Substituting the above into Eq.4.39 yields 

^ / A?Fd5, - ^ / Xn^ds, = 0 (4.41) 

The interface geometry can be kept intact, when a design variable is perturbed. Hence 

the differentiation operation and integration operation can exchange their sequences, 
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resulting in the following equivalent equation: 

^ f X^Fdy-^ [ X^Fdy = 0 (4.42) 

•'I Jyl ^2 J,j2 

The above equation can be further rearranged as follows by removing the differentiation 

operation: 

1 f x^Fdy - 1 / A^Fdy = 0 (4.43) 

•'I Jyl ^2 Jy2 

The above equation is a scalar equation with each side being a sum of five independent 

terms. I t can be satisfied by balancing all the corresponding terms separately across 

an interface, leading to the following five equations, with each one corresponding to 

one adjoint variable: 

^ [ X,{pu)dy-^[ XUpu)dy = 0 (4.44) 
^1 Jyl ^2 Jy2 

^ [ X2 [pu^ + p)dy [ X2 {pu^ + p)dy = 0 
^1 Jyl 12 Jy2 

— / A3 {puvr)dy - TT X3 {puvr)dy = 0 
^1 Jyl ^2 Jy2 

/ A4 {puw)dy - / A4 {puw)dy = 0 
^1 Jyl ^2 Jy2 

: ^ / A5 {pHu)dy I K {pHu)dy = 0 
i^l Jyl ''•2 Jy2 

The five equations state that the adjoint variable weighted and circumferentially av

eraged fluxes of mass, momentum and energy are conserved across an interface. Note 

that along an interface at a radial mesh section, the radial coordinate r is constant. 

This allows the r in the third equation in the above can be taken out of the spatial 

integral and cancel out, leading to the five equivalent equations: 

^ I Xipudy = ^ f Xipudy (4.45) 
^1 Jyi ^2 Jy2 

— 1 X2{pu^ + p)dy = ^ f X2{pu^ + p)dy 
^1 Jyi ^2 Jy2 

— / Xipuvdy = I X-ipuvdy 
^1 Jyi ^2 Jy^ 

— / Xipuwdy = — Xipuwdy 
^1 JyX ^2 Jy^ 

— / X^phudy = rr X^phudy 
^1 JyX ^2 7y2 
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Eq.4.45 only sets the a target of conservation to be achieved. How to achieve this 

target in an appropriate way is also important. When considering the small distance 

between an interface and a blade leading/trailing edge, i t is highly desirable to employ 

a similar implementation to that for non-reflective boundary conditions for the flow 

equations (Giles, 1991) to avoid nonphysical reflections corrupting flow solutions in the 

interior domain. 

Applying the mean value theorem for integration to either side of Eq.4.45, the following 

mixed-out variables can be obtained: 

r Xipudy 

A 2 , 

M r 

{X4w)i 

A5,i = 

Jy.X2{pu'^+p)dy 

fjpu^+p)dy 

4 >^3puvdy 

ly, P^dy 

Jy. Xipuwdy 

ly, P^dy 

X^puhdy 

4 puhdy 

In the third and fourth equations of the above equations, the mass flux is used in 

the denominator instead of corresponding momentum fluxes. This is because the cir

cumferential and radial momentum fluxes may change their signs somewhere along an 

interface, which violates the premise of the mean value theorem for integration. How

ever the mass flux, axial momentum flux and energy flux do not normally change their 

signs along an interface (no reverse flow). According to the conservation in Eq.4.45, 

these mixed-out variables in Eq.4.46 should also be equal across an interface. Once 

there is a difference in these mixed-out variables across the interface, this difference is 

taken as a characteristic jump disturbance. The present non-reflective implementation 

wil l pass the disturbance across the interface correctly. The local adjoint solution vari

ables wi l l be corrected according to the adjoint characteristic propagation to drive the 

difference to zero. 

The adjoint characteristic variables in term of primitive adjoint variable perturbations 

are expressed as follows: 

A, = 5^A (4.47) 
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where S is the matrix which diagonaUzes the Jacobian matrix = % — SAS~^, 

with A being a diagonal matrix with diagonal elements as eigenvalues of the matrix A. 

Expanding the vector form of Eq.4.47 gives 

Aci = Xi + {u- c)A2 + vrXs + WX4 + {h - uc)X'^ (4.48) 

Ac2 = Xi + {u + c)X2 + vrXz + WX4 + {h + uc)A5 
~ V ~ 

Ac3 = A3 -I A5 
r 

Ac4 = A4 - I - WX5 

Ai - , i y 2 
Ac5 = — + A 2 + As 

u 2u 

where h is the total enthalpy, c is the speed of sound, u, v, w are velocity components 

in the axial, circumferential and radial directions respectively, = + v- + w'^ is 

square of the velocity magnitude, r is the radial coordinate. 

Ac! represents an adjoint acoustic disturbance propagating downstream at a speed of 

—u + c; Ac2 represents an adjoint acoustic disturbance propagating upstream at a speed 

of — u — c; Ac3 and Ac4 represent two adjoint vorticity disturbances, Acs represents an 

adjoint entropy disturbance, the three all propagate upstream at the same speed of 

-u. For both incoming and outgoing adjoint characteristic variables, flow variables 

take their local values. For incoming adjoint characteristic variables, the primitive 

adjoint perturbation takes values through the difference in the mixed-out quantities in 

Eq.4.46, e.g. 

Ai = ATI-ATI (4.49) 

A2 = A12 — A22 

X13V — X23V 
A3 = 

A4 = 

V 

X14W — X24W 

w 
A5 = Ais — A25 

A3 or A4 is set to zero if the magnitude oi v or w is smaller than some threshold 

values (say 0.1). For outgoing adjoint characteristic variables, the primitive adjoint 

perturbations take local values. 

In Fig.3.2, the interface separates two boundaries, an exit for domain 1, and an in

let for domain 2. The exit of domain 1 has four incoming adjoint characteristics 
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(^c2 , ^C3J Ac4, Acs) of which the primitive adjoint variable perturbations wi l l be calcu

lated through Eqs.4.49. The inlet of domain 2 has one incoming adjoint characteristic 

(Aci) of which the primitive adjoint variable perturbations wil l be also obtained through 

Eqs.4.49. Outgoing adjoint characteristics are calculated according to local primitive 

adjoint perturbations. 

Once all the adjoint characteristic variables are obtained for each side of an interface, 

then they can be converted to primitive adjoint variables via the following inverse 

transformation: 

A = ( 5 ^ ) - ^ A, 

The scalar form of the above is given as follows: 

As = —-^ + - u^cb - vrXcz - wXc4 (4.50) 

A4 = —WX5 + Ac4 

—V ~ 
A3 = — A s -I - Ac3 

r 
T T , —Xc\ + Ac2 
A2 = -wAs 

2c 

Ai = -2-As + ^ ( A c i + Ac2 + 2cAc5) 

The primitive adjoint variable perturbations can therefore be directly used to update 

the local adjoint solution. 

4.5 Solution of the Adjoint Equations 

In order to solve Eq.4.22 in a finite volume framework, i t is first written in a strong 

conservative form with extra terms taken as source terms. Then a pseudo time deriva

tive term is added to the adjoint equations as follows to form a hyperbolic system so 

that the Runge-Kutta time integration method can be made use of: 

dX dA^X d{B-VglfX drC^X 
dr dx rdB rdr 

dA^ d{B - vgl)" drCF ^ 

(4.51) 

A 
dx rdB rdr 

As can be seen from the above, compared wi th Eq.4.22, all terms change their signs into 

their opposite ones when the pseudo time derivative term is added. This is again in line 
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with the property of adjoint characteristics (Giles and Pierce, 1997, 1998) propagating 

in exactly opposite directions to the flow characteristics. 

Integrating the above equation over a control volume yields 

Jvi OT Jgy. L 
{B - Vgiy X-ne + C^X • 

- L . dx 
^ d { B - v , l f ^ drC^ 

rdd rdr 

ds 

Xdv 

(4.52) 

The right hand side term is approximated by 

'dA^ d{B-Vglf drC^ i 
- L 

+ rde + rdr 
Xdv (4.53) 

d{B-Vglf drC^ 
dx rdd rdr 

dv • X. D'^Xdv 

idVi 
• + ( B - Vglf -ne + C^ • n J ds • Xi - / D'^Xdv 

-I Jvi 

where Aj is the adjoint solution at the i " ' cell. 

The following term is called the adjoint inviscid flux: 

A'^X • + ( 5 - Vglf X-ne + C^X • 

Referring to Fig.3.4, along the bounding surface indexed + of the control volume 

indexed the inviscid adjoint flux is simply the average of the adjoint fluxes cal

culated using the flow and adjoint solution at the two adjacent cells indexed and 

{i + 1, j ) . This is the well-known central difference scheme which requires numerical 

dissipation to be stable. The same artificial dissipation scheme as used in the flow 

equation discretization is utilized here. 

Time integration is achieved using the Runge-Kutta method as detailed in Chapter 3 for 

the solution of the flow equations. The multi-grid and local-time stepping techniques 

are also used to speed up the convergence of the adjoint equations. Subroutines in the 

flow solver, such as those for time-marching, multi-grid, and metrics calculation, can 

be reused in developing the adjoint solver without any major modification. As for the 

initialization of the adjoint solution, our practice shows that the adjoint solution can 

be initialized wi th zeros or real numbers of small magnitudes. 
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4.6 Summary 

The adjoint formulation principle is first elaborated in an algebraic way. A n adjoint 

Euler flow system, including the field equations and corresponding boundary condi

tions, is derived in detail by the continuous adjoint approach. The developed adjoint 

mixing-plane treatment, like the flow mixing-plane treatment, has two important fea

tures: conservation and nonreflectiveness. W i t h this adjoint mixing-plane treatment, 

the sensitivity calculation can be conducted in a multi-bladerow environment. This 

provides an opportunity to carry out blading aerodynamic design optimization in a 

multi-bladerow environment. The derived adjoint system is solved in a cell-centered 

finite volume framework as the flow system is solved. The inviscid adjoint fluxes are 

computed using the central difference scheme with a blended second and fourth order 

artificial viscosity. Time integration is accomplished using the four stage Runge-Kutta 

method. 
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Chapter 5 

Blading Aerodynamic Design and 
Optimization System 

This chapter supplements the necessary elements for establishing a system for turbo-

machinery blading aerodynamic design optimization. This includes the gradient calcu

lation, the objective function to be optimised, the shape parameterization approach, 

the single-operating-point design optimization process and the multi-operating-point 

design optimization process. 

5.1 Gradient Calculation 

For a convenient reference, the gradient expression (Eq.4.23) is repeated here: 

^ = [ ^ d s + f Mds+ [ X^fdv (5.1) 
da JQD da JQ^ JD 

The gradient expression is expressed in terms of the adjoint variable, the flow variable 

and the geometric gradient. The geometric gradient is calculated using the complex 

variable method (Vatsa, 1999). The term / is the opposite of the flow residual pertur

bation due to a unit perturbation in a design variable, wi th flow variables fixed at all 

control volumes, defined as follows: 

f - f . ( - ) 

The calculation of / requires perturbing the mesh followed by the flow residual per

turbation calculation. The procedures of the gradient calculation are summarized as 

follows: 
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1) perturbing a design variable and calculating the mesh perturbation. 

2) calculating / ^ ^ and / ^ ^ Mds. 

3) calculating flux perturbations for each bounding surface, then assembling flux per

turbations for each control volume to form the flow residual perturbation 

4) multiplying the adjoint variable wi th the flow residual perturbation at each control 

volume and summing up: 

da 

with as the number of control volumes. 

5) assembling all the three parts to form a complete gradient (Eq.5.1). 

For each design variable, the above five steps need to be completed once. For thousands 

of design variables, the time cost for all the gradient evaluations is not negligible, but 

i t wi l l usually not exceed that for solving the flow equations or the adjoint equations 

once. For example, the mesh needs to be perturbed once for each design variable to 

calculate the corresponding flow residual perturbation. Such a residual perturbation 

calculation has a cost which is more or less one-fourth of one fu l l four-stage Runge-

Kut ta iteration. W i t h a complex variable implementation, the cost of a flow residual 

perturbation is doubled. Therefore for one hundred design variables, the time cost wi l l 

be 50 fu l l four-stage Runge-Kutta iterations, which is only a fraction of thousands of 

iterations required to solve either the flow equations or the adjoint equations. 

Though there are ways to avoid perturbing the mesh by converting the domain integral 

in Eq.5.1 into a boundary integral (Jameson, 2003; Papadimitriou and Giannakoglou, 

2006; Soto and Lohner, 2004), i t involves calculation of spatial derivatives of flow 

variables along the boundary of a computational domain, which is normally not easy 

to be obtained wi th desired accuracy. 

5.2 Objective Function 

One design optimization option of the present design system is to increase a blade 

isentropic efficiency whilst applying constraints to the mass flow rate and stagnation 
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pressure ratio. The constraints are set to l imit the mass flow rate and stagnation 
pressure ratio changes to some specified values, say 0.5%. Although the design target is 
to increase isentropic efficiency, this is achieved by minimizing the entropy generation 
rate, hence flow losses. The entropy generation rate, as used by Oyama and Liou 
(2004), has a much simpler expression than that of isentropic efficiency. This reduces 
complexity in deriving objective function related terms in Eq.4.13), which are 
needed for specifying adjoint boundary conditions. Besides, the entropy generation rate 
can also be used as an objective function to be minimised to optimise the performance 
of turbine blades for which the efficiency definition for compressor blades can not be 
applied any more. This makes the design system more general for turbomachinery 
blading design optimizations. 

There are at least two strategies available for a constrained design optimization. One 

approach is to consider a single objective function that is a weighted sum of all objec

tives and constraints (Elliott and Peraire, 1998; Pierret, 2005). This strategy requires 

one adjoint solution only for gradients of the single objective function to all design 

variables. The other approach is to calculate the gradients of objectives and con

straints separately, asking for a separate adjoint solution for each functional. The first 

strategy is adopted here in the light of using a single adjoint solution reducing compu

tational cost. The objective function for design optimization is a weighted sum of the 

two aforementioned constraints and the entropy generation rate, taking the following 

formulation: 

I = ^ + a J — - l ) + c T 2 ( - - l ) (5.3) 

where As is called entropy generation rate and defined as 

As = Se — Si 

in which e denotes an exit and i denotes an inlet, s is the mass averaged entropy and 

defined by 
/ spvnds 
JPVnds 

with s = ^ . Vn is the velocity normal to the plane at which the integration is con

ducted, ds is a differential area element. The mass flow rate m is deflned by 

m = ̂  (^J^pVnds • Nbi + J^fWnds • A b̂n 

68 



Chapter 5. Blading Aerodynamic Design and Optimization System 

where Nbi is the number of blade passages of the first blade row, while Nf^ is the number 
of blade passages of the last blade row. The stagnation pressure ratio is defined by 

with P* defined as the mass averaged total pressure at an inlet or exit plane: 

p . ^ Jp*pvnds 
JpVnds 

in which p* is the local total pressure calculated by 

/ ^r2 \ 7/(7-1) 

The subscript 0 in Eq.5.3 denotes init ial values, ai and a2 are weighting factors. 

Different values of ai and (72 wil l usually lead to different designs as also revealed by 

Wu et al. (2005a). 

A good choice of these values usually needs some trial and error. I f the curve of the 

objective function vs. design iteration has a lot of zigzags, and the curve of a constraint 

vs. design iteration also has zigzags, this usually indicates the corresponding weighting 

factor is too big. I f a constraint is seriously violated, even if the objective function 

converges, the corresponding weighting factor needs to be increased. 

The objective function gradient wi th respect to flow variables ^ for an adjoint bound

ary specification can be found in Appendix C. 

5.3 Shape Parameterization 

Shape parameterization plays a very important role in turbomachinery blading aero

dynamic design optimization. Different shape parameterization generally leads to dif

ferent optimised designs (Wu et al., 2003). Shape parameterization for turbomachinery 

blades has long been a separate research topic (Miller I V et al., 1996; Samareh, 1999). 

W i t h many different approaches for blade shape parameterization appearing in the 

open literature, what is the best way to parameterize turbomachinery blades remains 

an open question. A good shape parameterization should be able to accommodate 

sufficiently many blade shapes of diflFerent features, meanwhile i t should be also robust 
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enough so that any arbitrary perturbation to its parameters wi l l generate a realisti
cally different blade shape. I t is also highly desirable that a shape parameterization 
can approximate the original blades to be optimised with suflScient accuracy. 

I t is quite difficult to implement such a good shape parameterization easily for tur-

bomachinery blades, which normally have quite rich two dimensional features for 2D 

blade sections and rich three dimensional features for 3D blades. A l l the shape param

eterization methods in the open literature can be divided into two kinds: blade shape 

parameterization and blade shape perturbation/deformation parameterization. 

NACA airfoils are described by four digits which can be entered into equations to get a 

required airfoil geometry. Bezier polynomials were used to parameterize a blade shape 

by Arens et al. (2005), Biiche et al. (2003), Benini (2004), Sieverding et al. (2004) and 

Lotf i et al. (2006). B splines were adopted to describe a blade shape by Anderson 

and Venkatakrishnan (1997) and Oyama and Liou (2004). Aerodynamic modes hke 

sweep, lean (Jang et al., 2006; L i et al., 2006b; Y i et al., 2006) are a popular choice to 

parameterize perturbations to a blade shape, reducing the number of design variables. 

The Hicks-Henne functions (Hicks and Henne, 1978) were used by Yang et al. (2003) 

and K i m and Nakahashi (2005) and Bezier curves/surfaces were utilized by Burguburu 

et al. (2004) to parameterize perturbations to a blade shape. 

This shape perturbation parameterization approach has been adopted in this research 

work using the Hicks-Henne functions and its variants. The major advantage of the 

shape perturbation parameterization approach is that the original blade shape can be 

recovered by simply setting zero perturbation. Two sets of hump functions are used to 

parameterize perturbations to tangential coordinates of mesh points on a blade surface. 

One is the 2D Hicks-Henne function expressed in 5.4 which is a variant of the original 

Hicks-Henne function (Hicks and Henne, 1978). The other is given in 5.5. The Hicks-

Henne functions (5.4) are applied to mesh points which are not at the leading edge or 

the trailing edge or the casing or the hub of a blade, while the other ones (5.5) are 

used for those mesh points where (the leading edge, trailing edge, casing section and 

hub section mesh points) Hicks-Henne functions fail ( xj, or can not be one or zero 
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in 5.4). 

6re = a - sin** ^vrr'-^d j • sin**"̂  ^ 
l n O . 5 

TTX ^"^d (5.4) 

Sre — a • sin' br TT 
sm 

TT 
-{I - \xa-x\) (5.5) 

where a: is the reduced axial coordinate of a mesh point along the axially running grid 

line on which the mesh point resides, and r is the reduced radial coordinate of a mesh 

point along the radially running grid line on which the mesh point resides. The value 

of X is 0 and 1 at the leading edge and trailing edge respectively. The value of r is 

0 and 1 at the hub and casing section respectively, x^ and are reduced axial and 

radial coordinates of a design mesh point. 

R,=R,(X) 
r=0 

X(m) 

Figure 5.1: Mapping from a curved blade surface to a normalized region 

These reduced coordinates can be better explained by mapping a blade surface, which 

is formed by four curved edges, to a rectangle as shown in Fig.5.1. The blade surface 

is composed of four curved edges: H i = Ri{X) forms the hub contour of the blade, 

i ? 2 = R'liX) forms the t ip contour of the blade, R3 = i?3(X) forms the leading edge 

contour and R4 — R4{X) forms the trailing edge contour. The blade surface is mapped 

to the rectangle wi th i?i ^ r = 0, i ? 2 —>• r = 1 , -R3 ^ x = 0 and R^ ^ x = I. For 

a mesh point ( j , k), wi th j indexing mesh points on an axially running mesh line and 

k indexing mesh points on a radially running mesh line, its reduced coordinates are 
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calculated by 

xu,k)-x{j,,,k) 

r = 
R{j,k)-R{jhub,k) 

RUtip, k) - R{jhub, k) 

where le denotes a leading edge, te a trailing edge, hub and tip are self-explanatory. 

In the hump functions (5.4 and 5.5), bx and br control the influence of the perturbation 

to the tangential coordinate of a design mesh point on other mesh points. The bigger 

the value of b^ or br, the more local the hump functions wil l be. a is a design variable 

and determines the amount of perturbation to the tangential coordinate of a design 

mesh point. On a blade surface, i f i t is densely populated with design mesh points, then 

each hump function can be very local by choosing a bigger value of b. Otherwise, the 

hump functions need a smaller value of b to be more globally smooth. As a geometrical 

constraint, the blade tangential thickness is kept constant during a design process to 

avoid producing unrealistically thin blades. W i t h this geometric change, the blade 

axial chord length wi l l not be changed. 

The mesh points on a blade span section are also allowed to move along axially running 

grid lines to accommodate blade sweep effect. When one radial mesh section is per

turbed in the axial direction along the axially running grid line, the perturbations to 

other radial sections are determined according to the following Hicks-Henne function: 

, / ID 0 . 5 \ 

6x = a - sin'''" lirr^ j (5.7) 

The resultant perturbation to radial coordinates of mesh points is determined through 

ensuring the perturbed blade span section moves along the axially running grid line on 

which this span section resides. 

Finally i f a blade has a circle fitted around its leading edge, mesh points on the leading 

edge circle are not allowed to be taken as design mesh points. However the coordinates 

of these mesh points wiU stil l be changed due to perturbations to other mesh points to 

preserve the round blade leading edge shape. 
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5.4 Single-Operating-Point Design Optimization Process 

The search procedure used in this work is the steepest descent method in which a small 

step is taken in the negative gradient direction. 

A a = - s ^ (5.8) 
da 

where s is the step size to be prescribed. I f A a is small enough, then the change in 

the objective function can be approximated by 

A / = ^ • A a (5.9) 
aa 

Substituting A a in 5.8 into the above gives 

It is evident that AI < 0, i f the gradient is not zero. In practice, the optimum value of 

the step size s is normally determined through a line search along the negative gradient 

direction. This kind of search usually requires extra time cost for solving fiow equations. 

Here the step size s is given by an empirical rule. Based on gradients of an objective 

function to all design variables, an arbitrary step size (big enough to avoid excessive 

rounding errors) is used first to calculate perturbations to the coordinates of all the 

mesh points. Then the maximum perturbation is found and all the perturbation wi l l 

be scaled to such an extent that the maximum perturbation wil l be equal to a specified 

value, say 0.1 mm. In this way, a big perturbation which may result in a drastic change 

in a blade profile in one design cycle wi l l be avoided. 

A design optimization process is broken down into seven procedures as shown schemat

ically in Fig.5.2. 

Step 1: Problem setup This is the starting point of a design optimization. I t 

includes specification of the init ial blade geometry, boundary condition, objectives and 

constraints, design mesh points, etc. 

Step 2: Mesh generation A mesh is generated in an algebraic way according to a 

given blade geometry. 
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Step 3: Solve flow equation The flow equation is solved to obtain the flow solu
tion, which is used to evaluate the performance of the current design and provides 
information for following steps. 

Step 4: Solve adjoint equation Based on the flow solution, the adjoint equation is 

solved. The adjoint solution together with the flow solution provides information for 

the evaluation of gradients of the objective function to design variables. 

Step 5: Calculate gradient Gradients of an objective function to design variables 

can be obtained with mesh perturbation (see details in section 5.1). 

Step 6: Calculate the step size The step size is calculated according to the empirical 

rule described at the beginning of this section. The step size determines the amount 

of change made to the current blade geometry. 

Step 7: Update blade geometry Based upon the step size and the steepest descent 

method, the perturbation to a blade geometry is obtained first, then i t is used to update 

the blade geometry. 

The above steps 2-7, which constitute one design cycle, wil l repeat until a certain 

stopping criterion is reached. In one design cycle, the main time cost is consumed by 

the flow solver and the adjoint solver. In a design process, the flow variables and adjoint 

variables in a successive design cycle can be initialized using the flow solution and the 

adjoint solution in the previous design cycle respectively. Between two successive design 

cycles, the change in a blade profile is normally small. Therefore both the flow solution 

and the adjoint solution between two successive design cycles are quite close to each 

other. The use of the flow solution and the adjoint solution in the previous design cycle 

to initialize the flow variables and the adjoint variables in the successive design cycle 

can lead to a fast convergence. 

5.5 iVIulti-Operating-Point Design Optimization 

Gas-turbines, especially those used in aero-engines, operate in a wide range of operating 

conditions. High isentropic efficiency at design point is only one desirable factor among 

all characterizing a high performance machine. Performance of turbomachines at off-
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Figure 5.2: Flow chart of aerodynamic design optimization 

design conditions are also quite important. Design optimization of a turbomachine at 

one operating point can normally not guarantee a good performance at other operating 

conditions. In order to ensure a better performance of an optimised design over the 

whole operating conditions, there is a need to take into account the blading perfor

mance at different operating conditions, leading to the multi-operating-point design 

optimization. The simplest and most straightforward approach to conduct a mult i-

operating-point design optimization might be to form an objective function which is a 

weighted sum of objective functions at multiple operating conditions: 

/ = ^ c r i - / , (5.11) 

i 

where CTJ and / j are the weighting factor and the sub-objective function for the i " * oper

ating condition respectively; N is the number of operating points to be considered in a 

design optimization process. The weighting factor is specified a priori and independent 

of the fiow solution at any operating condition considered. 
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The gradient of the objective function / in 5.11 to a design variable is the weighted 

sum of the gradients of the sub-objective functions to a design variable: 

dl dli 
da ^ ^ da 

(5.12) 

The calculation of the gradient of a sub-objective function to a design variable at a 

particular operating point needs the nonlinear flow solution and the corresponding ad

joint solution at that particular operating point only, because of the linear combination 

of sub-objective functions. Thus these gradients of sub-objective functions to a design 

variable at different operating points can be obtained in any order or simultaneously, 

then these gradients are combined linearly wi th their corresponding weighting factors 

to form the total gradient. This gives rise to parallelizing the multi-operating-point 

design optimization process. On one hand, i t is quite straightforward to implement 

the parallelization using the Message Passing Interface(MPI) standard, because the 

calculation at different operating points provides a natural task decomposition; on the 

other hand, the paralleHzation wi l l result in a considerable real time saving. 
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Figure 5.3: Flow chart of a multi-operating-point aerodynamic design optimization 
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The serial code for aerodynamic design optimization is therefore parallelized with only 
a lit t le code development forming the framework of a multi-operating-point design op
timization. The flow chart of a multi-operating-point design optimization is schemati
cally depicted in Fig.5.3. Comparing the calculation at each computer node with the 
flow chart of the single-operating-point design optimization (Fig.5.2), the only differ
ence is that sub-gradients need broadcasting to other nodes followed by forming the 
total gradients in a linear combination way. The procedures of forming the total gra
dients, calculating the step size, updating a blade geometry and mesh generation are 
identical at all the computer nodes involved. These procedures can be done in one host 
node wi th results broadcast to other nodes. As a matter of fact, this approach wil l in
crease communication overhead to some extent and also needs extra code development. 
I t is therefore better to perform these calculations by each computer node. 

5.6 Summary 

A design optimization system has been established and developed for turbomachinery 

blading aerodynamic design optimization. The steepest descent method, wi th the 

gradient calculated by an adjoint solution wi th mesh perturbation, is used to guide 

the original design to an optimum design. The change of blade shape is reahzed by 

parameterizing perturbations to a blade using Hicks-Henne like functions. The design 

system is able to perform design optimization increasing isentropic efficiency while 

maintaining the change of mass flow rate and pressure ratio wi thin a certain range in a 

multi-bladerow environment. A multi-operating-point design system is also established 

to make sure an optimised design will have a better performance than the original one 

over the whole operating range at a given operation speed. The multi-operating-point 

design optimization process is parallelized in such a way that the computation for each 

operating point can be conducted in a separate computer processor simultaneously, 

leading to significant reduction in real time cost. 

77 



Chapter 6 

Verification and Application of Aerodynamic 
Design Optimization System 

Verifications of the basic adjoint solver and the proposed adjoint mixing-plane treat

ment are carried out in this chapter, followed by four design optimization case studies. 

6.1 Verification of Gradient Calculation 

This verification section is composed of two parts. The first part is to demonstrate 

the validity and the appropriate implementation of the adjoint method for gradient 

calculation in a single row computational domain. This part lays down the basis for 

the second part. The second part is to demonstrate the validity and the appropriate 

implementation of the adjoint mixing-plane treatment, allowing an adjoint gradient 

calculation to be carried out in a multi-bladerow environment. 

6.1.1 Verifying the Adjoint Solver 

Two cases are used to verify the basic adjoint solver for gradient calculations for a 

single bladerow configuration. The l i f t gradient of an airfoil to its angle of attack is 

computed by the adjoint method and compared with the result by the finite difference 

method. Then an inverse design is carried out to show the validity and the benefit of 

an adjoint aerodynamic design optimization. 
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• Lift Coefficient Gradient 

The adjoint solution provides information with which gradients of an objective function 

to a large number of design variables can be obtained efficiently. Thus the adjoint 

solution can be verified by comparing gradients using the adjoint solution with those 

calculated by other well established methods. A simple and straightforward way to 

obtain gradients of an objective function to design variables is the finite difference 

method. However i t should be reminded that this approach has the shortcoming of 

subtraction cancelation when a step size is too small. While a big step size may lead 

to unreliable gradient results, i f the relation between an objective function and design 

variables is highly nonlinear. The complex variable method or linearized method is 

a better alternative to the finite difference method, however its implementation in a 

large-scale nonlinear flow solver requires a lot of extra work. 

As we know, within a certain range of angle of attack, the l i f t coefficient of an airfoil has 

a linear relationship with its angle of attack. This provides a good case to calculate the 

gradient of the l i f t coefficient of an airfoil to its angle of attack using the finite difference 

method by choosing a step size which is big enough to avoid significant subtraction 

cancellation errors. 

The l i f t coeflficient of NACA0012 wi th a chord length of 0.15 m is calculated for angle 

of attack between 0 and 2 degrees at a Mach number of 0.62 in the far field. The 

computational domain is extended about 10 times chord away from the airfoil surface 

and divided into 4 blocks wi th about 15,000 mesh points (Fig.6.1). 

The Mach number distribution at zero angle of attack is shown in Fig.6.2(a) wi th 

Fig.6.2(b) showing the corresponding adjoint solution (the adjoint variable correspond

ing to the continuity equation). Comparing the adjoint solution contours and those of 

Mach number, one can see clearly that the upstream of the flow field corresponds to 

the downstream of the adjoint field, and vice versa. This is in consistency with the 

property of the adjoint characteristics which have an opposite direction to the flow 

characteristics. 

The linear relationship between the l i f t coefficient of NACA0012 and its angle of attack 

is presented in Fig.6.3. The gradient by the finite difference method and that by the 
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adjoint method are in a very good agreement at different angles of attack. The biggest 
relative difference between the gradients by the two methods is wi thin 5%. 

1111111 0.05 0.1 0.15 0 
X(1T.) 

Figure 6.1: Mesh overview (left) and close-up (right) for NACA0012 at zero angle of attack 

(a) Mach number contours 

0 0.05 ^ ^ l ^ j 0.15 0.2 

(b) Adjoint field contours (Ai) 

Figure 6.2: Flow field and adjoint field contours around NACA0012 at zero angle of attack 

• Inverse Design 

Inverse design is a popular case for adjoint method researchers to demonstrate their 

proper implementation of the adjoint method (Yang et al., 2003; Nadarajah and Jame

son, 2000). As a conventional inverse design, i t requires the specification of a target 

pressure or velocity distribution on a blade surface. The pressure distribution on the 

blade surface of NACA0015 wi th a chord length of 0.15 m is obtained by the present 
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Figure 6.3: Lif t coefficient and its gradient versus angle of attack for NACA0012 (FDM: 
Finite Difference Method; ADJ: Adjoint Method; CL: calculated Lif t Coefficient) 

flow solver at a flow condition which is identical to that for the previous case. The calcu

lated pressure distribution is taken as the target pressure distribution. The NACA0012 

profile of the same chord length is used as an init ial airfoil by the design system to 

approach the target pressure distribution. 

The objective function for this inverse design is given by 

lbs (Po - Ptf ds 
(6.1) 

where bs denotes the blade surface, pt is the target pressure distribution and po is the 

pressure distribution on the NACA0012 blade surface. 

During the design process, the chord length of NACA0012 airfoil is fixed by fixing its 

leading and trailing edge mesh points. Hicks-Henne function (Hicks and Henne, 1978) 

is used to parameterize perturbations of y coordinates of all mesh points (except for the 

leading and trailing edge points) on the blade surface resulting in 155 design variables. 

W i t h the adjoint method, only two sets of equations (the flow equation and the adjoint 

equation) are solved together wi th some post-processing at each design cycle to enable 
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the gradients of the objective function to all design variables to be calculated. However 
the finite different method requires the flow equation to be solved at least 156 times 
at each design cycle (one sided finite difference method). The great time saving by the 
adjoint method over the finite difference method is apparent. 
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Figure 6.4: Comparison of pressure coefficients and blade profiles between the initial, de
signed and target blades for the inverse design 
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Figure 6.5: History of the objective function with design cycles for the inverse design 

The init ial , target and designed pressure coefficient distributions are compared in 

Fig.6.4(a). The target pressure is achieved with a very good accuracy in the inverse 

design. As Fig.6.4(b) reveals, the target airfoil profile is well recovered. Fig.6.5 depicts 
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the change of the objective function wi th design cycles. The objective function in terms 
of the pressure difference is reduced by 3 orders of magnitude. 

6.1.2 Verifying the Adjoint IVIixing-plane Treatment 

The adjoint mixing-plane treatment plays the role of passing the adjoint solution in

formation correctly between two adjacent bladerow domains. This allows the steady 

adjoint equations to be solved in a multi-bladerow environment. One case is to show 

that the adjoint method wi th the aid of the adjoint mixing-plane treatment is able 

to calculate gradients correctly in a multi-bladerow environment. The other case is 

to demonstrate the advantage of carrying out aerodynamic design optimization in a 

multi-bladerow environment. 

• Gradients of 2D Transonic Compressor Stage Configuration 

The Euler flow equations together wi th the adjoint Euler equations are used for the 

veriflcation of the adjoint mixing-plane treatment to avoid complexity introduced by 

the viscous effects and freezing the turbulent viscosity. The veriflcation case uses a span 

0.075 h 

0.05 h 
3.05 H 

0.025 H 

0.025 h 

0.05 h 

0.075 H 

0.05 0.1 0.15 
X(m) 

(a) Computational mesh 

0.1 0.15 
X(m) 

(b) Relative Mach number distributions 

Figure 6.6: Computational mesh and relative Mach number distributions for the 2D com
pressor stage configuration 

section of a 3D compressor stage - a transonic DLR compressor stage (Dunker et al., 

1984). The mesh section is on a cylindrical surface at a constant radius, wi th a mesh 
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density of 110x37 for the rotor domain and 90x37 for the stator domain (Fig.6.6(a)). 
The flow field inside the 2D compressor section is transonic as revealed by the Mach 
number distribution (Fig.6.6(b)). 

Two gradients are considered wi th this 2D compressor stage. One is the gradient of the 

stator blade tangential force to stator blade geometry perturbations. The other is the 

gradient of the stage mass flow rate to rotor blade geometry perturbations. Fig.6.7(a) 

shows the contours of the adjoint variable (Ai) corresponding to the continuity equation 

with the stator blade tangential force as the objective function, while Fig.6.8(a) shows 

the contours of the adjoint variable (A3) corresponding to the moment equation wi th 

the stage mass flow rate as the objective function. The two adjoint solution contours 

consistently illustrate that the adjoint solution information propagates in a direction 

opposite to that of the physical flow disturbances. The flow upstream region becomes 

the downstream region of the adjoint solution, and vice versa. The two gradients by the 

adjoint method are compared with their counterparts by the finite difference method 

in Fig.6.7(b) and Fig.6.8(b). The gradients by the adjoint method are very close to 

those by the finite difference method. 

I t should be noted that the mass flow rate is calculated at the stator exit (also the stage 

exit). According to the subsonic adjoint inlet boundary condition in Eq.4.25, ^ is 

zero ( M = 0) at the inlet of the stage. This means the objective function information 

is applied at the stage exit only and needs to be passed to the rotor domain correctly 

through the interface using the adjoint mixing-plane treatment. Otherwise the adjoint 

solution in the rotor domain can not be right, thereby the gradients by the adjoint 

method can be wrong. 

Figs.6.7(a) and 6.8(a) both show that there is a clear cut of contour lines on both 

sides of the interface, which indicates clearly that the adjoint mixing-plane treatment 

is non-reflective as intended. 
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Figure 6.7: Adjoint field and gradients with the tangential force of the stator blade as the 
objective function for the 2D compressor stage configuration 
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Redesign of 2D Compressor Stage 

The 2D section of the compressor stage used in the previous section is optimised to 

increase the isentropic efficiency while maintaining its mass flow rate and pressure ratio. 

The objective function is a weighted sum of the entropy generation rate and the two 

constraints of mass flow rate and stagnation pressure ratio. In this case, the RANS 

flow equations and adjoint RANS equations are solved. 10 design variables are used 

to parameterize perturbations to the rotor blade shape and 8 design variables to the 

stator blade shape. The isentropic efficiency of the stage is increased from 84.91% to 

88.00% with negligible changes of mass flow rate and pressure ratio. As can be seen 

from Fig. 6.10, the performance enhancement is due to a weaker shock in the passage 

of the optimised rotor and the removal of the flow separation around the trailing edge 

of the optimised stator. I t should be pointed out the base flow state is not a very 

efficient one and is chosen here mainly for validating the adjoint mixing-plane method 

and demonstrating the benefit of using i t in a similar context. 
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Figure 6.9: Geometry comparison of the original and optimised blades for the 2D compressor 
stage configuration redesign 

Fig.6.9(a) shows the difference of the optimised rotor blade from the original one. The 

optimised blade is curved towards its suction side between the leading edge and the 

mid-chord, leading to a weaker shock in the blade passage (Fig.6.10). The trailing edge 
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region is curved in an opposite direction-towards the pressure side, better matched wi th 
the stator. Fig.6.9(b) shows the geometry change of the stator blade wi th a increased 
camber to reduce the flow separation around the stator traiflng edge (Fig.6.10). This 
case provides an illustration of the validity and advantage of the present adjoint mbdng-
plane treatment. Clearly i t is far more effective to optimise both the rotor and stator 
at the same time than to deal wi th them separately and iteratively. 

/ 
optimised original 

01 0,15 
x(m) 

Figure 6.10: Mach number contours raside the original blade passage and the optimised 
blade passage for the 2D compressor stage configuration redesign 

6.2 Application of Aerodynamic Design Optimization System 

Four case studies are presented in this section. The first case is the redesign of a 

transonic rotor (NASA rotor 67) at a near choke operating point. The second case is a 

redesign of a transonic compressor stage originally designed by DLR. The redesign is 

carried out at the stage peak efficiency point. In the third and fourth cases, we examine 

the redesign of blade rows within a three-stage transonic test compressor that was 

originally designed by Siemens Industrial Turbomachinery L t d known as the Advanced 

Transonic Compressor (ATC). Specificahy the third case is a redesign of the IGV-

Rotor-Stator configuration. Two single-operating-point design optimization scenarios 

are conducted initially: one redesign is at the stage peak efficiency point; the other is 

at a near choke flow point of a low stagnation pressure ratio. The redesign at the stage 

peak efficiency point produces considerable efficiency gain, but leads to a noticeably 
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reduced choke mass flow rate. The redesign at a near choke mass flow rate point, on the 
other hand, leads to considerable performance deterioration at operating points wi th 
lower mass flow rate, though the choke mass flow rate is even increased. Subsequently, a 
parallel two-operating-point approach has been carried out. Results show that the two-
operating-point design optimization avoids unacceptable performance deterioration at 
off design conditions. In the fourth case a redesign is applied across all 7 blade rows of 
the ATC compressor at the compressor design point. A l l these case studies are aimed 
to increase the isentropic efficiency whilst meeting some specified constraints. 

6.2.1 Redesign of NASA Rotor 67 at a Single Operating Point 

NASA rotor 67 is a low-aspect-ratio design and is the first stage rotor of a two-stage 

fan. The rotor design pressure ratio is 1.63 at a mass flow rate of 33.25 kg/s. The 

design rotational speed is 16,043 rpm, which yields a tip speed of 429 m/s and an inlet 

tip relative Mach number of 1.38. The rotor has 22 blades and an aspect ratio of 1.65 

(based on average span/root axial chord). The rotor soUdity varies from 3.11 at the hub 

to 1.29 at the t ip. The inlet and exit tip diameters are 51.4 cm and 48.5 cm, respectively, 

and the inlet and exit hub/t ip radius ratios are 0.375 and 0.478 respectively. The rotor 

was experimentally investigated in NASA Lewis Research Center to produce data for 

vahdating numerical results (Strazisar et al., 1989) and has been a popular test case 

for design optimization (Li et al., 2006a; Lian and Liou, 2005; Oyama and Liou, 2004; 

Pierret, 2005). 

A single passage computational domain wi th a mesh density of 110x49x37 in the axial, 

pitchwise and radial directions has been used to model the blade. Fig.6.11 shows the 

meridional view and blade to blade view of the mesh. The calculated performance 

map of NASA rotor 67 is compared with the experimental data in Fig.6.12. The mass 

flow rate is normalized by its choke mass flow rate as also shown in Arnone (1993). 

Both the calculated pressure ratio and efficiency show fairly good agreement wi th their 

experimental values. 

Even though the design optimization is carried out at a near choke operating point^, 

the machine operates at a very high isentropic efficiency wi th its performance listed in 

^The normalized mass flow rate at this operating is 0.995. 
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Figure 6.11: Blade to blade view and meridional view of the NASA rotor 67 mesh 

Table 6.1. 143 design variables wi th 13 design variables for each of 11 spanwise sections 

are used to parameterize the blade shape perturbations. The 11 spanwise mesh sections 

divide the blade span into 10 approximately equal intervals (it is normally impossible to 

find 11 radial mesh sections that divide the blade span into 10 exactly equal intervals). 

The design optimization is completed wi th 48 design cycles over 63 hours^. The evo

lution of the objective function and two constraints wi th design cycles is depicted in 

Fig.6.13. The objective function is reduced by 19% in total. The overshoot in the 

objective function curve at the 21** design cycle corresponds to an increase of entropy 

generation rate and a severe violation of the pressure ratio constraint and much better 

satisfaction of the mass flow rate constraint relative to its preceding design cycle as 

revealed by the corresponding spikes in the two constraint curves. 

Table 6.1: Performance comparison between the original NASA rotor 67 and the optimised 
blade 

mass flow rate (kg/s) pressure ratio isentropic efficiency (%) 
original 34.32 1.6536 90.50 
optimised 34.37 1.6523 92.27 
change +0.15% -0.08% +1.77 

^All the single operating point design optimization was run on a 2.2 GHz Opteron processor. The 
exact time cost also depends on the loading of the computer system. 
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Figure 6.12: Comparison of computed and experimental performance map for the NASA 
rotor 67 

A comparison of the overall performance between the optimised design and the original 

one at the near choke operating point is given in Table 6.1. The optimised blade 

increases efficiency by 1.77% point wi th 0.15% increase in mass flow rate and 0.08% 

reduction in pressure ratio. This can be considered as a fairly good redesign in terms 

of efficiency gain and the satisfaction of constraints. 

A more detailed flow field comparison between the optimised design and the original 

one is revealed in Figs.6.14, 6.16 and 6.15. Fig.6.14 depicts the spanwise distribution of 

the pitchwise averaged eflficiency, stagnation pressure ratio and stagnation temperature 

ratio at the rotor exit. The local efficiency is increased over the whole span with greater 

increase in the tip and hub regions. The local stagnation pressure ratio and stagnation 

temperature ratio are raised in the hub region and lowered in the t ip region shifting 

blade loading from the tip region towards the hub region. In the original flow field, as 

Fig.6.16 reveals, there is a strong passage shock normal to the casing. However in the 

flow field for the optimised blade, on the blade pressure surface, there are two shocks 

which are much weaker than that in the original flow field. On the blade suction surface 

(Fig.6.15), compared with the original flow field, the optimised flow field has a shock 

which is slightly weaker and is pushed upstream a litt le. The reduction of the shock 

strength accounts for the main eflficiency gain. 
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the NASA rotor 67 redesign 
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Figure 6.14: Spanwise distributions of efficiency (77), temperature ratio (r) and pressure 
ratio (tt) for the NASA rotor 67 redesign 
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Figure 6.15: Pressure contours on blade suction surfaces of the original and optimised blades 
for the NASA rotor 67 redesign 
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Figure 6.16: Pressure contours on blade pressure surfaces of the original and optimised 
blades for the NASA rotor 67 redesign 
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Figure 6.17: Blade geometry comparison between the original blade and the optimised blade 
for the NASA rotor 67 redesign 

The blade geometry change against the original design is shown in Fig.6.17. In the 

hub region, the blade section has increased camber, which is in line wi th the increased 

blade loading around the hub region as revealed in Fig.6.14. There is also significant 

geometry change from the mid-span to the t ip region where the tip sections have been 

changed from MCA into a reverse-cambered type of profile. Although the geometric 

change is small in the mid-span region, i t is relatively larger in the hub and t ip regions 

and i t is much larger than the manufacturing tolerance. This geometric change is 

normally difficult to be achieved using a trial and error design approach. 

6.2.2 Redesign of DLR Compressor Stage at a Single Operating Point 

The D L R stage (Dunker et al., 1984) is a transonic axial flow compressor stage without 

inlet guide vanes. The stage was designed for a rotational speed of 20,260 rpm with 

a stagnation pressure ratio of 1.51 at an equivalent mass flow rate of 17.3 kg/s. The 

rotor inlet diameter is 39.8 cm wi th a hub/t ip ratio of 0.51. The rotor consists of 

28 MCA-profiled blades with a t ip chord length of 6.0 cm. The blade sohdities vary 

between 2.0 and 1.34 from hub to t ip. The stator has 31 controlled diffusion blades 

with solidity varying from 1.68 at the hub to 1.05 at the t ip. 
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Figure 6.18: Blade to blade view and meridional view of the DLR stage mesh 

The single passage H mesh consists of two rows wi th a mesh density of 110x37x39 for 

the rotor and 90x35x39 for the stator in the axial, circumferential and radial directions, 

respectively. The t ip and hub clearances are treated by the simple pinched-up approach 

and 3 cells are used to accommodate the t ip or hub gap. The meridional view and blade 

to blade view of the mesh are shown in Fig.6.18. 

The calculated performance map is compared wi th the experimental data in Fig.6.19. 

As can be seen the calculated performance map has a narrower stable operating range. 

From the experimental pressure ratio curve, i t is clear that the pressure ratio decreases 

with the reduction of mass flow rate, which indicates the experimental flow field is quite 

close to stall. This cannot usually be predicted by the current flow solver by solving 

the RANS equations in a single passage computational domain. Except for that, the 

calculated efficiency and pressure ratio versus mass flow rate curves agree reasonably 

well wi th the experimental data. The calculated choke mass flow rate is also quite close 

to the experimental value. 

The redesign is carried out at the stage peak efficiency operating point of the original 

design wi th its performance listed in Table 6.2. There are 154 design variables wi th 

14 design variables on each of 11 spanwise sections parameterizing perturbations to 

the rotor blade shape and 121 design variables wi th 11 design variables on each of 11 

spanwise sections to perturb the stator blade shape. 

It takes around 4 days to complete 36 design cycles. The evolution of the objective 
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Figure 6.19: Comparison of calculated performance map with experimental data for the 
DLR stage 

function as well as two constraints wi th design cycles is depicted in Fig.6.20. 80% of 

the total drop in the objective function is achieved within the first 10 design cycles, 

while the remaining 26 design cycles consumes most of the elapsed time with only 

20% drop. This is probably due to the shortcoming of the steepest descent method, 

which converges slowly when the curvature of the design space is quite different in 

different directions. I t can also be seen from Fig.6.20 that the constraints are violated 

significantly for the first few design cycles and are better satisfied when the design 

process converges. 

Tab le 6.2: Performance comparison between the original DLR stage and the optimised blade 
mass flow rate(kg/s) pressure ratio isentropic efficiency(%) 

original 17.07 1.5987 85.11 
optimised 17.07 1.5987 85.83 
change 0.0% 0.0% +0.72 

The performance of the original blade and the optimised design is listed in Table 6.2. 

The optimised design has an efficiency that is 0.72% point higher than its original 

counterpart, while i t has the same mass flow rate and pressure ratio as the original 

values. The optimised blades have an increase in efficiency over the whole span at the 
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Figure 6.20: Evolution of the objective function and two constraints with design cycles for 
the DLR stage redesign 

stage exit (Fig.6.21). It can also be seen that the pressure ratio and temperature ratio 

are decreased in both the hub and tip regions and increased in the mid-span region 

suggesting a spanv̂ îse loading shift towards the mid-span region from both endwall 

regions. This reduced loading around endwall regions is believed to contribute to the 

achieved efficiency gain by reducing flow losses there. Examination of the pressure 

coefficient ^ distributions on the three span locations of the rotor (Figs.6.22(a), 6.22(b) 

and 6.22(c)) suggests that there is also a chord-wise loading shift from the leading 

edge towards the trailing edge. As Figs.6.22(a) and 6.22(b) reveal, near the hub and 

mid-span regions, blade loading is shifted mainly from the leading edge region to the 

mid-chord region. While in the tip region, the loading shift is from the blade leading 

edge region to the trailing edge region. 

The geometry of the original rotor and stator is compared with that of the optimised 

blades at three span locations: 25% span, 50% span and 85% span (Figs.6.23 and 6.24). 

The major geometry change is seen to occur in the rotor blade with most change taking 

place near the rotor blade trailing edge. During the design process, the round rotor 

leading edge shape is well preserved (Fig.6.23). 

^The pressure coefficient definition is given by: Cp = F. J*^, with pi as the mass averaged static 
pressure at an inlet plane and p* as the mass averaged total pressure at an inlet plane. The total 
pressure is calculated at a reference frame attached to the corresponding blade row. 
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Figure 6.21: Spanwise distributions of efficiency (T?), temperature ratio (r) and pressure 
ratio (TT) for the DLR stage redesign 

Original 
Optbnlsed 

n I I I I I I I r I I I I I I I I I I I I I 

xiCax 

0.6 h 

0.4 

0.2 h 

O h 

-0.2 h 

Original 
Optimised 

• I ' I I I I ' I I I I ' I I I I ' I I I I ' I I I I 

0 0.2 0.4 0.6 0.8 1 
X/Cax 

(a) 25% span (b) 50% span 

Original 
Optimised 

0.8 K 

(c) 85% span 

Figure 6.22: Pressure coefficient distributions on different span sections of the original DLR 
rotor and the optimised rotor 
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Figure 6.23: Rotor blade geometry comparison between the original DLR rotor and the 
optimised rotor 
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Figure 6.24: Stator blade geometry comparison between the original DLR stator and the 
optimised stator 
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6.2.3 Redesign of ATC Compressor 

The ATC three-stage transonic test compressor is a high specific flow, high pressure 

ratio compressor designed using 3D aerodynamic design methods to achieve high per

formance (Li and Wells, 1999). The compressor has a design mass flow of 26.3 kg/s at 

a pressure ratio of 3:1. The compressor has been extensively tested both aerodjmam-

ically and aeromechanically in the rig to evaluate its aerodynamic performance and 

structural integrity. For the work reported here, the flow field inside the machine at 

its design point is simulated. The calculated spanwise distribution of circumferentially 

averaged stagnation pressure and temperature at the compressor exit is in close agree

ment with the experimental data (Fig.6.25(a)). The calculated casing static pressure 

distribution also has a close agreement with the experimental data (Fig.6.25(b)). 
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(a) Spanwise distributions of stagnation pressure and 
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Figure 6.25: Comparison of the calculated flow field with experimental data for ATC 

Redesign of IGV-Rotor-Stator Configuration 

The first three rows, including the IGV, the first rotor and first stator, are taken out of 

the 7-row ATC compressor for a quick case study. The computational domain after the 

first stator is extended to allow for the application of a subsonic exit boundary condition 

(the static pressure is specified at hub or tip with the simple radial equilibrium to obtain 

the static pressure at other radial locations). Fig.6.26 shows the blade to blade view 

and meridional view of the three-bladerow mesh. The mesh has 49 mesh points in the 

99 



Chapter 6. Verification and Application of Aerodynamic Design Optimization System 

radial direction and 37 mesh points in the circumferential direction for all the three 

rows. The IGV, rotor and stator have 125, 124 and 117 mesh points in the axial 

direction respectively. 
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Figure 6.26: Blade to blade view and meridional view of the IGV-Rotor-Stator mesh 

In the design optimization process, the IGV remains unchanged while the rotor and 

stator are allowed to be changed. 187 design variables are used to parameterize pertur

bations to the rotor blade shape, and 154 design variables are used for the stator blade 

shape. These design variables are distributed on 11 span sections dividing a blade span 

into 10 approximately equal intervals with 17 design variables on each radial section 

of the rotor and 14 design variables on each radial section of the stator. 
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Figure 6.27: Performance map comparison between different ATC 3-row designs 

As a first attempt, this three-row configuration is redesigned at the stage peak efficiency 

point to further increase its isentropic efficiency while maintaining its mass flow rate and 
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pressure ratio. The evolution of the weighted objective function and two constraints 
with design cycles is depicted in Fig.6.28. The design process converges after about 20 
design cycles with about 1.0% point efficiency gain and negligible change in mass flow 
rate and pressure ratio. The disappointing point of this redesign, denoted as 'peak' in 
Figs.6.27(a) and 6.27(b), is the noticeable reduction in the choke mass flow rate. 
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Figure 6.28: Evolution of the weighted objective function and two constraints with design 
cycles for the ATC 3-row redesign at the peak efficiency point 

As the second attempt, a redesign is carried out at a near choke mass flow rate of 

the three-row configuration, attempting to get a design which can not only deliver 

higher efficiency at the original stage peak efficiency operating point but also maintain 

the choke mass flow rate. The evolution of the weighted objective function and two 

constraints with design cycles is drawn in Fig.6.29. The design process also converges 

after about 20 design cycles with 1.5% point efficiency gain and negligible change in 

mass flow rate and pressure at the near choke operating point. Unfortunately the 

redesign, denoted as 'choke' in Figs.6.27(a) and 6.27(b), deteriorates its performance 

unacceptably at operating points of lower mass flow rate from the near choke value, 

though it even increases the choke mass flow rate. 

Based upon the outcome of the two single-point design optimizations, an attempt of 
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Figure 6.29: Evolution of the weighted objective function and two constraints with design 
cycles for the ATC 3-row redesign at a near choke point 

two-operating-point design optimization, taking into account of performance at the 

two operating points, is made to achieve a redesign increasing the stage peak efficiency 

without lowering the choke mass flow rate. The objective function to be minimised is 

given by 

I = CTpeafc • Ipeak + choke ' I choke 

The design target can be achieved by increasing the efficiency at the stage peak ef

ficiency point of the original design and preventing the choke mass flow rate from 

decreasing. This is to suggest that more priority should be put on the peak efficiency 

point, therefore aj,eak is assigned a value of 0.8 and Ochoke = 0.2. The gradient of the 

total objective function to a design variable is expressed as follows 

dl dipeak , dichoke 
-T~ — (^peak ' — ) r (Tchoke ' — -1 

da da da 

Though only two operating points are considered in this demonstration case, the par

allelized code can handle as many operating points as one likes. The change of sub-

objective functions Ipeak and Ichoke and their corresponding constraints with design 

cycles is shown in Fig.6.30, where one can see that there are many zigzags on the sub-

objective function curves, while the objective functions in Fig.6.29 and Fig.6.28 are 
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much smoother. This is due to the balance of the performance between two different 
operating points. The sub-objective function at the peak efficiency point mainly acts 
as an objective function to be minimized (Fig.6.30(a)), while the sub-objective function 
at the near choke point mainly plays a constraint role (Fig.6.30(b)). 
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Figure 6.30: Evolution of the sub-objectives and constraints with design cycles at the two 
operating points for the ATC 3-row two-point redesign 

From Figs.6.27(a) and 6.27(b), by comparing the two-operating-point design with the 

single-point design optimization at the stage peak efficiency point, one can see that the 

performance curves of the two-point design are shifted towards higher mass flow rate 

and the original design choke margin is maintained as a result of the design constraint 

on the near choke operating point. The peak efficiency point of the two-point design 

has also been shifted towards higher mass flow and it diflPers from the original stage 

peak efficiency point. The pressure ratio versus mass flow rate characteristic of the two-

point design is steeper than the original design. The maximum efficiency gain seems 

to be achieved between the two chosen optimization points. The peak efficiency has 

been improved by 1.0% point. Overall, the two-point design optimization is a better 

design over the other two. 

The difference in blade geometry between the original blades and all the three optimised 

blades is shown in Figs.6.31, 6.32 and 6.33. There is considerable geometry change in 

all the optimised blades against the original blades. Both the rotor and stator blades 

have more geometry changes in the hub region with increased cambers than in the tip 
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region (Figs.6.31 and 6.33). Between different optimised blades, the optimised blades 

at the near choke point have less camber increase than the other two designs. There is 

also quite a significant geometry difference between these optimised designs particularly 

around the rotor leading edge region (Fig.6.32). Comparing the two-point design with 

the peak efficiency design, the blades geometry is generally very close except for the 

rotor leading edge region with a maximum difference up to 1.0 mm. 
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Figure 6.31: Rotor blade geometry comparison between different ATC 3-row designs 

0.015 h 

0.014 h 

0.013 

E 
2 

0.012 

0.011 

0.01 

Choke 
anginal 

Two-point 

10%span 

ll—i I I I I I I I I I I I I I—L 

88% span 

0.005 0.006 0.007 0.008 0.009 0.01 
x(m) 

Figure 6.32: Close-up of rotor blade leading edges for different ATC 3-row designs 
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Figure 6.33: Stator blade geometry comparison between different ATC 3-row designs 

Redesign of the 7-Bladerow Configuration 

In this case study, the computational domain consists of 7 blade rows. Each row has 

45 mesh points in the circumferential direction and 37 in the radial direction. The 

number of mesh points in the axial direction varies for different rows and are listed in 

Table 6.3. The blade to blade view of a mid-span section and meridional view of the 

mesh are shown in Fig.6.34, with every fourth mesh point shown in the axial direction 

and every third mesh point shown in the circumferential direction for a clear view. 

Table 6.3: Number of axial mesh points and design variables for each row of the ATC 
compressor 

IGV R l SI R2 S2 R3 S3 
Number of axial mesh points 125 124 102 107 117 111 124 
Number of design variables 0 187 154 165 187 165 165 

In the design optimization, the IGV is unchanged as for the three-row design optimiza

tion, whilst the other 6 rows are allowed to change, with the number of design variables 

for each row listed in Table 6.3, resulting in 1023 design variables in total. For each 

row, the design variables are distributed on 11 spanwise sections with the same number 

of design variables for each section. 

A single-point design optimization is carried out at the original design point of the 
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Figure 6.34: Meridional view and blade to blade view of the ATC mesh 

compressor. 29 design cycles are completed over 11 days. The history of the objective 

function and the two constraints with design cycles is shown in Fig.6.35 where a 20% 

reduction of the objective function is obtained. The behavior of the two constraints 

with design cycles is qualitatively the same as that of the other single-point case studies: 

there is more violation at the beginning and the constraints are much better satisfied 

when the objective function progresses to its convergence. 

The performance comparison between the original compressor and the optimised one 

is listed in Table 6.4. The optimised design has an efficiency that is 2.47% point higher 

than the original one with 0.34% increase in mass flow rate and 0.08% decrease in 

pressure ratio. Fig.6.36 compares the spanwise distribution of efficiency, stagnation 

temperature ratio and stagnation pressure ratio at the compressor exit. The optimised 

design has higher efficiency than the original design over the whole span. The stagna

tion temperature ratio in the optimised design is lower than the original design over the 

whole span, indicating less work done into the working fluid. The stagnation pressure 

ratio in the optimised design is increased in the tip region and decreased in the hub 

region. 
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Figure 6.35: Evolution of the objective function and two constraints with design cycles for 
the ATC 7-row redesign 

Table 6.4: Performance comparison between the original ATC compressor and the optimised 
compressor 

mass flow rate (kg/s) pressure ratio isentropic efRciency(%) 
original 26.46 2.9885 86.81 
optimised 26.55 2.9860 89.28 
change +0.34% -0.08% +2.47 

Original 
Optimised 

Figure 6.36: Comparison of efficiency (77), temperature ratio (r) and stagnation pressure 
ratio (TT) spanwise distributions for the ATC 7-row redesign 
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Figure 6.37: Pressure coefficient distributions on different span sections of the first rotor 
(left) and the second rotor (right) for the ATC 7-row redesign 
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Figure 6.38: Blade geometry change for the A T C 7-row redesign 

• 109 



Chapter 6. Verification and Application of Aerodynamic Design Optimization System 

Pressure coefficient distributions on three different spanwise locations of the flrst and 
second rotors are presented in Figs.6.37. The optimised design shifts blade loading 
of the first two rotors upstream relative to the original designs. The strength of pas
sage shocks inside the first and second rotors is significantly reduced resulting in the 
eflficiency increase in the optimised design. With design constraints on the mass flow 
rate and overall stagnation pressure ratio, the design optimization has driven the re
design of the three transonic stages to different matching conditions as evidenced by 
the increased pressure coefficients at the trailing edge of rotors 1 and 2. 

The change of blade geometry is revealed in Figs.6.38(a), 6.38(b) and 6.38(c). Figures 

6.38(a) and 6.38(b) compare the original blade geometry to the optimised blade geom

etry of the first rotor and stator. The blade profile has been changed significantly in 

the leading edge region, particularly near the hub. There is also a considerable change 

in geometry in the tip region where the original MCA type of profile has been replaced 

by a reverse cambered type of profile. The first stator is decambered with increased 

turning in the front part of the airfoil and reduced turning towards the trailing edge. 

During the design process, the round leading edge shape is well preserved (Fig.6.38(a)). 

Fig.6.38(c) shows the distance change (ds in Fig.6.38(c)) of each mesh point on one 

side of the blades. Due to the nature of the shape perturbation parameterization in 

the present work, corresponding mesh points on both sides of the blades have the same 

distance change (except for the leading edge region) during the design optimization. 

Hence, the distance change on one side of the blades is shown only. The first rotor, 

the first stator and the second stator have major geometry change with the maximum 

change up to 1.1 mm. 

6.3 Summary 

The close agreement of the Uft coeflficient gradient by the adjoint method with that 

by the finite difference method demonstrates the validity of the adjoint method in a 

gradient calculation and its appropriate implementation. These are further confirmed 

by the inverse design well recovering the target pressure coefficient distribution and 

the target airfoil profile. The close agreement of the gradient results by the adjoint 
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method with those by the finite difference method for a 2D rotor-stator stage case 
demonstrates the appropriate formulation and implementation of the adjoint mixing-
plane treatment. The characteristics based adjoint mixing-plane treatment is also 
shown to be nonreflective. The validity of the adjoint mixing-plane treatment is further 
confirmed by the optimization of the 2D compressor stage configuration, also showing 
the added benefit of carrying out design optimization in a multi-bladerow environment. 

Four redesigns have been carried out, producing encouraging improvements. The re

design of NASA rotor 67 delivers 1.77% point increase in efficiency whilst maintaining 

mass flow rate and stagnation pressure ratio at values close to those specified for the 

original design. The optimised DLR stage has an increase in stage efficiency of 0.72% 

point at the same stagnation pressure ratio and mass flow rate. The two-operating-

point redesign of the first three rows of the ATC compressor generates a design which 

has higher efficiency over the original design at the original stage peak efficiency point 

and ensures the choke mass fiow rate does not decrease at the same time. The ATC 

7-row compressor is optimised to achieve 2.47% point efficiency increase while main

taining the original design point stagnation pressure ratio and mass fiow rate. The 

multi-bladerow design cases, particularly the redesign of ATC 7-row compressor have 

demonstrated the appropriate formulation and implementation of the proposed adjoint 

mixing-plane treatment and the capability of the design system in aerodynamic design 

optimization for multi-bladerow turbomachines. 
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Chapter 7 

Nonlinear Harmonic Pliase Solution IWetliod 
for Unsteady Flows 

This chapter presents the unsteady Reynolds Averaged Navier-Stokes equations and 

their solution methods for blade flutter predictions, forming an essential part of the 

basis for the aeromechanical-related design optimization to be introduced later. The 

frequency domain method - Nonlinear Harmonic Phase Solution method is adopted here 

to discretize in time the URANS equations at three phases of a period of unsteadiness, 

leading to three sets of coupled steady-like equations. The developed unsteady flow 

solver is validated against both a semi-analytic method and experimental data. 

7.1 Governing Equations 

When dealing with blade flutter, a computational domain vibrates wi th a vibrating 

blade. The deformation of a control volume is not normally restricted to a certain 

coordinate direction. Each mesh point generally has a velocity of which the three 

components in the axial, circumferential and radial directions are not zero. Flux cal

culations through the boundary of a control volume need to account for fluxes due to 

the motion of its bounding surface at the three coordinate directions. The URANS 

equations in a cylindrical coordinate system are given by 

dU ^ d{F-Uu,-K) ^ d{G-Uv,-Vo) ^ dr{H-Uw,-Vr) 
dt dx rdd rdr 

where Ug, Vg and Wg are grid/mesh velocity components in the axial, circumferential 

and radial directions respectively. The definition of inviscid and viscous fluxes and the 
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source term in the above equations is the same as those defined for the RANS equations 
(Eq.3.1). For the sake of simphcity and convenience in the following illustration, a 
shorthand is introduced: 

^ d{F - Uu, - V,) ^ d{G-Uv,-Ve)dr{H-Uw,-Vr) _ ^ 
dx rdO rdr 

Eq.7.1 can be simplified accordingly as follows: 

^ + R{U) = 0 (7.2) 

In a Nonlinear Harmonic Phase Solution method, the flow solution is expressed as the 

sum of its time-averaged value plus one harmonic: 

U = U + UA sm{ujt) + UB cos{ujt) (7.3) 

where C/ is a function of both space and time, while U, UA and Ug are functions of space 

only. The corresponding governing equations with the above flow solution substituted 

are given by 

UA cos{Ljt) - UB sm{ut)] u + R [U{(jt)\ = 0 (7.4) 

Though the above equation is still time-dependent, there are only three sets of un

knowns {UA, UB and U). Choosing the three particular phases ut = 0, | and using 

-1,0 and 1 to denote the three phases for simplicity and convenience, one has 

= U\ut 

= U{ut 

= Uiut 

The flow solution at the three phases can be expressed in terms OIU^UA and UB'-

= U - U A 

Uo = U + UB 

Ui = U + UA 
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In return, UA, UB and U can be expressed in terms of the flow solution at the three 
phases: 

U. = "-^ (7.5) 

u = 

2 

2 

Substituting the three phases into Eq.7.4 yields 

UBUJ + R { U . I ) = 0 (7.6) 

UAUJ + R{UO) = 0 

-UBOJ + R{UI) = 0 

Substituting UA and f /g in Eq.7.5 into Eq.7.6 yields the following equations expressed 

in terms of flow solutions at the three phases only: 

U o - ^ ' \ ^ - ' ] u + R{U.,) = 0 (7.7) 

^ ^ l ^ u + R{Uo) = 0 

- ( u o - ^ ^ ^ ) . + R m = 0 

W i t h boundary conditions specified, the above system is self-contained. Compared 

with the RANS equations, the above equations have an extra term corresponding to 

the time derivative term of the URANS equations. The URANS equations at the three 

phases can be solved in a similar way to that for the RANS equations with the extra 

term being treated as a source term. A pseudo time derivative term is added to the 

three sets of equations, so that the Runge-Kutta method can be used to time-march 

their solutions to a steady state. In this way, the flow solver for solving the three sets 

of equations can be easily extended from a steady RANS flow solver. 

7.2 Boundary Conditions 

I t is normally desirable to use non-reflective boundary conditions at the inlet and exit 

of a computational domain in an unsteady flow field calculation. However if the inlet 
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and exit boundaries are quite far away from a blade leading and trailing edge, the 
reflective boundary condition implementation for solving the RANS equations can also 
be used without distorting the flow solution undesirably. Both non-reflective bound
ary conditions and reflective boundary conditions are implemented in the flow solver 
solving the URANS equations at the three phases. The non-reflective implementa
tion is a local I D treatment (Giles, 1991). The reflective implementation satisfies the 
necessary compatibility requirement and is the same as the one implemented in the 
steady flow solver. For the first validation case to be presented later, non-reflective 
boundary conditions are used at both an inlet and an exit. However in the design 
optimization case studies followed, the reflective boundary conditions are used in the 
present URANS flow solver. This is because the corresponding non-reflective adjoint 
boundary conditions are not available in the adjoint solver. 

Along a viscous solid wall, a sHp boundary condition with the log-law is applied in the 

same way as for the RANS equations. 

The periodic boundary condition for the three-phase URANS solver is quite different 

from the periodic boundary condition for a steady flow solver. For blade flutter pre

dictions, along a pair of periodic boundaries, the flow solution is not exactly the same, 

but has a phase difference. The phase difference is called inter-blade phase angle 4>. 

For example, the flow solution at the lower periodic boundary is expressed as follows: 

= U^ + sm{ujt) + cos{ut) (7.8) 

wi th U^,U^ and (/Jf calculated from the flow solution at the three phases (Eq.7.5) at 

the lower periodic boundary. Then the flow solution at the upper periodic boundary 

can be updated by 

= U^ + sm{ut + 4>) + U^ cos{ut + 4>) (7.9) 

Specifically at the three phases, the updating formula are given by 

[ / ^ j = -U^cos^ + U^sm(f) (7.10) 

= + U^sm(f) + U^cos<j) 

= + U^cos4>-U^sm(f) 
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In the same way, the flow solution at the lower periodic boundary is updated using the 
flow solution at the upper periodic boundary: 

U^ = U" + C/^sin(u;t - 0) + f/s c o s M - 0) (7.11) 

A t the three phases, the updating formula are given by 

= -U'icos(t)-U^s\n(j) (7.12) 

= - sin ^ + Ug cos (j) 

= + UA cos (i) + UB sin (j) 

7.3 Validation of the Unsteady Flow Solver 

Two numerical investigations are carried out to assess the validity of the methodology 

in time-periodic unsteady flow calculations and its appropriate implementation. In the 

first case, the unsteady flow field around a flat plate is simulated with results compared 

with semi-analytic ones. The second case examines the unsteady flow field inside a 3D 

oscillating linear cascade of which experimental data are available for comparison with 

numerical results. 

7.3.1 Validation against a semi-analytic method 

As the first step validation, the flow solver is used to calculate the unsteady pressure 

jump coeflicient across a flat plate cascade of zero thickness subject to incoming wakes. 

The flat plate has a stagger angle of 30 degrees with a pitch/chord ratio of 0.5. The 

computational domain is an H type mesh covering one blade passage wi th its inlet and 

exit planes extended one axial chord upstream of its leading edge and downstream of its 

trailing edge respectively. Since the Euler flow equation is solved, a uniform mesh with 

361 mesh points in the axial direction and 61 mesh points in the pitchwise direction is 

used. At zero incidence, the time-averaged flow field is uniform at a Mach number of 

0.7. The incoming wakes are specified in terms of velocity and density disturbances in 
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a harmonic form with the assumption of a constant pressure and total temperature: 

Au = u — UQ = uo6 cos{iut + (j)y) 

Av = V — vo = vo5 cos^Lut + 4>y + T:) 

7 - I P o K -Ap = p - po = 

Ap = p - po = 0 
7 

5 cos{ujt + (j)t) 

where y is the normalized pitch, 0 is the inter-blade phase angle assigned a value of 

-400 degrees in this calculation. The tangential velocity disturbance is in anti-phase 

with the axial velocity disturbance giving a wake orientation of -30 degrees with respect 

the axial direction, u is calculated based on a reduce frequency A; of 13.96 which is 

based on the axial chord Cax and the mean axial velocity u: 

k • u 
(7.13) 

Mean flow direction 

Trailing edge 

Leading edge 

Figure 7.1: Entropy distribution at one instant (reconstructed from a single passage calcu
lation) 

Fig.7.1 presents the entropy contours of the unsteady flow field at one instant. The 

entropy contours show a qualitatively good agreement with those by He (2008) using the 

same methodology and Chen et al. (2001) using the time-linearized nonlinear harmonic 

method. 
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Figure 7.2: Pressure jump coeflScients across the flat plate 

A quantitative comparison of the calculated flow field by the present flow solver to that 

by the well-established semi-analytic method (Whitehead, 1987) is depicted in Fig.7.2 

with a very good agreement. The pressure jump coefficient across a flat plate, in the 

linear harmonic method, is usually obtained in a complex variable manner with real 

and imaginary parts, defined as follows: 

Ap 
dCpl = (7.14) 

pWwsmO 

where W is the absolute mean flow velocity, w is the amplitude of the incoming wake 

velocity {5 • W in this case), 9 is the angle between the wake orientation and the flat 

plate (60 degrees in this case). 

7.3.2 Validation against 3D linear cascade experimental data 

In this section, the flow fleld inside a 3D oscillating linear cascade is investigated by 

the present three-phase flow solver. Detailed experimental data are available for this 

case to be compared wi th numerical results. 

The experimental investigation was conducted by Yang (Yang and He, 2003; Yang, 

2004) at Durham University to enhance the understanding of 3D blade aeroelastic 

mechanisms and to produce test data of realistic configurations for validation of ad-
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vanced 3D aeromechanical methods. Geometric parameters of the test cascade are 

listed in Table 7.1 with operating conditions in Table 7.2. 

Table 7.1: Experimental geometrical parameters of the linear cascade 
Airfo i l type controlled diffusion 
Chord length, C 0.15 m 
Span length 0.19 m 
Stagger angle. 14.2 deg 
Pitch length 0.09 m 
Bending mode direction normal to the absolute chord 
Bending amplitude at t ip Amup 6% chord 
Bending amplitude at hub Arritip 0.5% chord 

Table 7.2: Experimental operational conditions for t le linear cascade 
Measured inlet flow angle, 37.5 deg 
Isentropic exit velocity, 19.5 m/s 
Reynolds number, 
(based on blade chord and isentropic exit velocity) 

1.95e5 

Reduced frequency. 0.4 
Nominal frequency. 8.28 (Hz) 
Ambient conditions 1 atm k 20 deg 

The computational domain has a dimension of 0.48 x 0.09 x 0.19 m in the axial, 

circumferential and radial directions, respectively. The radial coordinates of mesh 

points on the same radial mesh section are the same. The radial coordinate of the hub 

mesh section is set to 100.27 m. This value is used to maintain the difference between 

the pitch distance at the hub and that at the t ip is within acceptably small range^. 

A single passage H-type mesh is adopted. The mesh has a density of 133 x 40 x 40 in 

the axial, circumferential and radial directions, respectively. Fig.7.3 shows the blade 

to blade view and meridional view of the computational mesh for the linear cascade. 

In the axial direction, 70 mesh points are distributed along the blade surface on both 

pressure and suction sides, 29 mesh points are allocated before the blade leading edge 

and 34 mesh points after the blade trailing edge. The mesh points in the circumferential 

direction are clustered towards blade surfaces, and mesh points in the radial direction 

are clustered towards both end walls as Fig.7.3 reveals. 

'The flow solver solves the flow governing equations in a cylindrical coordinate system. Simulating 
the flow field in a linear cascade using this flow solver, the radial coordinate at the hub of the linear 
cascade should be big enough. 
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Figure 7.3: Blade to blade view (left) and meridional view (right) of the linear cascade mesh 

At the inlet boundary, the total pressure and total temperature and flow angles are 

specified. The total pressure has a profile in the radial direction and this profile is 

symmetric about its centre line. The total pressure profile is figured out according to 

the loss profile measured by Yang (2004). A constant total temperature is used. The 

absolute swirl angle is set to be 37.5 degrees. The pitch angle is set to zero. At the 

exit boundary, the static pressure is specified as 1 atm. 

The linear cascade operates at a low flow speed wi th a small Mach number (less than 

0.3). The density-based flow solver normally converges extremely slowly when the Mach 

number in the flow field is approaching zero (the flow field tends to be incompressible). 

In order to ensure the flow solver has a good convergence when simulating the flow field 

around the linear cascade, the isentropic exit velocity is increased from the experimental 

value of 19.5 m/s to 66 m/s in the computation by increasing the total pressure at the 

inlet. The Reynolds number is kept the same as the experimental value to maintain 

the similarity of calculated results. As a consequence, the nominal vibration frequency 

is increased accordingly to give the same reduced frequency of 0.4. 

The time-averaged/steady pressure coefficients wi th its definition given in 7.15 on the 

blade surface at six different span sections (in terms of percentage of the blade height 

measured f rom the blade hub) are presented in Fig. 7.4. 

P - Pexit 
(7.15) 

PO - Pexit 

where PQ is the total pressure at the mid span of the inlet plane, pexu is the static 

pressure at the exit of the computational domain. 
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Experimental results are compared with computational results by the steady flow solver 
used for aerodynamic design optimization and computational results by the unsteady 
flow solver. The computational results by the unsteady flow solver are identical to 
those by the steady flow solver, which proves the consistency of the unsteady flow 
solver wi th the steady flow solver. The calculated results are generally in a very good 
agreement with measured data. I t is shown that on the 50% span and 70% span 
locations, the experimental data show an abrupt change of pressure coefficient on the 
blade suction surface. This abrupt change in the pressure coefficient, as explained 
by Yang and He (2003), is due to a bubble type laminar flow separation which the 
computation is normaUy unable to capture in the absence of a turbulence transition 
model. The blade unloading phenomenon in the blade endwall regions is reasonably 
captured in the computation. However the computation slightly under predicts the 
unloading effect compared with the experimental data. The flow unloading can result 
from the secondary flow due to endwalls and blade t ip clearance. The computation is 
conducted without the inclusion of tip clearance while the experimental configuration 
has a t ip gap of 0.5% chord to accommodate the blade vibration. 

The first harmonic pressure coefficients and phase angles are presented in Fig.7.5 and 

Fig.7.6 respectively for an inter-blade phase angle of 60 deg. The definitions of the first 

harmonic pressure coefficient and the phase angle are given by 

| C „ | = , ( 7 J 6 ) 

a = tan-^ — 
PB 

with the pressure on the blade surface expressed as 

p = P + PA sm{(jt) + PB cos{ujt) 

The unsteady flow field induced by the controlled blade oscillation in the experiment 

is assumed to be largely linear. This is to say, the amplitude of the unsteadiness in the 

unsteady flow field is proportional to the amplitude of the blade vibration amplitude. 

In this experiment/calculation, the blade tip has the largest vibration amplitude. The 

inclusion of the blade t ip amplitude in the first harmonic pressure coefficient defini

tion (expression 7.16) eliminates the dependence of the coefficient on the vibration 

amplitude. 
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Overall, both the flrst harmonic pressure coefficients and their phase angles by the 
computation are in a reasonably good agreement wi th their experimental counterparts. 
The flow separation as revealed in the steady flow field is also apparent in the unsteady 
flow fleld, especially clearly revealed by the abrupt change of the phase angle of the 
unsteady pressure field. 

Though they are not presented here, a series of computations at this nominal vibration 

frequency with different inter-blade phase angles were conducted. A l l those results show 

favorable comparison with corresponding experimental data. This concludes that the 

Nonlinear Harmonic Phase Solution method with one harmonic is effective to capture 

the flow unsteadiness induced by blade vibration and is implemented appropriately. 

7.4 Summary 

An unsteady flow solver is developed based upon the Nonlinear Harmonic Phase Solu

tion method for turbomachinery blade flutter predictions. The flow solver solves the 

URANS equations at the three phases of a period of unsteadiness: (—f, 0, | ) . W i t h a 

phase-shift periodic boundary condition, one blade passage together is used to reduce 

the size of the problem (therefore reduction in real time cost). Two validation cases 

are examined. Firstly, the developed flow solver is validated against a semi-analytic 

method using the well-known case of a flat-plate subject to incoming unsteady wakes. 

The pressure jump coefficients by the present flow solver are in a close agreement with 

those by the semi-analytic method. Secondly, computations are conducted for a 3D low 

speed linear cascade composed of oscillating blades wi th results compared with experi

mental data. Reasonably good comparisons of time-averaged pressure coefficients, first 

harmonic pressure coefficients and phase angles at different span locations are achieved. 

I t is concluded that the Nonlinear Harmonic Solution Phase Solution method has been 

properly implemented, and the flow solver is able to simulate time-periodic unsteady 

flows of single dominant frequency with desirable accuracy. 
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Figure 7.4: Comparison of pressure coefficients on the blade surface at six different span 
locations (Time-mean: Time-mean flow solution constructed from the three-phase flow solu
tion, Exp.: Experimental data, Steaxiy: Steady flow solution) 
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Figure 7.5: Comparison of the first harmonic pressure coefficients on the blade surface at 
five different span locations (P.S.: Pressure Surface, S.S.: Suction Surface) 
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Figure 7.6: Comparison of phase angles of the first harmonic pressure on the blade surface 
at five different span locations (P.S.: Pressure Surface, S.S.: Suction Surface) 
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Chapter 8 

Development of Unsteady Flow Adjoint 
System 

There are two slightly different ways to formulate the adjoint system based upon the 

URANS equations for aero-damping sensitivity calculations. One can start by l in

earizing the URANS equations in a partial differential equation form, deriving the 

corresponding unsteady adjoint system, then formulating i t at the three phases using 

the Nonlinear Harmonic Phase Solution method so that i t can be solved efficiently. 

This is similar to what has been done by Nadarajah and Jameson (2006) and is illus

trated in Appendix E. One may also start from the flow equations at the three phases 

by Unearizing the three-phase flow equations first, then deriving the adjoint system. 

The former approach can be called a fu l l continuous approach. The latter one can be 

called a semi-continuous approach, because the latter approach starts from the URANS 

equations which have been discretized in time at three time instants in a period. I t is 

noted that the two approaches result in some differences in the adjoint equations, the 

periodic boundary condition and the final gradient expression as revealed in Appendix 

E. In the present work, the semi-continuous approach is adopted, because i t is easier 

to formulate the adjoint system and less complicated to calculate the final gradients 

by this approach. 

8.1 Unsteady Adjoint Systems 

This section first attempts to derive an unsteady adjoint system based upon the un

steady flow equations at the three phases in a way as concise as section 4.1 is pre-
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sented. Then the corresponding adjoint system in a partial differential equation form 

is obtained by applying the illustrated adjoint formulation principle. 

8.1.1 Adjoint Formulation Principle 

The objective function in this context is a function of the flow solution at the three 

phases and mesh coordinates: 

I = I{U.,,Uo,UuX) (8.1) 

Linearizing the objective function wi th respect to a design variable yields 

dl dl ~ dl - dl - dl 

where 

dUidX . , 

5 / _ dl dX 
da dX da 

Linearizing the flow equations at the three phases (Eq.7.7) gives the linearized flow 

equations: 

\U, + _ _ _ [ / _ , + _ _ _ 0 (8.3) 

where 

d n m _dR{Ui)dx 
da dX da ' ' ' 

Here i t is assumed that u) does not depend on a or ^ is small and negligible. Compared 

wi th Eq.4.7, there are three sets of equations in the above with each set having an extra 

term. Mult ipl jdng the three sets of linearized equations in Eq.8.3 wi th the adjoint 
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variables at the three phases A _ i , AQ and Ai respectively and summing up yields 

AT, 

dR{Uo),y , dR{Uo) 
-Uo + 

Af - Uo u + 

dUo da 

dR{U{)~ , dR{U,) 

+ 

+ 

(8.4) 

da 
= 0 

The transpose of the adjoint variables is used, because both the adjoint variables and 

the linearized equations are column vectors. Rearranging the above yields 

u-Xi Uo- (8.5) 

dR{U.,)^_^^dR{U-^) 
da 

+ A^ 
dR{Uo).. ^dR{Uo) 

UQ + da 

+ A r 
dR{U,)~^^dR{U^) 

dUi ~" ' da 

Subtracting the above from the gradient expression in Eq.8.2 gives 

= 0 

dl di 

A i l Uo -

da dU-i 

u - K I 

- A l l 
a/? (c/_i)-_^_^ai? ([/_:) 

dU-i da 

dl 
dUo c 

-Ao" 
'dR{Uo) 

-Ao" dUo 

- A r 
'dR{Ux) 

- A r dUi 

dl - dl 
da 

(8.6) 

da 

da 

Collecting like terms wi th U-i, UQ and Ui, one has 

dl 
da 

- x j + XI, + XI dl 
UJ + dU-x 

( - A T i + A f ) u ; + 
dl rdR{U^) 

- A, 
dU. "° dUrs 

- A f + XI, - XI dl .rdR{U,) 
W + A, dU, dUi 

(8.7) 

dl__ T dRjU.i) _ .TdRjUo) _ ,TdR{Ui) 
da da ^° da da 

U-i,Uo and are independent flow variables at three different phases of a period of 

unsteadiness. In order to eliminate the dependence of the gradient ^ on the flow vari

able sensitivities {Ui), the terms multiplying f / _ i , f / o and Ui need to vanish, resulting 
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in the following three sets of adjoint equations: 

^ ^ ^ - ^ - ^ ^ - 0 

I t is noted that the terms multiplying wi th u in the above equations have a very 

different pattern from those in the linearized equations (Eq.8.3) or in the nonlinear 

equations (Eq.7.7). 

The final gradient expression is independent of flow variable sensitivities as intended: 

dl _ dl ^ ,rdR{Uo) ^rdRjU,) 
d^-d^~ da ~ ~ ^^-^^ 

8.1.2 Unsteady Adjoint Equations 

The adjoint formulation principle illustrated in the above is applied in this section to 

the derivation of the adjoint system based upon the three-phase Euler equations in a 

partial differential equation form. The resultant adjoint system is composed of three 

sets of steady-like equations. 

A n objective function for an aeromechanic related design optimization is a function of 

the three-phase flow solution and mesh: 

/ = / M{U.uUo,U,,X)ds (8.10) 
JdD 

The objective function sensitivity to a design variable a is given by 

The Einstein summation convention is used here for a more compact illustration in the 

following. 

The linearized three-phase Euler equations are written as 

+ + 9 i B ^ + ariC-u,,I)U _ ^ ^ j ^ ^ (8.12) 
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Multiplying the above three equations wi th their corresponding adjoint variables A _ i , 

Ao and Aj and summing up, one has 

A i l p -

XT 

u - X n U o - ^ ' \ ^ - ' ] u + (8.13) 
2 / V ^ J - ^ 2 

d{A- Ugl) U d{B-VgI)U dr{C-WgI) U 
dx rdd + rdr 

- D U - f = 0 

Integrating the above equation over a computational domain, performing integration 

by parts for the spatial partial differential terms and rearranging gives 

+ / A? 
JdD 

- A ; , - A ^ + XJ^^_^ ^ ^^^^ _ ^ Z^l±3±K^Ur dv (8.14) 

{A - Ugl) Un^ + {B- Vgl) line + ( C - Wgl) Urir ds 

-L f)\'^ r>\'^ r)\'^ 
Uidv -L Xffidv = 0 

Subtracting the right hand side of the above equation from the objective function 

gradient (Eq.8.11) yields the augmented gradient expression: 

^ = f ^ d s + f Mds+ I XjUdv 
da JQD da JQ^ JD 

— A ^ j — AQ + A ^ 

(8.15) 

idD . 

-UJU_, + {Xl, - A [ ) uUo + ^ - 1 + -̂ 0 + A f ^ ^ ^ 

A^ {A - Ugl) rzx + A^ ( B - Vgl) ng + A^ (C - Wgl) -
DM 
du 

- ^ ^ ^ A - U g I ) ^ % i B - V g I ) + | ! ( C - V ) + A - Z > ' 

dv 

Uids 

Uidv 

The objective of the adjoint formulation requires the final gradient expression be free 

from flow variable sensitivities. This can be achieved by vanishing the domain integrals 

and boundary integrals related to flow variable sensitivities separately: 

XI, Aô  + A r ^ ^ _ ^ ^ ^^r^ _ ^ XI, + Xl + Xl^^^ 
dv (8.16) 

dr 
Uidv = 0 

X^ [A - Ugl) + A^ (S - Vgl) ng + X^ {C - Wgl) -
dM 
du 

Uids (8.17) 

The flow variables at the three phases ( f / _ i , Uo and C/i) are independent of each other, 

and the flow variable sensitivities can not always be zero in the interior domain. The 
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sufficient and necessary condition to satisfy Eq.8.16 is to vanisfi tfie terms multiply

ing wi th f / _ i , Uo and Ui respectively, leading to the three sets of steady-like adjoint 

equations: 

^ { A - u , I ) + %^{B-v,I) + ^ { C - w , I ) + X^D 

( - A ^ , + A D u; + {A - u,I) + % { B - v,I) + ^ (C - w,I) + X^D 

= 0 
J -1 

= 0 
JO 

2 ^ + '-^{A-u,I) + % { B - v , I ) + ^ { C - w , I ) + X^D - 0 

(8.18) 

The sufficient and necessary condition to satisfy Eq.8.17 gives the boundary condi

tion for the adjoint equations to be presented later. The derivation of the boundary 

conditions needs the flow boundary conditions to be considered. 

W i t h the adjoint equation and boundary conditions satisfied, the original gradient 

expression (Eq.8.11) has changed into 

^ = f ^ d s + [ Mds+ f Xjf,dv (8.19) 
da JQD da JQQ 

8.1.3 Boundary Conditions 

There are four types of boundary conditions for the solution of the derived adjoint 

system in the proceeding section: the subsonic inlet boundary condition, the subsonic 

exit boundary condition, the viscous solid wall boundary condition and the phase-

shift periodic boundary condition. The adjoint inlet and exit boundary conditions are 

derived based upon the reflective flow inlet and exit boundary conditions. They are 

therefore reflective, but satisfy the compatibility requirements: the number of incoming 

adjoint characteristics to the computational domain is equal to the number of boundary 

conditions to be specified. At each temporal phase, the inlet, exit and solid wall 

boundary conditions assume a very similar form to those for a steady adjoint system. 

While the phase-shift periodic boundary condition is quite different from the one for 

the unsteady flow equations. 
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• Inlet Boundary Condition 

Similar to the inlet boundary condition for the steady adjoint system, there is one 

equation corresponding to one incoming adjoint characteristic for each of the three sets 

of adjoint equations (Eqs.8.18). Furthermore at each phase, the boundary condition 

assumes the same form as that for the steady adjoint equation: 

A r | ^ - n x - | ^ = 0 2 = - l , 0 , l (8.20) 
dpi dpi 

I t should be pointed out that ^ does not normally have the same form at the three 

phases, because the flow solution at the three phases does not contribute to the objec

tive function equally. 

• Exit Boundary Condition 

A t an exit, the boundary condition at each phase is also similar to that for a steady 

adjoint system: 

A r | ^ - n x - ^ = 0 Qi^ Pi,Ui,Vi,Wi within-1,0,1 (8.21) 

^ does not have the same form at the three phases due to a different contribution of 

the flow solution at the three phases to the objective function. 

• Solid Wall Boundary Condition 

Along a solid wall boundary, at each phase, the following boundary condition needs to 

be apphed: 

X2nx + rXzUe + X^Ur + X^{ugnx + VgUe + WgUr) = (8.22) 

The following extra conditions are for a viscous solid wall with the wall shear stress 

calculated by the log-law: 

O-x = ^ ( ^ 2 + ^ 5 ) 

= + 

(^r = ^{X^+WgX^) 

3X 
—— = 0 for an adiabatic wall 
on 

As = 0 for a non-adiabatic wall (8.23) 
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I 
J al 

• Periodic Boundary Condition 

As revealed in the derivation of the periodic boundary condition for a steady adjoint 

equation in section 4.3, along a pair of periodic boundaries there is a pair of the 

boundary integrals (left hand side of Eq.8.17 with M = 0) for each temporal phase. 

Here we can not vanish each pair at each temporal phase separately, but we need to 

vanish the three pairs for the three temporal phases all together. 

Refer to Fig.3.1, Eq.8.17 is rearranged as follows: 

{A - Ugl) + X^{B- Vgl) ne + (C - Wgl) n^] .f/^ds (8.24) 

+ / [X^{A-UgI)n^ + X^{B-VgI)ne + \^{C-WgI)nr]fiids = 0 
Jed 

in which [A • Ux + {B — Vgl) • UQ + C • nr\U is a flux perturbation, which can be ex

pressed using one symbol F for a more compact derivation in the following. Transposing 

the above equation (Eq.8.24 is a scalar. Transposing i t does not change the equation.) 

and replacing the flux perturbation wi th F , one has 

/ FfXids + / F^Xids = 0 (8.25) 
Jab Jed 

ah and cd are a pair of periodic boundaries as sketched in Fig.3.1. Expanding the above 

equation at the three phases yields 

j ( F ^ A ) _ j d s + / ( F ^ A ) _ ^ d 5 + (8.26) 
J ab J ed 

[ ( F - A ) „ d 5 - f / {F^X)^ds + 
Jab Jed 

f ( F ^ A ) ^ d 5 + / {F^X)^ds = 0 
Jab Jed 

At a pair of phase-shift periodic boundaries, the flow solution has a constant phase 

difference. By neglecting higher order harmonic components in the flux calculation, 

the flux along a pair of periodic boundaries should also have a constant phase differ

ence. Hence the flux perturbation should also have a constant phase difference along 

a pair of periodic boundaries. At the lower periodic boundary, ab in Fig.3.1, the flux 

perturbation F is given by 

F"*" = F + FAsin{ujt) + FBCOs{ut) 

• 133-



Chapter 8. Development of Unsteady Flow Adjoint System 

Then the flux perturbation at the upper periodic boundary, dc in Fig.3.1, can be given 

by 

pdc^ F^sin{ujt + </)) + FBCos{ujt + (j)) 

Substituting the above flux perturbations into Eq.8.26 and rearranging yields 

\F - F^f A i l + + Fef X^ + {F + F^f Af ] ds (8.27) 

( F - FA COS (P + FB sin <p)'^ A i ^ + {F + FA sin (p + Fs cos 0 ) ^ A^ 

Jab 

L ab 
^ ^U ds = 0 

lab 

+ {F + FACOS(f)- FBSIRCI)) Af 

Collecting hke terms multiplying wi th F, FA and FB and rearranging gives 

{ [ ( A i l + Aô  + A f ) - ( A i l + Ao'' + A f ) ] F (8.28) 

+ [ ( - A i i + A f ) - ( - A i i c o s 0 + A^s in0 + A f cos</))] 

+ [AQ - ( A i l sin 0 + A^ cos 0 - A f sin (f))] FB} ds = 0 

Because F, FA and FB are independent of each other, the sufllicient and necessary 

condition to satisfy the above equation is to vanish the terms multiplying wi th F, FA 

and FB respectively, leading to the following three equations: 

A i i + A ^ + A[ = A i i + A^ + A f (8.29) 

- A i i + Af = - A i i c o s 0 + A^s in0 + A f COS0 

AQ = A i l sin 4> + XQ cos4)- A f sin 0 

Taking Af as unknowns and solving the equations yields the update formula for Af at 

a lower periodic boundary: 

A i l ~ \ ^ [ A - I ( 1 + cos</) - sincf)) + Ag (1 — sm</> - cos0) + Af (1 — cos<p + sin4>) 

XQ = A i i s m 0 + A ^ c o s 0 - A f s m 0 (8.30) 

Af = ^ X [ A i i ( l - cos(p - sincp) + Ag (1 + sincj) - cos0) + Af (1 + cos4> + sincp) 

Taking Af as unknowns and solving the equations one can get the formula for Af at 

an upper periodic boundary: 

A i l = ^ ^ [ A - I ( 1 + cos(j) + sin(p) + Ag (1 + s w ^ - cos0) + Af (1 - coscf) - sincf)) 

X^ = - A i i s m 0 + A ĉos(?:) + A f s m 0 (8.31) 
1 
2 
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8.2 Worksum and its Gradient 

Worksum 

In this work, blade flutter is quantified by worksum, which is the total energy exchange 

between a blade and its working flow in a blade vibration period. A positive worksum 

indicates energy is transferred from the working fluid into a blade, implying negative 

aero-damping and aeroelasticity instability. I f grid/mesh vibration velocity components 

Vx, ve and Vr are given by 

Vx = Vx sm{ujt) + cos{u;t) 

Ve = Vg sin{ut) + vf cos{ujt) 

Vr — Vr S\n{ut) + Vr COS{ljjt) 

and the pressure field is given by 

p = P + PA sin(a;i) - I - PB cos(cji) 

Then the worksum is calculated by integrating the unsteady perturbation pressure 

weighted by mesh vibration velocities on a blade surface in one period: 

W = / / {p-p){vx-nx + vg-ne + Vr- n^) dsdt 
Jo Jbs 

where bs denotes a blade surface, T = j = ^ is the blade vibration period, n^, ng and 

Ur are the outward normals of a blade surface. Substituting the expressions of Vx,vg, 

Vr and p into the worksum expression and integrating i t in time jdelds 

^ = I ^ [ P A ( ^ X •nx + V^-ne + v^ • n^) + ps {v^ -Ux + v^ •ne + vf • n^)] ds 
Jbs 

(8.32) 

Replacing PA and PB using and po - respectively, one gets 

W Pi - P-i {v^ •nx + vf-ng + v^ • Ur) (8.33) 
2 

r, A , „ „ _ ,1 
ds + (po - ^ ^ ^ ^ ) {^x • rix + vg • ng + • n , ) 

Worksum Gradient 

According to the worksum definition in Eq.8.32 or Eq.8.33, worksum is a function of the 

pressure, the blade vibration frequency and grid/mesh vibration velocities (vibration 
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mode shape). The gradient of worksum to a design variable is given by 

dW f 1 [ p i - p - i 
da = l i f [ ^ ^ ^ i ^ ^ - ^ ^ + ^t-ne + v^-n.) (8.34) 

+ (^Po - ^^-Y^) • + • ne + • rir) ds 

dw 
+ 

dW 
ds + ^ (8.35) 

oa 

da 

where ^ accounts for the sensitivity due to blade geometry changes (change of n^., rig, 

and rir), the mode shape change (change of v^, ve and Vr) and the vibration frequency 

change (change of / ) when the pressure terms are fixed. I t should be noted that, in 

a practical design optimization, the change of the blade vibration mode shape and 

frequency due to a change in a design variable can not be obtained by the present flow 

solver and adjoint solver and is neglected. Rearranging the worksum gradient (Eq.8.34) 

gives 

where VA = -rix + Vg -ne + v^ • and VB = -nx + Vg -ng + vf -rir. The worksum 

is calculated on a blade surface which corresponds to a solid wall boundary, where the 

term ^ needs to be specified. W i t h the worksum being part of an objective function 

to be optimised, ^ is not zero. ^ at the three phases is given as follows: 

dM_ _ 1 VA + VB . 

dp^, - 2 / 2 (^-^^^ 

8.3 Verifying the Unsteady Adjoint Solver 

A 2D blade and a 3D blade are used to investigate the gradient of worksum to its 

vibration amplitude. The 3D blade is the 3D linear cascade used in the validation of 

the unsteady flow solver in the preceding chapter. The 2D blade is one radial section 

of the 3D linear cascade. The worksum of a blade vibration has a quadratic relation 

to its vibration amplitude as detailed in the following section, providing an analytic 

gradient result against which the worksum gradient by the developed adjoint solver 

can be verified. 
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Worltsum Gradient to Vibration Amplitude 

From the definition of the worksum in section 8.2, we know that worksum is actually an 

integration of the product of the unsteady pressure on the blade surface and mesh points 

movement at the direction at which the pressure is exerted. The velocity of mesh points 

can be linearly scaled by the amplitude of a blade vibration. The amphtude of the 

unsteadiness in the flow field is also proportional to the ampUtude of a blade vibration. 

Therefore the worksum has a quadratical relation to the amplitude of a blade vibration 

under other given conditions. This quadratical relation can be mathematically given 

by 

W = H-A^ (8.39) 

where A is the vibration amplitude of a blade vibration, H is independent of the blade 

vibration amplitude and determined by other conditions (boundary conditions, the 

blade shape, etc). Normalizing the above equality by a reference value Wref = H • Aj^j 

yields 

where W and A are called the normalized worksum and amplitude respectively. The 

gradient of the normalized worksum to the normalized vibration amplitude can there

fore be obtained analytically: 

dA 

I f the reference amplitude is chosen to be the same as the one at which the gradient 

is calculated, namely Are/ = A, then the gradient of the normalized worksum to the 

normalized amplitude is always 2.0. 

A series of computations under different inter-blade phase angles and vibration fre

quencies for the two blades are performed. The calculated gradients of the normalized 

worksum to the normalized amplitude are listed in tables 8.1 and 8.2. The worksum 

gradients to vibration amphtude by the adjoint solver agree reasonably well wi th the 

analytic results wi th maximum relative difference no more than 5% for the 2D case 

and no more than 8% for the 3D case. 

137-



Chapter 8. Development of Unsteady Flow Adjoint System 

Table 8.1: Wor] csum gradient for a 2D controlled diffusion blade 
vibration frequency (Hz) IBPA (degrees) Adjoint gradient Analytic gradient 
28 0 1.93 2.0 
28 90 2.04 2.0 
42 0 2.10 2.0 
42 90 2.08 2.0 

Table 8.2: Worksum gradient for a 3D controlled dif 'usion blade 
vibration frequency (Hz) IBPA (deg) Adjoint gradient Analytic gradient 
28 0 1.89 2.0 
28 90 2.14 2.0 
42 0 2.15 2.0 
42 90 2.09 2.0 

8.4 Summary 

An adjoint system is formulated based upon the unsteady flow equations at the three 

phases of a period of unsteadiness: ( —| , 0, f ) . Comparing wi th a steady adjoint system, 

the adjoint system is a coupled system of three sets of equations, corresponding to the 

unsteady flow equations at the three phases. The inlet, exit and solid wall boundary 

conditions for the three-phase adjoint system have a similar form to those for a steady 

adjoint system. However, the phase-shift periodic boundary condition for the unsteady 

adjoint system assumes a more complicated form than that for the unsteady flow 

equations. Nevertheless, the adjoint system can fairly easily be extended from a steady 

adjoint system and solved in the same manner. The gradient of a normalized worksum 

to its normalized amplitude is calculated by the adjoint solver and compared wi th the 

analytic value, wi th a good agreement achieved. 
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Concurrent Aeromechanic and Aerodynamic 
Design Optimization 

This chapter first supplements the elements expounded in the previous two chapters 

for a concurrent aerodynamic and aeromechanic design optimization. Then three case 

studies are presented to demonstrate the methodologies elaborated in the preceding 

two chapters and this chapter: a redesign of a 2D rotor blade at a single operating 

point, a redesign of the DLR rotor at a single operating point and at three operating 

points. Different from the cases presented in Chapter 6 regarding aerodynamic design 

optimization, the cases presented in this chapter wi l l take account of both aerodynamic 

and aeromechanic performance of a blade in a design optimization simultaneously and 

explicitly. I t is therefore called concurrent aeromechanic and aerodynamic design op

timization. 

9.1 Introduction 

The blade flutter problem is modeled by a loosely coupled approach. This approach 

splits the coupled aerodynamics and structural dynamics into two sequential problems, 

wi th the structural dynamics problem modeled first and followed by the unsteady 

aerodynamics problem. The structural dynamics here is solved using the commercial 

software package-ANSYS to provide the mode shape and vibration frequency of a 

structural mode. The mode shape and vibration frequency are therefore fed into a 

CFD code to obtain the corresponding unsteady flow solutions. I t is clear that the 

unsteady flow solution is directly determined by the blade geometry, the mode shape 
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and frequency of a structural mode. 

In a concurrent aeromechanic and aerodynamic design optimization, both the blading 

aeromechanic performance and blading aerodynamic performance are extracted from 

the single unsteady flow solution at the three phases (—1,0, | ) . The aerodynamic 

performance is derived from the time-averaged flow solution constructed from the three-

phase flow solutions. The aeromechanic performance (aero-damping) is derived from 

the first harmonic component of the flow solution also constructed from the three-phase 

flow solutions. 

The flow field for a blade flutter prediction is largely hnear (Moffatt and He, 2003). 

Therefore the time-averaged flow solution constructed from the three-phase flow so

lutions wi l l be more or less the same as a steady flow solution for aerodynamic per

formance predictions. The influence of the mode shape and vibration frequency of a 

structural mode on the time-averaged flow solution, and therefore the blading aerody

namic performance, is small and negligible. 

A change in a design variable results in changes in a blade shape, which in turn wil l 

change the vibration frequency and mode shape of a structure mode. A l l these changes 

eventually lead to changes in the unsteady flow solutions at the three phases, therefore 

the blading aerodynamic and aeromechanic performance. Fig.9.1 schematically unveils 

the dependency between different parameters, a is a design variable. X^g denotes the 

X 

« 'X^(a)^X{X,,)—:u{X,x,f)-^'l{U,X,x,f) 

V ( x , , ) - - ' 

Figure 9.1: The dependency between different parameters for blading aeromechanics pre
dictions 

mesh coordinates on a blade surface, and is a function of a. X denotes the mesh 
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coordinates of a computational domain, which in turn is determined by Xbs- x and / 
are the mode shape and vibration frequency of a structural mode respectively. Both x 
and / are a function of Xhs- U denotes an unsteady flow solution at the three phases. 
I t is determined directly by X, x and / through the unsteady flow equations. / is an 
objective function, which is an explicit function oiU, X, x and / and represents the 
blading aerodynamic and aeromechanic performance. 

The above dependency relation is embedded in the following gradient expression of the 

objective function to a design variable: 

dl d I f d U d X d X b s dU_d^dXb^ dU df dXf,s\ 

da dU \dX dXbs da dx dX^s da df dXbs da 

dl dX dXba dl dx dX^s dl df dXhs 

dX dXhs da dxdX^ da d f dXbs da 

In the loosely coupled approach used in the present work, the mode shape x and vibra

tion frequency / are obtained through a FE analysis by the commercial code -ANSYS 

according to a FE blade surface mesh interpolated from a CFD blade surface mesh 

(Xbs)- This tells that the sensitivities of a mode shape and vibration frequency to 

the blade geometry ( ^ ^ , 5 ^ ) needs to be given by a FE analysis. These sensitivity 

calculations wil l cost considerable computing resources at a situation wi th hundreds of 

design variables if they are approximated by the finite difference method. W i t h a com

mercial code, i t is impossible to implement an adjoint code for an efficient sensitivity 

calculation. Therefore in the present work, those dependencies labeled in a dash-dot 

line in Fig.9.1 are neglected or those sensitivities as underUned in Eq.9.1 are set to 

zeros. The gradient expression in Eq.9.1 is approximated by 

dl ^ dl_dl^dX_dXb^ d^dJ^dXbs , . 
da ^ dU dX dXbs da dX dXbs da ^ ' ^ 

The neglect of the change of the mode shape and vibration frequency in a gradient 

calculation can be viewed in a similar way as to a frozen eddy viscosity. In each 

design iteration, the mode shape and vibration frequency are frozen like a frozen eddy 

viscosity in gradient calculations. While the mode shape and vibration frequency wi l l 

be updated once a blade shape is updated in each design iteration, similar to the 

treatment of freezing the eddy viscosity. 
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9.2 Objective Function 

The objective function is a weighted sum of some aeromechanic and aerodynamic per

formance parameters. The aeromechanic performance concerned here is blade flut

ter which is quantified by worksum (positive worksum corresponds to negative aero-

damping) as defined in the preceding chapter. The aerodjoiamic performance concerned 

here includes mass flow rate, pressure ratio and entropy generation rate. I f an aero-

dynamically good design is found to have poor aeromechanic performance (insufficient 

aero-damping) at some operating conditions, then a design optimization intent is to 

increase the aero-damping of the original design without deteriorating its aerodynamic 

performance. Therefore the objective function takes the following form to increase the 

aero-damping and set a l imit to the change of mass flow rate and pressure ratio and 

the increase of entropy generation rate (entropy generation rate is allowed to decrease 

as much as i t can, but not allowed to increase too much): 

W (m V (-K 
/ = 7 j ^ + < î — - 1 + ^ 2 - - 1 (9.3) 

4- a-i max {sign (1 , As - A S Q ) , 0) x ^ ^ r - — 1^ 

where Wrej is a positive reference value used to normalize the worksum. The absolute 

value of the init ial worksum can be taken as the reference value, i f i t is not too small. 

9.3 Structural l\/lodeling and FE-CFD Interpolation 

As pointed out in Chapter 2, blade flutter is modeled in a loosely coupled fashion in 

this work by splitting the coupled two-domain problem into two sequential problems 

in two domains. The first step of this approach is to get the vibration frequency and 

mode shape of a structural mode of interest. The calculation of vibration frequencies 

and mode shapes of a blade is conducted using the well-known finite element analysis 

software ANSYS. 

The modal analysis for a blade and the corresponding fiow field analysis for the fiow 

field in which the blade is immersed are carried out in different spacial domains wi th 

normally different types of meshes. The CFD mesh for a turbomachinery fiow field 
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analysis discretizes the space occupied by the working fluid surrounding a blade, while 

the FE mesh discretizes the space occupied by the blade itself. A CFD mesh used by 

this flow solver is a structured mesh consisting of hexahedral elements only. The CFD 

mesh usually clusters towards the leading and trailing edges and endwalls of a blade 

to better resolve the flow field of higher spacial gradient in those regions. However a 

FE mesh is normally unstructured wi th a different distribution of mesh points in both 

spanwise (more uniformly distributed) and streamwise (fewer mesh points are required 

on a blade surface) directions. In this case study, the element type chosen is the 

SOLID95 in the ANSYS element library. The element is defined by 20 nodes having 

three degrees of freedom per node: translations in the nodal x, y, and z directions. 

I t can tolerate irregular shapes without much loss of accuracy and is well suited to 

model curved boundaries like turbomachinery blade surfaces. The blade surface is the 

interface between the two meshes. These differences between the two meshes imply 

that along the blade surface the two meshes do not coincide wi th each other through 

their mesh points on the blade surface as revealed in Fig.9.2, resulting in a need to 

perform interpolation between the two meshes to transfer information. This loosely 

coupled method requires a one-way information transformation of the mode shape from 

a FE mesh to a CFD mesh. 

CFD mesh F E mesh 

Figure 9.2: CFD and FE blade surface meshes 
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Before a FE analysis, a FE blade surface mesh is generated by interpolation according 
to a CFD blade surface mesh. This surface mesh is then imported to ANSYS to perform 
the modal analysis. The modal analysis will provide the natural vibration frequency 
and mode shape at a specified blade vibration mode. The mode shape needs to be 
interpolated back to the original CFD blade surface mesh for a corresponding unsteady 
flow analysis. The mode shape interpolated on the CFD blade surface mesh is further 
linearly distributed to the whole computational domain along corresponding mesh lines 
with zero mode displacement at the inlet and exit of a computational domain. 

This FE-CFD interpolation interface was developed by Moff"att et al. (Moffatt and He, 

2003; Ning et al., 2003; Moffatt et al., 2005) at Durham University for forced response 

predictions. The accuracy and robustness of the FE-CFD interpolation interface was 

demonstrated in (Moffatt and He, 2003). The FE modal analysis process is scripted 

using ANSYS macro commands in an automated way, so that it can be integrated into 

the design optimization system coded in FORTRAN to automate the whole process 

without any human interference once a problem is set up. 

9.4 Design Optimization Process 

The concurrent aeromechanic and aerodynamic design optimization process is broken 

down into the following procedures and shown schematically in Fig.9.3. 

Step 1: Problem setup This is the first step of a design optimization process. It 

includes the specification of the blade geometry, boundary conditions, design variables, 

etc. 

Step 2: Modal analysis The modal analysis is conducted by the FE analysis software 

package-ANSYS to get the blade vibration mode shape and frequency at a required 

vibration mode. The mode shape of the FE mesh points on the blade surface will be 

interpolated to the corresponding CFD mesh points on the blade surface by a FE-CFD 

mesh interpolation interface. 

Step 3: Solve the unsteady flow equation The mode shape exported in the modal 

analysis is imported to the unsteady flow solver and interpolated linearly along mesh 
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lines to the whole computational domain with zero mode displacement at the far field 
(the inlet and exit planes) to set up the required meshes at the three phases ( —|, 0, | ) . 
Together with the boundary conditions, the unsteady flow equation is solved with the 
flow solution at the three phases obtained. The three-phase solutions in each cycle plays 
two important roles: 1) setting the right base steady (time-mean) and unsteady states 
for calculating the gradients for the next design cycle, 2) providing direct solutions to 
correct/minimize the errors in the 'projected' or perturbed fields based on the previous 
gradients. 

Step 4: Solve the corresponding adjoint equation Once the unsteady flow so

lutions at the three phases are obtained, the corresponding adjoint systems can be 

formulated and solved accordingly. The order in which the flow equation and the 

adjoint equation are solved can not be changed. The flow equation must be solved be

fore the adjoint equation, because the flow solution forms the coefficients of the linear 

adjoint system. 

Step 5: Calculate gradients With the obtained flow solution and adjoint solution, 

the gradients of an objective function to all design variables can be obtained very 

eflSciently with mesh perturbations. 

Step 6: Calculate the step size The step size which determines the amount of 

change to the blade shape is determined by the empirical rule as detailed in Chapter 

5. 

Step 7: Update the blade geometry According to the steepest descent method, 

the step size is taken at the negative gradient direction. The perturbations to the blade 

shape are first determined and then superimposed to the blade shape to update the 

blade shape. Procedures 2 - 7 form a design cycle and are repeated t i l l a stopping 

criterion is reached. 

In such a design optimization process, each design cycle needs the solution of three 

systems of equations. The first one is the solution of the eigenvalue problem for the 

blade vibration frequency and mode shape. The second one is the solution of the 

nonlinear unsteady flow equations by the Nonlinear Harmonic Phase Solution method. 

The last one is the solution of the corresponding adjoint equations. The main time cost 
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Figure 9.3: Flow chart of concurrent aeromechanic and aerodynamic design optimization 

in one design cycle is consumed by the solution of the flow equations and the adjoint 

equations. The two systems usually consume more or less the same time cost. The 

solution of the eigenvalue problem (ANSYS solution) typically costs quite little time. 

The gradient calculation is conducted through mesh perturbation to get the sensitivity 

due to pure geometry perturbations. This means it can also consume considerable time 

compared with the time cost for the eigenvalue problem when there are hundreds of 

design variables. Nevertheless, the time cost for gradient evaluation is still acceptable 

and does not offset the great efficiency offered by the adjoint method, as explained in 

section 5.1 of Chapter 5. 

9.5 Multi-Operating-Point Design Optimization 

In reality, blade flutter rarely occurs at or near the design point. However, blade flutter 

at off-design conditions can be a big concern. For example, stall flutter, which occurs at 

high operating line with high pressure ratio and low mass flow rate, is the most common 
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type of flutter. If a design is found to have blade flutter at off-design conditions, 
performing an optimization over the blade at the problematic off-design conditions will 
not guarantee a good performance (especially aerodynamic performance) at its design 
point. In order to ensure the aerodynamic and aeromechanic performance of a blade 
at other operating points will not be worsened, when the aeromechanic performance 
of a blade is improved at one operating point, blading performance of more than one 
operating point needs to be considered simultaneously in a design optimization process. 
Similar to the multi-operating-point aerodynamic design optimization, it is natural 
and straightforward to extend the serial code for a single operating point concurrent 
design optimization to a parallel multi-operating-point case. The objective function 
to be minimized is formulated as a weighted sum of the sub-objective functions at the 
operating points considered: 

N 

I = Y.o,-k (9.4) 

in which (Tj and U are the weighting factor and sub-objective function for the z*'̂  

operating point. A'' is the number of operating points to be considered in a design 

optimization. The weighting factor used in this work is independent of the flow solution. 

The gradient of the total objective function to a design variable a is accordingly a 

weighted sum of the sub-objective function gradients: 

dl dli ai v - ^ aii ,„ 
da ^ da 

Clearly, a sub-objective function li is a function of the flow solution at the i " * operating 

point only. Accordingly the corresponding gradient ^ calculation requires the flow 

solution and adjoint solution at the z*'' operating point only. Therefore the calculation 

of the flow solution and adjoint solution for different operating points can be conducted 

in parallel without consulting each other. This apparently gives rise to parallelizing 

the solution process for design optimization considering performance at more than one 

operating point. The parallelization in fact is quite straightforward to implemented 

for this particular case and in return will significantly reduce real time cost, which is 

virtually the same as for the multi-operating-point aerodynamic design optimization 

as described in Chapter 5. 

147 



Chapter 9. Concurrent Aeromechanic and Aerodynamic Design Optimization 

9.6 Design Optimization Case Studies 

9.6.1 Redesign of 2D Rotor Blade Configuration 

This design exercise is aimed to demonstrate the necessity of taking aerodynamics into 

account while increasing the aero-damping of turbomachinery blades and the feasibility 

of doing aeromechanic-related design optimizations using the adjoint method. A 2D 

section is taken from the 3D transonic fan-NASA rotor 67 as used in the aerodynamic 

design optimization in Chapter 6 and placed on a cylindrical surface. An H-type 

mesh has 37 mesh points in the circumferential direction and 110 mesh points in the 

axial direction with 27 mesh points before its leading edge and 20 after its trailing 

edge. Perturbations to the suction surface of the 2D blade are parameterized using 13 

Hicks-Henne functions (Hicks and Henne, 1978) resulting in 13 design variables. The 

tangential thickness of the blade remains unchanged during the design process to avoid 

unrealistically thin blades. 

The design target is to minimize the blade's worksum (maximizing the blade's aero-

damping). This is done with or without aerodynamic constraints of mass flow rate, 

pressure ratio and entropy generation rate. In the design process, it is assumed that 

the blade vibrates at a mode shape which is a combination of flap and torsion with 

a frequency of 1000 Hz corresponding to a reduced frequency of around 2 with an 

IBPA of 98.18 degrees (a forward traveling wave mode with 7 nodal diameters). It 

is also assumed that the blade's vibration mode shape and frequency do not change 

with the update of the blade shape. For a pure aeromechanic design optimization, the 

objective function is the worksum. For a concurrent aeromechanic and aerodynamic 

design optimization, the objective function is a weighted sum of the worksum and the 

three aforementioned aerodynamic constraints (Eq.9.3). 

Figures 9.4(a) and 9.4(b) depict the changes of entropy and aero-damping with design 

cycles for the two design scenarios: the pure aeromechanic design optimization, the 

current aeromechanic and aerodynamic design optimization. Fig.9.4(a) clearly reveals 

that without imposing aerodynamic constraints, the design process tends to increase 

the entropy generation rate dramatically. This implies worsening of the aerodynamic 

performance while the aero-damping is being increased, which should be avoided in a 
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design optimization. With the imposition of the aerodynamic constraints, the aero-
damping can not be increased as much as without the aerodynamic constraints over 
the same design cycles. However the entropy generation rate is effectively maintained 
and the aero-damping is still increased considerably (Fig.9.4(b)). 

The differences between the original blade profile, the optimised blade by the aerome

chanic design and that by the concurrent design are shown in Fig.9.5. The aeromechanic 

design increases the camber of the part between the leading edge and the mid-chord. 

The increased camber accelerates the flow field more than the original blade does, 

leaving the fiow field with a much stronger shock incurring more losses (Fig.9.6). The 

concurrent design reduces the camber of the part between the trailing edge and the mid 

chord and slightly increases the camber around the leading edge region. This geometry 

change allows the flow field to accelerate continuously with one shock wave. This shock 

wave is much weaker than the one produced by the aeromechanic design, as shown in 

Fig.9.6. 
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Concurrent Aeromechanic 

Concurrent 

cycies 

(a) entropy 
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10 15 
design cycies 

(b) aero-damping 

Figure 9.4: Change of entropy and aero-damping with design cycles for the 2D rotor blade 
redesigns 
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Figure 9.6: Comparison of Mach number contours between the three different designs for 
the 2D rotor blade redesigns 
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9.6.2 Redesign of DLR Rotor at a Single Operating Point 

The rotor of the DLR stage used in one of the case studies in Chapter 6 is utihzed here 

for a case study of the concurrent aerodynamic and aeromechanic design optimization 

using the adjoint method. At the rotor blade's first vibration mode, calculations show 

that the blade has sufficient aero-damping over its possible operating conditions along 

the design operating line. A hypothetic vibration mode is therefore created by lowering 

the natural vibration frequency (ANSYS output) by 20% here to make use of this rotor 

blade as a test case. The least aero-damping of the transonic DLR rotor, which is 0.1% 

in terms of the logarithmic decrement, occurs at the inter-blade phase angle of 25.71 

degrees (corresponding to the second nodal diameter), when the rotor operates at a 

condition with the following aerodynamic performance parameters. 

Aerodynamic performance parameters: 
Mass flow rate 16.25 kg/s 
Pressure ratio 1.667 
Efficiency 88.29% 

and vibrates at the following hypothetic vibration mode: 

Mode shape the same as the blade's first natural vibration mode 

Vibration frequency 589.4032 Hz (80% of the blade's first mode vibration frequency) 

In the modal analysis, the chosen material for the rotor blade has a density of 4428.8 

kg/m^, Young modulus of 1.25 x lO^^GPa and Poisson ratio of 0.27, which is close to 

the property of Titanium at ambient temperature. 

The above operating condition of the blade is close to the blade's stall operating condi

tion. This can be revealed from the performance map of the rotor blade (Figs.9.11(a) 

and 9.11(b)) and the pressure contours in Figs.9.7 and 9.8. Fig.9.7 shows pressure con

tours on the blade suction and pressure surfaces, while Fig.9.8 depicts pressure contours 

on a mid-span blade section. As it can be seen from these figures, the passage shock 

is pushed out of the blade passage well in firont of the blade leading edge on the blade 

pressure surface. The operating point, at which the redesign is carried out, is chosen 

in such a way that it is as close as possible to the stall point but the flow solution 

process can still converge fully without any limit cycle, a necessary condition ensuring 

the adjoint solution based on this flow solution will converge without any problem. 
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Figure 9.7: Pressure contours on the blade surfaces of the original D L R rotor 
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Figure 9.8: Pressure contours at the mid-span of the original D L R rotor 
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The design target is to increase the aero-damping of the blade while preventing unac
ceptable deterioration of the blade's isentropic efficiency and constraining the change 
of the mass flow rate and pressure ratio to a small range at this particular operating 
point. 

The mesh has 120 mesh points in the axial direction, 37 mesh points in the circumfer

ential direction and 39 mesh points in the radial direction. The blade to blade view and 

meridional view of the mesh are shown in Fig.9.9. 99 design variables are distributed 

on 11 radial mesh sections with 9 design variables on each section. 
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Figure 9.9: Blade to blade view and meridional view of the DLR rotor mesh 

During the design process, the mode shape and vibration frequency of the blade are 

updated in every design cycle. In the update, the vibration frequency is always set 

to 80% of the blade's first natural vibration frequency. (TI_2,3 are initially assigned the 

same value of 2 x 10̂  and changed to 2 x 10̂  after S*'' design cycle. 

The changes of the constraints and worksum with design cycles are presented in 

Fig.9.10(a) and Fig.9.10(b) respectively. 16 design cycles are completed. The mag

nitude of worksum is increased dramatically to nearly 34 times its original value (3.4% 

in terms of the logarithmic decrement), while the mass flow rate, pressure ratio and 

efficiency are all kept more or less the same as their original values. 

The performance map of the optimised blade is compared with that of the original 

blade in Figs.9.11(a) and 9.11(b). The performance of the optimised blade deteriorates 

153 



Chapter 9. Concurrent Aeromechanic and Aerodynamic Design Optimization 

1.081-

M ass flow rate 
Efficiency 

y Pressure ratio 

'Design Cyc&s 

(a) Constraints versus design cycles 

5 10 
Design Cycles 

(b) Worksum versus design cycles 

Figure 9.10: Change of normalized parameters with design cycles for the single point design 
optimization of the DLR rotor 

dramatically at off-design conditions. The operating range of the new design is seriously 

reduced by its reduced choke mass flow rate. 

It can be seen from Figs.9.11(a) and 9.11(b) that, the operating point, which has a 

lower mass flow rate than that of the peak efficiency point of the original design, now 

has higher mass fiow rate than that of the peak efficiency point of the optimised design. 

That is to say, the operating point, close to the stall point of the original design, has 

become an operating point close to the choke point of the optimised design. The 

change of the position of the operating point in the performance map of the optimised 

design consequently improves its aero-damping performance at this operating point. 

Fig.9.12 shows the pressure contours on the blade suction and pressure surfaces of the 

optimised blade. Compared with those pressure contours in Fig.9.7, the passage shock 

in the optimised design is pushed downstream significantly, which is consistent with 

the position change of the operating point in the performance map of the optimised 

design. 

The local work distributions on surfaces of the original (Fig.9.13) and optimised (Fig.9.14) 

blades show that, the blade suction surface is mainly a destabilizing region (positive 

work) with the zone immediately downstream of the shock as the major destabiUzing 

region (positive work), while the blade pressure surface is mainly a stabilizing region 

with the strip immediately upstream of the passage shock as the main stabilizing re-
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gion. When the passage shock is pushed downstream in the optimised design, the 
aero-damping increase is manifested through the increase of stabilizing region on the 
blade pressure surface (Fig.9.14). 
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F i g u r e 9.11: Performance maps of the original D L R rotor and the single-point optimised 
rotor 

P{Pa) 
200000 
180000 
160000 
140000 
120000 
100000 
80000 
60000 
40000 

Suction side Pressure side 

F i g u r e 9.12: Pressure contours on the blade pressure and suction surfaces of the single-point 
optimised D L R rotor 
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single-point optimised D L R rotor 
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9.6.3 Redesign of DLR Rotor at l\/lultiple Operating Points 

The redesign of the DLR rotor at a single operating point deteriorates its aerodynamic 

performance at its off-design conditions seriously as highlighted in Fig.9.11, though it 

increases the aero-damping a lot at the redesign point. This situation calls for a need to 

take account of performance at more than one operating point in a design optimization. 

Three operating points are considered in this multi-operating-point design optimization 

for the DLR rotor. One operating point is the one at which the previous single operating 

point design optimization is carried out. At this operating point, the aero-damping 

is quite low (0.1% in terms of the logarithmic decrement) and needs to be increased. 

Another operating point is the rotor peak efficiency point intended to maintain the 

peak efficiency in a design optimization. The last operating point has a mass flow rate 

close to the choke mass flow rate aimed at maintaining the choke mass flow rate of an 

optimised design. The objective function is a weighted sum of the three sub-objective 

functions (Eq.9.3) at the three operating conditions: 

I = <^ stall I stall + CTpeaklpeak + choke ^choke 

The weighting factors astaii, cFpeak and Ochoke are assigned values of 0.8, 0.1 and 0.1 

respectively. The performance of the original DLR rotor at the three operating points 

are listed in Table 9.1. 

Table 9.1: The original DLR rotor performance at three operating points 
operating point mass flow rate(kg/s) pressure ratio efficiency(%) log-dec(%) 
stall 16.25 1.667 88.29 0.1 
peak 17.07 1.626 89.70 2.7 
choke 17.46 1.421 83.47 3.4 

Table 9.2: Performance of the multi-point optimised DLR rotor at three operating points 
operating point mass flow rate(kg/s) pressure ratio efficiency(%) log-dec(%) 
stall 16.78 1.716 89.57 2.0 
peak 17.27 1.661 89.76 3.2 
choke 17.52 1.449 83.60 3.9 

The performance of the multi-point optimised rotor at the three operating points are 

given in Table 9.2. The optimised design has slightly higher mass flow rate, pressure 

ratio, isentropic efficiency at all three operating points. At the near stall operating 
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point, the aero-damping of the optimised design is 20 times of that of the original 
design. Even at other two operating points, the optimised design also has higher aero-
damping over the original one. 

The performance map of the optimised design is compared with that of the original de

sign in Fig.9.15. In Une with the aerodynamic performance gain indicated in Table 9.2, 

the optimised design has higher efficiency and pressure ratio over the whole operating 

line at the given operating speed. Fig.9.16 shows the overall aero-damping (in terms of 

the logarithmic decrement) of the original design and the optimised design at first few 

nodal diameters, when the blades operate at the near stall point. The optimised design 

has increased aero-damping at all these nodal diameters, with the lowest aero-damping 

occurring at the second nodal diameter at which the original design has the lowest aero-

damping. That is to say the design optimization does not change the nodal diameter 

at which the lowest aero-damping occurs. Comparing the pressure contours in Fig.9.17 

with those in Fig.9.7, one can see that shock position in the optimised design remains 

at almost the same position as the shock in the original design, ensuring the optimised 

design does not change the position of the original near stall operating point along the 

performance map of the optimised design. Fig.9.18 shows the local work distribution 

on a blade surface: the optimised design has increased the stabilizing work on the blade 

pressure surface and reduced the destabilizing work on the blade suction surface. 

The blade geometry of the original blade, the optimised blade by the single point 

design optimization and the one by the three-point design optimization is compared at 

three diflFerent span locations in Figs.9.19, 9.20 and 9.21. The single point design has 

increased the blade camber from the leading edge to the rear part of the mid-chord with 

most camber increase occurring around the mid-span region (Fig.9.19) while it leaves 

the trailing edge region intact (Figs.9.20 and 9.21). On the contrary, the three-point 

design has increased the blade camber in the trailing edge region leaving the leading 

edge region intact (Figs.9.20 and 9.21). 
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Figure 9.17: Pressure contours on the three-point optimised DLR rotor blade pressure and 
suction surfaces (near stall operating point) 
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9.7 Summary 

Design optimization systems for turbomachinery concurrent aeromechanic and aerody

namic design optimization at either single operating point or multiple operating points 

are developed. For a design optimization at single operating point, the objective func

tion is a weighted sum of the worksum, entropy generation rate, mass flow rate and 

pressure ratio. For a design optimization at multiple operating points, the objective 

function is a weighted sum of the sub-objective functionals at operating points of in

terest. The blade geometry is changed at a direction of negative gradients according 

to the steepest descent method. The blade shape perturbation is parameterized using 

Hick-Henne shape functions, as used for aerodynamic design optimizations. 

Three design case studies are carried out. The first design optimization is for a 2D 

blade section. This case study has demonstrated the necessity of taking into account 

of blading aerothermal performance when performing an aeromechanic design opti

mization. It has also proved the validity of conducting a concurrent aeromechanic and 

aerodynamic design optimization using the adjoint method. The second case optimises 
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the aeromechanic performance of the DLR rotor at an aeroelastically problematic op-
erating point while maintaining its aerodynamic performance at the same operating 
point. The case study has shown that the single operating point design optimization 
tends to deteriorate blading aerodynamic performance at off-design points significantly. 
The third case study is a three-operating-point concurrent design optimization of the 
same DLR rotor. This three-operating-point design optimization considers a near stall 
operating point, the rotor peak efficiency point and a near choke operating point. The 
three-point optimised design does not only have highly improved aero-damping over 
the original design at the aeromechanically problematic operating point, but also has 
a better aerodynamic performance over the whole operating range than the original 
design. This concludes that the developed design system is capable of doing concur
rent aeromechanic and aerodynamic design optimizations, and proves the developed 
methodologies are valid in a blading concurrent design optimization and are appropri
ately implemented. 
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Chapter 10 

Conclusions and Recommendations for 
Future Work 

10.1 Conclusions 

The two main research objectives have been successfully accomplished. One is the 

successful application of the adjoint method to turbomachinery blading aerodynamic 

design optimization in a multi-bladerow environment. The other is the integration of 

the adjoint method with the efficient unsteady flow solution method - the Nonlinear 

Harmonic Phase Solution method - to perform concurrent aeromechanic and aerody

namic design optimizations. 

Aerodynamic Design Optimization 

A basic adjoint solver is developed first, based upon the well-established continuous 

adjoint method, for a CFD-based aerodynamic design optimization. The validity of 

the adjoint method in gradient calculations and its appropriate implementation have 

been verified and demonstrated by two case studies: the lift coefficient gradient and 

the inverse design. 

The capability of the basic adjoint solver is enhanced by the introduction of an adjoint 

mixing-plane treatment, which is the first of the kind in open literature, to the author's 

knowledge. This novel treatment is the counterpart of the flow mixing-plane treatment, 

which enables the communication of the adjoint solution in adjacent bladerow domains. 

Like the flow mixing-plane treatment, the adjoint mixing-plane treatment also features 
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the two important properties of conservation and non-reflectiveness. The appropriate 

formulation and implementation of the adjoint mixing-plane treatment are initially 

demonstrated by a gradient comparison investigation and a design optimization case 

study for a 2D compressor stage configuration. 

Four aerodynamic design optimization case studies of realistic three-dimensional config

urations are carried out and produce promising improvements over the original designs. 

The first case is the redesign of the NASA rotor 67 at a single operating point with 

1.77% point increase of isentropic efficiency and well-satisfied constraints in mass flow 

rate and pressure ratio. The second redesign is a DLR compressor stage at the stage 

peak efficiency point. This is also a single operating point design optimization, but 

in a two-bladerow environment. The redesign offers 0.72% point increase of isentropic 

efficiency without violating constraints. The third case deals with the redesign of the 

first three rows of an industrial compressor of 7 blade rows (ATC). Two attempts are 

initially made to seek an optimised design which can offer a better performance map 

than the original design by carrying out a single operating point design optimization 

at two different operating points. The failed attempts call for the implementation of a 

parallel multi-operating-point design optimization. A two-point design optimization is 

carried out over the three-row configuration and delivers an optimised design of better 

performance map over the original one. The fourth case is attempted to demonstrate 

the ultimate capability of the design system for multi-bladerow turbomachines. The 

whole ATC compressor of 7 rows is put into a single operating point design optimiza

tion with the last 6 blade rows being changed with thousands of design variables in 

total. A remarkable efficiency gain of 2.47% point is achieved with acceptably small 

change of mass flow rate and pressure ratio. 

Concurrent Aeromechanic and Aerodynamic Design Optimization 

Among the various efficient solution methods for the URANS equations for turboma-

chinery aeromechanics, the Nonlinear Harmonic Phase Solution method is selected to 

integrate with the adjoint method for efficient gradient calculation for a concurrent 

aeromechanic and aerodynamic design optimization. The unsteady flow solver based 

upon the Nonlinear Harmonic Phase Solution method has been developed and validated 
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against both a semi-analytic method and experimental data, with favorable compar

isons between the results by the flow solver and their counterparts by the semi-analytic 

method and experimental data. An adjoint system by the semi-continuous adjoint ap

proach has been formulated according to the harmonic formulation of the unsteady 

flow equations at the three phases ( — f ,0, | ) . The validity of the adjoint system for 

gradient calculations is verified by the good comparison of the worksum gradients by 

the adjoint system against the analytic results. 

The concurrent blading aeromechanic and aerodynamic design optimization has the 

great advantage of taking care of both blading aerodynamics and aeromechanics simul

taneously in a design optimization process. This avoids the iterative process, to meet 

the often conflicting aerodynamic and aeromechanic requirements, which is otherwise 

required if a blade is either aerodynamically or aeromechanically optimised without 

coupling both of them simultaneously. To the author's knowledge, this represents the 

first effort of its kind in using the adjoint method for designing 3D turbomachine blades 

concerning both aerodynamics and aeromechanics simultaneously. 

Three case studies have been conducted to investigate further the validity, necessity and 

benefit of carr3dng out concurrent aeromechanic and aerodynamic design optimization. 

The two redesign scenarios of the 2D rotor configuration conclude: 

1) an aeromechanic optimization without considering aerodynamic performances tends 

to deteriorate the aerodynamic performance unacceptably, 

2) the implemented methodologies for a concurrent aeromechanic and aerodynamic 

design optimization is effective and beneficial. 

The concurrent redesign of the DLR rotor at a hypothetic aeromechanically problematic 

operating point delivers an optimised design of much higher aero-damping without 

sacrificing its aerodynamic performance at this particular operating point. However 

the optimised has a much narrow operating range compared with the original design, 

pointing to the need of a multi-operating-point design optimization. Accordingly a 

three-operating-point concurrent design optimization is carried out for the DLR rotor. 

The optimised design not only has much higher aero-damping over the original design 

at the problematic operating point, but also has a better aerodynamic performance 
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over the whole operating range. 

All the results from the test cases and application case studies have consistently verified 

the technical correctness of the methods development and their implementations, and 

demonstrated their validity and effectiveness. 

10.2 Recommendations for Future Work 

The potential of this work 

The following two areas are identified as a potential of this work: 

a) The developed method could be used for preliminary, multi-row optimisations when 

provided with an annulus line. 

b) The design system could usefully be used for last minute design changes if, for 

example, a blade row was found to flutter. 

Gradient Evaluation Scheme 

In this research work, the adjoint method is the methodology for efficient gradient eval

uation. Though the aerodynamic design optimization using the adjoint method can be 

carried out in a multi-bladerow environment, the design system is unable to perform 

a concurrent aeromechanic and aerodynamic design optimization in such an environ

ment. As one knows, the unsteady flow equation can be solved using the Nonlinear 

Harmonic Phase Solution method in a multi-bladerow environment for turbomachinery 

blading aeromechanics. Hence it is worthwhile to investigate the possibility to extend 

the adjoint method to a concurrent aeromechanic and aerodynamic design optimization 

in a multi-bladerow environment. This extension will call for a scheme for transferring 

adjoint solution information between two adjacent bladerow domains. This scheme 

should be a counterpart of the one enabling the unsteady flow solution to be solved in 

a multi-bladerow environment and also should be mathematically consistent to obey 

the adjoint formulation principle. 
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Shape Parameterization Scheme 

A shape perturbation parameterization scheme using Hicks-Henne like functions is em

ployed in this developed design system. The biggest drawback of the scheme lies in 

the difficulty of preserving realistic geometry shape around a blade's leading edge and 

trailing edge. Though a remedy has been provided and produced reasonably satisfac

tory results, more generic methods should be sought for this purpose. In addition, 

the geometry constraint of constant tangential thickness is applied in a design opti

mization. This geometry constraint is applied due to the nature of the adopted mesh 

(circumferentially running mesh lines are parallel to the circumferential coordinate). 

It is quite difficult to constrain the normal thickness of a blade section profile in the 

current mesh, though it is more desirable from an industrial application point of view 

to do that. 

integrating with Other Design Optimization l\/lethods 

A gradient-based method has the well-known drawback of getting trapped at a local 

optimum solution, though it is claimed by Jameson (2003) that this does not pose a 

severe problem in industrial apphcations. This drawback can be relieved if a gradient-

based method can be coupled with global search methods. For example, the gradients 

by the adjoint method can be used to construct a better response surface together 

with objective functionals in the response surface method. This will ideally lead to 

faster convergence compared with the original response surface method in a design 

optimization. 
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Appendix A 

Adjoint Navier-Stokes Equations 

The derivation of the adjoint Navier-Stokes equations based upon the HANS equations 

is given in this appendix. 

Linearizing the RANS equations 3.1 with respect to a design variable, one has 

dx 

d(BU - B,U - De,U, - DeeUe - Dsrllr) 

dr (CU - C^U - Dr^ij^ - DrelJe - D^^Ur) 

+ (A.l) 

+ 

rQj-

where matrices A, B, C, D are defined as in Eq.4.14, and 

-DU ^ f 

A - ^ B - ^ C - ^ U 
^ V - Q ^ ^ ^ V - Q^^^V- Q ^ ' ^ X -

Multiplying the above equation with the adjoint variable and rearranging yields 

'd(^AU - AM - D , , f / , - DM - DMr) 

dx •+ (A.2) 

d(^BU - B,U - Dea^U^ - DeeUe - DeMr) 

rdd + 
dr [CU - C,U - Dra^U^ - Drelle - D^rUr) 

rdr 
DU-f = 0 
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The product holds no matter what value the adjoint variable will take. Integrating the 

left hand side of the above equation over the whole computational domain, one has 

d(^AU - A,U - D,,U, - D,eUe - D,rU, ) 
dx 

d(BU - B.il - Dg^il^ - DeeUg - DerUr) 

dr (cii - a 
rde 

U - Dr^il^ - DM - DrA 

+ 

+ 

(A.3) 

) 
rdr 

Performing integration by parts once gives 

DU-f dv 

[A^ [ f - + ( G - Uvg - Ve) ue + [h - Vr) 
dD 

Ur 

-L ^ 
+ ^ ^ {d^.U^ + DM + DMr) + ^ [Dg^U. + DeeUg + DorUr) 

ds (A.4) 

Udv 

+ 

dX^ 

yUe^Ua, + UeeUe + L 

{DM + DreUe + Drrilr) 

dX 
dv 

X^fdv 

Compared with expression 4.17, it can be seen that the above expression has extra 

terms attributable to viscous terms in the RANS equations. The last second domain 

integral in the above contains spatial derivatives of flow variable sensitivity, further 

integration by parts needs to be used to release the flow variable sensitivity out of their 

spatial derivative operators. Rearranging the last second domain integral in the above 

by collecting like terms with Ux, Ue and Ur yields 

/ [ ( 
JD LV 

dx 
dx^ 

rde' dr 
(A.5) 

dXF dX^ 
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Performing integration by parts to the above once gives 

IdD .( dx 

dx 

dx 

rdd 

rd9 De9 + 

D^r + -^Der rdd 

dr 
dX^ 
dr 

d\^ 

Dr U •ne + 

dr 
Drr]U- Ur 

d {dX^ ^ dX^ ^ dX^ ^ 
^xx + —De^ + ^ D r 

dx \ dx 
d fdX' 

rdd V dx 

rde 
dX^ 
rde 

dr 

ds 

+ 

dX^ ^ . Dee + -Q^Dre ] + 

— i ^ D + — D + — D 
dr V dx rdd ^ dr ^ 

Substituting A.6 into A.4 and collecting like terms yields 

Udv 

IdD 
Ur X^ ( F - V;) + ( G - Uvg - Ve) ne + X^ (^H - K ) 

rx I • "x 
'dX^ ^ dX^ ^ dX^ ^ 

+ I — i ^ X X + ^ ^ e x + 

+ 

dx 
dX^ 
dx D.e + 

rde 
d)^ 
rde Dee + 

dr 

dr 

+ 

-L 
dX^ ^ dX^ ^ dX^ ^ 

Da:r + —Der + ^ D r dx rde dr 

Dre]U- ng 

ds U-Ur 

^ ^ \ a - A ^ ) + % { B - V , I - B ^ ) + ^ [ C - C . ) + X'D 
dx rde dr 

d fdX^ ^ dX^ ^ dX^ ^ 
+ — ( — ^ x x + ^De:, + ^ D r 

+ 

dx \ dx 
d fdX^ 

rde \ dx D,e + 

rde 
d>^ 
rde 

dr 

Dee + —Dre dr 

+ ^ ( ^ D + — D + — D 
dr V dx rde ^ dr 

Udv 

(A.6) 

(A.7) 

- / X'fdv 
JD 

Subtracting A.7 from the gradient expression in 4.13 and grouping domain and bound-
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ary integral terms with U separately, one has 

d 
^d-r 

dx^ ^ dX^ ^ dX^ ^ 
dx rdd dr 

Udv 

(A.8) 

^ [A^ ( F - 14) + ( G - iJvg - Ve) ne + X^ (^H - n . (A.9) 

dX^ ^ dX^ ^ dX^ ^ 
dx 
dX^ 
dx 

rdd dr 
U-n, 

D^e + -^Dee + -T^D^O ] U • ng 

dX^ ^ dx^ ^ 
Dxr + -^Dgr + 

rde 
dX' 

Dr 

dr 

ds 
dx " " ' rde""' ' dr ~ " J " dU 

The remaining terms form the final gradient expression, which does not depend on 

flow variable sensitivity any more as intended and assumes the form in 4.23. The 

adjoint formulation requires both the domain integral A.8 and the boundary integral 

A.9 vanish. Anywhere inside a domain, the flow variable sensitivity there can not 

always be zero. The suflScient and necessary condition to vanish the above domain 

integral is to choose the adjoint variable in such a way that the term multiplying U in 

the domain integral vanishes, leading to the adjoint Navier-Stokes equations: 

{A -A,) + ^ { B - v,I - S,) + — (C - a ) + X'D (A.IO) 
dx rde ' ' ' dr 

d (dX^ ^ dX^ ^ dX^ ^ 
dx \ dx rdd dr 
d (dX^^ dX' 

d fdx'^^ dX^ ^ aA^^ 
dr \ dx rdd dr 

= 0 

The above equation can be rearranged as follows: 

( ^ _ ^ , ) ^ | , ( B _ . , , _ B „ ) ^ ^ , ( c - a ) ^ | ^ 

dDg dD, 
dx rdO dr 

+ D^X = 0 

(A.11) 
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M 

D, 

Do 

4>. 

= g^^,U, = {p,u,v,w,Tf 

{0,a^,aer/r,arr,4>r) 
2 

c^ee = 

CFr-r- = 

r 

(Tdx = M 

dx dx 
dXz^ d\,\ 
-de^'^^e) 

dr dr 
d\2 9A5 
Vde^'^Vde 

^ dr dr 
dXi 5A5 

Vde'^^Vde 
d\. 

aA3 axs 
d9 rde 

5A2 5A5 

5A3 9A5 
- d e ^ ' ^ 

+ 

+ 

dx 

r ^ + v — 
dx dx 

d\4 5A5 
dx dx 

dr dr 

dXi ^ 5A5 
dr dr 

5A4 d\5 + w 
dr 
d\2 

dr 
dh 

dx '^^ dx 

Vanishing the boundary integral A.9 requires the corresponding flow boundary con

ditions at a boundary be taken into account of to derive the sufficient and necessary 

boundary conditions for the adjoint equations. At an inlet or exit boundary, it is 

assumed that viscous terms in A.9 are negligible, implying the boundary conditions 

at an inlet or exit boundary for the adjoint Navier-Stokes equations are the same as 

those for the adjoint Euler equations. However at a viscous solid wall boundary where 

the viscous effect is quite significant, the viscous terms in the boundary integral A.9 

can not be neglected. Removing the dependence of the boundary integral on the flow 

variable sensitivity at a viscous solid wall boundary is detailed in Appendix B. 
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Appendix B 

Adjoint Viscous Solid Wall Boundary 
Condition 

This appendix illustrates the derivation of the boundary condition at a viscous solid 

wall for the adjoint Navier-Stokes equations. The boundary condition is the sufficient 

and necessary condition eliminating the dependence of the boundary integral A.9 on 

the flow variable sensitivity at a viscous solid wafl boundary. The boundary integral is 

repeated in the following for an easier reference: 

- j [A^ ( F - V;) + ( G - C/ug - T/̂ ) + - K ) (B.l) 

fdX^^ dX^^ dx^^ \~ 

fdX'^ ^ dX^ ^ dX'^ ^ \ ~ 
+ I —D^e + —Dee + —Dre ] U • ne dx rde' dr 

'dX^^ dX^ ^ dX^ ^ , 
+ I —D^r + —Der + —Drr \ U • Ur 

dM 
U ds 

dx rdd dr ' V ' dU 

Split the boundary integral into the following two parts: the inviscid part and the 

viscous part. 

IdD 
X'Fn, + X^(G- Uvg) ne + X^Hur - ds (B.2) 
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-L 
+ 

+ 

dx 
dX^ 

rx inx-U 

dD ^ 
dX'^ ^ dX"^ ^ dX^ ^ 

+ —Dex + —D. 

(B.3) 

rd9 dr 

dx Dx9 + —Dee + —Dre \ne-U rde' dr 

+ 
dX'^ ^ 5 A ^ ^ dX^ ^ , 
dx rde dr 

ds 

The boundary integral B . l can be eliminated by vanishing the above two parts sepa

rately. The first part B.2 can be eliminated as explained in the boundary condition 

section in Chapter 4. The following text is aimed at illustrating the elimination of the 

second part B.3. 

V^Ux + Vgne + VrUr is the viscous flux vector of the flow equations. At a viscous solid 

wall with the log-law for a shear stress calculation, this flux vector is approximated by 

VxUx + Vgng + VrUr = 

0 

Tg • r 
Tr 

\ 

\rgnr + k§J 

where r^, rg and Tr are the components of the wall shear stress r̂ , in the x, 9 and 

r directions. These components are calculated as follows with the wall shear stress 

computed using the log-law as explained in the boundary section in Chapter 3: 

re = r, 

Tr = r. 

u 
'w 

Vrel 

' W 
W 

(B.4) 

where Vrei is the relative velocity in the circumferential direction defined as v — Qr. 

The wall shear stress T„ is a function of u, v, w and p at a viscous solid wall boundary, 

consequently r^, Tg and are also functions of u, v, w and p. The sensitivity of the 
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stress terms^ in terms of the flow variable sensitivity can be obtained by the chain rule: 

dr-r _ dTr dTr dr^ 
(B.5) 

du dv dw dp 
_ drg _ drg, drg _ drg. 
Tg = -T-u + -—V -t- —w -f -—p 

du dv dw dp 
~ dTr _ dTr _ ^Tj. _ . 

= —-U + -—W -t- —W —p 
du dv dw dp 

With the above stress terms substituted, the term A^ (YXU^ -\- Vgng -\- VruJ^ can be 

expanded as 

X^ (v^n^-\-Vgng-\-VrUr^ = X2 • Tx + Xs • Tgr-\-Xi • TrXs • {fgnr-\-k^){B.6) 

+ 

+ 

A , — + (A3 + X,^)r— + A , — 

^ ^ f e - ( ^ 3 . A . n ) . | ^ . A . | ^ 

• ^ ^ £ - ^ ^ 3 . A . . ) . g . A . ^ 

A . ^ . ( A 3 . A . . ) . | . A . | 

+ A5A;— 
an 

The spatial derivative terms in B.3 can also be written in terms of the viscous flow 

variable sensitivity: 

dx'^ ^ dX^ ^ dX^ ^ , 

+ 

dx 
dX^ 

rde dr 
(B.7) 

dX^ dX^ 
» ^xe + -^Dgg + -^Drg ]ng-U 
dx rde dr 

(dX^^ dX^ ^ dX^ ^ , 

+ 

dx 
dX^ 

dr 

Ho be precise, this sensitivity is a partial sensitivity considering the sensitivity due to the flow 
variable sensitivity. The adjoint formulation needs to eliminate the flow variable sensitivity appearing 
in the boundary integral. The geometric sensitivity does not need eliminating. For the sake of 
simplicity, the geometric sensitivity is not considered here. 
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where Uy is the viscous flow variable vector defined as {p,u,v,w,T)'^. The right hand 

side of the above equation can be written in the following shorthand: 

Xi- p + X2-u + X3-r-v + X4-w + X5-f (B.8) 

As it is well-known, viscous stress terms are spatial derivatives of velocity components 

and temperature. Accordingly the term multiplying p must be zero: 

Xy=0 

Substituting B.6 and B.8 into B.3, collecting like terms with flow variable sensitivities 

and rearranging, one can have the following equations by vanishing the term multiply

ing p, u, V and w respectively: 

, , ^ + (,3 + , , S , ) , ^ + , . ^ = 0 (B.9) 

ov dv dv 

A . ^ + (A3 + A 5 n ) r § ^ + A , | ^ = X , 
dw ow ow 

Denote ^ by / , the shear stresses can be rewritten as follows: 

Tx = fu, re = fVrel, Tr = fw (B.IO) 

The sensitivities of the stress terms can be written as follows: 
dr^ 
du 

dTr _ 
du 

drg 
du = if".... 

dTr 
du 

dv 
dTx 
dv 

dre _ 
dv i f + / • 

drr 
dv 

drr 
dw 

dTT 
dw 

drg 
dw 

drr _ 
dw 

dr^ 
dp 

dTx 
dp 

drg 
dp 

drr 
dp 

With the above sensitivity expressions substituted into Eq.B.9, one has 

A 2 ^ « + (A3 + X.ny^Vrel + Kj-W = 0 (B . l l ) 

+ / ) + (A3 + X,Q)r^Vrei + \A^W = X^ 

\2^U + (As + X,Q)r{^Vrel + / ) + K^^w = X^r 

A . | ^ u + ( A 3 + A . ^ l ) . g . . . + A . ( | ^ + / ) = X . 
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Further arrangement leads to 

X2 = A2/ (B.12) 

^ 3 = (Aa + As^)/ 

Xi =- A4/ 

where X2, X3 and X^ are GX, ae and Ur respectively as defined in the boundary section 

in Chapter 4. The detailed expression of X^ is given by 

aAs 
X. = k dn 

If a viscous solid wall is adiabatic, then | ^ = 0 and f ^ 0, the following condition 

about A5 needs applying at a viscous solid wall boundary: 

^ = 0 
dn 

If temperature is specified and fixed at any point along a viscous solid wall, then T = 0 

and ^ 7̂  0, the corresponding boundary condition about A5 is applied by 

A5 = 0 
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Objective Function Gradients 

As it reveals in section 4.3, the gradients of the integrand of the objective function to 

some flow variables are required to specify adjoint boundary conditions. This appendix 

presents these analytic expressions of these gradients. 

The substantial gradient of the objective function (expression 5.3) with respect to a 

design variable in general can be written as 

dl 1 dAs „ , m , 1 dm ^ , TT . I dn ,^ ^ 
— = - — - — + 2(7, — - l — — - h 2 c r 2 — - 1 — 3 - C.l cto; A So da TUQ TTIQ da TTQ TTQ da 

Entropy generation rate, mass flow rate and pressure ratio as defined in section 5.2 

are integrals at the inlet and exit planes of a computational domain. For a clear 

presentation here, the gradient term | ^ is decomposed into the sum of three ones: 

dM_dM,,dM^,dM, 
dU dU dU ^ dU ^ ' 

with and corresponding to the entropy generation rate, mass flow rate 

and pressure ratio respectively. 

Referring to section 4.3, at an inlet or solid wall boundary, ^ is required; at an exit 

boundary, ^ and | ^ are required. It is noted that the objective function in 

5.3 does not contain integrals at a solid wall boundary. Therefore we have ^ = 0 at 

a solid wall boundary. Those derivatives at an exit or inlet are given in detail in the 

following. 
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Entropy Generation Rate Gradient 

The entropy generation rate gradient can be expanded as follows 

dAs _ dse dsi 
da da da 

At an inlet, the derivative with respect to static pressure is given by 

d M , 1 1 [ / " l S j d p \ ^ . _.dfWn 

P d p ) dp J dp Asom - - ' "̂ ^~ ' ^^-^^ 

where rn = J. pVnds, and ^ are calculated by the complex variable method (Vatsa, 

1999). 

At an exit, the derivatives are given by 

dMi 1 1 
dp Aso m 

dMi 1 1 
du Aso m 

dMi 1 1 
dv Aso m 

dMi 1 1 
dw Aso m 

S'y 
) pVn + {s-s) Vr, 

P 

(s - s) pn^ 

(s - s) pne 

(s - s) pUr 

where m = pVnds. 

IVIass Flow Rate Gradient 

(C.4) 

The mass flow rate gradient can be broken down by 

dm _ 1 / /" dpVn 

'da ~ 2 [J, ~da •ds • Nbi + f dpVn 

I da 

At an inlet, the derivative is given by 

dM2 _ / m 
dp 

1 

ds-N,^ 

.dpVr, = 2a ( — - 1 ^ . 0 . 5 ^ i V b i 
mo / mo dp 

At an exit, the derivatives are given by 

dM2 

dp 

dM2 

du 
dM2 
dv 

dM2 

dw 

2u 

2a 

2(7 

2a ( 

m 
mo 
m 
rho 
m 
rho 
m 

- 1 

- 1 

- 1 

- 1 

J _ 
rho 
J _ 
mo 
J _ 
rho 
J _ 
rho 

0.5v„iVb„ 

0.5pniiVbn 

Q.bpneNbn 

0.5pnrN^ 

(C.5) 

(C.6) 
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Pressure Ratio Gradient 

When calculating the pressure ratio, the inlet mass averaged total pressure P* is more 

or less fixed due to the specified total pressure profile at an inlet. It is therefore assumed 

that the inlet mass averaged total pressure is constant. 

At an inlet, the only derivative is given by 

dp \T^O J iroPy ^ m^^^ ^ ^ dp ^ ^ 

At an exit, the derivatives are given by 

„ / T T , \ 1 1 1 

dp 

du 
dm 
dv 

dw 

( — - 1 ) — i ^ - \A{U^+V^+ W^) pVn + {p*2 - P;) Vn 
VTTO / TTO P ; m [ 2 ' ^ ^ 

= 2 ^ ( : r ~ 0 ~'w*^ [^pupvn + {p*2 - P2) pnx 
\rro / Tio P^ m 
/ TT \ 1 1 1 r 

= 2a 1 — 3 7 — [Apvpvn + {p*2 - P2) pne 

= 2a (—- l]—^^[Apwpvn +{p*2-P2) prir 
VTTO / TTo Pj* m '-

(C.8) 
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Appendix D 

Nonlinear Harmonic Phase Solution Method 
versus Time-linearized Linear Harmonic 
Method 

The comparison of the Nonhnear Harmonic Phase Solution method and the time-

hnearized hnear harmonic method will be illustrated here with the use of the Burger's 

equation for simplicity: 

The time linearized method decomposes the solution variable into its time averaged 

one u plus a perturbation u', namely, 

u = u + u 

where u does not depend on time any more, but u' is a function of both time and space. 

Substituting the expression of u into the Burger's equation yields 

d{u + u') 1 dju'^ + 2uu' + u"^) 
dt ^ 2 dx 

1̂  = 0, because u is not a function of time. This equation can be further simplified as 

Time-averaging the above equation, one has the time-averaged equation: 

Subtracting Eq.D.3 from Eq.D.2 gives the perturbation equation: 

du' ld{2uu' + u^-^) 
dt 2 dx ^ ' • 193 
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Method 

The time-linearized method assumes that u' is much smaller than u in terms of magni

tude, therefore u'̂  and u'̂  are of one order smaller than u' and are negligible. Eqs.D.3 

and D.4 are accordingly reduced as follows 

Eq.D.6 is still in time domain, direct solution of this equation in time domain is still 

costly. The unsteady flow field concerning blade flutter or forced response is usually 

time-periodically dominant with its period/frequency known a priori. The perturba

tion part of the steady flow solution can be expressed in terms of Fourier series: 
oo 

u -^2 IP'i sm{iujt) + hi cos{iujt)\ (D.7) 

It is normally enough to keep one harmonic for blade flutter or forced response predic

tion. The perturbation part is simplified accordingly: 

u - ai sin{ujt) + bi cos{ujt) (D.8) 

Substituting the above perturbation part expression into Eq.D.6 yields 

r / ,\ . • / M du [ai sm(ujt) + bi cos(iot)] ^ ,^ 
[oi cos{ut) - bi sm{ut)] u + —^— ^—j- ^—^ ^ 0 (D.9) 

ox 

The above equation can be rearranged by collecting like terms of sm{ujt) and cos{ut): 

dubi 
a-iuj + 

dx 
cos{ut) + -b,u + 

ox 
sin{u!t) — 0 

Both sin(cji) and cos{ujt) can not always be zeros, therefore the terms multiplying them 

have to vanish to satisfy the above equation, leading to the two sets of time-linearized 

equations: 

aia; + ^ ^ = 0 (D.IO) 
ox 

-b^u + = 0 
ox 

Now it can be seen that Eq.D.5 is independent of Eq.D.lO, while Eq.D.lO does depend 

on the solution to Eq.D.5. The two equations are solved sequentially with Eq.D.5 

solved first and followed by Eq.D.lO. 
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Method 

Unfortunately, the splitting process, leading to the time-averaged equation and the lin

ear harmonic equation, makes it difficult to formulate and then solve the corresponding 

adjoint system. The two equations have to be linearized with respect to a design vari

able to derive an adjoint system. Eq.D.lO is already a time-linearized equation, making 

it quite complicated to be linearized against a design variable. 

In line with the time-linearized Unear harmonic method, the Nonlinear Harmonic Phase 

Solution method bases itself upon the assumption that the unsteadiness in the unsteady 

flow field of interest is temporal-periodic with the flow solution as a whole expressed 

in terms of the summation of the time-averaged one plus one harmonic: 

u = u + ai sin(wt) -I- bi cos(cjt) 

With the u substituted into the time derivative term in Eq .D. l , the time derivative 

term can be replaced as follows 

1 dzi^ 
[aiCOs(ujt) - bism(u!t)]u + - ^ r — - 0 (D .U) 

2 ox 

Notice that in Eq.D. l is not replaced with its Fourier expression. E q . D . l l has three 

sets of unknowns: ai, 6i and u. In order to solve the equation, as He (2008) proposed, 

three particular phases are chosen: ut = —1,0, | . E q . D . l l can be written at the 

aforementioned three phases: 

6ia; + - - ^ = 0 (D.12) 

where subscripts - 1 , 0 and 1 denote the solution u at the three phases: ( - | , 0 , | ) 

respectively, ai and 6i can be expressed in terms of the solution at the three phases, 

namely, 

Ui — 

Ui+U_i 
bi^uo 
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Subsequently Eq.D.13 can be written in terms of the solution at three phases only 

2 
Ui 

1 du\ ^ 
2 dx 

(D.13) 

Uo 
Ui + W_i 

2 dx 
Idul ^ 

Compared with the steady Eq.D.5, each of the equations at the three phases has an 

extra term corresponding to the time derivative in the unsteady equation. This extra 

term can be treated as a source term when these equations are solved. It can be seen 

that it is quite straightforward to extend a solver solving the steady equation to one 

solving the three equations. In addition, when linearizing the equations with respect 

to a design variable, there is little difference from linearizing a steady equation to a 

design variable, making it straightforward to derive the corresponding adjoint system 

and solve it. 
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Time-Domain Unsteady Adjoint Equations 

An unsteady adjoint Euler equation is derived from an unsteady Euler flow equation 

using the continuous adjoint approach. Then the derived unsteady adjoint equation is 

discretized in time using the Nonlinear Harmonic Phase Solution method, leading to 

three sets of steady-like adjoint systems at the three phases: ( —f ,0, | ) . The following 

three main points will be illustrated in the derivation. 

1) The unsteady adjoint Euler equation has the same characteristic paths as the lin

earized unsteady Euler flow equation. The characteristic information of the unsteady 

adjoint system propagates at the same speed but in the opposite direction compared 

with their corresponding flow characteristic information. 

2) The unsteady adjoint equation needs to be time-marched backwards in time: from 

the final time to the initial time. The adjoint field at the final time is null, while the 

initial adjoint field is a part of an unsteady adjoint solution (hence unknown). 

3) In the context of unsteady turbomachinery flow field calculations, the inter-blade 

phase angle for phase-shift periodic boundaries in an unsteady adjoint solution is the 

same as that in the baseline unsteady flow solution, if a single blade passage with an 

inter-blade phase angle is used in a computation. 

Different from an objective function in a design optimization based upon a steady flow 

fleld calculation, the objective function in the context of an unsteady flow based design 

optimization is normally an integral in both space and time: 

r [ M{U,X)dsdt ( E . l ) 
Jo JdD 
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The gradient of the objective function to a design variable is given by 

dl_ 
da 

= ( 7 m o ^ ' 4 i ) i s i t + r [ Misit ( E . 2 ) 
^0 JdD \oU oa J Jo JQD 

A linearized unsteady Euler flow equation with respect to a design variable is written 

as follows: 

dU d{A-u,I)U d{B-v,I)U dr{C-w,I)U -
¥x + Vde + Vdr D U - f - 0 (E .3) 

Multiplying the above flow equation with an adjoint solution variable yields 

d{A-UgI)U d{B-Vgl)U dr {C - Wgl) U 
dt + dx 

- + 
rde + rdr 

- D U - f 0 (E.4) 

Integrating the above equation in both time and the computational domain gives 

/^^ 1̂  [ f + ^ ^ ^ + '-^^i^ + M ^ i ^ . D U - f]dvdt = 0 (E.5) 

Performing integration by parts over the spatial and time derivative terms once and 

rearranging, one has 

!^ L'-^dvdt-!^ ^^^-^ijdvdt 

+ !o !QD - " P ^ ) + - '^S^) + ( C - Wgl) UUr dsdt 

(E.6) 

Udvdt - Jo lo - + % i B - vgl) ( C - ^,7) + X^D 

Subtracting the left hand side of the above equation from the gradient expression in 

E.2 does not change the value of the original gradient: 

- A^f7 di 
da 

X^U 
t=T 

dv 

- lo lao [(^ - ^9!) Un. + ( S - vgl) Uue + {C - Wgl) Un, - ^U 

+ lo lao '^dsdt + Mdsdt + X^fdvdt 

dsdt 

Udvdt 

(E.7) 

• 198 



Appendix E . Time-Domain Unsteady Adjoint Equations 

General Unsteady Flow 

At first, let's consider that the unsteady flow field is not temporally periodic. The 

adjoint formulation requires the final gradient be free from flow variable sensitivities. 

This is equivalent to vanish the following three integral terms: 

L dv = 0 (E.8) 
t=T 

f l 
Jo JdD 

{A - ugl) On, + {B- Vgl) line + {C - Wgl) Uur - dsdt = 0 

(E.9) 

dr 

is known in 
I 

dv 

Udvdt 

(E.IO) 

It should be noted that the flow variable sensitivity at the initial time U 

a linearized method (the initial condition for solving Eq.E.3), therefore X^U 

does not depend on any unknown flow variable sensitivity and should not be forced 

to vanish. This term is a function of the adjoint solution at the initial time, and 

constitutes a part of the final gradient expression. 

The necessary and sufficient condition to satisfy Eq.E.8 is 

A U = 0 ( E . l l ) 

This gives an unsteady adjoint solution at the final time, from which the adjoint solution 

will be time-marched backwards in time till the initial time. This equation tells that 

the unsteady adjoint solution at the final time is zero in the interior domain. 

The sufficient and necessary condition to satisfy Eq.E.9 will give the boundary condition 

for the unsteady adjoint equation. The inlet, exit and solid wall boundary conditions 

for a time-domain unsteady adjoint system take a similar form as those for the adjoint 

system derived in Chapter 8. 

The sufficient and necessary condition to satisfy Eq.E.lO leads to the unsteady adjoint 

Euler equation: 

^ + ^ ( ^ - V ) + ^ ( 5 - V ) + ^ ( ^ ^ - - . / ) + A^D = 0 (E.12) 
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The unsteady adjoint Euler equation is a linear system. The Jacobian matrices in 

the linearized Euler flow equation (E.3) are identical to those in the above adjoint 

equation. This ensures that the adjoint equation has the same characteristic paths as 

the linearized flow equation. 

The unsteady adjoint Euler equation is different from the steady adjoint equation with 

a pseudo time derivative term added (Eq.4.22): the signs before the spatial derivative 

terms in Eq.4.22 are minuses, while the signs before the spatial derivative terms in 

Eq.E'.12 are pluses. The unsteady adjoint system is a final-boundary value problem, 

where an unsteady adjoint solution process starts at the final time and time-marches 

backwards in time. While the time integration methods, such as the Runge-Kutta 

method, are designed for initial-boundary value problems. In order to make use of 

the well-developed time integration methods to solve a steady adjoint system, the 

signs before those spatial derivatives are made opposite to the sign of the pseudo time 

derivative term. 

The final gradient expression is therefore reduced to 

^ = f X^U dv+ r f ^dsdt+ r f Mdsdt+ r l X^fdvdt (E.13) 
da JdD t=o JQ JQD da 7o Jdo Jo JD 

Time-periodic Flow 

In the following, we are going to consider the situation where the unsteady flow solution 

is time-periodic. If an unsteady flow solution is time-periodic, and T is the period of 

the unsteadiness, then the unsteady flow solution (hence its sensitivity) at i = 0 and 

t = T should be equal: 

U = U 
t=T 

The sufficient and necessary condition to vanish the boundary integral: 

/ (X^U -X^U )dv 
JD \ t=T t=o/ 

is given by 

A|t=T = A|,=o (E-15) 

The above equation also implies that the unsteady adjoint solution is time-periodic 

with a period of T. 

•200-



Appendix E. Time-Domain Unsteady Adjoint Equations 

The final gradient in E.13 is changed as follows: 

^ = r [ ^dsdt+ r f Mdsdt+ r i x^/dvdt ( E . I 6 ) 

doc Jo JQD da 7o JdD Jo Jo 

In the context of a time-periodic unsteady flow solution for turbomachinery blades, a 

phase-shift period boundary condition with an inter-blade phase angle (0) is usually 

used in conjunction with a single blade passage to reduce the size of a problem. The 

following derivation will illustrate the phase-shift periodic boundary condition for the 

corresponding unsteady adjoint Euler equation. 

At phase-shift periodic boundaries, an objective function normally does not explicitly 

depend on flow solutions there, namely, M = 0. In Eq.E.9 

{A - ugl) On, + {B- Vgl) Une + {C - Wgl) Urir 

is a flux perturbation, which can be expressed using one symbol F for a more compact 

illustration. Then Eq.E.9 along a pair of periodic boundaries can be simplified as 

/ f \F'^dsdt+ f f \F^dsdt = 0 (E.17) 
Jo Jab Jo Jed 

where ab and cd refer to the pair of periodic boundaries as sketched in Fig.3.1. At 

periodic boundaries, if a fiow solution is time-periodic and truncated to one harmonic, 

then it is accordingly valid to assume the flux (hence the flux perturbation) is also 

time-periodic and can be truncated to one harmonic. If the flux perturbation at a 

lower periodic boundary is expressed as 

F^ = F + FA sin {cut) + FB COS {ujt) (E. 18) 

where ^ denotes a lower periodic boundary. Then the flux perturbation at an upper 

periodic boundary can be expressed as 

F'^ ^F + FA sin {ujt + (p) + FB COS {ut + 0 ) (E. 19) 

where ^ denotes an upper periodic boundary. Substituting Eqs.E. lS and E.19 into 

Eq.E.17 gives 

lo Lb >^[F + FA sin (ujt) + FB cos {ut)] ^dsdt 
(E.20) 

+ /(f / ^ ^ \ [ F + FA sin {ujt + (j)) + FB cos {ut + (j))]^dsdt = 0 
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With further rearrangement the above equation becomes 

lo Lb A^ + F A sin {ujt) + FB cos {ut)]^dsdt 
(E.21) 

(E.22) 

- /o A^ [ F + FA sin (wi -I- 0 ) + F B cos (wi -f 0 ) ] dsdt = 0 

F , F/i and FB can be also expressed as follows: 

1 F 
F = - I F,r 

2 r 

F A = j; Fsm{uT)dT 

2 /-^ 

FB = - J Fcos{ujT)dT 

The first term on the left hand side of Eq.E.21 can be arranged as follows with the 
above substituted into it 

rT 
lo lab A^ [ F + F A sin {ojt) + FB COS {ut)] dsdt 

= lo Lb A^ [T IO F ^ d T + f F ^ sin {ur) dr sin {ut) + 1 F^ cos {cor) dr cos {ut) 

— lo Lb lo ^ ^ F ' ^ [f + T ('^''") ('^*) + T ('* '̂'') ( ^ * ) ] drdsdt 

dsdt 

dsdr 

(E.23) 

= /o" L F ^ Jo >^'dt + I A^ sin dt sin (u;r) + | X^ cos di cos (ur) 

= Jo Lb F ^ [A'' + sin (^^) + A | cos (wr)] dsdr 

where 

A^ = i y"^A^di (E.24) 

2 /"^ 

= f j ^ A ^ s i n M ) d i 

2 /•'̂  
A^ = - / A^cos(a;t)di 

In a similar way, the second term on the left hand side of Eq.E.21 can be arranged as 

follows: 
Jo Lb [ F + F A sin {tot + (j)) + FB cos {ujt + (f))fdsdt 

= Jo L F ^ Jo ^""dt + I X^ sin {ujt + 4>) dt sin {cor) + 1 X^ cos [ut + cf>) dt cos {u;r) 

= Jo Lb F ^ [T IO ^^dt + I X^ sin {ut) dt sin {ur - 0 ) + | X^ cos (ut) dt cos (wr - 0 ) 

= /o^ /ab [A"" + A^ sin {ujr - <f>) + X% cos (a;r - 0 ) ] dsdr (E.25) 
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where 
rT 

= j\^s\n{ujt)dt 

K = | j^^A^cos (a ; t ) , 

Substituting expressions E.23 and E.25 back into Eq.E.21, it is not difficult to find that 

the sufficient and necessary condition to satisfy Eq.E.21 is given by 

+ XA sin {UJT) + cos (CJT) = F + A ^ sin (wr - (/>) -h A ^ cos {UT - (p) (E.27) 

The left hand side of the above equation is actually the adjoint solution at a lower 

periodic boundary: 

A ^ = A ^ + A ^ sin {UJT - < / > ) + A ^ COS {CUT - 4>) (E.28) 

This is the formulation updating the unsteady adjoint solution at a lower periodic 

boundary using the adjoint solution at an upper periodic boundary. 

Replacing UJT with -I- 0 in Eq.E.27 and rearranging gives the following formulation 

for updating the unsteady adjoint solution at an upper periodic boundary using the 

unsteady adjoint solution at the corresponding lower periodic boundary: 

A ^ = A ^ + X'x sin {LOT + -h A ^ cos {UJT + 0) (E.29) 

Comparing Eqs.E.28 and E.29 with Eqs.7.11 and 7.9, one can see that the phase-shift 

for both the adjoint equation and the flow equation is identical. 

In order to solve the unsteady adjoint Euler equation (Eq.E.12) efficiently, the Nonlin

ear Harmonic Phase Solution method for an efficient unsteady flow solution can also 

be used for an efficient unsteady adjoint solution. 

Transposing Eq.E.12 and collectively writing its source term and the spatial derivative 

term as i ? ' ' ' ' - ' ( A ) , one has 

^ + i ? " * ( A ) = 0 (E.30) 

The unsteady adjoint solution can be expressed as a whole in the following Fourier 

series with one harmonic included: 

X = X +XAS\n{ut) + XBCOs{ujt) (E.31) 
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In a similar way for the three-phase flow equations in Chapter 7, the three-phase adjoint 

equations are not derived in detail, but are given as follows: 

' A o - ^ ^ ^ ^ ) u ; + i ? " * ( A _ i ) = 0 (E.32) 

^ l ^ ^ u + R'^^ (Xo) = 0 

- ( A O - ^ ^ ^ ) ^ + i?"^^ ( A O = 0 

Comparing the above three sets of equations with those in Eq.8.18, it is not difficult 

to find out the differences in the terms multiplying with u. 

The gradient (Eq.E.16) is composed of three parts. The last term in Eq.E.16 is related 

to the adjoint solution and its calculation is examined particularly in the following. 

The term is an integral in both space and time, it requires the reconstruct of an time-

dependent adjoint solution and an time-dependent flow residual perturbation due to 

pure geometry changes. The time-dependent quantities can be reconstructed from 

the solutions at the three phases for both the adjoint solution and the flow residual 

perturbation. 

Assuming the flow residual due to pure geometry changes with fixed flow variables can 

be decomposed in the same manner as the unsteady flow solution in Eq.7.3: 

X = f + /A sm{u!t) + f s cos{ujt) 

where / , /A and / B can be obtained using the value of / at the three phases. Substi

tuting the above and E.31 into the last term in the right hand of Eq.E.16 yields 

rT 

Jo JD 
X' fdvdt (E.33) 

= / / [X-\-XAs'mut-\-XBCOSLut)^ [f-\-fAsintut-\-fBCOsuit) dvdt 
Jo JD 

Substituting the following expressions into the above ends up with a much more com

plicated result than the corresponding term in the gradient expression by the semi-
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continuous approach (Eq.8.19): 

A i - A _ , 
2 

Ai + A_i 
Afi Ao - 2 

r fl - / - I 
JA 2 

/ i + / - I 
IB - f o - 2 

f ^ h + f - i 
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