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I l l 

Research and mnning; similar in so many ways. 

"Running requires endurance, character, pride, physical strength and mental toughness. 

Running is a test, not a game. A test of faith, belief, will and trust in ones self. So hardcore 

that it needs a category all to itself to define the pain. Running is more than a sport; it's a 

lifestyle. If you have to ask us why we run, you 'II never understand, so just accept" 

Jessica Propst 



I V 

T H E S I S S U M M A R Y 

Coarse sediment transfer in upland gravel-bed river systems is often neglected in the design 

and operation of river management schemes. Yet, it is increasingly attributed to problems 

within upland environments including bank erosion and enhanced flood risk. Developing a 

sufficient understanding of coarse sediment transfer and channel change requires strategic 

field monitoring. Predicting future channel change and flood risk under varying 

management options requires numerical modelling. This thesis employs a combined field 

monitoring and numerical modelling approach to explore the relationship between coarse 

sediment transfer, lateral channel change, river engineering and flood risk. 

Intensive field monitoring is used to understand sediment transfer and channel change. 

Methods include repeat cross-sectional resurvey, bank erosion pins and bank-top surveys, 

and sediment impact sensors. These data are used to illustrate the spatial and temporal 

variability of in-channel sedimentation and rates and mechanisms of bank erosion. When 

analysed ftirther, these data explain pattems of sedimentation and demonstrate implications 

of coarse sediment accumulation for flood risk. The data are then used in the development 

and application of a quasi two-dimensional model of chaimel change. The model couples a 

one-dimensional sediment routing model with a lateral adjustment component to simulate 

pattems of downstream fining alongside vertical and lateral channel changes. By using a 

split channel approach, asymmetrical width adjustments are simulated based on critical 

shear stress thresholds. Lateral differences in bed elevation and curvature are used to 

distribute shear stress across the channel. Simulations are run to explore scenarios including 

changing the flow regime, removing bank protection and implementing a river engineering 

scheme on a reach with high sedimentation and bank erosion problems. The results 

highlight the potential impact that poor river management can have on upland rivers, 

demonstrating enhanced bank erosion upstream and greater sedimentation downstream of 

the engineered reach. The accumulation of sediment results in increased flood risk. 
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C H A P T E R O N E : 

C O N T E X T , A I M S A N D O B J E C T I V E S 

1.1 A I M S A N D R E S E A R C H Q U E S T I O N S 

This Ph.D. research has two overall aims: 

o to explore sediment dynamics and channel change in an upland gravel-bed 

river and to assess the impacts of such changes on flood risk; and 

o to develop a model that simulates annual to decadal scale channel change for 

exploring the impacts of river management. 

These aims are achieved by answering the following key research questions which are 

answered throughout the thesis and are revisited in the conclusions. 

1) How does in-channel sedimentation in an upland gravel-bed river vary through 

space and time? 

2) At what rate do unprotected river banks, in upland gravel-bed rivers, erode and 

what processes drive this bank erosion? 

3) What are the mechanisms that drive these spatial and temporal patterns of 

channel change? 

4) What implications do in-channel sedimentation and bank erosion have for flood 

risk? 

5) Can a simple quasi two-dimensional modelling approach be used to simulate 

vertical and lateral channel change in a natural, sinuous upland gravel-bed river? 

6) Within the model, how important are the inclusion of a variable discharge and 

curvature driven shear stress distribution for predictions of channel change 

through space and time? 

7) What are the implications of changes in hydrology and river management for 

channel change and flood risk? 
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1 . 2 S C I E N T I F I C C O N T E X T O F R E S E A R C H 

It is becoming increasingly accepted that many problems in upland river systems, including 

bank erosion and increased flooding, stem from in-channel sedimentation (e.g. James, 

1999; Stover and Montgomery, 2001; Korup et al., 2004; Pinter and Heine, 2005; Lane et 

ai, 2008). Traditionally, river systems have responded to sediment delivery through lateral 

migration, with bank erosion countering the loss of flow capacity resulting from 

aggradation. As the timescale of adjustment through channel migration is commonly longer 

than the individual event timescale, sediment delivery events are expected to lead to a 

short-term increase in flood risk whilst channel capacity re-establishes itself However, 

there are at least two scenarios where this might not be the case: (1) where the return period 

of coarse sediment delivery events is sufficiently short that the channel capacity does not 

re-establish itself before a subsequent coarse sediment delivery event; and (2) where 

management activities have been adopted to prevent bank erosion and to protect flood 

infrastructure, and hence channel capacity cannot be re-established. Modelling suggests 

that, under fiiture climate change scenarios, and particularly in upland catchments 

sensitised to rainfall events as a result of deforestation (Macklin and Lewin, 2003), coarse 

sediment delivery rates may increase dramatically (Lane et al., 2007). This is primarily 

through reductions in event return period. In addition, river bank erosion, even in rural 

areas, has traditionally been seen as a problem that has to be prevented rather than an aspect 

of natural channel response to sediment delivery (Reid et al., 2007a). Thus, there remains a 

fradition of active intervention to reduce bank erosion rates, whether through traditional 

'hard' engineering or more recent 'soft' engineering. Taken together, the changing return 

period of sediment delivery events, coupled to constraints on the capacity of a river to 

migrate in response to delivered sediment, could lead to dramatic increases in flood risk in 

systems associated with coarse sediment delivery. 

Thus far, the primary focus of the effects of possible climate changes, and their interaction 

with land management impacts, upon flood risk has been in terms of impacts on runoff (e.g. 

Robinson, 1990; Tollan, 2002; O'Comiell et al., 2004; Sullivan et al., 2004). There has 

been much less attention given to the effects of river bed level changes upon flood risk, and 

their sensitivity to climate and land use change impacts upon sediment delivery (Stover and 
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Montgomery, 2001; Lane et al., 2007). If understanding the sediment transfer system is 

crucial to effective understanding of flood risk, then it needs to be based upon evidence that 

captures morphological response over longer timescales than single sediment delivery 

events. Evidence is needed that encompasses a number of sediment delivery events and 

quantifies the detailed morphological response to those events. Longer term quantification 

of sediment and river channel histories is possible through the analysis of historical maps 

and aerial photography (e.g. Hooke, 1977; Winterbottom, 2000; Parsons and Gilvear, 

2002), but this is rarely of high enough frequency to capture system response to individual 

events or clusters of events. Spatially-detailed, repeated river bed surveys are rarely 

undertaken over more than one or two years as they are time consuming and rarely attract 

funding for more than three years. Also, to date, these surveys have emphasised planform 

change rather than the coupled vertical adjustment and lateral migration which is central to 

understanding changes in channel capacity. This also reflects the established view that river 

engineering and fluvial geomorphology are separate disciplines. Despite the gradual 

convergence of the disciplines that began in the late 1980s (e.g. Chang, 1988) there remains 

a lack of consideration for fluvial geomorphology in the design and implementation of 

engineering structures. Thus, there are no research models that allow for the inclusion of 

bank protection measures that prevent the natural adjustment process. 

Whilst field studies can be used to monitor on-going changes in a river channel, predicting 

the morphological response of a river system to management options, specifically river 

engineering, requires a numerical modelling approach. The implications of river response 

can be environmental and economic, including increased flood-risk, loss of land, damage to 

riverbank infrastructure and negative impacts on aquatic and riparian ecosystems. Previous 

modelling approaches have explored the lateral adjustment of river systems (e.g. 

Mosselman, 1995; Darby and Thome, 1996; Lancaster and Bras, 2002). However, they 

have several inherent weaknesses. Many width adjustment models are developed for 

straight rectangular channels, failing to simulate channel change processes occurring at 

meander bends in natural channels (e.g. Chang, 1988; Yang et al., 1988). In contrast, 

meander evolution and migration models typically simulate outer bank erosion but neglect 

inner bank deposition processes, instead assuming deposition rates that match erosion rates 
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thus maintaining channel width (e.g. Ikeda et al, 1981). This is problematic as it fails to 

capture the asymmetrical adjustment process which may be attributed to changes in channel 

capacity. The channel's capacity to hold flow is crucial for flood risk. These models are 

often limited to steady state conditions (e.g. Osman, 1985) and they provide limited 

information on the rate of change. In addition, most morphological channel change models 

express a weakness due to a lack of data for model testing and a dependence upon data 

sourced in a flume (e.g. Simon and Darby, 1997). Hence, there are no suitable models 

available to explore sediment transport and vertical and lateral channel change in upland 

gravel-bed rivers with coarse sediment. 

Research is required that combines a field-based and modelling approach: (1) to highlight 

the important role that in-channel sedimentation plays in flood risk; (2) to explore the 

spatial and temporal nature of this sedimentation; (3) to examine factors underlying the 

nature of the sediment supply and transfer system; and (4) to investigate the impacts that 

river engineering strategies have on the sediment transfer system and channel change. 

1 . 3 T H E S I S S T R U C T U R E 

The two thesis aims and key research questions are ftilfilled using the following 

methodological objectives which structure the thesis as shown in Figure 1.1: 

1) to use literature review: 

a. to develop an understanding of the channel change process and the factors 

driving it; 

b. to provide knowledge about the chosen study site; 

c. to develop a suitable methodology for monitoring channel change using a 

field-based approach; and 

d. to explore previous modelling approaches to assess their applicability to the 

research aim and to aid with model development; 

2) to select a study site that allows the research aims and objectives to be achieved; 

3) to use field-based techniques to monitor channel change and the variables driving 

these changes; 
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4) to use field-based findings fi-om (3) to analyse the sediment transfer and channel 

change process and assess its impact on flood risk; 

5) to develop a model of vertical and lateral channel change using data from (3); and 

6) to run scenarios to produce model outputs for analysis. 

The thesis is split into ten chapters which are linked together as shown in the thesis map 

(Figure 1.1). This map shows where the six methodological objectives are achieved and 

how the chapters link together. 

Figure 1.1: Thesis Map 
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Objective I: to use literature review to develop an understanding about channel change 

processes, the field site, field methodologies and modelling techniques. 

This objective is addressed in Chapters 2, 3, 4, 5 and 7. There are two main sections of 

literature review. The first is in Chapter 2 which explores channel change in upland river 

systems. This begins by considering the catchment wide factors that control channel 

morphology. Three main within-charmel factors are identified and explored in more detail. 

These include the discharge, the sediment supply and the nature of the charmel boundary. 

This is followed by an overview of the broader factors that directly or indirectly alter these 

three factors. River channel engineering is focussed on as this forms a key part of 

conventional management interventions. The mechanisms of channel change are then 

discussed with attention concentrating on bank erosion, widely recognised to be complex 

and multifaceted. Other processes, including deposition and meander migration, are 

summarised as these are discussed later in the thesis. 

The second main section of literature review is within Chapter 7. This provides an 

overview of previous modelling approaches to simulate channel change. These are split into 

empirical models, width adjustment models for straight channels, meander evolution and 

migration models and methods of modelling width adjustment in meandering channels. The 

main limitations of these modelling approaches are discussed, thereby justifying the 

development of a new model. Details of the three sub-models used in width adjustment 

models for straight channels are included as a similar sub-model approach is fully 

developed in Chapter 8. Within this chapter, key modelling questions are raised. These 

form the structure of the model development in Chapter 8. 

Objective 1 is also addressed in Chapters 3, 4 and 5. In Chapter 3, the study site, literature 

and reports from previous studies in the catchment are consulted to provide details on the 

catchment's characteristics, history and river management strategies. In Chapters 4 and 5 

literature is used to develop methodologies for each of the field monitoring techniques 

adopted. Literature is also used to compare the results from this research with findings from 

previous research. 
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Objective 2: the selection of a suitable study site. 

Objective 2 is achieved in Chapter 3 where the reasons behind the Upper Wharfe being 

chosen as a study site are outlined. In addition, this chapter provides an overview of the 

catchment and channel characteristics. This helps with understanding the locations of the 

field-based monitoring and in the analysis of the results. Furthermore, the catchment and 

channel description shows that the Wharfe has similarities with other U K gravel-bed rivers, 

allowing many of the findings to be transferred to similar catchments. Outlining the channel 

and catchment characteristics and providing details of the history of the catchment and the 

river management that has taken place along the study reach are also important for 

understanding the processes operating in the study reach. 

Objective 3: monitoring channel change and river system response using a field-based 

approach. 

Field data are required for three reasons: (1) to explore links between coarse sediment 

transfer, vertical and lateral channel change and flood risk (Chapter 6); (2) to allow the 

reconstruction of a sediment budget for estimating bedload transport rates (Chapter 6); (3) 

to provide the required input and boundary conditions for the development and application 

of the model in Chapter 8 and Chapter 9. A monitoring strategy was required to provide 

these data. Chapter 4 and Chapter 5 both begin by outlining the data required to monitor 

and to characterise channel morphology (Chapter 4) and to provide data on the hydrology 

and the supply and transfer of sediment in the study reach (Chapter 5). For each method, 

options for monitoring are explored using evidence from the literature, before the adopted 

monitoring strategies are described in fiill. Results for each method are then presented. 

Chapter 4 aims to monitor and characterise the channel morphology and this is achieved 

using five methods including: (1) field surveys; (2) repeat cross-sectional surveys; (3) a 

bank erosion study using erosion pins and bank-top resurveys; (4) characterising curvature 

from a digitized LiDAR image; and (5) measuring the flow around a meander bend. 
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Chapter 5 provides data on the main factors that determine the channel morphology as 
outlined in the literature review. These include: (1) describing the channel's hydrological 
regime; (2) characterising the bed material using a hybrid approach of pebble counts and 
bulk samples; and (3) monitoring sediment transport within the study reach. 

Objective 4: to use field-based findings to analyse sediment transfer and channel change, 

and its impacts on flood risk. 

This objective uses the results from Chapter 4 and Chapter 5 to explore several key 

research themes in Chapter 6. Many of the results from individual methods are combined in 

this analysis. The first key area of synthesis is explaining spatial and temporal patterns of 

sedimentation by exploring the links between the sedimentation results and: (a) hydrology; 

(b) sediment supply; (c) survey frequency; and (d) channel geometry characteristics. 

Second, locations of chzinnel change are explored in relation to channel width, curvature 

and bank protection. Third, results from Chapters 4 and 5 are combined to provide 

additional data for the modelling. This includes estimating the bedload transport rate. 

Fourth, the ability to infer changes in bed level from the impact sensor data are discussed. 

Finally, the impacts of aggradation on flood risk are explored. 

Objective 5: to develop a model capable of simulating vertical and lateral channel change 

in the study reach. 

Knowledge on the channel change process obtained from literature in Chapter 2, and from 

data analysed in Chapters 4, 5 and 6 are used alongside the modelling literature review in 

Chapter 7 to produce a conceptual model of channel change. Ten key modelling questions 

are posed within Chapter 7. These are addressed during Chapter 8, through the 

development and testing of the research model. Modifications and decisions made are 

discussed alongside supporting model outputs. Following development, several of the 

model parameters are tested for sensitivity. The model is then calibrated to optimise the 

parameters on field observations (Chapters 4, 5 and 6). Chapter 9 begins by providing a 
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discussion of the model capabilities and limitations before a range of scenarios are tested 

later in the chapter. 

Objective 6: to run scenarios to produce model outputs for analysis. 

Chapter 9 uses the fiilly developed and calibrated model to run a range of scenarios. These 

scenarios include: (1) running the model for 2, 4 and 6 years; (2) removing bank protection 

from the Wharfe study reach; (3) simulating different hydrological regimes; and (4) 

exploring engineering options around a problematic reach of the Upper Wharfe. The key 

model outputs that are explored include bed level changes and bank erosion rates. The 

implications of channel changes following each scenario are considered. 

Overall aims and research questions. 

The two main thesis aims and each of the key research questions set out in Section 1.1 are 

revisited in the final conclusions chapter (Chapter 10). This chapter is split into questions 

about the field-based approach and questions about the modelling. Answers to these 

questions are provided alongside some concluding comments about the methodologies 

adopted. Some fmal concluding remarks bring the thesis to a close. 



C H A P T E R T W O : 

C H A N N E L C H A N G E I N 

U P L A N D G R A V E L - B E D RIVERS 

2 . 1 I N T R O D U C T I O N 

Reviewing literature is important for three reasons. First, it provides an introduction and 

background into many of the ideas, theories and methodologies that are dealt with in the 

thesis. Second, doing so highlights fields of strength where extensive research has been 

carried out, alongside establishing gaps in knowledge that require further research. Finally, 

literature review provides essential details on approaches and methodologies which allow 

research, specifically field data collection and modelling, to be carried out effectively. 

This chapter concentrates on reviewing channel change in upland environments. It is 

essential to develop an understanding into the factors that drive channel change at both the 

cheinnel and catchment scale. This background will be required when the findings made in 

Chapters 4, 5 and 6 are explored. The discussion concentrates on the driving factors of 

discharge and sediment supply and the boundary conditions imposed by the channel 

(Section 2.3). The morphological effects of human disturbances, specifically channel 

engineering are introduced (Section 2.4) and channel change mechanisms are discussed 

with a focus on bank erosion (Section 2.5). Understanding bank erosion is required when 

the bank erosion results are analysed and for modelling the lateral adjustment process. 

Further adjustment processes including deposition and meander migration are summarised 

(Section 2.5) again providing valuable background information for the modelling phase of 

the thesis. The fmal part of this chapter is a short summary into the implications that 

channel change has on flood risk, habitats and bank erosion (Section 2.6). 
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2 . 2 O V E R V I E W O F P R O C E S S E S 

To understand processes of channel change, the channel must be placed within a catchment 

scale context as these broader controls ultimately drive changes. Figure 2.1 provides a 

schematic representation of an upland environment and shows the wide range of factors 

that are capable of directiy or indirecfly influencing the geometry of a channel cross-section 

(e.g. width, depth, shape) and the planform of the channel in the downstream direction (e.g. 

slope, sinuosity, meanders). Together these are referred to as the chaimel morphology. 

Figure 2.2 groups these processes and provides a summary of the main linkages between 

them. 

Figure 2.1: Factors influencing channel morphology. 
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Figure 2.2: Linkages between factors influencing channel morphology. 
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Changes in any of the variables shown in Figure 2.1 and Figure 2.2 can trigger instabilities 

within the channel leading to channel change. The relative importance of each of these 

factors varies between catchments and channels. Yet it is widely agreed that the channel's 

discharge (e.g. Harvey, 1969; Knighton, 1987), sediment supply (e.g. Harvey, 1991; 

Kondolf et al., 2002; Rinaldi, 2003) and the nature of the channel boundary (Thome, 1981, 

1982; Ikeda et al., 1988; Beschta, 1998) are the most important controls (e.g. Wolman, 

1959; Knighton, 1998; Pickup, 1976; Hey and Thome, 1986; Beschta, 1988; Werritty, 

1997). As shown in Figure 2.2, these are ultimately driven by catchment scale factors and 

human disturbances. Whilst controls such as climate (e.g. Amell and Reynard, 1996) and 

land-use (e.g. Kondolf et al., 2002) can significantly alter the discharge and sediment 

regime of a river, additional concerns arise from the impacts of river engineering and 

management schemes on the channel (e.g. Brookes, 1997; Gilvear, 1999). These schemes 

can directly alter the channel boimdary; for example bed lowering from gravel extraction or 

by preventing bank erosion through bank protection. Furthermore, they often feedback to 
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trigger morphological adjustments upstream, downstream and within the engineered or 
managed reach. 

Any triggered instability in the channel can lead to the channel adjusting in a variety of 

ways to accommodate the new conditions (Hey, 1997). The effect of an instability on 

channel morphology is a reflection of the balance between the magnitude of the 

perturbation and the ability of the channel to resist or to accommodate the impact of the 

disturbance (Werritty, 1997). Therefore, some changes in the controlling variables will 

trigger large channel changes whilst others may be resisted. Werritty and Leys (2001) 

explain that landscapes respond to changes in two ways. First, robust changes are absorbed 

by the landscape with only modest adjustments occurring. These include meandering 

channels which steadily migrate. Second, responsive adjustments involve the channel 

undergoing a fundamental or persistent change in their morphology. For example, a 

catastrophic flood which changes the meandering planform to braided. Changes are 

accommodated through the complex and interlinked processes of erosion (both bed and 

bank) and deposition through which the channel adjusts in a variety of ways. These 

adjustments can then feedback promoting further adjustments. For example, bar deposition 

may result in bank erosion as the flow is shifted to the outer bank. Conversely, bank 

erosion may result in bar deposition as the bank erosion shifts the flow further from the 

inner bank. TTiis continual adjustment challenges the traditional idea that a channel adjusts 

to reach equilibrium (e.g. Pickup, 1976; Lane, 1995; Millar, 2005). This equilibrium 

geometry is thought to be the optimum for the transport of bedload which varies with 

discharge (Pickup, 1976). It is perhaps more appropriate to consider an upland river system 

as one which is constantly evolving and adjusting to the prevailing flow and sediment 

conditions. The discussion that follows initially examines the three main controls on 

channel morphology: discharge, sediment supply and the channel boundary (Section 2.3), 

and summarises the catchment controls that are ultimately responsible for them (Section 

2.4). It then explores die mechanisms by which the channel can adjust to accommodate 

these changes (Section 2.5) and the impacts of such changes specifically on flood risk and 

habitats (Section 2.6). 
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2 . 3 I N T E R N A L C O N T R O L S O N C H A N N E L M O R P H O L O G Y 

As identified, the three main controls on channel morphology are the driving forces of 

discharge and sediment supply and the resisting forces of the channel boundary. The first of 

these is the channel discharge, or the flow regime. A statistical relationship between flow 

and the channel geometry has long been acknowledged and is supported by numerous 

studies (e.g. Harvey, 1991; Pizzuto, 1994; Allred and Schmidt, 1999). This relationship 

formed the basis of Leopold and Maddock's (1953) "hydraulic geometry theory" which 

was used to determine the channel-forming or dominant discharge (i.e. the flow that created 

the average channel geometry). There is a large body of evidence from flume and field data 

to suggest that this dominant discharge is the bank ftill flow (Ackers and Charlton, 1970). 

For example, Harvey (1991) found a clear correlation between channel width and discharge 

in the Howgill Fells, Cumbria; Sloan et al. (2001) found an 80% increase in channel width 

following a large flood on the Eel River, California; and Allred and Schmidt (1999) 

attributed narrowing on the Green River, Utah, to a reduction in discharge from an 

upstream dam. Nevertheless, whilst a channel-forming discharge is empirically evident, 

many argue that the magnitude and frequency of flows also need considering: an idea first 

proposed by Wolman and Miller (1960). Their concept suggests that frequent low-

magnitude events can be as effective at shaping channel geometry as infrequent high-

magnitude events. Pickup and Warner (1976) support this and conclude that the most 

effective discharge was more frequent than bank full, occurring 3-5 times a year. 

Furthermore, some have found that the importance of the flow regime can also depend on 

other channel factors. Both Baker (1977) and Wolman and Gerson (1978) argue that rare 

high magnitude flows are the most effective channel forming discharges in arid 

environments. Pickup and Reiger (1979) proposed that channel form is a result of 

antecedent conditions whilst Osterkamp (1980) suggest that a river with a flashier regime 

and relatively high peak flows tends to develop wider channels. This explains why arid 

systems tend to increase their widths at a faster rate than channels in humid climates. 

The second key control on channel morphology is coarse sediment supply. Some argue that 

changes in sediment supply are the most probable cause of channel planform change in 

upland rivers (e.g. Carson, 1984; Harvey, 1987; Martin and Church, 1995; Warburton et 
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al., 2002). It is important to understand the main sources of sediment in a channel. In 
upland river systems, coarse sediment originates from the hillslopes and from within the 
channel itself as it reworks the bed and bank material. In upland areas in temperate regions, 
the hillslope sources of coarse sediment are predominantly activated by rainfall-triggered 
shallow translational landslides (e.g. Dietrich et al., 1995; Montgomery and Dietrich, 1995; 
Dhakal and Sidle, 2004). These slides typically occur following periods of wet antecedent 
conditions, typically after periods of prolonged rainfall. This reduces soil moisture deficits 
(Page et al., 1994), pore water pressure increase and reduce the shear strength of the soil. 
At the same time, the downslope weight of soil mass increases. Once the downslope forces 
exceed the slope's critical threshold (often termed the factor of safety), a landslip will 
initiate. In addition, some landslides can be triggered by a short period of higher intensity 
rainfall (such as storm events and summer thunderstorms) which result in a rapid rise in 
downslope pressure as the soil rapidly saturates (Montgomery et al., 1997; 2002). Within 
channel sources of sediment have also been found to be important and can contribute 
greater than 50% of the total sediment output from a channel (e.g. Grimshaw and Lewin, 
1980; Church and Slaymaker, 1989; Johnson and Warburton, 2002). The supply of 
sediment from the channel comes from sediment transport of the bed material and from 
bank erosion. Therefore, the supply of sediment within the channel is explicitly linked to 
channel discharge. For example Gintz et al. (1996) report longer sediment transport times 
under higher magnitude floods whilst Hassan et al. (1992) and Haschenburger and Church 
(1998) report greater sediment transport associated with longer event durations. The 
mechanisms responsible for sediment transport and bank erosion are discussed more fiilly 
in Section 2.5. 

Several studies have explored the relative contribution of sediment supply from the 

hillslopes and from the channel itself Keinholz et al. (1991) estimated that 17% of bedload 

sediment was sourced from the hillslopes and 83% from the charmel bed and banks in a 

study of 21 Swiss catchments. Schmidt (1994) recorded values of 24% from the hills and 

76% from the channel in Bavaria, whilst Johnson and Warburton (2002) recorded similar 

values of 25% and 75% respectively from the Lake District. These findings all outiine the 

significance of channel re-working in the availability of sediment in channels. Hillslope 
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sources do however remain important as the in-channel re-working of the sediment is finite 
and sediment must continue to be supplied to the channel. This raises the role played by 
sediment connectivity to explain how sources of sediment, both hillslope and within 
channel are linked or connected together (Hooke, 2003). Understanding the connectivity of 
coarse sediment transfer is important to determine the level of coupling between the 
hillslope and the channel network (Brunsden and Thomes, 1979). This coupling involves 
the n-ansfer of sediment between the source areas, the hillslopes, and the channel (e.g. 
Harvey, 2001). Transfer is dependent on the proximity of a source to the network and the 
fluvial power available to transfer the sediment. For example if a landslide runs out into a 
river channel, coupling is high and the source is well connected to the fluvial system. On 
the other hand, a landslide may be isolated on a hillslope; thus connectivity is low. In 
upland systems, where the channel sides are steep, coupling tends to be high with sediment 
readily supplied to steep, often bedrock, channels (Stelczer, 1981). In lowland systems, 
where the valley is wide, the coupling between hillslopes and the channel can be some 
distance and the system is often deemed partially or completely unconnected (Hooke, 
2003). 

Second, the connectivity of sediment within a channel is important for: (1) the interaction 

between different reaches of the channel; (2) the influence of sediment sources and transfer 

upon channel morphology and landscape evolution (e.g. Leopold, 1992; Friend, 1993); and 

(3) the potential for a specific particle to move through the system. Early work by Schumm 

(1977) demonstrates the relationship between channel geometry, stability and sediment 

supply. Figure 2.3 shows this classic study and suggests that as sediment supply increases, 

the channel becomes more unstable, wider and shallower until it becomes anastomosing 

and then fully braided. Following on from Schumm (1977) numerous studies have 

demonstrated the impact that the quantity of sediment supplied to a channel has on its 

geometry. Kondolf et al. (2002) concluded diat changes in bedload yield (due to land-use 

change) in rivers in France and Idaho resulted in significant channel changes, Parker (1979) 

suggested that for a given discharge, a 30% increase in gravel load would require a 40% 

increase in channel width, and Beschta (1998) attributed channel widening in the Kowai 

River in New Zealand to an increased sediment supply from storm triggered landslides. 
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Conversely, Rinaldi (2003) documented various alluvial adjustments on several Tuscan 

Rivers (Italy) and attributed them to reductions in sediment supply due to the cessation of 

mining, and Liebault and Piegay (2001) report degradation and channel narrowing in 

response to a decrease in bedload supply, linked to an increase in forest cover on the 

Upper-Roubion River, France. They also report a decrease in peak flow due to the increase 

in forest cover. 

In addition, the coupling that exists between different elements of the river system is 

important. This includes the movement of sediment from sedimentation zones, particularly 

from one gravel bar to the next and the influence of tributary inputs on mainstream 

sediment dynamics. Much work has explored the interaction between tributary and 

mainstream sediment connectivity (e.g. Rice, 1998; Ferguson et al., 2006; Rice et al., 

2008). The latter two studies suggest that the ratio of flow and sediment influx is largely 

attributable to channel response both in terms of downstream fining and levels of 

aggradation. These interactions are particularly important in river systems where tributaries 

are considered important. 

Figure 2.3: Chaimel type based on sediment load and system stability. Schumm (1977): 
initially adapted by Thome (1997). 
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The third main factor influencing the nature and amount of channel change is the channel 
boundary. Whilst discharge and sediment supply are the variables driving the changes, the 
stability of the bed and bank determine the channel's ability to adjust (Thome, 1981; 
Andrews, 1982). Consequently there is a link between channel geometry (particularly 
channel width) and bank stt-ength (Dury, 1984; Abemethy and Rutherfurd, 1998). Bank 
stability is determined by several factors including the climate which controls weathering 
processes (Thome, 1982), vegetation (Thome, 1990), bank height, slope angle and 
sediment composition (Osterkamp and Hedmand, 1982; Ikeda et al., 1988) and human and 
animal disturbance (Madje et al., 1994). Vegetation is particularly important since root 
systems enhance cohesion (Beschta, 1998; Abemethy and Rutheriurd, 2000) by adding 
tensile strength. This concept is supported by Hey and Thome (1986) who suggested that 
grass lined channels can be up to 1.8 times wider than tree-lined channels. Heritage and 
Newson (1998) also report that bank stability is enhanced by good free cover. This resulted 
in an irregular bank profile in free lined sections of the River Wharfe with erosion 
occurring between trees. On the other hand, vegetation may also have a negative effect on 
bank stability. Osman and Thome (1988) argue that the increased loading effect of greater 
biomass, the effect of wind throw from frees on the bank and the development of lines of 
weakness from dead roots can all reduce bank stability leading to erosion and wider 
channels. 

2 . 4 D R I V E R S O F C H A N N E L C H A N G E : N A T U R A L A N D H U M A N 

These three intemal controls are all ultimately responsible for driving channel changes, but 

are themselves products of the drivers shown in Figure 2.2. The dominant catchment 

confrols are those which can significantly alter the discharge, the sediment supply and / or 

the channel boundary. They can be split into natural catchment controls and human 

disturbances. 

Natural controls typically operate over longer timescales (e.g. Macklin et al., 1998; 

Coulthard and Macklin, 2001) than human disturbances. Climate is the predominant control 

in upland U K rivers systems as it directly determines flow regime and indirectly controls 
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glaciations, vegetation land cover and human land use. Several studies have demonstrated 
the impact that changes in climate and land cover over the Holocene period (since around 
10,000 years ago) have had on river systems (e.g. Knox, 2000; Coulthard et ai, 2000; 
Macklin and Lew în, 2003). Studies have explored the links between rainfall (including the 
effect of climate change) and coarse sediment delivery and the effects of this link on 
geomorphology (e.g. Dunne, 1991; Rumsby and Macklin, 1994), coarse sediment yields 
(Coulthard, 1999; Coulthard et al, 2000; Coulthard and Macklin, 2001) and on shallow 
landsliding (Buma and Dehn, 1998; Brooks et al., 2004; Dhakal and Sidle, 2004). For 
example Coulthard et al. (1998, 2000) used cellular modelling approaches to explore the 
effects of different climate scenarios on sediment discharges in upland river systems. They 
note that over a 100 year simulation, a 33% increase in the magnitude of rainfall events 
increased sediment supply by 100%. Coulthard and Macklin (2001) perform similar model 
runs over much longer timescales of 9000 years. Results emphasise that Holocene river 
evolution in temperate catchments is driven primarily by climate change but is also 
influenced by land cover and sediment storage. In addition, numerous studies have 
addressed concems over the future effect of climate change associated with global 
warming, on the hydraulic regime and on flooding (e.g. Jones and Bradley, 1992; Amell 
and Reynard, 1996; Werritty and Foster, 1998; Knox, 1999; Booij, 2005; Cameron, 2006; 
Fowler and Kilsby, 2007). Amell and Reynard (1996) showed that under most climate 
change scenarios, the range of flows in UK rivers would increase with higher winter flows 
and lower summer flows. But the reduction in snowfall in the UK due to higher temps is 
likely to reduce the magnitude of the snovraielt flood event. Cameron (2006) demonstrated 
that under all UKCIP02 climate change scenarios derived from the HadCm3 GCM, flood 
magnimdes will increase. Fowler and Kilsby (2007) predict significant changes in monthly 
flow distributions with 40-80% reductions in summer flows and up to 20% increases in 
winter flows. The highest magnitude flows are projected to increase in magnitude by up to 
25% with these effects felt greatest in high elevation catchments. Whilst all these findings 
are similar, Cameron (2006) highlights the complexities associated with modelling the 
impact of climate change on flood frequency and magnitude which result in large 
uncertainties in predictions. Meanwhile, Macklin and Lewin (2003) stress that climate 
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change impacts on flooding may be enhanced dramatically by the combined influence of 
land use change such as deforestation. 

As such, the effects of human disturbances are generally considered to be greater than those 

from natural forcings. This was illustrated by Surian and Rinaldi (2003) who suggested that 

in Italy most rivers have experienced significant channel adjustments due to human 

disturbances. Land use change (e.g. Kondolf et al, 2002; Sullivan et al., 2004) has been 

identified as a particularly important driver of channel changes across the world (Surian 

and Rinaldi, 2003). Deforestation (e.g. Leeks, 1992; Gustard and Wesselink, 1993; 

Whitehead and Calder, 1993; Johnson and Thompson, 2002; Stott and Mount, 2004), 

mining (Lewin and Macklin, 1987; Rinaldi, 2003) and urbanisation are particularly 

problematic (Wolman and Schick, 1967). Urbanisation is thought to increase peak flows by 

a factor of two or more (Robinson, 1980) and significantly reduce sediment supply. 

Deforestation alters both the discharge and sediment regime. In Leek's (1992) study of 

deforestation in the UK, suspended and bedload transport were found to increase during 

deforestation but the impact of such changes were highly dependent on the connectivity of 

the sediment to the fluvial system; in this case to drainage ditches. Furthermore, the impact 

of the forestry process is strongly dependent on the forestry phase. During the ground 

preparation and planting phase, ditches are dug and sediment supply is often high. As the 

forest becomes more established, runoff and sediment yields reduce (Gustard and 

Wesselink, 1993; Whitehead and Calder, 1993; Johnson and Thompson, 2002). Human 

disturbances within the charmel are also important. These include dam construction (e.g. 

Gregory and Park, 1974; Allred and Schmidt, 1999; Batalla et al., 2004;), gravel mining 

(e.g. Knighton, 1989; Kondolf, 1994; Surian, 1999; Gob et al, 2005; Sear and Archer, 

1998; Wishart et al., 2008) and channel engineering (e.g. Gilvear and Bradley, 1997), all of 

which exhibit strong controls on river dynamics as they alter the discharge or the sediment 

regime and in many cases both. Gravel extraction in the UK was widespread during the 

1930s and the 1960s for commercial purposes. Only a few gravel extraction operations 

function today to reduce flood risk and for navigation. Wishart et al. (2008) note that a 

common morphological response to gravel extraction is the upstream progression of 

incision. 
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River engineering schemes, which directly aher the channel boundary, arguably have the 
greatest impact on the channel. River engineering is traditionally used to reduce flood risk 
and to prevent unwanted bank erosion. Typical channel management options that directly 
alter the channel's morphology and boundary include: (1) straightening a channel to 
increase the channel slope, reduce energy loss through meanders and enhance sediment 
throughput (Brookes, 1988; 1997); (2) widening a channel to increase its capacity to hold 
flow; (3) constructing bank protection to prevent problematic bank erosion. This is 
typically carried out when property and infrastructure are through to be at risk from bank 
erosion; and (4) channelisation through the construction of embankments which often 
consist of narrowing the channel and making the channel concrete. The aim here is to 
reduce flow resistance thereby increasing transport capacity. These schemes were 
traditionally undertaken with little consideration for the sediment transfer process or the 
fluvial geomorphology. James (1999) suggests that the traditional differences between river 
engineering fields and fluvial geomorphology reveal that both are valuable disciplines that 
have much to learn from each other. Thus, progress has been made in bringing the two 
disciplines together in river management operations (Thome and Osman, 1988; Hey, 1990; 
Thome et al, 1997b). This is reflected in the scientific literature by numerous studies that 
have explored the morphological impacts that engineering has on the river system. 

Numerous studies have explored the impacts of river management on the Rivers Tay and 

Tummel in Perthshire, Scotland (e.g. Gilvear et al, 1994; Winterbottom, 1992; Gilvear and 

Winterbottom, 1992, 1998; Bryant and Gilvear, 1999; Winterbottom and Gilvear, 2000; 

Winterbottom, 2000; Parsons and Gilvear, 2002). The natural planform of the channel was 

documented to be gravel-bed and wandering with channel migration and avulsions (where 

the channel reverts back to a previously abandoned channel) being characteristic (e.g. 

Gilvear and Winterbottom, 1992, 1998; Bryant and Gilvear, 1999; Winterbottom and 

Gilvear, 2000; Winterbottom, 2000). During the 18* and 19'̂  centuries, flood embankments 

and bank protection resulted in the channel being constrained. It became around 50% 

narrower and switched from multi thread to single channel (Gilvear and Winterbottom, 

1992). This management was predominantly for agricultural purposes. During the 19'*' 

century, large flood events breached the embankments (Gilvear et al., 1994) and today the 
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river has returned to a more natural state (Parsons and Gilvear, 2002) with lateral channel 
instability dominant (Winterbottom, 1992). 

The narrowing and incision noted on the Tay and Tummel, echoes findings fi-om other 

Scottish rivers and also from across Europe following channel regulation. For example, 

narrowing after regulation was recorded on the River Dee (McEwen, 1989) and the River 

Spey. Werritty and Ferguson (1980) agree that the opposite, an increase in width and 

braiding, occurs when a river is unconfined by bank protection or flood embankments. In 

Europe, Wyzga (1993) recorded between 1.5 and 3 m of narrowing by direct regulation 

works in Polish rivers. 4.5 m of incision was attributed to charmelisation on the Rhone 

between 1847 and 1952 (Petit et ai, 1996) and Marston et al. (1995) attributed channel 

entrenchment or incision on the Ain River, France, to channelisation, flow regulation and 

flood embankment construction. Surian (1999) and Surian and Rinaldi (2003) noted similar 

findings in Italian rivers. Surian (1999) found an abrupt reduction in channel width and 

braiding indices after flow regulation and embankment construction on the River Piave and 

Surian and Rinaldi (2003) compared 25 Italian rivers and recorded incision in the order of 

3-4 m. In some cases this was more than 10 m and occurred alongside channel narrowing of 

the active channel, in some cases by up to 50%. These changes were largely attributed to 

river management interventions but were also from sediment extraction and changes in land 

use. Finally, degradation was attributed to constraining channel width through engineering 

in Western European Rivers (Habersack and Smart, 1999). 

These findings demonstrate a range of responses to both natural and human induced 

channel change, many of which are problematic. This makes it difficult to predict the 

response of a given catchment to future changes in climate and land use and from river 

management schemes. To develop a better understanding of channel change, the 

mechanisms underlying change require consideration. 
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2 . 5 C H A N N E L A D J U S T M E N T M E C H A N I S M S 

Alluvial rivers possess numerous degrees of freedom in which they can adjust through the 

processes of erosion and deposition. Examples include: width, depth, velocity, sinuosity 

and grain size (Hey, 1997). As Hooke (1997) states, the nature of channel response depends 

on the inherent instability and the freedom of a particular channel reach to adjust (e.g. 

channels cannot widen i f the banks are concrete). Furthermore, channel change is both 

spatially and temporally variable. The location of the adjustment can extend significantly 

upsfream or downstream from where the perturbation occurred (Andrews, 1986) and the 

adjustment itself can lead to further changes. Furthermore, since both current and previous 

channel conditions can play a role in determining the nature of the change (Brewer and 

Lewin, 1998), similar changes in inputs can result in a variety of channel adjustments 

(Gaeuman et al., 2005). Table 2.1 shows the potential response of an alluvial channel to 

changes in both discharge and sediment supply. 

Table 2.1: Morphological responses to changes in discharge and sediment supply. Adapted 
from Werritty (1997) after Schumm (1997). 

Change 
Morphological response Sediment 

discharge 
Water 

discharge 
Morphological response 

Increase Stable Aggradation, channel Instability, wider and shallower channel 
Decrease Stable Incision, channel instability, narrower and deeper channel 
Stable Increase Incision, channel instability, wider and deeper channel 
Stable Decrease Aggradation, channel instability, narrower and shallower channel 
Increase Decrease Aggradation 
Increase Increase Processes increase in intensity 
Decrease Decrease Processes decrease in intensity 
Decrease Increase Incision, channel instability, deeper, wider ? channel 

Sediment transport underpins these adjustments. Upland environments are characterised by 

coarse sediment which is eroded from the hillslopes and then enters the fluvial network. 

Once in the chaimel, sediment will be entrained and transported when a condition is 

reached where die flow conditions (fluid forces of lift and drag) acting on a sediment grain 

exceed those that resist its motion (e.g. submerged weight). Thus, a wide range of factors 
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control the incipient motion of sediment. These include grain properties such as the 
composition and arrangement of the bed (e.g. Reid et al., 1997), grain hiding and protrusion 
effects and the grain pivoting angle (Li and Komar, 1986). In addition, flow properties such 
as shear stress and turbulence are also important. 

From the headwaters, the sediment gradually works its way through the system in a 

complex and dynamic way, typically decreasing in size towards the middle and lower 

reaches. This downstream fining occurs due to abrasion (the breaking down of particles 

through collision) and selective transport (where smaller particles travel further than larger 

particles). Previous research suggests that rates of abrasion are not comparable to rates of 

downstream fining and that fining is largely controlled by selective transport (e.g. Ferguson 

and Ashworth, 1991; Werritty, 1992; Hoey and Ferguson, 1994; Ferguson et al., 1998; 

Hoey and Bluck, 1999). This leaves a fiindamental question; where does the coarse 

sediment go? One hypothesis suggests that the sediment becomes incorporated into the 

floodplain through the processes of lateral bank erosion, bar deposition and channel 

migration (Pizzuto, 1994; Darby and Thome, 1996; Knighton, 1998). This process releases 

fine sediment back into the river system whilst the coarse sediment moves into long-term 

storage. These three processes are examined in more detail as follows. 

Bank erosion is a more complex process than bed erosion and operates over a range of 

spatial and temporal scales (Couper, 2004). It forms a central component of channel 

evolution and adjustment determining processes such as meander formation and lateral 

channel migration (Lawler et al., 1997). Bank erosion processes and rates are an 

extensively researched area with authors such as Thome (1982, 1998) providing excellent 

reviews of the governing processes and mechanisms. However, many uncertainties, such as 

"process dominance", remain (Lawler et al., 1997; Lawler, 2005), providing plenty of 

opportunities for fiirther research. 

The main bank erosion processes and mechanisms are typically grouped for analysis and 

discussion (e.g. Hooke, 1995) into: (1) bank weakening and weathering; (2) fluvial erosion 

/ entrainment; and (3) mass failure. Several studies have also identified other bank erosion 
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mechanisms. For example, Hooke (1995) mentions the power of waves (Nanson et al., 
1994; Dorava, 2001) and bank trampling by either cattle or people (e.g. Trimble, 1994; 
Madje et al., 1994). These different processes typically operate together (e.g. Hooke, 1979) 
but at different levels of magnitude and frequency (Couper and Maddock, 2001) and over 
varying seasonal and sub-seasonal timescales. Hence, establishing the dominant mechanism 
acting on a particular bank at a particular time can be very difficult. 

The first group of processes are often imderestimated and viewed as preparatory processes. 

However Couper and Maddock (2001) found that weakening and weathering processes, are 

also important erosion processes. Thome (1982) suggests that soil moisture conditions 

which are dependent on both climatic conditions and the bank's geotechnical properties 

(e.g. particle size, gradation, cohesion, stratification and strength due to vegetation) are the 

dominant controls on weakening and weathering processes. These processes can be split 

into those which reduce bank strength and those which loosen and detach particles and 

aggregates. In so doing they enhance the likelihood of mass failure and supply fine 

sediment to the bank face for removal by fluvial erosion. 

The reduction in strength of the bank can result from: (1) a loss of matrix suction (e.g. 

Rinaldi and Casagli, 1999; Simon et al., 2000) which is linked to pore-water pressure; the 

pressure of water filling the voids between solid particles (Casagli et al, 1999); (2) 

saturation which reduces cohesion (Rinaldi and Casagli, 1999) and can increase soil bulk 

weight (Simon et al., 2000); (3) cycles of wetting and drying which cause the bank to swell, 

shrink and desiccation cracks to form (Osman and Thome, 1988); and (4) freeze-thaw 

cycles (Lawler, 1993a). The loosening and detachment of particles or aggregates occur 

through seepage and piping effects (Hagerty, 1991) where the movement of water within 

the banks entrains and removes the finer grains supplying them to the bank face for 

removal during the next high flow event (Thome, 1998). 

The processes of fluvial erosion and entrainment describe the direct removal of individual 

grains and aggregates from the bank. Hence the nature of the hydraulic regime and the 

geotechnical properties of the bank determine erosion capacity (Simon et al., 2000), whilst 
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sediment availability on the bank face, determines fluvial erosion rates. This process is 
more common on non-cohesive banks (Thome, 1982) since the existence of 
electrochemical bonds between particles in cohesive banks increases resistance to erosion 
(Simon and Collinson, 2001). Fluvial entrainment predominantly occurs on the rising limb 
of a flood with the removal of the loose sediment and the initiation of new sources of 
sediment. 

Mass failures are typically associated with cohesive and composite banks (Hooke, 1995) 

with the nature of the failure again determined by bank properties and hydraulic forces 

(Thome, 1982, 1998). Failures occur when the gravitational force acting on a bank exceeds 

the shear strength of the bank material. This can be initiated when either erosion of the 

bank toe by fluvial entrainment oversteepens the angle of the slope beyond a critical 

threshold (Simon et al., 2000), when a weaker sediment layer underlying a stronger layer is 

selectively eroded or when the bank's shear strength is weakened. Figure 2.4 shows the 

four main bank failure mechanisms which include planar failure (Lohnes and Handy, 1968; 

Osman and Thome, 1988), rotational failure which is typical of highly cohesive banks 

Thome, 1982), cantilever failure which is characteristic of failures on composite banks 

(Thome and Tovey, 1981) and piping/sapping failure (Hagerty, 1991). Unlike fluvial 

erosion, failures are more common on the falling limb of a flood due to the supporting 

influence high stage has on the bank. Once the flood recedes, the support is removed fi-om a 

weakened bank and a collapse is more likely. 
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Figure 2.4: Bank failure mechanisms: (A) planar failure, (B) rotational failure, (C) 
cantilever failure and (D) piping/ sapping failure. Darby (1998b). 

(A) 

STEEP BANK 
PROFILE 

B A N K E R O S I O N B Y P I P I N G / S A P P I N G 
WITH S U B S E Q U E N T C O L L A P S E 

(Dl) 

P1.*NA« 
FAILURE SURFACE 

OUTFLOW OF 
SAND AND WATER 

FlfJE-GRAINED 
SOIL LATER 
SANDY PERVIOUS 
SOIL LATER 

FINE-GRAINED 
SOIL LA VERS 

(B) 
SEEPAGE OUTFLOW INITIATES SOIL LOSS 

SHALLOW BANK 
PROFILE 

ARCUATE OR 
ROTATIONAL 

FAILURE SURFACE 

(DM) 
OUTFLOVW 

CONTINUES 

FINE-GRAINED 
SOIL LAYER 
SANDY PERVIOUS 
SOIL LAYER 

FtNE-CRAINED 
SOIL LAYERS 

UNDERMINED UPPER LAYER FALLS. BLOCKS DETACHED 

(C) 
OVERHANG 

GENERATED ON 
UPPER BANK -

PREFERENTIAL 
RETREAT OF -

ERODIBLE 
BASAL LAYER 

INCIPIENT 
FAILURE PLANE (Diii) 

tar: 

FINE-GRAINED 
COHESIVE 

UPPER BANK 

COARSE-GRAINED 
NON-COHESIVE 
LOWER BANK 

OUTFLOW 
CONTINUES 

1 ^ i FIME-GHAINEO 
t SOIL LAYER 
- SANDY PERVIOUS 
^ SOIL LAYER 

FINE-GRAINED 
SOIL LAYERS 

FAILED BLOCKS TOPPLE OR SLIDE 

Despite being studied to a lesser extent than bank erosion, processes of deposition can be 

equally as diverse (Darby, 1998b). Following entrairmient, the prevailing flow 

characteristics determine the transport fate of the particle in motion. When the flow or bed-

level turbulence drops below the settling velocity of the particle, deposition will begin 

(Hooke, 1995). This deposition is selective with the coarsest grains being deposited before 

the finer grains. Hence sediment deposits are typically sorted vertically, laterally and 

longitudinally (e.g. Blom and Parker, 2004). 

Sediment deposition occurs in several forms (e.g. Thome, 1998) and where substantial, 

sedimentation zones develop (Xu, 1997). First, sediment can be deposited within the 

channel either directiy onto the sloping banks, as alternate bars which are attached to the 

channel banks and typically found in straight chaimels (Hooke, 1995), or as point bars on 

the apex of meander bends which develop slowly through vertical accretion (e.g. Hooke, 
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1975; Dietrich and Smith, 1983). Lateral deposition can also occur direcdy from mass 
failures. These deposits are often termed berms or benches (Thome, 1998). Secondly, 
deposition can occur within the cenfre of the channel as mid-channel, longitudinal or 
fransverse bars. Church and Jones (1982) explain that these grow by the upsfream 
accimiulation of coarse sediments and the downsfream accumulation of the finer material. 
Transverse bars are relatively uncommon except at channel confluences (Church and Jones, 
1982). Thirdly, deposition can occur on the floodplain during overbank flows. These 
deposits are typically fine grains due to the lower transport capacity on the floodplain. 
Finally, deposition can occur as aggradation which is uniform deposition throughout a 
reach. Gaeuman et al. (2005) explains that aggradation typically occurs when the sediment 
supply increases or the discharge decreases for a sustained period of time. 

As has been shown, both erosion and deposition are complex processes and can be initiated 

or enhanced following a disturbance in the variables previously discussed. Furthermore, 

these two processes are closely coupled together with the occurrence of one usually echoed 

by the onset of the other, which in turn determines spatial patterns of future erosion and 

deposition. This relationship can be described using the term "connectivity" (Hooke, 2003). 

For example, Gaeuman et al. (2005) concluded that aggradation in the gravel bed reaches 

of the lower Duchesne River in Colorado only occurred following local bank-erosion. 

McDonald et al. (2004) also explain that bar deposition causes flow divergence and the 

formation of a secondary circulation which subsequently alters the flow distribution 

enhancing bank erosion. This explains why point bars are found on the inside of meander 

bends whilst erosion occurs on the outside of the bed and why the deposition of a bar often 

results in channel widening through erosion. Similarly, the survival of a bench or berm 

following bank collapse, depends on ability of the charmel to erode the deposited material 

(Thome, 1982). This concept, which is termed basal end point confrol (Carson and Kirkby, 

1972; Thome, 1982; Darby and Thome, 1992) shows how the deposit from a collapse can 

increase bank stability (as the slope angle is reduced) and reduce the likelihood of ftirther 

bank collapse. 
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Channel migration occurs through the combined processes of deposition and erosion and 
typically occurs at meander bends. It may occur in straighter reaches i f a secondary 
circulation develops. Deposition occurs on one side of the channel whilst the opposite site 
erodes. Secondary circulations form in the lateral, across channel direction and initiate from 
the effects of the channel geometry and planform on the flow. Concurrentiy, the circulation 
alters the channel morphology fiirther enhancing the secondary circulation. In straight 
channels, secondary circulations are typically weak and may develop in the presence of 
lateral channel bars. This may indeed be the initial stages of meander development. 
Secondary circulation is more commonly considered at confluences (e.g. Bradbrook et al., 
1998; Lane et al.. 2000) and at bends (Dietrich and Smith, 1983; Ferguson et al., 2003) 
where curvature is high. Curvature induces not only a secondary circulation but also large 
cross-sectional variations in the boundary shear stress and velocity fields (Dietrich, 1987). 
Around a bend there is a downstream increase in shear stress along the outside of the bank 
and a decrease along the inside bank (e.g. Hooke, 1975; Dietrich et al., 1979; Nouh and 
Townsend, 1979; Bridge and Jarvis, 1982). Faster near-surface flow is forced to the outer 
bank because of centrifiigal acceleration. These leads to super-elevation of flow by the bank 
face. A slower moving near-bed flow scours the bend leading to a deeper pool at the outer 
bank whilst a point bar develops through deposition near the inside (Hooke, 1975; Dietrich 
and Smith, 1983). Figure 2.5 shows this process. The lateral deviation of flow from the 
primary flow direction is exacerbated in coarse grained channels due to inertia effects. This 
means that the sediment transport direction responds more slowly to changes in primary 
flow direction, resulting in the typical channel geometry around a bend. 

This channel geometry consists of three zones (Markham and Thome, 1992): (1) the inner 

bank where shoaling over the point bar induces a net outward flow, forcing the core of 

maximum velocity more rapidly towards the outer bank. An increase in stage will reduce 

the shoaling effect and allow and inward component of near-bed flow over the bar top 

(Dietrich and Smith, 1983; Dietrich, 1987). (2) the mid-channel zone where the majority of 

flow passes and the classic helicoidal motion is well established; and (3) the outer region 

where a cell of opposite circulation develops and bank erosion prevails. The strength of the 

secondary circulation will be dependent on stage, the tightness of the bend and the 
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Steepness of the outer bank. Thus the flow pattern that develops around a bend is spatially 
and temporally variable. In addition, at high discharges the secondary circulation can break 
down. The primary downstream currents dominate as flow follows a straighter path 
(Bathurste/a/.. 1979). 

With erosion occurring on the outside of a meander bend, the deposited bar on the inside of 

the bend becomes gradually wider as it follows the eroding bank in shifting laterally. Thus, 

as the bar grows, the far inner parts of the bar are subjected to less frequent inundation. 

Vegetation can now establish and gradually the inner part of the charmel bar becomes 

incorporated into the floodplain as vegetation frilly establishes. Thus the coarse sediment 

deposited on the bar becomes incorporated into the floodplain. Figure 2.5c shows this 

migration process. Meander migration involves several types of movement as noted by 

Hooke (1984) from a study of over 100 bends on the River Dane in Cheshire. Translation 

was the most common migration type accounting for 25% of bends. Translation describes a 

bend that shifts in position without changing its basic shape. This is typically movement in 

the downstream direction and is characteristic of low curvature bends. When curvature is 

higher, extension is more typical accounting for 15% of bends on the River Dane. When a 

bend migrates through extension it predominantly moves in the lateral direction. Other less 

common migration movements include rotation where a bend changes its orientation 

through its axis and lobing and compound growth. This later movement term describes 

bends which grow an additional lobe so that the curve has an additional "bumb". The rate 

of channel migration in unconfmed channels is largely controlled by bend geometry and 

channel curvature (Hickin and Nanson, 1975; 1984). 
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Figure 2.5: Secondary circulation across a meander bend and channel migration. (A) is after 
Dietrich (1987). 
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2 . 6 I M P L I C A T I O N S O F A D J U S T M E N T S 

Natural or human induced channel adjustments can have implications for flood risk and for 

the availability of habitats. Furthermore they can feedback to create further adjustments 

which may be unwanted; particularly bank erosion. Much work thus far has concentrated 

on the impacts of increased flow from climate change on discharge and much less emphasis 

has been placed on the effects of river bed level changes upon flood risk, and their 

sensitivity to climate and land use changes impacts upon sediment delivery (Stover and 

Montgomery, 2001; Lane et al., 2007). Flood risk will increase i f the channel's ability to 

convey flow is reduced. This may occur through a decrease in channel capacity through a 

reduction in cross-sectional area, or a decrease in flow conveyance through an increase in 

bed roughness. The sediment regime is central to this with enhanced sediment delivery, 

which reduces channel capacity, associated with an increase in flood risk (e.g. James, 1999; 

Stover and Montgomery, 2001; Korup et al., 2004; Pinter and Heine, 2005; Lane et al., 

2007). For example, increased flood risk in the River Wharfe was attributed to enhanced 

gravel accumulation (M*^Donald et al., 2004), aggradation raised concerns of flood risk on 

the Pine Creek, Idhao such that a management plan now aims to reduce sedimentation 
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downstream (Kondolf et al., 2002) and Stover and Montgomery (2001) report increases in 
flooding due to sedimentation in the Skokomish River, Washington. 

When engineering is constructed without consideration of the sediment transport system, 

further problems arise. For example, engineering work on the River Tame in Birmingham 

resulted in fiirther problems due to sedimentation. This river was artificially widened in an 

attempt to convey peak flood discharges within the banks. However, the widening reduced 

the sediment discharge capacity through reductions in sfream power and velocity and this 

promoted aggradation in the channel. The flood capacity of the channel was reduced and 

the original flood problem returned. Other engineering works can enhance flood risk such 

as bank protection schemes. These prevent channel migration through lateral bank erosion 

but do not inhibit bar deposition. The result is that the bar increasingly grows reducing the 

channel capacity. Furthermore as Brookes (1988, 1997) explains, channel sfraightening 

reduces channel length which steepens the channel and increases the channel's velocity 

whilst also reducing energy loss in meanders. This increases flow conveyance and enhances 

sediment transport leading to scour. Scour increases the channel capacity. The combined 

effect is a reduction in flood risk for the engineered reach. However, the problem may 

simply be shifted upstream or downsfream of the un-engineered reach. In the upstream 

reach, the elevated sediment capacity may be higher than the sediment supply leading to 

erosion and a destabilisation of the banks. In the downstream reach the reduction in channel 

gradient can cause sediment deposition reducing the channel capacity or leading to channel 

widening. Hence the flood risk may be enhanced in the downstream reach. 

The impacts of channel adjustment on habitat availability and biodiversity are also of great 

concem. Natural charmels are noted for their spatial heterogeneity and dramatic, rapid 

fluctuations in habitats (Power, 2001). Spatial and temporal variations in discharge, 

sediment supply and channel morphology can help to enhance the habitat diversity and thus 

increase species richness. For example, sustained bank erosion and lateral channel shift can 

maintain high biodiversity on floodplains and continually create new opportunities for 

pioneering species within the channel (Salo et al., 1986). However, some channel 

adjustments, particularly those which upset the channel dynamics, can have negative effects 

on the channel ecosystem. In recent decades there has been an increasing interest in aquatic 
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and riparian habitats due to a generally perceived decline in biodiversity following 
morphological changes (Newbold et al., 1983; Reiser, 1998; Newson and Newson, 2000) 
and human induced channel adjustments (Richards, 2001). Many studies have examined the 
link between sediment delivery and habitat availability (e.g. Kondolf and Wolman, 1993; 
Slaymaker, 2000; Pitlick and Wilcock, 2001) whilst others have concentrated on linking 
hydrology to ecology (e.g. Gumell et al., 2000; Bendix and Hupp, 2000). Thus, it is noted 
that channel changes that remove habitats and those which create inhospitable conditions 
can alter the diversity of the channel. This is particularly severe when adjustments are 
induced by human activities (Richards, 2001) such as flow regulation and channelisation 
(e.g. Bravard et al., 1986; Large et al., 1994). Examples include, removing fish spawning 
gravels through gravel extraction or channel incision, enhanced flow velocities in an 
engineered reach and enhanced sediment transport which severely alters life by crushing, 
burying and exporting organisms (Power, 2001). The impacts of channel adjustment can be 
important. As such, it is essential that the morphological adjustment process is more fully 
imderstood to protect habitats and to improve management of flood risk and bank erosion. 
Field-observations can provide valuable information on past changes. However they can 
only be used to suggest future impacts. 

2 . 7 C H A P T E R S U M M A R Y 

Objective la, aimed to use literature review to develop an understanding of the channel 

change in upland catchments. Several key findings include: (1) channel change is a 

complex process with both natural and human catchment scale factors altering the three 

main driving and resisting forces in the channel; (2) these main factors were identified as 

the discharge, the sediment supply and the nature of the channel boundary. (3) With all 

three linked together (e.g. increased discharge increasing sediment delivery downstream) 

and a range of catchment scale factors acting simultaneously (e.g. climate and land-use 

change) the morphological response of a channel is difficult to predict; and (4) channel 

changes may have an adverse effect on flood risk, bank erosion and habitats. Thus it is 

essential that a combination of field-based monitoring and modelling are used to study 

upland channels to identify past and predict fijture channel change. 



C H A P T E R T H R E E : 

INTRODUCTION TO T H E S T U D Y SITE 

3 .1 I N T R O D U C T I O N 

The second objective in this thesis was to select a suitable field site for monitoring and 

modelling. The Upper Wharfe catchment in the Yorkshire Dales was chosen as a study site 

for this research for three reasons. First, the catchment and channel are representative of 

temperate upland catchments with gravel-bed single thread channels. It is important that 

whilst the Upper Wharfe was used to develop, to test and to run the research model, the 

outcomes from this research are not intended to be merely a case study of the Wharfe 

system. The model is to be used to improve our understanding of upland river systems and 

their responses to changes in the variables controlling them. Additionally, it is hoped that in 

the fixture the model developed at the site can be transferred to rivers with similar 

characteristics and may be used for applied purposes to aid with management decision

making. It is therefore important that the study site is representative. Second, the Upper 

Wharfe catchment has fiilfilled the role of a "study site" for a variety of fluvial and 

catchment based projects over the past two-decades. The product of these various projects 

and studies was that at the start of this project there was a wealth of knowledge about 

processes operating in the Upper Wharfe catchment and substantial supporting evidence 

from various data sources. As such, the Wharfe provides a valuable site for the research 

aims: to explore and model sediment transfer and channel change. At the same time the 

additional evidence gathered through data collection in this project allows some of the gaps 

in our knowledge of system processes to be addressed. Third, the channel has a history of 

enhanced coarse sediment delivery which has created a variety of problems in the past and 

has consequently resulted in several catchment and river management schemes; the success 

rate of which is mixed. As such, these case studies provide a valuable insight into the 

feedback between human intervention and channel response. These problems and 

associated management decisions are not uncommon in upland rivers in the UK (e.g. Stott 
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and Mount, 2004; Gilvear, 1999; Gilvear, 2004). Thus, findings from this work may echo 
similar issues found in comparable river systems. 

This chapter provides a detailed introduction to the Upper Wharfe study site. It provides a 

comprehensive overview of the nature of the catchment and channel, underlining why the 

Wharfe provides an excellent study site for this research. This is achieved through objective 

Ic; to use literature review to provide knowledge about the chosen study site. Thus the 

chapter uses evidence from previous studies to provide a general catchment and channel 

description (Section 3.2), discuss the history of the catchment (Section 3.3) and to outline 

the river management strategies which have contributed to historical and contemporary 

channel changes (Section 3.4). 

3 . 2 C A T C H M E N T A N D C H A N N E L D E S C R I P T I O N 

The Upper River Wharfe is located in Northern England in the Yorkshire Dales National 

Park (Figure 3.1). The catchment upstream of Starbotton has a drainage area of72km'.The 

catchment elevation ranges fi"om 701 m above Ordnance Datum (O.D.) on the catchment 

divide close to Buckden Pike to 211 m in the main chaimel at Starbotton. The catchment 

receives a high volume of rainfall; in the region of 1750 - 2000 mm a year, associated with 

prevailing westerly air streams. The catchment has a low annual evapo-transpiration rate 

(Heritage and Newson, 1997). Merrett and Macklin (1999) suggest that the region is 

particularly sensitive to localised convective summer thunderstorms and winter cyclones. 

These events tend to produce high-intensity, dark 'n' stormy, rainfall events. 

The catchment geology is a combination of Carboniferous Age Great Scar Limestone, 

Yoredale. Series and Millstone Grit (White, 2002). Like many of the valleys in the 

Yorkshire Dales, distinct horizontal terraces have formed on the steep valley sides through 

erosion and glacial processes. These terraces, alongside other features of the catchment 

discussed as follows, can be seen in the catchment photograph: Figure 3.2. This glacial 

activity has resulted in very thin soils which overlie the bedrock. This has led to ready 

sediment generation from the hillslopes. hi the headwaters, the limestone is exposed in the 
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channel. Further evidence of the limestone can be found in the form of characteristic 

limestone pavements and sink holes on the hilltops. The land type and land-use in the 

catchment consists of shallow blanket peat on the hilltops, rough grass and moorland on the 

middle slopes and pasture land on the lower floodplain. These pastures are used for sheep 

and cattle grazing or managed as hay meadows. The tributary catchment of Greenfields is 

predominantly forested with commercial conifer woodland. Some small woodland areas 

can also be found in the lower parts of the valley particularly on the westem slopes. 

Figure 3.1: Location of the study catchment: The Upper Wharfe, Yorkshire Dales. 
© Ordnance Survey 
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Figure 3.2: View of the Upper Wharfe valley, looking south from point A in Figure 3.1. 

The study reach comprises a 5.6 km section of the main river extending from Hubberholme 

down to immediately upstream of the Cam Gill Beck confluence by Starbotton. Figure 3.3 

shows the channel planform alongside the position of several notable locations. These 

include the 60 cross-sections, with cross-section numbers included for several of these. Full 

details of the cross-sections are given in Section 4.3 but these locations are referred to 

throughout so it is important to introduce them at this stage. 

The headwaters of the Wharfe rise in two tributary catchments, Greenfields and 

Oughtershaw (Figure 3.1), which join a few kilometers upstream of Hubberholme. The 

channel in these uppermost reaches is relatively steep (c. 0.0120) and the valley is narrow 

and predominantiy bedrock. From just upstream of Hubberholme the channel significantly 

reduces in gradient (c. 0.0040) as the river flows into a classic U-shaped valley with a wide 

floodplain, up to 500 m wide in places (Figure 3.2). Here the channel to hillslope coupling 
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is considered to be low. From Hubberhome, the channel becomes depositional with large 
gravel bars found all along the river, predominantly on the inside of meander bends (e.g. 
Figure 3.3 at the bend by the Gravel trap, the second Redmire bend, Heber bend and cross-
section locations 420 and 510). These individual meanders are typically linked by relatively 
straight sections where a well defined pool-riffle system can be found. Some of the pool 
sections are particularly deep and flow is sluggish at low to moderate flows. Such reaches 
are predominantly found in the lower sections of the study reach. The upper part of the 
study reach, (upstream of cross-section 190) is lined with trees. Bank erosion is evident in 
the lower study reach where trees along the banks are sparse. The channel ranges in width 
fi-om 12 m in the tree and wall lined reaches, to 34 m in sections were bank erosion is 
particularly severe, such as at Heber bend. The channel has an average maximum depth of 
2 m. From Starbotton, the river flows predominantly south-easterly through Grassington 
and flkley before becoming an important tributary of the River Ouse which drains into the 
Humber Estuary. 
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Figure 3.3: Map of study reach 
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3 . 3 C A T C H M E N T H I S T O R Y 

Previous projects on the Upper Wharfe catchment, detailed in Table 3.1, provide much 

information about the history of the Upper Wharfe catchment and the nature of the channel. 

Some of these projects have used the river as an example of an upland gravel-bed river to 

explore specific research questions such as Powell and Ashworth's (1995) work looking at 

the spatial variability of bedload transport across the width of the channel. Others have used 

the Wharfe as an example of a British temperate upland catchment. This includes work by 

Coulthard et al. (1997, 1998, 2000) to investigate climate change effects on catchment 

processes using cellular modelling approaches. Much of the more recent work centered on 

the Wharfe catchment has the purpose of exploring management issues and options specific 

to the Wharfe but applicable to other similar catchments. One important project was the 

"Upper Wharfedale Best Practice Project" (UWBPP hereafter). This was a large partnership 

project between the Environment Agency, the National Trust and the Yorkshire Dales 

National Park Authority which began in 1997. The project used the Wharfe as an important 

pilot study site to explore many aspects of best practice for the sustainable management of 

the land and the water (Chalk, 1997; EA, 2000; Haycock, 2000; EA, 2001a, 2001b, 2001c). 

Part of this project was to address the river engineering which was implemented in the 

Wharfe in the 1980s with the aim to reduce bank erosion, to control sediment transfer and 

to alleviate flooding. Cross-sectional surveys of the bed morphology were commissioned 

for this work but no attempt was made to make the measurement of the channel 

morphology, and its change through time, an integral part of decisions regarding the 

management of the river. In 2001, new projects on the Wharfe catchment began to 

investigate coarse sediment delivery and sediment transfer (Reid, 2004; Reid et al., 2007a; 

2007b), the impact of this on flood inundation using modelling techniques (Tayefi, 2005; 

Tayefi et al., 2007; Lane et al., 2007), and approaches to catchment-scale coarse sediment 

management (Lane et al., 2008). These projects were based on extensive field monitoring 

schemes with much of this data available for use in this project. 



C H A P T E R 3 : T H E U P P E R W H A R F E S T U D Y S I T E 4 1 

Table 3.1: Previous projects carried out on the Upper Wharfe. 

Author Y e a r Project 
Yorkshire Water 
Authority 

1983 Buckden scheme (report) 

Stewart 1984 Land drainage proposals and impacts (report) 
Hey and 
Winterbottom 

1990 River engineering (journal article) 

Powell 1992 Bedload transport processes (PhD) 
Powell and Ashworth 1995 Bedload transport processes (journal article) 
Heritage and Newson 1997 Geomorphological audit (report) 
Chalk 1997 U W B P P (report) 
Heritage and Newson 1998 Assessment of gravel trap (report) 
RKL-Arup 1999 Assessment of unstable reaches for the U W B P P (report) 
Hill and Hack 1999 River corridor survey report for the U W B P P (report) 
Coulthard 1999 Catchment response to Holocene environmental change 

(PhD) 
Lane 2000 Discussion of gravel bed transport for U W B P P (report) 
Haycock 2000 Buckden gravel trap, management options (report) 
Howard ef a/. 2000 Holocene river development and environmental change 

(journal article) 
Environment Agency 2000 

2001a,b,c 
U W B P P (reports) 

Coulthard and 
Macklin 

2001 
2003 

Sensitivity of catchments to land and climate change, 
catchment modelling Qouma! articles) 

McDonald et a/. 2004 Upland river restoration (journal article) 
Reid 2004 Coarse sediment delivery and transfer (PhD) 
Tayefi 2005 Flood inundation modelling (PhD) 
Reid et al. 2007a,b Coarse sediment transfer and modelling (journal articles) 
Lane et al. 2007 Interactions between sediment delivery and flood risk 

Goumal article) 
Tayefi ef al. 2007 Flood inundation modelling - 1D and 2D approaches 

Goumal article) 
Lane et al. 2008 Coarse sediment delivery (journal article) 

The catchment, including the upland hills, the valley sides and floor and the channel itself, 

have changed greatly over time. Determining how they have changed and what has driven 

these changes provides a greater understanding of processes operating today. In particular it 

is interesting to relate landscape changes to alterations in the flow and sediment regime of 

the river. Piecing together the changes and factors driving them is difficult with many of the 

findings based on sedimentary evidence and from modelling approaches. The following 

discussion outlines some of the main studies and findings that provide valuable information 

about historical catchment change in the Wharfe catchment. 
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Since the retreat of the Late Devensian ice sheets from the catchment, it was thought that 

early changes to the sediment regime of the catchment were caused by disturbances in land 

use predominantly through deforestation and early agricultural activity (Ballantyne, 1991). 

Indeed, Coulthard and Macklin (2003) suggest that tree clearance over the last 2000 years 

has led to significant rises in the sediment discharge from the hillslopes. However, 

Coulthard and Macklin (2003) used a modelling approach to suggest that peaks in high 

sediment discharge (10 - 100 years) correlate with wetter climates. This implies that the 

climate is one of the main drivers of catchment sediment yields over the long term. These 

changes in hydrology and sediment are thought to have affected the river channel in several 

ways. The floodplain upstream of Starbotton is thought to have risen by 1.5 m as a 

combination of geomorphic processes and glacial rebound (Howard et ai, 2000). This rise 

in floodplain land level led to both in-channel sedimentation (Howard et al, 2000) and 

channel incision (Ballantyne, 1991). These channel changes were initially rapid and then 

slowed as temperatures reached modem day levels around 1920 (Jones and Bradley, 1992). 

In addition, channel migration and avulsion during this time was common, with 

documented evidence found in records of sedimentation for the valley (Howard et ai, 

2000). Several palaeochannels are also visible in aerial photographs. In addition to these 

longer term processes, a sudden catastrophic flood event in Cam Gill Beck (which joins the 

Wharfe at Starbotton) occurred in 1686 (Coulthard et al, 1998). This single event 

generated a decadal amount of sediment (Coulthard et al., 1998) and formed the Starbotton 

alluvial fan which extends across the width of the valley. The river has cut into this deposit 

yet the fan is still visible today and it still acts as a local rise in base level. The channel's 

response to this was to aggrade upstream; something that continues at present. 

In a study by Merrett and Macklin (1999), hydrological changes, specifically flood history, 

since 1600, have been documented from lichenometry and flood deposits. They show that 

from 1600 to 1750 the magnitude and competence of flood discharges was high. This 

coincides with the cool and wet climate during the Little Ice Age (Jones and Bradley, 

1992). Despite relatively few flood events during this period, the coupling of sediment 

supply between the hillslopes and the channel during this period was thought to be high. 
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Following this, until 1800, the number and magnitude of flood events significantiy 
increased with high levels of overland flow. However, despite good hillslope-channel 
coupling, sediment yields began to decline, possibly due to the sources becoming 
exhausted. Since then flood frequency and magnitude began to decline reflecting the 
stabilisation of atmospheric conditions. Sediment supply from the hillslopes decreased and 
coupling reduced. Incision added to the isolation of the channel from the hillslopes. The 
incision noted by Merrett and Macklin (1999) echos the incision noted in rivers across 
Europe (e.g. Petit et ai, 1996; Marston et al, 1995; Surian and Rinaldi, 2003). Coupling 
between the mam channel and the hillslopes is hmited due to the wide valley floor but 
coupling remains high in many of the catchment tributaries. 

More recently, changes in sediment discharge and flow are thought to have resulted from 

land-use changes including upland land drainage and afforestation (Longfield and Macklin, 

1999). Many have documented that the Upper Wharfe has experienced large volumes of 

coarse sediment transport and generation (e.g. Hey and Winterbottom, 1990; Powell, 1992; 

NRA 1995b; Heritage and Newson, 1997, 1998; Coultiiard, 1999; Haycock, 2000; Lane, 

2000; Lane et al, 2007; Reid et al., 2007). Gripping is a process where shallow surface 

drains about 1 m wide and deep, hundreds of meters long, with a high density (30 m 

between each) are dug into blanket peat bogs to convert them into rough grass and heather 

moorland. Gripping occurred all over the Yorkshire Dales from the 1940s through to the 

1960s, during which time 17 km^ of the Upper Wharfe catchment were gripped (Figure 

3.1). These drains had the effect of extending the drainage network and may result in 

steeper hydrographs, a decreased time to peak and shortened recession limbs for 

intermediate flows (Stewart and Lance, 1983; Robinson, 1985; 1990; EA, 2001b; Lane, 

2001a). It has also been suggested that the grips also alter the sediment generation and 

transport from the hillslopes to the main channel (e.g. Hey and Winterbottom, 1990). 

Today, many of these grips are still evident on the hillslopes although most have been left 

to deteriorate. Others have been blocked including 42 km of grips in the Oughtershaw 

headwater catchment that was blocked using straw bales and peat blocks in 1999 and 2000 

(EA, 2001b, 2001c). 
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During the 1960s there was a significant expansion of plantation forestry in the Greenfields 
tributary catchment (Hey and Winterbottom, 1990). This forest is now reaching maturity 
and it will be felled in the near future to prevent damage from wind. Like grips, forestry is 
believed to alter both the flow and the sediment regime. Mature forested catchments 
produce reduced water yields compared with unforested catchments (e.g. Gustard and 
Wesselink, 1993; Whitehead and Calder, 1993; Johnson and Thompson, 2002) whilst 
sediment output is also thought to be reduced. The latter concept is supported by findings 
made by Reid et al. (2007a) who compared the sediment outputs fi-om the forested 
Greenfields tributary and the unforested Oughtershaw tributary. These catchments are 
similar in size, topography and rainfall. The forested catchment produced significantiy less 
sediment than the unforested catchment. This work supports earlier findings by Stott 
(1997), Montgomery et al. (2000), Dhakal and Sidle (2003), Vanacker et al. (2003) and 
Stott and Mount (2004). 

3 . 4 C H A N N E L M A N A G E M E N T 

In addition to these land use changes, recent changes to the channel have resulted fi-om 

direct human interferences. Active channel management began as early as the 14'*̂  and 15"̂  

centuries, after the expansion of monasteries in the area (McDonald et al, 2004). The banks 

of the Wharfe were walled with local material to reduce bank erosion, gravel was removed 

for building work and trees were managed. Much of this walling is still present (Figure 

3.4a) and has undergone maintenance work due to its historical status. Further gravel 

removal by local landowners has been documented during the 19* and early 20'̂  centuries 

to reduce the river aggradation and manage flood risk (McDonald et al., 2004). In more 

recent decades, unregulated gravel removal fi-om the channel by landowners is thought to 

have occurred. Such practices are likely to have removed volumes of coarse gravel fi-om the 

channel and widely occurred across the UK. For example, a study on the River Fillan, 

Central Scotiand, estimated that 1000 tonnes of gravel were removed fi-om one section of 

the river by local farmers over a tiiree year period, to provide the foundations for buildings 

and roads (Waterhouse, 2003). Under the Water Framework Directive, gravel extraction is 

now largely prevented due to the negative impacts it has on the removal of habitats for 
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spawning fish. Furthermore, the Wharfe is now classified as an SAC (Special Area of 
Conservation), an SSSI (Site of Special Scientific Interest) and part of the Yorkshire Dales 
Narional Park. Thus higher levels of permission are required for gravel extraction. Yet this 
process of gravel removal acted to manage the high levels of sediment delivered to upland 
channels like the Wharfe, preventing sediment accumulation in many places. 

Between 1961 and 1981, high sediment delivery was reported to have caused a channel bed 

rise of between 0.43 m and 1.4 m (Stewart, 1984) and was blamed for the high flood 

frequency levels of between 20 and 40 times a year (Yorkshire Water Authority, 1983; Hey 

and Winterbottom, 1990). This is attributed to changes in climate and upland land use, 

specifically forestry practices and moorland gripping. These observations were used to 

inform the design and implementation of engineering works during the 1980s. Subsequent 

studies drew the link between high sediment delivery in the Wharfe and severe bank 

erosion (e.g. NRA, 1995a; Chalk, 1997; Hill and Hack, 1999; RKL Arup, 1999b) and an 

increased incidence of downstream flooding (e.g. Yorkshire Water Authority, 1983; 

Powell, 1992; NRA, 1995a; Chalk, 1997; RKL Arup 1999; EA, 2000; Haycock, 2000; Hey 

and Winterbottom, 1990; Lane et al., 2002; McDonald et al., 2002). These studies sought 

to evaluate the management decisions made in the 1980s, becoming progressively more 

critical with the benefit of hindsight. Indeed, recent work on the catchment, including this 

research project, question i f the basis for management was correct in the first instance. 20 

to 40 overbank flows is a very high number and data presented later in this thesis suggests 

that this should have only been a single figure number. Furthermore, the increase in 

flooding may be attributable to climate change alone since no quantitive evidence of 

increased sediment supply during the 1960s-1990s is presented by the studies. With local 

sediment somewhat easier to manage than the climate, the management strategies adopted 

may have in fact failed to address the true problem underlying the increase in flooding. 

Several river engineering schemes were implemented on the Wharfe and aimed to reduce 

flood risk, to restore land drainage, to control sediment supply, to preserve key ecological 

elements and to reduce bank erosion between Hubberholme and Kettlewell (Hey and 

Winterbottom, 1990). Kettlewell is located 4 km downstream from Starbotton. Such 
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schemes included artificially increasing the channel capacity by constructing a series of 
levees, removing gravel shoals, installing a gravel trap and reinforcing eroding banks. 

Levees were constructed along several sections of the channel between Hubberholme and 

Starbotton by 1989. These aimed to reduce flooding to once every 6 months from in excess 

of 20 times a year before the scheme (Yorkshire Water Authority, 1983; Hey and 

Winterbottom, 1990). The scheme initially worked well at reducing flood frequency but in 

recent decades field evidence and local opinions suggest the frequency of out-of-bank flows 

has increased once again. Furthermore, these schemes were designed to transport water and 

failed to consider the impact on sediment transfer (Raynov et al., 1986; Brookes, 1987). 

Concerns have arisen suggesting that the flood alleviation scheme has led to fiirther 

management problems such as enhanced bank erosion and reduced channel capacity. For 

example, at Heber bend, the river had retreated through bank erosion into the existing flood 

defence. This issue was resolved in 2001 with a £31,000 project to re-align the existing 

flood bank and set it ftuther back from die river (EA, 2001c). The river is still eroding and 

slowly getting closer to the new flood bank. 

The gravel trap was installed in 1989 and was designed to reduce the mean flow velocity to 

0.6 m s ' at bank fiill discharge. The trap had a capacity to hold about 3500 m^ of sediment 

and the management plan suggested emptying the trap every 3 to 4 years (Hey and 

Winterbottom, 1990). However, the sediment transport rate of the channel was severely 

underestimated and the trap filled more rapidly than anticipated (NRA, 1995a; Heritage and 

Newson, 1998; RKL Arup, 1999; EA, 2001a; McDonald et al., 2004). The high emptying 

costs made the trap economically unviable and the trap was only emptied once in 1989. Ix 

was then full for nearly 14 years; no longer providing a sediment sink and locally 

exacerbating erosion problems. The fijll trap resulted in the high velocity water being 

forced against the river flood banks and in several locations enhancing erosion of the banks 

and the newly constructed levees. The trap was finally removed in the summer of 2002 

when a decision was taken to once more let the river distribute its sediment. Some of the 

channel banks protected by block work around this section were repaired and re-stabilised 
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(Figure 3.4b). Some of the blockwork was removed and used to re-align the Cray Beck 
confluence. 

The Upper Wharfe has also been subjected to several hard engineering schemes to protect 

the banks from eroding. These can been seen in several locations including along the bend 

where the gravel trap used to be (Figure 3.4b), by Buckden Bridge and on the two bends 

immediately downstream of Buckden Bridge named the Redmire bends. The second 

Redmire bend is another example in the Wharfe system of an engineering scheme that has 

failed to resolve the issue it was designed for, and has required subsequent management. 

During the 1980s, work was undertaken to straighten die channel and improve land 

drainage. Blockstone revetments were used but some movement of the blocks at the toe of 

the banks reduced the bank's stability. In 2001, a £7000 scheme was implemented to 

improve the bank's robusmess whilst achieving a soft bank top. This "softer" engineering 

techiuque used birch brash faggoting material to provide extra support whilst grass and 

other vegetation became established (Figure 3.4c). This technique was successfiil and the 

bank is currently robust. Evidence of other soft engineering approaches can be seen along 

the channel. Details and the success of these are reported in the EA's UWBPP information 

booklets (EA, 2001c). Sections of river have been fenced off to prevent trampling by 

livestock and small clusters of trees were planted along banks. These included 15 trees 

planted at Heber bend, trees planted alongside block work at Buckden bend and tree 

planting around the bend at 510. However, as shown in Figure 3.4d, these softer approaches 

often fail, with the trees roots unable to stabilise the bank before the erosion reaches them. 
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3 . 5 C H A P T E R S U M M A R Y 

Previous findings from the Wharfe, demonstrate that the catchment and the chaimel have 

been evolving over time as a result of a wide range of processes at a range of spatial and 

temporal scales. These include, glacial processes, changes in land use and climate change 

and from direct human interference within the channel. The more recent work on the 

catchment has demonstrated that many of the river's problems including increased flood 

risk and bank erosion stem from enhanced sediment delivery; which is particularly severe 

in the Wharfe. 

The failure of some of the management decisions made in the Wharfe (including the gravel 

trap and some bank protection), provide a clear example of the difficulties of developing 

sound river management policies in the absence of supporting evidence. These engineering 

works were not based upon a sampling system informed by temporal variability in sediment 

delivery and channel adjustment, and failed to consider the dynamics of the system. As 

such, the aggradation noted could reflect either an aggrading trend or short-term 

fluctuations, or a combination of both as a result of there being so few observations. 

Without knowing this, making the correct management decisions is difficult. Thus the 

implementation of a structured monitoring strategy in 2001 provides a valuable insight into 

the spatial and temporal nature of the sediment transfer system in the River Wharfe. 

Objective 2 aimed to select an appropriate study site for this research. This chapter has 

demonstrated that the Upper Wharfe catchment is representative of other upland UK 

catchments. Alongside the wealth of knowledge and data available on the catchment from 

previous studies, it has ongoing issues linked to sediment transfer and flood risk. Thus it is 

highly suitable for application to this research. 



C H A P T E R F O U R : 

C H A N N E L M O R P H O L O G Y 

4 . 1 I N T R O D U C T I O N 

As discussed in Section 1.3, field data are required for three reasons: (1) to achieve 

Objective 4; to analyse the sediment transfer and channel change process in the study reach; 

(2) to allow the reconstruction of a sediment budget for estunating bedload transport rates; 

and (3) to provide data to achieve Objective 5 and Objective 6; the development and 

application of a model for simulating channel change. Objective 3 aims to provide this data 

through the monitoring of channel change in the Wharfe smdy reach and the variables that 

are driving these changes. Thus, Objective 3 is achieved in this chapter (Chapter 4) and the 

following Chapter 5. Objective Id, to use literature review to develop field-based 

methodologies, is also achieved in both chapters. 

This chapter concentrates on monitoring the channel morphology. It uses field surveys to 

map out important channel features such as locations of sediment stores, bank erosion and 

bank protection (Section 4.2). The channel changes are monitored using repeat cross-

sectional surveys to provide spatial and temporal information on in-channel sedimentation 

(Section 4.3) and a bank erosion smdy to monitor rates of lateral channel change (Section 

4.4). Finally, the downstream channel curvature is recorded from digitised LiDAR images 

(Section 4.5) alongside data on fiow paths around channel bends (Section 4.6). Results 

from the mdividual methods are provided alongside each of the methodologies. A more 

detailed analysis and discussion of these results, particularly when combined with other 

data, are provided in Chapter 6: the analysis and discussion of field data. 
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4 . 2 F I E L D S U R V E Y S 

Field surveys, including fluvial audits (Sear and Newson, 1993) and river corridor surveys, 

are valuable qualitative data sources that can provide an insight into processes operating 

and features present in a river system. Fluvial audits (sometimes termed geomorphological 

audits) are surveys which assess the sources, stores and transfer routes of sediment in a 

river channel. They were initially developed by Sear and Newson (1993) and have been 

widely used to evaluate and to monitor river systems. For example, a geomorphological 

audit was used to assess unstable reaches along the Upper Wharfe in a survey by Heritage 

and Newson (1997). River corridor surveys are often used to determine environmental and 

conservational concerns of river corridors. For example, they help identify areas where 

pollution and fly tipping are reducing the aesthetics or where sensitive habitats for nesting 

birds or spavming fish require protecting. Whilst field surveys are useful for 

conceptualising processes operating in river systems and for documenting important 

features, they remain subjective and qualitative and as such should not replace quantitative 

methods of measuring and monitoring, including many of the methods described later in 

this chapter. 

Field surveys were conducted for the entire length of the study reach at the start of this 

project. They combined features of river corridor surveys and fluvial audits to record a 

wide range of information about the nature of the river channel, processes operating and 

locations of key features such as tight bends, large depositional zones and bank protection. 

The qualitative data from the surveys was used in the planning of field methodologies, to 

provide supporting evidence for many findings based on quantitative field data and was 

required in the modelling to include information on the locations of bank protection. 

The field surveys provide an insight into the processes operaring along the Upper Wharfe 

study reach. Figure 4.1 shows one page of the surveys demonstrating the type of 

information that was included. Appendix I contains the other 9 pages. 
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Figure 4.1: Page 3 of the study reach field surveys. 

The description of the Wharfe provided in Section 3.2 is illustrated well within the surveys. 

In particular, the surveys locate the zones of coarse sediment storage along the river; most 

of which are found on meander bends. Inferences about the stability of these deposits can 

be made by noting the presence of vegetation. Most bars are fi-ee fi-om vegetation 

suggesting sediment transfer readily occurs. Within some bar deposits, typically lateral 

bars, vegetation is present indicating that sediment transfer has not occurred for some time. 
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thereby allowing vegetation to establish. This is enhanced in the summer months when 
vegetation growth is faster. Clearly the densely vegetated bar by Hubberholme is a highly 
stable feature. At cross-section 420 (Survey page 7, photo 1, Appendix I) the outer bend 
bank erosion and presence of vegetation on the gravel on the far inside of the bend, 
demonstrate the mechanism by which the channel migrates and sediment becomes stored in 
the channel (Section 2.5). In addition, fining of the bed material with distance downstream 
is evident from the surveys with larger boulders noted at Hubberholme and finer gravel and 
patches of sand found in the dovrastream sections of the study reach. The pool-riffle pattern 
within the channel is clear in the surveys with deeper more sluggish reaches identified in 
the lower limits of the study reach. The surveys also reveal something about the occurrence 
of flooding in the valley. Recent wrack lines can often be found along the edges of the 
valley, at times around 500 m away from the river channel. Debris was also noted along 
fences, walls and in trees, in some locations up to a meter above the bank tops. This 
information can be used to obtain an estimate of the extent and depth of over bank flow 
events in the channel, frideed, over the three year monitoring period, fresh wrack lines were 
commonly found, suggesting over bank flow is a common occurrence in the Upper Wharfe. 

Whilst the surveys can allow inferences to be made about the transfer of sediment and the 

frequency of flood events, they are perhaps more valuable when examining the nature and 

extent of bank erosion in the channel. It was clear that bank erosion dominated the lower 

reaches of the study reach, particularly downstream of the Buckden Beck tributary. This 

may be due to the increase in sinuosity of the channel frirther downstream but could also be 

associated with a reduction in tree lined banks. Indeed no banks were found to be eroding 

when trees were present, echoing findings by Charlton et al. (1978), Andrews (1984), Hey 

and Thome (1986), and by Heritage and Newson (1998) following their geomorphological 

audit along the same stretch of river in 1998. The latter study further suggests that the bank-

top profile along tree-lined sections of the Wharfe is irregular with erosion occurring 

between individual trees. Evidence of this is shown in the surveys. Contrary to this idea that 

trees stabilise the banks, is the suggestion that the trees establish where no erosion occurs. 

When new trees are planted in an attempt to alleviate bank erosion (e.g. Figure 3.4d) their 

initial success is dependent on the rate of bank erosion. If bank erosion is slow enough, they 
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have time to establish and hence their roots can have the positive influence of stabilising 
the bank. If bank erosion is rapid, the trees fail to establish in the first instance. 

The field surveys also highlighted the full extent of the bank erosion in the Wharfe. Bank 

erosion is found on both straight and meandering sections. It was estimated that there were 

146 m of eroding banks along straight reaches and 137 m of eroding bank around bends. In 

total, approximately 2.5% of all die banks in the Wharfe are actively eroding. Actively 

eroding banks are described as those which have evidence of erosion in the past few years. 

Other banks have been subject to erosion in the past but currently appear stable, possibly 

due to the supporting debris at the bank toe. Varying styles of erosion were also noted. 

Outside banks of meanders tended to be higher with mass failures the predominant cause of 

erosion. On die straight sections, the banks were typically lower and slumping prevailed. 

The failed material often remained visible at the bank toe. It was also noted that whilst most 

of the eroding banks consisted of relatively uniform fine sediment, some of the banks were 

eroding into pockets of coarse material. This coarse material is where die river is eroding 

into palaeochannels, revealing a glimpse of the former wandering nature of the Wharfe. 

Figure 4.2 clearly shows the difference between fine bank material, formed from thousands 

of years of fine sediment delivery onto the floodplain during overbank flows (left hand 

side), and coarser material (right hand side) ft-om a palaeochannel. The coarse material 

represents the old charmel bed before the channel migrated across the floodplain. The river 

is now migrating back into its previous course. This coarse sediment pocket further 

demonstrates how coarse sediment is stored as a floodplain deposit. 

The surveys also document the full extent of the hard and soft engineering schemes that 

were discussed in Section 3.5. They record several different types of bank protection from 

the dry stone walls constructed in the 14"̂  and 15"̂  centuries, more recent hard engineering 

structures including block stone revetments and gabions (large metal cages filled with small 

loose boulders) and also the softer engineering approaches including willow planting, birch 

brash faggoting and fencing off the channel to livestock. From this survey, 9 of the 19 

bends along the river were noted to have bank protection. The total length of this protection 

is estimated at around 380 m. In addition, around 200 m of modem bank protection was 

present on previously unstable straight sections. Historical bank protection, in the form of 
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dry stone walls, increases this length but is not quantified as these sections were deemed to 

be stable in the long-term, having been confined for many decades. It is estimated that the 

length of eroding banks would initially double were the bank protection to be removed. 

This is explored further in Section 6.3 which includes a map showing the locations of bank 

erosion and protection (Figure 6.9). 

Figure 4.2: Evidence of a palaeochannel found at cross-section 350. 

4 . 3 C R O S S - S E C T I O N A L S U R V E Y S 

Cross-sectional surveys of the channel were required: (1) to provide the boundary 

conditions of the model, including channel width and depth (Section 8.2); (2) to monitor 

pattems of morphological change in the study reach (Section 4.3.5); and (3) to reconstruct a 

morphological sediment budget using the "inverse method" (Section 6.3). The latter 

allowed estimates of bedload transport to be made. Numerous studies have used cross-

sectional re-surveys to provide similar information including Ferguson and Ashworth 

(1992), Goff and Ashmore (1994), Martin and Church (1995), Lane et al. (1995), Ashmore 

and Church (1998), McLean and Church (1999), Ham and Church (2000), Stover and 

Montgomery (2001), Lindsay and Ashmore (2002), Fuller et al. (2003), Martin and Ham 

(2005) and Rodrigues et al. (2006). The basic problem with this survey-based approach is 

the time required to survey cross-sections with sufficient density. This may be quite high 
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(Lane et al, 1994) in order to avoid missmg erosion and deposition between cross-sections 
(Naden and Brayshaw, 1987; Wittenberg, 2002). As such, a sampling strategy with an 
adequate spatial and temporal resolution was developed and employed. 

4.3.1 P R E V I O U S C R O S S - S E C T I O N A L S U R V E Y S 

Several projects have conducted cross-sectional surveys on the Wharfe study reach in the 

past. Details of the dates of these surveys are included in Appendix 2. In 1982, the 

Yorkshire Water Authority (1983) used these surveys to inform the design and 

implementation of the engineering works during the 1980s discussed in Section 3.4. In 

1997, Heritage and Newson (1997; 1998) carried out surveys as part of a broader study into 

the stability of the river channel. Following this, RKL-Arup in 1999 and Jeremy Benn and 

Associates (JBA) in 2000, both private engineering consultants, were commissioned to 

further explore unstable reaches along the Wharfe, make assessments of the gravel trap and 

investigate flood risk. These two projects fall under the UWBPP. Thus far, the surveys 

were independent of each other although, where possible, the cross-section locations were 

roughly kept similar. As such, these were not designed to include repeat channel bed 

surveys, nor to consider when to measure bed levels in response to spatial and temporal 

fluctuations in sediment delivery. They made no attempt to make the measurement of river 

bed morphology, and its change through time, an integral part of river management 

decision making. Hence in 2001, a cross-sectional monitoring strategy was developed to 

allow coarse sediment delivery and transfer to be explored (Reid, 2004) with respect to 

inundation extent (Tayefi et al., 2007). Results to 2004 have been published (Lane et al., 

2007; Reid et al., 2007a). However, this three year period was insufficient to capture the 

spatial and temporal dynamics of river response and focused more upon characterising the 

magnitude and fi-equency of sediment delivery and transfer events. Hence, repeat cross-

sectional surveys have been continued throughout this project at the locations defined by 

Reid (2004). The additional three years provide evidence regarding the spatial and temporal 

patterns of river bed sedimentation and its implications for flood risk. 



C H A P T E R 4 : C H A N N E L M O R P H O L O G Y 57 

4 . 3 . 2 S U R V E Y M E T H O D O L O G Y 

To minimise limitations with this approach. Fuller et al. (2003) made the following 

recommendations. These were considered when the monitoring strategy was initially 

defined (Reid, 2004) and again in 2004 at the start of this project. These recommendations 

were that each cross-section should: (1) fiilly represent the sub-reach under study; (2) 

represent the processes under study and the length-scale over which these processes 

operate; and (3) should not erode too severely during the study such that surveys would 

become impossible or dangerous. Reid (2004) used a detailed survey of extant loci of 

erosion and deposition to identify 60 cross-section locations. The locations and selected 

numbers are shovvoi in Figure 3.3 and frill details of the cross-sections including distance 

between, channel width and slope are contained in Appendix 2. The spacing between 

sections was such that a given cross-section reflected the morphological complexity of the 

channel. Spacing ranged from 30 m to 200 m and the average spacing was 95 m. The cross-

sections were spaced more closely on the meanders. This spacing did not exceed typical 

particle step length in transport events which are thought to be similar to meander 

wavelength (Pyrce and Ashmore, 2003). The average spacing on the bends was 48.5 m and 

sections on bends constituted 28% of all cross-sections. The spacing was greater on the 

straighter sections with the spacing averaging at 115.5 m. In December 2002, the initial 3 

km study reach was extended to include an additional 2.6 km of river dovrastream. In 

December 2004, the locations were re-assessed to ensure they continued to provide a good 

representation of the reach. Only cross-section 020 was abandoned as the dense 

undergrowth on both sides of the channel meant that the GPS could not get a signal and the 

total station could not "see" through the undergrowth. This section was located across the 

vegetated island by Hubberholme. It is a highly stable feature of the river and hence 

morphological adjustments are assumed to be minimal. 

The surveys were undertaken using an RTK Leica Geosystems 1200 differential Global 

Positioning System (dGPS) and a Leica Geosystems 1200 total station. The latter was used 

for sections where signal was poor due to tree cover. Both systems have a mean vertical 
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precision of ± 0.005 m. Around 70% (April) and 80% (December) of the surveys were 
measured using the GPS. The average number of points per section was 106 with an 
average spacing between points of 0.32 m. Points were located to include all breaks of 
slope within a given section. The cross-sections were surveyed twice yearly, once in 
March-April, typically at end of the wetter winter period, and once in December, the start 
of the winter season. Deviations from these periods were necessary due to equipment 
availability and bad weather. In particular the March-April 2007 surveys were severely 
delayed. This was initially due to equipment constraints and then due to long periods of wet 
summer weather which kept the flow too high for safe measurement. These were eventually 
surveyed in July 2007. However, with vegetation in fiill leaf, several sections could not be 
surveyed as the GPS could not relocate either of the bank pins. 

4 . 3 . 3 A N A L Y S I S 

The cross-sectional survey comprised of 60 separate locations, each with between 10 and 

12 repeated surveys with an average of 106 points recorded per survey. Thus, channel 

changes in the 5.6 km study reach could be quantified using the 652 surveys and ~ 69,000 

individual data points: a large and detailed dataset. Figure 4.3 shows a sample of these data. 

This plot clearly shows that this cross-section experienced a period of erosion between 

April 2004 and December 2004 and little change occurred in the subsequent period, which 

ran until April 2005. 
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Figure 4.3: Three consecutive surveys at cross-section 320. 
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The surveys can be analysed in several ways. First, the average bed level change at each 

specific location was determined by calculating the cross-sectional area at each survey 

using [4.1]. The area change between two successive time periods was determined using 

[4.2] and by dividing by the channel width, the width-averaged bed level change for a 

particular cross-sectional location was determined. This was done for each time period (t, 

t+1). 

1=1 [4.1] 

[4.2] 

where A is cross-sectional area; z is horizontal distance across the charmel at point /; dc is 

the difference in elevation between the elevation at point z and the maximum bank 

elevation for the section; n is the number of points; and / is time. 
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Second, the volume associated with adjacent cross-sections, separated by distance {Xi+/-Xi), 
was determined from [4.3]. [4.4] was then used to calculate volumetric change over time, 
which is used in Section 6.3 to reconstruct a morphological sediment budget for the 
channel. In practice, by dividing through by (j:.̂ , - x . ) , the mean volume of change is 
expressed per unit of downstream distance. This accounts for downstream changes in cross-
section density and prevents, for example, data from two closely spaced cross-sections with 
both record aggradation, being over represented in the whole reach. By dividing the volume 
change between two cross-sections by the average width of the two end sections, the reach 
and width-average mean bed level change per metre downstream can be determined. 

[4.3] 

A i/'-'+i _. r^'+i _ yi [4.4") 

where AK is the volume between two survey locations (/' and separated by distance 

(Ax). 

In addition, the cross-sections can be used to characterise other planform information. The 

active channel width is defined as the horizontal distance between the bank tops which are 

determined by the presence of established vegetation. Since many of the cross-sections 

extend several metres onto the banks, this distance is not simply the distance between left 

and right bank pins. Field knowledge is required to distinguish the bank from the active 

channel. Channel depth can be expressed as maximum depth, or cross-sectional averaged 

depth. In both cases, the depth is measured from the channel bed to the height of the lowest 

bank (i.e. the bank that flow would overtop first). Again field knowledge and judgement 

was used to characterise the bank top height. Cross-sectionally averaged depth was 

determined by dividing the cross-sectional area calculated from [4.1] by the width. The 

characteristic of slope can be expressed in several ways including valley, bank and bed 

slope. In each case, slope is defined as the change in elevation over distance. First, valley 

slope is a crude description of the slope of the valley in which the river flows and does not 

account for local variability. This can be calculated by taking the average valley elevation 
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at several points down the valley. Second, the channel can be represented by the bank 
slope, which is the average of the slope between left pins and the slope between right pins. 
This accounts for variability in slope created from sinuosity, which is not accounted for in 
the valley slope calculations. Problems with this approach arise when defining bank height 
in sections where the channel is cutting into an area of higher ground, and therefore one 
bank is substantially higher than the other bank. Finally, channel slope can be determined 
from the average channel height at each cross-section, the channel bed slope profile. This 
approach records slope variability as the channel flows between deeper pool and shallower 
riffle sections. The result is that the slope is positive in some instances (when flow is from 
pool to riffle) and negative in others (riffle to pool). Smoothing of the slope profile is 
necessary. Further details of slope smoothing are discussed in Section 8.3.1 during model 
development. 

4 . 3 . 4 Q U A N T I F I C A T I O N O F E R R O R A N D U N C E R T A I N T Y 

Given uncertainties in elevation that arise due to grain roughness (eg), position due to dGPS 

errors (e-) and distance between cross-sections (;c) as distances between left and right pins 

vary with sinuosity, the propagated uncertainty in area (A) and volume changes (V) can be 

quantified. Taylor (1997) outlines that the uncertainty in parameter q derived from 

variables x....z measured with uncertainties represented by their associated standard 

deviation of error (a), can be determined using [4.5]. This assumes that the uncertainties in 

X....z are random and independent. 

[4.5] 

To test this approach to error quantification, one survey section was measured twice on the 

same day. The area above each survey was calculated using [4.1]. The difference between 

these two areas provides an indication of uncertainty in area calculations. Survey one had 

an area of 46.096 m̂  whilst survey two had an area of 46.257 m̂ , a difference of 0.160 m .̂ 

Equation [4.6] which follows on from [4.5] was used to estimate the uncertainty in the area 
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calculation for survey one and survey two. The standard deviation of error in e^ was 0.025 
m and in e^ was 0.08m. The uncertainty in e. was determined from the mean error for all 
surveys points whilst the uncertainty in e^ was determined at each location from the DSA. 
since this represents roughness. Grain size characteristics were obtained using methods 
detailed in Section 5.3. The uncertainty estimates were less sensitive to e^ than to e- since 
the values for e^ were typically lower than e. particularly at the more downstream cross-
sections where Ds4 was lower. Using [4.6], the uncertainty associated with the area of 
survey one (o /̂) was ± 0.11 m̂  whilst it was ± 0.206 m̂  for survey two (a^?)- When these 
errors are propagated together using [4.7], the measured error is well within the estimated 
precision of ± 0.234 m̂  associated with random errors. This suggests that for this 
comparison, the surveys were being conducted without unexpected bias being introduced. 

.0.5 

/ = 1 

[4.6] 

[4.7] 

When the uncertainties in both are propagated together using [4.7], the uncertainty 

associated with the difference between areas is ± 0.07 m̂  higher than the measured error. A 

higher calculated error is beneficial as it provides an upper level of uncertainty. The 

uncertainty in the volume change estimates was sensitive to the errors in downstream 

distance (x). The uncertainty in x {a^ was calculated for each site by first measuring the 

length between cross-sections on the left bank and the length between cross-sections on the 

right bank. Then, the difference between each bank length and the length of the centreline 

(mid-channel) was determined and used to determine o^. Since x is the distance along the 

mid-channel, errors arise when the channel is sinuous and the left and right banks are not of 

equal length. This typically occurs around a meander bend when the outer bank is longer 

than the inner bank. As such, the standard error associated with downstream distance (CT̂ ) is 

poorly correlated to x and the uncertainty in x at each location is independent of each other. 

Thus, long straight reaches may typically have a lower uncertainty in x that short curved 



C H A P T E R 4 : C H A N N E L M O R P H O L O G Y 6 3 

reaches. Figure 4.4 shows the uncertainty in distance for each cross-sectional reach with the 

line plot showing the estimated uncertainty at each location and the bars showing this 

expressed as a percentage of the chaimel centreline distance. As expected, the highest 

uncertainty values arise when a reach is particularly sinuous (e.g. 210 and 220, 320 and 

330, 450 and 460, 500 and 520, 580 and 590). The average uncertainty in x was 5 m whilst 

the maximum, recorded at 210-220, was 12.2 m. 

Figure 4.4: Uncertainty in distance estimates. 

reach (cross-section to cross-section) 

The uncertainties in the reach and width-average estimates determined fi-om the volumetric 

estimates are propagated through time, fi-om one survey to the next. The total uncertainty in 

the estimates increases in a steady way. Figure 4.5 shows these estimates as the number of 

surveys increase. A selection of cross-section locations is shown. Uncertainty values vary 

fi-om less than ±0.01 m to over ± 0.07 m. This reflects: (1) the survey point spacing, with 

greater distances between survey points resulting in higher errors in z; (2) changes in 

roughness h as one progresses downstream to the finer bed material; and (3) uncertainty in 

distance as demonstrated in Figure 4.4. As such, the more upstream and sinuous reaches 

tend to have greater uncertainty estimates due to coarser sediment and uncertainty in 

distances whilst the increases in uncertainty over time (steeper curves) can be explained by 

reductions in point spacing for a given survey. Most curves are steeper between December 

2001 and April 2002, after which point density increased. 
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Figure 4.5: The increase in reach (between two cross-sections) and width- averaged bed 
level change error as the number of surveys incorporated into the calculations increases. 
Not all cross-sectional locations are included here. 
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4 . 3 . 5 R E S U L T S 

The data collected from the cross-sectional re-surveys enables the first of the key research 

questions outline in Section 1.1 to be answered. This question asked: 

1) How does in-charmel sedimentation in an upland gravel-bed river vary through 

space and time? 

The following discussion answers this question. Further discussion into the spatial and 

temporal pattems of in-channel sedimentation is made in Section 6.2, which aims to explain 

these findings. 
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The cross-sectional data is initially expressed in two ways as shown in Figure 4.6. Figure 
4.6a, presents the results as seasonal bed-level change down the river. Bed level change is 
width- averaged to allow for comparison between cross-sections of varying width. The data 
presented in this graph are based on the cross-sectional area changes and do not incorporate 
any volumetric detail. The main features of interest in this figure are the variations in active 
seasons, with the early seasons of dec01-aprO2 and apr02-dec02 exhibiting particularly high 
levels of bed level change. It is also interesting to note the emergence of particularly active 
areas where change occurs in almost all the time periods (e.g. 200 and 310). 

The cumulative change in mean bed level since surveys began in December 2001 (and 

since December 2002 from 3 km downstream) is shown in Figure 4.6b. Since these data are 

determined by dividing the volumetric change by downstream distance and average width, 

they are effectively the same data but expressed differently. However, by plotting this as 

mean bed level change, the values are smaller and easier to interpret. It is clear that there 

has been an overall pattern of aggradation in the study reach. By July 2007, the mean bed 

level had risen by 0.17 m ± an error estimate of 0.029 m. However, certain zones along the 

river have developed as clear depositional reaches. The levels of aggradation in these 

reaches ranges from 0.46 m ± 0.026 m between 2.4 and 2.9 km downstream and 0.47 m ± 

0.024 m at 1.9 km downstream to 0.67 m ± 0.031 m between 1 and 1.2 km downstream. 

Furthermore, a clear divide in pattems of bed level change exists at around 3 km 

downstream. The upper 3 km reach recorded a mean bed level rise of 0.22 m ± 0.036 m 

whilst the lower 2.6 km reach has aggraded by 0.11 m ± 0.019 m. Alongside these 

dominant depositional zones are a few observable zones of erosion. The highest rates of 

erosion are slightly lower than the highest rates of deposition with zones at 0.8 km and 1.8 

km downstream recording the greatest rates of erosion at 0.26 m ± 0.042 m and 0.4 m ± 

0.039m. The zones between 2 and 2.4 km and at 2.9 km are also notable for erosion with 

bed levels falling by 0.17 m ± 0.042 m and 0.2 m ± 0.023 m respectively. 

Figure 4.6a and b (shown on the following two pages): Seasonal and cumulative bed level 
changes along the study reach. Each of the series lines represents the width-average change 
in bed level. Each series is centred on a horizontal grid line with measured change 
correspondmg to erosion below and deposition above the grid line. 
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The data can also be expressed as bed level change activity by summing the absolute values 
of reach and width averaged change. Therefore bed level change activity is an expression 
that is irrespective o f direction. Figure 4.7 shows the downstream bed level change activity 
since December 2002, from which date the entire reach was surveyed. This shows that 
levels of activity (the net bed level change irrespective o f direction) far exceed levels of 
either erosion or deposition, with maximum activity occurring at 0.8 km, 1.8 km and 2.5 
km downstream, with activity up to 1.8 m ± 0.021 m. The average activity per metre 
downstream is 0.8 m ± 0.026 m. This demonstrates that even in the zones of net erosion and 
deposition, seasonal fluctuations exist where net change in one direction, either erosion or 
deposition, is temporarily replaced with bed level change in the opposite direction. Thus, 
even in zones with relatively little bed level change recorded over the total surveying 
period, for example at 4.7 km downstream (cross-section 520), sediment activity can be 
high. At this specific location there is switching between erosion and deposition between 
survey periods as shown in Figure 4.6a, but the net change in bed level in Figure 4.6b is 
around zero. The visual divide between the upper and lower reaches in mean bed level 
changes (Figure 4.6b) is also evident when activity levels are considered (Figure 4.7). The 
upper zone experiences approximately 4 Vi times more mean bed level rise than the lower 
reach between December 2002 and July 2007. The difference in bed level change activity 
levels are much less, with the upper reach accounting for 70% of the total reach activity, 
just over twice as much as the lower reach. Furthermore, the length scale cind amplitude of 
variations differ between the upper 3 km and the lower 3 km. In the upper reach, the mean 
length scale between peaks in activity is 460 m compared with 655 m in the lower reach. 
The amplitude o f peaks is also higher in the upper 3 km reach with a mean amplitude o f 0.9 
m in the upper and 0.6 m in the lower reach. 
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Figure 4.7: Variation in bed level change activity with distance downstream. Activity is 
calculated from the period December 2002 until July 2007. 
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4 . 4 B A N K E R O S I O N M O N I T O R I N G 

Understanding the processes driving bank erosion and the rates at which bank erosion 

occurs in the study reach is essential for calibrating the lateral bank erosion component o f 

the model and understanding the mechanisms of channel change in the Wharfe. A bank 

erosion study was undertaken to monitor bank erosion rates and draw conclusions about the 

processes driving the erosion. This study provides the answer to the second key research 

question outline in Section 1.1: 

2) At what rate do unprotected river banks, in upland gravel-bed rivers, erode and 

what processes drive this bank erosion? 

4 . 4 . 1 M O N I T O R I N G O P T I O N S 

Determining the relative importance o f individual bank erosion processes acting on a 

specific bank is often difficult (Simon and Darby, 1997; Lawler et al, 1997). A wide range 

of methods are available to researchers for exploring bank erosion over a wide range of 
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Spatial and temporal scales (Lawler, 1993b; Lawler et al, 1997). Figure 4.8 classifies these 

methods by resolution and timescale showing the range at which bank erosion processes 

can be studied. Longer timescales require indirect methods to reconstruct the past, whilst 

direct methods allow short to medium term monitoring. 

Figure 4.8: Classification of bank monitoring techniques by resolution and timescale. 
Source: Lawler, 1993b; Lawler et al, 1997. PEEPS are photo-electronic-erosion-pins. 
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Indirect methods include using maps, aerial photographs, sedimentary evidence of 

palaeocharmels and more recently satellite imagery. These data sources can be used to 

determine bank erosion rates over longer timescales of the order 10-250 years (Lawler et 

al., 1997). Direct methods can be used to explore bank erosion over short (less than a year) 

and medium-timescales (from 1-10 years). Planimetric and cross-section resurveys can 

provide bank erosion information but on a fairly low spatial and temporal resolution over 

medium timescales. Direct methods such as erosion pins, photogrammetry (Barker et al.. 
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1997) or photo-electronic-erosion-pins, PEEP's, (Lawler, 1991, 2005; Bull , 1997) can 
provide data over the short-term. Whilst photogrammetry, which compares stereoscopic 
images of the bank face, enhances spatial sampling and enables the identification o f 
specific bank erosion processes (Barker et al., 1997), the PEEP's allow quasi-continuous 
time series erosion data to be collected (Lawler, 1991). Yet, these techniques are cosdy, 
time consuming and produce vast quantities o f data (over small areas o f bank) for analysis. 
Thus, most bank erosion studies use simple erosion pins to determine processes and rates o f 
change (e.g. Lawler et al., 1997; Couper et al., 2002). 

Bank erosion pins have been used successfully by Thome and Tovey (1981), Lawler and 

Leeks (1992), Bull (1997), Lawler et al. (1999), Stott (1999), Couper and Maddock (2001) 

and Couper et al. (2002). Erosion pins are thin metal rods that are inserted horizontally into 

the bank often in grids. They can be used to detect small amounts o f erosion (Thome, 1982) 

allowing detailed measurements of the spatial and temporal patterns o f bank retreat to be 

made (Thome, 1982; Lawler, 1993a) inferring bank erosion processes (Lawler, 1993a). 

Whilst they work reasonably well (Lawler et al., 1997), there are numerous problems 

associated with their use. Couper et al. (2002) suggest the main problems are due to: (1) pin 

movement (e.g. from frost action, root systems or burrowing animals); (2) changes in bank 

surface elevation due to shrinkage and swelling o f the bank face; (3) the influence of the 

pin on erosion itself as the pin may disturb the bank material (Lawler, 1993 a) or cause 

aggregates to form from mst; and (4) himian interference / tampering with the pins. 

Furthermore, the pin may create extra turbulence which accelerates bank erosion around the 

pin (Lawler, 1993b). It is also difficult to determine when erosion occurs from the data as 

pins may bend during placement into the bank and pins may be lost completely i f bank 

erosion rates are rapid. However, i f these problems are considered when using pins and 

analysing data from them, this cost effective and simple technique can provide valuable 

data. 
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4 . 4 . 2 A D O P T E D M O N I T O R I N G M E T H O D 

Following extensive literature review into the available techniques for monitoring bank 

erosion a decision was made to use simple bank erosion pins coupled with bank top 

resurveys to monitor bank erosion in the Wharfe. This would minimise cost and labour 

whilst still providing valuable data on bank erosion rates and processes. The detailed field 

surveys (Section 4.2) were consulted to select numerous potential bank erosion study sites. 

Five sites were chosen from these following a field visit. These are shown on Figure 4.9. 

A l l sites were located in the lower half of the study reach as this was where the majority o f 

actively eroding banks were found. Thus, all the bank erosion sites were located where 

sediment transport activity levels were lower. Sites 1, 3 and 4 were located on the outside 

of meander bends and sites 2 and 5 were located on straight sections. A l l sites were 

composed o f fine sediment to allow the pins to be inserted into the bank. Between 24 ,and 

32 pins were inserted into each bank in 3 or 4 rows depending on the height o f the bank. 

The pins were 300 mm long (measured using callipers), 3 mm diameter silicon bronze 

welding rods that were strong and would not rust. They were inserted into the banks so that 

between 20 and 60 mm of pin was exposed. The pins were spaced 400 mm apart 

horizontally and 300 mm vertically. This erosion pin set up is similar to those used by 

Lawer et al. (1999), Couper et al. (2002), Bull (1997) and Couper and Maddock (2001). 

Each bank was also surveyed using the Leica dGPS system to provide a detailed D E M of 

the bank to allow estimates of bank-line retreat to be made in the event of mass failure and 

pin loss. These surveys extended beyond the bank zone where the pins were located. The 

pins were measured initially in July 2005, then approximately every 2 months. The timing 

of the measurements was dependent on low flows as the channel around the meander bends 

was associated with deep flow. I f bank erosion had occurred exposing more than half of the 

pin, the pin was pushed back into the bank and re-measured to reduce the likelihood o f pin 

loss. In the event o f pin loss, where possible, new pins were re-inserted in the same 

locations. In these situations an estimate of bank erosion was made from the surrounding 

bank topography. Repeat bank top re-surveys were carried out in July 2006 and July 2007. 
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The error associated with the measurement technique was quantified using a method 
described by Stott (1999) and also used by Couper and Maddock (2001) and Couper et al. 
(2002). The method repeatedly re-measures the pins in a random order determined using a 
random number table. When ten measurements have been obtained for a single pin, these 
measurements were used to determine the standard error. The standard error for the Wharfe 
pins was ± 0.29 mm which is within the range of ± 0.17 and ± 0.33 mm found by Stott 
(1999). Therefore, Stott's suggestion based on errors within this range that readings are 
repeatable to within ± 0 . 5 mm was used for this study. Simon et al. (1999) also estimated 
that pin readings are accurate to within ± 0 . 5 mm, based on multiple measurements made 
by the same operator on the same day. This value is slightly higher when different operators 
carry out the measurements. For the Wharfe study, all measurements were taken by the 
same operator. 

Unfortunately, whilst four o f the bank erosion study sites provided valuable data the other 

site, bank erosion site 3, had to be abandoned due to difficulties during the winter in 

accessing the pins. The location of this site, on the outside of a meander bend, meant that 

during the winter months, the flow was too deep to safely wade through. Thus 

measurements could not be made at regular intervals. 
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Figure 4.9: Location o f the bank erosion sites including photographs 
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4 . 4 . 3 B A N K E R O S I O N P i N S : R E S U L T S 

O f the four banks and 122 pins, 26 pins were lost (and subsequently replaced) and 550 

measurements were made during the 12 month period. Two assumptions had to be made 

during data analysis. First, when a pin had been lost, the bank erosion rate was estimated. 

This estimate was based on the surrounding bank face. Second, the results had to account 

for negative pin recordings (i.e. when less pin is exposed during a return visit). Negative 

pin recordings complicate the data analysis but at the same time provide an insight into 

bank erosion processes. Negative results may occur when: (1) sediment is deposited onto 

the pins during high flow events; (2) soil falls from the upper parts o f the bank onto the 

pins below; (3) the soil surface expands due to fluctuations in temperature and moisture; or 

(4) root systems or burrowing animals move the pin within the bank. During the study 

period, observations suggested that the most plausible cause o f negative recording was 

from soil falling from the upper parts o f the bank. Thus, negative recordings tended to be 

obtained for pins found lower down the bank face. The negative recordings were removed 

when calculating the bank erosion rate. Without doing so, the recorded rate may be lower 

than the true rate. 

The annual bank erosion recorded at each pin on each of the four sites is shown in Figure 

4.10. It is immediately clear that bank erosion varies spatially on a bank and also between 

bank sites. On banks 1 and 4, variation occurs laterally as we move across the bank with the 

3 rows exhibiting similar patterns. There is a mean difference o f 153 mm between the far 

left and far right pins on bank 1. On bank 5, the variation is predominantly vertical with 

substantially more erosion (a mean of 40 mm) noted on the lowest row when compared 

with the 3 rows above. Bank 2 had one point that eroded substantially more that the other 

pins which recorded similar rates and varied little spatially. 
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Figure 4.10: Annual bank erosion at each pin. Each bubble represents a pin as positioned on 
the bank with the area of the bubble relative to the amount of erosion (mm) at each bank. 
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The average erosion at each bank site for each recording period was calculated. Figure 

4.11a shows the cumulative bank erosion since July 2005. From this figure, two different 

patterns o f bank erosion emerge: banks 1 and 4; and banks 2 and 5. Banks 1 and 4 record 

over three times the erosion noted on banks 2 and 5. The total erosion after 1 year of 

monitoring was 212 mm at bank 1, 73 mm at bank 2, 181 mm at bank 4 and 68 mm at bank 

5. These annual bank erosions rates for the Wharfe are similar to those found on several 

other upland U K river systems. For example, on the Upper Severn, Thome and Lewin 

(1979) recorded bank erosion rates between 350 and 600 mm year'' and Thome and Tovey 

(1981) recorded a rate o f 280 mm year"'. Hooke (1980) recorded rates between 150 and 460 
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mm year"' on the River Axe in Devon and Lawler (1986) found bank erosion rates of 40 to 

310 mm year"' along the Ilston River in Wales. Lawler et al. (1999) found bank erosion 

rates between 68 and 364 mm year"' on the Swale-Ouse system and Leys and Werritty 

(1999) suggest that rates o f 200 to 300 mm year"' are feasible in the Scottish rivers the 

Feshie, Avon and Coiltie. 

The bank erosion rate during each time period can be calculated and the data are shown for 

each site in Figure 4.1 l b . At all four sites, bank erosion rates peak in the February to Apr i l 

period. The highest rates o f erosion during this period are found at bank 1 (2.3 mm day"') 

with bank 4 (1.3 mm day"') also recording a high rate of erosion during this time period. 

The rates of erosion indicate that there is a strong seasonal influence on bank erosion with 

more erosion occurring in the winter months. Banks 2 and 5 were found to behave in 

similar ways with erosion rates very similar through all time periods. It can also be noted 

that the peak in erosion from December until Apri l is much more attenuated than at the 

other two sites with maximum bank erosion rates o f 0.45 mm day"' and 0.40 mm year"' at 

banks 2 and 5 respectively. 
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Figure 4.11: (A) Total erosion at each bank erosion site (BE) since July 2005, (B): Erosion 
rate for each time period. 
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4 . 4 . 4 B A N K T O P S U R V E Y S : R E S U L T S 

Bank top surveys were conducted to capture any bank erosion that occurred rapidly and 

would result in the loss of bank pins at a particular site. Of the 4 sites, only banks 1 and 4 

were subject to any notable bank top erosion. Bank top profiles for July 2005, 2006 and 

2007 are shown in Figure 4.12. At bank 1, only small amounts of bank erosion are noted. 

At bank 4, whilst some bank erosion is noted in the 2006 profile, more substantial erosion 

can be seen in the 2007 profile. Table 4.1 provides details of the average and maximum 

bank erosion that occurred at this bank. This was calculated by integrating the area under 
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each of the bank curves in the same way as the areas above the cross-sections were 

calculated in Section 4.3.3. The maximum bank erosion recorded between 2006 and 2007 

was 1.2 m (1200 mm). This erosion occurred due to bank collapse, most likely in a single 

event from undercutting. Much o f the failed material was found at the bank toe, thereby 

stabilising the bank from ftirther collapse. This single bank collapse resulted in 10 times 

more erosion than the annual bank erosion from weathering processes. The weathering 

process may have weakened the bank making it more susceptible to bank collapse. 

Figure 4.12: Annual bank top profiles for banks 1 and 4. 
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Table 4.1: Average and maximum bank retreat for bank 4 

July of Area under 
bank top (m )̂ 

Area difference 
(m^) 

Average bank retreat (m) 
(bank length = 8.3m) 

Maximum bank 
retreat (m) 

2 0 0 5 2 1 . 6 

2 0 0 6 1 9 . 9 1 . 7 0 . 2 0 . 8 

2 0 0 7 1 3 . 2 6 . 7 0 . 8 1 . 2 

Despite only one major instance of bank collapse being recorded during the study period, 

bank erosion through collapse is an important feature of the Wharfe system (as discussed in 

Section 4.2). Evidence o f bank collapse can be found at the bank toe and from aerial 

photographs of the river. A similar approach of comparing maps and aerial photos to 

monitor lateral channel change was used on several rivers in Scotland (Leys and Werritty, 

1999). Figure 4.14 shows substantial bank collapse that occurred at Heber bend (bank 1). 

The two aerial photographs used were georectified using features such as trees, buildings 

and wall comers in ARC GIS. By overlying the georectified images, bank erosion is clearly 

evident. This bank erosion was severe and increased the width o f the channel by up to 12 

m. This bank erosion increased the charmel width by aroimd 20%. From reading reports 

from the Wharfe such erosion probably occurred during the 1990s, possibly in response to 

the river management that occurred during the 1980s. 
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Figure 4.13: Bank erosion at Heber bend evident from aerial photographs. 
A: June 1995, 1:15,000, flying height 2284 m, ground resolution 0.34 m. Cross-section 
locations are shown in red. 
B: Google earth, downloaded 2007, Infoterra 
A and B overlaid together using ARC GIS. 

4 . 4 . 5 B A N K E R O S I O N P R O C E S S E S 

Several observations can be made following close visual inspections of each bank and its 

pins during pin recordings. These observations allow a broader understanding of bank 

erosion processes in the Wharfe to be obtained. The findings can be supported with data 

from the pins when they are examined on an individual measurement basis. This data is 

particularly useful when displayed as proportional circles. For illustration, Figure 4.15 

shows some examples of different patterns of bank erosion circles. Each pattern can be 

used to support field observations such as those discussed as follows. 
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Figure 4.14: Bank erosion processes, (a) sub-aerial processes (Site 1: Oct-Dec failure); (b) 
failure from desiccation cracks (Site 1: Feb-April); (c) undercutting (Site 5: Feb-Apr). 
Black circles indicate negative bank erosion. Seepage/piping is not demonstrated as this 
typically occurred across the whole bank and was not characterised by a distinct bubble 
partem. 

o c o O 

pin column 

First, whilst mass failures evidently occur in the Wharfe (based on the presence of the 

failed blocks at the bank toe, aerial photographs and bank 4 banktop re-surveys), these 

events are less frequent than other erosion processes and generally occurred at intervals 

greater than one year. Instead, high rates of erosion along the Wharfe occur following the 

development o f desiccation cracks (Figure 4.15) which eventually break away from the 

bank resulting in the loss of several centimetres o f bank face at a time. However, in most 

cases, the bank top remains intact forming a small overhang until the overhang reaches a 

critical threshold and collapses. It is likely that the root systems of the grass on the bank 

top, are strengthening this section of the bank, making it less likely to collapse. The 

importance o f vegetation for bank strength is widely recognised (e.g. Andrews, 1984; 

Thome, 1982; Beschta, 1998; Abemethy and Rutherfijrd, 2000). This rapid erosion is 

evident when circle pattems are similar to that in Figure 4.14b. It is clear that more erosion 

has occurred in pin columns 5-7 indicating that this part o f the bank face has fallen away. A 
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second observation is that weathering processes supply fine sediment to the bank face. The 

presence of this fine loose sediment on several banks was noted in the winter months. This 

suggests that seepage from within the bank and freeze-thaw cycles may be occurring. This 

material is also responsible for some negative bank erosion recordings and patterns of 

circles such as those shown in Figure 4.14a. In this plot, the black circles, which represent 

negative recordings, are found on the lowest row as the material from above has fallen to 

the bottom of the bank partially burying the lowest row of pins. Third, following the supply 

of fine sediment to the bank face, fluvial entrainment of this material occurs during high 

flow events. Hence a combination of weathering and fluvial entraiimient are responsible for 

much of the bank erosion on the River Wharfe that occurs over timescales of less than 1 

year. Furthermore, fluvial entrainment can lead to undercutting of the bank face since the 

lower part of the bank is subjected to flow more frequently than the upper part of the bank. 

Figure 4.14c, shows a typical circle pattern that represents undercutting. A final observation 

that can be made is that there is a possibility that burrowing animals during the summer 

months (when the flow is low enough to allow the burrows to be made) are contributing to 

a loss of bank strength. On bank 4 in particular, several active burrow entrances were 

evident in July 2007 (Figure 4.15). 

Figure 4.15: Evidence of baiik erosion from desiccation cracks and burrowing animals. 

Finally, using all the information gathered from the field surveys, field notes made during 

pin measurements and the bank pin analysis, the dominant bank erosion processes can be 

deduced. This information can show how the relative importance of processes varies 
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spatially between banks (Figure 4.16a) and also how the dominant processes alter 
temporally over the year (Figure 4.16b). 

Figure 4.16a shows that four main types of bank erosion are occurring within the Wharfe. 

Of these four, on banks 1 and 4 (i.e. those on outer meander bends), desiccation and fluvial 

entraiiraient dominate whilst on banks 2 and 5 (i.e. those on straight sections) freeze-thaw 

action governs slightly over the other three processes. Figure 4.16b demonstrates that the 

processes operating change depending on season. In the summer periods, the little erosion 

that occurs is caused by desiccation (as a result of the bank drying out and cracking), whilst 

in the winter months, the weathering processes of freeze-thaw and seepage/piping and 

fluvial entraiimient predominantly occur. 

Figure 4.16: Spatial (A) and temporal (B) pattems of bank erosion processes. Bubble size 
corresponds with relative importance. 
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4 . 4 . 6 B A N K E R O S I O N S U M M A R Y 

Bank erosion is a complex and linked process and evidence from the Wharfe suggests a 

number of factors control the rate and location at which it occurs. In particular, weathering 

and fluvial entrainment act to erode the bank on an annual basis with the potential for 

significant mass failures over timescales greater than 1 year. Additional factors such as 

bank side vegetation, burrowing animals and human bank protection are also contributing 

to or inhibiting bank erosion, although the relative importance of each factor is unknown. 

Bank erosion in the Wharfe predominantly occurs during the winter months and the rate of 

bank erosion varies between banks. There appears to be a clear difference between erosion 

rates on banks found in straight channel sections and those in curved channels. This 

suggests that channel curvature contributes to enhance erosion rates. This relationship is 

explored further in Section 6.2.3. On an annual basis the average erosion rate, due to 

weathering and fluvial entrainment processes only, is around 70 mm year' for straight 

channels and between 180 and 211 mm year"' for curved channels. These values are in the 

same range as those presented by Couper and Maddock (2001). They demonstrated that 

high rates of erosion (181 mm year'' on the River Arrow, Warwickshire) can occur from 

sub-aerial processes alone. This study supports the finding that short-term bank erosion 

rates found in the Wharfe system are largely the result of sub-aerial and fluvial entrainment 

processes. 

Data from the bank top re-surveys indicates that retreat due to mass failures can 

significantly increase bank retreat rates. Failure from one event resulted in retreat of 750 

mm. This is around 2.5 times greater than annual rates from sub-aerial and fluvial 

processes. Yet these events occur less frequently with approximate return periods estimated 

at greater than every 2-years. Evidence from photography indicates further large scale bank 

erosion has occurred in the Wharfe system in the past. 
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4 . 5 C H A N N E L C U R V A T U R E 

The Wharfe can be described as meandering with 19 distinct bends noted from the channel 

surveys. As discussed more fully in Section 2.5, channel sinuosity is important for: ( 1 ) 

hydraulic processes with bends acting as form roughness, that reduces the conveyance of 

discharge downstream; (2) sediment transport processes as bars on the inside of meander 

bends form short-term sediment stores; (3) bank erosion which is driven by the hydraulic 

conditions created as flow is forced to the outer bank around a bend; and (4) channel 

migration through the combined effects of outer bank erosion and inner bank deposition. As 

such, the sinuosity of the channel is an important parameter to quantify to aid with our 

understanding of channel processes (Sections 6.2.2 and 6.2.3) and when modelling bank 

erosion / migration processes (Section 7.2.3, Section 7.2.4 and Section 8.4.4). The radius of 

curvature of a bend can used to quantify the channel's sinuosity. 

4 . 5 . 1 C A L C U L A T I N G R A D I U S O F C U R V A T U R E 

The radius of a circle, sphere or ellipsoid is the distance from the centre to the outside edge 

or surface. Along a curve, the radius of curvature at a given point on that curve is defined 

by the radius of the circle fitting the curve. Thus, as shown in Figure 4.17, smaller circles 

fit in tighter curves (point b) whilst larger circles fit on shallower curves (point a). On a 

perfectly straight line, circle size is infinitely large. Radius of curvature can be calculated 

using the calculus definition, whereby curvature is the change in direction with distance. 

Figure 4.17: Curves with different radius of curvatures. 
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To calculate the radius of curvature of points along the Wharfe, the channel centreline was 
initially drawn and expressed as discrete points. This was done in ARC CIS using an OS 
Land.Line map (1:10,000) overiaid onto a 2 m resolution LiDAR image of the reach 
provided by the Environment Agency for Reid (2004). The centre of the channel was 
digitised by eye from the LiDAR image as a vector line and then converted into points with 
the spacing between points ~2 m. For each of the digitised centreline points, the direction 
of the flow from one point to the next was calculated in radians. Care had to be taken to 
account for direction changes from a north-east direction to a north-west direction because 
the spectrum of angles moves from 1° to 360°. This direction change should be -1 degrees, 
but the calculation returns 359 degrees. Curvature was then calculated using the direction 
change (ddir) over distance (dis) as shown in [4.8]. Distance [4.9] was calculated as the 
length between the mid-point between the first two points (;c/+/ - x,) and the midpoint 
between the next two points {Xi+2 - jc ,+/ ) . It was in effect the average length of two sets of 
successive points. Finally, the radius of curvature (c^) of a particular point was derived as 1 
divided by curvature, since 1 radian subtends an arc equal in length to the radius of the 
circle, the reciprocal of the curve. 

c = 1 / 
ddir 

[4.8] 
dis 

dis = + (-^,>2 - ^ / . i ) [4.9] 

Initial attempts at calculating radius of curvature were problematic due to the fine spacing 

of the centreline points. This made the direction and curvature calculations profile plots 

noisy. As such, the channel centreline was re-digitised but with a coarser spacing of 9.8 m. 

Even with this coarser spacing, the results were still rather noisy and hence the data was 

smoothed. Various smoothing options were tested including 3, 5 and 7 point moving 

average smoothing on the curvature results and the same again on the direction results. The 

3 point smoothing on the directions gave the best results (Figure 4.18b). This smoothing 

meant that the direction changes and curvature values were calculated over an average 

distance of 28 m. Since channel width ranged from 12 m to 33 m with an average of 17 m. 
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this spacing was thought to be sufficient to represent the bends in the channel. Figure 4.18 
shows the effect that the smoothing had on the direction results. Here, the direction of the 
flow can clearly be seen with the river flowing predominantly in a south and east direction. 
There are no locations where the channel flows north, but a couple of locations where the 
river flows in a westerly direction. These include just after the Buckden Bridge bend and at 
the bend at cross-section location 510. Meanders are represented by sudden direction 
changes. Figure 4.18c shows the curvature of the channel which is used to calculate the 
radius of cvirvature in Figure 4.18d. In Figure 4.18c, the high positive and high negative 
curvature values indicate the tightest bends, with positive bends tuming left and negative 
values indicating a bend flowing right. In Figure 4.18d, low values of radius of curvature 
indicate the tightest bends. Some notable bends are highlighted in grey. 

Once the directions, curvature and radius of curvature had been calculated for the entire 

length of the channel, the values at each of the 60 cross-sections were exfracted and 

careftilly checked to ensure that the values represented the planform conditions at that 

point. 
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Figure 4.18: Distance and curvature calculations. (A) is the direction of flow when using 
the -10 m point spacing with no smoothing; (B) is direction when using the -10 m 
direction using a 3-point smoothing; (C) is the curvature calculated from the -10 m 
directions and (D) is the radius of curvature calculated as 1/curvature. In D, only the lowest 
curvatures (i.e. tightest bends) are shown and these are expressed as absolute values to 
remove the negatives. 
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4 . 6 F L O W P A T H S A R O U N D B E N D S 

In the previous section, the curvature of the channel's centreline was determined. However, 

the prevailing flow path is not always parallel to the channel's centreline and deviates 

towards the banks in many locations (Section 2.5). These locations are driven by channel 

features including lateral channel bars and meander bends. As noted in Section 4.4.5, 

results from the bank erosion study imply that, in the Wharfe, channel curvature has a 

strong influence on bank erosion rate. Hence, it is important to understand the effect that 

curvature has on the high velocity core of flow. Furthermore, many bank erosion and 

meander evolution and migration models are driven by a channel curvature parameter. This 

is under the assumption that curvature leads to a lateral shift in the core of high velocity 

flow and shear stress towards the outer bank. Bank erosion rates are then related to the high 

velocity and shear stress. These models are discussed fully in Section 7.4.5 with many 

building on the eariy work of Ikeda et al. (1981). However, the high velocity core may not 

be entirely correlated with the curvature as centrifugal forces carry the flow around and past 

the bend apex of maximum curvature. Furthermore, flow resistance features are dependent 

on local roughness and not the form roughness related to the bar and bed topography. Thus, 

high flow and shear stress can vary spatially around a meander bend. Finally, flow patterns 

around a meander bend may change depending on the character of increasing discharge. 

Thus, the high velocity flow path may change with varying levels of stage as noted by 

Bathurst e/a/. (1979). 

It was necessary to test the extent to which the high velocity flow path followed or deviated 

from the channel centreline and how this was related to channel curvature. This was done 

using a field-based approach. These findings will aid with understanding the factors that 

drive bank erosion and channel planform adjustment in the Wharfe system. They also 

provide a justification for the bank erosion modelling approach adopted in Section 8.5. 



C H A P T E R 4 : C H A N N E L M O R P H O L O G Y 9 1 

4 . 6 . 1 M E A N D E R F L O W P A T H S : M E T H O D O L O G Y 

The high velocity flow paths around six bends of varying curvature were mapped using a 

differential GPS and an instantaneous velocimeter. Several bends in the study reach were 

unsuitable due to: (1) tree cover which restricted the use of the GPS; (2) flow depth, with 

two bends discounted for being too deep to measure; and (3) sluggish flow, preventing a 

clearly defmed flow path becoming evident. The measurements took place on a day where 

flow was low to moderate to allow for a high velocity core to be present and visible but at 

the same time allowing safe measurements to take place. At higher discharges, entry to the 

river would have been difficult and dangerous. Thus, the findings from this study assume 

that the flow path at high flows is the same as that at low to moderate flows; something 

which is unlikely (Bathurst et ai, 1979). At each bend, the upper and lower limits of the 

measurements were determined by the flow path itself so that where no obvious fast 

flowing zone was located, no measurements were made. Measurements were not made in 

zones where bed roughness was felt to be significantly altering the flow path (i.e. were 

boulders protmded). This was one of the main problems encoimtered due to the moderate 

flow conditions. 

To enable this to be a rapid process, the measurements were all taken at a depth held 

constant relative to the free surface. This was 20 cm below the surface. The maximum flow 

depth for these measurements was around about 1 m and the shallowest flow was around 30 

cm. Thus the measurements ranged from being taken at 20% flow depth up to 66% of the 

flow depth. Ideally, these would have been taken at 40%. This is largely recognised as the 

depth of the vertically-averaged flow (Richards, 1982), as it is not greatly affected by bed 

roughness or friction from the free surface. However, due to the time required to measure 

depth and adjust the velocimeter, it was decided to hold this constant allowing significantly 

more measurements to be made. 

The velocimeter records an instantaneous velocity and also takes an average every 30 

seconds. To speed up the measurement process, a test was done to determine the length of 

measurement required to give results with minimal error. Ten sets of three 30-second 
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measurements were taken at 10 locations moving downstream. The results are shown in 

Figure 4.19. The standard error of each of the 10 measurements ranged from 0.0047 m"' s " 

to 0.026 m ' s ' and this was deemed low enough that a single 30 second measurement at 

each location was taken as representative of the flow at a given location. Measurements 

were taken with a downstream spatial resolution of 2 m. At each location, several 30 

second recordings across the channel were made to determine the highest velocity. Once 

this had been located, the velocity was recorded alongside the GPS location and the 

perpendicular distance to the bank. This was done using a tape measure with the bank top 

used as the bank edge to ensure consistency. This avoided any difficulties determining the 

bank edge in situations were bank erosion was occurring. 

Figure 4.19: Determining the time period required for velocity measurements. Three 
measurements were made at each location. The error bars shown are standard error for each 
set of measurements. 
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4 . 6 . 2 M E A N D E R F L O W P A T H S : R E S U L T S 

Figure 4.20 shows the mapped paths of highest velocity flow around the five measured 

bends alongside the outer bank profile and the digitised channel centreline, hi all cases, the 

fastest flow path was found in the outer half of the channel with flow deviating towards the 

outer bank at some point. This data is analysed, alongside the channel curvature data from 

Section 4.5, in Section 6.2.2 and Section 6.2.3. 

Figure 4.20: Meander flow paths for the five measured bends. 
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4 . 7 C H A P T E R S U M M A R Y 

This chapter has provided a range of data, achieving part of Objective 3. Table 4.2 

summarises this data and indicates how it is used in further analysis (Chapter 6) or for 

modelling purposes (Chapters 7 and 8). 

The field surveys were usefiil in providmg qualitative information on processes operating in 

the study reach. This is used as supporting evidence for findings made from other field 

methods and to make inferences about processes where no data are collected, hi addition, 

locations of features such as tributaries and bank protection were identified in the surveys. 

The cross-sectional surveys used a rigorous and detailed approach to provide a 6-year 

dataset. This data is essential during the exploration of spatial and temporal patterns of 

sedimentation, for reconstructing a sediment budget and as the boundary conditions for the 

development and application of the model. Key results from the cross-sections include: (1) 

the mean bed level rise in the reach, between December 2001 to July 2007, was 0.17 m + 

0.029 m; (2) the maximum rate of aggradation for a given cross-sectional reach was 0.67 m 

± 0.031 m; (3) an upper and lower divide in bed level changes is evident. The reach 

upstream of 3000 m is notably more active. (4) Certain zones exhibit high levels of 

sediment activity but correspond with relatively low net change. These are zones of high 

sediment transfer. Data from the bank erosion study is used to understand mechanisms of 

lateral channel change and to develop and calibrate the model. The bank erosion study 

demonstrates that pins provided a good indication of small-scale, short-term bank erosion 

whilst the bank top resurveys capture instances of bank collapses over larger spatial and 

temporal scales. In the Upper Wharfe, bank erosion is more rapid on the outside of meander 

bends through fluvial entrainment and bank collapse. Rates of bank retreat from fluvial 

entrainment on bends are between 180 mm to 212 mm per year. Bank collapse resulted in 

750 mm of bank retreat in a single event. Data collected on channel curvature and flow 

paths around bends are used to explore processes of channel change in the study reach. 

Additionally it is used in the development of the lateral adjustment component in the 

model. 
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Table 4.2: Data provided in Chapter 4 and its future application. 

Study Nature of Data Future Application (Section) 

Field surveys 

Overview of 
processes 

4.4: bank erosion processes 
5.3: bed material characterisation 

Field surveys 
Locations of 
erosion / 
deposition 

6.2.2: evidence of spatial sedimentation patterns 
8.4: qualitative evidence for comparing to model 
output 

Field surveys 

Locations of bank 
protection 

6.3: lateral estimates of bank erosion volumes 
8.4: locations of bank protection in model 

Cross-sectional 
resurveys 

Boundary 
conditions 

6.5: to provide channel capacity 
8.2 and 8.3: input data for model 
(e.g. bedslope, width, depth) 
8.4.2: lateral geometry for split channel model 

Cross-sectional 
resurveys 

Locations of 
aggradation and 
degradation 

6.2: exploring spatial and temporal patterns 
8.3.2: comparing model output Cross-sectional 

resurveys 
Rates of 
aggradation and 
degradation 

6.3: estimating bedload transport rates 
6.4: predicting bed level change using impact 
sensors 
6.5: impact on flood risk 
8.3.2: comparing model output 

Bank erosion 
study 

Rates of bank 
erosion 

6.2.3: lateral adjustment mechanisms 
8.5: comparing model output 
8.7: calibrating model Bank erosion 

study Processes driving 
bank erosion 

6.2.3: explaining lateral adjustment 
7.4.5: considering bank erosion options in model 
8.4.3: developing lateral model component 

Curvature 

Variability in 
curvature 
downstream 

6.2.2: explain spatial pattems of sedimentation 
6.2.3: explain spatial pattems of bank erosion 
8.5: include channel curvature into lateral 
adjustment model 

Flow paths Flow paths 
around meanders 

6.2.2: explain spatial pattems of sedimentation 
6.2.3: explain spatial pattems of bank erosion 



C H A P T E R F I V E : 

HYDROLOGY, S E D I M E N T 

A N D B E D L O A D T R A N S P O R T 

5 . 1 I N T R O D U C T I O N 

This chapter follows on from Chapter 4 in also providing data for the analysis of chaimel 

change and for model development and application. Thus, like Chapter 4, it concentrates on 

achieving Objective 3 but also using Objective 1, literature review, to develop sovmd 

methodological approaches. Whilst the previous chapter dealt with monitoring channel 

morphology, this chapter focuses on the factors driving channel change. First, the discharge 

regime is quantified (Section 5.2). Second, the character of the bed material in the Wharfe 

is determined (Section 5.3) and finally, data, monitoring the transfer of coarse sediment is 

presented (Section 5.4). Methods and results on individual data types are interpreted in this 

chapter with further analysis and discussion occurring in Chapter 6. 

5 . 2 D I S C H A R G E D A T A 

Knowledge about the flow regime in the Wharfe is essential to this study as it drives 

sediment transport and bank erosion and allows flood risk to be quantified. A continuously 

varying record of flow is required. Discharge can be determined using two different 

methods: the Flood Estimation Handbook (FEH) (Houghton-Carr, 1999) approach; or 

methods based on known flow levels and ratings curves. The FEH method is a revised 

version of the Flood Studies Report (1975) rainfall-runoff method. This method is 

commonly used to give guidance on rainfall and river flood frequency estimation in the UK 

to river managers. This technique uses a deterministic model of catchment response to 

convert a rainfall input to a flow output. Tayefi (2005) used this approach to estimate the 

peak flow at Hubberholme. By estimating the standard percentage runoff (SPR) from 

neighbouring catchments with similar slope, land use and geological characteristics, three 

estimates of peak discharge were made. When the SPR was 60%, discharge was 36.6 m^ s'', 

at 70%), discharge was 42.4 m^ s"' and at 80%), discharge was 47.7 s '. With estimates 
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varying by 11 m^ s ' and only the maximum discharge obtained, such an approach is not 
very suitable for this study. 

The alternative approach is to convert the records of stage recorded at cross-section 030 

(approximately 300 m downsfream from Hubberholme) into discharges using ratings 

curves. The principle here is to measure the discharge of the channel using standard 

velocity-area methods (e.g. Buchanan and Somers, 1969; Nolan and Shields, 2000) or using 

tracers including electrolytic solutions, fluorescent dyes and radio-isotopes to determine the 

discharge for a given flow depth. These field techniques are repeated at a range of flow 

depths allowing a statistical relationship between stage and discharge to be made. By 

extrapolating the relationship, discharges at ungauged stages can be estimated. However, 

the field methods used to measure discharge are often impractical, particularly in shallow, 

rocky reaches where flow may be turbulent or at higher flows where the use of a flow meter 

is dangerous. Thus the measurements often fail to represent the full range of flow 

conditions and curves are extrapolated to higher discharges. 

The third alternative to estimating the discharge of a river, is to use empirically-derived 

equations that relate cross-sectional averaged velocity (v) to mean flow depth (d) and 

gradient (5 which is sin 0) to define flow resistance. This assumes that the impediment of 

flow due to friction is equal and opposite to the downslope component of water weight 

(Ferguson, 2007). Flow depth is often replaced with the hydraulic radius (R) which is cross-

sectional area {A=wd) divided by the wetted perimeter (Pi), w is the wetted width. Three 

classic flow resistance equations include [5.1] the Chezy coefficient (C), [5.2] the Darcy-

Weisbach friction factor ( f ) and [5.3] Manning's equation (n): 

v = C{dSy" [5.1] 

v^iSgdS/fY" [5.2] 

v = d"'S"'/n [5.3] 
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These equations require the resistance parameter (C, / n) to be determined. This resistance 
comes from the skin friction which in gravel-bed rivers without submerged vegetation is 
characterised by the grain size. As flow depth increases, the ratio of the flow depth to grain 
size (d/D) reduces and the friction becomes less important. Two approaches that relate 
resistance to depth and grain size include Keulegan and Manning-Strickler. The Keulegan 
approach integrates the logarithmic law of the wall throughout the flow depth using the von 
Karman constant whilst Manning-Strickler [5.4] relates Manning's n to the 1/6"̂  power of 
D. 

n = a,{d/Dy" [5.4] 

where the coefficient a/ is typically 6.7 i f D50 is used to represent grain size roughness, and 

8.2 i f using D84 or D90 . 

Neither of these approaches \york well in shallow flows and hence modifications and 

alterations have been proposed. Ferguson (2007) divides these approaches for discussion 

into modified logarithmic laws, generalised power laws and non-dimensional hydraulic 

geometry, and roughness-layer models. Yet even these modified flow resistance equations 

specifically designed for shallow flows (including Bathurst, 2002; Jarrett, 1984; 

Rickerman, 1991; Katul et al., 2002; Smart et al., 2002) fail at deeper flows with the 

predicted resistance found to be either too high or too low. Ferguson (2007) explains that 

the main reason behind this is that the dominant physical source of flow resistance, changes 

depending on the flow depth. At high flows, resistance predominantly comes from skin 

friction and large scale form resistance (i.e. bedfoms including bars). At low flows, form 

drag associated with large roughness elements becomes important. Ferguson (2007) 

proposes a new variable power equation (VPE) to overcome these issues and to allow 

velocity to be predicted using a single equation for a wide range of flows. This approach, 

described as follows, was applied to the Wharfe stage data to provide a stage-discharge 

rating curve. 
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The VPE equation combines roughness-layer formulations for shallow flows with the 
Manning-Strickler approximation of the logarithmic friction law for deep flows giving: 

where/ is the Darcy-Weisbach friction factor, v is cross-sectionally averaged velocity, g is 

gravitational acceleration, R is the hydraulic radius, S is channel gradient, D84 is the grain 

size at which 84% of grains are finer and a/ and ai are 6.5 and 2.5 respectively as 

determined after calibration (Ferguson, 2007, p28). 

Figure 5.1 compares the predicted ratings curves using different methods: (1) uses 

Manning-Strickler [5.4] with coefficients aj = 8.2 (MSa) and a/= 6.5 (MSb) and the D84; 

and (2) the VPE equation [5.5]. The value o f a/ for MSb is the same as the «/ value used in 

the VPE equation. Since the stage record was for cross-section 030, the cross-sectional 

geometry at this location was used. Care was taken to ensure that the geometry closest to 

the stage measuring time period was used. Had the most recent survey been used, the 

deposition that has occurred in recent years would have altered the channel's cross-

sectional area for the respective stage. The bed slope at this location was 0.0066 whilst the 

D84 grain size, interpolated from the grain size characteristics at 010, 040 and 080 as 

presented in Figure 5.14 was 0.13 m. The surface D84 was used rather than the active layer 

D84. However, the equation was not that sensitive to small changes in the 034 used. The 

calculated velocity (v) was used to determine the discharge using: Q = vA, where A is 

cross-sectional area. From these three curves, the MS using a/ = 6.5 and the VPE equation 

produce similar curves with the MS approach using a/ = 8.5 producing higher discharges 

for the given stage. A decision to use the VPE rating curve was made. This was based on 

the findings from Ferguson (2007) who concluded that the VPE equation performs as well 

as any existing resistance law and is a useful tool for anyone wanting to predict velocity by 

a single equation over range of conditions. 
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Figure 5.1: Stage discharge ratings curve using different f low resistance equations. 
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The stage discharge relationship generated from the VPE equation and shown in Figure 5.1, 

was applied to the stage records at Hubberholme to give a discharge record at 15 minute 

intervals. This was done for all records including the complete annual stage records for 

1997, 2000 and 2002 and incomplete records for 2003. Calendar years rather than 

hydrological years were used as this provided three fu l l years rather than only two. During 

these time periods the largest flood events occurred on the 19* of February and the 5* o f 

May 1997, the 4"" o f June 2000 and the 14* o f June and 2"*̂  o f August 2002. 

Flow duration curves for each of the complete years are shown in Figure 5.2. This figure 

immediately highlights variations in flow regime on a year-by-year basis. 2000 was the 

wettest o f the three years whilst 1997 was considerably drier. These variations pose a 

problem when selecting a flow regime for modelling purposes. Ideally the hydrological 

regime used in the model would represent the average annual flow conditions for a certain 

length of time, for example the recent decade. From the data presented in Figure 5.2 alone, 

it is unclear whether any o f these represents the longer term flow conditions. A l l years may 

be wetter or drier than average. To explore this further, the discharge records at Flint M i l l , 

70 km downstream of Hubberholme were downloaded from the National River Flow 
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Archive (CEH). This archive provides records from many Environment Agency gauges 

across the U K and the data is freely available from the website ft»r use by researchers. 

Figure 5.2: Flow duration curves (or Hubberholme (15 min data) (based on calendar year 
rather than hydrological) 
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The Flint M i l l records can be used under the assumption that the discharge 70 km 

downstream scales with the discharge at Hubberholme. The CEH record of Flint M i l l 

extends back to 1956 and provides daily averages. By comparing the daily records at 

Hubberholme for the three years that data exist with the Flint M i l l data for the same years, 

the relationship between the two sites can be compared. The relationships were linear with 

high values o f 0.792, 0.788 and 0.798 for 1997, 2000 and 2002 respectively. The scatter 

in this relationship represents the lag time between peak flows, the greater level of 

attenuation expected as one progresses further downstream, tributary effects and spatial 

variability in precipitation. Despite the scatter, the Flint M i l l record can provide a 

reasonable surrogate for daily discharge at Hubberholme provided the data required does 

not relate to the specific timing o f events or specific discharges. 
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The Flint M i l l record can be used to examine the regime characteristics during the three 

available years. Table 5.1 shows the average, maximum and minimum daily discharge at 

Flint M i l l . Data in this table echoes the findings made from Figure 5.2 that indicate 2000 

and 2002 were wetter than 1997. The average discharge for 2000 was 12.7 m'' s"' higher 

than 1997 and the maximum daily discharge in 1997 was 160 s"' lower than in 2002. 

Furthermore, when the mean conditions over the 60-year monitoring period are compared, 

1997 was noted to be drier than average and 2000 and 2002 were wetter than average. To 

obtain a flow regime that was representative o f the longer-term average, the 15 min records 

for 1997 and 2002 were combined giving a "representative-hydrological period". By 

plotting the records at Flint M i l l as flow duration curves (Figure 5.3), the representative 

hydrological period provides a flow duration curve similar to both the 60-year and 10-year 

average flow regime for the Wharfe. Thus the 1997 & 2002 record can be used as a 

hydrograph for further analysis and for use when modelling. Care was taken to recognise 

that this period was two-years. 

Table 5.1: Flow characteristics at Flint M i l l (m^ s''). 

1956-2006 1997 2000 2002 
Average daily Q 17.14 13.7 26.4 21.6 

Max daily Q 164.8 100.1 237.7 262.8 
Min daily Q 2.10 2.26 2.64 2.69 
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Figure 5.3: Flow duration curves at Flint M i l l 
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5 . 3 B E D M A T E R I A L C H A R A C T E R I S A T I O N 

It was clear from early visits to the Wharfe, and from field surveys, that grain size in the 

channel varied with distance downstream. It was of interest to determine the rate at which 

this occurred. This would provide information on: (1) downstream fining rates; (2) the 

significance of tributary inputs; (3) the character o f deposits measured in the cross-sectional 

surveys; and (4) provide the model with a series of grain size distributions (GSDs) down 

the channel. GSDs are necessary to determine grain and flow roughness for use in 

calculations o f flow and discharge, provide an input for bed mobilisation and bedload 

transport equations, and as a measure o f habitat suitability for spawning fish and other 

aquatic organisms (e.g. Mosley and Tindale, 1985; Church et al, 1987; Wohl et ai, 1996; 

Kondolf et al., 2003). Previous attempts to characterise the bed material in the Wharfe were 

made by Powell (1992) and Milledge (2003) but low spatial resolutions and inadequate 

sampling strategies make this data insufficient for the purposes o f this study. A new 

strategy to obtain this information was required. 
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5 . 3 . 1 S A M P L I N G O P T I O N S 

River bed material is sampled and analysed for a wide range of purposes yet accurately 

characterising bed material is difficult, particularly in gravel-bed rivers. Church et al 

(1987) provides two key reasons for this: 

1) Since the range o f grain sizes present in gravel-bed rivers can be large, ranging over 

several orders of magnitude from sand to boulders, it is often impractical to use a 

single sampling technique (Church et al., 1987; Rice and Haschenburger, 2004). 

This is because most sampling techniques place bias on either the coarse or the fine 

ends o f the distribution. Coarser particles are typically associated with flow 

resistance and finer particles are associated with sediment transport (Petrie and 

Diplas, 2000). Since the accurate measurement of grain size statistics such as the 

median grain size (the D50) requires knowledge of the whole grain size distribution, 

all grain sizes present in the bed must be representatively sampled (Fripp and 

Diplas, 1993). Thus, more rigorous sampling and analysis is required for rivers with 

a wider range o f grain sizes. 

2) Problems can arise due to the large spatial and temporal variations present in the 

composition o f the bed (Fripp and Diplas, 1993; Crowder and Diplas, 1997). 

Establishing a sample size that accounts for the layered nature of the deposits and 

the spatial structural features of the bed such as particle clusters and imbrication is 

difficult (Church et al., 1987). It is also often useful to sample the surface and sub

surface layers individually (Diplas and Sutherland, 1988; Diplas and Fripp, 1992; 

Fripp and Diplas, 1993) as their different GSDs can be linked to different river 

properties (e.g. the surface with roughness and the sub-surface with ecology and 

sediment transport). 

It is therefore important to design an appropriate sampling strategy that w i l l provide a 

reliable and accurate representation of a river bed's GSD. In coarse grained rivers this 

"represents a substantial task". (Dunkerley, 1994, p255). It was also necessary to consider 

time and cost constraints to ensure that the sampling strategy was feasible. Kellerhals and 

Bray (1971) set out five key decisions that must be made in order to sample bed material 
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effectively. These are: (1) to select sampling sites and the time at which to sample; (2) to 
choose the method or methods to use to sample (and the quantities of samples required for 
each); (3) to choose the method of measurement (i.e. sieves, tape measures, callipers); (4) 
to select the method of analysis (frequency-by-weight, volume or number); and (5) to 
decide how to present the results. To make these decisions for the Wharfe, the literature 
was extensively reviewed 

The first step in selecting a sampling method is to determine the purpose o f the bed material 

data to ensure the correct field measurements are made (Hey and Thome, 1983; Dunkerley, 

1994). Whilst one measure o f grain size such as the (the grain size of the 84"̂  

percentile) may be adequate for estimating roughness, knowledge of the fiill grain size 

distribution is necessary for modelling the fractional transport o f sediment. Furthermore, it 

is often important to characterise the surface and sub-surface layers of sediment separately 

to provide a more complete description o f the bed and to allow an active transport layer 

GSD to be determined. Hence, sampling techniques that represent both the coarse and fine 

end of the distribution are required for both the surface and sub-surface layers o f the 

Wharfe to provide roughness values and input data for sediment transport modelling. 

Various sampling methods are available and excellent reviews of these are given in papers 

by Church et al. (1987) and Kondolf et al. (2003). Surface sampling techniques were 

broadly grouped by Church et al. (1987) into: (1) pebble and grid counts; (2) areal 

sampling; and (3) volumetric sampling. The first technique uses some variation of 

Wolman's (1954) pebble coimt technique; perhaps the most popular surface sampling 

method. It involves sampling a pre-determined number of particles under a grid or in 

approximately even-spaced increments such as a step (the Wolman walk). This technique 

has the advantage of being cheap and easy, requires no lab time and provides a more 

representative sample o f an entire sample site than other methods (Wolman, 1954). 

However, it is limited to larger particles which can be picked up (e.g. Wolman, 1954; 

Diplas and Fripp, 1992; Fripp and Diplas, 1993; Green, 2003). This introduces a sampling 

bias towards coarser material (Marcus et al., 1995). 
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The second technique, areal sampling, typically uses an adhesive such as clay or wax to 
remove the surface layer in a predefined area. The number or weight of particles in each 
size class are then quantified using sieves and templates. This technique requires both field 
and laboratory time and is unsuitable for particles greater than 40 mm. Diplas and Fripp 
(1992) found that the adhesive fails to l i f t these particles. However the surface layer can 
also be removed by hand, allowing larger particles to be sampled. This can be done by eye 
or using spray paint to distinguish the surface layer from its substrate. More recent 
approaches have used photographic techniques to classify surface grain sizes through areal 
sampling. Some variations using photography include using emulsion-based photographic 
data capture (e.g. Rice and Church, 1988), photo-sieving (Ibbeken et al, 1998) and digital 
image processing (Butler et al., 2001). However, these photographic measurements are 
commonly biased with respect to the actual measurement since there may be partial hiding 
of the clast by sand, shadow or another clast (Adams et al., 1979) or due to the imbrication 
angle (Church et al., 1987; Kondolf e/ al, 2003). 

The third technique is that o f volumetric sampling where a sample with known volume 

(typically the depth of the Dmax) is removed using one o f several techniques. These include 

using a spade or a backhoe, freeze-core sampling or using cylindrical core samplers or 

"cookie-cutter" samplers for sampling underwater (Klingeman and Emmett, 1982; Kondolf 

et al., 2003). However, since a surface layer does not occupy a predetermined volume (due 

to surface voids) (Kellerhals and Bray, 1971), it is difficult to get an accurate volumetric 

sample particularly in coarse beds. The obtained sample is analysed using sieves and the 

results are displayed in terms of frequency distribution by weight. 

Areal and volumetric sampling can both be termed bulk sampling. Bulk sampling is 

considered by Diplas and Sutherland (1988) to be the most traditional or standard sampling 

procedure and the only truly unbiased technique that represents the entire GSD. Yet it is 

sometimes un-feasible to obtain adequate samples in very coarse sediment where the 

particles may be too heavy to l i f t and the sample size required may be too large (e.g. 

Church et al., 1987). It is also labour and time intensive and a single sample is unlikely to 

represent an entire reach (Mosley and Tindale, 1985). Hence, multiple samples are required 
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which often places too much demand on resources. Sub-surface sampling typically involves 
removing the surface layer and obtaining a volumetric or areal sample of the underlying 
sediment in the same way as sampling the surface. The analysis and advantages and 
disadvantages are the same as sampling the surface. 

5 . 3 . 2 S A M P L I N G S T R A T E G Y 

With no one approach being ideal, it was decided that a combmation of techniques should 

be used to sample the Wharfe. Time consuming and labour intensive bulk samples o f the 

surface and the sub-surface would be carried out at limited sites downstream whilst 

reladvely quick and easy pebble counts would be done at .multiple sites including the bulk 

sample sites. Using hybrid approaches to reduce bias at either the fine or coarse end o f the 

material and to sample the surface and sub-surface to reconstruct die entire GSD is a 

common procedure (e.g. Diplas and Fripp, 1992; Fripp and Diplas, 1993; Casagli et ai, 

2003; Rice and Haschenburger, 2004). 

Field surveys were consulted to select sampling sites: 16 pebble counts; and three for bulk 

sampling. The locations of these sites are shown in Figure 5.4. The chosen sites were 

spaced at roughly even intervals down the river with all bulk sites corresponding to a 

pebble count site. The selected locations were areas o f exposed gravel, typically point and 

lateral bars, which made sampling easier and removed potential biases from elutriation due 

to sub-aqueous sampling (Marcus et ai, 1995). Hence the sampling took place in the 

summer when the river was at its lowest flow. The sampling o f bars at low flows is 

common (e.g. Church and Kellerhals, 1978; Marcus et ai, 1995). Since the upper-most bar 

at Hubberholme consisted of very coarse sediment and some boulders (> 1 m), bulk 

sampling was not feasible and hence the most upstream bulk sample was carried out 800 m 

downstream between cross-secdons 070 and 080 where die sediment had fined sufficiendy 

to allow a bulk sample to be measured. A t each site, judgement was used to select the 

precise sampling area so that it was representative of the majority o f the bar. The most 

downstream sampling site was at cross-section 540. Further downstream, there were no 

exposed sediment bars. 
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Figure 5.4: Bed material sampling sites. 
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Templates and sieves were used to classify the sampled material into grain size classes. A 

square gravelometer (Figure 5.5) was used instead o f a round one to allow consistency with 

the square sieves. It was felt that using measuring tapes or callipers would take too much 

time. A tape measure was only used on the very largest boulders (>-8 0 or 256 mm). The 

material was classified according to the Wentworth scale and corresponding phi scale 
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which defines grain size classes in millimetres or phi units respectively (Table 5.2). These 

whole units increase by powers o f 2 and [5.6] and [5.7] show the relationships between the 

two scales. The gravelometers used ranged in size from -3 0 up to -8 (p in half phi units. -5 

<P and -4.5 0 field sieves were used and sieves for every half phi unit above 0.5 0 were 

used in the laboratory. 0.5 ^ was chosen as the lower boundary as it typically represented 

less than 1% of the samples. Most o f the data are presented in millimetres. 

Figure 5.5: Square gravelomenter template used for sampling 
Table 5.2: Wentworth scale for grain size class 

Size in (D) P/7/scale 
mm m 

Large Cobbles <256 -8 

< 181 -7.5 
Small Cobbles < 128 -7 

< 9 0 -6.5 
Very coarse gravel < 6 4 -6 

<45 -5.5 

Coarse gravel < 3 2 -5 
< 2 3 -4.5 

Medium gravel < 16 -4 
< 11 -3.5 

Fine gravel < 8 -3 
< 6 -2.5 

Very fine gravel < 4 -2 
<2.8 -1.5 

Very coarse sand < 2 -1 
< 1.4 -0.5 

Coarse sand < 1 0 
< 0.7 0.5 

D = T [5.6] 

[5.7] 

where D is the grain size diameter in millimetres and (p is grain size diameter expressed as 

phi. 
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5 . 3 . 3 P E B B L E C O U N T S 

A Wolman walk was chosen over the grid method since it allowed the entire bar to be 

sampled and no additional field equipment (i.e. the grid) had to be constructed. The 

selection o f grains to be sampled was determined by walking a series of transects down the 

gravel bar. Only one person carried out all the counts to avoid user-dependent bias which 

can significantly alter results (Hey and Thome, 1983; Marcus et al., 1995; Wohl et al., 

1996). At sites where bulk samples were taken, the bulk sample was obtained in the middle 

of the pebble count transects. At every step, the sampler's index finger was placed by the 

sampler's shoe with closed eyes. The grain that lay beneath the finger was removed and 

measured. This means that the smallest particle size that can be consistently sampled is 

limited by the researcher's finger and is typically around 10-15 mm (Wolman, 1954; Diplas 

and Fripp, 1992; Fripp and Diplas, 1993). Tweezers could have been used to reduce this 

size to 8 mm (Wohnan, 1954; Kondolf, 1996). To avoid falling over the boulders at the 

most upstream bar, a tape measure was used instead o f pacing and grains every 1 m were 

measured. This spacing was such that no particle was sampled twice. The intermediate or b-

axis o f the selected grains was placed through the gravelometer. When the particle was too 

large to l i f t or partially buried, a crude estimate was made. This problem only occurred at 

the most upstream bar. The measured pebbles were placed into Vz phi size classes. 

There is much debate over the number o f pebbles required to provide a good representation 

of the surface material. Wohnan (1954) originally suggested that 100 pebbles were 

sufficient and Kondolf (1996) supports this recommendation. However, others suggest 

differently. For example Hey and Thome (1983) found that 40 clasts were sufficient. 

Church and Kellerhals (1978) measured 50 pebbles whilst Rice and Church (1996) suggest 

at least 400 are required. With such variations, a preliminary investigation was carried out 

on a bar mid study reach to determine the most appropriate number for this study. 

This involved measuring four sets o f 100 pebbles and determining the variation between 

the D50 and D84 from each set. Figure 5.6a shows each sets GSD and shows that some 

variations were present. The D50 and D84 reduced as the sampling progressed and as the 
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total number of sampled increased. Yet had the order in which the sets o f pebbles were 
sampled changed, the reduction in as sample size increased, might not have been 
present. It was therefore necessary to test the variability within the dataset. This was done 
computationally by randomly sampling eight sets of 100, 150, 200, 250 and 300 grains 
from within the measured sample of 400 grains. This technique called bootstrapping was 
used by Rice and Church (1996) to determine the percentile standard errors for large 
samples, in this investigation, the D 5 0 and Ds4 values were noted from each re-sample and 
the standard deviation between values was found. These values are shown in Figure 5.6b. 
This graph cleariy shows that increasing the number of pebbles sampled reduces the error 
associated with the D50 and D84. It also shows that the variation within the D50 is much less 
than the D84. From this procedure, it was decided that 200 pebbles would provide sufficient 
precision without being too time consuming. Hence 200 pebbles were counted at the 15 
other sites down the river. This was double the number o f pebbles adopted by previous 
researchers for sampling the Wharfe (Powell, 1992; Milledge, 2003). 
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Figure 5.6: Variability in grain size distributions and grain size characteristics between sets 
of pebble counts. GSDs are presented on a linear scale to make differences between sets 
more visible. 
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5 . 3 . 4 B U L K S A M P L E S 

Bulk samples were taken fi-om the surface and sub-surface o f three sites corresponding to 

pebble count locations. Determining the mass o f a sample needed to provide the accuracy 

and precision of the required data is difficult due to the spatial and temporal variations 

found in gravel-bed rivers (Gale and Hoare, 1992). Increasing sample size increases sample 

accuracy by incorporating more spatial variations but this increased accuracy is at greater 

costs in terms o f labour and time. Hence a balance must be struck and the sample size 

obtained should depend on what type of data is needed (just the D 5 0 or the entire GSD), 
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what the distribution is like (i.e. fine or coarse) and what level o f accuracy is required 
(Dunkeriey, 1994; Ferguson and Paola, 1997). As Church and Kellerhals (1978) suggest, 
the results from computational procedures can be very sensitive to the GSD input and it is 
important to obtain the correct precision o f data (Klingeman and Emmett, 1982; Carling 
and Reader, 1982). 

There are numerous recommendations about what the adequate sample size is. Early work 

followed standards specified by the American Society for Testing Materials (ASTM, 1978) 

or the British Standards Institution (BSI, 1975). The ASTM suggested that a 50 kg sample 

is adequate when the D ^ x is 25 mm and 175 kg sample is needed when the Dmax is 90 mm. 

The BSI suggested 2 kg and 50 kg were adequate when the Dmax was 20 mm and 63 mm 

respectively. Both these standards vary greatly. Later, Mosley and Tindale (1985) 

suggested that the largest clast in a sample should represent <5% of the total sample mass. 

However, Church et al. (1987) set the standards to which most researchers since have 

followed (e.g. Gale and Hoare, 1992). They devised their sampling criterion by testing 

splits o f data from a single moderately large sample (33.5 kg). They initially concluded that 

the largest clast should constitute no more that 0 .1% of the total sample size. However for 

coarse gravel channels such as the Wharfe where the largest grains are around 6 kg, this 

would require a 6 tonne sample. Hence Church et al. (1987) relaxed this criterion and 

suggested that a 1% criterion should be used instead for samples that have a Dmax greater 

than 32 mm. Based on this, over half a tonne o f sediment is still required to achieve this 

target: a difficult but achievable task. 

The sampling method involved determining the weight of the Dmax and estimating how 

many bucket loads o f sediment were required to reach the Church et al. (1987) criterion. 

Target weights were: 7 kg (surface) and 2.25 kg (sub-surface) for cross-section 080, 6.25 

kg (surface) and 4 kg (sub-surface) for 350, and 1.5 kg (surface) and 0.5 kg (sub-surface) 

for 510. The top surface of the gravel was lifted by hand and placed via buckets onto a 

large tarpaulin (Figure 5.7a) until the target weight had been collected. The sub-surface 

remained damped allowing it to be distinguished from the surface. This areal sampling 

approach removed problems associated with surface voids when obtaining a volumetric 
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sample. Once the required weight had been removed, the sorting process began. This 

involved using the Wolman template and field sieves to sort the sediment into V2 phi units 

(Figure 5.7b). Each grain size group above 23 mm was weighed and recorded and the finer 

sediment was placed into a pile and carefixUy mixed together. A sub-sample was then taken 

back to the laboratory for finer sieving and weighing down to 0.7 mm. The remaining 

sediment was weighed. Drying was not necessary as the sampling was carried out on a dry 

day and even the damp sub-surface was dry when the sample was taken. This process was 

repeated for the sub-surface layer o f sediment with an areal sample being taken. 

Figure 5.7: Photos taken at site 350 showing (a) the bulk sample and (b) coarse sediment 
sorted into piles, then weighed in the bucket using a spring weight. 

5 . 3 . 5 C O M B I N I N G T H E D A T A 

Following basic data collection, the pebble counts and bulk samples were analysed by 

calculating the percentage o f material that was finer than each o f the grain size classes. This 

was done at each site for each data type: pebble counts, surface bulk samples, sub-surface 

bulk samples. Certain initial findings could be made after plotting the three data sets 

together, as shown in Figure 5.8. Firstly, the surface material was much coarser than the 
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sub-surface and very little sand was present within the samples. The ratio o f surface to sub

surface D50 was between 1.6 and 4 with an average of 2.4. These results echo those of 

Parker et al. (1982) who found the ratio to be between 1.5 and 3.0 with 2.0-2.5 being the 

most common. Church et al. (1987) described a coarser surface layer as a near-universal 

feature of gravel bed rivers. It can be attributed to either the winnowing o f surface fines or 

as a result of "equilibrium transport" (Andrews and Parker, 1987) where large and 

relatively immobile grains become concentrated on the surface. These grains become more 

exposed whilst the fines fall between the coarse grains, so gaining shelter fi-om the 

prevailing flow. 

Figure 5.8: GSDs when using the pebble counts and surface and sub-surface bulk sampling 
approaches. 

pebble counts 
surface bulk 
sub-surfece bulk 

grain s ize (mm) 

grain t iza (mm) 

A second interesting finding shown in Figure 5.8 was that the pebble coxmt GSDs were 

much fmer than the surface bulk sample. Theoretically, as the samples have measured the 

same thing, the results should be the same. This difference was initially surprising 

particularly since most o f the literature demonstrates that pebble or grid sampling produces 

coarser GSDs than bulk sampling due to sampling bias (e.g. Kellerhalls and Bray, 1971; 

Church et al., 1987; Diplas and Fripp, 1992; Fripp and Diplas, 1993). There are three 
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possible explanations for this discrepancy. First, it could be attributed to sampling bias 
where the sampler is selective towards the finer grains on the pebble count. Second, since 
the surface layer was lifted by hand for bulk sampling, some of the finer particles may have 
fallen onto the sub-surface layer. This would lead to a coarse surface layer. However, with 
so little fines, this seems a difficult sampling error to make at a large scale. Finally, this 
could be due to the differences between the nature of the data. The pebble counts are 
fi-equency-by-number whilst the bulk samples are area-by-weight. They can therefore not 
be compared directly and require transformations. To confirm this theory, an additional 
pebble count was done where the pebbles were counted and weighed and the D50 and DgA 
values were compared. The results shown in Table 5.3 confirm that when weighing the 
grains the GSD characteristics are much coarser than when counting. This supports the 
earlier finding in Figure 5.8 that the pebble count results are finer than bulk samples, and 
that this difference is partly due to methodological issues. 

Table 5.3: D values when measuring the same sample using fi-equency by number and 
fi-equency by weight. 

Frequency by number Frequency by weight 

D50 (mm) 49.0 91.6 
Dg4 (mm) 86.7 121.0 

The inability to compare results produced by different sampling techniques directly is a 

common problem (e.g. Leopold, 1970; Kellerhals and Bray, 1971; Church et ai, 1987; 

Diplas and Fripp, 1992). It is therefore necessary to convert the data into one comparable 

form. This is typically volumetric values (Kellerhals and Bray, 1971; Fripp and Diplas, 

1992). Kellerhals and Bray (1971) were the first to proposed formal conversion factors to 

convert sampling results for comparison. Kellerhals and Bray (1971) used a void-less cube 

model made of three different sizes of cube randomly packed together. By analysing the 

cube, the relationship between different sampling procedures was deduced and formal 

conversion factors were found. The general conversion factor taken from Church et al. 

(1987) is: 

( Z / . ^ ^ } [5.8] 
/=i 
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where/o, is the observed population of the sample in the ith size class with mean size Dgi, x 
is the integer dimension required for the conversion, n is the number of size classes and fd 
is the sum of the converted sample. 

Using [5.8], Kellerhals and Bray found the following conversion factors: 

a) frequency-by-number to volume-by-weight: x = 0 

b) frequency-by-weight to volume-by-weight: x = -3 

c) area-by number to volume-by-weight: x = 2 

d) area-by-weight to volume-by-weight: x = -1 

These conversion factors suggest that pebble count data (i.e. frequency-by-number) can be 

directly compared with volumetric sample data (e.g. volume-by-weight) since the 

conversion factor is 0. However, whilst the Kellerhals and Bray (1971) conversions have 

general stood the test of time with few alterations, many suggest that the conversions 

overcompensate and do not account for the packing of heterogeneous sediments, patterns of 

voids or the non-random exposure of ellipsoidal grains (e.g. Profitt and Sutherland, 1980; 

Diplas and Sutherland, 1988; Marion and FraccaroUo, 1997). Hence, different conversion 

factors have been proposed. For example, Diplas and Sutherland, (1988) refined the 

Kellerhals and Bray model to include voids and porosity and found that the area-by weight 

conversion should be -0.47 rather than -1. More recently, a new model by Marion and 

Fraccarollo (1997) found a conversion value of x = -0.41 for areal sampling to be the best 

for bimodal mixtures; in agreement with the Diplas and Sutherland model. However, they 

argue that the value of -0.47 sometimes breaks down in natural mixtures and this suggest 

that the x value can vary greatly making the selection of the appropriate conversion value 

difficult without justification. Consequently, conversion factors specific to the Wharfe 

sediment were required. 
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5 . 3 . 6 C O N V E R T I N G T H E D A T A 

The data obtained from fieldwork included: (1) numerous surface pebble-count 

distributions which fail to represent the finer material; and (2) limited bulk samples of the 

surface and sub-surface which provide good GSDs including the finer material. It was 

therefore necessary to link the pebble count data to the bulk data to allow the multiple 

pebble counts to be converted into volumetric samples at numerous sites downstream. This 

would provide the data in a form suitable for future analysis and modelling. Several steps 

were used to manipulate the data. These steps are shown in Figure 5.9. The discussion that 

follows justifies the decisions made for each of these steps. 

Figure 5.9: Steps required to manipulate data into appropriate form 

Step 1: Test Kellerhalls and Bray's (1971) conversion factors by finding 
the conversion factors required to transform the surface bulk samples 
into the pebble count data. If x = -1 then Kellerhals and Bray's factors 
can be used to convert the bulk samples into volumetric bulk samples 

Step 2: Define the active transport layer 

Step 3: Truncate the bulk samples and pebble count data at 8 mm. 
Convert the surface and sub-surface area-by-weight bulk samples into 
volume-by-weight using x = -1. Combine samples to define the G S D of 
the active layer 

Step 4: Find the conversion factor to transform the pebble count data 
into the volumetric active layer at the three bulk sample sites. Apply this 
conversion factor to all 16 pebble count sites to convert the pebble count 
data into active layer volume-by-weight samples. 

Step 5: Find the relationship between percentage fine material (< 8 mm) 
in the active layer and distance downstream. Interpolate from distance to 
determine the percentage of fine material to add into each sample. Add 
in fine material and complete GSD at each of the 16 sites downstream. 
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Step 1: Testing conversion factors 

The first step was to convert the surface area-by-weight samples into the appropriate form 

for modelling: volume-by-weight. Kellerhals and Bray (1971) suggest that frequency-by-

number data (i.e. pebble counts) can be directly compared with volume-by-weight data 

(conversion factor x = 0). Hence using Kellerhals and Bray's findings, i f the area-by-weight 

data is converted into volume-by-weight using their conversion factor of x = - 1 , it should 

theoretically be the same as the pebble data. To test whether the Kellerhals and Bray 

conversion factors are applicable, equation [5.8] was used to find the best values o f x to 

convert the surface areal samples into their corresponding pebble counts. Since the pebble 

count data poorly represents the fine material due to selection bias, the pebble and bulk data 

were truncated at 8 mm to remove these fine grains. Figure 5.10 shows the GSDs before 

and after conversion. 

Figure 5.10: GSDs before and after conversion. P denotes the pebble count data and C 
denotes the converted surface bulk samples. 

after conversion before conversion 

10 100 grain size (mm) gram size (mm) 

The best fit conversion values were x = -1.41 (080), -0.79 (350) and -1.18 (510) with an 

average best fit value of x = -1.13. The 080 site visually shows the best conversion at -1.18 

whilst the 350 and 510 sites fit well at the coarse end but deviate slightly towards the finer 

end o f the distributions. These values do not vary greatly from the x = -1.0 conversion 

factor proposed by Kellerhals and Bray (1971) showing that their conversions are 

reasonable applications when applied to natural sediment mixtures. Thus the areal bulk 
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samples can be converted into volumetric samples using [5.8] and x = -1 . This also means 
that the pebble counts truncated at 8 mm can be used directly as volumetric representation 
of the surface only layer. 

Step 2 and 3: Defining the active transport layer 

The data are currently split into surface and sub-surfaces layers. However, material moved 

during sediment transport can be from both the surface and sub-surface layers. Since it is 

difficult to convert the pebble counts directly into sub-surface GSDs, it is necessary to 

combine the surface and sub-surface layers together to determine the GSD of the active 

transport layer. It is also necessary to determine the thickness of this active layer. 

The active transport layer can be defined as the part of the bed that interacts with the flow. 

It determines rates and composition of the transported sediment (Blom and Parker, 2004) . 

Many studies have explored bedload transport layer thickness using tracer pebbles (e.g. 

Wilcock et al, 1996), scour chains and scour monitors (Haschenburger, 1999). These 

studies highlight two key points. First, DeVries ( 2 0 0 2 ) found that over timescales shorter 

than those associated with measurable scour and fill, bedload transport in gravel-bed rivers 

involves the disturbance of a relatively thin layer of the bed. Second, scour depths can vary 

greatly within the channel (Hassan, 1990; Parker and Sutherland, 1990; Haschenburger, 

1999; DeVries, 2002) . They can fluctuate with both surface grain size and shear stress (Van 

Niekerk et al., 1992; Wilcock and McArdell, 1997) and over time (Parker and Sutherland, 

1990; Kelsey, 1996). During short timescales, the active layer may be only those particles 

on the surface which are liable to immediate entraiimient whilst over longer timescales the 

active layer can be associated with scour and fill and bedform formation (Kelsey, 1996). 

There is a degree of arbitrariness in the specification of the active layer and definitions vary 

from simple fractions of sediment size to functions of flow depth and shear stress. For 

example Park and Jain ( 1987) use Dmax, Fripp and Diplas (1992) use 2Dmax, Hoey and 

Ferguson ( 1994) use 2D84, Parker ( 1 9 9 0 ) uses an order one multiple of D90, Van Niekerk et 

al. ( 1992) scale active layer thickness with shear stress, Cui et al. (1996 , 2003 ) use a 

function of geometric mean sediment size and the geometric standard deviation of the 
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sediment and Gasparini et al. (1999) hold the active layer constant at a value much larger 
than the D50. 

Guidance on selecting an appropriate definition of the active layer can be obtained by 

recent work on active layer or exchange layer thickness using scour chains. These studies 

all found that maximum disturbance depths were around 2D90 of the surface (Wilcock et al., 

1996; Wilcock and McArdell, 1997; DeVries, 2 0 0 2 ) . This would suggest that using a 

definition that scales with a characteristic large grain size of the surface such as the D84 or 

D90 would be suitable. DeVries advise against the D^ax due to the larger levels of 

uncertainty associated with sampling this grain size. The actual grain size (Dg4 or D90) 

chosen is perhaps less important since Hoey and Ferguson (1994) found that simulation 

results from SEDROUT were fairly insensitive to reasonable ranges of the specification of 

active layer thickness. 

It was therefore decided that 2D84 would be the representative active layer thickness for the 

channel. It is also necessary to define the GSD of the active layer for the Wharfe sample 

sites. Due to the areal sampling approach, it is difficult to know what the thickness of the 

surface and sub-surface layers are since the thickness varies across the sample. It is likely to 

be somewhere between D50 and Dmax as shown in Figure 5.11. Hence a depth of around D84 

would be a reasonable estimate. Thus 2Dg4 would constitute roughly equal parts of the 

surface and sub-surface suggesting that a simple average of the two layers woixld provide a 

good representation of the active transport layer. Thus the volumetric surface and sub

surface GSDs truncated at 8 mm were combined to provide the GSD of the active layer. 
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Figure 5.11: Estimating the thickness o f the surface layer. 

max 

Step 4: Converting the pebble counts into active layer equivalents 

Since only three sites dovmstream had bulk sample data and 16 sites had pebble count data, 

it was necessary to find a relationship between the two data sets and allow bulk samples to 

be re-constructed from the pebble count data at each site. According to Kellerhals and 

Bray's (1971) conversions, the surface pebble count data and surface volumetric samples 

are theoretically the same and hence the pebble count data can be used directly as a 

representation o f the surface GSDs in volume-by-weight form. However, the active layer 

includes the sub-surface material and a new conversion must be found to transform the 

pebble count data into volume-by-weight active layer distributions. By using [5.8], the best 

fit conversion values were found to be x = -0.16 (080), x = -0.63 (350) and x = -0.18 (510) 

with the average conversion being x = -0.32. Therefore all the pebble counts (truncated at 8 

mm) were converted into the active layer using x = -0.32. However, some concem arises 

over the validity of this approach given the large variations in the estimated value o f x. This 

is due to local variations in sediment supply and flow conditions, and as such may under or 

over estimate the active layer sediment characteristics. Yet, this average value provides the 

best approximation when only three samples are available and must be used for all other 

samples. 

Step 5: Adding in a percentage of fine material 

The manipulation so far has excluded all material which is less than 8 mm. However, the 

fine material can be important in sediment transport (e.g. Wilcock and Crowe, 2003) and 

should be included in the GSDs. Since the bulk samples represent the finer material well, 
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they can be used to determine how much fine material is in the bed. This was done by 

firstly finding the percentage of material less than 8 mm in the three volumetric active layer 

samples. These values where plotted against distance downstream and a relationship 

between them was found. Figiire 5.12 shows this relationship. The equations shown in 

Figure 5.12 were used to determine the percentage of fine material to be added to the 

surface and active layer GSDs at each site, from the sites distance downstream. A 

polynomial relation best represented the increase in the percentage of fines with distance 

downstream on the active layer. A linear relationship was found for the surface layer. 

Figure 5.12: Fine material in surface and active layers at each bulk sample site. 
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The fu l l GSDs of the surface only and active layers for each site were established. It should 

be noted that with hindsight and giving consideration to the effort and time put into the 

hybrid-conversion approach, it would have perhaps been easier to simply carry out bulk 

samples for all sites. This would also have reduced errors and uncertainties associated with 

each step o f the conversion. Figure 5.13 shows selected GSDs o f the active layer. Full 

GSDs for each site are contained in Appendix I I I . Figure 5.14 shows the changes in D50 and 

D84 values downstream and shows how the bed rapidly fines after Hubberholme (0 m) at 

cross-section 010 and then fines at a slower rate towards the end o f the study reach. The 

trend is interrupted at 1400 m downstream where the bed becomes coarser. This may be 
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due to sampling error but is likely to be reflecting the input o f the Cray Beck tributary at 

1000 m downstream. The tributary may be bringing coarser material into the main channel. 

Figure 5.13: GSDs of the active layer at alternate sites. 
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Figure 5.14: Grain size characteristics with distance downstream. 
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5 . 4 M O N I T O R I N G S E D I M E N T T R A N S F E R U S I N G I M P A C T S E N S O R S 

To improve our understanding of sediment transport dynamics in the study reach and to 

provide estimates of sediment transport rates for testing the sediment transport component 

of the model, a method of monitoring sediment transfer in the river was required. 

5 . 4 . 1 O P T I O N S F O R M E A S U R I N G T H E B E D L O A D T R A N S P O R T R A T E 

Despite extensive research, determining the bedload transport rate of coarse grained rivers 

remains a difficulty, both spatially and temporally (Gomez, 1991; Bunte et al, 2004). 

Wilcock's (2001) review of methods to estimate sediment transport rates in gravel-bed 

rivers, provides an insight into the wide range of techniques that have been developed and 

explains the limitations associated with them. These methods range from: (1) predictions 

made from empirical formulae (e.g. Meyer-Peter and Miiller, 1948); (2) direct sampling 

using hand-held or pit traps (e.g. Church et al., 1991; Powell and Ashworth, 1995; Bunte et 

al., 2001); (3) measuring the entire load using slot traps or settiing ponds; (4) tracking 

particles using tracer gravels (e.g. Wilcock, 1997; Wathen et al., 1997; Habersack, 2001); 

and (4) using volumetric changes in the channel to reconstruct a local sediment budget (e.g. 

Ham and Church, 2000; Fuller et al., 2003). 

These methods are problematic (Wilcock, 2001). Nets and baskets are hard to deploy, 

unable to survive exposure to high magnitude events and the samples are often statistically 

unrepresentative (Tunnicliffe et al., 2000). Thus, as Hubbell et al. (1981) suggest, no one 

sampler can cope with the fiill range of hydraulic and sediment discharge conditions found 

in natural streams and rivers. Traps and buckets fill rapidly (Powell and Ashworth, 1995), 

become buried and lost under sediment and can inaccurately represent transport rates due to 

trap location (Powell and Ashworth, 1995; Bunte et al., 2004). Tracers can be useful as 

they are deployed and measured at low flows giving them logistical and safety advantages 

(Wilcock, 2001) and they can have a good recovery rate (e.g. Ferguson et al., 1998). Yet 

tracers are expensive, often applied across only a few infrequent transport events where 
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flow characteristics are unknown (Pyrce and Ashmore, 2003) and tracer recovery can be a 
time consuming task. Formula and equations are renowned for their problems with different 
equations often producing completely different results (see Section 7.4.2). Bathurst et al. 
(1987) and Gomez and Church (1989) provide useful reviews of the main equations and 
their problems, konically, one of the main limitations of these equations is a lack of data 
for development and testing due to the lack of robust measurement techniques. New 
measurement techniques are highly sought after. With all these problems with samplers and 
equations, the 'indirect' transport estimation technique, which re-constructs a volumetric 
sediment budget of the smdy reach, often provides the most valuable estimates of sediment 
transport rates (Ham and Church, 2000). This approach is used herein for estimating 
volumetric sediment transfer in the Wharfe (Section 5.4). However, it requires some 
knowledge of sediment transfer processes to set an input or output value from which to 
determine the rest of the budget. This value is typically obtained from one of the previously 
mentioned techniques. Evidence from field surveys and reports and from talking to locals, 
suggests that the Wharfe transports large quantities of coarse sediment during flood events. 
Thus, devices such as pits and traps would either be destroyed by the flow or fill up too 
quickly. A new device called the sediment impact sensor (Richardson et al., 2003) offers a 
solution to many of these problems providing a method for understanding the sediment 
fransfer process in the Wharfe. Similar devices called piezoelectric bedload impact sensors 
(PBIS) are also available for monitoring bedload transport with results from a study in a 
mountain stream presented by (Rickenmann and McArdell, 2007). The PBIS record the 
vibration of grains greater than 20 mm and offer the advantage of spanning the entire width 
of the channel, thereby monitoring all sediment transport. 

5 . 4 . 2 T H E S E D I M E N T I M P A C T S E N S O R S 

Two different designs of impact sensor were used to provide data for this study. The 

sensors installed and downloaded by Reid (2004) are referred to as "original" (Figure 

5.15c) whilst the sensors installed in May 2006 are referred to as the "new" sensors (Figure 

5.15a). Both original and new sensors operate in the same way. Richardson et al. (2003) 

explain that the device, which consists of a data logger attached to a metal impact plate 
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(150 X 130 X 6 mm in size), lies flush with the channel bed (Figure 5.15b) and records the 

impacts of clasts on the plate through an acceleration sensor contained inside the logger. 

These impacts have been termed pings. Reid et al. (2007a) suggest that the sensor plate is 

o f the correct size to record a rolling particle only once and also to catch any saltating 

particles i f they occur. They justify this using a study by Drake et al. (1988) who found that 

only fine gravel ( 2 - 3 mm) saltates along the bed. Coarse grains roll along the bed with 

comers and edges contacting the bed on average about twice per particle diameter. Under 

high flows, this argument may fail as saltation hops may increase in distance and miss the 

logger. Thus the number of impacts recorded may be underestimated during high flow 

events. This technique provides high-resolution continuous data on the intensity of 

sediment transport from consecutive events. By protecting the logger in the bedrock, the 

device is able to survive more intense transport events than conventional samplers. When 

set to record every flve minutes, it only requires downloading every two months reducing 

the number of field visits. 

Figure 5.15: Photos of the sediment impact sensors, (a) New logger downloading to laptop; 
(b) inverted logger lying flush with bed; (c) original logger. 

This method does however have its problems. First, the accuracy o f the transport intensity 

estimates is dependent on the location o f the sensors within die bed. Powell and Ashworth 
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(1995), Richardson et al. (2003) and Bunte et al. (2004) all explain that 50-100% of 
sediment transport can occur in a small proportion of the channel. Hence, the data from the 
sensors could be significantly inaccurate. This problem can be minimized by carefiilly 
locating the sensors which was done by Reid (2004). Second, the data recorded by the 
logger has a saturation point of 255 impacts in a five minute period with a maximum of 3 
pings per second (Richardson et al., 2003). During high intensity transport events, only 255 
pings are recorded out of a theoretical maximum of 900 which is 3 pings a second for 300 
seconds (i.e. 5 minutes). Hence the results tend to be underestimated at high fiows and 
more reliable at lower flows. To resolve this, the logger can be set to record data every 
minute, reducing download time to 10 days, which in many instances is impractical. The 
response of the impact sensors to transport is also non-linear (Richardson et al., 2003) since 
the likelihood of more than one clast hitting the impact plate in less than a third of a second, 
increases with discharge and transport rate. Third, the sensors do not record any 
information on the pressure of an impact which could be used to infer the particle's mass or 
impact velocity. Using the number of impacts to infer sediment volume may be incorrect, 
particularly if grain size distribution differs greatiy between sites. 

The reliability of the ping data was tested by Reid (2004) who compared the output from 

two sensors placed 50 cm apart in the line of flow at Deepdale (about 3 km upstream of 

Hubberholme). Reid's study compared the data from each sensor during the two largest 

transport events during the study period. The results suggested that sensor variability is 

minimal under identical conditions assuming that the clast is travelling in the same 

direction as the orientation of the sensors (Reid, 2004). 

Ten impact sensors were installed throughout the Upper Wharfedale catchment in March 

2003 during a previous project (Reid, 2004). The acceleration sensors inside the loggers 

were sensitive to record only grains greater than 3 mm in diameter (Benson, pers comm., 

2005). The location of each sensor was chosen carefiilly by Reid (2004) following the 

analysis of the first autumn floods in September 2002. During the summer low flow, algae 

covers the gravels, thus the first Autumn flood scours the gravel and leaves "tracks" of 

clean gravel where sediment transport has occurred (Richardson et al., 2003). Data from 
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five of the sensors are relevant to this research. These include a sensor at Hubberholme, 
approximately 150 m upstream of cross-section location 010, one by Buckden Bridge, and 
a third located near Starbotton at cross-section 590. In addition, there are two sensors 
located on each of the main tributaries which enter the Wharfe in the study reach. These 
include a sensor on Buckden Beck, approximately 300 m upstream of Buckden village, and 
one on Cray Beck, about 400 m upstream of its confluence with the Wharfe. One year of 
data was downloaded from these sensors before they all eventually stopped working. 

Two new sensors were installed in May 2006 at Hubberholme and Starbotton, in the same 

locations as the original sensors. The main difference between the old and new loggers is 

the casing design with the new loggers contained in a much sturdier and more water-tight 

structure. 

5 . 4 . 3 I M P A C T S E N S O R S : A N A L Y S I S 

The raw data from the impact sensors provide a continuous record of sediment activity at 

each of the sensor sites. They can be used to observe the passage of individual sediment 

transport events such as the two events clearly shown in Figure 5.16 at three of the impact 

sensor sites. This information can also be used to compare the relative intensity of sediment 

transport at different locations, and to explore the nature of sediment transport events 

within the study catchment. 
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Figure 5.16: Two individual transport events captured at three sites between the 3'"'* and 5* 
of February, 2004. (Data from Cray Beck and Starbotton were not included in this plot as 
the ping counts at tiiese sites were much lower than at the sites displayed. The stage record 
is for visual purposes. The stage data has not been validated). 
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The data cannot simply be analysed in the raw "ping counf form for two reasons. First, the 

channel widths at each location vary greatly. The data must be upscaled to account for 

variations in width between the narrow tributaries and the wider main channel. Second, the 

loggers have a saturation point o f 255 pings per 5 minute interval. Thus, during high 

magnitude events, the ping count remains at 255 and is likely to underestimate the true ping 

count. This issue is particularly a problem at Hubberholme and Buckden Bridge, as 

illustrated in Figure 5.17. This figure plots the relative contribution that each ping count 

value (1 - 255) has to the total annual ping count. At both Hubberholme and Buckden 

Bridge, around 50% of all pings are recorded as part of 255 records. Thus the total ping 

counts for these locations are likely to be much higher than those actually recorded. 



C H A P T E R 5: HYDROLOGY. S E D I M E N T & B E D L O A D T R A N S P O R T 131 

Figure 5.17: The percentage contribution that each ping count (1 - 255) has to the total 
annual ping count. Data presented is for the period March 03 - March 04. 
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To reduce these two issues, Reid (2004) used [5.9] to transfer the data into a relative 

transport intensity, accounting for differences in width and to overcome the saturation 

problem. To obtain the transport intensity at each site, the data were first divided by 255 to 

give a "transport intensity" (/„), a value between 0 and 1. This provides the data in a more 

manageable format. Reid (2004) suggests that this process deals with the logger saturation 

issue, however this is not the case as it simply changes the data from 0-255 to a value 

between 0 and 1. Thus, issues associated with logger saturation must still be considered. 

The data was then up-scaled to the channel width (w) and divided by the width of the 

logger plate (w/) which was a constant 0.13 m. This assumes that transport rate is equal 

across the charmel, a crude assumption. The "relative transport intensity" {r„) was then 

obtained using: 

[5.9] 

A second issue arose when trying to calculate the length of time that sediment was in 

motion: the transport time. Whilst it is likely that a record of 255 would be associated with 

transport during the frill 5 minute time interval, it was unlikely that 1 ping during the 5 

minute time interval would be associated with a fiill 5 minutes of sediment transport. Thus 

low magnitude, insignificant transport events were removed so that transport time was not 
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overestimated. By plotting transport curves based on time contribution (cumulative 

percentage of the year) of the total sediment transport, a threshold at 10% of the total 

transport became clear (Figure 5.18). Under this threshold, frequent yet low magnitude 

events occur. These were removed. The number of pings associated with this threshold 

varies between sites. 

Figure 5.18: For each ping count value, the transport time (expressed as a percentage of 
year) was plotted against the percentage contribution that each ping count value made to the 
total activity (as shown in Figure 5.14). Data presented is for March 2003- March 2004. 
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5 . 4 . 4 I M P A C T S E N S O R S : R E S U L T S 

Table 5.4 and Figure 5.19 present data from the impact sensors located at the five sites, 

three in the main channel and two on the tributaries. These data reveal interesting features 

of the sediment transfer system in the study catchment and can help provide a better 

understanding of the complex nature of the sediment transfer process. This analysis begins 

by looking at the reach-wide picture and comparing the total annual sediment transport 

activity at each site for the 2003-2004 monitoring year. It is noted that sediment transport 

activity varies greatly between sites (Table 5.4). The highest level of sediment transport 

activity is found at Hubberholme followed by a large reduction in sediment activity with 

distance downstream. Buckden Beck records 10 times less sediment activity than 
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Hubberholme whilst the activity at Starbotton is a fraction of that at Hubberholme which 

has activity levels over 300 times greater. These patterns match the measured patterns of 

sedimentation discussed in Section 4.3.5. The tributaries record even lower levels of 

sediment activity with Cray Beck recording four times the activity at Buckden Beck. Such 

variations can be explained by the nature of the channel at each particular site. Upstream of 

Hubberholme, the channel is steep and narrow and predominantly bedrock. The catchment 

slopes are also steep with sediment entering the channel from hillslope failures and bank 

collapse. Once in the channel, sediment quickly and easily moves dovrastream to 

Hubberholme, passing over the Hubberholme sensor. From here, the channel gradient 

reduces, allowing sediment deposition, which is evident as point and lateral channel bars 

and in the cross-section survey data. Hence the movement of sediment becomes more 

difficult, with higher flows required to account for the reduction in channel gradient. This 

results in a reduction in activity by Buckden Bridge and ftirther still by Starbotton. The 

lowest activity found in the tributaries can be explained by the availability of sediment. 

Both tributaries are predominantly bedrock channels, with little sediment stored in the 

channel bed. Sediment transport activity must be supplied from the hillslopes through slope 

failures. Once in the channel, the steep, narrow geometry allows the sediment to be flushed 

through into the main river channel quickly and efficiently. Hence, sediment transport in 

the tributaries and main channel to Hubberholme is largely controlled by sediment supply 

from the hillslopes, with the higher volumes that pass Hubberholme reflecting the larger 

upstream contributing area. Further down the main channel, sediment transport is a fiinction 

of upstream sediment supply and sufficient sediment transport capacity. 

Table 5.4: Impact sensor data for the period March 2003 to March 2004. 
Total sediment transport activity is the sum of the relative sediment transport intensity (rn) 
defined in [5.9]. 

total sediment % contribution to % contribution from upstream 
transport activity annual total and tributaries 

summer winter annual summer winter summer winter annual 
Hubber. 66399 225275 291674 22.8 77.2 

B. Bridge 20667 8636 29303 70.5 29.5 31.1 3.8 10.0 
Starbotton 778 118 896 86.8 13.2 1.2 0.1 0.3 
Cray Beck 375 507 882 42.6 57.4 0.6 0.2 0.3 

B. Beck 57 187 245 23.5 76.5 0.3 2.1 0.8 
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Seasonal variations in the contribution of sediment to total sediment transport activity 
become distinct alongside spatial variations in the seasonal differences. The dominant 
seasons for sediment contribution are winter for Hubberholme and the two tributaries, 
whilst it is the summer period for the main channel sites at Buckden Bridge and Starbotton. 
This finding is different to that of Reid et al. (2007a) who found that the five tributaries 
sites were dominantly active in the summer during their monitoring period, whereas the 
main channel sites were predominantly active in the winter. Whilst Reid et al. (2007a) 
broadly classify the ten sensors into five tributary and five main charmel sites for analysis, 
the analysis herein concentrates on the variability between sites. Large differences in the 
seasonal activity levels in the tributaries are noted here. In particular between Cray Beck 
and Buckden Beck and the three tributaries in the catchment headwaters as analysed in 
Reid et al. (2007a). In the main channel, the higher levels of sediment activity noted at 
Hubberholme heavily weight the main channel seasonal contributions in Reid's analysis. 

When the seasonal contributions to total sediment activity are examined (Table 5.4), two 

differing situations prevail. Firstly, the tributaries and Hubberholme show similar patterns 

with greater sediment activity in the winter period. As discussed above, the channel 

upstream of Hubberholme is steep, narrow and bedrock and as such is characteristically 

similar to Cray and Buckden Beck. Second, the main channel sites at Buckden Bridge and 

Starbotton contribute more sediment to the total activity during the summer period. The 

greatest difference in contribution between seasons is found at Starbotton with 87% of 

activity occurring during only 0.1% of the summer period compared with 13% during the 

0.4% of the winter time. Concurrently, seasonal variations in contribution to total activity 

are smallest in Cray Beck. Furthermore, during the winter period the downstream transfer 

of sediment is proportionally greater than during the summer periods with 31% and 1.2% of 

sediment moving to Buckden Bridge and Starbotton respectively in the winter, and a 90% 

reduction in sediment transfer in the summer months. 

The seasonal variation between sites reflects the nature of the channel and the source of 

sediment at the sensor location. In the tributaries, the sediment transport is highly 

dependent on sediment supply and findings by Reid et al. (2007b) strongly suggest that this 

is controlled by convective rainfall events that trigger hillslope failures. In the main channel 
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where sediment is stored, sediment transport activity becomes more dependent on the 
discharge regime. Yet, sediment supply also has a role to play in the main channel with a 
reduction in sediment transport activity noted when moving from Hubberholme to Buckden 
Bridge and down to Starbotton. This drop in activity may result fi-om either a reduction in 
transport capacity as one moves downstream or because the sediment supply is too high for 
the channels re-working to keep up with. 

These results suggest that whilst it is interesting to consider seasonal contributions, it is 

important to examine the magnitude and frequency of events that transport the sediment. In 

particular, the findings at Starbotton, suggest that individual events can be significant for 

sediment transport. The event data presented in Figure 5.19 highlight the spatial variability 

in number and importance of individual events. At each site, a different situation is present. 

Hubberholme has more events in the winter months with each event contributing slightly 

more sediment than the summer events. Thus, at Hubberholme, high fi-equency, high 

magnitude events during the winter contribute to the high levels of activity recorded at this 

location. Yet in the two tributaries which have thus far behaved in a similar way, two 

different situations occur. In Buckden Beck, fewer events occur in the winter than the 

summer. Yet, the winter events are much more significant for sediment transport. Hence, a 

few high magnitude events in the winter dominate the sediment transfer. On the other hand, 

there are only marginal seasonal differences in Cray Beck with individual events 

transporting similar amounts of sediment irrespective of season, and a similar number of 

transporting events occurring in the winter and summer. This suggests that like Buckden 

Beck, sediment supply firom the hillslopes is important during the winter. In contrast, in 

Buckden Beck, the summer events produce similar amounts of sediment. Unlike the 

tributaries and Hubberholme, individual summer events in the main channel at Buckden 

Bridge and Starbotton transport more sediment than the events in the winter. At Buckden 

Bridge, despite there being fewer individual events in the summer, each summer event is 

larger than the winter event. However, the duration of these summer events must be 

sufficiently long enough to contribute to the 70% of total activity noted in Table 5.4. Hence 

sediment transport passed Buckden Bridge is dominated by relatively low fi-equency high 

magnitude events in the summer period. Such an event occurred at Buckden Bridge 
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between the 20 and 22"'' of September 2003. This two day event contributed to 67% of the 
total annual sediment transport activity. Again the situation at Starbotton is different with 
more events, and more transport moved by each event in the summer than in the winter. 
Hence transport at Starbotton is driven by high frequency high magnitude summer events 
relative to the winter events. The overall conclusion from Figure 5.19 is that there is no 
dominant season for sediment supply and transport in the Wharfe system and that the 
magnitude and frequency of sediment activity varies greatly between sites. This can be 
attributed to the importance of convective storm events for sediment generation in the 
Wharfe system (Reid et al., 2007b), and such storms may occur at any point in the year. 
This has two important implications. First, distinctions like 'summer' and 'winter' may not 
be particularly helpfiil i f the inter-annual variability in when these types of events occurs 
dominates over intra-annual or seasonal variability. Judging the geomorphological 
effectiveness of different types of rainfall events is only possible by reference to the nature 
of the rainfall event as filtered by the way that the catchment fimctions geomorphologically. 
Second, it emphasises the importance of establishing how climate change might impact 
upon future rainfall events, especially given the current rehance of rainfall intensity 
predictions on the form of the downscaling applied to global and regional climate model 
predictions (Lane et ai, 2008). 
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Figure 5.19: The relative importance of individual transport events. The squares show the 
number of individual transport events (low flow events have been removed and there is a 
minimum of 24 hours between events). The bars show the average sediment transport 
activity each event contributes to the annual total. 
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The results from the impact sensors have only considered the situation that occurred during 

a single year. When data from the new impact sensors installed in the main channel at 

Hubberholme and Starbotton are explored, annual variability is evident alongside the 

spatial and seasonal variability. This is shovra in Tables 5.5 and 5.6. The total activity of 

the new impact sensors cannot be compared directly with the original sensors due to design 

differences which make the new sensors less sensitive, particularly to lower magnitude 

events. However, the ratio of sediment transport activity between sites can be compared for 

the original and new sensors. Table 5.5 shows the total sediment activity for the three 

survey periods. The results from the original sensors (March 03 - March 04) support earlier 

findings, demonstrating that sediment transfer down the channel varies with season. The 

ratio is higher during the April to September 2003 period when compared to the October to 

March 2004 period and the 2006 records. These suggest that there may be waves of 

sediment passing through or more specifically out of the study reach. The ratio of sediment 
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transport activity is explored at a higher spatial temporal resolution in Figure 5.20 with the 
monthly ratios presented. 

This figure shows large monthly variations in the relative transport activity at each site. 

During April 03 - September 2003, die first three months recorded ratios greater than 1, 

indicating that sediment output exceeded the input. This may reflect a period where 

sediment supply entering at Hubberholme was limited or the passing through of a sediment 

wave. This explains the higher ratio for this period noted in Table 5.5. From July 2003 until 

the end of the monitoring period in March 2004, there was a greater input than output but 

strong monthly variations. The lowest ratio was recorded in January 2003. The new sensors 

also show some interesting findings. The May 2006 and July 2006 data points must be 

considered with caution. In both these the total number of impacts was very low at both 

impact sites. Thus whilst the output was higher than the input during July, the volume of 

sediment associated with this is minimal. From August until December 2006, there is a 

gradual reduction in the ratio indicating an increase in the input of sediment and a decrease 

in the output. Thus sediment input may be plentiful with high volumes of sediment entering 

the channel, yet the amount of sediment leaving this reach becomes gradually lower. Thus 

the sediment entering has not progressed downstream by December 2006. Despite the 

monthly variability, these data provide further evidence that over timescales greater than 3-

months, sediment supply out of the study reach is significantly lower than sediment supply 

into the reach. This may suggest that the cross-sectional survey fi-equency should be more 

frequent than twice a year in order to capture the channel's fiill response to sediment 

transfer processes. 

Table 5.5: Seasonal transport activity at Hubberholme and Starbotton. 

April 03 - Sept 03 Oct 03 - March 04 May 06 - Dec 06 

Hubberholme 66399 225275 15793 
Starbotton 20667 8636 334 
Ratio (star:hubb) 0.311 0.038 0.021 
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Figure 5.20: Monthly transport activity ratios. Ratios greater than 1 indicate more sediment 
leaving than entering. Ratios less than 1 indicate more sediment entering than leaving. 
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In addition to the transport activity ratios, the new sensors provide comparable transport 

times. Table 5.6 shows the percentage time sediment is in motion during the monitoring 

period miming from May 2006 to March 2006. When compared with the same season in 

2003, some striking differences in transport time become apparent at Hubberholme. 

Transport time in the 2006 summer period is 2% lower than in the 2003 summer period. 

However, at Starbotton, the percentage time sediment is in motion is similar in 2003 and 

2006 providing some indication that sediment transfer processes may be similar on an 

annual basis at this location. With less than two years of data, this suggestion is made with 

caution. This reduced transport time indicates either a change in the factors driving 

sediment transport such as sediment supply or transport threshold, or indicates a 

hydrological difference. Indeed, the summer of 2006 was hot and dry. This reduction in 

transport time may reflect the lack of rainfall events to both initiate sediment supply from 

the hillslopes but also to transport it downstream. This low transport rate may also help to 

explain the period of net degradation noted in Figure 4.6a between April 2006 and 

December 2006. 
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Table 5.6: Seasonal differences in the percentage of time sediment is in motion. 

% time sediment in 
motion 

Apr 03 -
Sept 03 

Oct 03 -
Mar 04 

03-04 
Annual 

May 06 -
Sept 06 

Oct 06 -
Mar 07 

Hubberholme 2.5 8.4 5.4 0.6 
Buckden Bridge 0.8 0.6 0.7 

Starbotton 0.1 0.4 0.3 0.2 0.5 

Cray Beck 0.2 1.2 0.7 

Buckden Beck 0.7 3.3 2.0 

5 . 5 C H A P T E R S U M M A R Y 

The previous chapter provided data on the channel's morphology allowing vertical and 

lateral channel change to be monitored. This chapter has provided data on the main factors 

that drive charmel change; the discharge and the supply and transfer of sediment. Records 

of the hydrology in the reach comprised three years of 15-minute stage records from 

Hubberholme and daily discharge values for Flint Mill , since 1956. The Hubberholme stage 

records were successfiiUy converted into discharge records using Ferguson's (2007) 

variable power equation and a 2-year representative period was selected from analysis of 

the Flint Mill records. The bed material was characterised using a hybrid approach which 

combined numerous pebble counts with three bulk samples to provide information on grain 

sizes down the channel at 16 locations. This material highlighted the rapid downstream 

fining previously noted in the Upper Wharfe study reach. The sediment transport regime in 

the study reach was monitored using impact sensors. These were placed into the channel 

bed to record the instantaneous movement of individual sediment clasts. These sensors 

provide valuable data, despite their limitations which include: (1) the location of the sensor 

within the channel; (2) problems during high magnitude events where the 255 saturation 

point is reached; and (3) difficuldes directly comparing new and old sensors. These sensors 

provide evidence that the study reach is predominantly aggrading and very little sediment 

leaves the reach. This finding supports field observations. The data from the impact sensors 

is particularly valuable when exploring spatial and temporal aspects of the sediment 

transport regime, when reconstructing a morphological sediment budget and when 

estimating bedload transport rates from the budget. 
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Analyses using the impact sensor data, the characterised sediment and the hydrology are 

explored in Chapter 6 alongside data from Chapter 4. Table 5.7 summarises the data 

provided by this chapter and demonstrates how it is applied in Chapter 6 and during model 

development and application in Chapter 7 and 8. Together, data collected in Chapters 4 and 

5, have ftilfilled Objective 3: to use field-based techniques to monitor channel change and 

the variables driving these changes. 

Table 5.7: Data provided in Chapter 5 its ftiture application. 

Study Nature of Data Future Application (Section) 

Discharge 

15 min and hourly 
discharge records for 
Hubberholme 

6.5: impact of sedimentation on flood risk 
8.8.3: hydrographs for modelling variable 
discharge Discharge 

Flint Mill discharge 
records 

6.2.1: used to explore patterns of 
sedimentation 

Bed material 
characterisation 

GSDs at 16 locations 
downstream 

5.2: roughness for discharge 
8.3.1: input GSDs for model Bed material 

characterisation Downstream fining 
profile 

6.2.1: supports finding of net aggradation 
8.3.2: testing model outputs against 
measured downstream fining profile 

Sediment 
transfer 

Spatial and temporal 
variability in sediment 
ttansfer 

6.2.1: used to explore patterns of 
sedimentation 
8.3.2: testing the model's transport 
threshold 

Sediment 
transfer Ratio of transport into 

and out of reach 

6.2.1: supports finding of net aggradation in 
reach 
6.3: used in sediment budget to set output at 
zero 
8.3.2: compared against the model's 
bedload transport ratios 
8.6: sensitivity testing 

Sediment 
transfer 

Active ttansport time 
6.3: used to estimate the bedload transport 
6.4: predicting bed level change from 
impact sensors 



C H A P T E R SIX: 

A N A L Y S I S A N D DISCUSSION O F F I E L D D A T A 

6.1 I N T R O D U C T I O N 

Chapter 4 and Chapter 5 present results from specifically designed, intensive field 

monitoring. This chapter aims to complete Objective 4 as set out in Chapter 1: to draw 

these data together to explore the processes of sediment transfer and channel change in the 

Upper Wharfe study reach, and to consider the impact of such changes on flood risk. This 

analysis and discussion addresses four themes: (1) to explore and explain spatial and 

temporal patterns of sedimentation and lateral channel change (Section 6.2); (2) to combine 

methods from Chapters 4 and 5 to develop a methodology to estimate bedload transport 

rates (Section 6.3); (3) to predict bed level changes using impact sensors (Section 6.4); and 

(4) to assess the impacts of in-channel sedimentation on flood risk (Section 6.5). The 

chapter closes with a broader discussion of sedimentadon, channel change and flood risk 

implicarions (Section 6.6). 

Two further key research questions set out in Section 1.1 are answered within this Chapter. 

Secdon 6.2 and Section 6.4 provide answers to these questions that are discussed further in 

Section 6.6. These include: 

3) What are the mechanisms that drive the spatial and temporal patterns of 

sedimentation and bank erosion? (Section 6.2) 

4) What implications do in-channel sedimentation and lateral adjustment have for 

flood risk? (Section 6.5) 
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6 . 2 S P A T I A L A N D T E M P O R A L P A T T E R N S O F C H A N N E L C H A N G E 

Chapter 4 demonstrated that pattems of erosion and deposition vary spatially and 

temporally. Key findings, several illustrated using Figure 4.6, include the following. First, 

the Wharfe study reach has aggraded by an average of 0.17 m ± 0.029 m between 

December 2001 and July 2007. Second, the reach between 1 and 1.2 km downstream 

experienced the greatest bed level rise with 0.67 m ± 0.031 m recorded during the 6-year 

study period. Meanwhile, the reach around 2.9 km downstream has experienced the greatest 

bed degradation of 0.2 m ± 0.023 m. Third, certain zones exhibit relatively little net bed 

level change but have high activity levels with the zone at 2.5 km recording 1.8 m ± 0.021 

m of activity (Figure 4.7). This indicates sediment throughput. Finally, of all the survey 

periods, the period between December 2003 to April 2004 experienced the highest levels of 

aggradation, whilst the results recorded a mean bed level drop between April and December 

2006. In the study by Stover and Montgomery (2001), who also used repeat cross-sections 

on the Skokomish River in Washington, over 1.3 m of aggradation was recorded during 30 

years of monitoring. Whilst the mean bed level rise was around 0.04 m year ', they note 

large spatial variability in aggradation including periods of degradation. Thus, the findings 

from Skokomish share many similarities with the Wharfe. 

Within this section, the pattems of channel change are explored through space and time. 

The following findings are anticipated. First, temporal pattems of sedimentation are 

controlled by the combined influence of flow and sediment transport. Whilst the hydrology 

must be sufficient to transport the sediment, the availability of sediment in the first instance 

is crucial. Second, spatial pattems of sedimentation are determined by the channel's 

geometry with sediment accumulating on the inside of meander bends, at deviations in the 

slope profile and at tributary junctions i f their contribution of sediment is significant. Third, 

lateral channel changes occur when sediment accumulation is high and at locations where 

the high velocity core of flow is forced to one bank by channel curvature. Each of these 

three anticipated findings are explored as follows. 
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6 . 2 . 1 C O N T R O L S O N THE T E M P O R A L P A T T E R N S O F SEDIMENTAT ION 

The two key factors highlighted in Chapter 2 that influence temporal levels of bed level 

change are: (1) the hydrological regime; and (2) the supply of sediment. These are explored 

herein followed by an examination of survey frequency on temporal findings. Figure 6.1 

shows the relationships between channel hydrology and patterns of bed level change. There 

is a positive relationship between increasing discharge and higher levels of bed level 

change activity. This is expected as higher discharges are associated with sediment 

ttansport leading to either degradation or aggradation depending on sediment supply. Thus, 

the hydrological regime plays an important role in changing the channel morphology (e.g. 

Harvey, 1991; Pizzuto, 1994; Alfred and Schmidt, 1999). However, predicting tiie direction 

of this change (i.e. erosion or deposition) is less clear as shown in Figures 6.Id, 6.1e and 

6.1 f. These plots exhibit much scatter, resulting in no clear ttends between bed level change 

direction and hydrology. This scatter is greatest at the highest flows ( Q 9 5 in Figure 6.Id). 

The lack of any clear pattems in these plots support the concept that channel changes are 

dependent upon both hydrology and sediment supply / delivery. Under high flow 

conditions, three scenarios may prevail (see Table 2.1. Werritty 1997): (1) sediment supply 

is limited and degradation occurs (e.g. Liebault and Piegay, 2000; Rinaldi, 2003); (2) 

sediment supply is high and aggradation occurs (e.g. Parker, 1979); and (3) sediment 

supply is limited, bed armouring prevents degradation and the bed level remains constant. It 

is likely that a combination of these scenarios may occur during the time between two 

surveys complicating our understanding of processes further. For example, in a period with 

several successive high flow events, the channel may initially aggrade following an influx 

of sediment. As sediment becomes exhausted, this aggradation may be replaced with 

degradation, as the sediment in the system is reworked. I f the aggradation and degradation 

balance, one may be falsely led to believe that the channel is stable when indeed it may be 

subject to very short-term fluctuations in bed level change. The monthly ping ratio between 

Starbotton and Hubberholme (Figure 5.20) demonsttates the potential short-term variability 

in sediment inputs and outputs. However, this does not indicate where the sediment is being 
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transferred from and to. Thus, it is essential to keep survey frequency high to capture the 
movement of sediment between the two sensors. 

The scatter m Figures 6.Id, 6.1e and 6.If may be a feature of the interaction between 

sediment supply and flow regime but on the other hand, it may be confused with anomalous 

data points. I f certain data points are removed from these plots (particularly Figures 6.1e 

and f), two contradicting relationships emerge. Firstly, i f the high aggradation point of 0.35 

m year ' is removed, then there appears to be a downwards relationship with lower 

discharges associated with aggradation and higher discharges with degradation. 

Alternatively, i f the two higher discharge points are removed, an upward trend prevails 

with greater aggradation associated with higher discharges. Whilst the former suggests that 

under the highest flows, sediment supply is limited, the latter conversely suggests that 

higher discharges are associated with higher sediment supply, which allows aggradation. 

These speculations further demonstrate that the response of a channel is complex and 

cannot be predicted based on the hydrology alone. To improve our understanding of 

system response it is essential that survey frequency is high enough to capture bed level 

change, but also that a better understanding of the nature of sediment supply and transfer is 

developed. This allows sediment supply and channel response to be coupled together. 

Considerations of in-channel sedimentation, and hence changes in flood risk, cannot be 

divorced from the impacts of hydrological activity upon sediment delivery, as conditioned 

by catchment geomorphology and land-use. 
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Figure 6.1: Relationship between hydrology and sedimentation. A, b and c compare the bed 
level activitjy (which is change irrespective of whether it is aggradation or degradation) with 
the 95' , 75' and 50"̂  percentiles of discharge from Flint Mill flow duration curves. D, e 
and f compare the discharge with the mean bed level change. The Flint Mill records are 
used as a surrogate for Hubberholme due to lack of stage data at Hubberholme. 

s s a a s 2 
(JE8A/U1) IUB3J)6U«0P UI jad <4iwia8 (JEaA/ui) a f l u n p laAai paq ueaui 



C H A P T E R 6: A N A L Y S I S A N D D I S C U S S I O N O F F IELD DATA 1 4 7 

The temporal variations in bed level change shown in Figures 4.6a and Figure 4.6b, lead to 
an examination of the implications that the timing and frequency of surveys can have for 
our understanding of sedimentation in the channel. Figure 6.2a, shows seasonal bed level 
change alongside the cumulative change since surveying began. Whilst the overall pattern 
is one of aggradation, the reach was actually degrading during the first three survey periods. 
This degradation was relatively small when compared with the aggradation that followed. 
A mean bed level drop was also recorded between April and December 2006. The total 
aggradation between December 2002 and July 2007, when the full 5.6 km of reach was 
surveyed, was 0.17 m ± 0.026 m. The greatest mean bed level rise for the entire reach 
occurred during December 2003 and April 2004 when a mean bed level rise of 0.09 m ± 
0.01 m was recorded- During this period, the maximum bed level change for a particular 
location was recorded at 2.5 km downstream where the bed level rise was 0.5 m ± 0.007 m. 

Whilst it is interesting to consider the reach as a whole. Figures 6.2b to 6.2e show that 

temporal pattems of aggradation and degradation are also spatially variable. This variability 

may have important ramifications for flood risk. Figure 6.2b and Figure 6.2c echo the 

previous finding, based on the bed level change activity, that the channel flips between 

aggradation and degradation. If the start and end time of the surveys is considered, our 

perception of the river's state (i.e. as either aggradational or degradational) can be 

considerably altered. For example, if the bed level change pattern since December 2001 is 

considered in Figure 6.2d, the section may be seen as predominantly degrading. Yet if the 

surveys had begun two years later in December 03, the channel may be classed as relatively 

stable or slightly aggrading. Similarly, Figure 6.2e demonstrates the impact that survey 

frequency can have on our understanding of the channel's state. If surveys occurred only 

three times during the study period, the results would have missed the peak in aggradation 

that occurred between December 2004 and April 2005. Instead, they show the reach to be 

aggrading steadily rather than subject to rapid periods of deposition. Such short-term 

periods of deposition may be significant for flood risk, thus it is essential that they are 

captured by sufficient survey frequency and a sufficiently long time period of study so as to 

capture trends from noise. 



C H A P T E R 6: A N A L Y S I S A N D D I S C U S S I O N O F F IELD DATA 1 4 8 

Figure 6.2: Seasonal width-averaged bed level change. Individual data points indicate 
seasonal change whilst the solid line is the cumulative bed level change over time. Vertical 
error bars in (a) represent the bed level change uncertainty. 
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a) Average bed level change for entire study reach. 
b) & c) N^riability in seasonal bed level change at 
cross-section 080 (b) and 160 (c) 
d) The effect of starting time at cross-section 370. The 
black line shows the cumulative change since Dec-01 
whilst the grey line shows the change since Dec-03. 
e) The effect of survey frequency at cross-section 220. 
The black line shows the variability in cumulative bed 
level change when the channel is surveyed bi-annually 
whilst the grey line shows the pattern of change if the 
channel is surveyed once every 2.5years. 

Nevertheless, despite these temporal variations, there has been an overall pattern of 

aggradation in the Wharfe study reach since surveying began, and reflected in data from 

two further sources. First, it is reflected in the strong downstream fining trend noted in the 

Wharfe from the bed material characterisation results (Section 5.2). The D50 (median grain 

size) is 74 mm at the top of the study reach at Hubberholme whilst at Starbotton, 5.6 km 

downstream, it has fallen to 14 mm. Coarse sediment at the top of the reach fails to 

progress to the end of the study reach and is deposited and stored along the channel. This 
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finding argues against traditional assumptions (Hooke, 2003) that sediment supplied to a 
reach will eventually be transported through it and is supported strongly by the downstream 
fining literature (e.g. Ferguson et al, 1996; 1998). Second, as discussed in Section 5.4.4, 
the relative intensity of sediment transport recorded by the sediment impacts sensors falls 
progressively with distance downstream. Data fi-om these sensors suggest that, annually, 
only 10% of the sediment that enters at Hubberholme and Cray Beck, reaches Buckden 
Bridge. Of this, alongside the material entering from Buckden Beck, less than 1% actually 
leaves the study reach at Starbotton. 

6 . 2 . 2 C O N T R O L S O N THE S P A T I A L PATTERNS O F S E D I M E N T A T I O N 

Field surveys suggest that the spatial variability in bed level change is driven by the 

channel geometry, specifically channel slope and channel curvature (Section 4.2). Table 6.1 

compares the locations of the maximum erosion and deposition with channel geometry 

characteristics. To remove potential confiision due to the differences in the upper and lower 

reach sections, this analysis is only done for the upper 3 km reach where pattems of erosion 

and deposition are more clearly defined. This table shows that there is a link between the 

locations with high levels of erosion and the channel geometry. Four of the six most 

eroding sections have both high curvature and an increase in channel slope. Of the 

remaining two, section 260 is the 2"'' most curved in the reach; and slope increases by one 

of the greatest amounts at section 290. The erosion at section 290 may also be explained by 

the confluence of Buckden Beck immediately upstream. This tributary contributes a 

relatively low sediment yield to the main channel. If the contribution of discharge to the 

main channel fi-om Buckden Beck is proportionally higher, then confluence scour may be 

anticipated. Although there is no data to support this, field surveys indicate that at low to 

medium flows Buckden Beck contributes over 1% of flow to the main channel. 
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Table 6.1: Relationship between channel geometry and bed level change. The table shows 
the 12 cross-sections that have experienced the hi^est rates of erosion and deposition since 
December 2002 alongside the slope and curvature rank for that location. Large slope rank 
values indicate the greatest increase in slope whilst small slope rank values correspond with 
reduction in slopes. Low curvature rank values indicate curved reaches whilst high values 
indicate straight reaches. In both the slope and curvature, values range from 1-34. Bold 
values indicate higher importance. 

x-section number bed level change(m slope rank curvature rank 
210 -0.43 ± 0.034 20 1 
90 -0.37 ± 0.023 z 

o 18 8 
260 -0.34 ± 0.054 1 -

< 7 2 
160 -0.23 ± 0.038 17 5 
290 -0.20 ± 0.026 o 

1X1 
22 23 

300 -0.10 ±0.022 Q 26 7 
70 0.38 ± 0.038 29 12 
30 0.42 ± 0.050 z 

o 1 24 
310 0.44 ± 0.020 1 -

< 14 21 
120 0.50 ± 0.030 a 2 34 
330 0.52 ±0.018 o 19 15 
150 0.60 ± 0.029 < 3 22 

Geometrical characteristics also provide some explanation of the locations of deposition 

found in the Wharfe. The top three slope reductions correspond to high levels of deposition 

indicating that slope may be responsible for the deposition at cross-sections 30, 120 and 

150. Thus, with the overall slope profile of the study reach concave and gradually reducing 

in slope, it is unsurprising that the overall system is aggrading. However, on the other hand, 

the deposition that is occurring may be responsible for the reduction in channel slope. The 

other two locations, sections 070 and 330, are slightly curved. When the field surveys are 

examined, both cross-section locations are found immediately after the bend apex and are 

associated with large point bar deposits. Whilst maximum curvature is associated with 

scour and erosion, deposirion is associated with curved reaches downstream of the bend 

apex. Field observations suggest that the configuration of the confluence of the Cray Beck 

tributary, located at section 120, may lead to deposition. This tributary contributes only a 

small amount of sediment, <1%, to the main channel. Yet field surveys suggest that the 

configuration of the confluence is such that it allows the sediment to become deposited in 

the beck side of the confluence. Thus, it contributes to the deposition recorded at cross-

section 120, which spans across the main channel and the tributary immediately upstream 
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of the confluence. Finally, it is imclear what is driving the deposition recorded at cross-
section 310. It is likely that a combination of factors are responsible. 

6 . 2 . 3 C O N T R O L S O N L A T E R A L C H A N N E L A D J U S T M E N T 

Following on from the above discussion into the influence that changes in slope and 

curvature have on sedimentation, factors controlling lateral changes in channel planform 

are explored. This analysis concentrates on explaining the factors driving bank erosion. 

This discussion initially considers whether aggradation drives bank erosion. It then 

explores the relationship between curvature and bank erosion before examining factors 

controlling channel width. 

First, Figure 6.3 examines the relationship between bed level change, sediment activity and 

bank erosion rates. A good linear relation between bed level and bank erosion rate is 

present as indicated by the full square data points. This implies that either the deposition of 

sediment is driving the bank erosion or that bank erosion increases width sufficiently to 

reduce flow depths and promote the deposition of sediment. With bank erosion rates small, 

it is likely that the deposition drives the bank erosion since the increase in width associated 

with small amounts of bank erosion will have little impact on flow depths and deposition 

rates. When the sediment activity points (hollow triangles) are considered, no clear pattem 

emerges. This suggests that when activity is high but the net change is not aggradation, 

bank erosion is not as likely. Thus whilst sediment transfer can be high, aggradation is 

crucial for bank erosion. This is particularly evident at the activity point referenced (la), 

which corresponds to net degradation (lb). Here, bank erosion is low. This location may 

have been experiencing the passage of sediment waves, activity is high, but the sediment is 

only stored for a short-period which is insufficient to promote bank erosion. 
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Figure 6.3: Bed level change and sediment activity plotted against bank erosion rates. 
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Findings fi-om the bank erosion results (Section 4.4) suggest that bank erosion rates are 

higher in curved reaches when compared with straighter channels. This suggestion can be 

explored ftirther by comparing the channel curvature calculated fi-om the digitised L iDAR 

images (Section 4.5) with the fastest flow paths determined using a field based approach 

(Section 4.6) and the bank erosion rates (Section 4.4). 

The fastest flow paths were smoothed to remove the noise associated with the 2 m spatial 

resolution. A 3-point moving average was used so that the spacing of points became around 

6 m. Since the spacing of the digitised points on the channel centreline was greater than the 

spacing of the measured-smoothed flow path points, flow path points closest to the channel 

centreline were extracted for fijrther analysis. First, the curvature of the centreline was 

compared with the curvature of the fastest flow path. Curvature of the fastest flow path was 

determined using the same approach used to determine the curvature of the centreline. 

Second, the relationship between centreline curvature and the proximity of the fastest flow 

from the bank was compared. The results are shown in Figure 6.4. 

Figure 6.4a, illustrates that despite the scatter there is a relationship between the curvature 

of the channel and the fastest flow. One would expect this relationship to be completely 
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linear with the trend line passing through (0,0) and having a gradient of 1, if the flow was 
parallel to the banks. However, the plot exhibits a large amount of scatter, particularly at 
lower curvatures and the linear trend line crosses at 0.013 radians and has a gradient of 
0.07. This means that there is a lag between high channel curvature and flow path curvature 
with the channel curvature increasing before the flow path curves. This finding is supported 
by work by Dietrich and Smith (1983). Furthermore, the flow path curvatures are much 
higher than the channel curvatures. This is likely to be a fiinction of the smoothed 
centreline and the wandering nature of the fastest flow path. Of the six bends, the highest 
flow curvature occurs after the highest channel curvature in three cases. In the other three 
bends, the highest flow curvature is immediately before the maximum channel curvature. 
These results indicate that when the channel initially starts to bend, the flow path initially 
continues on a straighter path before turning a tighter curve close to the peak channel 
curvature. Thus, inertial effects are present and are important for meander development. 

Figure 6.4b shows that when the curvature of the channel increases, the fastest flow path 

moves towards the outer bank. Again there is a lot of scatter but a general trend suggesting 

that the greater the curvature, the closer the flow to the outer bank. The results show that, of 

the six bends, the flow is closest to the outer bank at the maximum channel curvature on 

five of the bends. On the sixth bend the flow is closest to the bank just after the peak 

curvature. 



C H A P T E R 6 : A N A L Y S I S A N D D I S C U S S I O N O F F IELD DATA 1 5 4 

Figure 6.4: Analysis of flow paths around meander bends. (A) shows the relationship 
between channel and flow curvature, whilst (B) shows the shifting of the high velocity core 
towards the outer bank as channel curvature increases. 
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Figure 6.5a shows the relationship between channel centreline curvature and annual bank 

erosion. Of the four banks, each represented in the plot, two were on relatively straight 

reaches with low curvature and two were on the outside of meander bends. There is a 

strong relationship between curvature and bank erosion rates, despite there only being four 

data points. If a linear trendline is added to this plot, the value is 0.96, which is perhaps 

not that surprising since there are only four data points. Begin (1981) who used the 

relationship between rates of channel migration and curvature in his width adjustment 
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model supports this finding. In Figure 6.5b, the channel width at each of the bank erosion 

sites was noted and plotted against the annual bank erosion rates. The linear increase in 

channel width as bank erosion rates increase is unsurprising and leads to an examination of 

the links between curvature and channel width. It should be noted that some of the bank 

erosion sites are not exactly in-line with the cross-section location and hence the channel 

width of a bank erosion site is specific to the bank erosion site and is not the same as the 

nearest cross-sectional location. When interpreting these results care must be taken due to 

downstream changes in width that may be expected due to increasing discharge from 

tributary inputs. However, this is unlikely to be very large since the main tributaries of Cray 

and Buckden Beck increase the flow by around 10 and 5% respectively. 

Figure 6.5: Relationship between curvature, bank erosion and channel width. 
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With curvature closely related to bank erosion, it is of interest to explore whether curvature 

and channel width are also linked together. It is hypothesised that reaches with higher 

curvatures will erode at a faster rate and hence will be wider. However, many of the banks 

along the Wharfe study reach, typically on the outside of meander bends, are protected by 

hard engineering. This protection stops bank erosion thereby restricting width adjustment. 

As such, the cross-sections are split into protected and unprotected. Both groups are 

analysed separately. First, in the cross-sections with no bank protection, as shown in Figure 

6.6, there is an increase in channel width as curvature increases until around 0.02-0.03 



C H A P T E R 6: A N A L Y S I S A N D D I S C U S S I O N O F F IELD DATA 1 5 6 

radians where there is a cut-off with width increasing but curvature remaining similar. This 

cut-off represents the maximum curvature of un-protected bends. The range of widths at 

this maximum curvature reflect other flow and bank factors that are involved in bank 

erosion. The scatter in these plots also reflects the complexities in the bank erosion process 

with other factors including vegetation, bank materials and slope also involved. When the 

ratio of radius of curvature to channel width (R/w) are determined, a range of values from 

1.7 to 4 are found for the unprotected bends. These values are similar to others noted in the 

literature including Hey (1976) who found R/w values of 2 for British rivers and Williams 

(1986) who found a range of between 2 and 3. Where bank protection is in place (Figure 

6.7), no relationship between curvature and width is apparent. The channel width in 

protected reaches is determined by human intervention and not natural adjustment 

processes. Hence, this result is expected. Furthermore, channel sections where no bank 

protection is present are on average 1.45 m wider than those that are protected. However, 

there is no statistical difference between the two data groups as determined using a t-test. 

The t-value for the comparison was below the critical t-value for the number of degrees of 

freedom present in the sample. Therefore, the null hypothesis, that there is no difference 

between samples, is accepted. 

Figure 6.6: (left) Channel width and curvature on protected cross-sections 
Figure 6.7: (right) Channel width and curvature on unprotected cross-sections 
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To summarise, the results presented demonstrate that in the Wharfe: (1) bank erosion rates 
are higher when aggradation occurs; (2) the flow path around bends closely follows channel 
curvature although there is a partial lag with the banks bending before the flow; (3) the 
fastest flow path is closest to the bank at or just before the highest channel curvature; (4) 
bank erosion rates are higher when curvature is high; and (5) bank erosion produces wider 
channels. Thus, curvature drives bank erosion and width increases through the shifting of 
the high velocity core of flow to the outer bank. Deposition occurs on the inner bank. 
However, this argues against findings made in Table 6.1, which demonsfrated that 
degradation is associated with the highest curvatures whilst aggradation is found at 
moderate to low curved reaches. This discrepancy can be explained by the presence of bank 
protection. In the most curved reaches, bank protection is present and this inhibits bank 
erosion and lateral channel change. The channel remains narrow and scour occurs, 
degrading the engineered reach. Thus, two situations are present if curvature is high: (1) in 
protected reaches, degradation prevails and no lateral adjustments occur; and (2) in 
unprotected reaches, curvature promotes outer bank erosion and inner-bank deposition and 
the river is allowed to meander. 
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6 . 3 E S T I M A T I N G B E D L O A D T R A N S P O R T R A T E 

The cross-sectional surveys and data from the sediment impact sensors allow a 

morphological sediment budget to be reconstructed. The theory underlying this approach is 

that channels evolve over time through the erosion, transport and deposition of mobilised 

sediments dovrastream. Thus, there is a direct link between coarse sediment transfer and 

channel morphology. Rates of sediment transport are estimated by quantifying changes in 

patterns of erosion and deposition within the channel. Popov (1962) was the first to suggest 

this approach and Neill (1987) successfiilly developed the idea using data from the Fraser 

River. This approach, which is often termed the "inverse method", has been used and 

developed further by many (e.g. Ferguson and Ashworth, 1992; Goff and Ashmore, 1994; 

Martin and Church, 1995; Lane et al, 1995; Ashmore and Church, 1998; McLean and 

Church, 1999; Ham and Church, 2000; Lindsay and Ashmore, 2002; Fuller et al., 2003; 

Martin and Ham, 2005). 

6.3. 1 C O N S T R U C T I N G T H E S E D I M E N T B U D G E T 

The method can be explained using an inverted Exner equation for sediment continuity 

[6.1]. This equation allows changes in volumetric rates of sediment transport or the bedload 

flux (Aq) averaged across the channel (Az) to be estimated from width-averaged changes in 

bed elevation (Ah) over a certain time period (At). This time period can be the time period 

between two successive surveys or if known, the durarion of active transport. The bulk 

sediment porosity is represented by e. 

Ah__^]_Aq [6.1] 
At ~ \ -£ Az 

The sediment budget approach requires volumes of erosion and deposition within the study 

reach to be quantified. Methods of calculating this include using repeat topographic 

surveys, aerial photography or using land-based photogrammetry. The first method is the 

most common and is used to survey the channel bed, bars and islands at either: (1) fixed 

cross-sectional locations (e.g. McLean and Church, 1999; Martin and Ham, 2005); or (2) 
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within a defined reach by surveying all morphological features at a high resolution to create 
a D E M of the channel (Lane et ai, 1995; Brasington et ai, 2000; Fuller et al, 2003). The 
latter is a much more detailed survey but due to time constraints is typically limited to short 
reaches. The second approach, as adopted by Ham and Church (2000), used an analytical 
stereoplotter to map features such as channel banks and bars from a series of aerial 
photographs. The volumetric changes between photographs are estimated and used to re
construct the sediment budget. The final method uses digital photogrammetry, laser 
altimetry and image processing to provide a high resolution D E M of the channel geometry 
(e.g. Lane et al., 1994; Westaway et al.. 2000, Lane et al., 2003). Due to the resolution, it 
can only be applied to short river sections. 

The morphological approach has several limitations and estimated sediment transport rates 

are likely to be lower-bound estimates (Fuller et al., 2003). The first limitation is that fixed 

cross-sections only provide information at-a-point. Consequently, there is an extrapolation 

weakness associated with the method. Extrapolated data points may be tens of mefres away 

from a measured cross-section (Fuller al., 2003). It is also likely that the chosen location 

will fail to represent the M\ range of morphological channel changes migrating 

downsfream through space and time (Lane et al., 1994). Furthermore, the locations may 

miss processes of erosion and deposition that occur between cross-sections (Naden and 

Brayshaw, 1987; Wittenburg, 2002). Thus, sediment may move through the reach without 

any surface expression at the survey site or localised deposition may occur at the survey 

site that does not represent changes in the vicinity of the cross-section (Lindsay and 

Ashmore, 2002). Finally, volumes of activity may be negatively biased because of 

compensating volumes of scour and fill between surveys (Lane et al., 1994; Ashmore and 

Church, 1998; Lindsay and Ashmore, 2002). Scour and fill compensation occurs when 

there is a switch between scour and fill at a point between surveys. This problem is 

demonstrated in Figure 6.8. 
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Figure 6.8: Scour and fill compensation when calculating volumetric changes. 
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The morphological approach requires the transport rate to be knovm for at least one 

location within the study reach to provide either a starting input or output volume fi-om 

which the other volumes can be determined. This boundary condition may be measured 

using a portable sampler such as the Helley-Smith bedload sampler (e.g. Lane et al, 1995). 

No attempt was made to sample the Wharfe using such a device due to the nature of the 

transport conditions. Hence, this crucial information on the sediment transport rate along 

with detailed information on the duration of sediment transport activity was obtained from 

the impact sensors placed in the study reach for just over a year (Section 5.4). 

In addition, the significance of sediment supplied to the channel from bank erosion required 

quantifying and if necessary accounting for in the budget. Whilst bank erosion at the 

measured cross-sections is incorporated into the budget already, any bank erosion between 

cross-sections is not accounted for. By combining the bank erosion rates estimated from the 

bank erosion study (Section 4.4), and the estimates of eroding bank face length and height 

made in the surveys (Section 4.2), an estimate of the volume of sediment added to the river 

system from the eroding banks can be made. Figure 6.9 shows the locations of erosion in 

the Wharfe alongside bank protection. The volumetric bank erosion estimate is shown in 

Table 6.2. 
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Figure 6.9: Map showing locations of bank protection and erosion. 
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Table 6.2: Estimated volumetric input of sediment from bank erosion 

Estimated volumetric input of sediment from bank erosion 

bank 
erosion 

on 
straights 

85 m of straights at 2.1 m high = 178.5 of bank face 

17 m of straights at 2 m high = 34 of bank face 

20 m of straights at 1.8 m high = 40.8m^ of bank face 

24 m of straights at 1.7 m high = 36 m^of bank face 

TOTAL of 289.3 m of eroding bank face on straights at 0.07 m per year = 20.25 
of bank erosion per year 

bank 
erosion 

on 
bends 

87 m of bends at 2.1 m high = 182.7 of bank face 

30 m of bends at 1.9 m high = 57 of bank face 

20 m of bends at 1.7 m high = 34 of bank face 

TOTAL of 273.7 of eroding bank face on bends: 0.18 m per year (lower estimate); 
0.21 m per year (upper estimate) = 49.3 to 57.8 of bank erosion year' 

straights 
+ bends 69.55 to 78 erosion per year. 

These estimated input volumes are relatively small when compared with the volumetric 

changes in the channel recorded in the cross-sectional surveys. The volume of sediment 

from bank collapse can also be estimated. The bank collapse recorded on bank 4, will have 

input around 13 m^ of sediment (8 m bank length, 2 m bank height and 0.8 m bank retreat) 

whilst the 12 m of erosion, estimated from the aerial photographs, suggest that an input of 

480 m^ (20 m long bank, 2 m high, 12 m bank erosion) of sediment may have entered the 

channel in a very short period of time. However, these volumes are still small when the 

volumetric changes from upstream sediment delivery are considered. Furthermore, this 

sediment is predominantly fine material that would be entrained as wash load by the flow. 

It would contribute minimally to bed level changes and would not be recorded by the 

sediment impact sensors that only record grain sizes greater than 8 mm. Thus, sediment 

input from the banks can be discounted. However, when the extent of bank protection 

mapped in Figure 6.9 is considered, this assumption would require revisiting if bank 

protection was not present. 

The volumetric changes in the channel alongside the impact sensor data were used to 

reconstruct the sediment budget of the channel. The impact sensor data, allows a zero 

transport rate to be set at Starbotton. Martin (2003) made a similar assumption. He found 

little transport in the most downstream location and therefore set a zero-gravel transport 
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rate. With the downstream Hmit set at 0, the budget could be extended upstream using [6.2]. 
A t each o f the tributary confluences, 0.8% (Buckden Beck) and 0.3% (Cray Beck) of the 
sediment was removed. These percentages were determined from the impact sensors as 
explained in Section 5.4.4. With only one fu l l year's worth of ping data available, the 
budget reconstructed f rom the March 2003 to March 2004 survey data was used to estimate 
the bedload transport rates in the channel. This budget is shown in Table 6.3. Appendix IV 
contains the budget for each of the survey periods. The periods April 2003 - December 

2003 and December 2003 - Apri l 2004 were combined to give the March 2003 - March 

2004 estimates. 

V^=V^-AV-V„, [6.2] 

where K, is the volumetric input into the reach, Vg is the volumetric output and AV\s, the 

storage within the reach (volumetric change calculated using [4.4] in Chapter 4) and is 

the tributary input (only used in the two reaches where tributaries enter: marked as a dashed 

line in Table 6.3) The budget for March 2003 - March 2004 shows that 8790 m^ ± 16.5% 

(1447.7 m^) of sediment entered the reach over the duration of the year. This is the same as 

0.09 m of bed level rise uniformly distributed across the channel bed down the entire study 

reach. This is the highest input for all o f the study periods. Since the estimates of sediment 

transport rates from morphological budgets are likely to be lower bound estimates (Fuller et 

al, 2003), these values provide a conservative estimate of sediment transport rates in the 

Upper Wharfe. When the budget is examined more closely, it is noted that the two most 

downstream cross-sectional reaches (580-600) record negative values during the study 

period. This implies that sediment actually left the study reach during this time. This leads 

to the zero-transport output boundary value being questioned. This apparent erosion in the 

lower reaches is supported by the small amount o f sediment activity that was recorded at 

Starbotton by the impact sensors. Since these values are only small they can largely be 

ignored and the zero-transport output value can be maintained. I f these values were more 

important, the output value would require revision. Indeed, for all the survey periods, the 

maximum negative values were recorded during this time period (March 2003 - March 

2004). The average volumetric change in storage for the most downstream section o f 590-

600 for all time periods was estimated at 19 m^ ± 10%. 
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Table 6.3: Volumetric budget for March 03-March 04. Dash line indicates tributary. 

cross-section area change (m )̂ distance between 
sections (m) W(m') 

10 2.6 0.0 1253.3 8790.5 
30 4.9 331.3 923.5 7537.1 
40 4.3 199.5 859.9 6613.7 
50 3.8 212.2 10.2 5753.7 
60 -3.2 34.5 -81.7 5743.5 
70 -2.1 31.1 30.8 5825.3 
80 4.3 28.2 160.5 5794.5 
90 2.8 45.2 166.3 5633.9 
100 2.7 60.5 136.1 5467.6 
i ib 4.2 39.7 161.1 5331.5 
120 3.2 43.4 146.6 5170.4 
130 2.3 52.6 100.7 5039.0 
140 3.9 32.0 271.5 4938.3 
150 3.5 73.2 428.0 4666.8 
160 3.7 119.3 432.9 4238.8 
170 0.8 190.6 -91.7 3806.0 
180 -2.2 139.4 -151.2 3897.6 
190 -1.6 80.7 -63.2 4048.8 
200 0.5 116.8 -83.4 4112.0 
210 -6.8 26.7 -102.0 4195.4 
220 1.1 35.9 43.5 4297.4 
230 0.6 51.3 36.5 4253.9 
240 1.8 30.2 98.8 4217.4 
250 2.1 50.3 -44.5 4118.6 
260 -3.4 69.5 -103.6 4163.1 
270 -2.2 37.0 -113.0 4266.7 
280 -0.3 92.6 -23.8 4379.7 
290 -0.2 i i i . 3 21.7 4403.5 
300 0.8 71.6 261.4 4417.2 
310 7.3 64.8 219.2 4155.8 
320 1.0 52.7 113.7 3936.7 
330 1.5 88.5 184.2 3823.0 
340 1.3 128.7 548.2 3638.8 
350 7.4 126.2 203.5 3090.6 
360 -2.3 79.5 -71.0 2887.1 
370 -3.1 26.7 -119.5 2958.1 
380 -1.1 56.9 -176.9 3077.6 
390 -1.7 123.0 -106.1 3254.5 
400 0.0 120.6 -19.5 3360.6 
410 -0.4 103.1 35.4 3380.2 
420 2.5 33.2 635.9 3344.8 
430 2.2 272.2 243.6 2708.9 
440 1.0 151.0 173.6 2465.3 
450 2.3 105.2 155.2 2291.7 
460 2.6 63.6 193.6 2136.5 
470 0.9 110.4 316.7 1942.8 
480 4.1 127.9 515.8 1626.1 
490 1.5 184.1 296.4 1110.3 
500 5.3 86.3 317.4 813.9 
510 1.7 90.1 118.0 496.5 
520 0.4 114.5 -15.0 378.5 
530 -0.7 85.6 150.4 393.5 
540 3.4 111.8 176.0 243.2 
550 0.9 82.9 195.1 67.1 
560 2.6 112.8 216.3 -127.9 
570 1.4 108.9 97.4 -344.2 
580 0.3 113.9 -157.0 -441.7 
590 -2.7 130.6 -284.7 -284.7 
600 -1.8 124.1 0.0 0.0 
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6.3.2 V O L U M E S T O T R A N S P O R T RATE 

To convert a volumetric input o f sediment into a transport rate, it is important to include a 

porosity factor to account for voids in the bed material when converting a volume (includes 

voids) into a weight (void-less). Porosity is controlled by the texture (grain size and sorting) 

and the fabric (packing and orientation) o f the material. Typical values of porosity for 

gravels are between 0.25-0.40 (e.g. McWorter and Sunada, 1977; Freeze and Cherry, 

1979). This is the same as saying that between 25 and 40% of the volume are voids. Carling 

and Reader (1982) developed a conversion equation that related the saturated specific 

weight o f sediment (i.e. the weight of sediment and water mix per volume of deposit) to the 

more readily obtainable specific weight o f dry sediment (weight of sediment per volume of 

deposit). They went on to suggest that in the absence of significant silt and clay sized 

material, the median grain diameter of poorly sorted bed material (i.e. those with a wide 

range of particle size) can be used to estimate the porosity. They calculate this factor using 

[6.3]. They found that porosity is negatively correlated to the median grain-size (Figure 

6.10) and that poor sorting of gravel particles allows close packing and hence the porosity 

is lower. Thus sand sized particles fill the voids between larger particles. 

s = 0.4665D;^'' -0.0333 [6.3] 

where s is the porosity and D50 is the mean grain diameter (mm). 

For the Wharfe sediment, the D50 ranges from 79.2 mm to 16.3 mm. Based on [5.6] and 

Figiire 6.10 the porosity factors that should be applied to the Wharfe according to Carling 

and Reader's findings, range from 0.15 (Hubberholme) to 0.23 (Starbotton). These values 

are slightly lower than those used by Martin (2005), Ham and Church, (2000) and Martin 

and Church (1995) who set porosity at 0.25. Lane et al. (1995) found e to be 0.2, which is 

similar to the range found for the Wharfe. 
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Figure 6.10: Porosity as calculated using Carling and Reader (1982) 
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However, these lower porosity values found using Carling and Readers approach assume 

that the voids are filled with finer particles. When the GSDs for the Vedder River (Martin 

and Church, 1995) are compared with those from the Wharfe, some issues arise. At the 

downstream end of the Vedder study reach, the D50 is 10 mm whilst in the Wharfe the D50 

for the active layer at cross-section 540 is slightly coarser (16 mm). However, the nature of 

the grain size distributions is very different within the Wharfe. Whilst the Vedder has 40% 

material less than 8 mm and 10% greater than 64 mm, the Wharfe has 26% less than 8 mm 

and 4% greater than 64 mm. Thus wider variations in grain sizes, and in particular the 

higher percentage of finer material in the Vedder, w i l l reduce the porosity when compared 

to the Wharfe (more fines to fill the voids). Hence, the Wharfe requires higher porosity 

values than those used on the Vedder River and those suggested using the Carling and 

Reader approach. 

Table 6.4 shows the effect that changing the porosity has on the volumetric input at 

Hubberholme when converted into kilograms and tonnes (i.e. a weight). By changing the 
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porosity fi^om 0.1 to 0.3, the input increases by 4700 tonnes, or by 22%. It is important to 
use an appropriate porosity value. Hence, the Carling and Readers equation was used to 
scale porosity with the D50 and then 0.1 was added to adjust for the lack o f sand in the 
Wharfe. This gave the Wharfe porosity values ranging fi-om 0.26 at Hubberholme to 0.33 at 
Starbotton. These values are more in line with those used in other gravel-bed rivers. Yet, 
these higher values assume that there is little sand in the bed which is incorrect in the lower 
reaches. However, this methodology is attempting to estimate the bedload transport rate 
which excludes fines that are transported in suspension. Additionally, the impact sensors 
only record particles greater than 3 mm thereby ignoring fine sands. It was felt that a value 
o f 0.4 was too high for the lower reaches where the sediment is finer. 

Table 6.4: Input values when applying different porosity values. Using estimated 
volumetric inputs for Hubberholme, for March 2003-2004. 

Input (m") Porosity Bulk Density (kg/m^) Input (tonnes) 
8790.5 0.1 2385 20965.3 
8790.5 0.2 2120 18635.9 
8790.5 0.3 1855 16306.4 

The volumetric inputs (K,) at each cross-section were converted into a transport rate (q) by 

multiplying by the chosen porosity factor and integrating over active transport time (/) and 

channel width (w) to give the estimated bedload transport rate in kg' ' m' ' s'' [6.4]. Active 

transport time, was calculated fi-om the estimated percentage time sediment was in motion 

using the impact sensors described in Section 5.4. The bedload transport rate was calculated 

assuming that it is constant across the width of the active channel (w). 

V. [6.4] 

AwAt 

This method was applied to the volumetric estimates at Hubberholme and at Buckden 

Bridge for the two survey periods, Apri l 2003 to December 2003 and December 2003 to 

Apri l 2004. Table 5.8 shows details of the values used for these estimates. For each 

location, the porosity factor was determined fi-om the D50 at the location with 0.1 added in 
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to account for the reduction in fine material found in the Wharfe sediment. This value has 
no empirical evidence supporting it; it was selected entirely to make the data fit better. 0.26 
was applied to the coarser sediment at Hubberholme and a higher value o f 0.28 was applied 
to Buckden Bridge, where the D50 had fined by 37 mm. In addition, the estimates account 
for different charmel widths at the two sites, and different transport times estimated for the 
impact sensors at the two locations. By dividing the input by the width and then the 
transport time in seconds, the average transport rate can be estimated for the given location 
and time period. This average can then be related to the ping count for that period to 
provide a bedload transport estimate for a given ping intensity. A visual example o f this 
relationship is shown in Figure 6.11 whilst the maximum estimated transport rate is shovvTi 
in Table 6.5. This approach assumes that bedload transport rate increases at a linear rate to 
ping count. Thus the two data series shown in Figure 6.11 nrurror each other perfectly, 
reflecting that they are explicitly tied together. 

By combining data from the impact sensors with the volumetric budget in this way, some 

interesting findings arise. First, echoing findings made in the impact sensor and cross-

sectional survey analysis, seasonal and spatial differences in sediment transport rates are 

evident. At Hubberholme, transport rates are nearly three times higher in the December to 

Apri l period when compared with the preceding Apri l to December period. When the Apri l 

to December survey period is considered, a small reduction in transport rates is noted as 

one moves from Hubberholme to Buckden Bridge. The estimated bedload transport rates at 

Buckden Bridge between December 2003 and Apri l 2004 are o f concem as they are 

substantially higher than the other estimates. This suggests that either only very high 

magnitude transport events occurred at Buckden Bridge during this time, or there is an error 

in the volumetric estimates or estimated transport time. 
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Table 6.5: Estimating average bedload transport rate from volumetric input. 

Apr 03 - Dec 03 Dec 03 - Apr 04 
Hubb. B. Bridge Hubb. B. Bridge 

Input (m^) 3030 583 5811 3706 
Dso 79.2 41.7 79.2 41.7 
Porosity 0.26 0.28 0.26 0.28 
Bulk density (kg/m^) 1961.1 1920.1 1961.1 1920.1 
Input (kg) 5,942,330 1,119,409 11,396,329 7,115,831 
Width (m) 12 19.5 12 19.5 
Time intervals 3325 559 2419 182 
Time (sees) from impact sensors 997,500 167,700 725,700 54,600 
Average trans, rate (kg m"̂  s"^) 0.50 0.34 1.31 6.68 
Max trans, rate (kg m"' s'^) 0.74 0.53 2.4 21.40 

Figure 6.11: Relationship between ping intensity and estimated bedload fransport rate for a 
single transport event at Hubberholme on the T' January 2004. 
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6.3.3 S U M M A R Y O F V O L U M E T R I C A P P R O A C H 

The impact sensors add a new dimension to the traditional volumetric sediment budget 

approach by providing information on the length o f time that sediment is in transport and 

the intensity and duration o f individual events. Furthermore, they provide the budget with a 

more valuable output estimate from which to reconstruct the rest o f the budget. The 

information from the impact sensors allows bedload transport rates to be estimated whilst 

the bank erosion study also supports the zero lateral input. However, this zero lateral input 

may not hold i f bank protection was removed. In addition, the results presented here raise 

important issues to consider when constructing volumetric budgets. First, transport time 

varies greatly over spatial and temporal scales making it difficult to assign one estimate of 

transport time to an entire stretch of river for a given time period. Furthermore, porosity is 

an important parameter in these estimates and can change in reaches with rapid downstream 

fining. 

6 . 4 P R E D I C T I N G B E D L E V E L C H A N G E S U S I N G I M P A C T S E N S O R S 

Two data sources provide information about the channel's sediment transfer system: the 

cross-sectional resurveys and the sediment impact sensors. Whilst the former is a labour 

and time intensive method, the impact sensors provide a relatively cheap (approximately 

£500 per sensor), quick and easy method to monitor sediment motion. In addition, they can 

be used to derive the temporal variability suggested by temporally coarser volumetric 

surveys. Here, the ability to infer bed level changes from the impact sensors is explored. As 

noted in the impact results secfion (Section 5.4), when two time periods are considered (in 

this case, arbitrarily summer and winter), the percentage of sediment from Hubberholme 

that reaches Buckden Beck varies greatly from 4% in the winter to 32% in the summer. As 

such, can something be inferred about sediment accumulation between these two sensor 

sites based on the relationship between sediment passing through them? To allow a third 

time period, based on the new sensors, to be incorporated, this analysis compares the 

difference in the percentage of time that sediment is in motion over the three survey time 
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periods o f March 2003 - December 2003, December 2003 - March 2004 and April 2006 -

December 2006. These data are compared against the mean bed level change for the 

corresponding periods and the reaches o f Hubberholme to Buckden Bridge, Buckden 

Bridge to Starbotton and the entire reach fi-om Hubberholme to Starbotton. These data are 

presented in Table 6.6. Whilst transport times are expected to differ between sites as a 

result of different transport thresholds, the time difference between sites is not expected to 

vary, since the hydrological regime between sites is strongly coupled. Such variations 

provide a good indication than the sediment transport regime is less coupled that the 

hydrological regime. 

Table 6.6: Relationship between mean bed level change and dovmstream differences in 
transport time. The mean bed level change (BLC) is calculated between the impact sensor 
locations alongside the percentage time difference between sites. For Apr i l 2006 -
December 2006 the percentage time difference is only available for the whole reach length 
as no sensor was installed at Buckden Bridge. 

Hubberholme to 
Buck Bridge 

Buck Bridge to 
Starbotton 

Hubberholme to 
Starbotton 

Mar 03 - mean BLC (m) 0.071 0.011 0.032 
Dec 03 time diff (% of year) 3.3 0.5 3.8 
Dec03 - mean BLC (m) 0.091 0.084 0.087 
Mar 04 time diff (% of year) 10.1 0.6 10.7 

Apr 06 - mean BLC (m) -0.023 -0.02 -0.021 
Dec 06 time diff (% of year) no data at B. Bridge 2 

When the Hubberholme to Buckden Bridge reach is compared, higher aggradation is found 

during the December 2003 to March 2004 period when the transport time is 10.1% lower at 

the Bridge than at Hubberholme. Similarly, between Buckden Bridge and Starbotton, a 

greater spatial difference in the percentage time that sediment is in motion is associated 

with higher rates of aggradation. When the entire river is considered and data fi-om the new 

sensors at Hubberholme and Starbotton are included, the results are also supportive. When 

the difference in transport time is lowest, between Apri l 2006 and December 2006, mean 

degradation occurs. This may be due to a reduction in sediment entering the channel at 

Hubberholme (hence a reduced transport time) or an increase in sediment leaving the 

chaimel at Starbotton (an increased transport time). When the actual transport times at 

Hubberholme and Starbotton for each of the three time periods are considered, a 
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combination o f a reduced transport time at Hubberholme and increased time at Starbotton 
occurs with Hubberholme values o f 4% (Mar 2003 -Dec 2003), 11% (Dec 2003 - Mar 
2004) and 2.7% (Apr 2006 - Dec 2006) and Starbotton values o f 0.2% (Mar 2003 -Dec 
2003), 0.3% (Dec 2003 - Mar 2004) and 0.7% (Apr 2006 - Dec 2006). These findings re-
emphasise the third dimension in the sediment transport system: in-channel sediment 
storage. Thus, vertical changes in the channel are a function o f hydrology, sediment supply 
from the hillslopes and within channel sediment storage. 

6 . 5 I M P A C T O F A G G R A D A T I O N O N F L O O D R I S K 

This section considers the implications of measured in-channel sedimentation for flood risk. 

In particular, changes in the incidence of flooding with respect to the temporal variations in 

channel sedimentation are considered. Using the variable power equation [5.12] outlined in 

Section 5.2, the bank fu l l discharge is estimated at each of the 60 cross-sections using the 

December 2002 and December 206 geometry to calculate cross-sectional area. The lowest 

bank was used to determine the bank fu l l level. Average slope between upstream and 

downstream cross-sections and roughness values specific to each section were used in the 

equation. Differences in bank fu l l capacity between the two time periods are shown in 

Figure 6.12. Only 14 sections experienced an increase in channel capacity with the greatest 

increase of 3 1 % found at cross-section 260 where outside bend scour is over deepening the 

channel. The other sections either remained constant over the time or experienced a 

reduction in bank fu l l channel capacity as aggradation occurs. The greatest reduction in 

channel capacity was noted at section 120. This was due to the removal o f the gravel trap 

and channel engineering in 2002. Since this time, the channel has experienced sediment 

accumulation. In addition, the cross-sectional locations of 050 and 350 have also both 

reduced in channel capacity by around 30%. These locations are zones with large gravel 

bars which are "growing" in height and areal extent. The average channel capacity in the 

entire reach has reduced by 6.7%. 
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Figure 6.12: Difference in bank fu l l capacity at each cross-sectional location from 
December 2002 to December 2006 using the VPE equation. 
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The analysis that follows, concentrates on cross-section 030, which crucially has an 

estimated discharge record and has experienced a bed level rise of 0.3 m ± 0.050 m since 

December 2002. This bed level rise equates to a relatively large reduction in channel bank 

fu l l capacity o f 21.9%. Slope was held constant in this analysis. As shown in Figure 6.12, 

this reduction is one of the larger amounts and hence this analysis represents the upper 

extent of the problem. Figure 6.13 shows the relationship between channel capacity in 

December 2002 and December 2006 and the top ten daily flows under three different flow 

regimes at Hubberholme: 1997, 2000 and 2002. Differences in the number of flood events 

and the time above bank fiill for the three flow regimes are considered in Table 6.7. Figure 

6.13 illustrates that the impact o f the sedimentation on the number of floods and the time 

above bank ful l is closely linked to the f low regime. In 1997 (Figure 6.13a), there is a more 

gradual drop in discharge from the maximum to the lO"^ highest daily flow and hence the 

impact of sedimentation is large, increasing the number of individual flood events from 0 to 

4 and the time that flow is above bank fu l l from 0 to 16 hours. In 2002 (Figure 6.13b), the 

impact is much less important since there is a large difference in discharge between the 4'*̂  

and 5"̂  largest flows. Hence, using the 2002 regime, 4 years o f sedimentation has the effect 

o f increasing the number of floods from 4 to 5. Despite the smaller increase in the number 

of flood events, the time above bank f i i l l (Table 6.7) increases three times from the 2002 to 

2006 morphology. Consequently, water flows onto the floodplain for three times as long. 



Figure 6.13: Relationship between the maximum daily flows in 1997, 2000 and 2002 and the channels bank fixll 
capacity in December 2002 and December 2006. 
Table 6.7: Effect o f changes in morphology on flood frequency and time flow is over bank. 
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Survey 
Date 

Cumulative mean 
bed level change 
dec02-dec06 (m) 

Bankfull capacity 
( m ' s ' ) 

1997 2000 2002 
Survey 
Date 

Cumulative mean 
bed level change 
dec02-dec06 (m) 

Bankfull capacity 
( m ' s ' ) 

No. of flood 
events 

Time above 
bank (hours) 

No. of flood 
events 

Time above 
bank (hours) 

No. of flood 
events 

Time above 
bank (hours) 

Dec-02 79.0 0 0 2 4.75 4 5.5 
Apr-03 0.025 ± 0.025 77.2 1 0.25 2 5 4 6.25 
Dec-03 0.218 ±0.030 64.2 4 9.25 2 8 4 12.75 
Apr-04 0.363 ± 0.035 55.0 4 17.75 5 18.5 5 18 
Dec-04 0.422 ± 0.038 51.4 4 19.75 5 23.75 5 20.5 
Apr-05 0.394 ±0.041 53.1 4 18.25 5 20,5 5 19.5 
Dec-05 0.367 ± 0.046 54.7 4 17.75 5 19.25 5 18.25 
Apr-06 0.448 ± 0.047 49.9 4 21.5 5 24.5 6 23.5 
Dec-06 0.330 ± 0.050 57.0 4 16.5 5 15.25 5 17 
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6 . 6 D I S C U S S I O N 

The results demonstrate that, in aggrading river systems, such as the Upper River Wharfe, 

certain zones exhibit substantially more aggradation than is indicated by the spatially-

averaged data. It is zones where sedimentation is the highest that the impacts on flood risk 

w i l l be felt the greatest. The data shows the effect that sedimentation w i l l have on the 

number and duration o f overbank flows. The threshold at which sedimentation w i l l impact 

on overbank flows is dependent on the hydrology and sedimentation rate. Once this 

threshold has been crossed, the increase in number and duration of flows can be dramatic. 

The examples show that 4-years o f in-channel sedimentation can increase the number of 

floods by an average o f 2.7 years and the time above bank by 12.8 hours. The increase in 

time over bank fu l l is particularly concerning as longer periods o f time allow greater 

volumes of water to flow onto the floodplain and hence a larger inundation extent. Indeed, 

previous work on the Wharfe showed that a 6.1% reduction in channel capacity as a result 

o f 16-months o f sedimentation can lead to increases in inundated area o f 5.6% for the 1 in 

0.5 year return period and 7.1% for the 1 in 2 year flood events (Lane et ai, 2007). 

Either an increase in sedimentation rate or a reduction in the rate o f change between the 

highest flows, reflecting a regime with more flood events, w i l l lead to the impact on flood 

risk. A combination of the two w i l l have far greater consequences. Both land-use change 

and climate change have the potential to alter our sediment supply and our discharge 

regime (e.g. Robinson, 1980; Leeks, 1992; Amell and Reynard, 1996; Coulthard et al, 

2000; Knox, 2000; Kondolf et al., 2002; Sullivan et al., 2004; Booij , 2005). Land-use 

change increases an upland landscape's sensitivity to climate change (Macklin and Lewin, 

2003). Buma and Dehn (1998) suggest that climate change impacts on precipitation (e.g. 

Brookes et al., 2004) w i l l almost certainly lead to changes in hillslope activity. This wi l l 

result in greater coarse sediment generation in upland environments. In particular, this 

sediment delivery wi l l come fi-om an increased incidence o f rainfall triggered shallow 

translation landslides (e.g. Montgomery and Dietrich, 1994). Lane et al. (2008) quantified 

the possible climate change impacts on sediment flux from the Buckden Beck catchment. 

They estimated using 2050 climate scenarios that the volume of sediment delivered to the 
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main River Wharfe channel would increase by between 7 and 40%. Using 2080s scenarios, 
the volume could increase by between 28 and 68%. Such increases in sediment delivery to 
the main channel would have alarming consequences for flood risk. Managing these 
systems w i l l be diff icult and attention should perhaps concentrate on managing the 
sediment sources rather than the channel itself. 

Identifying zones where aggradation is particularly severe is important as these zones 

provided the greatest threat to increasing flood risk. With aggrading locations spatially and 

temporally variable, accurately locating these zones is problematic. Whilst cross-sectional 

resurveys provide a useful methodology they are often limited by time and cost restrictions. 

Limitations on survey spacing, fi-equency and the duration o f the study can lead to 

misinterpretation as the results have demonstrated and hence these results must be analysed 

with caution. Yet, until newer methods (e.g. photogrammetry by Kinzel et ai, 2007) 

become more widely available, techniques such as cross-sectional re-surveys and fluvial 

audits provide a first "best guess" into locations that may be particularly sensitive to 

aggradation, perhaps allowing survey efforts to be concentrated. 

TTie results have shown that reductions in slope and curvature are closely linked to changes 

in channel morphology. It is unsurprising that when the channel becomes steeper, erosion 

prevails since the channel's transport capacity increases, whilst deposition is associated 

with reductions in slope. The relationship between channel curvature and bed level change 

is slightly harder to predict since both zones o f erosion and deposition occur when 

curvature is high. What the results suggest is that erosion occurs at the apex o f the bend, 

where curvature is highest and deposition prevails immediately downstream. The presence 

of large point bar deposits recorded in field surveys, suggest that the secondary circulation 

created by the bend leads to deposition in the immediate downstream section. Additional 

features such as tributaries and bridges should also be accounted for when attempting to 

predict rapidly changing zones. Buckden Bridge may be acting as a barrier to sediment 

transfer downstream resulting in a moderate amount o f sediment accumulation immediately 

upstream, and erosion immediately downstream. 
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The downstream channel geometry over longer spatial scales should also be considered. 
Many highly depositional reaches were found directly upsfream of erosional reaches. 
Indeed it may be the case that the large depositional reach, prior to the 3 km upper and 
lower reach divide, acts to reduce sediment supply downstream, thereby leading initially to 
erosion and then significantly less aggradation fiirther downstream. Thus, whilst the source 
of sediment accumulation in the upper reach may be from upstream of Hubberholme and 
the two tributaries, the lower reach is at times supply-limited. Consequently, although 
activity is relatively healthy in the upper reach, the lack o f additional material downstream 
results in a relatively low net bed level rise, with larger high magnitude events required to 
mobilise sediment and rework it through and out o f the study reach. During such events, the 
coarse layer and bed armour is broken down, all grain sizes are moved and the coarse layer 
is reformed (Parker and Klingeman, 1982; Andrews and Erman, 1986). It may be that the 
progressive aggradation upsfream and the degradation downsfream of the 3 km divide 
reaches a critical threshold where the increased slope is sufficient eventually to start 
moving sediment through this divide. A n alternative explanation is that the bend at this 
location acts as a barrier to downsfream sediment. Without studies over longer timescales, 
it is difficult to assess a channel's future response. 

Furthermore, one may question why sediment rarely leaves the reach at Starbotton with the 

results and findings from Reid et al. (2007a) noting that transport out o f the reach only 

occurs during very high magnitude events. It appears the case that the long-term pattern of 

aggradation suggested in the valley (Lane et al., 2007) may be a response to larger 

geomorphic controls. These include the reduction in valley gradient at Hubberholme and a 

sediment discontinuity found at Starbotton. This discontinuity resulted from a catastrophic 

flood event in Cam Gil l Beck (which joins the Wharfe at Starbotton) in 1686 (Coulthard et 

al., 1998). This single event generated a decadal amount of sediment (Coulthard et al., 

1998) and formed the Starbotton alluvial fan which extended across the width o f the valley. 

The river has cut into this deposit yet it still acts as a local rise in base level. The channel's 

response to this is to aggrade upstream. Features such as bridges, weirs and dams, large 

landslides and significant channel engineering may create a similar effect leading to 

upstream aggradation. 
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In addition, it is often zones of high aggradation, particularly those with high curvature, that 

are subject to bank erosion as a natural response to sedimentation. This lateral adjustment 

not only allows the channel to maintain its capacity to convey flow, but also acts as a 

transfer o f coarse sediment into storage as the channel migrates. With evidence that rapid 

deposition can occur over relatively short-timescales it is likely that the lateral channel 

adjustment process w i l l fail to keep up with such bed level adjustment. This may result in 

short-term increases to flood risk before the channel can adjust through bank erosion. 

Unfortunately, this erosion and channel migration is often problematic for human activities 

and hence the banks become protected. Indeed in many upland rivers including the Wharfe, 

bank protection now exists to prevent the naturally migrating channel. This river training 

began in the Wharfe during the 14'̂  and 15"̂  centuries with monastic settlements that 

restricted the channel for farming purposes (McDonald et al. 2004). Many of these walled 

banks are still evident today alongside more recent engineering. Around 50% of all the 

bends in the channel are now protected with hard engineering. Hooke (2003) explains that 

where engineering prevents the channels' lateral adjustment, the channel becomes more 

responsive. This echoes findings by Pinter and Heine (2005) who found that river 

engineering, along a silt and sand bed river, can lead to increases in stage for a given 

discharge. 

The results show that, temporal rates o f sedimentation vary between seasons and years. 

Historically the channel has a history of aggradation with the short-term pattern echoing the 

longer-term aggradation found extending back to the 1980s (Lane et al., 2007). Macklin 

and Lewin (2003) suggest from analysis of the Holocene record, that systems like the 

Wharfe can experience large increases in sediment delivery over relatively short periods o f 

time. Attempting to explain temporal variations in sedimentation is difficult due to the 

relationship that precipitation has with both discharge and sediment supply. Thus, more 

storm events may enhance the sediment supplied to the reach through an increase in rainfall 

induced slope failure, but at the same time, they may result in greater channel erosion and 

transport due to higher discharges. When the magnitude and frequency o f sediment 

transport events is considered, the response o f a channel location is found to differ greatly 
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depending on the location, season and possibly year. In addition, whilst greater bed level 
change activity is associated with an increase in discharge, this does not necessarily result 
in net aggradation. This questions the simple, traditional linkage between changing 
hydrology such as flood frequency and magnitude, and geomorphological response (e.g. 
Leopold and Maddock, 1953; Harvey, 1969; Ackers and Charlton, 1970; Osterkamp, 
1980). Two reasons may explain this. First, the survey spacing and frequency may be in
sufficient to capture all the bed level changes since these bed level changes, were found to 
occur rapidly during only a few months (the time between survey dates) in certain 
locations. Furthermore, the impact sensor data suggests that bed level changes may occur 
over relatively few significant sediment transport events. This is most notable at Buckden 
Bridge, where 67% of the annual sediment activity occurs in one individual transport event. 
This echoes findings by Gintz et al. (1996) who suggest it is the larger flows that allow 
longer sediment transport distances and can rearrange channel morphology and by Hassan 
et al. (1992) and Haschenburger and Church (1998) who found that event duration has a 
positive effect on travel distance. Second, the main channel may become transport and 
supply limited at times. Thus, bed-level change activity may be high but sediment transport 
activity and aggradation may be low. The impact sensors suggest that when supply is 
ample, sediment supply from the hillslopes is high and the steep tributaries can transfer this 
to the main channel with greater volumes of sediment passing to Hubberholme. However, 
the main channel, which has a reduced gradient, has insufficient energy to transport this 
sediment dowTistream leading to scour and bed armouring as sediment supply downstream 
is limited. Thus, it is during high magnitude flow events that sediment can transfer 
downstream. Hence there is a time lag between sediment production from the hillslopes 
into the tributaries and to Hubberholme, and its re-working by the main channel. 

This complex response of the channel to sediment supply and to hydrology make it difficult 

to predict the response of the channel to potential future changes in climate and land-use 

(e.g. Amell and Reynard, 1996; Cameron, 2006; Fowler and Kilsby, 2007). More frequent, 

higher magnitude and longer duration flood events may on the one hand result in a greater 

supply of sediment (e.g. Coulthard and Macklin, 2001) leading to aggradation yet on the 

other hand, if sediment supply is not significantly altered then increased flows may allow 
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greater sediment conveyance through and out of the reach. Furthermore, with individual 
locations in the catchment demonstrating different responses to the supply and transfer of 
sediment, it is likely they will respond differently to future climate, and land-use changes. 

6 . 7 C H A P T E R S U M M A R Y 

There are several key findings to come out of this work. Most important is evidence that 

adds a new dimension to flood risk: the role of coarse sediment transfer. Only short-term 

sedimentation is required to increase the number and duration of overbank flows. 

Furthermore, these effects may be localised and rapid resulting from as little as one high 

flow event. Understanding the response of a system to changes in hydrology and sediment 

supply that may result from climate and land-use change are uncertain. This is made even 

more difficult because of the spatial and temporal variability found in the sediment supply 

and transfer process. The results also promote caution regarding bank protection schemes 

which are often implemented due to severe bank erosion which can be directly linked to 

high sedimentation rates. By reducing a channel's adjustment processes, these schemes are 

likely to have detrimental impacts on further sedimentation in a zone which was in the first 

instance one where sediment accumulation occurred naturally. Finally, the findings from 

the field-based side of this research have demonstrated the need for river management 

decisions to be made based on adequate channel monitoring. Whilst field monitoring can be 

used to inform processes operating in a river system, it cannot be used to effectively predict 

future changes. A modelling approach is required to explore channel change under a range 

of scenarios. 



C H A P T E R S E V E N : 

M O D E L C O N C E P T U A L I S A T I O N 

7 . 1 INTRODUCTION 

Chapter 6 demonstrated that field monitoring provides useful data which, when analysed, 

can be used to understand a wide range of processes and interactions operating in upland 

gravel-bed rivers such as the Upper River Wharfe. Thus, Objectives 3 and 4 can be 

achieved using this approach. However, these data cannot inform fiiture changes or the 

potential impact that direct interference in the river, e.g. bank protection, may have on 

sediment transfer. Modelling provides a valuable methodology for exploring such scenarios 

and fulfils Objective 6. The model must be able to simulate sediment transport processes, 

ideally in response to variable hydrology. It should also be able to simulate bank erosion 

and deposition, thereby simulating channel migration. 

This chapter begins by exploring previous models that attempt to simulate morphological 

channel change. These are grouped for discussion into: (1) equilibrium channel approaches 

(Section 7.2.1); (2) width adjustment models for straight channels (Section 7.2.2); (3) 

meander evolution and migration models (Section 7.2.3); and (4) modelling width 

adjustment in meandering channels (Section 7.2.4). Following this, the limitations of these 

models are discussed highlighting the need for a new model of morphological channel 

change to be developed. This will initially be specific to the Wharfe but will ideally be 

applicable to rivers with similar characteristics. The literature on channel change theory 

(Chapter 2) and the field based findings (Chapter 6) enables a conceptual model to be 

developed (Section 7.4). This is based on approaches in model group (2) which couple 

together sub-models representing the hydraulics, sediment transport and bank erosion. The 

latter part of the chapter, discusses options for each of the sub-models using examples from 

the literature to highlight potential options. A justification is then provided for selecting the 

ID sediment routing model, TRIB (Ferguson et ai, 2006), as a building block to couple 
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with a lateral channel change component. Options for the lateral channel change component 
are discussed using examples from the literature to provide a development strategy. 

Within this chapter "key modelling questions" are raised. These are fundamental to the 

model development and they form the structure for Chapter 8, which sets out to answer 

these questions through simulations and tests. 

7 . 2 O P T I O N S FOR M O D E L L I N G C H A N N E L A D J U S T M E N T 

Models are used in science to overcome problems associated with empirical studies that are 

based on observations and measurements under experimental manipulation. Three key 

limitations of the empirical approach include: (1) situations where data cannot be obtained 

by empirical means; this may be for technical, accessibility or cost reasons; (2) situations 

where there is a need to interpolate between an existing set of measurements, either in time 

or in space; or (3) when wanting to extrapolate beyond the existing set of measurements in 

time or space. The latter refers to predication by forecast or hindcast. As such, models are 

recognised to be an "'indispensible tool of the trade" and ""the basis of all interpretive 

science" (Bras et al, 2003). In this research, modelling is used to explore a variety of 

situations that cannot be measured easily (e.g. sediment transport) and to explore channel 

behaviour under different scenarios (e.g. the removal of bank protection). 

Models have been developed for a wide range of physical and social science topics from 

population growth models and global climate models to hydrological and hydraulic models. 

It is the latter, hydraulic models, that the following discussion will concentrate on, although 

many of the issues and topics explored are applicable to other modelling fields. Lane 

(1998) provides a usefixl review of modelling in hydrology and geomorphology. In fluvial 

geomorphology, models have been developed for two reasons. First to aid our 

understanding of system operations and second for engineering and river management 

purposes. These are often referred to as commercial models. The model developed for this 

research is entirely for research purposes but has scope to be used in applied studies to aid 

with river management 
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In the scientific literature, a model is typically defined as an abstract representation of 

complex real world systems, a simplification of reality, a blue print of an idea or an aid to 

visualisation and understanding (e.g. Bras et ai, 2003; Wainwright and Mulligan, 2004). 

These scientific models are built with the tools of mathematics and they range in levels of 

complexity, cost, expertise required to construct and operate, purpose and limitations. 

Successful models are not necessarily the most complex or expensive, with simpler models 

often providing predictions that match observations better than complex models (e.g. 

Murray, 2007). Most importantly, the model must be fit for purpose. For example, sediment 

transport models developed for fine sediment often fail to represent the full range of 

processes operating in coarse boulder channels. Thus, models should be designed in line 

with the resources available (e.g. data, computational power and expertise). 

Under the broad term of "model" lie many different model typologies. Perhaps the simplest 

of these is the conceptual or theoretical models which are based entirely on theory and 

ideas. These are typically used to develop ideas and show process linkages and often come 

in the form of a flow chart (for example Figure 2.2). Mathematical models are either 

"empirical" or "process-based / physically-based". Empirical models are derived entirely 

from observed data and are formulated by statistical association. Process-based / 

physically-based models simulate the physics of a system by representing the processes 

within the system. Physically-based models refer to models that closely follow the physics 

of the system whilst process-based models are simplifications from these. Not all processes 

in a system can be represented so many are lumped or parameterised together. Process-

based models can be categorised further into "deterministic" or "stochastic / probabilistic" 

models. Both are based on the relationship that a =/(b) where / i s the function and a and b 

are the process inputs and outputs. The distinction between deterministic and probabilistic 

models is that the latter allows for the input of random elements. As such in the 

deterministic model, the output is a direct consequence of the initial values, (i.e. inputs 

determine the outputs). Predictions of a based on some fijnction of b plus random elements, 

can only predict the probable output rather than the determined output. Random elements 

may result from truly random processes, non-random processes for which our knowledge is 
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insufficient so that they appear random or when the processes are very complex so that our 
only way of representing them is to do so stochastically. 

Modelling is typically carried out in two ways. Mathematically where the answer can be 

obtained analytically using a pen and paper to solve the equations or numerically where lots 

of attempts or iterations are required to obtain the output value or answer. These require the 

use of a computer and as such are often referred to as computational models. A numerical 

model of channel change is used in the research. 

Rivers contain complex morphodynamic processes resulting fi-om the interactions between 

flow, sediment and movable boundaries (Chen and Duan, 2006). Such complexities, many 

of which are not fully understood (Darby, 1998; Lancaster and Bras, 2002), have led to a 

vast range of modelling approaches to allow future channel changes to be predicted. 

However, due to the sheer number and diversity of processes and mechanisms operating in 

a channel alongside the uncertainties in understanding the processes, a single model is 

unlikely to have universal validity (Darby, 1998). The discussion that follows provides a 

review of the broad spectrum of models that have been developed to simulate 

morphological channel adjustments. These are broadly split into: (I) equilibrium channel 

approaches; (2) models for straight channels; (3) meander evolurion and migration models; 

and (4) width adjustment models for meandering channels. Each group is discussed. 

7 . 2 . 1 E Q U i U B R i u M C H A N N E L A P P R O A C H E S 

Geomorhpologists and engineers have long hypothesised that rivers and canals tend to 

create a geometry and planform that is in equilibrium with the prevailing flow and sediment 

conditions acting on the channel (e.g. Pickup, 1976). Various approaches have been 

developed to predict the new equilibrium channel geometry following a change in the 

fluvial system such as increased sediment supply or a change in the flow regime. These 

models attempt to predict how the channel's characteristics including its slope, width, depth 

and sinuosity will adjust. These approaches fall into two categories. The first is theoretical 

where models are derived fi-om physical theory. These include: (1) rational equations which 
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are deterministically derived and use equations to describe the dominant processes (e.g. 
Parker, 1978; Eaton et al., 2004; Millar, 2005); and (2) those based on extremal hypothesis 
where an additional condition regarding the behaviour of stable rivers is proposed. These 
have no physical basis and rely on a variational argument in which the maximum or 
minimum of some parameter is sought. Examples include minimum stream power (Chang, 
1980), minimum unit stream power (Yang, 1976) and maximum sediment transport rate 
(White et al., 1982). The second group of approaches is empirical (i.e. derived from 
observed data). These revolve around Lacey's (1929) "regime theory" for irrigation canals 
(explained in Savenije, 2003) and the "hydraulic geometry concept" coined by Leopold and 
Maddock (1953). This concept provides a quantitative description of how morphological 
properties are related to discharge using a series of power laws: 

w = aQ' [7-1] 

d^cQf [7.2] 

where Q is discharge, w is channel width, d is channel depth and v water velocity. Since 

wdv=Q, the sum of exponents b, f and m, will equal 1 whilst the sum of the intercept values 

a, c and k will also equal 1. 

Whilst these approaches provide a valuable insight into the mechanics of channel 

equilibrium, they can only predict the eventual channel geometry following adjustment and 

do not reflect the continual and dynamic nature of the adjustment process. Furthermore, one 

must question whether channels ever reach complete equilibrium (Bracken and 

Wainwright, 2006). 
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7 . 2 . 2 W I D T H A D J U S T M E N T M O D E L S F O R S T R A I G H T C H A N N E L S 

One of the main aims in this second group of models is to simulate how the channel width 

responds to changes in a channel's driving variables. Hence a key feature of these models is 

that they assume erodible banks. This is not always the case in equilibriimi models. 

Changes in channel width occur when the direction and rate of bank erosion of one bank is 

not equal to the direction and rate of deposition at the opposite bank (Darby, 1998). For an 

individual bank, the migration rate is determined by the relative rates of erosion and 

deposition fi-om the near-bank zone. This relationship is based on the concept of basal end-

point control (Thome, 1982). 

The A S C E Task Committee, which was set up 1993 to address the topic of river width 

adjustment, explain that width adjustment models can be classified into two broad 

approaches (ASCE, 1998a). The first are those based on the extremal hypothesis which has 

been used in equilibrium studies and provides predictions of the magnitude of width 

adjustments and not the rate of adjustment. The second are physically based, geofluvial, 

mechanistic approaches which couple sub-models of flow, sediment transport and bank 

erosion together to provide predictions of width adjustment location and rate. 

Models based on the extremal hypothesis are more frequently used in engineering practice. 

Ferguson (1986) and A S C E (1998a, 1998b) provide explanations of these approaches and 

review some of these models. Examples include Chang (1988), White et al. (1982), Bettess 

and White (1987), Millar and Quick (1993, 1998) and Yang et al. (1988). In FLUVIAL-12 

(Chang, 1988) and GSTARS (Yang et al., 1988), width adjustments are determined by 

assuming that changes in cross-sectional area, estimated from the sediment-routing 

equations, represent an overall change in channel area. The total area is distributed over the 

cross-section by first calculating the magnitude of width adjustment and then distributing 

the computed area over the bed and banks. Width corrections at each cross-section are 

computed assuming that the stream power for the reach moves towards uniformity 

(FLUVIAL-12) , or towards a minimisation of energy dissipation rate (GSTAJIS). The 

major limitations of such models are that they predict the magnitude of width adjustment 
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and not the rate or location of adjustment (ASCE, 1998b). They also lack a physical 
foundation and hence perform poorly in situations other than those for which they were 
developed. 

Mechanistic width adjustment models for straight channels are summarised in Darby 

(1998) and A S C E (1998a and 1998b). These are typically research tools that have scope to 

be used in engineering practice in the future. These models simulate channel width 

adjustment through time using a set of deterministic equations alongside a set of initial (e.g. 

morphological and sedimentary characteristics prior to adjustment) and boundary 

conditions (specific sediment load and discharge as a fimction of time). The equations of 

flow resistance, momentum and continuity, sediment transport and conservation of 

sediment mass are typically solved within sub-models which are coupled together (e.g. 

Darby and Thome, 1996). Figure 7.1 is a schematic diagram of the Darby and Thome 

(1996) model: a model of bed deformation and channel widening which accounts for the 

specific mechanisms of bank erosion and collapse. This model was also used by Simon and 

Darby (1997) to study process-form interacfions. The sub-models include a hydraulic flow 

model, a sediment transport model and a bank erosion model. Each of these are discussed 

in more detail later in the chapter (Section 7.4). 
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Figure 7.1: Conceptual representation of the Darby-Thome model of channel width 
adjustment (Darby and Thome, 1996). where T is simulation time counter, Q is flow 
discharge, q is flow discharge per unit width, Se is energy slope, D is flow depth, RP is the 
probability of failure, FS is the bank factor of safety, BW 'is the failure block width, is 
failure block volume and LIM is time limit of simulation. 
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7 . 2 . 3 M E A N D E R E V O L U T I O N A N D M I G R A T I O N M O D E L S 

Numerous modelling approaches widely accept the importance of river meandering that 

develops from secondary circulation (Bridge, 1992; Darby and Delbono, 2002; Coulthard 

and Van De Wiel, 2006). The secondary circulation preferentially erodes one bank and 

deposits material at the base of the other. This establishes a positive feedback with a greater 
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flow asymmetry increasing the secondary circulation and hence encouraging further erosion 
on the outer bank. Consequently bank erosion rates are most rapid on the outer bank just 
downstream of the bend apex. This leads to meander development and channel migration in 
both cross-valley and down-valley directions. Several have attempted to model the meander 
evolution and migration processes (e.g. Howard, 1992; Sun et al, 1996). 

There are many different spatial and temporal scales at which meanders are studied and 

modelled (Sun et al., 1996; Lancaster and Bras, 2002). These range from small scale 

studies of the flow field around curved channels (e.g. Thome and Hey, 1979), medium 

scale studies investigating the development of individual meanders (Hickin, 1974) and 

large scale studies that examine the complex properties of entire meander trains (e.g. 

Lancaster and Bras, 2002). Camporeale et al. (2007) divide the historical study of 

meandering rivers into a geomorphologjc approach and a fluid dynamic approach both of 

which are inter-related. The geomorphic approach explains the main characteristics of 

meandering, providing valuable empirical relationships. These approaches included field 

studies (e.g. Nanson and Hickin, 1983; Carson and Lapointe, 1983; Thome and Furbish, 

1995) and laboratory experiments (e.g. Whiting and Dietrich, 1993a and 1993b). The fluid 

dynamic approach is underpinned by mathematical modelling with Ikeda et al., (1981) 

proposing the first model of river meandering using this way of working. 

In the three decades since the Ikeda et al. (1981) model was first published, numerous other 

modelling approaches have been developed. Camporeale et al. (2007) provide a valuable 

review of many meander models. These models explore a range of meandering processes 

including Blondeaux and Seminara (1985) who explore the link between bend and alternate 

bar dynamics and suggest a possible resonance; Johannesson and Parker (1985b) who 

explores the role of the secondary circulation; Struiksma et al. (1985) who investigate the 

overdeepening concept; and Zolezzi and Seminara (2001) whose more recent study 

explores the upstream propagation influence of meanders. These modelling approaches 

commonly treat the meandering channel as a zig-zag line whose nodes shift laterally at a 

rate determined by some condition. Mechanistic meander evolution models can be divided 

into process-based models and physically-based models. Process-based models assume a 

rate of bank erosion proportional to near-bank flow velocity. Physically-based models 
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calculate sediment transport and bank erosion rates to determine the advance and retreat of 
the channel bank line. Process-based models can be effective in predicting the long-term 
behaviour of meandering rivers whereas physically-based models are more successful at 
predicting immediate or short term geomorphic responses, so revealing the evolution 
process. Hence, physically-based models can be used specifically to determine the rate of 
bank erosion at individual locations within a meandering channel. However, they require 
more details on the flow field, bank geometry and bank materials and are thus more data 
dependant. Process-based models on the other hand are based on an empirical erosion 
coefficient which does not reflect specific details about the bank geometry and bank 
materials (Darby et al., 2002). 

One of the most widely acknowledged process-based models is that of Ikeda et al. (1981). 

They developed a dynamical bend erosion model based on the "bend theory" concept 

which calculates the lateral distribution of the depth-averaged primary flow. Bend theory 

[7.4] states that bank erosion is proportional to the near-bank flow velocity with the bank 

erodibility incorporated in the bank erosion coefficient. The near bank flow velocity is 

calculated using [7.5]. 

^ = EoK, [7.4] 

u„,=f{R,u,^,AC,) [7.5] 

where ^ is the lateral bank migration, u„b is the near-bank flow velocity, Rc is a function of 

channel curvature, EQ is a bank erosion coefficient, 6 is a fixed channel width, UQ is cross-

sectionally averaged flow velocity, ho is cross-sectionally averaged flow depth and C / is a 

friction factor. 

Although sediment transport was not explicitly included in the model, the conservation of 

sediment was included in a crude manner by viewing the migration of the meandering river 

as a consequence of outer bank erosion and inner deposition with no width adjustment. 

Ikeda et al. (1981) has been used in numerous subsequent studies including Beck (1984), 

Parker et al. (1982, 1983), Parker and Andrews (1985), Johannesson and Parker (1989), 
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Sun et al. (1996, 2001a, 2001b), Howard (1984, 1992, 1996), Mosselman (1998), Darby et 
al. (2002) and Edwards and Smith (2002). 

Some of the developments to tkeda et al. (1981) include Johannesson and Parker (1989) 

who developed bend theory to account for flow velocity redistribution as a result of the 

cormective transport of primary flow momentum by the secondary flow. This would 

account for the contradiction between the theoretical results of Ikeda et al. (1981) and the 

experimental results of Kikkawa et al. (1976). The model also accounts for the phase lag 

between the secondary flow strength and the channel curvature and includes an erodible 

bed which explicifly accounts for the coupling between the flow field, the bedload transport 

and the bed topography. Howard (1992, 1996) used Johannesson and Parker's adaptation of 

Ikeda et al. (1981) to combine bank erosion and channel migration simulations with a 

simple model of floodplain sedimentation. This model produced realistic migration results, 

although the simulated channels were noted to be more asymmetrical, sinuous and regular 

than natural channels. Sun et al. (2001a) extended the bend theory work to include the 

dynamic response of meandering rivers to the lateral tilt of the underlying floodplain. It is 

different in that the flow field is influenced by the presence of channel curvature and the 

variation of the longitudinal channel bed slope caused by the effects of embedding a 

sinuous river channel in a tilted floodplain. Hence, the cross-sectionally average flow 

velocity and the water depth vary along the channel. 

Several models that do not use the Ikeda et al. (1981) work have also been developed to 

simulate meanders. First, Begin (1981) proposed a model of meander bend bank erosion 

based on the momentum equation and curvature effects. This approach attempts to explain 

the established relationship between bend migration rate and the curvature ratio {RJw: 

Radius of curvature/width) thereby allowing it to be used to predict bank migration rates. 

The relationship between radius of curvature and channel width was found to be quite 

narrow and this was attributed to flow separation near the convex, inner bank of the bend, 

which reaches a maximum intensity for an R/w near 2. In this approach, the momentum 

equation is used to determine the force per unit area which the flow exerts on the outside 
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bank. By assuming that shear stress is proportional to the radial force per unit area, the bank 
shear stress can be used to determine bank erosion rate. 

Secondly, Lancaster and Bras (2002) introduced a model which they suggest has more in 

common with cellular approaches to channel braiding than rigorous physically-based 

analyses of river meandering. The model splits the channel into two halves and uses 

channel area to determine flow properties. Unlike many models where local migration rate 

is determined fi-om upstream conditions, usually planform curvature, Lancaster and Bras 

(2002) developed a model that uses shoaling driven by changing bed topography and 

ultimately changing planform curvature to determine local migration rate. This work is 

based on the assumption that secondary flows "steer" the high velocity core (which is 

responsible for erosion) by effecting a lateral transfer of downstream momentum. Dietrich 

and Smith (1983) showed that bed topography causes the largest lateral transfer of 

downstream momentum coining the term "topographic steering" and this was incorporated 

into the model. This model also allows the simulation of compound bend / multibend loop 

formation which are common features of natural channels. 

A similar model developed by Stark (2006) also uses a similar split channel approach for 

simulating the evolution of bedrock river channels. This approach uses geometric 

arguments, a normal flow approximation for channel flow and a threshold bed shear stress 

assumption for bedrock abrasion. The model simulates channel widening, tilting, bending 

and variable flow depth. The Stark (2006) model uses a simplified pattern of flow speed, 

bed shear stress, erosion rate and boundary motion for a quadrilateral bedrock channel 

cross-section using a four point geometry. Bed shear is then split into four components: left 

and right banks; and the left and right halves of the bed. A lateral displacement term allows 

for the effect of sinuosity to be modelled although only for simple sinuous channels. 

Channel tilt, which is the slope of the bed, provides a transverse slope and allows flow 

speeds to be calculated for each half of the channel. The two channel halves are linked by 

channel area to the discharge. The bed shear stresses in both channel halves drive the 

abrasion rates and allow the bed geometry to be updated. 
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A fourth model to use a different approach was developed by Richardson (2002). This 
approach was developed so that it could easily be applied to the output from ID models 
such as HEC-RAS (Hydrological Engineering Centre, 2001) and Mike-11 (Danish 
Hydraulic Institute, 2000). Since the output from these models would be section-averaged 
velocities, water surface elevations, shear stresses and discharge at a series of cross-
sections, the model had to be simple and was limited in its required input data. Hence, 
Richardson (2002) developed a conversion factor (K) for shear stress which was derived 
based on the assumption that the ratio of outer bank velocity to section average velocity is 
equal to the ratio of channel centreline arc length to outer bank arc length. Outer bank shear 
stress was taken to be proportional to the square of velocity. The relationship is shown in 
[7.6]. The converted shear stresses are then translated into bank erosion volumes using an 
appropriate sediment transport equation. 

^ avg 

' toe 

V 
\ "vg J 

2R 
[7.6] 

where K is the conversion factor, r ,oe is the shear stress at the outer bank, r is the ID 

shear stress, V,oe is the depth-average velocity at the outer bank, Vavg is the ID section-

averaged velocity, R is the channel centreline radius of curvature and B is the channel 

width. 

There are also a group of meander models which attempt to account for different grain size 

fractions (Bridge, 1992; Parker and Andrews, 1985; Sun et al, 2001b and 2001c). Darby 

and Delbono (2002) explain that the secondary circulation and the presence of the 

transverse sloping channel bed in meandering streams, move different grain sizes of bed 

load in different proportions and directions. This results in a consistent pattem of grain 

sorting around the bend (Parker and Andrews, 1985). To address tiiis, several models have 

been developed which describe the interaction between the flow, sediment transport, bed 

topography and grain size sorting in curved channels. Bridge (1992) is probably one of the 

most comprehensive and an essential component of the model is its application of the 
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sediment continuity equation for each grain size fraction available for transport. Similarly, 
the meander model developed by Sun et al. (2001b and 2001c) which accounts for multiple 
bed load sediment sizes also includes a continuity equation for each component of 
sediment. This model was developed using Johannesson and Parker (1989) for the 
dynamics of meandering rivers with the theory of Parker and Andrews (1985) for bedload 
transport and sorting in meander bends replacing the original sediment transport equation 
for single sized sediment in Johannesson and Parker (1989). 

7 . 2 . 4 M O D E L L I N G W I D T H A D J U S T M E N T I N M E A N D E R I N G C H A N N E L S 

One of the main problems with the meander models discussed above is that they assume a 

constant channel width (e.g. Ikeda et al., 1981; Bridge, 1992; Howard, 1992; Sun et al., 

1996, 2001a, 2001b, 2001c; Lancaster and Bras, 2002). This lack of sediment continuity is 

an incorrect assumption with erosion of the outer bank typically greater than that which can 

be deposited on the inside of the bend (Coulthard and Van De Wiel, 2006). This leads to 

channel widening around the meander bend. Furthermore, bank collapse can be a rapid 

erosion process whilst deposition often takes longer. This can lead to a lag between the two 

processes. More recent approaches have tried to account for width changes in meander 

channels. These models tend to be more complex requiring a second dimension and 

combine many of the ideas used in both width adjustment models and meander evolution 

models. They use vector based, moving boundary fitted-coordinate grids. These models 

work in a similar way to the mechanistic width adjustment models for straight channels 

discussed earlier. The main difference is the way in which they deal with curvature induced 

bank collapse. Hence, their bank erosion components vary. RJPA, a model developed at 

Delft Hydraulics by Mosselman (1992, 1995), simulates bank erosion as a combined result 

of excess shear stress determined using the Ikeda et al. (1981) approach and Osman and 

Thome's (1988) excess bank height mechanisms. In a later version of the RIPA model 

(Mosselman, 1998) only the excess bank height mechanism is used. Nagata et al. (2000) 

develop a 2D approach, using Hasegawa's (1981) model of intermittent bank collapse 

(summarised in Section 7.4.5) along with a non-equilibrium sediment transport relation. 

This allows the deposition and transportation of the collapsed materials to be simulated. 

The model does not however, simulate the difference between basal erosion and bed 
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degradation, a process Chen and Duan (2006) feel is important. Darby et al. (2002) develop 
RIPA further by replacing the existing bank erosion sub-model with a more mechanistic 
approach. This approach is similar to Nagata et al. (2000), although it has a more detailed 
description of the bank erosion process. Darby and Delbono (2002) simulate channel 
migration and widening by coupling together Bridge's (1992) meander model with the 
Darby and Thome (1996) bank stability analysis. Hence, unlike models such as Bridge 
(1992), it accounts for the influence of bank erodibility. Duan and Julien (2005) present a 
2D numerical model that links a physically-based bank erosion model with a bend 
migration model to simulate the meander evolution and migration processes. They simulate 
basal erosion using equations developed by Duan (2001), which calculate the difference 
between the entrainment and deposition of bank material in the near bank zone. This 
difference determines bank erosion rate. They also use Pizzuto's (1990) slumping bank-
failure model (later modified by Nagata et al., 2000) to simulate mass failure. To simulate 
meanders, radius of curvature is used to determine the strength of the secondary flow and 
hence to redirect bedload transport. Finally, Chen and Duan's (2006) 2D analytical model 
simulates width adjustment in meandering channels using two interacting bank erosion 
mechanisms: basal erosion and bank collapse. The rate of basal erosion (which includes 
lateral erosion and bed degradation) is calculated from the longitudinal gradient of sediment 
transport and from the strength of the secondary flow. Simulating bank collapse is more 
complicated and is determined by the lateral erosion rate, near bank bed-degradation rate, 
sediment grain size and differences between flow depth and bank height. They also 
represent the deposition of failed material at the base of the bank similar to Nagata et al. 
(2000) and Darby et al (2002). 

Most channel adjustments are simulated using vector-based models. However, these can 

only be used to simulate single thread channels. Therefore, Coulthard and Van De Wiel 

(2006) developed a cellular modelling approach to allow charmels with islands or braided 

channels to be simulated. Coulthard and Van De Wiel (2006) explain why cellular 

approaches are difficult to apply to meander models. First, cellular approaches use 

simplified empirical equations such as Manning's or Chezy to explain the flow but in doing 

so the terms for momentum and for describing secondary circulation are lost. Second, the 
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cellular discretization, where each cell only has a knowledge of itself and its immediate 
neighbours, makes it difficult to determine the cells location with respect to bends and 
banks and also the momentum and direction of water entering a cell. In earlier cellular 
models of braided rivers, a lateral erosion term was used to create a dynamic braiding 
pattern with bed material moving from one cell to another adjacent to the main flow 
direction using the lateral bedslope (Murray and Paola, 1994; 1997; Thomas and Nicholas, 
2002). Yet this approach cannot be applied where flow is not parallel to the valley floor, for 
example around a meander bend. Thus, Coulthard and Van De Wiel (2006) present a new 
way to determine the radius of curvature on a cell-by-cell basis. Their approach passes a 
nine cell filter over the cell grid and use ratios of "edge" cells and "dry" bank cells to "wet" 
channel cells to determine the curvature. This approach allows the model to base 
meandering on regional rules, necessary for curvature estimation. They then determine 
bank erosion rate using an approach similar to Ikeda et al. (1981). To simulate channel 
migration using the cellular approach, they discuss two methods. First, they assume that 
sediment is eroded from the bank using the Ikeda et al. (1981) equation with this sediment 
being lost to the system. An equal amount of sediment "appears" on the inside bend as 
deposition. This approach has a tendency to generate very wide channels. Hence, their 
second approach uses the cross-stream gradient of curvature to calculate a lateral sediment 
flux. This cross stream movement of sediment simulates much narrower, better-defined 
channels and allows the formation of point bars and a meandering thalweg within the 
channel. This approach certainly shows some potential and continues to be developed 
further. However, in its current form, it is unsuitable for this project due to its coarse grid 
size, long time scale and its inadequate sediment transfer system. 

7 . 3 L I M I T A T I O N S OF C U R R E N T M O D E L L I N G A P P R O A C H E S 

The wide range of channel adjustment models discussed have numerous limitations. These 

are responsible for the poor correlation often found between predicted and actual rates of 

adjustment. For example. Darby and Thome (1996) found that actual rates of channel 

widening were three times greater than those simulated by their model. Such problems arise 

from four difficulties. First, it can be difficult to parameterise initial and boundary 
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conditions and to compute the flow field (Darby et al., 2002). Second, determining and 
representing the full range of processes and mechanisms acting within the channel and on 
the banks is a challenge (Simon and Darby, 1997). Thus many predict the eventual channel 
geometry failing to provide valuable information on the rate and location of adjustment. 
This limitation is particularly applicable to equilibrium channel approaches. Furthermore, 
despite increasing levels of complexity, most models assume a constant width such that any 
erosion predicted at one bank is matched by deposition on the opposite bank (e.g. Coulthard 
and Van De Wiel, 2006). Third, developing models for natural channels rather than simple 
and laboratory channels remains difficult (Darby and Thome, 1996). As such, sediment 
transport models were often developed in a flume and most bank erosion sub-models ignore 
the influence of secondary circulation, overbank flow and vegetation on the hydraulic 
variables (e.g. Darby, 1998; Darby and Thome, 1996; Mosselman, 1998). This creates 
errors in the hydraulic parameters. Some of these effects are indirectly incorporated through 
model calibration (e.g. Darby and Thome, 1996) but future models should consider 
including these factors. Finally, obtaining the necessary data and computational resources 
to develop, to run and to test the models is an important limitation (Simon and Darby, 
1997; Darby, 2005). As a result of these limitaUons, developing models that simulate width 
adjustments in irregular channels remains very difficuU. 

7 . 4 R E S E A R C H M O D E L C O N C E P T U A L I S A T I O N 

On the basis of the above discussion of model options and limitations, no one model is 

ideally suited to the research aims outlined in Section 1.1. Consequently, a new model of 

channel adjustment was required for this research. The first step in any model development 

is to produce a conceptual model outlining the various processes that require representing. 

This began by taking the theoretical model shown in Figure 2.3 (within Section 2.2), which 

showed all the processes operating in a gravel-bed river catchment, and using the field-

based findings to inform on the key processes operating in the study reach (Chapters 4, 5 

and 6). This enabled the channel change process to be divided into three sub-models 

representing each of the key processes. This conceptual model shown in Figure 7.2 

provides the framework for the mathematical model and gives a better visual understanding 
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into process operations and interactions. It is similar in structure to the Darby-Thome 

(1996) model shown earlier (Figure 7.1). Central to the approach is allowing the simulation 

of change through time rather than providing a single end output similar to the equilibrium 

channel adjustment models (Section 7.2.1). 

Figure 7.2: Conceptual model of morphological channel adjustment. 

INITIAL AND BOUNDARY CONDITIONS 
Hydrology (discharge - steady/unsteady) 
Sediment (supply and composition) 
Channel topography (width, depth, slope) 

time-step 

bed updates 

HYDRAULIC SUB-MODEL 
Discharge 
Flow depth 
Velocity and shear stress 

SEDIMENT TRANSPORT 
SUB-MODEL 
Sediment gradation 
Aggradation or degradation 

HYDRAULIC SUB-MODEL 
Discharge 
Flow depth 
Velocity and shear stress 

roughness 

SEDIMENT TRANSPORT 
SUB-MODEL 
Sediment gradation 
Aggradation or degradation 

HYDRAULIC SUB-MODEL 
Discharge 
Flow depth 
Velocity and shear stress depth 

SEDIMENT TRANSPORT 
SUB-MODEL 
Sediment gradation 
Aggradation or degradation 

' width 

LATERAL ADJUSTMENT SUB-MODEL 
Location and rate of bank erosion 

The model is conceptualised as having four components. First, are the initial and boundary 

conditions which are pre-defined at the start of the simulation by the user and may 

represent a real natural system (e.g. the Upper Wharfe), or be hypothetical where an 

idealised channel is represented using hypothetical values. These conditions form the input 

values for the main equations within the model. These equations are split into the second, 

third and fourth components, the sub-models. The arrows indicate the coupling between 

sub-models and the direction of information transfer. These sub-models have three 

components. First, is the hydraulic sub-model which calculates the values of flow depth and 

shear stress that are required to drive the sediment transport component of the model. 

Second, is the sediment transport sub-model which computes sediment transport and allows 

the bed level to adjust through aggradation or degradation. Furthermore, depending on the 
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nature of the sediment transport and sediment continuity equations used, the sediment 
transport may be computed on a fractional basis allowing the process of downstream fining 
to be simulated. Third, is the lateral adjustment sub-model. This is driven by the output 
from the hydraulic and sediment transport component and allows the channel to widen 
through bank erosion, narrow through deposition and to migrate through a combination of 
erosion and deposition. By updating the initial and boundary conditions at the end of each 
time-step, and re-running the model using the new conditions, the channel can evolve 
through time. 

This conceptualisation defines the spatial and temporal scales that the model is required to 

run over. Spatially, the model aims to explore the system dynamics over reaches several 

kilometres long with the study reach extending 5.6 km downstream. As such, the model is 

developed for reaches ranging ft-om 1 km to 10 km but with the capability of extending 

beyond this. The temporal scales of the model must consider both data availability for 

running and testing the model, and the overall project aims. There are four key field results 

that can be used to validate the model. These include: (1) 6-years of observed patterns of 

aggradation and degradation from the cross-sectional resurveys (Section 4.3); (2) 2-years of 

details on bank erosion locations and rates from field-surveys, bank erosion pins and bank-

top resurveys (Section 4.4); (3) the measured pattern of downstream fining noted from 

pebble counts and bulk sampling (Section 5.3); and (4) 18 months of information on 

sediment transport from the ping sensors (Section 5.4). Thus, modelling should initially be 

kept at sub-decadal time scales. However, for the purposes of river management, the model 

may be required to simulate longer time periods. This is an important aspect of the model 

as many frilly physically-based models such as Darby and Thome (1996) operate at the 

event scale whilst others operate over much longer timescales (e.g. Coulthard and Van De 

Wiel, 2006). The research model developed in Chapter 8 will sit between these two time 

scales. 

The discussion that follows provides a detailed overview of the three main sub-models with 

an additional section describing sediment routing models which couple the hydraulics and 

sediment transport together. For each sub-model, the discussion begins with an overview of 
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previous approaches. It should be noted that whilst these sub-models are generally 
discussed with respect to straight channel adjustment models, they can also be applied to 
the more complex meandering channels discussed in Section 7.2.4. Several key modelling 
questions arise during this discussion. 

7.4. 1 H Y D R A U L I C S U B - M O D E L 

A hydraulic sub-model calculates the flow field including the flow velocity, shear stress 

and flow depth. These parameters may be 1D width-averaged (Osman, 1985; Chang, 1988), 

2D depth-averaged (Pizzuto, 1990, Kovacs and Parker, 1994 Nagata et al., 2000) or quasi-

2D (Darby and Thome, 1996) and calculated for steady or unsteady flow. Most hydraulic 

sub-models assume a steady flow but often have capabilities to simulate unsteady flow (e.g. 

Li and Wang, 1993) or use a stepped hydrograph (e.g. Darby and Thome, 1996; Osman, 

1985). With the exception of Li and Wang (1993) most are incapable of simulating 

secondary flows although it is generally assumed that in straight channels, secondary 

circulations are minimal. Several models with more than one dimension incorporate lateral 

shear to represent the flow depths and ftiction gradients that form during overbank flows 

(e.g. Darby and Thome, 1996; Li and Wang, 1993; Kovacs and Parker, 1994; Pizzuto, 

1990). Friction in the sub-models is either specified by the user or in many cases derived 

from a flow resistance equation. Some models also offer a selection of equations to select 

the most appropriate for the environment being modelled. Examples include Strickler 

(1923) (e.g. Darby and Thome, 1996; Osman, 1985) or Keulegan (1938) (e.g. Li and Wang, 

1994; Kovacs and Parker, 1994). In addition, most friction values are held constant, with a 

few exceptions allowing them to vary through space and time (Darby and Thome, 1996; 

Osman, 1985). These friction factors do not account for in-channel vegetation, which may 

be seasonal, or for bedforms. The calculated flow field is then used to estimate sediment 

transport rate using one of many different sediment transport equations. 

7.4.2 S E D I M E N T T R A N S P O R T S U B - M O D E L 

Modelling sediment transport is notoriously difficuh and the success of a morphological 

adjustment model can hinge on the specific modelling approach adopted. Modelling 
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sediment transport using formulae and equations has arising out of the difficulties 
associated with measuring sediment transfer as discussed Section 5.4.1. Wilcock (2001) 
explains that, ''broadly speaking, formulae predictions require less effort, whereas field 
measurements offer the possibility of greater accuracy, but at a greater effort". Alongside 
the reduced effort, formulae predictions allow transport rates to be predicated under 
conditions other than those present in the river at a given time. This is particularly essential 
at higher flows where measurement devices often fail. These issues have led to a wide 
range of formulae all striving towards the better prediction of sediment transport. 

Early work on bedload transport by DuBoys (1879), followed by proposals for a curve to 

predict the critical shear stress of incipient motion by Shields (1936), prompted much 

research in this field. This led to the development of a range of equations for sediment 

transport for varying flow and sediment conditions. Whilst these equations have evolved 

from varying deterministic approaches, they are broadly speaking very similar as they all 

aim to calculate the same thing and implicitly or explicitly they consider the same 

parameters (Reid et al., 1997). Most bedload transport equations are based on the DuBoys 

(1879) concept in which bedload transport is expected as some ftmction of flow exceeds a 

critical threshold. An early deviation fi-om the DuBoys concept was that developed by 

Einstein (1942, 1950). Einsten's formula provided a continuous relationship between the 

bedload and the flow intensity and did not specify a sudden discontinuity at a critical 

threshold. Whilst the DuBoys relationship was originally developed for excess bed shear 

stress, the equations that followed used other flow quantities such as stream power 

(Bagnold, 1980) and discharge (Schoklitsh, 1962). Whilst this critical threshold concept is 

simple, defining the critical threshold is much more challenging, particularly with limited 

field studies for support. Yet, many equations based on this form have been developed. 

Some of these equations are discussed below. It is important to note the wide range of 

conditions for which these equations have been developed. 

Ackers and White (1973) is a bed material formula developed from Bagnold's stream 

power concept. The equation was developed in a flume for poorly sorted sediment greater 

than 0.04 mm. Bathurst et al. (1987) suggest that this equation is not suitable for upland 
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mountain rivers where the bed is cobble and boulder. Engelund-Hansen (1967) is also 
based on Bagnold's stream power concept and predicts total load in sand bed channels with 
well sorted material. This equation was also developed using flume data and is employed in 
the Darby-Thome (1996) width adjustment model. Laursen (1958) was developed ft-om 
quantitative analysis experiments and supplementary data and predicts total sediment load 
in silt based channels. The Meyer-Peter and Miiller (1948) equation is a bedload transport 
function that is primarily based on experimental data yet it is tested heavily on rivers with 
coarse sediment. Gomez and Church (1989) foimd that it tended to perform well on field 
data. Li and Wang (1993) use this approach in their morphological adjustment model. The 
Toffaleti (1968) equation is an empirical approach based on the Einstein procedure. The 
equation predicts total load by calculating sediment transport in four vertical zones, 
allowing 2D sediment movement to be replicated. The upper three zones represented 
suspended sediment whilst the bed zone represents bedload transport. Total load is the sum 
of the four components. Finally the Yang (1973) equation calculates total sediment 
concentration based on stream power and was developed fi-om a combination of flume and 
field studies. This equation was revised by Yang (1984) with an expansion that 
incorporated gravel-sized sediment. Yet the gravel sized material only extends up to 7 mm, 
which based on the Wentworth scale is fine gravel (Table 5.2). Alonso and Combs (1980) 
apply the Yang (1973) sediment transport equations in their sediment transport sub-model. 

Selecting the most suitable equation for the purposes of a specific study can be difficult. 

This has been demonstrated by several authors who have carried out studies comparing 

various equadons. Whilst Johnson (1939) was one of the first to compare several equations, 

Bathurst et al (1987), Gomez and Church (1989), Batalla (1997), Yang and Wan (1991) 

and Aff i in et al. (2002) provide comparisons of the more recent hydraulically based 

equafions developed for gravel and boulder-bed rivers. Gomez and Church (1989) 

compared 12 equations and evaluated the results against a field bedload dataset. They found 

large variations between the equations and no single equation produced results that matched 

the field observations closely. Even popular, well known equations such as Meyer-Peter 

and Miiller (1948) and Ackers and White (1973) performed poorly. Batalla (1997) also 

compared field observations, fi-om the Arbucies River in North East Spain, with predictions 
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from five bedload and bed-material formulae. Echoing the results from Gomez and Church 

(1989), the degree of agreement between observed and predicted values varied greatiy. 

However, the Ackers and White equation performed the best with results closest to the field 

dataset. In a detailed study of eight equations Yang and Wan (1991) compared the equation 

results with data from both natural channels and laboratory flumes and found large 

variations in equation performance. Table 7.1 shows a summary of the results which are 

placed in rank order based on overall performance from best (closest to observations) to 

worst. It was however encouraging that in both tests, the Yang (1973) equation came out as 

best. It is also interesting to note that the equations that performed well when compared to 

flume data (Yang, Engelund and Hansen and Ackers and White) were all originally 

developed from flume data. This emphasises the need to use a sediment transport equation 

that was developed under conditions similar to those that the equation is being applied to. 

In the Affrin et al. (2002) comparison study, the flume derived equations performed the 

worst with the Wu et al. (2000) equation giving the best results. This equation incorporated 

a factor for grain hiding. However, conclusions from this research suggested that even this 

equation's performance was unsuitable for use outside of the study river. The overall 

conclusion from these studies is similar: that large variations in the outputs from different 

equations exist. Hence, many authors state that there may never be a universal equation that 

can accurately predict bedload sediment transport (e.g. Gomez and Church, 1989; Reid et 

al., 1997). 

Table 7.1: Performance of sediment transport equations when compared with flume and 
field data. Study by Yang and Wan (1991). 

Rank Compared to flume data Compared to field data 

1 (best fit) Yang Yang 
2 Engelund and Hansen Toffaleti 
3 Ackers and White (D50) Einstein 
4 Laursen Ackers and White (D50) 
5 Ackers and White (D35) Colby 
6 Colby Laursen 
7 Einstein Engelund and Hansen 
8 (worst fit) Toffaleti Ackers and White (D35) 
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Reid et al. (1997) discuss the main limitations for bedload formulae and these can be used 
to explain the variability in results made by the different equations. First, there remain 
difficulties developing the theory behind sediment movement resulting from problems 
studying sediment transport particularly in natural systems and at higher discharges. An 
example of this is the equal mobility concept first proposed by Parker et al. (1982b) and 
Andrews (1983) and the principles behind the formation of the armour layer. Furthermore 
representing all the processes that result in the transport of an individual grain is difficult, 
with a single hiding fiinction / parameter often used to represent the full spectmm of 
particle sheltering found on a natural bed. Similarly, the bed character and stmcture is 
difficult to represent effectively, particularly in mixed sediments (Hsu and Holly, 1992). 
Thus, the bed character is simplified. 

Second, sediment transport equations are limited due to their development which is mainly 

based on empirical and experimental work in flumes with uniform sediments. This issue 

was illustrated well by Yang and Wan (1991) who showed large variations in predictive 

success depending on whether the data was from a laboratory flume of a natural channel as 

flumes remove the complexities of natural channels. In particular shear stress exhibits 

lateral variability as grain size distributions vary (Wolcott and Church, 1991). Yet even 

formulae specifically developed for natural channels can fail when applied to channels 

where conditions differ (Parker et al., 1982b). 

Third, validation of the equations is heavily dependant on data. Measuring the actual 

bedload transport rate in a natural stream is extremely difficult and, as a result, such data 

are sparse and often limited to lower flows. Thus errors in the estimated field transport rates 

propagate through into errors in the calculated predictions (Wilcock, 2001). In addition, as 

noted by Wilcock (2001) errors arise when average values are used to represent spatially 

variable parameters (e.g. grain size). Grain size is noted to vary spatially across a channel 

with Wolcott and Church (1991) finding that grain size variability across a bar can exceed 

the variability found between depositional reaches separated by some distance. Ferguson 

(2003) also stresses that the tme bedload flux may be underestimated i f calculations are 

averaged across the channel width. 
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Wilcock and Crowe (2003) recognise that sediment transport in a bed that comprises a 
mixed bed of sediment sizes depends on the quantity of each grain size present in the bed. 
This mixed bed leads to the coarser surface and subsurface characteristic found in many 
rivers including the Wharfe (detailed in Section 5.3). A transport model based on the 
substrate contains an implicit dependence on the surface sorting as this layer must be 
entrained before the sub-surface can be transported. Wilcock and Crowe (2003) further 
explain that because surface sorting depends on factors not included in the model, including 
prior flow and transport rates and vertical sorting mechanisms, a substrate-based approach 
is incomplete. This may result in high errors in the predicted transport rate. More recent 
equations have been developed to simulate multiple grain-size fractions and to simulate the 
surface transport rather than just the substrate. Furthermore, Wilcock and Crowe (2003) 
explain that aside fi-om the theoretical considerations, surface-based transport models are 
useful as they predict the instantaneous transport rate, independent of initial and boundary 
conditions. They are therefore capable of predicting transient conditions. 

Most transport models are based largely or entirely on flume experiments. The difference 

between surface and sub-surface models becomes clear when the flume setup is considered 

(Wilcock and Crowe, 2003). Sediment is fed into the flume in two ways: at a specified rate 

or re-circulated whereby the sediment that leaves the flume is introduced at the upstream 

end. In the re-circulating case, the sediment in motion may be expected to have a finer 

distribution than the bed material. With a specified feed, the grain size of the material must 

be considered. I f the introduced grain size entered matches the GSD of the transport in the 

re-circulating mode, then the conditions will remain the same. However, i f the feed grain 

size matches the bed material GSD, then the system will reach a new equilibrium. The 

slope will become steeper and the bed will coarsen as the same discharge must now carry a 

coarser load. This is accomplished by increasing the number of coarse grains on the bed 

surface (Parker and Klingeman, 1982). I f these results were used to develop transport 

models based on the bed material composition, an important difference becomes apparent. 

Both runs use the same discharge and sediment transport rate but the GSD of the 

transported material differs. Whilst part of this difference is attributed to the larger shear 

stresses in the feed case, the bed surface composition is the primary reason for the 
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difference (Wilcock and Crowe, 2003). This feature is not included in the model. As such, 
more than one transport size distribution can be associated with the same bed size 
distribution. Therefore, to overcome this problem, surface-based transport models have 
been developed. 

There are three widely known surface-based models: (1) Proffitt and Sutherland (1983) 

which was based on the armouring experiments of Proffitt (1980); (2) Parker (1990b) who 

transformed the substrate-based gravel transport relation presented by Parker et al. (1982b) 

into a surface-based relation using the Oak Creek data of Milhous (1973); and (3) Wilcock 

and Crowe (2003). Al l three equations share many similarities but the Wilcock and Crowe 

equations differ by using the percentage of sand in the bed and not just the mean grain size 

to determine critical transport thresholds. The Wilcock and Crowe (2003) equations are 

discussed fiilly in Secdon 7.4.3.2 whilst Parker and Sutherland (1990) provide a usefiil 

discussion of the other two equarions. 

7 . 4 . 3 S E D I M E N T R O U T I N G M O D E L S 

Coupling of hydraulic processes with sediment transfer processes in a ID domain has been 

discussed broadly in the literature through the development of sediment routing models 

(referred to as SRMs hereafter). SRMs simulate important sediment transfer characterisdcs 

such as aggradadon / degradation and downstream fining over the reach scale. In addidon, 

the simulate sediment routing effects over longer spatial scales. Consequently, an SRM 

would act as a valuable building block to couple with the lateral channel adjustment sub

model. 

SRMs use a condnuum-mechanics approach to simulate bed-material transport. This means 

that the main flow properties predict the bulk sediment flux rather than consider the 

movement of individual particles. A sediment transport equation that predicts flux based on 

the strength of some property of flow to a movement threshold is typically used (e.g. the 

Meyer-Peter and Muller sediment transport equations). This flow property is typically shear 

stress. The Exner equation for the continuity of sediment is used to update the bed level 
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allowing for aggradation and degradation to occur. The Exner equation is based on the 
principle of mass conservation. It states that mass, in this case sediment, can neither be 
created nor destroyed. Consequently inputs and outputs must balance and i f more sediment 
enters a reach than leaves, storage will occur. This storage is the aggradation of sediment 
whilst the converse, where there is a net loss from one reach to the next, results in channel 
degradation. By the 1980s, researchers began to use multi-fraction SRMs (Armanini and di 
Silvio, 1988; Van Niekerk et al., 1992; Hoey and Ferguson, 1994). These calculate 
sediment transfer and continuity on a grain-size by grain-size basis. This employs the same 
principles as the single grain-size approach but each grain-size is considered separately. 
This allows only small grains to move under moderate flows whilst coarser grains require 
higher flows to be transported. By considering the continuity of sediment for each size 
fraction, die multi-grain size SRMs can be used to simulate dovrastream fining in gravel-
bed rivers (Hoey and Ferguson, 1994), to explore sediment pulses (Cui et al., 2003) and 
commercially for predicting rates of scour and fill for engineering works. Commercial 
SRMs, often referred to as aggradation/degradation or morphodynamic models, include 
HEC-6, iSIS sediment and MIKE 11. 

SEDROUT (Hoey and Ferguson, 1994) is one of the most well known SRMs for research 

purposes. Providing an overview of this model's fixnctioning and capabilities helps to 

justify this use of an SRM as a "building block" for the research model. SEDROUT was 

initially developed for the Allt Dubhaig, a coarse gravel-bed river in the Scottish highlands. 

Hence, this model is applicable to upland channels with coarse beds, like the Upper 

Wharfe. SEDROUT has the ability to simulate any channel long profile (Hoey and 

Ferguson, 1994). The initial version of SEDROUT was set up to model only steady 

discharge although more recent versions now allow hydrographs to be simulated (Verhaar 

et al. in press). SEDROUT computes the Exner equation for individual grain sizes using a 

generalisation of Parker and Sutherland's (1990) fractional continuity equation. By routing 

individual grain size classes down a channel, downstream fining is simulated. The bedload 

transport terms in the Exner equation can be determined from any suitable bedload 

transport equation. In the initial 1994 version of SEDROUT, Parker (1990b) was selected 

as the bedload transport equation allowing the transport rate for individual size classes to be 
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determined. The more recent version of SEDROUT (Ferguson et al., 2001), continues 
using Parker (1990b). However, other SRMs provide altematives such as the Wilcock and 
Crowe (2003) equations in Ferguson et al. (2006) 

SEDROUT has been successfiilly applied and developed further by Hoey and Ferguson 

(1997), Ferguson et al. (2001), Talbot and Lapointe (2002), Hoey et al. (2004), Verhaar and 

Biron (2006) and Verhaar et al. (in press). Some important modifications include allowing 

for variable widths (Ferguson et al., 1997) and allowing sand fractions to be simulated 

(Fergiison et al., 2001). Furthermore, modifications can accommodate non-uniform bed 

slopes and bed texture patterns down the study reach. It has a choice of ICeulegan or 

Manning-Stickler resistance laws and either bed elevation or bed material input can be held 

constant at the head of the simulated reach over the simulation period. 

SRMs have some limitations which must be considered. The main limitation is the width-

averaging of flow and sediment transfer (Lane and Ferguson, 2005). While width-averaging 

is adequate for canals and channelised rivers with rectangular or trapezoidal cross-sections, 

it struggles when simulating complex natural systems with variable widths, slopes and 

discharges. Thus width-averaging typically leads to the underestimation of bedload flux 

(e.g. Nicholas, 2000; Ferguson, 2003). Furthermore, a lack of field data, specifically 

information about bedload transport rates at a range of discharges, leads to assumptions 

being made. With SRMs such as SEDROUT sensitive to the specification of the incoming 

material (Hoey and Ferguson, 1994; Ferguson et al., 2001) incorrect patterns of aggradation 

or degradation may occur i f the boundary conditions entered are incorrect. 

The ID nature of SRMs allows calculations to be kept simple. By reducing the computing 

power and data input required, these models work well over larger spatial and temporal 

resolutions. With a detailed set of field data from the Wharfe, many of the limitations 

associated with SRMs can be reduced or overcome. Modifications can be made to the 

research model allowing many of the natiiral, irregular features of the Wharfe to be 

modelled (e.g. channel width, variable slope, variable discharge). Furthermore, the simple 

nature of SRMs will aid with the coupling of the lateral adjustment component. Including a 
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lateral adjustment component into the new model may also partially overcome concerns 
over width-averaging. 

The SRM adopted as a building block for the research model was TRIB. Results fi-om 

TRIB have been published in Ferguson et al. (2006) and Rice et al (2006). The following 

introduction to TRIB provides an overview of the model's setup and capabilities providing 

background into modelling questions raised and modifications tested and applied. 

7.4.3.1 I N T R O D U C T I O N T O TRIB 

TRIB, a simple ID SRM, is a modification and extension of the two-fi-action model 

developed by Ferguson (2003a) to explore the gravel-sand transition along channels. TRIB 

incorporates multiple grain size fractions to simulate the bed level evolution of the river bed 

though aggradation and degradation and GSD along a section of river in much the same 

way as SEDROUT. The model is implemented in Excel, a spreadsheet package, using an 

iterative scheme. This has advantages, including easy manipulation with programming 

using macros in Visual Basic and excellent visual graphical outputs during simulations. As 

the name suggests, the model's primary function was to investigate the nature of 

dismptions caused by lateral inputs, specifically the inputs of water and sediment from 

tributaries. Ferguson et al. (2006) explored dismptions to the bed evolution and 

downstream fining trend whilst Rice et al. (2006) investigated how the tributary inputs 

affect the physical heterogeneity and biological diversity close to river confluences. Both 

investigations explored the impacts of altering three parameters in the model: (1) the ratio 

of tributary to mainstream water flux; (2) the ratio of tributary to mainstream bedload flux; 

and (3) the ratio of tributary to mainstream bedload diameter. 

The user defines the model's starting values and parameters on the input sheet. These 

include specifying the proximal (upstream) channel width, the grain size distribution (GSD) 

of the main channel bed using 5-grain size classes which are also pre-defined by the user 

and the channel's input discharge. In addition, the user can determine the importance of the 

tributary input. For example, the tributary may contribute an extra 50% flow and sediment 

to the main channel. The model described in Ferguson et al. (2006) is set up so that one 
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tributary enters the study reach half way down the channel. The channel has 100 nodes 
equally spaced over 10 km. 

The width is held constant along the reach with a step change at the confluence such that 

the increase in width is assumed to follow the standard power function regime relation w = 

a^ (e.g. Leopold and Maddock, 1953). (0 is discharge and {d) and (p) refer to distal 

(downsti-eam) and proximal respectively. The ratio of distal width (w^) to proximal width 

(Wp) becomes [7.7]. In Ferguson et al. (2006) the value of exponent b was set to 0.5. 

However, this could be easily parameterised by the user. 

[7.7] 

The tributary inputs of water and sediment are defined by the user as ratios of the main 

channel discharge (QR), bedload flux (FR) and bedload grain size distribution (DR). A 

separate GSD can be entered to describe the tributary sediment. The bedload flux at the top 

of the mainstream can be set as: (1) fixed feed, where a fixed volume of sediment at a fixed 

GSD enters over a given time; or (2) flux equal to the transport capacity such that the 

amount and GSD of incoming sediment matches the transport capacity at the input. 

The hydraulics are calculated using Manning's flow resistance law which assumes uniform 

flow. The local bed slope (S) is calculated fi-om the bed elevation and distance between 

nodes using: 

where h is bed elevation at node / and x is the distance downstream from node 1. 
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To remove negative slopes where flow is "uphill", the hydraulic slope is determined from 
the bedslope with values below 0.001 assigned the small positive value of 0.001. Slope is 
used alongside the channel width (w), current discharge (Q) and a constant Marming's 
roughness value («), to determine flow depth using Marming's flow resistance equation: 

0.6 

[7,9] 

Finally by combining slope with depth, the shear stress is determined [7.10]. This is 

calculated assuming quasi-normal flow which neglects any backwater effects. Changes in 

flow resistance as the bed evolves are also ignored as n is set constant. 

T^pgdS [V.IO] 

where p is the density of water and g is acceleration due to gravity. Both are constants. 

The bedload transport rate is calculated using the equations of Wilcock and Crowe (2003). 

These are described in detail as follows in Section 7.4.3.2. I f there is transport of bedload 

from one node to the next, the model will update the bed elevation and GSD at both nodes 

using the Exner equation for the continuity of sediment. The standard Exner equation [7.11] 

can be used to compute aggradation and degradation in a channel: 

[7.11] 
dt \-e dt 

where h is bed elevation at distance x, q is bedload flux (determined using Wilcock and 

Crowe, 2003) and e is bed porosity. Porosity is set at 0.3 which is within the range used by 

other studies of gravel-bed rivers (e.g. Lane et ai, 1995; Martin and Church, 1995; Ham 

and Church, 2000; Martin, 2005). 
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[7.12] is extended to a fractional Exner equation to simulate the continuity of each grain 

size fraction thus enabling the bed GSD to be updated: 

dt ' dt 

dq, ^ [7.12] 
+ — = 0 

dx 

where F, is the proportion of each size fi-action i in the active surface layer extending to a 

depth of L, qi is the flux of size fraction i and Ei is the proportion of fraction / in the 

interface between active layer and sub-surface as the bed aggrades or degrades and t is 

time. L is taken to be twice the geometric mean diameter D„ of the bed at each place and 

time. Ei is assumed to be the same as F,, which is an obvious assumption for aggradation 

and avoids tracking sub-surface stratigraphy. By reducing [7.12], the fractional GSD update 

becomes [7.13]. Equations [7.12] and [7.13] can be solved using a finite difference scheme. 

pdq__dq^ 

_ ' dx dx [7-13] 
dt (1 - 8)L 

7 . 4 . 3 . 2 W I L C O C K A N D C R O W E S U R F A C E 
B A S E D T R A N S P O R T M O D E L 

Sediment transport is a crucial process in the model as it directly determines aggradation 

and degradation, and downstream fining, indirectly feeds back to the hydraulics (through 

flow depth and channel bedslope, both of which alter shear stress) and drives the lateral 

component of the model through shear stress as linked to grain roughness, depth and slope. 

It is therefore essenfial that this component of the model is suitably represented. As noted 

earlier (Section 7.4.2), modelling sediment transport is notoriously difficult with large 

variations found in the success of the traditional equations. There is a strong 

recommendation that equations should only be applied to conditions that match those under 

which the equation was developed. Thus an equation for mixed coarse gravel rivers is 
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required for the Wharfe. Three potential choices include: (1) the Meyer-Peter and Muller 
(1948) equation which was tested heavily on coarse grained rivers, is generally found to 
perform well when applied (Gomez and Church, 1989) but was not designed for mixed 
sized sediment; (2) Parker's (1990b) surface based approach that was successfully used in 
SEDROUT; or (3) the Wilcock and Crowe (2003) surface based model which incorporates 
the full GSD and includes the non-linear effects of sand on sediment transport (Jackson and 
Beschta, 1984; Ikeda and Islya, 1998). Wilcock and Crowe (2003) was selected for use in 
TRJB and performed well when tested with two other transport laws (Ferguson et ai, 
2006). During early applications to the Wharfe, predicted bedload transport rates matched 
well with observed estimates. This suggests that the Wilcock and Crowe (2003) equation 
remains applicable for the developing research model. 

Wilcock and Crowe (2003) present a surface-based transport model that predicts the 

instantaneous transport rate, independent of initial and boundary conditions and capable of 

predicting transient conditions. This allows the transport rates to be predicted alongside the 

changing composition, rate and direction of bed adjustment. By using a dataset containing 

48 coupled flow, transport and surface-sediment characteristics the Wilcock and Crowe 

(2003) model overcomes the "lack of data" barrier that had proved problematic to earlier 

surface-based approaches (e.g. Parker et ai, 1982a). However, this dataset, presented in 

Wilcock et al. (2001) was collected in a flume. As the model incorporates the non-linear 

effect of the sand content on gravel transport rate it uses the full surface GSD. 
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The model incorporates two concepts from earlier substrate-based models. First, it uses a 
hiding function (Einstein, 1950; Egiazaroff, 1965; Andrews and Parker, 1987). Second, it 
has a similarity collapse over grain size, based on a reference shear stress (Ashida and 
Michue, 1971; Parker et al. 1982b). The form of the similarity collapse is: 

w : = f { T l T , ) [7.14] 

where T is the bed shear stress and T„ is the similarity parameter with a reference value of T 

and W' is defined by: 

where Sr is the ratio of sediment to water density, g is acceleration due to gravity, qbi is the 

volumetric transport rate per unit width of size i, F, is the proportion of size / on the bed 

surface, «. is the shear velocity ( M. = \tIp °^), andp is water density. The reference shear 

stress for a grain size fraction / (rn) used in [7.15] is defined as the value of T in W' when 

equal to a small reference value ff^.*= 0.002 (Parker et al., 1982a, 1982b; Wilcock, 1988). 

When values of reference shear stress for each grain size fraction (tri) are scaled against the 

reference shear sfress (irm) for the mean of each bed surface (which is the value of r„ 

corresponding to the mean size of the bed surface) and plotted as a ftinction of grain size 

fraction to median grain size, the trend produced has two clear linear segments. These can 

be explained using the power relation shown below [7.16]. The reference shear stress tn , 

requires a consistent collapse to produce a single predictive relation from the two linear 

segments. 
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In 
r„ 

h 

[7.16] 

where £), is the grain size at the / percentile and £>„ is the median grain size of the surface 

layer sediment and 6 is an exponent. 

This hiding fiinction [7.16] is similar to those used in other mixed-size transport models 

(e.g. Parker et al., 1982b; Proffitt and Sutherland, 1983; Andrews and Parker, 1987; Parker 

(1990b); Sutherland, 1992). It reduces calculated transport rates by increasing for finer 

fractions. It increases transport rates by reducing Tr, for coarser fractions. This is done 

relative to values of r̂ m for single sized sediments. Thus it reduces the mobility of smaller 

sizes and increases the mobility of the coarser sizes relative to the unisize case. The hiding 

function gives the variation of the reference shear stress (a surrogate for critical shear 

stress) as a fiinction of fractional size relative to the median grain size of the bed surface. It 

has two distinct limbs corresponding to relatively fine and relatively coarse fractions. This 

is because, in sandy sediments, the median surface grain size is relatively small such that 

the majority of the particle size fractions fall on the steep side of the limb whilst sediments 

with little sand tend to have a relatively coarse median surface grain size such that the 

majority of fractions fall on the gentle limb for finer sizes. 

Wilcock et al. (2001) demonstrate that the bed sand content has an important and non linear 

effect on gravel transport as the entrained sand promotes the transport of coarser grains 

(Curran and Wilcock, 2005). The percentage of sand on the bed surface {Fs) becomes 

important in [7.16] in the calculation of the reference shear stress (r™) required to initiate 

transport [7.17]. Equation 7.17 is taken from Wilcock and Crowe (2003). Thus, as the 

percentage of sand on the bed increases, the reference shear stress reduces and sediment 

transport rates become higher. The effect of sand on bedload transport was initially 

recorded by Jackson and Beschta (1984) and Ikeda and Iseya (1998). Figure 7.3 shows that 

the reference shear stress reduces in a non-linear way as the percentage of sand increases up 

to 25%. 
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=(0.021+0.015 exp[-20F.])(5^ -\)pgDm [7.17] 

Figure 7.3: Non-linear effect of sand on the reference shear stress. The was 20 mm. 
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The final component of the Wilcock and Crowe (2003) equations is the transport frmction 

shown below: 

W = 
0.0020 7.5 

14 1 -
0.894 

0.5 

for 0 < 1.35 

for <D>1.35 [7.18] 

where W' is the dimensionless fransport rate of each size fraction / and 0 = r/tn. It is 

determined as a function of rAn for all size fractions. Thus when O is high the upper part of 

the equation is applied whilst when values of <D greater than 1.35, the lower part of the 

equation is applied. 



C H A P T E R 7: M O D E L C O N C E P T U A L I S A T I O N 2 1 7 

7 . 4 . 4 M O D E L U N G Q U E S T I O N S A R I S I N G W H E N A D O P T I N G T R I B 

TRIB, including the Wilcock and Crowe (2003) surface based transport model was selected 

as a building block for the development of the research model. Before the third sub-model, 

the lateral adjustment model, is considered, five key modelling questions arise from the 

above discussion of TRIB and the Wilcock and Crowe (2003) sediment transport equations. 

These questions are answered in Chapter 8 to aid with decision making. First, can the 

Upper Wharfe study reach be successfully applied to TRIB? This will involve adding in 

aspects of the Wharfe's geometry described by the field monitoring. These include the 

number and spacing of cross-sections, the average channel width, upstream and 

downstream slopes, a GSD representing the entire reach, an appropriate value of Manning's 

n and a reasonable value for the fixed, steady discharge. Second, what aspects of the model 

can be modified to improve the representation of the study reach in the model? 

Modifications that can be applied include: allowing width to vary downstream (but remain 

fixed over time), variable channel slope, representation of grain size characteristics and the 

value applied to n. In addition, the sand boundary in the Wilcock and Crowe (2003) 

equations requires evaluation as it is currently set at 2 mm representing sand. With little 

sand found in the Wharfe, this may be problematic for the model. Third, do the 

modifications in (2) produce predictions that match the field observations well? A range of 

comparisons should be made to test different model ouputs. Fourth, before the lateral 

component of the model is explored, can a variable flow regime can be incorporated into 

the model? The initial version of TRIB and many other SRMs only simulate steady state 

conditions, thereby ignoring the sediment transfer processes under natural variable flows. 

Fifth, the final question to be explored before the lateral component is developed, asks what 

impact manual changes in channel width have on the model outputs? Manual changes can 

be created by simply entering a different channel width into each node. This is important 

because it demonstrates the model's sensitivity to changes in width, and provides and early 

indicarion to the model's response to changes in width. 
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7 . 4 . 5 O P T I O N S FOR T H E I ^ T E R A L S U B - M O D E L 

The third sub-model to be coupled with the hydraulic and sediment transport sub-models, 

which are combined using TRIB, is the lateral channel change sub-model. The literature is 

explored to determine options available for this lateral component and concentrates on the 

bank erosion sub-models currently used in morphological adjustment models. 

Previous bank erosion sub-models 

Early models of bank erosion simply parameterised bank erosion rates using single 

variables such as local flow velocity (Ikeda et ai, 1981), stream power (Bull, 1979), critical 

shear stress for entrainment (Arulandan et ai, 1980) or bank curvature (Parker et al, 1983). 

However, these models fail to provide information about the interactions between bank 

erosion and the channel bed and topography. Thus, by the 1990s, authors had begun to 

couple together models of flow and sediment transport with physically-based models of 

bank erosion (e.g. Pizzuto, 1990) providing more accurate predictions. Darby (1998) and 

ASCE (1998b) note the distinction between bank erosion analyses for cohesive and non-

cohesive banks. 

Two different techniques to model non-cohesive bank erosion are used by Pizzuto (1990) 

and Kovacs and Parker (1994). Pizzuto (1990) simulates bank erosion using a heuristic 

model of bank slumping with slumping occurring as a result of basal lowering and 

increasing bank slope angle. On die other hand, Kovacs and Parker (1994) use the angle of 

repose of sediment as a threshold for erosion but simulate erosion by creating a 

discontinuity in the slope which migrates up the bank. This discontinuity is created between 

the oversteepened bank and the upper bank as shown in Figure 7.4. Erosion occurs as the 

discontinuity migrates up the bank. 
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Figure 7.4: Propagation of bank erosion upslope. Kovacs and Parker (1994) 
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In the channel adjustment model of Nagata et al. (2000) that uses a 2D model to calculate 

bedform deformation and planform variations, fitting them to a movable boundary fitted 

co-ordinate system, bank erosion is simulating using Hasegawa's (1981) approach. The 

model is similar to the modification of Mosselman's RIPA by Darby et al. (2002) but this 

model is more appropriate for non-cohesive banks and has a simpler description of bank 

erosion processes. Both the Nagata et al. (2000) model and RIPA are models for 

meandering channels rather than sfraight ones and are discussed in Section 7.2.4. 

Hasegawa's (1981) simplified model of bank erosion for non-cohesive materials is shown 

in Figure 7.5. It assumes that bank erosion will occur as bank failure when the volume of 

sediment in zone A (sediment supply due to bank erosion) equals the volume of deposition 

in zone B. This model simulates the non-equilibrium state of sediment transport and the 

empirical approach avoids dealing directly with the physics of bank erosion (Duan, 2001). 

It is based on the assumption that basal channel erosion and bank erosion through 

entraiimient will oversteepen the channel banks until a critical threshold has been breached. 

Thus, it is similar to other techniques (e.g. Pizzuto, 1990; Osman and Thome, 1988 and 

Kovacs and Parker, 1994). Hasegawa (1981) assumes that the volume of erosion is equal to 

the volume of deposition as shown in Figure 7.5. 
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Figure 7.5: Hasegawa (1981) bank collapse model. 
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Most cohesive bank erosion simulations have been based on the analysis of planar failures 

(Osman and Thome, 1988; Darby and Thome, 1996; Simon et al., 1991). These approaches 

are based on Carson and ICirkby's (1972) concept of basal endpoint control. This concept 

shows that bank retreat or advance is a fiinction of flow, sediment transport and bank 

stability processes within the near bank zone (Darby, 2000). Bank failure will occur when 

basal erosion increases bank height and angle and decreases bank stability. The channel 

widens at a rate determined by the width of the failure block. The Darby and Thome (1996) 

bank erosion sub-model includes both fluvial bank erosion and mass wasting in the form of 

rotational and planar failures. The left and right bank stability and the lateral erosion are 

calculated separately to allow asymmetrical erosion, a feature common in alluvial 

environments. The fluvial bank erosion is modelled using the Arulandan et al. (1980) 

empirically derived relationship. This is based on the assumption that grain entrainment 

will occur when the shear stress of the flow exceeds a critical threshold: 

LE = 
r 

r - r . [7.19] 

where LE is the lateral erosion rate, r and tc are the applied fluid and critical entrainment 

shear stress respectively, y is the unit weight of the soil and r is the initial rate of soil 

erosion . 
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The mass failure part of the Darby and Thome (1996) bank erosion sub-model is based on 

Osman (1985) and Osman and Thome's (1988) geotechnical bank stability analysis for 

rotational slip and planar failures. Osman and Thome (1988) was one of the first studies 

that combined the effects of fluvial entrainment processes at the bank toe with geotechnical 

stability in the context of analysing bank retreat. This approach models the retreat of 

cohesive banks as a discontinuous sequence of erosion cycles in which toe scour and fluvial 

erosion decreases the bank stability by increasing the slope and height of the bank leading 

to mass failure. 

In RIPA (Mosselman, 1992; 1995; 1998), a 2D depth-averaged model for single thread 

cohesive channels with irregular platforms, the bank erosion component has been updated. 

The earlier models use both excess shear stress (Ikeda et al., 1981) and excess height 

mechanisms whilst the 1998 version uses only excess height as a bank erosion mechanism. 

This mechanism is shovra below [7.20] and explains that once the height and hence the 

angle of the bank increases beyond a certain threshold (through basal lowering), the bank 

will fail by planar failure. However, Darby et al. (2002) felt that this method was 

insufficient and went on to develop RIPA ftirther by replacing the existing bank erosion 

model with Osman and Thome's (1988) mechanistic approach that represents bank failure 

in more detail. The new model also includes a modification to describe the deposition of 

bank materials and its subsequent removal. 

H ^ = G 
dt 

drig _ 
f o r / / < / / , 

{oxH>Hc 
[7.20] 

where dng/dt is the rate of bank retreat, G is an erodibility coefficient, H is the total bank 

height and He is the critical bank height below which no bank erosion occurs. 
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Bank erosion considerations 

Before decisions about how to simulate bank erosion are made, it is important to consider 

the mechanisms by which the channel adjusts laterally. Rules will be developed to simulate 

these processes. From the results of the bank erosion study (Section 4.4), it is clear that 

fluvial entrainment and desiccation failure dominate on banks on meander bends whilst 

freeze-thaw and seepage/piping dominate on straight channel sections. These weathering 

processes are typically enhanced by secondary circulation that develop due to differences in 

channel depth across the channel and channel curvature. Rates of bank erosion on the 

outside of meander bends are around three times greater than bank erosion rates on the 

straight sections. This tells us that channel change predominantly occurs at meander bends. 

These results suggest that the lateral channel change component ideally needs a mechanism 

where shear stress is redistributed across the channel due to curvature and differences in 

bed elevation. This would represent the effects of the secondary circulation that forms in 

curved channels upon the spatial pattems of shear stress. 

Distributing shear stress laterally 

The problem herein is that ID models such as TRIB, SEDROUT and the Cui et al. (2006) 

model average shear stress across the width of the channel and treat the channel as straight. 

Hence they fail to accurately represent the natural spatial variability in shear stress across 

the channel (Ferguson, 2003b). Ferguson (2003b) notes that these spatial shear stress 

variations may be due to: (1) the effect of the channel sides which create a velocity profile 

outwards from the centre of the channel; (2) lateral variations in depth both laterally across 

bars and thalwegs and longitudinally over pools and riffles; (3) planimetric convergence 

and divergence of flow which coincide with flow acceleration and deceleration (e.g. braids 

and tributary inputs); and (4) curvature induced secondary circulation which creates higher 

shear stress zones where surface downwelling occurs. It is therefore necessary to find a 

method of distributing width-averaged shear stress laterally across a cross-section such that 

the distributed shear stress is more representative of the actual shear stresses one would 

expect for the channel planform, in particular channel curvature and differences in bed 

elevation. The boundary shear stresses placed on the outer bank of the channel could then 

be used to determine bank erosion rate by applying a threshold shear stress rule. 



C H A P T E R 7: M O D E L C O N C E P T U A L I S A T I O N 2 2 3 

Conversely, a drop in shear stress on the inside of the meander bend would correspond with 
deposition and the formation of a channel bar. There are several methods used in some 
existing width adjustment models that could be used to redistribute ID width averaged 
shear stress across a channel. These techniques all require additional information on the 
channel morphology and as such can be divided into two types: (1) those which use channel 
curvature; and (2) those which use depth variations as a surrogate for information on shear 
stress. 

(1) There are three potential methods that use channel curvature to estimate outer bank 

shear stress. These work on the assumption that the greater the curvature the greater the 

lateral shear sfress variation and hence the more shear stress on the outer bank. These 

techniques were developed to estimate bank erosion rates and as such could be used 

directly to calculate lateral change in the Wharfe. The first method uses the bend theory 

concept (Ikeda et al., 1981) which determines near-bank flow velocity from the curvature 

of the channel. In "bend theory", this flow velocity is then taken to be directly proportional 

to bank erosion rate. The second approach by Begin (1981) uses the curvature ratio (radius 

of curvature to channel width) and the momentum equation to calculate the radial force 

exerted on the outer bank of a stream meander bend. This force could be directly linked to 

outer bank shear sfress. The third approach uses the ratio of centreline arc length to outer 

bank arc length in a shear stress conversion factor (Richardson, 2002). It assumes that the 

ratio of outer bank velocity to section averaged velocity is equal to the arc length ratio. This 

method was specifically developed to be used with the output data from a ID hydraulic 

model. 

(2) The second group of methods use variations in channel depth across the cross-section to 

explain how localised shear stress may differ from width-averaged shear stress. Talbot and 

Lapointe (2002) explain that to simulate the channel long profile change more realistically 

using sediment routing models such as SEDROUT, the simulated "formative" discharge for 

the prismatic channel must be adjusted to produce bed shear stresses that correspond as 

closely as possible to those found in natural channels with deeper sections of flow. Using 

depth as a replacement indicator of shear stress is sensible since mean shear stress is 
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directly linked to mean depth (or hydraulic radius) through the DuBoys shear stress 
equation or Manning's equation. If the channel is split into smaller sections, each with its 
own value of depth, the mean shear stress in each section becomes a function of depth. 
Since depth is easily obtained from cross-section data, several authors have used it to 
provided information about the spatial variability of shear stress. This is particularly 
common in cellular modelling approaches (e.g. Paola, 1996; Nicholas, 2000). These 
principles could be applied to determine outer bank shear stress from channel depth 
variations since the typical cross-section around a meander bend is asymmetric with a 
deeper outer bend zone moving towards a shallower inside bend. 

One such technique was applied by Talbot and Lapointe (2002) to improve bedload 

transport estimates in SEDROUT. They experimented with estimating shear stress from the 

mean depth, maximum depth and the average of the two. The latter provided them with the 

best shear stress estimates for the bedload transport equation when compared with data. A 

third potential option used to compute shear stress distribution in meandering reaches, 

ignores the shallow, low shear stress parts of the channel and determines the width-

averaged shear stress for the deeper channel sections only (i.e. those closest to the bank). 

This approach was used by Nicholas (2000) in New Zealand on braided channels. This 

approach is less applicable in single thread channels since the ratio of shallow zones to 

deeper zones is much less than in braided channels. 

Using spatial patterns of depth as an indication of shear stress variation is appealing for use 

in ID models since the additional data on depth are readily available from cross-section 

profiles. However, there may be some problems with using depth to provide information on 

shear stress (Ferguson, 2003b). First, it has been recognised that some areas, such as riffles 

and bar heads, may have a low depth but high shear stress whilst others have the opposite 

due to local differences in water surface slope (Lisle et al., 2000). Furthermore, Bathurst et 

al. (1979) have shown that maximum shear stress does not always correspond with 

maximum depth following field measurements made in gravel bed meander bends. This is 

often the case in meandering channels because of the delayed cross-over of the flow 

(Dietrich and Smith, 1984). There are also suggestions that the increased grain size and 
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influence of the bank found in the deeper channel sections close to the bank on the outside 
of a meander bend increase flow resistance thereby counteracting the expected increase in 
shear with increased depth (Nicholas, 2000). Despite these potential complications, 
Nicholas (2000) suggests that the local deviations tend to cancel each other out so that a 
positive correlation between depth and shear stress exists. 

Splitting the channel 

These methods highlight that bank erosion driven by curvature and depth differences can be 

simulated in lateral adjustment models. However the discussion also demonstrates the 

importance of incorporating lateral shear stress variation into the model for computing the 

hydraulic and sediment transport equations before bank erosion is even considered. Since 

curvature and depth have been highlighted as predominant factors leading to bank erosion 

in the Wharfe system, these form the focus of the modelling basis. TRIB represents the 

channel as a straight, rectangular one with a centre zone of uniform depth. To incorporate 

depth variations into the model, the cross-sectional representation of the channel needs to 

be enhanced. Following on from the Lancaster and Bras (2002) and Stark (2006) models, 

the channel can be split into two halves. By providing two bed elevations and hence depths, 

spatial variability in shear stress can be introduced but without making the model too 

sensitive to the full range of depth variability in a natural channel. Thus a split channel 

approach would allow some of the natural channel geometry to be represented, albeit in a 

simplified manner. 

Representing slope 

Alongside flow depth, slope is a fundamental component in the calculation of shear stress. 

In the split charmel approach several options of slope can be adopted. Three key options are 

identified including: (1) steepest flow path; (2) water surface elevation; and (3) average bed 

slope. The first method, the steepest flow path, is based on methods of calculating slope in 

cellular models used in braided river simulations (e.g. Murray and Paola, 1994, 1997; 

Thomas and Nicholas, 2002; Thomas et al. 2002, 2006). These calculate the bed slope of 

the steepest pathway from the upstream cell to one of the downstream cells (Figure 7.6a). 

This option could be applicable to the split charmel model as it is effectively a simplified 
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cellular approach with two upstream and two downstream options as shown in Figure 7.6b. 

However, whilst the slope could cross from one side to the other, the model capabilities are 

insufficient to allow sediment and flow to follow these cross-over paths. Furthermore, this 

approach would enhance slope values further as the steepest path would always be used. 

Figure 7.6: Slope, flow and sediment transport pathways in cellular and split channel 
approaches. In the cellular approach, the dashed arrows represent lateral transfers, Qo is the 
discharge leaving the upstream cell, Q\ is the discharge received by each of the five 
downstream cells and n is the routing potential determined from the local bedslope between 
pathways. 

A: cellular approach B: split channel approach 
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The second option is to use the water surface elevation to calculate the downstream slope. 

Since the water surface elevation is equal across both channel sides, the water surface slope 

is the same for both channel sides. This would create a much smoother slope profile as the 

bed roughness features would be dealt with by varying flow depths (e.g. a pool will have 

deeper flow whilst a riffle will have shallower flow). This may be problematic as these 

roughness features provide shear stress variability which helps to characterise sediment 

transport. Thus, the third option to use the average bedslope of the two channel sides is 

more appealing as it would incorporate more of the slope variability into the channel. By 

using the average slope of the two sides, the character of the slope is largely maintained. At 

the same time any sharp drops in slope on one side would be dampened due to the 

averaging with the other side (e.g. the steep slope of the outer channel side at a meander 

bend with a deeper outer side). 
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7.4.6 M O D E L L I N G Q U E S T I O N S FOR THE L A T E R A L C O M P O N E N T 

A further five key modelling questions arise from reviewing literature on lateral adjustment 

models. These are explored in Chapter 8 where modifications and decisions are made. 

Quesfions (6), (7) and (8) will use a simplified geometry for development with the more 

complex channel geometry of the study reach becoming incorporated in Questions (9) and 

(10). The sixth questions asks, can the channel be split into two halves and still function 

efficiently? Additional decisions and modifications are also required. These include 

developing a method to distribute flow between channel sides and determining the best 

option to represent slope from the three methods outlined earlier. The model's behaviour to 

several situations should be tested including lateral bars and pools. Seventh, a decision is 

required on which bank erosion option to employ? This considers bank erosion for straight 

channels with curvature induced bank erosion considered in question (10). Three options 

discussed include: (a) using a critical bank angle (based on approaches by Hasegawa 

(1981), Osman and Thome (1988), Pizzuto (1990) and Kovacs and Parker (1988)); (b) 

using a critical depth difference to distribute shear stress (e.g. Talbot and Lapointe, 2002); 

and (c) using a critical shear stress (similar to the Ikeda et al. (1981) approach although this 

is based on a velocity threshold rather than shear stress). Shear stress thresholds were also 

used to drive bank erosion in an approach by Arulandan et al. (1980) and in early versions 

of RIPA (Mosselman, 1992, 1995). A justification for the selected option should be 

provided. Eighth, following on ft-om (7), what modifications will improve the model's 

lateral channel change component? Modifications are required to prevent excessive 

overdeepening, simulation of bank depositing and maintaining the continuity of sediment 

during adjustment. Ninth, aims to address whether the lateral adjustment component 

continues to work well when the level of complexity is increased as the Wharfe data is 

added? This is answered before the final modification to include curvature into the lateral 

sub-model is made in (10). Key modifications and decisions made here include how to 

represent the Wharfe's geometry as a split channel and what critical values of shear stress 

should be applied to initiate bank erosion? The final major modification, highlighted fi-om 

the literature as an important component of bank erosion models, is a method of 
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distributing shear stress as a function of channel curvature. This final modelling question, 
ten, explores the applicability of a curvature induced shear stress distribution? This would 
make the model capable of simulating natural, curved reaches. 

7 . 5 C H A P T E R S U M M A R Y 

The model conceptualisation process has demonstrated the importance of using literature 

review to identify previous modelling approaches, what the limitations of these previous 

approaches are and whether they are applicable to the research project. This chapter began 

by providing an overview of the range previous modelling attempts. The overall 

conclusion, following a summary of their limitations, was that a new model of 

morphological channel change is required for this research. In the second part of this 

chapter, a conceptual research model was developed using: (1) literature on the theory of 

morphological channel change (Chapter 2); (2) observations and findings made fi-om field 

studies (Chapters 4 to 6); and (3) previous modelling approaches. A three part sub-model 

approach was selected sharing a similar structure to the width adjustment models discussed 

in Section 7.2.2. The sediment routing model TRIB, will be adopted to represent the 

hydraulic and sediment transport sub-model components, and as a basis for the 

development of the third component, the lateral channel change sub-model. Literature 

review was used to highlight key model development questions. These provide a clear 

development testing structure for Chapter 8. These questions can be further grouped into 

model development stages: 

(a) applying TRIB to the Wharfe (Question 1); 

(b) modifying TRIB and the boundary conditions (Questions 2, 3, and 4); 

(c) developing a lateral channel change component for simulating straight channels 

(Questions 5, 6, 7, 8 and 9); and 

(d) developing the model to simulate lateral channel change in meandering channels 

(Question 10). 



C H A P T E R EIGHT: 

M O D E L D E V E L O P M E N T , T E S T I N G 

A N D C A L I B R A T I O N 

8 . 1 I N T R O D U C T I O N 

Chapter 7 highlighted several key modelling questions which form the basis of the model 

development and testing. The aim of this chapter is to achieve Objective 5 from Chapter 1. 

This objective was to develop, to test and to calibrate the model so that scenarios can be 

performed in Chapter 9. The processes of model verification, validation and calibration are 

used throughout this chapter to aid with development. Verification is regarded as "solving 

the equations right" opposed to validation which is "solving the right equations" (Roache, 

1997). Lane and Richards (2001) echo this using the term verification for the correct 

solution of the equations whilst validation is determining the correct parameters predicted 

by the equations. In this study verification is ensuring that the equations are solved 

correctly and give values that are feasible whilst the validation process is used to compare 

the predictions with the field data to test the closeness of predictions. Care must be taken 

during validation as validation is based on the principle that when a model fails to predict 

independent data or observations adequately, something must be wrong with the model or 

the validation data (Luis and McLaughlin, 1992). Yet the converse of this, that correct 

predictions make the model valid can equally be wrong. Lane et al. (2005) suggest that it is 

possible for an invalid model to produce adequate representations of reality. Calibration is 

the process by which inputs, parameters and equations are "tweaked" to improve the 

closeness of fit between the predicted and observed data. In this chapter verification and 

validation of the model occurred after every modification. 

Section 8.2 through to Section 8.5 aim to explore each of the ten modelling questions raised 

in Chapter 7, through testing the model's output against field observations. These questions 

are answered within the four modelling steps identified in Section 7.5. These include: (a) 
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application of TRIB to the Wharfe; (b) modifications to TRIB and the boundary conditions, 
including incorporating a variable discharge; (c) developing the lateral adjustment 
component for straight channels; and (d) applying this to meandering channels. Table 8.1 
shows the structure of the model development and testing. For each question, there are a 
series of modifications and decisions that must be made and justified. The results from 
testing these modifications and decisions are used as supporting evidence. Once the 
modifications and decisions have been carried out, sensitivity analysis (Section 8.6) and 
model calibration (Section 8.7) are performed to find the optimum values for the model's 
input and boundary conditions. The aim of these processes is to provide a model the 
produces predictions that match observations most closely. This allows the calibrated 
model to be used in Chapter 9, scenario testing. 
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Table 8.1: Development stages (st.), key questions, modifications and decisions to be made 
to develop model. 

Stage 
Sect. 

Key modelling 
question 

Modifications and decisions Testing aim 

St: (a) 

8.2 

(1) Can the Upper 
Wharfe study reach 
be successfiilly 
applied in TRIB? 

Number of nodes and their 
spacing, average channel 
width, upstream and 
downstream slope, starting 
GSD, tributaries removed. 

Does the model 
continue to predict 
values within a sensible 
range for a gravel-bed 
river? 

St: (b) 

8.3.1 

(2) What 
modifications can 
be made to improve 
the representation 
of the Wharfe in the 
model? 

Modifications include: 
1) width: uniform to variable 
downstream. Width remains 
fixed over time; 
2) tributaries: one for Cray 
and one for Buckden Beck; 
3) slope: incorporate more 
variable slope; 
4) sediment representation: 
number of grain size classes; 
5) sand boundary in W&C, 
2003: raise to 8 mm to 
account for coarser sediment; 
6) input GSD: explore 
options; and 
7) Manning's n: allow for 
changes downstream and 
over time. 

Test outputs against 
field data after each 
modification: 
specifically the pattern 
of downstream fining. 

St: (b) 

8.3.2 

3) When all the 
modificafions in (2) 
are made, does the 
model perform 
well? 

Compare predictions 
with observations: 
1) sediment transport 
ratios; 
2) bedload transport 
threshold; and 
3) maximum transport 
rates. 

St: (b) 

8.3.3 

4) Can the model 
support a variable 
hydrograph? 

Modify to allow for 
hydrographs. 
Does the model continue to 
fianction well? 

Compare predictions 
with observations: 
1) evolution of bed and 
downstream fining 
rates and 
2) bed level changes: 
average and maximum 
aggradarion. 
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St: (c) 

8.4.1 

5) What impact 
does manually 
altering the channel 
width have on the 
model output? 

Test impact of channel 
width on aggradation / 
degradation. 

St: (c) 

8.4.2 

6) Can the channel 
be split into two 
halves? 

Split channel into two equal 
halves and perform 
calculations for each side 
using a simplified geometry. 
Account for situations where 
flow is entirely in one 
channel side. 
Decide on best option to 
represent slope. 

Ensure model produces 
sensible results and 
explore output when 
simulating: 
1) a pool; 
2) a lateral bar; and 
3) a transverse bar. 

St: (c) 

8.4.3 

7) Which method of 
simulating bank 
erosion is most 
applicable? 

Make decision on bank 
erosion option: 
1) critical bank angle; 
2) critical depth difference; 
and 
3) critical shear stress. 

St: (c) 

8.4.4 

8) What 
modifications can 
be made to the 
lateral adjustment 
component to 
provide a better 
representation of 
processes? 

Include modifications to: 
1) simulate deposition; 
2) prevent overdeepening; 
and 
3) account for sediment 
continuity of the bed during 
adjustments. 

St: (c) 

8.4.5 

9) Does the lateral 
adjustment 
component function 
well when tested on 
the Wharfe study 
reach? 

Decisions required on: 
1) how to incorporate the 
geometry of the Wharfe; 
2) what the critical erosion 
shear stress threshold should 
be. 

Test models output 
with observations 
including downstream 
fining patterns and 
rates, bed level changes 
and locations and rates 
of bank erosion. 

St: (d) 

8.5 

10) Does a 
curvature function 
for redistributing 
shear stress 
improve 
predictions? 

Modify model to incorporate 
a shear stress redistribution 
function based on curvature 
and make decision on 
whether to incorporate 
channel width into this 
fimction. 

Test models output, 
specifically bank 
erosion rates and 
locations with field 
observations. 
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8.2 A P P L Y I N G T H E W H A R F E T O TRIB: S T A G E ( A ) 

The original model, set up as described in Ferguson et al. (2006), was applied to the 

Wharfe study reach. This involved changing the 100 equidistant nodes in the basic TRIB 

formulation into 60 variably spaced nodes, representing each of the cross-sections and the 

mid-channel distance between them. The model uses the distance between nodes to 

calculate channel slope and node distance is not explicitly considered when redistributing 

sediment. The total channel length was 5.6 km. Channel width was set constant at 17 m 

which was the average channel width for the study reach. The channel slope was 

determined from an upstream and a dovrastream slope value that represented the charmel 

slopes at Hubberholme and Starbotton. The slope values at each node between these 

locations were interpolated linearly in the model giving a quadratic long profile. This 

provided a crude representation of slope. At this early stage, the single tributary input was 

set to zero, which in effect removed it from the calculations. The initial GSDs entered for 

the entire study reach represented the GSD at Buckden Bridge (cross-section 220). This site 

was selected because the GSD was close to the median for the whole reach. With no 

sediment or water entering fi-om the tributary, the GSD for the tributary was left blank. 

With the model set up to represent a very simple Wharfe study reach, the model was run. 

The main aim at this stage was to ensure that the model continued to compute and predict 

values within a reasonable range for a gravel-bed river. Following the initial run, the model 

was verified. Plausible values of downstream fining were predicted (i.e. values within the 

gravel size range of 20 mm to 80 mm and with an overall reduction in size downstream), 

and the model remained stable. The Wharfe study reach had been successfully applied to 

the initial version of TRIB. 

8.3 M O D I F I C A T I O N S To TRIB A N D 

T H E B O U N D A R Y C O N D I T I O N S : S T A G E ( B ) 

This section begins by exploring a range of simple modifications that are made to TRIB 

and to the model's boundary conditions to improve the model's ability to represent natural 

systems like the Wharfe (Section 8.3.1). Following the inclusion of these modifications, the 
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model's outputs are compared against field data to assess the model's ability to simulate 
conditions in the Wharfe (Section 8.3.2). A further substantial modification is made in 
Section 8.3.3 with the introduction of variable discharges into the model. Further testing 
against field observations are made after this modification. Unless specified otherwise, all 
simulafions were stopped when the rate of change stabilised. 

8.3.1 I N I T I A L M O D I F I C A T I O N S 

Seven modifications, highlighted in Chapter 7 and summarised in Table 8.2, were identified 

to improve the model's ability to represent natural systems. These included modifications 

to: (1) channel width; (2) adding in tributaries; (3) slope; (4) sediment representation; (5) 

the sand boundary in Wilcock and Crowe (2003); (6) input GSDs; and (7) Manning's n 

roughness values. As the model increased in complexity the time step was reduced fi-om 12 

hours to 7.5 minutes to maintain model stability. Concurrently, simulation time increased. 

The following modifications are discussed in the order that they were made: 

J) Fixed channel width to variable channel widths 

Natural channels, including the Wharfe, are seldom uniform in width. The Wharfe varies in 

width fi-om 12 m to 33 m with the standard deviadon of width noted to be 4.5 m. As 

discussed in Section 6.2.3, channel width is linked to bank erosion. In the Wharfe, this is 

controlled by factors such as vegetation, bank protection and slope. In the model, the width 

directly influences the unit discharge and the flow depth. As such, it was important to 

represent the variability in channel width at each of the cross-sectional nodes. Moving from 

a fixed width to a variable width model was simple and involved adding a data column 

containing individual channel widths into the workings sheet rather than using a single 

width value which was entered by the user on the model input page. A similar modification 

was made to SEDROUT by Ferguson et al. (2001). At this stage in the model development, 

the width remained fixed over time. The lateral adjustment component (Section 8.4) allows 

the width to become dynamic. With downstream width made variable, the previous method 

of increasing width when a tributary enters using [7.7] is made redundant. Width increase 

downstream of a tributary is now explicitly included in the input channel widths at each 

node. 
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2) Adding tributaries to represent Cray and Buckden Beck 

The original model had one tributary input which entered half way down the reach. The 

model was altered so that two tributaries entered the reach. The upstream input represented 

Cray Beck and entered between cross-sections 110 and 120 at 1020 m downstream. The 

downstream tributary input represented Buckden Beck and entered between cross-sections 

280 and 290 at 2300 m downstream. The other smaller inputs into the study reach were not 

included as these contribute only small quantities on flow and little or no sediment. They 

typically only become active during the wettest periods when the main channel was also 

high. Thus their relative contribution to flow remains low. With no measured discharges for 

the tributaries, the flow input, expressed as a proportion of the main flow, was estimated 

from catchment area. The catchment upstream of Hubberholme is 56 km^ Cray Beck is 5.5 

km" and Bucken Beck is 3 km". Therefore, approximately 10% and 5% of main flow was 

estimated to come from Cray Beck and Buckden Beck respectively. These values are 

supported by estimates of flow made during field visits. This contribution was fixed and 

does not account for changes that may occur with varying stage or local variability in 

rainfall. The model output was not sensitive to small changes in the percentage estimates of 

flow fi-om the tributaries. The estimates were felt to be adequate. 

Alongside the input of flow, a decision over the percentage contribution and gradation of 

sediment that would enter the channel at each confluence was required. The percentage 

contribution of sediment that enters from each tributary was estimated in Section 5.4.4 

when reconstructing the sediment budget fi-om the cross-sectional re-surveys. Hence the 

lateral flux as a proportion of the mainstream flux was 0.03 and 0.08 for Cray and Buckden 

Beck respectively. This does not account for temporal variability. In addition to the flux, 

the GSD of the tributaries is required. No GSD samples were taken in the two tributaries 

due to a lack of exposed sediment bars. However, the GSD of the sediment was estimated 

from any peaks or troughs in the dovrastream fining profile (Section 5.3). From these 

results, in particular Figure 5.14, a small rise in gradation occurs around the location of the 

Cray Beck tributary and no significant change is noted downstream of the Buckden Beck 

confluence. Thus, coarser sediment is likely to be entering from Cray Beck whilst sediment 
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of a similar gradation to the main channel may be entering fi-om Buckden Beck. One option 
would be to use the GSD of the sample taken immediately downstream of the two 
confluences as a proxy for the sediment entering from each tributary. Under this option the 
gradation remains constant and does not evolve over fime. A second option was to allow 
the tributary GSD to evolve with the main channel bed by setting the tributary gradation to 
match the main channel GSD at the confluence. Simulations were run using both options 
with the first option producing a downstream fining pattern more representative of the 
Wharfe. Hence the GSD of the input from the tributaries remained constant and was set to 
equal the GSD of the main channel from the observed data. This makes the assumption that 
the GSD of sediment entering the channel is of a similar composition to the main channel 
and does not vary over time. 

3) More representative slope 

One of the key field data sets used to validate the model during the development phase was 

the pattern of downstream fining noted from the bulk samples and pebble counts (Figure 

5.14). It was clear from early simulation runs that the predicted pattern of downstream 

fining differed greatly in places from the observed data. This was largely attributed to the 

way that slope was represented in the model. With slope an important parameter in defining 

shear stress and hence integrated into the sediment transport calculations, incorporating a 

slope profile similar to that of the Wharfe channel was essential. 

The model thus far has used a smooth quadrafic slope profile based on user defined 

upsfream and downstream slope values. However, whilst the true slope profile of the 

Wharfe follows a generally quadratic profile, there are substantial deviations from this 

(Figure 8.1a). These occur when the channel flows in and out of pools (dips) and over 

riffles (peaks). Furthermore, sinuosity and human intervention in the form of channel 

straightening can lead to slope variability in the natural system. At dmes bed slope may 

even increase with distance downsfream as the river flows from a deeper pool into a 

shallow riffle. To prevent these "uphill" bedslopes, the model has a lower slope limit of 

0.001, with this value entered if slope falls below this value. In the slope profile, a steep 

drop in elevation is noted between 550 m and 750 m downstream. This secfion is confined 
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by dry stone walls possibly from monastic times. It may be the case that the channel was 

straightened at this time, shortening the route and increasing the channel gradient. 

Figure 8.1: Wharfe study reach bed slope profiles. A shows the initial smoothed quadratic 
profiles alongside the natural un-smoothed profile and B is after smoothing. 
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Simulations using the profile shown in Figure 8.1a were attempted but the variations in 

slope were too great and the model remained unstable, even when the time step was 

significantly reduced. For this reason, the slope profile was smoothed using 3, 5 and 7 point 

moving averages. The 7 point moving average was the first to be generally stable and this 

was adopted. The smoothed profile is shown in Figure 8.1b. This smoothing flattened the 

steep channel section at 550 m downstream. Hence, the model failed to coarsen in the most 

upstream sections as shown in Figure 8.2a. To overcome this and to retain the character of 
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the slope profile in the upper 800 m, the profile was smoothed by eye. Simulations 

following this modification were positive with predicted coarsening occurring at the 

upstream end of the study reach, echoing the observed data. These results are shown in 

Figure 8.2b. 

Figure 8.2: The effect of using a smoothed slope profile on the predicted pattern of 
downstream fining. A uses the quadratic slope profile and B uses the 7-point moving 
average smoothed profile with manually altered upstream section. Simulation is run for 15 
days at 20 m"̂  s"'. 
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Furthermore, the predicted pattern of downstream fining that emerged during simulations 

had a kink located at around 3800 m where the gradually reducing D50 on the predicted 

profile jumped up by 20 mm before gradually fining once again. Figure 8.3 shows the kink. 

Again, this was attributed to the slope profile although the no obvious reduction in slope is 

visible here. Thus it may be a combination of slope and channel width change. The model 

was calibrated by manually altering the slope around this region to produce a more 

smoothed downstream fining profile shown in Figure 8.3. This calibration would account 

for changes in slope and width that are responsible for the kink in the profile. 
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Figure 8.3: Dovrastream fining pattern before and after slope has been altered by eye to 
removed the kink. 
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4) Increasing the number of grain size classes 

The original model was set up with 5 grain size classes to represent the sediment. Whilst 

this is adequate for beds with a small range of grain size classes, the range of sediment in 

the Wharfe is relatively large ranging fi-om <8 mm to >189 mm. Thus, defining the upper 

and lower boundaries of each class was difficult and always left one class with a large 

proportion of bed material. Three additional grain size classes were incorporated to provide 

a better representation of the bed material. There was scope to increase the number of 

classes further, perhaps incorporating a grain size band for each half phi sediment increase. 

This was not done as additional classes made no notable difference to the model output. 

5) Defining the sand boundary 

The upper and lower limits of the grain size classes can be adjusted by the user depending 

on the sediment characteristics. Of these, the upper boundary of the smallest fraction, the 

sand fi-action is particularly important as it plays a crucial role in the Wilcock and Crowe 

(2003) sediment transport equations enhancing sediment transport [7.18]. In the Wilcock 

and Crowe (2003) equations, sand is classed as everything smaller than 2 mm; following 

the standard grain size class characterisation set out in the Wentworth scale (Table 5.2). 
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This poses a problem for the Wharfe, since the bed material in only the most downsfream 
reach contained material smaller than 2 mm and even the grain size characterisation 
describes the smallest sediment as <8 mm. Hence, the upper limit of the sand boundary was 
shifted to 8 mm enabling significantly more fransport to occur than when the sand boundary 
was set at 2 mm. When some simple tests were run with the new sand boundary, this 
change resulted in more reasonable sediment transport rates suggesting that it is a valuable 
modification. 

6) Input GSD 

Following on from (3) and (4), the starting GSD down the channel has to be specified. With 

the GSD known at 16 locations downstream, one option would be to enter these directly 

into the model at their given locations. The GSD at intermittent cross-secfional nodes 

would then be interpolated. However, this would not reveal anything about model's 

predictive capabilities as it would begin with a downstream profile similar to that observed. 

A greater test for the model would be to enter a hypothefical starting GSD and assess the 

model's ability to predict the measured pattern of dov^oisfream fining. 

Numerous scenarios were tested with each simulafion run changing only the starting GSD. 

The scenarios tested were broadly split into: (1) uniform coarse sediment along the entire 

reach using GSDs with a D50 greater than 45 mm; (2) uniform fine sediment along the 

entire reach using GSDs with a D50 less than 30 mm; (3) uniform sediment along the entire 

reach using the average observed channel GSD and (4) different GSD for each location 

downstream such that a smoothed pattern of downstream fining was present at the start of 

the simulation. The simulations were run undl the downstream fining profile had stabilised 

and the rate of change had slowed. Thus some simuladons took longer than others. The 

scenarios that used a smoothed downstream fining profile as a starting profile, stabilised 

faster than the scenarios that began with a uniform GSD for the entire reach. Hereafter, the 

expression "the downstream fining wave had passed" refers to the process of letting the 

downstream fining pattern stabilise. 

Figure 8.4 shows the starting point and end results from two different simulation runs; 

comparing a scenario from group (1) with a scenario from group (4). The median grain 
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sizes observed in the field are not shown in this figure. It is extremely encouraging to 

observe almost identical outputs irrespective of the starting GSD. Similar findings were 

obtained with scenarios in (I ) , (3) and (4). When using starting GSDs that were finer than 

around 30 mm (i.e. group (2) scenarios), the downstream pattern matched well, but the 

model failed to predict the coarsening in the most upstream reaches. Hence it was important 

when selecting a GSD for the simulations to ensure that a moderate percentage of the 

material was in the coarsest gravel fractions and that the D 5 0 was greater than 40 mm. For 

simplicity, the model was set up with a uniform starting GSD that had a D 5 0 of 46 mm. 

Figure 8.4: comparing the pattern of downstream fining that is predicted when using 
different starting GSDs. 
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7) A variable Manning's n value. 

In the original model, the user defined the Manning's n roughness value at the beginning of 

the simulations. This value was applied throughout the channel and remained constant 

during the simulations. Roughness is used in the model to determine flow depth and 

subsequently shear stress. These products are sensitive to the selected Manning's value due 

to the formulation of [7.9] in section 7.3.1, which calculates flow depth (d) from the 
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discharge (Q), hydraulic slope (S), channel width (w) and the roughness value n. [7.9] is 
repeated here as [8.1]. Doubling the Manning's value in [8.1] has the same effect on flow 
depth as doubling the discharge. 

[8.1] 
^ nO.3 

A selection of an appropriate n value was important. Due to the rapid downstream fining 

found in the Wharfe, it was difficult to select a value that would be applicable throughout 

the reach. Furthermore, at-a-point, as the bed evolves over time the « value required to 

represent the roughness will change as the bed fines or coarsens. It was therefore essential 

that a variable n value was applied to the Wharfe and re-calculated after every iterarion. 

Equation 8.2 was used to calculate the n value. 

_ {D"')/\000 [8-2] 
6 . 7 g -

where D is the median grain size in mm and g is gravitational acceleration. 

Incorporafing a variable and updating n value into the model had an important effect on the 

flow depth. This is illusfrated by comparing flow depths at the upstream and downstream 

nodes using the calculated n value, and n values representing finer and coarser material. 

The upsfream n value for node 010 was calculated at 0.031 and the downstream n value for 

node 600 was 0.022. For a discharge of 15 m^ s'' this gave width-averaged flow depths of 

0.64 m at node 010 and 1.18 m at node 600. If the n values were swapped, and the n value 

applied to node 010 was reduced to 0.022, represenfing substantially finer sediment, the 

flow depth would also reduce to 0.50 m. At the downsfream end an n value of 0.031, 

representing coarser material, would increase flow depth to 1.42 m. Thus, it is important 

that the n value applied to each node represents the current GSD present. 
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8 . 3 . 2 T E S T I N G T R I B S O U T P U T A G A I N S T F I E L D O B S E R V A T I O N S 

Thus far, the modifications have been tested against the downstream fining profile in an 

attempt to make the predicted pattern match as closely as possible to the observed trend. 

Here, further model outputs are compared with field observadons specifically exploring the 

bedload transport predictions. Data fi-om the impact sensors and cross-sections was used to 

provide information on the sediment transport process in the study reach. These findings 

can be used to test the model's predictive capability. 

The first finding tested was the important reduction in sediment transport noted ft-om 

Hubberholme to Starbotton and the low sediment transport rate leaving the study reach at 

Starbotton. Results presented in Table 5.4 showed that less than 1.2% of sediment that 

entered at Hubberholme left the study reach at Starbotton. Furthermore, sediment is in 

motion for substantially less time at Starbotton when compared to Hubberholme. As an 

important feature of the sediment transfer system in the study reach, it was crucial that the 

model replicated this, with limited sediment transport leaving the reach. 

To compare the predictions with the observations, the model was run at a moderate 

discharge of 12 m'' s"' until the initial downstream fining wave had occurred and the 

sediment characteristics remained relatively stable and similar to the observed trend. The 

model was then run at a constant discharge for a short period of time with the average 

bedload transport rate for this period recorded at the second most upstream node 

(representing Hubberholme) and at the most dowmstream node (representing Starbotton). 

The most upstream node represented the input which was set to match the channel capacity. 

Thus this node was not used in this comparison. Since this comparison is concerned with 

the bedload transport rate associated with a given discharge, steady high flows are 

adequate. Variable flows are incorporated into the model in Section 8.3.3 that follows. The 

predicted bedload transport rates at the Hubberholme and Starbotton nodes were recorded 

excluding all material less than 8 mm (i.e. the sand ft-action). This fine material was not 

captured by the impact sensors and should be discounted for comparison. This test was 

repeated for increasing discharges and the results are presented in Table 8.2. When the 
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predicted ratios of transport between Starbotton and Hubberholme are compared with the 

observed ratios, similarities appear. The mean predicted ratio is 0.019 whilst the 

observations for the periods shown range from 0.021 to 0.31. The ratio from April 2003 to 

September 2003 was much higher, reflecting a period of relative higher sediment transport 

out of the reach. This higher ratio may be linked to high magnitude events. Yet, even this 

higher ratio suggests that substantially more sediment enters the reach at Hubberholme 

when compared with that which leaves at Starbotton. 

Table 8.2: Comparing predicted bedload transport ratios with observed impact sensor 
ratios. 

Modelled Bedload transport rate (m^ s'^) Ratio 
discharge (m^ s'̂ ) Hubberholme Starbotton (Star:Hubb) 

5 2.3E-06 3.9E-08 0.017 
10 6.1E-05 1.1E-06 0.019 
15 6.0E-05 9.7E-07 0.016 
20 8.3E-04 1.5E-05 0.018 
25 1.4E-03 2.9E-05 0.021 
30 2.0E-03 4.0E-05 0.02 

Measured oct03-mar04 225275 8636 0.038 
transport 
activity 

(sum of rn) 

apr03-sep03 66399 20667 0.31 transport 
activity 

(sum of rn) may06-dec06 15793 334 0.021 

The second result tested was the threshold at which sediment transport occurs. From the 

model, the mean bedload transport rate for the reach extending from cross-section 010 to 

040 was noted at several discharges increasing by 5 m^ s"' increments. The results are 

shown in Figure 8.5. It is interesting to observe the curve that is produced. The results show 

that fransport is initiated between 15 and 30 m^ s'' where the bedload transport rate begins 

to increase at the greatest rate. At discharges greater than 30 m^ s'', the transport rate 

increases at a steady rate. 

These predicted results can be compared with observed estimates of the transport discharge 

threshold made using two methods. Both methods use a combination of discharge data and 

data from the impact sensors. Method one uses the estimates of sediment transport time 

alongside the flow (discharge) duration curves. Table 5.6 suggested that at Hubberholme 
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sediment was in motion for 5.4% of the year (for the period March 03 - March 04). Under 
the assumption that this transport occurs during the highest flows, the flow duration curves 
presented in Figure 5.2 can be used to find the discharge exceeded by 5.4% of flows. To 
remove errors associated with annual differences in flow regime, the representative 
hydrological period was used. During this period, 5.4% of flows exceeded 35 m^ s ". As 
such this can be used as a crude estimate of the sediment transport threshold. However, as 
discussed in Section 6.2.1, seasonal differences occur and transport is also linked to 
sediment availability. Method two directly compares the peaks in sediment and discharge 
regimes. As illustrated in Figure 5.16 and Figure 6.1, both correlate well together. By 
exploring the relationship between pings and flow further, during the time period when data 
for both is available, the discharge at which sediment transport begins can be recorded. This 
was done for all separate transport events and the mean initiation discharge was 25.8 m"' s"', 
with variability fi-om 22.1 m'' s"' to 28.4 m^ s''. Only four months of discharge data were 
available for comparison with five individual sediment transport events. Thus, this was 
again a first approximation. 

Whilst the observed transport threshold is higher than predicted, there is some overlap 

between the two results. This is encouraging as the model is once again predicting values 

similar to the natural system. The higher observed values reflect complexities in the 

sediment transport process such as the bed armour. This may require a higher discharge to 

break down than predicted using the Wilcock and Crowe (2003) equations. In addition, 

sediment transport is largely linked to sediment availability. If no sediment is available for 

transport then no transport will occur, irrespective of the discharge. Furthermore the 

success of this estimate is dependent on accurate discharge data. As discussed in Section 

5.2, predictions of discharge fi-om stage records may be under or over estimated. In this 

instance, i f the discharge records have been overestimated, then the threshold for transport 

may indeed be lower than noted and closer to the model predictions. 
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Figure 8.5: Relationship between increasing discharge and predicted bedload transport rates 
at Hubberholme. Data plotted alongside estimated bedload transport thresholds. The boxes 
represent the range of thresholds estimated using the two methods. 
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A third and final comparison considered the maximum bedload transport rate. Table 6.5 

presents results that estimate the average and maximum bedload transport rates from the 

volumetric input and the impact sensor data. The maximum transport rate estimated at 

Hubberholme for April 2003 to December 2004 was 0.74 kg m'' s"'. For December 2003 to 

April 2004 it was 2.4 kg m"' s"'. Therefore the maximum estimated "observed" transport 

rate for the Wharfe study reach is 2400 g m's"' . This is expressed in grams to allow easy 

comparison with the model output. 

To obtain an estimate of "predicted" maximum transport rates from the model, an 

assumption was made that these maximum transport rates would occur at the highest 

discharges. This assumption does not account for any variability in sediment transport rate 

that may occur due to variability in sediment supply. From the Hubberholme flow duration 

curves, the highest discharges, which account for 0.5% of totals flows were 82 m^ s ' for 

2002, 80.3 m^ s"' for 2000 and 68 m^ s ' for 1997. The model was run until the initial 
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downstream fining wave had passed and the three discharges were entered into the model. 
The bedload flux at node 030, representing Hubberholme, was noted for each discharge. 
The bedload flux's were 2767.6 gm''s"' when discharge was 82 m^ s"', 2645.1 g m''s"' when 
discharge was 80 s ' and 1832.5 gm''s"' when discharge was 68 m^ s"' respectively. The 
two upper values are 245 grn 's " and 367 g m 's ' higher than the estimated bedload flux 
made from the observations whilst the lower discharge estimated the bedload flux to be 568 
g m 's"' lower. These are encouraging results as they are within the same order of 
magnitude. They further suggest the model is capable of predicting the sediment transport 
regime in the Wharfe study reach. 

8 . 3 . 3 I N C O R P O R A T I N G A V A R I A B L E D I S C H A R G E 

The original version of TRIB used a constant steady state discharge, defined by the user. 

This method gives a poor representation of the hydrology in a natural system as it simulates 

a river in constant high flow or low flow. Results using this approach could not be used to 

compare predicted and observed rates of aggradation and degradation since these 

observations are specific to the continuous variation of discharge between adjacent survey 

periods. A modification was made to the model to allow for a variable, stepped discharge to 

be simulated. This modification makes the model a more valuable research tool. 

The modification allowed the model to run through a hydrograph. With the model timestep 

typically lower than the hydrograph timestep, the model was set so that several iterations at 

a given discharge were made until the length of time at that discharge matched the timestep 

of the hydrograph. For example, i f a daily hydrograph was used and the model timestep 

was 0.25 (i.e. a quarter of a day), 4 computations would be made at that discharge before 

the next daily discharge was entered. The model timestep that was entered was required to 

be at least the same or smaller that the hydrograph timestep. 

Model simulations were carried out to asses the impact that different hydrographs and flow 

regimes had on the evolution of the bed and the downstream fining profile. Each simulation 

began with a uniform GSD along the entire study reach with the D50 equal to 46 mm. The 
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simulations were run for 730 days (two years). Four different simulation runs were made to 
compare steady flow with unsteady flow. The steady state simulations included using: 

(1) a constant discharge equal to the average maximum daily flow for the 2-year 

representative hydrograph. This was 9.62 m'' s '; 

(2) a constant discharge of 15 m^ s"'. This discharge represents a moderate flow, slighfly 

higher than the average daily maximum. 

The unsteady flows expressed using variable hydrographs included using: 

(3) the hourly average discharge record for the 2-year representative period. This hourly 

average was calculated fi-om the 15-min records; 

(4) the daily maximum discharge. 

Figure 8.6 shows the downstream fining profile at the end of each 730 day simulation. The 

most progressed profile was obtained when the steady moderate flow was used. This was 

followed by the unsteady daily maximum hydrograph. The large differences in this plot 

illustrate the importance of the higher flows for sediment transport. Thus, 40 days of 

simulafion using daily maximum flows (Figure 8.6: (4)) will produce the same downstream 

fining profile as 730 days at a steady average discharge (Figure 8.6 (1)). During these 40 

days the average discharge is 8.4 s ' which is marginally lower than the 2-year average 

of 9.2 m^ s''. Yet, during these 40 days, there are two moderate flow events with the 

discharge exceeding 10 m^ s"' for 6 days. Therefore most of the transport must occur in 

those 6 high flow days. In Table 8.3 the importance of high flow days is explored further 

with several simulation runs being made using a constant but increasing discharge. The 

time taken to reach the profile formed after 730 days at the average discharge of 9.62 m'' s'' 

is noted. There is a rapid reduction in the number of days required as discharge increases. 

For example, when the discharge doubles from 9.62 m'' s"' (or rounded to 10 m'' s ') to 20 

m^ s"', the Ume required to reach the same profile reduces by 97%. 
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Figure 8.6: Comparing the downstream fining profiles when using steady and unsteady 
hydrographs. 
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Table 8.3: Time taken to produce the same dov^stream fining profile using increasing 
steady discharge. 

Discharge 9.62 12 15 20 25 30 35 
No. of days 730 145 78 25 12 7 5 

The results presented in Figure 8.6 and Table 8.3 used identical parameters to run the 

model with only the discharge changing. It was important to also check the impact that 

changing the time step had on the model outputs. Two identical simulations were run but 

using two different timesteps: 0.0026 (3.75 mins) and 0.0208 (30 mins). Whilst die 3.75 

min simulation was substantially slower with 8 times as many iterations, the results were 

the same. This is due to the form of the fi-actional continuity equation [7.12] which 

accounts for the change in time between iterations. 
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The downstream fining profile predicted by the model will be the same irrespective of the 
discharge (steady or unsteady and the discharge values) and timestep but the time taken to 
reach a particular profile point will vary greatly depending on the discharge values used. 
However, the main benefit of using a variable discharge is that it allows the simulations to 
be compared against time dependent field data such as rates of in-channel sedimentation. 
Thus, the model can be run for a fixed length of time and the predicted results can be 
compared with results from field monitoring. Section 4.3 presents the results from the 6-
year cross-sectional monitoring programme that started in the Wharfe in December 2001. 
These data were analysed to provide details on the rate and locations of in-channel 
sedimentation and degradation. Patterns of sedimentation in the study reach were found to 
vary both spatially and temporal. A key finding from the analysis was the link between 
hydrology and temporal rates of vertical change in the study reach (Section 6.2.1). Thus the 
field observations can be compared with the model when the actual hydrology for a given 
survey period is used to drive model outputs. 

With discharge data for Hubberholme available for 1997, 2000 and 2002 and observed bed 

level changes available from 2001 until 2007, this analysis is limited to the 2002 data only. 

A comparison between predictions and observations for 2002 was performed. The model 

was initially run at a constant moderate flow of 15 m^ s"' until the initial wave of 

dovmstream fining had passed. Thus, downstream fining patterns down the channel at the 

start of the simulation reflected the conditions observed in the Wharfe study reach. The 

model compared the output using the 2002 hydrology with the bed level changes recorded 

for this year. Since the cross-sectional surveys during this time only extended 3 km 

downstream, the predicted results only examined these changes (i.e. they ignored the lower 

3 km reach). The mean predicted bed level change was 0.03 m of aggradation using the 

2002 hydrology. The observations for the December 2001 to December 2002 survey period 

were degradation with a mean reduction in bed level of 0.025 m. Thus, there is a large 

disparity between predicted and observed results. However, during 2002, significant re-

engineering of the channel occurred during the removal of the gravel trap. The degradation 

recorded is likely to reflect human induced chaimel change which the model can not 

simulate. Indeed when the observed bed level changes in the 100 m reach around the gravel 
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trap location are examined for this period, substantial changes are noted and the mean bed 
level is reduced. Thus, a direct comparison of predicted and observed bed level changes 
driven by the hydrology data is not feasible. 

The alternative is to compare the mean change recorded over the 5-year monitoring period 

since December 2002, with the average hydrology for this period. December 2001-

December 2002 data was discounted as this data only covered the upper 3 km reach and 

included human induced channel change. When combined, the hydrology for 1997 and 

2002 were shown to be representative of the decadal hydrology (Section 5.2). This 

approach makes a large assumption: that the average hydrology will produce average bed 

level changes. 

Following the initial fming wave, the model was run for two years using the 1997 and 2002 

average hourly discharge records. 15-min records were available but a comparison showed 

very little difference in predictions when using the hourly data over the 15-min records. To 

reduce data input by four, the hourly records were used. The average hourly records were 

chosen over the maximum since this would overestimate the flow. With significant 

sediment transport only initiated at discharges above 10 m^ s ', all flows lower than this 

were removed. This left around 10% of the flow records and dramatically reduced 

simulation time without altering the model output. 

The average predicted change in bed level downstream was recorded and compared with 

the observed average annual change in mean bed level fi-om the cross-sectional survey data. 

The predicted maximum and minimum aggradation rates were also recorded for 

comparison with observed data. Table 8.4 presents these data. The standard deviation of the 

data expresses how much the results fi-om the 60 cross-sectional nodes deviate ft-om the 

channel's average. The results here are encouragingly similar to the observed values. The 

highest levels of bed-level change and maximum aggradation were noted when using the 

2002 records. This is explained by the wetter nature of the flow regime during 2002 when 

compared with 1997. These results ftirther support the use of the hourly average records 

rather than the daily maximum records. The daily maximum records simulate longer 



C H A P T E R 8 : M O D E L D E V E L O P M E N T . T E S T I N G A N D C A L I B R A T I O N 2 5 2 

periods at higher flows and this leads to aggradation rates far greater than those estimated 

firom the observed data. 

Table 8.4: Observed and predicted bed level changes using the 1997 and 2002 hourly flow 
records. 

Units (m/year) Observed Predicted (1997) Predicted (2002) 
Average bed-level change 0.03 0.04 0.05 

Maximum aggradation 0.17 0.18 0.24 

Maximum degradation -0.09 -0.06 -0.08 

Standard deviation of data 0.05 0.05 0.02 

The model was then run for longer periods using the representative 2-year hydrograph 

(which combined the 1997 and 2002 hydrographs). The simulation was run for the full 2-

year period and then for another 2-years using the same hydrograph. After 2 and 4 years of 

simulation, the results were compared against the mean field observations. The results are 

shown in Figure 8.7 and Table 8.5. In Figure 8.7 the bed level changes predicted are shown 

visually against the observed data. The total bed level changes are for the 2-years of 

simulation and the data is expressed per metre downstream. 
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Figure 8.7: Predicted and observed total bed level change after 2 years. The predicted data 
uses the 2-year representative hydrograph. 

1000 2000 3000 4000 

distance downstream from 010 (m) 

obser>ed 

precficted 

aggradation 

no change 

degradation 

5000 6000 

Table 8.5: Observed and predicted bed level changes after 2 and 4 years of simulation using 
the variable hydrograph. Al l values are expressed as m per m downstream. 

2years 4years 

Average aggradation 
observed 0.061 0.132 

Average aggradation predicted 0.062 0.123 

Maximum aggradation 
observed 0.337 0.674 Maximum aggradation predicted 0.209 0.374 

Maximum degradation 
observed -0.177 -0.355 Maximum degradation predicted -0.080 -0.130 

Standard deviation 
observed 0.107 0.213 Standard deviation predicted 0.058 0.106 

Table 8.5 shows particularly encouraging results when the simulation runs over only 2-

years with average aggradation and maximum aggradation similar to the observed results. 

However, the predicted maximum degradation is substantially less than the observations. 

Furthermore after 4-years whilst the predicted average aggradation rate remain similar to 

the observations, the maximum aggradation is only half as much as the observations. This 

suggests that aggradational zones, which are noted in the observed data, fail to develop and 

instead aggradation spreads fiuther downstream over several cross-sectional nodes. This 
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suggestion is supported by the standard deviation of bed level change. In both 2 and 4 years 
the standard deviations of the observed data are around twice as high as the predicted data 
suggesting less peaks and froughs in bed level change and a more general spread of 
sedimentation downstream. When Figure 8.7 is examined it is clear that the model predicts 
predominantly aggradation with only two zones of degradation being predicted. 
Furthermore, the location of predicted aggradation / degradation differs somewhat from the 
observations. The predicted pattern does illusfrate spatial variability in bed level change 
with two clear peaks in aggradation and a third smaller peak at 5200 m downsfream. Yet 
the predictions fail to capture any significant degradation or for the peaks in aggradation to 
match the observations. 

In addition, the results shown in Table 8.5 predict bed level change of 0.062 m for the 2-

year period. This result is lower than i f the 1997 and 2002 results in Table 8.5 are added 

together giving 0.09 m. This reflects the effect that the sequencing of events has on 

sediment transport. In the 2-year simulation, the fining and bed level changes that have 

occurred by the end of the first year are used to determine the fining and bedload transport 

changes in the second year. When the two years are considered separately, year two (2002) 

begins with the same starting conditions as year one (1997). This brings in some 

uncertainty when using the 2-year representative hydrograph. I f the two years were applied 

in the reverse order, the results may differ as the wetter 2002 would be sequenced ahead of 

1997. To test this, the model was run using: (1) the 2-year hydrograph; (2) using the flows 

ranked from highest to lowest; and (3) using the flows ranked lowest to highest. The results 

showed only marginal differences in the downstream fining profile and the mean 

aggradation rates using all three scenarios were the same at 0.062 m. This result suggests 

that magnitude and frequency of high flow events is more important than the sequencing in 

which they are simulated in. However, this was the case where sediment supply matched 

sediment input at cross-sectional node 010. In a natural system where sediment supply may 

become exhausted, sequencing is likely to be more important. 

To explain the spatial discrepancies between the observations and predictions when using 

variable discharge, aspects of the natural channel's geometry that are missing from the 
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model's representation must be considered. First, slope is smoothed so fails to capture all 
the smaller slope features which may be responsible for aggradation. Thus locations of 
aggradation may not match. Second, some of the human features affecting the 
sedimentation, including Buckden Bridge, are ignored in the model. As noted in Section 
6.6, Buckden Bridge is considered to be a small barrier to sediment transport resulting in 
upstream deposition and downstream scour. Third, the charmel is width-averaged and of 
uniform depth. Thus degradation cannot occur through mechanisms that create secondary 
circulations such as outer bend erosion and lateral chaimel bars. Fourth, curvature is not 
accounted for in the model. The channel is taken to be straight and as noted in Section 6.2.3 
curvature has an influence on aspects of channel morphology such as bank erosion and 
aggradation. Thus a lateral component is required in the model that not only allows bank 
width adjustment but also enhances the lateral representation of the channel at each cross-
sectional node between banks. Finally, the discrepancies between the observations and the 
predictions may be a feature of the comparison approach adopted which is comparing 
average bed level changes predicted using average hydrology. The discrepancies may 
support the findings from Chapter 6, that hydrology and sediment supply are both 
important controls on vertical charmel change. Thus the average hydrology may not 
produce the average bed level changes. The magnitude, frequency and timing of flood 
events may be important. 

8 . 4 M O D E L L I N G L A T E R A L C H A N G E 
I N S T R A I G H T C H A N N E L S : S T A G E ( C ) 

The modifications made to the model work well as the predictions match the observations 

closely allowing lateral adjustments to be incorporated into the model. This section 

describes the development of the lateral component for straight channel sections only. 

Curvature is introduced in Section 8.5. Initial tests explore the impact of manually changing 

the channel's width (Section 8.4.1) before several options for the bank erosion mechanism 

are discussed and tested (Section 8.4.2). Modifications are then made to improve the lateral 

channel change component (Section 8.4.3). Finally, tests demonstrate the strengths and 

weaknesses of the lateral chaimel change model (Section 8.4.4). 
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8.4. 1 M A N U A L L Y A L T E R I N G W I D T H 

Before the lateral channel change component to the model was developed, some simple 

tests on the existing model were carried out to explore the hypothetical effect that changes 

in channel width would have upon the rates of bed level change in the modelled reach. This 

would also provide an indication into the model's sensitivity to such changes. 

Four simulations were run to explore the sensitivity of the model to manual increases in 

channel width. These simulations were run after the initial fining wave had passed and all 

simulations were started from the same point. In the first test, the model was run at a 

constant high discharge of 30 m^ s"' for 60 days using: (a) the variable channel width as 

described in Section 6.2.3; and (b) using channel widths exactly 1 m wider than the widths 

used in (a) for all cross-sectional nodes apart from the input node (010 at Hubberholme). It 

was important to ensure the width at node 010 was kept the same as the sediment flux into 

the reach was determined by the transport capacity at this node. A wider channel would 

result in a lower input rate. The mean bed level rise recorded for the actual channel width 

(a) was 0.067 m whilst the mean bed level rise for the wider channel was 0.006 m or 9% 

lower at 0.061 m. In the second test, results, when using the actual channel width (a) and 

the wider channel (b), were compared after a 2-year simulation using the 2-year hourly 

hydrograph. Again in these results, the wider channel recorded a mean bed level rise 

substantially lower (0.048 m) than the rise noted from the actual width (0.061 m). This 

0.013 m difference shows that aggradation in the wider channel is 21% less than in the 

normal width channel. The finding that widening the channel reduces the aggradation rates 

challenges the premise behind many engineering schemes which aim to reduce aggradation 

and increase sediment throughput by making the chaimel narrower. The opposite appears to 

occur. 

To explain these findings the sediment transport dynamics must be considered. However, 

relationships between channel width and sediment transport in the literature are 

contradictory. Carson and Griffiths (1987) highlight three different views: (1) that sediment 

transport decreases as width increases (Henderson, 1960); (2) that sediment transport 
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increases in wider channels (e.g. Bagnold, 1977, 1980; Parker, 1979); and (3) that both may 
occur with a peak in transport capacity at some intermediate width (e.g. White et ai, 1982). 
Yu and Smart (2003) also question what the optimal width is for sediment transport. 
Understanding whether an increase in sediment transport leads to aggradation or 
degradation is also difficult. An increase in sediment capacity can increase sediment influx 
providing more sediment for storage (i.e. aggradation) or allow a greater transport of 
sediment away from a reach (i.e. degradation). Thus, the impact of width increase is not 
only affected by the change in sediment transport capacity at a given location, but also 
upstream and downstream transport conditions. 

By comparing the results from the measured and wider channel scenarios, several 

conclusions can be reached. The reduction of aggradation rates in the wider channel occurs 

due to the reduction in depth that occurs with an increase in channel bed area (i.e. due to a 

reducing unit discharge (discharge/width)). Depth determines shear sfress which is an 

important parameter determining sediment transport. With lower shear stress, sediment 

transport is lower and with less sediment in transport, there is less sediment available to be 

deposited. Yet, the input transport rate at Hubberholme (node 010) is the same in both 

measured and wider simulations because the width of the charmel at node 010 remains 

constant in simulations. As such in the wider simulation, aggradation is enhanced in node 

020 as the wider chaimel reduces the transport capacity leading to deposition. This 

increases the slope downstream and reduces slope upstream. Thus, upstream sediment 

supply at node 010 reduces. 

These results demonstrate that the model is sensitive to changes in channel width and such 

changes can have some important implications for rates of aggradation in the modelled 

reach. Since the second test uses the 2-year hydrograph, the results can be compared with 

observed results from the Wharfe and put into a real-world situation. In Section 4.3, the 

mean annual rise in bed level in the study reach was recorded at 0.030 m ± 0.009 m (for the 

5-year period when the entire reach was under observation). With the modelled results 

using the normal channel width predicting a strikingly similar annual bed level rise of 0.031 
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m per year (0.061 m ± 0.018 m for 2-years), the predictions made with the actual chaimel 
widths can be accepted with more confidence. 

Despite the locations of modelled maximum aggradation differing greatly, and appearing 

more attenuated than the observed data (Figure 8.7), the difference between the modelled 

maximum aggradation rates can be compared with the analysis made in Section 6.4; the 

impact of aggradation on flood risk. The measured channel (a) is predicted to aggrade by a 

maximum of 0.1 m per year whilst the wider channel (b) aggrades by 0.08 m per year. 

When this is scaled up to give an estimate of aggradation over a four year period, the 

aggradation levels are 0.4 m for (a) and 0.32 m for (b). This maximum modelled 

aggradation occurs at cross-section 090, 898 m downstream, where the channel is 20.4 m 

wide and increases to 21.4 m wide in the wider simulation. Thus, the area of material 

deposited in the measured chaimel (a) is 8.2 m" compared with 6.8 m" in the wider channel 

(b). The impact of these changes on channel area are shown in Figure 8.8. The wider 

channel loses 15% of its chaimel capacity after 4 years compared with a 20% loss in the 

measured channel. Thus the wider channel sustains 5% extra channel capacity. In Section 

6.5, a 21.9 % reduction (over a four year period) in channel capacity was linked to more 

flood events and a longer time over bank. A 5% difference is likely to have important 

implications for flood risk. In summary, a wider chaimel not only increases the channel's 

capacity to hold flow due to a greater channel area but it reduces sedimentation rates 

thereby maintaining channel capacity further. 
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Figure 8.8: The effect of an increase in width on aggradation, width and channel capacity 
after 4 years at cross-section 090 (898 m downstream). 
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With a wider channel resulting in a reduction in aggradation levels, a narrower channel 

would be hypothesised to increase aggradation levels. To test this, two simulations were 

run using: (a) the measured channel width; and (c) a channel that had been manually 

narrowed between 500 m and 1200 m downstream. The section to be narrowed was 

selected due to its high levels of aggradation noted in previous simulations (e.g. Figure 

8.7). This simulation reflects the possible width change that an engineering scheme such as 

channelisation aiming to flush out sediment may result in. Figure 8.9 shows the levels of 

aggradation recorded after the 2-year simulation using the measured width and narrower 

width. There is a clear difference between the two simulation runs. The simulation that 

modelled the narrow section (c), recorded a mean rise in bed level marginally higher (0.002 

m difference) than the mean bed level rise predicted using the normal width (a). However, 

enhanced aggradation was not found across the whole, narrowed reach. Higher levels of 

aggradation were recorded at the location of peak aggradation at 898 m downstream, and in 

the channel immediately downstream. The difference in maximum aggradation rates was 

0.02 m (0.19 m for normal and 0.21 m for narrow). Yet, at 1200 m downstream and in the 

reach upstream of 800 m, the narrower channel resulted in degradation. This degradation 

occurs from the convergence of flow as the channel narrows. The flow in the narrower 

channel is deeper. Thus shear stress is higher and this leads to greater sediment transport 

and degradation. 
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When the river is channehsed, it is often also made narrower, but more importantly it is not 

allowed to increase its width. This engineered channel is supposed to flush out the 

sediment, maintaining channel capacity. I f scenario (c) was adopted as a management 

strategy in the Wharfe, it would be successftil in creating scour and the flushing out of 

sediment in the section upstream of 800 m. However, downstream of the 800 m, the 

narrower channel promotes sediment deposition and the effects are felt as far downstream 

as 3500 m. In this narrow section extending to 1200 m, the flushing out effects are 

outweighed by the input of sediment from upstream. Since the bed width is less than in the 

measured charmel, the sediment deposited is deeper. This could be a result of insufficient 

slope and / or too much sediment input. Indeed the scour upstream of 800 m w i l l increase 

sediment delivery into the narrowed reach. 

Figure 8.9. The impact o f narrowing the chaimel on aggradation rates using the 2-year 
hydrograph. The section that was made narrower by 1 m is enclosed in the grey box. The 
"difference" plot shows the difference in aggradation levels between the two simulation 
runs. 
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8 . 4 . 2 S P L I T T I N G T H E C H A N N E L 

Splitting the single channel into two halves was the first step in the development of the 

lateral channel change component. To remove difficulties associated ŵ ith modelling 

complex natural systems like the Wharfe, an early simplified version of TRIB was used 

during development. The simplified model had 10 nodes spaced every 50 m, a quadratic 

slope, a uniform fixed width, constant n values and a steady discharge. For each channel 

side, the only differing input values were the elevations with a right and a left hand side 

elevation entered for each channel half In effect, the model now resembled two rectangular 

boxes as shown in Figure 8.10. The only information required for this geometry is total 

width and the bed elevations for the left and right hand channel sides. 

Figure 8.10: Split channel geometry. The natural channel geometry is shown on the left 
whilst the simplified geometry represented as two boxes is shown on the right. 
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It was crucial that the water surface elevation (bed elevation plus flow depth) was the same 

on both channel sides. As such flow depth had to be calculated for each channel side. Depth 

was calculated by first determining the input unit discharge from the total channel width 

and the hydraulic slope for each side. Average channel depth (dav) was determined from the 

unit discharge using Manning's equation and used alongside the difference in bed elevation 

(Ediff) which is calculated from Erhs-Eihs to determine the depth of each side maintaining the 

average depth: 

right side: Uliff [8.3a] 

left side: 'diff [8.3b] 

where d is channel side depth for the left side and right side, d^^ is the average flow depth 

for the whole channel. 

At low flows, where the average flow depth is smaller than the elevation difference, all 

flow would be in one channel half and flow depth for that half would be 2dav. A condition 

must be set so that if the elevation difference exceeds 2dav, all flow will be in the charmel 

side with the lowest elevation. These conditions are expressed as: 

Irhs 

£ „ ^ > 2 J „ , = 0.0001 

Ed,r<2d,,^.=d,,^,-{E,„/2) 

[8.4] 

[8.5] 

[8.6] 

£ , ^ < - 2 < , „ = 0.0001 
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To avoid difficulties with a zero value for flow depth, a small positive value is used to 
represent a dry channel side. Flow will be entirely on the left side if the elevation difference 
is positive and exceeds 2dav [8.4]. In situations where the right side has the lower elevation, 
frfij will be negative. If EdiffXS less than a negative 2dav [8.5] flow will be entirely dovra the 
right side. When the elevation difference is small, the depth of each channel side is 
calculated using [8.6]. 

Alongside the flow depth, the slope used in each channel side is crucial to the calculation of 

shear stress. The three options detailed in Section 7.4.5 are explored. These options include 

using: (1) the steepest flow path; (2) the water surface elevation; and (3) the average bed 

slope. The model was found to be sensitive to large variations in slope (Section 8.1). 

Therefore, option 1, which was based on the cellular modelling approach of using the 

steepest flow path, was ignored as it would create large differences in slope between nodes, 

particularly if flow moved into deeper pool areas. Option two was explored as this used the 

water surface elevation. However, this smoothed over any of the small slope variations 

within the profile. Thus, it failed to capture features such as the drop in elevation at around 

500 m (Figure 8.3), failing to predict the corresponding downstream fining pattem. The 

third option, to use the average bedslope of the two channel sides, was more appealing. The 

average bedslope in the split channel model would remain similar to the bedslope in the 

version used to predict dovmstream fining and aggradation rates similar to those observed 

in the field. Table 8.6 demonstrates that when using the average bedslope, the difference in 

shear stress between sides is dramatically reduced. Accordingly average bedslope and then 

hydraulic slope (where negative / uphill slope values are removed) was incorporated into 

the model to drive the sediment transport equations. 

Table 8.6: Effect of using separate channel side slopes or average slope (either average 
bedslope or water surface elevation) on shear stress values. 

Channel side Flow depth (m) Slope Shear stress (Pa) 
Left 0.93 0.0022 20.0 
Right 1.01 0.0038 37.6 
Left 0.93 0.003 average of above 27.3 
Right 1.01 0.003 two slopes 29.7 
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Using the flow depth for each chaimel side and the average bed slope, shear stress is 

determined for each channel side. This is used to predict sediment transport which is also 

done separately for each channel side. Each channel side evolves independent of the other 

side. The two sides are only tied together by the input discharge, flow partitioning and 

mean slope. Therefore in Figure 8.10 above, if the right side aggrades, the flow partitioning 

would alter with the left side becoming a more important conveyor of flow. Eventually the 

elevation on both sides will be equal. 

The simplified model was run and the output is shown in Figure 8.12. In this simulation, 

the starting bed elevations of both sides are the same apart from at 100 m downstream 

where the right side is deeper than the left side creating a pool or hollow. Straight away the 

grain size on the right side of the channel changes with the bed coarsening at 50 m and 

fining at 100 m. At the same time, the hollow on the right of the channel begins to aggrade. 

To aid with the explanation of this behaviour it is usefijl to consider the slope at each 

location downstream. Slope directly influences shear stress and drives sediment transport. 

Figure 8.11 shows how slope is calculated and how the overall results will depend on 

which option of slope calculation is adopted; forwards or backwards. 

Figure 8.11: Method of calculating slope: either forwards or backwards 
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When the forwards approach is adopted, the steepest slope (location b in Figure 8.11) is 

assigned to point 2. Yet when the backwards approach is adopted slope b is assigned to 

point 3. In Figure 8.12, the forward slope approach is adopted and as such the steep slope 

created by the dip is assigned to 50 m downstream and not to 100 m in the hollow. Thus the 
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highest shear stresses are created at 50 m downstream resulting in sediment transport 
downstream. However, only moderate shear stresses are generated by the increased slope 
and these are insufficient to transport the coarser grains. The result is that after day 1 of 
simulation the finer grains are transported downstream leaving proportionally more coarse 
sediment at 50 m and more finer material at 100 m downstream. At 100 m dovmstream, in 
the hollow, slope is reduced and less sediment transport occurs. This is despite the increase 
in shear that would be generated due to the increased flow depth associated with the deeper 
hollow. This can be explained by considering the Exner equation. At each node, for 
example point 2, both upstream (slope a) and downstream (slope b) slopes and depths are 
used to calculate bed level change since volume change is the difference between input and 
output at each node. Thus in the hollow, more sediment enters the hollow than leaves and 
aggradation occurs. The material entering from the upstream node comprises of a finer 
GSD (since the coarsest grains remain at the upstream node) than the material located in the 
downstream node. This influx of finer material results in fining of the bed. Furthermore, the 
reduction in transport capacity in the dip results in deposition and the hollow fills in. As the 
hollow fills up and the depth and bedslope reduce, by day 5 the bed at 50 m begins to 
become fmer and the bed at 100 m becomes coarser. As the simulation continues the 
downstream fining profiles smooth out and the hollow on the right hand side of the channel 
fills in as the channel re-grades. It should be noted though that whilst the channel's left and 
right slope profiles end up very similar, the GSD of the right hand side remains 
substantially different from the left hand side showing that there is a lag in the fining of the 
sediment. 
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Figure 8.12: output from split channel with a dip in the right hand side (rhs). The plots on 
the left show the GSD at each node downstream whilst the plots on the right show the bed 
elevations. Both graphs show the output from the left (Ihs) and right (rhs) channel sides. 
The bed elevation plots concentrates on the region with the dip (100 m downstream) so that 
the changes can be observed more clearly. 
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In addition to the response of the model to a hollow, which was in effect a pool on the right 

hand side o f the channel. Figure 8.13 shows the model's response to a lateral bar (Figure 

8.13a) located on the left hand side of the channel and a transverse bar which crosses from 
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the right hand side at 100 m downstream to the left hand side at 150 m downstream (Figure 

8.13b). In both these situations both channel sides regrade with aggradation occurring on 

both the new profiles. 

Figure 8.13: Simulating lateral (a) and transverse bars (b). 
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8 . 4 . 3 O P T I O N S F O R S I M U L A T I N G B A N K E R O S I O N 
I N S T R A I G H T C H A N N E L S 

With the model able to simulate a split chaimel, developments could be made to simulate 

width adjustment. At this stage in the development, curvature was not introduced. Thus the 

model is effectively a width adjustment model for straight channels. Three options 

identified in the literature were explored. Bank erosion was simulated first as a function o f 

a critical bank angle, second as a function o f differences in bed elevation and third as a 

function of shear stress. For all three options, the model was modified so that at the first 

iteration, the chaimel widths for each side became independent o f each other. In the 
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previous version of the model, the channel's left side and right side widths were simply half 
of the total input channel width. After each width modification, the new total channel width 
was established. This was essential as the depth calculations assume each channel side is of 
equal width. Without this, if one channel side became substantially wider, but the depth 
was calculated based on half channel width, the depth in the wider channel side would be 
too deep for the given discharge. 

In all three options, a critical threshold was used to determine the onset of bank erosion. 

Selecting this threshold is discussed later (Section 8.4.5). With the channel split, one 

channel side could reach this critical value independent of the other. Once the critical value 

had been reached, the width in that channel side would increase incrementally by the bank 

erosion proportionality factor (we) which was proportional to the excess shear stress (T - Tc) 

as explained by: 

if r > r , , w„ = w. + w ^ ( r - r j [8.7] 

where w, is the initial half channel width, w„ is the new half channel width and the subscript 

E refers to the erosion threshold. This approach follows that of Ikeda et al. (1981) where 

rates of bank erosion are proportional to excess velocity. This modification would simulate 

the variable rates of bank erosion recorded in the Wharfe including small-scale bank 

erosion from fluvial entrainment when excess shear stress was small and large scale erosion 

from bank collapse when excess shear stress is high. 

During development, We is set at a low value but the value of is determined through 

calibration later in this chapter in Section 8.7. This bank erosion would continue until either 

the shear stress, bank angle or elevation difference had dropped beneath the critical value 

again. The sediment input from the banks was ignored because as noted in Table 6.2 it 

typically contributes only very small quantities to the overall sediment flux from the 

channel. Also, this material is typically fine bank material that would be flushed through 

the system without significantly affecting the bed material or bed level changes. This 

assumption ignores the effect that the increase in fines in suspension may have on sediment 
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transport calculated by the Wilcock and Crowe (2003) equations. These base transport flux 

partly on the amount of fines in the mixture. More fines promote greater transport of the 

coarser material. 

The first option simulates bank erosion as a function of critical bank angle. Previous 

models that use critical bank angles to simulate bank erosion include Hasegawa (1981), 

Osman and Thome (1988), Pizzuto (1990) and Kovacs and Parker (1988). hi diis version of 

the model, the chaimel geometry is represented using four points rather than the previous 

rectangular boxes. Figure 8.14 shows this channel geometry and how bank erosion would 

be simulated. Degradation will lower one of the mid-channel points, steepening the bank 

angle beyond the critical threshold. Bank erosion will occur in increments until the bank 

angle is stabilised. As in the previous case, the bank erosion will increase the total channel 

area, reducing flow depth and in turn lowering the shear stress. Thus the bank erosion has a 

feedback mechanism. This option offers the advantage that the critical bank erosion angle 

could be based on field observations. This would involve determining the steepest angles of 

banks within the Wharfe and assuming that this was the channel's critical threshold. 

However, this has two problems. First, many of die banks are vertical or near vertical 

particulariy when bank protection is in place and second as discussed in Section 4.4.5, a 

key bank erosion mechanism is fluvial entraiimient which is not necessarily linked to bank 

angle. 

Figure 8.14. Channel geometry required to simulate bank erosion using the critical bank 
angle approach. The four points are equally spaced at 0, 25, 75 and 100% of channel width. 

Option two uses the difference in chaimel side elevations {Edijj) as a driver of bank erosion. 

This was based on the concept that as one side deepens, giving a higher Ediff, bank erosion 

of this channel side is more likely. If a critical Ediff value is exceeded, bank erosion will 
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occur, increasing the channel width thus promoting deposition. £(/,y would be reduced. This 
approach was inspired by approaches that use depth variations to redistribute shear stress 
such as Talbot and Lapointe (2002). Like the bank angle approach, this option could be 
based on maximum elevation differences noted in the Wharfe. This option was explored but 
failed to be successfiil for two reasons. First, the channel is predominantiy aggrading and as 
demonstrated in Figure 8.12, as the model runs, the elevation difference between the two 
sides will gradually become equal. To simulate bank erosion using this mechanism, the 
model was switched from a capacity feed to fixed feed (see Section 7.4.3.1) and the fixed 
feed was set to zero. This simulated no sediment input into the reach and promoted 
degradation allowing bank erosion. However, this raised a second problem with this 
approach, excessive overdeeping. If the degradation was occurring faster than the bank 
erosion (or where no bank erosion could occur due to collapse) this would feedback to 
further degradation as flow depth would increase promoting higher shear stresses and 
higher rates of sediment transport. 

The third option that was explored used a critical shear stress threshold. In the split channel, 

shear stress is calculated for each channel side and can differ laterally with flow depth. If 

the shear stress in either channel side exceeds the critical threshold, then the channel width 

of that channel side would increase according to the bank erosion rate. At the next iteration, 

bank erosion will continue if the critical shear stress is still exceeded. Once the shear stress 

has fallen below the critical value, bank erosion stops and the channel width remains 

constant. Increases in channel width will alter the total cross-sectional channel area 

resulting in a reduced flow depth. The reduced depth will lower shear stress possibly below 

the critical threshold. Using the same channel formation described in Figure 8.12 with a dip 

at 100 m on the right side, a simulation was nm. Figiu-e 8.15 shows the output from the 

simulation. The critical shear stress was selected at 20 Pa so that it was within the upper 

range of shear stress predicted during this simulation. Specification of the critical shear 

stress is discussed further in Section 8.4.5. 
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At the start of the simulation (t=0), shear stress is above the critical threshold on the right 
hand side of the channel at 50 m downstream as the slope here is steeper as the channel 
moves into the hollow shown in plot A. Once in the hollow, at 100 m downstream, the 
shear stress in the right of the channel is low reflecting the reduction in slope. The shear 
stress is higher on the left hand side at 100 m, reflecting the linkages in depth and discharge 
between the two sides. In plot C when t=l, the channel width on the right side of the 
channel at 0 and 50 m dovmstream has increased as the shear stress remains above the 
critical threshold. By plot D when t=2, the critical threshold has dropped below the 
threshold. This occurred firstly at 0 m and then at 50 m and this is reflected in the wider 
right side found at 50 m downsfream. There is a feedback mechanism occurring in this 
simulation with the increasing channel width reducing flow depth and the shear stress, and 
also promoting sediment deposition in the channel. This deposition enhances the reduction 
in depth further, accelerating the feedback. 

In this simulation bank erosion is not found at the deeper section, histead, bank erosion 

occurs in the shallow reach at the upstream limit of the hollow. Whilst this is sometimes 

typical in natural systems, with shallow sections becoming wider as a result of deposition 

and coarsening of the bed, this approach fails to simulate overdeepening processes which 

are often linked to bank erosion, particularly at meander bends. This is because there is 

none of the lateral redistribution of shear stress that would occur under the formation of a 

secondary circulation. As such, the model will fill in any dips so that both sides are re-

graded and of the same elevation. Using this shear stress approach to drive bank erosion, a 

further modification is required to allow shear stress to be redistributed laterally, for 

example as a funcfion of curvature. 

Of the three options explored, the first, the shear sfress option was adopted to drive bank 

erosion. The primary reason for this was that it would allow a lateral shear stress 

distribudon function based on curvature to be incorporated at a later stage (Section 8.5). 
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8 . 4 . 4 M O D I F I C A T I O N S T O T H E L A T E R A L C H A N G E C O M P O N E N T 

Three modifications were made to improve the lateral adjustment component. These 

included: (1) simulating bank deposition or narrowing; (2) capping the elevation 

differences between channel sides to prevent overdeepening; and (3) maintaining the 

continuity of sediment during lateral adjustment. 

(1) Simulating channel narrowing 

Alongside erosion, deposition needed to be simulated. In many previous width adjustment 

modelling approaches, deposition was simply set to match erosion (e.g. Ikeda et al., 1981; 

Bridge, 1992; Sun et al., 1996, 200Ia,b,c; Lancaster and Bras, 2002). Using this approach, 

the channel width would always remain constant. This fails to capture the temporal and 

spatial aspects of deposition with deposition generally a slower process than erosion and 

not always occurring on the bank opposite the eroding bank. In the model, deposition or 

channel narrowing was simulated in much the same way as the bank erosion mechanism. A 

critical threshold was set (this could be a critical shear stress, bank angle or elevation 

difference) with the channel narrowing by a fixed increment when the shear stress falls 

below this value. This deposition function is similar to [8.7] and is described using: 

if r < r , o , w„=w,-wj [8.8] 

where p is deposition and the narrowing increment is ŵ . Following the assumption that 

deposition is a slower process than bank erosion, the incremental adjustment value was 

always set to be lower than the bank erosion increment. The hydrograph used in the model 

had all low flows removed earlier in model development, to speed up simulation time. With 

deposition now simulated during these low flow conditions, these low flows must be added 

back into the hydrograph or a higher shear stress threshold can be set and the rate of 

deposition set higher. 
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(2) Preventing excessive overdeepening 

The previously mentioned overdeepening problem, where deeper sections feedback to 

enhance shear stress and lead to further deepening, would occur irrespective of which bank 

erosion option was selected, provided the flow conditions promoted scour. In a natural 

channel this would be stopped by either bank erosion or the lateral transfer of sediment 

from the shallower side to the deeper side through the formation of a secondary circulation. 

Such a mechanism would be usefiil in the model to prevent excessive channel deepening, 

irrespective of the bank erosion mechanism applied. This cap on elevation differences was 

added to the model by simply including a statement in the calculation of the elevation 

difference {Ediff) which sets f^y^at the critical value, if this value is exceeded [8.9]. Since 

Ediff cm be positive or negative depending on which channel side is deeper, a positive and 

negative critical value were used. Field data can be used to determine what value to set the 

Ediffcsp. With Ediffcapped, the difference in flow depth between sides also becomes limited. 

Ed^jj < EZ = Edi, [8-9] 

(3) Maintain sediment continuity during lateral adjustments 

When lateral adjustments occur asymmetrically, the mid-point shifts allowing the width of 

the chaimel sides to remain equal. In doing so, a portion of the sediment in the mid-channel 

region is lost (or gained). This is illustrated in Figure 8.16. Sediment is also lost or gained 

from the channel banks during bank erosion or narrowing. This sediment can largely be 

ignored since the banks are typically composed of finer material which would be lost in 

suspension and not alter the bed level. The mid-channel bed sediment is composed of 

coarser material and is therefore important for bed level changes. This area of sediment 

must be accounted for. 



CHAPTER 8: M O D E L DEVELOPMENT, TESTING A N D CALIBRATION 2 7 5 

Figure 8.16: Dealing with sediment continuity during width adjustment 
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In Figure 8.16 the 2 m bank erosion (Figure 8.16a) and the 2 m narrowing (Figure 8.16b) 

causes the mid-channel point to shift by 1 m. This ensures that both channel half widths 

remain equal. In so doing, the area of sediment lost (Ac) calculated using [8.10] is 0.5 m". 

To maintain sediment continuity, this sediment is spread evenly across both channels using 

[8.11]. This method keeps the difference in elevation between sides (Ediff) the same. 

A... =A/2w_ 

[8.10] 

[8.11] 

where Edif is the absolute difference in elevation, w, is the initial half channel width, w„ is 

the new half channel width and A wis the width-averaged area of sediment required to be 

added or subtracted from the bed elevations on both channel sides. 
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In the two situations shown in Figure 8.16a and b, sediment is lost as bank erosion occurs 

on the deeper channel side and narrowing on the shallow side. However, in situations where 

the opposite occurs and the shallower side increases in width (or the deeper side narrows), 

an area o f sediment is gained (Figure 8.16c). To account for this gained sediment and 

maintain sediment continuity, the bed elevation on both sides must be reduced hyA^,-

In summary: 

(1) I f an increase in width occurs in the deeper side OR a narrowing in width occurs 

on the shallow side, then there is a sediment loss and the elevation on both channel 

sides must be increased by .4(Figure 8.16a and b). 

(2) I f an increase in width occurs in the shallow side OR a narrowing in width occurs 

on the deeper side, then there is a sediment gain and the elevation on both channel 

sides must be decreased by A».- (Figure 8.16c). 

Implementing both o f these conditions into the Excel model was complex. As such, only 

the more common condition (1) was implemented. When the level o f elevation changes that 

are required when accounting for continuity in sediment are considered, they are very 

small. Thus, in the Wharfe system ignoring (2) would have very little impact on the 

sediment dynamics. 

8 . 4 . 5 APPLY ING W H A R F E D A T A T O T H E 
L A T E R A L C H A N G E C O M P O N E N T 

With the model now capable o f simulating bank erosion and deposition, elevation 

differences capped and sediment continuity maintained, it was necessary to apply the 

Wharfe data to the model and explore the model's behaviour for a natural system rather 

than the current idealised one. 

The Wharfe data were included in the model in a similar way to Sections 8.2.1 and 8.2.2. 

This included the 60-irregularly spaced cross-sectional nodes, the smoothed slope profile, 

the variable channel widths, the variable Mannings n and the variable discharge. The 
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channel was split into two channel sides and the sediment transport equations and bed 
updates were carried out for each channel side. The Manning's n value used at each node 
represented the average roughness across both channel sides. Calculating n for both sides 
would overcomplicate the model and since average flow depth was initially determined 
before the side depths were calculated, only a single value o f n was required. Following 
successful simulations using equal left and right side bed elevations two key decisions were 
explored: (1) how to represent the geometry of the channel in a simplified way; and (2) 
selection o f critical shear stress values to determine the threshold that bank erosion was 
initiated. 

Simplifying the Wharfe geometry 

Various options for simplifying the channel geometry to obtain representative elevations 

for both channel sides were explored. For all these options, only the channel profile 

between bank tops was used. Typically, the cross-sections extended onto the valley for a 

few metres to allow for bank erosion over time; this data was removed. The December 

2002 cross-sectional data was used as this was the first survey that measured all 60 cross-

sections. Several options for simplifying the channel geometry were explored. Three o f 

these are shown in Figure 8.17 and include: (1) the minimum channel elevation; (2) the 

average channel elevation; (3) the average channel elevation calculated fi-om the channel 

area; (4) selecting the best elevation by eye; and (5) several combinations of these. After 

exploring these options for a range of cross-sectional profiles in the Wharfe system (e.g. 

point bar, mid channel bar, rectangular), the average of the minimum elevation and the 

average elevation in the respective halves was selected. Talbot and Lapointe (2002) found 

that the average of mean depth and maximum depth provided the best representation o f 

shear stress for the model. The combined approach was important because the average 

elevation alone failed to represent particularly deep sections whilst the minimum elevation 

approach over represented deeper sections. Figure 8.17 shows options (1), (2) and the 

average of the two (5). 
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Figure 8.17. Options for simplifying the channel geometry. Natural shows the measured 
channel geometry. 
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Using the "average (minimum elevation plus average elevation)" approach, the elevations 

for the left side and right side for all 60 cross-sectional nodes were recorded. To maintain 

the smoothed slope profile already incorporated in the model, the elevations were 

transformed onto this slope profile using Ediff. Figure 8.18 shows the downstream elevation 

difference profile for all the cross-sectional nodes. From this data the maximum elevation 

difference for the Wharfe was ± 0.83 m with three locations recording values around ± 0.8 

m. Thus, the cap on £rf,y discussed earlier was set at ± 0.8 m. 

The model was run using these elevation values but was too sensitive to the large elevation 

differences and the greater slope values generated by them. To resolve this, the elevation 

differences entered to represent the Wharfe were reduced with a maximum elevation 

difference o f ± 0.4 m used (Figure 8.18). This meant that for just under half of the cross-

sectional nodes, the true elevation difference was suppressed. However, crucially, the 

location of the deeper channel side was still represented and the model output was still 

capable o f evolving to allow greater elevation differences (up to ± 0.8 m) to be simulated. 
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Figure 8.18. Actual and cut-off downstream differences in right side and left side channel 
elevations. Data based on the December 2002 cross-sections. 
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Critical Shear Stress Values 

Thus far, a single critical value o f shear stress was used to determine whether bank erosion 

occurred and another value was used for deposition. From the model calculations, it is clear 

that shear stress varies down the channel (Figure 8.19). This is mainly due to the general 

reduction in slope as one moves downstream but also due to the fining o f sediment. The 

finer material reduces roughness which acts to slow the conveyance of flow. As such under 

identical situations where only grain size differs, a finer bed wi l l be shallower with lower 

shear stress values than a deeper coarse bed with high shear stresses generated. Indeed the 

shear stress and downstream fining profiles are closely coupled together. The shear stress 

required to initiate bank erosion w i l l also vary depending on factors such as bank material 

and bank side vegetation. Furthermore, banks with protection w i l l require very high shear 

stress values to break down the solid structures protecting them. I f a single critical value o f 

shear stress was used, only the upper reaches would exceed this value. No bank erosion 

would be simulated in the lower reaches where field observations note substantial bank 

erosion. Hence, the critical shear stress for erosion for each channel bank (left side and 

right side) was made variable. This allowed very high values to be assigned to protected 



CHAPTER 8: M O D E L DEVELOPMENT. TESTING A N D CAL IBRATION 2 8 0 

banks and lower values to erodible banks. The critical bank erosion shear stress at each 

node was set at the maximum recorded shear stress (either on the left or right hand bank) at 

the start of a simulation (after initial fining) for a high discharge value. This value assumes 

that all banks are susceptible to erosion at the highest discharges. Smce bank erosion was 

noted to occur several times a year, the discharge used to set the critical threshold was set to 

represent a discharge with a return period of 0.25. 

The shear stress thresholds under which deposition would be simulated were also made 

variable at each node and for each channel side. A single critical threshold was applied to 

all channel sides for the deposition mechanism since this would be independent of bank 

materials. 

3 „-l Figure 8.19: Shear stress downstream after initial fining wave when discharge is 70 m s 

120 

100 H 

I f ) 
to 
2 60 
(0 

cc 
Q) 
^ 40 

20 

o 

oo o ° o 
CD%0«> 

° ° O 0 „ 0 ° O o O O , 

o o 
o o 

1000 2000 3000 4000 

distance dowrstream (m) 
5000 6000 

8 . 5 I N C L U D I N G C U R V A T U R E I N T H E M O D E L : S T A G E ( D ) 

The lateral adjustment component developed thus far simulates a channel with straight 

banks. To simulate some of the complexities in natural channels, channel curvature must be 

included. Curvature was shown in Section 6.2.3 to force the high velocity core towards the 
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outer bank and this leads to enhanced bank erosion rates. Previous approaches that 
incorporate curvature into bank erosion models include Ikeda et al. (1981), Begin (1981), 
Lancaster and Bras (2003) and Richardson (2001). These were discussed in more detail in 
Section 7.4.5 but all work on a similar assumption: curvature induces secondary circulation 
which enhances outer bank shear stress which drives bank erosion. A similar approach was 
applied here which partitions the width-averaged shear stress into the channel side on the 
outside o f a bend. The higher the curvature the larger the partitioning and the greater the 
shear stress distribution. 

The first step was to determine the curvature at each cross-sectional node. Curvature was 

calculated using die direction change and distance between cross-sections. This method is 

described ful ly in Section 4.5.1. This curvature would represent the net curvature of the 

flow path between sections. Curvature was then used to redistribute shear stress using 

[8.12] as shown in Figure 8.20. The amount of shear stress distribution was determined by 

the value of k. As such, higher curvature resulted in a higher value of k. Following the 

results in Section 6.2.3 that showed little or no lag in the zone of high velocity in relation to 

curvature, this linear relation between curvature and k was deemed suitable. Care was taken 

to ensure that a positive curvature related to a left turning bend and that a negative 

curvature was related to a right turning bend. Thus, shear stress was always higher on the 

outer channel side. 

r . = c ) t r „ , [8.12] 

where r^, is the shear stress distribution value, c is the curvature, k is a user defined 

coefficient and the average shear stress is defined as: 

2 
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The new shear stresses for each side become: 

left side: 

right side: 

[8.14a] 

[8.14b] 

where p is water density, g is acceleration due to gravity, Ŝ v is the average bedslope and d 

is flow depth. 

Figure 8:20. Redistributing shear stress as a ftinction o f curvature. In this example, the 
direction o f flow turns to the left giving a positive curvature value. Shear stress is shifted to 
the right side, the outer channel side. 

The adopted approach assumes two things: shear stress is not scaled with width and 

curvature does not update as the channel adjusts. Several have explored the relationship 

between shear stress distribution and the ratio o f RJw (radius o f curvature to width) (e.g. 

Begin, 1981). Scaling curvature with width, was not included for three reasons. First, the 

width variations at bends within the Wharfe are small when compared with larger, wider 
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rivers and braided channels. Thus the variation in curvature with width is relatively small. 
Second, the channel is split into two components. Thus, shear stress is distributed into each 
channel side rather than across the whole channel to the outer channel banks. Third, and 
most importantly, the data presented on flow paths around channel bends (Section 6.2.3) 
showed that the strongest relationship to bank erosion used curvature on its own rather than 
the RJvj relationship. Thus, curvature alone can be used as a good proxy for lateral shear 
stress distribution. The assumption that the curvature remains constant at each node as 
adjustment occurs was made for logistical reasons. To incorporate a mechanism for re
calculating curvature in the model would involve adding additional information into the 
model to allow direction and curvature to be determined and updated. This information 
would include the (x,y) co-ordinates o f both left and right bank nodes. The co-ordinates 
would require updating depending on the width adjustment before curvature was re
calculated. This would increase the model's complexity and data requirements 
substantially. Since simulated width adjustments are typically small over the timescales 
being considered in this study and in the region of 5% of channel width, the change in 
curvature with adjustment is likely to be minimal. 

The model is now potentially capable of predicting asymmetrical erosion and deposition 

and this is demonstrated in Figure 8.21. This figure shows the output fi-om a model run that 

simulated a period o f low flow (Figiu-e 8.21a) followed by a period of higher flows (Figure 

8.21b). In this model simulation, the curvature value k was set at 3, promoting lateral shear 

stress redistribution around meander bends, the erosion and deposirion rates were set high 

to promote rapid rates o f width adjustment and no bank protection was included; thus all 

banks could erode. In Figure 8.21a, substantial deposition has occurred at four nodes, 

marked by d. A l l four locations are on the inside o f the meander bends where the shear 

stress has been reduced enough so that it falls below the critical threshold. When some 

higher flows are run through the model, bank erosion also occurs and zones of substantial 

erosion in Figure 8.21b are marked by e. O f the four zones where deposition occurred, bank 

erosion occurs on the opposite bank at two of these locations. Here the combined effect o f 

inner bank deposition and outer bank erosion results in channel migration as noted. A 

further two locations have eroded in Figure 8.21b whilst two of the depositional nodes 
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continue to narrow. Interestingly, the two zones where deposition occurs without erosion, 

are the widest in the study reach. Thus, low shear stress is a fimction of shallow flow depths 

corresponding with the wider channel 

Figure 8:21: Left and right bank width adjustment after a period of low flow (A) and higher 
flows (B). d highlights zones o f deposition whilst e denotes erosion. 
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8 . 6 S E N S I T I V I T Y T E S T I N G 

Before the model can be used for running simulations and scenarios (Section 8.7), it must 

first be calibrated so that the predictions match the field observations well. This calibration 

process begins with model sensitivity testing where a range of plausible values are 

identified for each of the user defined parameters. During calibration, values within this 
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range were used in the model to find the optimal value for the Wharfe data. Sensitivity 
testing is also used to explore model behaviour. 

There are four key parameters that are not empirically derived or physically based and must 

be defined by the user. To aid with the selection of these values, a sensitivity analysis was 

carried out to compare the impact that each parameter has on the main model outputs. The 

aim of this testing was: (a) to determine what range of values produce results within a 

sensible range for gravel-bed rivers (e.g. bank erosion rates in the range of metres rather 

than 10s o f metres); and (b) to determine how sensitive the model was to small and large 

increases in the parameter values. A base simulation was initially run to provide a 

comparison for the simulations. Numerous simulations were then run with only 1 or 2 

parameters altered in each case. These were all run at a constant discharge, which for most 

simulations was a high flow. To test the bank narrowing parameter, low flows were 

simulated. A period of 15 days were deemed an appropriate time length to simulate 

changes, allowing the model to fully adjust to the new prevailing flow conditions. When 

discharge was run for 15 days at 50 m^ s"', this was in effect simulating a decades worth of 

flows above 50 m^ s'' (determined from the flow duration curves shown in Section 5.2). 

Four parameters were altered. First, the bedload flux which is proportional to the transport 

capacity at Hubberholme (Section 7.4.3.2) was altered. When a value of 1 is used, the flux 

matches the capacity. For values less than 1, the bedload flux becomes less than the 

capacity and for values greater than 1, flux exceeds capacity. Simulations were run using 

values of 1.1 and 0.9 and the results were compared against the base simulation. Second the 

effects o f changes in the curvature coefficient (k); the value which determines the amount 

of shear stress distribution that occurs with curvature (Section 8.5) was explored, k was 

tested at 3 and 5. At the most curved reaches (c = 0.029 radians) when width averaged 

shear is 100 Pa, these k values respectively create a 17 Pa and 29 Pa difference in shear 

stress between channel sides. The bank erosion proportionality factor (w^) was the third 

parameter requiring selection by the user. The selected value is multiplied by the excess 

shear stress to determine the amount o f width increase [8.7]. This value was required to be 

small as the channel would increase by this increment for every iteration that the shear 
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Stress exceeded the critical shear stress value. Values in the order of 0.001 were tested. 
Using this value during a 4-hour flow event where shear stress exceeded the critical value 
by 5 Pa, 0.16 m of erosion would occur. This seems a reasonable amount o f bank erosion 
for a single moderate flood event based on findings made in Section 4.4: bank erosion 
monitoring. This parameter is also sensitive to the time-step as there w i l l be fewer iterations 
for a longer time-step. During a high flow event that exceeds the critical shear stress value 
for 4 hours, there are 32 iterations when the time step is 7.5 minutes but only 16 iterations 
when the time step is 15 minutes. Thus, when the model is calibrated, the time-step must be 
considered. I f the time-step is reduced, for example fi-om 15 minutes to 7.5 minutes, the 
bank erosion proportionality factor must also be reduced in proportion. In this case it 
should be halved. Finally the bank narrowing rate was considered. Unlike the erosion 
proportionality factor, this does not increase with reducing shear stress. Instead a constant 
rate of narrowing is simulated for every iteration under the critical shear value. Thus total 
bank narrowing is also dependent on time step with an increase in the number o f iterations 
when the time step is reduced. Since low flows occur for longer periods o f time than high 
flow events, values the same as the bank erosion proportionality factor were selected for 
testing: 0.001 and 0.002. Thus i f flow is below die threshold for 20 days (160 iterations 
when die time step is 7.5 minutes) deposition would be 0.16 m and 0.32 m respectively. 
Alongside the four parameters, discharge is also altered in several o f the runs to explore the 
combined effects that discharge and one o f the four parameters have on the outputs. 
Discharge has been shown as an important parameter for both sediment transport and bank 
erosion. 

The outputs used to compare the results included: (1) the rate o f downstream fining which 

was represented by recording the D50 values at cross-sections 030, 350 and 590; (2) the 

bedload transport ratio between Hubberholme and Starbotton; (3) bed level changes 

including the average bed level rise, the maximum aggradation and the maximum 

degradation; (4) maximum rates o f width adjustment, either bank erosion or bank 

narrowing; and (5) elevation differences between the left and right channel sides: both 

average and maximum. Table 8.1 shows a summary of the results from each of the 

sensitivity tests carried out. 



Table 8.7: Results from the sensitivity analysis 

test no. flux X 
capacity 

curvature 
coefficient BE rate BNrate Q for 15 0 at x-s ec bedload bed level chanc e(m) BE max BN max elevation diff (m) flux X 

capacity 
curvature 
coefficient BE rate BNrate 

30 300 590 ratio max aaa max dea (m) (m) average max 
base 1 0 0 0 50 68 37 18 0.04 0.13 0.39 -0.1 0.0 0.0 0.03 0.40 
1: nux 0.9 0 0 0 50 93 43 20 0.09 0.06 0.23 -0.3 0.0 0.0 0.03 0.40 1: nux 

1.1 0 0 0 50 50 28 14 0.14 0.61 4.40 0.01 0.0 0.0 0.03 0.40 
2: discharge 1 0 0 0 30 86 42 22 0.02 0.02 0.04 -0.2 0.0 0.0 0 03 0.40 2: discharge 

1 0 0 0 70 62 36 18 0.06 0.33 0.84 -0.2 0.0 0.0 0.03 0.40 
3: curvature 1 3 0 0 50 67 37 18 0.04 0.13 0.44 -0.1 0.0 0.0 0.05 0.80 3: curvature 

1 .5 0 0 50 67 38 18 0.04 0.13 0.48 -0.1 0.0 0.0 0.05 0 80 
4: BE coeff. 1 0 0.001 0 55 64 36 18 0.05 0.18 0.52 -0.2 2.6 0.0 0.03 0.40 4: BE coeff. 

1 0 0.002 0 55 64 36 18 0.05 0.18 0.53 -0.2 4.6 0.0 0.03 0.40 
5: BE coeffi. 1 0 0.001 0 50 68 37 18 0.04 0.13 0.39 -0.2 0.0 0.0 0.03 0.40 

and Q 1 0 0.001 0 60 63 36 18 0.05 0.23 0.65 -0.2 11.4 0.0 0.40 
6: BN rate 1 0 0 0.001 5 88 44 21 0.004 0.001 0.003 0.0 0.0 2.7 0.03 0.40 6: BN rate 

0 0 0.002 5 88 44 21 0.004 0.001 0.003 0.0 0.0 5.4 0.03 0.40 
7: BN rate 1 0 0 0.001 2 88 44 21 0.009 0.001 0.003 0.0 00 2.7 0 03 0.40 
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8 . 6 . 1 SENSITIVITY D I S C U S S I O N 

Test number 1 explores the model's sensitivity to the bedload flux when it is marginally 

higher and slightly lower than the bedload capacity. This is equivalent to changing the 

annual bedload input from 8000 t year'' to 8800 t year"' when a value of 1.1 is used or 

reducing the input to 7200 t year'' i f a value o f 0.9 was used. The sediment budget shown in 

Appendix FV demonstrates that fluctuations in input o f 800 t year"' are feasible. However, 

unlike the tests, these are typically accompanied by seasonal and annual changes in 

hydrology. 

When the bedload flux in the model is reduced, the downstream fining profile coarsens 

(indicated by higher D50 values). This is because in the "base" simulation the transport into 

the upstream node matches that which leaves since bedload is set to match capacity. This is 

explained schematically in Figure 8.22. When the sediment transported from the upsfream 

node is not fu l ly replaced with sediment of equal gradation from upsfream, the finer 

material is selectively transported leaving the coarser material behind (Figure 8.22b). A 

higher percentage of coarser material in the bed mixture increases the D50 of the sediment. 

With a higher D50, a higher shear stress is required to move sediment downsfream so the 

output from this reach is less than in the "base" run. Thus, the gradation o f the downstream 

nodes also becomes coarser (Figure 8.22b). The bed level changes represent a reduction in 

sediment supply into the reach with a net reduction in bed level rise, a drop in the 

maximum aggradation rates and greater degradation rates. The degradation occurs at the 

most upstream node reflecting the supply limited conditions. 

When sediment supply is greater than capacity (value set at 1.1) the output is quite 

different. Firstly, the bed fines much more rapidly, producing a substantially finer bed 

along the entire study reach than in the "base" simulation. This reflects the increase in finer 

material entering the reach. To explain this it is important to consider the GSD of the input 

when conditions of equal mobility, where all grain size classes move, are not met. In the 

"base" run, the input matches the capacity (Figure 8.22a). I f the capacity is insufficient to 

move the coarser grains, these grains wi l l not be transported and thus not be replaced. The 
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input w i l l be comprised of finer material which when combined with the coarse material 

already present, w i l l not alter the GSD. However, when the bedload flux increases, so too 

does the influx of finer material when compared with the coarser material that is stationary 

(Figure 8.22c). The influx o f finer material lowers the D50 o f this material. In the Wilcock 

and Crowe (2003) equations, the critical shear stress (trm) is determined from (amongst 

other things) the D50 ([7.18]). As the D50 reduces, transport of finer material downstream is 

promoted. This results in a finer profile downstream. Alongside the fining, the influx o f 

sediment promotes excessive aggradation in the most upstream reach with 4.4 m of 

aggradation recorded at node 010. This is expected because die transport capacity is 

insufficient to transport that remaining sediment. Gradually, the aggradation leads to a 

perched system with an increase in slope. This slowly results in progressive aggradation 

downstream. 

Figure 8.22: Impact o f changes in the transport flux on bed grain size distributions. 
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The output bedload transport ratios when flux decreases and increases produced surprising 

results with an increase in the ratio in both situations. This increase in ratio represents either 

a reduction of transport into the reach at Hubberholme, or an increase in the output from the 

reach at Starbotton. It was anticipated that when the bedload flux was reduced to 0.9, the 

ratio would increase, as the input at Hubberholme would reduce. Furthermore, the sediment 

at Hubberholme coarsens, reducing the transport further. However, when the flux was set at 

1.1, an increase in the input sediment was expected to reduce the fransport ratio: this was 

not the case. To understand why the ratio increases with an increase in sediment flux, the 

output at Starbotton must be considered. Increases in the sediment output would result in 

higher bedload ratios. This may occur i f there is a reduction in grain size at Starbotton 

allowing greater sediment transport for a given discharge. This occurred when flux 

increased with a 4 mm fining in D50 recorded compared with only a 2 mm coarsening in 

Dsowhen flux decreased. 

These results demonstrate that the model is highly sensitive to small changes in bedload 

flux, with these changes felt to the greatest extent in the most upstream nodes. As such, a 

decision was made to leave the bedload flux set at a value o f 1 for fijture simulations. This 

assumes that during model simulations the supply of sediment to Hubberholme is always 

sufficient to meet demand without leading to excessive aggradation at this location. This 

assumption is supported by field evidence with a large number o f impacts recorded at 

Hubberholme compared with Buckden Bridge and Starbotton (Section 5.4.3). 

The impact o f discharge and specifically variable discharges was explored in Section 8.3.3. 

The impacts of changes in discharge on the output are explored fiirther in test 2. In addition, 

discharge is changed alongside the bank erosion and bank narrowing in tests 5 and 6. In the 

"base" run, a constant discharge o f 50 m^ s'' was simulated for 15 days. In Table 8.1, for 

test 2, this 15 day discharge was reduced to 30 m^ s"', and then increased to 70 m^ s"'. Three 

different outputs emerged. First, as shown in Figure 5.14, the downsfream fining in the 

study reach occurred substantially faster when a higher discharge was used. Secondly, the 

bedload ratio increases with discharge. This suggests that more sediment is leaving 
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Starbotton under high flows implying that the finer sediment is more sensitive to changes in 

discharge than the coarser sediment at Hubberhohne. This agrees with findings made in 

Section 6.2.1 which noted that sediment only leaves Starbotton under the highest 

magnitude flow events. Third, bed level changes are more rapid when discharge is higher 

reflecting the importance that higher discharges have on sediment transport. This is 

explored fiirther in Figure 8.23 where the maximum and reach-averaged bed level changes 

are plotted against increasing discharges ranging fi-om 24 m"' s"' to 76 m^ s"'. 

Figure 8.23: Increase in bed level changes with discharge. 
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The high aggradation rates in this graph represent a decadal amount of flood events that are 

simulated in this analysis. In the reach-averaged plot, the data produce a curve with a more 

rapid increase in the rate of change at around 35 m^ s"'. Interestingly this is around 10 m"' s ' 

higher than the discharge required to initiate sediment transport as noted in Figure 8.5 in 

Section 8.3.2. The gradual flattening off of the curve at higher discharges reflects a 

reduction in the increase of shear stress with depth as the effect of bed roughness lessens. 

These findings suggest that whilst moderate discharges are required to transport sediment, 

higher discharges are essential to increase the sediment supply into the reach enough to 
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allow sediment accumulation to occur. These results also emphasise the importance of 
using a variable hydrograph in the simulations as it is the high flow events that drive 
sediment transport. Furthermore an hourly or sub-hourly hydrograph is essential to capture 
the flow peaks which are of short duration. 

Test 3 explores the impact that the amount of curvature redistribution has on the output. 

After 15 days of simulation the results are almost identical when using curvature 

parameters of 3 and 5. With bank erosion and deposition currently switched off this is 

unsurprising since the curvature component is mainly present to drive the lateral 

adjustments. However, it is important to note that when the curvature fiinction is operating, 

the differences in shear stress distribution result in lateral variations in bed level change 

such that the outside of meander bends, where shear stress is higher, become deeper. 

However, with the elevation differences capped at 0.8 m, the difference in shear stresses 

created by values of 3 and 5 are not sufficiently different to produce different results. The 

increases in elevation variation experienced when the shear stress is redistributed due to 

curvature does however promote greater maximum aggradation rates. Maximum 

aggradation rates increasing by 0.10 m when k\s5 compared to when k is 0. 

To explore the impact of changing k further, differences in shear stress created by depth 

differences must also be considered. This allows the impact of k to be isolated from 

differences in shear stress generated by differences in flow depth. The channel sides begin 

with no elevation differences. The test is initially run with k set at 0 for thirty days at a 

moderate flow to allow the dovrastream fining wave to pass. The model is then run at a 

constant high flow with k activated. Figure 8.24 shows the results for the reach extending 

fi:om Hubberholme to just below the Cray Beck confluence and including the gravel trap 

bend at 800 m downstream. The results show clear differences in shear stress (Figure 8.24a) 

when curvatiire is high. The curvature function shifts the shear to the outer bank (Figure 

8.24c). When the bend is turning left, as happens at the gravel trap bend located at 800 m 

downstream, shear stress becomes higher on the right channel side. In doing so, bed 

degradation occurs and this channel side preferentially deepens whilst the left side becomes 

shallower. When k is increased from 1 to 3, the difference in absolute shear stress (i.e. 
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ignoring the direction of values) becomes on average 3 times larger and the absolute 

difference in depth increases by 2.9. When the location of the deepest sides (either left side 

or right side) are compared with the deepest sides recorded from the acmal charmel 

geometry, ftirther encouraging findings are obtained (Figure 8.24b). Of the 20 locations 

with the greatest observed depth differences created by the curvature function, the model 

evolves so that, for 14 of these locations, the model predicts the correct deepest side. In the 

other locations, it is likely that curvature is not driving the bed elevation differences. 

Figure 8:24: Model sensitivity to k. Differences in shear stress (a) and elevation (b) 
between charmel sides. Curvature is plotted in (c). Q is 50 m^ s"'. Only the top 1600 m of 
the study reach is plotted for visual reasons. 
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In Figure 8.24 there are no elevation differences between channel sides at the start of the 

simulation. The elevation differences shown are created entirely as a function of shear 

stress redistribution due to curvature. In addition to changing k, it is useful to explore the 
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lateral differences in shear stress when the elevation differences are also included at the 

start of the simulation. These effects are shown in Figure 8.25. From this figure it should be 

noted that, on the whole, elevation differences have a far greater impact on shear stress 

differences than the curvature fimction when k is set at 5. When elevation and curvature are 

combined, the shear stress difference is enhanced (in either the positive or negative 

direction) in 64% of the locations. Examples include at 800 m, 1800 m and 3100 m where 

shear stress is enhanced by 14 Pa, 14 Pa and 6 Pa respectively. This follows as cross-

secfional nodes with high curvature are typically associated with a deeper outer channel 

side. Thus, they have larger elevation differences. Yet, in the other 36% of locations, the 

curvature function acts to reduce the shear stress difference created by the elevation 

difference (moving the difference towards zero). In these locations the deeper charmel side 

is found on the inside of a channel bend. In Figure 8.25 these locations are notable as the 

"elevation+curvature" dashed plot lies between the two solid "only" lines, for example at 

2000 m and 4800 m downstream where shear stress difference is reduced by 7.6 Pa and 4.4 

Pa. At 4800 m downstream the curvature effect shifts the location of the highest shear 

generated by elevation differences from the left side to the right side. 

Figure 8.25. Individual and combined effect of depth and curvature on shear stress 
differences. Discharge is 50 m^ s ' and k was set at 5. 
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Test 4 compared the model's sensitivity to the bank erosion proportionality factor. As 
described in Section 8.4.3, bank erosion is proportional to excess shear stress multiplied by 
the user defined bank erosion proportionality factor. Two bank erosion proportionality 
factors, 0.001 and 0.002 are tested. In these simulations, the critical shear stress threshold 
was set at 50 m^ s'' and the simulations were nm at a discharge of 55 m'' s"'. When the 
outputs fi-om these two nms are compared against each other, unsiuprisingly, the maximum 
bank erosion rate was higher when 0.002 was used. However, doubling the bank erosion 
proportionality factor, did not double the bank erosion. Indeed the increase from 0.001 to 
0.002 only increased maximum bank erosion by 2 m fi-om 2.6 to 4.6 m. This suggests that a 
feedback is operating where the increase in channel width reduces flow depth thereby 
lowering shear stress and reducing the excess shear stress used in the bank erosion equation 
([8.7]). 

When the results from both simulations are compared against the "base" run, further 

differences are noted in the bed level changes. When bank erosion is allowed, the reach-

averaged and maximum aggradation levels increase. This occurs because the increase in 

width at a given location reduces the flow depth and shear stress promoting deposition. 

This contradicts findings of Secfion 8.4.1, where an increase in channel width by 1 m down 

the whole reach, led to a slower rate of deposition. These discrepancies can be explained by 

the locations of the width adjustments. Bank erosion occurs where the shear stress is 

highest and therefore more sensitive to changes in width. Thus, increasing the width of 

these sections by 2 - 4 m will promote aggradation. When the width increases uniformly by 

only 1 m, this is insufficient to change the sediment dynamics and aggradation is not 

enhanced. Furthermore, the discrepancy found here compared with the results made in 

Section 8.4.1 is supported by contradictory views about channel width and sediment 

transport in the literature (e.g. Carson and Griffiths, 1987; Henderson, 1960; Bagnold, 

1977, 1980; Parker, 1979; White a/., 1982). 

In the fifth test, the discharge is increased when bank erosion proportionality factor is set at 

0.001 and 0.002. In Table 8.1 the results from two 15-day simulations using a 0.001 bank 

erosion factor and discharges of 50 and 60 m^ s'' are compared. Bank erosion is further 
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enhanced at higher discharges as the excess shear stress is greater. The increases in bed 

level rise noted in the 60 m^ s"' simulation are attributed to the increase in discharge rather 

than bank erosion. The effect of discharge on bank erosion is further explored in Figure 

8.26 where simulations were run at progressively increasing discharges and the maximum 

bank erosion was noted. To allow for 15 different simulations to be run, these lasted only 5 

days which effectively simulated 3-4 years of high flow events. Both bank erosion rates 

exhibit similar patterns with bank erosion initiating at 48 m^ s"'. It is interesting to note that 

bank erosion initiates at a discharge lower than the discharge used to set the critical bank 

erosion threshold: 50 m'' s"'. This reflects the evolution of the bed during the simulation 

such that the updated bed generates higher shear stresses for a given discharge. This may be 

due to differences in depth due to aggradation / degradation or to changes in the GSD of the 

bed. As discharge increases, both plotted lines form a curve with a slight levelling off at the 

highest discharges. Simulations were not run above 76 m^ s"' as these would be above bank 

full. The levelling off reflects the feedback in the bank erosion processes with width 

increases lowering flow depth and shear stress. Thus excess shear stress reduces. When the 

two plots are compared, the difference in total bank erosion is not doubled when the bank 

erosion rate is doubled. This fiorther suggests a feedback mechanism. 

Figure 8.26: The effect of discharge on maximum bank erosion when using two different 
bank erosion proportionality factors (BE prop.). Simulations were run for 5 days at a 
constant discharge. 

- B E prop. = 0.001 

B E prop. = 0.002 

discharge (m-'s'^) 



CHAPTER 8: M O D E L DEVELOPMENT. TESTING A N D CALIBRATION 2 9 7 

The final two tests explore the sensitivity of the model to the bank narrowing increment and 

lower discharges. Unlike the bank erosion function, a doubling of the bank narrowing 

increment resulted in twice as much bank narrowing. This difference is because bank 

narrowing is not scaled by shear stress. Thus, as long as the shear stress is below the critical 

value, bank narrowing will occur at the incremental value for each iteration. As such, 

discharge only has the effect of switching on and off bank narrowing rather than enhancing 

it. When discharge increases to 10 m'' s"' in test 7, no bank narrowing occurs since the 

generated shear stresses are above the critical threshold. When discharge drops to 2 m^ s'' 

the narrowing remains the same as when discharge was 5 m^ s ' since both will produce 

shear stresses below the critical threshold for narrowing. 

8 . 7 M O D E L C A L I B R A T I O N 

The sensitivity analysis suggested that the model was responding in a physically plausible 

way to the values of parameters tested. These values provide useful starting ranges for 

model calibration which sets out to find the optimal values to predict results that match the 

field observations most closely. 

Of the parameters tested in Table 8.1, flux was set at a value of 1 allowing the sediment 

input rate to match the transport capacity. This assumes that sediment supply is always 

sufficient at the upstream node, something that was noted during analysis of field data. The 

second parameter altered in the sensitivity analysis was the discharge. The outputs were 

found to be very sensitive to the hydrology with the hydrological regime central to the 

sediment transport and bank erosion processes. As shown in Section 8.3.3 the 2-year 

representative hydrograph, predicts mean annual bed level changes well. Hence, it is 

effectively calibrated to the mean bed level changes: However, as discussed in Section 

8.3.3, this approach is based on the assumption than the average hydrology will produce the 

average bed level changes. With discharge data extending to the end of 2002, there is no 

hydrology available to calibrate the lateral change component in the model. 
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Whilst mean decadal hydrology was used to predict mean bed level change for a five year 
period, the bank erosion study only provides data for one year making a similar approach 
unfeasible. The solution is to use an ergodic hypothesis which uses space as a surrogate for 
time. In other words, the lateral change component to the model can be calibrated using 
spatial patterns of change rather than the temporal patterns which are subject to the 
hydrology. By using the 2-year representative period, rates of change can be calibrated. 
However it is the relative differences in bank erosion rates between straight and curved 
reaches which become more important than the actual rates of bank erosion. 

Values were required to represent the bank erosion proportionality factor, the bank 

narrowing rate and the curvature coefficient k. In Section 4.4, bank erosion rates were 

estimated at four sites and these are used to calibrate the model. Two of these sites were on 

straight sections and two were located on bends providing bank erosion rates for different 

planform conditions. Modelled bank erosion on curved sections is determined by a 

combination of two parameters: the value of k which distributes shear stress to the outer 

bank and the bank erosion proportionality factor. Hence combinations of values for these 

two parameters could generate the same bank erosion amounts. However, bank erosion on 

the straight sections was a function of only the bank erosion rate only because k is not 

activated when curvature is zero. As such, the model was calibrated using a two-step 

process. 

In the first step, the straight sections were used to calibrate the bank erosion proportionality 

factor. Multiple runs using the 2-year hydrograph were simulated with the bank erosion 

factor gradually increasing. The value of k was set at zero so that the only lateral 

differences in shear stress were generated by variability in bed elevation. The predicted 

amounts of bank erosion are shown in Figure 8.27a alongside the observed rates of bank 

erosion at each of the four bank erosion sites. Predicted bank erosion amounts on the 

straight sections match the observations best when the factor is 0.0014. At this value, the 

predictions for the curved sites are far lower than the observations. This highlights the 

importance that the curvature fimction has for bank erosion around meander bends. 
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With the bank erosion proportionality factor set at 0.0014, the second step involved 
calibrating the value of k against the bank erosion observations made at the sites on bends. 
k was increased to find the optimal value with the results shown in Figure 8.27b. In this 
plot, it is immediately clear that the value of k is important for driving outer bank erosion at 
each of the curved sites. In particular, at cross-section site 510, no bank erosion was 
simulated until k was activated, shifting the shear stress to die outer bank. Small differences 
in the bank erosion rates are also notable at the straight sites (located at cross-section 420 
and 560). Whilst these sites are termed straight, they do have very small curvature values as 
they are not entirely straight. Thus a small amount of shear stress redistribution does occur. 
The optimal curvature coefficient for each of the two curved sites is 2.5 for site 350 and 
between 3 and 4 for 510. A value of 2.5 was selected as this produced the best results for 
the straight sections. A value exceeding 3 would predict bank erosion amounts greater than 
those observed on the straight sections. This value of 2.5 means that site 510 is under 
predicted. This may reflect the location of the bank erosion site in relation to the cross-
sectional node 510. Unlike die other three bank erosion sites, which are located very close 
to the corresponding cross-sectional node, bank erosion site 4 is located just downstream of 
cross-sectional node 510. Thus the curvature values at node 510 may not match that closely 
with the curvature values at bank erosion site 4. 

The final parameter that required calibrating was the bank narrowing rate. With no 

quantitative field data available to test this value, it was determined based on qualitative 

field evidence. In Section 4.2, the field surveys, it was noted that only certain zones 

exhibited evidence of bank narrowing with the growth of vegetation on the far outside of 

gravel bars. Thus bank narrowing is not occurring to a great extent in the Wharfe system. 

Whilst it can largely be ignored, a small bank narrowing value of 0.0002 m was applied. 

During the prolonged periods of low flow in the 2-year representative period, some bank 

narrowing occurs on the inside of several of the bends. This has a maximum limit of 0.5 m 

and was deemed to be a reasonable value for the Wharfe based on evidence from the field 

surveys (Section 4.2). 
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Figure 8.27: Predicted (bars) and observed (horizontal lines) amounts of bank erosion. The 
predicted values are for the left charmel sides at sites 250 and 420 and the right channel 
sides at 510 and 560, reflecting the bank side where the study was carried out. A; compares 
predictions at increasing bank erosion proportionality factors. B: compares predictions at 
increasing curvature k values. 
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The calibrated model was run for the 2-year representative period and the output is shown 
in Figure 8.28. To interpret this figure, attention is first given to the right turning bend 
located at cross-sectional node 210-230. This is clearly identified in the curvature plot 
(Figure 8.28a). At this location, there is bank protection on the outside of the bend (on the 
left hand side) but no protection on the inside of the bend. The high curvature on the left 
hand side of the channel at this location does several things. First, it shifts shear stress to 
the left hand side and away from the inside of the bend. This results in enhanced sediment 
transport in the left hand side and leads to channel scour and deepening. This feeds back 
increasing the shear stress difference between the sides further (Figure 8.28d). With shear 
stress on the inside of the channel lower than the critical threshold, narrowing occurs 
(Figure 8.28g, negative black bars). The outside of the bend has a critical shear stress 
threshold of 200 Pa due to the bank protection. No bank erosion occurs as this threshold is 
too high to be exceeded. The sediment becomes coarser in the deeper left hand side (Figiire 
8.28b). This is slightiy surprising and can be explained by considering the sediment 
transport processes operating in each channel side and the input and output of sediment. 
The GSD is identical in both sides at the start of the simulation. During the simulation, little 
sediment transport occurs on the shallow, right hand inside. The GSD remains the same 
here throughout the simulation. In the deeper outside, the shear stresses are higher allowing 
the transport of the finer grains. Yet they are insufficient to transport the coarsest fractions. 
Thus the coarse fractions are left behind increasing the D50. The incoming sediment has the 
average characteristics of the sediment transported from the upstream node. Thus the 
sediment input into each channel side is the same. 

This observation, that the outer channel side becomes coarser as a result of downstream 

sediment transfer processes and differences in shear stress driven by depth and curvature, is 

the opposite to the widely recognised theory that it is the presence of secondary flows and a 

transverse sloping channel bed that result in grain size sorting around meander bends (e.g. 

Parker and Andrews, 1985). This questions the workings of many meander bend models 

(e.g. Bridge, 1992; Darby and Delbono, 2002). Thus channel sorting around bends may be 

related more to the dovrastream fining process, driven in bends by the lateral differences in 

shear stress, than secondary circulation. 
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The processes noted at the 220 bend are echoed along the rest of the river chaimel. Figure 

8.28g shows the extent of the predicted bank erosion. This is dominant in the reach located 

downstream of cross-section 300 where bank protection is less common. Furthermore, 

these predictions agree with the bank erosion findings made from the field surveys (Section 

4.2). Examining the bars in Figure 8.28g more closely, reveals more information about the 

nature and locations of channel adjustment. At each node the bars are ordered red - black -

green. I f the height of the black bar equals the height of one of the coloured bars, bank 

erosion on one channel side occurs (e.g. node 040: erosion on the left). I f the black bar is 

higher and sandwiched between two coloured bars, bank erosion is occurring on both 

channel sides (e.g. nodes 150 and 160). I f the black bar is lower than (or negative) the 

coloured bars, some bank narrowing is also occurring alongside the erosion (e.g. node 350: 

left side is eroding and right side is narrowing). Finally, i f the black bars are negative and 

there are no coloured bars indicating erosion, only channel narrowing is occurring (e.g. 

node 230) 

In addition to the data presented in Figure 8.28, some comments must be made on the 

predicted pattern of bed level downstream. The changes in elevation differences shown in 

Figure 8.28f are created by lateral differences in the bed level change at each node. Whilst 

the model predicts an average bed level rise of 0.06 m which matches the observations 

well, the location of this aggradation is pooriy predicted, with the results remaining similar 

to those shown in Figure 8.7. This is due to the average slope that is used to drive the 

downstream sediment transport (see Section 8.3.1). Since this remains the same between 

the earlier single channel version and the new split channel version, the results are the 

same. A more variable slope profile cannot be included as the model loses stability. Hence 

whilst the elevation differences and the addition of curvature information can drive the 

bank erosion component, they have no impact on sedimentation. 



Figure 8.28: Output from the calibrated model after 2-years of simulation, (a) is downstream chaimel curvature; (b) are the D50 values 
of the left and right channel sides; (c) are the critical left and right bank shear stress required for bank erosion (locations with BP (bank 
protection) are given a shear stress value of 200 Pa and the dashed lines go off the top of the plot); (d) are the predicted left and right 
side shear stresses; (e) is the critical shear stress threshold for narrowing; (f) are the initial and current difference in elevation between 
the two sides; and (g) shows increases in channel width. 
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8 . 8 C H A P T E R S U M M A R Y 

The aim of this chapter was to achieve Objective 5: to develop a model capable of 

simulating vertical and lateral channel change in the study reach. The results from the 

calibrated model, demonstrate that model development was successful and that the model is 

capable of simulating many of the sediment transfer and channel change features found in 

the Wharfe. The detailed dataset of channel changes and the variables driving change (e.g. 

hydrology, sediment supply) from the Wharfe, was essential during the model development 

and calibration stages. It first provided valuable data for the input and boundary conditions 

preventing them from being estimated. Examples of these include deriving Manning's n 

values from the grain size characteristics rather than entering an estimated value and 

entering actual active channel widths for each node rather than using a single estimated 

mean value. Second, the data enabled the different model outputs to be tested against field 

observations after each model development step. Thus, decisions made during development 

(e.g. what grain size distribution to use for the initial input) were based on their success at 

predicting field observations. The data fiirther allowed the model to be calibrated largely 

based on empirical findings. However, the success of the results must be treated with some 

caution as the hydrology used to drive predictions is a decadal average rather than the 

hydrology specific to the time period of measurements. This is particularly problematic 

when ixsing the representative hydrology to determine rates of bank erosion which are 

sensitive to peak flows. 

The structure detailed in Table 8.1 was effective at guiding model development and testing. 

Each of the ten key modelling questions which were determined during literature review in 

Chapter 7, were successfiilly explored. Chapter 9 provides a broader discussion into the 

success of the model development and explicitly answers these questions. 
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M O D E L D I S C U S S I O N A N D S C E N A R I O S 

9 . 1 I N T R O D U C T I O N 

This chapter is split into two parts: model discussion and scenario runs. The first part 

discusses the four steps of model development: (1) application of TRIB (Section 9.2.1); (2) 

modifications to TRIB and the boundary conditions (Section 9.2.2); (3) simulating lateral 

adjustments for straight channels (Section 9.2.3); and (4) simulating lateral adjustments for 

meandering channels (Section 9.2.4). In each section the main developments are discussed 

alongside assumptions and limitations. A brief section discusses the sensitivity testing and 

calibration (Section 9.2.5) before scenarios are explored (Section 9.3). Four scenarios are 

investigated. The first three aim to demonstrate the model's capabilities: (1) running the 

model for a further two and four years; (2) removing all the bank protection in the Wharfe; 

and (3) simulating different hydrological regimes. The latter provides an indication of 

system response to changes in climate although the scenarios run are hypothetical and are 

not based on actual climate change predictions. The fourth scenario explicitly deals with the 

second research aim: to develop a model of channel change for exploring the impacts of 

river management. Thus (4) explores two different engineering options to alleviate bank 

erosion and high sedimentation rates around Heber bend at cross-section 350. The chapter 

closes with a brief chapter summary (Section 9.4) 
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9 . 2 M O D E L D I S C U S S I O N 

The model development was broadly split into four sections. Each of these development 

steps is discussed as follows. Within this discussion, two key research questions from 

Section 1.1 are addressed: (1) can a simple quasi-2D modelling approach simulate vertical 

and lateral channel change in an upland gravel-bed river? and (2) how important are the 

inclusion of a variable discharge and curvature for predictions? 

9.2.. \ A P P L I C A T I O N O F T R I B 

Model development began by applying data from the Upper Wharfe study reach to TRIB, a 

one dimensional SRM. TRIB was deemed a suitable SRM for development for several 

reasons. First, it effectively combined the hydraulic and sediment transport equations in an 

Excel spreadsheet. The iterative spreadsheet scheme offered advantages of easy 

manipulation. Macros written in Visual Basic were used to perform many of the modelling 

tasks, modifications were simple to perform and output graphs were produced easily. The 

updating of graphs that occurred with each model iteration produced excellent 

visualizations of the model outputs and how they evolved over time. Examples included 

visualizing the downstream fining profile over time and monitoring fluctuations in shear 

stress as the model moved through a hydrograph. Many of the figures included in Chapter 8 

and later in this chapter show snap shots of the model outputs. On the negative side, the 

spreadsheet package did not have some of the modelling capabilities of other modelling 

packages (e.g. MATLAB). Thus, certain modifications were not made (e.g. the fiill 

inclusion of the function to maintain sediment continuity in Section 8.4.4 and updating 

channel curvature in Section 8.5). 

Second, TRIB used the Wilcock and Crowe (2003) sediment transport equations and 

calculates the transfer and continuity of sediment on a fractional basis. Unlike other surface 

based models (e.g. Proffitt and Sutheriand, 1983; Parker et a/.. 1982) the Wilcock and 

Crowe (2003) sediment transport equations incorporate the non-linear effect of sand, which 

was shown to be important for bedload transport by Jackson and Beschta (1984) and Ikeda 
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and Iseya (1998). The fractional simulation of sediment transfer and continuity has been 
employed in several SRMs and allows the simulation of both downstream fining (Hoey and 
Ferguson, 1994) and sediment pulses (Cui et ai, 2003). Fractional sediment transport was 
also recognised as an important feature of channel adjustment and was included in models 
by Bridge (1992), Parker and Andrews (1985) and Sun et al. (2001b and 2001c). The 
modelled outputs using the Wilcock and Crowe (2003) equations suggest that this is a 
suitable approach to use. These results are particularly encouraging when results from 
studies comparing different sediment transport equations are considered (e.g. Johnson, 
1939; Bathurst et al., 1987; Gomez and Church, 1989; Batalla, 1997; Yang and Wan, 1991; 
A f f r i n et al., 2002). These studies stress that finding a suitable sediment transport equation 
can be difficult and they highlight the importance o f good data for validation. 

A third important feature of TRIB was the data required to run the model. TRIB is not 

heavily reliant on data and the dataset collected fi-om field studies was adequate for running 

the model in its initial form. Ensuring a modelling project has sufficient data is a common 

concern in the modelling literature (Simon and Darby, 1997; Darby, 2005). With a large 

dataset collected from the study reach, this is not a major limitation within this research. 

However, there are some limitations due to data availability and these are mentioned within 

the discussion that follows. 

Section (a) o f the model development tested TRIB's ability to simulate conditions beyond 

those which it was developed for. It is widely acknowledged that many models in fluvial 

science can only funcfion under the conditions they were developed for, or conditions that 

are very similar. TRIB was tested on a natural river rather than a hypothetical reach similar 

to those which it has previously been applied to (Ferguson et al., 2006; Rice et al., 2006). 

Whilst small adjustments were made to incorporate the Wharfe data (including changing 

cross-sectional spacing, slope, grain size), no modifications to the workings o f the model 

were made at this first stage. The model performed well, producing sensible output values 

and predicting a downstream fining profile within a reasonable range for the Wharfe. 

However, the predictions deviated from the observations and this was attributed to the 
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many aspects o f the Wharfe geometry that were poorly represented in the model. Thus 
modifications to the model were justified. 

9 . 2 . 2 M O D I F I C A T I O N S T O T R I B A N D T H E B O U N D A R Y C O N D I T I O N S 

Section (b) o f the development made numerous modifications to TRIB and to the model's 

boundary conditions. The aim was to improve the representation o f a natural system within 

the model. Initial modifications made in Section 8.3.1 were considered minor but found to 

be important to the model. Several were shown to improve the model's ability to predict the 

field observations. Each is discussed. Allowing for variable channel widths is essential in 

systems like the Wharfe which vary in width from section to section. This is best viewed in 

Figure 8.21 which shows the initial left and right bank profiles down the channel. Without 

allowing the width to vary, the hydraulic calculations of flow depth and shear stress would 

be largely incorrect, either over or under representing the system. A similar modification 

allowing width to vary downstream was made in later versions of SEDROUT (e.g. 

Ferguson et ai, 1997). The next modification was including tributaries into the model to 

represent Cray Beck and Bucken Beck. The tributary feature o f TRIB is useful as inputs of 

flow and sediment from tributaries can significantly alter patterns o f downstream fining and 

sedimentation as shown by Ferguson et al. (2006). For the Upper Wharfe reach, these 

tributaries have a minimal effect on the main channel as they only contribute small 

quantities of flow and sediment. The third modification, changing channel slope, perhaps 

had the greatest impact on the downstream fining profile. This was due to the important 

role that slope plays in the sediment transport equations, through the calculation of shear 

stress. However, the model was overly sensitive to slope and this was problemafic in terms 

of maintaining model stability. Modifications to smooth the natural slope profile and then 

to manually adjust it were required to maintain model stability, and improve predictions. 

Modifications 4, 5 and 6, all dealt with the representation o f the grain size in the model. 

Eight grain size classes were used to represent the sediment, overcoming issues o f selecting 

class boundaries when five classes were used. The sand threshold was shown to be 

important in the Wilcock and Crowe (2003) equations and it was successfiilly shifted from 

2 mm to 8 mm to provide a better representation of the Wharfe sediment. The final 
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modification made to the boundary conditions, using sediment characteristics, tested the 
different model outputs associated with different starting inputs. The overall outcome was 
that the pattern of downstream fining is similar irrespective of which GSD the model starts 
with. However, to ensure the most upstream nodes are predicted to be coarse enough, a 
coarse GSD similar to the observed GSD is required. The final modification allowed the 
Mannings n value to be variable downstream and over time, by scaling it to the updating 
grain size distribution at each node. Whilst the Manning's values were not found to alter by 
large amounts downstream, the impact o f n on flow depth was noted to be as important as 
similar magnitude change in discharge. A similar function to update n was applied in Darby 
and Thome (1996) and Osman (1985). 

When these modifications were tested against the field data, encouraging results were 

produced and the modifications were found to improve the model's ability to simulate the 

Wharfe system. It was particularly encouraging to note that observed patterns of 

dowTistream fining, the ratio o f bedload transport between the input and output, and the 

initiation o f sediment transport and maximum bedload transport rates were all simulated 

well by the modified model. However, the model was incapable of simulating meaningfijl 

bed level changes since the discharge was constant and in effect only simulated a constant 

high flow event. Thus a major modification was made to TRIB to include a variable 

discharge regime into the model allowing hydrographs to be simulated. 

Whilst most hydraulic sub-models and SRMs only simulate steady flow (one exception 

being Verhaar et al., in press), some hydraulic sub-models within width adjustment models, 

incorporate unsteady (L i and Wang, 1993) or stepped hydrographs (Osman, 1985; Darby 

and Thome, 1996). Since high flows are responsible for sediment transport and bank 

erosion and low flows are required for channel narrowing to occur, the hydrology of a 

natural system is central to both vertical and lateral channel change. Thus, it requires to be 

included in the model. The model was modified to allow for hydrographs of varying length 

and time-steps to be simulated. However, the main limitation o f this approach was data 

availability. 
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As discussed in Section 5.2 discharge data for the study reach was limited. Thus the 
selected representative period was used as a "best guess" for the simulations. With the 
discharge, particularly the magnitude and frequency of high flow events, shown to be very 
important for levels of aggradation, a major assumption was made: that the magnitude, 
duration and frequency o f floods within the 2-year representative period was the same as 
the hydrology used to generate the measured patterns o f sedimentation. With this 
assumption accepted, the results were very positive. The predicted average levels o f bed 
level change along the reach matched the observations very well. Thus, variable hydrology 
is essential for monitoring bed level changes. However, it is important to accept this 
limitation with consideration given to the inability o f the model to predict more spatially 
variable locations of bed level change. This is attributed to the smoothed slope profile and 
hence is difficult to overcome. It poses problems for analysis o f model predictions at both 
the low spatial scales and also when the mean is considered. 

9 . 2 . 3 S I M U L A T I N G L A T E R A L C H A N G E I N S T R A I G H T C H A N N E L S 

In the third part of model development, the lateral component was developed for straight 

channels. Lateral changes in the width of the channel were shown to be important for 

vertical channel changes in Section 8.4.1 where the width was manually changed. It was 

particularly interesting to note that the wider channel reduced bed level rise. The adopted 

approach uses a split channel creating lateral differences in depth. These create shear stress 

differences and drive bank erosion and channel narrowing. Similar approaches to include 

lateral variations in depth and shear stress were also incorporated in the models of Darby 

and Thome (1996), L i and Wang (1993), Kovacs and Parker (1994) and Pizzuto (1990). 

The split channel approach, which was based on the models of Lancaster and Bras (2003) 

and Stark (2006), was applicable as it maintained the model's simplicity whilst 

incorporating some lateral channel information. The lateral difference in elevations, 

partially overcome concerns when calculating bedload transport using a width-averaged 

approach (e.g. Nicholas, 2000; Ferguson, 2003; Lane and Ferguson, 2005). The split 

channel allows for different sediment transport rates in each channel side. However, the 

average slope and width-averaged shear stress are still used to drive these changes and 
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Manning's n is also equal across the channel. In addition, the split channel approach allows 
the bed sediment characteristics to vary laterally. Since the sediment input and output into 
each node is averaged, this prevents large lateral variations in GSD to develop. This lateral 
variability is supported by Wolcott and Church (1991) who demonstrated that across 
channel variability in GSD can be larger than downstream variability. Lateral variability in 
grain size is incorporated into many meander models including Bridge (1992) and Sun ei 
al. (2001). However, lateral variability in these approaches is determined by secondary 
circulations and the transverse sloping channel. 

Bank erosion was simulated when shear stress exceeded a selected shear stress threshold. 

With no clear way to calibrate the selection of the shear stress threshold, this was based on 

the assumption that bank erosion w i l l occur at the highest discharges simulated. Thus the 

shear stresses generated by these high discharges were used as the threshold. By allowing 

each node and channel side to have its own selected shear stress threshold the model can 

simulate bank protection and downstream differences in bank erodibility. The influence of 

bank erodibility was also accounted for in the channel adjustment model by Darby and 

Delbono (2002). The iterative scheme in the model overcomes one o f the main limitations 

o f width adjustment models based on the extremal hypothesis (e.g. Chang, 1988; Bettess 

and White, 1987; Millar and Quick, 1998; Yang et al, 1988). These predict the magnitude 

and not the rate or location of adjustment (ASCE, 1998b). This adopted approach and the 

visualizations, allow the user to watch channel width changes as the shear stress increases 

over the threshold. Furthermore, by scaling bank erosion to excess shear in a similar way to 

Ikeda et al. (1981), the model can simulate small scale erosion when predicted shear stress 

reaches the critical threshold and large scale erosion (e.g. bank collapse) when the shear 

stress exceeds the threshold. The model is incapable o f simulating other bank erosion 

mechanisms such as weathering. These processes were shown to be important in the 

Wharfe (Section 4.4.5) leading to enhanced fluvial entrainment and bank collapse. These 

can be indirectly included in the model through model calibration. 

The modification allowing deposifion to occur independent o f bank erosion overcomes a 

common limitation with previous width adjustment models. These maintain channel width 
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with the amount o f bank deposition matching the amount o f bank erosion (e.g. Ikeda et al, 
1981; Bridge, 1982; Howard, 1992; Sun et al., 1996, 2001; Lancaster and Bras, 2002). 
More recent models that account for asymmetrical adjustment include models by 
Mosselman (1998), Nagata et al. (2000), Darby et al. (2002), Darby and Delbono (2002), 
Duan and Julien (2005) and Chen and Duan (2006). In the lateral component o f TRIB the 
simulation of narrowing allows it to occur in locations that are not necessarily directly 
opposite sites of bank erosion. Furthermore, the timing and rate of deposition is linked to 
the hydrology and not to bank erosion processes. The narrowing function allows for a 
constant rate o f channel narrowing to occur when flows are low. With bank narrowing a 
function o f plant colonisation and succession, a channel bar gradually becomes vegetated 
and part o f the floodplain as the frequency o f inundation reduces. This fixed narrowing 
increment does not account for seasonality or the time between floods. Narrowing may be 
more rapid in the summer months as vegetation growth is faster. Furthermore, as the time 
between large flow events increases, vegetation is more likely to become established. 

When the results from simulations incorporating the lateral adjustment component are 

examined and compared with field observations, two clear issues arise: (1) is the need to 

calibrate the bank erosion and deposition rates with field data; and (2) is the need to 

incorporate channel curvature into the model to allow for bank erosion on meander bends. 

9 . 2 . 4 S i M U L j \ T l N G L A T E R A L C H A N G E I N M E A N D E R I N G C H A N N E L S 

The final model development stage was incorporating curvature into the model to simulate 

sinuous natural channels. Enhanced bank erosion was attributed to curvature and bed level 

changes (Section 6.2). As demonstrated in the outputs from the lateral straight channel 

model, curvature is essential in the model to accurately predict locations and rates of bank 

erosion and deposition. Incorporating curvature into models o f lateral adjustment has been 

done in several meander evolution models (e.g. Darby and Delbono, 2002; Coulthard and 

Van De Wiel, 2006). Curvature is included in TRIB by distributing shear stress towards the 

outer channel side and away from the inner channel side. Thus bank erosion is promoted by 

excess shear stress. This approach is similar to the bend theory concept developed by Ikeda 



C H A P T E R 9: M O D E L D I S C U S S I O N A N D R E S U L T S 3 1 3 

et al. (1981) and used extensively (e.g. Beck, 1984; Parker et al. 1982, 1983; Parker and 
Andrews, 1985; Johannesson and Parker, 1989; Sun et al., 1996, 2001a, 2001b; Howard, 
1984, 1992, 1996; Mosselman, 1998; Darby et al., 2002; Edwards and Smith, 2002). Bank 
erosion is now driven by the combined effects o f lateral differences in bed elevafion and 
curvature. Results show that locadons of outer bank erosion and inner bank deposition 
match well with the locations of the main bends which have no bank protection. Thus 
curvature is an essendal parameter to include in models of lateral channel adjustment. 

9 . 2 . 5 SENSIT IV ITY T E S T I N G A N D M O D E L C A L I B R A T I O N 

Sensitivity analysis tested that the model performance was plausible. Furthermore, 

sensitivity testing was used to identify values which produced results within the range of 

observations for the Wharfe. This allowed the model to be calibrated effectively. The 

calibration process had two steps: (1) calibrating the bank erosion proportionality factor 

against the straight sections; and (2) calibrating o f the curvature value k against the bank 

erosion observations for curved sections. This calibration was based on only limited data 

with a total o f four bank erosion sites. However, when the results were considered and 

compared with qualitative field based evidence, the predictions were felt to be suitable. The 

rate o f deposition was not calibrated against any quantitative data. Thus deposition rates 

should be considered with caution. 

9 . 3 S C E N A R I O S 

The model has been calibrated to predict average levels o f aggradation, downstream fining 

rates and bank erosion rates on straight and curved secfions that match observed field data 

well. This chapter sets out to achieve the final methodological objective as outlined in 

Chapter 1, Objective 6: to use the model to explore a range of scenarios. The nature of 

these scenarios was determined by the final research question raised in Section 1.1 at the 

start o f the thesis. This question was: what are the implications of changes in hydrology 

and river management for channel change and flood risk? Scenario exploration 

demonstrates the model's capabilities and allows potential changes in climate and river 

management options to be investigated. 
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Four scenarios are explored as follows: 

Scenario (1): running the model for a further two and four years; 

Scenario (2): removing all the bank protection in the Wharfe; 

Scenario (3): simulating a different hydrological regime; and 

Scenario (4): exploring engineering options around a problematic reach. 

Scenario (1): running the model for a further two and four years. 

The model is calibrated against the average annual conditions for the field study period 

which were scaled up to provide mean changes for a 2-year period. In this first scenario, the 

model is run for a further two and four years of representative hydrology providing results 

for two, four and six years o f simulation. This was done with bank protection in place using 

the calibrated values determined in Section 8.3 after the initial fining wave had passed. 

The patterns of bed level rise are explored first. Figure 9.1 shows the bed level change at 

each node after two, four and six years of simulation. The reach averaged rise for each 2-

year period remains relatively constant at 0.062 m for the first two years, 0.065 m for the 

second two years and 0.061 m for the last two years. With the width of the input node 010 

at Hubberholme remaining fixed over time, the subtle differences are produced by changes 

in slope as the 2"** node downstream degrades rapidly during the first two years and then 

only slightly over years two to six. The locations and rates of aggradation down the rest of 

the channel remain constant with aggradation increasing gradually. There are some minor 

differences in the locations of aggradation and these are a result o f the changes in slope 

generated by the aggradation. 
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Figure 9.1: Bed level changes over time. 
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It is also important to monitor how the width adjustments change over time. Results are 

presented graphically in Figure 9.2 and numerically in Table 9.1. In Figure 9.2, as 

simulation time increases, the width adjustments become more visible and there is some 

substantial bank erosion noted at nodes 350 left and 140-150 left and right. In addition, 

some nodes record some narrowing including 350 right and 210-220 right. This figure also 

demonstrates that these changes are relatively small when compared with the initial channel 

width. Therefore, they do not result in any substantial differences in bed-level rise. To 

examine this width adjustment more closely, the data are presented in Table 9.1. One o f the 

key findings from this table is that only relatively few locations increase or decrease in 

width at a constant rate. Instead, for some nodes, the rate of change increases over time, for 

example at node 220 right. The rate o f change in other nodes reduces for example at node 

040 left. Additionally, a few nodes begin or stop eroding or narrowing after several years. 

Examples include 100 right and 260 left which begin adjusting between two and four years 

and 520 left and 490 right which cease between two and four years. These changes occur 

due to the evolution of the bed and the progressive fining o f bed material. The combined 

effect of this is changes in shear stress at each node with time. This is shown in Figure 9.3 
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which shows the left hand side shear stress at each node at the start and every two years. 
The greatest changes in shear stress correspond with the locations o f the main bends in the 
study reach (e.g. 080, 220 and 350). 

The results after two, four and six years can also be compared against the field observations 

to ensure that the model is still performing well. As already discussed, aggradation rates 

remain constant for each time period and therefore remain calibrated against the mean bed 

level rise observed from field surveys. With bank erosion rates fluctuafing due to bed level 

changes, the predictions may not match the outputs as successfiilly. In Table 9.1, the results 

for 350 left, 420 left, 510 right and 560 right are considered. The 2-year observations for 

these nodes record 0.42 m, 0.15 m, 0.36 m and 0.14 m o f bank erosion respectively. Node 

350 left continues to predict values close to the observed 0.42 m with a small increase. This 

increase may reflect the narrowing on the opposite bank which was not considered when 

the model was calibrated. The bank erosion rate at 420 left doubles to 0.33 m. This is of 

concern and occurs due to bed level changes at this location. At bank 510, the predictions 

begin lower at 0.22 m and get progressively smaller over time. The lower calibrated results 

after two years were noted in Figure 8.27. Like at 510, this lowering in bank erosion rate 

reflects changes in the channel geometry. It is likely that the bank erosion, and width 

increase, during the first 2-years was sufficient to reduce shear stress and inhibit ftirther 

erosion. At location 560 right, the predictions remain relatively constant at between 0.13 m 

and 0.16 m and these values match well with the observations. This is encouraging. 

In general, the model's behaviour after two, four and six years echoes that observed in the 

field. The only main exception is the locations o f aggradation and degradation and the 

increase in bank erosion rates over time at node 420. Consequently, the model can be used 

to simulate the additional scenarios outlined earlier with relative confidence. For most 

cases, the simulations are kept to 2-years to allow for a better comparison between normal 

and scenario states without the additional variable of time. 
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Figure 9.2: Width change over time. Bank protection is in place. 
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Table 9.1: Width change for each time period. Grey positive values show bank erosion and 
black negative values show narrowing. 

Left hand side (r n) Right hand side (m) 
node 0-2 years 2-4 years 4-6 years 0-2 years 2-4 years 4-6 years 
010 
020 
030 
040 0.20 0.05 0.01 
050 
060 -0.25 
070 -0.01 -0.42 -0.52 
080 -0.11 
090 
100 -0.01 -0.27 
110 

llStrib -0.01 
120 
130 
140 0.42 1.08 2.15 0.01 0.05 0.15 
150 0.25 0.24 0.40 0.09 0.03 0.06 
160 
170 
180 
190 
200 -0.03 
210 -0.07 -0.32 -0.32 
220 -0.26 -0.44 -0.52 
230 . -0.01 
240 -0.05 -0.35 -0.44 
250 
260 -0.01 -0.30 
270 
280 

285 trib 
290 
300 -0.17 -0.39 0.27 0.30 0.43 
310 0.06 0.00 
320 0.09 0.05 0.01 
330 0.26 0.34 0.35 
340 0.15 0.12 0.05 
350 0.42 0.40 0.56 -0.40 -0.49 -0.54 
360 
370 -0.11 -0.29 
380 
390 
400 
410 0.01 0.07 0.13 0.28 
420 0.14 0.23 0.33 0.15 0.26 0.38 
430 0.14 0.27 0.41 
440 0.15 0.13 0.14 
450 0.11 0.10 0.10 0.00 
460 0.18 0.23 0.28 0.02 0.02 0.02 
470 
480 0.05 0.01 0.00 
490 0.04 0.00 
500 -0.01 -0.06 
510 0.22 0.17 0.10 
520 0.08 0.01 
530 0.02 0.00 
540 0.02 
550 0.03 
560 0.06 0.03 0.04 0.16 0.13 0.14 
570 0.01 
580 
590 
600 
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3 „ - l Figure 9.3: Shear stress on the left hand side plotted through time. Discharge was 15 m s 
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Scenario (2): removing all the bank protection in the Wharfe 

In Section 3.4, river management in the Wharfe study reach was discussed. In brief, the 

channel has been confined to its present day course since monastic times when dry stone 

walling was used to straighten and restrict large sections of the channel. In the past few 

decades, many of these walls have been stabilised and new hard engineering schemes have 

been constructed around several of the meander bends. Thus the study reach is far from a 

natural state. In this scenario, the impact of removing these structures is explored. The 

hypothesis tested here is that removing these structures will result in extensive bank 

erosion, predominantly at the meander bends, and the channel will shift towards a more 

natural meandering state once again. 

The model is run using the 2-year hydrograph with all banks erodible. For banks that were 

previously protected, the new shear stress value applied is determined using the approach 

described in Section 8.4.5 and applied to all locations without protection (i.e. the shear 

stress acting on the specific channel location using a high discharge). The input node 010 

controls the input of sediment. Thus it remains a fixed width to ensure that the input of 

sediment between runs is equal. Figure 9.4 shows the width adjustment from this 

simulation compared to the output from the calibrated run discussed in Figure 8.28. The 

difference in output is striking. When the bank protection is removed, bank erosion occurs 
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in most of the previously protected reaches. This bank erosion is particularly severe where 

the curvature is high, for example at node 070 (at the start of the gravel trap bend) and at 

nodes 220-230 (the bend at Buckden Bridge). At node 070, bank erosion occurs on the right 

hand side of the channel, as indicated by the red bars. At nodes 220-230, the green bars 

show that bank erosion is occurring on the left of the channel. The bend at 220-230 is 

particularly interesting because when bank protection was in place, this zone experienced 

inner bank narrowing (Figure 9.4a). This narrowing of the inner bank is still noted in Figure 

9.4b. When the outer bank erosion and inner bank deposition are considered together, the 

channel is beginning to migrate. 

Figure 9.4: Width change at each cross-sectional node after 2-years. (A) shows the output 
with bank protection and (B) shows the output with no bank protection in place. 
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With width adjustments reaching a maximum of nearly 1.5 m, two of the model's features 

must be reconsidered. First, dealing with sediment continuity which was discussed in 

Section 8.4.4 becomes more important. At node 070 where 1.5 m of erosion occurs, the 

elevation difference is 0.5 m. Thus the sediment that would be lost as the channel mid-point 

shifted is 0.36 m". Using the continuity function, the bed level rises by 0.02 m on both 

channel sides to deal with this. Second, channel curvature at each node remains fixed 

during simulation. As such, this fails to account for the increase in curvature that is 

expected due to width increase. The need to recalculate curvature is only small when bank 

erosion rates are low but as bank erosion and migrafion rates increase, this becomes more 

important. 

Whilst it is interesting to consider the enhanced erosion that takes place when bank 

protection is removed, it is also important to consider the effect that this has on the patterns 

and rates o f sedimentation. When the average rates o f bed level rise are compared they are 

both almost identical at 0.0628 m for the protected and 0.0633 m for the unprotected. This 

reflects the fixed input node at 010 with the same volume of sediment entering the reach 

during each mn. With no width adjustment occurring at the output node 600, the ratio of 

sediment input to output remains constant between simulations. The average width change 

downstream is only 0.22 m and this is insufficient to alter the bed level changes since the 

average channel width is 17.5 m. However, there are differences in the locations of 

aggradation and degradation. These drive the elevation differences between channel sides. 

At a bend, the outside typically degrades whilst the inside of the bed aggrades. This is clear 

at node 230 on Figure 9.5 with the outer left hand side degrading, and at node 080 where 

the right hand, outer bend side is degrading. Figure 9.5 also shows the difference in left and 

right hand elevations between the unprotected and protected simulations. The differences 

are most notable in the upper half of the channel. This may be because this is the location 

of most o f the removed bank protection; thus there are few differences in the lower reach. 

Or it may be that after two years the impacts have yet to migrate fully dovmstream. To 

explore this, the unprotected simulation is mn for a further two years using the same 

hydrology. 
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Figure 9.5: Bed level differences between the protected and unprotected simulations 
(change = unprotected - protected). 
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After a further two years of simulation, aggradation rates after 4-years are explored and a 

similar downstream profile to Figure 9.5 above is produced. The main difference between 

outputs in a net increase in aggradation throughout the reach as the mean bed level rise 

increases from 0.06 m to 0.12 m. This suggests that the differences noted in Figure 9.5 are 

not related to simulation time but to the removal of the bank protection. 

In addition, the amount of bank erosion at each of the eroding nodes has also increased. 

Under identical conditions a 100% increase in bank erosion would be expected. However, 

as the bed has evolved over time some banks have become more susceptible to bank 

erosion and others less so. This reflects shear stress changes over time. Figure 9.6 shows 

the percentage increase in bank erosion amount between the two and four year simulations. 

Several locations record substantially more bank erosion after two years including nodes 

060-070, 110-140 and 410-430 with a 350% increase recorded at 070. Despite, these large 

increases, the average percentage increase for the reach is 83% showing that during years 

three and four less total erosion occurred along the study reach. There are two reasons why 

the bank erosion increase is below 100%. The first is that bed level changes and 

downstream fining over time operate to raise or lower the shear stress for a given discharge 

at a specific location. Thus, the critical bank erosion threshold may be breached less often. 
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The second reason is the feedback between channel width, depth and shear stress. The more 

bank erosion, the greater the feedback with the increase in channel width lowering shear 

stress and reducing excess shear stress used in the bank erosion equation. This process is 

similar to the basal end point control concept where a bank collapse acts to stabilise the 

bank preventing future bank erosion. With 31 nodes eroding less and 10 nodes recording no 

width increase, 19 nodes erode to a greater extent in the 2"^ and 3'"'' years of simulation. 

This can also be explained by bed evolution, in particular outer bank scour, for example at 

nodes 070 and 260. The deeper channel promotes bank erosion as shear stresses are higher. 

Figure 9.6: Percentage increase in bank erosion between two and four years. 
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Scenario (3): changing the hydrological regime 

In the third scenario the 2-year hydrograph was altered to explore the impact of different 

hydrologies on the outputs. Two simulations were carried out with the results compared to 

the normal hydrology in Table 8.2. In the first test, the hydrology was made 5% wetter 

("wetter hydrology"). Thus the magnitude o f the largest flood events increased from 70 m'' 

s"' to 73.5 m^ s'' and the average discharge increased from 9.5 m^ s'' to 9.9 m^ s"'. This 

increases the length o f time that discharge is above 50 m^ s ' from 45 hours to 47 hours. In 

the second test three additional flood events with a magnitude o f 70 m^ s'' were included 
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("more floods"). These were included into periods o f low flow, occurring in the months of 

June year 1, February year 2 and September year 2. Flows above 50 m^ s'' now occurred for 

a total o f 54 hours and the average discharge increased to 9.6 s"'. 

Table 9.2: Results after changing the hydrology. 

normal wetter hydrology more floods 
results results diff. (m) as % results diff. (m) as % 

mean width rhs 0.022 0.041 0.02 89.4 0.024 0.00 10.4 
increase (m) Ihs 0.063 0.079 0.02 25.6 0.047 -0.02 -25.2 
max width rhs 0.275 0.424 0.15 54.2 0.325 0.05 18.4 

increase (m) Ihs 0.522 0.764 0.24 46.2 0.519 0.00 -0.6 
mean bed level rise (m) 0.060 0.067 0.01 11.9 0.067 0.01 11.9 
max bed level rise (m) 0.142 0.162 0.02 13.6 0.159 0.02 11.7 

D50 at 030 (mm) 75.64 74.83 -0.81 -1.1 75.04 -0.60 -0.8 
D50 at 590 (mm) 16.87 16.71 -0.16 -1.0 16.87 0.00 0.0 

There are two key findings from Table 9.2. First, for both scenarios, the changing 

hydrology had the greatest impact on channel width, particulariy on the right hand side of 

the channel. The mean and maximum bed level rise in both scenarios also increases 

reflecting the increase in sediment transport with higher discharges. It is particularly 

important to note that three extra flood events has the same effect on mean bed level rise as 

a 5% rise in peak flows. Yet, the wetter hydrology produces higher maximum aggradation 

rates. Differences in the grain size characteristics in both cases are minimal suggesting that 

much larger changes in the hydrology are required to alter the pattern o f downstream fining 

in the study reach. 

Second, mean width increases are much more sensitive to changes in the magnitude rather 

than the ft-equency of flow events. The right side increases in width by 90% compared with 

only a 10% increase when more floods are simulated. On the left hand side, the width 

increases are mixed with a 25% increase when a wetter hydrology is used and a 25% 

reduction in width when more floods are simulated. This discrepancy can be explained by 

the evolution o f the bed. Whilst the mean bed level is equal between runs, subtle 

differences in the locations of bed level rise, indicated by the difference in maximum bed 

level rise, are having an impact on local shear stress distributions. With the banks 
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particularly sensitive to the magnitude of flows, a small localised change in bed level can 
tip the balance between an eroding and a stable bank. Thus whilst three new floods are 
included, these may not be o f sufficient magnitude to have an impact on the bank erosion. 
The maximum bank erosion rates mirror the mean bank erosion rates with the greatest 
differences found on the right channel side when the magnitude o f floods increases. 

Scenario ( 4 ) : engineering around section 350 

The area around cross-section 350, located around 3000 m downstream, is particularly 

problematic. It has experienced high levels of sedimentation (see Figure 4.6b) and has 

extensive bank erosion. Land ov^ers are keen to manage the system around this bend 

better. This is to prevent further loss o f land and the possible risk to the flood levee which 

is currently situated around 3 m away from the eroding bank face. As such, it is an ideal 

location to explore two possible channel engineering solutions. 

In scenario 4a, the channel is narrowed from 32.5 m to 25 m and both banks are fixed at 

node 350. The new channel remains wider than the average channel width for the study 

reach of 17.5 m. The model is run for two years. From the results, fixing the banks 

successfully prevents the previous 0.42 m of bank erosion from the left bank. Narrowing 

continues on the inner right bank but this is reduced from 0.4 m in the unprotected case to 

0.23 m in the protected scenario. This reflects the increase in shear stress on the right hand 

side as the left channel width remains fixed. When the impact of the engineering on the bed 

level change is considered some interesting results are produced. Figure 9.7 shows the 

difference in bed level change in the reach upstream and downstream of node 350 which is 

subjected to bank protection. Node 350 degrades. This is because the narrow channel can 

no longer adjust and has greater flow depths for a given discharge. This leads to enhanced 

sediment transport resulting in scour. The impact of this is clear in the four downstream 

nodes which experience up to 0.04 m of aggradation over the 2-year period. This occurs 

due to the influx in sediment from the upstream node. Furthermore, as node 350 degrades, 

the upstream slope increases resulting in progressive upstream degradation. The 

downstream slope reduces which encourages deposition. At node 360, the width averaged 

bed level rise is 0.03 m (averaged across the left and right channel sides). When put into a 



CHAPTER 9: MODEL DISCUSSION AND RESULTS 3 2 6 

flood risk context, this increase in bed level is relatively small and equates to around a 5% 

loss in channel capacity. However, this may become problematic after longer timescales. 

Figure 9.7: Impact of engineered reach on upstream and downstream bed-level changes. 
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Scenario 4b tests a more drastic engineering option which involved straightening the river 

between cross-section 340 and 370 thereby removing cross-sections 350 and 360. This is 

shown in Figure 9.8a. The straightened reach reduced the river's length by 75 m and 

increased the channel's slope from 0.0031 to 0.0033. The newly straightened reach is a 

uniform 19.2 m wide (the channel width at cross-section 370), has fixed channel banks and 

is straight so has a curvature of 0. Figure 9.8 shows the impact that the engineered reach 

has on the upstream and downstream bed levels. First, in the upstream node, the bed level 

aggrades to a lesser extent than in the normal channel. This is due to the increase in slope. 

As described in Section 8.4.2 and shown in Figure 8.11, slope is calculated forwards so that 

the steeper channel created from the engineering is applied at node 340. This reduction in 

aggradation propagates upstream to node 330. Downstream of the engineered reach, the 

results are very interesting with significant aggradation occurring at node 370 and further 

downstream. With slope equal at node 370 in both normal and engineered cases, the 

differences in aggradation are attributed to the flushing out of sediment from the engineered 

reach due to enhanced sediment transport. 
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Figure 9.8: Impact of an engineered reach on (a) slope and (b) bed level change. 
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Aggradation at node 370 is 0.32 m. To place this aggradation into a flood context, the VPE 

equation [5.5] for calculating discharge from stage using the channel geometry, is used 

alongside the two bank full flow areas. The engineered area is 6.1 m" less than the normal 

area of 38.4 m^. 6.1 m^ is calculated as 0.32 m multiplied by the channel width of 19.2 m. 

This is a 16% loss in channel area when compared with the normal charmel area. Using the 

VPE equation the discharge required to raise the flow level to its bank full limit is 

calculated at 99.1 m^ s"' for the normal area and 73.6 m^ s ' for the engineered scenario: a 

difference of 25.5 m^ s"'. For this analysis, the slope and Dg4 values required in the VPE 

equation were the same for both cases. Figure 6.13 and Table 6.7 present a similar analysis 
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using observed bed level rise to determine changes to flood risk. Here a 0.33 m increase in 

bed level at cross-sectional location 030, corresponded to a 22 m^ s'' drop in bankfuU 

discharge and this increased both the number and duration o f flood events. Thus a similar 

impact on flood risk may be experienced at cross-sectional node 370 i f the simulated 

engineering was implemented. 

Finally, Table 9.3 presents the total width adjustments at each node after the normal and the 

engineered scenarios. The results show substantial channel adjustments in the nodes 

upstream of the engineered reach with up to 1.15 m more bank erosion occurring. This is 

due to the increase in slope and depth due to scour which increases shear stress leading to 

bank erosion. This amount o f bank erosion far exceeds the maximum bank erosion for the 

entire river in the normal simulation with the maximum bank erosion noted at cross-section 

0.42 m. Thus, whilst the problematic erosion at cross-section 350 has been removed, far 

worse erosion has been created from this engineering upstream and the flood risk has been 

exacerbated in the dovrastream reach. 

Table 9.3: Total width change in the "normal" and the "engineered" scenarios. Positive 
values indicate bank erosion. In the engineered case, no data is present at nodes 350 and 
360 as these have been removed by the engineering and the channel sides made fixed. 

node normal engineered difference node 
total width adjustment (m) 

320 0.09 0.00 -0.09 
330 0.26 0.64 0.38 
340 0.15 1.30 1.15 
350 0.42 removed n/a 
360 0 

removed 
n/a 

370 0 0 0 
380 0 0 0 

9 . 4 C H A P T E R S U M M A R Y 

Three research questions were addressed in this chapter. The results and discussion have 

shown the answer to question 5, that a quasi-2D model can be used to simulate vertical and 

lateral channel change. The combination o f TRIB which simulates the hydrology and 

sediment transport and a split channel lateral adjustment component, that is driven by 
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lateral differences in shear stress, is effective. The discussion has also highlighted the need 
to include variable hydrology and curvature into the model, thereby answering question 6. 
The variable hydrology captures peaks in discharge which are responsible for sediment 
transport and bank erosion. Curvature, allows the meandering nature o f natural rivers to be 
incorporated with bank erosion dominant on the outer curved banks. Alongside the two 
important features o f a variable hydrology and curvature driven bank erosion, further key 
features were important. First, was splitting the charmel into two halves to include lateral 
information on flow depths, grain size and shear stress. This enables bank erosion to be 
simulated as a funcfion o f channel deepening and curvature induced shear stress 
distribution. In addition, it allows the bed material to be sorted laterally. This is done as a 
function of the downstream sediment transport capacity, that varies with lateral differences 
in flow depth and curvature induced shear stress. Second, simulating bank erosion by 
scaling with excess shear stress is valuable. This allows for small and large amounts of 
bank retreat depending on the size of the flood event. This effectively simulates fluvial 
entrainment processes at moderate and high flows and bank collapse at the maximum 
flows. Third, simulating channel narrowing at low flows, when shear stress is low, adds an 
additional aspect to lateral channel change. When combined with bank erosion, the model 
can simulate asymmetrical, flow-dependent channel change. Channel migration is 
simulated in zones where bank erosion and channel narrowing both occur. Finally, allowing 
the critical shear stress threshold for erosion and deposition to vary laterally and 
downstream crucially allows bank protection to be simulated. It also enables some banks to 
be more susceptible to bank erosion than others. 

The final question addressed in this chapter used scenarios to explore different situations. 

This achieves Objective 6 fi-om Chapter 1. These scenarios demonstrate the model's 

capabilities and allow the response of the channel to be predicted under changes in 

hydrology and different river engineering options. First, the results highlight the feedbacks 

and interactions in the channel change process. In particular, changes in bed level and grain 

size are responsible for lowering or raising shear stress. These leads to the cessation or 

initiation of bank erosion. Furthermore, the bank erosion feedback is evident. Bank erosion 

increases channel width, this reduces shear stress and inhibits further erosion. Second, the 
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results emphasise the role that bank protection in the Upper Wharfe study reach has on 
confining the channel and preventing bank erosion. Without it, the channel may exhibit a 
more sinuous pattern, be wider and be wandering in nature. Thus, it may reflect conditions 
before river training began in monastic times (Section 3.4). The simulated removal of bank 
erosion also raises caution to river restoration schemes in the Upper Wharfe. These may be 
employed to remove sections of bank protection. In many places this may result in severe 
bank erosion. Third, the nature of the flow regime is important for channel changes, 
particularly lateral. Changes in flow regime as a result o f climate change, especially to the 
magnitude o f peak flows may have substantial implications for channel change. Such 
changes are anticipated by Amell and Reynard (1996) and Fowler and Kilsby (2007) as 
discussed in Section 2.3. The latter predict up to a 20% rise in the magnitude of winter 
flows. However, with bank erosion found to occur to a greater extent than bed level change 
(echoing findings made by hydraulic geometry models), the associated increase in channel 
capacity may result in a reduction in flood risk. This conflicts with the typical assumption 
that climate change wi l l result in enhanced flood risk. This discrepancy may be explained 
by the model set up with the model using a fixed input capacity and ignoring sediment 
input from the banks. However, flow, sediment transfer and charmel change, and their 
interactions, are important considerations. The final findings from the scenarios were the 
important implications that river engineering schemes have on channel changes. These 
agree with findings made by Brookes (1988, 1997) in Section 2.6. Whilst the engineering 
scenarios are both successful in reducing bank erosion and the accumulation of sediment, 
the impacts experienced upstream and downstream of the engineered reach are substantial. 
Downstream sedimentation is enhanced, reducing the channel's capacity and increasing the 
flood risk. This associafion between sediment delivery and flood risk has be made by many 
(e.g. James, 1999; Stover and Montgomery, 2001; Korup et al., 2004; Pinter and Heine, 
2005; Lane et al., 2007). Upstream bank erosion was found to be much more severe than 
initial problematic erosion. These results demonstrate caution and the need to consider 
sediment transfer and channel change processes, before channel management decisions are 
made. This is particularly essential when land use and climate change implicadons are also 
considered. 



C H A P T E R T E N : 

C O N C L U S I O N S 

1 0 . 1 I N T R O D U C T I O N 

This chapter revisits the main thesis aims and research questions set out in Chapter 1. It 

makes conclusions about the interactions between coarse sediment transfer and channel 

change, and the implications o f river engineering schemes for upland river systems. These 

findings are placed into a flood risk context. 

The thesis aims were: 

o to explore sediment dynamics and channel change in an upland gravel-bed 

river and to assess the impacts of such changes on flood risk; and 

o to develop a model that simulates annual to decadal scale channel change 

for exploring the impacts of river management. 

The first aim was achieved using the field-based data collection and analysis. It bases 

conclusions on past and current channel changes and the factors driving them (Chapters 4, 

5 and 6). The second aim was achieved through successftil model development and 

application to scenarios (Chapters 7, 8 and 9). Answers to the seven key research questions 

set out in Chapter 1, are used to structure these conclusions, in relation to the collecfion of 

field data (Section 10.2) and modelling (Section 10.3). In addition, this chapter wi l l reach 

conclusions regarding the methodological approaches adopted during this research, 

specifically discussing the advantages and limitations of the field-based (Section 10.2.2) 

and modelling techniques (Section 10.2.3). The last section (Section 10.4) brings the thesis 

to a close with some final concluding remarks and further research needs. 
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1 0 . 2 C O N C L U S I O N S A R I S I N G F R O M F I E L D E V I D E N C E 

The field-based approach was used to collect data on channel morphology and the primary 

factors driving channel change. These included: (1) capturing the channel geometry 

downstream and over time using repeat cross-sectional surveys; a bank erosion study; and 

information on channel curvature and flow paths around bends; and (2) obtaining data 

describing the hydrology; bed material; and sediment transport regime. These data were 

analysed to answer four research questions (Section 10.2.1) and applied to the modelling 

side of the project to answer a ftirther three research questions (Section 10.3.1). 

1 0 . 2 . 1 A N S W E R S T O R E S E A R C H Q U E S T I O N S 

Question I: How does in-channel sedimentation in an upland gravel-bed river vary 

through space and time? 

The cross-sectional dataset provides an excellent resource for exploring patterns of bed 

level change through space and time for three reasons: (1) it was specifically designed to 

yield change data; (2) it collects data at a sub-annual time scale; and (3) it is six years in 

length. Results to 2004 have been published (Lane et al, 2007; Reid et ai, 2007a). 

However, this three year period was insufficient to capture the spatial and temporal 

dynamics of river response and focused more upon characterising the magnitude and 

frequency of sediment delivery and transfer events. The research focused primarily upon 

evidence regarding the spatial and temporal patterns of river bed sedimentation and its 

implications for flood risk. The analysis demonstrated that sedimentation varies spatially 

and temporally. Spatially, in the Upper Wharfe study reach, bed level changes downstream 

vary over short scales (< 100 m). Variations can fluctuate between degradation in relatively 

few locations to predominant aggradation. Degradation was typical at meander bends where 

bank protection was present and aggradation dominated on meanders that were free to 

erode. In particular substantial aggradation was noted at the bends located at cross-sections 

080 (the Gravel trap bend) and 350 (Heber bar). Maximum levels of aggradation were 

found around the removed Gravel trap where a bed level rise o f 0.67 m ± a calculated error 
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of 0.031 m was recorded after 6-years of monitoring. Furthermore, spatial patterns in the 
Wharfe vary over long spatial scales (~ 1 km). The upper 3 km reach was found to have 
twice as much aggradation as the lower 2.6 km reach with a mean bed level difference of 
0.11 m ± 0.0022 m between the upper and lower reaches. Temporally, sedimentation is also 
highly variable with up to 0.5 m ± 0.007 m o f aggradation recorded in one location between 
a four month period. In addition, certain zones do not exhibit a net bed level rise or fall over 
time but instead switch between aggradation and degradation over short-timescales. In 
these zones, short-term sedimentation may be unobserved from longer term patterns, which 
are visually noticeable in many locations (e.g. Heber bar). This short term sedimentation 
may be sufficient to increase flood risk. 

Question 2: At what rate do unprotected river banks, in upland gravel-bed rivers, erode 

and what processes drive this bank erosion? 

Rates and mechanisms of bank erosion in upland river channels, like the Upper Wharfe, 

vary between banks but there is a clear distinction between river banks on meander bends 

and straight sections. Using bank erosion pins on four eroding banks in the study reach, 

bank retreat was found to be more rapid on the outside of meander bends due to the shifting 

of the high velocity core to the outside bank. Annual rates of erosion on bends, from fluvial 

entrainment and weathering, result in between 0.18 and 0.21 m year '. On straight sections, 

bank erosion rates are lower at around 0.07 m year"'. These rates of retreat are similar to 

those found by other studies on similar rivers (e.g. Hooke, 1980; Thome and Tovey, 1981; 

Lawler, 1986; Lawler et al., 1999). Seasonal differences in bank retreat are also noted with 

bank erosion higher in the winter months. Since large flood events occur during the 

summer and winter periods, the higher bank erosion rates in the winter are attributed to 

weathering processes. These are enhanced in the winter by freeze-thaw processes and 

piping and sapping from the bank face. Bank collapse in the Upper Wharfe is also an 

important feature of channel change. This process operates over periods longer than one 

year. Bank collapse from one event during the monitoring period led to 0.75 m of retreat 

but evidence from aerial photos indicates that rates o f bank retreat in the past have been 
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much more significant with up to 12 m of erosion occurring in one location over a period of 
time less than 5 years but possibly during a single event. 

Question 3: What are the mechanisms that drive these spatial and temporal patterns of 

channel change? 

A key feature of the Upper Wharfe study reach, is its concave slope profile. Over longer 

time-scales, this promotes aggradation as the reducing slope lowers the transport capacity 

leading to lower sediment transport rates. Conversely one may argue that a product of the 

deposition is the feedback on slope, thus promoting ftirther bed level change. Data from the 

impact sensors, which record little sediment transport out o f the reach, and from the bed 

material characterisation, which show a strong downstream fining trend, support this 

finding. Over shorter annual and seasonal time-scales, temporal patterns of channel change, 

specifically in-channel sedimentation, were shown to be controlled by: (1) the hydrology; 

and (2) the supply o f sediment. Both operate together, a relationship found by many (e.g. 

Hey and Thome, 1986; Beschta, 1988; Werritty, 1997). Higher discharges are required to 

transport sediment once it is in the channel. However, the channel's response to the flow 

regime must be considered alongside the supply of sediment. I f sediment supply is 

abundant, higher discharges are likely to lead to aggradation (e.g. Parker, 1979) whilst 

degradation may occur i f supply is limited (Liebault and Piegay, 2000; Rinaldi, 2003). 

Furthermore, high intensity rainfall events are required to initiate sediment delivery from 

the hillslopes through shallow landslides. 

Spatial patterns o f channel change are attributed to features of the channel geometry. The 

overall slope o f the reach is identified as the primary control over the net aggradation. At 

short spatial scales (< 100 m) key characteristics were identified as changes in slope, high 

curvature, tributary inputs, man-made features such as bridges and larger geomorphic 

controls. The latter refers to the base level control at Starbotton created by the Cam Gil l 

Beck flood event in 1686. This episodic event appears to have had a lasting effect on the 

main stem morphology and behavior o f the study reach and questions the importance o f 

such features on upland channels. This observation follows on from research into 

sedimentary links are their importance (Rice and Church, 1998; Rice, 1999; Rice and 
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Church, 2001). Curvature is particulariy important for lateral channel change as it 
encourages inner bank aggradation and faster rates o f fluvial entrainment on the outer bank. 
This inner bank aggradation, reduces channel slope which reduces the transport capacity 
promoting further deposition. Thus downstream differences in sediment transport capacity 
must account for lateral variations and bank erosion. Furthermore, the outer bend zone 
scours eventually leads to bank collapse. The combined effect of both inner deposition and 
outer bank erosion results in channel migration. This demonstrates the importance of 
including a lateral adjustment component for curved reaches in the model. Spatial patterns 
of channel change, in particular bank erosion, are strongly controlled by river engineering 
which inhibits lateral channel change, particularly in the upper sections o f the study reach. 

Question 4: What implications do in-channel sedimentation and bank erosion have for 

flood risk? 

Rates of in-channel sedimentation observed in the Upper Wharfe were found to have 

important implications for flood risk in the reach. Observed rates of sedimentation, reduced 

the channel's capacity to hold flow by an average o f 7%, but several locations lost over 

30% of their capacity following 4-years o f sedimentation. These findings were based on 

hydraulic calculations using the cross-sectional geometry in December 2002 and December 

2006. This increased the number of annual over bank flows by an average of 2.7 as well as 

increasing the time flow is out of bank by 12.8 hours. Thus, it is essential that upland river 

management considers the important role that coarse sediment transfer has for flood risk. It 

is especially important that localised, short-term fluctuations in bed level are considered. 

These may be deemed less important than zones exhibiting longer term steady rates o f bed 

aggradation. 

1 0 . 2 . 2 FIELD METHODS 

The answers to questions one and two were based heavily on two data sources: cross-

sectional resurveys; and the bank erosion study. Alongside the methods used to collect 

these data, a further range of data collected from the Wharfe study reach provided useful 

information to aid with explaining spatial and temporal patterns of channel change and 

flood risk implications (questions three and four). The data were also used for model 
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development and application. These additional data sources included: (1) field surveys; (2) 
channel curvature from digitised LiDAR; (3) flow paths around bends; (4) discharge data; 
(5) bed material characterisation; and (6) data from sediment impact sensors. Key 
methodological conclusions and limitarions from these data types can be made. 

Developing a robust monitoring strategy to capture bed level change using remote static 

cross-sectional surveys was crucial. Patterns may be misinterpreted i f (1) the total length of 

surveying is too short; longer data sets are essential but limited due to constraints on time 

and cost; (2) the time between surveys is too short to capture short-term changes; ideally 

surveying should take place after every flood, although this can be impractical; and (3) 

survey spacing is insufficient to capture the spatial variability o f downstream channel 

change. 

The combined bank pin and bank top resurvey approach worked well as the pins captured 

short-term small scale erosion on the bank face and the surveys captured larger bank retreat 

over a longer time period. This monitoring strategy was Hmited by insufficient monitoring 

sites and the timescale of monitoring: both difficult within the scope of the project. Whilst 

lost pins and negative readings are thought to be problematic, instead, these can provide 

processes information such as on desiccation failure and soil fall from upper parts of the 

bank face. 

The field surveys provide useful qualitative data that can be used to support findings and to 

provide spatial information about channel features such as eroding banks, sediment bars 

and bank protection. Furthermore the field surveys are valuable during the design o f field 

monitoring approaches, for example identifying locations o f pebble count sites and bank 

erosion study sites. They do not provide any quantitative data and are highly subjective and 

open to interpretation. 

The channel curvature was effectively digitised in a GIS framework and provided high 

resolution (~ 2 m spacing) information about the downstream channel sinuosity. This was 

essential for use with the flow paths around bends. Mapping the fastest flow path around 

several bends o f varying curvature provided useful information about processes operating 
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around bends. There were three limitations with this approach: (1) the flow path was 
measured at a constant depth; (2) the measurements were made during a moderate flow; 
and (3) several bends were discounted due to deep outer bank sections. A l l these limitations 
were for logistical reasons. 

The discharge data were converted from stage records using Ferguson's (2007) variable 

power equation, overcoming issues associated with other flow resistance equations at low 

flows. Limitations on the availability of stage records led to the determination of a 2-year 

period that was representative of the decadal flow regime. Daily discharge records from 

Flint M i l l , 70 km downstream, provide additional information on the flow regime for 

analysis. However, these data do not capture peaks in discharge which are essential for 

sediment transport and bank erosion. It is important to use hourly or sub-hourly records 

where available. 

The bed material was characterised using a hybrid approach which combined three bulk 

samples with 16 pebble counts. This approach sought to overcomes logistical issues 

associated with collecting the bulk samples. However, when the time taken to manipulate 

the data is considered alongside the introduction of error associated with each step, the bulk 

sample approach may indeed have been a more successful approach to adopt. 

Transformations were used to convert the pebble counts into the equivalent volumetric 

samples. The grain size distributions generated demonstrated a strong downstream fining 

pattern in the Wharfe and provided essendal data for other data analysis including 

roughness and porosity estimates. The latter was used during the reconstruction o f the 

morphological sediment budget and raised an important issue: in reaches where 

dov^istream fining is high, a single porosity value is insufficient as porosity was shown to 

vary downstream. This is often overlooked when constructing a sediment budget from 

cross-secfional surveys. 

The final field-based methodology, used impact sensors to provide informafion on sediment 

transfer within the reach. This new method overcomes many problems associated with 

collecting data on sediment transport. The data collected were invaluable and were used in 

several analyses including spatial and temporal patterns of in-channel sediment and when 
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reconstructing the morphological budget from the cross-sectional surveys. The impact 
sensors supported the zero output limit at Starbotton and provided an indication on 
transport times. Furthermore, the impact sensors can provide a useful indication of channel 
response. Aggradation is anticipated i f the ratio of sediment input to output increases (i.e. 
more sediment enters the reach than leaves). Key limitations with the impact sensors relate 
to: (1) the location o f the senor within the channel; (2) the 255 logger saturation point; (3) 
the inability to infer sediment volumes from the data; and (4) when comparing old and new 
sensors. 

In general, the field monitoring strategy used to collect data from the Upper Wharfe study 

reach was well designed, rigorous and provided valuable data for analysis and modelling. 

1 0 . 3 C O N C L U S I O N S A R I S I N G F R O M T H E I V I O D E L L I N G A P P R O A C H 

The second thesis aim was to develop a model for simulating channel change. This was 

done in four steps. The first step applied data from the Wharfe study reach and applied it to 

TRIB, a one-dimensional sediment routing model (SRM). Step two made important 

modifications to the model and the boundary conditions used to run the model, notably by 

adding in a variable hydrology. The third step involved coupling a lateral channel change 

component into the model for simulating bank erosion and deposition in straight channels. 

The final step incorporated channel curvature into the model, allowing it to simulate 

meandering channels and vertical and lateral channel change. 

1 0 . 3 . 1 ANSWERS TO RESEARCH QUESTIONS 

Question 5: Can a simple quasi two-dimensional modelling approach be used to simulate 

vertical and lateral channel change in a natural, sinuous upland gravel-bed river? 

The model results and discussion demonstrated that a simple quasi-2D approach can be 

used to simulate both vertical and lateral channel changes in a natural channel. Central to 

determining the model's success was the large and detailed dataset collected from the 

Upper Wharfe. The downstream fining profile o f the channel was particularly important 

during initial model testing and development. In addition, information on mean annual bed 
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level changes, bedload transport rates and locations and rates of bank erosion were used. 
The model was capable of predicting these observations well. However, the model was 
unable to simulate the spatial details of aggradation and degradation. This is attributed to 
the strong influence that slope has on the locations of aggradation and the inability of the 
model to incorporate all the associated downstream variability in slope. Since TRIB does 
not incorporate backwater effects in its hydraulic component, it is unlikely to produce small 
scale features well (e.g. bars around bends). 

Question 6: Within the model, how important are the inclusion of a variable discharge and 

curvature driven shear stress distribution for predictions of channel change through space 

and time? 

Numerous modifications were made to the model including allowing for variable channel 

widths and slopes and allowing Manning's n to update alongside changing grain size. Two 

of the most important modifications made to the model included: (1) incorporating variable 

hydrology; and (2) using curvature to redistribute shear stress laterally across the channel. 

Both are crucial parameters. As demonstrated during the field-based analysis, both are 

factors responsible for driving vertical and lateral channel change. Hydrology is essential 

for driving sediment transport and is therefore responsible for changes in bed level. It is 

also central to the bank erosion and channel narrowing components of the model which 

allow lateral changes to take place. The analysis also demonstrated the importance of using 

an hourly or sub-hourly hydrograph which captures peaks in flow. These peaks essentially 

drive vertical channel change and bank erosion. Low flows allow the channel to narrow, 

simulating the succession of vegetation onto the edges of channel bars. Curvature is also 

essential to the erosion and narrowing process and without it the model fails to simulate the 

channel dynamics around meander bends. These modifications turn a research tool for 

exploring downstream fining patterns and sediment transport processes into something 

which can simulate several years of vertical and lateral channel change. Thus it can be used 

for management purposes. 
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Question 7: What are the implications of changes in hydrology and river management for 

channel change and flood risk? 

The answer to question seven was determined using a series of model scenarios. The 

success and validity of these model outputs is partly based on the successful calibration of 

the model. Two findings were noted when the hydrology was altered in the scenario 

simulations: (1) increasing the magnitude and the frequency of flood events was found to 

have greater impact on lateral channel change than vertical channel change; although 

vertical changes do occur and lead to a reduction in the channel's capacity to hold flow; (2) 

increasing flow magnitude has a greater impact on channel change than increasing flood 

frequency. These findings demonstrate potential impacts of future climate change on 

upland systems. They also emphasise caution when using the average 2-year hydrology to 

predict bed level changes and lateral adjustments. 

When river engineering scenarios are explored, the results are somewhat unsurprising. 

Narrowing and straightening the channel in an attempt to prevent excessive bank erosion 

and high levels of sedimentation simply shifts the problem upstream and downstream of the 

engineered reach. Bank erosion upstream of the engineering reach is recorded at higher 

rates than the original bank erosion whilst aggradation downstream of the engineered reach 

is also substantial. Aggradation recorded in the downstream section resulted in a 16% loss 

in channel capacity and a 25 m^ s"' reduction in the discharge required to raise the flow 

stage to bank full. I f implemented, the engineering simulated in this scenario, is likely to 

have important implications for flood risk. These findings emphasise the negative impacts 

that river engineering schemes can have on a river system particularly i f coarse sediment 

transfer is not considered. 
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1 0 . 3 . 2 T H E M O D E L L I N G A P P R O A C H 

The fully developed research model couples TRIB (Ferguson et al, 2006), a one 

dimensional sediment routing model that simulates flow hydraulics and sediment transport, 

with a simple model of lateral channel change. The model is capable of simulating vertical 

bed level change, and downstream fining and asymmetrical lateral change including bank 

erosion and deposition. It is applicable to single-thread, meandering, coarse gravel-bed 

rivers. The modelling approach was essential to explore the potential impacts of different 

scenarios on channel change. Only inferences could be made from past observations. 

Whilst the field data demonstrate the channel changes resulting from the interaction of a 

range of factors, modelling enables the effects of any one factor to be explored. Yet the 

successful development and application of the model must largely be attributed to the 

comprehensive dataset collected ft-om the Wharfe. 

The volume and detail of input data and boundary conditions required to run the model are 

moderate but the availability of additional data to test and calibrate the model is valuable. 

Data required to run the model includes: (1) the channel width and left and right channel 

elevations for each node; (2) an estimate of the input grain size distribution which should 

ideally represent the coarser material in the upstream reaches; (3) information on the 

locations and relative contribution of any tributary inputs; (4) a variable hydrology with a 

small time-step; and (5) information on locations of bank protection. From this data the 

model derives additional boundary information including: (1) channel slope; (2) 

downstream variability in grain size; and (3) Manning's n fi-om the grain size. 

The model calculates the flow hydraulics using Manning's flow resistance law. This is used 

to calculate flow depth which alongside slope, determines the shear stress. Sediment 

transport is calculated using shear stress alongside the grain size characteristics (which are 

represented using eight grain size classes) within the Wilcock and Crowe (2003) surface 

based model of sediment transport. The sand boundary within the sediment transport 

equations, used to determine the critical shear stress threshold for the initiation of transport, 

was set at 8 mm. A fractional Exner equation for sediment continuity is used alongside the 
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sediment transport rates to calculate vertical bed level changes. The lateral sub-model 
coupled with the hydraulics and sediment transport, uses a split channel approach similar to 
Lancaster and Bras (2003) and Stark (2006). This enables lateral shear stress variability to 
be incorporated into the model as a function of side differences in flow depth. The average 
slope of the two channel sides is used. Further lateral distribution of shear stress is included 
into the model as a function of curvature. Bank erosion is simulated as a function of excess 
shear stress above a critical threshold similar to the Ikeda et al, 1981. Channel narrowing 
occurs at a constant rate when shear stress falls below a second, lower critical threshold. 
The model can simulate asymmetrical channel change in response to flow variability. 
Additional model features incorporated to improve the model's predictive abilities include: 
(1) a cap on the elevation differences to prevent excessive overdeepening and (2) the even 
distribution of sediment lost in the mid-channel region due to lateral change, to maintain 
sediment continuity. 

Some suggested improvements to the model, which may be important i f the model is 

applied over longer timescales or to different systems, include: (1) allowing curvature to 

update as bank erosion occurs; (2) incorporating material from the banks into the sediment 

transport calculations; and (3) an improved hydraulic component to include backwater 

effects and improve locations of aggradation and degradation. Furthermore the model and 

its simplistic nature may support the addition of a flood inundation sub-model to simulate 

the flood risk associated with channel change and a habitat sub-model to assess the impacts 

of channel changes on habitat availability. 

1 0 . 4 F I N A L C O N C L U D I N G R E M A R K S 

The combination of a field-based and modelling approach worked well in achieving the 

thesis aims. Observations from field data collection allowed a detailed analysis of sediment 

transfer and channel change processes to be made. Concurrently, data collected were used 

to develop and to apply the channel change model. This modelling approach enabled 

scenarios to be explored, thereby further exploring interactions between coarse sediment 

transfer, channel change, river engineering and flood risk in an upland gravel-bed river. 
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This research has highlighted that channel change in upland systems is a complex process 
that varies spatially and temporally and in response to a range of driving factors: mainly 
valley long profile, hydrology, sediment supply and river engineering. Extensive field 
monitoring is required to obtain sufficient data to explain and to understand past and 
present changes whilst modelling is an essential tool for exploring future changes with 
respect to hydrology (as a possible result of climate change) and river managing options. 
Even with adequate data and a robust modelling approach, confidence in understanding 
upland systems is limited. This again reflects the complexities involved in upland river 
systems and the inability to measure and model all aspects of the sediment transfer and 
channel change process. Future research is required to further develop our understanding of 
river system response in upland environments to changes in hydrology and sediment supply 
that are anticipated from future climate change (e.g. Stover and Montgomery, 2001; Lane et 
al., 2007). In particular research is required to explore the impacts of increases in coarse 
sediment delivery on channel change over the reach scale (i.e. 100 m to 10 km) and for sub-
annual to decadal time-scales. This would build on work over longer timescales (e.g. Knox 
2000; Coulthard et al., 2000; Macklin and Lewin, 2003). 

In addition, there is an overwhelming need to consider sediment transfer and channel 

change before river management decisions are made. This work has highlighted scope for 

further model exploration including: (1) simulating future climate change scenarios; (2) 

exploring the impacts of bed level rise on reach-scale downstream fining; and (3) the 

impacts of further human intervention in river systems, for example the construction of 

bridges. Increasing evidence also suggests that, where possible, hard engineering schemes 

should not be applied and river restoration should occur. This would allow river systems in 

upland environments to adjust naturally in response to changes in the discharge and 

sediment regimes imposed upon them. Yet, human pressures on upland floodplains often 

makes the "doing nothing" approach unfeasible. Attention should therefore concentrate on 

managing sediment sources in an attempt to reduce downstream sedimentation and its 

associated problems. 
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These surveys have been reduced in size as they were hand drawn onto A3 paper. 
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Section Yorkshire Water Heritage and Arup J B A 
Authority Newson 

10 1982 2000 
20 1982 2000 
30 1982 2000 
40 1982 
50 1982 2000 
60 
70 2000 
80 2000 
90 2000 
100 1982 1989 1997 
110 1982 1989 1997 
120 2000 
130 1982 
140 
150 1982 1999 2000 
160 1982 1989 1997 1999 2000 
170 1982 
180 1982 
190 1982 2000 
200 
210 
220 1 
230 1982 1999 
240 1982 1989 1997 1999 2000 
250 
260 2000 
270 1982 
280 1982 1 
290 1982 1 2000 
300 1982 
310 
320 1982 2000 
330 1982 1989 1997 
340 1982 2000 
350 
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370 2000 
380 2000 
390 2000 
400 1 1999 
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450 1999 
460 1999 
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480 1999 
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540 2000 
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560 2000 
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Reid, (2004) Waterhouse 
Section Survey 1 | Survey 2 | Survey 3 | Survey 4 Survey 5 Survey 6 Survey 7 Survey 8 Survey 9 Survey 10 | Survey 11 Survey 12 

10 08-Dec-01 19-Mar-02 12-Dec-02 15-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 06-May-05 17-Jan-06 12-Apr-06 9th-Jan-07 9tti-July-07 
20 08-Dec-01 19-Mar-02 12-Dec-02 15-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 - - - - -
30 15-Dec-01 19-Mar-02 12-Dec-02 15-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 06-May-05 08-Dec-05 12-Apr-06 9th-Jan-07 -
40 15-Dec-01 19-Mar-02 12-Dec-02 15-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 06-May-05 08-Dec-05 12-Apr-06 9th-Jan-07 -
50 13-Dec-01 16-Mar-02 12-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 06-May-05 08-Dec-05 12-Apr-06 9th-Jan-07 -
60 13-Dec-01 19-Mar-02 12-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 06-May-05 08-Dec-05 12-Apr-06 9tti-Jan-07 9th-July-07 
70 13-Dec-01 16-Mar-02 12-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 26-Jan-05 19-Apr-05 01-Dec-05 12-Apr-06 9th-Jan-07 9th-July-07 
80 13-Dec-01 [ 19-Mar-02 12-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 26-Jan-05 07-May-05 01-Dec-05 12-Apr-06 9th-Jan-07 9th-July-07 
90 13-Dec-01 1 10-Mar-02 12-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 26-Jan-05 07-May-05 24-Jan-06 10-Apr-06 8th-Jan-07 9th-July-07 
100 09-Dec-01 16-Mar-02 13-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 07-May-05 24-Jan-06 10-Apr-06 1 8th-Jan-07 -
110 09-Dec-01 1 10-Mar-02 13-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 07-May-05 17-Jan-06 10-Apr-06 1 8th-Jan-07 9th-July-07 
120 13-Dec-01 1 17-Mar-02 13-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 07-May-05 24-Jan-06 10-Apr-06 8th-Jan-07 -
130 15-Dec-01 i 17-Mar-02 13-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 07-May-05 17-Jan-06 10-Apr-06 8th-Jan-07 -
140 13-Dec-01 17-Mar-02 13-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 07-May-05 17-Jan-06 10-Apr-06 8th-Jan-07 10-Jul-07 
150 13-Dec-01 1 17-Mar-02 20-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 19-Apr-05 01-Dec-05 12-Apr-06 9th-Jan-07 10-Jul-07 
160 15-Dec-01 1 17-Mar-02 20-Dec-02 13-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 07-May-05 24-Jan-06 12-Apr-06 9th-Jan-07 -
170 16-Dec-01 1 10-Mar-02 20-Dec-02 15-Mar-03 15-Dec-03 13-Mar-04 23-Jan-05 19-Apr-05 17-Jan-06 12-Apr-06 9th-Jan-07 10-Jul-07 
180 16-Dec-01 [ 10-Mar-02 13-Dec-02 15-Mar-03 15-Dec-03 13-Mar-04 22-Jan-05 07-May-05 17-Jan-06 12-Apr-06 9th-Jan-07 9th-July-07 
190 16-Dec-01 10-Mar-02 20-Dec-02 15-Mar-03 15-Dec-03 13-Mar-04 22-Jan-05 07-May-05 01-Dec-05 10-Apr-06 8th-Jan-07 9th-July-07 
200 09-Dec-01 10-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 13-Mar-04 24-Jan-05 19-Apr-05 01-Dec-05 10-Apr-06 8th-Jan-07 9Ul-July-07 
210 14-Dec-01 11-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 13-Mar-04 24-Jan-05 19-Apr-05 01-Dec-05 10-Apr-06 8th-Jan-07 10-Jul-07 
220 09-Dec-01 10-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 19-Apr-05 01-Dec-05 10-Apr-06 8th-Jan-07 -
230 16-Dec-01 11-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 27-Apr-05 01-Dec-05 10-Apr-06 8th-Jan-07 9th-July-07 
240 16-Dec-01 ! 11-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 27-Apr-05 01-Dec-05 10-Apr-06 8th-Jan-07 -
250 09-Dec-01 ! 11-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 14-Mar-04 22-Jan-05 27-Apr-05 08-Dec-05 10-Apr-06 8th-Jan-07 -
260 14-Dec-01 i 12-Mar-02 ' 20-Dec-02 15-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 27-Apr-05 08-Dec-05 30-Mar-06 8th-Jan-07 9th-July-07 
270 09-Dec-01 1 12-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 27-Apr-05 08-Dec-05 30-Mar-06 20th-Dec-06 IO-Jul-07 
280 14-Dec-01 11-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 14-Mar-04 22-Jan-05 00-Jan-OO 08-Dec-05 30-Mar-06 20tti-Dec-06 10-Ju^07 
290 14-Dec-01 1 12-Mar-02 20-Dec-02 15-Mar-03 18-Dec-03 14-Mar-04 22-Jan-05 - 08-Dec-05 30-Mar-06 20tti-Dec-06 9th-July-07 
300 14-Dec-01 1 11-Mar-02 20-Dec-02 17-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 27-Apr-05 01-Dec-05 30-Mar-06 20th-Dec-06 9th-July-07 
310 14-Dec-01 j 12-Mar-02 20-Dec-02 17-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 08-Dec-05 30-Mar-06 20th-Dec-06 -
320 14-Dec-01 1 12-Mar-02 20-Dec-02 17-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 08-Dec-05 30-Mar-06 20th-Dec-06 10-Jul-07 
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330 15-Dec-01 1 13-Mar-02 20-Dec-02 17-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 01-Dec-05 30-Mar-06 20th-Dec-06 IO-Jul-07 

340 15-Dec-OI ! 13-Mar-02 20-Dec-02 17-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 07-Dec-05 30-Mar-06 20th-Dec-06 10-JuW7 

350 15-Dec-01 11-Mar-02 20-Dec-02 17-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 07-Dec-05 30-Mar-06 20th-Dec-06 IO-Jul-07 

360 15-Dec-01 13-Mar-02 12-Dec-02 17-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 07-Dec-05 12-Apr-06 9th-Jan-07 -
370 15-Dec-OI 11-Mar-02 12-Dec-02 17-Mar-03 18-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 07-Dec-05 12-Apr-06 9th-Jan-07 IO-Jul-07 

380 12-Dec-02 17-Mar-03 17-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 07-Dec-05 30-Mar-06 20th-Dec-06 04-JUI-07 

390 11-Dec-02 17-Mar-03 17-Dec-03 14-Mar-04 24-Jan-05 26-Apr-05 07-Dec-05 30-Mar-06 20th-Dec-06 04-JUI-07 

400 1 11-Dec-02 17-Mar-03 17-Dec-03 14-IVIar-04 25-Jan-05 26-Apr-05 07-Dec-05 24-Apr-06 20th-Dec-06 04-JUI-07 

410 I 11-Dec-02 17-Mar-03 17-Dec-03 14-Mar-04 26-Jan-05 26-Apr-05 07-Dec-05 24-Apr-06 | 20th-Dec-06 04-JUI-07 

420 11-Dec-02 17-Mar-03 17-Dec-03 14-Mar-04 26-Jan-05 26-Apr-05 07-Dec-05 24-Apr-06 20th-Dec-06 04-JUI-07 

430 12-Dec-02 10-Mar-03 17-Dec-03 14-Mar-04 26-Jan-05 27-Apr-05 07-Dec-05 24-Apr-06 20th-Dec-06 04-Jul-07 

440 12-Dec-02 10-Mar-03 17-Dec-03 14-Mar-04 26-Jan-05 27-Apr-05 07-Dec-05 24-Apr-06 20th-Dec-06 -
450 12-Dec-02 10-Mar-03 17-Dec-03 14-IVIar-04 26-Jan-05 27-Apr-05 07-Dec-05 24-Apr-06 19th-Dec-06 04-Jul-07 

460 12-Dec-02 10-Mar-03 17-Dec-03 17-Apr-04 26-Jan-05 27-Apr-05 07-Dec-05 24-Apr-06 19th-Dec-06 04-JUI-07 

470 I 12-Dec-02 10-Mar-03 17-Dec-03 17-Apr-04 26-Jan-05 27-Apr-05 07-Dec-05 24-Apr-06 19th-Dec-06 06-JUI-07 

480 I 12-Dec-02 10-Mar-03 17-Dec-03 17-Apr-04 26-Jan-05 27-Apr-05 07-Dec-05 24-Apr-06 19th-Dec-06 06-Jul-07 

490 1 13-Dec-02 10-Mar-03 17-Dec-03 17-Apr-04 26-Jan-05 27-Apr-05 08-Dec-05 24-Apr-06 19th-Dec-06 -
500 ! 13-Dec-02 10-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 06-May-05 08-Dec-05 12-Apr-06 9th-Jan-07 9th-July-07 

510 1 13-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 01-Dec-05 12-Apr-06 9th-Jan-07 06-Jul-07 

520 13-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19th-Dec-06 06-Jul-07 

530 1 13-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19th-Dec-06 06-Jul-07 

540 1 18-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19th-Dec-06 06-JUI-07 

550 1 18-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19th-Dec-06 06-Jul-07 

560 1 18-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19th-Dec-06 06-JUI-07 

570 1 ! 18-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19th-Dec-06 -
580 i l8-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19th-Dec-06 06-JUI-07 

590 1 18-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19th-Dec-06 06-JUI-07 

600 1 l8-Dec-02 11-Mar-03 17-Dec-03 17-Apr-04 25-Jan-05 17-Apr-05 30-NOV-05 29-Mar-06 19tti-Dec-06 -
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C r o s s - Distance from Distance from Active channei Elevation Bed 
section previous (m) 010 (m) width (m) (O.D.) slope 

010 0 0 23 233.5 
020 74.0 74.0 12 233.1 0.005 
030 262.7 336.7 14.7 231.4 0.006 
040 199.4 536.1 15 230.3 0.006 
050 214.2 750.3 13.8 226.9 0.016 
060 37.2 787.5 12.9 225.8 0.030 
070 29.4 816.9 15 226.5 -0.024 
080 31.5 848.4 19.8 226.5 0.000 
090 50.0 898.4 20.4 226.8 -0.006 
100 61.5 959.9 16.6 226.1 0.011 
110 46.4 1006.3 20.8 225.8 0.006 
120 42.2 1048.5 16.6 224.9 0.021 
130 52.1 1100.6 21.5 225.6 -0.013 
140 33.1 1133.7 22.4 225.4 0.006 
150 73.6 1207.3 14.4 224.3 0.015 
160 117.4 1324.7 14.9 223.5 0.007 
170 162.5 1487.2 18.4 223.7 -0.001 
180 138.4 1625.6 15.6 223.1 0.004 
190 78.9 1704.5 12.7 222.2 0.011 
200 119.3 1823.8 13.5 221.7 0.004 
210 30.4 1854.2 13.7 221.1 0.020 
220 42.4 1896.6 19.5 221.7 -0.014 
230 47.3 1943.9 23 221.3 0.008 
240 31.2 1975.1 17.0 221.3 0.000 
250 51.9 2027.0 16.7 220.8 0.010 
260 70.4 2097.4 12.3 220.1 0.010 
270 37.9 2135.3 14.8 220.2 -0.003 
280 89.5 2224.8 12.9 220.5 -0.003 
290 116.0 2340.8 15.2 219.8 0.006 
300 73.1 2413.9 18.6 219.5 0.004 
310 61.3 2475.2 17.5 219.1 0.007 
320 57.3 2532.5 18.5 219.1 0.000 
330 94.7 2627.2 19.2 218.9 0.002 
340 123.2 2750.4 16.9 217.9 0.008 
350 139.6 2890 32.5 217.1 0.006 
360 88.1 2978.1 17.3 216.9 0.002 
370 29.8 3007.9 19.2 216.6 0.010 
380 56.4 3064.3 17.3 216.7 -0.002 
390 125.5 3189.8 19.9 216.7 0.000 
400 122.4 3312.2 22.1 216.7 0.000 
410 105.6 3417.8 28.2 216.6 0.001 
420 42.7 3460.5 33 216.0 0.014 
430 141.2 3601.7 22,7 215.9 0.001 
440 201.9 3803.6 19 215.5 0.002 
450 202.1 4005.7 20.6 215.3 0.001 
460 67.4 4073.1 25.3 214.7 0.009 
470 115.6 4188.7 16.1 214.3 0.003 
480 128.3 4317 16.9 214.5 -0.002 
490 178.4 4495.4 17.4 214.2 0.002 
500 95.9 4591.3 24.4 213.4 0.008 
510 102.4 4693.7 21.4 213.5 -0.001 
520 120.0 4813.7 16.4 213.1 0.003 
530 84.7 4898.4 13.2 212.9 0.002 
540 112.1 5010.5 12.5 213.0 -0.001 
550 86.2 5096.7 15.5 212.8 0.002 
560 11.9 5108.6 15.5 212.6 0.017 
570 110.0 5218.6 17.3 212.4 0.002 
580 121.2 5339.8 17.8 212.7 -0.002 
590 142.5 5482.3 12.6 212.7 0.000 
600 123.6 5605.9 12.6 212.6 0.000 
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% finer than D (mm) 010 Surf 010 Active 040 Surf 040 Active 080 Surf 080Active 
724 100.0 100.0 100.0 100.0 100.0 100.0 
512 99.5 100.0 100.0 100.0 100.0 100.0 
362 97.5 98.5 99.0 99.4 100.0 100.0 
256 94.5 96.6 95.5 97,2 100.0 100.0 
181 87.5 91.5 90.0 93.4 99.5 99.7 
128 72.0 78.9 81.5 86.8 92.5 95.0 
90.5 49.5 58.4 57.0 65.5 82.5 87.5 
64 30.0 38.6 31.5 40.7 66.0 73.7 

45.3 14.5 21.0 16.0 23.8 42.1 51.2 
32 5.0 9.0 8.0 14.1 22.6 30.8 

22.6 0.5 2.6 3.5 8.0 8.1 13.9 
16 0.0 1.8 1.5 5.0 2.6 6.7 

11.3 0.0 1.8 0.0 2.4 0.6 3.8 
8 0.0 1.8 0.0 2.4 . 0.1 3.0 

D50 91.3 79.2 83.2 74.0 57.5 44.5 
084 169.0 149.6 147.3 143.6 96.0 83.8 

% finer than D (mm) 160 Surf 160 Active 190 Surf 190 Active 220 Surf 220 Active 
724 100.0 100.0 100.0 100.0 100.0 100.0 
512 100.0 100.0 100.0 100.0 100.0 100.0 
362 100.0 100.0 100.0 100.0 100.0 100.0 
256 99.5 99.7 100.0 100.0 100.0 100.0 
181 99.0 99.4 99.0 99.6 100.0 100.0 
128 93.1 95.3 94.1 97.4 99.0 99.4 
90.5 77.7 83.6 80.8 90.0 86.7 90.5 
64 59.8 68.3 62.6 77.2 67.1 74.7 

45.3 39.5 48.8 41.4 58.7 46.0 55.8 
32 18.7 26.6 22.7 38.3 24.9 34.6 

22.6 6.8 12.3 9.4 20.2 14.1 22.4 
16 2.3 6.4 4.0 11.0 6.2 12.6 

11.3 0.9 4.2 2.0 6.8 2.8 7.8 
8 0.9 4.2 1.5 5.5 1.8 6.3 

D50 54.9 46.4 52.9 39.6 48.8 47.7 
084 705.9 97.9 9 9 5 78.7 86.8 795 

% finer than D (mm) 290 Surf 290 Active 330 Surf 330 Active 350 Surf 350 Active 
724 100.0 100.0 100.0 100.0 100.0 100.0 
512 100.0 100.0 100.0 100.0 100.0 100.0 
362 100.0 100.0 100.0 100.0 100.0 100.0 
256 100.0 100.0 100.0 100.0 100.0 100.0 
181 99.0 99.4 99.5 99.7 99.5 99.7 
128 93.6 96.0 96.6 97.9 95.2 97.1 

90.5 86.1 90.9 88.2 92.2 85.5 90.7 
64 74.3 81.6 77.0 83.5 74.8 82.8 

45.3 54.5 64.4 54.9 64.6 59.8 70.3 
32 29.2 39.8 27.5 38.3 36.6 48.7 

22.6 13.4 22.6 13.3 23.1 20.8 32.4 
16 7.5 15.4 8.8 17.8 10.6 20.6 

11.3 5.5 12.7 5.4 13.2 4.8 13.1 
8 2.5 8.2 3.0 9.6 3.4 11.0 

O50 42.9 37.5 42.9 37.9 3 9 7 32.8 
084 85.7 70.8 80.5 65.4 86.8 68.7 



A P P E N D I X III: G R A I N SIZE D I S T R I B U T I O N S 395 

% finer than 0 (mm) 390 Surf 390 Active 410 Surf 410 Active 430 Surf 430 Active 
724 100.0 100.0 100.0 100.0 100.0 100.0 
512 100.0 100.0 100.0 100.0 100.0 100.0 
362 100.0 100.0 100.0 100.0 100.0 100.0 
256 100.0 100.0 100.0 100.0 100.0 100.0 
181 100.0 100.0 100.0 100.0 100.0 100.0 
128 98.6 99.2 100.0 100.0 99.5 99.7 

90.5 92.8 95.4 95.7 97.2 96.2 97.6 
64 75.0 82.5 78.9 85.3 82.4 88.0 

45.3 54.8 66.1 59.3 69.6 62.8 72.7 
32 38.9 51.7 36.3 49.1 38.0 51.1 

22.6 23.5 36.2 19.0 31.9 19.4 33.0 
16 11.0 22.0 10.9 22.9 8.5 21.0 

11.3 5.3 14.7 6.6 17.5 5.6 17.6 
8 3.8 12.7 4.2 14.2 4.7 16.3 

D50 41.3 31.0 39.9 32.6 38.4 31.4 
D84 77.4 67.1 72.0 62.5 67.1 59.7 

% finer than D (mm) 460 Surf 460 Active 480 Surf 480 Active 510 Surf 510 Active 
724 100.0 100.0 100.0 100.0 100.0 100.0 
512 100.0 100.0 100.0 100.0 100.0 100.0 
362 100.0 100.0 100.0 100.0 100.0 100.0 
256 100.0 100.0 100.0 100.0 100.0 100.0 
181 100.0 100.0 100.0 100.0 100.0 100.0 
128 100.0 100.0 100.0 100.0 100.0 100.0 
90.5 99.0 99.5 100.0 100.0 99.5 99.8 
64 95.7 97.3 98.6 99.1 94.2 96.7 

45.3 76.9 84.1 81.5 87.4 82.0 89.1 
32 56.2 67.9 62.0 72.5 66.9 78.5 

22.6 33.1 47.6 31.2 46.2 49.4 64.8 
16 16.3 31.0 13.6 29.4 29.0 46.9 

11.3 7.1 21.0 7.0 22.3 13.4 31.6 
8 5.2 18.7 5.6 20.6 6.1 23.7 

050 29.5 23.7 28.3 24.0 22.9 77,7 
D84 52.4 45.2 48.0 42.2 48.4 38.9 

% finer than D (mm) 540 Surf 540 Active NB: Surf: surface layer 
724 100.0 100.0 Active: active layer 
512 100.0 100.0 
362 100.0 100.0 
256 100.0 100.0 
181 100.0 100.0 
128 100.0 100.0 
90.5 99.0 99.5 
64 93.3 96.4 

45.3 82.8 90.0 
32 65.5 78.3 

22.6 48.8 65.6 
16 29.6 49.3 

11.3 15.7 36.1 
8 6.6 26.5 

DSO 23.3 76.3 
D84 47.5 38.5 



A P P E N D I X I V : S E D I M E N T B U D G E T 

distance Dec02-Apr03 Apr-03-Dec03 Dec03-Apr04 Apr04 -JanOS JanOS-ArpOS Apr05-Dec05 DecOS-AprOB AprOSvlanO? Jan07-July07 
downstream A V Vi AV Vi AV Vi AV Vi AV Vi AV Vi AV Vi AV VI AV Vi 

0 to 331.3 258 -1176 442 3030 811 5811 60 -294 -190 7 159 1409 106 1629 -119 -1071 -23 1251 
530.8 -107 -1435 579 2588 345 5000 202 -354 15 197 -109 1250 70 1523 -137 -952 0 1274 
743 -324 -1328 637 2009 223 4655 242 -557 167 182 -227 1358 31 1454 151 -815 0 1274 

777.5 -35 -1003 5 1372 5 4432 51 -799 49 15 -63 1585 75 1423 16 -966 0 1274 
808.6 12 -968 -81 1367 0 4427 66 -850 55 -34 -59 1648 72 1347 -11 -982 2 1274 
836.8 -27 -981 -10 1448 40 4427 -19 -916 57 -88 -18 1707 12 1275 -8 -971 -7 1272 
882 -65 -954 61 1458 99 4387 -131 -896 53 -145 -7 1725 29 1263 0 -963 -31 1279 

942.5 37 -889 84 1397 82 4288 -80 -765 -13 -198 -24 1732 54 1234 -2 -963 3 1310 
982.2 45 -926 88 1312 48 4206 5 -685 6 -186 -29 1756 20 1180 20 -961 16 1307 
1025.6 21 -971 103 1224 58 4158 18 -691 61 -191 -40 1785 19 1159 54 -981 11 1291 
1078.2 42 -992 91 1121 55 4100 21 -708 27 -252 -7 1825 -22 1141 40 -1035 13 1281 
1110.2 -34 -1035 67 1030 34 4044 82 -730 -58 -280 23 1831 -16 1163 -23 -1074 0 1268 
1183.4 -176 -1001 176 964 95 4010 173 -812 5 -221 47 1809 -1 1179 -119 -1051 11 1268 
1302.7 -38 -825 254 787 174 3915 111 -985 3 -227 -21 1762 47 1180 -75 -932 96 1257 
1493.3 19 -787 277 533 156 3741 46 -1096 -124 -230 -15 1783 -69 1133 145 -856 124 1161 
1632.7 102 -805 -73 257 -18 3585 -197 -1142 43 -106 225 1798 -155 1202 75 -1001 -A2 1037 
1713.4 65 -908 -98 330 -53 3603 -20 -945 -50 -149 171 1573 -50 1357 -17 -1077 -34 1079 
1830.2 29 -972 89 428 -152 3656 -53 -925 -71 -98 131 1402 76 1407 -135 -1060 11 1113 
1856.9 42 -1002 -53 339 -30 3808 9 -873 -32 -28 40 1271 53 1331 -30 -925 -2 1103 
1892.8 55 -1043 -122 393 20 3838 39 -882 22 4 -19 1231 62 1278 -5 -895. -20 1105 
1944.1 63 -1099 -68 515 111 3818 47 -920 90 -18 -84 1250 73 1216 -80 -890 -13 1125 
1974.3 21 -1161 21 583 15 3706 74 -967 13 -107 -8 1334 29 1143 -33 -810 53 1138 
2024.6 -9 -1182 91 562 8 3691 56 -1040 22 -120 -16 1342 23 1114 24 -777 88 1085 
2094.1 -60 -1173 34 471 -79 3683 -56 -1096 -33 -142 51 1358 10 1091 67 -801 0 997 
2131.1 -44 -1113 5 437 -109 3762 27 -1040 -37 -109 49 1307 -13 1080 9 -868 2 997 
2223.7 -20 -1069 -40 432 -73 3870 144 -1068 -9 -72 57 1258 -20 1093 -53 -877 75 995 
2335 -94 -1049 -34 472 10 3943 65 -1212 86 -63 13 1201 5 1113 29 -824 91 919 

2406.6 -47 -954 -5 506 27 3932 31 -1277 97 -148 ^ 6 1187 -36 1108 34 -853 -6 828 
2471.4 206 -907 38 512 224 3906 -35 -1307 -159 -245 -33 1233 -3 1144 30 -887 -12 835 
2524.1 130 -1113 -22 474 241 3682 -114 -1273 -178 -86 33 1266 70 1147 ^ 9 -917 -2 847 
2612.6 -86 -1243 15 496 99 3441 -135 -1158 -144 92 154 1232 113 1078 -90 -869 61 849 
2741.3 -75 -1157 93 481 92 3342 -74 -1024 -213 235 245 1078 17 965 0 -778 68 789 
2867.5 -113 -1082 -77 388 625 3251 -215 -950 112 448 77 833 102 947 -101 -779 15 721 
2947 -71 -969 -134 465 337 2626 -64 -735 107 336 47 756 52 845 -28 -678 103 706 

2973.7 5 -898 -83 598 12 2289 16 -671 11 229 25 709 -16 793 6 -650 27 603 



A P P E N D I X IV: S E D I M E N T B U D G E T 397 

distance Dec02-Apr03 Apr-03-Dec03 Dec03-Apr04 Apr04 -JanOS JanOS-ArpOS Apr05-Dec05 Dec05-Apr06 Apr06-Jan07 Jan07-July07 
downstream AV Vi AV Vi AV Vi AV Vi AV Vi AV Vi AV Vi AV Vi AV Vi 

3030.6 4 -903 -85 681 -34 2277 53 -687 32 218 28 684 16 809 -26 -656 -1 575 
3153.6 91 -907 -103 766 -74 2311 41 -739 -38 187 130 655 73 792 -53 -630 -44 576 
3274.2 127 -998 -184 870 78 2385 -34 -780 -70 224 154 525 63 720 -96 -577 -3 621 
3377.3 -31 -1125 -73 1054 54 2307 -16 -747 30 294 75 371 70 656 -92 -481 6 624 
3410.5 -38 -1095 16 1127 20 2253 11 -730 5 264 -6 296 -12 586 16 -390 -11 618 
3682.7 -247 -1057 148 1111 488 2234 -211 -742 26 259 -6 302 -1 598 72 ^ 0 6 104 628 
3833.7 -27 -810 -30 963 273 1746 -217 -530 -121 233 183 308 217 599 -162 -478 132 524 
3938.9 -93 -782 131 993 42 1472 -108 -313 21 354 122 124 81 383 -21 -316 45 392 
4002.5 -121 -690 91 861 65 1430 7 -206 73 334 40 3 -4 302 27 -295 -15 347 
4112.9 -195 -569 43 771 151 1366 3 -212 -31 260 106 -38 82 306 10 -322 -39 362 
4240.8 -248 -374 165 728 152 1215 -19 -215 -85 292 129 -144 98 224 -39 -332 8 401 
4424.9 -270 -125 219 564 297 1063 48 -196 49 377 114 -273 -118 126 21 -292 48 392 
4511.2 33 144 50 345 247 765 -87 -244 43 328 31 -387 -11 244 -44 -313 7 344 
4601.3 16 112 113 295 204 519 -5 -156 5 285 -25 -418 74 254 -97 -270 66 338 
4715.8 1 95 69 182 49 315 -34 -151 183 280 -177 -392 83 180 -91 -173 13 271 
4801.4 29 94 -22 113 7 266 -75 -117 209 97 -197 -215 70 97 -81 -82 -7 259 
4913.2 -14 65 3 135 147 259 -183 -42 89 -112 -77 -18 33 28 11 -1 103 265 
4996.1 -27 78 41 131 135 112 -86 141 -89 -201 -5 59 37 -5 46 -12 23 162 
5108.9 -77 105 208 90 -13 -23 64 227 -138 -113 -25 64 34 -42 -58 -58 -33 139 
5217.8 -72 182 167 -118 49 -10 0 163 -46 26 26 89 -45 -76 5 0 16 172 
5331.7 12 254 1 -285 97 -60 9 163 -77 72 60 63 -32 -31 77 -5 44 156 
5462.3 117 242 -140 -285 -17 -156 -2 154 22 149 20 2 -9 1 -28 -82 5 112 
5586.4 125 125 -146 -146 -139 -139 156 156 127 127 -17 -17 10 10 -54 -54 107 107 
output 0 0 0 0 0 0 0 0 0 0 

Where AV is the volumetric storage in each cross-sectional reach and Vj is the volumetric input into each reach calculated using [6.2] in 
Section 6.3. All values are m .̂ 

The two lines across the data represent the location of the tributaries where 0.3% (Cray Beck) and 0.8% (Buckden Beck) of sediment is 
removed from the budget. 


