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Abstract 
M O D E R N A P P R O A C H E S T O T H E E X C H A N G E - C O R R E L A T I O N P R O B L E M 

Kohn-Sham density functional theory ( D F T ) is the most prevalent electronic 
structure method in chemistry. Whils t formally exact, in practice i t affords 
reasonable accuracy wi th reasonable computational cost and is the method 
of choice when considering molecules of non-trivial size. The key quantity 
is the exchange-correlation energy functional, the exact form of which is un­
known. Approximate exchange-correlation functionals, particularly B3LYP 
and PBE, are routinely applied to chemical problems. However, i t is not pos­
sible to guarantee a given accuracy in advance, nor is there a systematic means 
of obtaining a more accurate answer. Existing functionals are applied to ever 
more challenging problems and the accuracy required of them is continually 
increasing—the need for more accurate functionals is one of the major chal­
lenges in electronic structure theory. This thesis focuses on several approaches 
that attempt to address this issue. 

In chapter 1 the electronic structure problem is outlined and discussed 
in terms of the Schrodinger equation and solutions involving wavefunctions. 
In chapter 2, the formal foundations of D F T are presented and methods of 
approximating the exchange-correlation functional are introduced. 

A promising new direction for developing exchange-correlation functionals, 
through attenuation of the exchange term, is introduced and discussed in detail 
in chapter 3. The accuracy of such functionals is investigated and compared 
to that obtained f rom conventional approaches, w i t h a particular emphasis on 
the dependence on the attenuation parameters. I t is then demonstrated that 
attenuated functionals offer the prospect of significantly improved descriptions 
of excitation energies, particularly for those of charge-transfer character. 

Apphcation of attenuated functionals to excitation energies that are prob­
lematic for conventional functionals is undertaken in chapter 4. Insight into the 
conflicting performance of conventional methods for different charge-transfer 
excitations is provided through a consideration of the orbi ta l overlap between 
the orbitals involved in an excitation. Through this overlap quantity, a diag­
nostic test is proposed that enables a user to judge in advance the reliability 
of excitation energies f rom conventional functionals. 

Attenuated functionals are then applied to other diff icul t properties in 
chapter 5. First ly they are used to study the bond length alternation and 
band gap in polyacetylene and polyyne oUgomers and infini te chains. Then 
they are used to calculate nuclear magnetic resonance parameters in both 
main-group and first-row transition metal systems, through the theoretically 
rigorous optimised effective potential method. 

A n entirely different approach to functional development is considered in 
chapter 6, where the adiabatic connection formalism is introduced as an alter­
native method of obtaining the exchange-correlation functional. For a series of 
two-electron systems, exact input data is used to determine the applicability of 
a number of simple mathematical forms in modelling the exact adiabatic con­
nection. The conclusions f rom these simple systems are then used to provide 
insight into the possibility of using this approach in functional development. 
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C H A P T E R 

Quantum mechanics 
Quantum mechanics is introduced as a solution to the failure of clas­

sical Newtonian mechanics in describing atomic-scale interactions, 

through the Schrodinger equation. The wavefunction arises naturally 

from this. The wavefunction's importance is then highlighted as the 

basis of a hierarchy of methods used for solving problems in theoretical 

chemistry, and some of the techniques used to solve these equations 

in practice are presented. The benefits and pitfalls of such methods 

are discussed to justify the consideration of methods which dispense 

with the wavefunction entirely. 

I think I can safely say that no one 

understands quantum mechanics 

Richard Feynman 

1.1 QUANTISATION AND THE SCHRODINGER EQUATION 

Newtonian mechanics allowed the universe to be described by a series of equa­

tions. Physicists became complacent in the 2 0 0 years following Newton's 

publication of Principia, believing that i t could describe everything in the 

universe; Laplace went so far as to claim that given appropriate information 

of all the particles in the universe at an instant in t ime, he could predict both 

the entirety of history and the future. The universe had other ideas. 

1 



QUANTISATION AND THE SCHRODINGER EQUATION • 2 

Modelling reality: quantisation 

There are physical phenomena associated wi th electromagnetic (EM) radiation 

and atoms that cannot be adequately explained through Newtonian (classical) 

mechanics. Light demonstrates many wave-like properties. However, when 

Rayleigh applied statistical mechanics to the energy distr ibution of black-

body radiation, he found that not only was the result counter to what is 

experimentally observed, an infinite amount of energy would be concentrated 

at the highest frequencies of E M radiation. Planck, in 1901,^ proposed that 

E M radiation is absorbed and emitted only in discrete amounts of definite 

size, or quanta. Applicat ion of the same statistical mechanics to this model 

gave results in remarkable agreement w i t h experiment. 

Einstein later elaborated on this quantisation of light^ by suggesting i t 

consisted of discrete packets of energy, to demonstrate that the transfer of 

energy between light and metals occurred in packeted, quantised amounts, 

hence explaining the photoelectric effect. Bohr"^ proposed the quantisation 

of orbital angular momentum in atoms, explaining atomic spectra and the 

stability of atoms. Al though their work could be considered as merely patching 

Newtonian mechanics, i t paved the way for the 'New Quantum Theory', and 

i t highlights the importance of the symbiotic relationship between theory and 

experiment. 

1 9 2 4 saw de Broglie" hypothesise that all particles possessed a wavelength, 

but that only those wi th sufficiently small momenta (such as electrons) have 

observable wave-hke properties. This suggested that i t would be possible to 

describe particulate motion using a wave equation. I n 1 9 2 5 Heisenberg^ de­

veloped what later became known as matr ix mechanics, which would prove 

equivalent to Schrodinger's wave equation, and later Feynman's path integral^ 

formulation. For brevity we shall focus on the Schrodinger formulation. 1 9 2 6 

saw Schrodinger^"^^ produce a wave equation f rom which quantisation arises 

naturally, and that describes the f u l l dynamical motion of quantised systems, 

in the non-relativistic l imi t . I t was obtained by considering Hamilton's ob­

servation of a l ink between mechanics and optics—that the zero-wavelength 

l imi t of an optics problem corresponded to a mechanical system. Using Hamil­

ton's observation, coupled w i t h de Broglie's relations and by ensuring that the 



SIMPLIFYING THE SCHRODINGER EQUATION 

zero-wavelength l imi t of the equation satisfied the motion as determined by 

Newtonian mechanics for a plane wave, the time-dependent Schrodinger equa­

tion was obtained. I t provides a coherent method of describing the interactions 

of non-relativistic fundamental particles. The interested reader is referred to 

refs. 13 and 14 for general discussion. 

Relativistic consequences 

From this point, we concern ourselves primari ly w i t h the interactions of elec­

trons and nuclei. Spin is essential i n a description of such interactions since 

electrons are fermions of spin 1/2. Schrodinger's equation does not predict 

fundamental particle spin—this arises mathematically f r o m special relativity, 

which is not accounted for in the Schrodinger Equation. Spin is necessarily 

added as a variable by allowing an additional degree of freedom which takes 

discrete values. The resultant equation is consistent w i t h the non-relativistic 

l imi t of the Dirac equation^^- (which does satisfy the requirements of special 

relativity, hence spin naturally arises). 

Since the Schrodinger equation does not account for special-relativistic 

effects, i t is itself an approximation. Such effects however are important gen­

erally only for species which have a high nuclear charge. Whi ls t i t is possible 

to add on relativistic effects through various methods,^' in the context of this 

thesis such approaches are an unnecessary complication. Prom this point we 

shall be content w i t h simplifying the equation we need to solve. 

1.2 SIMPLIFYING THE SCHRODINGER EQUATION 

We begin w i t h the time-dependent Schrodinger equation, 

- ^ / l ^ = 4 e n V ' ( x ^ ^ ) , (1.1) 

where ip is the wavefunction, x is a co-ordinate accounting for position r and 

particle spin 5, t is time, and p a particle index such that x ' ' = x i , . . . , Xp. I f 

we consider this w i t h a generic many body Hamiltonian, 

^^en = - E ^ ^ ; + ^(^''*)' (1-2) 
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with V a potential, h Planck's constant, and rrip the particle mass, i t is not 

in general soluble, at least analytically. Approximations are required. Here 

we present these approximations and jus t i fy them in terms of arriving at a 

(more) soluble problem which sti l l includes the required physical content. 

Removing time-dependence 

The first approximation is the removal of time-dependence. I f the system does 

not have any contributions to the external potential except those f rom the nu­

clei of the constituent atoms, the Hamiltonian w i l l not depend on time. In 

such a case the time-dependence may be separated into a multiplicative term 

which takes the fo rm of a complex-valued exponential phase factor. According 

to the Born interpretation^^ of the wavefunction, the wavefunction itself does 

not have a physical meaning; the square of the wavefunction in position space 

is proportional to the probability of finding a particle at that point in space, 

and is interpreted as a probabihty density. Consequently the phase factor 

has no effect upon the interpretation of the wavefunction. For applications 

w i t h time-independent potentials i t is therefore possible to remove the direct 

time-dependence, resulting in the time-independent (T I ) Schrodinger equa­

t ion (SE), given here in atomic units—the unit of length is the Bohr radius 

(O .5292A) , charge is the charge of the electron e and mass the mass of the 

electron mg (which are then used throughout the remainder of this thesis); 

ffTiV'(x'.R') = B V ' ( x " , R ' ) , ( 1 . 3 ) 

In eqs. ( 1 . 3 ) and ( 1 . 4 ) E is the energy associated w i t h ip, i and j are indices 

over electrons, / and J are indices over nuclei, m / is the mass in atomic 

units associated w i t h nuclei / , and the R represent the spatial co-ordinates 

of the nuclei. The r refer to distances between particles. The terms involving 

the differential operator are the kinetic energy terms of the electrons and 

nuclei, and the remaining terms account for the Coulomb interactions of the 

electrons w i t h the nuclei, the electrons w i t h each other, and the nuclei w i t h 

each other. 
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Separation of nuclear-dependence 

For systems containing more than two independent particles, where the mo­

tions of electrons and nuclei interact solely through a Coulomb operator, the 

time-independent SE is too complex to solve to arbitrary accuracy. However, 

by exploiting the significant difference in mass between an electron and a 

nucleus, i t is a reasonable physical assumption to treat nuclei as fixed. The 

electrons react essentially instantaneously to any movement of the nuclei, thus 

are considered to move in a potential defined by the nuclei. This approxima­

tion, due to Born and Oppenheimer,^^ allows the separation of the SE by 

de-coupling into two parts: A n electronic part which describes the electrons 

in a field due to the nuclei, and a nuclear part which describes the nuclei 

in a field due to the electrons. This is a great simplification over the fu l l 

SE as i t removes the kinetic energy of the nuclei, and the potential energy 

f rom the nuclear-nuclear repulsion becomes constant for a given set of nuclear 

co-ordinates. The electrons therefore interact w i t h a potential consisting of 

stationary point charges. 

^elecV^(x^;R) = - E ^ ( x ^ R ) , ( 1 . 5 ) 

i i,r ^' i,j>i ^ 

where we now indicate a parametric dependence on R . I n general we wi l l omit 

this co-ordinate for clarity in the notation. We denote the simphfied SE as 

the electronic Schrodinger equation (ESE), and note that He\ec is Hermitian. 

The eigenvalues E and eigenvectors i> obtained f rom solving this equation 

fo rm the spectrum of the Hamiltonian. The spectrum consists of a countable 

(but possibly infinite) set of bound, discrete states, and continuous states. 

They fo rm a complete basis in terms of which an observable state ^JJ may be 

wri t ten , f rom which i t follows that the expectation value (the mean of the 

energies obtained f rom many measurements), given by 

is an upper bound on the exact ground state energy EQ. EQ is only obtained 

if eq. ( 1 . 7 ) is evaluated w i t h the exact ground state wavefunction ipQ. 
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Chemical applications are primarily concerned w i t h the evaluation of the 

total energy and properties of a system associated w i t h the expectation value 

{tplHeiecltp), particularly for the (approximate) ground state wavefunction tpo. 

Therefore in general the term 

^nn = 5: ^ ( 1 . 8 ) 
Til 

I,J>I '•^ 

is added to the energy in eq. ( 1 . 5 ) to obtain the total electronic energy of 

a system. In order to model the dependence of the electrons on the nuclear 

framework wi th in the ESE, the equation is solved at a variety of different 

nuclear positions, mapping out a potential energy surface. 

This approach is valid in cases where the electrons do not change state 

as the positions of the nuclei change. For cases where two or more electronic 

states become close in energy, the Born-Oppenheimer approximation becomes 

invalid and i t becomes necessary to account for possible coupling between elec­

tronic states. In this thesis we do not consider such 'non-adiabatic' scenarios. 

The ESE can be solved analytically for a variety of model systems involving 

one or two particles in some (generally unphysical) external potential, such as 

a particle in a harmonic potential well. These give insight into more complex 

systems. However, solutions for many-particle systems are comphcated. I t is 

possible by changing to centre of mass co-ordinates, and separating the radial 

and angular motion, to solve the ESE exactly for hydrogenic atoms. I t is also 

possible, by changing to elhptical co-ordinates, to solve for the solutions in 

simple systems such as H2 where the electron motion is confined to an ellipse 

around the two n u c l e i . M o r e complex systems, such as the He atom, or H2, 

cannot be solved in closed form. 

A l l methods used to solve the ESE for many particle systems involve fur­

ther approximation. The extent to which these additional approximations 

affect the accuracy of the results depends upon the severity of the approx­

imation. The next step involves attempting to approximate the electronic 

wavefunction based on properties that the exact wavefunction must satisfy. 
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1.3 MODELLING THE WAVEFUNCTION 
There are several conditions a model wavefunction should satisfy in order that 

it incorporate as much of the underlying physics as possible. As mentioned 

above, the wavefunction has no direct physical interpretation. Since only 

the square of the position representation wavefunction has physical meaning, 

the wavefunction need not be real-valued. Whils t i n general a real-valued 

wavefunction is sufficient, in the presence of magnetic fields for example i t 

may become complex-valued. 

Equally, since the ESE is a second-order differential equation, the n-electron 

wavefunction needs to be analytic to second-order w i t h respect to spatial co­

ordinates. I f the system under consideration is comprised of a finite number 

of particles (as is the case for the major i ty of systems in this thesis), the 

wavefunction must be finite in order that i t is square normalisable; 

oo 

| | ^ ( x " ) | | - J dx" | ^ ( x " ) | - < OO. ( 1 . 9 ) 
—oo 

This is also a requirement i f i t is to satisfy the Born interpretation. Further­

more i t should be a one-to-one function; i t must take exactly one value at 

every value of each co-ordinate. 

The simplest wavefunction that satisfies these properties is a Hartree prod­

uct."^"""^ I t is derived by considering a Hamiltonian in which there is no in­

teraction between electron pairs (a 'one-electron' Hamiltonian), and takes the 

form of a product of one-electron orbitals; 

H^n = ]lxi{^i)- ( 1 - 1 0 ) 

i 

Such a wavefunction is for bosonic systems a reasonable approximation to the 

exact wavefunction. However, a wavefunction of this form does not satisfy 

the Pauli principle^'^ for fermionic particles, which states that the wavefunc­

tion must be antisymmetric w i th respect to the exchange of identical parti­

cles [for instance '0(xi.,X2) = —'i/)(x2, x i ) ] . The simplest model wavefunction 

which satisfies this additional constraint is obtained by antisymmetrising a 

Hartree product. The antisymmetrised Hartree product is a determinant of 
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one-electron orbitals (a Slater determinant)^^'^^ 

^ ( X " ) = det |Xl(Xi)X2(X2) • • • X n ( X n ) | • ( l - l l ) 
V n ! 

A wavefunction of this form is invariant to unitary rotations of the orbitals. 

1.4 HARTREE-FOCK THEORY 
Hartree-Fock theory^^"^'^'^'''^^ approximates the wavefunction as a single Slater 

determinant comprised of orthonormal one-electron spin orbitals Xki'^k), de­

fined as (pfc(rA;)(7(s) where a accounts for the possibility of a and P spin states, 

and in which we assume the ipk to be real-valued. The electronic energy asso­

ciated w i t h a wavefunction of this form is given by its expectation value w i t h 

the f u l l .^eiec, and takes the form 

where the first term is the expectation value of the one-electron Hamiltonian 

m j ) = J c ^ x X i ( x ) M x ) x , ( x ) , (1.13) 

which consists of kinetic and nuclear-electron attraction components such that 

M x O = - i v ? - E i ; ^ . (1-14) 

The second te rm in eq. (1-12) is the two-electron term and consists of integrals 

of the fo rm 

{ij\kl) = JJ dxidx2Xii^i)Xj{^\)^Xk{^2)xi{^2) • (1-15) 

The first part [ (^ l i?)] is the classical Coulomb repulsion of a charge distribution 

w i t h itself. The second part [(zj'ljz)] is the exchange energy, which arises due 

to the wavefunction satisfying the antisymmetry of the Pauli principle for 

fermions. Physically the exchange term corresponds to like-spin electrons 

avoiding one another, lowering the electron-electron repulsion. The final t e rm 

in eq. (1.12) is due to the nuclear-nuclear repulsion. 
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Since in Hartree-Fock theory the energy is defined as the expectation value 

of a Hamiltonian, i t satisfies the variational principle; the value of E^Y eval­

uated w i t h a t r i a l wavefunction V^triai is always above the value of EHF^PHF, • 

This provides a method of computing the Hartree-Fock wavefunction for a 

system through minimisation of the energy w i t h respect to changes in the 

orbitals. Under the constraint that the orbitals remain orthonormal through 

the minimisation procedure, the Hartree-Fock equations are obtained: 

F (xOXz(x i ) = 5 ] e , .X , (x i ) , ( 1 . 1 6 ) 

j 

where e is a matr ix of Lagrange multipliers, and F ( x ) is the effective Hamil­

tonian for the one-electron Schrodinger Equation, 

F ( x , ) = M x i ) + i ( x i ) + / < ( x i ) , ( 1 . 1 7 ) 

w i t h h{x) defined as in eq. ( 1 . 1 4 ) . J ( x ) and K{x.) are defined as 

J ( x O = E / ^ - 2 ^ ^ ^ ^ ^ ^ ^ ^ ^ ( 1 . 1 8 ) 

^ ( x , ) x . ( x i ) = - E / ^ - ^ X . (x . )X . (x . ) ^^^^^^ _ ^^^g^ 

The Coulomb operator J , modelling a classical charge interaction, is a lo­

cal operator. The exchange operator K however is non-local, and requires 

information on all of the x at all points in space. Note that F, as He\ec, is 

Hermitian, and invariant to unitary orbital transformations, so i t is possible to 

transform the orbitals such that the matr ix e is diagonal. Hence the standard 

canonical form, 

F ( x ) x , ( x ) = £ a ^ ( x ) , ( 1 . 2 0 ) 

is obtained. These equations require the solution be found iteratively due 

to the form of the electron-electron interaction; the field experienced by an 

electron in orbi ta l Xi depends on the remaining orbitals. There is a substantial 

literature devoted to the efficient solution of such self-consistent field (SCF) 

equations (see for instance ref. 1 4 ) . In this thesis we assume that the solution 
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can be found. I t is important to note that there are i n general many solutions 

to such a set of non-linear equations. This is due in part to the existence of 

various stationary points in addition to the global min imum corresponding 

to the ground state (which we are primarily interested in) , and also due to 

the invariance to unitary transformations which implies that each stationary 

point may be represented in infinitely many ways. 

From the solution of the Hartree-Fock equations, we obtain f rom the SCF 

procedure a set of orthonormal eigenfunctions (spin orbitals) {xk}, and eigen­

values (orbital energies) {sfc}- For an n-electron system, the n-lowest corre­

spond to the occupied orbitals, and the remaining are termed unoccupied or 

v i r tua l orbitals. In principle the spectrum of the Hartree-Fock Hamiltonian is 

infinite. I n practice we introduce a finite set (of size B) of known one-electron 

functions r) in which we expand the orbitals, 

B 
X,(x) = ^Cb,77,(x) (1.21) 

6 

where the c are expansion coefficients to be determined. 

Basis sets 

There are two types of basis set in common use; the first involves using plane-

waves. The second, which we use exclusively in this thesis, involves atom-

centred basis functions. Consider a one-electron system in a central field 

(in which we use angular co-ordinates r, 9 and 0 ) , for which i t is possible 

to separate the solution into radial and angular parts. For such systems i t 

can be shown^^ that a complete basis may be wr i t t en in terms of a system-

independent angular part, and a system-dependent radial part 

Vb,nlm = Vb,nli'')yimiO,(f>) (1.22) 

where the indices n , / and m refer to the quantum numbers of the basis function 

in question. For the angular part, the spherical harmonics Yim{0, 0 ) form a 

complete orthonormal set, and hence these are used as the angular basis set 

in all electronic structure calculations. 

A natural approach for a radial basis set 776,n/(^) is the radial part of hy­

drogenic orbitals which arise f rom the solution of the ESE for the H atom. 
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They take the form of Laguerre polynomials and terms involving the quan­

t u m number n mul t ip lying an exponential. However they are only complete 

for bound states, and their form requires a large number of terms to obtain 

accuracy in arbitrary systems. 

I f we replace the complex dependence on n and take a form consisting of 

Laguerre polynomials and an exponential, we obtain a complete orthogonal 

set. However, i t is not possible to obtain accurate descriptions of different 

orbitals w i t h an exponential of fixed exponent. By varying exponents i t is 

possible to produce much more tractable approximations to orbitals, but this 

destroys the orthogonality of the functions. Therefore, replacing the complex 

nodal structure of the Laguerre polynomials w i t h a simpler polynomial, we 

obtain Slater-type orbitals, consisting of simple atomic-centred polynomials 

mul t ip lying an exponential; 

776 = T V x f x f ^ exp ( -Q!r6) (1.23) 

where the Xi are the relative co-ordinates in the three Cartesian directions, 

f + g + h = I, and A'' a normalisation constant. 

Such basis sets allow high accuracy to be achieved, but the diff icul ty in 

the manipulation of such functions maices using a large number prohibitive in 

extended systems. The most widely used basis set is therefore a Gaussian-

type orbi ta l (GTO) , proposed by Boys.^^ Such an approach takes a Gaussian 

function, mult ipl ied by a simple polynomial: 

Vb = Nx{x^2^^ e x p ( - a r ^ ) . (1.24) 

Whi ls t the fo rm of a Gaussian function is such that several are required to 

achieve the same level of accuracy obtained f rom a single Slater-type orbital, 

the significant difference in the speed of integral evaluation allows many more 

GTO's to be used for equivalent computational cost. Perhaps the most ap­

pealing feature is that all G T O integrations may be performed through re­

currence relations. The fo rm of G T O presented here are Cartesian GTOs. 

These allow for efficient integral calculation due to their separability into the 

three Cartesian directions, but for calculations w i t h I ^ 2 additional functions 

are introduced over the corresponding spherical harmonic GTOs. Given that 

the spherical harmonic GTOs can be obtained as hnear combinations of the 
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Cartesian GTOs i t usually proves more efficient to perform a transformation 

into the spherical harmonic basis and reduce the number of basis functions in 

a calculation. Their use also helps to l imi t problems of hnear-dependency in 

basis sets. 

I f we substitute eq. (1.21) into eq. (1-20), and 'project ' onto the space 

spanned by the basis functions rj (by mult iplying on the left and integrating), 

we obtain the Roo thaan -Ha lP° ' ^^ equations, 

^ Cbi J dx T]aFiT]b = ei^Cbi J dx rjaVb, (1-25) 

b b 

F c = S c £ , (1.26) 

which are a set of matr ix equations used for solving a Hartree-Fock calculation, 

and in which S is the overlap matr ix 

Jab = jdXT]aVb, (1-27) 

which arises due to the non-orthogonality of G T O basis sets. 

I f we consider atomic calculations, we need to provide a basis consisting 

of sufficient functions to describe each individual orbital , for example in the 

carbon atom as a minimal basis we would have a set of GTO's representing Is, 

2s and 2p functions. The addition of more functions w i l l improve the accuracy 

as the f lexibi l i ty of the basis set increases. I t should be pointed out however 

that in general i t is necessary to include functions of higher angular momenta 

than those required by a minimal basis. The reasoning for which is twofold. 

Firstly, a basis set must contain the flexibility to describe the distortion of 

the atomic orbitals due to other atoms in molecules, and secondly to allow a 

description of electron correlation (the subject of the next section). 

Open-shell calculations 

So far we have formulated a series of equations to solve the ESE under the 

constraint that the wavefunction take the form of a single determinant. We 

now consider the fo rm of the spin orbitals. Consider a one-electron system; 

we have (by convention) a single occupied a-spin orbital . I f we add another 

electron to this system (and we assume that the spins pair), we could occupy 
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an orbital w i t h an identical spatial part but w i t h ^-spin. On addition of a 

t h i r d electron we could then take an additional a-spin orbi ta l w i t h a different 

spatial part to the first. This approach, whereby all paired electrons occupy 

orbitals constrained to have identical spatial parts, is known as the restricted 

formalism. 

Equally we could take our second electron and occupy an orbi tal of /?-spin 

where the spatial part differed f rom that of the first orbi ta l , and in which the 

spatial part of the orbitals, for all subsequent electrons added to the system, 

is unconstrained. This corresponds to an unrestricted formaUsm. 

I n general the two approaches give equivalent results for systems where 

there are no unpaired electrons; however, this is not necessarily the case for dis­

sociation into open-shell fragments where the spin-symmetry may be broken. 

The treatment of systems w i t h unpaired electrons however w i l l be different. 

1.5 INTRODUCING CORRELATION 
The Hartree-Fock energy is always above that of the exact energy for a many-

electron system. For one-electron systems i t is exact, because the mean-field 

approximation of the interaction of an electron w i t h others has no effect. The 

amount by which the Hartree-Fock energy differs f r o m the exact energy is 

defined as the correlation energy of a system; 

Ec = £'Exact - EuF ( 1 - 2 8 ) 

and since the Hartree-Fock energy is an upper bound on the exact energy, 

Ec ^ 0. The correlation energy arises physically f rom an electron having 

knowledge of the location of the remaining electrons. I n practice i t is missed 

in Hartree-Fock theory due to approximating the wavefunction as a single de­

terminant. The single-determinantal picture fails for two reasons: Firstly the 

mean-field electron-electron interaction fails to model the electron-electron 

cusp for unlike-spin electrons, resulting in electrons becoming too close to 

one another and an artificially high energy; secondly a single determinant is 

fundamentally unable to describe the physical reality under certain circum­

stances. For instance, i n the case of H2 approaching dissociation, we have 

a single-determinantal wavefunction w i t h a contribution f rom both two neu­

t ra l H atoms and f rom an unphysical H"*" and H ~ arrangement. The simplest 
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method of correcting this involves somehow removing the ionic configuration 

f rom the wavefunction leaving correctly occupied orbitals. In the case of H2 we 

can do this by adding in some quantity of an excited state single-determinant 

to cancel out the unwanted term. Such an approach is an i l lustration of con­

figuration interaction (CI) . 

Configuration interaction theory 

Configuration interaction wavefunctions are obtained by wr i t ing the wavefunc­

t ion as a linear combination of Slater determinants in which electrons occupy 

orbi tal configurations different to a reference ground state (so called excited 

state determinants). 

Î CI) = (1 + Ê /̂ ^̂ )Î HF) (1.29) 
A* 

| ^ C l ) = ( l + t i + r 2 + ...)|̂ HF), (1-30) 

^ 2 = E ( 1 - 3 2 ) 
i<j,a<P 

w i t h f excitation operators which provide a convenient notation of occupying 

non-ground state configurations. The coefficients c in such an expansion are 

then optimised to minimise the electronic energy. I n f u l l configuration interac­

t ion (FCI) , all possible excited state determinants are included, and the exact 

electronic energy for a system is obtained, but necessarily w i th in a finite basis 

set. This may be viewed as removing the single-determinant approximation 

and improving flexibility in the wavefunction by allowing all possible orbital 

occupations to contribute to the energy. 

In practice i t is almost always necessary to truncate the expansion at 

some finite order. CIS ( C I singles) is actually equivalent to Hartree-Fock 

theory since singly excited determinants do not interact w i t h the ground state 

determinant as there is no coupling between the occupied and v i r tua l orbitals 

in the Fock operator. CIS does contain information about excited states as 

singly excited determinants do interact w i th one another. Usually therefore 

the CISD method (CI w i t h single and double excitations) is used. 
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There are cases where a CI expansion necessarily involves large contribu­
tions from excited state determinants, such as the case of stretched H2 men­
tioned earlier and ozone (when there are degeneracies), where the Hartree-
Fock wavefunction is a poor representation. An alternative approach involves 
the truncation of the CI expansion to include a relatively small number of con­
figurations, and the optimisation of both the expansion coefficients and the 
orbitals themselves, giving multi-configurational SCF theory (MCSCF). The 
aim is to provide as compact a representation of the wavefunction as possible 
while including the relevant physics. In the case of H2, the MCSCF energy 
is below the Hartree-Fock energy, but above the FCI energy, although it will 
lead to a correct description of dissociation. 

A method is size-extensive if, for infinitely separated non-interacting 
fragments X, 

E{X---X) = NE{X); (1.33) 

the energy of a fragment is independent of the system in which it is computed. 
Truncated CI expansions are not size-extensive, although FCI is. If we consider 
H2 with the CISD model, it will give rise to all of the single and double 
excitations, and is thus FCI. If instead we have two infinitely separated H2 
molecules, some of these excitation processes will correspond to quadruple 
excitations, hence will not be included at the CISD level (CISDTQ would 
be required for FCI). This is an important measure of the consistency of 
accuracy for molecules with differing numbers of electrons. This failure of 
truncated CI expansions to satisfy the size-extensivity condition severely limits 
their applicability as successful correlated methods. Davidson introduced a 
correction which approximately accounts for the error in size-extensivity due 
to truncating CI."^^ In general better results are obtained with the more widely 
used coupled cluster methods. 

Coupled cluster theory 

There are properties of the FCI wavefunction that are lost in truncating the 
level of included excitations. An alternative approach arises through consider­
ing the FCI wavefunction and its relation to Hartree-Fock theory, and whether 
it can be approximated differently. 
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The simplest approximation of correlating electrons is to assume that they 
correlate in pairs; for instance two electrons in orbitals i and j disturb each 
other's movement and excite themselves into different orbitals a and P, a pro­
cess with which we associate an amplitude t\ if the wavefunction is expanded 
as a sum over all such pairwise processes that may occur in a system the 
pair-cluster approximation is obtained, which corresponds to CCD (coupled 
cluster doubles). The wavefunction importantly takes the form of a product 
of excitation operators '̂̂ "'̂ ^ acting on the Hartree-Fock reference determinant 
(in contrast to the sum form in CI theory), and is usually written as 

\M=Yl{l + tt.f^)\M- (1-34) 

ll{l + t^f^)=exp{t^T^), (1.35) 

f = t^f^ (1.36) 

r = f i + f2 + . . . + rn (1.37) 

| ^ cc )=exp ( t ) | ^HF) . (1.38) 

This equation must be solved iteratively for the amphtudes t , and the energy 
then minimised with respect to these amplitudes. Equation (1.35) holds due 
to the property of the excitation operators that = 0, giving rise to the 
exponential ansatz of the coupled cluster wavefunction. In practice the am­
plitudes and energy are obtained from more practicable expressions derived 
through the use of the Campbell-Baker-HausdorflF formula"'^ of e~'^He^\ if the 
Hamiltonian is pre-multiplied by the inverse of the exponential operator, the 
resulting series naturally truncates. 

Although the doubles term provides the dominant contribution to electron 
correlation for electrons close together in space, in general the singles terms 
should also be included to give CCSD; it represents rela^ng the orbitals due 
to the mean-field of Hartree-Fock changing depending on the orbital occupa­
tions. The CCSD method is widely used as a benchmark method for molecules 
of reasonable size. I t is not possible in general to obtain a truly quantitative 
accurate description however without the additional inclusion of (at least) the 
triples contribution (CCSDT).^^ However this method is far too computation­
ally expensive for all except the simplest systems. 
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It is possible to simplify CCSD and CCSDT by observing that at each level 
of theory the terms of highest cost correspond to corrections to the top level of 
excitation; hence the cost of the methods may be reduced if we only want to 
treat the top level excitations approximately. This gives rise to the iterative 
CC2^^'^^ and CC3^°'^^ methods, which are approximations to the CCSD and 
CCSDT methods respectively, and which importantly may be applied to the 
calculation of excited state properties as a wavefunction exists for each of these 
methods. The connection of these methods is described in ref. 41. 

Owing to the product nature of the wavefunction in CC, each determinant 
may be reached through several processes; for instance a doubly excited deter­
minant may be reached through either a single, connected process of exciting 
two electrons, or through a combination of two independent, disconnected 
processes each exciting one electron. Therefore compared to CI, excitations 
of higher order than those explicitly included in the theory may contribute to 
the wavefunction through these disconnected processes. 

If we consider the two truncated methods CISD and CCSD, we can com­
pare the excitations that are included in each wavefunction: 

| ^ c i ) = ( l + T'i + r2)|^HF) (1-39) 

l^cc) = ( 1 + Ti + [t2 + i t ^ ] + [ t i t a + ^ f f ] 

+ [ l n + lT^T, + ^J^] + ...)\^nF); (1.40) 

from this it can be seen that in our case of two H2 molecules, some quadruple 
excitations are included as products of the single and double excitations in 
CCSD. In the case that the two H2's are non-interacting this accounts for all of 
the possible quadruple excitations, hence the method is size-extensive. A size-
extensive variation of configuration interaction, quadratic CISD (QCISD),'*^ 
also exists, but it can be demonstrated that it is actually equivalent to an 
approximate Coupled cluster theory. 

CC theory however is not variational (although the error due to this is 
in general much smaller than the error experienced in CI theory due to the 
lack of size-extensivity). Another treatment, which allows the restoration of 
size-extensivity whilst again losing the variationality of the wavefunction, can 
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be achieved from perturbation theory, which offers a potentially less compu­

tationally demanding solution. 

Perturbation theory 

Consider a general Hamiltonian that may be split into two parts; a large ref­
erence part whose eigenfunctions are known exactly and a small correction 
^ 1 which makes the solution of the full Hamiltonian problematic. We term 
the small correction . ^ i the perturbation. In order to approximate the exact 
energy and wavefunction for the full Hamiltonian, a parameter A is introduced 
to turn on the perturbation; the zeroth-order approximation therefore corre­
sponds to A = 0 and the physical system corresponds to A = 1. Assuming 
that both the wavefunction and energy vary smoothly with A, we may write 
a Taylor series for them in terms of A. Analysis of the resultant equation 
aUows (by coUecting terms of equivalent powers in A) various orders of ap­
proximation to the exact problem to be formulated. I t can be shown that the 
first-order correction to the energy may be calculated in terms of the ground 
state wavefunction as 

E, ^ i^Pom^Po), (1.41) 

This is widely used to describe the response of a system to small electric fields, 
to account for corrections to the Born-Oppenheimer approximation and to 
correct for the absence of certain special relativistic effects. 

Of relevance to our discussion on electron correlation however is when HQ 
is defined to be a sum over the one-electron Hamiltonians of eq. (1.17) and Hi 
is the difference between the exact Hamiltonian and this Hamiltonian; in this 
case we obtain M0ller-Plesset''^ perturbation theory, which is size-extensive 
regardless of truncation level. 

It can be shown that the Hartree-Fock energy is actually the first-order 
correction; it includes both EQ and E^. The second-order correction E2 is 
given by 

2j,a,/3 " M J 
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which is the widely used second-order M0ller-Plesset theory (MP2) correlation 
energy; in this expression a and P represent virtual orbitals. 

Unfortunately whilst this method has a lower computational cost than 
the CCSD method since it both scales more favourably with system size and 
its computation is non-iterative, it suffers from several notable deficiencies. 
Whilst it is able to model dispersion interactions, and in many cases offers an 
improved description over the Hartree-Fock method, it can give rise to com­
pletely unphysical solutions. Again consider stretched H2; due to the nature 
of the reference wavefunction, as the bond is stretched the eigenvalue differ­
ences on the denominator of the E2 expression will tend to zero, giving rise 
to an infinitely negative correlation energy at infinite bond distance. Adding 
additional correction terms (for instance E3 and E4) do not in general provide 
systematic improvement. 

The application of perturbation theory is not limited to the Hartree-Fock 
Hamiltonian however. Another important method is the complete active space 
self-consistent field method with second-order perturbation theory (CASPT2), 
which applies perturbation theory to a multi-configurational wavefunction in 
which all configurations are included that arise from the distribution of, for 
instance, the valance electrons amongst a set number of orbitals. Typically 
orbitals are chosen to be active based on their relevance to the problem under 
consideration. This method has been appfied quite successfully to the accurate 
calculation of excited states, for instance see refs. 46-48. 

Recall the CC methods of the previous subsection; we noted that CCSD 
is in general an excellent approximation to the exact wavefunction, but that 
CCSDT is required to achieve the desired accuracy in many cases. The triples 
correction is small compared to the doubles: Therefore consider including 
the main effect of the triples contribution perturbatively, giving CCSD(T) 
theory;^^ this approach is essentially the application of M0ller-Plesset pertur­
bation theory to the CCSD wavefunction. CCSD(T) is less computationally 
demanding than the CCSDT method, and the most expensive step is not i t­
erative, although it is still only routinely applied to modestly sized systems. 
Whilst significant accuracy may be achieved from this method, there is no 
associated wavefunction. 

There have recently been a number of significant technical developments 
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in wavefunction theory which allow the treatment of larger systems; the in­
terested reader is referred to for instance refs. 50-52. Despite these develop­
ments, wavefunction methods in general remain computationally difficult to 
apply to large systems. One factor that has not yet been discussed, but which 
was alluded to earlier, is the basis set dependence of correlated wavefunction 
methods. 

Basis set dependence of correlated methods 

One of the major drawbacks of wavefunction theory-based correlated methods 
is that in order to correctly model the electron-electron cusp, a large basis set 
is required. The requirement of a basis set capable not just of describing the 
occupied orbitals, but the unoccupied orbitals as well, coupled with the need to 
include higher order excitations as the system-size increases, generally means 
that an accurate calculation on an arbitrary system can easily be intractable. 
As a simple illustration we consider the spherically symmetric H " ion. Due to 
symmetry, only s-angular momenta functions can contribute to the Hartree-
Fock energy. Even in an extensive s-basis set we get an energy of —0.4879 
Hartree, which is significantly above the exact energy of —0.52775 Hartree, 
and actually above that of the H atom; correlation plays a significant role. 

Presented in table 1.1 are the energies obtained with Hartree-Fock, MP2 
and CCSD as a function of basis set size, as higher angular momenta functions 
are added. The time column gives an indication of the relative cost of the 
CCSD. MP2 theory recovers a significant portion of the correlation energy. 
CCSD is equivalent to FCI in the case of a two-electron system, so we do 
approach the exact answer as the basis set increases, although we still do not 
reach that point even with the largest basis set used. 

The preceding discussion has illustrated the complexities associated with ob­
taining accurate wavefunctions; Hartree-Fock theory provides a qualitative 
description in many cases, but electron correlation is important in achieving 
chemical accuracy. Methods that incorporate correlation based on excited 
state determinants present individual problems and do so at a high computa-
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Table 1.1: The basis set dependence of the total energy of H with Hartree-
Fock theory, MP2 and CCSD; all energies are in Hartree. 

Basis components HF MP2 CCSD Rel. time 
and total functions (CCSD) 
7s 7 -0.4879097 -0.5017765 -0.5139288 1 
7s6p 25 -0.4879097 -0.5145345 -0.5264218 5 
7s6p5d 50 -0.4879097 -0.5168917 -0.5272851 24 
7s6p5d4f 78 -0.4879097 -0.5175700 -0.5274687 156 
7s6p5d4f3g 105 -0.4879097 -0.5178061 -0.5275256 550 
7s6p5d4f3g2h 127 -0.4879097 -0.5178898 -0.5275452 1400 
32s 32 -0.4879296 -0.5018341 -0.5144958 327 

tional cost. In the next chapter we go on to consider a theory based around 

a much less complex, and more physically intuitive quantity—the electron 

density. 



C h a p t e r 

Density functional theory 
The electron density is introduced as a quantity that in principle con­
tains sufficient information to replace the wavefunction, through the 
theorems of Hohenberg and Kohn. It is then shown how this may be 
used to solve electronic structure problems in formally exact Kohn-
Sham theory with the introduction of the exchange-correlation func­
tional. The practical approximation of this unknown functional is then 
considered. 

In chapter 1 the solution of the Schrodinger equation was discussed, primarily 
in terms of the various approaches to finding good approximations to the exact 
ground state wavefunction f/'o- It was shown that obtaining good approxima­
tions to •00 is difficult in practice, particularly as the system-size increases. 

Consider a water molecule; the wavefunction depends explicitly on the 
position and spin of the ten electrons, and parametrically on the positions 
of the three nuclei, giving a wavefunction which depends explicitly on forty 
co-ordinates and implicitly on another nine—the wavefunction is exceedingly 
complicated. Let us consider whether it is excessively so; can the information 
in the wavefunction be contained in some simpler quantity? 

Eliminating the wavefunction 

In order to simplify a many-electron wavefunction ip, which depends on many 

co-ordinates, we consider the multiple integration 

n / • • • f dx2 • • • dxndsi ?/;(x") ^ = p ( r i ) . (2.1) 

2 

22 
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Here we omit the integration over the spatial co-ordinate of one electron, 
obtaining the one-electron density p(r i ) . This is a non-negative function of 
three spatial co-ordinates, and as such is a much simpler quantity than the 
wavefunction. The quantity dri p(ri) corresponds to the probability of finding 
an electron in the volume element dri. The density integrates to the total 
number of electrons; 

/ cirip(ri) = n , (2 .2) 

which foUows from the orthonormality of the wavefunction. There are cusps in 
the density at the positions of the nuclei to prevent divergence of the nuclear-
electron term in the one-electron Hamiltonian [eq. (1 .14) ] . Further, the slope 
of the cusp is related to the charge of the nucleus. It seems therefore that the 
density contains all of the information needed to specify the Hamiltonian— 
the charge and location of the nuclei, and the number of electrons. Given its 
comparatively simple form, the density seems attractive as an alternative to 
the wavefunction. 

2 . 1 T H E H O H E N B E R G - K O H N THEOREMS 

In 1964 Hohenberg and Kohn^'' established the soundness of using the density 
as the fundamental variable for solving the Schrodinger equation by proving 
that the density uniquely determines the external potential 

and hence the wavefunction of a system. They also established a variational 
principle based on the density. We now consider their proofs. 

The first Hohenberg-Kohn theorem 

In order to prove the relationship between the density and an external po­
tential, consider two external potentials and f ^ that give rise to the same 
ground state density po{r). With each of these external potentials we associate 
a Hamiltonian {H^ and H'^), for which there exists associated wavefunctions 
and total electronic energies ipQ, EQ, tpQ and EQ. If the two potentials differ 
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by at most an additive constant, then the Hamiltonians will also differ only 
by such a constant, and the wavefunctions will be identical. 

If instead the potentials differ by more than an additive constant the two 
wavefunctions will not be equal. From the variational principle, the lowest pos­
sible energy of {il)\H^\'4)), E^, arises from its evaluation with ipl- If {tp\H^\ip) 
is instead evaluated with •0o, then the resultant energy will be above EQ, 

El < MHVo) = ( V ' o ' l ^ ' I V ' o ) + MHV6) - MH'm (2 .4) 

= ( ^ o ' l ^ ' I V ^ o ) + ( ^ o ' l ^ ^ - H'li^l) (2-5) 

= E'o + l drpo{r)[v\r)-v'{r)]. (2 .6) 

Equation (2 .6) follows since it was assumed the Hamiltonians only differ in 
the external potential. By permuting the indices 1 and 2, a second inequality 
can be obtained that is incompatible with the first since they give rise to 
E^ + EQ < E^ + EQ. Therefore two external potentials giving rise to the 
same density can differ by no more than an additive constant. It follows 
the external potential is uniquely determined by p(r) to within a constant. 
Since p(r) also determines n [through eq. (2 .2 ) ] it follows that the density will 
determine the Hamiltonian up to a constant. From the Hamiltonian we obtain 
the wavefunction, and from that all the properties associated with a system. 

The density therefore allows us to completely specify the Schrodinger equa­
tion. Each component of the total energy E (associated with a given operator 
in the Hamiltonian) may be obtained from the density. Therefore we may 
write an energy expression in terms of functionals of the density, 

£;[p(r)] = r [p(r ) ] + VMr)] + Ke[p(r)], (2 .7 ) 

in which T represents the kinetic energy, Vne the energy of interaction between 
the electrons and nuclei, \4e the electron-electron interaction energy and where 

] is notation for a functional. Here the nuclear-nuclear repulsion term, which 
is not dependent on the density, is omitted for clarity. Note however that the 
arguments presented do not preclude the possibihty of a potential giving rise 
to more than one ground state density for systems with degenerate ground 
states. 
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The second Hohenberg-Kohn theorem 

We now consider developing a variational principle in terms of the density. 
Equation (2 .7) can be written as the sum of two terms; the first term is Vne, 
given by 

y„e[p(r)] = J drp{r)v{r). (2 .8) 

The second is FHK[p(r)], which we define as 

F„K[p(r)] = T[p(r)] + V,Mr)] = { ^ f + Kel^) • (2-9) 

For a given approximate density p, from the first HK theorem we have an 
associated external potential v and hence an associated ijj. By applying the 
wavefunction variational principle to -0, we obtain 

( 0 1 ^ 1 0 ) = j drp{r)v{r) + FuK[p{r)] (2 .10) 

= E[p{T)]^E[p{r)], ( 2 . 1 1 ) 

thus establishing a variational principle in terms of the density. It is there­
fore necessary to minimise the energy with respect to changes in the density, 
subject to the constraint that the number of electrons is conserved (C[p{r) = 
J dr p(r) = n) . In practice this is achieved through the use of the Lagrange 
undetermined multipher approach. The quantity 

E[p{r)] - ^,{C[p{T)]) (2 .12) 

is extremised via solving for p, in 

M _ , ^ = 0 (2.13) 

where we introduce the 5 notation for the derivative of a functional with 

respect to a function. The associated Euler-Lagrange equation is therefore 

By necessity the densities considered thus far are ?;-representable; meaning 
they are derived from some associated external potential. This presents a prob­
lem as whilst we know the exact density for a system will be w-representable, 
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the conditions which constitute such a density are not known. Hence obtain­
ing a represent able density for use as a trial density is difficult since certain 
reasonable trial densities are not ?;-representable.^ '̂̂ ^ 

Further, we have established the existence of F[p(r)], but as yet no clue as 
to its evaluation except in terms of its associated wavefunction. 

The Levy constrained search approach 

An n-representable electron density is one that can be derived from an anti­
symmetric n-electron wavefunction. The conditions constituting n-represent-
ability are known, and perhaps more importantly for our purposes, these con­
ditions are met by any normalised wavefunction from orbitals expanded in 
GTO basis sets. 

In order to solve the issue of i;-representable trial densities. Levy introduced 
the constrained search approach^'*'that instead allows minimisation over 
n-representable densities. It can be demonstrated that the i)-representable 
densities form a subset of the n-representable ones, so the exact solution is 
both V- and n-representable. 

The Levy approach works simply by partitioning the minimisation into 
two stages; firstly the energy is minimised over all wavefunctions ipn giving 
rise to a given n-representable density p„, and then minimised over all possible 
n-representable densities to obtain EQ; 

Eo = mm ( min (^„ | f + + Kel^n)) (2.15) 

Eo = min ( min ( ^ „ | t + l/eelV'n) + / dr Pn{r)v{T)) (2.16) 

- min (FL[pn(r)] + / dr p„(r)^;(r)) . (2.17) 
Pn J 

In this expression the external potential has been excluded from the first 
minimisation since its contribution is identical for each wavefunction. The 
first minimisation is defined as 

FL[p„(r)] = min (^„ | f + VeelV^n), (2.18) 
ll>n-^Pn 
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the Levy universal functional FL- It is now practicable to perform a minimi­

sation in terms of the density. However we still need some tractable approach 

for obtaining F L without the associated wavefunction. 

2.2 K O H N - S H A M THEORY 

From the previous section we now recognise that the ground state density p(r) 

determines the external potential f (r) , n and in turn the energy of a system. 

Further we have established a procedure through which we may find the exact 

density and energy of the ground state. We have succeeded in replacing the 

wavefunction with a much simpler quantity. 

However, whilst we have a formally exact theory, the form of FL[p(r)] is 

unknown. Progress can be made in this area by considering the properties 

of known systems, analogously to the use of known conditions in the deriva­

tion of approximate forms for the wavefunction in chapter 1. Specifically we 

consider F L for the homogeneous electron gas, and a general non-interacting 

system. Since F L has contributions from T and from V^e, we consider the two 

components separately. 

Explicit Junctionals of the density 

T can be expressed exactly as a functional of the first-order density matrix, 

but may be expressed as an explicit functional of the density if we limit the 

system to be a homogeneous electron gas. In that case it takes the simple 

form of 

rTF[p(r)] = ^(37r2)§ I d r p t ( r ) . (2.19) 

This proves to be a very poor approximation to the kinetic energy, and 

Thomas-Fermi^^'theory (whereby this approximate TTF is appfied to in­

teracting systems) is unrealistic, failing even to bind any molecular system. A 

correction term due to von Weizsacker,^^ denoted 7w, may be added to TTF, 

which involves the gradient of the density: 

Tw[p(r), Vp(r)] = ^ / . (2.20) 
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Note that Tw is equivalent to the exact [defined below in eq. (2.23)] for a one 
or two-electron system. This gradient correction helps, but it still precludes a 
theory competitive even with Hartree-Fock. 

If as in Hartree-Fock theory we neglect correlation, may be expressed 
as the sum of a Coulomb contribution J and an exchange contribution K. For 
any system J is an explicit functional of the density, given by 

JWDl = / / dr.dr, 4^iM£Hl. ( 2 . 2 1 ) 
| r i - V2 

The value of K may be obtained, as with T in the general case, from a knowl­
edge of the first-order density matrix. As shown by Dirac,^° in the case of 
the homogeneous electron gas it is possible to obtain an exchange energy as a 
functional of only the density; 

^x[p(r)] = - ^ ( 3 7 r ) i j d r p t ( r ) . (2.22) 

This proves to be of significant use, although not in the context of Thomas-

Fermi theory. 

The Kohn-Sham system 

For an arbitrary non-interacting system with external potential f ( r) , the anal­
ysis of section 1.3 demonstrates that the exact wavefunction takes the form of 
a single Slater determinant. I t is therefore possible to obtain the exact kinetic 
energy for a non-interacting system by evaluating it according to 

r .[p(r)] = f ] ( x . ( x ) | - ^ V ^ | x . ( x ) ) . (2.23) 
i 

Equally we may obtain the exact density for a non-interacting system as 

p(r) = E l x . ( x ) P (2.24) 
i 

where the {xk} are the one-electron orbitals comprising the Slater determi­
nant, as before. 

Kohn and Sham^^ reformulated the problem of determining the exact elec­
tron density by considering a system for which T5 [p( r ) ] is the exact kinetic 
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energy. We rewrite F[p(r)] as 

F[p(r)] = r,[p(r)] + J[p(r)] + F,,[p(r)] (2.25) 

in which 

F.c[p(r)] = T[p{r)] - r,[p(r)] + KM^)] - J[p{r)]. (2.26) 

The quantity Fxc[p(r)] is denoted the exchange-correlation energy. Using this 
partitioning the Euler-Lagrange equation for the exact system is therefore 

^^SZm^ (2.27) 
dp{r) 

which is identical to the conventional Euler-Lagrange equation [eq. (2.14)] for 

a non-interacting system (in which T = Tg and = 0) evaluated with the 

external potential Vedir). It follows that the density of the real system can be 

determined as the density of a non-interacting system moving in a potential 

^^eff(r)-

The Hamiltonian for this non-interacting system is given by 

H = + J 2 ^ e , { r , ) . (2.29) 
i i 

The exact density may therefore be obtained using eq. (2.24), using the orbitals 
which are the solutions to 

( - ^ V ^ -t- ̂ ;efF(r))xi(r, (r) = ^iXii^, a). (2.30) 

This method of solving the electronic structure problem is known as Kohn-
Sham (KS) density functional theory (DFT). It allows several major con­
tributions to the total energy to be computed exactly. Al l of the unknown 
contributions to the energy are confined in the term E^c, the form of which is 
still unknown. 

Practical considerations 

The next section will detail the fundamental issue that we have still to address; 
the form of the exchange-correlation energy functional. However, before we 
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reach that point, consideration of a few practical issues is necessary. As in the 
case of the solution of the Hartree-Fock equations, a trial or guess density is 
required as eq. (2.30) must be solved iteratively for the orbitals giving rise to 
the density. We then evaluate the energy through eqs. (2.7) and (1.8). 

As in Hartree-Fock theory, we expand each of the {xk} in terms of ba­
sis functions, and solve the SCF equations in the same way. The standard 
techniques applicable for the computation of molecular properties derived for 
Hartree-Fock theory axe therefore also applicable here. The similarities be­
tween the forms of the KS DFT and Hartree-Fock equations demonstrates 
that the two methods have a similar computational cost, however KS DFT is 
formally exact. 

One additional complication arises due to the non-analytic integrals arising 
in the representation of the exchange-correlation energy as a functional of 
the density; it is necessary to evaluate such integrals numerically. This is 
achieved by firstly partitioning a general molecular integral into components 
that are localised on a given atom.^^ The components are then evaluated 
using standard numerical quadrature techniques.^"'' 

2.3 E X C H A N G E - C O R R E L A T I O N FUNCTIONALS 

At this stage it is apparent that whatever method we choose to attempt so­
lution of the Schrodinger equation, something will need to be approximated. 
In DFT, we have a formally exact theory. However, the exact form of F[p{r) 
is unknown. For the KS partitioning the approximation is contained entirely 
within the E^c term. The simplest approximation to E^c of chemical relevance 
is obtained from a consideration of the homogeneous electron gas. 

Now introduce the spin-polarised electron gas, with densities Pa and pp 
associated with each spin. We define 

Pair) = Y^\Xi{r,c.)\' p , ( r ) = ^ |x^(r,^)P (2.31) 

p ( r ) = p , ( r ) + p^(r) (2.32) 

with ria and np respectively corresponding to the number of a-spin and /3-spin 
electrons. 
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For closed shell systems we have that Pa = pp = p/2. For open-shell 
systems we may take the route described for Hartree-Fock theory regarding 
restricted or unrestricted spatial orbitals. It has been argued^° that spin-
unrestricted calculations are most appropriate in DFT. See chapter 3 for elab­
oration of this issue. 

Local Spin Density Approximation 

The introduction of spin-polarised densities allows the calculation of the ex­
change energy of the homogeneous electron gas as 

£^x''°^[Pa(r),p,(r)] = - ^ (37 r )h^ J] | d r p | ( r ) , (2.33) 
cr 

in which cr is a spin co-ordinate taking values of a and /?. This closed form 
expression is due to Slater,^^ who used this expression in the Xa method 
in an attempt to simplify the computation of Hartree-Fock theory; it is the 
spin-polarised generalisation of Dirac's eq. (2.22). 

Whilst it is not possible to obtain a closed form expression of £;LSDA f^ j , 
the correlation energy of the homogeneous electron gas, it is possible to com­
pute accurate values from quantum Monte-Carlo data.^^ Several parameter-
isations of this data have been proposed, most notably those of Vosko, Wilk 
and Nusair^s (VWN) and Perdew and Wang^^ (PW91) both of which further 
partition the correlation energy into terms from the interaction of like-spin 
electrons and opposite-spin electrons. The LSDA approximation is obtained 
when we take the KS partitioning of F and represent £'xc as £'LSDA _|_ £;LSDA 

for non-homogeneous systems, where £;^SDA jg parameterisations 
mentioned above. 

The LSDA has found widespread application in physics; it lends itself to 
metallic systems. In chemistry it is less successful; whilst for some properties 
it achieves similar accuracy to Hartree-Fock theory, it is known to significantly 
over-bind molecules. The failure of the LSDA to accurately model chemical 
systems is not surprising; molecules have inherently localised densities and so 
do not resemble the homogeneous gas. Also of relevance is that the various 
LSDA correlation approximations do not give a zero-valued correlation energy 
for one-electron systems. The LSDA may be thought of as the first term in 
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a Taylor series expansion for E^c ii^ the density. The obvious next step is 

therefore to express E^c in terms of information about the density and its 

derivatives. 

Generalised Gradient Approximations 

The most natural way of including derivative information about the density 
is through the gradient expansion approximation™ (GEA), which gives Exc in 
terms of a Taylor series for a slowly varying density. Unfortunately this model 
is too simplistic; it performs no better than the LSDA, and in some cases is 
actually worse. This is due to the GEA failing to satisfy a number of exact 
conditions on the behaviour of the true that the LSDA does satisfy. 

In order to make progress exchange-correlation functionals of the form 

Eg''^[p^{v),p0{r)] = j drG[p,(r) ,p^(r) , V p . ( r ) , Vp^(r)] (2.34) 

are considered. When £'xc is approximated in this manner the resultant func­
tionals are called generalised gradient approximations (GGAs). In general the 
exchange and correlation components are approximated separately. From a 
dimensional analysis it can be shown that a natural expansion term to use in 
a GGA is 

x(r) = ^ ; (2.35) 
p3(r) 

simple closed form expressions in terms of x form the basis of most GGA ex­
change functionals. There are two routes to determining forms for G: The first 
is to satisfy as many known conditions of the exact Exc as possible with a func­
tional form, leading to functionals such as Perdew-Wang^^''''^ 1991 (PW91) 
and Perdew-Burke-Ernzerhof^^ (PBE). The alternative is to fi t the parame­
ters to reproduce known molecular properties. This second approach has met 
in general with more success in terms of the abiUty to readily achieve good 
quality results, but provides less physical insight. Equally, empirically derived 
functionals may suffer from a lack of transferability to systems that differ 
significantly from those used in their derivation. Examples of exchange func­
tionals from this approach are the Becke 1986,'̂ ^ and Becke 1988''''' (B88) gra­
dient correction functionals based on atomic energies, and Cohen and Handy's 
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OPTXJ^ Most notable of the correlation functionals is the Lee-Yang-Parr^^ 
(LYP) approximation, based on quantum Monte Carlo data for the helium 
atom. 

The coupling^'^ of Slater, B88 and LYP (to give the BLYP approximation) 
was responsible for the acceptance of DFT as a method suitable for chem­
ical applications. Later functionals such as HCTH'^^ have also proven pop­
ular. GGA approximations, despite offering improved performance in most 
areas over the LSDA, still fail to provide quantitative accuracy in many cases. 
This failure will be discussed in the context of several areas in later chapters; 
specifically those related to the incorrect asymptotic form of the exchange-
correlation potential and self-interaction error which arise due to the difference 
between exchange evaluated using the Hartree-Fock expression [eq. (3.5)] eval­
uated with the KS orbitals (which we denote 'exact' orbital exchange, E^, in 
the DFT context) and local DFT exchange. 

There are two approaches for improving exchange-correlation functionals 
over the GGA level, which are not mutually exclusive. The first involves inclu­
sion of higher-order gradient information, giving meta-GGA functionals. The 
second involves incorporating some portion of exact exchange into a functional, 
giving so-called hybrid functionals. 

Higher-order corrections 

The inclusion of higher-order gradient corrections has been considered as a 
method of improving functional performance. This in general is accomplished 
through the kinetic energy density r, defined as 

rAr,CJ)=^-J2\'^X^{r,c7)\\ (2.36) 
i 

Typically this approach is more numerically stable than those based on the 
Laplacian of the density. Meta-GGAs in general do not offer a significant im­
provement over GGA functionals; the second-order gradient correction usu­
ally has a less significant effect than the first-order one, but such function­
als are able to satisfy an increased number of known exact conditions over 
GGAs. Examples are again obtained via the empirical or non-empirical routes 
taken in the construction of GGAs. The most notable meta-GGA is the non-
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empirical Tao-Perdew-Staroverov-Scuseria^^'^° (TPSS) exchange-correlation 

functional. 

Hybrid functionals 

The inclusion of some amount of exact exchange in an exchange-correlation 
functional can be justified through a consideration of the adiabatic connec-
tion^^"^'' formalism (which will be discussed in detail in chapter 6). 

Addition of DFT correlation to exact exchange is generally unsuccessful 
however as it effectively 'misses' the non-dynamic correlation. This is due to 
the important concept that local density-based exchange functionals approxi­
mately model wavefunction exchange and non-dynamic correlation. Density-
based correlation functionals model only dynamic correlation; the partition­
ing into exchange and correlation in DFT is independent of the wavefunction 
definitions and is primarily based on the scaUng relations of the resultant 
functionals. I t should be noted that Becke and Johnson have recently consid­
ered functionals that can be added to exact exchange, which separately model 
dynamic and non-dynamic correlation.*^"^'' 

A generic hybrid functional takes the form of 

.̂hybrid ^ (1 _ ^^)^DFT ^ ^DFT ̂  ^ ^ ^ 0 (2.37) 

where Cx is a mixing parameter taking values between 0 and 1. The first hy­
brid functional was the half-and-half functional of Becke,** in which Cx = 0.5. 
Such a value is in general not optimal (see chapter 3 for further discussion of 
this point). Becke's later work*^ on hybrid functionals led to the extensively 
used Becke-3-Lee-Yang-Parr functional of Stephens^" et al. and the PBEO^ '̂̂ ^ 
functional, which have Cx = 0.2 and 0.25 respectively. Fractions of this size 
may be justified from a consideration of M0ller-Plesset perturbation theory; 
see ref. 93. More recently functionals based on the Becke 1997̂ '* expansion, 
such as B97-l,^* B97-2^^ and B97-3,̂ *̂  and hybrids of meta-GGA functionals, 
have been introduced. In general they offer some improvement over standard 
hybrid functionals, but there are a number of properties which are still poorly 
described, particularly those which require some formally exact behaviour that 
is only satisfied by the non-local £'°; the extent to which such properties are 
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well-described with hybrid functionals depends on the size of c^. The next 
stage of functional development would be to include virtual orbital informa­
tion. 

Magnetic properties computed with hybrid functionals are particularly 
poor when compared to similar calculations using LSDAs or GGAs, due to 
the non-multiplicative exchange-correlation potential in standard implemen­
tations of hybrid functionals. 

Optimised effective potentials 

In the KS DFT approach, the exchange-correlation potential is defined as 
the functional derivative of E^c with respect to the density [see eq. (2.28) . 
In standard implementations of hybrid functionals the potential due to the 
non-local E^ is evaluated as the derivative with respect to the orbitals, as 
in Hartree-Fock theory. This is formally inconsistent with the KS approach. 
In order to remedy this, the optimised effective potential (OEP) method is 
introduced. In the OEP method the energy for an arbitrary orbital-dependent 
functional is minimised subject to the constraint that the exchange-correlation 
potential be local and multiphcative. Solution of the self-consistent OEP 
equations is fraught with numerical difficulties. This will be discussed in more 
detail when the OEP method is used in the computation of magnetic response 
properties in chapter 5, where the Yang-Wu implementation^^ is considered. 
Al l other results presented are evaluated conventionally without recourse to 
OEPs, as most properties are unaffected by their use. 

A related approach involves the computation of a multiplicative potential 
associated with a given density. The Wu-Yang^^ constrained search approach 
minimises the non-interacting kinetic energy subject to the constraint that 
the input density is reproduced from a multipUcative exchange-correlation 
potential. This method is also described in more detail at the point it is used 
in this thesis, in chapter 6. 

Modern approaches to the exchange-correlation problem 

It can easily be demonstrated that the optimal value of the mixing parame­
ter Cx is different depending on the system and property under consideration. 
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There are two approaches to functional development which attempt to account 

for such variations. The first approach exphcitly partitions the behaviour of 

the exchange functional into two separately treated parts, depending on how 

far the electrons are from each other—it introduces ri2-dependence. These 

functionals are introduced in chapter 3, and are later developed and discussed 

in significant detail. In chapter 4, these functionals are applied to the cal­

culation of excitation energies in an extensive set of theoretically challenging 

molecules. Then in chapter 5, they are apphed to other problems of interest 

including bond-length alternation and band gaps in polymeric systems, and 

the calculation of nuclear magnetic resonance parameters for main group and 

light transition metal systems. 

The second approach involves returning to the theoretical basis for hybrid 

functionals—the adiabatic connection formalism.*^~*'^ Instead of the linear ap­

proximation used in the construction of hybrid functionals, more comphcated 

approximations are considered. In order to assess the forms used to model 

the adiabatic connection, exact input data are constructed. This approach is 

described in detail in chapter 6. 



C h a p t e r 

Exchange-attenuation 
As a prototypical example, the performance of the widely used B 3 L Y P 

hybrid functional is assessed for a number of chemically relevant prop­

erties; successes and failures are highlighted. The practical difference 

between spin-restricted and spin-unrestricted treatments of open-shell 

systems is discussed. A possible means of improving upon the accuracy 

of hybrid functionals, the Coulomb-attenuated/ long-range corrected/ 

range-separated hybrid approach, is introduced with a discussion of re­

cent developments. An exemplar attenuated functional, CAM -B3LYP, 

is assessed and the results compared with B3LYP. The parameter de­

pendence of attenuated forms is considered, particularly with regard 

to the effect on atomisation energies and excited states. Several pa­

rameterisations are assessed over a wider range of properties. 

Hybrid^^ exchange-correlation energy functionals have until relatively recently 
represented the state-of-the-art in KS DFT. Functionals such as B3LYP have 
been responsible for popularising DFT as a viable computational approach in 
the chemical community, providing a successful compromise between cost and 
accuracy. We begin by assessing the B3LYP functional for various properties 
of chemical relevance, with an emphasis on determining where it is successful 
and where it is less so. The failings of B3LYP, and other standard hybrid 
functionals, can for many properties be addressed from a consideration of the 
treatment of exchange in the functional. 

3 

37 
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3.1 ASSESSMENT OF A H Y B R I D FUNCTIONAL 

As a representative hybrid functional we consider B3LYP. The B3LYP^^ func­
tional is an empirically derived development of the half-and-half^^ functional 
of Becke, in which an approximate Unear adiabatic connection form (see chap­
ter 6) was used to justify the inclusion of exact exchange in an exchange-
correlation functional. The form of the B3LYP functional was proposed by 
Becke, with later modification by Stephens^° et al. In B3LYP, exchange is 
described60-74 by 

^B3LYP ^ Q 2£;0 ^ Q^^^E'fDA ^ Q_^Ef^) • (3.1) 

correlation is described''^''''^ by 

= o . i9£;™ + o.8i£;,L^p. (3.2) 

The parameters in B3LYP are empirically derived by fitting to a relatively 
simple set of thermochemical properties. 

We determine the applicability of the B3LYP functional by considering 
its performance for the assessments in table 3.1,^^ which are subsets of those 
used for the B97-3^^ functional. For a complete discussion of the reference data 
and computational details see that reference, although an outline is provided 
below. 

Atomisation energies (assessment 1) are a subset of the G2^™' molecules. 
The ionisation potentials (assessment 2) are a subset of the G2-l^°° molecules. 
Each of these assessments are run at MP2/6-3lG(d) geometries using the 6-
311-t-(3df,2p) basis set following ref. 102, comparing with experimental data. 

Classical reaction barriers (assessment 3) are a subset of the BH42/04 
set,^°^ consisting mainly of open-shell hydrogen transfer reactions. Single point 
energies are evaluated using the QCISD/6-311-1—|-G(3d2f,2df,2p) geometries of 
ref. 103, with the 6-311-|-(3df,2p) basis which gives results of similar quality 
to the basis set used in the earlier study. The reference values are estimated 
from a combination of experimental and theoretical kinetic data. 

Geometry optimisations from three separate assessments are considered. 
The G2 bond lengths (assessment 4) are a subset of those considered in ref. 
78 and the hydrogen-bonded dimer distances (assessment 5) are from ref. 104; 
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Table 3 . 1 : The species included in the assessments set; see the text for orig­
inal references. 

1. G2 Atomisation energies 
Acetamide, acetic acid, acetone, acetyl chloride, acetyl fluoride, acrylonitrile, 
AICI3, allene, aziridine, BCI3, BeH, benzene, BF3, bicyclobutane, C2H2, 
C2H3, C2H4, C2H5, C2H6, CCH, C F 3 C N , C F 4 , CH, C H 2 ( M ) , C H 2 C H F , C H 3 , 
(CH3)2CH, CH3CH2O, CH3CI, CH3CO, CH3O, CH3OH, CH4, CHF3, CI2, 
GIF, GINO, GO, G O 2 , cyclobutene, cyclopropene, dimethylamine, 
dimethylether, ethanol, ethylchloride, F2 , F 2 O , formic acid, furan, H2, HoGO, 
H 2 G O H , H2O, H202,HG1, HGO, HF, HOGl, isobutane, isopropanol, ketene, 
Li2 , LiF, LiH, methyl cyanide, methyl ethylether, methyl formate, methyl 
nitrite, methylamine, methylene cyclopropane, N2, N2O, Na2, NaGl, NF3, 
NH3, nitromethane, NO2, O3, OH, oxirane, propane, propylchloride, propyne, 
pyridine, pyrrole, irans-ethylamine, trimethylamine, 2-butyne, vinylchloride. 
2. lonisation potentials 
Li , Be, B, G, N , 0 , F, Na, Mg, A l , GH4, NH3, H2O, HF, HGl, G2H2, 

G2H4, GO, N2, GI2, GIF. 

3. Classical reaction barriers 
GH3 + H2 ^ GH4 + H, OH + GH4 ^ GH3 + H2O, 
H -h H2 ^ H2 + H, OH + NH3 ^ H2O + NH2, 
HGl + GH3 ^ Gl + GH4, OH + G2H6 -> H2O + G2H5, 
F + H2 -> HF + H, O + HGl ^ OH + Gl, 
NH2 + GH3 GH4 +NH, NH2 + G2H5 ^ G2H6 +NH, 
G2H6 + NH2 ^ NH3 + G2H5, NH2 + GH4 ^ GH3 + NH3, 
H2 + Gl ^ H + HGl, GH4 + H ^ GH3 + H2, 
H2O + NH2 ^ OH + NH3, Gl + GH4 ^ HGl + C H 3 , 
H2O + G2H5 ^ OH + G2H6, OH + GH3 ^ O + GH4, 
PH2 + H2 ^ H + PH3 , H2 + HS ^ H + H2S, 
OH + Gl ^ O + HCl, NH3 + G2H5 -> NH2 + G2H6, 
GH3 + NH3 NH2 + GH4. 
4. G2 bond lengths 
H2, LiH, G H 2 ( M ) , NH3, H2O, HF, Li2, LiF, G2H2, G2H4, HON, GO, 
H 2 G O , N2, H2O2, F 2 , G O 2 , HGl, Na2, GI2, NaGl, SiO, GS, GIF. 
5. Hydrogen-bonded dimer distances 
HF- • • FH, HCl- - • GIH, H2O- • • HoO, GO- • • FH, OG- • - FH. 
6. 7. Diatomic bond lengths and harmonic vibrational wavenumbers 
Li2 , LiNa, LiK, Na2, NaK, K2 , N2, NP, NAs, P2, PAs, As2, F 2 , FGl, GI2, 
GlBr, Br2, LiF, LiGl, NaF, NaGl, NaBr, KF, KGl, BGl, BBr, AlF, AlGl, 
AlBr, GO, GS, GSe, SiO, SiS, SiSe, GeO, GeS. 
8. Isotropic electronic polarisabilities 
HF, F2 , GO, N2, GH4, GO2, G2H4, PH3, H2O, HoS, SO2, HGl, GI2. 
9. Small molecule vertical excitation energies 
GO, N2, H 2 G O , G2H4. 
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the TZ2P basis set is used for both assessments. For the diatomics bond 
length and vibrational wavenumber assessments (assessments 6 and 7) we use 
a subset of those molecules considered in ref. 105, with bond lengths and 
wavenumbers determined using the 6-311-l-G(2df) basis set. Comparison is 
made with experimental values for the diatomics, and ab initio values for the 
polyatomics. 

Isotropic electronic polarisabilities (assessment 8) are determined at near-
experimental geometries following ref. 95, using the Sadlej^°^'^°^ basis set, 
comparing with ab initio values. The excitation energies (assessment 9) are 
compared with experimentally derived values, and were determined at experi­
mental geometries using an augmented Sadlej basis set where additional diffuse 
basis functions are added following ref. 108; uncontracted functions with ex­
ponents of 0.0147 and 0.00448 on C, 0.0202 and 0.00608 on N, and 0.0270 and 
0.00807 on 0. Al l property calculations are performed with a development 
version of the DALTON^°^ program. Energy calculations are also performed 
in D A L T O N , except for the unrestricted open-shell calculations, which use a 
development version of C A D P A C . ^ ^ ° 

Table 3.2 highlights the errors associated with these assessments for the 
B3LYP functional. For assessments 1-3, which include open-shell species, re­
sults are presented in both unrestricted and restricted formalisms. In the un­
restricted formalism, atomisation energies are reasonably described, although 
there is a tendency to underestimate. The ionisation potentials are good, but 
the reaction barriers are poor, with a severe underestimation; this underes­
timation is typical of standard functionals.^^^'^^^ I t can be shown that more 
accurate reaction barriers may be obtained by increasing the amount of 
in a hybrid functional^^'^ or through making the orbitals more Hartree-Fock-
like.114 

Bond lengths are also reasonably described while the associated harmonic 
wavenumbers are particularly accurate. The polarisabilities are poor however, 
which is primarily due to the description of the virtual orbitals. The excitation 
energies also appear poorly described, primarily due to the presence of excita­
tions to Rydberg states. These failures arise due to the incorrect asymptotic 
nature of the exchange-correlation potential associated with standard local 
(and to a lesser extent) hybrid functionals. 
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Table 3.2: Mean error d and mean absolute error \d\, relative to refer­
ence values, for the assessments in table 3.1, with the B3LYP 
exchange-correlation functional in the unrestricted (UKS) and 
restricted open-shell (ROKS) formahsms. 

UKS ROKS 
1. Atomisation energies 
d/kcal mol~^ -2.9 0.5 
|(i|/kcal mol~^ 3.6 2.2 
2. lonisation potentials 
d/eV 0.00 0.03 
Ml/eV 0.17 0.15 
3. Classical barriers 
d/kcal mol~^ -3.7 -2.4 
|ci|/kcal mol~^ 3.8 2.8 
4, 5, 6. Bond lengths 
d/k 0.009 
\d\/k 0.015 
7. Vib. wavenumbers 
d/cm~^ 6 
\d\/cm-^ 22 
8. Polarisabilities 
d/a.u. 0.36 
|d|/a.u. 0.45 
9. Excitation energies 
d/eV -0.82 
\d\/eV 0.84 

It has been argued in ref. 65 that the unrestricted formaUsm is most appro­

priate within KS DFT, since the electron density may locally be more /3-spin 

polarised, which cannot occur in the restricted approach. The behaviour of 

B3LYP is significantly affected by the difference in the two approaches; smaller 

errors are actually obtained with spin-restricted calculations. This suggests 

that there is some error cancellation in this case; the underestimation typi­

cally associated with B3LYP with regard to atomisation energies and reaction 

barriers is lessened in the restricted formahsm. 

The failures of B3LYP highlighted thus far arise from either insufficient 

amounts of E^, or from the incorrect asymptotic behaviour of the potential. 

Note that the correct asymptotic behaviour is obtained from a local poten-
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tial associated with E° (for instance obtained through the GEP procedure). 
Therefore the faihngs of B3LYP can in these cases be attributed to the treat­
ment of exchange. 

Of course B3LYP may fail in other cases due to the description of correla­
tion; for instance it will not accurately describe binding in van der Waals com­
plexes, or other dispersion-dominated systems. The local nature of the corre­
lation in any standard DFT functional is insufficient to describe interactions 
when there is little or no orbital overlap. There are several approaches that 
attempt to model the dispersion interaction in DFT. Self-consistent function­
als (see for example refs. 115 and 116) that attempt to introduce non-locality 
are one possible method, but these have met in general with limited use as 
they are computationally intensive and not widely implemented. Another ap­
proach, which involves the addition of a post-SCF correction, either in terms 
of directly adding an empirical dispersion term (such as in the DFT-D ap-
proach^ '̂''''̂ ^^ or the approach of Becke and Johnson^^^"^^^), or through adding 
a portion of the non-local MP2 correlation energy evaluated with the Kohn-
Sham orbitals, as in the B2PLYP approach of Grimme,^^^"^^^ have been more 
widely applied due to their simplicity. These dispersion corrections may yield 
improved descriptions for a variety of properties, however the lack of a self-
consistent density affords other problems. Equally they may be seen as simply 
increasing the flexibility in the functional—the corrections may improve the 
performance of the functional, but whether or not it can be attributed to their 
accurately modelling the dispersion interaction remains to be seen. 

3.2 A T T E N U A T E D EXCHANGE 

Despite their improvement over GGA functionals, for some properties stan­
dard hybrid functionals remain insufficiently accurate. In some cases the 
deficiency may be traced to the treatment of exchange; the large amounts 
of density-based local exchange result in significantly larger errors for these 
properties than would be obtained from a treatment with a higher propor­
tion of exact-exchange. Reaction barriers for instance tend to need a higher 
proportion of E° compared to atomisation energies. Certain types of excita­
tion energy need the full amount of E^ for an accurate description, due to 
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their long-range nature. Gonventional hybrid functionals contain only a fixed 

amount of exact exchange for all occasions, and the size of that amount de­

pends solely on what properties are considered most important at the time of 

derivation; the B3LYP functional contains 20% based on the thermochemical 

data it is optimised to reproduce. From the arguments here however it seems 

as though a more complicated mixing is required if we require a universally 

applicable exchange-correlation functional. 

Attempts to introduce more complex mixings of exchange generally involve 

making the treatment of exchange dependent on the interelectron distance ri2. 
The expression for exact exchange involves non-local information from all of 

the occupied orbitals and the l / r i o operator. DFT exchange contains only 

local information from the density and possibly its gradient at a point, and 

no exphcit distance dependence. 

Gonsider partitioning the l / r i 2 operator^^^ to allow the treatment of ex­

change to differ depending on the distance between electrons in a simple range-

separated manner. For the applications that we consider we will achieve this 

by treating exchange at short-range primarily by DFT approximations, and 

at long-range primarily through exact exchange, with the expressions modi­

fied according to the partitioning we choose. If instead we were interested in 

removing the computational difficulty of evaluating exact exchange in peri­

odic systems, we could reverse this treatment. Such an approach has recently 

been trialled by Scuseria and co-workers. We focus on the approach of 

long-range exact exchange however as this is the most relevant for improving 

the description of finite molecular systems. "̂̂^ Note we do not partition any of 

the other terms in the total energy expression that involve the 1/rio operator. 

One computationally efficient method of partitioning the l / r i 2 operator is 

through the identity^^^ 

1 _ erf(Mri2) ^ 1 - erf(^ris) 2̂  

where erf is the standard error function 

r 
erf(r) = ^ f dt exp{-t^). (3.4) 

V TT J 
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The first term corresponds to a decreasing function going from at = 0 

to 0 in the limit as —> oo, the rate of which is determined by the size of 

the parameter which has units of a^^ and which takes values 0 ^ /xao < oo 

(for brevity we write /xao). It is more insightful to consider the behaviour of 

the numerator however, which is an increasing function taking values from 0 

to 1 for positive p.. According to the prescription above, exact exchange is 

evaluated through 

= / / ^^i^^2 (/'ia(ri)(/?jc.(ri)—y?j>(r2)(Pi<r(r2), (3.5) 

with the l / r ] 2 operator replaced with the first term of eq. (3.3). The second 

term in eq. (3.3) is also a decreasing function, which approaches oo as ryi -> 0 

and 0 as T^I oo. Local DFT exchange is evaluated by making use of the 

one-particle density matrix expression for the exchange energy; 

by replacing the l / r i 2 operator with the second term of eq. (3.3). It is again 

more intuitive to consider the behaviour of the numerator, which is a decreas­

ing function going from 1 to 0 for positive p. A closed form for eq. (3.6) may 

be obtained in terms of the density if we assume the LSDA. This is achieved 

by changing variables [to r = ( r i - | - r 2 ) / 2 , and s = r i — r2], and performing the 

s integration analytically.-'^^ This gives an explicit expression for the exchange 

energy in terms of the one-particle density matrix for the uniform electron gas; 

LSDA = - \ Y , j dv pkv)Kl'^^ (3.7) 

where /C^SDA jg ^ constant [23(3 /7r )33 /4] which may be related to the Fermi 

momentum by 

/c^s^^ = (97r/i^,^s^^)^p|(r). (3.8) 

This approach whereby short-range exchange is treated by the LSDA ap­

proximation, and long-range exchange by exact exchange, was pioneered by 

Savin^^ '̂'̂ -^ et al. Hirao and co-workers"^ ' la ter modified the short-range 
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exchange expression for use with gradient corrected functionals. Since in gen­
eral there is no corresponding closed-form expression for K^'^^, this involves 
making the approximation that we may obtain the one-particle density matrix 
for a GGA by evaluating the LSDA matrix with the modified momentum 

k^''^ = {9n/K^^'^)hkr) (3.9) 

with K^^^ giving the energy associated with a GGA exchange-correlation 
functional through an equation analogous to eq. (3.7). It has been demon­
strated that in the case that the PBE exchange GGA is used, an expression 
for K^^^ may be obtained since the exchange-correlation hole for that func­
tional is known;'^^ this has been developed into an alternative method of 
approximating K^'^^ for other functionals. 

Whilst treating the short-range exchange via a GGA was found to give 
improved results over the LDA alternative, and the description of proper-
^^ggiie, 138,139 .yvjijch required a large amount of exact exchange was improved 
over standard hybrid functionals, the resultant 'long-range corrected' (LC) 
functionals offer little improvement over conventional GGA results for prop­
erties such as atomisation energies. This may partially be understood from a 
consideration of the amount of exact exchange in the functional. The parti­
tioning of eq. (3.3) gives for small essentially no contribution from exact 
exchange; the functional behaves similarly to a conventional GGA. For large 
ri2, it behaves entirely as exact exchange. Properties like atomisation en­
ergies depend strongly on the short- to mid-range behaviour, and so in this 
formalism there is on average a smaller exact exchange contribution to the 
exchange-correlation energy than from a conventional hybrid. Yanai^^° et 
al. introduced the CAM-B3LYP functional to remedy this. The Coulomb-
attenuating method (CAM) redefines the partitioning of the l / r i 2 operator 
in order that it behave as a hybrid functional for small r i2 , with increasing 
amounts of exact exchange as increases; 

J _ ^ a +Peviifxru) ^ 1 - [a + pedjfirn)] 

Additional flexibility is introduced through the unitless parameters a and 
/?, which allow both the size of the short-range exact exchange contribution 
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(governed by a) and the asymptotic contribution (governed by a + P) to 

vary. (Functionals of this form are perhaps more accurately described as 

exchange-attenuated functionals, as the l / r i 2 operator is only partitioned in 

the exchange contribution to the total energy. For brevity we shall usually 

refer to these functionals as 'attenuated functionals'.) The exact long-range 

behaviour may be obtained by enforcing 

a + /? = ! . (3.11) 

As before, controls the rate of attenuation. 

Short-range (SR) exchange is governed primarily by the second term of eq. 

(3.10); the approach of Hirao and co-workers is used to obtain K^'^^. GGA 

exchange for CAM functionals is therefore evaluated with 

- G G A y 

(1 - a) - pi^-a, [ ^ e r f ( ^ ) + 2a,% - c , ) ] ) 

in which a^, and c„ are defined as 

(3.12) 

6. = e x p ( - ^ ) , (3.14) 

c, = 2alK + \ . (3.15) 

The CAM-B3LYP form defines K^^^ in terms of K^^^^ and the Becke 1988 

gradient correction: 

R ' G G A _ TV-LSDA _| ^^-^a /o i 

+ l + 6Sx,arcsinh(x,) ^^'^^^ 

in which B = 0.0042. 

Long-range (LR) exchange is governed primarily by the first term of eq. 

(3.10), and is evaluated using a modified version of eq. (3.5); 

f E E 1 1 dr,dr,^,^{r,)^,^{r,f-^^^ (3.17) 
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Therefore the to ta l exchange energy is given as the sum of eqs. (3.12) and 

(3.17). In the case of the CAM-B3LYP functional the correlation energy is 

given by eq. (3.2). 

Yanai et al. determined values for the attenuation parameters a and /? by 

fitting to (essentially) the G2-1 set of atomisation energies. The value of / . i 

was held fixed following the previous work of Hirao and co-workers,^'^'''^'^^ at 

IxaQ = 0.33. I f the exact constraint of eq. (3.11) is enforced, i t is possible to 

improve on the error obtained wi th an LC functional on the G2-l^°° set of 

atomisation energies by a factor of two and a half; however the resultant error 

is st i l l notably larger than that obtained for B3LYP. Relaxing this constraint, 

Yanai et al. found that the smallest error for the G2-1 set was obtained wi th 

values of a = 0.19 and /3 = 0.46. These values of a, (3 and /x define the 

C A M - B 3 L Y P functional. 

Insight into the attenuation form of C A M - B 3 L Y P can be garnered f rom 

a consideration of the l imi t ing cases—how the functional behaves when the 

attenuation parameters are extremised. I f a = 0 and /? or /jao = 0, the 

functional reduces to a standard C C A , where eq. (3.12) makes the sole contri­

bution; i f we neglect correlation i t would reduce to Dirac (Slater) plus Becke 

1988 exchange. Making o; non-zero whilst P or /lao = 0 would then give a 

standard hybr id exchange functional. Despite using correlation of the form of 

eq. (3.2), the functional would not reduce to B3LYP in this case as the Becke 

1988 gradient correction has a different prefactor in the two functionals. For 

non-zero P and fi attenuation is introduced. I f /? = 1 and a = 0, a LC-type 

functional similar to those of Hirao and co-workers is obtained. The final l im­

i t ing case is fiao —>• oo, in which case the exchange is entirely treated through 

eq. (3.5); eq. (3.17) becomes equivalent to eq. (3.5) and eq. (3.12) becomes 

t r iv ia l ly zero. We w i l l consider the influence of the attenuation parameters on 

properties in a later section. 

Recently there have been a number of developments of associated attenu­

ated functionals. Gerber and Angyan^"^^ proposed a method based on LSDA 

exchange; Scuseria and co-workers^^^ treat short-range exchange via the PBE 

and TPSS exchange-correlation functionals; Chai and Head-Gordon^'•^•^''•^ re­

cently introduced an attenuated functional based on the B97 gradient expan­

sion. For other related approaches see refs. 144 and 145. 
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Table 3.3: Mean error d and mean absolute error \d\, relative to reference 
values, comparing B3LYP and C A M - B 3 L Y P for the assessments 
of table 3.1. Open-shell calculations use the unrestricted formal­
ism. 

B3LYP C A M - B 3 L Y P 
1. Atomisation energies 
d/kcal mol-^ - 2 . 9 1.5 
|d | /kcal m o l - i 3.6 3.3 
2. lonisation potentials 
d/eV 0.00 0.11 
\d\/eV 0.17 0.17 
3. Classical barriers 
d/kcal mol"-' —3.7 - 2 . 6 
|d | /kcal m o l - i 3.8 2.7 
4, 5, 6. Bond lengths 
d/k 0.009 -0.009 
\d\/A 0.015 0.016 
7. Vib. wavenumbers 
d/cm~^ 6 34 
\d\/cm-^ 22 37 
8. Polarisabilities 
d/a.u. 0.36 0.15 
l^l /a .u . 0.45 0.30 
9. Excitation energies 
d/eV -0 .82 -0 .40 
|d i /eV 0.84 0.43 

Performance of CAM-B3LYP 

Taking the C A M - B 3 L Y P functional w i t h the parameters recommended by 

Yanai et ai, we now determine its performance for the assessments of table 

3 "1̂  99,146 ^j^g open-shell species the unrestricted formalism is used. Errors 

are given in table 3.3, compared to B3LYP unrestricted values. 

For the atomisation energies of assessment 1, C A M - B 3 L Y P displays a sim­

ilar performance to B3LYP; however i t negates BSLYP's tendency to under­

estimate, lonisation potentials are also similarly described between the two 

functionals, but in this case C A M - B 3 L Y P tends to overestimate. Significantly 

improved are the classical reaction barriers of assessment 3; there is stil l a 
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tendency to underestimate, but the error is reduced by one kcal m o l ~ ^ I t is 
wor th noting that i f the restricted open-shell formahsm is used, not only does 
the C A M - B 3 L Y P error increase, but i t becomes less accurate than B3LYP, for 
atomisation energies and ionisation potentials. Interestingly the performance 
w i t h respect to classical reaction barriers improves in the restricted formalism. 

Bond lengths in assessments 4, 5 and 6 are also comparable between B3LYP 

and C A M - B 3 L Y P ; bond lengths tend to be shorter w i th the latter functional, 

which is associated wi th the slight overestimation of vibrational wavenumbers 

observed for assessment 7. Of particular note is the improvement for polar-

isabilities and excitation energies in assessments 8 and 9; the reduced errors 

in excitation energies can be traced pr imari ly to the description of Rydberg 

states, which are considerably more accurate than w i t h B3LYP. This is due 

to the improved asymptotic behaviour of the functional. This issue w i l l be 

discussed in greater detail in chapter 4. 

3.3 P A R A M E T E R D E P E N D E N C E O F A T T E N U A T E D F U N C T I O N A L S 

The parameters chosen by Yanai et al. for the attenuation of eq. (3.10) were 

not fu l ly optimised and are inconsistent w i t h the exact condition of eq. (3.11); 

however, on the assessment of table 3.1 i t performs well. We now go on 

to perform^'*^ a systematic investigation of all of the attenuation parameters 

(Yanai et al. did not consider varying /j.) w i t h an emphasis on the effect on 

functional performance of imposing the exact long-range behaviour through 

eq. (3.11). 

In order to gain insight into how the performance of attenuated function­

als depends on the attenuation parameters, we apply a systematic approach. 

In i t ia l ly we impose the condition of eq. (3.11) by setting P = 1 — a, allowing a 

and /X to vary over a range of values. As is commonplace in functional devel­

opment, we assess the quahty of the functional for each set of parameters by 

considering the error in atomisation energies. This is achieved through using 

a representative subset of assessment 1 f rom table 3.1, w i t h the computational 

details as for the larger set. Our subset consists of 14 molecules: C2H2, C2H4, 

C H 3 N H 2 , CH3OH, CH4, CO, CO2, H2O, H2O2, L i H , N2, N 2 O , N H 3 , and N O 2 . 

To simphfy the form of the functional, we remove the V W N correlation 
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Figure 3.1: The mean absolute error |cy| for the subset atomisation energy as­
sessment, as a function of the attenuation parameters a and /x, with 
/3 = 1 - Q. 

term; correlation is therefore described by 

(3.18) 

As noted by Yanai et al, including a fraction of VWN correlation actually 
reduces atomisation energy quality, although we find that it does improve 
performance for total electronic energies. Treating correlation through eq. 
(3.18) instead of eq. (3.2) was found to have minimal influence on the accu­
racy of the functional in general. We do not consider treating the correlation 
through other correlation functionals, nor do we consider changing the form 
of the GGA exchange functional. It is worth noting that the optimal values of 
a and /j, obtained from our investigation are consistent with the later work of 
Scuseria and co-workers^^^' with the a ; - P B E and L J - T P S S functionals, and 
the work of Chai and Head-Gordon.^^2,143 

Figure 3.1 shows the variation of a and /j. ior 0 ^ a ^ 0.4 in intervals of 
0.04, and 0 ^ /.MQ ^ 1 in intervals of 0.1, for the case oi P = 1 — a. The 
figure highlights a strong dependence on /j,. Along the a = 0 path, the error 
rises steeply to //ao = 0.1, and then falls again as is increased further. The 
minimum for the a = 0 path occurs near jiao = 0.5, consistent with the LSDA 
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results of Gerber and Angyan.^'*^ For this set of attenuation parameters the 
error for the atomisation energy subset is 4.8 kcal m o l ~ \ consistent w i t h a 
larger error f r o m functionals using the part i t ioning of eq. (3.3). As /iCo > 0.6 
the error increases monotonically as the functional becomes more Hartree-
Fock like. For non-zero a, the error decreases over the a = 0 case. There 
are three distinct minima, the lowest two of which have the same error (of 
3.4 kcal mol~^) on this subset. These correspond to a = 0.2, f3 = 0.8 and 
fiao = 0.4, and a = 0.28, P = 0.72 and /xao = 0.3; as figure 3.1 demonstrates, 
the optimal value of ^ decreases as a increases. The corresponding error f rom 
the C A M - B 3 L Y P functional for this subset is 2.2 kcal m o r ^ 

We consider the performance of the first of these optimal functionals, cor­

responding to a = 0.2, (3 = 0.8 and fj,ao = 0.4, for the extensive assess­

ment of table 3.1. For convenience this parameterisation w i l l be referred to 

as CAM(0.2 , 0.8,0.4). The overall performance of this functional is disap­

pointing, as illustrated in table 3.4. Atomisation energies, bond lengths and 

vibrational wavenumbers are significantly less accurate than those obtained 

f rom the C A M - B 3 L Y P and B3LYP functionals. lonisation potentials and po­

larisabilities also degrade shghtly. Classical reaction barriers notably improve 

however, consistent w i t h the increased amount of exact exchange present in 

this functional.^^"^ The excited states also improve significantly, due to the 

formally correct long-range behaviour observed w i t h this functional. The op­

t imal attenuation parameters are unaffected by the choice of treatment of the 

open-shell systems; the dependence when the restricted open-shell formalism 

is used essentially changes just the overall error of each point, but does not 

affect the shape of the surface. We do not present further assessment of the 

other low energy minima in figure 3.1, as the atomisation energy error for the 

fu l l set is notably larger than for the case of CAM(0.2 , 0.8,0.4). 

Consider the form of attenuation in the CAM(0.2,0.8,0.4) and C A M -

B3LYP functionals, which are plotted in figure 3.2, together w i t h the curve for 

B3LYP. The behaviour is different between the two attenuated functionals for 

all r i 2 . That C A M - B 3 L Y P is generally more accurate may be closely related 

to i t violat ing eq. (3.11); the form of attenuation in eq. (3.10) may be too 

restrictive to allow this condition to be satisfied without causing degradation 

in the description of some properties. W i t h this in mind we now consider 



P A R A M E T E R DEPENDENCE OF A T T E N U A T E D FUNCTIONALS • 52 

Table 3.4: Mean error d and mean absolute error \d\, relative to reference 
values, comparing three optimised attenuated forms wi th C A M -
B3LYP, for the assessments of table 3.1. Open-shell calculations 
use the unrestricted formalism. 

C A M - a = 0.2 a = 0.16 a = 0.16 
B3LYP p = 0.8 p = 0A9 P = 0.39 

//flo = 0.4 fxao = 0.4 yitao = 0 
1. Atomisation energies 
d/kcal mol~^ 1.5 5.5 1.5 -0 .3 
|d | /kcal m o r ' 3.3 7.5 3.2 2.4 
2. lonisation potentials 
rf/eV 0.11 0.10 0.04 0.02 
|d | /eV 0.17 0.19 0.17 0.18 
3. Classical barriers 
d/kcal mo\-^ - 2 .6 -1 .3 - 2 . 6 - 2 . 8 
|d | /kcal m o l - i 2.7 1.7 2.7 2.9 
4, 5, 6. Bond lengths 
d/A -0.009 -0.027 -0.012 -0.007 
\d\/k 0.016 0.027 0.017 0.015 
7. Vib. wavenumbers 
d / c m - i 34 66 39 31 
\d\/cm-^ 37 66 41 34 
8. Polarisabilities 
d/a.u. 0.15 -0 .18 0.12 0.20 
|d|/a.u. 0.30 0.31 0.28 0.33 
9. Excitation energies 
d/eV -0 .40 0.07 -0 .34 -0.45 
|d | /eV 0.43 0.24 0.37 0.48 

the parameter-dependence on a and f j , as before, when the constraint of eq. 

(3.11) is relaxed. Given the performance of CAM-B3LYP, we ini t ia l ly set 

P = 0.65 - a. 

The resulting parameter surface is plotted in figure 3.3. The features of 

the surface are similar to those displayed for the case where P = 1 — a as 

plotted in figure 3.1, although the error of an individual point is in general 

lower. A non-zero a and fi are both beneficial in lowering the error. The 

minimum error (of 1.8 kcal mol~^) obtained f rom a = 0.16, P = 0.49 and 

IJ,ao = 0.4 is smaller than the error f rom CAM-B3LYP, and half of the error 
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Figure 3.2: The shape of the attenuation curves for the exact exchange contri­
bution to the exchange-correlation energy with different functionals. 
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Figure 3.3: The mean absolute error \d\ for the subset atomisation energy as­
sessment, as a function of the attenuation parameters a and ji, with 
/? = 0.65 - a. 
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associated w i t h the CAM(0.2,0.8,0.4) functional. Note that i f the restricted 
open-shell formalism is used, the optimal values of a and /5 change slightly 
(to Q; = 0.2 and (3 = 0.45), although the overall error changes insignificantly 
between the two optimal functionals. The shape of the attenuation for the 
CAM(0.16,0.49,0.4) functional is plotted in figure 3.2; i t is similar to that of 
the standard C A M - B 3 L Y P functional. 

When we consider the performance of this functional for the assessments of 

table 3.1, we find that most properties are similarly described to CAM-B3LYP. 

The results are presented in table 3.4, which shows that the performance is 

either similar to or an improvement over the CAM(0.2 , 0.8, 0.4) functional, 

except for the excitation energies and reaction barriers. These observations 

highlight that the long-range behaviour of the exchange treatment is less im­

portant for most properties than the short- and mid-range behaviour. This is 

consistent w i t h the recent observation of Chai and Head-Gordon,^'*^ and the 

work of Scuseria highhghting parti t ioning the l / r i 2 operator into short-, mid-

and long-range components. In these other works the mid-range behaviour 

is shown to have the most significant impact on a property, except for cases 

such as Rydberg excitations. 

A t this stage we consider optimising the attenuation parameters to ob­

ta in as low an error as possible for the representative subset of atomisation 

energies. By removing all constraints, and varying the parameters over an 

appropriate range, we find that the lowest error (1.6 kcal mol~^) is given 

by a = 0.16, (3 = 0.39 and yuao = 0.4; the opt imal value of ix remains un­

changed. Again the use of the restricted open-shell formalism results in a 

(slightly) diff^erent optimal set of attenuation parameters. The attenuation 

fo rm of the CAM(0.16, 0.39, 0.4) functional is shown in figure 3.2; the mid-

range behaviour is again very similar to that obtained f rom the CAM-B3LYP 

and CAM(0.2,0.49,0.4) functionals. This functional is also assessed for the 

properties in table 3.1, the results of which are given in table 3.4. Atomisation 

energies are significantly improved over the other functionals considered in this 

study; reaction barriers and ionisation potentials are similar to CAM-B3LYP. 

This functional arguably has the best overall performance for the assessments 

of table 3.1 of those presented in this chapter, although the error for excitation 

energies is slightly larger than w i t h CAM-B3LYP. 
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3.4 E X C I T E D S T A T E S 

We have succeeded in describing short-range properties accurately, albeit not 

necessarily f rom the same parameterisation, notably improving on conven­

tional hybrid functionals. The real prospects of this approach lie in the poten­

t ia l ly improved description of long-range dependent properties. Attenuated 

functionals offer the possibility of exact (or in the case of CAM-B3LYP, near-

exact) long-range behaviour. 

We have illustrated in table 3.4 that such significant improvements are 

observed in the description of excitation energies. Therefore we consider exci­

ta t ion energies in more detail. Particular attention is paid to the performance 

of the CAM(0.2,0.8,0.4) functional since i t satisfies the condition of eq. (3.11) 

for the exact long-range behaviour, and also because of the high quality results 

i t gave for assessment 9 of table 3.1. Also of interest is the performance of the 

C A M - B 3 L Y P functional as our exemplar a + 0 = 0.65 functional, and that of 

B3LYP, used to illustrate the performance of a conventional hybrid. 

We begin by considering the excitation energies of assessment 9 in greater 

detail. Table 3.5 presents a more in depth error analysis, by grouping each 

excitation by type and molecule. The performance for valence excitations 

is essentially unchanged between the three functionals we consider; the de­

scription is marginally less accurate w i t h CAM(0.2 , 0.8, 0.4). The severe sys­

tematic underestimation of the Rydberg excitations w i t h B3LYP is reduced 

w i t h CAM-B3LYP, which is responsible for its improved overall performance. 

Imposing the exact long-range behaviour w i t h CAM(0.2 , 0.8,0.4) affords a fur­

ther significant increase in accuracy. I t would however be possible to repair the 

quality of the B3LYP and C A M - B 3 L Y P Rydberg excitations by apphcation 

of a correction to the asymptotic region of the exchange-correlation potential 

(see for instance ref. 150). There is l i t t le variation in the size of error across 

the four molecules considered; the errors decrease as the amount of long-range 

exact exchange in the functional increases. 

Next consider charge-transfer excitations, which are of considerable inter­

est. I t is w i t h this class of excitation that attenuated functionals have the 

most to offer; the deficiencies of standard hybr id functionals that give rise 

to severely underestimated charge-transfer states cannot be repaired through 
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Table 3.5: Vertical excitation energy errors for CO, N2, H 2 C O , and C2H4, 
and combined errors for valence and Rydberg excitations, in eV. 

B3LYP C A M -
B3LYP 

a = 0.2 
P = 0.8 

^ao = 0.4 
CO excitations 
d/eV -0 .77 -0 .37 0.08 
Ml /eV 0.77 0.37 0.16 
N2 excitations 
d/eV -0.86 -0.53 -0 .13 
Ml /eV 0.86 0.54 0.30 
H2CO excitations 
d/eV -0.66 -0 .24 0.28 
Ml /eV 0.76 0.37 0.28 
C2H4 excitations 
d/eV -0.94 -0 .40 0.12 
Ml /eV 0.94 0.40 0.22 
Combined valence 
d/eV -0.23 -0 .20 -0 .15 
Ml /eV 0.29 0.28 0.33 
Combined rydberg 
d/eV -1.14 - 0 . 5 1 0.18 
|d | /eV 1.14 0.51 0.19 
Combined total 
d/eV -0.82 -0 .40 0.07 
Ml /eV 0.84 0.43 0.24 

simple procedures such as asymptotic corrections. To further assess the perfor­

mance of attenuated functionals, we therefore consider two molecules which 

exhibit charge-transfer excitations. The first molecule is a model dipeptide 

(illustrated in figure 4.1) in which the severe failure of conventional function­

als has previously been h i g h l i g h t e d . T a b l e 3.6 lists six vertical excitation 

energies computed w i t h B3LYP, C A M - B 3 L Y P and CAM(0.2,0 .8 ,0 .4) , com­

paring w i t h CASPT2 reference values f rom ref. 151. Following the notation of 

that reference, C T denotes charge-transfer; W and N V denote more localised 

excitations. I n order to compare w i t h the CASPT2 reference values, we use 

the BP86^'''i^2 geometry obtained w i t h the 6-3lG(d) basis set. For the D F T 

excitation energy calculations we use the TZ2P^^^'^^^ basis set. 
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Table 3.6: Vertical excitation energies of the model dipeptide, in eV. 

B 3 L Y P C A M - a = 0 .2 C A S P T F 

B 3 L Y P /3 = 0 . 8 

AiCo = 0 .4 
^ A " m 
^ A ' TTi 

'A' TTi 

^ A ' 712 

'A" m 
' A " n2 

C T 6.28 7.88 9.72 7.92 
^2 C T 6.07 6.94 7.56 6.92 

N V 7.06 7.32 7.61 6.32 
^2 N V 7.11 7.53 8.36 6.29 

W 5.54 5.65 5.81 5.61 
^2 w 5.74 5.88 6.04 5.82 

^ ref. 151 

One of the key observations of Yanai et al. was CAM-B3LYP ' s improved 

performance in the description of excitation energies for this model dipeptide. 

Table 3.6 shows the severe underestimation of the two C T states when B3LYP 

is employed. These excitations increase significantly when C A M - B 3 L Y P is 

used, resulting in improved agreement w i t h the CASPT2 reference values. 

The CAM(0.2 , 0.8,0.4) functional further increases the excitation energies of 

these C T states, giving rise to a large overestimation. For the W states, which 

most closely resemble the valence states of the molecules in assessment 9, there 

is a much smaller variation between the functionals. C A M - B 3 L Y P is notably 

most accurate. Insight into the contrasting behaviour of the functionals for 

the C T and W type excitations is presented in chapter 4. The N V states 

however are poorly described by all three functionals; B3LYP overestimates 

the excitation energies for these states, and the attenuated functionals only 

amplify this overestimation. 

Next consider 4-(iV,Af-dimethylamino)benzonitrile ( D M A B N ) , illustrated 

in figure 4.1, which has been extensively studied due to its dual fluorescence. 

Following the study of Serrano-Andres"*^ et a/., we use CASSCF structural 

parameters to define the geometry, in the planar configuration, w i t h the amino 

wagging angle adjusted to 0°. For the D F T calculations we use the same A N O 

basis set as in ref. 46; we have confirmed that the calculated excitation energies 

are converged w i t h respect to basis set size, and that using the planar geometry 

has minimal influence on the excitations under consideration. For instance 

using the more extensive 6-311-|-G(2d,p) basis set as employed by Jamorski^^^ 
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Table 3.7: Vertical excitation energies of D M A B N , in eV. 

B3LYP C A M - a = 0.2 CAS- S T E O M - D F T / Expt.^ 
B3LYP 0=^0.8 PT2^ CCSD^ CIS'^ 

IMo = 0.4 
^B L E 4.37 4';66 ^ " 4 93 — ""4:05" 4.15^' ' 4.09 4.25 
^A C T 4.69 4.96 5.17 4.41 4.73 4.55 4.56 

^ ref. 46; ^ ref. 157; ref. 158 

et al. changes the excitation energies by less than one tenth of an eV; replacing 

the geometry w i t h an optimised non-planar B3LYP structure results in similar 

changes. 

Table 3.7 lists vertical excitation energies computed w i t h the B3LYP, 

C A M - B 3 L Y P and CAM(0.2,0.8,0.4) functionals, comparing w i t h the CASPT2 

values of Serrano-Andres''^ et ai, the similarity transformed equations of mo­

t ion CCSD (STEOM-CCSD) values of ParuseP" et al., and the D F T / C I S 

values of Bulliard^^'^ et al. Also hsted are experimental excitation energies 

f rom gas phase electron energy loss spectroscopy. The experimental wag­

ging angle is in the range of 12-15°;^^^'^^° we have confirmed the insensitivity 

of the excitation energies considered to changes in this angle. Two states are of 

interest; a locally excited (LE) state corresponding to a transit ion dominated 

by H O ^ L U - l - 1 (wi th HO referring to the highest occupied orbi tal and LU to 

the lowest unoccupied orbital) , and a charge-transfer state (CT) corresponding 

to a HO—>LU dominated transition. 

For the L E state the B3LYP excitation energy at 4.37 eV lies above the 

range of reference values of 4.05-4.25 eV; B3LYP overestimates this excita­

t ion energy. In the case of the C T state the B3LYP value of 4.69 eV Ues at 

the top end of the range of 4.41-4.73 eV. Both excitation energies increase 

in moving to C A M - B 3 L Y P and then to CAM(0.2 , 0.8, 0.4). A larger change 

is observed going f rom B3LYP to CAM-B3LYP for the locally excited state 

than was observed in the other molecules considered, resulting in the notice­

able overestimation. The excitation energy of the C T state changes similarly. 

The observation of the overestimated CT state is contrary to the case in the 

dipeptide. We give insight into this observation in chapter 4. 

A consideration of the /^-dependence of excitation energies computed wi th 
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attenuated functionals provides some insight into the behaviour of the func­

tionals i n describing excitation energies. For the functionals w i t h a = 0.2 and 

P = 0.8, we have determined excitation energies for a range of values of fi, 

and find that for each of the molecules in assessment 9, fiao = 0.4 is optimal. 

However, for the dipeptide a value of /iOo = 0.2 is more appropriate (giv­

ing errors comparable to those f rom C A M - B 3 L Y P ) , and for D M A B N a value 

of yuao — 0 is best. The contrasting dependence on ji illustrates the com­

plexities of finding a universally applicable functional and highlights the need 

for a more fiexible attenuation form. A consideration of the /^-dependence 

of excitation energies also allows us to consider whether or not there is an 

advantage to part i t ioning the l / r i 2 operator by eq. (3.10) as opposed to eq. 

(3.3). Yanai et al. introduced the a and /3 parameters to improve performance 

for short-range dependent properties such as atomisation energies. Examining 

excitations f rom the o: = 0 and f3 = I functionals, we find that as was observed 

above, a much smaller value of fj, is required for an accurate description of the 

dipeptide and D M A B N . I n contrast however we find that the optimal value 

varies more between the molecules of assessment 9. A non-zero a therefore 

appears to be beneficial in this case. 

In our investigation of the parameter dependence of eq. (3.10), which had 

not been considered previously for that attenuation form, we demonstrated 

the sensitivity of the atomisation energies to the rate of attenuation (con­

trolled through / i ) and the importance of a non-zero a. Perhaps surprisingly, 

CAM(0.16,0.39,0.4) was found to yield significantly higher quality atomisa­

tion energies than standard hybrid functionals. Imposing the exact condition 

of eq. (3.11) is detrimental to atomisation energies and many other proper­

ties, due to the notably different shape of the attenuation curve compared 

to C A M - B 3 L Y P and other successful paxameterisations. The success of the 

C A M - B 3 L Y P functional is therefore at t r ibuted to the violation of eq. (3.11). 

The imposition of the exact condition is beneficial for long-range dependent 

properties such as Rydberg excitation energies, but notably no set of attenua­

t ion parameters is able to provide a simultaneously opt imal description of all 
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of the classes of excitation considered. This suggests that the use of alterna­

tive attenuation schemes and partitionings is required to achieve a universally 

applicable functional. See refs. 161 and 162 for examples of where modifica­

tions have been employed. Avenues for developing different partitionings of 

the l / r i 2 operator are described in ref. 163. 

The results of this chapter highlight several deficiencies in the descrip­

t ion of exchange w i t h standard hybrid functionals. Through the theory of 

attenuated exchange-correlation functionals, we are able to at least partially 

correct for these deficiencies. In later chapters we go on to apply attenuated 

functionals to other properties that conventional hybrids struggle wi th . I n 

chapter 4 a much broader range of excitation energies are considered in a 

systematic study, to determine the performance of C A M - B 3 L Y P compared 

to conventional functionals. The proposition of an excitation energy error 

diagnostic test provides further insight into the seemingly conflicting results 

of the dipeptide and D M A B N charge-transfer states. We explain the severe 

underestimation by standard hybrid functionals for the former molecule, and 

overestimation for the latter, in terms of the spatial overlap between the or-

bitals involved in the excitations. I n chapter 5, C A M - B 3 L Y P is applied to the 

bond length alternation and band gap of polyacetylene and polyyne oligomers, 

as example properties which are poorly described w i t h conventional hybrids. 

We also consider the first apphcation of attenuated functionals to the eval­

uation of magnetic properties w i t h the optimised effective potential method, 

including a discussion of its performance for transition metal nuclear magnetic 

resonance response parameters. 



C H A P T E R 

Electronic excitations 
The application of D F T to the excited states of molecules is consid­

ered, through linear response time-dependent (TD) DFT. The theory 

of T D D F T is introduced, and the successes and failures of standard 

functionals are elaborated. Attenuated functionals are applied to a 

wide variety of vertical excitation energies, and the results compared 

to those from standard functionals. The low-overlap failure of local 

functionals is explained, and a diagnostic quantity that is able to de­

termine when standard functionals will fail due to lack of overlap is 

proposed. 

Hohenberg and Kohn established for the time-independent Schrodinger equa­

t ion the existence of a mapping between the ground state electron density and 

the external potential. The Runge-Gross^^'' theorem establishes the equiva­

lent mapping for the time-dependent case, where the external potential has a 

time-dependent contribution f rom a sum of time-dependent one-particle po­

tentials. For many-body systems evolving f rom a fixed in i t i a l state, the time-

dependent electron density determines the time-dependent external potential 

up to a spatially constant, time-dependent funct ion, and consequently the 

time-dependent wavefunction up to a time-dependent phase factor. See refs. 

165-167 for fur ther details. 

A variational principle may be established, analogous to the second the­

orem of Hohenberg and Kohn, through a consideration of the action integral 

and using the Runge-Gross theorem; i t is not possible to determine a varia­

tional principle based on the total energy since in a time-dependent system i t 

4 
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is not a conserved quantity. A time-dependent Kohn-Sham formulation may 

therefore be obtained. 

Whils t in principle the time-dependent Kohn-Sham formulation uses a 

time-dependent exchange-correlation action functional, as a first approxima­

t ion we assume the adiabatic approximation, where i t is taken that the den­

sity varies slowly w i t h time; the exchange-correlation kernel may therefore be 

approximated via the functional derivative of the time-independent exchange-

correlation potential t;xc evaluated w i t h the time-dependent density. This al­

lows exchange-correlation functionals derived for the ground state to be used 

in the computation of properties of excited states. For further details of this, 

see for instance refs. 1 6 6 , 1 6 8 and 169 . A l l of the calculations in this thesis use 

the adiabatic approximation. 

4 . 1 L I N E A R R E S P O N S E F O R M U L A T I O N O F T D D F T 

The most widely used method of calculating excited state properties is through 

the linear response formulation of time-dependent ( T D ) D F T , in the adiabatic 

approximation. In this section we shall demonstrate how excitation energies 

are obtained f r o m the time-dependent linear response of the ground state 

electron density under the application of a time-dependent field. For a fu l l 

consideration of the calculation of such quantities, see refs. 1 6 6 and 1 6 9 - 1 7 1 . 

Begin by reformulating the Kohn-Sham equation for the time-independent 

case. W i t h some manipulation, i t can be demonstrated that the equation 

[ - l y ' + v,,{r))^,{r) = em{r) ( 4 . 1 ) 

may be wr i t ten in terms of the Kohn-Sham Hamiltonian matr ix F and the 

density matr ix P, in the molecular orbital basis, as 

F P - P F = 0 , ( 4 . 2 ) 

for an idempotent density matr ix P. 

We introduce the following notation: The elements (for the unperturbed 

ground state) of the time-independent Hamiltonian are denoted by Fpq^ and 
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those of the associated density matr ix by Pjq\ These elements are given by 

^ < ; . . ; ( . ) ( - - E ^ ^ l ^ r . ^ ^ ( 4 . 3 ) 

f - ™ = C p C - ( 4 . 4 ) 

where we no longer assume real-valued orbitals, and the labels p and q refer to 

any molecular orbital . Equation (4.2) is equivalent to the statement that the 

eigenfunctions of F are also eigenfunctions of P. I f we work in the orthonor-

malised basis of unperturbed one-electron orbitals for the ground state, the 

matrices Fpq^ and Pp°' are given by 

= 5,qs, (4.5) 

P^^ = (4.6) 

Pi!^ = P^ = = 0 (4.7) 

(wi th the i and j corresponding to occupied orbitals and the a and b cor­

responding to v i r tua l orbitals) f rom which the commutation of the matrices 

immediately follows. 

Equation (4.2) may be generalised to the time-dependent case (where we 

switch to component notation); 

J 2 {Fp,P,r - Pp,F,r) = z ^ P p . (4.8) 

in which the density matr ix elements Ppr are related to the time-dependent 

electron density through 

p{T,t) = Y^Cp{t)cq{t)ifip{T)ipq{r) (4.9) 

= ^ P p , ( t ) ( P p ( r ) ( p , ( r ) . (4.10) 

Now apply an oscillatory time-dependent field, and analyse the linear (first-

order) response to the perturbation. In this case i t is assumed that both the 

density and Kohn-Sham matrices become the sum of the unperturbed ground 

state matr ix and a first-order time-dependent response; 

Pv<^ = PS^ + Pil^ (4.11) 

Fp, = FS^ + FilK (4.12) 
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Through substitution of eqs. ( 4 . 1 1 ) and ( 4 . 1 2 ) into eq. ( 4 . 8 ) , the following 

equation is obtained, by making use of the result of eq. ( 4 . 2 ) ; 

E {fS'P^^' - Pi^Fi? + - P(J)F(J)) = . ( 4 .13 ) 

We now step back to examine the first-order change of the Kohn-Sham Hamil-

tonian and density matrices to an applied perturbation. Two terms arise f rom 

the Kohn-Sham Hamiltonian matrix for the case that the perturbation is 

a time-dependent electromagnetic field; the first contribution is due to the 

time-dependent field itself. I t is sufficient to consider a single Fourier trans­

form component of the perturbation, which in matr ix component notation 

is given by 

9pQ = \[fpQ exp{-iujt) + f*p exp{iujt)]. (4 .14) 

The mat r ix f is a one-electron operator which describes the applied perturba­

t ion. The second contribution to the Kohn-Sham Hamiltonian's first-order re-

sponse^^^ is A F p ° \ which describes the two-electron operator response through 

its explicit dependence on the density matrix, and is given by 

I t follows that the first-order change in the Kohn-Sham Hamiltonian is 

F( i ) = + A F ( ; ) . ( 4 .16 ) 

Now consider the density matrix; to first-order the time-dependent change 

induced by the field perturbation is 

^p? = \[dv, exp(-zu;t) + d^^ exp(za;^)] ( 4 .17 ) 

where d represents the perturbation densities. By substitution of eqs. ( 4 .16 ) 

and ( 4 . 1 7 ) into eq. ( 4 . 1 3 ) , and by collecting terms that are multiphed by 

exp(—ic<;t), the following expression is obtained: 

(4 .18 ) 
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The terms mult ipl ied by exp(za;t) yield the complex conjugate of eq. (4.18). 

Prom the idempotency condition on the first-order change in the density ma­

t r ix , i t is possible to put restrictions on the fo rm of the matr ix d; the occupied-

occupied and v i r tua l -v i r tua l blocks da and daa are zero-valued. Only the 

occupied-virtual (and virtual-occupied) blocks can contribute. Making use of 

the diagonal nature of the unperturbed Kohn-Sham Hamiltonian and density 

matrices, and of the conditions on d, the following pair of equations can be 

obtained: 

rf.. - 4 . F f + + Y : i^^d"^ + ^'d^")] = (4-19) 

F^d,. - - F f k + E + | § ^ r f , 6 ) l = curf. . (4.20) 

A t this point we set dai = Xai and dia = Vai to follow the conventional nomen­

clature. I n the zero frequency hmi t (where / ja = /ai = 0 under the assump­

tion that the perturbation is infinitesimal) we may make use of = 

and — 1 and rewrite eqs. (4.19) and (4.20) as a single non-Hermitian 

eigenvalue equation 

B ^ i ( : : i = - i : \ (4 .21) 

The elements of the matrices A and B for the case of a local density functional 

are given by 

Aia^jb = SijSabisa - £i) + {ia\jb) + (za | /xc | j6 ) , (4.22) 

B^aJb = {ia\bj) + {ia\Ubj), (4-23) 

where in the adiabatic approximation the response of the exchange-correlation 

potential corresponds to the second functional derivative of E^^c-

{ia\U\jb) = j j dridr2 ( / ? i ( r i ) ( p a ( r i ) ^ ^ ^ ^ ^ ^ ( / P j ( r 2 ) ( p b ( r 2 ) . (4.24) 

Note that in the case of hybrid, or attenuated functionals, an additional term 

arises, in A and B ; 

Aiajb = SijSabisa - Si) + (m| j6) + {ia\f^^\jh) + {ia\K\jh), (4.25) 

Biajb = {ia\bj) + (m | / xc | 6 j ) + {ia\K\bj). (4.26) 
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This additional term for the case of an attenuated functional of the form of 

CAM-B3LYP, is given by 

iia\K\jb) = d r i r f r2yp , ( r0v^a( r i ) ' ' ^^ ' ' ^^^^ ' "^ ' ^y , ( r2 )y^ , ( r2 ) . (4.27) 

For alternative derivations of the linear response equations see for instance 

refs. 150 and 173. 

4.2 F A I L I N G S O F S T A N D A R D F U N C T I O N A L S 

I f conventional G G A and hybrid functionals are used for the description of 

excited states, local excitations are well-described w i t h average errors of the 

order of a few tenths of an eV (a few percent). Excitations to the more 

spatially diffuse Rydberg orbitals are significantly underestimated.-^"^ 

The failure of G G A functionals in describing excitations to Rydberg or­

bitals may be traced to the long-range behaviour of the exchange-correlation 

potential. Perdew^''* et al. demonstrated the exact exchange-correlation po­

tential is discontinuous as the number of electrons passes through an inte­

ger; the potentials on the electron-deficient and electron-abundant sides are 

parallel, shifted f rom one another by a system-dependent amount^^^ denoted 

Axe- The potential on the electron-deficient side should vanish asymptotically 

whereas on the electron-abundant side i t should approach a value of Axe- Since 

GGA functionals do not exhibit any discontinuity in v^^c, they can at best aver­

age over it.^^^ I t has been demonstrated that in regions of significant electron 

density (the part of v^^c that describes occupied orbitals) G G A functionals do 

exhibit behaviour consistent w i t h averaging over the discontinuity.-'^^ How­

ever, in the asymptotic regions where the electron density of the ground state 

is insignificant, the potential incorrectly tends to zero, adversely affecting the 

description of the v i r tua l orbitals. 

For an averaged potential, the potential should tend to A x c / 2 asymptoti­

cally, which is well-represented by the sum of the ionisation potential and the 

HO orbital energy^^^ (7° - I -£HO ) - ^^ ' ' ' ^ "^ ' ^^^ The correct averaging behaviour 

l i m ^ x c ( r ) = - - + / ° + £HO (4.28) 
r—»oo r 
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may therefore be imposed upon a functional by forcing the of a GGA to 

satisfy this equation. This approach due to Tozer and Handy^^° is known 

as the asymptotic correction scheme, and improves both Rydberg excitation 

energies and other v i r tua l orbi tal dependent properties such as static polar-

isabilities. Several variations of this method e x i s t , ' i n c l u d i n g extensions 

to hybr id '^ ' and attenuated^®^ functionals. 

Charge-transfer failure of standard functionals 

Many studies have also highlighted the significant underestimation of low-lying 

T D D F T excitation energies that are associated wi th significant charge-transfer 

(CT).^^^'^^''"^^^ Errors can be of the order of several eV, and important ly are 

not affected by an asymptotic correction. As we highlighted in chapter 3, the 

excitation energies f rom the model dipeptide were notably underestimated 

w i t h B3LYP. For D M A B N however, B3LYP only slightly overestimates the 

lowest C T excitation energy—standard functionals can provide an accurate 

description in some cases.'̂ '̂̂ ^ '̂̂ ^^ I t is therefore difficult to determine in 

practice when a C T excitation energy w i l l be poorly described by T D D F T . 

The origin of the C T error in T D D F T has been widely discussed; see for 

instance refs. 195-197. Of particular relevance to our work is the analysis 

of Dreuw^^^ et ai, who considered the intermolecular C T excitation f rom an 

occupied orbi tal on one molecule to a v i r tual orbital on another molecule. 

A t infini te intermolecular separation the spatial overlap between these two 

orbitals tends to zero. For local functionals such as GGAs, the elements of 

matr ix A [in eq. (4.22)] reduce to orbital energy differences; the first term in 

that equation gives the orbi tal energy diff'erences, the second and th i rd terms 

do not contribute because of the absence of overlap between the orbitals. The 

same arguments apply to the terms of matrix B , consequently this is iden­

tically zero. The result is that the excitation of a C T state w i t h no overlap 

between the donating and accepting orbitals is given simply by the orbital 

energy difference of the relevant orbitals whenever GGA functionals are em­

ployed. Following ref. 196, this failure can be understood f rom a consideration 

of the integer discontinuity. The exact vertical excitation energy for an exci­

ta t ion f rom the HO orbital of the donor D to the L U orbital of the acceptor 
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A at large internuclear separation R is given by 

^e^act ^ jD _ ^ ^4 29) 

where is the exact vertical ionisation energy of D and is the exact 

electron aff ini ty of A. The —1/R contribution arises due to the electrostatic 

interaction of the charged donor and acceptor upon the transfer of an electron. 

In the case a G G A functional is used, we have already demonstrated this 

quantity reduces to the orbital energy difference for these two orbitals when 

, ,TDDFT _ ^A - D (A q^^ 

Therefore the difference between the exact and T D D F T values for infinite 

separation is 

TDDFT _ ^exact ^ ^A^ _ ^D^ _ (^D _ ^ A ) ^ (4_31) 

Note the relations f rom ref. 174: E^Q = —7° and £LU ~ —A^. From the 

observed behaviour that GGA functionals typically average over the integer 

discontinuity for high-density regions, the equivalent orbi ta l energies f rom a 

G G A functional w i l l both be shifted relative to these. In the case of E^Q the 

eigenvalue is shifted upwards by approximately half of the discontinuity for the 

donor, and in the case of ^ L U ^t is shifted down by approximately half of the 

discontinuity for the acceptor. Equation (4.31) therefore demonstrates that 

the experimental excitation energy wi l l be underestimated by approximately 

the average of the integer discontinuities of the two molecules, which can be 

of the order of several eV. 

When hybrid or attenuated functionals are used however, the additional 

terms (which resemble those arising in the ground state theory due to the 

classical Coulomb interaction J between electrons) contributing to the matr i­

ces A and B prevent the excitation energies f rom reducing to orbital energy 

differences in the case of zero overlap. I t is also through these additional terms 

that the —1/72 dependence, required by eq. (4.29), is introduced. The accu­

racy of charge-transfer states for these extreme cases wi l l therefore depend on 

the amount of exact exchange present in a functional for modelling this dis­

tance dependence; the standard hybrid functional B3LYP exhibits behaviour 
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as —0.2/R since i t contains 20% exact exchange. I t has been demonstrated 
that^^ CAM-B3LYP ' s long-range behaviour significantly improves the distance 
dependence of C T excitations for intermolecular excitations, but since i t s t i l l 
only contains 65% exact exchange at long-range, i t does not exhibit the correct 
long-range behaviour. Forcing the attenuation parameters to satisfy a + P = 1 
does yield the correct behaviour however, but as has been demonstrated in 
chapter 3, this would yield significantly less accurate descriptions of other 
properties; i t is insufficient to simply have the correct distance dependence. 

Given the observed performance of CAM-B3LYP,i38,i4o,i82,198-201 f ^ i . 

lowing the application of CAM-B3LYP to two examples of charge-transfer 

state^^'^''^ in chapter 3 we now go on to consider a wider range of excita­

t ion energies. First ly we provide an extensive assessment of the quality of 

T D D F T excitation energies f rom PBE, B3LYP and CAM-B3LYP, as pro­

totypical GGA, hybrid and attenuated functionals. A wide range of vertical 

excitations in main group molecules are considered, comprising local, Rydberg 

and intramolecular C T types. Influenced by the above analysis highlighting 

G G A failure as the overlap tends to zero, we go on to consider the influence of 

the spatial overlap on a general excitation. Specifically we attempt to quan­

t i f y the extent to which excitation energy errors correlate w i t h the overlap 

between the occupied and vi r tual orbitals involved in an excitation. We then 

use this to explain the seemingly conflicting performance of functionals for C T 

in different molecules. 

4.3 A S S E S S M E N T O F E X C H A N G E - C O R R E L A T I O N F U N C T I O N A L S 

Molecules, excitations and computational details 

Figure 4.1 lists the molecules considered in this s t u d y . T h e y were chosen 

to include a wide range of excitations of differing character, many of which 

have been demonstrated to represent a challenge for T D D F T . Table 4.1 lists 

the specific singlet vertical excitations of interest. We base our classiflcation 

of the excitation energies on earlier studies; those assigned to be of Rydberg 

or charge-transfer character are labelled R and C T respectively. A l l other 

excitations are termed local, labelled L. 
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Dipeptide /3-dipeptide Tripeptide 

Acenes, n= l -5 
H 

A/-phenylpyrrole (PP) 4-(/\/,/\/-dimethylamino) 
benzonitrile(DMABN) 

CO HoCO 

Polyacetylene (PA) 
oligomers, n=2-5 

Figure 4.1: Schematic structures of the molecules for which excitation energies 
have been considered. 

The first molecule we consider is the model dipeptide of ref. 203. This was 

one of the first highlighted caseŝ ^^ where conventional functionals exhibit a 

large error associated w i t h a C T state. The notations r i j , TTj and T T * in ta­

ble 4.1 refer to the non-bonding, T T and T T * orbitals approximately localised 

on carbonyl group i, w i t h z = 1,2. The ni — > T T J and T T I excitations 

therefore correspond to excitations f rom one carbonyl to another and are C T 

in character. The remaining r i i — » • T T * and n2 —> 1^2 local excitations since 

they only involve one carbonyl group. The next two molecules are a longer 

chain /?-dipeptide and tripeptide, also f rom ref. 203, neither of which have pre­

viously been studied w i t h T D D F T ; the same notation is used to describe the 

excitations in these molecules. The larger distances between carbonyl groups 

in these molecules suggests that the C T errors f rom conventional functionals 

w i l l be even more significant than in the dipeptide system. 

Next is a series of linear condensed acenes, of increasing length, as consid­

ered in ref. 204. As noted in this earlier work, the ^B2u excitation is particularly 

problematic for T D D F T , and the state ordering for the ^B2u and ^Bsu states 
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can be incorrect. The next two molecules are A'^-phenylpyrrole (PP), widely 
s t u d i e d ^ ^ ' d u e to its photophysical properties, and D M A B N , which is of 
significant interest due to its dual fluorescence. D M A B N is an example of a 
system where conventional functionals give a good description of the lowest 
C T excitation. The next four molecules are polyacetylene (PA) oligomers, as 
recently investigated in ref. 205; see also chapter 5. We consider the lowest 
dipole-allowed transition. The final four molecules are N2, CO, H2CO (see 
ref. 150) and HCl (see ref. 206), the first three of which allow the accuracy of 
Rydberg excitations to be assessed. 

A l l calculations were performed using a development version of the D A L -

T O N program. The T D D F T excitation energies were performed wi th in the adi-

abatic approximation w i t h three exchange-correlation functioiials: the PBE 

G G A containing no exact exchange, the B3LYP hybrid containing a fixed 

amount of exact exchange, and the C A M - B 3 L Y P attenuated functional w i t h 

the parameters as defined by Yanai''*° et al. 

Calculations on the acenes were performed at B 3 L Y P / T V Z P geometries to 

allow comparison w i t h the CC2 reference values of Grimme and Parac.^°'* For 

the PA oligomers we use the CAM-B3LYP/6-31G* geometries (see chapter 5) 

due to their high quality bond-length a l t e r n a t i o n . F o r N2 and CO the 

experimental geometries of ref. 208 are used. Calculations on al l of the other 

molecules were performed at MP2/6-31G* geometries. 

A l l of the excitation energies calculated in the present work are vertical 

values determined w i t h the cc-pVTZ basis set,^°^ w i t h the exception of N2, CO 

and H2CO, where the d-aug-cc-pVTZ^^° basis set is used due to the Rydberg 

character of some of the excitations; this point is discussed further in the next 

subsection. For the remaining molecules, we have confirmed where possible 

that the T D D F T results are relatively insensitive to the addition of diffuse 

functions to the basis—most excitation energies change by less than 0.1 eV in 

moving firom cc-pVTZ to aug-cc-pVTZ.^^^ 

The accuracy of the T D D F T excitation energies is quantified through com­

parison w i t h reference values. Where gas-phase experimental data are avail­

able, we use these as reference. For the model peptide systems, CASPT2 

data is used. For the remaining molecules CC2 data is used. The CASPT2 

and CC2 values were computed at the same geometries as the T D D F T val-
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ues; all CC2 calculations performed for the present study use the cc-pVTZ 
basis set. Full details of the reference values are given in table 4.1. Note that 
the conclusions of this study are applicable outside of these chosen geome­
tries, bases and reference values; analogous observations are made when the 
computational details of the earlier studies are instead used. 

Functional performance 

Table 4.1 compares T D D F T excitation energies w i t h reference values. First 

consider the PBE functional. Excitations of C T character are significantly 

underestimated, w i t h the exception of D M A B N as highUghted in ref. 156 and 

chapter 3. As anticipated the performance is worst for the C T excitations i n 

the tripeptide w i t h errors up to 5 eV. The Rydberg excitations in N2, CO and 

H2CO exhibit the usual significant underestimation, w i t h errors of up to sev­

eral eV. These excitations have an unacceptable dependence on the diffuseness 

of the basis set; as an i l lustration we performed additional calculations using a 

t r ip ly augmented basis, obtained by adding an extra shell of diffuse functions 

for each angular momentum, wi th elements obtained f rom the geometric pro­

gression. A l l of the Rydberg excitation energies are reduced, by an average of 

0.27 eV, whilst the local excitations are unaffected by the additional functions. 

Consistent w i t h ref. 204, the PBE ^B2u excitations in table 4.1 are much 

too low in the acenes, w i t h the ^B2u/^B3u state ordering incorrect for the n = 1 

case. The excitation energies of the local states in PP are notably underesti­

mated, and the error for the PA oligomers increases as the chain lengthens. 

The remaining excitations are reasonably accurate. The poor overall perfor­

mance of P B E is illustrated by the fact that of the 59 excitations we consider, 

25 have an error larger than 1 eV and 35 have a percentage error greater than 

10%. 

Next consider the B 3 L Y P functional, which introduces a fixed amount of 

exact exchange. The values of most excitation energies increase relative to 

PBE. Subsequently the C T excitations do improve, but in general s t i l l remain 

too low (the exception being D M A B N ) . The Rydberg excitations also improve, 

but s t i l l have unacceptably large errors. Notably the basis set dependence 

of the Rydberg excitations is diminished; on average the excitation energies 
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Table 4.1: T D D F T excitation energies and reference values, in eV. 

Molecule Excitation Type P B E B 3 L Y P C A M - B 3 L Y P " Ref. 
Dipeptide n i TT^ C T 4.61 6.31 7.84 8.07^ 

TTi - > C T 5.16 6.15 7.00 7.18^ 
ni L 5.35 5.55 5.68 5.62^ 
n 2 7r^ L 5.67 5.77 5.92 5.79^ 

/5-dipeptide n i CT 4.78 7.26 8.38 9.13^ 
TTi 772 CT 5.32 7.20 8.01 7.99^ 
n i 7rj* L 5.38 5.66 5.67 5.40^ 
n 2 77^ L 5.41 5.56 5.76 5.10^ 

Tripeptide 77i 772 CT 5.18 6.27 6.98 7.0P 
772 77^ CT 5.51 6.60 7.69 7.39^ 
77i - > 77^ CT 4.76 6.06 8.51 8.74^ 
n i ^ 77* C T 4.26 6.12 8.67 9.30^ 
n2 ^ 77* C T 5.16 6.83 8.25 8.33^ 
n i ^ 77^ C T 4.61 6.33 7.78 8.12=̂  
U i 77* L 5.36 5.57 5.72 5.74^ 
n 2 ^ 77* L 5.58 5.74 5.93 5.6P 
na ^ 77* L 5.74 5.88 6.00 5.91*^ 

Acene ( n = l ) ^B2u L 4.11 4.38 4.67 4.88^ 
L 4.27 4.47 4.62 4.46*̂  

Acene (n=2) ^B2u L 2.94 3.21 3.53 3.69"̂  
^Bsu L 3.64 3.86 4.04 3.89'̂  

Acene (n=3) ^B2u L 2.17 2.43 2.76 2.90'' 
L 3.24 3.47 3.65 3.52*̂  

Acene (n=4) ^B2u L 1.63 1.89 2.22 2.35*̂  
^Bsu L 2.96 3.21 3.39 3.27^ 

Acene (n=5) ^B2u L 1.23 1.48 1.82 1.95^ 
^B3u L 2.76 3.01 3.21 3.09*̂  

PP 1^B2 L 4.33 4.76 5.06 4.85̂ = 
2 iAi L 4.61 4.96 5.12 5.13^ 
21B2 C T 3.98 4.58 5.27 5.47= 
31A1 C T 3.90 4.64 5.92 5.94"= 

D M A B N I B L 4.02 4.44 4.72 4.25^ 
^A CT 4.30 4.64 4.91 4.56^ 

PA Oligomer (n= =2) I 'Bu L 5.74 5.88 6.04 5.92^ 
PA Oligomer (n= =3) l 'B„ L 4.63 4.81 5.03 4.95^ 
PA Oligomer (n= =4) I 'Bu L 3.93 4.13 4.39 4.418 
PA Oligomer (n= =5) I ' B , L 3.44 3.66 3.94 4.27= 

Continued. 
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Table 4.1: Continuation of: T D D F T excitation energies and reference val­
ues, in eV. 

Molecule Excitat ion Type PBE B3LYP C A M - B 3 L Y P Ref 
N2 R 11.67 12.01 1Z44 

R 10.66 11.62 12.32 12.98^ 

R 10.76 11.65 12.27 12.90'̂  
R 10.41 11.24 11.80 12.20'^ 
L 10.08 9.72 9.68 10.27^' 
L 9.68 9.33 9.21 9.92*̂  
L 9.10 9.26 9.38 9.31^ 

CO R 10.16 10.97 11.79 12.40' 
R 9.45 10.19 10.90 11.53' 
R 9.40 10.13 10.80 11.40' 
R 9.09 9.80 10.37 10.78' 
L 10.18 10.03 10.08 10.23' 
L 9.86 9.72 9.71 9.88' 
L 8.24 8.39 8.47 8.51' 

H2CO R 7.43 8.16 8.87 9.22j 
R 6.61 7.34 7.94 8.38j 
L 8.68 8.83 8.95 8.68j 
R 6.50 7.16 7.62 8.12j 

'A, R 6.39 7.14 7.74 7.97j 
R 5.78 6.43 6.89 7.0&' 

'A2 L 3.73 3.85 3.85 3.94j 
HCl i n CT 7.55 7.65 7.79 8.23= 

^ CASPT2, ref. 203. 
^ CC2, ref. 204. 
= CC2, this work. 

Gas phase expt., ref. 
^ Gas phase expt., ref. 
^ Gas phase expt., ref. 
s Gas phase expt., ref. 
^ Gas phase expt., ref. 
' Gas phase expt., refs, 
j Gas phase expt., refs 

158. 
212. 
213. 
214. 
215. 
208 and 216. 
217 and 218. 
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reduce by 0.1 eV when additional diffuse functions are added—one th i rd of the 
reduction that occurred wi th PBE. Both the ^B2u and 'Bsu states in the acenes 
become more accurate, although the state ordering is s t i l l incorrect for n = 1. 
The local excitations in PP improve significantly; the PA oligomer excitations 
also improve, however the error remains large for the longer chains. The 
remaining excitations are reasonably accurate. Overall 16 excitations have an 
error larger than 1 eV and 25 have a percentage error greater than 10%. 

I n moving to the attenuated C A M - B 3 L Y P functional a further increase 

in most excitation energies is observed. For the C T excitations the tendency 

to underestimate is eUminated; only two errors are larger than 0.5 eV. The 

description of Rydberg excitations is also considerably improved compared to 

B 3 L Y P ; on average the error is halved. Further the basis set sensitivity is 

reduced again; the effect of additional diffuse functions is now to lower the 

excitation energies by less than 0.03 eV on average. The C A M - B 3 L Y P error 

for the Rydberg excitations can sti l l approach 1 eV however, which as noted in 

chapter 3 is due to the still-incorrect long-range behaviour of this functional. 

C A M - B 3 L Y P provides a particularly good description of the acene excitations, 

w i t h the state ordering now correct for all of the systems. I t also performs well 

for PP and the PA oligomers, for which the error is now much less sensitive 

to chain length. Most of the remaining excitations are reasonably accurate, 

although large errors remain for the n2 —> excitation in the /3-dipeptide 

and the excitation in N2. None of the excitations have an error larger 

than 1 eV, and only two have a percentage error that is greater than 10%. 

Table 4.2 lists the mean error d, mean absolute error \d\, standard devia­

t ion (SD) and maximum positive and negative deviations relative to reference 

values according to excitation category. The errors are defined as calculated 

minus reference. For local excitations B 3 L Y P is a notable improvement over 

PBE. C A M - B 3 L Y P provides a similar quality \d\ and SD to B3LYP, but is 

associated w i t h slightly higher maximum errors. For bo th the Rydberg and 

C T excitations the improvement f rom PBE to B 3 L Y P to C A M - B 3 L Y P is sig­

nificant. 

Note that since the Rydberg and intermolecular C T excitations require 

100% long-range exact exchange in the functional, the amount of long-range 

exchange in C A M - B 3 L Y P is insufficient to provide a completely accurate de-
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Table 4.2: Error analysis for the excitations considered in table 4.1 (mean 
error d, mean absolute error \d\, standard deviation (SD), and 
maximum positive and negative deviations) in eV. 

PBE B3LYP C A M - B 3 L Y P 
Local 
d - 0 . 3 1 -0 .15 0.02 
\d\ 0.33 0.22 0.20 
SD 0.27 0.26 0.27 
Max(-I-) 0.31 0.46 0.66 
M a x ( - ) -0 .83 - 0 . 6 1 - 0 . 7 1 
Rydberg 
d -1 .84 - 1 . 1 1 -0 .50 
\d\ 1.84 1.11 0.50 
SD 0.30 0.23 0.18 
Max(4-) None None None 
M a x ( - ) -2 .24 -1.43 -0 .80 
Charge-transfer 
d -2 .60 -1.35 -0 .18 
\d\ 2.60 1.36 0.27 
SD 1.37 0.86 0.31 
Max(-h) None 0.08 0.35 
M a x ( - ) -5 .04 -3 .18 -0 .75 

scription of these properties. The influence of alternative parameterisations 

of C A M - B 3 L Y P is not considered here due to the observations of chapter 3, 

where i t was shown that many other excitations become poorly described when 

the nature of the attenuation is changed f rom the form in CAM-B3LYP. As 

previously highlighted, this suggests the need for designing different attenua­

t ion shapes to simultaneously describe all classes of excitation to the required 

accuracy. 

4.4 C O R R E L A T I O N B E T W E E N E R R O R A N D O R B I T A L O V E R L A P 

The excitation energy results described in the previous section highlight sev­

eral important issues; all three functionals perform reasonably well for local 

excitations, but there is a marked variation in their performance for Ryd-
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berg and C T states. As originally highlighted in ref. 195, the failure for some 
charge-transfer states seems to originate f rom the inappropriate collapse of 
the excitation energies to orbital energy differences when local functionals are 
employed. Whils t this can be repaired through the appropriate introduction of 
exact exchange into the functional, we consider whether i t is possible to gain 
insight into the problem by exphcitly determining a measure of the spatial 
overlap between the unperturbed occupied and vi r tual orbitals involved in an 
excitation, and the extent to which the error in a given excitation correlates 
w i t h this overlap. 

For a given occupied orbital ipi and v i r tua l orbital (pa, there are two natural 

measures of spatial overlap; the inner product of the moduli of the two orbitals 

0^a = { M M = J drMr)\\v,i^)\ (4.32) 

and the inner product of the square of the two orbitals 

Ol = {^M) = J dr^j{r)^l{r). (4.33) 

The latter of which has the advantage of maintaining the invariance to uni­

tary transformations of the orbitals. I t is necessary to ensure that the overlap 

uses only positive quantities to avoid sign cancellation; wi thout the square 

or moduli , each of these quantities would be t r iv ia l ly zero. Either of these 

quantities can be easily evaluated, using the standard numerical quadrature 

schemes that are employed in the T D D F T calculations, to the necessary accu­

racy. In practice many occupied-virtual pairs contribute to a given excitation; 

the contribution f rom each pair can be measured by 

ACia = X i , + Yia (4.34) 

which correspond to the elements in eq. (4.21) of the matrices X and Y re­

spectively. This quantity (to wi th in a possible multiphcative constant nor­

malisation factor) is commonly printed out in electronic structure programs 

for the purpose of aiding state assignment. 

A measure of the spatial overlap for a given excitation may therefore be 

obtained by weighting each inner product or Of^ by some function g{Kia) 
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and summing over all occupied-virtual pairs, suitably normalised; 

A = (4.35) 

To again avoid cancellations due to sign changes, we consider both g{Kia) = 

Kia\ and g{Kia) = nf^. This gives rise to four expressions for A, each of which 

satisfies 0 < A ^ 1. We evaluated each of these overlap measures for all of 

the excitations given in table 4.1, wi th each of the three functionals. Figure 

4.2 presents plots of the four overlap measures against excitation energy error 

for the P B E functional, w i t h the points coded by colour and symbol for each 

excitation type; an individual point corresponds to a single excitation. Each 

of the four measures demonstrates some correlation between A and excitation 

energy error; however, we feel that expressions involving the moduli of the 

orbitals [eq. (4.32)] provide the most distinct correlation, w i t h the error on 

average increasing as the overlap decreases. The case w i t h g{Kia) = ^as 

values of A which cover more of the possible range, allowing excitations to 

be more readily distinguished. For the remainder of the study we therefore 

measure the spatial overlap in a given excitation by the quantity 

2 nu 
A = '"7" . (4.36) 

A small value of A corresponds to a small overlap and a long-range excitation, 

whereas a large value signifies a short-range excitation corresponding to a high 

overlap. Figure 4.3 plots the error in each of the excitation energies of table 

4.1 against the associated A values for the PBE, B3LYP and CAM-B3LYP 

exchange-correlation functionals. The A value for each individual excitation 

is given in table 4.3. 

First consider the P B E results in figure 4.3. The three categories of excita­

t ion are readily distinguished. Local excitations have relatively large overlap, 

ranging f rom 0.45 ^ A ^ 0.89, indicating that the occupied and vir tual or­

bitals involved in these excitations occupy similar regions of space. This is 

consistent w i t h the intuit ive picture of a local excitation, and the associated 

small degree of chaxge redistribution. In contrast, the Rydberg excitations 

have much smaller overlap values, ranging f rom 0.08 ^ A ^ 0.27, indicating 
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only a minimal spatial overlap between the occupied and virtual orbitals in­
volved in an excitation; this is equally consistent with the intuitive notion of 
an electron moving from a valence orbital to a diffuse virtual orbital. Unex­
pected is the behaviour of the A values associated with the CT excitations, 
which cover a surprisingly wide range of overlaps, from A = 0.06 in the tripep-
tide to A = 0.72 in DMABN. Figure 4.3 shows a clear correlation between the 
PBE excitation energy errors and A; small errors are associated with large 
A and large errors are associated with small A. This correlation provides a 
simple explanation as to why the CT excitation in DMABN, unlike many CT 
excitations, is well described by PBE—the spatial overlap between the orbitals 
involved in the excitation is large. We highlight this by plotting the relevant 
orbitals in figure 4.4. In this sense the excitation more closely resembles a 
local excitation; the origin of the CT classification is from the large change 
in dipole moment associated with this electron transition. For comparison, 
the orbitals corresponding to the n i ir^ excitation in the tripeptide are 
also plotted in figure 4.4, corresponding to A = 0.06. The lack of overlap is 
particularly evident. 

Note that we do not explicitly consider intermolecular CT excitations be­
tween infinitely separated molecules; for such systems, the error in the exci­
tation energy is (as shown above) approximately the average of the integer 
discontinuities of the two molecules. The discontinuity may be approximated 
by twice the system-independent shift that must be introduced when semi-
empirical functionals are determined from high-quality potentials. As such 
it is apparent that (consider for instance the data in table I of ref. 219) for 
typical pairs of molecules this error is well in excess of —5 eV and such data-
points would fit well with the CT data in figure 4.3. We have confirmed from 
a number of sample calculations on C 2 H 4 • • • C 2 F 4 complexes that for large 
intermolecular separation, we do obtain significant errors and essentially zero 
values of A. 

In moving to B3LYP and CAM-B3LYP in figure 4.3, the excitation energy 
errors reduce according to the value of A. Those with large A values, such as 
the local excitations and the DMABN CT, do not change appreciably. With 
reducing A however, the error reduction becomes increasingly pronounced. For 
B3LYP, the correlation between excitation energy error and A is still present. 
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(a) DMABN (b) Tripeptide 

Figure 4 .4 : Charge-transfer dominant orbital transitions in DMABN and the 
model tripeptide, exemplifying large and small A, determined using 
the PBE GGA. All orbital plots in this work use a contour of 0.023 
a.u. 

It is notably less prominent than with PBE, indicating the partial success of 

the introduction of a fixed amount of exact exchange into a functional. For 

CAM-B3LYP there is essentially no correlation between the value of A and 

the associated error in an excitation energy, which is exactly what should be 

observed from a successful theoretical method. This removal of the correlation 

is due to the complicated mixing of exact orbital exchange in the functional. 

The overlap quantity A is now routinely evaluated in the D A L T O N program. 

Of the three functionals considered, C A M - B 3 L Y P provides by far the best 

overall description of the excitation energies considered, with essentially no ob­

served correlation between the errors and spatial orbital overlap as measured 

by A . This functional is therefore recommended for general excitation energy 

calculations. For PBE and B3LYP, our observations lead us to propose a sim­

ple diagnostic test for judging the rehability of an excitation energy; following 

figure 4.3, a PBE excitation with A < 0.4 or a B3LYP excitation energy with 

A < 0.3 is likely to be in significant error. The quantity A is not unique, but it 
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provides a qualitative description of the failure of local functionals in describ­
ing excitation energies under certain circumstances. It captures the essential 
physics of the problem and may prove useful in practical calculations. 



CORRELATION BETWEEN ERROR AND ORBITAL OVERLAP • 84 

Table 4 .3 : Values of the overlap quantity A of eq. (4.36) 

Molecule Excitation Type PBE B3LYP CAIVI-BSLYP 
Dipeptide ni TT^ CT 0.19 0.32 0.27 

TTi —> TTo CT 0.41 0.43 0.45 
ni TT* L 0.48 0.42 0.44 
n 2 ^ 77^ L 0.47 0.42 0.44 

/5-dipeptide ni TTo CT 0.21 0.24 0.29 
TTi TT^ CT 0.41 0.57 0.52 

* 
ni TTi 

L 0.45 0.45 0.40 
n 2 7T2 L 0.46 0.39 0.43 

Tripeptide TTi CT 0.40 0.42 0.39 
1T2 CT 0.58 0.54 0.44 
TTi ^ TT* CT 0.18 0.28 0.40 
ni ^ TT* CT 0.06 0.16 0.31 
n 2 TT* CT 0.32 0.41 0.30 
ni ^ TT* CT 0.19 0.27 0.22 
ni 77* L 0.45 0.37 0.40 
n 2 ^ TT* L 0.46 0.35 0.39 
ns ^ 77* L 0.47 0.45 0.45 

Acene (n = 1) ^B2u L 0.88 0.88 0.88 
L 0.65 0.65 0.65 

Acene (n = 2) ^B2u L 0.87 0.87 0.87 
L 0.65 0.65 0.65 

Acene (n = 3) ^B2u L 0.88 0.88 0.87 
^Bau L 0.63 0.63 0.63 

Acene (n = 4) ^B2u L 0.88 0.88 0.88 
^Bsu L 0.62 0.62 0.62 

Acene (n = 5) ^B2u L 0.89 0.89 0.88 
^Bau L 0.60 0.61 0.61 

PP 1^B2 L 0.57 0.59 0.59 
L 0.72 0.60 0.72 

2'B2 CT 0.55 0.55 0.55 
S^Ai CT 0.23 0.35 0.24 

DMABN IB L 0.53 0.56 0.57 
'A CT 0.72 0.73 0.73 

PA Oligomer (n = 2) I ' B , L 0.86 0.86 0.85 
PA Oligomer (n = 3) I ' B u L 0.86 0.85 0.85 
PA Oligomer {n = 4) I ' B u L 0.86 0.85 0.84 
PA Oligomer (n = 5) I ' B , L 0.86 0.85 0.84 

Continued... 
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Table 4 .3 : Continuation of: Values of the overlap quantity A of eq. (4.36) 

Molecule Excitation Type PBE B3LYP CAM-B3LYP 
N2 R a 2 i 0̂ 17 0.13 

R 0.13 0.11 0.12 
R 0.12 0.11 0.11 
R 0.27 0.23 0.19 
L 0.89 0.55 0.49 
L 0.57 0.55 0.62 
L 0.70 0.69 0.49 

CO R 0.19 0.16 0.16 
R 0.13 0.14 0.27 
R 0.15 0.12 0.12 
R 0.26 0.22 0.17 
L 0.51 0.76 0.43 
L 0.51 0.48 0.43 
L 0.70 0.70 0.51 

H 2 C O ^A2 R 0.09 0.07 0.07 
^A2 R 0.08 0.08 0.13 
'B, L 0.57 0.56 0.34 
^B2 R 0.20 0.15 0.14 
'A, R 0.14 0.11 0.10 

R 0.27 0.21 0.14 
'A2 L 0.52 0.52 0.48 

HCl CT 0.49 0.47 0.46 
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4.5 A P P L I C A T I O N OF T D D F T TO T R I A Z E N E CHROMOPHORES 

Our calculations have demonstrated that for GGA and hybrid functionals 
there is a broad correlation between the error and the value of A associated 
with an excitation. Excitation energies are significantly underestimated when 
A is very small, whereas the errors tend to be smaller and more acceptable 
when A is large. This is an intuitive observation which reflects the funda­
mentally local nature of the description of exchange in approximate GGA 
functionals. 

Recently Preat^^° et al. considered a series of triazene chromophores^^^'^-^ 
in dichloromethane. These authors demonstrated the PBEO hybrid functional 
provides a theoretical absorption maximum in excellent agreement with ex­
periment (recently determined by Khramov and Bielawski^^^), even for the 
molecules with strong 'push-pull' character. We now go on to apply the A di­
agnostic method to these triazenes, and discuss why the low-A breakdown was 
not observed in their work. We use the diagnostic to determine potentially 
problematic excitations, highlighting the use of the diagnostic in practice. 

The assessment of CAM-B3LYP for a wide variety of excitation energies 
in the gas phase demonstrated the success of this functional in describing 
local, Rydberg and charge-transfer excitations. We therefore also consider the 
application of this functional to gas phase triazenes, through comparison with 
correlated wavefunction ab initio excitation energies. 

Triazenes in solvent 

We now apply the orbital overlap diagnostic to the four triazene chromophores 
illustrated in figure 4.5. Preat^^o et al. determined PBE0/6-31lG(d,p) geome­
tries in the presence of a dichloromethane solvent, which was treated via the 
polarised continuum model^^^ (PCM) with cavity parameters defined by the 
united atom topological modeP^'' applied to radii optimised for PBEO. They 
then calculated the lowest five singlet vertical excitation energies and associ­
ated oscillator strengths using PBE0/6-311-|-G(2d,p) with a non-equilibrium 
PCM treatment (with similarly defined cavity parameters). Theoretical ab­
sorption spectra were obtained by convolution of the oscillator strengths with 
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Figure 4.5: Schematic structures of the triazene molecules considered. 

a Gaussian centred at the excitation energies. We repeated the calculations of 
Preat et al, using the same computational approach, but with the PCM im­
plementation in a development version of the D A L T O N program. Our PBEO 
excitation energies and oscillator strengths are in excellent agreement with 
their published results. We have confirmed that the effect of changing to non-
PBEO based cavity parameters (for instance to the Hartree-Fock optimised 
parameters) changes excitation energies by less than 0.02 eV on average. 

Preat et al. did not observe any catastrophic breakdown that we would 
attribute to low values of A, despite the potential in these molecules for charge-
transfer type excitations. This can be understood from a consideration of the 
relationship between the oscillator strength and A. By construction, states 
which have a high oscillator strength must necessarily have a high A; consistent 
with this, we find that our high oscillator strength excitations have A values 
in the range of 0 .48-0 .66 for the triazene molecules. Equally, states with low 
A necessarily have low oscillator strengths; we find that for the triazenes, the 
low A excitations have oscillator strengths in the range of 0 .00-0 .04 . It follows 
that states with relatively high A will be seen preferentially in a theoretically 
determined absorption spectrum over those with relatively low A. 

Importantly, the converse statements are not true; the oscillator strength 
does not contain the same information as A. For instance, several of our 
calculated states exhibit large values of A, but very small oscillator strengths. 
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Figure 4.6: Dominant orbital transition for the predicted problematic excitation 
in triazene II, determined using the PBE GGA 

We now consider whether there are any low-A problematic excitations 
amongst the lowest five transitions in each of the triazene molecules, deter­
mined with PBEO. The lowest five transitions in molecules I and I I I exhibit 
no small A values; the smallest values are 0.53 and 0.56 respectively. For 
molecules I I and IV however, the smahest A we obtain are 0.28 and 0.31, con­
sistent with the stronger 'push-pull' character of these two molecules. None 
of the A values lie significantly below the threshold of ~ 0.3, and as such the 
diagnostic does not predict any significant breakdown with PBEO. We pre­
viously observed that the PBE GGA is more prone to failure due to small A 
than hybrid functionals. We therefore consider similar calculations with the 
PBE functional. For molecules I , I I I and IV, no excitations lie significantly 
below the threshold. However, molecule I I does exhibit one particularly low-A 
excitation, with a value of just 0.27, which is significantly below the threshold 
of ~ 0.4 for PBE. The relevant orbitals are plotted in figure 4.6; the lack of 
overlap is evident. 
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The diagnostic test predicts that this excitation energy is likely to be sig­
nificantly underestimated by PBE. Support for this is provided by the fact 
that the excitation is dominated by a single orbital transition and that the 
value of the excitation energy is within 0.05 eV of the corresponding orbital 
energy difference, consistent with a collapse of the TDDFT equations. The 
PBE excitation energy is more than one eV below the PBEO value (which 
itself is approximately one eV below the equivalent CAM-B3LYP value); such 
variation with functional is indicative of a problematic excitation. 

Triazenes in the gas phase 

The value of A as a diagnostic quantity has previously only been demonstrated 
in the gas phase. Therefore it would be desirable to determine accurate exci­
tation energies in a solvent, particularly for the potentially problematic exci­
tation observed in molecule I I , to allow the applicability of A in a solvent to 
be tested. Our current computational capabilities preclude the determination 
of accurate correlated ab initio excitation energies in a solvent. We there­
fore consider gas phase calculations where we can readily compare TDDFT 
excitation energies with correlated wavefunction values. For this analysis we 
consider molecule I I since this exhibited the lowest A value in a solvent. The 
gas phase TDDFT calculations use the same basis set as in the solvent. For 
the reference correlated method, we use the resolution of the identity (RI-) for­
mulation of CC2,^ '̂̂ ^ as implemented in the T U R B O M O L E 5.1 program.^^ '̂̂ '̂̂  
For these calculations we use the def-QZVPP^^^ basis set. Al l calculations 
were performed at the geometry of the previous subsection. 

The RI-CC2 excitation energies were assigned in terms of their orbital 
rotations. These were used to identify (as far as possible) the equivalent 
excitations in the three DFT functionals. Figure 4.7 presents a schematic plot 
of selected excitation energies; specifically we consider the lowest five obtained 
with PBE, together with two additional excitations found to have particularly 
low A values. The excitations are colour-coded and labelled i-vii. For the 
three DFT functionals, the value on the left hand side of a TDDFT horizontal 
line gives the error relative to RI-CC2 and the value on the right hand side is 
the value of A associated with that excitation. The associated dominant PBE 
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Figure 4 .7: Gas phase excitation energies of triazene II. The value on the left 
hand side of each TDDFT level is the error in eV relative to RI-CC2. 
The value on the right hand side is A. 
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orbital transitions are illustrated in figure 4.8. 
First consider the PBE results; the diagnostic test states that excitations 

with A < 0.4 are likely to be significantly underestimated. There are two 
excitations {vi and vii) with A values below this threshold, at 0.35 and 0.31. 
They underestimate the RI-CC2 values by 1.60 and 2.33 eV respectively; the 
diagnostic test therefore successfully identifies these two excitations as prob­
lematic. Excitation vi corresponds to the excitation in figure 4.6, which had a 
small associated A value in the solvent calculations. However, the diagnostic 
test does not identify the other large PBE errors in figure 4.7. The largest 
of these failures is observed for excitation v, which underestimates RI-CC2 
by 2.09 eV. This excitation has an associated A value of 0.5, which lies well 
above the threshold. This is not a failure of the test; the test states that a 
low value of A is likely to be associated with large errors. It does not preclude 
the possibility that excitations with large A values can be inaccurate. Indeed, 
close examination of figure 4.3 shows that analogous results were also present; 
notably with the PP molecule. 

Insight into these observations is provided by figure 4.8, which presents the 
dominant PBE orbital transitions for the seven excitations. For excitations 
V, vi and vii an accurate TDDFT description requires non-local exchange, 
in the sense that (Pi(ri) and (fai^i) may both be significant when r i and r2 

are well-separated. Al l three excitations therefore fail for a local functional, 
giving excitation energies that are notably below the RI-CC2 values. The 
overlap-based diagnostic is not able to identify all three of these excitations as 
problematic because the failure of excitation v is not associated with a small 
overlap (and therefore A); it involves a localised orbital exciting to a spatially 
extended orbital. The results highlight the need for the development of more 
sophisticated diagnostic quantities that are able to identify both categories of 
failure. 

Figure 4.7 also presents excitation energies determined using PBEO and 
CAM-B3LYP. For PBEO, no excitations have A values significantly below the 
threshold. In general the PBEO errors are smaller than those obtained with 
PBE, but results from this functional still notably underestimate RI-CC2 in 
some cases. In moving to CAM-B3LYP the agreement with RI-CC2 is dra­
matic; the mean absolute error is just 0.11 eV, with a maximum error of 0.3 eV. 
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Figure 4.8: Gas phase dominant PBE orbital transitions for triazene II. Errors 
and A values are given in figure 4.7. 
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The associated mean absolute errors observed with PBE and PBEO are much 
larger, taking values of 1.38 and 0.43 eV respectively. Notably CAM-B3LYP 
is able to repair the deficiencies observed with standard functionals. The gen­
eral improvement from PBE to PBEO to CAM-B3LYP is consistent with the 
extensive assessment of the previous section, and provides further evidence 
for the high quality TDDFT predictions from attenuated functionals. The 
use of sophisticated exchange-correlation functionals such as CAM-B3LYP 
effectively negates the need for diagnostic tests. 

Formally exact TDDFT has been introduced, together with failings that occur 

in practice due to the use of approximate exchange-correlation functionals. An 

extensive assessment of the performance of PBE, B3LYP and CAM-B3LYP 

for the computation of excitation energies has been presented. A measure of 

the spatial overlap between orbitals involved in a given excitation (A) has been 

proposed, and subsequently used to demonstrate the notable differences be­

tween the quality of excitation energy obtained from each of these functionals. 

The significant variation in quality when the PBE functional is employed can 

in part be attributed to the faihng of this functional when the overlap between 

the orbitals involved in an excitation drops too low. This is true to a lesser 

extent with hybrid functionals such as B3LYP. A diagnostic test based on A 

has been proposed to allow the reliabihty of an excitation to be judged. The 

diagnostic has been tested for the case of the triazene molecule I I . Notably the 

diagnostic is able to predict the failure of two of the three particularly poorly 

described excitations in this molecule with PBE. However, it fails to predict 

the third of these poorly described excitations, which is associated predom­

inantly with an excitation from a localised to a spatially extended orbital. 

This highlights the need for more sophisticated diagnostic quantities, which 

account for the spatial extent of an orbital as well as the overlap. 

Through the use of the CAM-B3LYP functional, the highlighted deficien­

cies both of Rydberg and charge-transfer excitations can be repaired. The 

observed agreement with the high level correlated ab initio values for the t r i ­

azene system is dramatic. CAM-B3LYP is recommended for general use in 
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the computation of excitation energies. Notably when this functional is em­
ployed the need for a diagnostic to test the reliability of an excitation energy 
is negated for local, Rydberg and CT excitations. 

Finally, we also highlighted the ambiguous nature of the term 'charge-
transfer'. The CT excitations in figure 4.3 span a surprisingly wide range of A 
values, the smallest of which are associated with the extended peptide systems. 
The largest value is associated with DMABN. It is therefore inappropriate to 
state that local and hybrid functionals fail for CT excitations; the degree of 
CT—in the sense of how much the occupied and virtual orbitals overlap—must 
be ciuantified before judgement can be made. 



CHAPTER 5 
Further applications of attenuated 

functionals 
Following the introduction of attenuated exchange-correlation func­

tionals in chapter 3, and the extensive discussion of excited states in 

chapter 4, both attenuated and conventional functionals are applied 

to other structural, electronic and magnetic properties of interest. 

Through a consideration of trans-polyacetylene and polyyne, the abil­

ity of attenuated functionals to account for the bond-length alterna­

tion and band gap in polymeric chains is determined. The band gap is 

rigorously described through time-dependent D F T excitation energies 

from the highest occupied to the lowest unoccupied orbital, but is 

often approximated through the orbital energy gap. The assertion of 

the inter-changeability of the two approaches is tested. 

Nuclear magnetic resonance shieldings and chemical shifts are com­

puted for both main-group and transition metal species. The opti­

mised effective potential method is applied for the first time to atten­

uated functionals. Technical details of computing OEPs are discussed. 

I. Polyacetylene and polyyne 

5 . 1 B O N D L E N G T H A L T E R N A T I O N A N D B A N D G A P 

The application of attenuated exchange functionals to chemically relevant 

problems has attracted a significant amount of interest. This is primarily 

9 5 
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due to the improved description of long-range interactions that f u n c t i o n a l 

such as CAM-B3LYP^' ' ° afford, allowing consideration of systems and proper­

ties for which conventional exchange-correlation functionals fail due to their 

treatment of exchange. Functionals part i t ioning the treatment of exchange 

into a short-range component primari ly described through D F T exchange, 

and a long-range component primarily described through exact orbital ex­

change, have been shown to offer improved performance for a variety of prop­

erties,^^'i^i-^^^-^^^'^^^ such as excited states,i35'i38,i46,182,198,199,201,230 electric-

field-induced second harmonic g e n e r a t i o n , n o n - l i n e a r optical properties, 

optical rotation^^^ and reaction barriers. ̂ ^ '̂̂ ^^ Our own work (see chapters 3 

and 4) has highlighted the improved description of reaction barriers and ex­

cited states obtained f rom attenuated functionals, whilst they maintain com­

petitive performance for other thermochemical and geometrical properties. 

A n area i n which hybrid functional accuracy demonstrates a strong sys­

tem and functional dependence is in the study of polymeric chains, which 

may include significantly delocalised orbitals, and thus may benefit f rom an 

attenuated exchange treatment. See for instance refs. 207 and 234-247 for 

recent relevant studies. In particular we highlight the work of Jacquemin^^^ 

et al, and Yang and Kertesz.^^^ Jacquemin et al. demonstrated the improved 

description of the bond length alternation ( B L A ) in short-chain oligomers of 

irons-polyacetylene (PA) afforded by C A M - B 3 L Y P ; however they considered 

neither the infini te l imi t nor any electronic properties. Yang and Kertesz 

considered infini te l imi t B L A and band gaps in PA, but did not consider 

attenuated functionals. The main focus of that work was polyyne (PY) , al­

though technical difficulties prevented infini te l imi t calculations in that case. 

Notably the band gaps were estimated through an orbi ta l energy difference 

rather than as the appropriate T D D F T excitation energies. I n this work we 

shall denote the band gap computed via the orbital energy difference as the 

highest occupied-lowest unoccupied ( H O - L U ) gap. 

In the fohowing sections we consider the B L A and electronic properties of 

PA and P Y for both oligomers and the infini te hmit . We consider explicitly 

the effect of exact exchange and an attenuated treatment of exchange, the 

convergence of the oligomer results to the infinite l im i t , and the validity of 

approximating T D D F T excitation energies as orbi tal energy differences for 
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the case of the H O - L U orbital transitions. 

Computational Details 

In order to quantify the effect of the treatment of exchange, we consider three 

exchange-correlation functionals in detail, w i t h selected notable results f rom 

other functionals. The first of the functionals we consider is the ubiquitous 

standard hybrid functional B3LYP, which contains a fixed amount of exact 

exchange (20%). We also consider the B H H L Y P functional,'^'''^^'^* which is 

also a hybrid functional but i t contains a fixed 50% of exact orbi ta l exchange. 

As an attenuated functional we use CAM-B3LYP, although results f rom alter­

native parameterisations are discussed to give an indication of the parameter 

dependence of the properties of interest. 

AU calculations use the 6-3lG(d) basis set, widely used in studies of 

BLA.^°^'^^^'^'*^ We note that as the size of the system increases, basis set 

errors become less pronounced; an analysis of the PA results of refs. 241, 242 

and 246 suggests that adding functions to the basis set would at most increase 

the B L A values by a few tenths of a picometre (a few percent), consistent wi th 

ref. 245. For excitation energies and band gaps, we have confirmed that for 

more than 10 carbon atoms, expanding the basis set to 6-31-l-G(d) or cc-pVTZ 

(for results f rom the latter basis see chapter 4) lowers the values by less than 

one tenth of an eV. Judging basis set effects in polyyne is more diff icul t due to 

the significant linear dependencies. Where comparison is possible w i th earlier 

studies, we have confirmed that our results are in excellent agreement w i th 

the earher works;^* '̂'̂ "^ '̂̂ ^^ to aid in this comparison all B3LYP calculations 

use the VWN(I I I ) ' ^^ parameterisation. 

Oligomer calculations were performed using a development version of the 

D A L T O N program. Geometries were fu l ly optimised using analytic gradients. 

The effects due to chain termination (wi th H atoms) are minimised at the 

centre of the molecule; the measured B L A , defined as the difference between 

the longest multiple bond and the shortest single bond, therefore occurs at the 

molecule centre. H O - L U orbital energy gaps and T D D F T excitation energies 

were then determined at the optimised geometries. The excitation energies 

of interest are characterised by a transition of a single electron f rom the HO 
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orbital to the L U orbital , corresponding to the lowest dipole-allowed transition 

Lg transition in PA, and a <— in each molecule: This is a ^Ag transition in PA, and a <— 

transition in PY. 

Inf ini te chain calculations were performed through the use of periodic 

boundary conditions using a development version of D A L T O N . This code 

is based on the general approach of ref. 248. See ref. 205 for fu l l details. 

Since analytic gradients were unavailable, the geometries were optimised by 

successive variation of a geometrical parameter and fitting a quadratic curve 

as a funct ion of that parameter. This procedure was stopped when the en­

ergy was converged w i t h respect to variation in all geometrical parameters. 

H O - L U gaps (band gaps) were again determined at the optimised geometries; 

T D D F T excitation energies are not presently available for periodic systems. 

5.2 P O L Y A C E T Y L E N E ( P A ) 

Figure 5.1 presents the B L A values for PA oligomers containing 4 ^ ^ 40 

carbon atoms as a funct ion of 1/A^, where N is the number of carbon atoms. 

Values of B L A f rom the B H H L Y P and C A M - B 3 L Y P functionals are very simi­

lar, and notably larger than those obtained f rom B3LYP. The results highlight 

the increase in B L A associated w i t h an increase in the amount of exact ex­

change in a functional; in one case this is through an increase in the exchange 

mixing factor ( B H H L Y P ) and the other through the use of attenuated ex­

change. As was argued in ref. 241, CAM-B3LYP yields a very good estimate 

of the B L A in PA oligomers, since the results are bracketed by MP2 and CCSD 

values, which are considered (respectively) to be lower and upper bounds on 

the actual B L A values. Figure 5.1 also presents a value of the B L A for the inf i ­

nite chain case, (at 1/A'' = 0), determined using periodic boundary conditions. 

For B3LYP i t appears likely that there is a min imum in the curve for longer 

chain lengths; calculations on a 48 carbon chain yield a B L A value marginally 

below the infini te chain value, supporting the presence of a minimum. Extrap­

olation to the infini te l imi t based on short-chain oligomers would therefore be 

diff icul t w i th B3LYP, as evident f rom the discrepancy between extrapolated 

and periodic B L A values f rom refs. 242 and 244. Note our B3LYP oligomer 

results are in good agreement wi th those of ref. 241 and our infinite chain 
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Figure 5.1: BLA in polyacetylene oligomers, as a function of 1/N. 

result is in good agreement w i t h the values in refs. 242 and 244. The con­

vergence f rom oligomers to infinite chain appears to be monotonic however 

for B H H L Y P and CAM-B3LYP. Compared to the solid state experimental 

B L A of 7-9 pm, '̂̂ ^"^^^ the B3LYP value of 5.6 pni is too short. In contrast 

the B H H L Y P and C A M - B 3 L Y P values, of 8.7 and 8.9 pm respectively, do lie 

wi th in the experimental range. 

Table 5.1 lists excitation energies and H O - L U gaps for PA, as functions of 

N. Experimental excitations are also presented for chain lengths 4 ^ N ^ 10. 

I n the case of B3LYP, the T D D F T vertical excitation energies for the transi­

t ion f r o m the HO orbital to the L U orbital are rather close to the corresponding 

H O - L U gaps; the agreement improves w i t h increasing chain length. This is 

consistent w i t h the observations of Ma'-̂ ^^ et al, demonstrating the validity of 

approximating the PA excitation energy via the H O - L U gap w i t h B3LYP. For 

both B H H L Y P and C A M - B 3 L Y P however, the values are dissimilar even for 

the longest chains, indicating that the approximation is invalid. 

Also presented in table 5.1 is the H O - L U gap f rom infini te chain calcula­

tions. The convergence of the gaps f rom oligomers to the infini te case is shown 

in figure 5.2. Given the aforementioned similarity between B3LYP H O - L U 

gaps and the corresponding excitation energies, the infinite chain B3LYP H O -
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Table 5.1: T D D F T excitation energies and H O - L U gaps (in eV) in poly-
acetylene oligomers, as a function of the number of carbon atoms, 
N. 

B3LYP B H H L Y P C A M -
B3LYP 

Expt. 

Excitation energy 
4 6.04 6.36 6.29 5.92 
6 4.87 5.26 5.19 4.95 
8 4.14 4.56 4.51 4.41 

10 3.63 4.08 4.04 4.02 
12 3.25 3.73 3.71 
16 2.72 3.26 3.25 
20 2.37 2.96 2.97 
24 2.12 2.75 2.78 
28 1.93 2.61 2.65 
32 1.78 2.51 2.55 
36 1.67 2.43 2.48 
40 1.58 2.37 2.42 

HO-LU gap 
4 5.62 8.18 8.56 
6 4.49 6.84 7.24 
8 3.79 6.02 6.43 

10 3.32 5.46 5.88 
12 2.98 5.07 5.49 
16 2.52 4.54 4.97 
20 2.23 4.22 4.66 
24 2.02 4.01 4.45 
28 1.88 3.86 4.31 
32 1.77 3.75 4.20 
36 1.68 3.67 4.13 
40 1.61 3.61 4.07 
oo 1.19 3.24 3.71 

ref. 212-214,253 
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Figure 5.2: HO-LU gap in polyacetylene oligomers, as a function of 1/N. 

L U gap may be taken to be a reasonable estimate of the B3LYP excitation 

energy in the infini te chain. The value obtained (1.2 eV) is below the exper­

imental optical gap of 1.5-1.8 eV,̂ ^"*'̂ ^^ consistent w i t h the underestimated 

B L A ; experimentally the band gap may be related^^^ to the degree of bond 

length alternation. The infini te chain H O - L U gaps are much larger w i t h the 

B H H L Y P and C A M - B 3 L Y P functionals, at 3.2 and 3.7 eV respectively; how­

ever, as noted above, these w i l l not resemble the associated excitation energies. 

One approach for approximating the excitation energy for the infini te chain 

is to consider the relationship between excitation energies and H O - L U gaps 

for the oligomers, and extrapolate based on the value of the infini te chain 

H O - L U gap. Investigation of extrapolated values obtained f rom a variety of 

polynomial fits to the ohgomer quantities highhghts the relative insensitiv-

i ty to the choice of fitting function, and to whether all oUgomer results are 

included or just those pertaining to the longer oligomers. For simplicity we 

therefore choose to extrapolate to the infinite chain excitation energy based 

on fitting a quadratic curve to each data set. This is illustrated in figure 5.3 

for CAM-B3LYP. The infinite chain excitation energies obtained f rom this 

procedure are 1 .1 , 2.0 and 2.1 eV for B3LYP, B H H L Y P and CAM-B3LYP, 

respectively. For B3LYP, this value is close to the value estimated above, 
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Figure 5.3: CAM-B3LYP extrapolation of T D D F T excitation energy for poly­
acetylene. 

consistent w i t h the argument that for this system B3LYP H O - L U gaps and 

excitation energies are very similar to one another. The B H H L Y P and C A M -

B3LYP values are noticeably larger than the corresponding B3LYP excitation 

energy, and slightly overestimate the experimental range of L5-1.8 eV. 

Figure 5.4 presents the evolution of oligomer excitation energies for the 

three functionals we consider, together w i t h the estimated infinite chain results 

f rom above (at l/N = 0). A simple linear extrapolation to the infinite chain 

case would clearly underestimate the value obtained f rom our extrapolation 

procedure, and in the case of B3LYP this would severely underestimate the 

observed band gap, consistent w i th the results of ref. 256. 

The C A M - B 3 L Y P functional has 65% exact orbital exchange at long-range. 

We consider the performance of the CAM(0.2 , 0.8, 0.4) and CAM(0.0,1 .0 , 0.4) 

functionals as examples of functionals which exhibit the correct long-range 

behaviour. The behaviour of these functionals at short-range does not re­

semble C A M - B 3 L Y P or the other recommended parameterisations of chapter 

3. Consistent w i t h our previous observations regarding the geometry perfor­

mance of functionals satisfying the formally correct long-range behaviour, the 

B L A results f rom these two methods are poor, converging rapidly wi th A'' 
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Figure 5.4: T D D F T excitation energy in polyacetylene oligomers, as a function 
of 1/N. 

to values of 10.9 and 10.7 pm respectively, which are significantly too large. 

The use of these functionals cannot be recommended for the properties under 

consideration here. 

5.3 P O L Y Y N E ( P Y ) 

Figure 5.5 presents the B L A values of PY ohgomers containing N carbon 

atoms as a funct ion of 1/A^, for 4 ^ A^ ̂  24. Results for longer chains are not 

presented due to convergence difficulties. Again B H H L Y P and C A M - B 3 L Y P 

yield similar B L A values, although the ordering is reversed compared to PA. 

The B L A values f rom these functionals are noticeably larger than f rom B3LYP. 

Convergence to the infinite chain values for B H H L Y P and C A M - B 3 L Y P re­

sembles that observed for PA. For B3LYP the behaviour is different to that 

observed w i t h PA; however this may simply reflect the shorter maximum chain 

length reached by the oligomers in this case. The infinite chain B L A values 

obtained w i t h B H H L Y P and C A M - B 3 L Y P are 13.3 and 13.1 pm respectively, 

which are both close to the estimated value of 13 pm f rom ref. 242. As in the 

case of PA, the B3LYP B L A value of 8.8 pm is much smaller. 

Table 5.2 gives excitation energies and H O - L U gaps in PY, as functions of 
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Table 5.2: T D D F T excitation energies and H O - L U gaps (in eV) in polyyne 
oligomers, as a function of the number of carbon atoms, N. 

''N~ " B 3 L Y P " B I I H L Y P 6 A M - Expt.^ 
B 3 L Y P 

Excitation energy 
4 8 . 5 1 8 .98 8 . 7 9 7 . 5 4 

6 6 . 8 7 7 . 4 2 7 . 2 5 6 . 7 7 

8 5 .83 6 .43 6 . 2 9 5 . 9 8 

1 0 5 . 1 0 5 .74 5 . 6 2 5 . 3 3 

1 2 4 . 5 6 5 . 2 4 5 . 1 3 4 . 9 9 

1 4 4 . 1 3 4 . 8 6 4 . 7 6 4 . 6 7 

1 6 3 . 7 9 4 . 5 6 4 . 4 8 4 . 4 1 

1 8 3 . 5 2 4 . 3 3 4 . 2 5 4 . 1 9 

2 0 3 . 2 9 4 . 1 4 4 . 0 7 4 . 0 2 

2 2 3 . 0 9 3 .99 3 . 9 2 3 . 8 7 

2 4 2 . 9 3 3 .86 3 . 8 0 3 . 7 4 

H O - LU gap 
4 6 . 4 6 9 . 2 1 9 . 4 8 

6 5 . 1 4 7 . 7 1 8 . 0 0 

8 4 . 3 6 6 . 8 1 7 . 1 0 

1 0 3 . 8 3 6 . 2 2 6 . 5 2 

1 2 3 .45 5 .80 6 . 1 0 

1 4 3 . 1 7 5 .50 5 . 8 0 

1 6 2 . 9 5 5 . 2 7 5 . 5 7 

1 8 2 . 7 8 5 .09 5 . 3 9 

2 0 2 . 6 4 4 . 9 5 5 . 2 5 

2 2 2 . 5 2 4 . 8 3 5 . 1 3 

2 4 2 . 4 3 4 . 7 4 5 . 0 4 

oo 1.59 4 . 0 4 4 . 3 3 

^ refs . 2 5 7 - 2 5 9 ' 
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Figure 5.5: BLA in polyacetylene oligomers, as a function of 1/N. 

together w i t h reference experimental values. For the larger chain lengths 

where basis set deficiencies are less pronounced, the B H H L Y P and C A M -

B3LYP excitation energies are in improved agreement w i t h experiment over 

those obtained f rom B3LYP. Contrasting w i t h the results of PA, the H O - L U 

gap is a poor approximation to the excitation energy for all three functionals. 

Also shown in table 5.2 is the H O - L U gap f rom the infinite chain calculations. 

Convergence of this quantity f rom oligomer to infinite chain is shown in figure 

5.6. The behaviour of the gaps exhibits a similar trend to the PA case, w i t h 

values of 1.6, 4.0 and 4.3 eV obtained f rom B3LYP, B H H L Y P and C A M -

B3LYP respectively. 

Applicat ion of the same quadratic extrapolation procedure, as in the pre­

vious section, to the infini te chain yields estimated excitation energies of 1.6, 

2.9 and 2.9 eV for B 3 L Y P B H H L Y P and CAM-B3LYP. A n example of the 

extrapolation is presented for C A M - B 3 L Y P in figure 5.7. The convergence of 

the excitation energies to the extrapolated infinite values is shown in figure 

5.8. Of interest is the similarity between the B3LYP extrapolated excitation 

energy and the infinite chain H O - L U gap, suggesting that this approxima­

t ion is more reasonable in the l imi t for PY. As w i t h PA, the B3LYP value 

is significantly below the experimental optical gap, which is estimated to be 
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Figure 5.6: HO-LU gap in polyacetylene oligomers, as a function of l / N . 

9.0n 

8.0-
> 

7.0-7.0-
-

SP6.0-

5.0-
-

4-. 

4.0-
u 
X -

L U 3.0-

2.0-

1.0-

-0.0343x2 + 1.62x - 3.47 

= 0.99997 

CAM-B3LYP 
Fitted 

3.0 4.0 5.0 6.0 7.0 8.0 
HO-LU gap / eV 

"9̂ 0 10.0 

Figure 5.7: CAM-B3LYP extrapolation of T D D F T excitation energy for polyyne. 

2 . 3 - 2 . 4 eV in ref. 2 4 2 by using a linear extrapolation of experimental oligomer 

optical absorption results. The B H H L Y P and C A M - B 3 L Y P values are higher 

than this estimate, but note the above comment (that was also made in ref. 

2 5 6 ) regarding the validity of the linear extrapolation used to determine this 

estimate. 
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Figure 5.8: T D D F T excitation energy in polyacetylene oligomers, as a function 
of 1/N. 

Whils t the H O - L U gap varies significantly as the amount of exact exchange 

in the functional varies, the associated excitation energy is relatively insensi­

tive. The gap and excitation energy are similar for long-chain PA and infinite 

l imi t P Y when B3LYP is used, but are notably different for B H H L Y P and 

C A M - B 3 L Y P where the amount of exact exchange in the functional is larger; 

the H O - L U gap is then larger than the associated excitation energy. Con­

versely we have confirmed that the H O - L U gap is smaller than the excitation 

energy in the case of using a G G A functional w i t h no exact exchange. These 

observations are consistent w i t h the finding of Yang and Kertesz^^^ that the 

B H H L Y P H O - L U gap, despite being evaluated at the good quahty B H H L Y P 

geometry, overestimates the experimental optical gap, whereas the B3LYP 

H O - L U gap, evaluated at the B H H L Y P geometry, is more accurate. Such be­

haviour would not be observed i f the experimental optical gap were computed 

through the rigorous excitation energy calculation, as undertaken above. The 

need to combine two functionals to obtain results in line w i t h experiment can 

be avoided by using either B H H L Y P or C A M - B 3 L Y P at their respective ge­

ometries, providing the optical gap is computed in the theoretically rigorous 

manner. 
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II. Nuclear magnetic resonance 

5.4 E V A L U A T I N G M A G N E T I C RESPONSE 

Attenuated functionals have primari ly been apphed to time-dependent re­

sponse properties. There have been virtually no applications of attenuated 

functionals to the calculation of static magnetic response properties, despite 

the considerable interest in obtaining accurate results for such properties. The 

aim of this brief section is to determine the performance of C A M - B 3 L Y P when 

applied to N M R shielding constants and chemical shifts. 

A key observation^^° is that for such properties the performance of orbital-

dependent exchange-correlation functionals is often poor, except when these 

properties are evaluated f rom a multiplicative exchange-correlation potential. 

GGA functionals w i l l therefore often yield more accurate results than orbital-

dependent functionals in the evaluation of shielding constants and chemical 

shifts. This unusual observation may be understood by considering the dif­

ferences in the computation of second-order magnetic response parameters 

between GGA and orbital-dependent functionals. 

For G G A functionals the magnetic Hessian, which determines the imag­

inary component of the orbital response to a static magnetic perturbation, 

is diagonal and consequently the response parameters are determined in an 

uncoupled manner using the Kohn-Sham molecular orbitals and orbital en­

ergies (see for instance the discussion in ref. 2 6 0 ) . Standard implementa­

tions of orbital-dependent functionals have contributions to the orbital equa­

tions that are derived f rom a minimisation w i t h respect to the orbitals (as in 

Hartree-Fock theory) rather than w i t h respect to the density, resulting in a 

non-diagonal magnetic Hessian. I f however a multiphcative potential is de­

rived by minimising al l of the contributions w i t h respect to the density, the 

magnetic Hessian w i l l be diagonal as i n the G G A case, allowing the evaluation 

of the response through the same uncoupled equations. 

Wilson and Tozer^^° used the Zhao-Morrison-Parr^^^ method to deter­

mine multiplicative potentials associated w i t h hybrid functionals for a series 

of small, highly correlated molecules containing main-group atoms. For these 

systems the resulting shieldings were two to three times more accurate than 



E V A L U A T I N G M A G N E T I C RESPONSE • 1 0 9 

those calculated in the conventional manner. 

A multiplicative potential may also be obtained by applying the optimised 

effective potential (OEP) method as introduced in chapter 1. Cohen^^^ et al. 

have demonstrated that when using the OEP method, essentially identical re­

sults to those of Wilson and Tozer are observed. Other notable improvements 

have been observed in the calculation of chemical shi f ts ,magnet isabi l i t ies^^^ 

and rotational g-tensors^^^ when multipficative potentials are used. The OEP 

method has also been applied to transition metal shielding constants and 

chemical shifts. 

Computational approach 

The optimised effective potential method involves the determination of a po­

tential, which is the same for each electron, and w i t h respect to which the 

energy is stationary. The approach we use, due to Yang and Wu,^^ rewrites 

the Kohn-Sham potential Vs{r) as 

Vs[r) = v{r) + t;Ref(r) + bt9t{r), ( 5 . 1 ) 

£ 

the sum of the external potential, a fixed reference potential and an expansion 

in a Gaussian basis set {gt{r)}. The unknown parameters b are determined 

by directly minimising the total electronic energy w i t h respect to these pa­

rameters, using an approximate Newton scheme^^''' that requires the inverse of 

the Hessian matr ix of this minimisation. In order to obtain the most rehable 

approximation to the inverse Hessian, some regularisation is necessary in order 

to filter out near-singular contributions that can lead to numerical instabili­

ties. We use the truncated singular value decomposition (TSVD) approach, 

which removes terms in the Hessian whose magnitude lies below a cut-off. For 

our OEP calculations we use a cut-off of 1 x 10~^. 

There is equally an issue that unphysical, oscillatory potentials may be 

found i f the minimisation is pushed too far, w i th the energy corresponding 

to highly oscillatory potentials collapsing to that obtained through evalua­

tion w i t h a non-local potential.^^^'^^^ We have confirmed that the potentials 

obtained in our calculations do not exhibit unphysical structure. 



E V A L U A T I N G M A G N E T I C RESPONSE • 110 

Following ref. 266 the reference potential we use is given by 

W r i ) = ( l - — ) / d r , j ^ ^ + (1 - a - /?)(37r)^p^(ri). (5.2) 
\ n J J |ri - r2| 

I t corresponds to a combination of the Fermi-Amaldi potential^^° and the po­

tential associated w i t h LSDA exchange, and is designed to give the correct 

long-range behaviour of the potential for a given functional. This is evalu­

ated using the density obtained f rom a conventional D F T calculation for the 

respective functional under consideration. 

We consider three applications. The 21 small, highly correlated molecules 

of ref. 260 are examined to assess the performance for main-group systems. 

Applicabil i ty to first-row transition metal complexes is assessed using the 

molecules in ref. 266. The hydrogen-bonded formaldehyde systems of ref. 

271 are also considered as an interesting application. A suitable basis set is 

required for the expansion of both the orbitals and the potential (correspond­

ing to the {pt(r)})- To provide a balanced description we use the same basis 

set for the expansion of the potential as used for the orbitals. For the shield­

ing constants in the 21 main-group molecules, we use the Huzinaga I G L O - I V 

basis set;̂ '̂ '̂̂ ^^ near-experimental geometries are used following ref. 260. The 

shielding constants and chemical shifts in the hydrogen-bonded formaldehyde 

systems are computed using the aug-cc-pVTZ basis set on all of the atoms; we 

have confirmed that the results are unaffected (to w i t h i n 1 ppm) by the use of 

this basis over the mixed basis set used in the earher study. To allow compari­

son w i t h the ah initio reference values of ref. 271 the CCSD geometries of that 

reference are used for all of the structures. Further the transition metal sys­

tems of reL 266 are considered using the cc-pVTZ basis set on both the metal 

and the ligands; again we use the geometries of that reference. We use an ex­

tensive numerical integration grid for all systems, and gauge-invariant atomic 

orbitals.^^"^"^^^ A l l calculations are performed w i t h a development version of 

the D A L T O N program. 

Three functionals are applied to these systems. The KT2^^^ GGA func­

tional is applied as i t was specifically designed for the calculation of accurate 

shielding constants and chemical shifts. Also considered is the widely used 

B3LYP hybrid functional, w i t h the results computed both conventionally and 

through the Yang-Wu OEP method. As a first application of an attenuated 



F U N C T I O N A L PERFORMANCE • 111 

functional to magnetic properties, C A M - B 3 L Y P results are considered, again 

computed both conventionally and through the OEP method. 

One method for judging the accuracy of the OEP calculations is to apply 

the OEP procedure to a GGA functional. Since the response equations are al­

ready uncoupled wi th G G A functionals, an exact OEP calculation should yield 

identical results. Any discrepancy between the conventional and OEP-GGA 

results can therefore be at tr ibuted to inaccuracies introduced in the practical 

OEP calculation. We examine this dependence for the K T 2 functional for all 

of the molecules considered. 

5.5 F U N C T I O N A L P E R F O R M A N C E 

We denote results obtained f rom the OEP method by an 0 - prefix; for instance 

the K T 2 results obtained wi th in the OEP formalism are denoted 0 - K T 2 . Ta­

ble 5.3 presents isotropic shielding constants for 21 main-group molecules. The 

K T 2 results are in good agreement wi th the 0 - K T 2 results, which indicates 

that the reference potential and the basis set for the expansion of the potential 

are sufficient for an accurate description of the optimised effective potential. 

Notably the errors f rom K T 2 are significantly smaller than the associated 

errors f rom B3LYP and CAM-B3LYP, highlighting the poor performance of 

hybrid and attenuated functionals when there is no rigorous associated po­

tential. Apply ing the OEP method to B3LYP yields significantly improved 

results over the non-OEP values. Interestingly there are large changes for 

molecules such as O 3 , but very small changes for molecules such as H 2 O . A 

similar observation is made for CAM-B3LYP. The 0 - B 3 L Y P and 0 - C A M -

B3LYP results are quite similar, although the mean absolute error f rom the 

latter is marginally smaller. Neither approach yields errors comparable w i t h 

those f rom K T 2 however. 

The exchange-correlation potential for N 2 obtained wi th 0 - C A M - B 3 L Y P 

is plotted in figure 5.9. There is no unphysical structure observed in the 

potential. Similar, physically sensible potentials are obtained for the other 

functionals and molecules considered. 

The CCSD(T) reference results of table 5.4 show the effect of hydrogen 

bonding on a system consisting of a formaldehyde molecule complexed wi th 
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Table 5.3: N M R isotropic shielding constants (in ppm) for main-group 
molecules compaxed to experimental values. 

K T 2 0 - K T 2 B3LYP 0 - B 3 L Y P C A M -
B3LYP 

0 - C A M -
B3LYP 

Expt.^ 

HF F' 411.5 411.4 411.1 413.7 414.0 416^2 419.7 
H 2 O 0 329.5 329.5 327.7 329.9 331.3 332.9 357.6 
CH4 C 195.1 194.9 188.7 188.3 191.8 190.0 198.4 
CO c 6.8 5.7 -19.0 -8 .5 -20 .2 -7 .7 2.8 

0 - 5 7 . 1 -57.9 - 8 1 . 1 -53 .0 -79.8 -48.4 -36 .7 
N 2 N -60 .4 -61.5 -92.3 - 7 1 . 1 -92.8 -69 .1 -59.6 
F 2 F -209 .1 -218.2 -250.4 -222.2 -238.4 -216.4 -192.8 
O3 0 -1279.6 -1294.1 -1693.3 -1245.5 -1761.6 -1188.1 -1290.0 

0 ' -810.6 -817.1 -1129.1 -828 .1 -1231.5 -822.1 -724.0 
PN P 52.9 48.9 -50 .1 18.3 -66.0 32.6 53.0 

N -365.9 -367.4 -431.7 -365.7 -433.1 -347.6 -349.0 
H 2 S S 735.0 734.1 700.5 703.8 706.8 710.4 752.0 
NH3 N 264.7 264.7 259.9 260.7 263.0 263.0 273.3 
H C N C 85.7 85.1 69.1 74.5 68.0 74.6 82.1 

N -19 .7 -20.8 -49.5 -31 .0 -49 .9 -28.0 -20.4 
C 2 H 2 C 120.1 119.6 106.9 109.9 106.4 109.7 117.2 
C2H4 C 63.0 62.4 47.2 51.4 47.4 51.7 64.5 
H 2 C O c - 5 . 0 - 5 . 9 -24 .4 -20.3 -25 .6 -22.0 - 4 . 4 

0 -379.6 -382.9 -452.4 -378.7 -461.0 -367.8 -375.0 
N 2 O N 102.0 101.4 81.9 96.0 80.9 97.7 99.5 

N ' 11.5 10.9 -11.4 2.2 -14 .7 2.2 11.3 
0 177.2 176.8 173.1 189.3 179.3 196.1 200.5 

C O 2 c 62.7 62.3 48.9 53.0 48.2 53.0 58.8 
0 221.3 220.9 213.5 224.0 217.6 227.8 243.4 

O F 2 0 -533.7 -542.2 -583.1 -552 .1 -561.0 -541.7 -473.1 
H 2 C N 2 c 167.1 167.0 160.0 161.5 162.2 162.7 164.5 

N - 4 2 . 1 -42.9 -60 .1 -52 .8 -54.3 - 5 1 . 1 -43 .4 
N ' -138.9 -140.7 -192.7 -148.4 -206.9 -139.1 -149.0 

HCl CI 750.7 751.8 711.7 719.1 709.7 712.9 952.0 
S O 2 s -148.5 -154.2 -262.5 -203.0 -279.7 -199.7 -126.0 

0 -251.5 -253.9 -283.5 -225.4 -276.6 -208.3 -205.0 
PH3 p 598.5 597,3 561.8 562.6 567.6 568.2 599.9 
d - 1 7 . 1 -19!3 -69:0 -26 .6 -73.8 -20:5 
\d\ 19.8 20.8 69.0 29.4 73.8 28.1 

^ ref. 260 and references therein. 
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Figure 5.9: The N2 exchange-correlat ion potent ial v^c obtained f rom an 0 -
C A M - B 3 L Y P calculat ion, wi th the nuclei at ± 1.0375 bohr. 

Table 5.4: NMR isotropic shielding constants and chemical shifts (in ppm) 
of complexed formaldehyde and formaldehyde compared with ref­
erence CCSD(T) values 

KT2 0-KT2 B3LYP 0-
B3LYP 

CAM-
B3LYP 

0-CAM-
B3LYP 

CCSD(T)* 

Shielding constants 
H2CO 0 -300.8 -309.5 -362.1 -299.5 -365.2 -288.9 -298.7 
+2H2O C -6.0 -9.8 -28.6 -23.3 -30.0 -24.9 0.8 
H2CO 0 -353.1 -362.7 -426.2 -352.4 -434.3 -342.1 -350.6 

C 6.3 2.8 -15.0 -10.4 -16.0 -12.2 13.0 
Chennical shifts 

0 52.3 53.2 64.0 52.9 69.2 53.2 52.0 
c -12.3 -12.5 -13.7 -12.9 -14.0 -12.6 -12.2 

^ ref. 271. 
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two water molecules, by comparison wi th values for an isolated formaldehyde 

molecule. The values for the isolated molecule are considered at the formalde­

hyde structure f rom the complex (we have confirmed that the effect due to 

relaxation of the structure is smaU compared to the effect of the hydrogen 

bonding). I n table 5.4 the chemical shifts refer to the difference between the 

complexed environment and the isolated environment. 

The K T 2 results demonstrate excellent agreement for the oxygen shielding 

constants compared to CCSD(T) . Whils t the absolute values of the carbon 

shieldings are less accurately reproduced, the behaviour of the shifts is very 

similar to the CCSD(T) values. We again have good agreement between the 

K T 2 and 0 - K T 2 values, suggesting there is sufficient flexibihty in the basis 

set used for the expansion of the potential. 

Both the conventional B3LYP and C A M - B 3 L Y P results agree less weU 

w i t h the CCSD(T) values; the shifts are also less well represented. By apply­

ing the OEP method, the results for both functionals improve significantly, 

w i t h both more accurate shieldings and shifts obtained. The 0 - C A M - B 3 L Y P 

shieldings are slightly less accurate than the 0 - B 3 L Y P results, but the shifts 

are comparable. 

For main-group applications, the use of the OEP method yields results 

f rom hybrid and attenuated functionals that are closer to accurate reference 

values; important ly 0 - C A M - B 3 L Y P provides results of a similar quality to 

0-B3LYP, despite their different behaviour for other properties. 

Obtaining agreement between the K T 2 and 0 - K T 2 shielding constants for 

the transition metal systems (see table 5.5) is more diff icul t than in the main-

group systems. However, w i t h the cc-pVTZ basis set used the discrepancy is 

in all cases less than 30 ppm, which represents a small percentage error. The 

exchange-correlation potential obtained f rom an 0 - C A M - B 3 L Y P calculation 

on Cr04~ is plotted in figure 5.10 to illustrate that smooth, physically sensible 

potentials are obtained. 

There is for al l functionals a large discrepancy w i t h respect to the ex­

perimental chemical shifts; this may in part be due to the difficulties of 

comparing w i t h experimental data. Both conventional B3LYP and C A M -

B3LYP perform less well than K T 2 . A l l the functionals yield significant er­

rors for the manganese-containing systems. The use of OEPs does improve 



F U N C T I O N A L PERFORMANCE • 115 

Table 5.5: Transition metal N M R isotropic shielding constants and chemi­
cal shifts 5 ( in ppm) compared w i t h experimental chemical shifts 
^Expt. 

K T 2 0 - K T 2 B3LYP 0 - B 3 L Y P C A M - 0 - C A M - <̂ Expt. ^ 
B3LYP B3LYP 

TiCl4 -947.8 - 9 5 5 J -1000.0 -833^6 -975:8 -731.6 
TiClgMe -1397.1 -1422.6 -1479.1 -1237.8 -1478.3 -1123.1 
5 449.3 466.8 479.0 404.1 502.5 391.4 613 

Cr(C0)6 -644.4 -670.0 -1058.5 -571.0 -1160.1 -506.8 
C r O ^ -2587.1 -2596.5 -3141.1 -2479.2 -3203.5 -2424.7 
5 1942.8 1926.5 2082.6 1908.3 2043.4 1918.0 1795 

Mn04- -3817.5 -3822.1 -4995.8 -3724.9 -5191.6 -3696.3 
Mn(C0)6 -1808.0 -1841.9 -2713.2 -1639.9 -2946.0 -1531.3 
S -2009.5 -1980.2 -2282.5 -2084.9 -2245.6 -2165.0 -1445 

VOCI3 -1901.8 -1905.6 -2257.2 -1784.7 -2311.3 -1695.7 
V F 5 -1174.7 -1174.0 -1245.2 -1032.0 -1197.6 -963.3 
S -727 .1 -731.5 -1012.0 -752.7 -1113.8 -732.5 -895 

VOF3 -1205.4 -1206.4 -1375.6 -1088.1 -1383.6 -1032.5 
5 -696.5 -699.2 -881.6 -696.6 -927.8 -663.3 -757 
\d\ 221 207 300 233 310 264 

^ ref. 266 and references therein. 

the mean absolute error for 0 -B3LYP and 0 - C A M - B 3 L Y P , however for the 

ti tanium-containing systems the chemical shift becomes significantly less ac­

curate. Overall the performance of 0 -B3LYP is similar to that of KT2; O-

C A M - B 3 L Y P performs less well, but s t i l l represents an improvement over the 

conventional C A M - B 3 L Y P results. The effect of using OEPs is large for all 

of the transit ion metal shielding constants. Important ly, the application of 

OEPs to attenuated functionals yields similar trends to those observed w i t h 

conventional hybrids, w i t h in many cases the performance of 0 - C A M - B 3 L Y P 

improving over the conventional approach. 
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Figure 5.10: The C r 0 4 " exchange-correlat ion potent ia l \/xc obtained f rom an 
0 - C A M - B 3 L Y P calculat ion, plot ted along a C r - 0 bond w i th the 
Cr nucleus at the origin and the 0 nucleus at 3.118 bohr. 

Summary 

This chapter has applied attenuated functionals to bond length alternation, 
further excitation energies and static magnetic properties. BLA values and 
HO-LU gaps have been determined using both finite oligomer and infinite 
chain calculations (using periodic boundary conditions), for three representa­
tive exchange-correlation functionals. TDDFT excitation energies have been 
determined for the oligomers, and have been extrapolated to the infinite case 
through a consideration of their relationship to the HO-LU gaps. Both CAM-
B3LYP and BHHLYP give BLA values and excitation energies that are larger 
and more accurate than those obtained from B3LYP. The approach of the 
infinite chain values of both the BLA and band gap has been discussed, high­
lighting the differing conclusions that would in some cases be drawn depending 
on the extrapolation used. The extent to which the band gap (computed via 
the associated excitation energy) may be approximated by HO-LU gaps has 
been considered; in general this approximation is poor, particularly for func-
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tionals containing large amounts of exact exchange. Our previous work has 

established C A M - B 3 L Y P as a good quahty, all round functional that exhibits 

improved long-range behaviour over conventional approximations. This study 

of PA and P Y supports this observation. 

In the first application of the OEP method to attenuated functionals, we 

have considered the performance of CAM-B3LYP for a number of N M R shield­

ing constants and chemical shifts. In order to jus t i fy the use of OEP, rather 

than conventional evaluation of N M R parameters for attenuated functionals, 

the effect of the OEP on general orbital-dependent functionals has been dis­

cussed. We consider the computation of N M R isotropic shielding constants 

and chemical shifts in main-group and transition metal systems. For the 

21 small main-group molecules considered, results using 0 - C A M - B 3 L Y P are 

comparable w i t h existing approaches, and yield significantly improved results 

over the conventional evaluation of N M R parameters. 

Equally the application to the model formaldehyde systems shows that 

both hybr id and attenuated functionals can give G G A quality results when 

the OEP method is used; conventional results are notably less accurate. For 

the transition metal systems however, none of the functionals considered can 

give rise to accurate chemical shifts, although the OEP results are in better 

agreement w i t h experiment than the conventional results. 

The results highlight that the behaviour of 0 - C A M - B 3 L Y P is similar to 

that of standard hybrid functionals such as 0 - B 3 L Y P when evaluated through 

the OEP procedure, despite the significantly differing performance observed 

for other response properties. Since 0 - C A M - B 3 L Y P performs similarly to 

hybrid functionals such as 0-B3LYP, there remains significant room for im­

provement. The further development of attenuated functionals should consider 

the rigorous computation of N M R through the OEP method. 



C H A P T E R 6 
Adiabatic connection 

The Hel lmann-Feynman theorem provides a formal ly exact expression 

for the exchange-correlat ion energy, as an integral over a funct ional 

W\, which serves to connect the energies of a f ic t i t ious non- interact ing 

system ( A = 0 ) w i t h the physical, interact ing system ( A = 1 ) . Several 

approximate exchange-correlat ion funct ionals, such as B H H L Y P and 

more recently the M C Y functionals, have been derived by approximat­

ing Wx using simple mathematical forms wi th (possibly) approximate 

input data. To enable the accuracy of an approximate W\ form to 

be judged, essentially exact data is determined f rom FCI calculations, 

corresponding to the value and gradient of Wx when A = 0, and the 

value when A = 1 . When this data is used as input t o approximate 

Wx forms, the only approximation is due to the form itself. 

Th is procedure is applied t o a number o f approximate forms, consid­

ering two challenging problems for conventional D F T . First the singlet 

ground state potent ial energy curve o f the H2 molecule in a restricted 

formal ism is considered, which is the famous and challenging example 

o f non-dynamic electron correlat ion. Second the helium isoelectronic 

series f rom H~-Ne^+ is considered. 

Fol lowing the success of some of the forms in describing these prob­

lems, we consider whether i t is possible t o achieve similar accuracy 

f rom more easily obtainable input data, and the applicabi l i ty t o a 

many-electron system. 

1 1 8 
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The Hellmann-Feynman theorem states that for some parameter A in a Hamil-

tonian, 

(6.1) 

providing the other parameters that determine the wavefunction are either 

independent of A or are variationally optimised w i t h respect to A. This may 

for instance be used to calculate molecular forces in origin-independent basis 

sets, or the response of a system to an applied field. 

In order to derive the adiabatic connection formalism,^^"^'^'^'''^^^"^*^ con­

sider the n-electron Hamiltonians defined by 

Hx = f + XV,, + J2Mrr) (6.2) 
i 

where A is a coupling strength parameter which scales the electron-electron 

interaction 

V = E - ; (6.3) 

the case w i t h A = 0 corresponds to the fictit ious non-interacting Kohn-Sham 

reference system, and the case w i t h A = 1 corresponds to the physical inter­

acting system. The final term is the (A-dependent) external potential, through 

which the density is held fixed at the density of the interacting s y s t e m . I f 

we apply the Hellmann-Feynman theorem to this Hamiltonian, we obtain 

Î (V'AÎ AÎ A) = (V^A||̂ (E^A(>^ )̂) +^ee|^A), (6.4) 

i 

where il)x is the wavefunction associated w i t h the system w i t h Hamiltonian .̂ A-

Next assume that the electron-electron interaction is turned on smoothly by 

varying A f rom 0 to 1, which corresponds to transforming the non-interacting 
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reference system into the physical system: 

1 1 J dxj^i^PxlHxM = J tiA(^,|^(5;;^A(r,)) + V;e|̂ A) (6.5) 
0 0 ' 

i i 
1 

+ J dX{^,\V^M (6.6) 

1 

E,-Eo=J drp{T)vi{r) - J dr p{r)vo{r) +jdX , 
0 

(6.7) 

which holds under the assumption that the density is held fixed for all values of 

^ 83 When A = 0, the wavefunction is the exact non-interacting Kohn-Sham 

single Slater determinant ipo- Since for A = 0 

£^0 = {^Po\f\iPo) + J drp{r)vo{r) (6.8) 

= Ts + j drp{r)voir), (6.9) 

we may use eq. (6.6) to express Ei as 

1 

E, = i^omo) + J d T p { r ) v , { v ) + jdX {^PxKM (6.10) 
0 

1 

= T, + K>e + y dX{^lj,\KM (6-11) 
0 

1 

= T, + V'ne + J + J d X M V , M - J , (6.12) 
0 

f rom which i t is possible to identify the exact exchange-correlation energy as 

1 

E.c = J dX {tP,\V^M - J • (6.13) 
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We define Wx such that 

= MVee\lpx) - J • (6.14) 

When A = 0, eq. (6.14) becomes 

Wo = (^olV'eelV'o) -J = J + E,-J = E,. (6.15) 

in which E-^ is the exact value of the orbital exchange energy. When A = 1, the 

wavefunction corresponds to the exact wavefunction of the interacting physical 

system, ipi, so 

W, = {^,\V,,\^,)-J = K , - J , (6.16) 

in which I4e and J are the exact values of the electron-electron interaction 

and the Coulomb energies for the interacting physical system. I t follows that 

the correlation kinetic energy, which is defined by Tc = E'xc - (Ke - J), is 

given by Tc = £^xc — VFi- As illustrated in figure 6.1, Ey_c and Tc have a simple 

geometrical interpretation in terms of the adiabatic connection. Given the 

known property that the adiabatic connection curve is monotonically decreas­

ing, i t follows that |Tc| ^ \Ec\- The exact gradient of Wx when A = 0 is given 

by the second-order correlation energy f rom Gorhng-Levy^^-'^^^ perturbation 

theory (GL2) 

dWx 
dX 

1 ^ \{ai\Pj) - {aj\Pi)\^ {cP,\v^ - v^'^lcf^,) 

A=0 2 8^+ SB - £i - £j ^ S a - Ei 

(6.17) 

Here the first term is twice the conventional second-order M0ller-Plesset cor­

relation energy expression which involves two-electron integrals of exact occu­

pied (2,7) and v i r tua l (a,/?) Kohn-Sham orbitals and their associated orbital 

energies e. The second term involves the difference between the exact mul-

tiphcative exchange potential Vy^ and the non-multiplicative, non-local (NL) 

exchange . 

For practical calculations, Wx can be approximated using simple mathe­

matical forms that model—to various extents—the known behaviour of the 

exact adiabatic connection. The parameters in an approximate adiabatic con­

nection fo rm axe then defined to reproduce known properties of the adiabatic 
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Figure 6.1: Schematic representation of the adiabatic connect ion; E^c and — T^ 
are given by the integrals as indicated. 

1 

connection, either exactly or approximately. Therefore the accuracy of a cal­
culation, within a given basis set, is governed both by the chosen mathematical 
form and the accuracy of the input data used to determine any parameters. 
There have been a number of attempts to develop exchange-correlation func­
tionals through explicit approximation of Wx; the energy of such approxima­
tions is then evaluated through 

1 

( 6 . 1 8 ) 

0 

where W^^^'^"^ refers to an approximation to the exact Wx form. Exam­
ples of such approximations are the half-and-half functional of Becke^^ which 
uses a linear adiabatic connection form; the [l,l]-Pade based form of Ernz-
erhof;̂ '̂* the two-legged representation of Burke^*^ et al.\ and the interaction 
strength interpolation of SeidP**̂  et al. Mori-Sanchez, Cohen and Yang^^^ 
(MCY) recently proposed two functionals based on the same form considered 
by Ernzerhof,^^^ 

h\ 
1 + cA 

(6.19) 
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but w i th alternative definitions of the three parameters. 

I t is t r iv ia l to show that the quantities a and b in eq. (6.19) respectively 

define the value and the gradient of W^f'^^ at A = 0. I n order that the ap­

proximate fo rm satisfy eq. (6.15), Mori-Sanchez et al. defined the parameter 

a to be the orbi ta l exchange energy E^. For evaluation of the parameter b 

they used a value of a modified TPSS gradient, w i t h an additional scaling 

factor of 4.0 to optimise the thermochemical performance. The parameter c 

was chosen so that the value of eq. (6.19) for A = 0.63 was equal to W^^^^ 

evaluated w i t h the same value of A; this value was again chosen to optimise 

the performance of the functional. W^^^^ is the adiabatic connection form 

associated w i t h the B L Y P exchange-correlation functional; as illustrated by 

Mori-Sanchez et al, i t can be obtained for any local functional through co­

ordinate scaling r e l a t i o n s . T h i s functional was denoted M C Y l . A second 

functional, denoted M C Y 2 , involves an additional parameter introduced to 

improve atomic energies. 

One of the justifications for choosing the form of W^f^^ and the subsequent 

definition of the parameters is that the resultant functionals are one-electron 

self-interaction free. This means that the exchange-correlation energy exactly 

cancels the Coulomb energy for any density containing up to one electron; 

by definit ion this requires that the exchange-correlation energy for such a 

density reduces to E^c = E-^ = —J. This occurs in the case of the M C Y 

functionals because as defined the gradient b is zero for a one-electron sys­

tem and the exchange-correlation energy therefore t r iv ia l ly reduces to Ey^ 

as required. They are not however many-electron self-interaction free.^^^"^^^ 

Self-interaction error is extended to many-electron systems as the requirement 

that the tota l electronic energy be piecewise hnear as a funct ion of electron 

number n; for non-integer numbers of electrons n < m < n -|- 1, the exact 

to ta l electronic energy is expressible as a linear combination of the exact total 

electronic energies at the surrounding integers, 

E{m) = (m - n)E{n) + (n + 1 - m)E{n + 1) . (6.20) 

A similar relation may also be obtained for the densities of the m-electron 

system. I n general G G A functionals and Hartree-Fock theory deviate sig­

nificantly f rom this linear behaviour, in opposite directions. I t has recently 
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been demonstrated that attenuated functionals, such as those considered in 

the previous chapters (wi th appropriately modified attenuation parameters), 

can exhibit near-hnear behaviour as a funct ion of electron number. Cohen^''^ 

et al. have subsequently introduced the M C Y 3 functional which is designed 

specifically to be close to many-electron self-interaction free. 

The quality of the M C Y l and M C Y 2 functionals is encouraging, w i t h the 

performance providing a simultaneously good description of thermochemistry 

and k i n e t i c s . R e c e n t l y several other y/^^^'^^^ were proposed by Cohen^^^ 

et al.; they concluded that when input data determined in a similar manner 

to that of M C Y l and M C Y 2 were used—where only the value of WQ was 

determined using an exact expression—there was htt le to differentiate between 

the quality of the forms. 

The accuracy of results f rom adiabatic connection-based functionals is de­

pendent on both the mathematical form of yy^^P'^"'^ and the procedure used 

to obtain any of the parameters contained wi th in a \y^PP^°^_ I t is therefore 

diff icul t to isolate the cause of the success (or failure) of these functionals. The 

first aim of the work in this chapter is to use correlated ab initio calculations 

to investigate the performance of various W^^^^°^ when all of the parameters 

are determined such that they reproduce accurate properties of the exact adia­

batic connection. This w i l l estabhsh how well a given W'^'^^'^°^ can represent 

the exact Wx-

To test the W^'^^^"^, we consider the singlet ground state potential energy 

curve of the H 2 molecule, which is the famous and challenging example of non­

dynamic correlation. The small size of this system allows essentially exact 

ab initio calculations to be performed and the two-electron nature affords 

several welcome simplifications. This work is particularly relevant i n hght 

of the study by Fuchs^^^ et al., who considered the dissociation of H 2 using 

the random phase approximation;*^'^"^ see ref. 293 for a detailed discussion 

of H 2 dissociation wi th in density functional theory. Given the simplifications 

that arise in the computation of accurate Wx data for two-electron systems, 

we then extend the study to consider how well the A C forms can describe 

the electronic energies of the hehum isoelectronic series, f rom H ~ to Ne*"*"; 

the accurate calculation of these energies, particularly as the atomic number 

Z increases, poses a further significant challenge for approximate exchange-
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correlation functionals.^'^.^so,294-297 

6.1 C O M P U T A T I O N A L A P P R O A C H 

A l l calculations in this chapter are performed using a development version of 

the D A L T O N program, and are treated in the appropriate ground state singlet 

spin-restricted formahsm throughout. The basis sets used are discussed in 

detail at the point of use; for H 2 and the helium isoelectronic series doubly 

augmented sextuple-C quality bases are used. FCI calculations are performed 

using these extensive basis sets; we calculate both the total electronic energy 

and the tota l electron density (which are exact wi th in the basis set used). 

Our first task is to compute accurate properties of Wx. I n principle an 

accurate Wx curve may be determined by evaluating eq. (6.14) using wave-

functions f rom F C I calculations; this is non-trivial for arbitrary A, but when 

A is 0 or 1, i t is straightforward. For A = 0, evaluation of eq. (6.15) using F C I 

data gives the exchange energy, determined using the Kohn-Sham orbitals as­

sociated wi th the F C I density. For a two-electron system, the exchange energy 

is the negative of one half of the Coulomb energy, so we may evaluate 

W^rci ^ _ 1 j F C I 21) 

where the F C I label denotes evaluation w i t h FCI-derived quantities; in this 

case we evaluate the Coulomb energy J w i t h the F C I density. For A = 1, 

evaluation of eq. (6.16) using F C I data gives 

^ F C I ^ yFCl _ jFCl 22) 

in which V^'^^ is the F C I electron-electron repulsion energy, obtained by sub­

tracting the nuclear-nuclear repulsion and one-electron energies determined 

using the F C I density matrix, f rom the F C I tota l electronic energy. Equa­

tions (6.21) and (6.22) represent exact values of which may easily be 

determined f rom an F C I calculation; the F C I labels are used to differentiate 

between the true exact adiabatic connection Wx and that determined wi th in 

a finite basis set, W^^^. 

The gradient at A = 0 is twice the GL2 correlation energy, given in eq. 

(6.17), evaluated w i t h the Kohn-Sham orbitals and orbi ta l energies associated 
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wi th the FCI density. For two-electron systems in the second term of 

eq. (6.17) is the negative of one half of the Coulomb potential, since the 

potential is the functional derivative of the corresponding energy. Since there 

is only one occupied orbital 0 i , f rom a consideration of the explicit orbital 

pair contributions i t follows that 

{4>i\vM = {(Pilv^'-M , (6.23) 

for all v i r tua l orbitals 0^. Hence the latter term in eq. (6.17) is identically 

zero, and 

= - - |(Q2|^J) - 24) 
i,j,a,l3 

In order to evaluate this expression we require the Kohn-Sham orbitals and 

orbital energies associated wi th the FCI density. The accuracy of these quan­

tities w i l l depend on the method used to obtain them. The Wu-Yang^^ ( W Y ) 

implementation of the constrained search formalism^^'^^ is one possibility, 

which minimises the non-interacting kinetic energy under the constraint that 

the F C I density is recovered. I n general the method allows the construction of 

the potential associated w i t h a given ground state density p ( r ) . The potential, 

in a similar manner to the Yang-Wu optimised effective potential^^ method, 

is expanded in terms of contributions f rom a known reference potential which 

is 'corrected' by a basis set expansion in terms of Gaussian functions g to 

account for any deviations of the actual potential Vs{r) f rom the reference 

potential v{r) + f R e f ( r ) ; 

VS{T) = v{r) + v^^fir) + bt9t{r). (6.25) 
t 

The problem therefore reduces to the determination of the appropriate basis 

set expansion coefficients b that minimise the non-interacting kinetic energy 

over all possible potentials Vs{v) that reproduce the input density. 

As w i t h the Yang-Wu optimised effective potential procedure, a well-

balanced description of the orbitals and potential is important.^^^'^^^ I n our 

W Y calculations we therefore use the same extensive sextuple-C basis set for 

the expansion of the potential and the orbitals; the extensive and largely 
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uncontracted nature of these basis sets is sufficient to provide an accurate 
representation of both the potential and the orbitals. For the reference poten­
tial we use a Fermi-Amaldi^^° potential; we have confirmed that essentially 
identical results are obtained if a Slater reference potential^^ is instead used. 
As a cut-off in the truncated singular value decomposition we use a value of 
1 X 10"^, which provides essentially identical results to those obtained using 
a cut-off of 1 X 10~^; any further reduction in the cut-off is numerically unde­
sirable. Since by construction the density of the occupied Kohn-Sham orbital 
should equal the FCI density, the accuracy of the calculation may be judged 
by a comparison of the Coulomb energies associated with the two densities; 
for the H2 and helium isoelectronic series, the energies from the two densities 
differ by at most 7 x IQ-'' %. 

Schipper^^^ et al. have demonstrated that the exchange-correlation poten­
tial that exactly corresponds to a density obtained from a finite Gaussian basis 
set may exhibit unphysical oscillatory structure. At large Ho internuclear sep­
arations, our WY-obtained exchange-correlation potentials do exhibit minor 
undulations. In order to force the potentials to give a smoother, more physi­
cally sensible structure, we have performed additional calculations using the 
procedure of Heaton-Burgess'^* et al, which introduces a smoothing norm 
into the minimisation. The resultant potentials are very smooth; however, the 
potential energy curves we obtain (see later) are essentially indistinguishable 
from those obtained without the smoothing norm procedure. The FCI density 
however is less well reproduced because the procedure necessarily limits the 
extent to which the solution point can be reached. 

For two-electron systems there is an alternative possibility for obtaining 
the exchange-correlation potential that yields the finite basis set FCI density; 
it may be obtained directly from inverting the Kohn-Sham equation.̂ ^"^ See 
ref. 300 for a related study on the H2 molecule. We have performed such a 
direct inversion, and find, consistent with Schipper^^^ et al., that the potential 
is oscillatory in the vicinity of the nuclei. It is possible to obtain orbitals and 
orbital energies by solving the finite basis set Kohn-Sham problem with this 
potential; again the potential energy curves are essentially indistinguishable 
from those above, although the FCI density is again less well reproduced com­
pared to the W Y procedure, due to the use of a finite basis set. Throughout 
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the remainder of this study we therefore obtain orbitals and orbital energies 
through the use of the W Y procedure apphed to the FCI densities. 

We determine accurate l ^ f ^ ^ data using eqs. (6.21), (6.22) and (6.24), 
which we then use to define the parameters in approximate adiabatic connec­
tion forms. These forms wiU exactly reproduce the FCI values (or a subset 
of them). The exchange-correlation energies associated with an approximate 
adiabatic connection form will then differ from the exact exchange-correlation 
energy (within that basis set) solely due to the failure of the form in repre­
senting the exact AC curve at points other than those used as input—any 
error in the exchange-correlation energy is attributable to the failure of the 
approximate form in representing the exact W^'^^. 

In practical calculations it is often more intuitive to consider total elec­
tronic energies and their related properties, rather than exchange-correlation 
energies. The nuclear-electron and Coulomb components of the total energy 
are always explicit functionals of the density and so can be evaluated exactly 
using the FCI density. For two-electron systems the occupied Kohn-Sham or­
bital is the square root of one half of the electron density; the non-interacting 
kinetic energy, generally a functional of the orbitals, then becomes an explicit 
functional of the density given by the von Weizsacker expression:^^ 

Therefore the non-interacting kinetic energy may also be evaluated exactly 
from the FCI density; the only other component is the nuclear-nuclear re­
pulsion, which is trivial to determine. We therefore evaluate the total DFT 
energy E through 

E = r ^ C I + yFCl ^ jFCl ^ y^^ ^ ^ A C (g 27) 

in which T *̂-'̂  and Vj^^ are the von Weizsacker kinetic and nuclear-electron 
energies evaluated with the FCI density, and E^^ is the exchange-correlation 
energy [evaluated through eq. (6.18)] associated with an approximate adiabatic 
connection (AC) form. The first four terms are exact and the error in the final 
term arises entirely from the use of an approximate AC form. Comparison of 
E with the FCI total electronic energy will allow the accuracy of the AC form 
to be quantified. 
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As a first application we consider the AC form used by Mori-Sanchez et a/., 

^ 1 + cA 

We introduce the notation A C l to refer to this form. The exchange-correlation 
energy associated with eq. (6.28) is given by 

E: A C i = a + ^ ( l _ ^ ^ g e ( l + ^ ) ) . (6.29) 
c \ c / 

As discussed above, we define the parameters a, b and c by requiring that the 
value and gradient of W^^^ at A = 0, together with the value at A = 1, equal 
the corresponding FCI values; 

l^ACl ^ ^FCI ^ (g 30) 

dX A=o dX 
(6.31) 

A=0 

^ 1 + c ^ ^ ^ 

Through eqs. (6.21), (6.22) and (6.24) we obtain the following values for the 

parameters; 

evaluated with the Kohn-Sham quantities obtained from the W Y calculation. 
The equation for the final parameter is obtained by solving for c with a and b 
defined as above; 

U^i = a + ^ = y^c i _ jFCi (g 35) 

For each required A C l total energy, an FCI calculation was performed and 
the quantities a, b and c evaluated according to eqs. (6.33), (6.34) and (6.36); 
this data was then combined with the other FCI-derived energy components 
in eq. (6.27). Results from this procedure are denoted AC1."'°^'^'^^ 
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Table 6.1: H2 FCI total electronic and exchange-correlation energies (in 
Hartree) as a function of bond distance R (in bohr), compared to 
reference total electronic energies. 

R Ref.^ FCT | ; F c r -
xc 

"l -1.124540 - 1 ,124394 -0.78581 
1.4 -1.174476 - 1 .174361 -0.70251 
2 -1.138133 - 1 , .138042 -0.61751 
3 -1.057326 - 1 , .057268 -0.55436 
4 -1.016390 - 1 , ,016364 -0.56412 
5 -1.003786 - 1 , ,003776 -0.59403 
6 -1.000836 - 1 , ,000832 -0.61181 
7 -1.000198 - 1 , ,000196 -0.61960 
8 -1.000056 - 1 .000054 -0.62280 
9 -1.000020 - 1 .000018 -0.62410 

10 -1.000009 - 1 .000007 -0.62463 
^ refs. 303 and 304. 

6.2 G R O U N D S T A T E H 2 P O T E N T I A L E N E R G Y C U R V E S 

We commence by considering the singlet ground state potential energy curves 
of H2 determined using standard methods, reiterating that all calculations in 
this study use the appropriate spin-restricted formalism. For all calculations 
in this section we use the d-aug-cc-pV6Z basis set. The FCI total electronic 
energies obtained with this basis set are compared with accurate reference 
values in table 6.1, as a function of the bond distance R. The agreement with 
the reference data reflects the extensive basis set used. Also presented are the 
exchange-correlation energies associated with the FCI calculations. Figure 6.2 
compares self-consistent Hartree-Fock (HF) and B3LYP curves with the FCI 
reference curve, for 0.7 ^ ^ 10 bohr. The HF curve is very poor, reflecting 
the failure of a single determinant in describing the wavefunction, particu­
larly at dissociation where non-dynamic correlation is significant—there are 
unphysical ionic contributions to the wavefunction. The B3LYP curve is an 
improvement, particularly at equilibrium, although significant error remains at 
larger bond distances. Also shown is the self-consistent M C Y l curve, which is 
similar to the MCY2 curve (not shown). M C Y l provides similar performance 
to B3LYP whilst removing the one-electron self-interaction error. 
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Figure 6.2: Potential energy curve of H2 determined using FCI, compared with 
those from self-consistent HF, MCYl and B3LYP. 
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Figure 6.3: Potential energy curve of H2 determined using FCI, compared with 
the ACl curve. 
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Figure 6.3 compares the A C l potential energy curve with the FCI reference 
curve, on the same scale as figure 6.2. It is a significant improvement over 
the results from the other approximate methods. I t is important to note 
that this improvement is not simply a consequence of using accurate Kohn-
Sham orbitals; we have performed M C Y l calculations using the WY orbitals 
obtained from the FCI density, and find that the shape of the potential energy 
curve is essentially unchanged compared to the M C Y l curve in figure 6.2, 
other than by an upward shift due to the non-self-consistent nature of such 
calculations. 

A C l provides a good description of the potential energy curve in the vicin­
ity of the minimum; M C Y l and B3LYP are also accurate in this region, but 
HF is poor. One measure of the accuracy is the optimised bond length ob­
tained for each method; table 6.2 presents values of for each of the methods 
considered, comparing with the FCI value, which agrees with experiment to 
the precision quoted. Both A C l and M C Y l give bond lengths in agreement 
with the FCI value; B3LYP overestimates by just 0.001 bohr. The bond length 
is notably underestimated with HF however. The potential energy curves have 
also been used to determine vibrational energy levels, using the L E V E L 7.5 
code of Le Roy.^°^ The potential energy curves used as input consisted of 
points ranging from R = 0.7 bohr to R = 3.5 bohr with a spacing of 0.01 bohr 
(0.001 bohr in the region of the minimum). Convergence of the calculated lev­
els was set to 1 X 10~^ cm~^ and ten point piecewise polynomial interpolation 
was used. Zero-point, fundamental and first overtone wavenumbers (J = 0) 
are presented in table 6.2 comparing with our FCI values (which agree with 
experiment to within 1 cm~^). A C l provides a significant improvement over 
the conventional methods, with errors relative to FCI of just 6, 14 and 33 
cm~^ respectively for the zero-point, fundamental and first overtone; the cor­
responding percentage errors are 0.3%, 0.3% and 0.4%. Of the conventional 
methods the next best results are obtained from the B3LYP functional, where 
the errors are 6, 26 and 75 cm~^ The M C Y l errors are comparable to B3LYP, 
at 11, 35 and 94 cm~^ Al l three approaches provide an accurate zero-point 
wavenumber, but the differences between the methods become increasingly 
pronounced for the higher levels, with M C Y l and (to a lesser extent) B3LYP 
degrading. The Haxtree-Fock errors are all significantly larger, consistent with 
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Table 6.2: Equihbrium bond lengths Re in bohr, and zero point (ZP), fun­
damental {v=0^v=l) and first overtone {v=0^v=l) vibrational 
wavenumbers in cm~^, compared to reference total electronic en­
ergies. 

HF B3LYP M C Y l A C l AC3 AC5 
Re 1.386' 1.402' 1.401 1.401 1.403 1.399 
ZP 2274 2186 2191 2186 2179 2260 
v = 0^ V = 1 4373 4188 4197 4176 4153 4123 
v = 0^ v = 2 8546 8163 8182 8121 8068 8081 

AC6 AC7 AC8 AC9 FCI Expt. 
Re 1.401 L399 1.403 1.401 1.401 1.401^ 
ZP 2186 2191 2173 2184 2180 2179"̂  
v = 0-^ V = I 4170 4182 4140 4166 4162 4161^ 
u = 0 -> v = 2 8107 8135 8040 8096 8088 8087*̂  

^ ref. 208. 
^ Determined using the Dunham coefficients in ref. 208 with the 

Kaiser correction (ref. 306). 

the poor overall description of the curve. 
The curves in figure 6.3 also demonstrate that at large R, A C l recovers a 

large amount of the necessary non-dynamic correlation, resulting in a signifi­
cant improvement over B3LYP and the other conventional approaches. In fact 
the dissociation limit is obtained exactly; as i? —> 00 the quantity 6 —> — 00 
due to the orbital energy degeneracy in the denominator of eq. (6.34). It fol­
lows that the associated exchange-correlation energy in eq. (6.29) approaches 
the value Wf"^^, which by construction [eq. (6.36)] equals W[^^ in eq. (6.16). 
In this limit there is no electron-electron repulsion, so W[^^ is just the neg­
ative of the FCI Coulomb energy; the exchange-correlation energy exactly 
cancels the Coulomb energy and the total energy of eq. (6.27) reduces to the 
sum of the one-electron contributions as required. This is also evident from a 
consideration of the derivative of eq. (6.28), 

dX " ( l + cA)2' ^^-^^^ 

a.s R ^ 00. Equation (6.37) exhibits the correct behaviour (as described in 
ref. 293); when A = 0 the gradient equals b, which is —00 in the limit. For 
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any non-zero A however, the gradient is zero due to the quadratic divergence 
present in the denominator. As R oo, W^'^^ therefore drops from its initial 
value of WQ"^^ = a = with an infinite slope, acquiring the constant 
value W^ACi _ 2^ = _ J^ci f^ j . ^^ non-zero A. It follows (consider for instance 
figure 6.1, figure 2 of ref. 293 and the discussion of figure 6.4) that Tc is exactly 
zero, which is appropriate for the case of two isolated one-electron systems. 
Of note is the fact that this lack of A-dependence in H^ACI ^ j j j QQQ^^ whenever 
6 ^ - G O , for example in the dissociation of a general homonuclear diatomic 
molecule. In cases with many-electron fragments, it is incorrect to have Tc = 0. 
Mori-Sanchez^^^ et al. discuss the related example of the homogeneous electron 
gas. 

Next consider intermediate bond lengths in figure 6.3. The A C l curve re­
sembles that obtained by Fuchŝ '̂̂  et al., using the RPA. There is an unphysical 
barrier to dissociation, which is the first significant discrepancy compared to 
FCI. We reiterate that this feature is unaffected by smoothing the potential in 
the W Y procedure, the use of the direct-inversion alternative, or to changes 
in the basis set used either for the orbitals or the expansion of the potential. 
This does not imply that the choice of orbitals and orbital energies are unim­
portant; replacing the FCI-based W Y quantities with those obtained from the 
FEE GGA functional more than doubles the size of the barrier; using Hartree-
Fock orbitals and orbital energies results in a further significant degradation. 
See ref. 307 for a discussion of the orbital dependence of this feature within 
the RPA. Our interpretation of this barrier to dissociation is that it is a failure 
of the form of eq. (6.28). We note that Fuchs et al. used a similar form to 
represent their near-exact adiabatic connection near equilibrium, but had to 
introduce additional flexibihty into their model form at intermediate R. 

It is instructive to consider the shape of the W^^^ curves at three geome­
tries; 1.4 bohr, 5 bohr and 10 bohr, corresponding to two different regions 
where W^'^^ provides an accurate description, and one where it is less accu­
rate. We present these curves along with the self-consistent MCY curves for 
comparison in figure 6.4. Note that although both methods define WQ to equal 
the orbital exchange energy, the values differ in practice due to the different 
data used in their evaluation. At 1.4 bohr, corresponding to the equilib­
rium bond length, the two curves have different shapes but the integrals that 
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Figure 6.4: Comparison of Wx from MCYl, ACl and AC6, evaluated at inter­
nuclear separations of (a) 1.4 bohr, (b) 5 bohr, and (c) 10 bohr. 
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Figure 6.5: d^Wx/dX^, as a function of R for various values of A. 

determine E^c through eq. (6.18) are similar, resulting in the corresponding 

similarities observed in the potential energy curves near equilibrium. The A C l 

curve closely resembles the 'exact' curve of Fuchs^^^ et al As it! increases, the 

M C Y l integral becomes increasingly less negative compared to that of A C l , 

which is again reflected in the behaviour of the potential energy curves. At 

= 10 bohr the A C l curve is essentially flat; it will become completely flat 

as i? ^ 00, as discussed above. Interestingly the curves from A C l and M C Y l 

have similar values at A = 1, implying that the failure can be attributed to the 

TPSS gradient faihng to diverge as the exact gradient does; this highlights the 

importance of virtual orbital energies in recovering non-dynamic correlation. 

We have again confirmed that the W]^^^^ curves do not improve if they are 

evaluated with the W Y orbitals and orbital energies. 

Also of interest is the behaviour of the second derivative of Wf^^'^ with 

respect to A; this is plotted as a function of R for various values of A in figure 

6.5. For all of the A values shown, the curvature is smaU near equilibrium, 

increasing to a maximum for intermediate R (in the region of 5-6 bohr), but 

then decreasing again as dissociation is approached. The observation that 

the potential energy curve is accurate near equilibrium and near dissociation, 
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but relatively poor in intermediate regions, indicates that the form of eq. 
(6.28) works preferentially when the curvature is small. The high curvature of 
W^'^^ for intermediate R and the associated failure of the exchange-correlation 
energy in this region may reflect the rapidly changing nature of the exact 
wavefunction, as evidenced by rapid changes in the occupation numbers of 
the ag and au natural orbitals in this region. The inclusion of higher order 
terms in the expansion appears desirable, but would require additional input 
data. We therefore take an alternative approach, whereby alternative forms 
that continue to make use of the available input data are trialled. 

Calculations that use the exchange-correlation energy obtained from eq. 
(6.29) , with the parameters defined either to reproduce exact values of the 
adiabatic connection (as in the A C l form) or as in the MCY functionals of 
ref. 287, are not in general size-extensive. For the case of H2 discussed above 
the size-extensivity condition does hold; however it fails for a heteronuclear 
system due to the form of the energy expression. In general the size-extensivity 
condition will only hold if the contributions from the energy associated with 
a given VFf P̂ ™^ are linear in any parameters a, b and c. We therefore next 
consider polynomial AC forms, which provide fully size-extensive models. 

For simpUcity we continue to define W^^^^°^ models in terms of parameters 
a, b and c, although their definitions may differ from the case of A C l . Firstly 
we consider the two parameter linear AC2 and three parameter quadratic AC3 
forms of table 6.3. The associated exchange-correlation energies are trivially 
computed; see appendix A for the expressions for E^^, a, b and c for the Wx 
forms considered. 

For AC2, we can require that the value and slope of W^^'^ at A = 0 equal 
the appropriate FCI-derived values; 

Ŵ AC2 ^ ^ F C I ^ 38) 
aVKAC2 

=b = 
FCI 
A 

A=0 dX 
(6.39) 

A=0 

and so a and b are evaluated using eqs. (6.21) and (6.24). The potential en­
ergy curve obtained in this manner is denoted AC2 in figure 6.6. It is in poor 
agreement with FCI near equilibrium, diverging rapidly as R increases due to 
the divergence of b. It should be noted that the AC2 form is an exact repre-
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Table 6.3: Approximate AC forms considered in this study. For the defini­
tions of a, b and c, see appendix A. 

H^ACl = a + 
bX 

1 + cA 
Ŵ AC2 = a + bX 
i y A C 3 = a + bX + cA^ 

^AC4 = a + 

14̂ AC6 = a + 6exp(-cA) 

W^^' = a + b\og{l + cX) 

V[/AC8 = a + 6tanh(-cA) 

V^AC9_^^{,Xexp(-cA) 

sentation of GL2 theory, which is equivalent to MP2 theory (evaluated with 

a Kohn-Sham reference as opposed to the standard Hartree-Fock reference) 

for two-electron systems. The difference in the reference, and the typical re­

duction in the orbital energy gaps, accounts for the faster divergence over the 

equivalent MP2 curve. 

In light of the half-and-half approximation of due to Becke, which also 

uses the linear interpolation of the AC2 form, we may alternatively require 

the parameters of Vt̂ AC2 gq^^j ĵ̂ ĝ pQj values for A = 0 and A = 1; this can 

be regarded as an exact representation of the half-and-half functional. In this 

case, eq. (6.39) is replaced with 

i y A C 2 = cL + b = Wl^^ (6.40) 

which is then evaluated using eq. (6.22). We denote results from this method 

as AC2(H&;H). The potential energy curve is shown in figure 6.7; it is in poor 

agreement with FCI near equilibrium, however there is no divergence at large 

R due to the absence of the divergent gradient. 

The AC3 form contains three parameters, which are defined to equal the 
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Figure 6.6: Potential energy curve of H2 determined using FCi, compared with 
those from AC2 and AC4. 
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Figure 6.7: Potential energy curve of H2 determined using FCI, compared with 
those from AC2(H^H) and AC4(H&H). 
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Figure 6.8: Potential energy curve of H2 determined using FCI, compared with 
those from ACS and AC5. 

three appropriate values derived from F C I . The potential energy curve so 

determined is shown in figure 6.8. The agreement with F C I near equilibrium 

is now significantly improved. The bond length of 1.403 bohr is in good 

agreement with the F C I bond length, and the zero-point, fundamental and 

first overtone vibrational wavenumbers are underestimated by just 1, 9 and 

20 cm"^ respectively. However the curve still diverges at large R, albeit more 

slowly than in the case of A C 2 . This again suggests that the inclusion of higher 

order terms in A would be desirable, particularly as the bond is stretched. 

Whilst A C 2 and A C S I^^PP'""'' give energies that are size-extensive and one-

electron self-interaction free when a, b and c are defined as above, they fail to 

scale to a constant in the strong interaction limit (A 00) whenever b and c 

are non-zero. This leads us to consider the alternative A C 4 and A C 5 forms in 

table 6.3, which modify A C 2 and A C S respectively such that they scale to a 

constant for finite non-zero values of b and c. Using exactly the same approach 

as with A C 2 and A C S but with appropriately amended definitions of b and 

c, we determined potential energy curves for the A C 4 , A C 4 ( H & H ) and A C S 

models. These results are presented in figures 6.6, 6.7 and 6.8 respectively. 

The behaviour at large R is improved compared to the corresponding A C 2 , 
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Figure 6.9: Potential energy curve of H2 determined using FCI, compared with 
that obtained from AC6. 

AC2(H&:H) and ACS results. As illustrated in table 6.2, the curvature of 
the ACS potential energy curve is higher than the corresponding ACS curve, 
resulting in notably different vibrational wavenumbers. 

For the case of H 2 , the size-extensivity of the energy expression for a general 
molecule appears irrelevant given the best results thus far have been obtained 
with the non size-extensive A C l form. With this in mind, we consider the 
AC6-AC9 forms of table 6.3, which were first considered by Cohen^^^ et al. 
with approximate input data. These forms remain one-electron self-interaction 
free, but like A C l , are not in general size-extensive. 

The key observation from the consideration of these alternative forms is 
the high quality description obtained with the exponential-based AC6 form 
as illustrated in the potential energy curve of figure 6.9. The potential energy 
curve is virtually indistinguishable from the FCI curve and the unphysical 
barrier associated with A C l is completely eliminated. The accurate bond 
length and high quality vibrational wavenumbers associated with this method 
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Figure 6.10: Potential energy curve of H2 determined using FCI, compared with 
those obtained from AC7, ACS and AC9 

are given in table 6.2. These high quality results for the AC6 form highlight 
what can be achieved for two-electron systems using simple AC forms when 
accurate input data is used. One means of understanding the difference in 
behaviour between the A C l and AC6 forms is through a consideration of 
W^*^^ as a fimction of A, plotted in figure 6.4. At equihbrium, the W^^^ 
curve is essentially indistinguishable from the A C l curve. However, at 5 bohr 
(where A C l exhibits its maximum discrepancy with FCI) there is a marked 
difference between the two curves; the AC6 curve is everywhere below that of 
A C l , consistent with the larger (more negative) exchange-correlation energy 
from AC6. At 10 bohr, the AC6 curve is much sharper than the A C l curve, 
indicating that the dissociation limit is reached faster with AC6. 

As illustrated in figure 6.10 and table 6.2, AC7 is reasonably accurate near 
equilibrium, but suffers from a large, wide barrier to dissociation; we have 
confirmed that the correct dissociation is eventually reached at very large R. 
ACS (also shown in figure 6.10) everywhere overestimates the magnitude of 
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the exchange-correlation energy, but does provide a reasonable description of 
the dissociation. Figure 6.10 also presents the ACQ curve, which is divergent 
at large R. However, it has an accurate bond length and the most accurate 
fundamental and first overtone vibrational frequencies obtained in this study. 
The observations for H2 are summarised in figure 6.11, where the error in the 
total electronic energy relative to FCI is plotted for each of the AC forms 
considered. 

The accurate dissociation that is observed with the AC6, AC7 and ACS 
curves can be understood in a similar manner to the A C l curve,"̂ "̂  from a 
consideration of the exact Wx curve as —> 00. In this limit the exact curve 
drops with an infinite slope due to the divergence of the GL2 correlation energy 
resulting from the orbital degeneracy; the W^^^ curve observed in figure 6.4 
demonstrates similar behaviour at 10 bohr. I t is again worth noting that as in 
the A C l case, these forms will not exhibit the correct dissociation behaviour 
for other homonuclear diatomics where is non-zero, and equally will fail to 
dissociate a general heteronuclear diatomic due to the size-extensivity failure. 

We have identified a number of forms which show promise in the approx­
imation of the exact Wx, at least when essentially exact input data is used, 
for the description of the ground state potential energy curve of H2. We now 
move on to consider further two-electron systems, specifically the helium iso-
electronic series. 
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Figure 6.11: The error in total electronic energy A E = E — E "^^ ' for self-
consistent B3LYP and the AC approximations of table 6.3 for the 
H2 molecule as a function of R. The shaded area of part (a) denotes 
the scale of part (b). 
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6.3 H E L I U M I S O E L E C T R O N I C S E R I E S 

We now consider applying the procedure of section 6.1 and the approximate 
AC forms of table 6.3 to the helium isoelectronic series from H~ to Ne "̂̂ . Our 
preliminary calculations used the standard d-aug-cc-pV6Z basis set for H~ 
and He, the d-aug-cc-pVQZ basis sets for Li+ and Bê "*" (the largest available) 
and the d-aug-cc-pCV6Z basis sets for B^"^-Ne^+. We subsequently performed 
extensive basis set investigations in order to provide a more uniform descrip­
tion across all of the considered Z. First we took the helium d-aug-cc-pV6Z 
basis set and apphed the same Z-dependent scaling to each exponent, chosen 
to minimise the Hartree-Fock energy of each system. The FCI results using 
the scaled basis sets were then compared to those from our preliminary calcu­
lations; we found that using the scaled helium basis set was beneficial for H~ 
to B"'"'" in lowering the FCI energy compared to the standard basis sets. We 
next applied the same scaling procedure to the boron d-aug-cc-pCV6Z basis 
set and found that for B"'"'" to Nê "̂  the FCI energies obtained were lowered 
compared to both the unsealed d-aug-cc-pCV6Z basis sets and the scaled he­
lium basis. Finally we repeated the procedure with the neon d-aug-cc-pCV6Z 
basis set, but found that this did not improve upon our best FCI energies for 
any of the systems.'̂ ^^ 

The results presented here therefore use the combination of basis sets that 
yield the lowest FCI energies; this corresponds to using the scaled helium 
basis set for H~ to Bê "*" and the scaled boron basis set for B^+ to Ne^+. 
The optimal basis set scahng factors used in this work are given in table 6.4. 
We have confirmed that the results of this study are barely affected by the 
difference in the highest level of angular momenta between the two basis sets, 
and also whether the unmodified standard basis sets or our modified scaled 
basis sets are employed. 

Table 6.5 compares our FCI total electronic energies with accurate refer­
ence values;^°*''^°^ the agreement again reflects the extensive basis set used in 
this study. Also presented are the exchange-correlation energies associated 
with the FCI calculations. We have also confirmed that our individual en­
ergy components determined from the FCI data are in excellent agreement 
with the values presented in ref. 310. Figure 6.12 presents errors in the total 



HELIUM ISOELECTRONIC SERIES • 146 

Table 6.4: Helium isoelectronic series basis set scaling factors. 

scaling factor 
d-aug ;-cc-pV6Z(He) 
H - 0.25 
He 1.37 
Li+ 4.10 
B2+ 8.40 
d-aug ;-cc-pCV6Z(B) 
B3+ 1.093 
QA+ 1.627 
N5+ 2.267 
06+ 3.015 

3.869 
Ne«+ 4.830 

Table 6.5: Helium isoelectronic series FCI and exchange-correlation energies 
(in Hartree) compared to reference values 

Ref.^ FCI W^' 
xc H - -0.527751 -0.527677 -0.42267 

He -2.903724 -2.903488 -1.06637 
Li+ -7.279913 -7.279603 -1.69424 
Be2+ -13.655566 -13.655202 -2.32054 
B3+ -22.030972 -22.030568 -2.94625 
Q4+ -32.406247 -32.405823 -3.57174 
N5+ -44.781445 -44.781006 -4.19709 
06+ -59.156595 -59.156144 -4.82235 

-75.531712 -75.531251 -5.44755 
Ne8+ -93.906807 -93.906336 -6.07271 
refs. 308 and 309 

electronic energy relative to FCI as a function of Z for self-consistent B3LYP 
calculations, and for the AC forms determined using the procedure outlined 
previously. 

As highlighted in ref. 295, the B3LYP error increases significantly with Z. 
First consider the two-parameter forms: AC4 and AC4(H&H) are accurate 
for H~ but degrade as Z increases. In contrast the errors associated with 
AC2 and AC2(H&:H) decrease as Z increases. Of the three-parameter forms, 
AC5 provides an excellent description of H~, but degrades with increasing 
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Figure 6.12: The error in total electronic energy A E = E - E*̂ *"' for self-
consistent B3LYP and the AC approximations of table 6.3 for the 
helium isoelectronic series as a function of Z. The shaded area of 
part (a) denotes the scale of part (b). 
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Z. For all of the other three-parameter forms, the error decreases as Z in­
creases. For A C l , AC3, AC6, AC7, and AC9 the errors are barely visible 
for Z > 5, despite the very small scale of the figure. A C l provides the best 
overall description of the series, followed by AC6. The results are a dramatic 
improvement over those obtained with B3LYP, illustrating the high quality 
results that may be obtained for two-electron systems from simple AC forms. 
For these single-centre systems, the lack of size-extensivity of many of these 
approximate forms is irrelevant; for instance the A C l error for Ne*"*" is nearly 
five orders of magnitude smaller than that obtained from B3LYP. 

The majority of the AC forms therefore become more accurate as Z in­
creases, with the exception of AC4, AC4(H&:H) and AC5. This may be under­
stood from a consideration of the behaviour of the exact Wx. In the Z —> oo 
limit, the electron-electron interaction can be treated as a small perturbation 
and so the exact becomes linear2«2-284,286,31(̂ 312 y^.^ 

14̂ , = E , + 2Ec,GL2A, (6.41) 

for which the associated exchange-correlation energy is simply given as the 

sum of the exchange and GL2 correlation energies. When evaluated with the 

data derived from FCI, this equation becomes -\- 2E^GL2'^- analysis 

of the behaviour of a, h and c for each of the forms that improve with Z shows 

that each of them behaves as eq. (6.41) as Z 00. The improvement with 

increasing Z observed for most of the AC forms simply reflects the approach 

of this exact, limiting situation. As a specific illustration, consider the A C l 

form in this limit. Prom eq. (6.28) and using the values determined according 

to eqs. (6.21) and (6.24), 

^ A C l ^ ^FCI + 2^c,GL2A 
^ 1 + cA ^ ' 

Through eq. (6.22) the value of W^'^^ evaluated at A = 1 is constrained to 

equal the exact Wx; when Z —> 00 VFi may alternatively be evaluated through 

eq. (6.41). By equating these two values for Wx, it follows that c = 0 in 

this limit, so W^'^^ reduces to the required form for all A. I t therefore yields 

the correct exchange-correlation energy in the limit as Z —> 00. This analy­

sis highlights the importance of using information about virtual orbitals and 
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orbital energies in exchange-correlation functionals; without these quantities 
(from the GL2 expression) the non-hneax forms would not yield the correct 
limiting behaviour. 

As previously alluded to, the W^'^'^ form exactly equals the linear expres­
sion of eq. (6.41) for all systems. It follows that the AC2 errors in figure 6.12 
arise due to the lack of higher order terms in A; these errors provide an indica­
tion of the deviation from linearity of the exact AC with Z. The curvature of 
the exact Wx reduces as Z increases, but as indicated by the size of the AC2 
error, it is not insignificant even for Ne®"*". In order to provide an accurate de­
scription of the helium isoelectronic series as a whole, it is therefore necessary 
for a W'̂ PP™'' to reproduce the evolution of the non-linearity with Z. For the 
forms we consider this is best achieved with A C l , followed by AC6. The re­
duction in curvature from H~ to Nê "*" is illustrated in figure 6.13, which plots 
^^ACi _ ^ A C i ^ 3̂  function of A for the ten systems. The diffuse-density H " 
system stands out, consistent with figure 6.12. Note that the corresponding 
plot for AC6 is essentially the same, with the only discernible difference for 
H~ as reflected in the different total energies. 

Also of interest is the similar accuracy obtained for A C l and AC5 for 
the H~ system. This can be understood from the behaviour of the param­
eters in the two forms (see table 6.3). For H~, c is near zero (—0.024) in 
^AC5 ĵ gg ĵ. unity (0.829) in W^'^^. The values of a and b are identical in 
both; it follows that the two curves are very similar, yielding almost the same 
exchange-correlation energies. The breakdown in the agreement between the 
two methods as Z increases reflects the differing evolution of c between the 
two approaches. For A C l , as described above, c ^ 0 in the hmit as Z ^ oo; 
however, c becomes increasingly negative with ACS. A similar analysis can 
also explain the performance of AC4 and AC4(H&H) for this system. 

The study has illustrated the high-quahty description afforded by simple AC 
forms in the description of two-electron systems when near-exact input data is 
used. However, the scheme is impractical for an arbitrary molecular system. 
We now go on to consider the possibihty of using alternative input data and 
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Figure 6.13: W^*^^ curves for the helium isoelectronic series. 

its effect on the performance of the forms, and also the effect of moving to a 
many-electron system. 

6.4 T O W A R D A P R A C T I C A L F U N C T I O N A L 

We now consider if it is possible to move towards a practical exchange-
correlation functional by considering additional or alternative input data. The 
value of a is easily obtained in practical calculations for self-consistent orbitals 
since WQ = a — E^. The practicality of h and c evaluated as in the previous 
sections however is severely hmited; it is in principle possible, albeit compu­
tationally intensive, to construct self-consistent orbitals associated with the 
two-electron WQ given by eq. (6.24). There is no method of obtaining an 
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accurate value of Wi except from large basis set FCI calculations. It is there­
fore beneficial to consider evaluation of an approximate W^'~^ form without at 
least one of the quantities or Wi. Given that the most successful forms for 
two-electron systems use all three of these quantities, and the two-parameter 
forms considered were significantly less accurate, we need alternatives to these 
computationally difficult terms. 

In the interaction strength interpolation model of Seidl et a/., the value 
of Wx when A ^ oo (which we denote Woo) is approximated and used as 
part of the functional construction. For infinite electron-electron repulsion 
corresponding to this hmit of A, the system may be described by the concept 
of strictly correlated electrons."̂ "̂̂  Consider a two-electron system in which 
the electron-electron repulsion is infinite; the position of one electron will be 
solely dependent on the position of the other electron at a given point in time. 
For spherical two-electron systems, it is possible to solve this problem exactly. 
For general many-electron systems, the strictly correlated electron result may 
be approximated by the point-charge plus continuum (PC) model gradient 
expansion approximation,"'^^'"^^^ 

SeidP^̂ '"'̂ "̂"'̂ ^ and co-workers have demonstrated that this is a good ap­
proximation to the value obtained from the strictly correlated electrons ap­
proach; for our purposes it importantly depends only on the electron density. 
To compute values of W^ associated with a FCI density, we construct the 
quantities |V/9(r)p and p3(r) on a very large quadrature grid, allowing simple 
evaluation of W^'^'^^. When coupled with the exact conditions of the pre­
vious sections, we have in principle four pieces of input data from which we 

can determine input parameters for the approximate AC forms; W^^^, 
W^^ci and M/PC.FCi 

As a starting point for the use of this additional input data, we consider 
the A C l form of table 6.3. The use of this form may be justified, not just 
on the success observed in previous sections of its description of two-electron 
systems, but also from a consideration of the value of Wx'^^ as A —> oo. In 
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this Umit the A C l form, 

takes the value of 

lyACi + (6.45) 
c 

By comparing the value of W^^^ ^'^^ for H2 (as a function of R) and H~-Ne^+ 
(as a function of Z) with the value obtained from the large-A hmit of the 
various W^'~^ with their respective definitions of a, b and c, it is apparent that 
the best agreement is observed with the A C l form. As the value of W^^^ 
obtained using our procedure from the previous sections yields a value for 
the two-electron systems that is very close to the value obtained from 
evaluated using the FCI density, this suggests that for this form it may be 
possible to obtain similar quality results regardless of the choice from our 
selection of input data. 

Prom the four pieces of input data we may sensibly choose three pieces in 
the following ways: We can choose the original three pieces {WQ^^, W^^^^ and 
Wi^^) to give the A C l approach, or we may obtain two alternative definitions 
based on the A C l form; ACl-2 which uses W^^\ Wl^^ and W^^'^^\ and 
ACl-3 which uses W^^\ W^^^^ and 1^^^-''^^. We do not consider the fourth 
combination as this would not fix the value of the curve when A = 0. Values 
of b and c for AC 1-2 are defined by 

{ , ^ (^PC,FCi_^FCi )^ (6.46) 

WFCI _ wFCI 

and the equivalent definitions for AC 1-3 are 

b = W;,^^' (6.48) 

Applying the ACl-2 and ACl-3 approaches to the ground state potential 
energy curve of H2, as illustrated in figure 6.14, we find that there is little to 
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Figure 6.14: The H2 potential energy curve obtained with standard adiabatic 
connection approaches and with those that use the additional 
VyPC.FCi 3s Input. 

differentiate between those definitions that involve evaluation with W^'^'^^ 

and the original A C l curve. Also presented for comparison are the AC6 and 
AC2 (H&H) curves. Equally figure 6.15 demonstrates that for the helium iso­
electronic series, the error relative to FCI is essentially unchanged, particularly 
as Z increases. 

The observation that for two-electron systems it is possible to obtain re­
sults that are significantly better than those from conventional functionals is 
encouraging, particularly for ACl-3, which involves involves evaluation with 
known orbital- or density-dependent expressions. With this in mind we go 
on to apply the A C l , ACl-2, ACl-3, AC2 (H&H) and AC6 forms to a many-
electron system, CO. 

Carbon Monoxide 

From the discussion of the AC forms applied to H2 in this chapter, it is clear 
that the application of some of the approximate AC forms to many-electron 
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Figure 6.15: The error in total electronic energy A E = E — E , as obtained 

with standard adiabatic connection approaches and with those that 
use the additional \N^-^^^ as input. 

systems may prove problematic. The size-extensivity failure is one issue, al­
though it is difficult to judge in advance how significant a problem this is, par­
ticularly if we limit ourselves to near-equihbrium geometries. Perhaps more 
significant is the failure upon dissociation of a general homonuclear molecule 
due to the divergence of the gradient of W\ resulting in a zero-valued Tc. 

We now generahse the procedure of section 6.1 to systems with more than 
two electrons. The simphfications that arise for two-electron systems in the 
evaluation of the exact adiabatic connection data are of course no longer valid 
when we consider many-electron systems. For simphcity we assume that the 
singles contribution to the GL2 correlation energy is negligible, and as such 
we continue to evaluate it through eq. (6.24). 

As the von Weizsacker kinetic energy is not exact for systems with more 
than two electrons, we use the Tg obtained from the WY procedure; for the 
case of H 2 the value from the W Y procedure agreed to six significant figures 
with Tw evaluated using eq. (6.26). FCI calculations in a large basis set are 
prohibitively expensive for systems with so many electrons. We have therefore 
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Figure 6.16: Potential energy curve of CO determined using CCSD(T), com­
pared with those from various AC approximations. 

evaluated CCSD(T) total electronic energies and densities at a series of bond 
lengths from 0.9 to 1.6 bohr. In order to determine the basis set dependence 
of the results, this was undertaken with the cc-pVDZ, cc-pVTZ, cc-pCVTZ, 
uncontracted cc-pCVTZ, cc-pVQZ, and cc-pCVQZ basis sets. The results 
presented in figure 6.16 are with the largest of these basis sets, cc-pCVQZ. This 
basis was chosen for its ability to describe both the orbitals and the potential in 
the W Y procedure, as well as being large enough to provide accurate CCSD(T) 
energies and densities. 

In our basis set investigations the presence of core functions proved of 
vital importance. The values obtained both for the CCSD(T) energies and 
the derived energy components and input data were essentially unchanged 
between cc-pCVTZ, uncontracted cc-pCVTZ and cc-pCVQZ; the conclusions 
of this work would remain unchanged if any of these basis sets were used. 

As illustrated in figure 6.16, the agreement between CCSD(T) and the 
A C l and AC6 forms is inconsistent with the observations for the two-electron 
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Figure 6.17: Potential energy curve of CO determined using CCSD(T) compared 
with curves, shifted to a common reference at 0.9 bohr, from vari­
ous AC approximations. 

systems. This is not a consequence of neglecting the (small) singles term in 

the evaluation of WQ^*^'; scaling the value of this derivative by 10% has no 

discernible effect on either of these curves. Equally scahng the value of Wi by 

10% has only a small effect. The curve obtained from the AC 1-2 approach is 

very similar to that obtained from AC2(H&H). The ACl-3 curve is completely 

unpliysical, and does not bind CO. This is a disappointing observation given 

that the input parameters for ACl-3 are all expressed in terms of known 

quantities. 

If the curves are shifted to a common reference point (so that each curve is 

aligned with the CCSD(T) energy at 0.9 bohr) as in figure 6.17, it is apparent 

that A C l and AC6 behave in a similar way to the case of H 2 as the bond 

lengthens. A C l appears to dissociate from above, and AC6 from below the 

CCSD(T) curve. Results are also presented from self-consistent PBE calcu­

lations using the same basis set. The results from these calculations appear 

to be no better or worse than those from any of the AC forms considered; 
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no significant improvement over standard functionals is observed for CO. Im­
portantly the observation that the ACl-2 and ACl-3 approaches represented 
viable alternatives to A C l is negated in the case of CO. 

Whilst it must be stressed that these are only preliminary results, it does 
appear that the dramatic improvements observed when A C l and AC6 axe used 
for two-electron systems are not carried over into the many-electron case. The 
input data used in the case of CO, whilst necessarily less accurate than the FCI 
results obtained for two-electron systems, nevertheless represent high-quality 
data compared to what would be obtained from for instance PBEl-derived 
quantities. We have in fact confirmed that the evaluation with PBEl-derived 
data gives rise to similar conclusions as those evaluated with CCSD(T)-derived 
data. Further investigation of the applicability of approximate adiabatic con­
nection forms to many-electron systems is required, particularly with respect 
to the effects of size-extensivity failure and the incorrect description of Tc on 
bond dissociation for the A C l and AC6 forms. 

We have used FCI data to quantify the accuracy of approximate AC forms in 
describing both the ground state potential energy curve of H2, and the helium 
isoelectronic series from H^-Ne^"*", within spin-restricted density functional 
theory. To achieve this, essentially exact adiabatic connection data has been 
determined using FCI calculations; the approximate AC forms considered are 
then forced to reproduce this data by appropriately defining their parameters. 
This removes any error in the exchange-correlation component of the total 
energy except that due to the approximate AC form. Initially we focused on 
the A C l form, demonstrating that it can provide a significant improvement 
over conventional functionals in the description of the ground state potential 
energy curve of H2. Importantly this form allows the correct dissociation 
of H2. Several other forms considered also correctly dissociate this molecule; 
notably the AC6 form which provides an excellent description of the exchange-
correlation energy for all bond distances. 

In our analysis of the helium isoelectronic series, the A C l and AC6 forms 
again perform best. The minimal variation with approximate form observed 
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by Cohen^^^ et al. for the case of approximate input data is not observed when 
accurate input data is used, although it should be stressed that their study 
was over a variety of molecules and properties—it is unclear if they would 
observe similar features for a study on a single molecule. 

The observations for CO however suggest the need for more sophisticated 
approximate adiabatic connection forms if generally apphcable functionals are 
to be obtained, particularly if approximate input data is used. The present 
study highlights the importance of using virtual orbitals and orbital ener­
gies,̂ '̂''•'̂ '̂•'̂ ^ although the inclusion of this information appears to necessarily 
require sophisticated model forms if it is to be of practical use. 



C H A P T E R 7 
Conclusions 

Computationally intensive accurate wavefunction methods generally remain 
within the purview of the small molecule and the quantum chemist. Kohn-
Sham density functional theory (DFT) is applicable to much larger systems 
due to its relative computational simplicity, resulting in its extensive use. 
This significant use of DFT in chemical apphcations has fuelled functional 
development. In many cases existing exchange-correlation functional are 
successfully applied, yet there remains a number of significant areas where 
they may fail, in some cases catastrophically. This thesis has focused on 
situations where standard functionals are known to fail, and approaches to 
address these deficiencies. 

Exchange-attenuation was discussed in chapter 3 as a means to repair some 
of the failings of standard hybrid functionals. The prototypical CAM-B3LYP 
functional was examined in detail, comparing with the B3LYP hybrid func­
tional. It was demonstrated that the CAM-B3LYP approach allows a roughly 
comparable description to B3LYP where that functional performs acceptably, 
but importantly for classical reaction barriers, polarisabilities and excitation 
energies it offers a notable improvement. To provide insight into the perfor­
mance of attenuated functionals, errors in atomisation and excitation energies 
were considered as functions of the attenuation parameters. It was concluded 
that the form of attenuation used in CAM-B3LYP is insufficiently flexible to 
allow the satisfaction of a known long-range exact condition, which is neces­
sary for the correct behaviour of, for instance, Rydberg excitation energies. 
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without degrading the description of other properties to an unacceptable ex­
tent. The need for more flexible attenuation forms was further highUghted by 
the observation that optimised attenuation parameters can vary significantly 
with both the property and species under consideration. However, the notably 
improved description of excitation energies with CAM-B3LYP indicates that 
the approach is introducing some of the physics required. 

Following the successful application of attenuated functionals to excitation 
energies, the CAM-B3LYP functional was applied to an extensive set of excita­
tion energies from a number of theoretically challenging molecules, in chapter 
4. The use of conventional functionals (PBE and B3LYP) in many cases re­
sults in unacceptably large errors, particularly for the extended model peptide 
systems. CAM-B3LYP's successful description of these systems highhghts the 
need for non-local information in an approximate exchange-correlation func­
tional. Following a detailed discussion of the origin of the failings of con­
ventional functionals, particularly for charge-transfer excitations where it can 
be attributed to a lack of occupied-virtual orbital overlap, a measure of the 
orbital overlap (A) was proposed. Both PBE and (to a lesser extent) B3LYP 
show correlation between the error in an excitation energy and the overlap 
between orbitals involved in that excitation, to the extent that it may be 
used to help judge the reliability of a calculation. When the overlap as de­
fined by A falls below a given threshold, it is likely that the excitation energy 
will be in significant error if evaluated with a conventional functional. CAM-
B3LYP exhibits no correlation with A; the error does not become unacceptably 
large as the overlap drops. The apphcation of the diagnostic test and CAM-
B3LYP to a series of triazene chromophores further highlights the success of 
CAM-B3LYP as a theoretical method for the computation of excited states. 
However, it illustrates that with conventional functionals, unacceptably large 
errors may still be obtained even when A is large—in spatially extended sys­
tems non-locahty is important regardless of occupied-virtual orbital overlap. 

In order to further assess the geometrical and optical properties of atten­
uated functionals, the bond length alternation (BLA) and band gap of poly-
acetylene and polyyne oligomers were considered in chapter 5. Both the BLA 
and highest occupied-lowest unoccupied (HO-LU) gaps were determined for 
ohgomers and the infinite chain (through the use of periodic boundary condi-
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tions). Excitation energies were obtained for the oligomers and extrapolated 
to the infinite Umit. Both CAM-B3LYP and BHHLYP give BLA values and 
excitation energies that are larger and more accurate than those obtained from 
B3LYP. I t was also illustrated that, in general, approximating the band gap 
as the HO-LU orbital energy gap yields results that are significantly different 
from the corresponding excitation energy. 

Also considered in chapter 5 was the first appUcation of CAM-B3LYP to 
shielding constants and chemical shifts in main-group, hydrogen-bonded and 
first-row transition metal-containing molecules. The results highlight the im­
portance of using the theoretically rigorous OEP method to obtain a local, 
multiplicative potential, when the computation of NMR parameters is consid­
ered with hybrid and attenuated functionals. Importantly, when this approach 
is used, the performance of CAM-B3LYP is similar to that of standard hybrid 
functionals. 

An alternative approach to the development of exchange-correlation func­
tionals was discussed in chapter 6. The adiabatic connection (AC) was in­
troduced as a rigorous approach for representing the exchange-correlation 
functional, by connecting a non-interacting system (corresponding to A — 0) 
to the physical system (corresponding to A = 1). 

In general, functional construction uses both approximate input data and 
approximate forms to model the exact adiabatic connection. The ability of 
approximate forms to model the exact AC was investigated through the use 
of large basis set FCI calculations, which were used to derive essentially exact 
input data corresponding to the value and slope of the adiabatic connection in 
the non-interacting system and its value for the physical system. Two challeng­
ing problems were considered—the singlet ground state potential energy curve 
of H2 within a restricted formalism and the total energies of the helium isoelec-
tronic series from H~-Ne^"''. For these systems i t was found that exponential-
and Pade-based forms performed best (AC6 and A C l ) , which enable the cor­
rect dissociation limit of H2 and the correct evolution of the energies of the 
hehum isoelectronic series with nuclear charge. Several other forms provided 
the correct limiting behaviour for both problems, but provide overall less ac­
curate descriptions. These successes are in spite of the lack of size-extensivity 
of the forms. The correct hmiting behaviour is a direct consequence of the 
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inclusion of information about virtual orbitals and their associated energies, 
highlighting the need for such quantities in exchange-correlation functionals. 

Through the use of data determined for the large-A limit, approximated 
through the point-charge plus continuum model, it is possible when using the 
A C l form to obtain essentially identical results for H2 and the heUum iso-
electronic series without the need for the generally unknown value of the AC 
for the physical system, or alternatively the gradient for the non-interacting 
system, which would make the approach more practicable for functional de­
velopment. Preliminary calculations applying the approximate AC forms to 
CO were also undertaken. The AC offers an attractive approach for functional 
development, but requires both more accurate approximate forms and input 
data if it is to prove successful. 

The ongoing development of new exchange-correlation functionals, partic­
ularly ones that are able to repair the deficiencies of existing approximations, 
is of vital importance to the chemistry community; this work contributes to 
this development. 



APPENDIX 

Supplementary information for 
chapter 6 

The definitions of the parameters a, b and c for the approximate AC 

forms of chapter 6 are given, along with the corresponding exchange-

correlation energy expressions. 

ACl: 

AC2: 

AC2(H&H): 

^ r = a . ^ ^ (A . 1 , 

a = W^"^' (A.2) 

b 
^ - ^ F C l _ ^ F C I ~ 1 (A.4) 

H/AC2 ^ a + bX (A.6) 

a = Wr (A.7) 

b = W^^^ci (A.8) 

E^c^ = a + ^ (A.9) 

a = W^^' (A. 10) 
6 = Vl/fci _ ^ F c i (^^1) 
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AC3: 

AC4: 

AC4(H&H): 

ACS: 

AC6: 

a = Wr FCI 
0 

b = W^^C' 

c = Wl FCI FCI /FCI 

a=wr 
b = VK^^C' 

E^^' = a + b{l-log,{2)) 

a = 

6 = 2(WfC' - W^""') FCU 

W AC5 

b = VK^^C' 

n FCI , 

^ x f ' = a + 6(1 - log,(2)) + - 2 log,(2)) 

W^^^ = a + 6exp(-cA) 

a = < c i _ ^ 
FCI fc(i - exp(w^^cv^')) = -
^ / F C I 

E. AC6 = a + - ( l - exp(-c)) 

A.12 

A.13 

A.14 

A.15 

A.16 

A.17 

A.18 

A.19 

A.20 

A.21 

A.22 

A.23 

A.24 

A.25 

A.26 

A.27 

A.28 

A.29 

A.30 

A.31 

A.32 
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AC7: 

ACS: 

AC9: 

W^"^' = a + b\og{l + cX) (A.33) 

a = (A.34) 

Mog,( l + Wl^^'^'/b) = - 1̂ 0̂ '̂ (A.35) 

c = ^ - (A.36) 

E^,^' = a-b+-({l + c) log,( l + c)) (A.37) 

^ A C 8 ^ ^ ^ 6tanh(-cA) (A.38) 

a = W^^^ (A.39) 
b tanh(W^^^ci/^) ^ ^ F C i _ ^ F C i ( ^ 40) 

c = - ^ (A.41) 

£;4'̂ « = a -^ log , (cosh(c ) ) (A.42) 

W^^^ = a + bX exp(-cA) (A.43) 

a = (A.44) 

6 = W^^^ '̂ (A.45) 

c = logJW^^^^) - loge(W r̂̂  - (A.46) 

E^^' = a + ^ (1 - (1 + c) exp(-c)) (A.47) 
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1. Assessment of a Coulomb-attenuated exchange-correlation functional 
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Tozer and N. C. Handy, 
Phys. Chem. Chem. Phys., 2006, 8 558-562. 

2. Influence of Coulomb-attenuation on exchange-correlation functional qual­
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M. J. G. Peach, A. J. Cohen and D. J. Tozer, 
Phys. Chem. Chem. Phys., 2006, 8 4543-4549. 
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cations 

N. E. J. Gooseman, D. O'Hagan, M. J. G. Peach, A. M. Z. Slawin, D. 

J. Tozer and R. J. Young, 
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6. Excitation energies in DFT: An evaluation and a diagnostic test 

M. J. G. Peach, P. Benfield, T. Helgaker and D. J. Tozer, 
J. Chem. Phys., 2008, 1 2 8 044118 (1-8). 

7. Adiabatic connection forms in density functional theory: H2 and the He 
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M . J. G. Peach, A. M. Miller, A. M. Teale and D. J. Tozer, 
J. Chem. Phys., 2008, 1 2 9 064105 (1-7). 

8. TDDFT diagnostic testing and functional assessment for triazene chro-
mophores 
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