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Abstract 

Based on the conception of spectrum sharing, cognitive Radio as a 
promising technology for optimizing utiUzation of the radio spectrum 
has emerged to revolutionize the next generation wireless communi­
cations industry. In order to adopt this technology, the current spec­
trum allocation strategy has to be reformed and the real spectrum 
occupancy information has to be systemically investigated. To assess 
the feasibihty of cognitive radio technology, the statistical information 
of the present spectral occupancy needs to be examined thoroughly, 
which forms the basis of the spectrum occupancy project. 

We studied the 100-2500 MHz spectrum with the traditional radio 
monitoring systems whose technical details have been fully recorded 
in this thesis. In order to detect the frequency agile signals , a channel 
sounder, which is capable of scanning 300 MHz spectrum within 4 ms 
with multiple channel inputs, was used as a dedicated radio receiver 
in our measurements. The conclusion of the statistical information 
from the spectrum monitoring experiments shows that the spectrum 
occupancy range from 100-2500 MHz are low indeed in the measuring 
locations and period. The average occupancies for most bands are less 
than 20%. Especially, the average occupancies in the 1 GHz to 2.5 
GHz spectrurn are less than 5%. 

Time series analysis was initially introduced in spectrum occupancy 
analysis as a tool to model spectrum occupancy variations with time. 
For instance, the time series Airline model fits well the GSM band 
occupancy data. In this thesis, generalized linear models were used 
as complementarity solutions to model occupancy data into other pa-
rarneters such as signal arnphtude. The validation of the direction 
of arrival algorithms (EM and SAGE) was verified with the anechoic 
chamber, by which we can determine the spectrum occupancy in space 
domain. 
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Chapter 1 

Introduction 

Electromagnetic radiation is the propagation of energy that travels through space 
in the form of waves. I t includes the visible light spectrum, as well as infrared, ul­
traviolet and x-rays. While the electromagnetic spectrum is theoretically bound­
less, the radio frequency spectrum which is the portion of the electromagnetic 
spectrum that holds for communications and other apphcations, while substan­
tial, is finite. In practice, the properties of radio wave propagation and electronic 
equipment hmit radio communications to frequencies between 9 kHz and 30 GHz. 
These properties also constrain particular types of comrnunication systems to cer­
tain portions of the allocated spectrum, hmiting the spectrum available for spe­
cific uses. Table 1.1 depicts some of the many uses of radio spectrum associated 
with various bands [44 . 

Two important characteristics of the spectrum are the propagation features 
and the amount of information which signals can carry. In general, signals sent 
using the higher frequencies have smaller propagation distances but a higher data 
carrying capacity. These propagation characteristics of the spectrum constrain 
the identified range of applications for which any particular band is suitable. A 
portion of spectrum range from 30 MHz to 3000 MHz is known to be suitable for 
a wide variety of services and is thus in great demand, which becarne the mairi 
investigation in our project. 

Historically, in order to prevent interference among users of adjacent frequen­
cies use of the radio spectrum has been highly regulated for reasons of defence 



Name Frequency Some uses 

Extremely low frequency 3 ~ 30 Hz 
Super low frequency 30 ~ 300 Hz 
Ultra low frequency 300 ~ 3000 Hz 
Very low frequency 3 ~ 30 kHz Long range navigation 

Low frequency 30 ~ 300 kHz Aeronautical navigation 
Medium frequency 300 ~ 3000 kHz A M radio 
High frequency 3 - 3 0 MHz Global broadcast 
Very high frequency 30 ~ 300 MHz TV, Broadcast, Mobile 
Ultra high frequency 300 ~ 3000 MHz TV, satellite 
Super high frequency 3 - 3 0 GHz Satellite T V 
Extremely high frequency 30 ~ 300 GHz 

Table 1.1: Radio frequency bands 

and security. However, in some cases, this regulatory practices delayed the in­
troduction of new technologies and growth of a variety of beneficial services, or 
artificially increased the cost [26]. During that same period of time, demands 
made on the use of spectrum itself have grown significahtly. These two highlight 
the need for efficient use of all available spectrum in order to avoid scarcity and 
have brought policy-makers and regulators worldwide to focus on new spectrum 
regulations,which should allow improvements in cost, services and technologies 
to spread more readily to consumers and public services. 

One radio communication system is more spectral efficient than another if 
it deUvers the desired information using less of the spectrum resource. In this 
sense, spectrum is used inefficiently when systems are not packed together as 
tightly as possible in frequency bands or when excessive guard bands are used, 
or when portions of frequency bands are unused while other bands with similar 
physical characteristics are congested. The allocation of frequency bands, the 
development of channeling plans, and the assignment of frequencies to specific 
systems all affect spectrum efficiency. 

In order to promote spectrum efficiency, two level efforts can be made for 
this objective. One is in the spectrum management level and another is in the 



technique level. The general role of spectrum management is to ensure that no 
two users transmit on the same frequency at the same time or so close together 
that they interfere with each other. Management decisions can then be based 
on the relative spectrum efficiency of the various technologies and techniques. 
Spectrum measurements are critical to spectrum management in the development 
of new spectrum access technologies. Specifically, spectrum occupancy studies 
identify which spectrum bands have low or no active utilization and thus may 
be appropriate for spectrum sharing. They provide information on the signal 
characteristics within these bands, which is needed to design spectrum sharing 
algorithms. 

The objective of this spectrum occupancy project was to perform a band 
by band measurement of the spectrum occupancy in time, frequency and space 
domains in the spectral region between 100 MHz to 2500 MHz [57]. The spectrum 
occupancy studies would identify the current spectral bands that have low or no 
active utilization, the seasonal variations in this usage and begin to identify the 
long term trends in the use of the various spectral bands. From these and future 
studies, candidate and non-candidate bands for spectrum reframing and sharing 
can be readily identified. These studies also provide information on the unique 
signal characteristics associated with each band and which are needed to properly 
design spectrum sharing algorithms. The main considerations of the spectrum 
occupancy project are listed as follow: 

• enable a better understanding of how telecommunication systems use the 
allocated spectrum. 

• provide timely information on variations in frequency-band usage, e.g., iden­
tify frequency bands becoming heavily used. 

• assess the feasibihty of promoting alternative types of services or systems 

that result in more effective and efficient use of the spectrum. 

Techniques such as power control, different modulation schernes and multi­
plexed access in time, space and code space inay be used to promote spectrum 
efficiency. The rapidly developing capabilities of digital electronics and signal 
processing are making practical many processes that were once only theoretically 



possible. A Software Defined Radio (SDR) system is a radio communication sys­
tem whose channel modulation waveforms and other communication components 
are defined and implemented in software rather than implemented in hardware. 
In the long term, software defined radio is expected by its proponents to become 
the dominant technology in radio communications. 

Cognitive radio, which is introduced as the next step of software defined ra­
dio, is a paradigm for wireless communication in which either a network or a 
wireless node chariges its transmission or reception parameters to communicate 
efficiently avoiding interference with licensed or unlicensed users. This alteration 
of parameters is based on the active monitoring of several factors in the external 
and internal radio environment, such as radio frequency spectrum, user behavior 
and network state [51]. The idea of cognitive radio was first presented officially 
in an article by Joseph Mitola I I I and Gerald Q. Maguire, Jr in 1999 [24] . It was 
thought of as an ideal goal towards which a software-defined radio platform should 
evolve: a fully reconfigurable wireless black^box that automatically changes its 
communication variables in response to network and user demands. 



Chapter 2 

Radio Spectrum Occupancy 
Moni tor ing 

2.1 Considerations for Spectrum Monitoring 

Cognitive radio technologies require reconsideration the current regulations and 
pohcies of spectrum management. Spectrum monitoring is a fundamental func­
tion to support spectrum management. While some crude information can be 
retrieved from spectrurn liGences, essential details, including the location of trans­
mitters, transmitter output power, and antenna type, are often unknown. Addi­
tionally, licences do not specify how often the spectrum is being occupied. Fur­
thermore, the local environment affects the propagation of radio waves. While 
this effect can be simulated, the results are hardly precision. Hence, to cate­
gorize spectrum usage, Spectrum monitoring are vastly preferable to theoretical 
analysis. 

Spectrum measurements are critical to policy regulators and researchers in the 
development of new spectrum access technologies. Specifically, spectrum occu­
pancy studies inspect what spectrum bands have low or no active utilization and 
thus may be appropriate for spectrum sharing. They also provide information on 
the signal characteristics within these bands, which is needed to design spectrum 
sharing algorithms. Referred to [26] the considerations of spectrum monitoring 
activities in our project include the following: 



2.2 Monitoring System cind Site 

« that licensed user information from the frequency management databases 
only indicates that the use of the frequency is authorized. The number of 
assignments on a frequency does not give any actual use information of that 
particular frequency. 

s that efficient Spectrum Management can only satisfactorily proceed if the 
monitoring information provides the radio spectrum regulators with ade­
quate rehable information about the actual usage of the spectrum. 

e that results of spectrum occupancy measurements will give information 
about the current use of frequencies to establish that the spectrum is being 
used efficiently and to assess the feasibility of the new technologies. 

The overall goal of spectrum monitoring activities of our project is to de­
pict the current level of spectrum usage in the range 100 to 2500 MHz and its 
impHcations for cognitive radio. Central objectives include the following: 

• to provide information of spectrum efficiency for determining planned and 
actual frequency usage and occupancy, and for assessing the feasibility of 
spectrum sharing technique. 

• to provide data for statistical modehng. 

The measuring system should be chosen carefully to ensure capabilities exist 
with the spectrum management agency to effectively monitor and analyze the 
frequency bands. 

2.2 Monitoring System and Site 

A successful spectrum survey requires careful selection of a measurement site. 
The location chosen for measuring will affect measured spectrum occupancy. For 
example, measurements made in Durham are probably representative of many 
towns that have similar scale and do not have heavy military activity or maritime 
radio navigation etc. Generally, a site for spectrum monitoring requires [49]: 



2.2 Monitoring System £ind Site 

• "limited numbers of nearby transmitters to prevent intermodulation or sat­
uration problems that can arise even though preselection and/or filtering is 
used for survey measurements 

• limited man-made noise such as impulsive noise from automobile ignition 
systems and electrical machinery that can add to the received signals of 
interest." 

Figure 2.1 shows that the measurement locations for the spectrum occupancy 
project was the roof and inside of Engineering Building, Durham University. 

Durham 
(54 46', 1 34 

Figure 2.1: Measurement location 

Because of the complexity and sophistication of wireless communication tech­
nologies, i t is an ever-increasing challenge to monitor the spectrum, particularly 
considering the rapid growth of wireless, satellite, and point-to-point communi­
cation devices. Key considerations in the design of spectrum monitoring systems 
include types of equipment, data rate and complexity of data capture and pro­
cessing, degree of integration with software tools for analysis. While considered 
the limited project budget and the existing equipment, the author integrated 
independently 3 different spectrum monitoring systems for different frequency 
bands to satisfy the technique requirements. 

The monitoring system for 100-1500 MHz spectrum in this project was con­
figured as Figure 2.2. The system consisted of an omnidirectional Dressier ARA-
1500 [55] active antenna range from 50 to 1500 MHz connected by a 6 m RF 



2.2 Monitoring System and Site 

Gable to a diplexer RSM-2000 which allows the DC current for the preamplifier 
to be applied to the centre conductor of the RF coax, ehminating the need for an 
additional DC power feed conductor. The RSM-2000 also contains a 20 dB RF 
adjustable attenuator allowing received signals to be attenuated over the entire 
frequency range. In order to increase the dynamic range of the system, a highpass 
filter Mini-Circuits SHP-100 was connected to the output of the RSM-2000. A 
Jim M-75 low noise amplifier was inserted in front of HP 8560A spectrum ana­
lyzer to decrease its noise figure. The GPIB bus was used for logging the trace 
data onto the hard disk of a PC and for transferring control command sequences 
to the spectrum analyzer. Table 2.1 lists the configuration parameters of spec­
trum analyzer for scanning 100-1500 MHz. Justifications will be given in the next 
section. 

< 

Spectrum Analyzer 
H P 8 5 6 0 A 

a e* Q 

• E D E ] 

OB 
Jim M-75 

LNA 

RSM-2000 RSM-2000 

/ 
Mini-Circuits 

/ 

— G P I B — — G P I B — 

SHP-100 

Figure 2.2: Monitoring system for 100-1500 MHz spectrum 

The monitoring system for 1500-2500 MHz spectrum was configured as in 
Figure 2.3. Instead of an omnidirectional antenna, an antenna array consisted of 
4 directional Log^periodic antennas which enable the detection of signal incident 
diirections. An RF switch controlled by the PC parallel port was used to choose a 
given antenna. Table 2.2 lists the configuration parameters of spectrum analyzer 
for scanning 1500-2500 MHz. Justifications will be given in the next section. 

The monitoring system for 2400-2483.5 MHz spectrum is shown in Figure 2.4. 
The solution of spectrum analyzer plus RF switch is incapable in catching fast 
frequency hopping signals which are adopted by many wireless applications using 



2.2 Monitoring System and Site 

Model HP 8560A 
Frequency span (MHz)/ sweep 6 
Resolution bandwidth (kHz) 10 

Sweep time (s) 6 
Detection mode Sarnple 

RF attenuator (dB) 10 
Reference level (dBm) -20 

Table 2.1: Configuration parameters for scanning 100-1500 MHz 

Log-periodic antenna array 
n.! - -. _ _ - -

Spectnarii Analyzer 
HP 8560A 

O B 

RF Switch 
Mini-Circuits 

ZKL-2IR7 

Mini-Circuits 
SHP-1000 

— V A — 
Adjustable 
attenuator 

GPIB 

Figure 2.3: Monitoring system for 1500-2500 MHz spectrum 



2.3 Monitoring Technology 

Model HP 8560A 
Frequency span (MHz) / sweep 12 
Resolution bandwidth (kHz) 10 

Sweep time (s) 6 
Detection mode Sample 

RF attenuator (dB) 10 
Reference level (dBin) -20 

Table 2.2: Configuration parameters for scanriing 1500-2500 MHz 

this band. In order to maximize the signal catching probability, a channel sounder 
was deployed in monitoring the 2.4 GHz ISM band. The channel sounder [48] has 
the capability of scanning 8 channels simultaneously with a 300 MHz frequency 
span every 4 ms. An 8 element log-periodic antenna array was used as monitoring 
aerials. The structure of the channel sounder will be illustrated in the next sector. 

Channel sounder 

D D 

® 

o o o 
o 
0 

o 
o 

o 
0 

o o o 
o o 0 
o 0 0 

I OODOOfl I 
DO e . 0 o 

Log-periodic antenna anray 

Figure 2.4: Monitoring system for 2.4 GHz ISM band 

2.3 Monitoring Technology 

The sophistication, complexity and prices of monitoring equipment have risen 
with the advent of spread spectrum and computer-based radio technologies like 
Cognitive Radio. Also, the approaches to monitoring and the architecture of the 

10 



2.3 Monitoring Technology 

spectrum monitoring system have a bearing on the types of systems needed and 
the configuration of operations and resources. 

There are system architectural and functional aspects to designing spectrum 
monitoring systems. The basic types of monitoring equipment include radio re­
ceivers, spectrum analyzers, direction-finding equipment and antennas. 

2.3.1 receiving antenna 

An antenna converts electromagnetic waves into electrical currents and vice versa. 
Only receiving antennas have been employed in the spectrum monitoring mea­
surements. A typical problem encountered with modern wideband monitoring is 
the choice of suitable antennas. In the spectrum occupancy project a wideband 
active antenna whose frequency range is 50-1500 MHz and wideband log peri­
odic antennas whose frequency range are 800-2500 MHz have been deployed as 
receiving aerials. 

The usual choices for wideband receiving antenna are discone antennas and 
log-periodic antennas. High gain and directional antennas are more desirable in 
this project since the spatial spectrum occupancy is another subject which we 
want to survey in the frequency range 1500-2500 MHz, . Log periodic antenna 
TDJ-0825DSA manufactured by Kenbotong Communication Ltd was selected to 
cover the frequency range from 800 to 2500 MHz [34]. The specifications of the 
TDJ-0825DSA used in occupancy project is given in table 2.3 and the return loss 
figure is shown in Figure 2.5 measured with Agilent E5071A network analyzer. 

Usually, passive antennas have low gain and take large physical spaces if they 
are a broadband design, especially in the lower bands because of the inverse 
relation between antenna and the size of an antenna. For wideband scanning 
measurement an active antenna is a good alternative, which has widely been used 
in Global Positioning System (GPS) and in wireless networks. An omnidirectional 
Dressier ARA-1500 active antenna was used to monitor 100-1500 MHz frequency 
spectrum. The specifications of the ARA-1500 [55] are given in table 2.4. 

However, an active receiving antenna is capable of introducing some problems 
which will not happen with a passive aritennas. Limitations of the active receiving 

11 



2.3 Monitoring Technology 

Model TDJ^0825DSA 
Frequency range (MHz) 800-2500 

Gain (dBi) 8.2-9.5 
Horizontal beamwidth 90°-70° 

Vertical beamwidth 60°-55° 
Front-to-back ratio (dB) >18 

VSWR <1.5 
Maximum power (W) 100 
Input impedance (Q) 50 

Table 2.3: Specifications for TDJ-0825DSA log periodic antenna 

CO 

-a 

(a 
0^ o 

1000 1500 2000 
Frequency (MHz) 

2500 3000 

Figure 2.5: Return loss for TDJ-0825DSA log periodic antenna 
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2.3 Monitoring Technology 

Model Dressier ARA-1500 
Frequency range (MHz) 50-1500 

Gain (dB) ~ 11 
Beamwidth 360° 
Noise figure 3-4 

Third order IP (dBm) >21 
Input impedance {Cl) _ 50 

Table 2.4; Specifications for Dressier ARA-1500 omnidirectional antenna 

antenna include: 1. coinpromise of receiver dynamic range 2. cross modulation 
distortion 3. intermodulation distortion. 

2.3.2 spectrum monitoring equipment 

Spectrum monitoring equipment is an electronic device that must perform two 
basic functions [9]: 

o "it must respond to and detect desired signals. 

o it must not respond to, detect, or be adversely affected by undesired sig­
nals." 

The electrical signal can be sampled either in the time domain or in the 
frequency domain. Monitoring in time domain can be performed with radio 
measuring receiver, and in the frequency domain can be performed with spectrum 
analyzer. In our project, a spectrum analyzer bas been employed since it can 
provide faster sweep speed than a measuring receiver. 

2.3.2.1 spectrum analyzer 

A Hewlett-Packard 8560A spectrum analyzer was used as the equipment to pro­
vide spectral power measurement over the frequency range 100-2500 MHz. Figure 
2.6 shows the simplified block diagram of the HP 8560A spectrum analyzer [1 . 
An input signal passes through an attenuator, then through a low-pass filter to 

13 



2.3 Monitoring Technology 

a mixer, where it mixes with a signal from the local oscillator (LO). Its output 
includes not only the two original signals, but also their harmonics and the sum 
and differences of the original frequencies and their harmonics since the mixer 
is a non-linear device. If any of the mixed signals falls within the passband of 
the intermediate-frequency (IF) filter, it is further amplified and perhaps com­
pressed on a logarithmic scale. I t is essentially rectified by the envelope detector 
and displayed. A ramp generator creates the horizontal movement across the 
display frorn left to right. The ramp also tunes the LO so that its frequency is in 
proportion to the ramp voltage. 

Envelope 
detector 

Input 
signal 

RF input 
IF filter attenuator 

Pre-selector, or 
low-pass filter 

_ , Local 
^ 1 oscillator 

Reference 
oscillator 

S w e e p 
generator Display 

Figure 2.6: Block diagram of a spectrum analyzer [1 

The setting for resolution bandwidth, detector type, span, swept time, refer­
ence level, attenuation level, and data collection method were chosen with the 
intent of maximizing the probability of detection. 

Since the power amplitudes of the strongest signals in our measurement loca­
tion (referring Figure 2.1) are around -20 dBm, the RF attenuator was set to 10 
dB based on ir20 dBm reference level. The RF attenuator setting range of the HP 
8450A spectrum analyzer is from 0 to 70 dB in steps of 10 dB. In order to prevent 
overload, gain compression and distortion, 10 dB attenuation is considered as a 
cautious and reasonable choice in the experimental radio environment. 

The IF filter in Figure 2.6 determines the overall spectrum resolution. A 
narrow 10 kHz resolution bandwidth was employed to maximize the detection 

14 



2.3 Monitoring Technology 

of narrowband signals and to resolve the spectral content of wider bandwidth 
signals. However, if resolution was the only criterion in our experiment, the 
narrowest possible resolution IF filter will be chosen. But resolution affects sweep 
time whicii directly affects how long it takes to complete a measurement. 

Because the IF filters are band-limited circuits they require finite times to 
charge and discharge. The time that a mixing product stays in the passband of 
the IF filter is directly proportional to its bandwidth and inversely proportional 
to the sweep in Hz per unit time [1], or: 

RBW 
Time in passband = — 7 — - (2.1) 

Span/ST 

where RBW is resolution bandwidth, is sweep time and Span is the band­

width that the spectrum analyzer covers in one sweep. On the other hand, the 

rise time of a filter is inversely proportional to its bandwidth, 

where k is constant of proportionality arid which value is in the 2 to 3 range for 
the synchronously-tuned, near-Gaussian filters used in many Agilent analyzers. 
If we make the rise time equal the time in passband and solve for sweep time, we 
have: 

One disadvantage of using a narrow bandwidth filter is the reduced ability to 
observe pulsed signals and hopping signals. In practice, the value k is around 3 .̂ 
From (2.2), under the 10 kHz filter setting the measured power of pulses with 
duration of less than 0.3 ms is attenuated. Moreover, the re-visit time^ is too long 
for certain signals such as hopping signals. On the other hand, if a wide bandwidth 
filter is chosen to improve the ability to observe pulsed signals and to decrease the 
re-visit time, the sensitivity and spectral content of spectrum analyzer will suffer 
correspondingly. For example, if the 100 kHz resolution bandwidth is chosen 
instead of 10 kHz, the noise floor will be 10 dB higher than before. 

^When the span and R B W of H P 8560A have been set to 10 M H z and 10 kHz respectively, 

the readout of sweep time is 300 ins. Prom this the k value can be roughly estimated. 
^the time taken to visit all the channels to be measured and return to the first channel 
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Spectrum analyzers have a defined number of discrete frequency buckets to 
save the results of a sweep; for the HP 8560A there are 601 fixed data points 
across the whole span. We had to decide what sample value should be displayed 
for each display data point. A bucket which is shown in Figure 2.7 is the interval 
between two consecutive trace points. Each bucket contains data from a span 
and tirne frame that is determined by: 

Frequency : bucket width =Span/ (trace points — 1) 

Time : bucket width = sweeptirhe/ (trace points — 1) 

HP 8560A spectrum analyzer has four detector types: 

« Sample detection 

• Positive peak detection 

« Negative peak detection 

• Normal detection 

The sample, positive peak, and negative peak are easily understood and visu­
ally represented in Figure 2.7. Positive and negative peak detection display the 
maximum and minimum values encountered in each bucket. Peak detections 
does not give a good representation of random noise because it only displays the 
maximurn value in each bucket and ignores the true randornness of the noise [1 . 
Sample detection selects the data point as the instantaneous level at the center 
of each bucket. While the sample detection mode does a good job of indicating 
the randomness of noise, it is not a good mode for analyzing sinusoidal signals. 
To provide a better visual display of random noise than peak and yet avoid the 
missed-signal problem of the sample mode, the normal detection displays the 
maximum value of the odd-numbered data point and the minimum value of even-
numbered data point encountered during its bucket. 

In spectrum occupancy experiments, the spectrum analyzer was configured 
for sample detection mode followed by 'RFI Measurement Protocol for Candidate 
SKA Sites' by [2], which shares many common issues with our project. Although 
peak detection method has the ability to detect pulsed or intermittent signals. 
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One bucket 

Positive peak © 

Sample 

& Negative peak 

Figure 2.7: Trace point based on detector algorithm [1 

their presence can be overstated with this detection. Peak detection does some 
pre-selection of the data which makes i t difficult to deduce the real rms power. 
Sample detection data, however, still coritains all the statistical information. So 
for radiometric measurements comparing observed RFI rms power levels with 
clean parts of the spectrum band it is better to use sample detection.^ 

The sampling rates are different for various instruments, but greater accuracy 
can be obtained from decreasing the span and/or increasing the sweep time since 
the number of samples per bucket will increase in either case. For instance, 
if the span was set to 600 MHz spectrum, the spectrum analyzer will only be 
able to resolve measurements to a precision of 1 MHz. In order to obtain 10 
kHz bandwidth resolution and to provide the maximize amount of vahd data 
for data analysis, 6 MHz span was set to transfer the measurements of every 10 
kHz resolution bandwidth. Abiding by [2], the dwell time ^ was set to 10 ms. 
Therefore, the 6 s sweep time is required for 6 MHz bandwidth. 

Since the spectrum analyzer was not capable of detecting wideband pulseis 
and hopping signals, our strategy is to optimize the sweep time to increase the 
detection accuracy and use dedicated equipment, which will be introduced in next 
section, to catch the fast signals. 

^Acknowledge Professor Albert-Jan Boonstra, A S T R O N for explaining this, 

•̂ the length of time that one shce of spectrum having width equal to the specified R B W is 

examined 
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Bandwidth (kHz) Sweep time (ms) Noise fioor (dBm) 

1000 50 -80 
300 50 -84 

100 50 -90 
30 300 -94 
10 300 -100 

Table 2.5: Relationship between bandwidth and sweep time of HP 8560A 

2.3.2.2 channel sounder 

Modern RF signals such as frequency hopping signals change over time, often 
unpredictably. The traditional swept spectrum analyzers might provide snapshots 
of the signal in the frequency and modulation domains, but this is often not 
enough information to confidently describe the dynamic RF signals. For example, 
Table 2.5 [58] shows the relationship between Bandwidth, Sweep time and Noise 
floor of the HP 8560A spectrum analyzer in scanning the 2.4 GHz ISM band. 
Under the 1000 kHz Bandwidth setting, i t takes 50 ms to scan the 83.5 MHz 
spectrum. This speed is rather slow compared with most hopping signals. 

The channel sounder is a device originally designed for measuring the spatial 
and temporal characteristics of the multiple-input, multiple-output (MIMO) radio 
channel. A semi-sequential MIMO channel sounder system of Durham University, 
which can measure high resolution delay/Doppler information as well as spatial 
channel information, consists of transmitter and receiver. The receiver can be 
operated independently as a spectrum monitoring receiver which offers better 
performance in terms of fast scanning of wideband spectrum with multiple input 
channels. 

Figure 2.8 shows the diagram of the receiver of the channel sounder [21; 33 . 
There are many similarities between the sounder system and a spectrum analyzer. 
The RF front end components have the same functions described in the preceding 
section. The local oscillator and sweep generator in spectrum analyzer have been 
replaced by a chirp signal generator. The synchronization unit of the sounder 
manages the flow of the data between the computer and the sounder, the signal 
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conditioning unit, RF switch and RF attenuators. 

R F gain Bandpass filter R F attenuator Mixer IF gain IF lowpass filler 

Direct Digital 
Frequency 

Synthesizer 

Data Acquisition 
Unit' 

Synchronisation 
Unit 

Synchronisation 
Unit 

Upper band filter 

Programmable Oscillator 

Figure 2.8: Block diagram of the receiver of the channel sounder 

A chirp signal commonly used in sonar and radar is a signal in which the 
frequency increases or decreases with time. The chirp signal can be expressed as: 

/ / fc \ \ y{t) = sin 27r /o + t 0<t<T 
\ \ 2 y y 

where fo is the starting frequency (at time t = 0), k is the rate of frequency 
increase and T is the sweep time. The waveform of a linear chirp signal is shown 
in Figure 2.9. The programmable direct digital frequency synthesizer can generate 
chirp signals whose bandwidth can be up to 300 MHz with 300 Hz sweep repetition 
frequency. This baseband chirp signal is modulated to 1.9 to 2.4 GHz passband 
signal by a programmable source. After filtering the undesired signals, this up-
converted chirp signal is fed into the mixer's local oscillator port. 

Time 

Figure 2.9: Linear chirp signal 
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The resultant IF signal must be optimized for the input range of the data 
acquisition unit so that a reasonable signal to noise ratio can be achieved [21; 33 . 
The signal conditioning unit amphfies the IF signal by up to around 60 dB by 
2 stage amplification. One of two IF filters which have 165 kHz and 250 kHz 
bandwidths respectively can be chosen to remove any DC component and any 
unwanted higher freqencies. 

The synchronization unit is the control unit of the channel sounder which 
contain a micro-controller and two field reprogrammable gate arrays. I t commu­
nicates with the computer via 16 control commands shown in Table 2.11, The 
functions of these commands include: 

• controlling the data flow between computer and sounder 

• controlling the RF attenuator and IF gains 

e generating different clock signals for the data acquisition unit 

The details and protocols can be found in [21; 33 . 

2.3.3 noise and system sensitivity 

Caused either by thermal noise and other electronic noise from the receiver input 
circuits or by interference from radiated electromagnetic noise picked up by the 
receiver's antenna. Radio noise in radio reception is the superposition of white 
noise and other disturbing influences on the signal. Knowledge of sources of noise 
may lead to methods by which it can be suppressed. 

Noise comes from a number of different sources, but for the sake of this project 
they are divided into two categories: sources external to the receiver and sources 
internal to the receiver. Little can be done on external noise such as atmospheric, 
galactic and man made noise which fall within the receiver's passband [45 . 

Thermal noise in a receiver, also called white noise, is the electronic noise 
generated by the thermal agitation of the electrons inside an electrical conductor, 
which happens regardless of any applied voltage. A resistor generates noise power 
equal to [28 

Pn = kTB Watts 
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Bandwidth Noise power (dBm) Notes 
1 Hz -174 
10 Hz -164 

1000 Hz -144 
10 kHz -134 F M channel of 2-way radio 
1 MHz -114 
2 MHz -111 Commercial GPS channel 
6 MHz -106 Analog television channel 
20 MHz -101 W L A N 802.11 channel 

Table 2.6: Noise floors of different bandwidths 

where Pn is noise power, k is Boltzmann's constant (1.38 x 10~'^^J/K), T is 
temperature in degree Kelvin (K) and B is the bandwidth in Hertz (Hz). Thermal 
noise for a resistor at room temperature {298K) can be described in decibels 
relative to 1 milliwatt as: 

PdBm = -174 + 101og(S) (2.4) 

Equation (2.4) shows the total noise power is a function of the measurement 
bandwidth. For example, with 1 Hz bandwidth the noise floor will be -174 dBm. 
A signal must be above this noise level before i t can be successfully detected. 
Table 2.6 shows the relation between bandwidth and corresponding noise floor. 

The noise generated at the resistor can be transferred to the remaining circuit. 
When this noise passes through the first gain stage, the amplifier boosts the noise, 
and adds some of its own. The final noise level appeared in the monitor is refereed 
to as sensitivity^ [1]. Figure 2.10 shows the noise signal in the output of the HP 
8560A spectrum analyzer with 10 kHz resolution bandwidth connected via a 50 
Q resistor to prevent receiving the signals from the air. 

Noise factor is defined as the degradation of signal-to-noise ratio [9]: 

F = 
So/No 

^The term display average noise level is used in spectrum analyzer. Strictly, Sensitivity is 
a measure of the minimum signal level that yields a defined signal-to-noise ratio (SNR) or bit 
error rate ( B E R ) . 
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Frequency (MHz) 

Figure 2.10: The noise signal with 10 kHz resolution bandwidth 

where Si and So are input and output signal power, Â^ and No are input and 
output noise power respectively. If a receiver has unity gain, this definition can 
be simplified as: 

F = 
No 

N 

The noise figure usually expressed in terms of dB of the noise factor: 

N F = 101og(iV<,)-101og(A^,) 

The noise figure of HP 8560A can be roughly estimated from the measured 
noise. Prom Pigure 2.10, the maximum measured noise power is around -102^ 
dBm in 10 kHz resolution bandwidth, the noise figure can be derived: 

NP ^ [measured noise] - (-174 + lOloglOOOO) 

= - 1 0 2 + 174 - 4 0 

= 32 dB 

Noise figure is independent of resolution bandwidth of the receiver. 

^This value is different with the value in Table 2.5 since there the resolution bandwidth is 
in uncoupled condition. 
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The 32 dB noise figure of HP 8560A means that a radio signal can be detected 
only if it is 32 dB above the noise power kTB. However, the amplitude of some 
kind of radio signals are below this threshold. For example, at the base station, 
900 MHz GSM specification defines the minimum reception levels as -104 dBm 
for the base station [32]. So, there is not enough signal-to-noise ratio left for 
detecting the radio signals. 

By introducing a preamplifier this problem can be solved. By placing an 
appropriate preamplifier in front of the spectrum analyzer, we can obtain a system 
(preamplifier -t- spectrum analyzer) noise figure that is lower than that of the 
spectrum analyzer alone. Rather than develop complex formulas to calculate the 
final system noise figure, [1] gives two criteria to estimate the system noise figure-
criterion 1 

If NFp,e + Gpre > NF^a + 15 dB 

and criterion 2 

Then NF^ys = NFp.e - 2.5 dB 

If NFp,e + Gp,e < NFsa - 10 dB 

Then NF,ys = NFsa - Gp,e 
where NFpre is the noise figure of a preamplifier, Gpre is the gain of a preamplifier 
in dB, NFsa is the noise figure of a spectrum analyzer and NFgyg is the noise figure 
of the system. 

However, the drawback to using a preamplifier is loss of measurement range. 
A preamplifier must meet criterion 2 to get better sensitivity without costing 
measurement range. That is, the sum of its gain and noise figure rnust be at 
least 10 dB less than the noise figure of the spectrum analyzer. In this case 
the displayed noise floor will not change noticeably, although we shift the whole 
measurement range down by the gain of the preamplifier, we end up with the 
same overall range that we started with. 

In spectrum occupancy project, a Jim M-75 low noise wideband GaAs FET 
preamplifier was used in scanning 100-1500 MHz spectrum; Mini-Circuits ZKL-
2R7 amplifier was used in scanning 1500-2500 MHz spectrum. The specifications 
of Jim M-75 preamplifier is in Table 2.7. Since there are strong signals in the low 
frequency spectrum, the gain of Jim M-75 amplifier was set to 10 dB to avoid 
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Model Jim M-75 low noise preamplifier 

Frequency range A band (MHz) 225-1500 
FYequency range B band (MHz) 108-185 
Frequency range C band (MHz) 24-2150 

Gain (dB) from -10 to 20 fully adjustable 
Noise Figure (dB) 2 

Impedance (Q) 50 

Table 2.7: Specifications for Jim M-75 preamplifier 

internal distortion. According to criterion 2, the noise figure of the prearnplifier 

and spectrum analyzer is 

NFp,e + Gp,e = 12 dB < NFsa - 10 dB = 20 dB 

NFsys = NF,a Gpre = 20 dB 

The deployment of active antenna Dressier ARA-1500 complicates the final 
calculation of the measurement system since the Dressier ARA-1500 has its own 
noise figure. A noise signal is seen by any following amplifier as a valid input 
signal. Each stage in the cascade chain amplifies both signals and noise from the 
previous stages and also contributes some additional noise of its own. Thus, in 
a cascade amplifier chain in Figure 2.11 the final stage sees an input signal that 
consists of the original signal and noise amplifier by each successive stage, plus 
the noise contributed by earlier stages. The overall noise factor for a cascade 
amplifier can be calculated from FHis' noise equation [46]: 

F 2 - I , F ; v - 1 (2.5) 
Gi G1G2 • • GN 

where is overall noise factor of N stages in cascade, Fi is the noise factor of 

stage 1, F/v is the noise factor of the nth stage, Gi is the gain of stage 1 and Gyv 

is the gain of stage (n-1). From (2.5), the final noise factor can be calculated as: 

Fn = Fi + 
1 4 l O i - 1 

- = 1010 + = 12.41 11 

The final noise figure is /o^l2.41 = 10.84 dB. 
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Gain = G^ 
K 

Gain - G^ Gain = 

• 
Noise Factor = 

W 
Noise Factor = F^ Noise Factor = F^. 

Pigure 2.11: Cascade amplifier chain for noise figure calculations 

Model Mini-Circuits ZKL-2R7 
Frequency range (MHz) 10-2700 

Gain (dB) 24 
Gain flatness ~±0.7 

Noise Pigure (dB) 5 
IPS (dBm) 30 

1 dB compression (dBm) 13 
Input no damage (dBm) 13 

Table 2.8: Specifications for Mini-Circuits ZKL-2R7 

The specifications of Mini-Circuits ZKL-2R7 amplifier is in Table 2.8. The 
noise figure of the preamplifier and spectrum analyzer can be calculated by cri­
terion 2 

NPpre + Gore = 29 dB < NF,a - 10 dB = 20 dB 'pre 

NPsys = NPsa - Gpre = 6 dB 

This setting was used in monitoring 1500-2500 MHz spectrum with the high gain 
directional log periodic antennas. 

2.3.4 distortion and dynamic range 

The strength of GSM downlink signals near the base station is higher than —20 
dBm amphtude while the strength of satellite downlink signals is less than —120 
dBm amplitude. The implication that radio signals have dramatic dynamic range 
is that the receiver must have sufficient dynamic range to recover the entire signal 
Other-wise, information may be lost and the output is distorted. Understanding 
the dynamic performance of the receiver requires knowledge of harmonic distor-
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tion and intermodulation products (IP) and knowledge how they affect receiver 
operation. 

Harmonic distortion can be defined as a single-tone distortion product caused 
by device non-linearity. Since the mixer diode of a spectrum analyzer is a non­
linear device, it always generates distortion of its own. The current through an 
ideal diode [1] ca,n be expressed as: 

i = / , [e'^^"'^ - 1) 

Is is the diode's saturation current, q is electron charge 1.6 x coulombs, v 
is instantaneous voltage, k is Boltzmann's constant (1.38 x 10~^^J//C) and T is 
temperature in degree Kelvin {K). This expression can be expanded into a Taylor 
power series: 

i = Is {kiv + k2V^ + ksv^ + • • •) 

where ki — q/kT, k2 = k\/2\ and k^ = k\/2>\. For example, a mixer is fed into a 
local oscillator signal frequency at ULQ and a sinusoidal signal frequency at tJi 

^ = VLO sin {oJiot) + Vi sin {uit) 

We arrive at terms involving the input and local oscillator signals^ as long as the 
input signal is in the hnear range which is 15 to 20 dB below the level of LO; 

k2VLoV\ cos [{UJLO - tOl)t 

(Sks/A) VioV^^ sin [{ULO - ^u,) t] 

(ki/S) VLOV^^ sin [{UJLO - Stu^) f 

The argument of the sine represents the fundamental tone which is actually the 
frequency of the input signal. The argument 2ui of the sine represents the second 
harmonic of the input signal. The level of this second harmonic is a function of 
the square of the voltage of the fundamental, V^. For every dB that we drop 
the level of the fundamental at the input mixer, the internally generated second 

^The terms which frequencies are above L O are assumed to be filtered. 

26 



2.3 Monitoring Technology 

harmonic drops by 2 dB. The argument holds true for the n*'* harmonic.For every 
dB that we drop the level the n"" harmonic drops by n dB. 

Depressing the harmonic distortion can be addressed by two different ap­
proaches [9]. One way is reducing the distortion level back down under the noise 
floor by increasing the input RF attenuation referring Figure 2.12. Even a few dB 
of input attenuation is often enough to cause second and higher order^ distortion 
to drop back into the noise floor, while affecting the desired signals only by a 
small amount. In the spectrum occupancy project, this approach was adopted 
by setting 10 dB input RF attenuation to reduce distortion. 

1) •a 

P a s s band 

A A 

A 

0), -hCO, 

» 1 1 * 

Frequency 
3^ 

Figure 2.12: Second and third order distortion 

Another approach that can help reduce distortion is to introduce the preselec­
tor. A preselector is an electronic device that is inserted between the antenna and 
the receiver, limiting the range of frequencies that can be applied to i t . Tuning 
to the desired frequency keeps the preselector's narrow bandwidth centered at 
the operating frequency, rejecting or reducing out-of-band unwanted interference 
signals. From Figure 2.12, if we choose a proper passband of the preselector and 
proper span of spectrum analyzer, we can exclude distortion out of measurement 
range. 

^Distortion is often described by its order. The order can be determined by noting the 
coefficient associated with the signal frequency or the exponent associated with the signal 
amphtude. 
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Two high pass filters ware employed as preselectors in this project to provide 
better dynamic range and reject out-of-band signals. Mini-circuits SHP-100 high 
pass filter was used in the occupancy measurement range from 100-1500 MHz; 
mini-circuits SHP-1000 high pass filter was used in the occupaney measurement 
range from 1500-2500 MHz. The insertion loss and return loss are shown in Figure 
2.13. In addition, the 6 MHz span was set, which is much narrower than the 
covered frequency range (100-2500 MHz). The narrow span excludes distortion 
generated by the mixer of the spectrum analyzer. 

E 
9° o 

E 
< 

SHP-100 high pass filter 

Insertion loss 
Return loss ,. 

E 
<• 

o 

SHP-l dOO high pass filter 

— Insertion loss 
• - - Return loss 

500 1000 

Frequency (MHz) 

1500 1000 1500 2000 2500 300C 

Frequency (MHz) 

Figure 2.13: The insertion loss and return loss of the preselectors 

Comparing harmonic distortion, it is difficult to get rid of intermodulation 
distortion since it often falls into the measurement band. For exariiple, two 
sinusoidal signals are fed into a local oscillator: 

V = VLO sin {i^Lot) + Vi sin {uit) + V2 sin {u2t) 

in addition to harmonic distortion, we get: 

i h / S ) VLOV^^V2 cos [ULO - (2wi - ^^2)] t 

{kM VLOVIV^ cos [ujLo - (2wi - U2)] t 
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Prom Figure 2.12, intermodulation distortion, the interactioii of the two input 
signals with each other, is so close to the measuring signals that i t falls into 
the measurement bandwidth. By increasing the input attenuation, the IP levels 
can be reduced back down under the noise floor. Third order intermodulation 
products axe more important because they tend to reflect on receiver's dynamic 
range, as well as its abihty to handle strong signals. 

-10 . 

Maximum 2nd order 
dynamic range 

Maximum 3rd order 
dynamic range 

Figure 2.14: Dynamic range versus distortion [1 

With the help of Figure 2.14, we can determine how much power can reach 
the mixer which generates minimum distortion. The details can be found in [ I . 
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In Figure 2.14, SHI is the second-order harmonic intercept and TOI is the third-
order intercept to 0 dBc. This situation cannot be realized in practice because 
the mixer would be well into saturation. The 1-dB compression point is normally 
specified to prevent the saturation condition. Typically, this gain compression 
occurs at a mixer level in the range of —5 to -1-5 dBm. The levels of the strong 
signals are around -20 dBm in Durham area. 20 dB gain may drive these signals 
to the 1-dB compression level. 

2.4 Data Acquisition 

Data acquisition is the sampling of the real world to generate data that can be 
manipulated by a computer. In this spectrum occupancy project, the data ac­
quisition hardware included a General Purpose Interface Bus (GPIB) board for 
controlling the spectrum analyzer and PCI DAS-4020/12 data acquisition card 
for controlhng channel sounder. The data acquisition softwares was programmed 
in C-I--I- providing instructions to configure each receiver system, execute mea­
surement routines, record measured data, and cahbrate the system gains. 

The data acquisition programming is a time-consuming work which took the 
author significant amount of research time on coding and testing the programmes. 
The data acquisition program for spectrum analyzer was completed by the author 
independently. Based on the works of Roger Lewenz and Peter Baxendale's, the 
author achieved the data acquisition program for the sounder system. 

2.4.1 data acquisition for spectrum analyzer 

The data flow diagram of the spectrum analyzer monitoring system is shown in 
Figure 2.15. The data acquisition and control program is basically three control 
subroutines that direct operation of multiple subroutine kernels that in turn con­
trol every function of the rneasurernent system. RF front-end subroutine handles 
path selection via parallel port; GPS subroutine collects position data from GPS 
device via COM port; spectrum analyzer subroutine communicates between PC 
and spectrum analyzer and store trace data into hard disk via GPIB interface. 
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Figure 2.15: Data flow chart of the monitoring system 

Object-oriented programming (OOP) is a programming language model orga­
nized around "objects" rather than "actions" and data rather than logic. OOP 
technology was adopted in data acquisition program with C-l—I- [52]. Each sub­
routine was encapsulated into a class which is defined as abstract characteristics 
of an object, including the object's attributes, fields or properties and the ob­
ject's behavior. Object-Oriented Programming has the following advantages over 
conventional approaches: 

• OOP provides a clear modular structure for programs which makes it good 
for defining abstract data types where implementation details are hidden 
and the unit has a clearly defined interface. 

• OOP makes it easy to maintain and modify existing code as new objects 
can be created with small differences to existing ones. 

• OOP provides a good framework for code hbraries where supplied software 
components can be easily adapted and modified by the programmer. 

The GPS receiver sends the GPRMC sentence to computer via COM port. 
The GPRMC sentence, known as the "Recommended Minimum" sentence, is the 
most common sentence transmitted by GPS devices. This one sentence contains 
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nearly everything a G P S apphcation needs: latitude, longitude, speed, bear­
ing, sateUite-derived time, fix status and magnetic variation. The format of the 
G P R M C is as follow: 
$GPRMC, hhmmss.ss, A, lill.ll, a, yyyyy.yy, a, x.x, x.x, ddmmyy, x.x, a,m* hh 

Field # 
(1) UTC time of fix 
(2) Data status 
(3) Latitude of fix 
(4) N or S of longitude 
(5) Longitude of fix 
(6) E or W of longitude 
(7) Speed over ground in knots 
(8) Track made good in degrees True 
(9) UTC date of fix 
(10) Magnetic variation degrees 
(11) E or W of magnetic variation 
(12) Mode indicator 
(13) Checksum 

A COM port is a serial communication physical interface through which infor­
mation transfers in or out one bit at a time. Many settings are required for serial 
connections used for asynchronous start-stop communication, to select speed, 
number of data bits per character, parity, and ntimber of stop bits per character. 

Serial ports use two-level signalhng, so the data rate in bits per second is 
equal to the symbol rate in baud. The baud rate was configured to 4800 bits per 
second [4]. The riumber of data bits in each character was set to 8 which matches 
the size of a byte. 8 data bits are almost universally used in newer applications. 
Parity is a method of detecting some errors in transmission. An extra data bit 
is sent with each data character, arranged so that the number of 1 bits in each 
character, including the parity bit, is always odd or always even. If a byte is 
received with the wrong number of 1 bits, then it must have been corrupted. If 
parity is correct there may have been no errors or an even number of errors. In 
our application, the parity bit was set to 'None' without error detection handled 
by a communication protocol. Stop bits sent at the end of every character allow 
the receiving signal hardware to detect the end of a character and to. synchronize 
with the character stream. GPS devices i i i this project use one stop bit. 
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Register L P T l LPT2 
Data register 0x378 0x278 

Control register 0x379 0x279 
Status register ox37A 0x27A 

Table 2.9: Addresses of parallel ports' registers 

Windows provides the application programming interface (API) of serial port, 
which supports requests for services by coinputer programs. APIs exempt pro­
grammers to write low level code to communicate with the serial port. In this 
project, serial port APIs are integrated into the class GPS. 

The 8 way RF switch is coritrolled by parallel port of computer with T T L 
level. The parallel port is specifically designed to attach printers with a parallel 
port interface, but i t can be used as a general input/output port for any device 
or application that matches its input/output caipabilities. In this project, only 
data output function has been used to control RF switch. 

The pin out of parallel port is show in Figure 2.16. The lines in DB25 con­
nector are divided into data fines, control fines and status lines [3]. Lines are 
connected to data, coiitrol and status registers internally. So by manipulating 
these registers in the program, one can easily read or write to parallel port with 
programming languages. The register addresses are i i i Table 2.9. 

status register 

SO S1. Ga S3 S4 & S SB 31 36 D5 34 03 D2 01 30 

j 
\ •)( k DC DG )0 0( OO 1 
\ 00000000(7)(17)(5(5? J \ 

r 
D7 OS 05 04 u • oil 

Figure 2.16: The pin outs of the PC parallel port 
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Direct parallel port controlling from apphcation is not possible under Windows 
NT based operation systems like WIN2000, WINXP and to be able to control 
the parallel port directly you will need to write some kind of device driver to do 
this. To circumvent this situation, the dynamic-link hbrary (DLL) ^ Inpout32.dll 
written by Jan Axelsons was introduced to talk to the parallel port [3 . 

IEEE-488 known as general purpose interface bus is a short range, digital 
communications bus speciflcation that was used in the communication between 
the spectrum analyzer and computer. IEEE-488 allows up to 15 devices to share a 
single 8-bit parallel electrical bus by daisy chaining connections. The maximum 
transfer rate of the GPIB board is 300 kbyte/s in our system. The IEEE-488 
bus employs 16 signal lines - eight bidirectional used for data transfer, three for 
handshake, and five for bus management — plus eight ground return lines. 

There are 3 types of devices that can be connected to the IEEE-488 bus 
Listeners, Talkers, and Controllers [15]. A Talker sends data messages to one or 
more Listeners. The Controller manages the flow of information on the GPIB 
by sending commands to all devices. Devices can be Listeners, Talkers, and/or 
Controllers. A spectrum analyzer, for example, is a Talker and may be a Listener 
as well. It is possible to have several Controllers on the bus but only one may 
be active at any given time. The Active Controller may pass control to another 
controller which in turn can pass it back or onto another controller. A Listener is 
a device that can receive data from the bus when instructed by the controller and 
a Talker transmits data onto the bus wheri instructed. The Controller can set up 
a talker and a group of listeners so that it is possible to send data between groups 
of devices as well. Since only spectrum analyzer was attached to GPIB board in 
our apphcation, a GPIB is always Controller-ln-Chaxge or system controller. 

The programming of the GPIB library interface is comprised of two differ­
ent types of routines: higher level Device I /O routines which conceal most of 
the underlying complexity of GPIB operations and lower level Board I /O rou­
tines which take care of all of the low-level details involving GPIB messages and 
addressing. The board I /O routines are capable of coping with a single device 

^Dynamic-link library is Microsoft's implementation of the shared library concept in the 
Microsoft Windows and OS/2 operating systems. 
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appUcation. The communication datafiow between the controller (computer) and 
device (spectrum analyzer) is shown in Figure 2.17. 

Computer Spectrum analyzer 

Unitializes the device with the configuration 

Response 

Set spectrum analyzer parameters 

Take a sweep 

Done? 

Response 

Trace data output 

Trace data 

Take another sweep 

1 
1 
1 

Cleanup 

Figure 2.17: Communications betweeri computer and spectrurn analyzer 

Al l devices and boards must be assigned unique priniary addresses in the range 
from decimal 0 to 30. The default primary address of all GPIB boards is 0. The 
primary address of spectrum analyzer was set to 18 by software. In our simple 
application, the secondary address was set to 0, which is used for increasing the 
number of addresses that can be supported on a single bus. The timeout value 
is the approximate minimum length of time that I /O functions can take before a 
timeout occurs. Since the sweeping time of the spectrum analyzer may take tens 
seconds, the timeout value was set to 100 s. There are two methods for devices to 
indicate the last byte in a traiisfer of multiple bytes. The most common method 
is for the sending device to assert the EOI fine before sending the last byte. This 

35 



2.4 Data Acquisition 

method is adopted in our application. The second method involves sending an 
extra End-Of-String (EOS) character to indicate the end of data. A common 
EOS Byte is the hnefeed character (10). Since most devices rely on the EOI line 
instead, EOS Byte can not be set. 

2.4.2 data acquisition for channel sounder 

The data acquisition system of the channel sounder is shown in Figure 2.18 and 
consists of 2 PCI-DAS4020/12 high-speed data acquisition boards manufactured 
by Measurement Computing Corporation and an additional logic board func­
tioning as clock divider and adaptor. I t was intended that two data acquisition 
boards should be used to provide eight channel of data acquisition simultaneously 
using the functions of the Universal Library^^ which is the subroutine library 
that the engineer needs to write the programs for use with any of Measurement 
Computing's data acquisition and control boards. 

Adaptor board 

Channel sounder 10 MHz dock 
^ 

D D 
l~HBB-1 

II e 
• a • 

® 
000000 I 

Control lines 

Trigger (SRF) 

M PCI-DAS4020/12 

-JL̂ ian?! PCI-DAS4020/12 

^ • • • 

Figure 2.18: Communications between computer and channel sounder 

The PCI-DAS4020/12 is a multi-function high-speed data acquisition I /O 
board that is designed for the PCI bus. I t provides the following features [14]: 

• 20 MHz sample rate 
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a Four high-speed 12-bit resolution analog input channels 

e 24 digital I /O channels 

« Software-selectable input ranges 

• Analog and digital triggering 

PCI-DAS4020/12 functions are illustrated in the block diagram showri in Fig­
ure 2.19. Four single-ended analog input channels connect from BNC connectors 
to individual amplifiers and then connect to dedicated ADC's. The Trig/Ext Clk 
BNC can be configured as A / D Start Trigger, A / D Stop Trigger or A / D Pacer 
Gate. The digital I /O is an 82C55 digital logic device connected with 40-pin 
connector [14 . 

Four analog input channels per board 

BNC 

Input 
MUX 

Attenuator/Amplifier 

• 

External dock (PIN 10) 

Gain & Offset 
Autocal 

" A B C " 

Cony 

External trigger 

B N C 
Dual 12-bit Dual 12-bit 

Analog 
output 

DAG 
Local Bus 

24 digital I/O 

System 

Timing 

Controller 

Digital I/O 
(82C55) 

1 ^ 
P C Bus 

Controller 

Pcî us 

Dual 
32K*24 
S R A M 

Figure 2.19: The block diagram of the PCI-DAS4020/12 [14 

24 digital I / O channels have been configured as 2 banks of 8 channels, 2 banks 
of 4 channels. Each bank can be programmed as input or output. Port A was 
configured as a data port of 8 channels for exchanging data and address between 
channel sounder and computer. The lower 4 channels of Port C were configured 
as output port for controlling the sounder via DB25 control register. The signal 

37 



2.4 Data Acquisition 

Pin Map Signal name Pin Map Signal name Pin Map Signal name 
1 Int in 15 Port B 2 29 24 GND 
2 +5 V 16 16 Port C 2 30 5 Port A 3 
3 Int enable 17 Port B 1 31 N / C 
4 GND 18 18 Port C 1 32 4 Port A 2 
5 Port B 7 19 Port B 0 33 25 GND 
6 Port C 7 20 1 Port C 0 34 3 Port A 1 
7 Port B 6 21 22 GND 35 +5 V 
8 Port C 6 22 9 Port A 7 36 2 Port A 0 
9 Port B 5 23 N/C 37 GND 
10 PC 5 (T/C) 24 8 Port A 6 38 N/C 
11 Port B 4 25 23 GND 39 N/C 
12 Port C 4 26 7 Port A 5 40 N/C 
13 Port B 3 27 N/C 
14 17 Port C 3 28 6 Port A 4 

Table 2.10: Signal mapping on the 40-pin connector and the DB25 

mapping between 40-pin connector on the data acquisition card and the DB25 
connector to the sounder is shown in Table 2.10. Pin 2 of the 40 pin connector 
was used to provide -1-5 V power for the adaptor board in Figure 2.18. Pin 10 on 
the 40-pin connector was used as external clock input connected to the output of 
the clock divider in the adaptor board. 

As shown in Figure 2.19 the Trig/Ext Clk BNC was configured as an external 
trigger triggered by the Start of Sweep signal from the channel sounder. The 
analog BNC input range for each channel is software configured to ± 5 V in our 
appUcation. At this setting, the 12-bits resolution can reach to 10/2^^ = 2.44 mV. 

Besides the function of converting the 40-pin connector to DB25 connector, 
the adaptor board has a clock divider to convert 10 MHz signal to divide-by-
1 and divide-by-2 signals. Although the PCI-DAS4020/12 is capable of 10 MHz 
sampling rate, the huge amount of data collected at this rate is difficult to process 
by data processing software such as MATLAB. For example, if each sample has 2 
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bytes storage, there is around 19 MBytes ^ for 2 boards at 10 MHz sampling rate 
for one second. The reasonable solution for this is using divide-by-2 to 5 MHz 
clock to downsample the signal. 

In channel sounding apphcations, the PCI-DAS4020/12 should sample the 
channels at the external clock and the external trigger signal to keep synchro­
nization with the sounder. Under the EXTCLOCK and EXTTRIGGER option, 
the clock signal presented to piri 10 is divided by 4 in four channel mode. This 
limitation of PCI-DAS4020/12 means that the channels have been sampled se-
quently. On the other hand, it is necessary for appUcations such as channel 
sounding that each Start of Sweep which contain a number of clocks starts at the 
same time. Otherwise, the pseudo doppler shift will be introduced by [21; 33 . 
A l l of these require that the clock number in one sweep should be an integer 
times 4. Figure 2.20 shows the relation between SRF and clock, where clock A is 
feasible for our application. Fortunately, the clock number per sweep is 40024 in 
the sounder system, which means that the base clock and divide-by-2 clock are 
still an integer times of 4-

S R F , S R F 

S a m p l e 

Figure 2.20: The relation between SRF and clock 

In high speed sample rate appUcation, in order to achieve the maximum sam­
ple rate under some conditions, a contiguous area of memory must be set up 
using InstaCal. InstaCal is a comprehensive software program that manages ev­
erything about data acquisition hardware. The contiguous memory allocated in 

H MBytes = 1024*1024 Bytes 
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InstaCal is an area of contiguous memory which is set aside for use by Universal 
Library scan functions that require an allocation of memory. Since each sam­
ple needs 2 byte memory for storage, the maximum capacity of the contiguous 
memory is 256 MBytes for 134, 217, 728 samples. This is hard coded [14] and it 
could be a restriction of Windows. Therefore, if we only increase the capacity 
of memory, there will not be significant improvements. Furthermore, the virtual 
memory technique of Windows' makes data acquisition more diffcult. Since the 
contiguous inemory allocated in InstaCal is the total memory that is available 
to all boards installed, in our application, 2 PCI-DAS4020/12 cards shared the 
total contiguous memory and each can get the maximum 128 MBytes memory. 

256 MBytes contiguous memory is sufficient for most applications. But to 
certain application, it restricts the long time data acquisition. To remove the 
physical 256 MBytes memory limitations, higher specification hardware and ad­
vanced algorithm have to be found to solve this problem. A new methodology 
was adopted in our data acquisition which transfers the acquired data into hard 
disk in real time. In order to achieve this objective, a 7200 rpm Serial Advanced 
Technology Attachment (SATA)^ hard Disk was deployed to increase physical 
throughput which can transfer data at a rate of 1.5 gigabits per second. 

The Producer-consumer algorithm in Figure 2.21 was introduced to solve high 
speed transfer and multi-process synchronization problems. The algorithm de­
scribes two processes, the producer and the consumer, who share a common, 
fixed-size buffer. The producer's job is to generate a piece of data, put i t into the 
buffer and start again. At the same time the consumer is consuming the data 
(i.e. removing it from the buffer) one piece at a tirne. The algorithm is to rriake 
sure that the producer won't try to add data into the buffer if it's full and that 
the consumer won't try to remove data from an empty buffer. The solution for 
the consumer is to go to sleep if the buffer is empty. The next time the producer 
puts data into the buffer, it wakes up the sleeping consumer. In the same way the 
solution for the producer is to go to sleep if the buffer is full . The next tirne the 

^ Serial Advanced Technology Attachment is a computer bus primarily designed for transfer 
of data between a computer and mass storage devices such as hard disk, drives and optical 
drives. 
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consumer removes an item from the buflFer, it wakes up the producer who starts 
to fill the buffer again. 

Figure 2.21: Producer-consumer algorithm 

In the case of our application, the 128 MBytes contiguous memory for each 
board was configured as a circular buffer refereing to Figure 2.21. The data 
collecting process is modeled as a Producer who scans a range of A / D channels 
and stores the data into the circular buffer in order. The Producer algorithm is 
as follow: 

Function Producer(); 
if (position of Producer + 1 < position of Consumer) %N then 

I Producer waiting; 
else 

(position of Producer -f-h) %N; 
end 

where % stands for modulus. The circular buffer is conceptual memory by which 
the data are being written in circular way. The data transferring process is 
modeled as a Consumer who transfers a batch of data from the circular buffer 
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into the hard disk. The Consumer algorithm is as follows: 

Function Consumer(); 
if (position of Producer = position of Consumer) %N then 

I Consumer waiting; 
else 

(position of Consumer -|-+) %A''; 
end 

In our application, we can not control the speed of the Producer and can only 
control the speed of the Consumer. An overwritten might happen occasionally 
depending on Windows' schedule. Because of this reason, when an overwritten 
has been detected, an Error will be reported and the data acquisition prograrii 
will be suspended. Another important issue is the size of the block memory in 
Figure 2.21. The efficiency of transferring data from the contiguous memory 
to disk decides the size of the chunk. Too small size costs the heavy signalhng 
traffic in PCI bus and diminishes the throughput; too big chunk size will cause the 
overwritten. An empirical value 2 MBj^es was chosen which caused the minimum 
overwritten rate. 

In practice, the situation is comphcated when 2 boards work simultaneously 
to sample 8 channels. These boards must work on background mode. If the 
background option is not used then the control will not return to the program 
until all of the requested data has been collected and returned to the buffer.When 
the background option is used, control will return immediately to the next line in 
the program and the data collection from the A / D into the buffer will continue in 
the background. After the program gets control, it generates a Consumer process 
to transfer the acquired data into disk. In the 2 board situation, attention should 
be paid on synchronicity between two boards since each board may work properly. 
The flowchart of the data acquisition routine is shown in Figure 2.22. 

Communications between computer and channel sounder are via the PCI-
DAS4020/12 digital I /O port. The signal path is shown in Figure 2.18. At the 
channel sounder end, the data, address and cornmand lines are shown in Figure 
2.16. At the computer end, the Port A of 40-pin digital I /O port was configured 
as data and address line and the lower 4 channels of Port C was configured as 
control lines. Since pin 1, 14 and 17 of DB25 have inverted logic, the commands 
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Data Acquisition 

Allocates a Windows global 

memory buffer 

Initialize two boards 

Start a process to scan 
channels in background mode 

for board 1 and board 2 

s Done? 

Is Synchronized 
etween 2 boards? 

s ovePAfnlten? 

^ Data Acquisition End 

Transfer a block of data into 

hard disk for each board 

Report Error 

Figure 2.22: The fiowchart of the data acquisition routine 

must be coded correctly before sending to the sounder as shown in Table 2.11. 
The details can be referred to in [21; 33 .̂ 

2.5 Summary 

This chapter focuses on the engineering aspects of the spectrum occupancy project. 
We start with considerations for spectrum monitoring in view of the spectrum 
management. Then, we go into technique details of the spectrum monitoring. 
Justifications were given for reasons why the specific kinds of antennas and radio 
receivers and their parameter settings were chosen. We discussed the preamplifier 
technique regarding the system sensitivity and the filtering technique regarding 
the radio distortion. In addition, the data acquisition systems and the specific 
data acquisition algorithm were introduced in our project to accelerate data trans­
fer. 
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Code Value Signal name Code Value Signal name 
0000(0) 1101(11) INTO 1000(8) 0011(3) RxO 
0001(1) 1010(10) I N T l 1001(9) 0010(2) R x l 

0010(2) 1001(9) s e w s 1010(10) 0001(1) Rx2 

0011(3) 1000(8) SO 1011(11) 0000(0) START 
0100(4) 1111(15) SI 1100(12) 0111(7) NO 

0101(5) 1110(14) S2 1101(13) 0110(6) N l 

0110(6) 1101(13) S3 1110(14) 0101(5) N2 

0111(7) 1100(12) w 1111(15) 0100(4) NOP 

Table 2.11: Control commands for channel sounder 
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Chapter 3 

Parameter Estimations 

3.1 Direction of Arrival Estimation 

Cognitive radio is an intelligent radio system, which is capable of being sense 
of the communication enviroiiriieht and consequently changes its transmission or 
reception parameters. Based on the spectrum share conception, i t is essential for 
cognitive radio to recognize spectrum occupancy in particular frequency band, a 
particular time slot and a particular direction to avoid interferences. Spectrum 
occupancy in the frequency and time domains will be discuss in the next chapter. 
This chapter focus on the detection techniques for radio arriving directions, which 
might be helpful to understand the spectrum occupancy in the space domain. 

Radio direction of arrival estimation is the technique for determining the 
direction of a radio transmission. Radio direction finding is used by spectrum 
engineers to locate the source of radio frequency interference. With triangulation 
techriiques radio direction finding can even determine the location of a radio 
transmission. 

There are two common technical approaches to radio direction of arrival es­
timation. The first approach involves the use of directional antennas which are 
designed to be more sensitive to signals received in some directions rather than in 
others. As the antenna is turned in various directions, a signal being received will 
either increase or decrease in strength. Al l other things being equal, the directioii 
in which the signal is strongest is the likely direction in which the radio transmit­
ter is located. The rnovernent of the antenna and the determination of the peak 
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signal strength can be made by a human operator or can be done automatically 
by electronics. 

The second approach exploits the effects of phase shift. A fixed antenna 
array is deployed in a precise geometric pattern. By computing the amount of 
phase shift present on the signal from antenna to antenna, a direction to the 
signal source can be computed. This approach will be discussed in detail in this 
chapter. 

3.1.1 wave and sensor array 

3.1.1.1 v̂ âve propagation 

In array signal processing, signals propagating from the source to the receiving 
array are functions of position as well as time and have properties governed by 
the laws of the wave equation (3.1) [46 . 

V ^ S - ^ ^ E = 0 (3.1) 

The wave equation is a second-order hnear partial differential equation that de­
scribes the propagation of EM waves, sound and water waves as well. In the 
equation (3.1) E is the electric field and is the Laplace operator 

Qy2 Q^2 

A solution can be found to the wave equation as [27 

s(x, t) = A exp | j (ut-k-x^^ (3.2) 

where x is the position vector [x y z] and k is the wavenumber vector [k^ ky k^], 
such that kl + ky + k^ — ^ . The equation (3.2) represents a monochromatic 
plane wave solution because the value s{x,t) is the same at all points lying in 
a plane given by k^x -H kyU + k^z = C, where C is a constant. In the physics 
of electromagnetic wave propagation, a plane wave is a constant frequency wave 
whose wavefronts are infinite parallel planes of constant amplitude normal to the 
propagation direction. In practice, the plane wave can be approximated in the 
far-field region of the radio source. 
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The wavenumber is defined as k — 27T/ X , where where A is the wavelength 
vector. The direction of the wavenumber vector k represents the direction of 
propagation of the plane wave; the magnitude k represents the number of 
cycles in radians per meter of length that the monochromatic plane wave exhibits 
in the direction of propagation. The wavenumber vector k can be considered as a 
spatial frequency just as is a temporal frequency. Instead of a scale value, the 
spatial frequency content of waves must be represented as a three dirnensional 
vector. For simplicity, we define another vector a = k/u, called the slowness 
vector, whose magnitude equals to the reciprocal of the propagation speed. 

Reference [27] gives the summary of the relations which governs the propaga­
tion of plane waves 

Propagation of plane wave s{t — a • x) 
Propagation of sinusoidal plane wave sin (urt — k • £j 
Slowness vector a = k/u, \a\ = 1/c 

= 27r/A 

(3.3) 

Wavenumber vector k = u;5. 
Frequency and wavelength c = X • UJ/27T 

The Fourier technique has proved to be an enormously useful tool for sim­
plifying and analyzing DOA algorithms. The concept of Fourier analysis can 
be straightforwardly extended to multidimensional signals. The transform and 
the inverse transform between Position-Time space and Wavenumber-Frequency 
space are defined in (3.4) [27 . 

^ ^) = ( 5 ^ f~oo IZo ^ ^ ) {3 [^t-k- f ) ^dkduj 

(3.4) 

For example, when space-time signal is a propagating wave, s LUJ = s{t — ao- X), 
the Wavenumber-Frequency spectrurn is 

s(k,u?j=S{ij)5(k-uao) (3.5) 

where 5 {•) is an impulse function. Thus, this waveform contains energy only 
along the direction k — udo in Wavenumber-Frequency space. The Wavenumher-
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Frequency spectrum of the monochromatic plane wave signal (3.2) can be ex­
pressed as 

s{k,u^=A- 5{k - ko)S {u - ujo) 

Then, the monochromatic plane wave signal corresponds to a single point in 
Wavenumber-Frequency space, which dictates the temporal frequency and the 
spatial wavelength. 

3.1.1.2 uniform linear cirray 

Any transducer, which interact with propagating wave to produce an electrical 
signal, has finite physical dimension. The effects of a finite aperture on a space-
time signal wil l be illustrated in one dimension aperture shown in Figure 3.1. 
First, we define the aperture function [56] as 

1 : | f I < D/2 
(̂̂ ) = 1 0 -.else 

where D is the length of sensor. This aperture function acts like a window function 
through which the wave has been observed. Through this finite aperture, the 
observed waveform can be expressed as 

z {x, t) = w {x) • s {x, t) 

By the convolution theorem, we obtain a transform in Wavenumber-Frequency 
space 

Z(k,uj'^ = j ^ j W ( j i - f j S (J,uj'^dl (3.6) 

where 

^ ^ ( ^ / o o ' " " ^ • = ^ ^ ^ W ^ 

and S (^l,uj^ is the Wavenumber-Frequency spectrum of the propagating wave. 
This convolution means that the waveform's spectrum is smoothed by the kernel 
function W ( j i j once we observe it from a finite aperture. 

For a propagating plane wave, by substituting (3.4) into (3.6) we can obtain 

Z (k, cj) = 5 (w) W(^k- udo) 
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- D / 2 D/2 

W(k) 

-2nlD 2 i i /D 

Wavenumber on the x-axis 

Figure 3.1: The Unear aperture and its aperture smoothing function 

Along the direction k = uSo in Wavenumber-Frequency space, the output spec­
trum equals the signal spectrum multiphed by a constant W (0), which suggests 
that all information concerning the propagating signal is present in the aperture's 
output. 

Figure 3.1 shows that the spatial extent of an aperture determines the reso­
lution. A large spatial extent has narrower aperture smoothing function, which 
leads to minimal spectral smoothing. The larger the extent, the more focused the 
aperture can be on a specific direction. The Rayleigh criterion [30] states that 
two plain waves with different propagating directions are resolved if the mainlobe 
peak of one aperture smoothing function replica falls on the zero of the other's 
replica. So, the resolution equals the smallest wavenumber that produces a zero 
aperture smoothing function. The resolution is = 2T[/D for the linear aperture. 

The linear aperture was introduced to illustrate the spatial smoothing effect of 
finite dimension. In practice, instead of a continuous aperture an antenna array is 
employed in discrete spatial sampling, which is rather similar with discrete signal 
processing in time domain. A 4 element linear array which is relatively simple to 
analyze and permits the use of fast algorithms, is shown in Figure 3.2, where the 
spatial interval between elements is d. 

In addition to the spatial smoothing effect of the spatial window, discrete 
spatial sampling can introduce aliasing. For mathematical simplicity, define a set 
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d 2d 3d 

Figure 3.2: Linear array 

of signals {zm {t) — WmS (t) ,m e Z} , where Z is Integers and 

Wrr,. = 
1 : at sensor's location 
0 : elsewhere 

This notation conveniently allows to incorporate sensor weights into the equa­
tion for advanced algorithms, which are not discussed in this thesis. Then, the 
Wavenumber-Frequency representation (3.4) is modified as [27 

Z{k,uj) 
/

oo oo E 
•oo „ _ ^ 

Zm (t) exp { - j {ut - kmd)}dt 

This Wavenumber-Frequency spectrum is to be a circular convolution between 
the Wavenumber-Frequency spectrum of the propagating wave S {k,uj) and the 
Fourier transform of the discrete aperture function Wm 

T/d 

The array pattern is defined as 

Z{k,u) = f r" S{l,u)W{k-l) dl 

W (k) = Wm exp {jkmd} 

and in the case of the uniform linear array which equals [27 

kMd 

W{k) = sm 
sm 

Jkti 
(3.7) 

where M is the number of sensors shown in Figure 3.3. 
Figure (3.7) shows that, unlike the case of a continuous hnear aperture, the 

array pattern of the linear array is a periodic function of k with the period 2n/d. 
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Figure 3.3: The grating lobe of the linear array 

Each period of W{k) consists of a mainlobe which has largest amplitude and a 
number of sidelobes. The first zero of W{k) occurs when the argument of the 
numerator's sine function equals k = 2n/Md. The mainlobe width is k = An/Md 
which is closely correlated with the resolution of the array. The mairilobe width 
decreases as the number of sensors increases or the sensor interval d increases. 
Either action serves to increase the array's resolution. 

A grating lobe is defined by [38] as an unwanted peak value in the discrete 
array shown in Figures 3.3. Signals propagating frorh directions corresponding 
to spatial frequencies at which grating lobes occur would be indistinguishable 
frorn signals propagating from the main lobe. The visible region is the range 
of real angles of incidence wave for given wavelength shown in Figure 3.3. For 
example, consider the case of a linear array on which a monochromatic plane 
wave with wavelength A is impinging at incidence angle (p shown in Figure 3.2. 
Because k^ = 27rsin0/A and |sin0| < 1, the visible region is the region where 
kx takes on real values only between ±2n/X. Because W{k) in (3.7) is periodic 
with period 2n/d, inadequate spatial samphng causes grating lobes entering the 
Visible region. If A < 2d, the visible region occupies more than one period of the 
array pattern W{k), indicating that spatial aliasing has occured. 

The Nyquist sampling [27] theorem in time domain can be extended to space 
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domain without any difficulty. I t states that i f a continuous variable signal is ban-
dlimited to frequencies below ko, then it can be periodically sampled without loss 
of information so long as the sampling period d < n/ko. Figure 3.4 illustrates the 
Nyquist samphng theorem in the wavenumber domain. Figure 3.4(a) represents a 
bandUmited Wavenumber-Frequency Fourier transform where the sample interval 
in space satisfies d < iv/ko. In the wavenumber domain, the transform reserves 
the whole information of the original waveform. Consequently, it can be recovered 
from the finite linear array with an ideal lowpass filter. If the Nyquist sampling 
theorem does not hold as showii in Figure 3.4(b), the wavenumber information 
distorted by each other referred to as aliasing and the original information is no 
longer reconstructed. 
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Figure 3.4: Aliasing 

3.1.2 parametric data model 

Most modern signal processing approaches are model based, in the sense that 
they rely on certain assumptions made on the observed data. The monochro­
matic plane waves discussed in the previous section are deterministic so that 
each value of the signal is fixed and can be determined by Maxwell's equations as 
a function of space and time. On the other hand, since radio noise cannot be char­
acterized by a simple, well defined mathematical equation. Their future values 
cannot be predicted exactly. Rather, theory of statistics and random processes 
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made up of the mathematical foundation of modeUng random signals [23]. The 
deterministic model was chosen for our experiments. In this model the receiving 
signals are assumed to be the deterministic signals plus random radio noise. Al­
though deterministic, signals are unknown and quantities such as waveform and 
parameters must be estimated. 

Radio noise does play an important role in this models in determining the 
characteristics of propagating waveforms. Usually, we adopt the random noise 
as 0-mean circular sjTximetric^ complex Gaussian random vector with unknown 
covariance, and successive samples are independent but share a common density. 
Let n ( f , t) denote a random field and its probability density function is Pn{x,t) ( 7 ) , 

the expectation, correlation function and covariance function of a random field 
are defined as [29 

E [n ( f , t)] = J 7-p„(x,t) ( 7 ) c?7 = 

^ o , n i (^0,^1,^0,^1) = / / 7 A 

C„o ,„ i {Xo,Xi,tQ,ti) = / / ( 7 - /^no) - Aini) " Pno.ni {l,X)d'ydX 

An important case of random fields is the stationary random field where corre­
lation function does not vary with absolute position and time. The correlation 
function can be represented as [23 

Rno,m ix, = E [no (xo, to) n i {XQ + x,io + r)] (3.8) 

where x = ^1 ~ ^0 denotes space difference and f denotes time lag. Equation 
(3.8) shows that the correlation function of a stationary field depends only on the 
space and time difference, never on absolute position and time. For array signal 
processing, stationarity means that the noise portion of the observations recorded 
at each sensor have identical statistical characteristics and any cross correlations 
between sensor outputs depends only on the physical distance separating the 
sensors. 

^ A complex-valued random variable Z = X +jY is a. circular symmetric complex Gaussian 
variable, or it follows complex Gaussian distribution, if its real and imaginary parts, X and Y, 
are jointly Gaussian, independent, and they have the same variance of cr̂ . 

53 



3.1 Direction of Arrived Estimation 

The power spectral density function of a stationary random field is defined as 
the Fourier transform of the correlation function by 

Sn (k, ^) = j J ^ { ~^ {^^ - ^ - X j ] dxdr 

The power spectral density function of a spherically isotropic noise field would 
have the form [27 

Sn {k,uj) =G'(u;)5(|fc| ^u ; /c ) 

G (cj) represents the distribution of power with respect to temporal frequency. 
The (5 (•) represents the propagation by relating the magnitude of the wavenumber 
vector and temporal frequency. The correlation function Rn (x, T) of spherically 
isotropic noise can be evaluated by (3.4) and obtained as 

E^ix,r)=0, \x\=n^,n^O 

Thus, in the monochromatic plane wave circumstance, samphng at spatial inter­
vals separated by XQ/2 would yield uncorrelated noise components. Especially, 
when spherically isotropic noise is Gaussian, such spatial sampling interval would 
yield statistically independent waveforms [27 . 

The signal model which we adopt is that observations {ym ( ^ m , i ) } ^ = i ' where 
M is the number of sensors, made at sensor outputs consist of an additive com­
bination of signals and noise. The continuous time response of the i'^^ sensor is 
yi {xi, t) and the M x 1 vector of such responses is denoted 

y (i) = [yi 0 y2 ( ^ 2 , t ) - - - y M {XM,t)f 

where T denotes transpose. y {t) is composed of the superposition of the responses 
to P signals with coherent wavefronts, plus white noise. Further define {6i) as 
the gain of i'^^ sensor to a signal from direction 6i. This implies that the response 
of the i^^ sensor is [31 

p 
y, {xi, = ^ a, {ei)si (x„ t) + n,{t) i = 1,2,... M (3.9) 

The basic narrow band assumption is that signal amplitude does not change 
appreciably during the period of time required to transit the array, or put in 
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another way, at any instant of time the signal is perfectly coherent along the 
array [31]. For B <^ c/ \x\, where B is the bandwidth oi s{t), equation (??) can 
be written as 

s(t — a • x) exp {juj {t — a • x)} = s (t) exp {jui {t — a • x)} 

If we define {6i) = q ; • x the time delay experienced by signal / arriving from 
direction 6i as measured at sensor i. Equation (3.9) can be expressed as an 
analytic signal^ as [31 . 

p 
y,{xi,t) = Y^ai{9i)si{t)exp{-juT,{9i)} + n^{t) i = l,2,...M 

1=1 

This equation can be made more compact with matrix notation by defining 

6 = [9i 02 • • • ^p]pxi 

m = [a, (9) e - ^ - i ( ^ ) a2 (9) e-r-^^ie) ... (,^) 

and 
D{9) = [d{9,) d{92) •••d{9p)]^^p 

d{9) is referred to as a steering vector, and the set of all such steering vectors, 
parameterized by 9, is called the array manifold. It is assumed that d{9) is a 
fixed and known function for all 9. 

The basic parametric data model for DOA can be expressed as 

y{t) = D{9)s{f)+n{t) (3.10) 

where n { f ) — [ni {f] n2 (t) • • • SM (^)]Mxr Until now, for simplifying conception, 
we took the time variable as a continuous variable. In practice, we sample se­
quences of sensor outputs simultaneously and with a fixed time interval. The data 
consists of a set of discrete samples {y{n) ;l <n < N}. These vector samples 
are referred to as snapshots. 

Hn practice the signal is usually down-converted to baseband before sampling. So we drop 
the carrier term exp {jut} for convenience. 
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Without loss of generality, take a uniform linear array shown in Figure 3.5 
as an example to derive the steering vector. The direction perpendicular to the 
array is called the broadside direction or simply the broadside of the array. Al l 
DOA's will be measured with respect to this direction, assuming a far field plane 
wave has incidence angle 6 with the broadside. 

Figure 3.5: Calculation the steering vector of the uniform hnear array 

Under the narrow band assumption, DOA algorithms use the phase informa­
tion present in the array sensors to estirnate the incidence angle. We define the 
sensor at the origin as the reference sensor. The wavefront presented in sensor 
2 has to travel an extra distance of dsin^ as compared to the signal incident on 
sensor 1 and an extra distance of 2d sin 9 for travehng to sensor 3. In other words, 
the signal incident on sensor 2 is a time-delayed version of the wavefront incident 
oil sensor 1 with the delay being dsihO/c, where c is the speed of light [19 . 

d{e) = [ai (6) e° a2 (6) e"̂ '̂ '*̂ '"̂  • • • {0) e-J7(^-i)<^-"e; 

Many array processing algorithms depend on the measured field via the cor­
relation function computed from the sensor outputs. It needs a spatiotemporal 
correlation matrix to completely depict the space and time relation which has 
{MN)^ values and each entry is defined as in (3.8), where M denotes the number 
of sensors and A'' denotes the sample number. If we assume that each snapshot 
is statistically independent and noise is isotropic white noise, only the spatial 
covariance matrix can present the whole correlation between sensor signals. The 
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spatial covariance matrix is defined as 

E {y{t) («)} = D{9)E {s{t) (t)} D^'iO) + E {n {t) n" (t)} 

where H is the Hermitian transpose. E {s{t) s" ( t )} = B is the source covariance 
matrix and E [n {t) {t)} = a'^I is the noise covariance matrix, where / is the 
identity matrix, . 

3.2 E M and S A G E Algorithm 

3.2.1 maximum likelihood estimation 

Maximum likelihood estimation (MLE) [47] is a statistical method used for fitting 
a mathematical model to data. Modeling real world data by estimating maximum 
hkelihood offers a way of tuning the free parameters of the model to provide a 
good fit. 

In order to introduce the maximum likehhood estimation, we shall first define 
the likelihood function. The likelihood function l{9;xi,X2, • • • X;^) of N random 

variables Xi,X2,... Xj^ is defined to be the joint density of the N random vari­
ables f x , ,X2,- -XN{X-[,X2, • •. X!\/), which is considered to be a function of 9. In 
particula,r, if Xi, X2, •. • XN is a independ sample from the density f{x; 9), then 
the likehhood function is f{xi9)f{x29) • • • f{xt^9). 

The likelihood function l{9; Xi,X2,... x^) gives the likelihood that the random 

variables assume a particular value Xi,X2,.. .x^. The likelihood is the value 
of a density function; so for discrete random variables it is a probabihty. In the 
estimation circumstance, we want to know what value of 9 is the largest likelihood 
from the set of observed data X i , X 2 , . . . x^v-

We formalize the definition of a maximum likelihood estimator [23]. Let 
l{9] Xi,X2, • •. XN) be the likelihood function for the random variables X i , X 2 , . . . Xjsf. 

If ^ = 9{xi,X2,... XN) is the value of 9 which rnaximizes l{9\ X i , x g , . . . X j v ) , then 
9 is the maximum likelihood estimation of 6. Since many of the density functions 
are exponential in nature, it is therefore easier to compute the MLE of a likelihood 
function by finding the maximum of the natural log of l{9;Xi, X2,. •. XN), known 
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as the log likelihood: 

L{9;xi,X2, • ..XN) = log{l{0;xi,X2,.. . x y v ) ) 

due to the monotonicity of the log function. 
In DOA applications, if we assume that each snapshot is statistically inde­

pendent and noise is Gaussian noise, the likelihood function for model (3.9) can 
be written as [27 

l{0,s;Y) -NM (det / ) -N 

N 

n=l 
exp ^ - J ] y{n) - D{e)s{n) y{n) - D{e)s{n) 

where * is the conjugate transpose. The log likelihood function, with unnecessary 
constant terms discarded, is 

N 

n=l 

L{e, s- Y ) = - Y ^ y{n) - D0)s{n) y{n) - D{e)s{n) (3.11) 

MLE maximizes (3.11) with respect to 6 and 5(n). Inspection of (3.11) reveals 
that this is a nonlinear least squares problem in the sense that the squared error 
of the residuals is minimized. 

For any fixed 9 one can find the values for s(n) which maximize (3.11). Of 
course, this must be right at the joint maximum. For given 9, it is straightforward 
to show that the maximizing s{n) is [47 

T - l 
s{n)= D*{9)D{9) D*{9)y{n) (3.12) 

By substituting (3.12) into (3.11) we can ehminate s from the optimization prob­
lem. Defining the sample correlation matrix of the data as 

1 ^ 

n=l 

the maximizing angle vector is given by 

9 = axg max tr D{9) D*{9)D{9) D*{9)Cy 
-1 

(3.13) 
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where tr[-] denotes the matrix trace operation. 
Beyond the simplification of (3.13), normally the MLE is a difficult optimiza^ 

tion problem and does not yield an analytical solution. Thus we are led to consider 
iterative methods for the solution. There is an enormous literature on methods for 
solving multidimensional optimization problems. The expectation-maximization 
algorithrh and Space-alternating generalized expectation-maximization algorithm 
were chosen to solve the computation problems. 

3.2.2 expectation maximization and S A G E algorithms 

The iterative algorithms are a procedure for maximizing the log likelihood function 
L (9) = log / {Y\9), where 9 is unknown parameter vector and Y is the data vector. 
Assume that after the n}^ iteration the current estimate for 9 is given by 9n- Since 
the objective is to maximize L {9), we wish to compute an updated estimate 9 
such that 

Li9)>Li9r.) 

Equivalently we want to maximize the difference, 

L {9) - L {9n) = log I {Y\9) - \ogl{Y\9n) (3.14) 

The expectation-maximization (EM) algorithm [16] [37] is an iterative opti­
mization technique specifically designed for statistical models. It uses a different 
strategy rather than gradient descent or Newton's method and provides faster 
convergence sometimes depending on conditions. Figure 3.6 [40] shows the differ­
ence between EM and gradient descent algorithms. In order to find the maximum 
point, the gradient descent algorithm starting from the current guess makes a 
linear approximation to the maximum-Ukehhood function, then takes some step 
uphill. Since there is no knowledge in advance how good the linear approximation 
is and consequently how big of a step it is. 

EM instead makes a local approximation that is a lower bound to the maximum-
likelihood function. In principle, the lower bound can have any functional form. 
Choosing the new estimate to maximize the lower bound will always be an im-
provemerit over the previous guess, unless the gradient was zero there. So the 
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^Maximum-likelihood 
function 

Lower bound 

Gradient descent 

Figure 3.6: Maximizing a function with lower bound [40 

idea is to alternate between computing a lower bourid E-step and maximizing the 

bound M-step, until a point of zero gradient is reached [40 . 

In statistics literature, the term incomplete data in its general form implies 

the existence of two sample space Y and X and many-one mapping from XtoY. 
The data set x in X is not observed directly, but only indirectly through Y. More 

specifically, we assume there is a mapping x —> y{x) from X to Y, and that x is 

known only to lie in X{y), the subset of X determined by the equation y = y{x), 
where y is the observed data. We refer to x as the complete data even though in 

certain examples x includes what are traditionally called parameters [16 . 

We assume a set of sampling densities f {x\<p) depending on parameters (p 
and derive its corresponding set of samphng densities g{y\4>). The complete-data 

specification / (a;|0) is related to the incornplete-data specification g {y\(p) by 

9{y\4>)= [ f{x\4>)dx 

The EM algorithm is directed at finding a value of 0 which maximizes g{y\(p) 
given an observed y by using of the associated family / ( x | 0 ) . There are many 

possible complete-data specifications / (x|0) that will generate g (y|0) given the 

incomplete-data specification g {y\4>). 

Before giving a description of the general EM algorithm, we first introduce 

the Jensen's inequality. For a convex function^ / ( • ) defined on a space f ] , if a 

^Let / ( • ) be a real function defined on an interval / , / ( • ) is said to be convex on / if 
Vxi, X2 6 / , A € [0,1], / (Ai: + (1 - A) xa) < A/ (xi) + (1 - A) / (xs) 
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function p (•) is a probabifity density function J^ p {x)dx — 1 and another function 
h{-), Jensen's inequality states as: [10 

^ f p{x)-h {x)dx^ < [ p{x)- f { h (x)) dx 
\Jn J JO. 

Jensen's inequality extends the theorem that the arithmetic mean is greater than 
or equal to the geometric mean. 

In the DOA framework, the introduction of the complete data is making the 
maximum likelihood estimation of 9 tractable. In this case, it is assumed that 
knowledge of the complete data will make the maximization of the likehhood 
function easier. Denote the complete data vector by X and a given reahzation by 
X. The total probability / ( ^ 1 ^ ) can be written in terms of the complete data x 
as, 

1{Y\9) = f l{Y\x,9)l{x\9)dx 
Jn 

Equation (3.14) can be rewritten as [40 

Li9)-Li9n) = \og [ l{Y\x,9)l{x\9)dx-\ogl{Y\9r,) 
Jn 

= \ogJj{Y\x,9)l{x\9) • Y^j^^dx - logl{Y\9n) 

Since l{Y\x,9n) is a probability measure and j^l{x\Y:9n)dx — 1, Jensen's in­

equality can be apphed 

L ( e ) - L ( e „ ) > ^ I {x\Y, 9^] • log (̂ ^ ̂ ^ 1 ^ ' ^ ^ ^ ^ ^ ^ ^ 1 ^ ^ ^ dx - \ogliY\9^) 

= A ( ^ l ^ n ) 

We made use of the fact that I {x\Y, 9n)dx = 1 so that 

l o g / ( y | ^ „ ) = / l{x\Y.,9r.)logl{Y\9r.)dx 
Jn 
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which allows the term log / {Y\9n) to be brought into the integral. 

By rewriting L{9) > L {9^) + A {9\9n) and for convenience define 

Q{9\9n) = L{9n) + ^{9\9r:) 

so that we can rewrite the relationship as L (^) > Q{9\9n)- We have now a 

function Q {9\9n), which is lower bound of the Hkelihood function L (9). AppHed 

Bayes' theorem p{A\B) = 

Q{9n\9n) = Li9n) + A { 9 M 

= L {9n) + / / (x|y, 9n) • log C - f ^ r ^ ) dx 

= L{9n) 

so for 9 — 9n the lower bound is tangent with the Ukelihood function shown in 

Figure 3,6 [40;. 

Our objective is to choose a value of 9 so that L (9) is maximized. On the other 

hand, Q {9\9n) is the lower bound of the L (9) and that the value of the function 

L (9) is equal with the value of the function Q {9\9n) at the current estimate for 

9 = 9n- Therefore, any 9 which increases Q {9\9n) in turn increases L (6*). In order 

to achieve the greatest possible increase in the value of L {9), the EM algorithm 

selects 9n+i such that Q {9\9n) is maximized. Formally, 

9n+i = a rgmax{Q(6 ' |6 'n)} 
6 

where arg max stands for the argument of the rnaximum, that is to say, the value 
9 of the given argument for which the value of the given expression attains its 
maximum value. 

= a x g . a x { L ( « J + / ^ , W y , « . l o g ( - | i ; ; ^ ^ ^ 
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Now drop terms which do not vary with 9 we get 

9n+\ = argmax ( / lix\Y.,9r.)-log{l{Y\x,e)l{x\9))dx 

= - g m a . ^ / ( x | y , M . l o g ( ^ ^ ^ . ^ j r f x 

= argmax I {x\Y, 9n)- log {I {Y, x\9)) dx^ 

= argmax { log/ (y ,a ; |^ )}} 
6 

In the direction of arrival applications, define the complete data to be the set of 
A'' samples of P independent complex Gaussian vector {xi (n) ; 1 < / < P, 1 < n < A''}, 
where P denotes the number of sources and N denotes the number of sample 
points. The vector xi (n) has mean d{9i)si (n) and has identical covariance 
( 1 / M ) / , where / is an identity matrix [39]. Introducing the complete data as 
if one could somehow observe each of the incident plane waves separately, then 
estimation of their angles-of-arrival would be straightforward. The incomplete 
data is simply the set of observations themselves, and the many-to-one function 
which maps the complete data to incomplete data is 

The complete data log likelihood function becomes 

N P 

Q {X\9) = - Y . Y . 1 ^ ' - ^ " ' ( ^ ' ) ^ ' ( ^ ) I (3.15) 
n=l /=1 

Applying the EM algorithm to the DOA problem is defined such that at iteration 
n+ 1 

• E-step: expectation step involves the conditional expectation of the log 
likelihood function of the complete-data, denoted as Q{9\9n)-, where the 
condition is with respect to the incomplete-data and previous estimate 9^. 
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• M-step: maximization step yields the estimate of the angles ^„+i by maxi­

mizing Q {9\9n) with respect to 9. 

Since Xi is a sufficient statistic^ for d{9i)si, the E^step can be reduced to 

finding its conditional expectation E {xi (n) [39] and [12] showed that this 

conditional mean is 

E [xi (n) l ^ r } ^ ^ { n ) ^ d{9r) 5? (n) + ^ [y{n) - D{9-)s^ (n)] (3.16) 

The conditional mean is the known signal component estimated from the previous 

iteration, plus an equal share of that component of the observation vector which 

is orthogonal to signal subspace defined by D{9). 
For the M-step, define 

n=l 

where * is complex conjugate. Maximization of (3.15) with respect to 9i and 

waveform estimation s; (n), with x/ (n) replaced by x" (n), yields the following 

equations which the estimates must satisfy [39]: 

d*{9i)C2,dm 
9'1^' - argmax —— (3.17) 

8i " d(9, 

_ d* {9r') in) 
^n+i ^ ^ ' ' \ (3-18) 

d{9i) 

Equations (3.16)-(3.18) define the basic EM algorithm. Equations (3.17) re­

quires a one dimensional search. The quadratic form to be maximized in (3.17) 

is precisely the form of the projection matrix of (3.13), except that (3.17) only 

involves a single column of the original matrix D{9). 

EM algorithms are most useful when the M-step is easier than maximizing the 

original likelihood. The simultaneous update all parameters in a classical EM al­

gorithm necessitates overly informative complete-data spaces, which in turn leads 

^Intuitively, a sufficient statistic captures all information in the data that is relevant to 
guessing the values of the unobservable pararheters, or more generally, to guessing the under­
lying probability distribution from which the data were drawn. 
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to slow convergence. The convergence rate of an EM algorithm is inversely re­
lated to the Fisher information of its complete-data space. Improved convergence 
rate can be achieved by introducing less informative complete-data spaces. 

Space-alternating generalized expectation-maximization algorithm (SAGE) 
was proposed to solve the problems where one can sequentially update small 
groups of the elements of the parameter vector with EM algorithm, rather than 
using one large complete-data space [20]. The SAGE algorithm is a twofold ex­
tension of the EM algorithm. First, each iteration of the SAGE algorithm is an 
EM iteration to re-estimate a subset of the components of parameters 9 while 
keeping the estimates of the other components fixed. Second, the notion of com­
plete data is generalized in the sense that the mapping frorn the complete-data 
space to the incomplete^data space may be random rather than deterministic in 
EM algorithm. 

We first define the index set S which is a subset of the set { 1 , 2 , . . . , P } , for 
example { 1 } , {1 ,2} , where P is the dimension of the parameter space. The set S 
denotes the complement of S intersected with { 1 , 2 , . . . , P } . The difference is that 
the complete-data is not based on the whole parameter space but the sub-space 
^5 of the whole parameters, which is dependent on index set S [20]. Just as for 
an EM algorithm, we replace the maximization of likelihood function L{9s) over 
^5 with the maximization of low bound function Q{9s), whose computation will 
be less than the former. 

Then, we introduce the admissible hidden-data space of a random vector 
with probabihty density function f{x; 9) with respect to ^5 for another density 
function /(?/; 9). The joint density of X^ and Y satisfies 

f{y,x-9) = f{y\x-9s)f{x;9) 

and the conditional distribution f{y\x\9g) is independent of 9s- In other words, 
X^ must be a complete-data space for ̂ 5 given that 9^ is known. It can be 
thought of y as the output of a channel that may depend on 9g but not on 9s, 
as illustrated in Figure 3.7 [20]. The conditional expectation of the log-likelihood 
of the hidden-data of X^ can be expressed as 

Q{9s) = E{\ogf{X'-9s\Y-9s,9~s)] 
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= [ logf{x;9s,9s)f{x\Y;9s,9s)dx 

which is an essential ingredient of any SAGE algorithm. 

0-

(9. 

Channel Channel 

i 

Y 

Figure 3.7: The relationship of the observed data and hidden-data 

Let 9^ be an initial parameter estimate. A generic SAGE a,lgorithm produces 

a sequence of estirnates {^*}^o following recursion [12]: 

Function SAGE(); 
for i 1 to oo do 

choose an indexset S = S*; 
choose an admissible hidden-data space X'^' for 9si', 
E-step: compute Q(6'5i); 
M-step: 9'+^ - argmaocg(^50, ^ | t ' = ^ . i 

optional: repeat El-step and M-step; 
end 

In DOA applications, the parameter space 9 has been divided into P subsets 

1̂  = (^;, si):\<l< P | with si = { s / ( l ) , S / ( 2 ) , . . . , si{N)}. Each subset corre­

sponds to one source signal. The admissible hidden-data space associated with 

this parameter subset {xi{n); 1 < I < P,l < ri < N} 

Xi(n) = d{9i)si{n) + n{n) 

consists of the signal transmitted by the Z*'' source and the total noise contained 

in array output. Since the noise component n{n) is completely incorporated in 

each iteration, the admissible hidden-data space becomes less informative than 
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that in EM algorithm. [11] showed that the admissible hidden-data space can 

lead to a faster convergence than the EM algorithm. 

In DOA, index sets S'% z = 0 , 1 , . . . have been chosen as 

S' = {l + {i mod P)} 

By this, the parameter subset associated with this index sets is updated by maxi­

mizing the conditional expectation of likehhood of the admissible hidden-data Xi 
in each iteration. Every P iterations in the SAGE algorithm consist of a circle, in 

which the pararneter subsets | ^ / = (^;, s;) : 1 < / < p | are updated sequentially. 

In the SAGE algorithm, E-step calculates 

E{xsi{n)\Y,9s^-^} = xsi{n) = d{9si-i)ssi{n) + y{n) - D{9si-i)ssi-i{n) 

where 5* = { 1 - f (z mod P ) } . M-step calculates [39 

N 

n=l 

d%9)C.J{9) 
9 Si = arg max , ^ ,2 

e d{9) 

d*{9si)xsi{n) 
S S ' ( ^ ) = ^ 2 

di9s^) 

After each E-step and M-step, update the complete-data space 

3.3 Algorithm Verifications 

The verifications of the SAGE start with the Matlab simulations. The source 

signals composed of two sine waves whose normalized angular frequencies are 

27r/8 and 27r/5 and the signal-to-noise ratio are less 5 dB shown in Figure 3.8. 

These two sources located at 13° and —13° of the broadside direction of a linear 

phased array which is composed of 4 omnidirectional antennas. Since the nature 
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Transmitters Transmitted angles Estimation of incident angles 
Tx 1 13° 13° 
Tx 2 - 1 3 ° - 1 2 ° 

Tx 1 and Tx 2 13° and - 1 3 ° 12° and -15° 

Table 3.1: Estimation of incident angles in simulation 

of the SAGE algorithm is statistical signal processing which estimates parameters 
with statistics and probability information of measured data, estimated errors are 
inevitable. The estimated angles of the incident signals by the SAGE algorithm 
are shown in Table 3.1 started with the initial values 10° and 30°. However, 
the estimating errors can be reduced by increasing the signal-to-noise ratio and 
increasing the number of the antennas. The next step in verifying the algorithm 
is to set up the phased array and transmitting sources physically in the restrained 
environment. 
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Figure 3.8: The spectrum of the simulation signals 

There are anomalies of radio propagation which at ground level can affect 
these techniques. Common potential problems include reflections or multi-path 
loss. In a multi^path situation, the radio signal may be arriving at the antenna 
or antennas from multiple directions, perhaps because the signal is reflecting off 
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neaxby buildings, hills, or metal structures such as fences. The strongest signal 
may, in fact, be coming from a reflection rather than the direct path, especially 
if the direct path includes terrain features that might attenuate the signal. This 
can result in false directional readings. 

The T D K compact fully anechoic chamber CAC — S'^^ which is designed to 
suppress the electromagnetic waves is a test facility to perform radiated EMC 
measurements between 26 MHz and 18 GHz [25]. The radiation absorbent mate­
rial shown in Figure 3.9 is designed and shaped to absorb incident RF radiation, 
as effectively as possible, from as many incident directions as possible. TDK 
ferrite tiles X-131 are mounted onto dielectric panels to cover the complete fre­
quency range from 26 MHz to 1000 MHz. Another kind of radiation absorbent 
material is the T D K IP-045C pyramid shaped, resistive absorbers in selected ar­
eas of ceiling and walls extended the frequency range up to 18 GHz. White end 
caps complete the absorbers and greatly improve the illumination levels inside 
the chamber. For example, the reflectivity loss at 500 MHz frequency is more 
than 25 dB [53 . 

White end cap 

TDK IP-045e partially lined absorber 

TDK X-131 fully lined double layer ferrite 

Figure 3.9: The absorbers of the TDK anechoic chamber 

The direction of signal arrival experiment conducted in the anechoic chamber 
was constructed as in Figure 3.10. In the experiments, a 4 element linear array 
was deployed as the receiving array to estimate the arrival directions of 1 and 2 
signal sources. A Marconi 2020 RF signal generator was used to transmit 500 
MHz sine wave. When 2 signals were transmitted, the 500 MHz signal generated 
by Marconi 2020 was split by 2 way splitter and fed into the antennas. The reason 
why only one signal generator was used is that the different phase jitters in each 
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signal generator caused the unstable situation in the receiver end and resulted in 
false directional findings. 

Rx array 

Figure 3-10: The configuration of DOA experiment 

In this experiment, a Agilent oscilloscope Ihfiniium 54845A was deployed as 
4 channel receiver, whose specifications are [54]: 

• 1.5 GHz bandwidth 

• 4 input channels 

e 8 GSa/s sample rates (2 channel mode) 

• 4 GSa/s sample rates (4 channel mode) 

4 GSa/s sample rate was chosen to prevent aliasing and to increase the DOA 
resolution. Each channel has a maximum memory depth^ of 32 K sample points. 
Infimium 54845A can sample as fast as 8 GSa/s. However, under this mode, 
Infimium adds the acquisition resources of channel 2 to channel 1 and channel 
4 to channel 3. The rnemory depth was chosen 512 points which is enough for 
SAGE algorithm. 

^Memory depth control determines the number of waveform data points stored for all chan­
nel. When you select a small memory depth value and a fast sampling rate, you will have a 
very fast display update rate but a small ariiouht of the waveform data. 
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Instead of the equivalent time model, real time mode [54] was chosen which 
acquires all of the waveform samples during one trigger event. In real time model, 
the sample rate should be at least 4 times the highest frequency component of the 
waveform; otherwise, it is possible for reconstructed waveform to be distorted or 
aliased. A Sin{x)/x interpolation filter was used to improve the reconstruction 
of the rneasurement by adding data points between the acquired data points. 

Since most DOA algorithms rely on the phase information of incident wave­
forms, phase shifting plays a crucial role in DOA estimation. This requires that 
each channel in the receiver should be sampled at the same time or at exact 
known delays which can be compensated in the data processing. In Infiniium 
54845A calibration, a signal generated by Marconi 2020 was spht into 4 equal 
power signals. Then these signals were fed into the input channels of the Infiniium 
54845A with the same length cables. Figure 3.11 shows the result of back-to-back 
calibration. Although the second channel has short delay, most algorithms can 
tolerate this delay. 
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Figure 3.11: The calibration data of the receiver 

The sensitivity of the Infiniium 54845A is about -50 dBm. The maximum 
output of the Marconi 2020 is 12 dBm and the RF signal will be separated into 
two. At the receiving array end, the incident power is about -45 dBm. So there 
is 5 dB signal-to-noise ratio. 
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To simplify the experiment environment, the omnidirectional antennas were 
adopted as transmitting and receiving antennas. The receiving array was con­
figured as a half wavelength uniform linear array which permits the use of fast 
algorithm, such as the fast fourier transform, to compute spatial spectra and 
array output signals. The array consists of 4 elements placed in a straight 
line with a uniform distance. Since 500 MHz frequency signal was used in 
this experiment, the distance between adjacent antennas equals half wavelength 
A/2 = ( C / / ) / 2 ^ 30 cm, where C is the speed of light. 

In most DOA algorithms, the receiving array is assumed to be i i i the far field 
of the transmitting antennas. This means that the distance of the array from the 
source is much greater than the dimension of the source antenna. The far-field 
region is commonly taken to exist at distances greater than D^/A from the source, 
A being the wavelength and D being the overall dimension of the transmitting 
antenna. The dimensions of the TDK CAC — S'^^ anechoic chamber are 7.5 
m long, 4.0 m wide and 3.0 m high [25]. The distaiice between transrnitting 
antennas and receiving array is 5 m, which can be considered within the far field 
of the source aiitennas. 

Figure 3.12 shows the phase difference caused by the cables which connected 
the transmitter and antennas. From Figure 3.12, there is one point delay between 
two waveforms. Since the sample rate is 8 times faster than the frequency of the 
waveform, this correspond to 45° phase difference. This phase difference will not 
affect the accuracy of the DOA algorithms since most of them use only relative 
phase difference. The phase difference information can be useful as a reference in 
simulation by which the real receiving waveforms can be compared. 

Since it is difficult to measure the exact physical angle of the incident wave­
form, in this experiment, we fixed the position of two transmitting antennas as 
in Figure 3.10 and rotated the receiving array to estimate the relative angle. In 
the receiving array position, the angle between 2 transmitting antennas is 26°5' 
measured with a laser angle measurer. Another issue is that, in order to simphfy 
the representation of the algorithm, most DOA algorithms are written with an­
alytic representation. However, in practice, the Infiniium 54845A only acquires 
data in real part. One solution is to modify the DOA algorithms to real value 
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Figure 3.12: The phase difference caused by cables 

format; another is to use Hilbert transform to convert the real series to analytic 
signal, which was adopted by our experiment. 

Before transmitting and receiving signals, we fed the calibrated data in Fig­
ure 3.11 into the SAGE algorithm. The expected value 0° was obtained which 
partly proved the correctness of the algorithm. Next we fed the data which were 
generated with the cafibrated data by introducing a point delay. Since the sam­
ple rate is 8 times as fast as the frequency of the 500 MHz signal, a point delay 
corresponds to 45° phase delay and to 14°5' incident angle. The SAGE algorithm 
estimates successfully 14°. 

In experirnent 1, the receiving array was placed at a perpendicular angle with 
the long axis of the chamber shown in Figure 3.10. So, the receiving angles 
are roughly —13° and 13° respectively. At first, only a source signal Txl was 
transmitted and the received waveforms are shown in Figure 3.13. Then Txl was 
disconnected and another source signal Tx2 was transmitted and the received 
waveforms are shown in Figure 3.14. Theoretically only phase differences exist 
between equal power receiving waveforms. However, from Figure 3.13 and 3.14, 
there are amplitude changes of receiving signals because of unknown factors. At 
the third step, two sources were transmitted and the received waveforms are 
shown in Figure 3.15. 
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Figure 3.13: The received waveforms when Tx 1 transmitted 
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Figure 3.14: The receiving waveforms when the Tx 2 transmitted 
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Figure 3.15: The receiving wavefornis when both T x l and Tx 2 transmitted 

Transmitters Estimation of incident angles 
Tx 1 13° 
Tx 2 - 1 2 ° 

Tx 1 and Tx 2 11° and -19° 

Table 3.2: Estimation of incident angles in experiment 1 

We use the SAGE algorithm to estimate the incident angles and verify its 
correction. Estimations are listed in Table 3.2. In the signal radio source sce­
nario, estimations are more accurate than the counterpart estimations of two 
source signals. The SAGE algorithm gave estimated directions 11° and - 1 9 ° for 
Tx 1 and Tx 2. The 30° difference between two estimated sources has around 
4° deviation with physical angle 26°5'. In experiment 2, the receiving array was 
clockwise rotated 15° - 25°; and in experiment 3, the receiving array was anti­
clockwise rotated 15° - 25°. Then we transmitted the same signals as described 
in experiment 1 and the results are shown in Table 3.3 and Table 3.4. 

From the results, the SAGE algorithm roughly estimated the directions of 
incident signals in the controlled environment. Although i t is impossible to make 
the exact estimations in statistical signal processing, we can approximate the 
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Transmitters Estimation of incident angles 
T^l ^5° 
Tx 2 - 2 9 ° 

Tx 1 and Tx 2 - 1 ° and -26° 

Table 3.3: Estimation of incident angles in experiment 2 

Transmitters Estimation of iiicident angles 
Tx 1 31° 
Tx 2 1° 

Tx 1 and Tx 2 32° and 4° 

Table 3.4: Estimation of incident angles in the experiment 3 

correct estimation in many ways. For example, in DOA experiments the accuracy 
can be improved by adopting more element antennas in the receiving array or 
increasing the searching steps in the SAGE algorithm. 

3.4 Summary 

The direction estimation of the incident radio wave is a technique to determine 
directions of radio waves, therefore to infer the spectrum occupancy spatially. 
We introduced the hnear array as an example to illustrate the principles of the 
phased array and corresponding array signal processing. From a statistical signal 
processing point of view, the method of maximum hkelihood estimation is con­
sidered to be more robust and yields estimators with good statistical properties. 
SAGE and EM algorithms are used to solve the intractable computation issues of 
the MLE. In our project, simulations and experiments were conducted to verify 
the validity of the algorithrns. 
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Chapter 4 

Statistics and Modelling 

4.1 Occupancy analysis with descriptive Statis­
tics 

Before going into the actual statistical modeling and data analysis, i t is often 
helpful to make some simple characterization of the data in terms of summary 
statistics and graphics. 

The spectrum measurements contained in this thesis can only be used to 
assess the feasibiUty of using alternate services or systems under restricted con­
ditions. Extrapolation of data in this thesis to general spectrum occupancy for 
spectrum sharirig requires consideration of additional factors. These include spec­
trum management regulations, types of missions performed in the bands and new 
spectrum requirements in the development and procurement stages. Also, mea­
surement area, measurement site, and measurement system parameters should 
be considered. 

Highly dynamic bands where occupancy changes rapidly include those used 
by mobile radios (land, marine, and airborne) and airborne radars. These bands 
should be assigned a high priority and measured often during a spectrum survey 
in order to maximize opportunities for signal detection. Bands that are not very 
dynamic in their occupancy such as those occupied by commercial radio and 
television signals or fixed emitters such as air traffic control radars need not be 
observed as often, because the same basic occupancy profile will be generated 
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every time. Such bands should be given a low priority and less measurement 
time. An extreme case is that of the common carrier bands, which are essentially 
non-dynamic. 

Boxplot 4.1 also known as a box-and-whisker diagram [35] is a convenient 
way of graphically depicting groups of numerical data. A boxplot shows a mea­
sure of central location (the median), two measures of dispersion (Qi and 
and inter-quartile range IQR), the skewness (from the orientation of the median 
relative to the quartiles) and potential outliers (marked individually). Boxplots 
are especially useful when comparing two or more sets of data. Figure 4.2 shows 
overall occupancy statistics of eax;h band in the frequency range 100 MHz to 2500 
MHz, where the threshold was set to -100 dBm. The definition of the frequency 
band can be found in the next section. 

Median 

O O 

Qi-l.5IQR 

O 

Figure 4.1: Box-and-whisker diagram 

Figures 4.3 to 4.13 describe spectrum occupancy measurements and statistics 
of each band in the frequency range 100 MHz to 2500 MHz in Durham area during 
the period of 27/06/07 - 03/07/07. The spectrum occupancy in the frequency 
domain is shown in the top panel. This panel shows Average with time, in 
which the power values of each 10 kHz channel are linearly averaged during the 
measurement period, and Maximum, in which the result for any given channel is 
the maximum power ever observed in that channel in 7-day time. Together, the 
Average and Maximum results provide a simple characterization of the temporal 
behavior of a channel. For example, when the results are equal, it suggests a 

^The quantile function is the inverse of the cumulative distribution function. The p-quantile 
is the value with the property that there is probability p of getting a value less than or equal 
to it. Qi is 25-quantile, Q3 is 75-quantile. 
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Figure 4.2: Occupancy statistics of spectrum 
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single transmitter which is always on and which experiences no fading. At the 
other extreme, a large difference between the mean and maximum measurements 
suggests intermittent use of the channel. 

The middle panel shows the band occupancy in the time domain with thresh­
olds -95 dBm and -100 dBm during the measurement period of 27/06/07 -
03/07/07. For example, the occupancy rate of the Air band shown in Figure 
4.3 was calculated in each time point in a given threshold -95 dBm and -100 dBm 
respectively. Total 168 time points for each hour of 7-day were plotted in this 
panel. 

The bottom panel shows the statistical distributions of the white spectrum. 
White spectrum can be defined as the continuous idle spectrum in a given band­
width and in a given threshold which can be used for communications. For 
example, in Figure 4.9, for -100 dBm threshold we can find about 60% white 
band with 1000 kHz bandwidth distributed in the total spectrum, if we divide 
the T V band (470 - 854 MHz) into 384 sub-bands with 1000 kHz bandwidth. 

The statistics table of each figure shows the minimum and rnaximum occu­
pancy rates, P*, 3̂ "̂  quantile values, and mean and median^ values. 

Figure 4.14 shows a snapshot of the occupancy data with Sounder by which 
we monitored the 2.4 GHz spectrum. Figures 4.15 to 4.17 show the occupancy 
statistics in the 2.4 GHz ISM band in the space domain with boxplot. The data 
were taken in the thermo lab, in the school entrance and the corridor of the 
Engineering School, which were labeled as Locations 1-3 respectively. The data 
in Figures 4.15 to 4.17 shows the ISM band occupancy for very short period 
- one second with 250 sweeps. The statistics shows that although the average 
occupancies are less than 30%, the distributions of the data in different locations 
and different channels are positively skewed^. The positive skewness of the data 
indicates the characterization of the transmitting signals is wideband in the 2.4 
GHz ISM band while low average occupancies may be caused by fast moving blue 
tooth signals. 

^ a median is described as the number separating the higher half of a sample, a population, 
or a probability distribution, from the lower half. 

^Positive skewness indicates a distribution with an asymmetric tail extending towards more 
positive values. 
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Figure 4.13: Occupancy statistics of S (lower) Band 
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Figure 4.14: Snapshots of 2.4 GHz ISM band with Sounder 
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Figure 4.17: Channel occupancy statistics in location 3 

The occupancy data range from 1500-2500 MHz were acquired with the mul­
tiple directional antennas. For example Figure 4.18 shows the white band distri­
butions of the 1800-1900 MHz spectrum with different directions. The occupancy 
differences between the different azimuths suggest that the directional occupancy 
is an important parameter for cognitive radio. 
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Figure 4.18: The azimuthal distributions of white band 
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The statistics presented in these figures shows that the spectrum occupancies 
are really spares in the measuring locations and period. The average occupancies 
for most bands are less than 20%. Except the GSM and CDMA communication 
bands, the average occupancies in the 1 GHz to 2.5 GHz spectrum are less than 
5%. The good propagation characteristics of this range of spectrum, in terms of 
propagating distance and data rates, make it an excellent candidate for cognitive 
radio technology. The data shows that, without additional spectrum, there are 
a great amount of spectrum resources for accommodating the cognitive radio 
systems if the current communication regulations could be changed. 

4.2 Time Series Analysis 

4.2.1 model approaches of spectrum occupancy 

Statistical information on spectrum occupancy using graphics and tables provides 
general information by which the spectrum regulators can understand and plan 
channel and band usage as well as confirm the effectiveness of current planning 
and authorization activities. 

However, static statistics intended to quantify the performance of a particular 
band and a particular measuring period usually cannot be extended directly to 
others. An alternative is to develop statistical models for more general estimation 
and prediction. This is the main motivation for modeling spectrum occupancy 
In [50] the mathematical definition of spectrum occupancy on one variable occu­
pancy model was given- The model has been extended in [22] to a three variable 
model with Markov processes. A generalized linear model to regress the con­
gestion value on power amplitude, the number of sunspots and time in the HF 
band was introduced in [43]. We try to improve the model with the time series 
approach in this project. 

Now, we define the frequency band and channels in a given band. A given fre­
quency band is a set of frequencies which is set out for specific radio services. For 
example, the frequency band 87.5 ~ 108 MHz is for FM sound broadcasting and 
470 ~ 590 MHz is for television broadcasting. The physical communication chan­
nel is a channel whose bandwidth is defined by the communication regulations 

95 



4.2 Time Series Analysis 

for transmitting and receiving messages. For instance, in the T V broadcasting 
band each channel occupies 8 MHz bandwidth. However, by this definition the 
bandwidths of the channel vary with different bands, which costs extra overhead 
in our application. In our project, the channel is defined by the bandwidth of the 
IF filter in the receiver. For example, if the bandwidth of the IF filter is set to 10 
kHz, the total number Of channels in the TV broadcasting band 470 ~ 590 MHz 
is (590000-470000)/10=12000. 

We first define the occupancy of a selected channel as a two stage random 
process X{t) [50]. The first state X{t) = 1 is labeled occupied and is defined 
as the event that, during an observation, the signal strength at a monitor re­
ceiver is above a given threshold; the complementary event X{t) = 0 is that the 
signal strength is below this threshold. Figure 4.19 shows the occupancy of a 
given channel, at 2.44 GHz frequency with 3 kHz bandwidth, as a binary random 
process. Because the state of the channel is random, its state at any given mea­
surement time cannot be predicted. However, its state can be described in terms 
of a probability law. 

o 
E ' 

CO 

I 2 

Frequency 2.44 GHz 
Bandwidth 3 kHz 

Time (ms) 

Figure 4.19: Occupancy of a single channel 

Let us briefiy restate the binomial and Bernoulli trials which form the basis 
of mathematical occupancy analysis. At a given time ti, each sample of a given 
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channel can be regarded as a random variable X{ti). Define p[X{ti) = 1] = p, 
terming p the probability of success. We can write 

p[x{u) = X,] = p^ ' ( i - py-^\ X, = 0,1 

where Xi is the observed binary value of the random variable X{ti) [13 . 
In order to estimate the occupancy value of p for a given channel, a number of 

samples X{ti) i = 1,2,... N which can be assumed to have the same underlying 
success probability are taken. Let y be the total number of samples whose de­
tected power exceeds the given threshold in the batch of N samples, and assume 
that the samples are independent of one another. The value of y can be regarded 
as the observed value of a random variable Y, associated with the total number of 
successes out of A''. In view of the coding used for the values taken by each of the 

A'" random variables, X{ti),X{t2), •.. X( t jv) , it follows that y = xi+X2-\ hx/v, 
the sum of the grouped N binary observations, is the observed value of the random 
variable Y = X{ti) +X{t2) H hX(^Ar)- By probabihty theory, the probability 
of y in N observations is given by [41 

p[Y = y] = Clpy{l - p f - y fory = 0,l,...N 

where 
cy = ^-
^ yKN-y)\ 

The random variable Y is said to have a binomial distribution. Therefore, we 
frame our problem to the case of estimating the probability of success in Bernoulli 
trials. 

A straightforward estimate of the occupancy rate pisp = y/N. As the number 
of samples increases the estimated occupancy rate p should be more reliable. 
An informative summary of the extent to which p is reliable as an estimate of 
the true occupancy rate p is an interval estimate, termed a confidence interval A 
confidence interval gives an estimated range of values which is hkely to include 
an unknown population parameter. A confidence interval is associate with a 
particular confidence level, usually 0.90, 0.95 or 0.99. 

Similarly, the occupancy of a selected band at a given time tcan be defined as 
a random variable, which takes values between 0 and 1, that groups each channel 
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in the given band. The band occupancy estimate p equals 

y 

where y denotes the number of channels whose signal strength exceeds a given 
threshold and TV" denotes the total channel number in the band. Hence, the theory 
of Bernoulli trial can be used to analyze the band occupancy. Usually, people 
have more interest in the occupancy variations over a period of time rather than 
at specific times. A straightforward approach for this problem is time series 
analysis. 

4.2.2 stationary time series 

A time series is a sequence of observations which are often spaced at uniform 
time intervals. Time series analysis attempts to understand and identify the 
underlying context of the data points and to make forecasts. 

The purpose of time series analysis is to draw inferences from such series. So, 
we can infer the general occupancy situation without monitoring the spectrum. 
Before doing this, it is necessary to set up a hypothetical probability model to 
represent the occupancy data. Having chosen a model, estimated parameters 
and checked for goodness of fit to the data it then becomes possible to use the 
fitted model to enhance the understanding of the mechanism generating the series. 
Before introducing the ideas of time series analysis, we outline general approaches 
to time series modeling [7]. 

• Plot the series and examine the main feature of the graph, checking in 
particular 

1. a trend 

2. a seasonal component 

3. any apparent sharp changes in behaviour 

4. any outlying observations 

• Remove the trend and seasonal components to get stationary residuals. To 
achieve this goal it may sometimes be necessary to apply a preliminary 
transformation to the data 
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Choose a model to fit the data 

• Forecast the future 

A time series model will generally reflect the fact that observations close 
together in time will be more closely related than observations further apart. In 
addition, time series models will often make use of the natural one-way ordering 
of time so that values in a series for a given time will be expressed as deriving 
in some way from past values. Autocorrelation and partial autocorrelation play 
important roles in time series analysis which partly and fully specified time series 
model appearance. 

Now, we take the occupancy of the GSM down-link band range from 925-
960 MHz as an example to introduce the time series analysis of occupancy data. 
Data were collected from 14:00 27/06/2007 to 13:00 03/07/2007 using a 10 kHz 
bandwidth with 1 hour interval with the spectrum analyzer. The total 35 MHz 
spectrum can be divided into 3500 channels with 10 kHz bandwidth. If we set the 
threshold as -100 dBm, the grouped channel occupancy data of the GSM down­
link band is shown in Figure 4.20. The data show that low occupancy occurs 

14:00 27/06/07 - 13:00 03/07/07 

72 96 

Time (hour) 

120 144 168 

Figure 4.20: Time series of GSM band occupancy 

on weekends. The 24 hour seasonal pattern is caused by the peak traffic of each 
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day in 10:00-18:00 local time; the flat off-peak occupancy is caused by signalhng 
traflic [59; 60; 61 . 

An important and frequently used notion is stationarity of a time series. 
Loosely speaking, a time series {Xt,t = 0,±1,±2,...} is said to be station­
ary if i t has statistical properties similar to those of the time shifted series 
{Xt+h, t = 0, i b l , ± 2 , . . , } , for each integer h. Restricting attention to those prop­
erties which depend only on the first and second order statistics of {Xt}. 

Let {Xt} be a time series with EXf < oo. The mean function of {Xt} is 

^xit) = E{Xt} 

The autocovariance function of {Xt} is 

7x(s,^) = cov{Xt, Xs) = E{{Xt - fixmXs - fixis))} (4.1) 

for all integer s and t. A process {Xt} is called wide-sense stationarity^ if 

1. fixit) is independent of t. 

2. 7x(s, i) is independent of s and t and only is dependent of (s — t). 

So, to a stationary time series, the autocovariance can be expressed as one variable 
function -yxih) and the autocorrelation function of {Xt} is defined as 

Px(h)^cor{Xt^,,Xt) = ^ ^ 

Inspecting all the occupancy data range from 100-2500 MHz, mOst of the data 
have stationary occupancy and some have a seasonal component with 24 hour pe­
riod. The data may be represented as a realization of the classical decomposition 
model [6 

Xt = mt + St + Zt (4.2) 

where rrit is a slowly changing function known as a trend component, St is a 
function with known period d referred to as a seasonal component and Zt is 
random noise which is stationary. Figure 4.21 shows the trend and seasonal 
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Figure 4.21: The trend and seasonal components of the GSM occupancy series 

components of the GSM occupancy series. The data are obtained by the locally 
weighted scatterplot smoothing approach which details can be found in [35]. 

Our aim is to estimate and extract deterministic cornponents rrit and St in the 
hope that the residual or noise component Zt will turn out to be a stationary 
time series. We can then use the theory of such process to find a satisfactory 
probabilistic model for the process Zt, to analyze its properties, and to use it in 
conjunction with rut and St for purposes of prediction and description of {Xt}. 

If seasonahty is absent in a time series, the trend component can be removed 
by the difference operators, developed extensively by Box and Jenkins [5]. We 
define the difference operator V by 

V X t = Xt - Xt-i = (1 - B)Xt 

where B is the backward shift operator, 

BXt = Xt-i (4.3) 

^Strict statibnarity of a time series {Xt,t = 0, ± 1 , ± 2 , . . . } is defined by the condition that 
{Xi,X2, • • • ,Xn) = {Xi+k,X2+ii, • • • ,Xn+h) that is it has the same joint distributions for all 
integer values of 7i and n > 0. 



4.2 Time Series Analysis 

The power of the operators B and V is defined at B'^{Xt) = Xt-i and V{Xt) = 
V(V^"^(Xt) ) , i > 1 with V°{Xt) = Xf Polynomials in B and V are manipulated 
in precisely the same way as polynomial functions of a real variable. The lag-rf 
difference operator is defined as [6 

VaXt = X t - Xt^, - (1 - B'')X, 

This operator should not be confused with the operator — (l — B)'^. 
Applying the operator to the model (4.2) Xt = mt + St + Zt, where St has 

period d, we obtain 

VdXt = mt- TUt-d + Zt - Zt-d 

which gives a decomposition of the difference V^Xf into a trend component (mj — 
rrit-d) and a noise term {Zt — Zt-d)- The trend irit — rrit-d can be eliminated using 
the methods already described. Figure 4.22 shows the result of applying the 
operator V 2 4 to the GSM band occupancy series shown in Figure 4.20. The 
seasonal component evident in Figure 4.20 is absent from the series {'V24Xt,t = 
24 , . . . , 168). 

144 168 
Time 

Figure 4.22: The difference series {ViiXt^t = 24 , . . . , 168} 
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4.2.3 A R M A model identification 

In statistics, autoregressive moving average (ARMA) models, sometimes called 
Box-Jenkins models, play an important role in time series analysis. Before defin­
ing ARMA models, we first introduce the white noise series. A process {Zt} is 
said to be white noise [6] with zero mean and cr̂  variance, written as 

if and only if {Zt} has zero mean and has covariance function (4.1) given by 

The ARMA(p, q) is defined by [6] as if a process {Xt, t = 0, ± 1 , ± 2 , . . . } is 
stationary and if for every t, 

Xt - (t>iXt-i = Zt + e,Zt-i + • • • + B,Zt-q (4.4) 

where {Zt} ~ WN{Q,<j'^). Equation (4.4) can be written symboUcally in the 
more compact form 

4>{B)Xt = e{B)Zt ^ ^ 0 , ± 1 , ± 2 , . . . 

where 0 and 9 are the p"* and g"' degree polynomials 

(i){x) =1 - (piX - (j)2X^ (i)pX^ 

and 

6{X) = 1 + ^iX + diX^ + • • • + ^gX" 

and B is the the backward shift operator defined in (4.3). The polynomials 0 
and 9 wil l be referred to as the autoregressive and moving average polynomials 
respectively. 

If (j){x) = 1 then (4.4) becomes Xt = 6{B)Zt and the process is said to be 
a moving average process Mk{q) of order q. The solution {Xt} is a stationary 
process since 

i=0 
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and 
f '^'ElZH'^OAMkl, \h\<q 

cov{Xt+h,Xt) = < 

I 0, \h\ > q 

On the other hand, if 9{x) = 1 then (4.4) becomes (j){B)Xt — Zt and the process 
is said to be an autoregressive process of order p AR ( j9) . 

An ARMA{p,q) process {Xt} is causal, or a causal function of {Zt}, if the 

polynomials (p{-) and 6{-) have no common zeros and there exist constants {'1'^} 
such that J2'i^o < oo and 

Xt = f2^i^t-i 0,^1, ±2, 
i=0 

Causality is equivalent to the condition 

= 1 - 01 a; - (t)2x'^ (ppX^ ^ 0 

for all |a;| < 1. Another terminology which will be introduced is mvertibility. 
An ARMA(p, g) process {Xt} is invertible i f polynomials and 9{-) have no 
common zeros and there exist constants {yrj} such that YliLo < and 

Zt=J2^^^t-i t = 0 , ± l , ± 2 , 
i=0 

invertibility is equivalent to the condition [5 

e{x) = i + eix + e2x^ + • • • + e^x'' o 

for all \x\ < 1. Causality and invertibility are properties not of {Xt} alone, but 
rather of the relationship between the two processes {Xt} and {Zt} in the defining 
ARMA{p,q) (4.4). 

We have already discussed the importance of the class of ARMA(p, q) models 
for representing stationary series. However, many empirical time series behave as 
though they have no fixed mean, such as the GSM occupancy time series. Even 
so, they exhibit homogeneity in the sense that apart from the local level, one 
part of the series behaves much like any other part. Models that describe such 
homogeneous non-stationary behavior can be obtained by applying some suitable 
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difference of the process to be stationary. We now consider a generalization of 
the ARMA(p, q) processes, which reduces to ARMA(p, q) models after limited 
differencing. 

If d is a non-negative integer, then {Xt} is said to be an autoregressive in­
tegrated moving average ARIMA(p, d, g) process if Yt = V^Xt = (1 - B^Xt 

is a causal ARMA{p,q) process [6]. This definition means that {Xt} satisfies a 
difference equation of the form 

(l)*{B)Xt = (p{B){l - B^Xt = 6{B)Zt Zt ~ W^iV(0, a^) (4.5) 

where (?!)(•) and 9[-) are polynomials of degrees p and g, respectively, and (j){x) ^ 0 
for |x| < 1. The polynomial 0*(a:) has a zero of order d at a: = 1. The process 
{Xt} is stationary if and only if d = 0, in which case it reduces to an ARMA(p, q) 
process. 

For exaiiiple, after eliminating the seasonal component of the original series, 
the data in Figure 4.22 still have non-stationary components. The correlation in 
the difference series shows that the data points above and below zero are clustered. 
If we apply the first order difference operator = (1 — B)^ to {V24A't,t = 
24 , . . . , 168} and plot the resulting difference series {W^AXt}, we obtain the 
graph shown in Figure 4.23^. The difference series {WZAXI} can be analyzed 
by the stationary ARMA(p, q) theories. 

In practice i t may not be reasonable to assume that the seasonality component 
repeats itself precisely in the same way cycle after cycle. Seasonal ARIMA models 
allow for randomness in the seasonal pattern from one cycle to the next [6'. 
Suppose we tabulate the GSM occupancy data as in Table 4.1. Each column in 
this table may itself be viewed as a reahzation of a time series. Suppose that 
each one of these twenty four time series is generated by the same ARIMA(P, Q) 
model, or more specifically that the series corresponding to the i*^ day, Xj+24t , t = 

0 , 1 , . . . , n — 1, satisfies a difference equation of the form, 

-̂ 1̂+24* — ^ l^ i - l -24 ( t - l ) — . . . — ^pXi+2A{t-P) 

= Uij^2it + © l - ^ i + 2 4 ( t - l ) + . • . + ®QXi+2A{t-Q) 

^There are still seasonal cornpohents in the difference series {VV24Xt}. However, over 
difference will cost the model explicitness. 
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Figure 4.23: The difference series {VV24Xt} 

Day 1 2 •• 24 
1 ^ 1 X2 • • -^24 

2 ^25 X26 • • -^48 

3 ^ 4 9 ^ 5 0 • • -̂ ^72 

n -^^1+24(0-1) -^^2+24(71-1) • • ^24+24 (0 -1) 

Table 4.1: Tabulate the seasonal GSM occupancy date 

for each i = 1,2,..., 24, where {Ui+2it} ~ W^iV(0, afj). Because of the interac­
tion between the two models describing the between-day and the between-hour 
dependence structure, the seasonal ARIMA model can be quite comphcated [5 . 

We have already seen in the GSM occupancy data how differencing the series 
at lag s = 24 is a convenient way of eliminating a seasonal component of period 
s. If we fit an ARMA{p,q) model <j){B)Yt = 9{B)Zt to the differenced series 
Yt = Vs^t = (1 " B^)Xt, then the model for the original series is (j){B){l — 
B')Xt = 9{B)Zt. This is a special case of the general seasonal ARIMA (SARIMA) 
model defined as follows. If d and D are nonnegative integers, then {Xt} is a 
seasonal ARIMA(p, d, q) x (P, D, Q)s process with period s if the differenced series 
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= V ^ V f = (1 - 5)^^(1 - B^)^Xt is a causal ARMA(p, q) process defined by 

(t>{B)^B')Yt = eiB)e{B')Zt Zt-^WN{0,a^) (4.6) 

where 0(3;) = 1 - (p^x - . . . - (ppX^, $(x) = 1 - $ i x - . . . - $pa:^, 9{x) = 
l - 9^x 9^x1 and 0 (x ) = 1 - 0 i x SQX^ [7 . 

If the parameters in the seasonal ARIMA model were known in advance this 
would be a straightforward application of the estimation techniques such as Yule-
Walker algorithm and the innovations algorithm [7]. However, this is usually 
not the case, so appropriate values of the parameters should be identified. Model 
identification methods are rough procedures applied to a set of data to indicate the 
kind of representational model that is worthy of further research. The specific aim 
of the model identification is to obtain some idea of the values of p, d, q, P, D, Q 
and s needed in the seasonal ARIMA model and to obtain initial estimates for the 
parameters. Graphical methods are particularly useful in the model identification 
stage. 

Seasonality and trend are usually detected by inspecting the graph of the se­
ries. However, they are also characterized by autocorrelation functions that are 
slowly decaying and nearly periodic [8]. Figure 4.24 shows the periodic autocorre­
lation function of the GSM band occupancy with 95% confidence limits^. It turns 
out that the tendency for the autocorrelation function does not die out quickly 
which might suggest non-stationarity, as Figure 4.20 shows the seasonality. So 
the difference operation should be appUed to the series. After eliminating the 
seasonal component by applying the V24 operator and applying V on the dif­
ferenced series, Figure 4.25 shows the autocorrelation function of the difference 
series { " ^ 2 4 X 4 } , where the tendency drops fairly rapidly. In Figure 4.25 the 
strong negative autocorrelation coefficient at the seasonal period 24 suggests to 
add a seasonal MA term Q = 1 to the model. Generally in fitting seasonal time 
series models, it is recommended not to mix seasonal AR and seasonal MA terms 
in the same model, and avoid using more than one of either kind. 

^ Under the null hypothesis: 'The autocorrelation value at lag k has no statistical significance 
departed from zero at 95% confidence level.' The definition and descriptions of the statistical 
tests can be found in [41]. 
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Figure 4.24:i The dutocoTTelation iunction of the GSM band occupancy 
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Figure 4.25:i The mtpcorreiation fum of the difference series {W24Xt} 
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The partial autocorrelation function, like the autocorrelation function, dehv-
ers vital information regarding the dependence structure of a stationary process. 
A partial autocorrelation coefficient of order k measures the strength of correla­
tion among pairs of entries in the time series while removing the effects of all 
autocorrelations below order k. The partial autocorrelation a{k) at lag k may be 
regarded as the correlation between Xi and Xk+i, adjusted for the intervening 
observations X2,.. • ,Xk. Partial autocorrelations are useful in identifying the 
order of an autoregfessive model while autocorrelations are useful in finding the 
order of a moving average model. For example, the partial autocorrelation of 
an AR(p) process is zero after lag p-l-1. The partial autocorrelation q ( ) of a 
stationary time series is defined by [5 

a ( l ) = cor(X2,Xi) = p(l) 

and 

a(k) = cor(Xfc+i - Psp{i,x2,-,x>,}Xk+i, Xj - Psp{i,X2,...,x^}Xi) k>2 

k 

where Psp{i,X2,...,Xk}^k+i is defined as the projection Psp{i,X2,...,Xi,}{X) ^ ^ a^Xi. 

Figure 4.26 shows the partial autocorrelation function of the difference series 
{ V V 2 4 ^ t } . 

After a time series has been stationarized by differencing, the next step in 
fitting the model is to determine whether AR or MA terms are needed to correct 
any autocorrelation that remains in the differenced series. By looking at the au­
tocorrelation function and partial autocorrelation function plots of the differenced 
series, orie can roughly identify the numbers of AR and/or MA terms that are 
needed. 

If the partial autocorrelation function displays a sharp cutoff while the auto­
correlation decays more slowly, we say that the stationarized series displays an 
AR signature, meaning that the autocorrelation pattern can be explained more 
easily by adding AR terms than by adding MA terms. In principle, any auto­
correlation pattern can be removed from a stationarized series by adding enough 
autoregressive terms to the forecasting equation, and the partial autocorrelation 
function tells us how many such terms are likely be needed. However, this is not 
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Figure 4.26: The partial autocorrelation function of the difference series 
{vv24xa 

always the simplest way to explain a given pattern of autocorrelation. Sometimes 
it is more efficient to add MA terms instead. The autocorrelation function plays 
the same role for MA terms that the partial autocorrelation function plays for AR 
terms-that is, the autocorrelation function tells us how many MA terms are likely 
to be needed to remove the remaining autocorrelation from the differenced series. 
If the autocorrelation is significant at lag k but not at any higher lags, or if the 
autocorrelation function cuts off at lag k, this indicates that exactly k MA terms 
should be used in the forecasting equation. In the latter case, we say that the 
stationarized series displays a MA signature, meaning that the autocorrelation 
pattern can be explained more easily by adding MA terrns than by adding AR 
terms [42 . 

Inspecting Figures 4.25-4.26, the autocorrelation function of the differenced 
GSM occupancy series displays a sharp cutoff and the lag-1 autocorrelation is 
negative, which suggests adding a MA term to the model. Meanwhile, since 
the lag at which the autocorrelation function cuts off is the indicated number 
of MA terms, the ARIMA(0,1,1) was adopted of the de-seasonal series. The 
signature of seasonal autocorrelation function and seasonal partial autocorrelation 
function behavior are similar to the signature of autocorrelation function and 
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seasonal partial autocorrelation function behavior in ARMA models, except that 
the pattern appears across multiples of lag s=24 in the autocorrelation function 
and partial autocorrelation function. From figures 4.25^4.26, we can identify 
F = 0 and Q — I. So, the GSM occupancy series can be identified as a seasonal 
A R I M A ( 0 , 1 , 1 ) X ( 0 , 1 , 1 ) 2 4 model. 

4.2.4 model estimation and diagnostics 

The identification process having led to a tentative formulation for a model, the 
parameters 0 = ( 0 i , . . . 0p), 0 = (di,.. .6g) and the noise variance need to be 
estimated efficiently. After the parameters have been estimated, the fitted model 
will be subjected to the diagnostic check and test of goodness of fit. 

The estimation of ARMA parameters in practice is not straightforward. Since 
it is not our intention to go too far into the details of estimation algorithms, only 
some important issues and problems are considered. Fortunately, there are many 
computer algorithms and computer programs existing for ARMA estimation. In 
our project, R language [35] has been chosen to analyze the statistical data. 

To estimate the initial values there are a number of alternative preliminary 
estimation procedures. For general cases, good estimators of 0 and 9 can be 
obtained by imagining the data to be observations of a Gaussian time series and 
maximizing the likelihood with respect to the p + q + 1 parameters 0 i , . . . 0p, 
9i,.. .9q and cj^. Suppose that {Xt} is a Gaussian time series with zero rnean 
and autocorrelation function -yxihj) — E{XiXj} defined by (4.1). The likelihood 

of {Xt} is 

L(0, 9, a ' ) = ( 27r ) - - /2 (de t r „ ) - ^ / 2 e x p { - ^ X ' T ' M (4.7) 

where r „ denotes the covariance matrix, r „ = E{XnX'^} — [7(i, j ) ] ^ j = i 
There is no advantage from a forecasting point of view to choose p and q 

arbitrarily large. Fitting a very high order model will generally result in a small 
estimated variance, but when using this over fitted model for forecasting, the 
mean squared error will depend not only on the white noise variance of the fitted 
model but also on errors arising from estimation of the parameters of the model 
5]. For this reason we need to introduce a penalty factor to discourage the 

fitting of models with too many parameters. Although the final selection of the 
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p d q p D Q AICC 
0 1 1 0 1 0 1.655 
0 1 1 0 1 1 0.996 
0 1 1 1 1 1 1.013 
1 1 1 0 1 0 1.666 
1 1 1 0 1 1 1.002 

Table 4.2: The AICC values of different models 

model depends on a variety of goodness criteria, it can be systematized to a 
large degree by the use of the Akaike's information criterion (AIC) and its bias-
corrected Akaikes Information Corrected Criterion (AICC). The AICC Criterion 
6] states that we choose p, q, (pp and dg to minimize 

p + q+1 
AICC = - 2 In L{4>, e, a') + 2n-

n p - q - 2 

where L(0, ^ , c r ^ ) is defined in (4.7). 
Model identification and model estimation can be merged as a procedure 

with computation software. In practice, we enumerated reasonable combinations 
of different parameters p, d,q and P, D,Q and calculated them. By the AICC 
value of each combination, we chose the correct model for our data. For instance. 
Table 4.2 lists part of parameter enumeration and their AICC values. From these, 
the final seasonal A R I M A ( 0 , 1 , 1 ) x ( 0 , 1 , 1 )24 (4.8) model has been chosen as our 
fitting model. 

(1 - 5 ) ( 1 - B'^)Xt = (1 - 0.56S)(1 - 0.985^*)Zt Zt ~ WN{0,0.97) (4.8) 

Seasonal ARIMA(0,1,1) x (0,1, l)s, referred to the airline model, is probably the 
most commonly used seasonal ARIMA model. 

Typically, the goodness of fit of a statistical model to a set of data is judged by 
comparing the observed values with the corresponding predicted values obtained 
from the fitted model. Figure 4.27 shows the fitted series and the observed GSM 
occupancy time series. 
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Figure 4.27: The fitted series and observed occupancy series 

If we assume that the ARIMA(0,1,1) x (0,1,1)24 is the true process generating 
the occupancy series {Xt}, then the residuals defined as [13 

Wt = ^^i^MMl t 
rt-i{4>J) 

n 

where rt_i(0, 9) = E{Xt-i-Xt-i{^, 6)}^, should be a white noise series WN{0, 

The standardized residuals Rt are obtained by dividing Wt by the estimated white 
noise standard deviation .Rt = Wt/a. Figure 4.28 shows the standardized residuals 
of occupancy series after fitting with the ARIMA model. 

The diagnostic check is based on the expected properties of standardized resid­
uals under the assumption which has independent zero mean and variance one 
distribution. Figure 4.28 gives no indication of a nonzero mean or nonconstant 
variance, so on this basis there is no reason to doubt the compatibility of standard­
ized residuals with unit variance white noise. The sample autocorrelation function 
also gives the fitness of the data model. Since for large sample n the sample au­
tocorrelations of white noise are approximately with distribution A''(0,1/n). We 
can therefore test whether or not the observed residuals are consistent with inde­
pendent white noise by examining the sample autocorrelations of the residuals. 
As indicated the estimated residuals will not have precisely normal distribution. 
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Figure 4.28: The standardized residuals after fitting ARIMA model 

Figure 4.29 shows the sample autocorrelation function with bounds ± 1 . 9 6 / v ^ , 
where n — 168. Three of these fall outside the bounds. The modehng processing 
is summarized in Figure 4.30. 
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Figure 4.29; The autocorrelation function of the residuals 

In this section, we introduced how the spectrum occupancy data can be ana­

lyzed by time series analysis approaches. The season why we presented the GSM 
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Figure 4.30: The flowchart of the modeling procedure 

down-link band occupancy data as an example to illustrate is that it consists of 
typical season and trend components. Most occupancy data in our measurement 
bands, we noticed, are stationary which do not vary with time as T V band occu­
pancy data shown in Figure 4.9. With this simpler scenario, the season ARIMA 
model can be degrade to simple ARMA model, or even to AR model. For exam­
ple, the T V band occupancy data in Figure 4.9. can be modeled as AR(1) model 
as 

(1 - 0.635)Xt = Zt Zt ~ iy7V(0,0.1) 

4.3 Generalized Linear Models 

4.3.1 linear models and generalization 

Time series analysis is a good tool for modeling variation in time domain. How­
ever, it fails to incorporate other important parameters, such as power threshold, 
into the models. The Laycock-Gott occupancy model developed by [43] regresses 
the occupancy data to some parameters with generahzed linear model method. As 
time series analysis, regression analysis explains data structure with infinite vari­
ables with different viewpoints. For instance, in our project, the occupancy data 
can be regressed into threshold and time, which takes a general form y = f{s,t), 
where y is occupancy rate, s is the threshold of the power amplifier and t is a 
time variable. .Regression analysis has several possible objectives including [18]: 

• A general description of data structure 
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• Prediction of future observations 

« Assessment of the effect of, or relationship between, explanatory variables 

and the response 

Linear regression analysis is used for explaining or modeling the relationship 
between a single variable y, called the response variable; and one or more predictor 
or explanatory variables, Xi,... ,Xp. When p = 1, it is called simple regression 
and when p > 1 i t is called multiple regression. Generally, linear models take the 
form 

y - /3o + + • • • + f3pXp + e (4.9) 

where Pi are unknown parameters and e is an observational error. In a linear 
model the parameters enter linearly and the predictors themselves do not have to 
be hnear. For example, y = l3\lg{Xi) 02X1 + e is a Hnear model. Although, 
the term linear is often used as almost a syrionym for simplicity. This gives the 
impressiori that linear models can only handle simple data structure. This is far 
from the truth — linear models can easily be expanded and modified to handle 
complex data structures. Nonlinear models are rarely absolutely necessary and 
most often arise from a theory about the relationships between the variables, 
rather than an empirical investigation [18 . 

If we take n nieasurements. We can write the model given in (4.9) as 

yi = (3Q + PiXii -\ + PipXip + S i i=l,...n 

More convenient and compact with a matrix representation, the regression equa­
tion is written as 

y = x p + e 

where y = (y i , . . . , z / „ ) ^ , e = {d,.. • ,£n)^, P = {Pi., • • --.PpY and 

/ 1 Xii ... Xip\ 
1 0:21 . . . X2p 

x = 

y 1 Xnl . . . Xnp J 

The regression model, y = XP + e, partitions the response into a systematic 

component XP and a random component e. We would like to choose P so that 
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the systematic part explains as much of the response as possible. Geometrically 
speaking, the response lies in n-dimensional space, while P is in a p-dimensional 
space, modeling data is to find P so that XP is as close to y as possible, which is 
represented geometrically in Figure 4.31 [18]. P is the best estimate of p within 
the model space and the response predicted by the model is y — Xp. The 
difference between the actual response and the predicted response is denoted by 
i which is called residuals. Thus if our model is successful, the structure in the 
data should be expressed in the p dimension, leaving just random variations in 
the residuals which lie in an n — p dimensional space. 

Fitted in p dimensions 

Space spanned by X 

Figure 4.31: Geometrical representation of estimation P [18 

Two of the most commonly used approaches to statistical estimation of pa­
rameters are the method of maximum likelihood and the method of least squares. 
Least squares corresponds to the maximum likehhood criterion if the experimen­
tal errors have a normal distribution. The maximum hkelihood estimation will be 
discussed in the last chapter. The least squares estimate of /?, called P minimizes 

j2^]=e^e = {y-Xpf{y-XP) 
1=1 

Differentiating with respect to P and setting to zero, we find that P satisfies 
the normal equations X'^XP = X'^y. Provide for X'^X is invertible, P = 
{X^X)-'X^y and 

y^xp-^xix'^xy'x^y 
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Defining the hat-matrix H = X{X'^X)~^X'^, which is the orthogonal projection 
of J/ onto the space spanned hy X,y = Hy. The residuals are e = y~y = {I—H)y. 
The residual sum of squares (RSS) is e^e = y'^{I =- H)y [62]. Assuming vare = 
a^J, P is unbiased and has variance We find that E^e = cr^(n - p ) , 
which suggests the estimator 

. 2 e^e RSS 
{n -p) (n - p) 

where n — p is the degree of freedom of the model. 
For a generalized liiiear model we consider a parameter set j3i,. •. ,Pp such 

that a linear combination of the /?'s is equal to some function of the expected 
value / i j = EYi of the response variable Yi 

where ^ is a monotone, differentiable function called the link function; Xi = 
( l , X i , . . . , Xp); and the distribution of each Yi is of exponential family of distri­
butions f{y]9) = exp[a(y)b(^) + c(^) + d{y)\ [36]. For example, the binomial 
distribution function 

f{y;e) = ci9\i-er-y 

can be rewritten as 

/ (y ; d) = exp[y log ^ - y log(l - ^) + n log(l - 6*) + log CI 

where a{y) = y, b{e) = log ^ , c(^) = n log( l - 9) and d{y) = l o g Q . 

4.3.2 logistic regression model 

For binomial occupancy data, the number of channels Yi at a given i ' ' ' time, 
i = 1, 2, • • • ,n , whose signal amplitude is above a certain threshold, is a bino­
mial distribution with parameters iV and success probability Pi, where A'' is the 
total number of channels in a given band. Rather than directly modeling the de­
pendence of EYi on explanatory variables, it is more natural to explore how the 
occupancy rate pi = EYi/N can be described by observing explanatory variables 
[13]. 
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A model often include terms corresponding to qualitative variables known as 
factors, which can take a limited set of values known as the level of the factor [13 . 
For example, while the power amplitude of the radio signal is a continuous variable 
range from minus infinity to infinity, the threshold of the occupancy level is a 
qualitative variable which takes a Hmited factor such as < —105, < —100, < —95 
and < —90 dBm. For qualitative explanatory variables there is a parameter to 
represent each level of a factor. The corresponding elements of X are chosen to 
exclude or include the appropriate parameters for each observation. They are 
called dummy variables or indicator variables if only zeros and ones are used for 
X. 

It is often necessary to include mixed terms in a model which corresponds 
to the situation where the coefficient of an explanatory variable varies according 
to the levels of some factor. Models that contain terms that are combinations 
of factors and variables are encountered when comparing regression relationships 
between groups of individuals. To include such a term, indicator variables Tj for 
the factor T are defined, and each of these is then multiplied by the value of X. 
The explanatory variables formed from the products, T j X , have coefficients Pj. 
Taking the occupancy data as an illustration, we want to know the relationship 
between occupancy rate Y and time t under 4 different thresholds. At each 
threshold, we took 168 observations. This is achieved by defining 4 indicator 
variables, T105, TlOO, T95 and T90 as in Table 4.3. 

One approach to model the binomial occupancy data is to adopt the linear 
model 

Pi= Po + PlXu+P2X2i + ...+PkXki (4.10) 

and apply the method of least squares to obtain the parameters. For binomial 
occupancy data, there are a number of disadvantages to this approach [13]. One 
is that since the assumption of a normally distributed response variable cannot 
be made, the theory associated with fitting linear models to normal data is no 
longer valid. When the channel number A'' is reasonably large, this will not be 
a severe restriction, in view of the fact that the binomial distribution tends to 
normality for large sample size. 

Another difficult is that there is the risk that the linear model given in (4.10) 
may give estimated values of occupancy which lie outside the range 0-1. The 
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Occupancy Y T105 TlOO T95 T90 T105-t TlOO-t T95-t TQOt 

yi 1 0 0 0 0 0 0 

2/168 1 0 0 0 ^168 0 0 0 

2/169 0 1 0 0 0 1̂ 0 0 

2/336 0 0 0 0 0 ^168 0 0 

2/337 0 0 1 0 0 0 ti 0 

2/672 0 0 0 1 0 0 0 ^168 

Table 4.3: Data set with dummy variables 

logistic transformation or logit of a success probability 9 is log(^/ ( l — B)), which 
is written as logit{9) [36]. Figure 4.32 shows the logistic transformation. The 
logistic transformation is essentially hnear between 9 = 0.2 and 9 = 0.8, but 
outside this range it becomes markedly nonhnear. As 9 0, logit{9) —̂- ̂ oo; as 
9^1, logit{9) —> oo. Since a significant fraction of the experimental occupancy 
values close to 0, by logistic transformation this risk can be overcome. 

0.0 0.2 0.4 0.6 0.8 

value 

1.0 

Figure 4.32: The logistic transformation 
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While the least squares method is usually uesd in fitting linear regression mod­
els, the method of maximum likelihood is the most widely used general method 
of estimation. The advantage of this niethod of estimation is its general ap-
phcations. However, since exact analj^ic solutions of the resulting estimators 
are often difficult to obtain, iteration methods are widely used. W i t h modern 
statistics softwares such as R, the parameter estimation is simplified greatly and 
researchers can focus on the model specifications. 

Following the estimation of the P parameters in a logistic linear model, the 
next step is to make inference with testing hypotheses and obtaining confidence 
intervals, which need the knowledge of data distributions. In general, the problem 
of finding exact distributions is intractable and we rely instead on large sample 
asymptotic results. The rigorous development of these results requires careful 
attention to various regularity conditions. For independent observiations from 
distributions which belong to the exponential family the necessary conditions are 
indeed satisfied. From the standard error of /?, 100(1 — a)% confidence limits for 
the corresponding true value, /3± Za/2se{P), where Za/2 is the upper a/2 point of 
the standard normal distribution and se(/3) is the standard error of an estimate 
17]. These interval estimates throw light on the likely range of values of the 

parameters. 

One common question in inference is can one particular predictor be dropped 
from the model. That corresponds to the null hypothesis-^ which would be Ho • 
Pi = 0. For example, if we assume that the dependence of occupancy on time 
predictor t in logistic regression model is the same in the different thresholds, there 
are only differences in the intersection. In other words, in the occupancy model 
only one predictor t is necessary and other cross products can be dropped. These 
statistics are often referred to as t-values, but in the analysis of binomial data 
they are generally taken to a normal distribution rather than a ^-distribution and 
so are more appropriately referred to as z-values [13]. More specifically, under the 
null hypothesis that P = 0, the ratio P/se{P) has a standard normal distribution. 
For example, Figure 4.34 shows the output of z-test for logistic regression model. 

^In statistics, a null hypothesis Hq is a hypothesis set up to be nulhfied or refuted in order 
to support an alternative hypothesis. 
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After fit t ing a model to a set of data, it is natural to enquire about the extent 

to which the fitted values of the response variable under the model compare with 

the observed values. This aspect of the adequacy of a model is widely referred to 

as goodness of fit. There are a number of summary statistics that measure the 

discrepancy between observed binomial proportions and fitted proportions under 

an assumed model. Of these, the most widely used is based on the hkelihood 

function for the assumed model. When the unknown parameters are set equal to 

their maximum likehhood estirnations, the values of the likehhood can therefore 

be used to summarize the extent to which the sample data are fitted by the 

current model. This is the maximized likelihood under current model, denoted 

Lc- The statistics can not be used on their own to assess the lack of fit of the 

current model since they are not independent of the riumber of observations [18 . 

I t is therefore necessary to compare the current model with an alterative baseline 

model for the same data. The model is termed the full or saturated model denoted 

Lf which is defined as follow: 

• the full model is a generahzed linear model using the same distribution as 
the current model 

• the number of parameters in the full model is equal to the total number of 
observations. 

The full model is not useful on its own since i t does not provide a simpler summary 

of the data than the individual observations themselves. However, by comparing 

Lf with Lc, the extent to which the current model adequately represents the data 

can be judged. 

To compare Lj with Lc, we define 

D = -.2\og{LJLf) = -2(logLc - logL^) 

Large values of D indicate that the current model is a poor one; small values 

indicate that Lc is similar with L / and therefore the current model is a good one. 

The statistics of D measures the extent to which the current model deviates from 

the full rhodel and is termed the deviance. 

In order to assess the extent to which an adopted model fits a set of binomial 

data, the distribution of the deviance is needed under the assumption that the 
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model is correct. Since the deviance is the likelihood ratio statistics for comparing 
a current model with the full model, the null distribution of the deviance follows 
directly from a result associated with likehhood ratio testing. I t can be stated 
as asymptotically with n — p distribution, where n is the number of binomial 
observations aiid p is the number of unknown parameters included in the current 
logistic model [17 . 

The main use of devianceis in comparing alternative linear logistic models for 
binomial data, although it can be useful as a measure of model adequacy in some 
circumstance. When one model contains terms that are additional to those in 
another, the two niodels are said to be nested. The difference in deviance between 
two nested models measures the extent to which the additional terms improve 
the fit of the model to the response variable. 

To compare nested models for binomial data, no exact distribution theory 
is available. However, since the deviance for each model has a,n approximately 

distribution, the difference betweeii two deviances will also be approximately 
distributed^ as x^- ANCOVA (analysis of covariance) table is often used to test 
nested model. This term is used for mixed models in which some of the ex­
planatory variables are dummy variables representing factor levels and others are 
continuous measurements. 

Once a model has been fitted to the observed values of a binomial response 
variable, it is essential to check that the fitted model is actually vahd. A thorough 
examination of the extent to which the fitted model provides an appropriate de­
scription of the observed data is a vital aspect of the modeling process. Measures 
of agreement between an observation on a response variable and the corresponding 
fitted value are known as the residuals. These quantities and summary statistics 
derived from them can provide much information about the adequacy of a fitted 
model. Deviance residual 

di = sgn(yi - yi)\/2yilog{^) + a{ni - yi) \og{— ^) 
Vi rii - yi 

^Probability theory states that if D i and D2 have distributions with ni and n2 degree 
of freedom respectively, where ni > n2, and they are independent then their difference also has 
a distribution with ni - n2 degree of freedom. 
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is a widely used residual definition among several different definitions [13]. For 
large sample, the deviance residual have approximately N{0,1) distribution. The 
diagnostics that are derived from the Normal theory, such as Q-Q plots, need to 
be treated with some care as for small counts the approximate distributions can 
deviate from normality even when the rnodel is perfectly adequate. 

4.3.3 model analysis for G S M band occupancy data 

Now, we want to regress the GSM data shown in Figure 4.20 to explanatory 
variables time and power amplitude. Physically, the power amplitude variable is 
a continuous variable. In our project, for computation issue we quantize it to 4 
qualitative variables Si i = 1,2,3,4 corresponding to 4 different thresholds -105, 
-100, -95 and -90 dBm respectively. The data series are shown in Figure 4.33 
which share similar patterns. 

Time (hour) 

Figure 4.33: The occupancy data by different thresholds 

Statistical modeling involves three steps: (1) specifying models; (2) estimat­
ing pararneters; (3) making inferences - that is, testing hypotheses, obtaining 
confidence intervals and assessing the goodness of fit of models. 

The first step is to postulate a model. As the previous analysis, the data in 
Figure 4.23 have trend and seasonal components. Linear relationship logit y^ -
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Pio + Put i = 1,2,3,4 is not enough to correlate the response occupancy rate and 

predictor measurement time. We add a predictor t^ to fit the trend component 

and two predictors sm(27ri/24) and Gos(27ri/24) to fit the periodic component. 

So, the first generalized linear model is expressed as 

logit y^ =p^o-t Put+ pi2t'^ + Pi3sm{—t)+Pa cos{—t) z = 1,2,3,4 (4.11) 

In this model, each threshold has complete independent parameter set of predic­
tors. The report generated by R is shown in Figure 4.34. 

The report starts off with a repeat of the model specification where it has an 

independent parameter set for each threshold. The deviance residuals summarize 

the distribution of residuals. The coefficient table is of primary interest. We get 

estimates of the regression coefficients, standard errors of the same, and tests for 

whether each regression coefficient can be assumed to be zero. Residual deviance 
corresponds to the residual sum of squares in ordinary linear regression analysis 

which is used to estimate the standard deviation about the regression fine. In a 

binomial model, however, the standard deviation of the observations is known, 

and we can therefore use the deviance in a test for model specification. The 

Akaike information criterion (AIC) is a measure of goodness of fit which takes the 

number of fitted parameters into account as mentioned in the previous section. 

The null deviance is the deviance of a model that contains only the intercept. 

The difference between Null deviance and Residual deviance, here 94265 - 1659 

= 92606, which can be used for a joint test of whether any effects are present in 

the model. 

ANCOVA table is usually specified in terms of parameters which axe readily 

interpretable as effects due to factor levels and interactions [35]. The ANCOVA 

table of logit model is shown in Figure 4.35. Notice that the Deviance column 

gives differences between models as variables are added to the model in turn. The 

deviance are approximately -distributed with the stated degree of freedom. 

Since p values of thres : t and thresh : variables are not significant, they 

may be removed from the model. Actually, there is no more information in the 

deviance table 4.35 than in the coefficient table 4.34. In table 4.34, we notice 

that the p values of thresX': t and thresX : t'^ axe not significant either, which 

suggests those variables can be removed from the model. 
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g l m ( f o r m a i a = occ ~ t h r e s * ( t + t2 + s i n . t + c o s . t ) , f a m i l y = b i n o m i a l ) 

Deviance Residuals: 
Min IQ Median 3Q Max 

-6.694843 -0.985693 0.008685 0.959203 4.761398 

C o e f f i c i e n t s : 
Estimate Std. E r r o r z value Pr(>1z1) ( I n t e r c e p t ) -1 . 157e+00 9. 338e- 03 -123. 863 < 2e-16 + * * 

thresT105 4 . 479e-01 1 2 60e-02 35. 539 < 2e-16 * * *• 
thresT90 -8 . 452e-01 1 545e- 02 -54 . 700 < 2e-16 * * * 
thresT95 -4 .27 6e-01 1. 414e- 02 -30. 251 < 2e-16 -k -k -k 

t -2 .247e-03 2 5 64e-04 -8 . 7 66 < 2e-16 * + + 
t 2 1 .143e-05 1. 475e- 06 7 . 752 9. 06e-15 * + + 
s i n . t 1 .226e-01 4 . 4 4 9e-03 27. 549 < 2e-16 + + + 
cos . t 1 .506e-01 4 . 424e- 03 34 . 043 < 2e-16 * * + 

thresTlOS:t 1 .797e-04 3. 456e- 04 0. 520 0 .60314 
thresTSO:t 3 .872e-04 4.. 252e- 04 b. 911 0 .36238 
thresT95 : t 2 .130e-05 3. 886e- 04 0. 055 0 .95629 
thresT105:t2 -6 .112e-07 1 . 986e- 06 -0. 308 0 .75834 
thresT90:t2 -3 .080e-06 2 . 449e- 06 - 1 . 258 0 .20853 
thresT95:t2 -6 .096e-07 2 . 237e- 06 -0. 273 0 .78523 
thre s T l O S : s i n . t 1 .830e-02 5. 986e- 03 3. 057 0 . 00223 * * 
t h r e s T 9 0 : s i n . t -2 .388e-02 7 . 394e- 03 -3. 229 b . 00124 -k k 

thresT95:,sin. t -1 .353e-02 6. 755e- 03 -2 . 003 0 . 04522 k-

thresT105:cos . t 2 .465e-02 5. 953e- 03 4 . 14 2, 3 . 45e-05 •k -k k 

thresT90:cos. t -4 .211e-02 7 . 349e- 03 -5. 730 1 . OOe-08 k k k 

thresT95:cos. t -1 .777e-02 6. 716e- 03 -2. 646 0 .00814 k k 

S i g n i f . codes 0 0. 301 d.oi 0. 35 0.1 \ 

( D i s p e r s i o n parameter f o r b i n o m i a l f a m i l y taken t o be. 1) 

N u l l deviance: 94265 on 671 degrees of freedom 
Residual deviance: 1659 on 652 degrees o f freedom 
AIC: 7137.5 

Number of Fisher Scoring i t e r a t i o n s : 3 

Figure 4.34: The report for logit regression model 
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4.3 Genercdized Linear Models 

Model: b i n o m i a l , l i n k : l o g i t 

Response: occ 

Terms added s e q u e n t i a l l y ( f i r s t t o l a s t ) 

Df Deviance Resld. Df Resid . Dev P ( > I C h i | ) 
NULL 671 94265 
t h r e s 3 85268 668 8997 0 
t: 1 219 667 877 7 1 321e-49 
t 2 1 225 666 8553 9 350e-51 
s i n . t 1 2705 665 5848 0 
cos . t 1 4038 664 1809 0 
t h r e s t 3 3 661 1807 4 278e-01 
t h r e s t 2 3 2 658 1805 1 
t h r e s s i n . t 3 44 655 1760 1 400e-09 
t h r e s cos . t 3 101 652 1659 7 663e-22 

Figure 4.35: The ANCOVA report for logit regression model 

So, the model of (4.11) is modified as 

logityi = pio + Pit + p2t'' + Pi3sm{^t) + P^iCOs{'^t) z = 1,2,3,4 (4.12) 

where each threshold has common parameters for predictor t and predictor t^. 
A brief report of the new rnodel is shown in Figure 4.36. The degree of freedom 
increase from 652 to 658. Although the Residual Deviance increases from 1659 to 
1666, i t can be easily explained by the randomness of data with increased degree 
of freedom. From the AIC criterion, the new model is better than the former. 
Figure 4.36 shows the fitted series and the observed GSM occupancy time series. 

As usual, diagnostics may be based on formal statistical tests, but more fre­
quently involve a less formal evaluation of a graphical representation of certain 
statistics. The residuals obtained after fitting a linear logistic model to an ob­
served set of data form the basis of a large number of diagnostic techniques for 
assessing model adequacy. The residuals can be assessed for fitness using aQ — Q 
plot [35]. This compares the residuals to "ideal" normal observations. We plot 
the sorted residuals against fori = 1 , . . . , n where 3>(-) is the normal 

distribution function and n is the sample number. The straight fine in Figure 
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4.3 Generalized Linear Models 

C a l l : glm(formula = occ ~ t + t2 + thres ( s i n . t + c o s . t ) , f a m i l y = binomia 

C o e f f i c i e n t s : 
( I n t e r c e p t ) 
-1.159e+00 

thresT90 
-8.417e-01 

thresTlOS:sin.t 
1.770e-02 

thresT90:cos.t 
-4.242e-02 

t 
-2.120e-03 

thresT95 
-4.316e-01 

thresT90:sin.t 
-2.286e-02 

thresT95:cos.t 
-1.788e-G2 

t2 
1.061e-05 

s i n . t 
1. 225e-01 

thresT95:sin.t 
- 1 . 288e-02 

thresTlOS 
4.573e-01 

cos . t 
1.507e-01 

thresT105:cos.t 
2.470e-02 

Degrees of Freedom: 671 To t a l ( i . e . N u l l ) ; 
N u l l Deviance: 94260 
Residual Deviance: 1666 AIC: 7132 

658 Residual 

Figure 4.36: The report for logit regression model 

o 

Measured series 
Fitted series 

72 96 

tirne (hour) 

168 

Figure 4.37: Fitted series and observed occupancy series 
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4.4 SummEiry 

4.38 is a line joining the first and third quartiles^. Normal residuals should follow 
this line approximately. Here, the residuals look normal. 

o 

U) 

- 3 - 2 - 1 0 1 2 3 

Theoretical Quantiles 

Figure 4.38: Model check for the logit model 

Although the Q - Q plot was originally designed to examine whether the 
residuals can be taken to be normal distribution, in logit modeling it is more 
useful for diagnosing inadequacy and reveahng the presence of outliers. There 
are no significant outliers in Figure 4.38. 

4.4 Summary 

With graphics and tables we presented the statistical information of the spectrum 
occupancy range from 100-2500 MHz in frequency, time and space domains. 
The low spectrum occupancy statistics shows that there is significant spectrum 
for cognitive radio to provide service, if the current telecommunication policies 
could be modified. Model approaches can be used to describe and predict the 
spectrum occupancy in a large scale. If the cognitive radio base station monitors 

^The quantile function is the inverse of the cumulative distribution function. The p-quantile 
is the value with the property that there is probabihty p of getting a value less than or equal 
to it. The quartile is 25-quantile. 
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4.4 Summary 

the occupancy of a given spectrum, the predicted occupancy messages can tee 
broadcasted to cognitive radio devices, which can save a great deal of scanning 
time for each device. In this chapter,we introduced the methodologies for time 
series analysis and generalized linear model and modeled' the GSM 'occupancy 
data with these two approaches, which fit the measured data well. 
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Chapter 5 

Conclusions 

The primary goal of this project is to survey the spectrum occupancy in frequency, 
time and space (direction) fields for the the feasibility of cognitive radio technol­
ogy. While presenting the spectrum occupancy information with statistics, we 
have focused on modeling approaches. 

First, we briefly summarize the main chapters in this thesis. In Chapter 
2, from the point of view of engineering we described the spectrum monitoring 
systems employed in our project and corresponding techniques to detect radio 
signals and to diminish distortions. The details on control and data acquisition 
programs are also presented in this chapter to show the technique for fast transfer 
of data in a long duty cycle. 

In Chapter 3, we focused on the verification of the high resolution DOA al­
gorithms - EM and SAGE. After we achieved relatively accurate estimates with 
a few degree errors in Matlab simulations, the verifying experiments were con­
ducted in the restrained environment - anechoic chamber. The results of the ex­
periments showed the validation of the algorithms even with simple linear phased 
array, though there are still convergence issues. 

In Chapter 4, we profiled the spectrum occupancy data range from 100 - 2500 
MHz with figures and tables. Considering the limitations of static statistics, we 
introduced model approaches for description and prediction. Time series analysis 
was initially introduced in spectrum occupancy analysis while generalized linear 
models were used as complementarity solutions to model occupancy data into 
other parameters. Both of them achieved reasonable results. 
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Since the rapid development of wireless technologies, traditional spectrum 
monitoring equipment need to be upgraded to catch advanced and sophisticated 
radio signals. In the spectrum occupancy project the channel sounder, which 
can scan 300 MHz spectrum with 4 ms and have 8 input channels for spatial 
occuparicy monitoring, was deployed to detect the fast moving wireless signals. 
For extensive studies, more dedicated equipment and advanced scanning schemes 
need to be developed to determine signal parameters. 

. There are generally positive findings in this project with respect to the prospects 
for cognitive radio. Statistics show that the spectral occupancies are spare indeed. 
Occupancy rates of most baiids in VHF and UHF are less than 10% overall and 
the distribution of the white band indicates that the bands are capable of run­
ning wideband wireless communications. Of course, the current static spectrum 
allocation policies and spectrum management strategies have to be modified to 
rnotivate appUcations of the cognitive radio technology. While this study is to 
identify the low utilizations of bands, long term studies are crucial in developing 
spectrum sharing technologies and for spectrum management. 

However, detailed measurements and analysis intended to quantify the per­
formance of a particular band and a particular measuring period usually cannot 
be extended directly to others. Model approaches try to describe and summarize 
occupancy data with the different perspectives. Time series models were initially 
iiitroduced in this project to describe and predict spectrum occupancy variations 
with time. With this methodology, the cognitive radio base stations or servers 
monitor the spectrum and the predicted occupancy messages can be broadcast 
to cognitive radio devices, which can save a great deal of scanning time for each 
device. Wi th the GSM occupancy data as an example, we introduced another 
modeling method - Generalized linear models, by which the occupancy data can 
be modeled with other parameters such as amplitudes and locations, etc. So, 
spectrum occupancies can be inferred with similar power thresholds and similar 
radio environments. 

In order to improve the spectral efficiency sectorization technique is widely 
adopted by many wireless communications. Spectrum occupancy in spatial (di­
rectional) field becomes an important parameter for future cognitive radio tech­
nology. There are a couple of high resolution direction of arrival algorithms such 
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as MiUSIC,. ESPKIT and EM'. This thesis foGUsed on> verifications of the EMi a'l-
gorithm and the SAGE algorithm in .simulaitions and in anechoic chamber. The 
results:ibasically ishowed that this itechniqiue can ibe used: in the real world. 

Above a:li, radio spectrum occupancies in time, frequency land space domains 
observed in this pf oj'ect an; sparse; indeed. This suggests tha;t cognitive radio,tech­
nologies have igreat prospects in the 'future wireless^ communication: Infrastructure, 
ifiGurrent terecommuriication pohcies and regulations are modified^ 
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