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Abstract 

Evolutionary Structural Optimisation (ESO) has become a well-established 

technique for determining the optimum shape and topology of a structure given a set 

of loads and constraints. The basic ESO concept that the optimum topology design 

evolves by slow removal and addition of material has matured over the last ten years. 

Nevertheless, the development of the method has almost exclusively considered 

finite elements (FE) as the approach for providing stress solutions. 

This thesis presents an ESO approach based on the boundary element method. Non­

uniform rational B-splines (NURBS) are used to define the geometry of the 

component and, since the shape of these splines is governed by a set of control 

points, use can be made of the locations of these control points as design variables. 

The developed algorithm creates internal cavities to accomplish topology changes. 

Cavities are also described by NURBS and so they have similar behaviour to the 

outside boundary. Therefore, both outside and inside are optimised at the same time. 

The optimum topologies evolve allowing cavities to merge between each other and 

to their closest outer boundary. Two-dimensional structural optimisation is 

investigated in detail exploring multi-load case and multi-criteria optimisation. The 

algorithm is also extended to three-dimensional optimisation, in which promising 

preliminary results are obtained. 

It is shown that this approach overcomes some of the drawbacks inherent in 

traditional FE-based approaches, and naturally provides accurate stress solutions on 

smooth boundary representations at each iteration. 
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Chance has conducted our affairs even better than we could either wish or hope for; 
look there, friend Sancho, and behold thirty or forty outrageous giants, with whom I 
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1 
INTRODUCTION 

1.1 Overview 

This thesis is concerned with the development of a computational algorithm to be 

used as a tool in structural optimisation. Firstly in this introductory chapter, a brief 

background to the theoretical features related to the algorithm is presented. The 

theoretical background, to be extended in the forthcoming chapters, allows 

introducing this research work into structural optimisation context. Later in the 

chapter, the aims of this thesis are stated. Finally, the layout of the thesis is 

presented. 

1.2 Background 

Structural optimisation is present in most engineering problems since changes in the 

design would normally imply changes in the performance of the structure. Until 

relatively recently, any design process was driven exclusively by the designer's 

experience. With the development of computers in the 1960s, complex optimisation 

techniques were implemented in the design process, allowing structural optimisation 

to be applied to problems requiring high level of structural performance, for example 

in the aerospace or automotive industries where material savings are crucial. 

1 



Introduction 

Moving from an engineering perspective to a living environment point of view some 

similarities are found between engineering structures and biological structures. In 

nature, organisms adapt to their environment in different ways. As well as species 

evolving through genetics and natural selection according to Darwin's Origin of 

Species, individual organisms react to their particular surroundings. Attempting to 

find a parallel in engineering to one of these phenomena, Mattheck et al. (1990) 

introduced the biological growth method. This method is based on the axiom of 

constant stresses and is derived from analogies observed in the growth of biological 

structures such as trees, bones and horns. This idea is similar to the gradientless 

shape optimisation presented by Schnack and Sporl (1986). Also in this context, 

hard kill (HK) methods (Hinton and Sienz (1995)) are based on finite element (FE) 

models and the solution is achieved iteratively by removing low stressed elements 

from the mesh. Starting from a similar concept, the evolutionary structural 

optimisation (ESO) approach proposed by Xie and Steven (1993) has become a well­

established technique for determining the optimum shape and topology of a structure 

given a set of loads and constraints. The basic ESO concept, i.e. that the optimum 

topology design evolves by slow removal and addition of material, has matured over 

the last ten years. Element sensitivity numbers (Steven et al. (2002)) are calculated 

to consider different physical situations and various optimisation criteria. 

Nevertheless, the development of the method has almost exclusively considered 

finite elements (FE) as the approach for providing stress solutions. 

1.3 Aims 

The aim of this work is to present an alternative approach to ESO by using the 

boundary element method (BEM) to carry out the structural analysis. The geometry 

of the component is defined by non-uniform rational B-splines (NURBS) and, since 

the shape of these splines is governed by a set of control points, use can be made of 

the locations of these control points as design variables. The objective is to overcome 

some of the drawbacks inherent in traditional FE-based approaches, and naturally 

provide accurate stress solutions on smooth boundary representations. The algorithm 

is implemented into a computer program using Visual C++. 

2 



Cha ter 1 

In two-dimensional problems, topology changes are performed by creating internal 

cavities which are also described by NURBS. Since the internal boundary exhibits a 

similar behaviour to the outside boundary both boundaries are optimised at the same 

time. The possibility that small cavities can merge to form bigger cavities is explored 

as a natural evolution of the topology of the structure. Also in the 2D context, multi­

load case and multi-criteria optimisation are investigated. Finally, the basic features 

of the algorithm for 2D optimisation problems are extended to consider 3D structural 

optimisation problems. 

1.4 Outline of the Thesis 

The contents of this thesis have been structured into a total of ten chapters. Chapter 1 

gives a brief background on structural optimisation and explains how this research 

work is relevant to the particular ESO field. The aims of this thesis are presented. 

Chapters 2, 3 and 4 present a more detailed theoretical review of the main features 

investigated in this thesis. Thus, chapter 2 presents a review on structural 

optimisation methods. In chapter 3 the nonuniform rational B-splines (NURBS), 

used in the boundary representation, are detailed. Chapter 4 gives a comprehensive 

explanation of boundary element methods. 

Chapters 5, 6, 7 and 8 show the development of the various algorithms and the 

results obtained. In chapter 5 the gradientless algorithm is developed for 2D shape 

optimisation problems. In chapter 6 the algorithm is applied to 2D topology 

optimisation problems, giving a detailed explanation of the creation and 

manipulation of cavities. Also in this chapter multi-load case problems are 

considered. In chapter 7 multi-criteria problems are investigated by using design 

sensitivity numbers and reanalysis techniques to speed up the process. In chapter 8 

the gradientless algorithm is extended to 3D structural optimisation problems. 

A discussion of the results is presented in chapter 9 and, finally, a summary of the 

thesis is given in chapter 10 showing the conclusions and some implications for 

future research. 

3 



2 
STRUCTURAL OPTIMISATION 

REVIEW 

2.1 Introduction 

Wasiutynski and Brandt (1963), amongst other authors, suggested that the 

beginnings of structural optimisation are dated in the 1 ih century. According to 

them, Galileo was the first who applied the notion of force and the laws of 

mechanics as a foundation for the design of structures. Methods of design in 

Galileo's time consisted of trials and experiments, and evolved then to methods of 

verification of strength such as admissible stresses or strains and the method of 

ultimate load. Perhaps the first analytical work in structural optimisation was by 

Michell (1904), on the basis of previous work by Maxwell (1869). Michell 

developed a design theory for the topology of frame structures that are optimal with 

respect to weight. 

The classical theories and conventional view of optimization are presented by Wilde 

and Beightler (1976). According to their definition, optimisation deals with 

achieving the best in a rational manner, the term the best referring to maximum gain 

or minimum lost of an objective function for a specific environment. The expression 

rational manner can be interpreted as the selection of design variables within the 

limits or constraints placed on the structural behaviour, geometry or other factors. 
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Arora (1989) also refers to the concept of design the best system and by best means 

an efficient, versatile and cost-effective system. 

Three basic features form the design problem - design variables, objective function 

and constraints. As design variables are considered the size of the structural 

components, cross-sectional dimensions, parameters that describe the geometry or 

the mechanical and physical properties of the material. The objective function f(x) or 

objective functions f(x) = [{1 (x), h(x), ... , .fn(x)] (multi-criteria optimisation) are used 

as a measure of the effectiveness of the design. Finally, the constraints are 

restrictions to be satisfied in order to make the design suitable. They can be 

inequality constraints which are the response limits imposed on the design. For 

example the maximum stress or limits on deflection. On the other hand, equality 

constraints are precise requirements to be accomplished for the design to be 

acceptable, such as equilibrium constraints. 

2.2 Mathematical Definition of Optima 

The mathematical formulation of the optimisation problem can be summarised in the 

following general expression where, for a set x of design variables, the optimum is 

achieved by minimising or maximising the objective functionf(x) 

min/max f(x) 

{
g/x)~O j=1, ... ,l 

subject to g k (x) = 0 k = l + 1, ... ,m 

xiL ~xi ~ xiu i = 1, ... ,n 

(2.1) 

where x denotes a vector of n design variables x = [XJ. x2, .. . , xnJ. The equality 

constraints are represented by gk(x) and the inequality constraints by gj(x). The lower 

and upper bounds, xL and xu respectively, are referred as the side constraints and 

they directly limit the region of search for the optimum. 
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The concept of Lagrange multipliers A allows the incorporation of the constraints 

into an extended objective function L(x, A), also know as the augmented Lagrangian 

function 

111 

L(x,A) = f(x)+ LAjgj(x) (2.2) 
j=l 

A very important concept in constrained optimisation is use of Kuhn-Tucker 

conditions. The Kuhn-Tucker necessary conditions state that a solution set x * is an 

optimum if there exist unique Lagrange multipliers 2 *such that 

i = 1, ... ,n 

j = 1, ... ,1 (2.3) 

j = l +1, ... ,m 

Equations (2.3) imply a stationary point in the augmented Lagrangian function while 

constraints are all satisfied. The simultaneous solution of the n+m variables, n from 

the initial design variables and m from the Lagrange multipliers (or dual variables), 

using the n+m equations in (2.3) gives the set of all optimum points in the given 

domain. 

To conclude with the mathematical definition of optima it is also important to 

consider, in spite of the conventional mathematical formulation of equation (2.1), 

that most structures during their service life are subjected to several loading 

conditions and moreover during their assembly, some of their assumed design 

variables are varied due to manufacturing imperfections. In the case of an optimum 

structure, this can have a dangerous effect on its performance. Robust optimisation 

(Su and Renaud (1997)) takes into account the random nature of the imperfections 

and incorporates a safety margin in the formulation of the optimisation problem. 

Therefore, in robust optimisation both the objective functions and the constraints 
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consist of two parts, the conventional function (equation 2.1) and an estimate of the 

variation of the functions in terms of probability functions. 

2.3 Structural Optimisation Concepts 

The concept of structural optimisation can be broadly grouped into discrete 

structures and continuum structures. Hence, different theories have emerged that are 

related to these two groups. Analytical and numerical methods have been applied to 

solve the optimisation process. 

By discrete structures are identified structures such as beams, trusses and grillages. 

The optimisation of discrete structures is known as sizing optimisation and deals 

with the selection of the number and length of members defining the structure or 

definition of cross-sectional dimensions of these members. Research on this field 

started earlier than the one on continuum structures since discrete structures were 

easier to analyse using analytical methods. 

The optimisation of continuum structures emerged with the development of 

computers and gained interest since. Its growth has been parallel to the development 

of the computational methods such as FEM and BEM allowing large-scale 

optimisation problems to be tackled with these modern methods of analysis. 

Methods in the optimisation of continuum structure include shape and topology 

optimisation. Shape optimisation modifies the boundary geometry of the structure to 

improve structural performance. In topology optimisation, the structure is allowed to 

change its topology during the optimisation process. The aim is to remove or 

redistribute material in order to arrive at a structural topology, which is in some 

sense optimal. 

2.4 Solution Methods 

There are two categories in which the solution methods can be divided, optimality 

criteria methods (OC) and mathematical programming (MP). Optimality criteria are 
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the conditions a function must satisfy at its minimum point. MP has a different 

philosophy, generally starting with an estimate of the optimum design for the 

problem and changing it iteratively until optimality conditions are satisfied. 

The concept of optimality criteria as a basis of selection of a minimum-volume 

structure emerged in the early 1960s based on the seminal work of Michell (1904) 

on least weight plane trusses. Early work on Michell's theories led to the 

development of optimal layout theory by Prager (1967) which is the analytical form 

of OC, also in this field Venkayya, Gellatly and Berke (1973) pioneered the discrete 

optimality criteria (DOC) concept which derives from the extremum principles of 

structural mechanics, i.e. a numerical form of OC. Later developments in optimality 

criteria were based in a variational analysis approach so-called continuum-based 

optimality criteria (COC) (Rozvany (1995)) and more recently the introduction of 

the discrete formulation of COC known as discrete continuum optimality criteria 

(DCOC) by Zhou and Rozvany (1993). 

The growth of structural optimisation has been marked by the growth of the finite 

and boundary element methods and the development of computers. Thus, complex 

structures are reduced to simple algebraic equations and easily solved by high-speed 

computers. Numerical search techniques, also referred as mathematical 

programming (MP) (Luenberger (1973)) methods, are applied to solve the 

optimisation problem being attractive to deal with the discrete design variables. A 

complete survey of optimum structural design in the context of mathematical 

programming procedures was presented by Schmit (1981), who was one of the 

precursors of using the features of numerical search techniques to the optimisation 

problem. Later developments include the introduction of dual methods where the 

variables are the Lagrange multipliers. 

In addition to traditional MP and OC methods, new methodologies developed in the 

past twenty years have been successfully applied to both discrete and continuum 

structures. The homogenization method (Bends~ZJe and Kikuchi (1988)) introduces 

the concept of microstructure and composite elements. The parameters of the 

microstructure are the design variables. It uses the theory of homogenization to 

aggregate the macro structural properties to the microstructures which can vary from 
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being a complete void to a solid element. The homogenization methods create 

optimal topologies consisting of solid-empty-porous (SEP) elements with varying 

densities. More recent developments such as the solid isotropic microstructure with 

penalty (SIMP) method (Rozvany et al. (1992)) applies a power-law to the relative 

elemental property, thus varying between 0 and 1 and creating solid-empty (SE) 

topologies by explicitly penalising intermediate densities. Based on the fully­

stressed techniques (Gallagher (1977)), the evolutionary structural optimisation 

(ESO) method (Xie and Steven (1993)) removes and adds elements of the FE mesh, 

according to some given criteria. Finally, heuristic methods such as GAs (Goldberg 

(1989)) have experienced an enormous growth with the implementation of parallel 

computing. 

In the following sections a brief description of the methods presented above is given. 

Firstly, the methods of MP and OC are explained and followed by a description of 

the techniques used in size, shape and topology optimisation. 

2.5 Algorithms 

2.5.1 Mathematical Programming 

Mathematical programming (MP) techniques were first applied to structural 

optimization in the late 1950s. MP methods deal directly with the design variables 

searching iteratively, based on gradient information, for the set of variables that 

minimise or maximise the objective function while satisfying the constraints. The 

incremental procedure starts with an initial estimation of the design variables. After 

that, as implemented in equation (2.4) following Arora's notation (Arora (1989)), a 

gradient-based search direction d and a step magnitude a are applied to improve the 

design from iteration k to the next iteration k+ 1 thus, iteratively driving the objective 

to its optimum value 

(2.4) 
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In general the problem posed in equation (2.4) cannot be solved in a finite number of 

iterations or it can attempt to find only a crude estimate of the minimum which is not 

desirable either. 

In some formulations, associated to every MP is another MP called its dual. The 

original MP is called the primal. If the primal involves n variables and m constraints, 

the dual involves n constraints and m variables. Typically, the solution of either is 

sufficient for readily obtaining solution to the other. 

The following sections explain briefly some of the MP methods and concepts used 

in optimisation; this description is based on Vanderplaats (1989). Also for more 

complete explanations about linear and non-linear mathematical programming see 

Luenberger (1973). 

2.5.1.1 Unconstrained Optimisation 

Unconstrained minimization problems are defined by equation (2.1) when the 

constraints are omitted. Although most engineering problems are not of this form 

they provide a basis for the constrained problem and are therefore used indirectly to 

solve constrained problems. 

One of the best known unconstrained optimisation algorithms is the steepest descent 

method. In this method, the search direction dk is calculated as the negative of the 

gradient of the objective function 

(2.5) 

Although this method is convergent, the rate of convergence cannot be reliable since 

it does not make use of the information on the previous iterations (Arora (1989)). 

The method of conjugate gradients represents a simple modification to the steepest 

descent method but provides improvements in efficiency. This method uses the 

gradient information at the present design point and previous iterations to define the 

search direction as defined by 
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(2.6) 

Most engineering problems are constrained problems of the form of equation (2.1). 

The simplest method is known as sequential unconstrained minimisation technique 

(SUMT). The basic concept of this method is to convert the original problem to an 

unconstrained problem that can be solved by unconstrained optimisation methods. 

SUMT creates a penalty function that increases the objective for any constraint 

violation. Thus, the extended function has the form 

(2.7) 

The penalty parameter R is initially taken as a relatively small value to avoid 

nonlinearity at the start and ({J(x) is minimised as an unconstrained function. Then R 

is increased and the process is repeated until no further improvements can be made 

on the objective function. This method is called the exterior penalty function method 

since the solution is iterated through the infeasible region. The method has the 

advantage of simplicity and reliability but, in contrast, it approaches the optimum 

from the infeasible region and the convergence is slow. Other methods approaching 

to the optimum from the feasible region are refened as interior penalty function 

methods. A more modern sequential unconstrained minimisation method is the 

augmented Lagrange multiplier method. Other applications of SUMT can be fund in 

Schmit and Miura (1976). 

The linear programming (LP) (Luenberger (1973)) method has been used to solve 

linear systems being very efficient and reliable. These methods such as the simplex 

algorithm, are simple to implement however they are confined to applications where 

the objective function and constraints are linear functions of the design variables 

making its use more limited. 
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The non-linear constrained optimisation problem (Luenberger (1973)) can be 

approximated to a linear problem by using sequential linear programming (SLP). 

The basic concept is that the non-linear objective and constraint functions are first 

linearised and then this linear problem is solved by a linear optimiser. Thus, the 

constraints and objective can be approximated as follows 

f(&) = f(xk-1) + Vf(xk-1)0x 

g(&) = g(xk-1) + Vg(xk-1)Sx 
(2.8) 

where Ox= xk- xk-l and the side constraints or also known as the move limits, SxL·~ 

& ~ Sxu. Thus, the optimisation problem is then reduced to a series of linear sub­

problems that can be solved using the simplex algorithm. The move limits prevent 

unlimited moves as well that confine design changes to the feasible regions. Once 

the approximate optimum is found the problem is re-linearised and the process is 

repeated until it converges to the optimum. During the process, the move limits are 

reduced to ensure convergence. This reduction, often done through trial and error, 

makes the SLP problem very dependent on the move limits, showing lack of 

robustness as noted by different authors such as Arora (1989). 

Optimisation problems with quadratic objective functions and linear constraints are 

defined as quadratic programming (QP). This problem is approximated to a linear 

one using the Kuhn-Tucker conditions and the introduction of slack variables. A 

variation of the QP formulation is the more powerful and robust sequential 

quadratic programming (SQP). In SQP the basic concept is to find a search 

direction d that minimises a quadratic approximation to the ·La grange function 

subject to linear approximation to the constraints, this is formulated as 

(2.9) 

The matrix B is initially the identity matrix but it is updated using gradient 

information to approximate the Hessian of the Lagrange function V2L(x,A). The 

solution of these problem yields a set of search directions d and Lagrange multipliers 
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A. These values are then applied to perform a one-dimensional search using an 

exterior penalty formulation. SQP removes the need for a move limits and therefore 

it is more reliable and robust than the SLP. Nevertheless, it is computationally 

expensive involving careful formulation (Vanderplaats (1989)). 

2.5.2 Optimality Criteria Methods 

Optimality criteria (OC) methods are conditions which must be fulfilled by an 

optimal structure. One of the first OC to be considered was the intuitive concept of 

fully stressed design (FSD) (Gallagher (1977)). This concept refers to a design in 

which each structural member sustains a limiting permissible stress under at least 

one of the specified loading conditions. One feature of a FSD is the absence of an 

objective function whose extreme value is sought and therefore, there is no 

assurance that an algorithm for the calculation of an FSD will converge to the 

minimum weight. Moreover, the FSD approach is not unique, and will not always 

correspond to the optimum design for indeterminate structures under multiple load 

conditions. 

OC methods based on mathematically derived conditions have their origins in the 

seminal work of Michell (1904). He applied elementary principles of mechanics and 

energy theorems to formulate a set of criteria for the general layout problem of 

isotropic plane trusses with stress constraints under a single load. Michell postulate 

the principles for the development of the optimal layout theory. The structures 

obtained through the solution of Michell's criteria, so called- Michell structures, for 

one-load case and under stress constraints, are constant strain structures and hence 

fully stressed designs. Moreover, the Michell theorems postulate some important 

concepts such as the term of structural universe as an initial design domain. A 

structural universe is the theoretical union of all possible members at every point in 

the design space. 

2.5.2.1 Optimal Layout Theory and Continuum-Based Optimality Criteria 

In spite of the important contributions of Michell's theorems his work remained 

ignored until the 1950s and 1960s, when his concepts were reconsidered by Hemp 
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(1973) and Prager and Shield (1967). They extended Michell's work to multiple 

loads and proved that Michell structures are optimum compliance structures. The 

systematic exploration of orthogonal nets for the geometry of Michell trusses by 

Hemp (1973) demonstrate that in some problems the optimum truss structure 

consists of infinitesimally spaced trusses. Based on the work initiated by Hemp and 

Prager, new approaches in OC emerged to cover a wider number of loading and 

structural conditions. These modem approaches are commonly referred to 

continuum-based optimality criteria (COC) and optimal layout theory. For a 

complete explanation on COC formulation see Rozvany et al. (1989). 

The optimal layout theory is based on four fundamental concepts (Rozvany et al. 

(1995)): structural universe, continuum-type optimality criteria (COC), adjoint 

structure and a layout criterion function. The adjoint structure, concept introduced 

by Hemp (1973)), is a fictitious system with the same equilibrium and compatibility 

equations as the real structure but with different loads and initial strains. The layout 

criterion function t/f is derived from optimality criteria and normalised such that it 

takes the form 

(for A" :;t: 0) 

(for Ae = 0) 

where Ae is the cross-sectional area of the member or element e. 

(2.10) 

The application of optimal layout theory has been restricted due to the difficulty of 

analytically satisfying the optimality conditions. An area where optimal layout 

theory has been successfully applied is in the design of least-weight grillages 

(Rozvany and Hill (1979)). A review on optimal layout theory can by found for 

example in Rozvany et al. (1995). 

A variation to COC was the use of COC for iterative optimisation of large-scale 

systems in the so-called iterative-COC method (Rozvany et al. (1989)). This method 

implements the finite element analysis (FEA) into the optimisation; however the 

formulations continued to be continuous in nature since the FEA was used as a 
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black-box solver. Iterative-COC was applied to cross-sectional sizing of single 

beams and large truss systems. 

2.5.2.2 Discrete Optimality Criteria 

In spite of the COC methods and optimal layout theory, OC were simultaneously 

being developed for discretised systems as an alternative to the MP methods. This 

development was started in the late 1960s by Berke, Venkayya and Knot (1973). 

The discrete optimality criteria methods (DOC) are computationally more efficient 

than the primal MP allowing the application to large-scale problems. DOC methods 

are based on the idea that for a sufficiently constrained problem, the optimum lies on 

the constraints boundary in the solution space (Woon (2002)). Therefore, significant 

computational savings can be obtained by restricting the search to this sub-space 

through the Lagrange multipliers, also known as the dual variables. In these 

methods, the optimality criteria are defined through the application of the Kuhn­

Tucker conditions as an integral part of the method formulation. 

Another similar method conducting the search in the dual sub-space is known as the 

dual method introduced by Fleury (1979). This method uses the Kuhn-Tucker 

optimality conditions to produce primal-dual relations which are then used to get 

first-order approximations to the objective functions and the constraints. Thus, the 

primarily optimisation problem is replaced by a sequence of explicit sub-problems. 

For a convex primal solution space, the dual sub-space is also convex and has the 

same optimality conditions. Therefore, the solution to the dual problem 

simultaneously solves the primal problem. Examples and details of these methods 

can be found in Fleury (1979) and Fleury and Braibant (1986). 

2.5.2.3 Discrete Continuum-Based Optimality Criteria 

Rozvany and Zhou extended the basic ideas of the iterative-COC to discrete 

structural systems in the discrete continuum-based optimality criteria (DCOC) 

method (Zhou and Rozvany (1993)). The DCOC was formulated in a form suitable 

for incorporation in finite element codes. This allowed the application of the 

algorithm to more general structures. The concept of adjoint structure is still 
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fundamental in DCOC, reflecting the optimality criteria and constraints through 

initial strains and virtual loads. An improvement of DCOC over the iterative-COC 

method is due to the concepts acquired from DOC methods (Zhou and Haftka 

(1995)). Kuhn-Tucker optimality conditions were used to generate optimality criteria 

and an iterative algorithm for FE analysis was developed. The efficiency of DCOC 

lies in the especial feature that the Lagrange multipliers are evaluated explicitly at 

each step of the iterative procedure following the formulation proposed by Fleury 

and Schmit (1980). 

2.5.3 Discussion of the Algorithms 

Mathematical programming methods are in general robust and easy to apply to the 

optimisation problem. However, they present a number of drawbacks. Firstly, they 

depend on derivatives which are often expensive to calculate. Secondly, these 

methods can be inefficient if a good initial solution is not used. Thirdly, the number 

of computational calculations in MP methods is related to the number of design 

variables, and therefore, the computational cost can be prohibitive for large systems 

(Rozvany (1995)). Finally, most MP methods are primarily local searches which 

cannot guarantee a global optimum (Zhou and Haftka (1995)). 

In spite of these drawbacks the capabilities of MP are still well considered in 

structural optimisation. While the global optimum may not be assured this may be 

less important in practical situations when the aim would be to improve the product. 

The key to success lies in the choice of an efficient approximation method and in 

taking the advantages of computer technology. 

In OC methods, design improvements are carried out to satisfy Kuhn-Tucker 

conditions. Unlike MP methods, that update the design variables based on the local 

behaviour of the objective function, OC allow large design modifications. The 

efficiency of OC is related to the number of active constraints which in general are 

less than the number of design variables. Therefore, the combination of large design 

changes and reduced search space allow the application of OC to large-scale 

structural problems. 
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Nevertheless, these advantages are compromised if a large number of active 

constraints are present since they would require careful formulation (Patnaik et al. 

(1980)) and also make the problem highly dependent on the number of constraints 

(Zhou and Haftka (1995)). Moreover, analytical OC methods are less robust than 

MP due to the involved derivations necessary for each structural problem. A 

significant improvement is the implementation of the Kuhn-Tucker optimality 

conditions; however for some problems such as multi-criteria and multidisciplinary 

optimisation the formulations can be much more complex than using MP (Patnaik et 

al. (1980)). 

2.6 Optimisation Methods 

Structural optimisation problems can be solved using many different techniques, 

which can be broadly divided into sizing, shape and topology optimisation. 

2.6.1 Sizing Optimisation 

The structure is defined by a series of sizes and dimensions. Combinations of these 

sizes and dimensions are sought that achieve the optimisation criteria. There are two 

major categories of problems in size optimisation, discrete and continuum structures. 

Optimisation of pin- and rigid-jointed frames (discrete structures) is the area that 

has received most attention over the last forty years. After defining the loads and 

supports of the structure, the sizes of the members are adjusted according to the 

optimisation criteria. Mathematical programming techniques and OC methods have 

been extensively applied for this type of problems. Examples of the application of 

such techniques in Zhou and Rozvany (1996) for OC and in Schmit and Farshi 

(1974) for MP. Recently, more heuristic techniques have emerged also for sizing 

optimisation, such as ESO (Xie and Steven (1997)). 

In sizing optimisation of continuum structures, the structure can be described as a 

series of sizes or parameters. Optimisation techniques are then used to find the 

combination of design variables that give the best result. Methods generally used are 
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mathematical programming and heuristic methods such as ESO (Chu et al. (1997)) 

or genetic algorithms (Osyczka (2002)). 

2.6.2 Shape Optimisation 

In a shape optimisation problem the aim is to improve the shape of a given topology 

by minimising an objective function subjected to a certain equality and inequality 

constraints. Generally, sensitivities to changes in the geometry are evaluated 

together with optimisation techniques to produce optimal structural designs. 

With the development of numerical methods in the late 1960s, the interest in shape 

optimisation has grown considerably. However, there have been some difficulties 

inherent to shape optimisation (Haftka and Grandhi (1986)). The first one is the 

continuously changing boundary, thus it is difficult to ensure that the accuracy of the 

structural analysis remains adequate throughout the design process. Second the 

effort of calculating the sensitivity derivatives can be considerable, especially for 

continuum structures. Nevertheless, these problems are being improved with the fast 

progress of numerical methods and the everyday more powerful computers. 

2.6.2.1 Design Variables 

Early work on shape optimisation was using the coordinates of the boundary nodes 

of the finite element model as design variables (Zienkiewicz and Campbell (1977)). 

In this approach, the number of design variables can be very large and if a 

mathematical programming method is used the computational effort for the 

sensitivity analysis calculations can be too expensive (Haftka and Grandhi (1986)). 

In addition, since the shape changes through the process the initial element mesh 

becomes too distorted to produce reliable results. 

Alternatively, a boundary representation is introduced to overcome these drawbacks. 

Initially, polynomials are used to describe the boundaries and the coefficients of the 

polynomial being the design variables. Francavilla et al. (1975) used polynomials 

and their coefficients as the design variables. A more general approach is to use 
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shape functions to define the boundary with the coefficients being the design 

variables (Kristensen and Madsen (1976)). 

The use of high-order polynomials can reduce the total number of design variables 

but can result in oscillatory boundaries for high-order polynomials due to numerical 

instability with higher order curves (Ding (1986)). Hereby, splines are introduced to 

avoid this problem since they are composed of low-order polynomial pieces 

combined to ensure smoothness. Bezier and B-splines were used by Braibant and 

Fleury (1984). These parametric geometries are defined by a control polygon whose 

vertices (control points) are used as design variables. The high flexibility in terms of 

geometry description results from the appropriate bending functions used. In 

addition, B-splines exhibit local control and therefore, changes in the control point 

position are not propagated throughout the whole spline. 

More recently rational B-splines and more specifically the non-uniform rational B­

splines (NURBS) have been implemented to shape optimisation since there are more 

flexible than the more general B-splines (Schramm and Pilkey (1995)). The 

advantage of rational B-splines comes with the inclusion of the vertex weights into 

the sets of design variables. Thus, the design space is extended to rational functions 

and therefore, the number of possible modifications to the structure is much greater. 

An alternative technique is the use of design elements. In this method introduced by 

Imam (1982) the structure is divided into a few regions or design elements. These 

regions are described by a number of master nodes that control the geometry. These 

master nodes define movement directions of the nodes and their perturbation being 

the design variables. Braibant and Fleury (1984) used B-splines to define the 

boundaries of the design element. A recent application can be found in (Kegl 

(2000)) where three-dimensional design elements are parameterised with Bezier 

surfaces. 

2.6.2.2 Structural Analysis 

The finite element method is the most common numerical method to perform the 

structural analysis. However, the FE model imposed can result in inaccuracies when 
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applied to shape optimisation. Meshing considerations are necessary to prevent 

meshing distortion and inaccuracies due to the boundary changes. An initial solution 

for this problem was to perform manual mesh refinements to the badly distorted 

elements as we can see in Oda and Yamazaki (1977). 

Nevertheless, the manual mesh refinement initially used was followed by the more 

efficient automated mesh generation with adaptive mesh refinement. Using analysis 

error estimators, regions which need further refinement are identified and remeshed 

appropriately to accommodate boundary changes. Work on automated mesh 

generation applied to shape optimisation can be found in Queau and Trompette 

(1980), Botkin (1981) and Botkin (1992), amongst others. The early mesh 

generators used were computationally costly but nowadays, great improvements 

have been made in automated mesh generators reducing very much the 

computational cost and increasing the efficiency (Sienz and Hinton (1997)). 

Alternatively to the FEM, the boundary element method (BEM) (Becker (1992)) is 

also used in shape optimisation. This method is a natural alternative to the FE 

method since only the boundary is discretised and therefore, re-meshing is applied 

exclusively to the boundary. The number of elements is reduced but high accuracy 

and smoothness is ensured in the boundaries when a suitable mesh is used. 

Furthermore, this method is well suited for sensitivity design calculations due to the 

accuracy of the boundary representation. 

Mota Soares et al. (1984) applied the BEM to optimise the shape of shafts using a 

variational approach to sensitivity calculation and linear elements. Kane (Kane 

(1986)) presented a boundary element formulation for plane strain or plane stress 

linear elasticity combined to implicit differentiation of the discretised boundary 

integral equations to perform the design sensitivity analysis. More recently, Zhao 

(1995), Parvizian and Fenner (1997) and Cerrolaza et al. (2000). Also Burcinsky and 

Orantek (2002) have applied the BEM combined with genetic algorithms (GAs) to 

optimisation problems and crack identification. 
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2.6.2.3 Solution Methods 

Most of the methods used for solving shape design problems are related to 

mathematical programming (MP). Applications of these methods combined with 

finite element analysis can be found in Zienkiewicz and Campbell (1977). 

Sequential linear programming was applied by Braibant and Fleury (1984). 

Examples of application of penalty function methods are presented by Queau and 

Trompette (1980). 

Alternatively, optimality criteria methods are used in shape optimisation. Dems and 

Mroz (1978) introduced a general approach that combines optimality criteria and 

variational methods. A similar approach was used by Na et al. (1984). 

Heuristic methods have been also applied to shape optimisation. These methods are 

known as zero order or gradientless methods since they require no sensitivity 

calculations. Oda and Yamazaki (1977) developed an iterative FE-based technique 

for resizing the boundary elements based on their stress ratio. In a similar fashion, 

Schnack and Sporl (1986) introduced another method for the reduction of stress 

concentration on boundaries through the gradual removal of low stress material. The 

biological growth method was introduced by Mattheck and Burkhardt (1990) based 

on the hypothesis that in nature structures such as trees have a constant stress 

distribution over the boundaries. 

2.6.3 Topology Optimisation 

It is of great importance for the development of new products to find the best 

possible topology for given design objectives and constraints at a very early stage of 

the design process. For this reason, over the last decade, substantial research has 

been devoted to the development of topology optimisation techniques. These 

techniques can be divided very roughly into two kinds of topology design processes; 

the material or microstructure technique and the geometrical or macrostructure 

technique. 
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2.6.3.1 Microstructure Approach 

Typically, this problem is represented by an initial design that is discretised with a 

suitable FE mesh. The optimisation consists in determining whether each element in 

the continuum should contain material or not. To this end, the density of material 

within each finite element is used as a design variable defined between the limits 1 

(p = 1, solid material) and 0 (p = 0, void or very weak material) and known as the 1-

0 problem. Such a formulation, however, has been reported to be mesh dependent 

and unstable (Bends~e (1995)) and noting that the true optimum results may contain 

infinitesimal cavities of grey areas (0 < p < 1) which are not accomplished using 1-0 

methods. Therefore, by using relaxation of the state equations composite material 

structures, which include a microstructure, are used. The material density function p, 

taken as design variable, allows the possibility of solid material (p = 1), voids (p = 
0) and grey areas (0 < p < 1) composed of a porous composite model. 

2.6.3.1.1 Homogenisation 

Homogenisation has been implemented in structural optimisation by Bends~e and 

Kikuchi (1988), and Hassani and Hinton (1998) amongst others. This method solves 

the material distribution problem of topology optimisation using the concept of 

microstructure combined with the theory of homogenisation (Sanchez-Palencia 

(1980)) to consider the material properties at a macroscopic level. 

In a microstructure, the base cell, which is the smallest repetitive unit of material, is 

periodically distributed through the domain in the form of small holes or micro­

voids creating a composite material with a varying density. The density function is a 

function of the micro-voids whose geometrical variables are the design variables. 

Typically the composite is orthotropic and the angle of rotation of the directions of 

orthotropy is considered as an additional design variable. 

The formulation transforms the 1-0 topology problem into a sizing problem. Since 

the number of design variables is usually large, the solution methods are often 

generated based on OC. For details of the implementation of OC and variable 

updates see Bends~e (1995). For a given microstructure, the macroscopic properties 

22 



Cha ter 2 

such as the elastic modulus are computed from the microscopic properties of density 

and cell orientation by using the theory of homogenisation. For the mathematics 

involved in this theory see (Sanchez-Palencia (1980)). 

Basically, after choosing the reference domain and finite element discretisation, it is 

assumed that each element consists of a cellular material with a specific 

microstructure. In homogenisation methods there are a number of types of basic unit 

cells. These can be divided into two categories: rank-layered material cells and 

microcells with internal voids. In the rank-layered material cells each cell is 

composed of layers of different materials and voids. In practice, to avoid singularity 

in the stiffness matrix of the structure, instead of voids a very flexible (weak) 

material is used. For example the rank-2 composite is where the first layer of strong 

and weak material is used as the weaker material in a second layering that is 

orthogonal to the first. Studies (Avellaneda (1987)) on the material properties of 

composites of two materials have shown that in plane elasticity problems, the rank-2 

microstructure generates the stiffest composite material. For more practical 

solutions, sub-optimal microstructures can be used in the form of micro-voids within 

each finite element. The most commonly used are square or rectangular micro-voids 

(Eschenauer and Olhoff (2001)). 

Nevertheless, structures optimised based on an optimal microstructure produce 

topologies with the so-called checkerboard pattern, i.e. with large grey or porous 

areas with intermediate densities. Topologies presenting this pattern give the 

structure an artificially high stiffness compared with a topology with uniform 

material distribution, therefore they are impractical in most engineering applications 

as noted by Bends~e (1995) and Sigmund and Petersson (1998). Other numerical 

problems which can occur are the mesh-dependency problem and the local minima 

as reviewed by Sigmund and Petersson (1998). 

2.6.3.1.2 Artificial Materials 

There is another group of methods that solve the material distribution problem by 

sizing directly the elasticity matrix E or other macro scale properties. These methods 

are referred to as using an artificial material since they use a continuous artificial 
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density function 0 :=:; p :=:; 1 which becomes the design variable. Intermediate densities 

are penalised in order to encourage solid-void topologies. Topology optimisation 

applications that use an artificial material model include Maute and Ramm (1995). A 

similar concept of using a penalised artificial material for the generation of solid­

void solutions was derived by Rozvany et al. (1992) in the solid isotropic material 

with penalty (SIMP) method. This method penalises and suppresses in the solution 

porous regions by adding to the material costs the cost of manufacturing of holes. 

Results suggest (Rozvany et al. (1992)) that the topologies obtained through SIMP 

are closer to the analytical optimum than the ones obtained by using square cells. 

Bends0e (1995) noted that artificial material schemes suffer from a non-existence of 

solutions and are mesh dependent. However, Rozvany claimed that their results are 

not highly mesh dependent (Rozvany et al. (1992)). 

2.6.3.2 Macrostructure Approach 

Another approach to the topology optimisation problem is to formulate the problem 

where the basic units are the discrete elements of the FE mesh. Unlike the 

microstructure approach, these methods are heuristic and simple to implement in any 

FE package. However, they are known to be mesh dependent. 

The soft kill (Baumgartner et al. (1992)) strategy simulates adaptive bone 

mineralization in which high stresses lead to a higher degree of mineralization than 

lower stresses. This is accomplished by varying the Young's modulus according to a 

calculated stress distribution. Hereby, elements at higher stress rates have increased 

their Young's modulus and the elements at lower stress states decreased. In this way, 

the inefficient elements increasingly withdraw themselves from carrying the load 

and once they do not contribute significantly, they are removed from the set of 

elements. 

More dramatically, the hard kill (Hinton and Sienz (1995)) strategies change the 

element properties, usually the Young's modulus, to a near zero value representing a 

softening of the material. Thus, while soft kill methods vary their Young's modulus 

according to a linear relationship of the stress measure, the hard kill method uses a 

step function which changes from one to zero (or near zero). In this fashion, in the 
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evolutionary structural optimisation (ESO) method introduced by Xie and Steven 

(1993) the domain is discretised using a uniform rectangular element mesh. 

Elements are then slowly removed based on a selected criterion and the structure 

evolves towards an optimum. For example, for stress considerations, the lightly 

stressed elements are removed. Querin et al. (1998) introduced the bidirectional 

ESO (BESO) that not only removes material in low stressed areas but allows the 

addition of elements to highly stressed areas. Since then, ESO has been broadly 

applied to a wide range of optimisation problems considering stiffness, frequency, 

buckling, and multicriteria optimisation. For a review of applications see Xie and 

Steven (1997), and the latest developments see Steven et al. (2002). 

Similar methods to ESO include the so-called reverse adaptivity (RA) (Reynolds et 

al. (1999)) and evolutionary material translation (EMT) (Reynolds et al. (2001)). In 

RA the low-stressed regions are re-meshed in order to increase the accuracy in these 

regions. This method produces topologies to great detail but for each iteration, two 

FE analyses are required. In the case of the second method presented, the EMT is 

very similar to the BESO. 

A different approach to the previous methods is the bubble method (Eschenauer et 

al. (1994)), which uses an iterative positioning and a hierarchically structured shape 

optimisation of new holes, so-called bubbles. This means that the boundaries of the 

component are taken as parameters. Shape optimisation of the new bubbles and of 

the other variable boundaries of the component is carried out as a parameter 

optimisation. 

More recently, probabilistic methods such as genetic algorithms and simulated 

annealing have emerged as heuristic approaches to be applied to optimisation 

problems. Both algorithms rely on observed phenomena in nature and in their 

implementation they use random selection processes which are guided by 

probabilistic decisions. These methods can find near and good optimum solutions; 

however the computing time to achieve these solutions can be very expensive. 

Genetic algorithms (GAs) were introduced by Holland (1975) in the 1970s and then 

extended by Goldberg (1989). They were designed to mimic the natural evolutionary 
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process, which leads to the survival of the fittest individuals. The structural 

optimisation can be achieved by allowing a population of chromosomes, 

traditionally binary mathematical strings, representing possible solutions to evolve 

through the basic random operations of selection, crossover and mutation towards an 

optimum solution. Since the evolutionary nature of GA they are often termed as 

evolutionary algorithms or evolutionary optimisation methods. However, GA should 

not be confused to the evolutionary methods presented in the following section 2.7. 

GAs have been proven to be robust (Goldberg (1989)), and effective in finding 

global optima. These techniques have been applied in diverse optimisation 

problems. Hajela and Lee (1995) applied GAs to develop optimal topologies of truss 

structures. Kita and Tanie (1999) used GAs to optimise the topology and shape 

problems of continuum structures. The boundary profiles are expressed by spline 

functions. The GA is used to find the number of internal boundaries and the position 

of the control points of the spline functions that result in the optimum topology. 

Burczynski and Orantek (2002) applied evolutionary algorithms to a variety of 

optimisation problems such as truss structures, elastoplastic problems, dynamic 

loading and crack identification. Recent reviews include the book of Osyczka (2002) 

on evolutionary algorithms for single and multicriteria optimisation and S. Y. 

Woon' s thesis (Woon 2002) on GA-based optimisation of continuum structures. 

GAs are excellent when there is a complex design space with multiple local minima 

and also for very rapid assessment of fitness of an individual member of the 

population. However, the question of computational efficiency is the reason why 

these methods have been slow in being adopted for continuum shape and topology 

optimisation. Most FE/BE runs will take too long when considering GA, possibly 

several thousand runs, requiring powerful computers and parallel systems. 

Simulated annealing (Laarhoven and Aarts (1987)) has been developed motivated 

by studies in statistical mechanics of annealing in solids. A low energy state usually 

means a highly ordered state. To accomplish this, the material is first melted, i.e. 

heated to a temperature that permits atomic rearrangements. Then it is cooled slowly 

and as the temperature is reduced the atoms migrate to a more ordered state with 

lower energy. The final degree of order depends on the temperature cooling rate. 
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The analogy between the annealing and the optimisation of functions was 

established by Kirkpatrick et al. (1983) by replacing the energy state with an 

objective function f, and using the design variables for the configurations of the 

particles. Applications of simulated annealing to frame structures with discrete 

valued variables were considered by Balling (1991). Blachut (2003) has applied 

simulated annealing to maximise the external hydrostatic pressure in a barrel shell. 

More recently, to reduce the computational effort, parallel computing has been 

implemented into the algorithm. Examples of this can be found in Leite and Topping 

(1999) amongst others. 

Recently, new methodologies have emerged that not only optimise the design but 

also take into account the process involved during the design. These techniques, 

often identified as design and process optimisation (DPO), include robust design 

optimisation (RDO), reliability based design optimisation (RBDO) and design of 

experiments (DoE) generally, coupled with response surface analysis (RSA). GA 

and simulated annealing are usually implemented together with these methods. 

Robust design optimisation (RDO) (Su and Renaud (1997)) yields a system that 

performs with minimal variability in the response in the case of input variations or 

uncertainties. Graphically, the minimum value of the RDO objective function that 

represents the optimum is as flat as possible rather than a steep valley obtained in 

conventional optimisation. The aim of RDO is not only to minimise or maximise the 

primary objective function but also to minimise the sensitivity of the solution to 

exhibit uncertain deviations from the nominal state. In this sense the RDO can be 

regarded as hi-objective requiring not only that the performance of the solution be 

brought towards a target but also the variation from the target is minimised. Recent 

applications of RDO are found in Messac and Ismail-Yahaya (2002) and Bates et al. 

(2002). 

In the reliability based design optimisation methods (RBDO) (Frangopol and Maute 

(2003)) the purpose is to produce structures which are economic and also reliable by 

introducing safety criteria into the optimisation process in order to consider different 

sources of uncertainty. These uncertainties refer to changes between the final design 

and how it is eventually made, for example using a different material or changing a 
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dimension of the structure. RBDO methods are based on stochastic analysis methods 

and therefore regarded as computationally more expensive compared to 

deterministic approaches. Techniques used here are GA, simulated annealing and 

also Monte-Carlo simulations (Frangopol and Maute (2003)). 

Response surface analysis (RSA) and design of experiments (DoE) (Gambling et al. 

(2001)) are applied to design optimisation generally to reduce the cost of expensive 

analysis. RSA allows to construct approximations using results of the response 

analysis calculated at certain points in the design variable space and thus, 

minimising the number of response evaluations. The selection of the location of the 

points where the response should be evaluated is done using DoE methodologies. 

2. 7 Evolutionary Methods 

This last section is devoted to explain in more detail the optimisation methods in 

which this PhD has its basis. Firstly, the biological growth method is presented, 

followed by hard-kill and self-designing structures methods. Finally, the 

evolutionary structural optimisation method is extensively described and discussed. 

2.7.1 Biological Growth 

Mattheck and Burkhardt (1990) introduce the shape optimisation method called 

CAO (computer aided optimisation). This method is based on the axiom of constant 

stresses derived from analogies observed in the growth of biological structures such 

as trees, bones and horns. He proposes the idea of copying the mechanism of tree 

growth in order to optimise mechanical engineering structures. He found that trees 

adjust their growth in a fashion that the stresses on the surface are equally 

distributed by reducing the stress peaks. This idea is similar to the gradientless shape 

optimisation presented by Schnack and Sporl (1986) which also argues that local 

stress peaks are the main reason for fatigue failure of structures. In CAO, a thermal 

analogy is implemented for the swelling phenomenon, i.e. heating the structure in 

areas of non-admissible stresses and letting the surface expand. The structures 
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obtained from this approach do not show any significant stress peaks and their 

fatigue life is proved to have increased. 

In addition, Baumgartner et al. (1992) observed that in nature, all unnecessary 

weight is avoided and that material decays where it is no longer needed. He 

introduced the so-called soft kill option (SKO). This topology optimisation algorithm 

simulates adaptive bone mineralization in which high stresses lead to a higher 

degree of mineralization than lower stresses; i.e. parts under higher loads will 

become stiffer than areas exposed to lower loads. This is accomplished by varying 

the Young's modulus according to a calculated stress distribution. Thus, elements at 

higher stress rates have their Young's modulus increased and the elements at lower 

stress states have it decreased. Repeating this procedure, the inefficient elements 

increasingly withdraw themselves from carrying the load and once they do not 

contribute significantly, they are removed from the set of elements. 

This heuristic approach, which has been integrated to finite elements, proves that 

combining both methods, SKO followed by CAO, leads to a lightweight design that 

is cost efficient and durable. Nevertheless, the objective function of the method is to 

reduce stress peaks along the optimization boundary/domain and hence primarily 

provides an optimum solution with respect to fatigue and fracture failure. 

2. 7.2 Hard Kill Methods 

The hard kill (HK) (Hinton and Sienz (1995)) methods form the basis for the 

evolutionary structural optimisation methods and self-defining structures. The HK 

methods are based on FE models and the solution is achieved iteratively by 

removing low stressed elements from the mesh. Since it is important to maintain a 

smooth transition between iterations the amount of material removed at each stage is 

small. 

The removal of material from an evolving design is typically done by changing the 

material properties, usually the Young's modulus, to a near zero value, representing 

softening of the material. If the element stress is less than a certain fraction, usually 
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called removal ratio and determined by the user, of the maximum stress, then the 
element is killed by changing its material properties. 

Usually, the number of elements removed at each iteration will stabilise, for a given 
removal ratio, representing a stable evolution for the structure. To promote further 
change the removal rate is increased by a constant amount, typically called the 
evolutionary rate and also decided by the user, which has the effect of increasing the 
threshold at which the elements are killed. Following this process, in all regions of 

the design the stress will eventually be within a certain value of the maximum 
producing afully stressed design. 

HK methods are conceptually very simple and easy to implement, however they 
present some drawbacks, mainly related to mesh dependency such as checker-board 

patterns and jagged edges (Li et al. (2001)). 

2.7.3 Self-Designing Structures 

The so-called self-designing structures approach embraces two methods trying to 
produce low-weight and low-stress structures. These methods are identified as 
evolutionary material translation (EMT) and reverse adaptivity (RA). 

2.7.3.1 Reverse Adaptivity (RA) 

The reverse adaptivity (RA) method developed by Reynolds et al. (1999) is based 
upon a combination of existing adaptive finite element methods and evolutionary 
structural optimisation (ESO) methods. Although it is a HK method it differs in that 
the finite element mesh is substantially modified during evolution. The technique 
works identifying which elements are low stressed. The criterion to identify such 
elements follows a cut-off stress value related to the area removal limit (AR). Then, 
these low-stress elements are subdivided to a calculated target size. The refined 
model is then re-analysed and the elements with a stress value lower than the cut-off 
stress removed. Structural integrity checking algorithms operate after removal of 
material controlling if the loads have become disconnected from the constraints and 
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avoiding checkerboard patterns (see figure 2.1). In such cases the model is restored, 
the cut-off parameter is reduced and the processes repeated. 

A main feature of this method is that RA refines the mesh in areas of interest. Unlike 
conventional adaptivity like h-adaptive meshes, which refines the mesh in the zones 
of high stress, this refinement takes place in zones of low stress and reason why this 

method has been named reverse. In the optimisation literature, adaptivity methods 

have also been applied by many authors such as Maute and Ramm (1995) and 

discussed by Sienz and Hinton (1997), in contrast to RA, they applied techniques 
based on error estimators, instead of exclusively remeshing the low-stress areas. 

jagged edges 

Figure 2.1: Example of a model with checkerboard patterns and jagged edges (Li et 

al. (2001)) 

Another important feature is that the elements are physically removed from the mesh 

of the structure, as opposed to simply being switched off by a decrease in the 

Young's modulus (HK). So that difficulties in handling very large data structures are 

avoided. Another difference with HK is the improved boundary definition. With 
successive decrements of adapted element size, structures evolve with an 
increasingly well-defined shape. However, the disadvantage of the RA method is 
that it requires two analyses for each iteration in contrast to one in the HK method. 

2. 7 .3.2 Evolutionary Material Translation (EMT) 

The evolutionary material translation method (Reynolds et al. (2001)) is based on 

the RA method (presented in the previous section) combined with original methods 
for material addition. Like the HK and SK methods, the main idea of this method is 
to mimic, on the computer, how bones grow. The mechanical simulation uses the 
stress obtained from the FEM to suppress finite elements in the low stressed regions 

31 



Structural Optimisation Review 

and at the location of high stress; finite elements are added to increase the volume of 

the structure. 

The procedure starts with the definition of the initial mesh for the problem together 

with the loads and constraints. Unlike HK or RA methods there is no need for an 

over-large mesh to be defined. An area removal limit (AR) and an area addition 

limit (AA) are used to specified the amount of material to remove and add, 

respectively, as a proportion of the existing area. The process of material removal is 

done following the RA method and after that, a new FE analysis is carried out before 

the process of material addition. Once the optimum is reached a mesh improvement 

can be done, by Laplacian smoothing and mesh relaxation techniques. 

One of the advantages of EMT is that is capable of reducing the maximum stress in 

a structure while reducing the amount of material required. This feature is usually 

impossible to achieve in a HK method, where material is only removed, as discussed 

by Querin et al. (2000). In fact, the EMT method has many similarities to the 

bidirectional evolutionary structural optimisation (BESO) (Querin et al. (2000)). 

2.7.4 Evolutionary Structural Optimisation (ESO) 

The Evolutionary Structural Optimisation method (ESO) was presented by Xie and 

Steven in 1993 (Xie and Steven (1993)) and since then, it has been under continuous 

development. It is based on the simple concept that by slowly removing inefficient 

material from a structure, the residual shape evolves in the direction of making the 

structure better. 

Initially, a topology large enough to cover the area of the final design is divided into 

a finite element mesh. Then, a set of loads and constraints is applied and the stress 

analysis is performed. Henceforth, elements that satisfy the rejection criterion 

shown in the following equation are eliminated 

(2.11) 
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where f3e is the selected criterion, typically the element von Mises stress, f3max is the 

maximum value of the selected criterion, such as the maximum von Mises stress and 

RR is the rejection ratio. 

Such procedure is repeated using the same value of RR until a steady state is 

reached, which means that no more elements are removed. At this stage an evolution 

rate (ER) is introduced and added to RR. Further iterations take place until a new 

steady state is reached. This evolutionary process continues until a desired optimum 

or specific target is reached. 

To help measure the quality of the optimisation methods, Querin et al. (1998) have 

introduced the concept of a performance indicator (PI) that measures how well the 

overall structure is performing against an idealised situation such as afully stressed 

design (FSD). The PI is defined as 

LO"vMeVe 
pI = elements 

FL (2.12) 

where O"vMe is the element von Mises stress, Ve is the element volume, F is a 

representational force and L is a reference length. This is a non-dimensional number 

and while it is problem specific there is often a target value for each problem. 

This simple evolutionary procedure has as natural corollaries the additive 

evolutionary structural optimisation (AESO) (Querin et al. (2000)) and the 

bidirectional evolutionary structural optimisation (BESO) (Querin et al. (1998)) 

which are presented in the following subsections. 

2.7.4.1 Additive Evolutionary Structural Optimisation (AESO) 

The additive evolutionary structural optimisation (AESO) method (Querin et al. 

(2000)) generates optimum structures by an additive technique that starts from a 

minimum possible design space rather than a maximum and evolves by adding 

material rather than removing it. 
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The AESO procedure starts specifying the maximum allowable physical domain 

with marked location of loads and supports. Then, the entire domain is subdivided in 

a finite element mesh and the minimum number of elements that will connect the 

supports to the loads are specified to avoid a singular finite element solution. All 

elements within the design domain not marked as initially connecting elements are 

given a property value of zero, i.e. they are still stored in the data file for the 

structure but they do not physically exist as part of both the structure and the finite 

element solution. After carrying out a FE analysis, the material is added in an 

evolutionary manner, similar to classic ESO. This evolutionary process is achieved 

by using the following driving criterion 

(2.13) 

where /le is the selected criterion such as the element van Mises stress, flmax is the 

maximum value for selected criterion such as the maximum van Mises stress and IR 

is the inclusion ratio which is generally determined from numerical experience. 

If a steady state or local optimum is reached, i.e. when no more elements are added 

to the critical regions, then the IR is modified by the evolutionary rate ER and the 

process continues. The steps of FEA and addition of material are repeated until the 

stopping criterion is achieved such as the objective function has been reduced, the 

design domain has been fully populated or until the performance index (PI) (see 

equation. 2.12) has reached the appropriate target value within a prescribed 

tolerance. 

To conclude, this method adds material where it is most needed, but unlike ESO, 

does not remove any from the inefficient regions. Therefore, a new method that 

combines the properties of AESO together with the removal capabilities of ESO has 

been developed so-called the bidirectional structural optimisation (BESO). 

2.7.4.2 Bidirectional Evolutionary Structural Optimisation (BESO) 

The bidirectional algorithm (Querin et al. (1998)) allows the method to search all 

possible directions which include not only removal of material but also the addition 

of material where needed. 
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The addition and removal processes are the AESO and ESO methods respectively; 
however, when both methods are combined to work together, some of the governing 
equations that drive both methods may be modified for the BESO method to work 
properly. The initial design can be either the entire domain (ESO) or the minimum 
connecting domain between the loads and supports (AESO). After the FEA, 
elements can be removed or added to the structure if they satisfy these equations, 
respectively 

f3e ::; RRjJmax 

f3e ~ /RfJmax 
(2.14) 

where f3e is the selected criterion such as the element von Mises stress, f3max is the 

maximum of the selected criterion such as the maximum von Mises stress, RR is the 
rejection ratio and IR is the inclusion ratio. Similar to ESO and AESO, if a steady 
state is reached, then the RR and IR are increased and decreased, respectively by the 
evolutionary rate ER. This process is repeated until the performance index (PI) 
(equation 2.12) reaches its minimum, or until the criterion limits are reached. 

2.7.4.3 Discussion on ESO 

ESO was originally formulated using the von Mises stress criterion (Xie and Steven 
(1993)). Thus, it optimises the structure by slowly removing elements with low 
stress, approaching towards a fully stressed design (for a single load case). 
Moreover, as previously presented, the method was later developed to add as well as 
to remove elements in the BESO (Querin et al. (1998)). More recently, ESO has 
been extended to consider different physical situations and various optimisation 
criteria, therefore becoming a more practical method. In such cases, the element's 
alteration is determined in terms of its effect on the design objective using the 
concept of element sensitivity. Detailed explanation on the element-based 
sensitivities can be found in (Steven et al. (2002)) covering a broad range of criteria 
and physical situations. ESO developments include the implementation of stiffness 
and displacements (Chu et al. (1997)), multi-criteria problems (Proos et al. (2001)), 
the application to multiple load (Xie and Steven (1997)), general physical field 
problems (Xie and Steven (2000)) such as thermal problems, elastic torsion shafts, 
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incompressible fluid flow, elastostatic field and magnetostatic field and frequency 

and buckling problems (Xie and Steven (1997)). 

ESO presents some drawbacks and weaknesses as has been reported by Zhou and 

Rozvany (2001). These shortcomings are related to the rejection criteria caused if 

the element sensitivity number for the rejected element increases significantly as a 

result of being normalised. The ESO formulation is mesh dependent and 

consequently, the basis for its main disadvantages. Although the definition of the 

initial mesh is fairly simple, usually involving a uniform mesh of quadrilateral (in 

2D) or hexahedral (in 3D) elements, the final solution, due to the fixed nature of the 

mesh, can result in jagged edges and structural interconnections. For example figure 

2.1 represents a boundary whose elements are joined in a chain by their corner 

nodes. It is clear that this is an undesirable situation, since the accuracy of the FE 

results is in doubt. In addition, post-processing, such as spline construction, must be 

carried out to smooth the boundary for manufacturing reasons (Hinton and Sienz 

(1995)). 

The fixed nature of the mesh also leads to the problem that when material is 

removed at each iteration, it has fewer and fewer elements with which to 

approximate the stress solution. An alternative would be to decrease the element size 

as the evolution proceeds to keep the computational efficiency on the results. 

Another drawback is found during the evolution process since it can produce 

disintegration of the structure if excessively large values are used. The removal of 

material can often disconnect the loads from the constraints. The method used by 

Hinton and Sienz (1995) is to impose an upper area limit on material removed. 

Checkerboard patterns refer to the phenomena of alternating presence of void and 

solid elements ordered in a checkerboard fashion. These patterns, which are depicted 

in figure 2.1, are quite common in various fixed grid finite element based structural 

optimisation methods. Such patterns complicate the interpretation of optimal 

material distribution and geometry extraction for manufacturing reasons. The cause 

of checkerboard formation is likely to be related to the finite element 

approximations when using low-order elements and occurring in different design 
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criteria. With the ESO method, material replacement of an element is determined in 

terms of its relative reference level. In this sense the appearance of the checkerboard 

patterns reflects an improper estimation on the elemental evolutionary criterion. 

Such a situation is also caused by the poor numerical behaviour of four-node 

elements (in 2D models). The use of higher order elements, e.g. eight-node 

elements, can significantly reduce the occurrence of checker boarding. However, 

this solution may not be appropriate due to the considerable increase in 

computational time. Kim et al. (2000) developed an algorithm of intelligent cavity 

creation (ICC), in which the checker boarding patterns (with numerous cavities) can 

be eliminated through controlling the number and scale of structural cavities in the 

final topology. Also in the fashion of perimeter control, Yang et al. (2003) presented 

a perimeter control technique incorporated into BESO. Li et al. (2001), in order to 

improve the estimation quality of elemental sensitivity or reference level in low 

order elements, suggested a weighted average algorithm to balance the over or under 

evaluation of the evolution criteria. This intuitive smoothing filter technique does 

not alter the mesh of the finite element model nor increase the degrees of freedom of 

the structural system, and therefore does not affect the computational efficiency. 

Finally, another task pointed out by Querin et al. (1998) is related to the solution 

time, that is, the necessity to make the ESO process faster so that the designer is able 

to get the optimum design within a few seconds of describing the environment. 

Research in this topic has been carried out combining ESO and the fixed grid (FG) 

method (Kim et al. (2000)), instead of FE, to increase the performance without 

losing the accuracy of the results. 
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3 
BOUNDARY REPRESENTATION. 

NONUNIFORM RATIONAL B-SPLINES 

3.1 Overview 

Nonuniform rational B-splines (NURBS) have become the standard for describing 

and modelling curves and surfaces in computer aided design (CAD) and computer 

graphics. They are used to model everything from automobile bodies and aircraft 

components to skis and vacuum cleaners. To fully exploit the flexibility of NURBS 

some knowledge of the mathematics involved is necessary. In this chapter an 

introduction to NURBS is presented to help to understand these parametric curves 

and surfaces. The purpose is to present a clear definition of NURBS and their 

properties since some of them are key features in the research work of this thesis. A 

detailed historical review on NURBS is given in Rogers (2001). Also, for a 

description of parametric curves and surfaces see Farin (1988). 

It is worth saying that each figure and graphical illustration presented in the 

following chapter has been precisely computed using the developed algorithm for 

boundary representation. 
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3.2 Introduction 

This discussion of NURBS curves and surfaces begins with looking at their 

antecedents, specifically Bezier curves (Farin (1988)). Pierre Bezier developed a 

method for shape description using the Bernstein basis or polynomial approximation 

function. Thus, mathematically, a parametric nth-degree Bezier curve is defined by 

n 

C(u) = LBi,n (u)Pi (3.1) 
j;Q 

where the geometric coefficients P; are called the control points, which form the 

control polygon, and the basis or blending functions B;,n are the Bernstein 

polynomials given by 

B. (u) = n! ui (1- u)n-i 
,,n 'I( -')I l. n l . 

(3.2) 

The use of such basis functions gives the Bezier curves, also applicable to Bezier 

surfaces, some important properties which are summarised here (Rogers (2001)) 

• The degree of the polynomial defining the curve segment is one less than the 

number of control points. 

• The first and last points on the curve are coincident with the first and last 

points of the control polygon. 

• The tangent vectors at the ends of the curve have the same direction as the first 

and last polygon spans, respectively. 

• The curve is contained within the convex hull of the control polygon, i.e., 

within the largest convex polygon defined by the control polygon vertices. 

• The curve exhibits the variation-diminishing property. Basically, this means 

that the curve does not oscillate about any straight line more often than the 

control polygon or in other words no straight line has more intersections with 

the curve than with the control polygon. 
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• The curve is invariant under an affine transformation. 

However, curves consisting of just one polynomial or rational segment can be 

inadequate. Their shortcomings are that 

• High degree is required in order to satisfy a large number of constraints and 

also to accurately fit some complex shapes. Moreover, high degree curves are 

more complex to process and are numerically unstable. 

• Single-segment curves are not well-suited to interactive shape design; although 

Bezier curves can be shaped by means of their control points and weights, the 

control is not sufficiently local. 

For all these reasons, an alternative solution can be to u:se curves (surfaces) which 

are piecewise polynomial, ot piecewise rational such as B-splines. 

3.3 B-spline Curves 

B-Splines can be regarded as a generalisation of Bezier curves (Rogers (2001)). 

Similarities between both curves are that they are controlled by a set of points Pi 

(control points) lying on a polygon (control polygon). In general they do not 

necessarily interpolate their endpoints. However, the nonuniform B-spline basis 

functions allow this, passing through the first and last points. A B-Spline curve 

differs from a Bezier curve in that it usually consists of more than one curve 

segment. Each segment is defined and influenced by only a few control points, 

which are the coefficients of the B-Spline basis function polynomials. The degree of 

the curve is independent of the total number of control points. These characteristics 

allow local changes in shape; i.e. changes do not propagate beyond one or only a few 

local segments. 
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3.3.1 Nonrational B-spline Curves 

The most general nonrational B-Spline curves are those defined by nonuniform basis 

functions. That is, the basis function defining one segment may differ from those 

defining another. This allows us to interpolate one or more of the control points, 

depending on the modelling situation. The nonrational p 1h -degree B-spline curve is 

given by (Piegl and Tiller (1997)) 

n 

C(u) ="N. (u)P. L.... l,p I 
(3.3) 

where the Pi are the (n+1) control points and the piecewise polynomials N;,p(u) are 

the lh-degree basis functions defined recursively as 

{
1 if u; ::;; u < ui+I 

N; 0 (u) = . 
· 0 otherwise 

(3.4a) 

_ u- u; ui+p+I - u 
N;,p (u)- Ni,p-I (u) + Ni+I,p-I (u) 

ui+p - ui ui+p+I - ui+I 
(3.4b) 

The u; are knot values which form the knot vector U = {uo, UJ, ... , urn}. They relate the 

parametric variable u to the control points Pi. The parameters determining the 

number of control points, n+ 1, knots, m+ 1, and the degree of the polynomial, p, are 

related by 

n+p+1=m (3.5) 

For nonuniform and nonperiodic B-spline curves, the knot vector is characterised by 

U = {~,up+!'"''um-p-1'8} 
p+! p+! 

(3.6) 

where end knots a and b are repeated with multiplicity p to interpolate the initial and 

final control points. If the entire curve is parameterised over the unit interval, then 

for most practical situations, a = 0 and b = 1. Spacing the knots at equal intervals of 
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the parameter describes a uniform nonrational B-spline curve; otherwise it is 

nonuniform. 

Notice that for equation (3.4b), the value of any expression that has a division by 0 is 

taken to be 0. 

To get a better understanding of these curves the following example is presented. 

The B-spline curve represented has a degree p = 2; i.e. quadratic curve, and six 

control points so that n = 5. The basis functions N;,2 (u) are obtained following 

equations (3.4a) and (3.4b), 0 ~ u ~ 1 and the knot vector is U = {0, 0, 0, 0.25, 0.5, 

0.75, 1, 1, 1 }. This is a nonuniform knot spacing, and the knot values correspond to 

the joints between the curve segments. Because of the recursive nature of the basis 

function equations, we must first compute the N;,o (u) and then the N;,1 (u), strictly in 

that order and according to the knot values U, before computing the N;,2 (u). These 

N;,p (u) functions act like switches, turning on and off the terms that they control. The 

basis functions N;,2 ( u) are plotted in figure 3 .1. 

1 -------------··----------------------, 

0.8 N2,2 Ns,2 

0.6 

0.4 

0.2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

u 

Figure 3.1: Nonuniform B-spline basis functions for n = 5, p = 2 

Applying the basis functions N;,2 (u) depicted in figure 3.1 to a set of six control 

points {Po, Pt. P2, P3, P4, Ps} using equation (3.3) a B-spline curve C(u) is obtained. 

The resulting curve is a composite sequence of four curve segments; i.e. C1(u), 

C2(u), C3(u), C4(u), connected with C1 continuity as shown in figure 3.2. Notice that 

the curve passes through only the first and last points, P0 and Ps, and it is tangent to 
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P1-Po and Ps-P4 at these same points Po and Ps. This piecewise quadratic curve C(u) 

is tangential to each successive side of the control polygon (only for p = 2) at the 

joints between curve segments. These joints are indicated by dot marks in figure 3.2. 

In figure 3. 3 point P2 defining curve C( u) is moved to P' 2 causing C' ( u) to be the 

resulting curve. This local change affects only three segments of the curve C(u). 

From the same figure 3.3, we can notice that only a maximum of three control points 

influence each curve segment. Conversely, a control point can influence the shape of 

at most only three curve segments. This can be generalised; each segment of a B­

spline curve is influenced by only p+ 1 control points, and conversely, each control 

point influences only p+ 1 curve segments. 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 

p2 
C(0.25l.---•\ 

P, ----- \ 
... I 

/ C2(u) \ C(u) 

C4(U) 1/ 
I 

I 

I 
I 

I 

............. ' 
-- p4 

Figure 3.2: Initial B-spline curve 

,.. .... ., p•2 
/ ' 

/ ' ,.... ~ 
/ ~ 

\ 
', 
: C'(u) 

Figure 3.3: Control point P2 moved to P' 2 

' I 

Ps 

Figures 3.4 (a) and 3.4 (b) show the effect on the curve of deleting and inserting, 

respectively, control points. In figure 3.4 (a) P3 is removed from the control polygon, 
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thus the new B-spline C'(u) consists of three curve segments. Conversely, figure 3.4 

(b) shows the new curve C'(u) when p' is inserted into the control polygon. 

Po Po 

(a) (b) 

Figure 3.4: Control point deleted (a). Control point inserted (b) 

The influence of p on the B-Spline shape and the independence of the degree from 

the number of control points is shown in figure 3.5. The three B-splines represented 

are defined by the same control polygon but for different values of p. Case of p = 1, 

the curve is linear and it is coincident with the control polygon. When p = 2, the 

curve is quadratic. It moves away from the intermediate control points and only 

passes through the end points. Indeed, the quadratic curve touches the midpoints in 

the intermediate segments. If p is increased to 3, the cubic curve moves further away 

from the control points. As a conclusion, it can be said that the lower the degree of 

the curve, the closer it resides to the control points. 

Figure 3.5: Linear (p=1), quadratic (p=2) and cubic (p=3) B-splines 

The analytical properties of the B-spline basis functions determine the geometric 

characteristics of the curves. The most significant properties are (Piegl and Tiller 

(1997)) 

44 



• 

• 

• 

Nonnegativity: Ni,p (u);::: 0 

n 

Partition of unity: L Ni,p (u) = 1 
j;Q 

Cha ter 3 

Differentiability: All derivatives of Ni,p(u) exist in the interior of a knot span . 

At a knot Ni,p(u) is p-k times continuously differentiable, with k the multiplicity 

of the knot. Thus increasing the degree increases the continuity and increasing 

knot multiplicity decreases continuity 

• A knot vector of the form U = {8· 8} yields the Bemstein 
p+l p+l 

polynomials of degree p 

As a consequence of the properties of the basis functions, the B-spline curve exhibits 

the following geometric characteristics 

• If n = p and U = { 0, ... , 0, 1, ... , 1} then the B-spline curve C(u) is a Bezier 

curve. 

• Local modification scheme: If a control point Pi is moved, it will affect the 

curve in the interval [ui> ui+p+J), i.e. only in p+ 1 knot spans, following the 

locality property. 

• End point interpolation: C(O) = Po and C(1) = Pn 

• Strong convex hull property: The curve is contained in the convex hull of its 

control polygon; in fact if u E [ui'ui+p+l) and p::; i::; m- p -1, then C(u) lies 

within the convex hull of the control points Pi-p, ... , Pi. 

• Invariance under affine and perspective transformations. 

• The control polygon represents a piecewise linear approximation to the curve; 

such approximation can be improved by knot insertion or degree elevation. 
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Generally, the lower the degree, the closer a B-spline curve follows its control 

polygon. The extreme case is p = 1, for which every point C(u) is just a linear 

interpolation between two control points. In this case, the curve is the control 

polygon. 

• The N;,p(u) functions act like switches, as u moves past a knot, one N;,p(u) and 

thus its corresponding P; switches off, and the next one switches on. 

• The continuity and differentiability of C(u) follow that of the basis functions, 

since the curve is a linear combination of the N;,p(u). Thus, C(u) is infinitely 

differentiable in the interior of knot intervals, and it is at least p-k times 

continuously differentiable at a knot of multiplicity k (see table 3.1). Therefore, 

multiple or repeated knot-vector values, or multiple coincident control points, 

introduce discontinuities (Rogers (2001)). For example, for a cubic curve, a 

double knot defines a join point with curvature discontinuity and a triple knot 

produces a corner point in the curve. 

1 C (connected linear segments) 

2 C (tangent continuous) 

3 C (curvature continuous) 

Table 3.1: Continuity C for different degree p and multiplicity k 

3.3.2 Rational B-spline Curves 

The use of rational parametric curves is advantageous in that they allow us to 

represent conics and circles more precisely than do nonrational parametric curves. 

Rational curves are defined on the basis of homogeneous coordinates. For example 

in 3D, homogeneous coordinates represent three-dimensional points in terms of a 

four-dimensional point with an additional coordinate axis w. If P = (x, y, z) is a point 

in three-dimensional space, the corresponding point in the four-dimensional space is 

ph= (wx, wy, wz, w), where the homogeneous coordinate w > 0. Conversely, a four-
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dimensional point is converted back to a three-dimensional one by dividing the three 

first coordinates by the fourth one. 

Using homogeneous coordinates the equation (3.3) can be modified to define 

rational B-splines, commonly known as NURBS (NonUniform Rational B-Splines). 

Thus a NURBS curve is a vector-valued piecewise rational polynomial function of 

the form (Piegl and Tiller (1997)) 

" 
LN;,p (u)w;P; 

C(u) = -'-i=..:...o ___ _ 

" 
a..:;.u..:;.b (3.7) 

LN;,p(u)w; 
i=O 

where Pi are the control points, the Wi are the so-called weights, and the Ni,p(u) are 

the pth_degree basis functions (equations (3.4a) and (3.4b)) defined on the 

nonperiodic and nonuniform knot vector in equation (3.6). In most cases assuming a 

= 0, b = 1 and Wi > 0. 

Setting 

(3.8) 

The equation (3.7) can be rewritten into the following equivalent form 

" C(u) = "R. (u)P. L... l,p I 
(3.9) 

i=O 

where the Ri,p(u) are the rational basis functions. They are piecewise rational 

functions defined on the unit interval u E [0, 1]. 

Figure 3.6 shows a rational cubic B-spline curve and the effect that changing the 

single weight w3 (associated to P3) has on the curve. Therefore, starting from a set of 

weights all equal to 1; i.e. Wi = 1, the qualitative effect of modifying a single weight, 

w3, is that if w3 increases (decreases), then the curve C(u) moves closer to (further 
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from) P3, and hence the curve is pulled toward (pushed away from) P3. Obviously, 

this observation applies to any weight defining the B-spline curve. 

Figure 3.6: Rational cubic B-spline curves with w3 varying 

Ri,p(u) properties which determine the geometric behaviour of curves are derived 

from equation (3.8) and the corresponding properties of the Ni,p(u). The most 

significant properties are (Piegl and Tiller (1997)) 

• 

• 

• 

• 

• 

Nonnegativity: Ri,p (u);:::: 0 

Locality: Ri,p(u)=Oifue[ui,ui+p+I). In general, Ri-p,p(u), ... , Ri,p(u) are 

nonzero in [ui, Ui+p+I) 

n 

Partition of unity: L Ri,p (u) = 1 
i=O 

R0,p (0) = Rn,p (1) = 1 

Differentiability: In the interior of a knot span, the Ri,p(u) are infinitely 

continuously differentiable if the denominator is different from zero. At a knot 

they are p-k times continuously differentiable where k is the multiplicity of the 

knot 

• If all the weights are equal to one; i.e. wi = 1 for all i, then Ri,p(u) = Ni,p(u) 

meaning that the Ni,p(u) are special cases of the Ri,p(u) 
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• Ri,p (u, wi = 0) = 0 

• Ri,p (u, wi ---7 +=) = 1 

• 

The NURBS curve exhibits similar geometric characteristics to the nonrational B­

splines curves presented in the previous section 3.3.1. Moreover, as a consequence of 

the rational basis functions they exhibit also the following features 

• Bezier and nonrational B-spline curves are special cases of NURBS curves 

• Local approximation: If a control point is moved or a weight is changed, it will 

affect the curve only in p+ 1 knot spans. This property is very important for 

interactive shape design. Using NURBS curves, we can utilise both control 

point movement and weight modification to attain local shape control 

• If a particular weight is set to zero then the corresponding control point has no 

effect at all on the curve 

• {
pi if u E [up ui+p+I) 

If wi ---7 += then C(u) = 
C(u) otherwise 

3.4 B-spline Surfaces 

3.4.1 Nonrational B-spline Surfaces 

The formulation of B-spline surfaces follows a similar pattern to the B-spline curves 

previously presented in section 3.3. Therefore, the same advantages found in B­

spline curves can be extrapolated for the surfaces. Thus, adding another parametric 

variable v forms the general equation of a B-spline surface patch. Such surfaces are 

obtained by taking a bidirectional net of control points, two knot vectors and the 

products of the B-spline basis functions (Piegl and Tiller (1997)) 
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n m 

S(u,v) = ,L,LNi,p(u)Nj,q(v)Pi,j (3.10) 
i=O j=O 

where PiJ are the (n+l)x(m+l) control points which are the vertices of the control 

polygon. The Ni,p(u) and Nj,q(V) are the basis functions calculated from the equations 

(3.4a) and (3.4b); p and q are the degrees of the basis functions polynomials in u and 

v, respectively. The knot vectors are 

(3.11a) 

V ={8•uq+l'''''us-q-J•8} 
qB qB 

(3.1lb) 

where the end knots are repeated with multiplicities p+l and q+l, respectively, and r 

= n+p+l and s = m+q+l. 

The previous equation (3.10) is applied to display a B-spline surface having the 

following parameters: p = 3, q = 3, n = 4, m = 4. As shown in figure 3.7 (a), this 

surface is determined by set of control points, forming the control polyhedron. 

Figure 3.7 (b) shows the resulting nonrational B-spline surface. 

\ 

' ' ' ' \ 

' ' 
~ I>< 

' ' ' ' .. 
(a) (b) 

Figure 3.7: Control points (a). Nonrational B-spline surface (b); p = 3, q = 3, n = 4, 

m=4 
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The properties of the tensor product basis functions follow from the corresponding 

properties of the univariate basis functions listed in the previous section 3.3.1 (Piegl 

and Tiller (1997)) 

• 

• 

• 

• 

• 

Nonnegativity: Ni,p(u),Nj,q(v);;::O 

n m 

Partition of unity: LLNi,p(u)Nj.q(v) = 1 
i=O j=O 

If n = p, m= q, U = {0, ... , 0, 1, ... , 1} and V= {0, ... , 0, 1, ... , 1} then B-spline 

functions degenerate to products of Bemstein polynomials 

In the interior to the rectangles formed by the u and v knot lines all partial 

derivatives of Ni,p(u) N],k(v) exist. At a u knot (v knot) it is p-k (q-k) times 

continuously differentiable in the u ( v) direction, where k is the multiplicity of 

the knot 

As a consequence, the B-spline surface will exhibit the following properties 

• If n = p, m = q, U = {0, ... , 0, 1, ... , 1} and V= {0, ... , 0, 1, ... , 1} then, the 

• 

• 

• 

nonrational B-spline surface S(u, v) is a Bezier surface 

The surface S(u, v) interpolates the four corner control points: S(O,O) = P0,0, 

S(1,0) = Pn,o, S(0,1) = Po,m and S(1,1) = Pn,m 

Affine invariance 

Strong convex hull property: If u,vE[ui0 ,uiO+p+I)x[vj0 ,vjo+q+l), then S(u,v) 

lies within the convex hull of the control points Pu, i0-p:::; i:::; io andj0-q ::;j ::;j0 

• The control polygon represents a piecewise planar approximation to the 

surface. Like the B-spline curves, the lower the degree the better the 

approximation 
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• Local modification scheme: Following the locality property, if a control point 

P;,J is moved, it will affect the surface only in the rectangle [u;, Ui+p+J) x [1), 

lJ+q+J). 

• The continuity and differentiability of S(u, v) follows the same property for the 

basis functions. Thus, S(u, v) is p-k (q-k) times differentiable in the u ( v) 

direction at a u ( v) knot of multiplicity k. 

3.4.2 Rational B-spline Surfaces 

A NURBS surface of degree p in the u direction and degree q in the v direction is a 

vector piecewise rational function of the form (Piegl and Tiller (1997)). 

n m 

LLNi,p (u)Nj,q (v)w;JPi,j 

S(u V) = i=O j=O ' --,~,-,-n-------------- o su,v s1 (3.12) 

LLNi,p(u)Nj,q(v)wi,j 
i=O j=O 

This surface is the rational generalisation of the tensor product nonrational B-spline 

surface (equation (3.10)), where P;,J form a control point net, the W;,J are the weights, 

and the N;,p(u) andl\j,q(v)are the pth_degree and qth_degree basis functions in the u and 

v directions defined over the knot vectors equations (3.11a) and (3.11b). 

The piecewise rational basis functions are defined as 

(3.13) 

Therefore, the surface equation (3.12) can be written as 

11 m 

S(u, v) = "" R .. (u, v)P .. L...J L...J l,J l,J (3.14) 
i=O j=O 

Examples ofNURBS surfaces are shown in figures 3.8 (b) and 3.8 (c). Figure 3.8 (a) 

shows the corresponding control polygon (dashed lines) with the control points 
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(dots). Each control point has a weight w associated and, depending on its value it is 

identified as Wi or Wj. Figures 3.8 (b) and 3.8 (c) represent the resultant surfaces for 

such a polygon and parameters p = 3, q = 3, n = 3, m = 4. The geometrical 

differences between both surfaces, i.e. fig 3.8 (b) and (c), are as a result of the values 

of the weights. In figure 3.8 (b) all the weights are set to 1 (wi = Wj = 1) whereas in 

figure 3.8 (c) weights have different values (wi =1, Wj = 0.5). 

Wj 
<i'., ,'• ....... 

W· /: ............ w; 
J f/. •• : : ••• •• , Wj 
/: ;............ /w. .. ..... il 

W· ,'I I ....... fl. t ,, 
J f/. .... : : / ................. Wj ,/ : 
/: ; ...... ~ ./w. .. .. '"fl : 

Wj ,' : : : ..... :ri ...... ' W· ,/: : 
1/-. ' w ' , -.. } , ' ' : "; ..... '"to-!,~~ ,' .. .... tl : : 
r r r ::''-l/. W; '• r r 
I I I I ............. W· /: : : 
: :Wi li .j_<l : :w.: 
: : ,' I I I 'IJ 
I I I 1 I I I :w;.!t' I I It 

, /" : :w;:,' 
I 1 I 1 ~~ 
I I I I 1 

W; d' :w;:/' 
' If : ,' 

W; ~,' 

(a) (c) Wj =1, Wj = 0.5 

Figure 3.8: Control points (a). NURBS surfaces (b) (c); p = 3, q = 3, n = 3, m= 4 

The properties of the rational functions Rij,(u, v) are roughly the same as those given 

for nonrational basis functions Ni,p(u) Nj,q( v) in the previous section 3.4.1 but 

additionally (Piegl and Tiller (1997)) 

• If all WiJ = a for 0 ::::; i ::::; n, 0 ::=;j ::::; m, and a 'f. 0, then RiJ, (u, v) = Ni,p(u) Nj,q( v) 

The properties of the rational B-spline surfaces are similar to the ones presented for 

the nonrational B-spline ones, moreover there are some properties as a result of using 

the homogeneous coordinate Wi,j 

• 

• 

Nonrational B-spline and Bezier surfaces are special cases of NURBS surfaces 

Local modification scheme: If a control point PiJ is moved, or WiJ is changed, it 

will affect the surface only in the rectangle [ui, ui+p+J) x [lj, '1+q+J). Thus, we 

can use both control point movement and weight modification to locally 

change the shape of NURBS surfaces 
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3.5 Discussion and Conclusions 

The boundary representation presented in this chapter has begun with Bezier curves, 

giving a brief description of their mathematical definition and properties. Then, the 

analytical description of nonrational B-splines curves has been introduced and 

depicted with some examples. This general formulation has also been applied to the 

rational B-spline curves. Finally, the mathematical expressions for curves have been 

extended to nonrational and rational B-spline surfaces, respectively, complemented 

with some graphical illustrations. 

To conclude, the main properties and features of NURBS are reviewed. They are 

efficient tools used in the graphics and CAD industry especially as trimmed surfaces. 

Reasons why NURBS are suitable graphic tools and hence of special interest in this 

work are summarised as follows 

• They offer a common mathematical form for precisely representing and 

designing both standard analytic shapes (conics, surface of revolution, etc) and 

free-form curves and surfaces 

• NURBS provide the flexibility to describe a large variety of shapes by 

manipulating the control points and the weights. Moreover, they present a 

powerful geometric tool kit allowing operations, such as insertion, refinement 

and removal of knots, degree elevation, splitting, etc. These features are found 

especially attractive for design optimisation purposes 

• Evaluation is reasonably fast and computationally stable (Piegl and Tiller 

(1997)). 

• NURBS are invariant under scaling, rotation and translation as well as parallel 

and perspective projection (affine invariance). 

• NURBS are generalisations of nonrational B-spline forms as well as rational 

and nonrational Bezier curves and surfaces. 
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• The geometry of the NURBS is governed locally by the nearest control points. 

Movement, removal or addition of more remote control points has no effect. 

However, NURBS have several drawbacks 

• Extra storage is needed to define traditional curves and surfaces. For example, 

to represent a circle using a circumscribing square requires seven control 

points with their corresponding weights and ten knots (cubic B-spline). 

Traditional representation requires the centre, the radius and the plane of the 

circle. 

• Improper application of the weights can result in a bad parameterisation 

resulting in distorted surface constructions. 
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4 
STRUCTURAL ANALYSIS. 

THE BOUNDARY ELEMENT METHOD 

4.1 Overview 

Computational methods for structural analysis such as the finite element method 

(FEM) and the boundary element method (BEM) have become essential tools in 

engineering. The FEM is a well-established analytical tool used in a very wide range 

of problems. However, the BEM' s applicability is becoming an effective alternative 

to FEM in some areas of engineering analysis. 

Although the first ideas related to the boundary element method were developed in 

the early 1900's, the method, like most computational ones, only emerged when 

modem computers became available. The reason is that, except for very simple 

problems, the number of computations involved is too great for analytical 

calculation. 

The first part of the present chapter presents a brief description of the FEM followed 

a more detailed theoretical overview of the BEM. The BEM explanation is focused 

on its applications to elastostatic problems since these are the type of problems to be 

tackled in this thesis. However, it should be noted that the BEM is applicable to 

many different fields, e.g. fracture mechanics, corrosion protection, waves, thermal 

problems, etc. Advantages and disadvantages of the BEM are also discussed. 
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4.2 Introduction 

There are three main computational techniques for the approximation of the solution 

of problems in continuum mechanics, i.e. the finite difference (FDM), the finite 

element (FEM) and the boundary element method (BEM). See figure 4.1 for a 

depiction of the three methods. In all these numerical techniques the governing 

equations are replaced with approximate algebraic relationships. The geometry is 

described by a grid (mesh) and the solution of a set of simultaneous algebraic 

equations is calculated to determine the unknown response distribution on the grid. 

However these methods have some fundamental differences. The FDM operates 

directly on the governing differential equations. It uses a simple approximation over 

local cells to generate a system of algebraic equations. In contrast, FEM and BEM 

transform the governing equations into equivalent integral equations. The FEM 

operates on the equivalent governing integral using element interpolations of node­

point response quantities. Unlike the FEM, the BEM uses element interpolations of 

boundary node point response quantities. Therefore, FEM requires the volume of the 

object to be divided into elements but BEM requires only the boundary of the object 

to be divided. 

I 
I~ 

1'-r--"' 
I 

0 
~ 
IT 
/">.. 
~ 

(a) (b) (c) 

Figure 4.1: Finite difference (a), boundary element (b), finite element mesh (c) 

In the following section, an abridged explanation of FEM is presented. The scope of 

this section is to discuss the reasons why the BEM is chosen as an alternative tool for 

the structural analysis. 
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4.3 The Finite Element Method 

As previously stated, it is not the aim of this section to develop the formulation on 

which FEM is based on but to present the principal aspects concerning this theory. 

For further information regarding the FE formulation refer to Zienkiewicz (1989) 

and Bathe (1982). The essence of .finite elements is to divide a continuous body into 

a set of elements which are joined to each other at their node points. The system of 

external loads acting on the actual solid is replaced by an equivalent system of forces 

acting at the nodes. The overall finite element equation of equilibrium can be written 

as (Zienkiewicz (1989)) 

Ku=f (4.1) 

where K is the global stiffness matrix, u is the global displacement vector and f is the 

nodal vector of forces. The forces in the overall system f are obtained by adding all 

the forces at each node, and K is obtained by assembling the stiffness matrix of each 

element Ke (Zienkiewicz (1989)) 

(4.2) 

where D (u = De) and B (e = Bu) denote the elasticity and strain matrices, 

respectively. 

Finally, once the nodal displacements u are known from equation (4.1), the stresses 

in each element O'e are calculated from the displacements, Ue, over the element using 

(4.3) 

Within each element, the variation of displacement is assumed to be determined by 

nodal displacements and polynomial shape functions (Zienkiewicz (1989)). Figure 

4.2 shows a typical two-dimensional triangular element with three nodes identified 

as 1, 2 and 3, respectively. Every node has a force and displacement associated for 

each degree of freedom, e.g. fx1, UxJ for node 1 in the x direction. 
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Figure 4.2: Two-dimensional triangular element 

According to their shape, elements can be of different types such as quadrilateral or 

triangular (in 2D) and hexahedral or tetrahedral (in 3D). The degree of the element, 

i.e. linear, quadratic, cubic, is determined by the number of nodes per element, for 

example linear elements have one node placed in each vertex, quadratic have one 

node in each vertex but also one additional node in the middle of each edge, etc. 

Thus, the element in figure 4.2 is a two-dimensional triangular linear element. 

The type and number of elements used can be decided by the analyst. In general, the 

accuracy of the solution increases with the number of elements and also with the 

degree of the element. However, the computer time and cost also increase with the 

number of elements and nodes. Thus, it is sensible to use a dense concentration of 

elements (and/or higher order elements) in the critical areas of the model while a 

coarse mesh (and/or lower order elements) in regions of less interest. Moreover, 

there are modem procedures, error estimators, for estimating the error arising from a 

given density of elements and adaptively refining the mesh or increasing the degree 

of the element to ensure the accuracy of the results. 

In spite of the general applicability of FEM to engineering problems, they have some 

drawbacks such as that models can be difficult and time consuming to build, check, 

and also to change. Moreover, it may not be simple to reach the required accuracy, 

particularly for problems involving stress concentrations. 

In a continuum structure discretised using low-order finite elements, the shape 

functions can become discontinuous across the element boundaries which in turn 

produces discontinuity of the solution between adjacent elements. Extrapolating this 
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problem to FE-based optimisation, it leads to meshes with alternating void and solid 

elements displayed in a checkerboard fashion (checkerboard pattern). 

The BEM addresses the above drawbacks of FE modelling since it is very easy and 

quick to build a model as well as to change a model to reflect design changes or to 

try different design options. Finally, it is highly accurate, since it makes 

approximations only on the surface area of the component instead of throughout its 

entire volume. 

4.4 The Boundary Element Method. A Brief Overview 

The BEM is a computational technique in which the governing equations are 

transformed into equivalent integral equations. Using relationships from vector 

calculus related to the Gauss-Green or divergence theorem, these integral equations, 

involving both volume and surface integrals, are then transformed into integral 

equations (boundary integral equations) that contain no volume integrals involving 

the unknown response. This last transformation involves certain known solutions 

(fundamental solutions) to the original differential equation. These fundamental 

solutions generally describe the response of an infinite medium to a point excitation. 

They are singular functions, and the strength of the singularity varies with the 

problem type, being 1/r, 1/r2, ln(l/r), etc. For non-linear problems or with variable 

material properties the derivation of these solutions can be very complex which 

limits the BEM versatility. 

The boundary integral equations are approximated by a set of discretised integral 

equations. The boundary is divided into elements, and for each element there are 

some nodes associated. The response inside each boundary element is given by the 

node-point response and simple interpolation formulae. 

The interior is continuous since no discretisation of the interior is needed; this leads 

to a high resolution of interior stresses and displacements. Internal point solutions 

may be calculated after the boundary unknowns are obtained. In general, the density 

and location of the internal points have no relation to the boundary mesh or boundary 

60 



Cha ter4 

unknowns. However, there is a minimum distance to be maintained between the 

internal points and the boundary for numerical reasons, explained in more detail in 

section 4.9 

One of the main features of BEM is this reduction in the dimensionality of the 

problem. That is, for two-dimensional problems only the line boundary is 

discretised, and for three-dimensional problems only the surface is discretised. This 

results in a reduction in modelling effort compared with other computational 

methods such as the FEM. Moreover, other features of this method will be 

introduced later in this chapter. 

4.5 Evolution of Boundary Element Methods 

The fundamentals of the boundary element methods can be found in the classical 

formulations by Somigliana and Betti, for elasticity, and by Fredholm, for potential 

problems. These classical formulations were followed in the 1950's by 

Muskhelishvili (1953) and Mikhlin (1957). 

In the early sixties, with the introduction of high-speed computers, the boundary 

element method (BEM) emerged becoming a more generally applicable technique in 

the 1970's. The major breakthrough came when Jaswon and Symm (1977) 

discretised the integral equations of two-dimensional potential problems governed by 

Laplace's equation into straight-line elements. Also in this period, Rizzo (1967) was 

the first to use displacements and tractions in an integral equation applicable over the 

boundary. The extension of this approach to 3D problems was presented by Cruse 

(1969). 

Later in the seventies Lachat (1976) contributed towards BEM becoming an 

effective-numerical technique. He introduced to BEM the concept of higher-order 

elements using quadratic shape functions. Therefore, at this stage many of the 

algorithms and numerical modelling methods used in FE formulations also were also 

being implemented in the BE formulations. 
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Since then, the boundary integral equation approach has continued to develop being 

extended in a very wide range of continuum mechanics as Aliabadi (2002), Brebbia 

(1989), Becker (1992), Kane (1994) and Trevelyan (1994) present on the many 

contributions to the modem boundary element method. 

Boundary element formulations may be divided into two different but closely related 

categories. The first, and most popular, is the so-called direct formulation, in which 

the unknown functions appearing in the formulation are actual physical variables of 

the problems. In elasticity these unknown functions are the displacement and traction 

fields. The other approach is called the indirect formulation, in which fictitious 

source densities represent unknown functions. Once these source densities are found, 

the values of physical parameters can be obtained by simple integrations. Since this 

research is focused on the direct formulation, the following sections are explained 

according to this category. 

4.6 Fundamentals of Elasticity 

In this section, basic ideas and relationships are presented from the theory of 

elasticity that are necessary for developing the direct formulation of the BEM. 

4.6.1 Stress and Tractions 

Stress is defined as the average force per unit area. The stresses can be visualised by 

cutting a solid on a particular plane, as shown in figure 4.3 for an infinitesimally 

small cube. Three stress components are defined normal to the cutting planes OXx, 

ayy. OZz (normal stress) and three tangential to the cutting planes O"xy, OXv O"yz 

(tangential or shear stress). The stress tensor has two subscripts. The first refers to 

the direction of the outward normal to the plane on which it acts and the second one 

to the direction of the stress. Note that the shear stresses according to the notation 

must be equal (or complementary), i.e. OXy = DYx· Therefore, the subscripts can be 

interchangeable for all practical purposes. For plane stress problems, such as thin 
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plates subject to in-plane loading, all stresses associated with the z direction are 

assumed to be zero, i.e. OZz = OXz = GYz = 0. 

Another way of defining stresses is as distributed forces in any direction per unit area 

acting on a plane section. Stresses such defined are known as boundary stresses or 

tractions. The traction vector is a stress vector, which has a magnitude and direction. 

On the other hand, stresses are a tensor and cannot be resolved in any direction. 

Figure 4.3: Stresses acting on an infinitesimal cube 

For three dimensional problems the relationship between tractions and stresses is 

given by 

t X = (J XXnX + (J xyny + (J XZnZ 

t Y = (J yxnx + (J yyny + (J yznz 

t z = (J zxnx + (J zyny + (J zznz 

(4.4) 

where nx, ny and nz are the x, y and z components of the unit vector normal to the 

boundary. The relationship between tractions and stresses can be summarised in the 

tensor notation as 
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(4.5) 

assuming the Einstein summation convention* 

4.6.2 Equilibrium 

The equations of equilibrium for a three-dimensional system subjected to external 

forces and body forces b are given by 

aaxx + aaxy + aaxz +b =0 
ax ay az X 

a a yx a a yy a a yz 
--+--+--+b =0 ax ay az y 
aa aa aa _zx_+_zy_+_zz_+bz =0 
ax ay az 

where bx. by, bz are the components of t~e body force vector. In a tensor notation 

(4.6) 

(4.7) 

where the use of a comma denotes differentiation with respect to the direction 

associated with the index following the comma. 

4.6.3 Strain 

The external and internal forces result in linear and angular displacements in a 

deformable body. These displacements can be defined in terms of strains, in tensor 

notation as 

c .. =!1u .. + u .. ) 
lj 2 ~ l,j j,l (4.8) 
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A state of plane strain can be assumed if the solid extends a long distance in the z­

direction, the loading is uniform in this direction and Uz = 0 everywhere. In such a 

situation, certain shear strain components are taken to be zero Exz = Cyz = 0. 

4.6.4 Compatibility Equations 

Differentiating (4.8) with respect to the Cartesian coordinates we obtain the strain 

compatibility equations which can be written in tensor notation as 

(4.9) 

where i, j, k = 1, 2, 3 and i ::1= j ::1= k 

4.6.5 Stress-Strain Relationship 

Consider a linear elastic state for a homogeneous material, i.e. with the same 

properties at all points and whose properties at all points are the same in all 

directions (isotropic). Hooke's law can be written as 

a XX = .lie+ 2fl£ XX 

a YY =.lie+ 2fl£yy 

a zz =.lie+ 2fl£zz 

axy=JiExy 

ayz = fi£yz 

axz = f1Exz 

(4.10) 

where A= 2v,W(l-2v) is the Lame constant, f1 = E/2(1+v) is the shear modulus of 

elasticity and e = cxx+ cyy+ czz is the volumetric strain. The stress-strain equations of 

elasticity can be written in tensor notation as 

(4.11) 

where ~J is the Kronecker delta whose properties are 
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5.. = {1 
lJ 0 

if i = j 
if i i: j 

4.6.6 Governing Equations of Elasticity 

(4.12) 

The governing equations of elasticity, known as Navier's equations, are the 

conditions of equilibrium expressed in terms of displacements. They can be obtained 

by substituting the stress-strain relationship (4.11) into equations of equilibrium 

(4.6) using the strain-displacement relationships (4.8), to give 

(4.13) 

where V2 = ( 
02

2 + 
02

2 + 
02

2 J is the Laplacian operator. Thus, the Navier equation 
ax ()y ()z 

can be written in tensor notation as 

flU· .. +(,U+A)u . .. +b. =0 
,,,, J '" ' 

fori, j = 1, 2, 3 (4.14) 

4. 7 Boundary Element Formulation 

The formulation of BEM, here presented based mainly in Aliabadi (2002) notation, 

is based on the idea that only functions satisfying the differential equations exactly 

should be used to approximate the solution inside the domain. If we use these 

functions, we only need to approximate the actual boundary conditions. Therefore, 

the solutions inside the domain satisfy the differential equations exactly. Moreover, 

since the functions are defined globally, there is no need to subdivide the domain 

into elements. On the contrary, these fundamental solutions must be available and 

sometimes their singular nature leads to difficulties with integration. 
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4.7.1 Betti's Reciprocal Theorem 

From the equilibrium equations (4.7) it is possible to write the following weighted 

residual statement 

fc(Jij.j +b;)u;dn =O 
Q 

(4.15) 

where Q denotes the domain with boundary r of the problem. In the conventional 

direct collocation approach, the weighting function u; is taken to be the displacement 

field associated with a point force applied at a collocation point. The stresses, body 

forces and displacements are a function of p, which is the collocation point, p E Q (p 

= x, y, z) for a three-dimensional body. The integral involving the (Juju; term in 

(4.15) can be rewritten as 

f(Ju.ju;dn = fc(Jiju;),jdQ- f(Jue~dQ (4.16) 
Q Q Q 

since 

(4.17) 

where E;~ is the strain field associated with displacements u * . 

To transform the previous equation (4.16) to involve only values at the boundary, it 

is necessary to introduce here the concept of the divergence theorem, also known as 

Green's theorem. This is a fundamental identity that relates a volume integral to a 

surface integral. The divergence theorem, in tensor notation and assuming the 

Einstein summation convention, is as follows 

f!;,;dQ = fJ;n;df (4.18) 
Q r 
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where Q is the volume enclosed by a piecewise smooth surface r, f is a function 

with continuous first derivatives with respect to the Cartesian coordinates, and n is 

the unit outward normal vector. 

Therefore, applying the divergence theorem ( 4.18) to the first integral in ( 4.16) 

thus 

fca uu~).jd.Q 
Q 

fa ij,ju; d.Q = 
Q 

= faun ju~ dr = ftiu~ dr 
r r 

ftiu; dr- faijs;d,Q 
r Q 

Substituting (4.20) in (4.15) 

ftiu;dr + fbiu;d,Q = faus;d.Q 
r Q Q 

The integral on the right-hand side of (4.21) can be written as 

faus;d.Q = f[,Mus;skk + 2f1Bus;] d.Q 
Q Q 

faus;d.Q = f[26us:"" + 2f1s; kjd.Q = fa~sijd.Q 
Q Q Q 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

Finally, we get the following expression known as Betti's reciprocal work theorem 

ftiu; dr + fbiu; d.Q = fti* uidr + fbi* uidQ (4.24) 
r Q r Q 

4.7.2 The Boundary Integral Equation 

The aim of using this mathematics is to derive a form of the BIB which does not 

include any volume integrals. For this reason the concept of the Dirac delta .function 

is introduced at this stage. Thus, the boundary integral equation for elastostatic 
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problems can be derived from Betti's reciprocal work theorem (4.24) by taking the 

fictitious body force b *i to correspond to a point force. This force can be represented 

by the Dirac delta function. The main feature of this function is that it is zero at all 

points x except at x = X, where it becomes infinity. Thus it represents a point 

singularity at the source point X. 

I:J,.(X ) _ {oo for x = X 
' x - 0 otherwise (4.25) 

Therefore, by using the Dirac delta function, the body force bi* can be represented as 

(4.26) 

where the unit vector component ei corresponds to a unit positive force in the i 

direction applied at X, with X E Q. In two-dimensional problems, ei is a force per 

unit thickness, and in three-dimensional problems it is a pure concentrated force. The 

Dirac deltafunction has the property 

b 

JI:J,.(X,x)f(x)dx = f(X) (4.27) 
a 

where -oo:::;; a,~b:::;; oo and a< X< b 

Using this property, the last integral in the equation (4.24) can be written for a source 

point pas 

Jbi*uidQ = J!:J,.(p,x)eiuidQ = ui(p)ei (4.28) 
Q Q 

The displacement and traction fields corresponding to the point force solution can be 

written as 

(4.29) 

(4.30) 
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where Uij and Tij are the fundamental solutions or also known as kernel functions (to 

be presented in section 4.7.3), Q is any point on r, p is a point inside the solution 

domain .Q (not on the boundary). 

Using (4.28) to (4.30) the equation (4.24) can be written as 

ui(p)= fuu(p,Q)tj(Q)dr- fT;/p,Q)u/Q)dr+ fuu(p,q)b/q)d.Q (4.31) 
r r n 

Where p and P refer to the source point and q and Q refer to the field point. Lower 

case notation stands for points inside the domain, i.e. p and q, whereas upper case, 

i.e. P and Q, for points on the boundary. The equation (4.31) is known as 

Somigliana's identity for displacements. It relates the value of displacements at a 

source point p to boundary values of the displacements and tractions. This is an 

important step since only the term ui(P) and the integral containing the body forces 

bi( q) remain related to .Q. 

4.7.3 Fundamental Solutions 

To calculate the displacement field u*i the Navier equations (4.14) are used. They 

can now be written for a unit point force applied to the body at a point p, as 

• fJ • fJU· .. +--u . .. +~(p,Q)e. =0 
l,jj 1-2v j,JI I 

(4.32) 

The solutions of the governing equations due to a point force are commonly referred 

to as fundamental solutions. The Galerkin vector approach is used to evaluate the 

fundamental solutions due to a unit point force in an infinite medium. The 

displacements are expressed in terms of the Galerkin vector as 

• 1 
u. =G. kk - Gk ·k 

1 1, 2(1- V) ,I 

(4.33) 

Substituting into equation (4.32) 

jJGi,kkjj + ~(p, Q)ei = 0 
(4.34) 
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Since Gk .k .. = Gk .. k. , G . kk" = Gk .. k. and Gk .k .. = Gk .. k. the previous equation can also ,I JJ ,JJ I j, JJ ,jj I ,j lJ ,jj I 

be written as 

(4.35) 

If Fi = "V2Gi then the previous equation (4.35) is transformed to 

(4.36) 

Three-Dimensional Problems 

For three-dimensional problems the solution to the above problem is the well-known 

solution of a point force in an infinite medium, called the Kelvin solution. 

(4.37) 

where r is the distance between the points p and Q. 

The corresponding Galerkin vector is 

1 
G. =-re. 

I 8 I 7T:f-l 
(4.38) 

Substituting the derivatives of (4.38) into (4.33) gives 

(4.39) 

and rewriting ( 4.39) 

u~= 1 
(!)[(3-4v)t5 .. +r.r.]e. 1 

167rf.l(1-v) r 11 
'
1 

'
1 1 (4.40) 

thus, the displacement fundamental solution is obtained from ( 4.40) and ( 4.29) 
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(4.41) 

where Uij(p,Q) represents the displacement in thej direction at point Q due to a unit 

point force acting in the i direction at p. 

The traction fundamental solution is obtained from (4.40), through the displacement-

strain and strain-stress relationships and ti* = CJ;n j 

t~ = - 1 (_!__){ dr r(1- 2v)J .. + 3r .r. ]- (1- 2v)(r .n. - r .n. )~e. 
' 81r(1- v) r z dn ~ u ·' ,J ·' J J ' J J 

(4.42) 

where ni denotes the components of the outward normal at the field point Q, from 

(4.30) 

where Tij(p,Q) represents the traction in the j direction at point Q due to a unit point 

force acting in the i direction at p. 

Two-Dimensional Problems 

For two-dimensional problems a similar procedure is used to determine the 

fundamental solutions. 

F. =-=-!._ ln(r)e. 
l 2 l l'l"f.l 

(4.44) 

The corresponding Galerkin vector is 

(4.45) 

Following the steps detailed in 3D problems, the displacement and traction 

fundamental solutions in the two-dimensional plane strain condition are given by 
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u u (p, Q) = 1 [(3- 4v) ln(!)sij + r ;r j] 
8.1Z',U(1- v) r · · 

(4.46) 

Once the formulation of the fundamental solutions has been carefully explained, 

there are some comments to be made related to the singular nature of these functions. 

Having noticed that Uu(p,Q) in 2D is a function of ln(1/r) and a function of 1/r in 

3D, thus as r becomes very large, i.e. the source point p and the point at which we 

are finding the displacement Q are very far from each other, in 3D cases Uu(p,Q) 

tends to zero, but for 2D problems the ln(1/r) term tends to -oo. This means that if the 

analysis is performed on an infinite domain problem it will assume a far-field 

displacement of -oo. 

On the other hand if r becomes very small, i.e. as the field point Q approaches the 

fictitious point force at p, the value of Uu(p,Q) becomes very large, even worse in 3D 

for Tu(p,Q) since it is a function of llr2
. Thus, the fundamental solutions head 

towards infinity rapidly as the field point approaches the source point. This produces 

some careful considerations in the evaluation of the integrations of these functions. 

Indeed for those integrals in which the collocation point lies on the element 

containing Q, the integrand becomes singular and special forms of numerical 

integration are required. 

Finally, in spite of all the complexity related to the mathematical terms defining the 

fundamental solutions, they are all known as they contain only mathematical 

properties and distances between known points, and therefore they can easily be 

computed. 

4.7.4 Boundary Displacement Equation 

The boundary integral equation (4.31) is valid for any source point within the 

domain Q. Thus, we have two sets of points: points p where the unit source are 

applied and points Q where we have to satisfy boundary conditions. In order to 
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obtain a solution for the points on the boundary, the source point is moved to the 

boundary f, i.e. p-7P E f. This selection brings in the problem that some integrals 

in equation (4.31) only exist in the sense of a limiting value as p approaches Q 

(Aliabadi (2002)). Thus, introducing a multiplier Cu(P) which depends only on the 

geometry of the problem at the source point the displacements boundary integral 

equation can be written as 

Cu(P)uj(P)+ fr;j(P,Q)uj(Q)df= fuu(P,Q)tj(Q)df 
r r 

+ fuu(P,q)bj(q)dQ 
(4.48) 

Q 

where the first integral is taken in the sense of the Cauchy principal value*, the free 

term Cij(P) describes the local geometry around the point P. This multiplier takes 

value of 1 when p is complete inside the volume as we have seen from equation 

(4.28). If p is completely outside of the material Cij is 0. If we consider a smooth 

boundary, the value of the free term Cij is 1/2. For non-smooth boundaries, the 

common practice is to evaluate the free-term from consideration of rigid body 

motion. This approach is described in more detail in section 4.8.2. 

4.8 Numerical Implementation 

4.8.1 Division of the Boundary into Elements 

Solving the BIE analytically is only possible for very simple problems. General 

problems therefore need to be solved numerically. Thus, the integral is divided into 

small segments, which in this case are called boundary elements, and each element is 

* Cauchy principal value of a finite integral about a point c with a :::; c :::; b 
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defined by some nodal points. These elements are generally straight lines, quadratic 

curves or cubic splines in 2D, or triangular or quadrilateral surface elements in 3D. 

The first step in the discretisation procedure is to divide the boundary r into N 

elements, so that, without considering the body forces, the equation (4.48) becomes 

N N 

Cu(P)uj(P)+ L Jr;j(P,Q)u/Q)dr= L fuu(P,Q)t/Q)dr (4.49) 
n=l r, n=l r, 

Over each element, the variation of the geometry and the variables must be 

described. This variation can be constant, linear, quadratic, cubic or even higher 

order. Generally, the higher the order of variation the more accurate solutions but 

also the higher CPU required. Results of acceptable engineering accuracy can 

consistently be obtained by a well-defined mesh of quadratic elements, so most BEM 

implementations use no higher order elements than this. 

Two-dimensional formulation 

Isoparametric elements use the same order of variation for both the geometry and 

unknown variables. In this formulation, the boundary geometry Xi, the unknown 

displacement field Uj and the traction field tj are approximated using interpolation 

functions over an element containing m nodes 

m 

xj = _LNcJ~)x~ 
a= I 

m 

uj = LNa(q)u~ (4.50) 
a= I 

m 

tj = LNa(~)t~ 
a= I 

where Na, which are called the shape functions, are polynomials of degree m-1, and 

have the property that they are equal to 1 at node a and 0 at all other nodes, 

x~, u~, and t~ are the values of the functions at node a: These shape functions are 
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defined in terms of local coordinates ~ ( -1 ::;; ~ ::;; 1 ). Figure 4.4 shows this new 

coordinate system for a quadratic element. The local variable ~ has its origin at the 

midpoint node and values -1 and + 1 at the end nodes. 

a=3 
~=1 

Figure 4.4: Quadratic two-dimensional boundary elements 

The shape functions consider a number of nodes on each element where the variable 

value is given. Therefore, for a quadratic element (m = 3), we need three nodes on 

each element: one at the midpoint and one at either end (see figure 4.4). The shape 

functions for quadratic elements are 

(4.51) 

In general, shape functions can be derived from the Lagrangian polynomials, which 

are defined for degree (m-1), as 

(4.52) 

A discretised boundary element formulation can be obtained by substituting the 

expressions ( 4.50) into the integral equation ( 4.49) 

N 

Cu(P)uj(P)+ L Jru(P,Q(~))Na(~)J(~)d~u~ = 
n~J rn 

(4.53) N 

L Ju ij(P,Q(~))N aC~)J(~)d~ t~ i,j = 1, 2 
n~J r, 

To define the element formulation using the local coordinate ~ the concept of the 

Jacobian of transformation is introduced. The Jacobian is used to transform the 

variables of integration or differentiation from one set of variables to another. For 
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example, the variable x in the following one-dimensional integral can be transformed 

into another variable q as follows 

x, q, 

fJ(x)dx = fJ[x(q)]J(q)dq 
x, q, 

The Jacobian J(~ is defined as 

J(q) = dx(~) 
a~ 

(4.54) 

(4.55) 

In this case, because of the transformation of the variable from the boundary curve r 
to the intrinsic coordinate q, the Jacobian J( ~ of the transformation is calculated as 

(4.56) 

Using the Jacobian, the coefficients ~;wand Q~a are defined in terms of integrals 

over the surface r where df becomes J( ~dq that is 

~jna = i?ij(P,Q(q))Na(~)J(q)d~ 

Q;a = tuij(P,Q(q))Na(q)J(~)dq 
(4.57) 

Substituting ( 4.57) into ( 4.53), a discretised boundary element formulation is finally 

expressed as follows 

N m N m 

cij (P)u j (P) + L L ~r·u;a = L L Q;at;a i,j = 1, 2 (4.58) 
n~l a~l n~l a~I 

As we have seen, if the same shape functions are used for approximation of 

geometry and functions, the formulation is referred to as isoparametric. On the 

contrary, if the approximation is a higher order polynomial than that used for the 

geometry, the formulation is referred to as superparametric and conversely if the 
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function is represented by a lower order polynomial than the geometry then the 

formulation is referred to as subparametric. 

Three-dimensional formulation 

In three-dimensional problems the surface f is divided into triangular or 

quadrilateral elements. As in two-dimensional problems, isoparametric elements are 

chosen and therefore the same shape functions Na{~ 17) are used to approximate the 

boundary geometry XJ, and the displacement u1 and traction fields t1 respectively 

m 

xj = "'N a(~,17)x~ 
a=l 
m 

uj = LNa(~,17)u~ (4.59) 
a=l 
m 

tj = LN a(~,17)t~ 
a=l 

where the shape functions N a{~ 'I]) are functions of two local variables ~and 17 ( -1 s 
~ 7J S 1) for quadrilateral elements. This coordinate transformation is equivalent to 

mapping the boundary elements into a local square or triangle in the ( ~ 17) plane, as 

shown in figure 4.5. 

'IJ 'IJ 

Figure 4.5: Transformation of boundary elements into a local system of coordinates 
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'fJ 

• 
2 +1 1 

-1 +1. 
~ 

3 (<W 

-1 
i) 4 

Figure 4.6: Linear 4-node quadrilateral element 

The shape functions for quadrilateral elements can be obtained from the Lagrangian 

polynomials. From equation ( 4.52), the polynomials may be generalized to two 

dimensions by simply forming products of the shape functions. For example, 

consider a quadrilateral element shown in figure 4.6, defined by its four corners (±1, 

±1). 

1 
N1 (~,'fJ) = N 1 (~)N1 ('l/) =4(~ + 1)('f} + 1) 

1 
N2 (~,'f/) = N2 (~)N2 ('f}) =4(1-~)('f/ + 1) 

1 
N3 (~, 'fJ) = N3 (~)N3 ('f/) = 4 (~ -1)('f/ -1) 

(4.61) 

1 
N4 (~,'fJ) = N4 (~)N4 ('f/) = 4(1 + ~)(1-'f}) 

Higher order shape functions for quadrilateral elements can be formulated in a 

similar way. In general, for Lagrangian elements (see figure 4.7 (a)) 

(4.62) 

There is another commonly used set of quadrilateral elements, known as the 

serendipity family (see figure 4.7 (b)). These elements do not contain any interior 

nodes In terms of the local coordinate system (;, 'fJ), the serendipity shape functions 

for linear elements are the same as those given in (4.60). 
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(a) (b) 

Figure 4.7: Lagrangian (a) and serendipity (b) elements 

Similarly, for two-dimensional integrals the transformation of the variables has the 

following form 

Yz X2 1J2 g2 
f fJ(x, y)dxdy = f fJ[x(;,ll), y(;,ll)]J(;,ll)d;dll 

Yt x, IJt g, 

where the Jacobian J(;,ll) can be written as 

ax 

J(;,ll) = acx, y) = a; 
ac;,ll) ay 

a; 

ax 
all - ax ay ax ay 
ay - a; all- a11 a; 
all 

(4.63) 

(4.64) 

Note that the functions x(;, ll) and y(;, 17) must be continuous and have continuous 

first partial derivatives in the specified region of integration. 

Like the 2D case, the boundary integral equation can be written in the discretised 

form 

N m N m 

C u (P)u j (P) + I I Pt·u ~a = I I Q~at~a. i,j = 1, 2,3 
n~l a~t n=l o.=l 

The coefficients Pu"a and Q;~a are now defined in terms of double integrals 

P;t = l
1 
l?u(P,Q(;,ll))Na(;,ll)J(;,ll)d;dll 

Q~a = t Luu(P,Q(;,ll))Na(;,ll)J(;,ll)d;dll 

(4.65) 

(4.66) 
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Thus, with the incorporation of the shape functions and the transformation of the 

variables, the discretised boundary integral equation for 2D (4.58) and for 3D (4.65) 

consists of integrals which have to be performed over each element. This can be 

performed using a numerical integration procedure such as Gauss Legendre 

quadrature (Trevelyan (1994)). 

Finally, careful consideration must be taken when the integrals are calculated for the 

element containing the collocation point; in such cases the fundamental solution is 

singular at the collocation point, as explained in section 4.7.3. To integrate 

numerically singular or nearly singular functions, when the source node is close to 

the element under consideration, it requires a more complex integration scheme. For 

example the use of high-order Gauss quadrature instead of the low-order 

integration scheme applied for large enough r. Thus, depending on the nature of the 

fundamental solution and the relative position of the source point with respect to the 

element on which integration is being carried out, different integrals schemes are 

carried out (see Aliabadi (2002) for more details on numerical integration). 

4.8.2 Assembly of System of Equations 

The point collocation method is used to obtain the solution for the integral equation. 

In this method, a set of equations is obtained by placing the load point P in turn at 

each point on the surface. The point load P is first placed at node-point 1 that gives 

only one set of equations relating all M variables (nodes) on the surface. Thus, figure 

4.8 shows an example of the point load placed at node-point 1 and integrated over 

the element with nodes 12 and 13. Then the point load is placed at node-point 2 

yielding another set of equations, and so on until all M sets of equations are formed. 

It should be noticed that two equations, three in the case of 3D, are formed for each 

collocation point by applying the source in each coordinate direction. 
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Figure 4.8: Point collocation at node 1 over element with nodes 12 and 13 

Therefore, following this point collocation method, equations (4.58) for two­

dimensions and (4.65) for three-dimensions are evaluated at nodal points 

N m N m 
Cu(Pc)u j(Pc) + LLP;jna (Pc) u;a = LL Q~a (Pc) t;a c = 1, ... , M (4.67) 

n~l a~l n~l a=l 

where pc is the collocation point. The double sum in ( 4.67) must be evaluated 

considering that some nodes are shared between elements, and since the 

displacement values u;a are uniquely defined at these nodes, they can be combined 

to give a sum over all nodes; thus, rewriting (4.67) 

M N m 
Cu(Pc)uj(Pc)+ IH~ uj = LLGi~nat;a c =1, ... ,M (4.68) 

r~l n~l a=l 

whereH~ is made up from Pt (Pc) and G~"a is equal to Q~a (Pc). Building the first 

term into the other displacement unknowns in ( 4.68) gives 

(4.69) 

whereH~r = Cu(Pc)8cr + H~ and 8cr is the Kronecker delta function (4.12). 

Therefore, the discretised boundary element equation may be written in matrix form 

as 

Hu=Gt (4.70) 
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where His the displacement coefficient matrix and G, the traction coefficient matrix 

containing known integrals of the product of the shape functions, the Jacobians and 

the fundamental solutions Tu and Uu, respectively. The displacement vector u and 

the traction vector t contain unknowns and also the known boundary conditions. It is 

worth pointing out that the matrix H is a 2Mx2M (2D) or 3Mx3M (3D) square 

matrix. G is a rectangular matrix with 2M (2D) or 3M (3D) rows and 2Nm or 3Nm, 

respectively, columns. Therefore, the vector t has 2Nm (2D) or 3Nm (3D) 

components and is larger than u, which has 2M (2D) or 3M (3D) components, 

respectively. This formulation allows traction to be discontinuous across element 

boundaries, which is common occurrence in application of boundary conditions for 

engineering problems. 

The parameter Cu contributes only to the diagonal terms. This parameter can be 

evaluated directly from a consideration of rigid body motion (constant displacement 

of all the nodes in any direction). This motion results in zero traction everywhere, 

which makes the right-hand side of equation (4.68) zero 

(4.71) 

Thus the diagonal terms in H ~r can now be evaluated as the (negative) sum of all the 

other non-diagonal coefficients, since equation (4.71) can be rewritten as 

(4.72) 

that is 

M 
cc "'-er 

Hij =- L...Hij (4.73) 
r=I r*c 

Applying the boundary conditions, for 2D problems, since there are 2M equations, 

we need 2M prescribed values. Therefore for each node and in each direction k either 

the displacement Uk or the traction tk must be prescribed. For three-dimensional 

problems the number of equations is 3M and consequently the number of boundary 
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values prescribed is now 3M. In this case the number of node variables is six, (ux, uy, 

Uz, tx, ty, tz). After applying the boundary conditions, the resulting system of algebraic 

equations may be rewritten as 

Ax=By (4.74) 

The vector x contains all the unknown boundary displacements or tractions, A and B 

are coefficient matrices and y contains the prescribed boundary conditions. This 

stage requires careful consideration of conditions at sharp corners and edges with 

discontinuous tractions or displacements on either side of the corner (Becker (1992)). 

Multiplying the known matrix B by the known vector y, the previous equation can be 

rewritten in the following form 

Ax=b (4.75) 

where b is the new vector formed from the product By. In the above system of 

equations, A is fully populated, unsymmetric, square matrix. Generally, Gauss 

elimination or some other direct technique is chosen as an equation solver. As the 

solution time for this type of matrix is proportional to the cube of the total number of 

degrees of freedom, the required computational time can become large for complex 

structural models (particularly 3D). Iterative techniques suitable for unsymmetric 

systems are becoming popular, e.g. BiCGSTAB (Van der Vorst (1992)) and GMRES 

(Saad and Schultz (1986)) (with appropriate preconditioning) have been shown to 

offer reasonable convergence. 

The reason why the BEM matrices are fully populated is that each nodal point 

influences all the other nodal points on the boundary. This is in contrast to the FEM, 

in which the nodes influence only their neighbouring nodal points and these results 

in sparsely populated matrices that can be exploited to provide efficient storage and 

solution schemes. However, the BEM matrices may require less storage than the 

FEM ones because the interior is not modelled and a lesser degree of mesh 

refinement is required for the same level of accuracy (Brebbia and Trevelyan (1986)) 

so the rank of the matrix is considerable smaller for many problems (see figure 4.9). 
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FEM BEM 

Figure 4.9: Comparison of FEM and BEM system matrices 

It is worth noting that in elastostatic problems the displacement magnitudes are 

generally several orders of magnitude less than the tractions. Therefore, when these 

magnitudes occur together in equation (4.75) there is a great difference on the order 

of magnitude. This means that the solution may suffer from inaccuracies due to an 

inherent ill-conditioning of the system. To solve this problem the equation (4.70) is 

multiplied by a suitable scaling factor S 

(4.76) 

A suitable value for S can be S = E!Lmax. with E the Young's modulus and Lmax the 

maximum distance between any two nodes. 

4.9 Internal Solution 

The solution of the integral equation provides values of u and t only on the boundary 

of the domain. Evaluation of stresses and displacements at any point within the body 

is obtained from the solution of the system of equations. Once the values of all 

displacemen:ts and tractions are known on the boundary, then the BIE (4.31) for the 

unknown interior displacements can be discretised in a similar way to the boundary 

element formulation. Now, moving the source point to some point inside the material 

we can evaluate the solution u(p) around the boundary for this source point in a 

similar way as we have done for the source point on the boundary, knowing now the 

values of u and t. Thus, for any point pi wholly within the domain, Cii(P) = 1, and the 
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interior displacements at pi may be evaluated using another application of the 

integral equation 

M N 111 

( i) "Hc.r r _""Gena na ujp +LJ lJuj-LJLJ u tj 
y=I n=l a=I 

c=l, ... ,M (4.77) 

Since the interior points never lie on the boundary, the points p and Q are not 

coincident and therefore the fundamental solutions are no longer singular. However, 

it is not desirable to place an interior point too close to the boundary to avoid 

inaccuracies in the results, which are caused by numerical problems in integrating 

functions llr, 1/r2 or ln(l/r) over a domain in which r -7 0. 

It should be pointed out that the solutions at interior points are very accurate since 

there are no discretisations or approximations imposed on the solution inside the 

solution domain. The accuracy is therefore of the same order as that in the solution 

over the boundary r. 

4.10 Stress Computation 

The solution of (4.75) computes the solution for tractions and displacements around 

the boundary. However, it still remains to calculate the values of the stress 

components. There are two methods of calculating the boundary stresses. In the first 

method, the stresses are calculated directly from the displacements and tractions 

obtained from the BEM solution, by differentiation using the shape functions. On the 

other hand, the second method calculates the stresses operating directly on the BIE. 

Thus, the strains at any interior point can be obtained by differentiating the 

displacements in equation (4.31) with respect to the coordinate direction k to give 

ui,k(p) = fuu.k(p,Q)t/Q)dr- fru.k(p,Q)u/Q)dr 
r r 

+ f u ij,k (p, q)b j ( q)d.Q 
(4.78) 

Q 
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where UiJ,k and TiJ,k are the derivatives of the fundamental solutions. Finally, applying 

Hooke's law (4.11) into equation (4.78) to give 

lTik(p)= JDku(p,Q)tk(Q)df'- Jsku(p,Q)uk(Q)df' 
r r 

J Dkij (p, q)bk ( q)dQ 
(4.79) 

Q 

where Dkij, and Skij are obtained from UiJ,k and TiJ,k. 

As we can see, the second method is more accurate but more complex to solve than 

the first method since it implies derivatives of the fundamental solutions and 

numerical integrations. More difficult still is the fact that if the fundamental solution 

is of 1/r singularity, its derivative will be 1/r2
. Likewise a 1/r2 fundamental solution 

will have a derivative that becomes like llr3
. This complicates the numerical 

integration further. Therefore, the first method is used to explain the calculation of 

the boundary stresses. Moreover, this has also been the method implemented in the 

software used (Trevelyan (1994), Trevelyan and Wang (2001)). The method is 

explained for two-dimensions for the sake of simplicity. 

To calculate the stress components, it is necessary to calculate first the strains from 

the derivatives of displacement results, and then to calculate the stress components 

from the strains using elasticity theory. To start with, we define the local directions 1 

and 2 as the tangential and normal directions, respectively, to the surface r. 
Therefore the local tangential component of the displacement vector u1 can be 

written as follows 

(4.80) 

where mx and my are the x and y components of the unit tangential vector. Using the 

shape functions and differentiating with respect to the tangential direction the 

tangential strain s11 can be obtained as 

(4.81) 
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The local components of the traction vector, t1 and t2, are the tangential and normal 

tractions to the surface as shown in figure 4.10. These local tractions are written in 

terms of the Cartesian global traction as 

t1 = -tx sin a+ tY cos a 

t 2 = t x cos a+ t Y sin a 

Figure 4.10: Local and global components of the traction vector 

(4.82) 

The stresses in the local directions 1 and 2, are obtained applying the stress-strain 

relationships 

0'11 = (~)s11 + (-v )t2 1-v 1-v 

(4.83) 

Finally, to transform these local stresses into global ones, the transformation matrix 

is used 

[

a xx ] l sin: a cos 
2 

a 
a YY = cos a sin 2 a 
a zz - sin a cos a sin a cos a 

- 2sin a cos a ][0'111 
2 sin a cos a a 22 

(cos 2 a-sin 2 a) a 12 

(4.84) 

with tlle angle a ~ tan-'(:: J 
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4.11 Treatment of Edges and Corners 

In assembling the equations, some problems must be considered carefully, such as 

modelling geometries with sharp corners and edges with discontinuous tractions on 

either sides of the corner. In a discretised boundary corner, the outward normal 

changes its value sharply from one element to another as shown in figure 4.11. 

Therefore, a corner node can have two sets of traction values, one for each side of 

the corner. 

A number of procedures have been used to solve this problem. Generally, if the 

multi-valued tractions are assumed to be equal, then the errors are concentrated 

mainly at the corners and are not significant at other nodes. One of these approaches 

uses discontinuous elements, in which the collocation points at the corners are taken 

inside the element as shown in figure 4.11. In this approach the geometry is still 

approximated using the continuous shape functions similar to those presented in 

previous sections, but the displacement and traction fields are now represented using 

discontinuous elements. 

n, 

Figure 4.11: Discontinuous elements for corner nodes (2D) 

Another approach is based on identifying the possible situations in a corner. Figure 

4.12 shows the different boundary conditions at the node j common to the element i-

1 and the element j. That is, at node j the unknowns may be 

• Displacement u1: Both, t;_1 and t; are needed 

• Traction t;_1: u1and t; are needed 

• Traction t;: UJ and t;-1 are needed 
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• Traction ti = ti-J: Only Uj is needed 

Therefore, the assembly of the equation (4.74) (Ax =By) depends on the boundary 

conditions considered in this way. These considerations get more complicated when 

symmetry conditions are used since the boundary condition in such a case is normal 

displacement equals to zero. 

Figure 4.12: Boundary conditions in a corner 

4.12 Multi-zone Formulation 

In some problems, it is necessary to divide the model into several regions or zones, 

e.g. non-homogeneous problems, notch and crack problems and problems with two 

or more materials. The treatment of the multi-zone formulation is a straightforward 

extension of the BEM procedures described in the early sections of this chapter. 

Figure 4.13: Multi-zone problem 

Consider a domain consisting of two zones, Zone 1 and Zone 2, which have 

boundaries f 1 and r 2 and an interface C, as shown in figure 4.13. For each zone we 

have the following variables 

• Ut, tt: nodal displacements and tractions at the external boundary f 1 
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• nu, tu: nodal displacements and tractions at the interface r Ii 

• u2, t2: nodal displacements and tractions at the external boundary r 2 

• Uzj, !zi: nodal displacements and tractions at the interface boundary f 2i 

The system of equations for zone 1 can be written as 

Similarly for zone 2 

The compatibility and equilibrium conditions at the interface [j are 

uli = u2i = ui 

tli = -t2i = ti 

Cha ter4 

(4.85) 

(4.86) 

(4.87) 

Using the above equations, we can combine the coefficient matrices (4.85) and 

(4.86) for the two regions and applying the interface boundary conditions (4.87) 

Hl Hli 0 0 ul Gl Gli 0 0 tl 
0 0 H2 H2i uli 0 0 G2 G2i tli = 
0 I 0 -I u2 0 0 0 0 t2 

(4.88) 

0 0 0 0 u2i 0 I 0 I t2i 

Rearranging (4.88) in terms of Ui and ti 

ul 

[~1 Hli -Gli ~,] ui =[~' ;,]{::} H2i -G2i ti 
(4.89) 

u2 

Finally after the substitution of the boundary conditions, the resulting system of 

equations can be written as 
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-Gli 

-G2i 
(4.90) 

It can be seen that the coefficient matrices are block-banded with one block for each 

region and overlaps between blocks in the A matrix at the common interface (see 

figure 4.14). For large complex models it is often more economical to split the model 

into several smaller, simpler sub-models. These sub-models or zones, which may 

also have different material properties, are modelled independently and then joined 

together along an interface as described above. At these interfaces the compatibility 

and equilibrium conditions are imposed for the interface requirements. This strategy 

leads to an overall matrix system, which has a blocked, sparse and unsymmetrical 

character. This character of multi-zone formulation extends the range of problems 

that can be solved, due to the large savings in storage and CPU required to build and 

solve the matrix. However, this advantage has to be balanced with the fact that multi­

zone modelling adds additional unknowns to the overall problem; these unknowns 

are associated with the response at the zone interfaces, and therefore this tends to 

require more computer cost for problems which require substantial numbers of 

elements on the interface(s). 

Figure 4.14: Block-banded matrix produced by zoning 
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4.13 Further Applications 

This chapter has focused on the BEM applied to elastostatic problems. However, this 

method has many other applications in engineering, described briefly in this section. 

Potential Problems 

They are governed by a differential equation that satisfies Laplace's or Poisson's 

equation. Examples of potential problems are ideal fluid flow, steady-state heat 

conduction and electrostatics can be found in Becker (1992). Moreover, the BEM 

has also been proved to be an effective tool to solve the Helmholtz equation using 

plane waves to express the potential field, for example, in acoustic problems (Perrey­

Debain et al. (2003)). 

Thermoelastic, Gravitational, Centrifugal and Inertia Body Force Problems 

These problems are concerned with the induced displacements and stresses caused 

by a gradient across the body. This effect is treated as a body force over the solution 

domain. 

In the previous sections related to elastostatics, body forces have been assumed to be 

zero. However, if this is not the case, the body force integral in equation (4.31) must 

be evaluated. There are several methods developed for the evaluation of this integral 

such as the cell integration approach or the Galerkin method (Aliabadi (2002), 

Becker (1992)). In this section none of these methods is described for the sake of 

simplicity. 

Contact Problems and Fracture Mechanics 

The numerical modelling of contact problems and fracture mechanics are fields 

where the BE is more suitable than FE. The reasons are related to the accuracy of the 

stresses on the boundary and the easy re-meshing in BE (Trevelyan (1994)). The 
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stress analysis of contact problems has many applications such as bearings, gears, 

pressure vessels and bio-engineering (Aliabadi (2002), Becker (1992)). 

Fracture mechanics is applied in problems related to lifetime prediction and crack 

growth control. In the study of stresses around cracks, the stresses at the tip of the 

crack are assumed to be infinite and are characterised by the stress intensity factor, 

K. When K reaches a critical value Kc then a catastrophic failure occurs. Therefore, 

the theory of fracture has been developed to determine Kc for each specific problem. 

Early application of the BEM to crack growth was due to Cruse (1971). Since then, 

the method improved using singularity elements (Becker (1992)). As the crack grows 

in the sub-critical regime, a BE model can readily be updated to model the extended 

crack surface. This method thus lends itself well to the simulation of fatigue crack 

growth when used in conjunction with an appropriate crack growth law. Another 

method also used is the dual boundary element method (DBEM, Portela et al. 

(1992)). The main idea of DBEM is to model the crack as two separate surfaces 

facing each other, with corresponding discretisation points. Then, the displacement 

boundary integral equation (4.31) is applied to one surface (f+) meanwhile the 

traction boundary integral equation, obtained multiplying equation (4.79) by the 

outward unit normal u;, is applied to the second surface (f} 

Coupling the BEM and FEM 

Combining BE and FE techniques offers promise as an efficient way of tackling 

problems that contain features requiring both BE and FE capabilities. For example, a 

structure containing a thin section and a crack. For such situation the thin section 

should be modelled using the FEM and the crack area using the BEM. 

There are two alternative approaches to combining these techniques; either 

converting the BE into equivalent stiffness matrices or transforming the FE forces 

into nodal tractions. Compatibility and equilibrium conditions must be satisfied on 

the interface of the BE and FE mesh (Aliabadi (2002)). 
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Sensitivity Analysis and Shape Optimisation 

The boundary element method can be used to determine the best shape required to 

certain structural situation. There are several reasons why the BEM is attractive to 

shape optimisation such as the accuracy in evaluating displacements and stresses, as 

well as the easy adaptation to changes in the geometry of the structure during the 

optimisation process (Parvizian and Fenner (1997)). More information on this topic 

is given in detail in the chapter related to the optimisation methods (see chapter 2). 

4.14 Discussion and Conclusions 

To conclude this chapter, the main advantages and disadvantages of the boundary 

element method are summarised here. The main advantages are as follows 

• It simplifies mesh data preparation, because only the surface of the component 

or structure to be analysed needs to be discretised. 

• High accuracy on the resolution of stresses because within the solution domain 

the governing differential equations are satisfied exactly, rather than 

approximately as in the case of the FEM. 

• For the same level of accuracy, the BE method generally uses fewer nodes and 

elements, but has a fully populated matrix. Sparse blocked matrices are 

obtained in the multi-zone approach. 

• Using the boundary element method, less unwanted information about internal 

points is obtained. Since in most linear static engineering problems the worst 

situations occur on the surface, using a boundary element model offers much 

more efficient use of computing resources than modelling a three dimensional 

body using a large number of volumetric elements. 

• Since it is a surface-oriented technique, it is particularly well suited for shape 

optimisation problems. 
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• The method may be used for a variety of problems, including structural, 

thermal, acoustic, dynamics, fluid analysis and infinite problems. 

In spite of these features the BEM has some disadvantages and drawbacks 

• The BEM involves dealing with complex mathematics, since it requires an 

integral equation relation, plus transformation to a boundary formulation using 

fundamental solutions. 

• The interior must be modelled in non-linear problems. However, in some non­

linear cases, such as elastoplasticity, interior modelling can be restricted to 

selected areas such as the region around a crack tip (Pineda and Aliabadi 

(2003)). The DRBEM (dual reciprocity boundary element method, Nardini, 

and Brebbia (1982), Partridge et al. (1992)) has been developed for the BE 

solution of such problems but, in spite of a large volume of research in the late 

1980's and early 1990's, the method has not matured to the extent that it is 

widely used. 

• The BE method uses unsymmetric and fully populated solution matrix whereas 

the FE solution matrices are usually much larger but sparsely populated. 

However, to obtain the same level of accuracy as the FE solutions, the BE 

method needs only a relatively modest number of nodes and elements. 

• The method is not suitable for thin shell analysis. This is because of the large 

surface/volume ratio and that the separation between nodal points becomes 

very small. This causes inaccuracies in the numerical integrations. 

Nevertheless, recent publications (Di Pisa and Aliabadi (2003)) have shown a 

BEM formulation for thin-plate structures obtained by assembling 2D 

elasticity with plate bending theory. 

Summing up, the most important advantages of the BEM concern to mesh generation 

and manipulation. Moreover, the applicability of the BEM seems to be superior to 

the FEM in problems where the boundary stresses are important. 

96 



5 
SHAPE OPTIMISATION IN 2D 

5.1 Overview 

This chapter describes the algorithm developed to perform shape optimisation for 

two-dimensional problems. The approach is based on the evolutionary structural 

optimisation (ESO) method. The boundary element method is used to carry out the 

structural analysis in elastostatic problems. The boundary is described using NURBS 

curves, each of them defined by a set of control points. The iterative procedure adds 

and removes material progressively depending on the stress level within the 

structure. This is accomplished by moving sets of control points instead of dealing 

directly with elements of the mesh. Furthermore, to obtain a better control of the 

geometry, the number of control points is not fixed for the entire process. Some 

examples are presented to show the effectiveness of the algorithm. 

5.2 Introduction 

In shape optimisation, the topology of the structure is fixed and only the shape of the 

boundary can change. Extensive work has been done in shape optimisation using 

both numerical methods, FEM and BEM, for the structural analysis (Haftka and 

Grandhi (1986)). Of especial interest has been the application of BEM when design 

sensitivity analysis is implied in the optimisation algorithm. This is due to the high 
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accuracy of the BEA results on the boundary. Indeed, since the method deals with 

integrals over the boundary, only the boundary needs to be discretised which is a 

clear advantage for remeshing purposes. 

Considering these advantages and also bearing in mind some drawbacks of FE-based 

methods such as checkerboard patters and jagged edges (see chapter 2) an ESO­

based approach is implemented for shape optimisation. This technique considers the 

BE as a tool to carry out the structural analysis. The optimisation approach is stress­

based selecting only the region of interest to be optimised; in ESO this process is 

called nibbling (Xie and Steven (1997)). 

The geometry is described using the nonuniform rational B-spline curves (NURBS). 

These parametric curves allow free-form representation with total geometry control 

over the curve. This feature is very interesting since, a priori, the final design is not 

known. The process is fully integrated within the in-house boundary element 

software (Concept Analyst, Trevelyan and Wang (2001)) allowing a straightforward 

communication between software and optimisation code. 

5.3 Algorithm 

The optirnisation process is based on the principal idea of the ESO method, i.e. that 

inefficient material is slowly removed from the structure, and material is added to 

critical areas as required. Unlike the FE-based ESO, the numerical analysis is carried 

out with the BEM and so the design variables of the problem are exclusively related 

to the boundary. Figure 5.1 shows the flow chart of the basic shape optimisation 

process. Later in the chapter, the algorithm and flowchart would be enhanced by 

adding control point insertion and deletion checks, evolution ratios and other specific 

issues. Thus in figure 5.1 the basic algorithm has been divided into several steps in 

order to clarify the process. 

Step 1: The geometry of the structure is defined and the changeable boundaries 

modelled by NURBS curves. This initial design is subjected to a set of loads and 

constraints. 

98 



Shape Optimisation in 2D 

Step 2: A boundary element analysis, BEA, follows the model description. 

Step 3: Searching for the least stressed nodes within the boundary mesh carries out 

the removal of material. Therefore, the nearest control points to those nodes are 

identified and moved to a more efficient shape. In addition, if a node is found with a 

von Mises stress (or any selected criterion) higher than the yield stress (or any 

maximum criterion) then a similar process to removal is undertaken but, however, 

the opposite direction of movement of the control points results in a material 

addition. 

Step 4: Such a procedure is repeated (from step 2) until the stopping criterion is 

satisfied. This minimum is not mathematically searched but it is found according to 

the evolution of the objective function. 

START 

No 

·-·-·-·-·-·-·-·-·-·-·-· ·-·-·-·-·EI!!!.'!'.!!.'!!!t?!!..'~p_ 
STOP 

Figure 5.1: Flow chart of the shape optimisation process. 

5.4 Geometry Definition 

According to the applied constraints, loads or any other design requirements, the 

structural domain can be identified as design and non-design domain. The design 

domain is any area that can be modified and is free to change during the 

optimisation. On the contrary, the non-design domain is any area that cannot be 
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modified and remains fixed during the optimisation. In this way, the shape 

optimisation can consider as much (or as little) of the boundary as is required for any 

individual problem. Following this notation, on the geometry definition step the 

boundary domain can be divided into three different types of curves (see figure 5.2); 

i.e. changeable, non-changeable and symmetry lines. Therefore, lines that can 

change freely along the process are identified as changeable lines, whereas those 

lines that cannot change due to constraints or design restrictions are identified as 

non-changeable. Symmetry lines can be regarded as an intermediate step between 

changeable and non-changeable lines. They can be modified by changing their length 

but only if the adjoining line is a changeable line; furthermore, their changes are as a 

result of changes in the changeable line. These symmetry lines are always straight 

lines; therefore, their variations are restricted along the direction of the line. 

, ..... '\. changeable line 

displacement , '\_ 
constraint · non-changeable line 

load constraint 

changeable lines 
symmetry line 

Figure 5.2: Definition of the changeable and non-changeable lines 

NURBS curves, already presented in chapter 3, define the changeable geometry in 

order to control the curvature and tangency of the boundary. Usually, these 

changeable lines are initially straight lines, since the shape is not determined. 

Nevertheless the program converts them automatically into NURBS curves with 

their corresponding control points. 

Although the concept of a symmetry line is well known, this section explains how 

these types of lines vary according to the changeable lines next to them. In the event 

of any adjoining changeable line being modified, then the line of symmetry can be 

either shortened or lengthened depending on the new position of the changeable line. 

However, the direction of movement of the symmetry line (see figure 5.3) is only 

permitted along the plane of symmetry. The quantity of movement is determined by 

the adjoining changeable line movement. 
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q 

q 

Symmetry line 

Figure 5.3: Movement of symmetry lines 

5.5 Boundary Element Model 

As previously stated in chapter 4, in the boundary element method the boundary 

integral equations are approximated by a set of discretised integral equations. As a 

result, the boundary surface is divided into elements as shown in figure 5.4, thus the 

response is given at the nodal points associated with the elements. 

The main advantage of this method relates to the mesh, because only the surface of 

the structure needs to be discretised. The analytical results inside the structure are 

calculated at an arbitrary number of internal points. In the software used, these 

points are randomly distributed throughout the interior domain. 

Concept Analyst (Trevelyan and Wang (2001)) allows three different types of 

element mesh so called.fine, standard and coarse mesh. Generally, all the examples 

are discretised using a standard boundary element mesh and quadratic order 

elements, i.e. three nodes per element. This standard element mesh produces 0.5%-

1.0% accuracy in peak stress. Furthermore, areas having high stress gradients would 

require a finer meshing as is shown in the example in figure 5.4. 
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node 1 

node 2r:::.--((-~) 
element \_ 

"-~ 

nodeO 

Figure 5.4: Illustration of a standard quadratic boundary element mesh 

5.6 Removal and Addition of Material 

5.6.1 Identifying Inefficient Areas 

The von Mises stress is the stress description chosen in this case to drive the 

optimisation process. For elasticity, the van Mises stress can be formulated as 

(5.1) 

where OI, 02 and a3 are the principal stresses. The von Mises stress is a useful 

measure since it not only provides a failure criterion applicable to a wide range of 

ductile materials if it exceeds the material's yield stress, but also has the advantage 

of providing a single stress value to compute the stress situation in each node or 

element. This is a stress type commonly used in computational mechanics since a 

single contour plot provides a good overall picture of the stress state of a component, 

including the relation to this failure criterion for both tensile and compressive 

stresses. 

Thus, the von Mises stress is computed for each node in the elastostatic boundary 

element analysis carried out. These nodes are sorted in ascending order according to 

their von Mises stress level. Material is removed from areas of low von Mises stress 

and added in areas of high von Mises stress. In other words, material can be removed 

from the structure if any node p satisfies equation (5.2) 
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(5.2) 

and added to the structure if any node p satisfies equation (5.3) 

(5.3) 

where ap is the node von Mises stress, O'max is the maximum von Mises stress, which 

varies along the process, oy is the yield stress or any other maximum stress criterion, 

RR is the removal ratio and AR is the addition ratio 0 :S RR, AR :S 1. These ratios are 

conceptually similar to the ones used in FE-ESO (Xie and Steven (1997)). In the 

same way as classical ESO, if a steady state is reached in which no nodes, or only a 

few nodes, can satisfy equation (5.2) then the RR is increased by the evolutionary 

rate for removal, ER& as follows 

(5.4) 

where i is the current iteration. In a similar fashion, if only a few nodes can satisfy 

equation (5.3) then the AR is decreased by the evolutionary rate for addition, ERA, 

AR; = ARi-1 -ERA (5.5) 

Typical values for suitable ratios are RR0 = 0.01, ERR= 0.01, AR0 = 0.99, ERA = 0. 

These values are determined from numerical experience. 

It should be noted that the von Mises stress is the criterion generally used in this 

work but, nevertheless, other stress criteria can be applied. For example, the 

principal stresses a1 and Oi can be considered to be taken into account the 

differences between tension and compression, which may be important in cases 

having two materials; for example, steel and concrete. 

5.6.2 Distance to Move 

In any iteration, material is either removed or added to the structure by changing its 

boundary definition. Since control points define the NURBS curves, a set of control 
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points is associated to each specific area to be moved. Every set consists of the three 

nearest control points to this area. The justification for this choice of three points 

comes from numerical tests with different numbers of control points. For sets of less 

than three control points it has been found that the distortion of the curve is very 

localised causing extreme curvature, while for sets of more than three control points 

the distortion is propagated to a wider region of the curve and therefore, losing 

control of the areas to be removed/added. These effects are especially noticeable in 

the first iterations of the process since, as it is explained in the next paragraph, the 

larger geometric changes are performed at the beginning of the process. Smoother 

shapes are obtained for sets of three control points due to the local control feature of 

the NURBS, which was presented in chapter 3. Also, due to the fact of using 

quadratic B-splines since the order of the curve determines the number of piecewise 

polynomials influenced by each control point. It was shown in section 3.1 (chapter 3) 

that for a quadratic curve only a maximum of three control points influence each 

curve segment. 

Each set of control points is moved a distance related to the following parameters: 

• Length of the least/most stressed element, Le 

• Distance of the set of three control points from the least/most stressed element. 

These distances are denoted a, b, c, respectively 

• A factor related to the stress situation within the structure at the current 

iteration, which is called the removal factor (RF) if removing material, and the 

addition factor (AF) if adding it. This factor allows larger geometric changes 

in early iterations and smaller changes when fine-tuning is required in the later 

iterations 

The RF and AF are features which ESO has never included. ESO is based mainly on 

once reached a steady state and then increasing RR (or decrease AR), in this case the 

material removal and addition is also controlled according to the stage of the process. 

Using this feature we gain in computational efficiency without losing the accuracy of 

the final solution. 
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For example, in figure 5.5 (a) the control point (P2) situated at a distance a from the 

node of lowest stress is moved a quantity calculated as follows 

(5.6) 

direction of movement 

(a) (b) 

Figure 5.5: Direction of movement when removing material, one B-spline (a), two 

B-splines (b) 

5.6.3 Direction of Movement 

The direction of movement for each set is perpendicular to its nearest least/most 

stressed boundary element. The only difference between removal and addition is the 

inwards movement when removing material, shown in figure 5.5 (a) and outwards 

movement when adding it. 

In the case of two B-splines, depicted in figure 5.5 (b), an interpolated normal to 

those NURBS curves is calculated. To get this normal quickly, first a line is obtained 

by joining the first node from the last element of the first B-spline with the last node 

from the first element of the last NURBS curve. The normal to this line gives us the 

direction of movement for the control points. 
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Note that the automatic meshing procedure used at each step aims to have equal, or 

close to equal, element lengths where two lines meet, so that this quick 

approximation to the average normal vector is likely to be a good approximation. 

The removal and addition of material process detailed in this section can be 

summarised in the flow chart in figure 5.6. This flow chart improves the basic step 3 

presented in figure 5 .1. 

~ 
C/~!!21.!':!~!!:!92~§§ ____ -}---------------------------------·--t--------------------------------

Is there any node that satisfies 

~I Steady state I Oj, ::; RR; a;,ax RRi+I = RR; +ERn 

~ Yes • Select sets of control points 

I Remove material ~ • Calculate for each control point selected: 

- Distance to move: d; = f(L,, a, b, c, RF) 

- Direction of movement: inwards j_ to the boundary 

---------- ....... -----------------------------------------------------------------------------
f1_d_cf.~igfl_ !:!1.!9~§§_---- ---------------------------------------------------------------------

T 
Is there any node that satisfies ~I Steady state I Oj, ;:: AR;a;,ax OR Oj,;:: oy ARi+I = AR; - ERA 

~ Yes • Select sets of control points 

I Add material ~ • Calculate for each control point selected: 

- Distance to move: d; = f(L,, a, b, c, AF) 

-Direction of movement: outwards j_ to the boundary 

Figure 5.6: Flow chart of the removal and addition process 

5.7 Geometry Control 

The number of control points defining each NURBS curve is never fixed. On the 

contrary, it has been found to be important that control points are automatically, 

either inserted or deleted as required throughout the process. This capability has been 

implemented in order to control geometry changes and keep smoothness. Another 

important feature related to the geometry control process is the mesh subdivision. 

This subdivision is performed in areas in which the NURBS curve distortion has 

caused extreme curvature of an element. At this point, the optimisation algorithm is 
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enhanced with the control point insertion and deletion checks as well as mesh 

subdivision. 

5.7.1 Insertion of Control Points 

The insertion of a new control point in between two existing control points is done 

when these control points are moved away from each other more than a constant 

factor, k, times the initial distance between them 

(5.7) 

where i is the iteration number, d0 = IP1- P1_1l0, and generally k 2: 1.5. 

The control point insertion algorithm is implemented to avoid areas whose defining 

control points are placed too far away and therefore, loosing control over the B­

spline curve (in this area) since changes on their position are slightly reflected on the 

final curve. This effect is illustrated in figure 5.7. Figure 5.7 (a) depicts the original 

curve C(u) with do= Pt- P2• As the optimisation evolves former curve C(u) changes 

according to the movement of its control points. In this case, P1 is moving too 

separate from the curve compared to the other control points. Figure 5.7 (b) shows 

the curve C(u) at iteration i for which the equation (5.7) is satisfied. Thus, C(u) is 

updated to C'(u) inserting a control point P' to the control point set. The new control 

point is placed at the mid-point of the line joining both control points P1 and P2. 

(a) (b) 

Figure 5. 7: Insertion of control point P' 
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5.7.2 Removal of Control Points 

The removal of a control point is performed when a set of control points are placed 

too close together. This control point removal process is implemented to avoid 

regions of excessive curvature as a result of the movement of control points in the 

removal and addition processes. Also, to keep each control polygon edge 

proportional to the overall edges. The criterion to remove the point from this set is 

based on the comparison of the different lengths of the lines of the control polygon 

(5.8) 

where l < 1, IPi- Pj-1l is the distance of the actual line checked, 1Pj_1- Pj_21 and 1Pj+1-

Pjl are the distances of the previous and next control polygon lines respectively. 

Thus, if in equation (5.8), the inequality on the left is satisfied, then Pj_1 would be 

removed. On the other hand, if it is the inequality on the right that is satisfied then Pj 

is the control point to be removed. 

Figure 5.8 (a) displays the original curve C(u) and the distribution of control points 

defining the curve. Figure 5.8 (b) shows the curve C(u) some iterations after, when 

P' and P2 have been moved. At this stage P' has approached too close to P3 and the 

distance between the two control points satisfies equation (5.8) since IP3-P'I < liPr 

P'l· Finally, C'(u) is created by removing control point P' and so modifying the 

control polygon definition. 

(a) (b) 

Figure 5.8: Removal of control point P' 
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One could argue here that to keep the geometry under control an alternative to 

adding or deleting control points would be to increase or decrease the degree of the 

curve. This is not a feasible solution since the structure is defined by several NURBS 

curves which are connected to each other and therefore they would behave 

differently if they had different degree. Moreover, an increase on the degree of the 

curve also increases its complexity. As discussed in chapter 3, section 3.1, if pis the 

degree of a B-spline curve, each segment of the curve is influenced by only p+ 1 

control points, and conversely, each control point influences only p+l curve 

segments. This locality feature would be affected by a degree increment since the 

higher the degree of the curve the more control points would influence a curve 

segment or in other words, changes of a control point would affect many more 

segments on the curve. 

5.7 .3 Mesh Subdivision 

Mesh subdivision is performed in areas in which the NURBS curve distortion has 

caused extreme curvature of a single element. Since the optimisation algorithm is 

implemented together with the boundary element analysis the mesh is checked while 

the boundary is discretised and just before the structural analysis is carried out. Thus, 

if there is any element whose overall length exceeds certain factor of the distance 

between the edges of this element as stated in equation (5.9), then the element is 

subdivided 

(5.9) 

where lengthe is the length of the element, e, under study. PJ and p1_1are the first and 

last node of the element and IP1 - PJ-d is the distance between both nodes. m is a 

factor which generally, m~ 1.05. 

The geometry control process is summarised in the following flow chart in figure 

5.9. This chart shows both the geometry control process related to mesh subdivision 

and the geometry control process related to control point insertion and removal. The 

mesh subdivision process is carried out after a boundary element analysis, whereas 
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the control point insertion and removal processes are performed after the removal 

and addition of material. 

_9.c;!!!~!!P!~'!.I!'Y..5!___________ Geometry Control 
-------------------------- .. ---------------------I Discretise boundary 

--, 

No Are there any elements that satisfy 

tl 
length, > m!P1- p1_1l ? 

-~- l Yes 

Mesh subdivision element e -------- ----------

I Removal & I ------------------------------------------------
Addition Process 

Geo metry Control ---------------------- ----------------------------------------------------------------
Are there any control points that satisfy Yes Insertion of control point 

IP1- P1.1l > kiPr P1_1l0 ? (k,?L5) 
r----. j' (j-1<}' <j) 

No •. 

Are there any control points that satisfy 

IP1- P1.1l < liP1.J- P1.2l; (1<1) (a) 
Yes Removal of control point 

t-----' j-1 if (a) OR j if (b) 
OR 

IPj- pj-11 <liP}+ I-Pjl; (1<1) (b)? 

Figure 5.9: Flow chart of the geometry control process 

5.8 Stopping Criteria 

The failure of structures under service frequently takes place in areas of locally high 

stresses. Therefore, it is crucial to avoid stress peaks in order not only to prevent 

localised yielding but also to increase the fatigue life of the structure and avoid crack 

initiation. For this reason, the stopping criteria implemented in this shape 

optimisation algorithm are mainly related to the control of the stress level on the 

boundary. For the current work four different objective functions have been 

considered depending on the problem. Monitoring of the objective function towards, 

and ultimately beyond, an optimum provides a stopping criterion. This stopping 

criterion can be quantified in the following normalised form 

f i+l_fi 
t: = . ::;; w-4 

!' 
(5.10) 
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where i is the value of the objective function at iteration i and i+l is the value of 

the objective function one iteration after. 

5.8.1 Stress Concentration Factor 

The objective is to minimise the stress concentration factor on the boundary 

(5.11) 

where O"max is the maximum stress at any point in the region of interest and a;, is the 

nominal applied stress. For the majority of cases, in which the stress is applied on the 

non-design domain, this objective is equivalent to one in which the maximum stress 

is minimised. 

5.8.2 Stress Levelling 

The objective chosen is to make uniform the stress along a detailed part of the 

boundary (f). Therefore the objective deals with minimising the following function 

fr = fcap- aref )2 df' 
r 

where ap is the node stress and O"ref is a reference stress. 

5.8.3 Weight Reduction 

(5.12) 

The objective function relates to the minimisation of the weight of the structure over 

the domain n, and is defined as 

fw = J,ruv (5.13) 
Q 
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where pis the density and V is volume of the structure. Since pis constant for these 

homogeneous material problems the equation (5.13) can be transformed and thus, the 

initial weight minimisation can be regarded as a volume minimisation 

fv = J dV (5.14) 
Q 

5.8.4 Strain Energy Criterion 

A common objective in engineering is to obtain a structure stiff enough to produce a 

good performance under certain loads and constraints. Such an optimisation problem 

consists of maximising the stiffness in the structure. This problem can be 

transformed by dividing the stiffness (K) by volume (V) and thus, a function termed 

specific stiffness (Steven et al. (2002)) is obtained 

(5.15) 

Therefore, the overall specific stiffness is maximised which implies that the stiffness 

is maximised while the volume is reduced. An equivalent expression can be written 

in terms of strain energy ( U) as 

f = 
1 

uv 

Using BEA notation, the strain energy U is defined as 

(5.16) 

(5.17) 

where T are the tractions over the boundary and u the displacements over the part of 

the boundary r where the tractions are applied. Therefore, maximising the specific 

stiffness A of the structure is equivalent to minimising the functionfu where 

fu = UV (5.18) 
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5.9 Numerical Examples 

5.9.1 Hole in a Biaxial Stress Field 

This classical example addresses the shape optimisation of a hole in an infinite plate 

under a biaxial stress field. Due to the symmetry, only a quarter of the plate is 

modelled. Figure 5.10 shows the initial shape and boundary conditions. The plate is 

subjected to biaxial stress ox = 20 N/mm2 and ay = 10 N/mm2 under the plane stress 

assumption. The following isotropic material properties are assumed: Young's 

modulus E = 210000 N/mm2
, Poisson's ratio v= 0.3 and thickness t = 1 mm. The 

hole is modelled by a quadratic NURBS curve (line B-A). 

Two optimal design problems are investigated for this example: 

• Optimisation for stress levelling (equation 5.12) 

• Optimisation for minimum volume (equation 5.14) 

ay =10N/mm2 

ax =20N!mm2 

B 

30mm 120mm 

Figure 5.10: Problem definition for a quarter of the plate 

5.9.1.1 Optimisation for Stress Levelling 

The objective for this optimisation is to smooth out local stress concentrations, thus 

minimising the square of the deviation of the stresses from a desired uniform stress 

a;.ef (equation 5.12). In this case, the maximum von Mises stress a;11ax is taken as a;.ef· 
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The theoretical solution (Kristensen and Madsen (1976)) is an ellipse with an aspect 

ratio b/a equivalent to the loading ratio ay!~. i.e. 1/2, with the stresses uniformly 

distributed around the hole. This represents the optimum shape condition, in which 

all the material at the edge of the hole is at the same maximum permissible stress. 

The problem was also studied by Tafreshi and Fenner (1991) using the BEM and 

design sensitivity analysis. The sensitivity calculations were carried out by implicit 

differentiation of the structural response; i.e. the boundary integral equation is 

differentiated directly to give equations for the required derivatives. 

The optimisation parameters are set to RR0 = 0.01, ERR= 0.01, AR = 0.99, ERA= 0, 

RF = 0.05 and AF = 0.025. RF and AF are taken to be constant and of small value in 

order to keep smoothness and thereby do not give rise to artificial stress peaks over 

the boundary. 

Initially, the element model contains 44 quadratic elements, a number that increases 

to only 45 in the optimised design. Figure 5.11 (a) shows the initial and final 

boundary mesh in the area of the hole. There is one quadratic NURBS curve defining 

the central hole. This curve consists initially of, 6 control points. At the end of the 

process this number has increased to 9. See figure 5.11 (b) for the initial and final 

distribution of the control points. 

(a) (b) 

Figure 5.11: Initial and final element mesh (a). Control point distribution (b) 

The final design for the cut-out is reached after 60 iterations in a total CPU time of 

14.162 seconds on a Pentium 4 (2 GHz). Figure 5.12 compares the numerical 

optimum shape with the theory. In order to compare both results, the analytical 

optimum is calculated taking the major axis a = 47.8 mm. Since a = 2b for this 
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problem, the minor axis is b = 23.9 mm. Thus, the ellipse (analytical optimum) is 

calculated following the equation for an ellipse being centred at (0,0) 

x2 y2 2 2 

1 X + y --1 -+-= ~---,-
a 2 b2 (47.8) 2 (23.9) 2 (5.19) 

The numerical results show a slight deviation from the theoretical solution. The ratio 

of the minor axis of the elliptic hole to the major is b/a = 25.29 mm/45.81 mm~ 

0.5521 (analytical optimum b/a = 0.5). However, the overall solution shows good 

agreement with the theory. 

b 

1------------
1 

---------- Numerical optimum ---- --
/ 

------, b/a = 0.5521 

Analytical optimum 
-­,,, 

& Wa"O~-;----- ~\ __ -. 

Figure 5.12: Comparison between the theoretical and analytical solution 

Comparing the initial (figure 5.13 (a)) and final (figure 5.13 (b)) stress distribution, 

as expected, the stresses around the curve become more uniform when approaching 

the final solution. The ratio between the maximum von Mises stress at the edge of 

the hole and the larger of the two biaxial components is 1.691 (a;11axiO'x = 33.828 

N/mm2/20 N/mm2 = 1.691), which is high if compared to the analytical 1.5 

(Kristensen and Madsen (1976)) and other numerical results 1.59 (Tafreshi and 

Fenner (1991)). A reason for this can be that the theoretical results are calculated 

assuming an infinite plane whereas in our case the geometry is described by finite 

segments and the effects of the loading and displacement constraints cannot be 

avoided. 
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Figure 5.13: Initial (a) and final (b) von Mises stress contour plot 
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By using the stress based criterion; i.e. adding material to very high stressed areas 

and removing from lightly stressed regions, the boundary evolves into a state of near 

constant von Mises stress at its surface. The structure reduces any localised stress 

peaks which leads to a constant stress state at the surface. This situation is observed 

in figure 5.13 (b) especially in the enlarged view of the final elliptical shape. 

Figure 5.14 shows the distribution of the von Mises stress along the hole for the 

initial and final designs. In the arbitrary initial design there is a stress peak of 80 

N/mm2 that occurs in a localised area at 8 = 0°. As we move along 8, the von Mises 

stress drops sharply to 10 N/mm2 and only increases nearby 8 = 90°; i.e. at the right 

end of the hole. In figure 5.14 we compared these results to the optimum design; in 

the latter, the stress concentration has been effectively removed and the stress levels 
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are clearly uniform around the cut-out. Moving from 8 = 0° to 8 = 80° the von Mises 

stresses smoothly vary between the values of 30 N/mm2 and 33 N/mm2
. It is only 

nearby the right end of the hole that the stresses drop to 22 N/mm2 
( :::::: 31 % from the 

uniform stress average 32 N/mm2
). The optimum analytical solution (Kristensen and 

Madsen (1976)) ae = (1 + a;, / o:t) ox, displayed in red, has a constant value ae = 30 

N/mm2
. Thus, there is a very good general agreement between the analytical and the 

numerical optimum. 
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Figure 5.14: Distribution ofvon Mises stress along the hole 

5.9.1.2 Optimisation for Minimum Volume 

The same plate example is now optimised for minimum volume. The purpose of this 

optimisation is to remove as much material as possible from around the hole while 

avoiding yielding (a yield stress of 280 N/mm2 is adopted). In addition to this 

maximum stress criterion, since the plate is considered to be infinite, the stress level 

in the constrained edges has to be smaller than a percentage (50%) of the maximum 

stress in the plate. The optimisation parameters are set to RR = 0.01, ERR = 0.01, AR 

= 0.99, ERA = 0, RF = 0.2 and AF = 0.5. 

The standard boundary element mesh consists of 44 quadratic elements (figure 5.15 

(a)) at the initial design, and 46 elements (figure 5.15 (b)) at the end of the process. 

The hole is described by a NURBS curve, initially with 6 control points (figure 5.16 

(a)). The number of control points has increased to 10 at the end of the process 
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(figure 5.16 (b)). Figure 5.17 depicts the von Mises stress distribution, initial (a) and 

final (b) after petforming 65 iterations. The optimum shape for volume minimisation 

has no longer an elliptical shape as the previous example. This is due to the local 

bending in the right corner, which produces high stresses and therefore and addition 

of material. As a result of this addition of material, the structure tends to increase the 

second moment of area* . Similar results for this problem were found by Esping 

(1985) and Sienz (1994). 

(a) (b) 

Figure 5.15: Initial (a) and final (b) boundary element mesh 

(a) (b) 

Figure 5.16: Initial (a) and final (b) control point distribution 

• Second moment of area about the z-ax is I z = J y 2 dA 
A 
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(b) 

Figure 5.17: Initial (a) and final (b) von Mises stress distribution 

5.9.2 Fillet 

The second example deals with the minimisation of the stress concentration 

(equation 5.11) around a fillet, or in other words, to find the shape for which the 

maximum stress on the fillet is a minimum. This problem has been studied by 

Francavilla et al. ( 197 5) using penalty-function methods and extended to 

axisymmetric shapes by Pedersen and Laursen (1983). Also, the fillet design has 

been investigated by FE-ESO (Xie and Steven (1997)). Figure 5.18 (a) shows the 

shaft with shoulder fillet loaded in tension; due to the symmetry only half of the 

structure is modelled. A priori, the shape of the transition area is not known and it is 

therefore modelled initially as a rectangular shape with L/H = 2; being L = 200 mm 

and H = 100 mm. Figure 5.18 (b) depicts the changeable boundary as displayed by 

Concept Analyst. 

The material properties assumed are: Young's modulus E = 210000 N/mm2
, 

Poisson' s ratio v = 0.3 and thickness t = 1 mm. The structure is in pure tension due 

to a stress of magnitude 100 N/mm2 applied on the right-hand side. 
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changeable line / 

L 

400mm 

(a) (b) 

Figure 5.18: Problem definition for a fillet 

The optimisation parameters are set as ERR= 0.01, RR initially 0.01 but increasing 

gradually throughout the process to 0.2, ERA = 0, AR = 0.99, RF = 0.02 and AF = 
0.025 . These small and constant values for RF and AF produce a slow removal and 

addition, respectively, so that smooth changes are ensured alongside the fillet. The 

optimum design is accomplished after petforming 123 iterations within a CPU time 

of 21.876 seconds in a Pentium 4 (2 GHz). 

(a) (b) 

Figure 5.19: Initial (a) and final (b) boundary element mesh 

The standard mesh consists of 38 quadratic elements in the initial design (figure 5.19 

(a)), and 35 in the final design (figure 5.19 (b)). 
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Figure 5.20: Initial (a) and final (b) control point distribution 

p X(mm) Y(mm) P' X(mm) Y(mm) 

Po 300 100 P'o 300 lOO 
Pt 300 150 P't 223.42 102.93 
p2 300 200 P'2 173.21 113.42 
p3 256 200 P'3 110.82 133.53 
p4 203 200 P'4 100 200 

Ps 100 200 

Table 5.1: Coordinates of the control points 

The fillet is described by a quadratic NURBS curve with six control points. The 

weights associated to each control point are taking equal to 1; i.e. wi = 1 (see chapter 

3). Figure 5.20 shows the control point distribution for the initial (a) and final (b) 

models. Notice that the number of control points has decreased to five. Such a 

phenomenon occurs as a result of the application of the control point removal 

algorithm following equation (5.8) with l = 1.5. The insertion of control points is 

conh·olled following equation (5 .7) for k = 2 but for this example this part of the 

algorithm does not turn out to be required. The coordinates of these control points 

are displayed in table 5.1. Points P0 and P5, initial and final, respectively, control 

points in the control point polygon, are fixed since they belong to the changeable line 

but also to the neighbouring lines which are non-changeable. Note that the control 

point P5 is latter identified asP' 4 in the final design. 
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Figure 5.21: Initial (a) and final (b) von Mises stress distribution 

Cha ter 5 

Figure 5.21 depicts the von Mises stress distribution. In the initial design (a), the 

highest stress is concentrated at the bottom right side of the fillet. As it can be 

noticed, the stress peak is not at the corner. This is due to an artifact of the stress 

averaging of Concept Analyst since the two elements at the corner have different 

traction situation. The element situated on the vertical line of the corner is under low 

tractions while the other element, on the horizontal line of the corner, has very high 

tractions. Numerical tests refining the elements in area have shown that this effect is 

reduced and the stress peak is much closer to the actual corner. The von Mises stress 

maximum is 158.47 N/mm2
; this value of the maximum von Mises stress is reduced 

to 111.73 N/mm2 in the optimum proposed design figure 5.21 (b). Therefore, the 

stress concentration in the fillet has been reduced by approximately 30%. From the 

von Mises stress distribution displayed in figure 5.21 it should be noted that a larger 

control area would have resulted in less stress variation at the design domain and 

therefore, a more homogeneous stress distribution. 

The distribution of von Mises stress along the fillet is shown in figure 5.22. The 

NURBS curve defining the fillet varies from coordinate x = 100 mm to coordinate x 
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= 300 mm. However, in order to show the effect of low and high stress situation in 

the right hand side corner of the fillet (explained at the beginning of this paragraph); 

the van Mises stress in the boundary nearby the corner (x > 300) is also displayed. 
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Figure 5.22: Distribution of van Mises stress along the fillet 

Figure 5.23 shows the evolution history of the stress concentration factor K,. The 

minimum for this objective is clearly obtained at iteration 122. However, different 

local minima can also be identified in the evolution of the graph. These peaks or 

jumps in the objective are due the fact that the removal and addition of material is 

based on a stress criterion rather than driven by the objective function . 

Figure 5.25 shows the evolution process of volume ratio. The minimum stress is 

obtained for a volume ratio VIVo = 17%. There is a similarity between the resulting 

shape and the one obtained using FE-ESO in figure 5.24 (b) where the minimum 

stress is found at the volume ratio of 12%. However, FE-ESO solution bears a strong 

resemblance to an ellipse whereas the BE-ESO result is closer to a parabola shape. 

Some authors (Francavilla et al. (1975)) have obtained the optimised shape by 

assuming a transition low-order curve and tangential straight lines in the definition of 

the initial problem. As a result of such restrictions, the optimal shape generally 

becomes an ellipse rather than a general parabola. In our case, the control points do 

not follow any predetermined direction but simply move perpendicular to the nearest 

boundary. No bounds have been imposed to the control points apart from fixing the 

first and last control point. 
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Figure 5.23: Evolution history of stress concentration factor K, 
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Figure 5.24: FE-ESO (Xie and Steven (1997). Initial design (a). V/V0 :::::: 12% 

minimum stress (b) 

The same fillet problem is investigated but imposing bounds to the movement of the 

control points. Thus, displacement constraints are applied to restrict the movement of 

any control point inside the design domain area, displayed in grey in figure 5.26. The 

same material properties, optimisation parameters, dimensions, loads and constraints, 

as depicted in figure 5 .18, are assumed. However, the design domain in this case it is 

not a rectangle but a triangle, since the changeable line is now the hypotenuse as 

shown in figure 5.26. 
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Figure 5.26: Problem definition for a fillet 

The boundary element mesh comprises 34 quadratic elements in the initial design 

(figure 5.27 (a)), and 36 elements in the final design (figure 5.27 (b)). The fillet is 

described by a quadratic NURBS curve with seven control points equally distributed 

along the fillet. Figure 5.28 shows the control point distribution for the initial (a) and 

final (b) models. The number of control points in the resulting model has increased 

after applying the control point insertion algorithm; also notice that the control 

points accomplish the constraint of being within the design domain. 
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Figure 5.28: Initial (a) and final (b) control point distribution 
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The optimum design is obtained after 75 iterations in a CPU time of 13.23 seconds. 

Figure 5.29 depicts the von Mises stress distribution. In the initial design (a), there is 

a high stress peak of 162.6 N/mm2
; after the optimisation this value is reduced to 

108.6 N/mm2 in the optimum proposed design (b). Figure 5.30 shows a comparison 

between the initial and final stress distribution around the fillet. It is clear that the 

stress peak, initially localised at x = 300 mm, has been reduced by 33.2%. The 

volume ratio is VIVo= 0.1182; where V0 = H x L in order to compare to FE-ESO and 

to the previous result for the fillet. Both final shape and volume ratio show a very 

good agreement with the results obtained by Xie and Steven (1997) and displayed in 

figure 5.24 (b) . 
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Figure 5.29: Initial (a) and final (b) von Mises stress distribution 
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Figure 5.30: Distribution ofvon Mises stress along the fillet 

Finally, the two proposed designs are compared in figure 5.31. The dashed line (final 

design I) is the fillet initially obtained without applying any restriction to the control 

points but the first and last control point fixed. In the second case (final design II) the 

control point movement is restricted to the design space. Evaluating both results, the 

minimum value for the maximum von Mises stress is obtained in the second solution 
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(final design Il). Moreover this solution is closer to the optimum proposed by Xie 

and Steven (1997) and by Francavilla et al. (1975), and also exhibits a better volume 

reduction. 
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Figure 5.31: Comparison of fillets according to the constraints imposed 

5.9.3 Two-bar frame 

The last example of this chapter shows the optimisation of a rectangular beam 

subjected to a vertical load of magnitude 100 N. The definition of the initial problem 

is shown in figure 5.32. The height of the beam (100 mm) is twice the width (50 

mm). The material properties are: Young's modulus E = 210000 N/mm2
, Poisson's 

ratio v = 0.3 and thickness t = 1 mm. The optimisation process follows the strain 

energy criterion defined in equation (5 .18). The analytical solution for this problem 

is a two-bar frame structure (Hemp (1973)). 

The optimisation parameters are set to ERR= 0.01, and RR, initially 0.01 , rises up to 

0.26 during the iterative process. RF also varies from 0.3 to 0.06. AF = 0.5 and a 

constant value of AR = 0.75 is adopted. 

The applied load of 100 N is deliberately chosen to take a small value so that the 

material addition is inhibited, the yield stress being unlikely to be reached. This 

allows a more direct comparison with the analytical optimum presented by Hemp 

(1973) . 
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Figure 5.32: Problem definition for a two-bar frame 

Figures 5.33 (a) and 5.33 (b) show the boundary element mesh used for the analysis. 

The initial boundary element model contains 35 quadratic elements but at the end of 

the optimisation process this number has increased to 43. The final geometry depicts 

a structure similar to a two bar truss with an internal angle of 90°, which is the 

analytical solution. In figure 5.33 (b) the mesh subdivision algorithm, explained in 

section 5.7.3, is applied to the element with extreme curvature. 

J 
(a) (b) (c) (d) 

Figure 5.33: Initial (a) and final (b) boundary element mesh. Initial (c) and final (d) 

control point distribution 

Figures 5.33 (c) and 5.33 (d) show the number and position of the control points 

related to the five quadratic NURBS curves describing the changeable boundary 

shape. Notice from figure 5.33 (c) that initially all curves are modelled as straight 

lines. 
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Figure 5.34 displays the evolution of the process according to the von Mises stress 

contour plot. The optimum is reached after 43 iterations in 11.68 seconds using a 

Pentium 4 (2 GHz) processor. Comparing the initial geometry and the final one; in 

the final design there is approximately a 75% reduction from the initial volume. It 

should be noted that this final design is approaching a fully stressed design, in which 

ideally all the material is at the same stress level. 
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Figure 5.34: V on Mises stress contour plot for several steps in the process 

5.10 Discussion and Conclusions 

The problem of shape optimisation has been successfully tackled using the new ESO 

approach. Initial structural applications demonstrate the ability of the developed 

method to produce optimal shapes based on a stress-based criterion. The method 

identifies and removes material that does not contribute to increase the performance 
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of the structure according to the sought objective, as well as adding material to 

critical regions. Smooth boundaries are obtained by working directly with the control 

points defining the geometry. 

In a similar way to the biological growth method (Mattheck and Burkhardt (1990)) a 

homogeneous state of von Mises stresses is obtained on the surface of the structure 

considered. Small movements of the control points defining the NURBS curve under 

design tend to reduce the maximum von Mises stress and to increase the minimum 

von Mises stress in order to get a more homogeneous von Mises stress distribution. 

In this sense, localised stress peaks are avoided in the structure and eventually a 

constant stress state is reached at the surface. 

The boundary movements do not produce mesh distortion problems since a 

remeshing is performed for each analysis. This remesh process is only required over 

the boundary and therefore it is simple and fast, which is one of the advantages of 

the boundary element analysis. 

A practical application of the method is the optimisation of holes in plates under in­

plane loading. Two different objectives are considered, i.e. stress levelling and 

weight reduction. As expected, the shape results are different depending on the 

objective to be achieved. The results agree with both theory and numerical results 

obtained using other optimisation methods. Table 5.2 shows a chart comparing von 

Mises stress levels and volume results for the two optimisation objectives 

considered. 

Table 5.2: Stress levelling vs. volume minimisation 
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The problem of a fillet on a tension bar is optimised to minimise the stress 

concentration factor. Again, the proposed fillet shape exhibits very good agreement 

with benchmark results. Moreover, the algorithm has been proved to be effective for 

specific strain energy minimisation. By integrating structural analysis and 

optimisation the computational performance shows very good performance and fast 

solution times. 
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6 
TOPOLOGY OPTIMISATION IN 2D 

6.1 Overview 

In this chapter the optimisation approach is applied to topology optimisation 

problems. The approach has been proved to be successful for shape optimisation 

problems (chapter 5). Hence, the algorithm for topology optimisation is implemented 

in a similar way to the shape optimisation case. Likewise, the algorithm is based on 

the evolutionary structural optimisation (ESO) method. The boundary element 

method (BEM) is used as the analytical tool and a boundary representation is 

implemented in terms of NURBS curves. Furthermore, holes can be created in the 

inner low stressed areas to remove inefficient material from the inside regions and, 

therefore, performing topological changes. These holes are also defined by NURBS. 

Accordingly, they exhibit the same behaviour features as the outside boundary. 

Several examples are presented to prove the efficiency of the algorithm. 

6.2 Introduction 

In the field of structural optimisation, topology optimisation refers to optimal design 

problems where the topology of the structure varies. This optimisation class is 

regarded as one of the most challenging optimisation problems since the topology is 

allowed to change in order to increase the performance of the structure. For this 
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reason, much research has been devoted to topology optimisation over the last ten 

years. This has included methods based on microstructures such as the 

homogenisation method (Bends!lle and Kikuchi (1988)) and SIMP method (Rozvany, 

et al. (1992)), and methods that deal with elements on a macro basis approach such 

as the biological growth (Baumgartner et al. (1992)), the evolutionary structural 

optimisation (ESO) method (Xie and Steven (1997)) and the bubble method 

(Eschenauer et al. (1994)). Most recently, probabilistic methods such as genetic 

algorithms (GAs) (Cerrolaza et al. (2000)) have been applied to topology 

optimisation since they are particularly robust in finding global optima. However, 

this can come at a high computational cost. Also, the concepts of robust and reliable 

design (Frangopol and Maute (2003)) are in growing interest in topology 

optimisation since they consider input variations and uncertainties in the design and 

manufacturing process. From these different topology optimisation techniques, 

presented in detail in chapter 2, the evolutionary structural optimisation method ESO 

(Xie and Steven (1997)) is chosen as the basis for the present work. 

Most of the work carried out on ESO is based on the finite element method. The 

classical ESO approach is based on the idea of removing inefficient material from an 

initially oversized domain. The removal process is carried out deleting regions 

occupied by elements with low stresses. By repeating this process and removing 

small amounts of material at each stage, the topology for the structure gradually 

evolves to a more efficient shape. After this basic approach there have been a 

number of modifications and refinements such as BESO (Querin et al. (1998)) where 

not only elements are removed but also added in high stress areas. Recent 

applications of ESO (Steven et al. (2002)) would consider element modification 

sensitivity terms applied in a wide range of physical situations. These sensitivities 

are used to drive the removal and addition process in order to achieve a minimum (or 

maximum) of some objective/s or to target certain fitness values. 

Nevertheless, ESO presents some drawbacks and weaknesses as have been reported 

by Zhou and Rozvany (2001). Another problem already reported in the previous 

chapter (chapter 5) is the presence of jagged edges and checkerboard patterns 

resulting from the dependency on the finite element model. These problems are 
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illustrated in figure 2.1 (see chapter 2). Although increasing the density of the mesh 

improves the quality of the boundary definition, it also implies longer solution times. 

To cope with these shortcomings, the boundary element method (BEM), detailed in 

chapter 3, is used as the analytical tool. The boundary element software used in 

topology problems is the in-house program Concept Analyst (Trevelyan and Wang 

(2001)). In addition, the boundary shape is represented by NURBS curves defined by 

control points. These curves are explained in detail in chapter 4. The present 

approach optimises the structure by treating the control points as the design 

variables. Therefore, the boundary smoothness is achieved by migrating control 

points instead of deleting and adding elements. 

6.3 Algorithm 

The basic topology optimisation process can be summarised in the flow chart shown 

in figure 6.1. The optimisation process follows the same stages already presented in 

shape optimisation (figure 5.1). However, a new step is implemented in the topology 

optimisation process related to the creation of holes in the inner low stressed areas. 

The main steps of the basic algorithm are summarised as follows 

Step 1: The geometry of the structure is defined. The boundary lines able to change, 

so-called changeable lines, are selected and modelled as NURBS curves. Loads and 

constraints are applied to the initial design problem. 

Step 2: A boundary element analysis (BEA) is carried out. 

Step 3: The material removal process is performed by selecting the least stressed 

nodes within the boundary mesh and effectively moving the control points nearest to 

those nodes. Following a similar process, material addition is carried out if a node is 

found with a stress higher than the yield stress or a certain maximum stress criterion. 

The control points nearest to the high stressed nodes would be moved. However, 

movement takes place in the opposite direction to that in the removal process. 
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Step 4: To complete the topology optimisation, the inside regions are also considered 

and internal holes are created in the inner low stressed areas. The algorithm 

considers both the external and internal boundaries to be optimised at the same time. 

Under certain circumstances, holes can merge between each other or into the outer 

boundary. Thus, if the topology changes, i.e. a hole is created or merged, then the 

process is repeated from step 2. 

Step 5: Finally, such a procedure is repeated, from step 2, until the evolution of the 

objective function shows no improvements. 

Notice that since, during the optimisation process, the control points are moved and 

in consequence the shape changes, the boundary element mesh is updated every 

iteration. 

START 

STOP 

Constraints 
Symmetry lines 
Loads 

Figure 6.1: Flow chart of the optimisation process 

This basic topology optimisation algorithm is very similar to the one presented for 

shape optimisation (figure 5.1). Therefore, only the distinctive features are covered 

in this chapter. The reader is referred to chapter 5 for a more detailed explanation 

about the different stages of the process not considered here. 
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6.4 Removal and Addition of Material 

6.4.1 Identifying Inefficient Areas 

In a similar way to shape optimisation, the von Mises stress is computed for each 

node after the boundary element analysis is carried out. These nodes are sorted in 

ascending order according to their von Mises stress level. As a result, material can be 

removed from the structure if any node satisfies 

(6.1) 

and added to the structure if any node satisfies the following equation 

(6.2) 

where ap is the node von Mises stress, amax is the maximum von Mises stress, which 

varies along the process, oy is the yield stress, AR is the addition ratio 0 :::; AR :::; 1 

and RR is the removal ratio 0 :::; RR :::; 1. These ratios are similar to the ones defined 

in ESO (Xie and Steven (1997)) and are called the rejection rate (RR) and addition 

rate (AR) (Querin et al. (1998)), respectively. If a steady state is reached in which no 

nodes, or only a few nodes, can satisfy equation (6.1) then the RR is incremented by 

the evolutionary rate ERR. Similarly, if equation (6.2) is not satisfied then the AR is 

reduced by the evolutionary rate ERA 

RRi+l = RRi +ERR 

ARi+l = ARi- ERA 
(6.3) 

Typical values for suitable ratios are RR0 = 0.01, ERR= 0.01, AR0 = 1 and ERA = 0. 

These values are determined from numerical experience. 

The distance to move the selected control points as well as the direction of 

movement for each control point follow the details given in sections 5.6.2 and 5.6.3 

in the previous chapter. Geometry control checks (section 5.7) are also crucial in the 

topology optimisation approach. 
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6.5 Creation of Holes 

Topology changes are brought about by creating internal cavities or holes in low 

stressed areas. These holes are shaped according to the internal von Mises stress 

contours. The free-shapes are created using NURBS curves to define their geometry. 

In a BEA the results at points contained within the boundary of the object are 

calculated at internal points. In the software used in the current study (Trevelyan and 

Wang (2001)), these internal points are scattered at random (though concentrated 

near stress concentrations and their distribution smoothed using a Laplacian 

algorithm). It is the results at these points, and not at the boundary nodes, that form 

the starting point of the algorithm for the creation of holes in the domain. 

The basis to identify the low stress areas is similar to the one used for the outside 

boundary (equation 6.1) but satisfying equation (6.4). Internal points that satisfy this 

equation are selected and put in a stack of internal points, stack!P. This stack!P is 

sorted in ascending von Mises stress order. Starting from the least stressed internal 

point, the adjacent internal points within a stress level lower than a threshold stress 

are searched. The internal points dealing with the creation of the new contours are 

removed from the stack!P to a temporal stack, temporalstack!P. The surrounding 

contour line is built as the convex polygon of internal points from the 

temporalstack!P. This contour is described by NURBS curves. The polygon is split 

into two pieces. Furthermore, the internal points are the control points defining the 

new NURBS. This procedure is repeated until there are no more internal points in 

the stack!P. The hole creation process is presented in the flow chart in figure 6.3 and 

summarised in the following steps 

Step 1: Check for any internal point that satisfies equation (6.4). If so, add this 

internal point to the stack!P 

(6.4) 

where (Jjp is the internal point von Mises stress, O'max is the maximum von Mises 

stress and RR is the removal ratio used in equation (6.1) 
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Step 2: The stackiP which consists of a group of selected internal points is sorted in 

von Mises stress ascending order. 

Step 3: The first point of the stack!P is identified as minimum and removed from the 

stack!P to a temporalstackiP. 

Step 4: This minimum is taken as the initial central point to be enclosed by the new 

contour. Internal points surrounding this minimum and having a von Mises stress 

lower than a threshold are also moved from the stacklP to the temporalstack!P. 

Step 5: A convex polygon is created from the internal points in the temporalstack!P 

as displayed in figure 6.2 (a). This polygon is split up into two open polygons, 

control polygons, and the internal points are taken as the control points. Therefore, 

these control polygons together with the control points define two NURBS curves 

creating a new hole (figure 6.2 (b)). 

Step 6: If the remaining stackiP is not empty, the process is repeated from point 2 

until there are no more internal points in the stackiP. 

... 

'•, 

. .. 

internal point IP0 

\. 

(a) (b) 

Figure 6.2: Creation of holes from internal points (a). New hole consists of two 

NURBS curves (b) 

Note that if the von Mises stress in most of the internal points surrounding the 

minimum is higher than the threshold, then the temporalstack!P consists of only a 

few internal points and therefore, no holes are inserted. The minimum number of 

control points necessary to create a hole is chosen to be five. The reason for this is 
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that each hole makes use of two NURBS curves and at least three control points are 

required for a proper (and more flexible) definition of each NURBS curve. 

I START HOLE CREATION PROCESS I 
~~~3~~~~---------------~-----------------------~ 

Are there any Internal points that satisfy No 
CJp :<:; RR a;nax? I----._ 

Sort stackiP In von Mlses stress order 

CREATE HOLE 
From stack/P least stressed internal point~ IPo to 
temporalstack/P 

2 Select Internal points (lP) surrounding IPo & CliP < a.,,.,hold 
~ lP from stack/Pto temporalstack/P 

3 If number of lP in temporalstackiP > 5 then 

4 
5 

3.1 Create convex polygon from internal points in temporalstack/P 
3.2 Create hole~ Two NURBS curves 
Update stack/P 
Delete points in temporalstack/P 

Yes 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I _______________________ J:t _______________________ : 

I STOP HOLE CREATION PROCESS I 
Figure 6.3: Flow chart of the hole creation process 

Holes, which are described by two NURBS curves per hole, have the same form of 

boundary representation as the outside boundary. Consequently, they have similar 

properties and behaviour such that they can either grow or shrink. The fact that they 

are defined by two pieces of NURBS instead a single B-spline is due to some code 

limitations. Of course, the cavities could be split even into more pieces but for 

simplicity in the definition of the hole, two pieces were adopted here. 

Often, as the external boundaries shift inwards, there are a few adjacent low stress 

points. Moreover, low stress points also appear near to existing cavities. The areas 

covered by these low stress points are generally very small and they usually 

140 



Cha ter 6 

disappear after the next iterations. Hence, cavities should be introduced within the 

domain only as long as their locations are neither near existing cavities nor adjacent 

to the structure boundary, both situations depicted in figure 6.4. 

Figure 6.4: Low stress locations near an existing cavity and adjacent to the external 

boundary 

6.6 Distance to Move Control Points Defining Holes 

To calculate the distance to move the control points in internal holes, a similar 

procedure to the outer boundary is followed (equation 5.6). Unlike the outer 

boundary, the set of control points associated to each specific area to be moved 

consists of only one control point, the closest point to this area. The reason for 

moving exclusively the closest control point is that around cavities, high stress areas 

are alternated close to low stress regions. This situation can be illustrated using the 

example shown in figure 6.5 of a circular hole in a plate under uniaxial loading. 

Timoshenko and Goodier (1970) give the stress ae to be 

S a 2 S 3a 4 

0" = - (1 + -) -- (1 + -)cos 2(} 8 2 r 2 2 r 4 
(6.5) 

s 1- a;usa -
1- I' ~ 

', 
1- ~ 

s 

Figure 6.5: Circular hole in a plate under uniaxialloading 
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So on the boundary of the circle, where r = a, 

CJ 8 = S (1 - 2 cos 28) (6.6) 

On an unloaded circle o;. (radial) = '"t"r8 = 0 giving two zero valued principal stresses 

(in plane stress) and the third principal stress equal to a8 the von Mises stress varies 

as shown in figure 6.6 (b). 

2tt (} 2n (} 

(a) (b) 

Figure 6.6: (a) Stress a8 (r =a), (b) von Mises stress (r = a) 

Thus, moving the adjacent control points would cause a counter productive removal 

or addition of material. In addition, generally, the cavities are created after a few 

iterations and therefore, the factors RF and AF have decreased compared to the 

initial steps. A direct effect of this is that the process is slowed down and hence 

changes in the boundary of the hole are smooth. Therefore, the control point is 

moved a distance related to the following parameters 

• Length of the least/most stressed element, Le 

• Distance, a, of the control point from the low/high stressed node 

• The removal factor (RF) if removing material, or the addition factor (AF) if 

adding it 

For example, in figure 6.7 (a) the closest control point from the node of lowest stress 

is moved a quantity calculated as follows 

1 
Movement of P2 =Le -RF 

a 
(6.7) 
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Generally, the optimisation parameters (RR, RF, AF, etc.) adopted in the creation and 

evolution of the cavities at each iteration have the same value as the parameters 

adopted for the outer boundary. However, by changing the parameters RR and RF in 

an appropriate way the number of cavities to insert can be controlled in a similar 

fashion as the intelligent cavity creation algorithm (ICC) (Kim et al. (2000)) 

implemented in ESO. 

Least stressed 
element .---------­
/~I ---.,, 
t e o ', \, r \~ 

Least stresslci'•, -----------··
1 

node 

! 
" ' a' 

Direction of (!• P 
movement 

(a) 

Least stressed 
node 
/ 

,/ ' 
' ' -' a'•p 

. . \ ~ Direction of Duect1on parallel . \:J .· t 
to closest outer movemen 
boundary 

(b) 

Figure 6. 7: Direction of movement. Isolated hole (a), hole with a close boundary (b) 

6. 7 Direction of Movement in Holes 

Generally, the direction of movement for a control point in a hole is perpendicular to 

its nearest least/most stressed element (figure 6. 7 (a)) as has been explained in 

section 5.6.3. Nevertheless, in the case of a close outer boundary (figure 6.7 (b)) the 

direction of movement is determined by this borderline, i.e. parallel to the boundary 

that is closest to the least stressed node. In a summary, there are two directions of 

movement related to the boundaries of holes and which are determined according to 

the neighbouring situation. For a hole, if there is no boundary closer than certain 

distance (dmin) related to the element size then the material would move 

perpendicular to its boundary. On the other hand, it would move parallel to a 

boundary closer than this threshold. 
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6.8 Merging Holes 

It appears that the algorithm works towards an optimum by producing multiple holes 

which later merge to form large cavities. For this purpose an algorithm to merge 

holes is implemented in order to complete this topology optimisation approach. 

Therefore, holes can merge between each other or with the outside boundary if 

necessary. Moreover, it is found that the presence of multiple holes would produce 

thin filaments of material which are not efficient from a manufacture point of view. 

6.8.1 Merging Two Holes 

This situation occurs when the cavities evolve approaching too close to each other, 

hence creating low stress filaments of material in between these cavities. The 

criterion for merging holes is based on the following two premises 

• Minimum distance. If the distance between two holes is less than a minimum 

those holes are likely to be merged. The distances are calculated between 

control points from each hole. The largest element length, from the elements in 

the closest area, is taken as the minimum distance. 

• Under stressed area in between. Internal points situated in the region between 

the holes satisfy equation (6.4). 

Therefore, adjacent holes merge only if they satisfy the two previous conditions. As 

shown in figure 6.8, merging the holes implies the creation of a new one. 

Consequently, it follows a similar process to the hole creation process previously 

stated in section 6.5. In this case, stack!P consists of all the control points related to 

the holes to be merged. 
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merge 

IHolecl 

Figure 6.8: Merging two holes (A, B) into a new one (C) 

6.8.2 Merging Hole to Outside Boundary 

Cha ter 6 

The criterion for merging a hole with the outside boundary is similar to the one for 

merging two holes, that is, minimum distance and under stressed area in between. 

Figure 6.9 depicts how a hole is merged to its closest boundary. It implies a change 

of the boundary definition and also the deletion of the hole. The extreme (maximum 

and minimum x y coordinates) control points defining the hole are identified and 

added to the set of control points describing the boundary. In addition, control points 

from the boundary in between these extreme points are removed. 

• dist IP3
8 -Pll < min 

• low stress area 

I 
; 

New Boundary 

Figure 6.9: Merging hole (Hole) into boundary (Boundary) 
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The merging holes process is presented in flow chart form in figure 6.10. 

START MERGE HOLES PROCESS I 
Merge holes J ----------------------f----------------------------, 

I 

I No 
Is there any boundary close to the hole? J 
~ I Boundary hole I I Outer boundary I 

ToBEA 

\=J ~~ MERGE I. Yes 
Are the following 

Yes I MERGE HOLE & I conditions satisfied? HOLES 1 
d < d,;,. AND a:5 RRa,,"" 

·1 BOUNDARY 

~ No ) 

·--------------------1-i---------------------------

I STOP MERGE HOLES PROCESS I 
Figure 6.10: Flow chart of merge holes process 

6.9 Stopping Criterion 

The objective function adopted in these topology optimisation problems is related to 

the minimisation of the specific strain energy fu in the structure. This criterion has 

already been used in the shape optimisation problem of the two-bar frame (section 

5.9.3) following equation (5.18) and rewritten here as follows 

fu = UV (6.8) 

where V refers to the volume of the structure and U to the strain energy which in 

BEA notation is defined as 

(6.9) 

where T are the tractions over the boundary and u the displacements over the part of 

the boundary r where the tractions are applied. 

Thus, the stopping criterion can be quantified in the following normalised form 
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(6.10) 
iui+l - fui+l 

c = ::::; w-4 

f~+l 

where f ~ is the value of the objective function at iteration i and f ~+I is the value of 

the objective function one iteration after. Finally, the flow chart of the basic 

algorithm, which was presented in figure 6.1, is enhanced in the following figure 

6.11. 

2 

CA 

1 I START I 
----n-----~----------~~7~------------~ 
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Geometty Control ,------------- --------------------------------------~ 
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I 

Merge holes 
-------------------------, 

.---------~~--------, No 
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I Outer boundary I 
Are the following 

conditions satisfied? 
d < d,,,. AND O"~ RRCJ,,.ax 

No 

Yes 

L-------------------- --------------------------

5 

h No 
To2~ 

l ________ ~----
Figure 6.11: Flow chart of the topology optimisation algorithm 

6.10 Examples 
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In this section, classical examples are presented in order to prove the developed 

algorithm. The following isotropic material properties are assumed: Young's 

modulus E = 210000N/mm2
, Poisson's ratio v = 0.3 and an arbitrary thickness t = 1 

mm. The Yield stress for this material is 280 N/mm2
. Plane stress conditions are also 

assumed. The weights associated to the NURBS curves (see chapter 4) are taken to 

be w; = 1 in all cases. 

6.10.1 Short Cantilever Beam 

A common benchmark problem is the cantilever beam with a central load and an 

aspect ratio of 1.6. The definition of the initial problem is shown in figure 6.12. This 

cantilever of dimensions 160 mm x 100 mm is fixed at the top and bottom corners of 
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the left hand side; whereas it is subjected to a vertical load at the centre of the free 

end. The load has been chosen arbitrary of value 10 N. This value can be regarded to 

be very small compared to the failure stress; however it produces an appropriate 

stress distribution to study removal of material as well as the creation and evolution 

of holes. The optimisation parameters are AF = 1.0, constant AR = 0.98, ERR= 0.01, 

RR, varies from 0.01 to 0.2, and RF changes from 0.8 to 0.5 according to the stress 

levels within the structure. 

lOO mm ION T 
50 mm 

_j_ 

160mm ~I 

Figure 6.12: Problem definition for a short cantilever with a point load at the middle 

right hand 

The boundary domain is initially discretised into 37 quadratic elements (fig.6.13 (a)). 

At the end of the process this number has increased to 165 elements (fig.6.13 (b)). 

The number and position of the control points for the initial and final topology 

design are depicted in the figure 6.14. The initial 5 non-constrained straight lines are 

converted into 5 quadratic NURBS curves. In the final design this number has 

increased, with the creation of internal holes, to 11 NURBS. 

(a) (b) 

Figure 6.13: Initial and final boundary element mesh 
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:>Z9 
/·{ .................. ---·~ .. -----------· 

(a) (b) 

Figure 6.14: Initial and final control point distribution 

Figure 6.15 compares the optimum design obtained with this approach (boundary­

ESO) to the optimal layout theory by Rozvany (1995) and to a solution obtained by 

Chu et al. (1997) using FE-ESO. The analytical solution figure 6.15 (a) is a truss 

structure. Figure 6.15 (b) shows the ESO solution obtained under stiffness 

constraints. Sensitivity numbers indicate the change in the overall stiffness or a 

specified displacement due to the removal of an element. The final solution is 

obtained for an element mesh of 32x20 and a displacement limit of 1.0 mm. The 

optimum design obtained with the current approach (figure 6.15 (c)), shows a good 

agreement with the FE-ESO. 

============:. ...... . ···:. .......... =-=·=·· ...• . .... • •• ·=·· .... . -··-· -•. :.. .. .. •• • .... ·.. . ..... -=· ••• ·=· •• n• ............ . 
IIUDIIImr•••••• 

(a) (b) (c) 

Figure 6.15: Optimum designs. (a) Analytical (Rozvany (1995)). (b) ESO (Chu et 

al. (1997)). (c) boundary-ESO 

Figure 6.16 shows, in terms of von Mises stress contours, how the structure evolves 

towards the final solution. As the optimisation progresses, small cavities are merged 

into larger cavities. Also cavities that are very close together or to the outer boundary 

may merge. Thus, this algorithm for merging adjacent holes avoids thin filaments of 

material. The optimum topology design is accomplished after 38 iterations. The 
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vo lume reduction is approx imately 63% (VI Vo ~ 0.37) from the initial design. 

Although the overall process shows a clear reduction of volume (removal of 

material) in the structure, it should be noticed that material is also added if any stress 

concentration appears as a result of the movement of the control points. The fi nal 

design is obtained in a CPU time of 5 minutes and 27 seconds (Pentium 4 (2 GHz)) . 
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Figure 6.16: V on Mises stress contour plot 
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Figure 6.17: Evolution of the objective function 

The evolution of the objective function (equation (6.8)) is displayed in figure 6.17. 

As it can be observed, the function decreases smoothly until iteration 16. At thi s 

iteration there is a big jump in the function due to the insertion of the first hole. A 

few iterations later, at iteration 21 , two new holes are created. The effect of the 

c reation of these latter holes is not as dramatic as the first one because the size of the 

holes is much smaller. As the process evolves another two holes are created at 

iteration 27. These last cavities are very small compared to the existing ones and 

eventually are merged to the larger holes. The final topology is achieved when no 

further improvements are shown in the objective function which shows a 28% 

reduction compared to the initial situation. 

6.10.2 Short Cantilever-11 

The previous short cantilever is investigated but loaded at the top right hand corner 

with a point load of 100 N as shown in figure 6.18. The initial dimensions are the 

same as the ones defined in example 6.10.1. The optimisation parameters are set to 

AF = 1.0 and AR = 0.98. Parameters related to the removal process are ER = 0.01 , 

RR, initially set to 0.01 rises up to 0.18 and RF varies from 0.3 to 0.1. 

The original boundary domain is discre tised into 45 quadratic e lements (fig 6. 19 (a)). 

At the end of the process, the model size has increased to 103 elements (fig. 6.19 
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(b)). Initially, 3 quadratic B-splines define the geome try (fig 6.20 (a)), increasing to 

5 NURBS curves (fig 6.20 (b)) in the final design. 

lOON 

lOO mm 

160 mm J 

Figure 6.18: Problem definition for a short cantilever beam with a point load on the 

top right hand corner 
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(a) (b) 

Figure 6.19: Initial and final e lement mesh 

(a) (b) 

Figure 6.20: Initial and fi na l control point distr ibution 

Figure 6.21 compares the optimum design (c) to the optima l design obtained by 

Eschenauer et al. (1994) using the bubble method (a) and by Hinton and Sienz 

( 1995) using the hard-kill method (HK) (b). The nume rical solution in figure 6.2 1 (a) 

is obtained by iterati ve positioning of new ho les (so-called bubbles) in the structure. 
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The iterative positioning of holes is carri ed out using variational methods. The 

objective followed in this example was the minimisation of the mean compliance 

while considering a volume constraint and certain equality conditions. This solution 

is obtained for a load applied at bottom hand corner therefore we compare the final 

topology to our results qualitatively, considering thi s limitation. Figure 6.21 (b) 

shows the solution obtained using an automated fully stressed design approach based 

on ESQ. The full y stressed design is obtained following a von Mises stress criterion. 

The final continuum topology can be interpreted as 4 bar trusses. 

(a) load at bottom right hand 
corner 

(b) load at top right hand corner (c) load at top right hand corner 

Figure 6.21 : Optimum designs. (a) Bubble method, Eschenauer et al. (1994). (b) 

HK, Hinton and Sienz (1995). (c) boundary-ESO 

Figure 6.22 displays the von Mises stress contour plots for different iterations. The 

solution is accomplished after 4 7 iterations, allowing the insertion and merging of 

internal holes. These holes are merged not only between each other but also with 

their closest boundary. As a result, the final design has only one hole covering most 

of the internal domain. The initial volume has been reduced 70% (VIVo= 0.30) . 
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Figure 6.22: V on Mises stress contour plot 

The creation and merging of cavities in the process is evident in the evolution of the 

objective function displayed in figure 6.23. The function decreases ~ 25% compared 

to the initial situation. Local minima are shown at any iteration previous to the 

iteration where holes are created and/or merged. Indeed, a change in the topology of 

the structure exhibits an increase in the objective function. For example, at iteration 
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22 a hole is created and at iteration 40 several existing holes are merged. The final 

topology obtained after 1 minute and 32 seconds on a Pentium 4 (2 GHz) is achieved 

when no further improvements are shown in the objective function. 
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Figure 6.23: Evolution of the objective function 

Figure 6.24 shows the effect of the mesh size on the final solutions. Three different 

types of mesh are tested, which according to the software used can be labelled as 

fine, standard and coarse mesh (see section 5.5). The topology results show a 

dependency on the mesh size. In the Concept Analyst software, the number of 

internal points happens to be related to the mesh size. Thus, the finer the mesh the 

more internal points are used. On the contrary, the coarser the mesh the fewer 

internal points are dispersed around the domain. Generally, the outer boundary 

behaves in a similar manner regardless of the element size. However, the final 

solutions present different topologies since the cavities (their size and number) vary 

depending on the mesh size. It is observed that a coarse mesh would give rise to the 

creation of bigger holes, because of the larger internal point spacing, which in turn 

may destabilise the structure. This problem can be overcome by controlling the 

number of cavities that are allowed in the structure. As the number of elements in the 

mesh is increased, there is a general convergence to the same final topology. This is 

observed in the solutions obtained using a fine mesh (65 elements in the initial 

design) and a standard mesh ( 45 elements initial design). Also, as the mesh increases 

numerical tests have shown that the volume (V) decreases and the strain energy (U) 
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increases. Nevertheless, the results from a standard mesh (in the example above) and 

from a fine mesh are very similar. Since the reliability of the analysis results 

decreases with increasing element size, coarse meshes may not be appropriate. Also, 

since the constrained lines are non changeable lines, the final solution is clearly 

dependent on the initial definition of these lines. Any other load or constraint 

situation would evolve into a different final design. 

----------~----------------lllll ,c··------------------·-----··---------·---------·----·---------·-----·--;~~~ 

f -~." [) 

~:_v 
t;r-, ------------llillj 
f1 ~:c-~-=;J 

~~~---11 
/.------------ / 

~~==-·---___.-~.-~-

COARSE MESH 
Initial mesh: 31 elements 
Final mesh: 80 elements 
UIU0 = 1.46 
VIVo= 0.54 

FINE MESH 
Initial mesh: 65 elements 
Final mesh: 208 elements 
UIU0 = 2.85 
VIVo= 0.276 

Figure 6.24: Effect of the mesh size on the final solution 

6.10.3 Bridge 

This example aims to reproduce a Michell type structure (Michell (1904)). This 

problem has been solved analytically by Hemp (1973) and it has also been 

investigated by Li et al. (1999) using FE-ESO. The initial domain displayed in figure 

6.25 is a rectangle with the horizontal dimension (200 mm) twice the height (100 

mm). The two bottom corners are assumed to be fixed; also a point mid-span load of 

100 N is applied at the bottom. The parameters are set to ERR = 0.01, RR, initially set 

to 0.01 rises to 0.12. RF varies from 0.3 to 0.06, AF = 0.5, AR = 0.75 and ERA= 0. 

Figure 6.26 shows the boundary element mesh for both the initial (a) and final stages 

(b). The boundary domain is initially discretised into 34 quadratic elements. At the 

end of the process this number has increased to 114 elements. Figure 6.27 depicts the 

number and position of the control points for the initial (a) and final (b) topology 

design. Initially, the changeable lines are modelled by 5 quadratic NURBS curves. 
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Since 3 internal holes are inserted in the final design, the number of curves increases 

to 11. 

T 
lOO mm 

1 lOON 
A--~ 

lOO mm lOO mm 

Figure 6.25: Problem definition for the Michell type structure 

(a) (b) 

Figure 6.26: Initial and final boundary element mesh 

• tmt····-······•············•············• ······-ill.JJJ.····-······•·····-·····• ·········•·--···-··t:rrl 

(a) (b) 

Figure 6.27: Initial and final control points distribution 

Figure 6.28 shows the analytical results and the numerical ESO solution using the 

von Mises stress criterion. According to the seminal work by Michell (1904) and 

later corroborated by Hemp (1973), considering a truss structure with one load 

condition and stress constraints, the optimum design is a fully stressed design. The 

Michell trusses are also structures of maximum stiffness for a given volume or, in 

other words, structures of minimum strain energy. As stated by Li et al. (1999), the 
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original Michell model is a pin jointed frame. However in the 2D elasticity analysis a 

continuum domain is assumed and therefore the results show rigid jointed structures. 

This is the reason why the numerical results differ from the analytical ones. The 

solution obtained using this approach has a comparison to classical ESO . 

/ 

/ 

/ 
/ 

/ 

/" 

- Tension bars 

--- Compression bars 

(a) Michell structure in Rozvany (1995) 

.. . . . . . .. . .. . . . .. . . ·· ··· ···· · . . .. . ; . . . 
. : : : : : : : : : : . . : : . : : . : . : : : . ; . ; : .. : : : : : : : : : : : : ~ : : : ~ : : : 

(b) ESO Li et al. (1999) 

Figure 6.28: Exact optimum layout (a). FE-ESO solution (b) 

Figure 6.29 displays the von Mises stress contour plot each 10 iterations. The final 

design is reached after 29 iterations. In terms of volume/weight reduction, the final 

design has a volume reduction of 65% from the initial design. Notice that in spite of 

the totally random position of the internal points, the proposed design is almost 

symmetric. 

iteration 0 iteration 9 

iteration 19 iteration 28 

Figure 6.29: V on Mises stress contour every 10 iterations 
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The evolution of the objective function is displayed in figure 6.30. Step-like areas 

appear as a result of the creation of holes. The insertion of holes tends to increase the 

strain energy which can be identified with the presence of local minima in the graph. 

The final shape is achieved when no further improvements are shown in the 

objective function. 
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Figure 6.30: Evolution of the objective function 

This example is studied further to explore the effect of the control points on the final 

solution. From the following figures (fig 6.31), it can be seen that using only a few 

control points to define the geometry or, conversely, many control points produces in 

general the same resemblance of an arch structure. Increasing the number of control 

points does not improve the convergence towards an optimum; on the contrary, it 

tends to create non smooth and oscillatory areas on the shape. This slows down 

convergence because the oscillatory boundary will give lots of stress concentrations 

inhibiting material removal. Smoothing algorithms and control point interpolation 

algorithms may alleviate this problem but increasing the complexity of the 

algorithm. It has been found that starting with equally distributed sets of control 

points and implementing the control point removal and insertion processes (see 

section 5.7) produces good results compared to benchmark problems. A general rule 

of thumb is that a control point spacing of 1/10 to 1115 of the length of the longest 

changeable line gives the best stability to the process. 
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COARSE DISTRIBUTION OF CONTROL POINTS 
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Initial control point distribution Final control point distribution 
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Initial boundary element mesh Final boundary element mesh 

FINE DISTRIBUTION OF CONTROL POINTS 

Initial control point distribution Final control point distribution 

Initial boundary element mesh Final boundary element mesh 

Figure 6.31: Effect of the control point distribution on the final solution 

162 



Cha ter 6 

6.10.4 Beam under Multiple Load Cases 

The previous examples have been applied to problems of one load case. However, in 

most engineering situations multiple load problems are frequent. For these cases the 

optimum design is not always a fully stressed design. Moreover, the solutions 

depend on the scheme adopted to compute the effect of each load case. The criterion 

explored in this work is the logical AND/OR algorithm (Li et al. (1999)) which is a 

simple scheme also used in FE-ESO. In the logical AND/OR algorithm a node is 

selected for the removal process only if the equation (6.1) is satisfied for all load 

cases and, it is selected for the addition process if the equation (6.2) is satisfied for 

any of the load cases. 

The equations (6.1) and (6.2) presented previously refer to a single load case 

problem. In the case of multiple load cases these equations can be slightly changed 

as appropriate. Thus, for each node p and each load case j, a ratio between stresses is 

calculated as follows 

(6.11) 

Computing the above equation for all the load cases would give a set of ratios 

associated to each node. For example the node p has associated N ratios, where N is 

the number of load cases. 

(6.12) 

Dealing with these values, material can be removed from the structure if all the 

ratios {Rp} are low stressed, that is; for any node p the following equation is satisfied 

(R~ :::; RR) AND (R~ :::; RR) ... AND (R; ::;; RR) (6.13) 

In the same way, material can be added if for any node p 

(R~ :2: AR) OR (R~ :2: AR) ... OR (R; :2: AR) (6.14) 

where the RR and AR are the same optimisation parameters as the ones related to 

equations (6.1) and (6.2). 
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To illustrate these concepts, the example of the vertical beam (2LxL) studied in the 

shape optimisation chapter (in section 5.9.3) is optimised under two load cases 

which are identified as load case 0 and load case 1 and depicted in figure 6.32. In 

both load cases the load applied has the same magnitude of 100 N. Load case 0 has a 

vertical load applied at the middle of the right hand side edge whereas in load case 1 

the applied load is at the top right hand side corner. 

~ Load Case I 
~-r---------t--------,-------

2L 

L 

L 

Figure 6.32: Beam under two load cases 

The final solution for the two load cases combined using the logical AND/OR 

scheme is displayed in figure 6.33. This figure shows the von Mises stress contour 

plots for each load case at the initial and final iteration which was obtained after 38 

iterations. The volume ratio at the end of the process is V /V0 = 0.43 and RR varying 

from 0.01 to 0.29. Comparing this result to the solution for one load case (figure 

5.34) it can be seen that the fully stressed design is no longer achieved . 
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Figure 6.33: von Mises stress contour plots for load case 0 (a) and load case 1 (b) 

6.10.5 Bridge under a Moving Load 

This final example tackles the problem of a bridge structure under multiple loading 

conditions. The initial design for the bridge is shown in figure 6.34 (a) . The 

dimensions of the bridge are 160 mm x 50 mm. The bridge is supported at four 

points in the bottom surface. A point load of 100 N is moving along the top surface 

and this effect is approximated by five load cases. The logical AND/OR schemes 

represented by equations (6.13) and (6.14) are also adopted. The top surface is 

considered non design domain as well as the four supports. Moreover, there is a limit 

for the maximum vertical displacement of0.02 mm. The rest ofthe domain is free to 

change and defined by 5 NURBS curves. The optimum design, shown in figure 6.34 

(b), that satisfies this problem is found after 42 iterations with RR varying from 0.01 

to 0.27. 

Figure 6.35 shows the von Mises stress contours, at the initial and final iteration, for 

each of the five load cases considered {LC0, LC~, LC2, LC3, LC4 } . The ratio of the 

final volume to the initial volume is 0.54. The maximum vertical displacement (umax) 

for any load case is below the limit constraint of 0.02mm. Certainly, these results 

would have varied if the constraints over the maximum vertical displacement for 
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each load case were had been considered differently however, no further study has 

been considered related to this issue. 

LC0 

l 

( 
J 

(a) initial design 

Jil (b) final design 

Figure 6.34: Initial and final design for a bridge under moving load 
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Figure 6.35: V on Mises stress contour plots for each load case 

6.11 Discussion and Conclusions 

This chapter has presented a new topology optimisation algorithm for evolutionary 

structural optimisation (ESO). The algorithm exploits the concept that the optimum 

topology evolves by slow removal and addition of material. As has already been 

concluded where this algorithm was applied to shape optimisation (chapter 5), the 

boundary element method is used for the analysis and NURBS curves for describing 

the changeable lines. The coordinates of the control points defining the NURBS 

curves are the design variables; in consequence the number of design variables 

compared to FE-based ESO has been decreased. Also, it has been proved that 

working directly with the boundary provides a large flexibility in the design. It has 

been shown how at each iteration the boundary remains smooth without artificial 

stress concentrations. 

Topology optimisation is accomplished allowing the insertion of internal holes in the 

inner low stressed areas of the structure. Thus, inefficient material from inside 

regions is removed. Holes are also described by NURBS curves and so they have 

similar behaviour to the outside boundary. Therefore, both outside and inside are 

optimised at the same time. 
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To prove the algorithm, benchmark examples have been reproduced showing the 

effectiveness of the method generating the final topologies as well as rapid solution 

times. In the case of problems with an initial symmetry, almost symmetric shapes are 

obtained, in spite of the totally random position of the internal points and no 

symmetry being forced throughout the process. Multiple load cases are investigated 

using the logical AND/OR scheme. As expected, the final solution under multiple 

load cases is not necessarily a fully stressed design. 

Numerical tests have shown that the solution is mesh dependent. This dependency 

can be overcome by controlling the number of cavities that are allowed to be created. 

The initial distribution of control points also determines the final topology. More 

control points do not increase the fidelity of the solution. On the contrary it induces 

the creation of spikes and oscillations on the shape that slow the convergence and 

interfere with the ability of this algorithm to reach a good optimum. A rule of thumb 

has been presented for effective control point spacing for general problems. 
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7 
MULTI-CRITERIA OPTIMISATION 

7.1 Overview 

In previous chapters, shape (chapter 5) and topology (chapter 6) optimisation have 

been presented based on a single objective. Such individual optimisation criteria 

have included strain energy, volume and stress minimisation. In this chapter a 

transition is made from the optimisation of the single criterion to the optimisation of 

multiple criteria. 

In multi -criteria problems optimum designs are obtained considering more than one 

objective function at the same time. Generally, these are the kind of problems 

presented in engineering and therefore, this study investigates a more robust and 

practical design approach in optimisation. Thus, the dilemma of obtaining an optimal 

solution that best satisfies a number of objectives is examined. In particular the use 

of Pareto frontier techniques which provide the trade-off among the desirable goals. 

Multi-criteria solutions are obtained for a well-known connecting rod example. 

7.2 Introduction 

Multi-criteria optimisation techniques (Eschenauer (2000), Osyczka (2002)) allow 

the designer to model a specific problem from a more realistic approach since it 
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considers the satisfaction of several objectives simultaneously. It presents the 

dilemma of obtaining an optimal design that best satisfies a number of objectives. 

The multi-criteria problem can be defined with the following functionf(x) 

f(x) = [/1 (x), / 2 (x), ...... .JN (x)] (7.1) 

Where fi (x) are the objective functions for theN different criteria and xis the vector 

of design variables. 

One approach to solving multi-criteria problems is to generate and examine the 

Pareto solution. This concept represents a design alternative where an objective 

cannot be improved without worsening at least one of the other objectives. A Pareto 

frontier contains all Pareto solutions while a Pareto set is a discrete approximation 

of the Pareto frontier. 

The concept of Pareto optimality is introduced in this work to solve the multi-criteria 

problem. It presents a range of optimum solutions to the designer. No solution stands 

alone as being the optimum but a trade-off solution. To find a compromise between 

the different objectives, an overall approach is taken in terms of a weighted average 

scheme. In general, an efficient formulation must be able to capture the entire Pareto 

points including non convexities and ensure that they are uniformly distributed. 

7 .2.1 Strategies to Tackle Multi-criteria. The Pareto Front 

The solution of a multi-objective problem is difficult to obtain because the objective 

functions conflict with each other. The Pareto concept is used to gain knowledge 

about trade-offs between objectives, and from which the most desirable solution may 

be chosen. The Pareto point set is used to construct a point-wise approximation to 

the Pareto curve or surface (Pareto frontier). Then, from amongst those Pareto points 

the designer has to choose the design that achieves the most adequate objective 

function. There are several techniques to obtain the Pareto set such as the weighted 

sum method, the normal boundary intersection method or the physical programming 

method. In this work the weighted sum (WS) strategy is investigated. 
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7.2.1.1 The Weighted Sum Method 

This technique defines a vector w of weights, which represent the relative 

importance of each criterion to the final solution, and transforms the multiple 

objective problem into a new single objective one as follows 

N 

F=_LwJi 
i;O 

N 

where generally L wi = 1 as a way of normalising the objective function. 
i;O 

(7.2) 

Solving the multi-criteria problem for different sets of weights yields the Pareto front 

or, in other words, each point in the Pareto front correspond to a particular set of 

weights. 

TheWS is a popular technique but nevertheless it presents the drawback that an even 

spread of weights does not necessarily produce an even spread of points on the 

Pareto curve/surface. The deficiency of the WS approach has its roots in the linear 

dependence of the objective function, more specifically by its inability to capture 

solutions that lie on concave boundaries of the feasible design space (Das and 

Dennis (1997)). With the difficulty of finding enough Pareto points, the designer 

cannot have an estimation of the shape of the trade-off curve/surface. 

Different procedures, such as physical programming and normal boundary 

intersection (NBI) have been developed to overcome this problem. Physical 

programming (Messac (2000)) employs a flexible problem formulation framework. 

The designer does not need to specify weights in the problem formulation; rather the 

designer specifies ranges of different degrees of desirability for each design measure. 

The normal boundary intersection (NBI) (Das and Dennis (1998)) is an alternative 

method for a general nonlinear multicriteria optimisation problem. This method is 

independent of the relative scales of the functions and is successful in producing an 

evenly distributed set of points in the Pareto set given an evenly distributed set of 

parameters. 
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7 .2.2 Sensitivities 

The use of sensitivities allows us to determine the effect that changes in the design 

variables produce on the performance of the structure. In the literature (Haftka and 

Gtirdal (1992)), there are two methods used in sensitivity analysis calculations, the 

variational method and the implicit differentiation or discrete method. The former 

method is based on the material derivative concept. The latter involves 

differentiating the basic equations of the structural response. 

There are three approaches to calculate the sensitivities using discrete methods. The 

first is the finite difference (FD) approach whereby the response analysis is applied 

to both the current and perturbed models, and the differences in response values are 

divided by the design perturbation (step-size) to obtain the sensitivity derivatives. It 

is a general approach and simple to implement. However, numerical difficulties and 

inaccuracies appear if a non-suitable step-size is used. The second approach is the 

analytical differentiation (AD). In this technique the governing equations are 

implicitly differentiated to treat the response derivatives. This is a more accurate 

method, but more complex to implement because there are analytical derivatives 

involved. Finally, the third approach is the semi-analytical approach (SA), which is 

developed mixing various levels of analytical with finite difference derivatives. 

In practical situations, the two most commonly used sensitivity algorithms are the 

FD and the SA method. The FD is simple to implement, as said before, but is 

expensive because a complete analysis is required for each design variable. The SA 

method requires only a resolution for each design variable and, therefore, is less 

expensive than finite differences. However, both of these methods entail a 

perturbation of the design variable, and they are dependent on the choice of 

perturbation step-size. 

7 .2.3 Fast Reanalysis Techniques 

In this work, sensitivity calculations are implemented together with reanalysis 

techniques. In this context, reanalysis consists of updating the analysis results 
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(current state) over a system after a small geometric change (perturbed state). 

Hence, the use of an accurate and efficient reanalysis method can speed up the 

process. 

Some of the techniques available in the reanalysis literature (Abu Kassim and 

Topping (1987)) yield the exact modified response (exact or direct methods) 

whereas others give only an approximate solution for the modified structure 

(approximate or iterative methods). In general, the exact reanalysis methods tend to 

be slow and only suitable for small modifications. On the other hand, the iterative 

methods are efficient but the modified solution can be less accurate. In these 

methods, solution accuracy and rate of convergence are both important. Indeed, 

iterative methods may fail to converge in some cases, particularly for larger 

geometric changes (Kane et al. (1990)). Therefore, some compromise amongst the 

computational effort and efficiency has to be made. 

In the FEM context, Kirsch has investigated different reanalysis methods for 

structural analysis such as the reduction method (Kirsch (1991)) or combined 

approximations (CA) (Kirsch (2002)). Most recently, Mackie (1998) presented a 

FEM reanalysis in an object-oriented framework. This approach uses substructuring 

and multithreading to improve the analysis performance. However, these FEM 

implementations present some difficulties of remeshing after geometric changes. 

Reanalysis in the BEM framework takes the advantage of some of the techniques 

previously presented in FEM. However in this case, the system matrix A is dense 

and unsymmetric so the resolution techniques used in the FEM cannot be applied 

here. Starting from the matrix equation system (Trevelyan (1994)) previously 

presented in chapter 4 

Ax=b (7.3) 

the equation system following a design change can be updated as follows 

(7.4) 
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where Ao =(A+ M), bo = (b +~b) and the updated solution vector xo = (x + ~). 

Consider first the exact reanalysis methods for updating matrix in verses. At first, the 

matrix inverse of the original system A-1 is calculated. It is well known that an 

efficient solver would not operate by computing explicitly the inverse A-1
, but the 

computational effort taken due to the calculation of this inverse may be a price worth 

paying if the performance achieved in the reanalysis stage were exceptional. Hence, 

in the reanalysis the original system has the form 

(7.5) 

and the modified system 

(7.6) 

To obtain a rapid solution to the updated inverse A0"
1 = (A + M)"1

, where A-1 is 

known, there are classical approaches based on the Sherman-Morrison-Woodbury 

formulae (Press (1986)). However, these formulae are only efficient for problems in 

which A and Ao differ only in a few rows and columns, i.e. changes in a relatively 

small number of elements. Since a BEM reanalysis, for single zone problems, 

involves changes to a large number of rows and columns, the Sherman-Morrison­

Woodbury formulae can be inefficient. An alternative formula for updating matrix 

inverses has been presented by Castillo et al. (1998). However this approach is also 

computationally expensive for the type of modified matrices in the BEM. 

Kane et al. (1990) presented an iterative method for reanalysis of BEM systems 

applying these techniques to shape optimisation problems. The method reformulates 

equation (7.4) after substitutions of the form 

(A+ ~A)(x + ~x) = (b +~b) (7.7) 

Obtaining the following expression 

A~x = (~b- ~Ax)- ~A~x (7.8) 

The vector ~x is present on both sides of the expression, and this leads to an iterative 

solution. However, since A is involved in the iterative solution, this method will 
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converge for small to moderate changes. To improve convergence to more highly 

modified models the method may be extended by a scaling of A, and a reformulation 

of the recurrence. 

More recently, Leu (1999) proposed an iterative scheme for reanalysis of BEM 

systems also applied to shape optimisation problems. This approach is based on a 

reduction method introduced by Kirsch (2002). In this method the updated solution 

vector is expressed as a linear combination of a reduced set of basis vectors. This has 

the advantage that the number of these vectors is far less than the number of 

structural degrees of freedom, i.e. the modified behaviour of the structure is 

approximated using fewer degrees of freedom. 

Trevelyan et al. (2002) presented a reanalysis scheme, based on the use of the 

iterative solver GMRES (generalized minimum residual method, Saad and Schultz 

(1986)). In this approach, the previous system matrix A is overwritten and a full 

matrix solution performed for each reanalysis. The solution vector from the previous 

equation, i.e. vector x, is used as the initial estimate of the perturbed solution vector 

x0. Hence, the matrix level description of the problem updates with each 

modification. 

7.3 Algorithm 

To carry out the optimisation, an integrated computational procedure is 

implemented. The integrated system incorporates several tools such as boundary 

representation, BE analysis, design sensitivity analysis and reanalysis techniques, all 

of them linked to the optimisation algorithm. 

The FD is used in this study to calculate the sensitivity calculations. To this end, n 

perturbed systems for each intermediate design are performed; n being the number of 

design variables. Each perturbed system corresponds to the state where only one 

design variable is modified by a step size !ls and the rest of the design variables (n-1) 

remain unchanged. To evaluate the structural situation for each perturbed system, 

reanalyses are performed instead of a full analysis. Thus, the iterative solution 
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obtained using reanalysis is based on the results for the non-perturbed system. The 

analysis results such as displacements or stresses for each perturbed system are then 

used to evaluate the FD sensitivities of each design variable. Further, sensitivity 

numbers related to the variables are calculated and used as optimality criteria. 

7 .3.1 Design Sensitivities 

The use of sensitivities allows us to determine the effect that changes in the design 

variables, control points in this case, produce on the performance of the structure. 

The FD approach is implemented together with the reanalysis technique available in 

Concept Analyst (Trevelyan et al. (2002)). The use of reanalysis avoids full 

additional analyses for each design variable. Therefore, the response analysis is 

carried out for the current design (original design) and also for the perturbed design. 

The difference between them is divided by the step size. 

s aj(s) f(s + ils)- f(s) a=--"'='::.__c'-----'----.....:.......;__.;_ 
as LlS 

(7.9) 

where s is the perturbed variable. Following equation (7.9) a sensitivity number a~ is 

calculated for each changeable control point i and each criterion j. In this way, the 

sensitivities are computed for all the design variables. In some cases, the numerical 

quantities of various sensitivities of different criteria may have significant variations 

with respect to each other; therefore it is more practical to normalise them. These 

sensitivities are normalised by taking the maximum value of the sensitivity number; 

i.e. all the sensitivities are rated according to this maximum value. Thus, a global 

ratio R~ is associated to each design variable i and each criterion). 

i 
; aj 

R.=--
1 a'~"" 

1 

(7.10) 

a~ is the l criteria sensitivity number for each control point i and a7•x is the 

maximum value of the/ criteria sensitivity number. 
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The notation used here for the sensitivity numbers is the same as the one used in 

most of ESO literature (Steven et al. (2002), Li et al. (2001)). Such an identical 

notation allows us a more straightforward comparison of results and concepts. 

7 .3.2 Removal and Addition Criteria 

Regarding ESO, once the sensitivities are normalised (equation (7.10)), then they are 

assigned a weighting factor WJ· These sensitivity numbers are finally summed to 

form a new single criterion number Ri for each control point following the weighted 

sum method 

N 

R; = LwjR~ (7.11) 
j=O 

Thus Ri is the multiple criteria sensitivity and determines the removal and addition of 

material. Material can be removed from the structure if any design variable i satisfies 

(7.12) 

where RR is the removal ratio. In addition, material can be added if 

(7.13) 

where AR is the addition ratio. Generally, these ratios, in a similar fashion to that 

used in shape and topology optimisation, are not fixed for the entire process but can 

be updated by the evolutionary rate ER. For example in the case of material removal 

RRm = RRm-1 + ER. The overall process of multi-criteria optimisation can be 

summarised in the following steps and in the flow chart of figure 7.1 

1. Define the structural optimisation problem: Geometry, loads, constraints, ~. 

2. Perform the BE analysis 

3. Save current solution and geometry 

4. Sensitivity calculations 

4.1. For i = 0 to number of design variables n 
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4.1.1. Perform a perturbation 11s on the design variable i 

4.1.2. Carry out reanalysis for the perturbed system 

4.1.3. Calculate sensitivity of the criterion to the perturbed design variable i 

4.1.4. Retrieve solution and geometry 

5. Modify the design according to the sensitivity calculations 

6. Check the optimisation convergence criteria 

6.1. Stop if they are satisfied 

6.2. Otherwise update design and go to 2 

Boundary Element Analysis 

D 
Calculation of sensitivity numbers 

1. for (i=O; i<n; i++) 

1.1. P;(s + ~s): Perturb model by moving ~s design variable i 

1.2. Reanalysis 

1.3. Sensitivity a~ for each criterionj to ~P; by finite difference approximation 

1.4. Restore current model. Retrieve current model solution 

. . ai. 
2. Calculate a sensitivity ratio R~ for each design variable: Rj = - 1

-
a~ax 

J 

Optimisation Criteria 

1. Calculate the Pareto front using Weighted Sum Method 

1.1. for (j=O; j<N; j++) 

N 

1.1.1. Select the weights W/ L w j = 1 
j=O 

N 
1.1.2. Calculate weighted sensitivity ratio R; for each i: R; = L w jR~ 

j=O 

2. Removal criterion: R; ~ RR 

3. Addition criterion: R; ~ AR 

Figure 7.1: Flow chart 
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7 .3.3 Influence of the step-size 

When using finite differences to approximate derivatives there are two sources of 

error; i.e. truncation and condition errors (Haftka and Gtirdal (1992)). Truncation 

error er is a result of the neglected terms in the Taylor series expansion of the 

perturbed function. For example for the Taylor series expansion of.f(s+~s) 

!( A-)_ f( ) A q{(s) (~) 2 8 2 
f(s) (l:ls)

3 83 
f(s) s+L\,) - s +us--+ 

2 
+ 

3 
+ ... 

& 2! & 3! & 
(7.14) 

the truncation error for the finite difference approximation is proportional to the step 

size 

(7.15) 

Condition error ec is the difference between the numerical evaluation of the function 

and its exact value. It is related to the round-off error and can be comparatively 

important if the step size is particularly small. Condition error is also related to ill­

conditioned numerical problems and iterative process. 

(7.16) 

where s is the bound on the absolute error of the function! 

Both errors yield to the step size dilemma. If we select a step size to be small enough 

to reduce the truncation error, then we may have an excessive condition error and 

vice versa. The question is then how to establish these limits in our problems since 

the condition error is directly related to the boundary element software used. 

To compute the range of valid step sizes a simple test is carried out for a general 

example using Concept Analyst. Thus, by taking a geometry defined by NURBS 

curves, and perturbing ~s the position of one selected control point, then the 

displacement of its nearest mesh point A is obtained. The sensitivities of the 

displacement of mesh point A to the perturbation are computed and the process 
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repeated for a different range of values. The results of the finite difference 

calculations for different step sizes are shown in figure 7 .2. We do not compare the 

accuracy of the results with the analytical solution but as an indicator of the suitable 

step size values for the problems tackled and software used. The horizontal axis in 

figure 7.2 shows the ratio of the step size l:!..s to the maximum dimension h, i.e. 

(l:!..s/h). Note that for very small step size ratios ~s/h ::; 0.00001 the finite difference 

result decreases sharply, which is due to the condition error. On the contrary, for 

higher step size ratios l:!..slh 2: 0.01 the function rapidly increases, in this case this 

behaviour is driven by the truncation error. Clearly, for step size ratio such as 

0.00001 ::; l:!..s/h ::; 0.01, the finite differences results exhibit a stable region and 

therefore, this is the interval chosen for the step size ratio in the sensitivity 

calculations 

0.00001 ::; l:!..s/h::; 0.01 (7.17) 

where l:!..s is the step size and h is the maximum dimension of the object. Further, for 

practical reasons, this step size is also set for the actual movement of the control 

points when removing and adding material ensuring accuracy in the sensitivity 

results as well as in the evolutionary process. 
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6.0E-05 
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~ 
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3.0E-05 ->-
2.0E-05 ::I 

<3 
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O.OE+OO 

-1.0E-05 

-2.0E-05 

0.000001 0.00001 0.0001 0.001 0.01 0.1 

.ds/h 

Figure 7.2: Effect of step size on FD of the vertical displacement at mesh point A 
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7.4 Numerical Example 

One example in two-dimensional elasticity is presented below to verify the accuracy 

and efficiency of the proposed method for multi-criteria. 

7 .4.1 Connecting Rod 

In this example, the sensitivity approach is applied in order to solve the multi-criteria 

problem. This problem was analysed by different authors for a single criterion (Sienz 

and Hinton (1997), volume minimisation) and more recently for multiple criteria 

(Afonso et al. (2002), volume and strain energy minimisation). In order to compare 

results, the objective functions considered are the volume ifv = V) and the strain 

energy ifu = U). 

The initial domain is shown in figure 7.3 (a). The connecting rod has the following 

material properties: Young's modulus E = 210000N/mm2
, Poisson's ratio v = 0.3, 

thickness t = 1 mm. Plane stress conditions are assumed. The rod is clamped in the 

middle of the left hand side edge (ux = uy = 0) and roller conditions are imposed over 

the top and bottom of this edge (ux = 0). The load condition is applied in the normal 

direction with a cosine distribution over the right hand side of the inner circle, such 

that the resultant force has a value of qx= 1000 N. 

68mm 

(a) (b) 

Figure 7.3: Problem definition of a connecting rod (a). Boundary element mesh (b) 

Figure 7.3 (b) shows the boundary element mesh used. This element mesh has 87 

quadratic elements and 174 nodes. A convergence analysis shows that this mesh is 
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fine enough to produce accurate solutions for the sensitivity calculations. Figure 7.4 

shows the initial distribution of control points. Two NURBS curves are used to 

define the changeable geometry. The first curve is defined by 6 control points 

identified as Po, Pr, P2, P3, P4 and Ps. The second NURBS curve is defined by the 

control points P5, P6, P7, Ps, P9 and Pw. Note that both curves are joined at control 

point P5. 

To achieve the minimum strain energy design or stiffest design, the overall strain 

energy of the structure is minimised (min U). In fact, the strain energy sensitivity 

number Riu (equation (7.10)) gives the gradient of the strain energy U with respect to 

the variation 11s in the position of control point Pi. This sensitivity number is used to 

guarantee that fu steadily decreases during a change of the location of the control 

points. 

• p7 Coordinates (mm) 

p6 
Pro p9 

•Ps 
y 

0 Ps 

X y 
Po 0 -8 
PI 20 -8 
Pz 34 -8 
p3 46.25 -18.75 
p4 67.5 -12.5 
Ps 68 0 

Po Pr .P4 
p6 67.5 12.5 
p7 46.25 18.75 
Ps 34 8 

• p3 p9 20 8 
Pw 0 8 

Figure 7.4: Control point distribution 

To achieve a minimum volume design, the volume of the structure is minimised 

(min V). Similarly, the volume sensitivity number Riv (equation (7.10)) represents 

the gradient of the volume V with respect to the control point, Pi, variation. This 

sensitivity is used to direct the control point movement so that the volume is 

continuously reduced. 

To achieve both strain energy minimisation and volume minimisation, an overall 

objective function, constructed using a weighted sum scheme, is minimised; i.e. min 

f = (wuU+ wvV). The 11 control points, shown in figure 7.4, are taken as design 
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variables. Constraints on the maximum displacement are imposed to control points 

P0, Pt, P9 and P10 as stated in the equation below. This constraint is imposed to avoid 

the creation of notches on the symmetry line. Moreover control point P5 is also 

constrained to movement along the x axis; i.e. symmetry axis. 

m in 

i=0,1,9,10 
subject to 

where m is the current iteration and m+ 1 is the perturbed iteration. wu and wv 

represent weighting factors for strain energy and volume criteria respectively, and 

are taken as wu + wv = 1. The gradient of the new single objective function with 

respect to the control point variable Pi (~si) is as equation (7.11) 

which is used to estimate an overall effect of the variation of control point location 

on the structural strain energy and the volume. The weighting factors emphasise the 

importance of the various criteria differently, in addition they allow balancing the 

two criteria, with different physical meanings. It should be noticed that the strain 

energy and volume sensitivities have been normalised since they may have different 

dimensions and so that, the weighting factor would not appropriately reflect an equal 

emphasis for each criterion. The weighting factors obviously have to be modified 

depending on the units used to express strain energy and volume. 

Thus, in the ESO procedure, the sequence of material removal and addition is 

determined by the sensitivity numbers Ri. In other words, the control point sensitivity 

numbers are regarded as their relative contribution to variations in the design 

objectives. The optimisation process is implemented by progressively adding and 

removing material from the model according to these sensitivity numbers. Thus 

material is removed from the control point regions with the smallest sensitivity 
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numbers (Ri < 0; i.e. RR = 0) and then added to the elements with the largest 

sensitivity numbers (R > 0; i.e. AR = 0). 

The objective is achieved in a progressive manner since the material is 

removed/added according to the step size used in the sensitivity calculations, which 

in this case is set to ~s = 0.05. The step size ratio is .1s/h = 0.05 mrn/68 mm = 

0.000735. This value is within the interval 0.00001:::; .1sAl:::; 0.01 (equation (7.17)). 

Moreover, numerical tests carried out on this example for different step sizes have 

shown the same agreement. As said before, the movement of the control points is 

related to the step size. Control points with the most significant sensitivities (highest 

or lowest sensitivity values) are moved a distance equal to the step size. In addition, 

control points with less significant sensitivities are moved a percentage of this step 

size; i.e. kremovat~S and kadditian.1s. This percentage is taken proportional to the 

maximum (kaddition) or minimum (kremovaz) sensitivity numbers. 

Generally, to calculate the structural response, Concept Analyst performs full 

analyses using Gauss elimination. Besides, one useful feature implemented in this 

software is the rapid response under small geometry changes by using reanalysis. 

The reanalysis scheme used in Concept Analyst (Trevelyan et al. (2002)) is based on 

the use of an iterative solver GMRES. In this approach, the system matrix A 

(equation (7.3)) is overwritten and a full matrix solution is performed for each 

reanalysis. The previous solution (to the unperturbed state) provides the initial guess 

as a starting vector in the iterative process. For perturbations of the size used in 

sensitivity calculations, the first guess is likely to be close to the solution of the 

perturbed state. In our case, during the sensitivity calculations, for each perturbed 

state the boundary geometry slightly changes, and so it makes possible to consider 

the implementation of reanalysis techniques. 

Consider the connecting rod example with 11 design variables and for a set of 

weights wu = 0.3 and wv = 0.7. Reanalysis vs. full analysis is compared for a single 

iteration that comprises 11 sensitivity calculations and consequently, 11 analyses. In 

the first case, full analyses are carried out and reanalyses in the second case. On a 

Pentium 4 (2 GHz) processor, the computation of 11 reanalyses and sensitivities 

takes 2.0350 seconds. In the case of full analyses, it takes 9.0904 seconds. Therefore, 
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for this particular example, a single iteration of the optimisation process using 

reanalysis is 4.46 times faster than performing a full analysis. 

Figure 7.5 shows the Pare to front obtained using the WS method by a set of 

weighting factors A, = wu = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] and 

consequently wv= [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0]. In this example, the 

Pareto curve is successfully obtained from an evenly distributed set of weights which 

produce a spread distribution of points defining the Pareto curve. 
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Figure 7.5: Pareto front 
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In fig.7.6 are shown different optimum solutions according to the selected weights 

for the strain energy criterion (wu) and the volume criterion (wv), respectively. For 

the case of figures (b) and (c) a neck shape appears due to the constraint limit to the 

vertical movement of points P0, P1, P9 and P10, but not to points P3 and P8• Moreover, 

examining these figures (b) and (c) we can state that more control points defining the 

circular region would increase the smoothness in this area, especially closer to the 

union between the two curves. Also notice that there is no symmetry being forced 

apart from the horizontal movement of point P5• In spite of this, almost symmetric 

geometries are produced for all cases. 
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(a) Original geometry 
V= 1367.85 mm3

, U= 9.76 Nmm 

(c) Wu = 0.2, Wv = 0.8 
V= 667.83 mm3

, U= 12.25 Nmm 

0 
(e) wu = 0.4, wv = 0.6 
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0 
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(b) wu = 0.1, Wv= 0.9 
V= 579.65 mm3

, U= 21.89 Nmm 

(d) wu = 0.3, wv = 0.7 
V= 772.73 mm3

, U= 15.76 Nmm 
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(t) wu = 0.5, wv = 0.5 
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(h) Wu = 0.7, wv= 0.3 
V= 1812.57 mm3

, U= 7.40 Nmm 

0 

(i) Wu = 0.8, wv = 0.2 (j) Wu = 0.9, wv = 0.1 
V= 2276.50 mm3

, U= 6.40 Nmm V= 2908.60 mm3
, U= 5.60 Nmm 

Figure 7.6: Optimum designs for different set of weights 

Comparing these results to Afonso et al. (2002) which uses MP and PEA, the 

solutions depicted in figures (e), (f), (g), and (h) are the most similar. Different 

results are found for the other cases. The reason is that for moving the control points 
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a percentage of the step size is used, that is, taking into account the control points 

with higher positive or lower negative sensitivities and disregarding the control 

points with near zero sensitivities. This means that the initial shape of the connecting 

rod is not necessarily maintained even for cases in which only removal or only 

addition takes place. The fine boundary element mesh used in the present study is 

highly likely to generate more accurate results than those presented in Afonso et al. 

(2002) in which a more coarse finite element mesh is used, even for critical areas. In 

Sienz and Hinton (1997) the accuracy of the results (for one single load case) is 

considerably improved by using adaptivity techniques. 

Figures 7.7 (a) and 7.7 (b) show the evolution history of the normalised strain energy 

(UIU0) versus the normalised volume (VIVo) and the averaged objective function 

which results from the weighted sum of the normalised strain energy and volume. 

Figure 7.7 (a) plots the evolution for a set of weights of wu = 0.3 and wv = 0.7. 

Figure 7.7 (b) displays this result for a set of weights wu = 0.8 and wv = 0.2. It is 

shown from this graphs that the two objectives are in conflict. 
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Figure 7.7: Evolution history of objective functions and averaged objective 

The effects of weighting factor wu and wv on the strain energy objective (U!Umax) 

and volume objective (V!Vmax) are displayed in figure 7.8. By increasing the volume 

the strain energy is reduced and conversely, the volume is reduced if the strain 
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energy increases. This effect is not linear which means that a 50%-50% allocation of 

weights may not reflect an equal satisfaction of both criteria. In this figure 7.8, the 

relation between the stress weights and the optimality criteria is shown. It is clear 

that, with the increase in the strain energy weight (wul) the strain energy reduction 

becomes more significant, but in turn this leads to higher volume. The critical 

weights are found for wu = 0.56 and wv = 0.44, meaning that if the strain energy 

minimisation is a major objective, the strain energy weighting factor should be 0.56 

::S wu ::S 1 (0 ::S wv ::S 0.44); and if the volume minimisation is a major objective then 

the strain energy weighting factor should be 0 ::S wu::S 0.56 (0.44 ::S wv ::S 1). 
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Figure 7.8: Effects of the weighting factors on the optimal objectives 

Finally, the von Mises stress contour plots are displayed in figure 7.9 for different 

sets of weights. The consideration of such stress distributions is essential in the 

design of suitable FE or BE meshes for the optimisation. It can be noticed that for all 

cases the von Mises stress maximum is localised around the inner circle where the 

load is applied but there are no high stress peaks in the design regions . 
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7.5 Discussion and Conclusions 
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Multi-criteria optimisation problems have been investigated in this chapter. In such 

problems the objective functions are in conflict. None of the possible solutions 

simultaneously fulfils all the objectives, and also the individual solutions of the 

objective functions are different. The solution of the multi-criteria problem is 

obtained by transforming the multiple objective functions into a single objective 

function using the weighed sum method (WS). The Pm·eto concept is used to gain 

knowledge about trade-offs between objectives and also allows the choice of the 

most desirable solution. To calculate the effect of changes in the design variables on 

the objective functions, sensitivity numbers are calculated using finite difference 

(FD) derivatives. The technique has been applied to the connecting rod example, 

showing it to be efficient obtaining an even spread set of Pareto optimal points for an 

even distribution of weights. However, for other examples this cannot be the case 

(Das and Dennis (1997)). The sensitivity calculations are performed using BEM 

reanalysis based on the non-perturbed solution rather than full analyses for each 

perturbed state. It has been shown that this considerably reduces the computing time 

for each iteration. 
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8 
STRUCTURAL OPTIMISATION IN 3D 

8.1 Overview 

This chapter presents the developed approach applied to three-dimensional structural 

optimisation problems. This algorithm for 3D optimisation is an extension of the 

two-dimensional gradientless method presented previously in the chapters shape 

optimisation in 2D and topology optimisation in 2D, which are chapter 5 and chapter 

6, respectively. Similarly, the optimisation algorithm is based on the evolutionary 

structural optimisation method (ESO) and boundary elements (BE) are used to carry 

out the structural analysis. The geometries are represented using nonuniform rational 

B-spline (NURBS) curves and surfaces. Unlike the 2D algorithm, a commercial 

boundary element software package is used. The optimisation algorithm is no longer 

fully integrated in the structural analysis program which introduces some limitations 

handling the analysis data. Examples are presented to show the effectiveness of the 

algorithm for some preliminary results. 

8.2 Introduction 

There are different techniques used in 3D structural optimisation problems, and most 

of them are a straightforward extension from 2D optimisation techniques. The 

general formulation of these techniques has been presented in the structural 
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optimisation review chapter (chapter 2) and also recalled in the 2D optimisation 

chapters (chapters 5, 6 and 7). These optimisation techniques can be broadly divided 

into deterministic-gradient based methods and heuristic or scholastic techniques. 

The deterministic-gradient based methods applied to 3D can be subdivided into 

discrete and continuum methods. In the discrete method the finite (Jacobsen et al. 

(1998)) or boundary element (Kane et al. (1992)) equations are directly 

differentiated. In the continuum approach, the variational equilibrium equations are 

differentiated and discretised (Haug et al. (1986)). Alternatively to the gradient­

based methods, applications of the heuristic or scholastic methods in 3D include the 

evolutionary structural optimisation method (ESO) (Young et al. (1999)) and genetic 

algorithms (Annicchiarico and Cerrolaza (2001)). 

An important feature in three-dimensional optimisation problems is the model 

representation and how it is related to the structural analysis results. Most of the 

work on shape optimisation relates the finite/boundary element data with the model 

geometry (Haftka and Grandhi (1986)). Initially, some authors defined the nodal 

coordinates of the discrete finite/boundary (Kane et al. (1992)) element model as 

design variables. However, this requires a large number of design variables and also 

it is difficult to maintain an adequate finite/boundary element mesh during the 

optimisation process (Haftka and Grandhi (1986)). New methods appeared to 

overcome these initial drawbacks such as the mesh parameterisation (Haug et al. 

(1986)) and solid modelling, which comprises constructive solid geometry (CSG) 

(Kodiyalam and Vanderplaats (1992)) and boundary representation (B-Rep) 

(Schramm and Pilkey (1993)). 

ESO applied to three-dimensional domain problems is a straightforward extension 

from 2D and therefore, it is based on the simple idea that the optimum design 

evolves by slowly removing and adding material. The approach in 3D described in 

this chapter is focused on the classical gradientless ESO (Xie and Steven (1997)) i.e. 

material is removed from low-stressed areas and added to high-stressed regions. 

The boundary element method (BEM) is used to carry out the elastostatic structural 

analysis in 3D. In addition, the boundary shape is represented by NURBS curves and 
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surfaces, defined by control points. The NURBS representation is attractive since it 

can be exchanged with CAD/CAM systems. Moving the basic parameters of the 

NURBS (control points) can modify the geometry of the NURBS curve or surface. 

8.3 Algorithm 

The optimisation algorithm in 3D is an extension of the gradientless algorithm 

presented in 2D, chapters 5 and 6, i.e. the optimum topology evolves by slowly 

removing and adding material from low and high-stressed areas, respectively. 

Similarly to 2D, the numerical analysis is carried out with the BEM but in this case, 

a commercial software package called BEASY (BEASY users manual (2002)) is 

used. The boundaries are represented using NURBS surfaces defined by control 

point nets. Use is made of the locations of these control points as design variables of 

the problem. Figure 8.1 shows a basic flow chart of the optimisation process. This 

process can be divided into several steps which are associated with either BEASY 

(structural analysis) or the OPTIMISER (boundary-ESO algorithm). 

Step 1 (BEASY): The geometry of the structure is defined. The initial design is 

subjected to a set of loads and constraints. 

Step 2 (BEASY): A boundary element analysis follows the model description. 

Step 3 (OPTIMISER): The surface information is read together with the structural 

analysis results 

• Read solution from BEASY and sort boundary nodes according to their stress 

levels. 

• Read surface information. Process NURBS surface data and calculate normal 

vectors to surfaces. 

Step 4 (OPTIMISER): Removal of material. The nearest control points to the least 

stressed nodes are identified and moved in the direction of the normal vector to that 
area to generate a more efficient shape. 
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Step 5 (OPTIMISER): Addition of material. If any node is found with a stress higher 

than the yield stress or any other maximum stress criterion, then a similar process to 

removal is undertaken but, however, the opposite direction of movement of the 

control points results in a material addition. 

Step 6 (OPTIMISER): The output file is written for the modified geometry. 

Step 7: Such a procedure is repeated (from step 2) until the stopping criterion is 

reached. This minimum is not mathematically searched but is found according to the 

evolution ofthe objective function. 

Step 8 (BEASY): Post-process final design. 

Pre-Process 

Structural Analysis 

Post-Process 

ReadBEASY 
Output file 

Gradientless 
approach 

WriteBEASY 
Input file 

Figure 8.1: Flow chart of the basic optimisation process in 3D 

8.4 Geometry Definition 

The initial geometry is defined in the first step of the optimisation process. This 

geometry can be created directly in the BEASY pre-processor or read into BEASY 

from an IGES file exported from a CAD program. This geometry is subjected to a set 

of loads and constraints, which determine the two possible types of surfaces, i.e. 
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design and non-design surfaces. Therefore, surfaces that can change freely along the 

process are identified as design surfaces, whereas these smiaces that cannot change 

due to loads, constraints or design restrictions are identified as non-design. 

NURBS surfaces are adopted to define the geometry in order to control the curvature 

and tangency of the changeable boundary. A control point net is specified for each 

surface. Adjacent surfaces are required to share control points over their coincident 

edge and therefore ensure continuity between surfaces along the process. 

Spline curves define the boundaries of the surfaces, acting as trim lines. Splines are 

used instead of NURBS since BEASY does not recognise these curves but only the 

more basic splines. 

8.5 Boundary Element Model 

The boundary element method is used for the structural analysis of the 3D 

topologies. As previously stated in the BEM chapter (chapter 4), and later refened to 

in the 2D optimisation chapters (chapters 5, 6 and 7), in this computational method, 

the boundary integral equations are approximated by a set of discretised integral 

equations. As a result, the boundary surface is divided into elements, thus the 

response is given at the nodes associated with the elements. 

As presented before, in 3D problems a commercial software called BEASY (BEASY 

(2002)) is used. The use of this commercial software instead of the in-house software 

used in 2D problems brings some considerable differences in the problem definition 

and also while processing and managing the analysis data. The reason for the 

adoption of different software in this case is because at the cunent stage, Concept 

Analyst (Trevelyan and Wang (2001)) was not developed enough for 3D problems. 

In addition, the use of alternative software would prove the portability and flexibility 

of the algorithm. Figure 8.2 shows a typical example of a 3D quadratic boundary 

element mesh displayed using BEASY. It should be noted that the program includes 

a class of elements known as discontinuous, in which nodes are not shared with 

neighbouring elements, and which allow meshes to become discontinuous. Areas of 
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discontinuous meshing are evident in this figure and in others that follow in later 

sections of this chapter. 

Figure 8.2: Illustration of a quadratic boundary element mesh in 3D 

To assess the accuracy of the analysis BEASY provides several features to check the 

results and also identify any error in the model definition that can be the source of 

further potential errors. Model convergence is checked by examining the equilibrium 

check results and the error norms display. The equilibrium check verifies that the 

loads that have been applied to the model are in equilibrium with the reactions at the 

constraints. A poor equilibrium is a clear sign that the model has not converged. 

Error norms are calculated from inter-element stress discontinuities, and therefore 

provide a local control estimator that complements well the global equilibrium 

check. The error norm contours would give an estimated accuracy of the results for 

each element. They provide an estimation of the error in the form of the percentage 

of the stress. These error norms are treated as a guide only since it is not possible to 

compute the exact error. 

In cases in which the mesh of the model needs to be improved to ensure convergence 

the alternatives are to increase the order of the element or to refine the mesh. The 

feasible option in this case is to refine the mesh by increasing the number of 

elements. This alternative is more general since an automatic meshing is set to the 

whole domain which keeps the same element mesh properties for all surfaces. 
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8.6 Removal and Addition of Material 

8.6.1 Identifying Inefficient and Critical Areas 

In a similar way to the 2D gradientless method the nodes from the boundary element 

mesh are sorted in ascending order according to their stress level, generally the von 

Mises stress is the stress criterion used (see section 5.6.1). Basically, although all 

nodes are initially sorted only nodes related to changeable regions would be 

considered later. Material would be removed from the structure if there is any node p 

that satisfies the following equation (8.1) 

(8.1) 

and added to the structure if any node satisfies equation (8.2) 

(8.2) 

where op is the node von Mises stress, CTmax is the maximum von Mises stress within 

the structure, which varies along the process, oy is the yield stress or any other 

maximum stress criterion, RR and AR are the removal and addition ratio, 

respectively, with 0 ~ RR, AR ~1. 

If a steady state is reached in which no nodes, or only a few nodes, can satisfy the 

previous equation (8.1) then the RR is incremented by the evolutionary rate ERR 

(8.3) 

Similarly, if only a few nodes can satisfy equation (8.2) thenAR is decreased by the 

evolutionary rate ERA 

(8.4) 

Typical values determined from numerical experience for suitable ratios are RRo = 
0.05, ERR= 0.01, AR = 0.95 and ERA= 0. 
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For each selected node Pi, the program searches its nearest control point Pi. 

Therefore, each node has a control point related as shown in figure 8.3, where p0 is 

related to P0 situated a distance a0 away. The positions of these control points are 

treated as the design variables. 

Sometimes the same control point can be associated to different nodes as shown in 

figure 8.3 for P1. To consider such situations each node has associated a weight Oh. 

This weight expresses the influence of the node on the associated control point. 

Therefore, the closer the node to the control point the higher its influence and 

therefore the weight. Consequently the weights are calculated as follows 

(8.5) 

with ak the distance between the node and the control point. m is the number of 

nodes associated to the control point. Notice that for a unique node related to the 

control point (m= 1) this weight is 1 ( cv; = 1). 

If 1 
{J) =­

k al 
k 

(8.6) 

To avoid numerical instabilities there is a minimum value allowed for ak. This value, 

called lfl, is a factor related to the maximum dimension of the structure. After 

numerical tests this value is defined as 

lfl= max dimension/lOO (8.7) 

The algorithm forces ak to be always greater than or equal to lfl (ak ~ If!). Finally, the 

weight l4 

(Vu 
{J) = __ k_ 

k m-1 

I m; 
/;Q 

(8.8) 
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and therefore as a result of defining Wk in such a way , L OJk = 1. 
k=O 

s 

Figure 8.3: Selection of control points associated to nodes 

8.6.2 Direction of Movement 

Cha ter 8 

The direction of movement of each control point selected is perpendicular to the 

NURBS surface defining the associated inefficient or critical area, i.e. where the 

nodes (p) are placed. The perpendicular movement (see figure 8.4 (a)) follows the 

normal vector np. This vector is calculated using the analytical definition of NURBS 

surfaces, which have been defined in chapter 3, its derivatives, i.e. vp and up, and 

vector relationships (cross product up x vp = np)· Similarly to 2D problems, the 

movement is inwards when removing material and outwards when adding it. 

(a) (b) 

Figure 8.4: Direction of movement for control point P associated to node p. (a) p on 

surfaceS. (b) p on surfaces Sand T 
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In the case of nodes placed on edges between surfaces (figure 8.4 (b)) an averaged 

normal is calculated. Therefore, knowing the vectors nsp and nTp which are the 

normal vectors at p to the surfaces S and T respectively, the direction of the new 

normal vector at p is calculated as that of a vector addition of vectors nsp and nTp· 

This criterion is not only applicable to two surfaces but to any number of surfaces 

sharing a node p. 

For situations in which a single control point is associated to a group of nodes, as is 

illustrated in figure 8.5, the direction of movement n is calculated using the weight 

factors explained in the previous section (equation (8.8)) and mathematically stated 

m-1 

n = Z:wknk 
k=O 

where nk is the normal vector to the node k and ~ is its associated weight. 

(8.9) 

Figure 8.5: Direction of movement for control point P associated to a group of nodes 

8.6.3 Distance to Move 

In any iteration the material is either removed or added to the structure by migrating 

control points. Each control point is moved a distance related to the following 

parameters 

• Distance of the control point from its associated node. This distance is denoted 

as a. 
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• A factor related to the stress situation within the structure at the current 

iteration. This factor is called the removal factor (RF) if removing material, 

and the addition factor (AF) if adding it. As presented in chapter 5, these 

parameters allow larger geometric changes in early iterations and smaller 

changes when fine-tuning is required in the later iterations. 

For example in figure 8.6 the control point Pi situated at a distance ai from the node 

is moved a quantity di calculated as follows 

(8.10) 

where If/ is defined in equation (8.7). Likewise, for addition of material 

(8.11) 

Therefore, the smaller the distance ai the higher di, i.e. more material is moved. For 

cases in which several nodes influence a control point (figure 8.5), a more general 

expression of the distance of movement for the control point Pi is given as follows 

[

111-1 1 l 
di =I- RF 

k=o ak 
(8.12) 

Figure 8.6: Control point and node distance relationship 

In the case of removing material, there is another parameter to be considered, the so­

called fJ ratio. This is a ratio that takes into account the least stressed areas amongst 

the lightly stressed areas within the structure. For each node p the fJ ratio can be 

defined as 
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fJ = O"min 
p 0" 

p 

(8.13) 

where O"min ( O"min > 0) is the minimum von Mises stress within the structure and ap is 

the von Mises stress at node p ( ap ~ O"min). Thus, the fJ ratio is introduced into the 

equation (8.12) which is transformed in the new following expression 

(8.14) 

This ensures that removal takes place primarily in the most lightly stressed regions in 

preference to somewhat higher stressed regions that happen to be more densely 

meshed. The removal and addition process can be summarised in the flow chart 

presented in figure 8.7. 

START REMOVAL & ADDmoN PROCESS I 
• ~:f'!.'_,_"!f':'!.'J_ i------------------------------------------

Is there any node that satisfies No 
o;, ~ RR;Oinax? t-----Jot 

Yes Select sets of one control point, P, 
..-1 ~--"-------,1 -Calculate WJ for each node Pi related to P 1 

REMOVE MATERIAL r -Calculate normal vector to NURBS surface at Pi 

Calculate for each control point selected: 
-Distance to move: d; = j(a, RF, /1) 
-Direction of movement: inwards; equation (8.9) 

·------------ -------------------------------------------
1cf_d!JiQ'l. ergq_e.§li - ------------------------------------------

i 

~ Is there any node that satisfies I No J Steady state 

J o;, :e: AR; Oinax 0 R o;, :e: O'y ? J .I AR;+l = AR; - ERA 

_i_ves Select sets of one control point, P; 

l ADD MATERIAL J- -Calculate WJ for each node PJ related to P, 
-Calculate normal vector to NURBS surface at Pi 

Calculate for each control point selected: 
-Distance to move: d; = j(a, AF) 
-Direction of movement: outwards; equation (8.9) 

------------ ------------------------------------------
I END REMOVAL & ADDmON PROCESS I 

Figure 8.7: Flow chart of the removal and addition process 
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8. 7 Geometry Control 

8.7.1 Smoothing Algorithm 

It is found that as the optimisation process evolves, edges and corners may become 

sharper. This problem is undesirable not only because the stresses are likely to 

increase but also from the manufacturing point of view. To overcome this drawback 

an algorithm to identify and to smooth sharp areas is implemented. 

In the literature, different ways of smoothing geometries can be found. Laplacian 

smoothing is a very popular technique to smooth element meshes on surfaces. This 

method changes the position of nodes without modifying the topology of the mesh 

but adjusting the location of each node to the geometric centre of its neighbour 

nodes. Moreover, smoothing techniques used in a NURBS context (Piegl and Tiller 

(1997)) could be also considered. However a simple but effective alternative 

procedure is used here which also avoids the angular geometries. 

Firstly, the algorithm identifies any non-smooth edge or corner. To do so, the angles 

between the geometric lines, which are the trim lines to the surfaces, are computed 

using the properties of the dot and cross vector product. Therefore, having two 

vectors in a surface, say u (ux, uy, Uz) and v (vx, Vy, Vz), and the normal vector to this 

surface, say vector n, which has an associated specific known direction, the angle 

between the two vectors u and v is calculated using the dot product 

cos e = ll~l·;vll (8.15) 

To identify the clockwise angle from vector u to vector v calculated using the dot 

product some extra information needs to be calculated this time using the cross 

product. Since n points perpendicular to u and v, it points either parallel or opposite 

to the vector cross product u x v 

(8.16) 
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Assuming the right-hand-rule conventions for the cross product, if n points parallel 

to u x v along the direction of n, the angle e that has just been calculated above in 

equation (8.16) is the clockwise angle. Otherwise, if n points opposite to u x v, then 

the clockwise angle is the 360° - e angle. 

Once all the angles have been calculated, the sharp edges are identified. The criterion 

for sharp edges is that any edge angle greater than 180° or less than 45° would be 

considered as sharp. The reason for choosing these limits is because any values out 

of this range would produce numerical errors in the meshing and Jacobian 

calculations. 

To smooth a corner the control point in corner is moved to the midpoint of the line 

joining the previous and next control points. Figure 8.8 shows how these sharp edges 

are smoothed. Each sharp corner has a related control point P. The shape of the 

corner is approximated using two vectors u and v. The vector u points from P to its 

previous control point Pt whereas the vector v points from P to its following control 

point P2. The corner is smoothed by moving P to the midpoint of the line that joins 

Pt and P2. 

CP1 

(a) initial model 

(c) initial model 

p 

(b) final model after smoothing 

(d) final model after smoothing 

Figure 8.8: Smoothing edges and corners 
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The main steps of this smoothing algorithm can be summarised in the following flow 

chart (figure 8.9). 

Figure 8.9: Flow chart of smoothing process 

8. 7.2 Corners Effect 

When moving control points situated in corners, it is found important to treat each 

corner differently according to its angle. A factor y is introduced to accelerate or 

decelerate the movement in such cases. The motivation for introducing this new 

factor is because equal distance gives rise to undesirable distortion that tends to 

sharpen corners as shown in figure 8.10 (a). Thus, the effect of moving material in 

corners which are very convex/concave or sharp is larger than moving material in 

areas on an even surface. 

2.5 

y 
2.0 

1.5 

Pa,j 
1.0 

0.5 
0 45 90 135 180 225 eo 

(a) (b) 

Figure 8.10: (a) Illustration of sharpen a corner. (b) Corner effect factory 
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This factor y is related to the angle in the corner eo (see section 8.7.1) thus, the 

smaller the angle the higher the influence of the factor. Equation (8.10) is modified 

as follows 

(8.17) 

The factor y is calculated following a linear interpolation. Figure 8.10 (b) plots the 

values of y according to the angle eo. Further investigations would consider other 

types of interpolation such as parabolic. At this stage the flow chart of the removal 

and addition process can be updated to consider the factor yas shown in figure 8.11. 

I START CORNER EFFECT I 
Geometry Control r----------- ------------------------------------------~ I I 

1 
Calculate angle 8 in each corner 1 i I SET CORNER EFFECT FACTOR r I.__ Calculate y(O) i 

1 e <= 45' ->r = 2 1 
: 45' < O< 180' ->r = [1+2Jf(6) : 
I 8>=180° ·>Y=1 I I I I ____________ ------------------------------------------1 

I 
I 
I 
I 
I 
I 
I 

1 START REMOVAL & ADDmoN PROCEss 1 

~~~~~~~!~~~~J------------------------------------------~ +4 t 

I 
Is there any node that satisfies No Steady state I 

a":<:; RR1 a,,~? RR;+J = RR, + ERR 

j. Yes Select sets of one control point, p, 

I I -Calculate 1-11 for each node PI related to P, 
REMOVE MATERIAL r -Calculate normal vector to NURBS surface at Pi 

Calculate for each control point selected: 
-Distance to move: d1 = J(a, r. RF, fJ) 
-Direction of movement: inwards; equation (8.9) 

J!dj~ic:_n_J7£C!!!.S.. _ _ ________________________________________ _ 

Is there any node that satisfies 

Select sets of one control point, p, 
-Calculate 1-11 for each node PI related to P; 
-Calculate normal vector to NURBS surface at p1 

Calculate for each control point selected: 
-Distance to move: d1 = J(a, y, A F) 
-Direction of movement: outwards; equation (8.9) 

'------------
I END REMOVAL & AoomoN PRocEss I 

Figure 8.11: Flow chart of yinserted into the removal and addition process 
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8.7.3 Mapping the Geometry 

In certain problems, the control point movement can be restricted to be performed 

exclusively in one plane, i.e. movement in XY, or XZ or YZ. This might be 

desirable, for example, to test a 3D algorithm by reproducing conditions found in 2D 

modelling, and therefore seems a good starting point for the evaluation and 

development of the 3D optimiser. For these situations control points on the 

boundaries of the control point net are moved freely (in the plane of movement) but 

the points situated inside the net, which would normally move in the perpendicular 

direction to the surface, cannot move since their movement has been constrained. In 

this case, like a potential flux problem, the internal control points are moved in a 

manner influenced by the change of the boundaries. In this work, the relationship 

between the movement of the outer control points and the inner control points is 

established by using the concept of shape functions. 

Shape functions are used in the finite and boundary element formulations to relate 

any point in an element to the nodes defining this element as described in the BEM 

chapter (section 4.8.1). This concept is extrapolated here but applied to the control 

point nets instead of elements. In order to calculate inner control point locations it is 

possible to use the shape functions for serendipity finite elements (Bathe (1982)). For 

a surface defined by a given number of boundary control points (numBCP), the 

coordinates at any inner control point can be found from the values of the 

coordinates at the control points on the boundary of the control point net 

numBCP 

x= L L:xi 
i=O 

numBCP 

y= I lfyi 
i=O 

(8.18) 

where Lsi terms are the shape functions and (xi. Yi· Zi) locates the th boundary control 

point. Considering numBCP = 16 and a local coordinate system as shown in figure 

8.12, the shape functions Lsi for control point Pi are calculated by finding a function 
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of the local coordinates which gives a value 1 at control point P1 and a value 0 at all 

other control points on the boundary of the control point net. Figure 8.13 illustrates 

some of the corresponding shape functions for numBCP = 16. 

Figure 8.12: Local coordinates used for mapping the geometry 

-1 -1 

'7 

1.2 

0.6 

· 1 -1 

Ls(~,ll) 
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0.5 

· 1 ·1 -1 · 1 

1.2 .., ··· 

Figure 8.13 : Shape functions 

When there are no restrictions on the control point movement, then the points 

situated inside the net can be moved according to equations (8.10) (removal) and 

(8.11) (addition). However, as the process evolves and more material is removed, it 

is found important to introduce a similar idea of relationship between the movement 

of the outer control points and the inner control points. 

Nevertheless, the serendipity shape functions (as explained previously) are not 

applied in the general 3D algorithm since redistribution of the inner control points is 

not desired. In this case, the current position of the control point is slightly modified 

by the effect of moving its adjacent control points on the boundaries. Therefore, the 

global movement can be split into two movements; i.e. the main movement and the 
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propagation movement. The main movement follows the general equations (8.10) 

and (8.11) and the propagation movement depends on the movement of the edges. 

Hence, for a surface defined by a given number of boundary control points 

(numBCP), the coordinates (x, y, z) at any inner control point can be defined as 

follows 

numBCP 

X= XIII +k&p; &p = LLi&i 
i=O 

numBCP 

~y p = L LJ1yi (8.19) 
i=O 

numBCP 

Z = Z111 +k&p; &p = LLi&i 
i=O 

where x,1/J y"" Zm are the coordinates resulting from the main movement; k is a 

parameter that determines the influence of the propagation movement over the 

global movement; &p, ~yp, 11zp are the quantities related to the propagation 

movement; and the Li( ~.1]) terms are the shape functions calculated as follows 

(8.20) 

It should be remarked that the global movement of the inner control points is 

essentially determined by the main movement. The propagation movement effect is 

smaller and simply avoids overlapping due to the faster movement of the edges. 

The mapping geometry algorithm is depicted in the flow chart in figure 8.14. As 

shown, this algorithm relates directly to the removal and addition process. 

8.7.4 Restart Procedures 

In 3D, the shape of the component evolves by changing the position of the control 

points defining the surfaces. Nevertheless, these local changes can result in localised 

distortion produced by, for example, a number of control points being compressed 

into a smaller and smaller area. In 2D optimisation problems this phenomenon was 

overcome by inserting and removing control points (sections 5.7.1 and 5.7.2). In 3D 

this insertion and removal implies a redefinition of the patches performed in the so-
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called restart procedure. Therefore, every restart stage implies a reduction or 

addition, depending on the geometric requirements, of the number of control points. 

START GEOMETRY CONTROL 

q~op~~~o~g~- ------------------------------------------, 
Calculate angle B in each corner 

SET CORNER EFFECT FACTORy ,.___ Calculate y(B) 

~ Yes I Calculate Serendipity-based 
---.j shape functions 

~---------------------------~ 
MAPPING GEOMETRY 

Is the movement restricted to one plane? ___.j Calculate shape functions ~ 
No 1 L,(~,7J);(~=• -1~-~,1)(17,., -117-17,1) I 

------------¥------------------------------------------· I START REMOVAL & ADDillON PROCESS I 

I Is there any node that satisfies 
a;, :<:; RRi0i11ax ? 

No J Steady state 
RRi+I = RRi + ERR I 

t Yes Select sets of one control point, P1 

I 1 -Calculate WJ for each node Pi related to P1 
REMOVE MATERIAL r -Calculate normal vector to NURBS surface at Pi 

Calculate for each control point selected: 
-Distance to move: 

di = f(a, y, RF, fJ> P1 on surface edge 
di = f(a, y, L(!}. r;), RF, fJ> otherwise 

-Direction of movement: inwards; equation (8.9) 

------------------------------------------~ Addition Process 

Is there any node that satisfies 
ap ;::: ARiOi11ax OR aP ;::: a, ? 

t 
Steady state 

ARi+I = ARi- ERA 

Select sets of one control point, P1 
-Calculate WJ tor each node Pi related to Pi 
-Calculate normal vector to NURBS surface at Pi 

Calculate for each control point selected: 
-Distance to move: 

di = f(a, y, AF, fJ> Pi on surface edge 
di = f(a, y, /..( .;, 17), AF, fJ> otherwise 

-Direction of movement: outwards; equation (8.9) 

------------ ------------------------------------------J 
I END REMOVAL & ADDillON PROCESS I 

Figure 8.14: Flow chart of mapping geometry inserted into the removal and addition 

process 

Generally, the areas with high curvature would increase their control point definition 

whereas flat areas of the surface would have retained or even decreased the number 
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of control points. These areas of high or low curvature are identified using the 

mathematical definition of the NURBS surfaces which can be processed 

appropriately in order to obtain the curvature contours, as is shown later in the 

example 8.9.4. 

Another application of the restart procedures is to avoid meshing problems caused by 

excessive distortion of a surface. In these cases, even a finer mesh would not 

improve the convergence of the solution. Therefore, a restart is performed and the 

optimisation process would continue further for this new geometry. 

Finally, restart procedures are used to perform topology changes. Similarly to 2D 

problems, inner low-stressed areas are removed from the structure by creating 

cavities. Unlike 2D, these areas are not identified using internal points (section 6.5) 

but the nodes on the surfaces. Hence, inner low stressed areas are identified when 

low stressed nodes are present in the same region in two opposite close surfaces. 

Since elastostatic problems are assumed and therefore no body forces are present, the 

material between the two facing surfaces can be considered to be at the same low 

stress levels. 

The creation of the cavities can be seen as an extrusion cut process where a hole is 

extruded through the low stressed area. Once the new surfaces are created a BEA is 

carried out and the optimisation process continues with the new topology. The 

example 8.9.4, introduced later, clarifies graphically this concept of restarts to 

perform topology optimisation. 

8.8 Stopping Criteria 

The objective function adopted in 3D optimisation problems is related to the 

minimisation of the specific strain energy fu in the structure 

fu = UV (8.21) 

where V refers to the volume of the structure and U to the strain energy which is 

defined in BEA notation as 
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(8.22) 

where T are the tractions over the boundary and u the displacements over the part of 

the boundary r. 

Accordingly, the stopping criterion c related to the objective function fu can be 

quantified as follows 

.f i+l - .f i+l 
c = J u J u ~ 10-4 

JJ+i 
(6.23) 

where f~ is the value of the objective function at iteration i and f~+' is the value of 

the objective function at iteration i+l. 

Thus, the basic flow chart of the optimisation algorithm introduced in figure 8.1 is 

enhanced in figure 8.15, which presents the fully developed flow chart of the 

algorithm resulting from this research. 
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I 
I 
I 
I 
I I 
I I 
I I 
I I BEA I I 
: BEASY : 1----------------fi------ ---------_I 
,---------------~--------------i 
I I 
I PROCESS ANALYSIS : 
: PRESUL TS AND GEOMETRY : 
I : _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _______ .9~I~MJ~~R_: 

Geometry Control 

Perform restart procedures? 

Insertion and removal of control points 
Topology changes 

No 

Calculate angle B in each corner 

Calculate y(8) 
8<=45° ->r = 2 

----.., 

I SET CORNER EFFECT FACTOR y I~ 45° < 8 < 1aoo ->r = [1+2Jf( 0 

~ 
8>= 1aoo ->r = 1 

~ Calculate Serendipity-based 
MAPPING GEOMETRY shape functions LSC/;,17) 

Is the movement restricted to one plane? 
~I Calculate shape functions L(/;,1)) ~ 

I" OPTIMISER 
~------------+------------------------------------------
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-----------i-------------------------------------------
j 

Is there any node that satisfies No J Steady state I op ~ RR;Oinax ? 1 RR;+I = RR; + ERR 

t Yes Select sets of one control point, P, 

I REMOVE MATERIAL 1- -Calculate wi for each node Pi related to P; 
-Calculate normal vector to NURBS surface at Pi 

Calculate for each control point selected: 
-Distance to move: 

d; = f(a, y, RF, /3) P,on surface edge 
d; = f(a, y, L( ~ 7]), RF, /3) otherwise 

-Direction of movement: inwards; equation (8.9) 

·------------ __________________________________ 9f!lb'JlS_E_R_ 

A ddition Process ---------- ------------------------------------------
t 

Is there any node that satisfies No -' Steady state 

I op:?: AR;o;,ax OR op:?: oy ? .I AR;.1 = AR; - ERA 

+Yes 
Select sets of one control point, P, 

I ADD MATERIAL 1- -Calculate wifor each node Pi related toP; 
-Calculate normal vector to NURBS surface at Pi 

Calculate for each control point selected: 
-Distance to move: 

d1 = f(a, y, AF, /3) P; on surface edge 
d1 = f(a, y, L( ~ 7]), AF, /3) otherwise 

-Direction of movement: outwards; equation (8.9) 

------------------------:t--------------------9~!~!~~~ 
r--------------------------------~ I I 
I I MODIFY GEOMETRY J I 
I I 
I I 

Figure 8.15: Flow chart of the process 
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8.9 Examples 

8.9.1 Beam under Bending I 

The following example is presented in order to prove the algorithm. The following 

isotropic material properties are assumed: Young's modulus E = 210000N/mm2 and 

Poisson's ratio v = 0.3. This example is the optimisation of a rectangular beam fixed 

at surface Sl and subjected to a load in the x-direction of magnitude 100 N at surface 

S2, as shown in figure 8.16. The dimensions of the beam are 100 mm x 50 mm x 20 

mm. The objective of this optimisation problem is to minimise the strain energy U 

(equation (8.22)). 

Sl ;-- lOO mm --.; 
Ux = Uy = Uz = 0 

X}-~ 
Figure 8.16: Problem definition for a beam under bending 

The optimisation parameters are set to RF = 10, AF = 10, AR = 0.90, ERA= 0, ERR= 

0.05, RRo = 0.05. RR increases from 0.05 to 0.10. In the case of removing material, 

the parameter ,8 (equation (8.13)) is also considered. 

Figure 8.17: Optimum design 
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Figure 8.17 shows the optimum design for the objective of this problem. The initial 

boundary element model contains 160 elements but at the end of the optimisation 

process this number increases to 195. 

Figure 8.18 displays the evolution of the process according to the von Mises stress 

contour plot. Comparing the initial topology and the final one (after 9 iterations); in 

the final design there is approximately a 50% increase from the initial volume. 

iteration 0 iteration 2 iteration 4 

iteration 6 iteration 8 iteration 9 

Figure 8.18: V on Mises stress contour plot 

Figure 8.19 displays the evolution of the process according to the objective function. 

The objective of minimising the strain energy is accomplished after 9 iterations when 

there are no further changes in the objective function. As expected, the stiffest design 

is obtained by a redistribution, and mainly addition, of material. Although in most 

engineering problems the objective is to reduce material, this example is chosen to 

show and test the effectiveness of the algorithm in any situation, addition or removal. 

Notice that this optimum design is accomplished for the load and displacement 

restrictions set. A different load or restraints situation would result in a different 

optimum design. 
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4.6E+04 

4.1E+04 

i 3.6E+04 
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;:; 3.1E+04 

2.6E+04 · 

2.1E+04 

0 2 

L'lVolume = 49,74% I. 
+···· 
' 

4 6 
Iteration 

8 10 

Figure 8.19: Evolution history of the objective function 

8.9.2 Beam under Vertical Load I 

The following example shows the optimisation of a beam whose movement is 

restricted to the plane ZY. The following isotropic material properties are assumed: 

Young's modulus E = 210000N/mm2
, Poisson's ratio v = 0 (fictitious v to avoid 

undesirable stress concentrations at the fixed supports). Figure 8.20 depicts the 

problem definition, the beam of dimensions 100 mm x 50 mm x 20 mm is fixed at 

the top and bottom surfaces (S1, S2) on the plane Y = 0. A vertical load of 100 N is 

applied on the surface (S3) situated in the middle of the plane Y = 50 mm. The 

optimisation aims to minimise!= UV (equation (8.21)). 

From the type of elements available in the BEASY library, Q3_8 are used. These 

elements are quadratic and interpolate the solution using eight nodes. The initial 

element mesh depicted in figure 8.21 (a) consists of 720 elements and 3300 nodes. 

The automatic meshing parameters remain constant for the whole process. These 

parameters, which describe the minimum and maximum element size, are set to 4 

mm for the minimum size and 5 mm for the maximum, respectively to give a 

reasonably uniform mesh. The final design (figure 8.21 (b)) has 718 elements and 

3286 nodes. 
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(a) (b) 

Figure 8.20: Beam problem. (a) Problem definition. (b) Surfaces 

~~~::: 
··,~ 

... -·r-
··- .. ·-. 

(a) (b) 

Isometric View YZview Isometric View YZ view 

Figure 8.21: Boundary element mesh. (a) Initial design. (b) Final design 

The position of the control points can vary during the process but in this example the 

number of control points does not change. The initial distribution of control points 

viewed from plane YZ and X = 0 is shown in figure 8.22 (points in blue). This 

picture displays also the control points at iteration 1 (points in red). From the current 

YZ view, there are 65 control points, this distribution is repeated along the parallel 

plane (X = 20). Moreover, at X = 10, a group of control points is analogously 
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distributed to the control points on the edges of the control point net in figure 8.22, 

therefore the total number of control points defining the surfaces is 162. 

• 

o control points Iteration 0 

• control points Itera tion 1 

- shape Iteration 0 
- shaoe Iteration 1 

Figure 8.22: Example of mapping control points at iteration 1 

Control points situated in the inside of the control point net are moved according to 

the movement of the control points on the boundaries. In other words, for each 

surface, the inner control points are mapped to the outer control points. The shape 

functions used in the mapping are those shown in figure 8.13. Figure 8.22 shows the 

distribution of the control points at iteration 1 after the mapping. The position of the 

control points can be compared to the previous iteration (iteration 0). According to 

these results, points near the corners are moved much less than points in other areas 

and moreover, the movement inwards would be expected for control points near the 

corners. The explanation for this apparently contrary behaviour is shown in the 

display of the shape functions (figure 8.13), which change sharply from 1 to negative 

values in the vicinity of the source control point. 

The von Mises stress contour plots are displayed in figures 8.23 (Isometric view) and 

8.24 (Front view). These figures show the stress situation every 10 iterations until 

iteration 43. For this final design the volume ratio is VIVo = 56%. According to the 

von Mises stress contours it could be argued that the final design presented is not a 

fully stressed design (as expected). The reason is that, due to current limitations 

dealing with the code and analysis data, much manual effort is involved in order to 
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progress along the iterations. Nevertheless, this solution gives a clear understanding 

about the structure evolving towards the optimum. 
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Figure 8.23 : V on Mises stress contour plots. Isometric View 
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Figure 8.24: V on Mises stress contour plots. Lateral View (XY) 

8.9.3 Beam under Vertical Load 11 

In the present example the beam under vertical load is optimised to minimise fu 

(equation (8 .21)). In this case, unlike example 8.9.2, there are no restrictions on the 

3D movement. The following isotropic material properties are assumed: E = 

210000N/mm2 and v = 0. Figure 8.25 depicts the beam (100 mm x 50 mm x 20 mm) 

fixed at the top and bottom surfaces (S 1, S2) on the plane Y = 0. A vertical load of 

100 N is applied on the surface (S3) situated in the middle of the plane Y =50. 

Initially 319 quadratic elements type Q3 _ 8 are used. The initial element mesh 

depicted in figure 8.27 (a) consists of 319 elements and 1560 nodes. The automesh 

parameters are set to 6 mm for the minimum size and 8 mm for the maximum, 

respectively. 

The objective function evolution is plotted in figure 8.26. After 6 iterations the 

geometry is redefined in the so-called restart step (see figure 8.26 at iteration 5). The 

new geometry at this stage, shown in figure 8.27 (b), is discretised with 314 elements 

and 1590 nodes. As the process evolves care must be taken to ensure convergence of 

the results . At iteration 17 since the error estimators indicated possible inaccuracy 

(see figure 8.26) the convergence is checked by refining the mesh (automesh = 4, 5). 

The change between the results is greater than 1%-5% showing evidence to suggest 

that the coarse model has not converged. Therefore, at this stage the automesh 

parameters are changed from 6, 8 to 4, 5. The new model has now 716 elements and 
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3354 nodes (see figure 8.27 (c)). A new restart step is carried out for reasons of 

geometric distortion at iteration 21, defined as restart2 and geometrically depicted in 

figure 8.27 (d). The statistics in this case are 638 elements and 2988 nodes. The 

process evolves showing the minimum at iteration 44 using a model of 677 elements 

and 3116 nodes; as shown in figure 8.26 further iterations do not improve the 

objective function. 

(a) (b) 

Figure 8.25: Beam problem. (a) Problem definition. (b) Surface definition 
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Figure 8.26: Objective function evolution 
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(a) (b) (c) (d) (e) 

Figure 8.27: Boundary element mesh. (a) initial design, (b) restart, (c) finer mesh, 

(d) restart2, (e) optimum design 

There is a total number of 162 control points defining the surfaces. These control 

points, initially equally distributed, are moved according to the algorithm, to achieve 

a more efficient profile. Control points situated inside of the control point net are 

influenced by the movement of the control points on the boundaries. Hence, their 

movement follows equation (8.19) using the parameter k = 0.5. The number of 

control points is not automatically changed by the algorithm but manually in the 

restart procedures. Therefore, every restart implies a reduction or addition, 

depending on the geometric requirements, of control points. Areas with high 

curvature either increase or maintain their control point definition whereas large flat 

regions would have retained or even decreased the number of control points. 

The RR is set up initially to 0.05 and remains constant until the first mesh refinement 

at iteration 17. After that, RR increases steadily to reach the value of 0.35 when the 

optimum is reached (iteration 44). To control the convergence the factor RF is also 

considered. Initially, this factor is 1.0. Nevertheless, throughout the process the von 

Mises stress levels in the overall structure increase showing that the structure is 

evolving towards a fully stressed design optimum. Therefore, the process is slowed 

down according to the stress levels by setting RF = 0.5 from iteration 35 when fine 

tuning is needed near the optimum. 
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Figure 8.28: V on Mises stress contour plots. (a) Isometric View, (b) Lateral View 

(XY) 

Figure 8.28 depicts the von Mises stress contour plots at different stages of the 

process. The optimum design is obtained after 45 iterations for a volume ratio VIVo = 

0.408, i.e. :::::; 60% reduction from the initial design. At iteration 44 the value of the 

von Mises stress for most of the material is between 40% and 50% of the maximum 

von Mises stress within the structure. 
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8.9.4 Beam under Bending 11 

A similar problem to the example in section 8.9.1 is considered changing the patch 

definition for the same isotropic material properties (Young's modulus E = 

210000N/mm2 and Poisson's ratio v = 0.3). The dimensions of the beam in this case 

are 100 mm x 50 mm x 30 mm. The problem is defined in figure 8.29 (a), the initial 

geometry is divided into 10 surfaces. Surface S1 is fixed (ux = uy = Uz = 0) and 

surface S2 has a horizontal load applied of 1000 N. These surfaces are defined as 

non-design domain, i.e. are fixed throughout the process. The rest of the surfaces are 

considered design domain and therefore free to change. The optimisation follows a 

stress driven criterion which aims to minimise the function/= UV (equation (8.21)). 

Sl 

~S4 
X y 

(a) (b) 

Figure 8.29: (a) Problem definition. (b) Initial boundary element mesh 

The initial number of quadratic boundary elements is 237 (see figure 8.29 (b))). At 

each iteration, a new remeshing is done and the elements are distributed according to 

the automesh parameters initially set. However, as the optimisation process evolves 

the surfaces change and therefore, refinements of the mesh are needed to improve the 

accuracy of the analysis results. By modifying the automesh parameters 

appropriately a finer mesh is set from iteration 27 (see figure 8.30)). The new 

boundary element mesh consists of 504 elements. 
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Figure 8.30: Evolution of the objective function 

Figure 8.30 shows the evolution of the objective function. Initially a RR of 0.05 is 

set; this ratio is increased gradually by the ERR (ERR= 0.01) when a steady state is 

reached (equation 8.3). In figure 8.30 every RR stage is shown delimited by dotted 

lines. At the end of the process RR has increased to 0.11. The AR is set constant (ERA 

= 0) and equal to 0.90. 

From figure 8.30 it can be seen that restarts are performed at iteration 5 (Restart 1) 

and iteration 21 (Restart 2). Using the restart feature, the surfaces of the model are 

redefined to avoid meshing problems caused by excessive distortion of a surface. 

The optimisation process would continue further for this new geometry. Figure 8.31 

shows a wireframe view of the geometry for the different critical steps mentioned in 

figure 8.30. The changes introduced at Restart 1 are shown between figures 8.31 (b) 

and 8.31 (c). The number of surfaces is maintained but their definition is slightly 

modified due to some very distorted elements. This element problem cannot be 

improved even by refining the mesh and therefore, only by doing a restart can we 

ensure the reliability of the analysis results. Similarly, at iteration 20 a new restart is 

performed but this time the number of surfaces is decreased (See fig. 8.31 (d) and 

8.31 (e)). Surfaces which show almost a cl continuity are merged and a new surface 

is defined by the control points of the two former surfaces. 
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(a) iteration 0 (b) iteration 4 (c) iteration 5 (Restart) 

(d) iteration 20 (e) iteration 21 (Restart2) (t) iteration 42 (final design) 

Figure 8.31: Critical steps of the optimisation process 

(a) (b) 

(c) 

Figure 8.32: Optimum design 

Following the evolution of the objective function, the feasible minimum (for shape 

optimisation) is found at iteration 42, since further iterations result in a very distorted 
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shape. Figure 8.32 displays the optimum feasible design obtained at iteration 42. The 

display of the elements makes it evident (unlike the wireframe view in figure 8.31) 

that the section is undergoing a significant amount of thinning in two locations, as 

might be expected from the 2D study of the related plane stress case. This is the 

optimum for shape optimisation; topology optimisation would be accomplished 

doing a new redefinition of the surfaces. Looking at the lateral view in figure 8.32 

(c) there are some areas from the bottom and top surfaces that become closer, 

therefore surfaces between these areas would be potential new cavities. 

According to the von Mises stress situation, only removal of material is performed. 

No addition of material is carried out since the highest von Mises stresses appear in 

the non-design areas. At the end of the process there has been a 38% reduction from 

the initial volume (Vo = 150000 mm\ Figure 8.33 shows the von Mises stress 

contour plots at different iterations of the process. 

iteration 0 iteration 5 

iteration 10 iteration 15 
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iteration 20 iteration 25 

iteration 30 iteration 35 

iteration 40 iteration 42 

Figure 8.33 : V on Mises stress contour plots every 5 iterations 
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8.9.4.1 Topology Optimisation Step 

The topology changes are performed by redefining the shapes as appropriate and 

therefore using the restart scheme. From figure 8.32 (b) the potential areas to be 

redefined are identified. Surfaces S3 and S4 present different areas of curvature and 

moreover, in the areas of high curvature these surfaces get very close. 

10 

10 

100 50 100 so 

(a) S3 (b) S4 

Figure 8.34: Shape contours. (a) Surface S3. (b) Surface S4 

1 00r--~~,, ~==,, ,-;-. ~---, , .. 

(a) (b) 

Figure 8.35: Shape contours. (a) S3. (b) S4 
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In order to compute and therefore identify in more detail these areas, the curvature 

contours of both surfaces S3 and S4 are displayed in figures 8.34 and 8.35. From 

figure 8.34 the two peaks can be clearly observed in both surfaces. Figure 8.34 (a) 

represents the surface S3 whereas figure 8.34 (b) refers to S4. It happens that for 

both surfaces the convex/concave areas occur at similar coordinates (x, y) as depicted 

in the latter figure 8.35. Thus, joining the iso-lines of maximum curvature in figure 

8.35 two cylindrical cavities are created in the solid. It should be noted that the 

asymmetric solution of this symmetric problem is due to the automesh, since it 

produces non symmetric meshes which later influence on the movement of the 

control points. 

Figure 8.36 shows the evolution of the whole process including topology 

optimisation. Topology changes are performed manually at Restart 3 (iteration 43), 

Restart 4 (iteration 56) and Restart 5 (iteration 59). These restart procedures create 

new cavities in the structure whenever the algorithm shows a inner low stressed area 

in facing surfaces at a small distance. Inner low stressed areas must satisfy equation 

(8.1). The minimum distance d111 ;11 is taken as a percentage of the minimum 

dimension of the problem, in this case d111 ;11 = 10 mm; :::::33% of 30 mm. It is observed 

in figure 8.36 that the effect of performing a topology change considerably 

increments the objective function. As expected, the insertion of new cavities 

significantly increases the strain energy of the structure. 
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Figure 8.36: Evolution of the objective function 
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iteration 43 (Restart 3) iteration 55 

iteration 56 (Restart 4) iteration 58 

iteration 59 (Restart 5) iteration 66 

Figure 8.37: V on Mises stress contour plots 

It is found that after the Restart 3 the objective function decreases until iteration 55 

where it shows a minimum. At this stage, since the two premises of inner low 

stressed area and mm1mum distance are satisfied, new topology changes are 

implemented. Figure 8.37 shows the von Mises stress at the critical steps of the 

process. Restart 4 performs changes enlarging the cavities and at Restart 5 two new 
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cavities are created. From the related 2D plane stress case it should be expected that 
these changes would increase the performance of the structure. However, the 
evolution of the objective function shows that from iteration 55 further topology 
changes do not contribute to reach a minimum. By looking at the last iterations of 
the process, for example iteration 66 (figure 8.37), we can observe the presence of 
very low material near the fixed region (Sl) which is not removed due to design 
constraints. This situation shows the clear dependence of the final design on the 
constraints imposed. Further investigation should consider the possibility of 
redefining such areas which do not contribute to increase the performance of the 
structure in spite of being constrained. 

8.10 Discussion and Conclusions 

In this chapter an algorithm for 3D structural optimisation has been presented. This 
algorithm is an extension from the gradientless 2D algorithm. Similarly, the 
structural analysis is boundary element-based and the geometry is parameterised 
with NURBS. Control points, which define the NURBS, migrate evolving to the 
optimum design. New features are inserted to control the geometry. Corners and 
shape edges are specially handled by using the smoothing and the corner effect 
algorithms, both implemented to ensure smoothness on the surfaces. Moreover, the 
perpendicular movement of the control points inside the control polyhedron is also 
influenced by the movement of the control points on the boundaries of this 
polyhedron. 

The complexity of dealing with surfaces has restricted the automatic geometry 
control and in this initial study some parts of the algorithm have been implemented 
as a manual procedure. A defined algorithm has been strictly adhered to in all 
manual modifications to the model. Restarts are inserted to perform addition and 
removal of control points as well as topology changes. These restarts imply 
redefinition of the surfaces. Computational applications of the algorithm have been 
presented proving the algorithm for shape optimisation and showing preliminary 
results for topology optimisation. 
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9 
DISCUSSION 

9.1 Overview 

An alternative approach to the evolutionary structural optimisation method (ESO) is 
presented. This approach uses the boundary element method (BEM) to carry out the 
structural analysis and nonuniform rational B-splines (NURBS) to define the 
geometry of the component. Since the shape of these B-splines is governed by a set 
of control points, the locations of these control points are used as design variables. 
The algorithm is not only applied to 2D structural optimisation but also extended to 
3D structural optimisation problems. 

The algorithm is implemented into a computer program using Visual C++. At the 
end of this work, about 15000 lines of code have been written, 10000 lines in the 2D 
algorithm and roughly 5000 lines in the 3D one. This code comprises the 
optimisation algorithms and the data processing algorithms dealing with both the 
structural analysis results and geometry definition. The algorithm in 2D is fully 
integrated within the in-house analysis software Concept Analyst. However, in 3D 
this software was not mature enough and the commercial program BEASY was used. 
In this latter case, the communication between software and algorithm involves extra 
coding and also special treatment of the analysis results and geometry. 
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9.2 Evaluation of the Algorithm and Results 

9.2.1 Main Features of the Algorithm 

The first chapters (chapters 1, 2, 3 and 4) of this thesis present a theoretical 
explanation of the main features on which the developed algorithm is based. A 
background to the field of structural optimisation is presented and the different 
optirnisation methods are discussed. The state of structural optimisation is reviewed 
giving special mention to the evolutionary structural method (ESO). ESO is critically 
discussed with a detailed description of the method and its importance in the field of 
structural optimisation. 

The boundary representation is explained introducing the nonuniform rational and 
nonrational B-splines. The mathematical definition of these parametric curves and 
surfaces is presented and graphically pictured with explanatory examples produced 
using the boundary representation code. The shape of the nonuniform rational B­
spline (NURBS) curves and surfaces is defined by sets of control points and weights 
which are used as design variables. Therefore, complex geometries can be described 
in a very compact way using a small set of design variables as it has already been 
presented in the literature for example by Braibant and Fleury (1984). NURBS 
present the attractive feature of providing flexibility to describe a large variety of 
shapes by manipulating these control points and weights. Also of interest is that the 
number of design variables compared to FE-based ESO, which uses elements of the 
finite element mesh, is decreased. 

The boundary element method (BEM), used to carry out the structural analysis, is 
detailed for elastostatic problems. The most important advantages of the BEM 
concern to mesh generation and manipulation of nodes and boundary elements. 
These are shown to be of great importance to this work in order to maintain 
smoothness along the boundaries and fast solution times. Moreover, the applicability 
of the BEM seems to be superior to the FEM in problems where the boundary 
stresses are important. This feature is not only important from a structural analysis 
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point of view but also from a structural optimisation perspective when design 
sensitivity calculations are involved (Kane (1986)). 

9.2.2 Shape Optimisation 

Shape optimisation problems are successfully solved using this new ESO approach. 
Numerical applications demonstrate the ability of the developed method to produce 
optimal shapes based on a stress-based criterion, generally von Mises stress. The 
method identifies and removes material that does not contribute to increase the 
performance of the structure from low stressed areas as well as adding material to 
high stressed and critical regions. Material removal and addition is performed by 
migrating sets of control points in the perpendicular direction to the boundary. 

Migrating in an appropriate way the control points defining the NURBS generally, 
decreases the maximum von Mises stress and increases the minimum von Mises 
stress, although of course this stress description always passes through zero in 
regions of transition between tensile and compressive stress states on free boundaries 
in plane stress problems. As a result a more homogeneous von Mises stress 
distribution is obtained over the boundary of the component. In this sense, localised 
stress peaks are avoided in the structure and eventually a uniform stress state is 
reached at the surface in a similar way to the biological growth method (Mattheck 
and Burkhardt (1990)). 

Smooth boundaries without artificial stress concentrations are obtained by working 
directly with the control points defining the geometry. Geometry control is enhanced 
by inserting or removing these control points automatically. Since a remeshing is 
performed for each structural analysis, and therefore for each iteration, there are no 
mesh distortion problems due to boundary movements. This remeshing process is 
only required over the boundary and therefore it is shown to be simple and fast. The 
integration of the optimisation algorithm together with the structural analysis shows 
a good computational performance of the algorithm and fast solution times. 
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9.2.3 Topology Optimisation 

Topology optimisation is accomplished allowing the insertion of internal cavities in 
the inner low stressed areas of the structure, which are identified from the internal 
points. These cavities are also described by NURBS curves and so they have similar 
behaviour to the outside boundary. Therefore, both outside and inside are optimised 
at the same time. During the removal and addition process, the movement of the 
control points defining the cavities is either perpendicular to the boundary of the 
cavity or parallel to the closest outer boundary. Thus, it has been presented that if the 
outer boundary is closer than a certain minimum distance then the movement of the 
cavity is mainly influenced by the position of this closest boundary. Results in 
section 6.10 have shown that this movement produces areas where both boundaries 
(outer and inner cavity) remain parallel approaching to truss-like structures and thus, 
reproducing analytical optimum results. 

Small cavities merge to form bigger cavities as a natural evolution of the topology of 
the structure. These cavities can merge to other cavities or to the closest outer 
boundary. Indeed, it appears the algorithm tends to evolve towards optima having 
large cavities by first creating small cavities and then merging them together or with 
the external boundary. It is unusual that a large cavity evolves simply by growth of a 
small cavity. 

The effectiveness of the method in generating the optimum topologies as well as 
rapid solution times is shown by applying the 2D algorithm to benchmark problems. 
In the case of problems with an initial symmetry, almost symmetric shapes are 
obtained, in spite of the totally random position of the internal points and no 
symmetry being forced throughout the process. Results show that problems of 
checkerboard patters and jagged edges which are present in FE-based optimisation 
methods, as reported in chapter 2, are overcome with this approach. 

In two-dimensional problems, multiple load cases are investigated using the logical 
AND/OR scheme also used in FE-ESO (Li et al. (1999)). The simple concept of this 
scheme is that material is removed from the structure if it is low stressed in all load 
cases. In contrast, material is added if it is high stressed in any of the load cases 
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considered. As expected, it is found that the final solution under multiple load cases 
is not necessarily a fully stressed design. Nevertheless, the study carried out has not 
considered other schemes such as a weighted average. This scheme makes use of 
weights to reflect the importance of each load case and thus, it considers a broader 
design space. Further research on this issue would complement and enhance the 
results obtained. 

Numerical tests have shown that the solution can be mesh dependent. This 
dependency can be overcome by controlling the number of cavities that are allowed 
to be created. The initial distribution of control points also determines the final 
topology. It can be thought that increasing the number of control points increases the 
fidelity of the solution. Nevertheless this is not the case. On the contrary, it induces 
the creation of spikes and oscillations on the shape that slow the convergence and 
interfere with the ability of this algorithm to reach a good optimum. The explanation 
for this relates to the use of NURBS since changes in their definition are performed 
locally and these changes are related to the degree of the curve which in turn 
depends on the number of control points. A rule of thumb is presented for effective 
control point spacing for general problems. 

9.2.4 Multi-Criteria Optimisation 

In a two-dimensional context, multi-criteria optimisation problems are investigated. 
In such problems the different objective functions are in conflict. Generally, none of 
the possible solutions simultaneously fulfils all the objectives. The solution of this 
problem is obtained by transforming the multiple criteria problem into a single 
criterion one using the weighed sum method (WS). The Pareto concept produces the 
set of weights used in this weighted average scheme. This Pareto front is used to 
gain knowledge about trade-offs between objectives and also allows the choice of the 
most desirable solution. 

Design sensitivity calculations are performed to explore the effect that changes in the 
design variables produce on the objective functions. Thus, sensitivity numbers are 
calculated for each design variable using finite difference (FD) derivatives. The FD 
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method is simple to apply and fast to obtain the derivatives but it is dependent on the 
step-size used. Therefore, the step-size is appropriately chosen to ensure the 
accuracy of the results. Moreover, in practice, the distance to move the control points 
is set to be equal (or related) to this step-size. The computing time required is 
successfully reduced by using BEM reanalysis to perform the sensitivity 
calculations. This reanalysis is based on the non-perturbed solution rather than full 
analyses for each perturbed state. 

The technique for the example considered is shown to be efficient obtaining an 
evenly spread set of Pareto optimal points for an even distribution of weights. 
However, this multi-criteria algorithm is only in the early steps and further research 
using different objectives would show that this is not always the case (Das and 
Dennis (1997)). 

The results obtained for shape and topology optimisation in 2D show good 
agreement with the results presented by FE-based ESO methods (Xie and Steven 
(1997)). Benchmark problems are reproduced successfully proving the effectiveness 
of the method for 2D structural optimisation problems. The use of boundary 
elements produces fast, simple and reliable meshing, as concluded in chapter 4. This 
approach inherits these BE features and consequently, shows the advantage of fast 
solutions compared to FE-based methods. 

However, the use of boundary elements has restricted the applicability of the 
algorithm for example to non-linear problems. In such cases the reliability of 
boundary elements is limited which is a clear disadvantage over the FE. Thus, FE­
based algorithms can be applicable to a larger range of physical situations. An 
alternative to this problem should be the application of this boundary-ESO algorithm 
based on FE combined to the boundary representation. In this context, Schramm and 
Pilkey (1993) applied NURBS coupled with FE to sensitivity analysis-based shape 
optimisation. Alternatively, strategies presented in chapter 4 such as coupling FE-BE 
or using for example the dual reciprocity boundary element method (DRBEM) 
should be further studied. In the literature, Burzynscki and Orantek (2002) have 
implemented the FE and BE with GAs to optimise structures under mechanical, 
thermo-mechanical and dynamical loading. The implementation of such an 
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alternative structural analysis method would bring the possibility of considering 
other structural conditions such as frequency optimisation and thermal problems. As 
a result of the consideration of further conditions the multi-criteria algorithm would 
be applicable to a much broader range of objectives. 

9.2.5 3D Problems 

The gradientless algorithm that has proved successful for two-dimensional problems 
is extended to three-dimensional optimisation problems. Similarly, the structural 
analysis is boundary element-based but the commercial program BEASY is used. 
The optimisation algorithm is no longer fully integrated to the structural analysis and 
manual intervention is required to deal with the geometric models and data produced 
by BEASY. 

The geometry is parameterised with NURBS surfaces and curves. The 
implementation of surfaces is a new aspect compared to the 2D optimisation. These 
surfaces are defined by control point nets and therefore these control points migrate 
evolving to the optimum design. 

New features are considered in order to control the geometry. Corners and shape 
edges are especially handled by using the smoothing algorithm and the corner effect 
algorithm, both of which are implemented to ensure smoothness on the surfaces. 
Moreover, the perpendicular movement of the control points inside the control point 
nets is also influenced by the movement of the control points on the boundaries of 
this control point net. 

At this state of the research, the complexity of dealing with surfaces has restricted 
the automatic geometry control to become a manual process. Restart procedures 
redefining the surfaces are inserted to perform addition and removal of control points 
as well as topology changes. Computational applications of the algorithm prove the 
algorithm for shape optimisation and show preliminary results for topology 
optimisation. Nevertheless, these results are still not comparable to the equivalent 
FE-ESO algorithms (Young et al. (1999)). In 3D problems, the FE-ESO algorithm is 
a direct application of the 2D one and, therefore based on the same concept of slow 
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removal and addition of elements according to certain criteria. In this case, the 3D 
algorithm is not a straightforward extension of the 2D algorithm. The use of NURBS 
to define the geometry brings difficulties involved with the limitation of the 
boundary element software package dealing with these types of surfaces. Moreover, 
the manual communication between the software and the optimisation code reduces 
the effectiveness of the overall process. It can be concluded that further research is 
needed to be able to develop an algorithm that in 3D produces results analogous to 
the FE-based ones. 
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10 
CONCLUSIONS AND IMPLICATIONS 

FOR FUTURE RESEARCH 

10.1 Overview 

In this thesis the development of a computational algorithm to be used as a tool for 

shape and topology optimisation has been presented. In each chapter a detailed 
explanation of the algorithm and its results is given as well as the corresponding 

discussion and conclusions at the end of the chapter. This final chapter summarises 

the main points of these conclusions and gives some implications for further work. 

10.2 Achievements 

The achievements of this thesis can be stated as follows 

• The developed structural optimisation approach is based on the evolutionary 

structural optimisation method (ESO). 

• The boundary element method (BEM) is used for the structural analysis. In 2D 

structural optimisation the in-house software Concept Analyst is fully 

integrated with the optimisation algorithm. In 3D problems this is not the case 
and the commercial program BEASY is used. 
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• Nonuniform rational B-spline (NURBS) curves (2D) and surfaces (3D) are 
implemented to describe the changeable geometry. 

• The coordinates of the control points defining the NURBS curves and surfaces 
are the design variables. 

• The structural optimisation algorithm is successfully applied for shape 
optimisation. 

• As the classical ESO basic concept, the optimal shapes evolved following a 
gradientless method or stress-based criterion, generally von Mises stress. 

• The method identifies and removes material from low stressed regions as well 
as adds material to high stressed areas by migrating sets of control points. 

• Smooth boundaries are obtained by working directly with the control points 
defining the geometry. 

• The remesh process is performed every iteration and it is only required over 
the boundary. This provides robustness to the process since it is straight 
forward to generate a reliable boundary mesh. 

• Practical applications are presented to optimise the shape of holes in plates 
under in plane loading and fillets, considering different objectives such as 
stress levelling, weight reduction and minimisation of the stress concentration 
factor. 

• For one load case and strain energy minimisation fully stressed designs are 
obtained. 

• By integrating the structural analysis and the structural optimisation algorithm 
good performance and fast solution times are achieved. 

• Topology changes are performed creating holes in the inner low stressed areas 
of the structure. 
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• These holes are also described by NURBS curves and so they have similar 

behaviour to the outside boundary. This appears to be the natural method of 

evolution of optima containing large cavities. 

• Holes merge to other holes or to the closer boundary as a natural evolution of 

the topology of the structure. 

• Examples are reproduced showing the effectiveness of the method generating 

optimum topologies for fast solution times. 

• Multiple load cases are investigated using the logical AND/OR scheme. The 

results show that the final solution under multiple load cases is not necessarily 

a fully stressed design. 

• Numerical tests show the dependency of the solution on the boundary mesh 

and the initial distribution of control points. A rule of thumb is presented for 

effective control point spacing. 

• Multi-criteria optimisation problems are investigated. 

• The solution of the multi-criteria problem is obtained transforming the multiple 

objective functions into a single objective function using the weighted sum 

method (WS). 

• Trade-offs between objectives are considered using the Pareto concept. 

• Sensitivity numbers are calculated to assess the effect of changes in the design 

variables on the objective functions. These sensitivity calculations are 

performed using finite difference (FD) derivatives. 

• A modified version of a reanalysis scheme present in Concept Analyst is used 

to carry out the FD calculations and considerably reduces the computing time 
for each iteration. 
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• The technique applied to a connecting rod example shows it to be efficient at 

obtaining an even spread set of Pareto optimal points for an even distribution 

of weights. 

• The gradientless algorithm for 2D structural optimisation is extended to 3D 

problems. 

• In 3D, corners and shape edges are especially handled by using a smoothing 

algorithm and a corner effect algorithm to ensure smoothness on the surfaces. 

• The perpendicular movement of the control points inside the control point nets 

is also influenced by the movement of the control points on the boundaries of 

this control point net. An algorithm mapping the surfaces of the geometry is 

developed for this purpose. 

• Restart procedures redefining the surfaces perform addition and removal of 

control points as well as topology changes. 

• Computational applications of the algorithm for three-dimensional problems 

prove the algorithm for shape optimisation and show preliminary results for 

topology optimisation. 

10.3 Conclusions 

The developed algorithm, which is based on the evolutionary structural optimisation 

(ESO) method, is an effective tool for shape and topology optimisation. The 

implementation of the boundary element method (BEM) for the elastostatic 

structural analysis ensures fast and reliable meshes every iteration. As a feature of 

BEM, this mesh is only required over the boundary. In 2D structural optimisation the 

in-house software Concept Analyst is fully integrated within the optimisation 

algorithm which allows savings in computational time and improves the 

performance. 
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Moreover, boundary representation is used in terms of nonuniform rational B-splines 
(NURBS). The use of the locations of the control points defining these NURBS as 
design variables allows a direct manipulation of the geometry and ensures smooth 
boundaries. 

Multi-criteria problems can be studied by transforming them into a single criterion 
problem using the weighted sum method (WS) and trade-offs between the different 
criteria. These trade-offs are performed using the Pareto concept. When applied to 
multi-criteria problems, this approach considers the use of sensitivity numbers to 
assess the effect on the objective functions of changes in the design variables. The 
calculation of these sensitivity numbers using finite differences is reduced 
considerably by implementing reanalysis schemes. 

The extension of the gradientless algorithm from 2D to 3D problems is not 
straightforward since care must be taken dealing with the NURBS surfaces. More 
importantly, the optimisation algorithm is no longer fully integrated within the 
structural analysis, which is carried out using the commercial program BEASY. For 
this reason, the advantages in performance and computing time found in 2D are not 
fully achieved yet. However, a working optimisation algorithm is successfully 
implemented as shown in the selected examples. 

10.4 Implications for Future Research 

The approach for structural optimisation has been developed showing good results. 
The initial aims of this PhD have been accomplished however, by no means has the 
research been completed. While working on this topic new paths and implications 
for future research have arisen. 

Future work might involve expanding the methods to include other objectives such 
as natural frequency and buckling as an extension of the multi-criteria and 
multidisciplinary structural optimisation and towards robust designs. 

248 



Conclusions and Implications for Future Research 

The results for three-dimensional structural optimisation are preliminary. Further 
lines of investigation will incorporate in-house software or alternatively, will 
enhance the communication between the commercial boundary element software and 
the structural optimisation algorithm. 

The use of trim lines in 3D has been restricted purely to geometry definition however 
future research will include these lines as part of the optimisation process and fully 
independent of the design variables. 

There is considerable justification also for research into the surface management, i.e. 
the NURBS surface patching, re-patching algorithms that might be automated 
(possibly using trimmed surfaces) and the association of the surface description to 
the element meshing. Work on identification of appropriate mesh density and control 
point spacing is justified, particularly in 3D modelling. 

The restart procedures performed manually will be implemented for the automatic 
insertion and deletion of holes as well as the topology changes. This improvement 
will clearly increase the efficiency of the algorithm in 3D generating further savings 
in computational effort. 
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