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Abstract 

 

Predicted climate change represents a major challenge to conservation over the 21st 

Century and beyond. Currently, conservation is largely reliant upon static Protected 

Areas (PAs) to conserve uncommon species. However, evidence from past climate 

change events suggests that species distributions are dynamic and alter in relation to 

species’ bioclimate envelopes. Adapting PA networks to cope with projected changes 

in species distributions is a vital role of conservation biology. 

 

The sub-Saharan Africa Important Bird Area (IBA) network is designed to protect 

sites containing significant proportions of the populations of congregatory species, 

species which have restricted ranges or species of global conservation concern 

found on the continent. Here I explore ways in which the IBA network can be adapted 

to the impacts of climate change. Data of present species ranges and simulations of 

future range shifts for 1608 bird species for the time periods 2011-2040, 2041-2070, 

2071-2100 were used. Initially, using a reserve selection algorithm (RSA), I created 

optimal PA networks of one- and quarter-degree cells for present and future time 

periods. I then created near-optimal reserve networks using IBAs alone, or permitting 

the selection of additional land-areas. Finally, I incorporated economic opportunity 

costs of land into the RSAs to assess how to adapt the network to climate change in 

the most economical way. 

 

The results showed that while some areas of Africa will undergo a large reduction in 

their importance to a complementarity-based PA network (such as West Africa), 

other areas will increase in importance (East and Southern Africa). Selected PAs 

often coincided with areas of currently recognised importance to conservation in both 

present and future projected scenarios. However, the selection of sites in these areas 

generally increased over the century. The number of additional sites needed to 

complement the IBA network and reach conservation targets also increased over 

time. The areas of increased importance were, on the whole, areas of increased 

economic opportunity costs to conservation and therefore the acquisition costs of 

PAs selected in the future may be greater than those selected for the present. 
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Chapter 1: Predicting the Effects of Climate Change on 
Species Distributions and Creating Reserve Networks: 
A Review of Tools and Methods 

Introduction 
 

Global climate change is predicted to be an important factor in determining the 

future distributions of species across the planet (Parmesan & Yohe 2003). 

During the 20th Century, global average surface temperature increased by 

approximately 0.74 ± 0.18oC (Trenberth et al. 2007), which evidence suggests 

has already started to disrupt species’ former ecological patterns (Hickling et 

al. 2006; McCarty 2001; Root et al. 2003; Walther et al. 2002). Past global 

climate change events, such as in the late Pleistocene, have been cited as 

possible causes of extinction during these time periods (Graham & Grimm 

1990), and when coupled with recent anthropogenic land-use transformation, 

climate change represents a serious threat to global biodiversity (Fischlin et al. 

2007; Hill et al. 1999; Jetz et al. 2007).  

 

The Important Bird Area (IBA) programme is a BirdLife International 

Partnership initiative to select and conserve key sites for bird conservation 

around the world (Fishpool & Evans 2001). This study focuses on the IBA 

network of sub-Saharan Africa which covers around 7% of the continent, made 

up of 863 sites in 42 countries (Hole et al. 2009). The sites have been 

identified as critical for the conservation of bird species as habitat loss and 

degradation continually increase the chance of species extinction (Fishpool & 

Evans 2001), however, the IBA network is not designed to cope with the 

impacts of predicted climate change (Willis et al. 2009). Protected Area (PA) 

networks, such as IBAs, are designed under the false expectation of a stable 

climate and therefore the efficacies of such networks are likely to be affected 

by the impacts of climate change (Hannah et al. 2007). This thesis looks at 

how the sub-Saharan IBA network can be adapted to cope with the future 

threat of climate change. 
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This literature review aims to evaluate the methods used to forecast the effects 

of climate change on species distributions and the tools that can be used to 

design protected area networks that will mitigate the effects of climate change 

on species assemblages.  

 

Predicting the effects of climate change on species 
distributions 
 

Palaeoecological Studies 
In order to predict the responses of species to present-day and future climate 

change, it is useful to study the effects of past global climate change (Graham 

& Grimm 1990). Palaeobiogeographical records provide evidence for a wide 

range of responses that species have shown to past climate change events, 

including range shifts, morphological adaptation and evolution (Graham & 

Grimm 1990; MacDonald et al. 2008). Understanding why these observed 

responses occurred will provide an insight into how to mitigate the effects of 

climate change effectively (Hannah et al. 2002).  

 

Although this study focuses on the effects of species’ range shifts, it is 

important to note that other responses to climate change have been 

documented. Extensive research carried out on late-Quaternary populations of 

Neotoma (Woodrat spp.) in North America have shown strong correlations 

between climate and body size that closely follow Bergmann’s rule (Smith & 

Betancourt 2006). Furthermore, there is evidence that Neotoma has started to 

exhibit morphological changes relating to present-day climate change (Smith & 

Betancourt 2006), which is seen as the most basic process of adapting to a 

changing climate (MacDonald et al. 2008). Changes in the distributions of 

species populations due to climate change have also been detected in the 

palaeoecological records (Lyons 2003, 2005). It has been shown that in the 

past, species have shifted their ranges individualistically, leading to novel 

community-level interactions which are of particular interest to conservationists 

(Graham & Grimm 1990) as it means that predictions must be made for the 



 

3 
 

outcome of each individual species’ reaction to climate change, rather than 

looking at the community as a single reactionary entity (Graham et al. 1996). 

 

Barnosky et al. (2003) referred to morphological and distributional changes as 

the ‘first-order response’ of a population to climate change, the second-order 

being extinction, so it is important to understand which response species are 

currently undertaking, the rate at which they are likely to reach a response, 

and how to prevent extinction events related to climate change from occurring.  

 

Present-day observations  
In order to assess the current effects of climate change on species, 

observations of organisms must be compared with known climatic data 

(Harrington et al. 1999). Much literature has already noted changes in species’ 

phenology (Crick et al. 1997), geographic distribution, and species interactions 

(McCarty 2001; Walther et al. 2002), and the overall accumulation of evidence 

indicating biological consequences of climate change removes doubt created 

by the lack of controlled experiments and differences in the temporal scales 

among studies (Hughes 2000).  

 

A large proportion of the literature that focuses on the current effects of climate 

change on species’ distributions has been based on a narrow range of taxa 

(Hickling et al. 2006). Butterflies are a taxonomic group that have well 

documented records of populations, are sensitive to varying temperatures, are 

mobile, and therefore are often able to disperse to more climatically suitable 

locations. Parmesan et al. (1996) analysed changes in distributions of 

European non-migratory butterflies during the 20th Century. By analysing data 

for Northern and Southern boundary shifts as well as whole range shifts of a 

variety of different species, they were able to identify trends at a continental 

scale. The results showed that out of the 52 species analysed for northern 

boundary shifts, 65% showed northward expansions, with only 2% retracting 

southwards. Overall, only 4% of the 127 species analysed showed southward 

shifts of either their northern or southern boundaries.  
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Parmesan (1999) pointed out that studies that are restricted to local 

observations run the risk of being compromised by stochastic changes in 

population. This would therefore lead to expansion of range boundaries that 

were not primarily caused by climatic alterations. Parmesan (1996) carried out 

studies on Edith’s Checkerspot butterfly (Euphydryas editha) at a continental 

scale so that variation in individual populations would not be a factor in the 

overall results. E. editha has experienced a range of local extinctions in the 

southern range of its regional-scale metapopulations and a decrease in 

population extinctions in its northern and high altitude populations indicating an 

overall response to a changing climate. An important consideration of this 

study was whether anthropogenic land-use change was responsible for the 

observed population extinctions. Parmesan (1996) argued that observed 

trends could not be attributed to habitat degradation because similar rates of 

degradation were occurring at both latitudinal extremes of E. editha’s range. In 

Hickling et al.’s (2006) study of a wide range of taxanomic groups’ reactions to 

climate change, the effects of land-use change were not taken into account. 

83% of the species analysed showed northward shifts in distribution, which is 

notable given that the overall trend was apparently not significantly affected by 

land-use factors acting independently of climate change.  

 

Birds represent another well documented taxon group that allow analytical 

studies to be carried out over large areas. Thomas and Lennon (2007) 

analysed British bird breeding distributions and discovered an average shift of 

northern boundaries of 18.9  km over a 20 year period between 1968 and 

1991. The analysis took account of individual species population expansions 

and retractions, thereby removing the effects that they would have on range 

boundaries. As mentioned previously, the effects of anthropogenic land-use 

change are also important to consider when assessing the impacts of climate 

on species ranges. La Sorte and Thompson (2007) carried out an extensive 

analysis of North American bird species’ winter ranges over a 30 year period. 

The study calculated an average northern maximum latitude increase in range 

of 1.48  km/yr, but the authors were quick to point out that in some cases the 

observed shift were due to a combination of climate and anthropogenic factors, 

although the latter only accounted for a small proportion of northward trends.  
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Modelling future species distributions 
 
Gaining an insight into past and present-day impacts of climate change on 

species distributions can give us an idea of the potential impacts that climate 

change will have in the future (Graham & Grimm 1990). However, in order to 

apply observed trends to future scenarios, modelling techniques that obtain 

representations of species distributions under climate change must be used. 

One of the most widely used methods are Bioclimatic Envelope Models (BEM) 

(Poyry et al. 2008).  

 

Bioclimatic Envelope Models 
The bioclimatic envelope of a species represents a species’ current distribution 

in relation to the climate found within its realised niche (Pearson & Dawson 

2003). Knowledge of these envelopes should allow us to predict the 

distribution of a species from climate alone, and if applied to projected climate 

change scenarios, should allow simulation of potential species ranges in the 

future (Heikkinen et al. 2006). BEMs are statistical models that use the current 

distributions of a species to deduce its climatic requirements (Hijmans & 

Graham 2006), calculating individualistic responses of species, rather than 

community responses (Graham et al. 1996). There is a variety of different 

techniques used in bioclimatic modelling (Heikkinen et al. 2006). Below I will 

focus on those that are in regular use in climate change-related population 

distribution studies and then move attention onto potential alternatives to 

current approaches.  

 

BIOCLIM 
BIOCLIM is one of the most widely used BEMs in climate change ecology 

(Kadmon et al. 2003). It was originally developed to predict areas that maybe 

suitable for invasive species and therefore allow efficient allocation of 

preventative measures (Busby 1991). BIOCLIM estimates the value of the 

bioclimatic envelope of a species as a rectilinear volume, it assumes that a 

species can exist within the extremes of climate that a species is found 
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(Beaumont et al. 2007; Carpenter et al. 1993). BIOCLIM allows equal 

weighting for all sites where the species is present, this means that no 

considerations are made for outliers and therefore the technique is sensitive to 

such anomalies (Beaumont et al. 2007). Presence-only data are required for 

using in BIOCLIM (Heikkinen et al. 2006) which is important because most 

data sets for animal and plant distributions do not have absence data included 

(Margules & Sarkar 2007; Pearce & Boyce 2006).  

 

Generalised Additive Models (GAMS) 
A popular and increasingly used technique in BEMs are GAMs (Heikkinen et 

al. 2006; Thuiller 2003) which are regression based approaches (Elith et al. 

2006). They are related to general linear models (GLMs), but are non-

parametric, and are able to model ecological relationships accurately (Elith et 

al. 2006; Heikkinen et al. 2006). This is because the non-parametric smoothing 

functions which model non-linear trends linking species (dependent) and 

environmental (independent) data allow species response curves to fit 

environmental gradients more accurately (Elith et al. 2006; Hijmans & Graham 

2006; Lehmann et al. 2003). GLMs are parametric models and are unable to 

process complex response curves and as a result, they have been overtaken 

by GAMs in recent years (Elith et al. 2006; Thuiller 2003).    

 

Maximum Entropy Models 
Machine learning techniques are able to improve their performance over time, 

based on previous results, and have been applied to maximum entropy models 

(Elith et al. 2006). MAXENT is one such model that uses incomplete 

information sets to make predictions by using the distribution of maximum 

entropy to represent a target distribution, dependent on limiting factors that 

represent the incomplete information sets available (Phillips et al. 2006). 

Beneficial attributes of MAXENT include its flexibility, ongoing progress within 

the field of maximum entropy modelling and the requirement of presence-only 

data (Phillips et al. 2006). MAXENT has been shown to out-perform another 

popular modelling technique; genetic algorithm for rule-set prediction (GARP, 
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an artificial intelligence-based super-algorithm (Heikkinen et al. 2006)), proving 

the predictive power of the machine learning technique (Phillips et al. 2006).  

 

GARP 
GARP is a modelling technique that utilises a genetic algorithm that searches 

for non-random associations between presence-only data and climatic factors 

to design a niche-model for a species (Anderson et al. 2002; Heikkinen et al. 

2006). It uses several different techniques to define the ecological niche of a 

species by creating sets of rules that lead to the most accurate predictions 

(Meynard & Quinn 2007; Tsoar et al. 2007). The iterative approach leads to 

the most accurate outcome through evaluating the rule-selection process and 

then rejecting or accepting the final results (Gomez-Mendoza & Arriaga 2007). 

The use of several techniques and continuous evaluation of the rule-selection 

process should always lead to a more accurate result than any single method 

(Anderson et al. 2002; Stockwell & Peters 1999). GARP has been shown not 

to perform well with extreme data sample sizes, however an updated version, 

OM-GARP, has been created that can handle different sized data sets. This 

version has been shown to compete with newer modelling techniques such as 

MAXENT (Wisz et al. 2008), although Elith et al. (2006) recorded lower 

performance levels in OM-GARP.   

Artificial Neural Networks (ANNs) 
ANNs are computer systems that are based on both the physical and 

functional structure of the human brain (Pearson et al. 2002). They have not 

been used extensively to model the potential impacts of future climate change 

on species, but with models such as SPECIES (a Spatial Evaluation of Climate 

Impact on the Envelope of Species) now available, they are likely to become 

more popular because of their powerful rule-based modelling techniques 

(Heikkinen et al. 2006) and their ability to deal with ‘noisy’ data (Pearson et al. 

2002). ANNs have the disadvantage that they require large quantities of data 

to prepare and validate the network and are unable to initially identify the 

environmental factors that are affecting species distributions, making them 

impractical for many studies (Heikkinen et al. 2006; Pearson et al. 2002). 
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Climate Response Surfaces (CRSs) 
CRSs use gridded presence-absence species data and climate data of the 

same scale to create a response surface, which is a representation of the 

areas occupied by a species in multidimensional climate space (Huntley et al. 

1995). The response surfaces are fitted using locally weighted regression, 

using several bioclimatic variables such, as mean temperature of the warmest 

and coldest months (Hole et al. 2009; Huntley et al. 2008), as predictor 

variables. CRSs therefore make no assumptions over the form of the 

relationship between species’ probability of occurrence and any of the 

bioclimatic variables (Huntley et al. 2006). Potential future distributions can be 

simulated by applying the surfaces to different climate scenarios, calculating 

the probability of occurrence of a species in each cell and then applying a 

threshold to convert the probabilities to presence-absence data. CRSs have 

been shown to perform better than rival modelling techniques such as GAMs 

(Hole et al. 2009) and GLMs (Doswald et al. 2009) and benefit from user-

defined bioclimate variables and the ability to mimic interactions that can occur 

between bioclimatic variables (Huntley et al. 2006; Huntley et al. 2008). 

 

Alternatives to Bioclimatic Envelope Models 
Unlike BEMs, physiological models attempt to model a species’ fundamental 

niche rather than its realised niche (Morin & Lechowicz 2008), this is seen as 

an advantage because it removes the influence of biotic interactions from the 

model so that the envelope created will fully represent the possible distribution 

of a species in the future (Pearson & Dawson 2003). Correlative models, like 

BEMs, incorporate the influence of biotic interactions found within species 

communities into predictions, which means that outcomes from such models 

rely on these same interactions being present in future communities disturbed 

by a changed climate (Morin & Lechowicz 2008), which as previously 

mentioned, has not been the case in the past (Graham & Grimm 1990; 

Graham et al. 1996). Physiologically-based models are not reliant on this, but 

depict future distributions of species throughout the fundamental niche, which 

is equally as unlikely as the unchanged continuation of a realised niche into 

the future, because inter-species interactions often prevent fundamental 

niches from being filled by a species (Pearson & Dawson 2003). A further 
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consideration is that heterogeneous variation found within species makes it 

difficult to group a species into a single level of climatic tolerance when 

considering species that exist in widely scattered subpopulations. Coupled with 

this is the possibility of evolutionary changes that will make individuals better 

adapted to new climatic conditions, and makes the stability of the fundamental 

niche unlikely in the future (Pearson & Dawson 2003).  

 

Despite criticism of BEMs, they are much more widely used than physiological 

models. This is because they are not reliant on detailed data on the climatic 

tolerances of species (Heikkinen et al. 2006), meaning that they can be 

applied to a wide range of species and therefore be relevant to broad spatial 

scales and ecological niches (Morin & Lechowicz 2008), at which BEMs are 

more accurate (Pearson & Dawson 2003). At finer resolutions, the accuracy of 

BEMs will decrease because the relative importance of other variables start to 

become more important (Luoto et al. 2007). There are several variables that 

have been discussed in the literature which are likely to cause inaccuracy 

within species-climate response surfaces. Poyry et al. (2008) showed that 

traits of individual species can have negative effects on the performance of 

envelope modelling, with ability to disperse causing a particularly notable effect 

on modelling accuracy. Kadmon et al. (2003) showed that the extent of a 

species’ distribution affected the accuracy of a climatic envelope model. For 

example, a species that is common within a wide area will be accurately 

modelled, whereas patchily distributed species that occur over a large area will 

have a greater inaccuracy associated with the modelling outcomes. Land-use 

can have a large effect on the distributions of species, especially when 

considering the ability of a species to shift its range between its present and 

future distribution (Hill et al. 1999). This is an important consideration for this 

study and therefore will be discussed at greater length.    

 

Araujo et al. (2005) caution against using the results from BEMs ‘on face 

value’ and other authors have warned that results are often burdened with 

uncertainty (Dormann et al. 2008). However, other studies provide positive 

results with BEMs. An example is Green et al.’s (2008) study which validated 

climate response surface models through retrodicting recent bird population 
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changes, proving that BEMs can produce reliable results. Applying different 

envelope models to the same data set will often give different results, which 

further highlights the potential inaccuracies of the models. One way of 

combating this is ‘ensemble forecasting’ which uses several models to analyse 

a data set, and then uses appropriate techniques to examine and combine the 

alternative outcomes (Araujo 2002). This has become popular in studies that 

utilise BEMs to predict species range shifts caused by climate change and will 

potentially increase the understanding of uncertainty of such models.    

 

Other techniques and programs are available to determine the bioclimate 

envelopes of future species assemblages, but have yet to be applied to such 

studies. A new concept that has been recently tested is the incorporation of 

stochastic population models to dynamic bioclimatic habitat models in an 

attempt to gain greater accuracy in predictions (Keith et al. 2008). Keith et al. 

(2008) put forward the novel technique of combining a GAM with a spatially 

explicit age/stage-based matrix model which incorporated environmental and 

biotic factors into the scenario. This allows the model to increase its predictive 

accuracy by incorporating relationships between factors such as range shifts, 

landscape structure and demographics. This study represents an interface 

between the BEMs and physiological or mechanistic models that are seen as 

an alternative for predicting species’ reactions to climate change. Huntley et al. 

(in press) suggest that the next generation of dynamic bioclimatic habitat 

models will consist of several sub-models; bioclimatic, habitat, population 

dynamics and dispersal. The creation of even the simplest of integrated 

models will be a significant step past current BEMs, and the creation of more 

complex models will highlight shortfalls in existing data sets.  
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Reserve selection methods 
 

Recent anthropogenic habitat destruction, fragmentation and modification has 

the potential to deny the existence of continuous areas of habitat that will 

facilitate the movement of a species from its present-day distribution, to a 

distribution in the future that is more climatically suitable (Collingham & 

Huntley 2000; Opdam & Wascher 2004; Travis 2003). If species are unable to 

modify their distributions, then it is possible that they will face the threat of 

greatly reduced populations, or extinction (Thomas et al. 2004). Therefore, the 

availability of habitat that a species can utilise for both migration and 

colonisation is of great concern for conservation efforts in the face of climate 

change. Protected area networks represent 11.5% of terrestrial habitat across 

the globe (Rodrigues et al. 2004). However, these networks are generally 

based on present day biogeographical distributions of species, with little 

consideration for possible changes in the climatic suitability for species that 

reside within their boundaries (Hannah et al. 2007; Hole et al. 2009). In order 

to discover how a protected area network will cope with climate change, BEMs 

for individual species can be overlaid onto a protected area network in a GIS, 

giving an idea of how many species will fall within the confines of a protected 

area in the future (Willis et al. 2008). Hole et al. (2009) used BEMs to test the 

ability of the sub-Saharan Africa Important Bird Area (IBA) network to protect 

species under future climate change scenarios. The results showed that 

although many protected areas will no longer be suitable for their current 

species assemblages, they will be capable of protecting different assemblages 

of species by the end of the 21st Century providing that species can 

successfully move between protected areas. Hole et al. (2009) suggest that 

one of the greatest challenges in future conservation will be facilitating the 

movement of species across the landscape to new protected areas.  

 

Reserve Selection Algorithms 
Knowing where to place reserves to mitigate the effects of climate change will 

be very important for future conservation strategies. Reserve Selection 

Algorithms (RSA) are designed to select optimal sites in a reserve network 

based on criteria relevant to resources available to a conservation plan 
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(Cabeza & Moilanen 2001). Here I review several techniques for reserve 

selection and their capability of being applied to continent-wide strategies for 

mitigating the effects of climate change on the success of protected area 

networks.  

 

Designing reserve networks should be done so as to make efficient use of the 

land available (Possingham 2000). This can be completed with two different 

representation problems; the minimum area problem and the maximum 

coverage problem (MCP) (Cabeza & Moilanen 2001). The minimum area 

problem, also known as the set covering problem (SCP), requires all species 

to be represented within a reserve network that has the smallest possible area, 

and the MCP, requires the maximum number of species to be protected in a 

reserve network that is limited by a cost (Cabeza & Moilanen 2001; Camm et 

al. 1996). There is no simple method for finding an optimal solution for either of 

these representation problems, because the addition of an optimal site will 

depend on the current configuration of the protected area network and the 

remaining areas outside the network (Camm et al. 1996).  

 

RSAs select new sites on the basis of several different criteria. Richness 

algorithms (also known as greedy algorithms) will start by selecting the sites 

that hold the greatest diversity available and then add sites that provide the 

largest additional increase in diversity henceforth (McClean et al. 2006). 

Complementarity was first introduced by Vane-Wright et al. (1991), and is 

defined by the addition of sites that complement the previously selected sites 

by adding the greatest number of new species to the network (Church et al. 

1996). Complementarity is integral to the richness algorithm, and is often used 

as an auxiliary selection criterion for when two cells are available which have 

equal importance to a reserve system, and the choice is made by discerning 

which site will complement the currently selected network by adding the largest 

number of novel species (Kelley et al. 2002). The rarity approach selects sites 

depending on their irreplaceability in terms of the rarity of the species, or other 

factors such as endemism, found within that site (Margules et al. 1988; 

McClean et al. 2006). This method helps reduce the total area of a network 

because essential sites that hold the only population of a species may hold 
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other species that need not be represented again in the network and therefore 

reduces redundancy. The algorithm will then continue to add sites that contain 

the most unrepresented species and are therefore irreplaceable (Possingham 

2000).  

 

The arguments for the use of different types of algorithm are often based on 

the optimality of the outcome. Optimality is defined by the representation 

problem used; if it is an SCP, the optimal solution will be the network that 

protects all species with the least area, if it is an MCP, the optimal solution will 

protect the greatest proportion of biodiversity whilst restricted by a set cost. As 

mentioned above, reserve networks must make efficient use of area in order to 

be viable (Possingham 2000), as a result, much emphasis has been put on 

finding optimal reserve networks, and therefore, creating algorithms that 

produce optimal solutions. Much of the literature states that heuristic methods, 

which operate through the step-by-step addition of planning units, give 

suboptimal solutions and only occasionally provide optimality (Cabeza & 

Moilanen 2001; Church et al. 1996; Onal & Briers 2002). By contrast, integer 

programs (IPs), which determine the way to achieve the optimal outcome, are 

able to consistently reach optimal solutions for reserve selection problems 

(Cabeza & Moilanen 2001; Camm et al. 1996).  

 

The earliest algorithms selected sites on their intrinsic values. For example, 

Terborgh and Winter (1983) chose sites that were identified as centres of 

endemism so as to create a cost-effective reserve network which focused on 

the most diverse areas for protection.  This method is likely to create a large 

overlap in protected species between reserves, and therefore redundancy 

within the reserve network (Church et al. 1996). To remove this redundancy, 

Kirkpatrick (1983) used an iterative step-wise approach that recalculated the 

relative diversity of each remaining site after each stage of selection. This is 

effectively a greedy heuristic algorithm, which is a richness algorithm that 

incorporates the principle of complementarity (Pressey et al. 1993) and 

provides simple solutions with fast processing times (Csuti et al. 1997). Rarity-

based algorithms use a similar step-wise technique in decision making, but 

generally lead to more efficient solutions (Kershaw et al. 1994). Both of these 
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algorithms are classed as heuristics because of their selective step-by-step 

approach. Heuristic reserve selection algorithms are based on logic designed 

to achieve efficiency (Church et al. 1996). The stepwise approach selects 

reserves by adding the most efficient site at each stage of the process until all 

the criteria of the algorithm are met (Vanderkam et al. 2007). Although they are 

designed to achieve efficiency, heuristics rarely reach, or can detect if they 

have reached an optimal solution (Church et al. 1996).  

 

Despite these faults, heuristic algorithms are popular techniques for designing 

reserve networks, and their efficiency can be improved by using spatial 

patterns in the data to search for more efficient sites; this approach is called 

simulated annealing (Csuti et al. 1997). Simulated annealing is an iterative 

optimisation process that starts with a randomly determined reserve network, 

and then explores trial alternatives by randomly adding or deleting new sites at 

each iteration (Peralvo et al. 2007). The novel modifications are accepted or 

rejected depending on whether they decrease or increase the value of the cost 

function, and the algorithm becomes more ‘choosy’ as the process continues 

because of an annealing schedule that decreases the introduction of ‘bad’ 

changes over time by decreasing the value of the acceptance function 

(McDonnell et al. 2002; Peralvo et al. 2007; Possingham 2000). Simulated 

annealing algorithms reach optimal solutions more often than heuristic 

algorithms and are popular as reserve network design tools.   

 

Linear integer programming (IP) algorithms are optimal algorithms and 

therefore are guaranteed to provide an optimal solution (Onal & Briers 2002). 

IP algorithms can be modelled as MCP and SCP problems in order to find a 

reserve network solution; they are difficult optimisation problems and are often 

cited as having long runtimes (Camm et al. 1996; Csuti et al. 1997; Vanderkam 

et al. 2007).   

 

Optimality 
Despite the obvious advantage of creating optimal reserve networks by using 

IP algorithms, there is much debate in the literature over what is the most 
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practical type of algorithm. The most commonly used argument against the 

use of IP algorithms is that they have long computational times that make them 

a non-viable option for use by conservation planners (Cabeza & Moilanen 

2001; Camm et al. 1996; Onal & Briers 2002; Pressey et al. 1996). Much 

literature written on the topic of reserve network optimality was written in the 

mid 1990s (Cabeza & Moilanen 2001) and since then, IPs have become more 

powerful and are able to process large data sets quickly, making them a more 

feasible option for conservation planning (Crossman & Bryan 2006; 

Vanderkam et al. 2007). Criticisms about their ability to handle large data sets 

can also be countered by the application of intelligent pre-processing of data 

which makes smaller results-sets which are therefore more manageable 

(Camm et al. 1996; Csuti et al. 1997; Pressey et al. 1996). However, with the 

increasing use of remote sensing techniques that collect data at continental 

scales, IPs are still unable to process these vast data sets in acceptable 

periods of time, and sub-optimal algorithms, which can cope with much larger 

data set sizes are more favourable as a result (Moilanen 2008; Sarkar et al. 

2004)  

 

Optimality, although important, is often only practical from a theoretical stand 

point. Suboptimal solutions can be valid, especially because they are not 

affected by some of the problems that are often found in optimising algorithms, 

be they long processing times or possible routes of failure (Pressey et al. 

1996). Moilanen (2008) points out that because linear IP algorithms cannot 

process complex non-linear data sets, they lose optimality because of the 

simplification that occurs when data is linearized during model formulation. 

This can be especially important when modelling ecosystem processes such 

as non-stationary species distributions, which is significant when considering 

the impacts of climate change on species distributions within a reserve 

network. A further argument for non-optimising algorithms is that an optimal 

solution is not always necessary because other factors not taken into account 

by models, such as socioeconomic constraints and current land-use, may 

need to be considered before a reserve network is accepted and applied 

(Cowling et al. 2003). Reaching optimal solutions may lead to impractical 

solutions in terms of ecological processes that will affect a reserve network. 
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Moilanen (2008) points out that creating minimum set reserve networks could 

increase extinction rates by minimising the number and sizes of individual 

protected areas, and therefore increasing the effects of habitat fragmentation 

and habitat loss. Moilanen (2008) cites Vanderkam et al. (2007), whose study 

finds a solution of 39 sites out of an available 89,376 sites that are 25x25m in 

area, which would cause isolation of reserves and increase the risk of edge 

effects on protected areas. Finally, when considering the application of reserve 

selection algorithms in this study, it is important to consider the reliability of the 

input data. Instead of using observational data to ascertain the presence of a 

species, the data for the current study will be produced by BEMs, which will 

have errors associated with the modelling process (Dormann et al. 2008). 

Therefore the detection of a single optimal network may be of lesser 

importance than detecting networks that are robust to a variety of potential 

future scenarios. 

 

In this study, optimality and the efficiency of species representation within the 

selected reserve networks represent a method of measuring the accuracy of 

the reserve selection methods used. However, it should be acknowledged that 

as this study is interested in improving the African IBA network, a network 

selected by conservation planners to efficiently conserve species rather than to 

use land area efficiently, the use of the term efficiency is not representative of 

the IBA program’s mission. As a result, optimality is used as an indicator of 

accuracy within this study, although when applied to a ‘real-life’ scenario, the 

efficiency of the reserve selection methods used is of decreased significance. 

 

Cowling et al. (2003) compared the choices of conservation planners against 

those made by systematic reserve selection programs to determine which was 

the most efficient and how the two methods can be incorporated. The results 

showed that conservation planners make biased decisions when choosing 

reserves. These biases are fuelled by considerations that are not important to 

the selection process of algorithms (such as pre-emption of risk), but which 

can lead to over-representation of species within a reserve network and under-

representation of species that lack protection. The study also highlights a 

common problem in the literature, which is that reserve selection algorithms 
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are meant to act as a tool for conservation planners, rather than a replacement 

for them. When considering the use of an ‘off-the-shelf’ selection algorithm, it 

is important to understand what the program was intended for (optimality, use 

in meetings, interaction between groups) and then make decisions based on 

personal requirements. The need for optimality during a meeting between key 

decision makers is questionable if lengthy computational times are involved, 

but for the purpose of creating a model network of reserves for decision 

makers to consider, it would be ideal (Cabeza & Moilanen 2001; Carwardine et 

al. 2007). In the following section I will review some of the popular RSAs that 

are in use with specific focus in their use as conservation tools. 

Marxan 
Marxan was created by Ball and Possingham (2000; Possingham et al. 2000) 

of the University of Queensland, Australia, as decision support software for 

conservation planning. It has been used as a tool for ecoregional conservation 

planning and uses a simulated annealing algorithm to find a number of 

solutions, each of which represents a possible set of reserves, and from this, 

irreplaceability can be calculated to form an efficient reserve network solution 

(Carwardine et al. 2007). The program aims to reduce cost whilst it meets 

certain biodiversity targets and addresses spatial design goals. The 

biodiversity targets do not represent a limitation, so if a target can only be met 

by incurring a large cost, Marxan can disregard it in order to minimise cost. 

Spatial design objectives can be met with the use of the boundary length 

modifier (BLM) which determines the relative importance of decreasing the 

edge-to-area ratio of reserves in the network (Carwardine et al. 2007).   

 

C-Plan  
C-plan is a greedy heuristic algorithm that uses irreplaceability to add sites in a 

step-wise fashion (Carwardine et al. 2007). The program can be used 

interactively to create a reserve network, or its heuristic algorithm can create 

solutions independently. It was designed for use in planned negotiations where 

it is necessary to obtain quick results that allow users to discuss the outcome 

of different possible reserve networks (Ferrier et al. 2000). The program first 

calculates an estimate of the number of sites required to reach the targets, 
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followed by an estimation of irreplaceability for each site which allows the 

algorithm to work out the likelihood of reaching the set targets if a particular 

site is unavailable as a protected area (Carwardine et al. 2007; Ferrier et al. 

2000). C-plan is not sensitive to spatial patterns and therefore is unable to 

design spatially compact reserve networks, unless the data are conducive to 

such a pattern. 

 

ResNet 
This is a hierarchically controlled rarity-complementarity-based algorithm that 

selects an initial site on irreplaceability, complementarity, or a user-defined set 

of sites (Kelley et al. 2002). ResNet will then select cells on the basis of rarity, 

if two sites are equally irreplaceable within the network, the next site will be 

added depending on the highest complementarity value. If a decision is still not 

made, ResNet chooses adjacent sites and failing this will choose the site 

randomly from the possible alternatives. The algorithm can also be made to 

check for redundancy within the network, as well as applying cost constraints 

on the final solution (Kelley et al. 2002).  

 

ZONATION 
The Zonation algorithm works by iteratively discarding areas of lowest value 

from the edge of the remaining area, it does this through a reverse iterative 

heuristic that can reach optimality with a high rate of success (Moilanen 2007). 

This is done so that the resultant reserve network will have high spatial 

aggregation, and additionally, the edge removal technique can reduce 

processing time, allowing Zonation to be used on very large data sets 

(Moilanen 2007; Moilanen et al. 2005). The result of the algorithm is a nested 

ranking of reserve sites which is easily interpreted for conservation planning 

(Kremen et al. 2008; Moilanen et al. 2005).  

 

 

CPLEX 
CPLEX is an optimising program that uses a branch and bound algorithm 

which solves mixed integer problems (Ohman & Wikstrom 2008). A branch 
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and bound algorithm works by initially solving the linear programming 

relaxation which is applied to preliminary solutions that are created by a 

number of heuristics (Pyke & Fischer 2005). If the value of the solution is an 

integer, then the optimal solution has been found, if not, branching occurs and 

two new problems are created. These two solutions are then solved and the 

process continues until all the possible alternatives have been determined and 

the optimal solution is created (Csuti et al. 1997). 

 

Applying RSAs to large datasets 
Some reserve selection algorithms have already been applied to similar tasks 

and scales that will be relevant for this project and could potentially give an 

indication as to which algorithms are able to create continental-scale reserve 

networks for a large species assemblage. McClean et al. (2006)  used a rarity 

and a richness heuristic algorithm to select protected areas that will aid the 

Sub-Saharan Africa Important Plant Area network in mitigating the effects of 

climate change on plant conservation areas. The heuristic algorithms were 

capable of processing data at the same scale that this study will use, although 

McClean et al. (2006) did not fully discuss the computational times or sub-

optimality of the algorithms used. Pyke and Fischer (2005) used CPLEX to 

create a reserve network that will cope with climate change at a smaller scale 

(Central Valley Ecoregion, California, USA). CPLEX was only run to find a 

solution within 0.01% of the optimum to reduce computational time, whilst still 

giving a near optimal solution. MARXAN has been applied to a continental 

scale by Rondinini et al. (2006) who used it to determine irreplaceability among 

African protected areas and their vulnerability to human population. Although 

this study did not involve climate change, it proves the ability of MARXAN, and 

therefore simulated annealing algorithms, to model at appropriate scales.  

 

Habitat connectivity  

Habitat corridors 
Facilitating the dispersal of species from their present distributions to potential 

future distributions will be a major task for conservationists in the future. There 

has been much debate in the literature over the best ways of achieving this, 
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with particular focus on the practicality of habitat corridors which link habitats 

together so that species can move freely between metapopulations 

(Vandermeer & Carvajal 2001). Habitat corridors represent a feasible solution 

to the problem of connectivity between reserves that hold certain species 

presently, and reserves that could potentially hold these species in a future 

climate scenario (Vos et al. 2008). In this section I review a selection of 

relevant literature based on the topic of habitat corridors, and outline some of 

the software that is available for designing corridor systems. 

 

The theoretical support for habitat corridors is based around the theory of 

island biogeography and metapopulation dynamics. Isolation of a habitat will 

decrease immigration of individuals and local stochastic extinction events will 

reduce the diversity of species found within that habitat (Kupfer et al. 2006). 

However, in a metapopulation, repopulation through the immigration of new 

species will keep the number of species at a dynamic equilibrium (Moilanen & 

Hanski 1998). When considering the effects of climate change on a reserve 

network with poor biological connectivity between reserves, increased 

extinction rates caused by a decrease in climatic suitability will not be 

counteracted by increased immigration from other protected areas, and 

therefore, the dynamic equilibrium will cause an overall decrease in 

biodiversity within that reserve. Facilitating the immigration of species across 

climatic gradients will allow individuals to colonise new habitats that may 

become climatically suitable in the future, and therefore decrease extinction 

risk. Parmesan (1996) showed that E. editha experienced local population 

extinctions at the southern margin of its distribution, and colonisations at the 

northern margin which were causing an overall northward shift in the species’ 

distribution. This provides some evidence for the fact that species can respond 

to climate change through metapopulation dynamics. If new colonisations were 

unable to take place at the northern boundary of E. editha’s range, then the 

species’ range would have decreased.   

 

Habitat corridors are often criticised because their simplicity of design 

represents a disregard for other forms of connectivity, such as movement 

between habitat patches within the environment (Hannon & Schmiegelow 
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2002; Lindenmayer et al. 2008). When applied to climate change, there are 

several other important criteria that must be considered. One of the most 

important is calculating the correct orientation of the corridors. Halpin (1997) 

recognised that creating corridors that were orientated in a north-south 

direction to facilitate climate forcing due to temperature gradients alone would 

fail to incorporate the additional effects of changes in climate moisture levels. 

Other such factors make predicting appropriate paths of potential migration 

difficult and therefore makes the application of resources to such projects 

hazardous. Not enough is understood about the ecology of habitat corridors to 

guide landscape managers in their application, with knowledge of corridor 

dimensions and which species are likely to utilise corridors, being of particular 

importance to conservationists (Halpin 1997).  

Connectivity software 
There are several programs available that can design conservation corridors 

through a landscape for species dispersal. The least cost paths algorithm 

(LCPA) is one of the simplest methods of creating habitat corridors. LCPA 

finds the path of least resistance through a habitat using a simple algorithm 

that has fast run times. The simplicity of LCPA has been criticised because the 

program relies on only finding one corridor for dispersal, which may not be 

ecologically effective (Drielsma et al. 2007). Hargrove et al. (2005) created 

PATH (Pathway Analysis Through Habitat) which uses a virtual walker to 

simulate the movement of a species through a landscape. The walkers can be 

assigned attributes so that they match the decision making of different species, 

and as they disperse from a habitat site, they search for the most desirable 

path through the landscape. The algorithm requires large computational power 

due to its complexity and decision-making ability. Drielsma et al. (2007) 

introduced the spatial links tool which creates corridors by mapping link values 

based on the contribution of ecologically efficient paths to overall region-wide 

connectivity.  

 

To my knowledge, these tools have not been used to model connectivity at the 

continent-wide scales, of this project, and as a result it is unclear whether such 

programs could be applied. A further consideration is whether the programs 
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are able to identify corridors that are specifically oriented along climatic 

gradients, if not, they will be impractical for their desired use. There are 

possible alternatives to habitat corridors which are often cited in the literature. 

McClean et al. (2006) recommended maximising reserve area in order to 

maintain plant diversity in the future. Other authors simply recommend 

improving aspects of the matrix which would create a more hospitable 

environment for species dispersal, therefore allowing colonisation of reserves 

in new climate space to take place (Blaum & Wichmann 2007; Fahrig 2001; 

Vos et al. 2008).  

 

Conclusions 
 

This literature review has covered some of the evidence that suggests species 

are likely to respond to impending climate change through individualistic range 

shifts. There is evidence that other forms of adaptation will also occur, but 

evidence of range shifts that have occurred because of climate change in 

recent years increases the importance of finding ways to assist natural 

systems in coping with changes in distribution, especially when considering the 

combined effects of climate change and anthropogenic habitat change 

processes.    

 

There are a number of caveats in the use of BEMs to predict future species 

distributions. However, BEMs represent the most effective way of carrying out 

such predictions to date. It is important to realise that these errors are likely to 

be present, so that outcomes from these models are not used without 

considerations for such inaccuracies. However, these predictions are important 

to assess risks and to create conservation plans that can be applied if the 

predicted scenarios are realised  

 

I looked at potential ways of spatially designing reserve networks that could 

mitigate the effects of climate change. When considering the tools that are 

available to design potential alterations to a protected area network at the 

continental-scale, most literature cautions against the use of optimising 
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algorithms, such as branch-and-bound algorithms, that are unable to cope with 

the volume of data that is necessary for modelling at these scales. Heuristic 

algorithms are able to cope with large data sets, but are criticised because of 

their often sub-optimal results. Simulated annealing methods, however, offer a 

middle ground between optimality and ability to cope with large data sets, and 

programs such as Marxan are freely available and widely used. Marxan also 

provides the useful function of starting with a user-defined set of reserve sites, 

which means that modifications can be made to an existing reserve network. 

This is especially useful when considering additional sites that will complement 

a reserve network in a future climate scenario. 

 

Modelling possible ways to facilitate migration caused by climate forcing may 

not be possible because of the lack of appropriate programs that can model at 

a large enough scale or model in an orientation that is relevant in relation to 

climatic gradients. Application of these programs to such a task will be a novel 

area of study and is worth further consideration.    
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Chapter 2: Key regions of current and projected future 
avian biodiversity across Sub-Saharan Africa 
 

Abstract 
 
Protected areas are a crucial tool used to protect species from the 

encroachment of human development (Gaston et al. 2008). However, with a 

changing climate some protected areas may become redundant if the climate 

becomes unsuitable for key species (Rodrigues et al. 2000). Here I produce an 

ideal minimum network to protect bird species based on gridded cells across 

sub-Saharan Africa for the recent period and contrast this to similar networks 

designed to protect species under future climate scenarios. I chose the birds of 

Sub-Saharan Africa, a well documented group for which data sets are 

available at the continental scale. Using a reserve selection algorithm to select 

one and quarter-degree cells, reserve networks were designed which 

represented all species across the continent. I demonstrate that cells in upland 

areas will become increasingly important in protecting species through the 

current Century and highlight key sites that are selected during all time periods 

considered. 

 

Introduction 
 

Future changes in climate could have both positive and negative effects on the 

performance of protected areas (PAs). To date, PAs have been designated 

under the assumption that climate will remain unchanged and hence PAs will 

continue to protect current species assemblages in the future (Burns et al. 

2003; Hannah et al. 2007). As climate changes, current PAs may become 

redundant as the local climate changes, altering the species assemblages 

found within them. This will have a large impact on biological conservation 

because of its reliance on the presumed continuing performance of PAs 

throughout the world (Rodrigues et al. 2004).  
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The allocation of land for protection is often due to chance historical events, a 

lack of utility, or due to landscape aesthetics, which appeal to human nature 

(Pressey 1994). This form of ad hoc reservation is responsible for a large 

proportion of protected areas worldwide, but it is a very inefficient method, in 

terms of available space, of preserving biodiversity (De Klerk et al. 2004). 

Recent methods for selecting PAs to protect biodiversity include the 

identification of biodiversity hotspots (Myers et al. 2000) and systematic 

reserve selection; the latter calculates the most efficient allocation of land for 

protection, in terms of species coverage (Rondinini et al. 2005). This allows 

resources to be focused in areas where biodiversity is highest, and therefore 

the efficiency of reservation over a large scale can be increased. Both ad hoc 

and hotspot reservation have been criticised because they can lead to under-

representation of biodiversity in areas with low levels of endemism or because 

of discrimination in the historical selection of PAs (Pressey 1994). The 

combination of inefficiently located reserves and a lack of consideration for the 

effects of changing climates, suggests that a re-evaluation of key PA networks 

is urgently required. Understanding how species distributions will be affected 

by climate change will be a priority for conservation biology over the coming 

Century and will allow conservation organisations to focus attention on where 

to locate PAs in the future (Heller & Zavaleta 2009). 

 

Research into the potential impacts of climate change on the distributions of 

species and consequently on the future effectiveness of reserves is a relatively 

recent area of study (Heikkinen et al. 2006). Palaeoecological studies have 

demonstrated how species ranges have altered in response to climatic change 

in the past and indicate how species may respond to projected future changes 

(MacDonald et al. 2008). They show that species respond individualistically to 

changing climate, highlighting the importance of projecting responses for 

individual species rather than for communities as a whole and that changes in 

climate will cause changes in the composition of species communities in the 

future (Graham & Grimm 1990). Although a large number of studies have 

projected the future distributions of species, few have attempted to use 

predicted future assemblages of species in an applied way to explore the 

robust nature of current conservation strategies. Several studies have used 
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reserve selection algorithms (RSAs) both to create potential reserve systems 

that can cope with the effects of climate change and to test the resilience of 

reserve systems to cope with such changes. Heuristic algorithms have been 

used to create a reserve system to test the effectiveness of the sub-Saharan 

Africa Important Plant Area (IPA) network under future climate scenarios 

(McClean et al. 2006). At a local scale, integer programming (IP) algorithms 

have been used to determine an optimal reserve network for fairy shrimp 

(Anostraca) in California, USA, capable of withstanding projected climate 

change (Pyke and Fischer 2005). The latter study highlighted that making 

bioclimatically representative reserve networks does not necessarily require a 

large addition of resources, but rather a greater understanding of how climate 

will impact such networks. RSAs have been coupled with distribution models to 

determine the effectiveness of protected areas under differing climate 

scenarios (Hannah et al. 2007). Hannah et al. (2007) concluded that creating 

new protected areas would help to reduce the negative impacts of climate 

change and that the ‘cost of waiting’ often increased the additional area 

required to represent all species under climate change. To date, there have 

been no attempts to create potential future reserve networks for avifauna at a 

continental-scale, which is likely to be of great importance for conservation in 

the future. This study will use Marxan, an RSA which uses the process of 

simulated annealing to calculate optimal reserve networks. Marxan provides a 

compromise between accuracy and processing times which is ideal for the 

datasets used in the study. 

 

 The ‘bioclimate envelope’ of a species represents a species’ distribution at 

one time period in relation to the climatic conditions within its realised niche at 

that time (Pearson & Dawson 2003). There are a wide diversity of techniques 

for relating a species distribution to climate and whose use is partly dependent 

upon the type of data available or the statistical framework of choice. 

Simulations from several models are often combined to produce an ‘ensemble 

forecast’ (Araujo & New 2007). Bioclimatic Envelope Models (BEMs) have the 

potential to simulate the distribution of a species based solely on climatic data, 

and if applied to projected climate change scenarios, allow simulation of 

potential species ranges in the future (Heikkinen et al. 2006). However, there 
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are numerous other factors that may prevent the modelled response from 

occurring such as biological interactions between species (Araujo and Luoto 

2007). BEMs are statistical models that use the current distributions of a 

species to deduce its climatic requirements (Hijmans & Graham 2006), 

calculating individualistic responses of species rather than whole-community 

responses. These climatic requirements can then be applied to future climate 

scenarios to provide predictions of the distributions of species.  

 

Using simulated avifaunal range data from BEMs, reserve networks can be 

designed using reserve selection programs which select protected areas on 

the basis of how their species assemblages will contribute to the overall 

species coverage of the network. Here I apply RSAs to gridded data simulating 

avian diversity for the recent period and for three future time periods across 

sub-Saharan Africa. By producing a theoretical network of key grid cells for 

different time periods and under several future climate projections I aim to 

identify key regions that remain important for avian diversity through the 

current Century or whose importance is evident for varying future climate 

scenarios.   

  

Methods 
 
Data for one-degree and quarter-degree cells across sub-Saharan Africa were 

used to create theoretical reserve networks using planning units sized at those 

same resolutions. This was done for recent (referred to as present) species 

assemblages as well as for predicted species assemblage data obtained from 

three different climate scenarios for 2025, 2055 and 2085 that were created 

using climatic response surface (CRS) models.    

 

Sub-Saharan Africa is defined as the region of mainland African south of 20oN. 

Here I apply an RSA and bioclimate envelope models (BEMs) to gridded data 

at a one-degree (latitude-longitude) and a quarter-degree resolution across 

sub-Saharan Africa. The area is represented as 1,963 one-degree cells (which 

are approximately 111 km2) at the equator and 29,575 quarter degree cells 

(which are approximately 25 km2). Approximately 2,000 bird species occur in 
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this region of these 1,608 have been successfully modelled using BEMs as 

part of a previous project (Hole et al. 2009 – see below). 

 

Bioclimate and species data 
 

Birds are a well used and appropriate taxon group for such studies for several 

reasons, the most important being the extensive presence/absence data sets 

that are available over continent-wide scales (Pearson 1994). It has also been 

shown that birds can act as good indicators of endemism for other taxonomic 

groups, illustrating the value of their conservation in a broader context (Brooks 

et al. 2001b; Gregory et al. 2009). 

 

The models simulating future distributions of bird species across sub-Saharan 

Africa, were produced by Hole et al. (2009) from recent species distribution 

data (1980-2000; (Brooks et al. 2001a)) from the Zoological Museum of the 

University of Copenhagen (Jetz & Rahbek 2002). Presence-absence data for 

1608 species were available for the 1963 one-degree cells that make up sub-

Saharan Africa. Mean bioclimatic data for the one-degree cells were created 

from mean monthly temperature and precipitation data available for quarter-

degree cells for the period 1950-2000 (Hijmans et al. 2005). Seven bioclimatic 

variables were chosen for modelling the bioclimatic envelopes of each species; 

mean temperature of the coldest month; mean temperature of the warmest 

month; an estimate of the ratio of actual to potential evapotranspiration; wet 

season duration; wet season intensity; dry season duration; and dry season 

intensity (Willis et al. 2009). They were selected for their previously confirmed 

ability in modelling the bioclimate envelopes of a wide range of European and 

African bird species (Huntley et al. 2006). The first three variables were used 

as standard variables in all models, but only one of the four seasonality 

variables, wet season and dry season duration and intensity were used (the 

procedure for selecting the fourth variable is explained by Huntley et al. 2006). 

The climate data for the future time periods were obtained from three general 

circulation models (GCMs); HadCM3 (Gordon et al. 2000), ECHAM4 

(Roeckner et al. 1996) and GFDL-R30 (Knutson et al. 1999). The simulations 
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used were based on the Special Report on Emissions Scenarios’ (SRES) B2a 

scenario for three time periods, which represent 30 year averages for 2011-

2040 (abbreviated from here-on-in to the central year of the series; 2025), 

2041-2070 (2055) and 2071-2100 (2085). The SRES B2a scenario describes a 

world in which the emphasis is on local solutions to economic, social and 

environmental problems. There is intermediate economic development 

compared with other scenarios, as well as less rapid land-use changes and 

more diverse technological change. The scenario represents increased 

environmental protection and social equity at local and regional scales. This 

leads to a scenario which predicts mid- to low- green house gas emissions 

over the 21st Century (Nakicenovic & Swart 2000). The GCMs used are 

representative of the mean for the nine models included in the 

Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report 

(Cubasch et al. 2001) and range in simulated precipitation regimes from 

relatively wet (GFDL-R30) through to the mean (HadCM3) and relatively dry 

(ECHAM4). Since the data have been created using climate models from the 

Third Assessment Report, the IPCC Fourth Assessment report has been 

published. The models used have therefore since been improved by the 

reduction of error in the prediction of precipitation, mean sea-level rise and 

surface air temperature (Randall et al. 2007). Nonetheless, it is expected that 

the projected range shifts to be broadly similar.  

The bioclimatic envelope of each species was estimated using a CRS, which 

uses locally weighted regression to fit a response surface to a species’ 

presence-absence data. This method was chosen over alternative approaches 

such as generalised additive models (GAM) after paired t-tests on sensitivity 

and true skill statistic (the assessment metrics used) indicated that CRSs 

performed better than GAM (see Hole et al. 2009). The CRS models were 

validated using two techniques; firstly, for species which were recorded in > 20 

one-degree cells, K-fold partitioning was used. Κ-fold partitioning is a 

procedure which generates Κ models by partitioning the data into Κ equal-

sized sets apart from the i-th set which is used as training data. This process is 

carried out Κ times with each K subsample used once as the training data, this 

has the advantage of using all data for both validation and training (Ali & 
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Pazzani 1996). This method has advantages over the often applied 70:30 data 

splitting approach for model creation and validation (Thuiller et al. 2009) as it 

reduces potential issues of spatial autocorrelation.  

Predictive performance was assessed using values obtained for the area 

under the curve (AUC) of a receiver-operated characteristic plot (Fielding & 

Bell 1997). This was carried out for 1401 species, 89% of which exhibited K-

fold partitioned AUCs of ≥ 0.9 (no species had a K-fold partitioned AUC < 0.7), 

indicating high-model performance (Swets 1988). Model fit for the remaining 

207 species, recorded in fewer than 20 one-degree cells, was assessed using 

a jack-knifing approach. This process calculates the probability of a species’ 

occurrence in a single one-degree cell, using a model built using all of the data 

except for the cell for which I wish to obtain a simulation of occurrence. This is 

repeated for all 1,963 cells of sub-Saharan Africa, for each species, and 

essentially produces simulations independent of the data used to create the 

CRS. Although this is more prone to issues of spatial autocorrelation than K-

fold partitioning, the latter procedure cannot be used on restricted range 

species as large proportions of their entire range often fall within a single 

excluded panel. The projection accuracy was assessed using the same AUC 

process as applied to the more widespread species.  83% of the 207 species 

displayed a jack-knifed AUC ≥ 0.9, which again indicates a high-model 

performance (for more details, see Hole et al. 2009). 

 

Reserve selection 
 

To create reserve networks, a simulated annealing reserve selection algorithm, 

Marxan version 1.8.10 (Ball & Possingham, 2000; Possingham et al. 2000), 

was used to create near optimal solutions using a set-covering problem. 

Simulated annealing operates through a process of random addition and 

removal of planning units from a preliminary set of units using stepwise 

iterations until an optimal solution is produced. Optimality for this study was 

defined as the representation of all species within a reserve network using the 

minimum number of planning units possible. Simulated annealing is not 

guaranteed to reach an optimal solution unlike algorithms such as integer 
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programs (IPs), which will do so routinely (Onal & Briers 2002). However, 

unlike IPs (Moilanen 2008), simulated annealing algorithms will reach near 

optimal solutions over a relatively short timescale, an important consideration 

given the large data sets being processed in this study. Other heuristic 

approaches have been criticised in the literature for reaching sub-optimal 

solutions (Church et al. 1996). Heuristic algorithms reach solutions faster than 

both IPs and simulated annealing methods, however, the middle-ground 

between speed and optimality provided by simulated annealing meant that it 

was seen as the most appropriate choice for this study.  

 

Reserve selection simulations were run for one-degree cells using the present 

and 2085 data and using the present, 2025, 2055 and 2085 data for the 

quarter-degree cells. This was carried out for two separate species coverage 

targets of one and five representations per species across the reserve 

network. A target of one was chosen to give an indication of where reserves 

would need to be placed in order to represent every species once. A target of 

five is more biologically useful in a reserve network where separate 

populations are preserved, protecting species from local extinction events and 

is therefore presented in the results. Other studies at similar scales have used 

representation targets of one (McClean et al. 2006) and three (Fjeldsa 2007) 

units, whereas other studies have used variable targets depending on factors 

such as the conservation status of a species or to protect a percentage of a 

species’ range (Illoldi-Rangel et al. 2008; Rouget 2003). 

 

Marxan was set to perform 1,000,000 iterations per run. Iterations are the 

individual steps that Marxan performs when adding or removing PAs from the 

reserve network in each run. 10,000 temperature decreases were performed in 

each run, temperature decreases are the procedure that initially allows 

negative additions to the network as well as positive ones which prevents each 

run from reaching local optimums instead of a global optimum. Some studies 

using Marxan (e.g. Rondinini et al. 2005), have used 1000 runs per simulation 

whilst other have used 100 runs per simulation (e.g. Zielinski et al. 2006). For 

this study preliminary simulations were carried out using 1000 runs but these 

were found to yield similar results to simulations using  only 100 runs. 
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Therefore, I followed Zielinski et al. (2006) in using 100 runs for each 

simulation. The significance of optimality in this study is  questionable as there 

are many other factors that would need to be taken into account before the 

results could be applied practically, especially when considering the scale and 

potential caveats of the data (Cowling et al. 2003; Knight et al. 2008; Knight et 

al. 2006). The cost of the planning units was fixed because on average the 

cells are the same size (there are small variations in size and shape 

depending on their latitude relative to the equator).  

 

Each run produced a network comprised of a number of planning units and 

listed the shortfall, in terms of the number of species not represented by the 

network (or the under-representation of species, in terms of the number of 

planning units in which they were protected in the network). The optimal 

solution was saved as a list of planning units.  

 

 

Results 
 
The results shown presented as maps (Figs. 1.1 & 1.2) with the cells selected 

by Marxan identified. For the future scenarios, because there were three 

different climate scenarios for each time period, all selected cells are shown on 

the map, with those cells selected in more than one climate scenario 

highlighted by a different colour and size. The selection of a cell in more than 

one climate scenario does not strictly represent the importance of a cell, but 

acts as a proxy of importance whereby the cell is more resilient to different 

predicted climate scenarios.  

The species shortfall and the number of cells in each reserve network selected 

by Marxan is shown in table 1.1(selected quarter-degree cells, as well as 

species shortfalls are listed in supplementary material S1). The shortfall is the 

number of species that were not represented within the network. Depending on 

the Conservation Unit (CU) target for the reserve network, the shortfall will 

represent different circumstances. For a CU target of 1, the shortfall shows the 

number of species that were not represented within the network and therefore 
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shows that according to the data, the species does not have any remaining 

suitable bioclimate in sub-Saharan Africa. For a CU target of 5, the shortfall 

shows the number of species that are not represented in five or more cells in 

the network.  

 

One-degree data 
The reserve networks created from the one-degree data show similar patterns 

of distribution across sub-Saharan Africa between the current period and the 

projected 2085 scenarios (Fig.1.1a-b). Noticeable groupings of selected cells 

are found in Fig.1.1a-b in areas such as the Albertine Rift, Eastern Arc 

Mountains, Kenyan Mountains, Ethiopian Highlands, Cameroon Mountains 

and the Cameroon and Gabon Lowlands. There are also smaller, more 

isolated, groupings in the Upper-Guinea Forests, Western Angola and 

Namibia. These groupings become more prominent in Fig. 1.1b, in particular, 

the Ethiopian Highlands, Drakensberg Mountains, Highveld, and the Cape 

floristic region appear to show an increase in the number of selected cells. 

This is highlighted in Fig. 1.1b, by the increased representation of cells in more 

than one climate scenario, indicating the importance of these cells over a 

range of differing future climates. 
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A 

 

Figure 1.1 (A) One degree cells selected by Marxan to protect bird species in 
sub-Saharan Africa for current species distributions. Cells represented in 
black. 
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B 

 
Figure 1.1 (B) Map of selected one-degree cells selected by Marxan to protect 
sub-Saharan African bird species for projected 2085 species distributions 
coloured depending on the how many future scenarios (ECHAM4 / OPYC, 
GFDL-R30, HadCM3) they are selected in. Red = 3 times, Orange = 2 times, 
Green = 1 time. 

 
 

 

 
 
 
 



 

47 
 

Quarter-degree data 
 

The selected quarter-degree reserve networks show a clear and progressive 

change in distribution over the four time periods used (Fig. 1.2a-d). The areas 

in which the quarter-degree cells are grouped are the same as those selected 

for the one-degree reserve networks, but show a higher degree of detail, owing 

to the finer scale. There are few major differences between the selections 

made by Marxan for the present and for 2025 with selection in the Ethiopian 

Highlands, North Somali Mountains, Albertine Rift, Cameroon and Gabon 

Lowlands, Cameroon Mountains and Upper Guinea Forests. Fig. 1.2b has 

more concentrated clusters in areas such as the Kenyan Mountains, Eastern 

Zimbabwe Mountains, Tanzania-Malawi Mountains, Cape Floristic Region 

(CFR), South African Grasslands and Highveld, and in the West of Namibia 

and Angola. Many of these areas are defined as Endemic Bird Areas (EBAs 

(Stattersfield et al. 1998)).  

 

The pattern of selected cells in the 2055 and 2085 is the same as that of 2025 

but with a greater degree of clustering. This is highlighted by larger number of 

cells selected in two or more of the GCM scenarios for each time period (Fig. 

1.2c-d). These areas of increased selection are all highland areas which are 

also selected for the present-day distributions, however, the reserve networks 

for 2055 and 2085 avifauna distributions have more cells selected within these 

areas (e.g. South Africa and Ethiopia; Fig. 1.3). Lowland areas such as in the 

Demorcratic Republic of Congo experience a decrease in selection from the 

present compared with end of Century simulations. (Fig. 1.3). 
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A 

 

Figure 1.2 (A) Quarter-degree cells selected by Marxan to represent sub-
Saharan African bird species in their current distributions. Cells are 
represented in black and are not shown to scale. 
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B 

 
Figure 1.2 (B) Map of quarter-degree cells selected by Marxan to protect sub-
Saharan African bird species for projected 2025 species distributions coloured 
depending on the how many future scenarios (ECHAM4 / OPYC, GFDL-R30, 
HadCM3) they are selected in. Red = 3 times, Orange = 2 times, Green = 1 
time. Cells are not shown to scale. 
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C 

 
   Figure 1.2 (C) Map of quarter-degree cells selected by Marxan to protect 
sub-Saharan African bird species for projected 2055 species distributions 
coloured depending on the how many future scenarios (ECHAM4 / OPYC, 
GFDL-R30, HadCM3) they are selected in. Red = 3 times, Orange = 2 times, 
Green = 1 time. Cells are not shown to scale. 
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D 

 
Figure 1.2 (D) Map of quarter-degree cells selected by Marxan to protect sub-
Saharan African bird species for projected 2085 species distributions coloured 
depending on the how many future scenarios (ECHAM4 / OPYC, GFDL-R30, 
HadCM3) they are selected in. Red = 3 times, Orange = 2 times, Green = 1 
time. Cells are not shown to scale. 
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Climate data 
There are in some cases, as would be expected, noticeable differences 

between the three GCM scenarios, in terms of how concentrated the groupings 

of cells are in specific areas (Fig. 1.4). The three different climate scenarios 

mostly differ because of precipitation levels (Wichmann et al. 2003). The 

relatively ‘wet’ GFDL-R30 scenario has less clustering in the two peak areas of 

Ethiopia and South Africa, as opposed to the ‘dry’ ECHAM4 / OPYC scenario, 

potentially showing less upslope migration due to climate forcing in these 

areas. Additionally, GFDL-R30 has fewer shortfall species than the other 

scenarios in the one-degree data, again indicating a more optimistic outcome 

due to differences in precipitation (Table 1.1). These differences are 

highlighted in Fig. 1.4, which shows the number of cells selected in each 

country for the present and three 2085 GCM scenarios. These differences can 

be seen in areas such as Ethiopia and South Africa where a greater number of 

cells are selected for the ‘dry’ ECHAM scenario compared with the ‘wet’ GFDL-

R30 scenario. 
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Table 1.1: Results from reserve selection for the one and quarter-degree data. 
PU represent the planning units which are single cells. The different climate 
simulations; ECHAM4 /OPYC , GFDL-R30 and HadCM3 are represented as E, 
G and H respectively. 
One-degree CU target - 1 CU target - 5 
 Total PUs Spp. Total PUs Spp. shortfall 
Present 55 0 278 10 
E80 59 21 242 141 (21 unrepresented) 
G80 55 9 244 114 (9 unrepresented) 
H80 62 21 245 133 (21 unrepresented) 
Quarter-
degree 
results 

 

Present 59 0 269 0 
E20 58 0 268 0 
G20 59 0 268 0 
H20 58 0 272 0 
E50 59 0 263 0 
G50 61 0 274 0 
H50 61 0 272 0 
E80 58 0 295 4 
G80 59 1 270 2(1unrepresented) 
H80 59 0 271 4 
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Discussion 
 

The networks produced by Marxan comprise those sites that are required to 

meet the conservation targets whilst minimising the area of the reserve 

network. Selected cells are likely to contain rare and endangered species 

(Reyers et al. 2000) which without protection may be at risk from local 

population extinctions from processes such as habitat degradation and 

fragmentation. Variation in the selection of cells among the four time periods 

suggests a changing importance in many areas over time. The cells selected 

for the current period are reasonably well distributed across Africa, though with 

some obvious groupings. The localities of grouped cells tend to coincide with 

known biodiversity hotspots and EBAs (Stattersfield et al. 1998). Such regions 

are likely to be selected by Marxan because they contain range-restricted 

species (Azeria et al. 2007; De Klerk et al. 2004).  

 

Highland areas are hotspots for endemism because of frequent changes in 

climatic zones over relatively short elevation ranges (Williams et al. 2003), 

which causes speciation over short distances and explains the selection of 

such cells for present-day bird species distributions. However, climate change 

is expected to force some non-montane species to seek areas of higher 

altitude in order to remain within their current bioclimatic envelopes in the 

future, increasing the importance of highland areas for conservation (Pounds 

et al. 1999; Sekercioglu et al. 2008). Due to the fact that land area decreases 

with elevation, as species are forced to higher altitudes, they will experience 

decreases in range size (Gage et al. 2004). Small range sizes are correlated 

with increasing extinction risk (Harris & Pimm 2008), therefore species that 

experience decreases in range due to up-slope climate forcing will be under 

increasing risk of extinction (Sekercioglu et al. 2008). The extinction risk posed 

by climate-induced decrease in range can be exacerbated by factors such as 

habitat fragmentation which will impede dispersal to more suitable habitats and 

microclimates, and increases the importance of well planned reserve networks 

(Raxworthy et al. 2008). The areas that are highlighted as being important for 

conservation in the future are also areas that tend to currently lack protection 

as reserves (De Klerk et al. 2004) and are under threat from large human 
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populations (Rondinini et al. 2006). Increasing importance because of climate 

change coupled with the lack of protection due to the past ‘ad hoc’ selection of 

reserves and the threat of human encroachment means that these areas 

should be of the highest priority for conservation in Africa so as to ensure their 

protection in the future. The priority areas for conservation identified in this 

study should be considered in terms of the reliability and scale of the bird data 

and the scale of the planning units.  

 

There are several caveats in generating the simulated range data for this 

study, starting firstly with the climate scenarios used. The three simulations 

were chosen because they represented the mean for the nine models included 

in the IPCC Third Assessment Report (Cubasch et al. 2001). As mentioned in 

the Third Assessment Report, these models are affected by three different 

forms of uncertainty; uncertainty in forcing scenarios, uncertainty in modelled 

reponses to given forcing scenarios and missing or misrepresented physical 

processes in models (Cubasch et al. 2001).The ‘complex, chaotic, non-linear 

dynamics’ in climate systems are also a limiting factor to the accuracy of any 

climate model (Moore et al. 2001). These potential sources of error should be 

acknowledged when inferring applications of the results of this study to real life 

situations, but are unavoidable due to the predictive nature of the research. 

 

Another potential limitation in the accuracy of this study is the use of a BEM to 

predict the distributions of species from their bioclimatic envelopes. This 

method of predicting species distributions has been criticised for its simplicity 

in terms of using climate as the sole influencing factor of species ranges 

(Hampe 2004). Despite these criticisms, BEMs are widely used because they 

are not reliant on detailed climatic tolerance data of individual species 

(Heikkinen et al. 2006). Scale is an important factor when interpreting the 

results of BEMs because they are more accurate at large scales (Pearson & 

Dawson 2003; Morin & Lechowicz 2008). At smaller scales other factors 

become more important in determining a species’ niche (Luoto et al. 2007).  

 

The effects of scale are evident in the results as there are obvious differences 

in the shortfalls of species at the two different scales of this study. The one-
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degree cell simulations show much greater numbers of species as un- or 

under-represented within the selected reserve networks than the quarter-

degree simulations do. Both sets of data are derived from the same source so 

the differences observed are caused by scale. The one-degree data are the 

average climate over a larger area than the quarter-degree data and therefore 

fewer species will be compatible with the bioclimate. For the quarter-degree 

data, over the distance of 100 km, there could potentially be several different 

bioclimates represented that would not be identified at the one-degree scale 

and therefore the species that exist in these bioclimates would be included. 

This is particularly true in highland areas where a distance of 100 km can 

constitute large elevational ranges and consequently bioclimates. Therefore, 

the quarter-degree data will identify climatically suitable areas for species 

which were not highlighted by the one-degree data, decreasing the shortfall of 

species in the results.  

 

 The regions that have large numbers of selected planning units are likely to be 

of importance in the future due to their current biodiversity and endemism as 

well as their high altitude compared with surrounding areas. Notwithstanding 

issues of species’ ability to respond to climate in a fragmented landscape, 

these simulations could be used to identify those countries or regions of 

greatest importance for conservation in the future.  

 

African countries differ greatly in their ability to protect biodiversity, but as a 

continent, Africa suffers from many factors that impede conservation such as 

poverty, population growth and political instability (Hackel 1999; Kanyamibwa 

1998). Being aware of which countries will be of the greatest importance to 

conservation in the future will allow conservation managers to develop 

strategies that are specific to the current and potential future state of those 

countries. Using examples of the two countries that contain the greatest 

number of selected planning units in the future, South Africa and Ethiopia, 

potential issues in creating conservation strategies that are robust to climate 

change can be identified. South Africa has a well developed and funded 

conservation infrastructure (Knight et al. 2006), so when faced with the task of 

mitigating the impacts of climate change, conservation planners will have an 
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organised and clearly defined PA network with which to work. By contrast, 

Ethiopia has been severely affected by civil war and as a result, wildlife 

conservation is not a priority for the country’s meagre resources (Gebre-

Michael 1992). In Ethiopia’s case, community-based conservation strategies 

may be more successful than ‘fortress conservation’ strategies previously used 

there (Gebre-Michael et al. 1992). 

 

More data are required before conservation organisations can start to take 

action on predicted future impacts of climate change on bird assemblages in 

Africa. Hannah et al. (2007) caution about the ‘cost of waiting’ to take action 

against the impacts of climate change, however, allocating conservation 

resources to areas predicted to increase in importance could create 

inefficiency costs if those predictions fail to come true. How accurate data are 

required to be before action is taken will be an important question for 

conservation planners (Grantham et al. 2009). However, since many of the 

areas that have been highlighted by this study as potential priority areas in the 

future are already recognised as important to avian conservation efforts in the 

present-day, then conservation efforts focused on these areas will represent 

an investment in the present as well as the future (McClean et al. 2006).  
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Chapter 3: Impacts of Climate Change on the African 
Important Bird Area Network: Potential Options for 
Adaptation 
 

Abstract 
Climate change, in collaboration with habitat destruction, is likely to be one of 

the greatest threats to the persistence of avifauna species in the foreseeable 

future. Although Protected Areas are assigned to preserve key species’ 

habitats, they have, to date, been designed to function in a stable climate. As 

climate change alters the distributions of species’ ranges, Protected Areas 

may become redundant as the species they currently protect are climatically 

forced into other areas. This study explores climate change effects on a 

continent-wide protected area network and, using a reserve selection 

algorithm, attempts to determine ways to mitigate and adapt to such impacts. I 

find that climate change has a large effect on the continent-wide distribution of 

those Protected Areas selected to efficiently represent the bird species of sub-

Saharan Africa. 

Introduction 
 
Protected Areas (PAs) are vital for the protection of species from extinction 

(Gaston et al. 2008). However, the performance of PAs is vulnerable to the 

effects of climate change because of changes in species assemblages that 

can be caused by a changing climate (Hannah et al. 2007). As the climate 

found in a PA changes, the species that are present within the reserve may 

become locally extinct, either because of direct effects of unsuitable climate, or 

because species that are better adapted to the new climate colonise and alter 

the present species assemblages (Burns et al. 2003). Predicting those 

changes that are likely to impact the efficacy of PAs will allow conservation 

practitioners to put into place methods for mitigating the effects of climate 

change as well as concentrating resources on areas which will be of great 

importance for conservation over the coming Century (Heller & Zavaleta 2009).  

The African Important Bird Areas (IBA) network has been designed to monitor 

and protect areas of conservation importance for range- and biome-restricted 

bird species as well as areas that hold significant congregations of single or 
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multiple species. Each IBA was chosen on four selection criteria; (1) significant 

numbers of one or more species which are of global concern to conservation, 

(2) significant component of populations of one or more species with restricted 

ranges, (3) a significant component of a group of species which are largely or 

wholly confined to one biome, or (4) significant numbers (>1%) of the 

biogeographical populations of one or more congregatory species (Fishpool & 

Evans 2001). Over the whole continent, there are more than 1230 IBAs in 58 

countries which cover approximately 7% of the land area (Fishpool and Evans 

2001). Although the IBA network is comprised of PAs, it is not the goal of the 

IBA program to make all IBAs into PAs. Instead, in areas defined as IBAs, 

policies that halt the further disruption to bird species would be favoured over 

the costly task of protection under the IUCN PA categories 1-6. If all IBAs 

received such protection, the risk of extinction of many bird species would 

surely be greatly decreased in Africa. However, the IBA network was designed 

to protect species under the scenario of relatively stable climatic conditions 

(Willis et al. 2009b). With the looming threat of climate change now well 

documented, attention must be focused on how climate change will affect the 

performance of PA networks such as the IBA program (Burns et al. 2003). This 

study aims to identify ways to increase the IBA network’s resilience to the 

impacts of climate change through adaptation. 

The study utilises projections of species current and projected future 

occurrence in protected areas from a study undertaken by Hole et al. (2009), 

which forecasts the turnover of bird species in IBAs in sub-Saharan Africa 

during the 21st Century. Hole et al. (2009) showed that the African IBA network 

will provide climate space for the majority of species throughout the 21st 

Century although there is the potential for high turnover of species in many 

IBAs. By applying a reserve selection algorithm (RSA) to their simulations of 

current and projected future assemblages of birds in African IBAs, the 

importance of protected areas within the network can be gauged by 

complementarity (Latta 2005). RSAs are programs which calculate efficient 

reserve networks through the systematic selection of planning units based on 

species distribution data. Applying such RSAs to the future IBA projections will 

provide an indication of those reserves that will be of particular importance to 
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avifauna conservation in the future. Negative impacts on the network can then 

be potentially mitigated against by identifying ways in which to improve the 

resilience of the network to climatic change.  

This study explores how the IBA network could be improved in the future 

through the addition of new sites, selected by an RSA, that are currently 

unprotected, yet have the potential to become very important in the future for 

those components of avian biodiversity that are projected to become 

underrepresented in the network. An alternative approach to mitigating the 

impacts of climate change is through the identification of IBAs which maintain 

populations of the same species throughout the upcoming Century. Such IBAs 

therefore will protect populations that are not at risk from having to shift their 

ranges as climate changes. This study demonstrates a case-study approach to 

adapt and mitigate against future projected changes as a result of climate 

change. Such approaches can help to direct conservation efforts most 

efficiently in the future and suggest alterations that could be made to existent 

continent-wide PA networks. 

Methods 
 

This study focuses on IBAs located on mainland Africa south of 20o North 

(sub-Saharan). In this region there are 803 IBAs and 1679 bird species, 

although only 1608 species have sufficient data to be modelled. The data for 

the future distributions of species were obtained from modelling work 

undertaken as part of a previous project (Hole et al. 2009). 

Bioclimate and Species Data 
The models simulating future distributions of bird species across sub-Saharan 

Africa, were produced by Hole et al. (2009) from recent species distribution 

data (1980-2000; Brooks et al. 2001) from the Zoological Museum of the 

University of Copenhagen (Jetz and Rahbek 2002). Presence-absence data 

for 1608 species were available for the 1963 one-degree cells that make up 

sub-Saharan Africa. Mean bioclimatic data for the one-degree cells were 

created from mean monthly temperature and precipitation data available for 

quarter-degree cells for the period 1950-2000 (Hijmans et al 2005; 

http://www.worldclim.org). Seven bioclimatic variables were chosen for 
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modelling the bioclimatic envelopes of each species; mean temperature of the 

coldest month; mean temperature of the warmest month; an estimate of the 

ratio of actual to potential evapotranspiration; wet season duration; wet season 

intensity; dry season duration; and dry season intensity (Willis et al. 2009b). 

They were selected for their previously confirmed ability in modelling the 

bioclimate envelopes of a wide range of European and African bird species 

(Huntley et al. 2006). The first three variables were used as standard variables 

in all models, but only one of the four seasonality variables, wet season and 

dry season duration and intensity were used (the procedure for selecting the 

fourth variable is explained by Huntley et al. 2006). 

The climate data for the future time periods were obtained from three general 

circulation models (GCMs); HadCM3 (Gordon et al. 2000), ECHAM4 

(Roeckner et al. 1996) and GFDL-R30 (Knutson et al. 1999). The simulations 

used were based on the SRES B2a emissions scenarios for three time 

periods, which represent 30 year averages for 2011-2040 (abbreviated from 

here-on-in to the central year of the series; 2025), 2041-2070 (2055) and 

2071-2100 (2085). The GCMs used are representative of the mean for the 

nine models included in the Intergovernmental Panel on Climate Change 

(IPCC) Third Assessment Report (Cubasch et al. 2001) and range in simulated 

precipitation regimes from relatively wet (GFDL-R30) through to the mean 

(HadCM3) and relatively dry (ECHAM4). Since the data have been created 

using climate models from the Third Assessment Report, the IPCC Fourth 

Assessment report has been published. The models used have therefore since 

been improved by the reduction of error in the prediction of precipitation, mean 

sea-level rise and surface air temperature (Randall et al. 2007).  

The bioclimatic envelope of each species was estimated using a Climate 

Response Surface (CRS), which uses locally weighted regression to fit a 

response surface to a species’ presence-absence data. This method was 

chosen over alternative approaches such as generalised additive models 

(GAM) after paired t-tests on sensitivity and true skill statistic (the assessment 

metrics used) indicated that CRS performed better than GAM (see Hole et al. 

2009). The CRS models were validated using two techniques; firstly, for 

species which were recorded in > 20 one-degree cells, K-fold partitioning was 
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used. Κ-fold partitioning is a procedure which generates Κ models by 

partitioning the data into Κ equal-sized sets apart from the i-th set which is 

used as training data. This process is carried out Κ times with each K 

subsample used once as the training data, this has the advantage of using all 

data for both validation and training (Ali & Pazzani 1996). This method has 

advantages over the often applied 70:30 data splitting approach for model 

creation and validation (Thuiller et al. 2009) as it reduces potential issues of 

spatial autocorrelation.  

Predictive performance was assessed using values obtained for the area 

under the curve (AUC) of a receiver-operated characteristic plot (Fielding and 

Bell 1997). This was carried out for 1401 species, 89% of which exhibited K-

fold partitioned AUCs of ≥ 0.9 (no species had a K-fold partitioned AUC < 0.7), 

indicating high-model performance (Swets 1988). Model fit for the remaining 

207 species, recorded in fewer than 20 one-degree cells, was assessed using 

a jack-knifing approach. This process calculates the probability of a species’ 

occurrence in a single one-degree cell, using a model built using all of the data 

except for the cell for which I wish to obtain a simulation of occurrence. This is 

repeated for all 1963 cells of sub-Saharan Africa, for each species, and 

essentially produces simulations independent of the data used to create the 

CRS. Although this is more prone to issues of spatial autocorrelation than K-

fold partitioning, the latter procedure cannot be used on restricted range 

species as large proportions of their entire range often fall within a single 

excluded panel. The projection accuracy was assessed using the same AUC 

process as applied to the more widespread species.  83% of the 207 species 

displayed a jack-knifed AUC ≥ 0.9, which again indicates a high-model 

performance (for more details, see Hole et al. 2009). 

Species simulated presence/absence for each IBA were calculated by 

characterising one or more bioclimates in each IBA and then applying the CRS 

model for each species to the bioclimate(s) for each IBA. This was 

accomplished using a spatial intersection, within a GIS, of the IBA polygons, a 

one-degree grid to determine the broad spatial extent of each IBA, and a 

quarter-degree grid for each of the seven bioclimatic variable grids and for 

elevation. To produce a probability of occurrence for each species in each IBA, 
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single or multiple bioclimates were assigned to each IBA. This was done by 

firstly assessing the size of the IBAs using the one-degree grid, if an IBA 

spanned more than a single one-degree cell, the polygon was split into a 

number of sub-polygons, by intersecting the one degree cells and the IBA 

polygon. The polygons or sub-polygons were then assigned bioclimates 

according to the associated quarter-degree climate data. Similarly, if the 

elevational range of a polygon or sub-polygon was >600 m, the component 

quarter-degree cells were stratified into two or more elevation bands and a 

separate bioclimate was calculated for each band. Finally, the one-degree 

models for all species were projected onto each IBA’s bioclimate(s) for all time 

periods and climate scenarios. The probabilities of occurrence were converted 

to presence or absence data by applying the threshold probability that 

maximised Cohen’s κ for the one-degree model (Huntley et al. 2006). 

Therefore, if a species’ probability of occurrence exceeded the threshold 

probability in any of the sub-polygons of an IBA, it was regarded as present. 

Reserve Selection 
The RSA Marxan was used to select the combination of IBAs which protects 

all species most efficiently (Ball & Possingham 2000; Possingham et al. 2000). 

This program uses simulated annealing to select planning units that represent 

all target species whilst minimising the cost of the reserve network 

(Carwardine et al. 2007). Cost, in this context, refers to the size of the reserve 

network which can be used to calculate other costs such as the economic 

costs of protecting the selected areas. Marxan was used because of the 

combination of speed and reliability when using large data sets, and because 

results reach a high degree of optimality; traits which are not found together in 

simpler heuristic or more complex integer programming algorithms (Nicholson 

et al. 2006; Oetting et al. 2006). In selecting IBAs, the cost of each IBA was 

kept equal despite the large variation in size that exists among the different 

reserves. This was done partly because costing the reserves is a complex 

procedure that is beyond the scope of this particular study and the inclusion of 

cost in selection may have removed the importance of climate as the major 

selection factor in the simulations.  



 

72 
 

Marxan uses the process of simulated annealing to select the most efficient 

sites for a network. This process works through the random addition and 

removal of planning units (PU) from an initial reserve network that is either 

selected randomly by Marxan or by the user (Peralvo et al. 2007). Once a site 

is added or removed, Marxan re-evaluates the performance of the network and 

will accept the alteration if it has a positive effect on solving the set-covering 

problem. Initially, additions to the network which have a negative effect are 

retained so as to prevent the simulation reaching local optima, but as the 

simulation continues, more negative additions are rejected because of the 

decreasing value of the cost functions within the program (McDonnell et al. 

2002; Peralvo et al. 2007; Possingham 2000). The selection of PUs is based 

on complementarity, which selects PUs depending on how a newly added site 

complements the species that are already protected within the network 

(Church et al. 1996). By doing this, the efficiency of the network is increased 

because PUs are added in the order of sites which append the greatest 

number of novel species to the existing network. In this way, the best reserve 

network will indicate the most efficient way in which to protect all species with 

the available PUs. This can therefore indicate to planners areas that are of 

high importance to conservation. 

A species representation target of conserving five separate populations was 

used when running Marxan. This target was chosen in order to create a 

network that would be robust to local population extinctions. As this study 

deals with a large number of species that inevitably vary in their range and 

population sizes, as well as their threat of extinction, along with uncertainty in 

future climate projections, choosing a single representation target for all 

species is marred by uncertainty (Justus et al. 2008). Assigning numerical 

representation targets for species has been criticised as a purely arbitrary 

exercise (Wiersma & Nudds 2006). However, at the scale of this study, 

defining realistic targets for each species would be a challenging task, 

requiring knowledge of population sizes and the degree of threat for species at 

local, regional and continental scales. With this in mind, the targets were 

chosen as a simple first-step approach to a complex problem. 
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Reserve selection for present and future species distributions 
Species simulated occurrence data for the four different time periods (present, 

2025, 2055 and 2085) were used in MARXAN to create optimal reserve 

networks based on each IBA’s simulated species communities. This gives a 

unique view of how climate will affect the importance of the different IBAs 

across the Century and indicates patterns which could occur as the effects of 

climate change increase.  

In order to show differences between those IBAs that were selected for 

present-day distributions and those selected for the future simulations, one-

way ANOVA and paired samples T-tests were used to compare the elevation 

characteristics of the different sites. The characteristics used for comparison 

were the maximum elevation and the elevational range found within the IBA. 

For the ANOVA analyses, comparison was made between those IBAs selected 

for the present-day and the IBAs that were selected for the future, with 

different categories depending on how many of the three climate scenarios the 

IBAs were chosen in. 

Combining IBAs and quarter-degree cells to produce networks for 
the future 
Since IBAs have been chosen to protect sites of significant importance to 

avifauna species of conservation concern in Africa under current climatic 

conditions, few additions to the network should be necessary at present to 

increase the representation of species within the network. However, under 

future climate change scenarios, the ability of the network to represent all 

species may be compromised. Therefore, by permanently fixing the IBAs into 

the network within Marxan, by changing their planning unit status (Game & 

Grantham 2008), Marxan can be made to select additional areas around the 

IBAs to increase species representation in the network under future climate 

scenarios. Therefore, as potential additions to the IBA network, the quarter-

degree cells across sub-Saharan Africa were made available for the relevant 

time periods; their simulated species assemblages being derived from applying 

the CRS models to the mean climate for each cell. Those quarter-degree cells 

that fell within the boundaries of an IBA were removed, allowing Marxan to 

select the cells that provided additional coverage outside of the current 

network in order to reach total representation of species alongside the existent 



 

74 
 

reserves. This approach helps to counter potential shortfalls in the IBA network 

in the future by suggesting potential localities for additions to the network.  

 
Key Stable Sites (KSSs) 
IBAs that are simulated to be suitable for a species throughout the current 

Century (which I term key stable sites, KSSs) could be of great importance to 

conservation because they provide such species with permanent sanctuaries 

over time in a changing climate (Vos et al. 2008). This removes the need for 

such species to undergo range shifts caused by climate forcing. Such shifts 

could necessitate the movement of species across unprotected land, which is 

often associated with increased risk to individuals (McInerny et al. 2007). By 

identifying KSSs, conservation can determine those species that are likely to 

remain protected throughout the Century within the IBAs they currently occupy. 

In this way, extra effort can be made to maintain healthy populations of such 

species within these PAs.  

KSSs were identified by collating simulated occurrences for each species in 

every IBA across the Century. In essence the KSS network is a scenario which 

assumes that species will be unable to disperse to new IBAs. Marxan was then 

used to select a network of reserves that most efficiently represented all 

species found within KSSs. Through this method, those KSSs which protect 

the most species throughout the Century will be included into the network.  

 

For the basic reserve selection and KSS simulations, 100 runs were completed 

for each climate scenario. Although other studies that have used Marxan used 

more than 100 runs per simulation (e.g. Rondinini et al. 2005), 100 runs was 

viewed as adequate for this study because initial trials showed that increasing 

the number of runs performed by Marxan in each simulation had little effect on 

the efficiency of the network created. Additionally, creating an optimal network 

was not considered vital because of other factors that may limit the accuracy of 

the results within this study (Cowling et al. 2003; Dormann et al. 2008; Knight 

et al. 2008; Knight et al. 2006). When adding quarter-degree cells to the IBA 

network, 200 runs were performed per simulation because of the larger 

number of PUs used. 
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Results 
 
The number of climate scenarios an IBA was selected in is used as an 

indicator of the importance of selected planning units. Although the number of 

climate scenarios an IBA was selected in does not necessarily denote 

importance to conservation, it does indicate that even under different future 

climate scenarios, the site was repeatedly selected and therefore symbolizes 

resilience of that site to climatic change. The identification of sites that operate 

over a range of different climate scenarios is potentially of great importance for 

conservation, due to the uncertainty involved in the prediction of climate 

change.  

Data on the selected planning units and unrepresented species are listed in 

the supplementary material (S2). 

Reserve selection for present and future species distributions 
There is a clear change over the Century in the pattern of distribution of IBAs 

selected to best protect species (Fig. 2.1a-d). In the present time period, IBAs 

selected are well dispersed across the sub-continent and represent all major 

biomes and endemic bird areas (Fig. 2.1a). The pattern for 2025 is similar, 

though with increased sites selected in East Africa and fewer in West Africa 

(Fig. 2.1b). The results from 2055 and 2085 also show this trend of reduced 

selection in the west and increased selection in the east, as well as an 

increase in IBAs selected in southern Africa (Fig 2.1c-d). The changes in the 

distribution of chosen IBAs is gradual over time, but a comparison of the 

present-day distributions with those for 2085 (Figs 2.1a & 2.1d), demonstrates 

a marked change in selection over the Century. Data on which IBAs were 

selected for the difference scenarios and for the shortfall species is provided in 

the supplementary material (S2) 

Those IBAs selected for the present-day were compared with the IBAs 

selected for future scenarios. A significant difference in the maximum elevation 

found within the selected IBAs was shown between present-day and end of 

Century predictions (ANOVA; F3,799=12.031, P<0.001). This difference was 

also shown for the elevational range found within the IBAs (One-Sample T-

test; d.f. = 358, Sig.2-tailed P=.025), providing evidence that IBAs with large 
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elevational ranges and high maximum elevations will be efficient at protecting 

bird species in Africa in the future. 
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A 

 
Figure 2.1 (A) Optimal reserve networks of IBAs selected using Marxan to 
protect sub-Saharan African bird species for current species distributions. Note 
for the present period, there is only one, i.e. observed ‘scenario’. Selected 
IBAs are shaded in green, unselected IBAs are shaded in grey. 
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B 

 
Figure 2.1 (B) Optimal reserve networks of IBAs selected using Marxan to 
protect sub-Saharan African bird species for projected 2025 species 
distributions. The colour scheme represents how many of the three different 
climate scenarios the IBA was selected in; Green = 1, Orange = 2, Red = 3. 
Unselected IBAs are shaded in grey. 
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Figure 2.1 (C) Optimal reserve networks of IBAs selected using Marxan to 
protect sub-Saharan African bird species for projected 2055 species 
distributions. The colour scheme represents how many of the three different 
climate scenarios the IBA was selected in; Green = 1, Orange = 2, Red = 3. 
Unselected IBAs are shaded in grey. 
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Figure 2.1 (D) Optimal reserve networks of IBAs selected using Marxan to 
protect sub-Saharan African bird species for projected 2085 species 
distributions. The colour scheme represents how many of the three different 
climate scenarios the IBA was selected in; Green = 1, Orange = 2, Red = 3. 
Unselected IBAs are shaded in grey. 

 
 

 

 

 

Additional quarter-degree cells assuming species dispersal 
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The analyses to determine locations for additional sites that could strengthen 

the IBA network produced similar results for the future time period scenarios. 

These analyses assume that species for which projected IBAs are simulated to 

be suitable will be capable of reaching these locations, and therefore assume 

no limitations in dispersal to newly suitable IBAs.  Additional localities selected 

under the end of Century climate change scenarios were much more 

numerous than those selected to more fully protect species in the present 

period.  

For the present period, 40 additional sites were needed to obtain full 

representation. These sites occur on the Horn of Africa (10 sites) and in 

Ethiopia, in scattered sites in north and west Africa, three equatorial locations 

in Gabon/Congo, seven sites spanning 15-18 degrees south in Mozambique, 

Malawi, Zambia and Namibia, and four sites in the Namib-Karroo region of 

South Africa (Fig. 2.2a). The major species under-represented in the current 

IBAs which are protected in these 40 sites are summarised in the 

supplementary material (S2.2).  

The average number of additional sites for each time period increased over the 

Century (2025 – 58, 2055 – 71, 2085 – 75) summarised in table 2.1.  

The additional sites selected for 2025 have a similar distribution to the present 

with clusters occurring in the same areas (fig. 2.2b). There is a linear group of 

additional cells that have been selected along the Atlantic coast from Namibia 

to Angola. Clusters on the Atlantic coast are also found in Equatorial Guinea 

and the du Chaillu Mountains of Gabon where three sites have been selected 

in two GCM scenarios.  

The additional cells selected for 2055 and 2085 differ from those selected in 

the first half of the Century mainly because of the selection of sites in the 

Ethiopian Highlands in Northern Ethiopia, the Eastern Arc Mountains and in 

North-East Tanzania.  Particular clusters selected for 2055 and 2085 are seen 

in Northern Ethiopia and the Horn of Africa, the Eastern Arc Mountains, South 

African Highveld and Namib-Karroo regions, and northern lowland regions and 

du Chaillu mountains of Gabon. There is also an almost continuous strip of 

additional sites selected that run along the Atlantic coast from South Africa, 
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through Namibia to the North-west of Angola. There is also a cluster of 

additional cells in the Drakensberg Mountains present in the 2085 network 

which is not found in the 2055 network. 

It must be made clear that because this study uses a numerical representation 

target, additional sites do not necessarily indicate a shortfall in the IBA 

network’s coverage and protection of a species, but could highlight areas 

where the protection offered to species is not extensive.  
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Figure2.2 (A) Quarter-degree cells selected by Marxan in addition to the IBAs 
of sub-Saharan Africa to increase species representation in the network for 
current species distributions. The IBA network is represented in green. The 
Quarter-degree cells are represented as black. The cells are not shown to 
scale. 
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Figure2.2 (B) Quarter-degree Cells selected by Marxan in addition to the IBAs 
of sub-Saharan Africa to increase species representation in the network for 
projected 2025 species distributions. The IBA network is represented in green. 
The Quarter-degree cells are represented as black for those that are selected 
in one future climate scenario and red for those selected in two. No cells were 
selected for all three scenarios. The cells are not shown to scale. 
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Figure2.2 (C) Quarter-degree Cells selected by Marxan in addition to the IBAs 
of sub-Saharan Africa to increase species representation in the network for 
projected 2055 species distributions. The IBA network is represented in green. 
The Quarter-degree cells are represented as black for those that are selected 
in one future climate scenario and red for those selected in two. No cells were 
selected for all three scenarios. The cells are not shown to scale. 
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Figure2.2 (D) Quarter-degree Cells selected by Marxan in addition to the IBAs 
of sub-Saharan Africa to increase species representation in the network for 
projected 2085 species distributions. The IBA network is represented in green. 
The Quarter-degree cells are represented as black for those that are selected 
in one future climate scenario and red for those selected in two. No cells were 
selected for all three scenarios. The cells are not shown to scale. 
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Table 2.1: Number of additionally selected cells selected for each time period 
and GCM scenario, as well as the number of un- and underrepresented 
species in each  of the scenarios. GCM scenarios are represented as E 
(ECHAM4); G (GFDL R30); H (Had CM3), with the time period represented by 
the number. 

Scenario 

 
 

No. Additional 
PUs 

No. 
underrepresented 

Spp. 

No. 
Unrepresented 

Spp. 
Present 40 0 0 

E25 58 1 0 
G25 62 0 0 
H25 54 0 0 
E55 72 0 1 
G55 69 1 1 
H55 71 2 0 
E85 80 3 1 
G85 60 2 2 
H85 84 6 0 

 

Key Stable Sites (KSS) 
The KSS network that was selected shows a different pattern from that seen 

for the previous analyses, which assumed species colonisation of newly 

suitable sites (Fig. 2.3). The recurrent theme of selection of IBAs in Eastern 

and Southern Africa (Fig. 2.1-2.2) for end of Century species distributions is 

not evident with the KSS analysis. There is a reasonably well-distributed 

selection of IBAs across sub-Saharan Africa. Special attention must be paid to 

those KSSs that are selected for all three climate scenarios as these represent 

the most stable IBAs, regardless of the direction of future climate change. 

Such KSSs are clustered in the Ethiopian Highlands, Horn of Africa, Eastern 

Arc mountains, Albertine Rift, the Cameroon Highlands, Congo and a 

concentration across Southern Africa. There is a noticeable absence of large 

KSSs from West Africa, with few being selected in the region overall. 

The selected KSSs show significant correlations between maximum altitude 

found within the KSS and selection by Marxan (Paired Samples T-test; 

d.f.=389, sig.2-tailed P <.001). There is also a significant difference between 

the elevational ranges of those IBAs selected as KSSs in the network and all 

other IBAs (ANOVA; F3,799=47.325, P<0.001; Paired Samples T-test; d.f.=389, 
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sig.2-tailed P <.001). There was a significant relationship between the size of 

the KSSs and how many climate scenarios they were selected in (ANOVA  

F3,799=13.573, P <.001; d.f.=389, Paired Samples T-test sig.2-tailed P=.033), 

with IBAs selected in all three scenarios being significantly larger than those 

that were not (ANOVA; LSD and Bonferroni multiple comparisons;  P <.001; 

See Table 2.2) indicating that the climatic stability of a PA is related to its size. 

Selecting IBAs based solely on sites that retain suitable climate for species 

during the whole of the current Century inevitably results in some species not 

being represented at all in the network. Under the GFDL-R30 climate scenario 

55 species are not represented in key stable sites, under the HADCM3 

scenario 61 species are not represented and under the ECHAM 4 scenario 71 

are not represented (Table 2.3).  
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Table 2.2: LSD and Bonferroni ANOVA Post Hoc tests showing the 
significance of variance between the size of KSSs selected in all three GCM 
scenarios and those that were not. The group numbers represent the number 
of GCMs a KSS was selected in. 

Post Hoc 
Test 

No. of GCM 
scenarios IBA 
was selected 

in Sig. 
  0 1 0.988 
    2 0.413 
    3 <0.001 
  1 0 0.988 
    2 0.476 
LSD   3 <0.001 
  2 0 0.413 
    1 0.476 
    3 <0.001 
  3 0 <0.001 
    1 <0.001 
    2 <0.001 
  0 1 1 
    2 1 
    3 <0.001 
  1 0 1 
    2 1 
Bonferroni   3 <0.001 
  2 0 1 
    1 1 
    3 <0.001 
  3 0 <0.001 
    1 <0.001 
    2 <0.001 
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Figure 2.3 KSSs for all three future time periods (2025, 2055, 2075) and 
climate scenarios (GFDL-R30, HadCM3, ECHAM4) selected by Marxan to 
represent sub-Saharan African bird species. Colour scheme represents the 
number of climate scenarios the KSS was selected for; Green = 1, Orange = 2, 
Red = 3. Unselected IBAs shaded grey. 
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Table 2.3: List of species unrepresented in the KSS network for the three 
GCM scenarios.  

Species' Scientific name HADCM3 ECHAM4 
GFDL-
R30 

Agapornis lilianae * * * 
Agapornis nigrigenis * * * 
Agapornis personatus * *   
Alethe choloensis * * * 
Alethe fuelleborni   *   
Andropadus chlorigula   *   
Anthreptes rubritorques   *   
Anthus melindae *     
Apalis binotata * * * 
Apalis chapini   * * 
Apalis chariessa * * * 
Apalis chirindensis * * * 
Bathmocercus winifredae   * * 
Batis margaritae * *   
Batis minima * * * 
Batis minulla * * * 
Bradypterus grandis * * * 
Bubo shelleyi     * 
Bubo vosseleri * * * 
Campethera mombassica * *   
Caprimulgus binotatus     * 
Cercomela dubia *     
Certhilauda barlowi * * * 
Certhilauda burra * * * 
Certhilauda erythrochlamys     * 
Cisticola dambo * * * 
Cisticola melanurus   * * 
Colius castanotus * *   
Columba oliviae * * * 
Dendropicos stierlingi *     
Drymocichla incana   * * 
Egretta dimorpha * * * 
Egretta vinaceigula * *   
Estrilda thomensis *     
Euplectes aureus * * * 
Francolinus griseostriatus * * * 
Francolinus harwoodi * *   
Hirundo fuliginosa     * 
Lagonosticta sanguinodorsalis * * * 
Lagonosticta virata * * * 
Laniarius fuelleborni   *   
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Lanius gubernator   *   
Lanius marwitzi   * * 
Lybius chaplini * * * 
Macronyx grimwoodi   *   
Malaconotus monteiri *     
Malimbus ballmanni *   * 
Melignomon eisentrauti *   * 
Mirafra alopex *   * 
Mirafra angolensis   *   
Mirafra collaris *     
Mirafra rufa * *   
Mirafra somalica * * * 
Modulatrix orostruthus     * 
Nectarinia moreaui   * * 
Nectarinia osea * * * 
Neocichla gutturalis * *   
Oenanthe phillipsi *     
Oriolus chlorocephalus *     
Orthotomus metopias   *   
Phedina brazzae * * * 
Phyllastrephus alfredi * * * 
Phylloscopus laurae * *   
Platysteira albifrons * * * 
Plocepasser donaldsoni * * * 
Ploceus angolensis * *   
Ploceus batesi   * * 
Ploceus dicrocephalus * *   
Ploceus katangae   *   
Ploceus nicolli   *   
Ploceus spekeoides * * * 
Ploceus temporalis   *   
Poicephalus crassus * * * 
Prinia fluviatilis * * * 
Prinia leontica   * * 
Sarothrura lugens   *   
Serinus ankoberensis   *   
Serinus xantholaemus * *   
Sheppardia sharpei   *   
Spizocorys obbiensis * * * 
Spizocorys personata * * * 
Spizocorys sclateri     * 
Swynnertonia swynnertoni   * * 
Tauraco erythrolophus * *   
Turdoides hindei   * * 
Turdoides melanops * * * 



 

93 
 

Turdoides sharpei *   * 
Vidua codringtoni *   * 
Vidua larvaticola * * * 
Xenocopsychus ansorgei *     
Zoothera cameronensis     * 
Zoothera crossleyi * *   
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Discussion 
 
Our results indicate that future changes in climate are likely to have an impact 

on the performance of the current African IBA network. Compared with the 

results from Hole et al. (2009), this study suggests a more pessimistic outcome 

because where Hole et al. (2009) show that species turn over will be high 

within PAs, they do not show the extent of species distribution change across 

sub-Saharan Africa. The network as a whole, however, copes well in terms of 

species representation. Identifying those areas and IBAs that are predicted to 

gain species in the future will be of great importance to conservation and the 

results from this study provide some evidence to the identity of these areas.  

Selection in Present and Future Time Periods 
The predominant shift of importance to IBAs in Southern and Eastern locations 

can be explained in two ways which are not mutually exclusive. Firstly, climate 

is predicted to undergo changes in West Africa that will be detrimental to the 

current assemblage of species, affecting the ability of species to maintain 

viable populations within these areas. Climate in West Africa is expected to 

cause negative changes in plant communities under certain climate scenarios 

(Dixon et al. 1996; Delire et al. 2008) and has been identified as a possible 

cause of change in flora and avifauna distributions in the past (Thiollay 1998; 

Wittig et al. 2007). This is further supported by the East-West aridity gradient in 

Southern Africa that is predicted to become amplified in the future (Erasmus et 

al. 2002). The bioclimate models will therefore show an exodus of species 

from these areas as the climates they were initially matched to are no longer 

found within the region.  

Alternatively, Eastern and Southern Africa have many highland areas which 

will provide areas which maintain hospitable climates for many species as 

climate changes (Sekercioglu et al. 2008). This would explain the increases in 

IBA selection in Eastern Africa where highland areas such as the Ethiopian 

highlands, Eastern Arc Mountains, Highveld and Albertine Rift are found. This 

is supported by the significantly larger maximum elevation and elevational 

ranges found in IBAs selected in future time periods. Upslope movement of 

species in response to changing climate has been shown both theoretically 

(Colwell et al. 2008) and empirically (Nogue et al. 2009; Wilson et al. 2005; 
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Wilson et al. 2007) by studies focussing on climate change. It is likely that 

highland regions will be of increasing importance in the future as they provide 

species with suitable climate space through upslope migration. Erasmus et al. 

(2002) predicted similar East-West shifts in species distributions across South 

Africa, attributing this to both climate and topography. These two processes 

acting in unison will surely have a significant impact on an East-West migration 

pattern of avifauna species over the coming Century. 

Additional quarter-degree sites 
The cells selected in addition to the IBA network were often clustered into 

certain regions, often in areas of high elevation. As previously mentioned, 

highland areas may become particularly important with climate change which 

would explain such selections. In these areas, although there may be sufficient 

numbers of IBAs, the increase in diversity predicted by the CRS models will 

mean that even an extensive reserve network would be unlikely to represent 

every species in five different PAs. Therefore, although the results would 

suggest the need for a dramatic increase in PA coverage in these regions, this 

may be an exaggerated conclusion. However, it further stresses the 

conclusions from the previous analyses that highland areas will be of 

increasing importance to conservation in the future and sufficient resources 

should be focused in such areas. 

The apparent increased requirement for protection along the Atlantic Coast 

from South Africa to Angola cannot be explained through the need for 

protection in highland areas because these additional PAs are predominately 

lowland. A study by Thuiller et al. (2006) showed that protected areas near the 

Namibian coast, which form a large proportion of additional cells along the 

Atlantic coast, are likely to experience an overall increase in plant species over 

the same time period as this study. Although the study focuses on plant taxa, it 

does suggest that climate change may not cause decreases in species 

numbers in this area and therefore provides some support that additional 

protection is required in this region. It must be noted that Thuiller et al. (2006) 

performed their simulations under a different emissions scenario and therefore 

results must be compared with caution. 
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The predominant selection of cells in highland areas can also, to a certain 

extent, be attributed to the endemic bird areas found in these areas, which 

contain species which cannot be protected anywhere else and are therefore a 

priority for conservation (Stattersfield et al.1998). This will cause increased 

selection in these areas, which, in combination with upslope migration over the 

Century, will contribute to the clusters of additional cells across Africa. 

Further research could be carried out to show whether the selection of 

additional sites for current species distributions has an effect on the number of 

additional sites required for future species distributions. This would then 

identify whether sites selected in the present would be of continued 

conservation importance throughout the century and therefore identify 

additional KSSs to the network.  

Key Stable Sites 
A major caveat of using BEMs to predict the effects of climate change on 

species’ distributions is that it uses the correlation between climate and 

species distribution to predict future distributions (Morin & Lechowicz 2008). 

Therefore, if the ideal climate for a species was found to be in an area that 

would be impossible for that population to migrate to, the model would still 

identify this as its future distribution (Morin & Thuiller 2009). In addition to this, 

even if migratory distances represented only small physical distances, the 

negative impacts of habitat fragmentation on a landscape could make such 

migration an unfeasible task (McInerny et al. 2007; Opdam & Wascher 2004; 

Travis 2003). For this reason, the concept of a KSS is important because it 

allows conservation to focus on areas that are predicted to maintain a similar 

species assemblage in the future. This will allow PAs to protect a species 

without the risk of long distance dispersal between habitats or across a 

potentially hazardous matrix. It also removes a degree of inaccuracy from the 

analyses because the uncertainties of dispersal created by bioclimatic 

envelope models are nullified.  

Particular attention can be paid to how many of the GCM scenarios a KSS was 

selected in because, in KSSs, stability is vital due to the uncertainty that 

surrounds predicting climate change (Moore et al. 2001). If a site is able to 

maintain stable populations of species in three different modelled climate 
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scenarios, then it is likely that it will be robust to actual climate change events. 

The wide distribution of KSSs over Sub-Saharan Africa is encouraging in that 

such sites are not confined to a single region and therefore provides some 

hope for the persistence of species in all parts of the continent.  

KSSs are functionally very similar to climate refugia which provide stable 

climates for species in times of harsh climatic conditions (Klein et al. 2009), 

although they are identified in different ways. Klein et al. (2009) identified 

climate refugia as areas of high and regular plant production in a semiarid 

environment using estimates of gross primary productivity. This study, 

however, identified KSSs from predicted future species distributions 

throughout the Century and therefore, depending on the accuracy of the 

modelling techniques, will provide an accurate assessment of that site’s ability 

to maintain homogenous species populations in the future. The discovery that 

topographical features can increase the likelihood of an IBA being a KSS has 

important implications for the identification of climate refugia across Africa. The 

effect that area had on the selection of KSSs in all GCM scenarios is also of 

great interest, especially for any SLOSS debates that arise over the best 

adaptation strategies for climate change. 

 

Adaption and Mitigation of the IBA network 
What does this study suggest for future and present conservation measures 

that aim to address the impacts of climate change? Answers to this question 

can be addressed at varying scales, as not all solutions are relevant to the 

continent as a whole. At the continental scale, some regions have been 

identified as increasingly important over the coming Century. Although the 

majority of these are in highland areas, some are located in lowland areas 

such as the West coast of Southern Africa. It is vital that areas such as these 

receive sufficient resources to start and maintain viable reserve networks that 

not only provide adequate habitat for climate migrants, but also facilitate the 

dispersal of migrating species across the landscape to areas with suitable 

climate. This may include investment in increasing the quality of the landscape 

matrix as well as into habitat quality within PAs (Fahrig 2001; Huntley et al. 

2006).  
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At the regional scale, additions that could be made to the IBA network have 

been highlighted in this study which would allow the network to better 

represent avifauna species across Sub-Saharan Africa. However, as the 

African IBA network includes areas that are currently unprotected (Approx. 

43% (Buchanan et al. 2009)), it is vital that these areas continue to be 

monitored and acquire either protection or conservation management in the 

future so that the habitats remain intact. This will help to facilitate species 

migration and resettlement caused by climate change. Increasing the area of 

land under protection is cited as being one of the best ways to prepare for the 

effects of climate change on a species community (Hannah et al. 2007; 

McClean et al. 2006). 

Although directing resources to areas that will be of increasing importance in 

the future will, to a certain extent, guarantee protection of species that migrate 

to areas of more suitable climate, attention must also be paid to areas that are 

predicted to suffer greatly from the effects of climate change. Dividing 

resources between areas that are considered to be ‘low risk’ as opposed to 

‘high risk’ is a complex problem that depends on the levels of risk threatening 

different areas, the ratio of areas under different threat levels and the quality of 

the PAs (Game et al. 2008). How to divide conservation resources between 

areas with different levels of risk from climate change will be an important area 

of study in the future and may involve conservation triage (Willis et al. In 

Press).  

In this study, West African IBAs were generally selected less frequently in 

future climate scenarios indicating a decrease in rare and range restricted 

species. This region may therefore require local efforts to decrease the 

negative impacts that climate change may have on such an area. However, 

the options that are available to mitigate such effects are few because climate 

is the overriding factor that determines a species’ persistence in a habitat 

(Rahbek & Graves 2001; Thuiller et al. 2004). Killeen and Solozarno (2008) 

provide ideas for mitigating the impacts of climate change in the Amazon 

rainforest, which are based on the strategic location of reserves and corridors 

so as to maximise the movement of species in the event of climate change. 

The protection of habitat corridors that run along environmental or elevational 
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gradients would provide opportunities for species to migrate to more suitable 

climates. Killeen and Solozarno (2008) also point out that the Intelligent 

location of PAs in ecotones and areas which are predicted to have stable 

precipitation regimes would maximise their impact by increasing stability within 

the PA network, a strategy similar to the use of KSSs.  

At a more local scale, actions can be taken within PAs to mitigate against the 

impacts of climate change. Maintaining a high quality of habitat within PAs by 

promoting structural complexity within the system is an important task for 

conservation managers (MacNally et al. 2009). By maintaining healthy 

ecosystems through good management practices, species are more likely to 

avoid drastic population declines that could lead to local extinctions. In addition 

to maintaining ecosystems as a whole, intensive management of particular 

species that are predicted to be at risk from climate change will promote 

population persistence over time (Williams et al. 2005). 

In the event that climate change degrades habitats in West Africa to an extent 

that species are unlikely to survive in the region, one of the most documented 

options available to conservation is assisted migration which will allow species 

to be placed in areas that are of suitable climate and habitat (Hayward 2009; 

Mueller & Hellmann 2008). This method is notoriously disputed, and although it 

has recently been proven to work (Willis et al. 2009a), damage created by the 

introduction of alien species across the planet has caused extensive harm to 

ecosystems and has resulted in numerous species extinctions (Mueller & 

Hellmann 2008). The application of assisted migration as a conservation tool 

would have to be used only as a last resort, with detailed study on the possible 

impacts of such actions having taken place and the relevant cost-benefit 

analyses completed.  

Conclusions 
The future of avifauna conservation in Africa is reliant on the IBA network’s 

ability to both preserve suitable habitat and to adapt to the increasing threat of 

climate change. This study identifies areas which will be of increasing 

importance to conservation over the coming Century because of both 

increasing and decreasing species occurrences in these areas. How to 

mitigate against and adapt to changes in climate will vary depending on how 
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climate impacts these areas and an important theme of future research is how 

to divide resources between these two defined areas. From a basic view point, 

increasing the area of land under legal protection will increase a PA network’s 

ability to cope with climate change (Hannah et al. 2007), therefore, it must be a 

key goal of conservation to increase the proportion of IBAs under official 

protection. The recognition of KSSs as climate refugia for species will allow the 

persistence of populations in habitats isolated by both human development 

and climate change. Climate refugia have been identified as a key tool in 

adaptation of conservation networks in the future (Noss 2001). 

In order to keep track of the impacts caused by climate change across Africa, it 

is vital that monitoring of species assemblages is carried out within IBAs and 

schemes are currently underway to do this (Bennun et al. 2005; Tushabe et al. 

2006). These data will allow conservationists to observe how climate is altering 

species’ distributions and will allow better informed decisions to be made on 

how to mitigate and adapt to these changes. Up-to-date information will also 

allow more accurate predictive modelling which will further improve 

conservation planners’ abilities to ‘pre-empt’ climate change. It also must be 

mentioned that as biodiversity is at risk from both climate change as well as 

direct human-induced habitat change (Pyke 2004), studies that factor in both 

of these issues will model the threats to biodiversity more accurately 

(Buchanan et al. 2009; de Chazal & Rounsevell 2009). 

Although increasing the percentage of officially protected IBAs in Africa will 

undoubtedly help conservation in preserving habitat for species in an uncertain 

future, it is still within our power to cap a global increase in temperature at 

below 2 Celsius. Influencing policy to achieve this must also be a vital role of 

conservation biology (Huntley et al. 2006; Thomas et al. 2004). 
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Chapter 4: Incorporating economic costs into reserve 
selection for present and projected future bird species 
distributions 
 

Abstract 
The impacts that climate change will have on species assemblages have been 

widely researched and are an increasingly important consideration for 

conservation organisations. Existing methods of conservation revolve around 

static Protected Area networks which will be put under strain by the dynamicity 

of species’ distribution shifts caused by changes in climate. Adaptation of 

these networks to climate change is essential for their continued success in 

the future, however, economic costs of such endeavours are an important 

issue for the already stretched resources of conservation. In this study,  a 

Reserve Selection Algorithm is used to adapt the Important Bird Areas network 

in sub-Saharan Africa to future climate scenarios using predicted species 

distributions from Climate Response Surfaces for the 21st Century. Opportunity 

costs were included into the reserve selection process so that the spatial 

heterogeneity of land prices could be taken into account. The results showed 

that the costs of adapting the network to climate change may increase over the 

Century as a result of changes to species distributions. 

 

Introduction 
 

Protected Areas (PAs) are integral to the global effort in preventing species 

extinction (Gaston et al. 2008; Heller & Zavaleta 2009). However, although 

PAs protect species from the destruction and fragmentation of natural habitats, 

when these anthropogenic forces are combined with the impacts of climate 

change, current PA systems are likely to come under strain as species’ 

distributions are shifted by changing climate (McInerny et al. 2007; Travis 

2003). Changes in climate could lead to an exodus of species from PAs, 

potentially shifting species’ bioclimates into unprotected land, unless their 

altered distributions fall within other PAs (Hole et al. 2009). Designing PA 

networks that take these projected changes in species’ distributions into 
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account will increase their potential to protect species as climate changes 

throughout the coming Century.  

 

This study focuses on the African Important Bird Areas (IBAs) network which is 

part of a Birdlife International program to identify a network of sites that are 

essential for the long-term survival of bird species (Buchanan et al. 2009). 

Each IBA was chosen on four selection criteria; (1) significant numbers of one 

or more species which are of global concern to conservation, (2) significant 

component of populations of one or more species with restricted ranges, (3) a 

significant component of a group of species which are largely or wholly 

confined to one biome, or (4) significant numbers (>1%) of the biogeographical 

populations of one or more congregatory species (Fishpool & Evans 2001). 

The network is comprised of sites of varying protection status as well as a 

number of unprotected sites, the protection of which would undoubtedly lead to 

a decreased risk of extinction of many bird species in Africa as well as acting 

as an umbrella for other taxonomic groups across the continent (Brooks et al. 

2001; Tushabe et al. 2006). However, the management of new sites must be 

considered with three factors in mind; how the species a site protects 

complements the network’s current species assemblage, whether the site 

could lose species in the future due to climate change, and the economic cost 

of the reserve relative to its importance, measured by complementarity, within 

the network.  

 

In a previous study I modelled idealised reserve networks to account for recent 

and predicted future distributions of bird species in sub-Saharan Africa using 

quarter-degree cells and IBAs as selection units in a reserve selection 

algorithm (RSA; Chapters 2&3). Using RSAs to create networks based on 

species’ simulated future distributions allows the identification of areas which 

will be of particular importance to conservation in the future. RSAs are a 

popular method of creating reserve networks because they systematically 

select reserves so that species are protected with the most efficient use of 

space, therefore theoretically reducing the cost of the reserve network 

(Margules & Pressey 2000; Naidoo & Ricketts 2006). Compared with ad hoc 

reserve selection or the use of species hotspots (Pressey 1994), RSAs 
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guarantee protection of all selected species whilst minimising the number of 

PAs required. However, selecting sites that provide protection for species in 

the smallest possible area does not ensure that network costs are minimised 

because spatial variation in land prices is not taken into account (Ando et al. 

1998). Biological diversity has been spatially correlated with human population 

densities (Balmford et al. 2001; Chown et al. 2003; Rondinini et al. 2006), so 

as a result, protecting the most biologically diverse areas may be an expensive 

option because competition with human land uses increases land prices 

despite the efficient use of land. Therefore, in order to design the most 

economical reserve networks, it is necessary to take into account the spatial 

variation that occurs in land prices so that conservation resources can be 

spent efficiently (Ando et al. 1998; Perhans et al. 2008). 

 

The costs of conservation activities fall into several categories which include 

fixed and dynamic costs, and both direct and indirect costs to conservation. 

Acquisition costs are the costs of gaining property rights for an area (Naidoo et 

al. 2006) and represent the direct financial expenditure for purchasing an area 

of land for conservation. Land prices can be as spatially heterogeneous as 

biodiversity and therefore can be incorporated into RSAs in order to create 

resource efficient reserve networks. Data for land prices are available to a 

certain extent in developed countries and has been used in several studies to 

create budget-restrained reserve networks (Ando et al. 1998; Polasky et al. 

2001; Strange et al. 2006), but such data are not as widely available for less 

economically developed countries and regions (Naidoo et al. 2006). This study 

uses land acquisition costs across sub-Saharan Africa where data for land 

prices is not widely available (Moore et al. 2004); instead the cost of land was 

calculated from the estimated value of the land if it were used for activities 

other than conservation (i.e. an opportunity cost). Opportunity costs are the 

costs that are foregone by committing land to conservation and not to 

commercial land uses (James et al. 1999; Wilkie et al. 2001). Instead of being 

merely a value for the cost of an area of land, they take into account the fact 

that commercial endeavours, such as agriculture, generate revenue from the 

land and therefore conservation must provide funds that offset and compete 

with the ongoing financial benefits that such activities provide. 
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By incorporating economic costs into the reserve selection methods used in an 

earlier study (Chapter 3), the impacts of climate change on the African IBA 

network can be mitigated against whilst decreasing the overall cost of the 

network. To do this, an appropriate land-cost data set, available at a suitable 

scale, must be used. Naidoo & Iwamura (2007) calculated opportunity costs by 

estimating the economic value of crops and livestock produced across the 

globe. It was assumed that the annual rental value of an area of land was 

equivalent to the total annual net revenue generated through agricultural 

activities. Using this data set, it is possible to assign economic value to all of 

sub-Saharan Africa and therefore cost can be used in reserve selection. These 

data however, do not take into account revenue derived from the logging 

industry in Central Africa and therefore some areas of high economic value to 

logging are not identified by Naidoo & Iwamura (2007). Additionally, these 

calculations do not value land for the ecosystem services they provide, which 

may become important in valuing land in the future as schemes such as the 

United Nations REDD programme (Reducing Emissions from Deforestation 

and Forest Degradation in Developing Countries) are implemented (Angelsen 

2008; Kindermann et al. 2008).  

 

Here I use an RSA to select parcels of land that could operate, alongside the 

current protected area networks, to ensure long-term future protection of avian 

biodiversity across sub-Saharan Africa under future climate change 

projections. I use opportunity costs to permit the most economical selection of 

land required to augment the current network. 

 

Methods 
 

Opportunity costs 
 

The opportunity costs of quarter degree cells (of area approximately 25 km x 

25 km) across sub-Saharan Africa were calculated using estimates of both 

crop and livestock productivity derived from Naidoo and Iwamura (2007) (Fig. 
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3.1). The text below, based on Naidoo and Iwamura (2007), provides further 

details on how these opportunity costs were produced. 

 

 
 
Crops 
Eighteen globally important major crops were considered in calculating crop 

productivity, as well as a number of regionally important minor crops. Potential 

crop suitability was calculated for each major crop. This was done on a global 

map of 5’ resolution with suitability defined as the fraction of the maximum 

agro-climatically attainable yield for each grid cell. This was dependent on five 

factors: climatic zone, soil conditions, the technical level of the farming 

practice, crop- and climatic-specific response to irrigation and the possibility of 

irrigation in each cell. From the potential crop suitability, maps of potential 

global crop yield were developed for each crop (in tonnes per hectare). Data 

were not available for the minor crops at equivalent geographic detail and 

therefore actual yields for the 25 minor crops were calculated for 22 defined 

regional divisions. This was done based on total production and total area 

under cultivation for each region. 

Each potential major crop yield was multiplied to the corresponding global 

producer price for each grid cell to create a potential rent. The producer price 

for each crop type was calculated as a global producer price which decreased 

the potential error created by variation in the quality of data for some crop-

producing areas. The global producer price therefore represented the prices 

that would be expected by most farmers across the world which, so as to 

reduce the effect of annual deviations in producer prices, were represented as 

a 12 year average (1991-2002) of producer prices taken from the top-5 

producing countries. The potential rent calculated from this was then multiplied 

by the fraction of that cell estimated to hold the crop, which was obtained from 

global crop distribution data. The global crop distributions were taken from Leff 

et al. (2004) who defined 17 separate crop types used in the global cropland 

dataset of Ramankutty and Foley (1998) over a six year period which centres 

around 1992. This led to an estimation of gross rents so a weighted average 

could be taken for each 5’ cell. For the minor crops, the same process was 

undertaken but a region-wide average yield was taken for each region of the 
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world (Leff et al. 2004). A weighted average was then taken to obtain a region-

wide per-hectare gross rent which was then spatially assigned the per-hectare 

rents by the fraction of the grid cell occupied by the minor crop using global 

distribution maps (Leff et al. 2004). The gross economic rents for both major 

and minor crops were then summed to give a gross economic rent for crops in 

each cell.  

 

Livestock 
To estimate the gross economic rents of livestock, recently developed fine-

scale global livestock distribution maps were used (Wint and Robinson 2006). 

Expected global densities of cattle, sheep, goats, pigs, poultry and buffalo 

were estimated using regression-based methods at a 3’ resolution. The 

average mass of edible meat (derived from estimates of average carcass 

weights for 5 broad regions across the globe) was used to estimate the total 

number of tons of meat produced in each cell. Global producer prices were 

then calculated for each livestock type and multiplied by the meat yield per 

hectare to create a gross potential rent from livestock. This was then multiplied 

by the fraction of each cell estimated to be occupied by pastures (Foley et al. 

2005).  

To calculate the total opportunity cost of each cell, the highest value of either 

the crop or livestock rent was taken as the rent for that cell. Although this 

removed the likely possibility that land within each cell could be used for both 

crop and livestock production, intra-cell differences could not be defined with 

the methodologies used. 
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Figure 3.1. Agricultural opportunity costs per hectare for quarter-degree cells 

across Africa based on data from Naidoo & Iwamura (2007).  
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Bioclimate and Species Data 
The models simulating future distributions of bird species across sub-Saharan 

Africa were produced by Hole et al. (2009) from recent (from here-on-in 

referred to as current; 1980-2000) species distribution data (Brooks et al. 

2001) from the Zoological Museum of the University of Copenhagen (Jetz & 

Rahbek 2002). Presence-absence data for 1608 species for which reliable 

models could be constructed were available for the 1963 one-degree cells that 

make up sub-Saharan Africa. Mean bioclimatic data for the one-degree cells 

were created from mean monthly temperature and precipitation data available 

for quarter-degree cells for the period 1950-2000 (Hijmans et al. 2005; 

http://www.worldclim.org). Seven bioclimatic variables were chosen for 

modelling the bioclimatic envelopes of each species; mean temperature of the 

coldest month; mean temperature of the warmest month; an estimate of the 

ratio of actual to potential evapotranspiration; wet season duration; wet season 

intensity; dry season duration; and dry season intensity (Willis et al. 2009). 

These were selected for their previously confirmed ability in modelling the 

bioclimate envelopes of a wide range of European and African bird species 

(Huntley et al. 2006). The first three variables were used as standard variables 

in all models, but only one of the four seasonality variables, wet season and 

dry season duration and intensity were used (the procedure for selecting the 

fourth variable is explained by Huntley et al. 2006). 

 

The climate data for the future time periods were obtained from three general 

circulation models (GCMs); HadCM3 (Gordon et al. 2000), ECHAM4 

(Roeckner et al. 1996)and GFDL-R30 (GFDL) (Knutson et al. 1999). The 

simulations used were based on the SRES B2a emissions scenarios for three 

time periods, which represent 30 year averages for 2011-2040 (abbreviated 

from hereon in to the central year of the series; 2025), 2041-2070 (2055) and 

2071-2100 (2085). The GCMs used are representative of the mean for the 

nine models included in the Intergovernmental Panel on Climate Change 

(IPCC) Third Assessment Report (TAR) (Cubasch et al. 2001) and range in 

simulated precipitation regimes from relatively wet (GFDL-R30) through to the 

mean (HadCM3) and relatively dry (ECHAM4). The future projections used 

future climate simulations from the TAR, however recently the IPCC Fourth 
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Assessment Report (FAR) has been published (Randall et al. 2007). The 

projections from the TAR are broadly consistent with those from the FAR, 

although the FAR is more advanced. The new assessment of likely ranges 

now relies on more climate models than the TAR, models which have 

increased complexity and realism and increased understanding of the 

processes and feedbacks involved in the global carbon cycle (Soloman et al. 

2007). Nonetheless, I expect the projected range shifts to be broadly similar.  

 

The bioclimatic envelope of each species was estimated using a Climate 

Response Surface (CRS) modelling approach, which uses locally-weighted 

regression to fit a response surface to a species’ presence-absence data. This 

method was chosen over alternative approaches such as generalised additive 

models (GAM) after paired t-tests on sensitivity and true skill statistic (the 

assessment metrics used) indicated that CRS performed better than GAM (see 

Hole et al. 2009). The CRS models were validated using two techniques; 

firstly, for species which were recorded in > 20 one-degree cells, K-fold 

partitioning was used. Κ-fold partitioning is a procedure which generates Κ 

models by partitioning the data into Κ equal-sized sets apart from the i-th set 

which is used as training data. This process is carried out Κ times with each K 

subsample used once as the training data. This has the advantage of using all 

data for both validation and training (Ali & Pazzani 1996) and has advantages 

over the often applied 70:30 data splitting approach for model creation and 

validation (Thuiller et al. 2009) as it reduces potential issues of spatial 

autocorrelation. Predictive performance was assessed using values obtained 

for the area under the curve (AUC) of a receiver-operated characteristic plot 

(Fielding & Bell 1997). This was carried out for 1401 species, 89% of which 

exhibited K-fold partitioned AUCs of ≥ 0.9 (no species had a K-fold partitioned 

AUC < 0.7), indicating high-model performance (Swets 1988). Model fit for the 

remaining 207 species, recorded in fewer than 20 one-degree cells, was 

assessed using a jack-knifing approach. This process calculates the probability 

of a species’ occurrence in a single one-degree cell, using a model built using 

all of the data except for the cell for which we wish obtain a simulation of 

occurrence. This is repeated for all 1963 cells of sub-Saharan Africa, for each 

species, and essentially produces simulations independent of the data used to 
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create the CRS. Although this is more prone to issues of spatial 

autocorrelation than K-fold partitioning, the latter procedure cannot be used on 

restricted range species as large proportions of their entire range often fall 

within a single excluded panel. The projection accuracy was assessed using 

the same AUC process as applied to the more widespread species.  83% of 

the 207 species displayed a jack-knifed AUC ≥ 0.9, which again indicates a 

high-model model performance (for more details, see Hole et al. 2009). 

 

Species simulated presence/absence for each IBA were calculated by 

characterising one or more bioclimates in each IBA and then applying the CRS 

model for each species to the bioclimate(s) for each IBA (see Hole et al. 2009). 

This was accomplished using a spatial intersection, within a GIS, of the IBA 

polygons, a one-degree grid to determine the broad spatial extent of each IBA, 

and a quarter-degree grid for each of the seven bioclimatic variable grids and 

for elevation. To produce a probability of occurrence for each species in each 

IBA, single or multiple bioclimates were assigned to each IBA. This was done 

by firstly assessing the size of the IBAs using the one-degree grid, if an IBA 

spanned more than a single one-degree cell, the polygon was split into a 

number of sub-polygons, by intersecting the one degree cells and the IBA 

polygon. The polygons or sub-polygons were then assigned bioclimates 

according to the associated quarter-degree climate data. Similarly, if the 

elevational range of a polygon or sub-polygon was >600 m, the component 

quarter-degree cells were stratified into two or more elevation bands and a 

separate bioclimate calculated for each band. Finally, the one-degree models 

for all species were projected onto each IBA’s bioclimate(s) for all time periods 

and climate scenarios. The probabilities of occurrence were converted to 

presence or absence data by applying the threshold probability that maximised 

Cohen’s κ for the one-degree model (Huntley et al. 2006). Therefore, if a 

species’ probability of occurrence exceeded the threshold probability in any of 

the sub-polygons of an IBA, it was regarded as present. 
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Incorporating Costs into Reserve Selection 
To match the resolutions of the cost and bioclimate data the cost data was 

converted from 5’ cells to quarter-degree cells. To carry out this conversion, 

the nine 5’ cells that make up each quarter-degree cell were added together to 

calculate the overall cost of the cell. In order to calculate the value for each 

IBA, the 5’ cost cells were clipped by the IBA polygon shape files within a GIS. 

The cells that were clipped were then used to create a mean average of cost 

within the IBA which was then multiplied by the area of the IBA to calculate the 

total cost. 

 

The RSA Marxan was used for the reserve selection process (Ball & 

Possingham 2000; Possingham et al. 2000). Marxan uses a process called 

simulated annealing to create near-optimal reserve networks, the process 

starts with a random or user assigned network which is iteratively changed by 

the addition or removal of planning units (PUs) until the most efficient network 

is reached. The acceptance of an addition or removal from the network is 

determined by complementarity, which is a process whereby the PU is 

assessed by its ability to complement the species assembly protected within 

the reserve network. If a PU does not protect species that will contribute to 

reaching specific targets, then it will not be accepted. Initially, additions to the 

network which have a negative effect on reaching representation targets are 

retained so as to prevent the simulation reaching local optima within the 

network, but as the simulation continues, more negative additions are rejected 

because of the decreasing value of the cost functions within the program 

(McDonnell et al. 2002; Peralvo et al. 2007; Possingham 2000). 

 

If a cost is included with a PU within Marxan, the cost is added to the objective 

function. Marxan’s goal is to reduce the value of the reserve network’s 

objective function which consists of the costs of each PU and a penalty for 

unmet species targets (Game & Grantham 2008). Through this function, 

Marxan can balance the total economic costs of the reserve network with 

reaching specified targets, therefore reaching a solution which is sympathetic 

to both needs. If a PU has no cost, Marxan will automatically select it because 

the objective function is not increased by its addition. Therefore, if a PU in this 
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study had an opportunity cost of zero, it was assigned an arbitrary cost so that 

it was not automatically included in the selected network. 

 

Building on past work on the impacts of climate change on the African IBA 

network (Chapter 3), several different scenarios were used in the reserve 

selection process. Marxan was run for all time periods and climate scenarios 

using several different approaches that incorporated opportunity costs. Initial 

RSAs were run on (1) IBA polygons and (2) individual quarter-degree cells 

each one of which was attributed a potential species component and an 

opportunity cost. In addition to this, the two data sets were combined so that 

selected sites could potentially include both IBAs in the current network and 

quarter degree cells (that did not intersect an existing IBA). This was done in 

two ways; (1) all the IBAs were permanently fixed into the network (i.e. they 

could not be removed from the initial network) within Marxan and the quarter-

degree cells were selected additionally, (2) those IBAs which are officially 

protected by law (IUCN Protected Area category I to VI – as of 2008) were 

permanently fixed within the network whilst quarter-degree cells were available 

for being selected additionally.  

 

For each reserve selection simulation, a representation target of occurrence 

within five planning units (IBAs or quarter degree cells) was used for each 

species. 

 

Results 
 

IBA network selected with cost 
The inclusion of cost data substantially altered the selection of IBAs in a 

protection network, in comparison to the networks selected when opportunity 

cost data was not included as a selection factor (Fig. 2.1; Chapter 3). 

Substantially more IBAs were selected when cost was included, however, the 

areal extent of the network was greatly reduced. In particular, some of the 

larger IBAs from parts of the continent which have high opportunity costs (e.g. 

TZ009, ET002, ZA044 (Fishpool & Evans 2001)); Fig. 3.1). For the present 
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period, a significant part of southern Africa, including the Cape Floristic Region 

(CFR) and the Highveld of South Africa, had no IBAs selected within them 

when opportunity costs were considered, despite reasonably extensive 

representation when costs were excluded. In addition, Ethiopia, southern 

Sudan and West Africa had relatively few of the current IBAs selected within 

them (Fig. 3.2a). The region around Lake Victoria, which includes the Eastern 

Arc Mountain range, North-East Tanzania, Uganda and Rwanda, is also a 

notable area in which opportunity costs are high and, as a result, few IBAs 

have been selected. 

 

The reserve networks designed for the 2025 period select fewer sites than for 

the present time period (Fig. 3.2b; Table 3.1), although there is greater 

selection in areas such as the Highveld and Karoo in Southern Africa, Sudan 

and the Ethiopian Highlands. However, overall many IBAs selected in all three 

2025 climate scenarios were also selected for the present, suggesting a similar 

suite of IBAs would protect species across both periods.  

 

The networks selected for 2055 show an increase in the number of IBAs 

selected in areas of high opportunity costs, in comparision to the present and 

2025 networks (Fig. 3.2c). Most notable are the increases in sites selected in 

southern Africa, including the CFR and in countries such as Botswana, where 

IBAs are included in all three GCM scenarios. There are increases in the 

number of IBAs selected around Lake Victoria. The networks selected for 2085 

select even more IBAs in Southern Africa and the region surrounding Lake 

Victoria (Fig. 3.2d) than do the earlier networks, highlighting that although 

these IBAs may appear relatively unimportant across the network as a whole 

at present, they will become of much greater importance through the current 

Century. The CFR has several IBAs within it which are represented in all three 

GCM scenarios for 2085 and there is an increase in representation in the 

Highveld. There is also a decrease in the number of IBAs selected in all three 

of the GCM scenarios in the Ethiopian Highlands and Somalia (from 5 in 2055 

to 2 in 2085) and the Congo basin (from 7 in 2055 to 3 in 2085).  
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The total opportunity costs of the networks are highly variable among the three 

climate scenarios for each future period and across the time periods, but are 

consistently less expensive than networks selected without the use of cost 

(Table 3.1). On average, however, there were similar numbers of IBAs 

selected for the best network in each of the time periods and GCM scenarios 

(253 for present, and on average 234, 235 and 225 for the periods 2025, 2055 

and 2085 respectively). However, the numbers of both unrepresented species 

and underrepresented species increased over time.  

 

A list of selected IBAs and unrepresented species from the optimal IBA 

networks are supplied in the supplementary material (S3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

122 
 

A 

 

 
Figure 3.2 (A) Optimal networks of IBAs selected by Marxan to protect sub-
Saharan African bird species with opportunity costs included as a selection 
factor for current species distributions. Selected IBAs are shaded green. 
Unselected IBAs are shaded grey. 
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Figure 3.2 (B) Optimal networks of IBAs selected by Marxan to protect sub-
Saharan African bird species with opportunity costs included as a selection 
factor for projected 2025 species distributions. IBAs selected in one or more 
climate scenario are represented by different colours; one – green, two – 
orange, three – red. Unselected IBAs are shaded grey. 
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Figure 3.2 (C) Optimal networks of IBAs selected by Marxan to protect sub-
Saharan African bird species with opportunity costs included as a selection 
factor for projected 2055 species distributions. IBAs selected in one or more 
climate scenario are represented by different colours; one – green, two – 
orange, three – red. Unselected IBAs are shaded grey. 
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Figure 3.2 (D) Optimal networks of IBAs selected by Marxan to protect sub-
Saharan African bird species with opportunity costs included as a selection 
factor for projected 2085 species distributions. IBAs selected in one or more 
climate scenario are represented by different colours; one – green, two – 
orange, three – red. Unselected IBAs are shaded grey. 
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Quarter-degree network selected with cost 
 

The network of quarter-degree cells selected to protect species for the 

present-day period has a widely dispersed distribution, though with some 

clustering regionally (Fig. 3.3a). There is an interesting near-linear transect of 

cells crossing the centre of the Congo Basin. Many selected cells, as might be 

expected, cluster in Endemic Bird Areas (EBAs, Stattersfield et al. 1998) of 

particularly high endemism such as the Cameroon Highlands, the Eastern 

Zimbabwe Mountains, the Albertine Rift Mountains, the Central Ethiopian 

Highlands and Tanzanian-Malawi Mountains. However, some EBAs are 

relatively poorly represented despite harbouring many endemics, e.g., Upper-

Guinea Forests. By contrast there are also clusters of cells selected in regions 

that contain no endemic bird areas. Examples of the latter include the region of 

northern Chad, a strip of cells on the border between Somalia and SE Ethiopia 

and a strip of cells from Mali down to Guinea. 

 

The networks selected for 2025 (Fig. 3.3b) have clusters of cells in areas such 

as the Ethiopian Highlands, the Cameroon Highlands, Gabon, Lake Victoria, 

the Albertine Rift, Eastern Arc Mountains and clusters of cells that run close to 

the coast of Southern Africa up the Atlantic coast to Gabon. The 2055 network 

shows similar patterns with an increase in the occurrence of cells in different 

climate scenarios (Fig. 3.3c). There is a noticeable increase in selection of 

cells in the Cape Floristic Region (CFR) of South Africa and a decrease in the 

selection of cells in large parts of West Africa as well as in Lake Victoria. The 

2085 networks have a similar pattern of selection to the 2055 networks, but 

they show an increase in selection of cells along the Atlantic coast of Southern 

Africa (Fig. 3.3d). The number of cells selected for the best network does not 

differ substantially among the time periods or scenarios (344 cells for the 

present period and on average, 329, 339 and 324 cells selected for the timer 

period 2025, 2055 and 2085 respectively; Table 3.1) 

 

The cost of the networks increase in a near-linear fashion over the course of 

the Century (Table 3.1 & Fig. 3.4) from around US$282 million for the present 

up to around US$658 million for the HadCM3 2085 network, with the network 
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required to protect species under the GFDL scenario of climate change being 

consistently the cheapest of the three. The inclusion of cost as a selection 

factor created cheaper networks  than when cost was not included (Table 3.1), 

while at the same time, increasing the number of cells selected (Table 1.1; 

Chapter 2). Comparing Fig. 3.3 with Fig. 1.2 (Chapter 2; included alongside 

the corresponding time period for Fig. 3.3) reveals a marked difference in the 

distribution of cells between the two simulations. The distribution of cells in Fig 

3.3 is more concentrated, with a larger number of cells being selected in two or 

more of the GCM scenarios in each of the time periods. 

 

For all the present and future climate scenarios the optimal networks produced 

from quarter degree cells were substantially cheaper than the IBA networks 

(cell networks for the various time periods/scenarios ranged in costs from 4% 

to 44% of the costs of the equivalent IBA network). Therefore, ignoring the 

logistics and costs of creating such a PA network, it appears from this simple 

comparison that selecting a network derived anew from quarter degree cells 

would be substantially less expensive, in terms of opportunity costs, than a 

network that utilised IBAs to achieve the same goals. 

 

Many of the cells selected in a network for all of GCM scenarios for a single 

future time period coincide with EBAs. For example, in 2085 cells selected in 

the network under all three GCM scenarios (shaded red in Figure 3.3d) cover 

areas of the Cameroon Mountains (EBA 085), the Cameroon and Gabon 

Lowlands (EBA 086), Lesotho Highlands (EBA 090), Eastern Zimbabwe 

Mountains (EBA 104), Albertine Rift Mountains (EBA 106), Serengeti Plains 

(EBA 108), South Ethiopian Highlands (EBA 114) and the Central Ethiopian 

Highlands (EBA 115). Key cells selected under all three GCM scenarios but 

not in EBAs include two on the Atlantic coast of Namibia and South Africa, six 

cells in northern Chad, and one cell each in Mali and Niger.  
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Figure 1.2 (A) From Chapter 2, p48 Quarter-degree cells selected by Marxan 
to represent sub-Saharan African bird species in their current distributions, 
Cells represented in black. 
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Figure 3.3 (A)Optimum networks of quarter-degree cells created by Marxan to 
protect sub-Saharan African bird species with opportunity costs included as a 
selection factor for current species distributions. The cells are shaded green 
and are not shown to scale. EBAs are shaded in grey and labelled. 
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Figure 1.2 (B) From Chapter 2, p49. Map of quarter-degree cells selected by 
Marxan to protect sub-Saharan African bird species for projected 2025 species 
distributions coloured depending on the how many future scenarios (ECHAM4 
/ OPYC, GFDL-R30, HadCM3) they are selected in. Red = 3 times, Orange = 2 
times, Green = 1 time. 
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Figure 3.3 (B)Optimum networks of quarter-degree cells created by Marxan to 
protect sub-Saharan African bird species with opportunity costs included as a 
selection factor for projected species distributions in 2025. Quarter-degree 
cells selected in one or more climate scenario are represented by different 
colours; one – green, two – orange, three – red. The cells are not shown to 
scale. EBAs are shaded in grey and labelled. 
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Figure 1.2 (C) From Chapter 2, p50. Map of quarter-degree cells selected by 
Marxan to protect sub-Saharan African bird species for projected 2055 species 
distributions coloured depending on the how many future scenarios (ECHAM4 
/ OPYC, GFDL-R30, HadCM3) they are selected in. Red = 3 times, Orange = 2 
times, Green = 1 time. 
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Figure 3.3 (C)Optimum networks of quarter-degree cells created by Marxan to 
protect sub-Saharan African bird species with opportunity costs included as a 
selection factor for projected species distributions in 2055. Quarter-degree 
cells  selected in one or more climate scenario are represented by different 
colours; one – green, two – orange, three – red. The cells are not shown to 
scale. EBAs are shaded in grey and labelled. 
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Figure 1.2 (D) From Chapter 2, p51. Map of quarter-degree cells selected by 
Marxan to protect sub-Saharan African bird species for projected 2085 species 
distributions coloured depending on the how many future scenarios (ECHAM4 
/ OPYC, GFDL-R30, HadCM3) they are selected in. Red = 3 times, Orange = 2 
times, Green = 1 time. 
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Figure 3.3 (D) Optimum networks of quarter-degree cells created by Marxan to 
protect sub-Saharan African bird species with opportunity costs included as a 
selection factor for projected species distributions in 2085. Quarter-degree 
cells  selected in one or more climate scenario are represented by different 
colours; one – green, two – orange, three – red. The cells are not shown to 
scale. EBAs are shaded in grey and labelled. 
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Figure 3.4 The total opportunity costs of each optimum quarter-degree cell 
network created by Marxan. Separate linear regression lines indicate the trend 
of cost under the three future climate change scenarios. 
 

Networks combining IBA and quarter-degree cells and accounting 
for opportunity costs 
 
Data on the species which caused the selection of individual cells is presented 
in the supplementary material (S3.3.1 & S3.3.2). 
 

(1) All IBAs fixed into the network, regardless of current protection 
status 
 

For the present-day species distributions, only 76 additional quarter-degree 

cells were required alongside the existing IBA network in order to achieve total 

representation of all species (Table 3.2). The main group of these additional 

quarter-degree cells is found in a cluster on the Chad-Niger border, with some 

smaller groupings in Mali, Guinea, Somalia and Eritrea as well as along the 

west coast of southern Africa (Fig. 3.5a).  

The 2025 network includes an average of 95 additional quarter-degree cells 

included in the network. Groups of selected cells similar to those selected for 

the present are found on the Chad-Niger border as well as in Mali, Somalia 
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and Eritrea (Fig. 3.5b). In addition to these groups of cells, there are additional 

cells selected across Cameroon, Equitorial Guinea, The du Chaillu Mountains 

of Gabon and Congo; the Namib-Karoo region in Western Namibia and North-

West South Africa; and increased selection of additional cells between 12o and 

20o South.  

The 2055 networks have an average of 112 additional cells, and have similar 

patterns of selection to the 2025 networks. However, there is greater selection 

of cells in areas of Southern Africa which include the Drakensberg Mountains, 

the Highveld and CFR, and in the Ethiopian Highlands (Fig. 3.5c). These same 

trends continue into 2085, where networks include, a similar number of 

additional quarter-degree cells to 2055 (115 on average) with major 

concentrations of additional cells in the Chad-Niger border, the Ethiopian 

Highlands, the du Chaillu Mountains, in the West of the Republic of Congo, the 

Drakensberg Mountains and Highveld of South Africa, the CFR and throughout 

the Namib-Karoo biome, both in South Africa and western Namibia (Fig. 3.5d). 

Relatively few cells were selected in all three future GCM scenarios as 

necessary additions to the network, (shaded red in Figures 3.5b-d) in any time 

period, though the localities of these cells were similar throughout the Century.  

 

There is an overall increase in price of the networks over time (Fig. 3.6) 

although the trends are not as convincing as Fig. 3.4. This increase in price is 

likely to be because of both an increase in the number of cells selected and an 

increase in the selection of cells in areas of high opportunity costs. 
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Figure 3.5 (A) Optimal networks of all IBAs and additional quarter-degree cells 
created by Marxan to protect sub-Saharan African bird species using 
opportunity cost as a selection factor for current species distributions. The 
quarter-degree cells are shaded black and are not shown to scale. IBAs are 
shaded green. 
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Figure 3.5 (B) Optimal networks of all IBAs and additional quarter-degree cells 
created by Marxan to protect sub-Saharan African bird species using 
opportunity cost as a selection factor for projected species distributions in 
2025.Cells selected in one or more climate scenario are represented by 
different colours; one – black, two – orange, three – red. The cells are not 
shown to scale. IBAs are shaded green. 
 

 

 

 

 

 



 

140 
 

C 

 

Figure 3.5 (C) Optimal networks of all IBAs and additional quarter-degree cells 
created by Marxan to protect sub-Saharan African bird species using 
opportunity cost as a selection factor for projected species distributions in 
2055.Cells selected in one or more climate scenario are represented by 
different colours; one – black, two – orange, three – red. The cells are not 
shown to scale. IBAs are shaded green. 
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Figure 3.5 (D) Optimal networks of all IBAs and additional quarter-degree cells 
created by Marxan to protect sub-Saharan African bird species using 
opportunity cost as a selection factor for projected species distributions in 
2085.Cells selected in one or more climate scenario are represented by 
different colours; one – black, two – orange, three – red. The cells are not 
shown to scale. IBAs are shaded green. 
  



 

 

Figure 3.6 Opportunity costs for IBA
selected by Marxan to reach species targets
scenarios and four time periods.
trend of cost over the 
 

(2) Protected IBAs Fixed into the network
 

The distributions of additional cells for the present (Fig. 
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Opportunity costs for IBA network and additional quarter
selected by Marxan to reach species targets for the three different climate 

narios and four time periods. Separate linear regression lines indicate the 
trend of cost over the Century. 

(2) Protected IBAs Fixed into the network 

The distributions of additional cells for the present (Fig. 3.7a) are very similar 

5a, although there is a larger number of cells selected in 

Eritrea and Somalia as well as in the Cameroon Highlands. A greater number 

of additional cells were selected than for the IBA and quarter-degree network 

with all IBAs fixed in (Table 3.2). The same patterns of selection are seen for

all time periods in both Fig.s 3.5 and 3.7 although there are more additional 

d in all time periods for Fig. 3.7.  

In terms of cost, the total cost of the networks for each of the climate scenarios 

ver time (Fig. 3.8). The total costs of the reserve networks are less 

expensive than those for the networks with all IBAs fixed in because of the 

unprotected IBAs that are not included within the network.  
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Figure 3.7 (A) Optimal network of currently protected IBAs and additionally 
selected quarter-degree cells created using Marxan to protect sub-Saharan 
African bird species with opportunity costs included as a selection factor for 
current species distributions. The quarter-degree cells are shaded black and 
are not shown to scale. Currently protected IBAs are coloured green.  
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Figure 3.7 (B) Optimal network of currently protected IBAs and additionally 
selected quarter-degree cells created using Marxan to protect sub-Saharan 
African bird species with opportunity costs included as a selection factor for 
projected species distributions in 2025.  Additional quarter-degree cells are 
coloured black, orange and red depending on how many climate scenarios 
they were selected in; 1, 2 and 3 respectively. The quarter-degree cells are not 
shown to scale. Currently protected IBAs are coloured green.  
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Figure 3.7 (C) Optimal network of currently protected IBAs and additionally 
selected quarter-degree cells created using Marxan to protect sub-Saharan 
African bird species with opportunity costs included as a selection factor for 
projected species distributions in 2055.  Additional quarter-degree cells are 
coloured black, orange and red depending on how many climate scenarios 
they were selected in; 1, 2 and 3 respectively. The quarter-degree cells are not 
shown to scale. Currently protected IBAs are coloured green.  
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Figure 3.7 (D) Optimal network of currently protected IBAs and additionally 
selected quarter-degree cells created using Marxan to protect sub-Saharan 
African bird species with opportunity costs included as a selection factor for 
projected species distributions in 2085.  Additional quarter-degree cells are 
coloured black, orange and red depending on how many climate scenarios 
they were selected in; 1, 2 and 3 respectively. The quarter-degree cells are not 
shown to scale. Currently protected IBAs are coloured green.  
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Figure 3.8 Opportunity costs for currently protected IBAs and additional 

quarter-degree cells networks selected by Marxan. Separate linear regression 

lines indicate the trend of cost over the Century. Created for three different 

climate scenarios and four time periods.  
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Table 3.1 Data from the reserve selection simulations for IBAs and quarter-degree (Qdeg) cells for each time period and climate 
scenario. Includes data of the cost of equivalent networks selected without the use of opportunity costs. 

 
Time 
period no. IBAs 

Cost/ 
million 
US$ 

Cost of networks without cost 
as a selection factor / million 

US$ 
Shortfall-

unrepresented 
Shortfall-

underrepresented 
  Present 253 1685 6325 0 21 
  E25 227 5013 6690 1 27 
  H25 244 1177 6951 1 24 
  G25 232 7865 12672 3 23 
IBA network E55 236 1464 9025 5 33 
  H55 240 5667 8513 2 37 
  G55 230 4500 6382 2 38 
  E85 230 1706 2322 8 35 
  H85 223 1489 7492 8 35 
  G85 223 5423 6111 7 34 

 
Time 
period 

no. Qdeg 
cell 

Cost/ 
million 
US$ 

Cost of networks without cost 
as a selection factor / million 

US$ 
Shortfall-

unrepresented 
Shortfall-

underrepresented 
  Present 344 283 1200 0 0 
  E25 324 403 1290 0 1 
  H25 326 350 1233 0 0 
  G25 338 313 1369 0 0 
quarter-degree E55 332 570 1419 0 0 
network H55 346 515 1450 0 0 
  G55 339 456 1414 0 0 
  E85 321 630 1391 0 14 
  H85 317 659 1414 0 9 
  G85 333 489 1079 1 6 
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Table 3.2 Data from the reserve selection simulations of the combined IBA and quarter-degree (Qdeg) networks including number 
of additional cells selected, cost of the networks and the species shortfall of the networks.

 

time 

period IBAs 

Qdeg 

cells cost/ million US$ 

Spp. shortfall-

unrepresented 

Spp. shortfall-

underrepresented 

  Present 803 76 24,670 0 0 
  E25 803 95 24,709 0 1 
  H25 803 98 24,687 0 0 
  G25 803 92 24,723 0 0 
All IBAs fixed E55 803 117 24,779 1 0 
  H55 803 103 24,745 0 2 
  G55 803 115 24,779 0 2 
  E85 803 119 24,844 2 2 
  H85 803 116 24,912 2 4 
  G85 803 109 24,759 2 2 
  Present 494 117 5,940, 0 0 
  E25 494 134 5,984 0 0 
  H25 494 135 5,958 0 0 
  G25 494 160 5,980 0 0 

Protected IBAs E55 494 133 6,035 0 1 
fixed H55 494 166 6,072 0 1 
  G55 494 142 6,019 0 0 
  E85 494 150 6,196 2 2 
  H85 494 141 6,291 1 5 
  G85 494 151 6,077 2 2 
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Discussion 
 

This study is one of the first to show that the opportunity costs of conservation 

could increase over time as a result of species range shifts caused by climate 

change. This outcome could be a result of climatic changes shifting species’ 

distributions into areas of high primary productivity. These areas coincide with 

areas of high agricultural productivity and therefore have high opportunity costs 

as a result of increased crop yields (Naidoo & Iwamura 2007). This relationship 

was only observed when quarter-degree cells were used as planning units. The 

IBA networks, instead, showed erratic patterns of opportunity cost which could 

arise because the non-uniform sizes, and therefore costs, of IBAs could have a 

disproportionate effect on the overall cost of the network when added or 

removed. The networks where quarter-degree cells were used as planning units 

provide a better indication of how conservation in the future will incur greater 

opportunity costs, as cell size is constant for all sites. 

 

The quarter-degree networks were substantially cheaper than the IBA networks. 

This is because the area of land that was protected in the quarter-degree cell 

networks was much smaller than that of the IBA networks due to the size of the 

quarter-degree cells. However, although these networks appear to provide more 

adequate protection for species than do the IBA networks, and for a cheaper 

price, realistically, being rather small, they may not support sufficient habitat 

types for all species for which a cell is simulated to be suitable. Furthermore, they 

might not be able to support viable populations, for some species, to ensure 

population survival in the long-term. IBAs, by contrast, have been designed with 

the persistence of populations in mind and therefore are likely to provide 

adequate protection for the species they are designed to protect (Fishpool & 

Evans 2001).  

 

The results indicate that the ability of the IBA network to provide protection for 

bird species in sub-Saharan Africa in the future could be greatly improved by the 

addition of a small number of quarter-degree cells to the existing network. When 

only the officially protected IBAs were fixed into the network, there was only a 
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small increase in the number of additional cells required to incorporate the 

majority of species within the network in the future, when compared to the 

network that fixed all IBAs. This brings into question the importance to 

conservation of the remaining 309 unprotected IBAs in sub-Saharan Africa, 

especially given the variable persistence of species in the future. However such 

results should be treated with some caution as the systematic conservation 

techniques used here are insensitive to the ecological processes that must be 

considered to conserve species (Moilanen 2008). It is also important to consider 

that the conservation targets used here are not shared by the IBA program and 

therefore inefficiencies identified within the network by the results of this study 

could be inconsequential to the effectiveness of the network. 

 

The increase in the cost of networks over the Century is caused by changes in 

species distribution due to climate change. Fuller et al. (2007) showed that in 

2000, 90% more land would need to be protected to provide adequate protection 

for mammal species in Mexico than would have been in 1970 due to the 

fragmentation and degradation of habitat. With a projected increase in the rate of 

global habitat degradation, including sub-Saharan Africa (Tilman et al. 2001), 

combined with the predicted increases in opportunity costs of land necessary for 

conserving African avifauna, the cost of waiting to adapt PA networks, such as 

the IBA network, to climate change could be substantial. Hannah et al. (2007) 

came to similar conclusions when performing reserve selection simulations for 

future climate scenarios for plants in West Europe and the Cape Floristic Region 

in South Africa and for mammals and birds in Mexico. Their results indicated that 

acting now to adapt PA networks to climate change will save money in the future 

because increasing the area of protected land to cope with current and future 

threats simultaneously is more efficient than doing so sequentially. The results of 

this study, combined with the inefficiency of adapting to conservation when 

changes from climate change become apparent (Fuller et al. 2007; Hannah et al. 

2007) suggests that action should be taken to adapt networks to climate change 

now in order to avoid unnecessary costs in the future. Drechsler and Wätzold 

(2007) suggest that the optimum use of conservation funds is to spend evenly 

over time, with some precautionary savings initially to take uncertainty into 

account. However, they did not factor climate change into their calculations 



 

152 
 

which, although affected by uncertainty, can be modelled with some accuracy 

and therefore represents another aspect in optimising the allocation of funds. 

More research is needed to assess the risks of both the ‘cost of waiting’ and 

investment in an uncertain future.  

 

The use of opportunity cost as a selection factor in reserve selection created PA 

networks that were cheaper than if cost had not been used. The inclusion of cost 

in reserve selection could therefore be an important way of minimising the costs 

of adapting PA networks to climate change.  

 

When producing networks comprised of only quarter-degree cells, it was 

apparent that many cells coincided with the Endemic Bird Areas (EBAs) for the 

present as well as the future time periods, highlighting the continuing importance 

of EBAs to conservation in the future. Many EBAs are currently under threat from 

anthropogenic processes, such as agriculture, these processes being positively 

correlated with the level of threat to range-restricted bird species found within an 

EBA (Scharlemann et al. 2005). Balmford et al. (2001) identified several EBAs in 

sub-Saharan Africa which are under threat and in need of additional conservation 

initiatives. These areas (Cameroon Highlands, Ethiopian Highlands, Albertine 

Rift, Eastern Arc Mountains and Drakensberg Mountains) were identified in this 

study as crucial for the current and projected conservation of avian biodiveristy. 

Immediate investment in well established conservation measures, such as 

improving connectivity within the landscape, should ensure species persistence in 

these areas over the Century (Noss 2001). 

 

The differences in the costs of optimum networks among the GCM scenarios 

suggest that a wetter climate scenario (such as GFDL-R30) would incur lower 

opportunity costs than a drier scenario (ECHAM4), especially in the latter half of 

the 21st Century. This highlights the importance of obtaining accurate climate 

predictions to conservation, because differences in the nature of climate change 

will alter the adaptation strategy itself and also its cost. Identifying areas which 

are likely to maintain stable climates over the 21st Century despite future climate 

change projections are likely to be especially important as refugia for species that 

become isolated by changing climatic conditions (Killeen & Solorzano 2008; Klein 
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et al. 2009; Noss 2001). These refugia may be associated with areas of 

endemism from historical climatic events and may therefore be of current 

importance to conservation as well (Medail & Diadema 2009; Ohlemuller et al. 

2008). 

 

This study does not aim to create accurate predictions of the costs of future 

reserve networks, but seeks to highlight the effects that opportunity costs can 

have on the location of PAs in the future. Providing accurate predictions is limited 

by several factors which affect the accuracy of the opportunity cost data. Firstly, 

the opportunity costs have been derived from agricultural productivity and 

therefore ignore other factors which influence the price of land. In particular, 

Naidoo and Iwamura (2007) draw attention to the insensitivity of the data to the 

logging industry in the Congo basin which will have an impact on both the cost of 

land and the extent of habitat degradation in the region. A second avenue of 

inaccuracy in the opportunity cost data is that the effects of climate change on the 

productivity of agriculture is not taken into account. The changes in climate which 

are predicted to cause changes in the distribution of bird species may also alter 

patterns of agricultural activity, changes in cropping types and perhaps switches 

from agriculture to pastoral farming or vice versa across sub-Saharan Africa. 

Finally, increases in human population over the coming century will create an 

increased demand for food throughout the continent which will in turn increase 

the need for agricultural land (Zhang et al. 2006), therefore increasing opportunity 

costs to conservation across the continent. This in turn will alter the opportunity 

costs of conservation. Future work studying the impacts of climate change on the 

opportunity costs of conservation will help to create more accurate predictions of 

the cost of adapting PA networks.  

 

Conclusions 
 
The results from this study provide further evidence of the negative impacts that 

climate change is predicted to have on species, but also shows that climate 

change could also have negative impacts on the economic costs of conservation. 

Areas which were identified as of particular importance to conservation over the 

coming Century were also areas which are of importance to conservation in the 
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present. Several studies have identified that the ‘cost of waiting’ to conserve 

species against future threats is inefficient and can incur substantial additional 

costs to conservation in the long-term. Therefore, increasing the efficacy of PA 

networks in areas which are essential to conservation in both the present and the 

future is a high priority. However, for conservation organisations and 

governments to make commitments for the future, there must be a degree of 

certainty that such investments are wise and therefore the increasing accuracy of 

BEMs which predict future areas of conservation priority must be pursued. In the 

meantime, the inclusion of cost in reserve selection can help conservation to 

introduce increased economy into adaptation methods. 
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Chapter 5: Synopsis 

 

This study explored ways in which the sub-Saharan Africa Important Bird Areas 

(IBAs) network could potentially be adapted to cope with projected future climatic 

change, which is likely to be a major threat to its ongoing role in the protection of 

bird species. As this study covered a vast area, suggestions for adaptation in the 

network were only made at a large-scale, in terms of suggesting sites/regions to 

protect; small-scale management strategies were beyond the scope of this study. 

Several key points were identified (and are discussed below) which, alongside 

further research, can be used to provide advice on the adaptation of the IBA 

network to remain robust to projected future climate change. 

Areas of increasing and decreasing importance in reserve selection 

Simulations of optimal networks, based on a reserve selection algorithm 

approach, demonstrated that, across the 21st Century, the importance of some 

regions, defined by complementarity, are altered and hence priority regions for 

protection may shift. A general pattern, based on climate simulations for the 

current Century, was the decrease over time in the inclusion of sites in West 

Africa in an optimal network and an increase in selection of sites in Eastern and 

Southern Africa. Although this is a simplification of the results, it highlights both 

the large-scale changes that are projected in species’ regional persistence over 

the Century and the need for new conservation strategies for those areas 

threatened by diverse risks from climate change.  

Additional sites to complement the current IBA network 

Identifying those species that will be under-represented in the current network in 

the future permits additional sites to be selected which will continue to protect 

such species. This approach not only identifies those areas where the network 

will fall short in the future, but also highlights regions which are predicted to 

increase in species diversity in the future, and which may provide the most 

efficient means of conserving species.  There were several areas which were 

highlighted by multiple additional sites throughout the Century; the Horn of Africa, 

Namib-Karroo region, the Cameroon and Gabon lowlands (EBA 085) and 

Western Angola (EBA 087). In the latter half of the Century, there was increased 
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selection in Northern Ethiopia (EBA 115), North-East Tanzania, the Eastern Arc 

Mountains and the Highveld (EBA 091) as well as an increase in the average 

number of additional cells required to reach conservation targets. The increase in 

the number of cells required to reach species representation targets indicates 

how climatic change is likely to decrease the IBA network’s ability to reach 

conservation targets. The majority of areas identified for additional sites in the 

future are areas of high biodiversity and endemism currently, therefore increasing 

conservation measures in these areas represents investment into both present 

and future conservation strategies. 

Key Stable Sites (KSSs) 

PAs which act as a continual refuge for species are defined as ‘Key Stable Sites’ 

(KSSs). KSSs will be of great importance to conservation efforts in the coming 

Century by acting as climate refugia for species across the continent. Protection 

of these sites, with management focused on species predicted to have long-term 

protection within the PA, will be essential for the local persistence of species. 

Selected KSSs were widely dispersed across sub-Saharan Africa with a large 

proportion of which being selected in all three GCM scenarios. The selection of 

these sites in different climate scenarios indicates their climatic stability which can 

be linked to their altitudinal ranges. The protection and management of these 

sites is essential for species persistence over the coming Century, however, the 

KSS network designed had a significant shortfall of species which had no defined 

KSSs. The identification of KSSs for these species could provide invaluable 

additional sites to the IBA network.  

Increasing opportunity costs 

Shifting bird populations necessitating additions to the current PA network could 

cause increased opportunity costs to conservation. This has significant 

implications to the funding of climate change adaptation over the Century. 

Identifying methods to continue to protect biodiversity, whilst minimising 

opportunity costs, permits conservation organisations to most effectively use their 

available budgets. The opportunity cost data used in this study has several 

caveats which are highlighted in Chapter 4, including an insensitivity of the 

opportunity cost data to climate change impacts and the omission of logging as 
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an additional source of opportunity costs. One potential way to include 

opportunity cost for areas that have the potential to be logged, such as the Congo 

Basin, is to use data from the Open Source Impacts of REDD Incentives 

Spreadsheet (Osiris v2.6 (http://www.conservation.org/osiris/ 2009)). This is a 

static one-year global partial equilibrium market for agricultural land cleared from 

tropical forest which provides data on the amount of money a country would have 

to be paid to stop deforestation (Conservation International 2009) and therefore 

represents an opportunity cost for deforestation. REDD (Reduce Emissions from 

Deforestation and forest Degradation) is a United Nations Framework Convention 

on Climate Change (UNFCCC) scheme to reduce carbon dioxide emissions from 

deforestation in developing countries through financial incentives (Miles and 

Kapos 2008). Combining the Osiris v2.6 data with that utilised in this study would 

allow more accurate estimation of the impacts of opportunity costs on 

conservation, particularly in forested regions in areas of Central and West Africa. 

 

In a recent paper, Mawdsley et al. (2009) reviewed climate change adaptation 

strategies for wildlife management. Several of the strategies reviewed are 

consistent with the results from this study as well as other strategies which would 

undoubtedly improve the efficacy of the IBA network. They recommend: 1) 

increasing the extent of existing PAs, which is synonymous with the additional 

quarter-degree cells identified in this study; 2) protecting refugia, which I have 

undertaken by identifying KSSs; and 3) focusing management on species likely to 

go extinct, which I identify as under-represented species in the KSS network 

analyses. Two further points identified by Mawdsley et al. (2009) are not explicitly 

addressed in this study, but could be incorporated into follow-up studies that build 

on these preliminary findings. The first, is the development of dynamic landscape 

conservation plans to cope with the spatial and temporal heterogeneity of climate 

change impacts. In this study I highlight such spatial and temporal heterogeneity 

of climate change impacts across sub-Saharan Africa and suggest such dynamic 

plans at a course scale. However, here I make no recommendations with regards 

to planning at the level of the individual site, though Hole et al. (in Press) do 

categorise the IBAs of Africa into groups likely to require different management 

strategies in the future. The second adaptation strategy suggested is to improve 

the matrix to increase landscape permeability to species movement, which is 
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essential to facilitate species migration into the areas predicted to increase in 

species diversity. By combining simulated shifts in ranges, along with the 

identification of key PAs required for a future-proof network, follow on work could 

identify key regions through which habitat specific species will need to move but 

where suitable habitat does not currently exist. The Pathway Analysis Through 

Habitat (PATH) tool (Hargrove et al. (2005); discussed in chapter 1) could be 

used to map individual species’ movements through a landscape as it tracks 

climatic change. Other habitat connectivity software is available which could be 

used to create habitat corridors which facilitate the migration of species due to 

climate change. However, it is unclear whether it is possible to correctly orientate 

habitat corridors to cope with climate change (Willis et al. In Press) or whether 

corridors can be effective for more than one species. 

 

This study has often highlighted the fact that many of the areas which are 

predicted to be of importance to conservation in the future are areas which are 

already key for conservation in the present. Furthermore, strategies suggested to 

adapt PA networks to future climatic change are currently regarded as good 

practice for conservation (Noss 2001) making it rational to implement such 

measures now. In addition to the importance of starting immediately to adapt 

conservation strategies to cope with climate change, from a perspective of 

facilitating early range alterations, there is also a ‘cost of waiting’ to invest in 

conservation (Hannah et al. 2007). An important goal of conservation science 

should be to produce reliable projections of species’ range shifts and to suggest 

the most effective means of facilitating such shifts, so that thinly stretched 

resources can be used with the greatest efficiency.  
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Supplementary Material 
 

Results from this thesis which were too large to put into the text are supplied 

electronically as supplementary material. 

 

Data can be found in the supplementary material as excel 2007 files. They are 

presented in the following order: 

 

Supplementary Material (Folder) 

 S1 (Folder) 
  - Selected Quarter-degree Cells. Selected by Marxan for present  
  and projected future species distributions 
  - Unrepresented species in the quarter-degree networks 

S2 (Folder) 
  S2.1 
   - IBA shortfall species_Chapter 3 
   - Selected IBAs_Chapter 3. IBAs selected by Marxan for  
   present and projected future species distributions 
  S2.2 
   - Selected additional quarter-degree cells. Cells selected by  
   Marxan to complement the IBA network and reach species  
   representation targets 
   - Unrepresented Species IBA and Qdeg network 
   S2.2.1 (Folder) 
    - Lists of key species for additional cell selection.  
    Species which caused selection of additional cells 
  S2.3 
   - Selected KSSs. KSSs selected by Marxan 

S3 (Folder) 
  S3.1 
   - Selected IBAs with cost. IBAs selected by Marxan with  
   opportunity costs as a selection factor 
  S3.2 
   - Under-represented species in quarter-degree network with cost 
  S3.3 
   S3.3.1 (Folder) 
   - Lists of species key for additional cell selection (All IBAs).  
   Species which caused the selection by Marxan of cells which  
   complement the IBA network and help reach species   
   representation targets. 
   S3.3.2 (Folder) 
   - Lists of species key for additional cell selection (protected IBAs).  
   Species which caused the selection by Marxan of cells which  
   complement only the protected IBAs network and help reach  
   species representation targets. 
 
 Species IDs used in Supplementary Material (File) – Use as species key 
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