W Durham
University

AR

Durham E-Theses

Bayesian inspection planning for large industrial
systems

Hardman, Gavin

How to cite:

Hardman, Gavin (2007) Bayesian inspection planning for large industrial systems, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1998

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/1998/
 http://etheses.dur.ac.uk/1998/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Bayesian inspection planning for large industrial

systems

Gavin Hardman

Submitted for the degree of Doctor of Philosophy
May 2007

Abstract

The implementation of consistent and repeatable methods for inspection planning
is a problem faced by a wide range of industries. The theory of Bayesian design
problems provides a well established method for the treatment of inspection planning
problems, but is often difficult to implement for large systems due to its associated
computational burden. We develop a tractable Bayesian method for inspection
planning. The use of Bayes linear methods in the place of traditional Bayesian
techniques allows us to assess properties of proposed inspection designs with greater
computational efficiency. This improvement in efficiency allows a greater range of
designs to be assessed and the design space to be searched more effectively. We
propose a utility based criterion for the identification of designs that offer improved
prediction for future system properties. Designs with good typical performance are
identified through utility maximisation. The viability of the method is demonstrated

by application to an example based on data from a real industrial system.
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Chapter 1

Inspection planning problems

The objective of this thesis is to develop a rational method for tackling problems
encountered when planning inspections for systems consisting of many different, but
related, components, performing a variety of functions. Systems of this kind occur in
arange of areas. Examples of complex systems consisting of a mumber of subsystems
carrying out different tasks can be found in fields such as computing, manufacturing,
transport planning and the environmental sciences. We consider developing methods
for applications in industry which provide a structured and defensible strategy for
the planning of an inspection.

Inspection planning problems can be described as the problem of determining
which parts of a system we should mspect to learn most about the overall system
condition. The exact interpretation of ‘system condition’ will depend on the system
under consideration, but will in general be some measurable property of the system
- or the components within a system - that provides a quantification of the system’s
current, level of performance. Identifying sets of points that allow us to learn more
about the system improves the quality of the inspection; our aim is to produce a
method which allows us to consistently select ‘improved’ design sets.

In this chapter we introduce the problems we address in the rest of the thesis. We
describe the uses of inspection in industry in section 1.1. In section 1.2 we consider
current inspection practice and inspection planning methods. The particular type of

inspection problems we will be considering will be explained in section 1.3. Existing
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inspection planning methods within the Bayesian literature are reviewed in section

1.4, and finally we outline the structure of the rest of the thesis in section 1.5.

1.1 Therole of inspection and maintenance within

industry

Inspection and maintenance plays an important role in most industries. Inspec-
tion is the means by which industries learn about the performance/condition of the
system. Maintenance decisions are then made on the basis of the inspection results.

Maintenance is defined as actions taken to ensure the good performance/condition
of the system [38]. Maintenance actions include repairing or replacing of some or all
of the system, or less invasive treatments such as cleaning or lubricating components.
The aim of ensuring systems are kept in a good condition is to maximise system
efficiency and guard against potential safety hazards. Many industrial systems are
expected to degrade over time. System degradation can be caused by mechanisms
such as corrosion of the materials from which the system is constructed, build up
of dirt or sediment within the system or weakening of system cornponents through
use. These factors, and others, can reduce the ability of the system to function
properly. Systems that run at a reduced level of functionality are at best an incon-
venience. More often, underperforming systems result in a serious loss of income,
or can present a safety risk. The goal of maintenance is to ensure good system per-
formance, and therefore maximise the system’s productivity, or minimise the risk to
the system’s environment (including operators) introduced by system degradation.

Industrial inspection and maintenance is motivated by a rtange of considera-
tions. In addition to the financial benefits of operating a system in good condition
there are also safety factors. System owners have a legal responsibility to minimise
both the individual and societal risks of operating a system. Individual risks are
defined to be the chances of harm to the individual of a certain activity, and soci-
etal risk is treated as the risk of incidents which, for example, cause “widespread

or large scale detriment or the occurrence of multiple fatalities in a single event”
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<.

[26]. The Health and Safety Executive (HSE) is responsible for the enforcement of
Health and Safety legislation in the U.K., and for reviewing the risk assessments
conducted by system owners. Inspection is not explicitly requested by the Gov-
ernment’s Health and Safety regulations, but operators are required to produce a
“major accident prevention policy document” in which they must specify methods
for performance monitoring and identifying major hazards [25], a regulation that, in
practice, makes inspection unavoidable. The motivation for complying with health
and safety regulations is frequently the ‘loss in public and employee confidence’ that
follows major system failures. This can greatly affect an organisation’s profitabil-
ity, and consequently provides a strong reason for avoiding system failure through
effective inspection and maintenance.

Good quality inspection information accurately describes current system perfor-
mance and allows the systemn owner to make informed decisions about necessary
maintenance work. Effective inspection and maintenance allows the system to op-
erate in a good condition and avoid system failure. However, the down side is that
inspections are not necessarily cheap to implement or easy to plan. Poor quality
inspection information can lead to bad maintenance decisions, resulting in expensive
and ineffectual maintenance. Counsequently, there is a need to plan inspections so
that the information obtained allows us to make better maintenance decisions. We
also have to be willing to trade off the quality of information we receive against
the cost of the inspection. If ingpection is cheap, we can inspect more thoroughly,
however if inspecting the system is expensive, relative to the cost of repairing the

systemn; thorough inspection will not be a sensible option.

1.2 Current practice

Many different types of inspection are available to industry. The particular
choice of an inspection method is determined by a combination of the suitability of
the method for the system in question and the cost of implementing inspection us-

ing this technique. Inspection methods can be split into two major groups, invasive
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inspection techniques and non-invasive techniques. Invasive inspection involves the
system being shut down and inspected internally by the inspectors. Non-invasive in-
spection (NII) or non-destructive testing (NDT) methods do not necessarily require

system shutdown, and inspection is conducted from outside the system.

1.2.1 Invasive inspection

Invasive msgpection techniques require internal access to the system, which ne-
cessitates system shutdown. Invasive inspection techniques are, in general, thorough
and engender high customer confidence. The techniques themselves are frequently
quite simple, with visual inspection of the system (or enhanced images of the sys-
tem), being primarily favoured [40].

The perception of invasive techniques is that they offer a more ‘complete’ picture
of current system behaviour, as shutdown enables almost total inspection and all
‘significant’ problems will be detected. The disadvantages of invasive techniques are
held to be the length of time required to conduct the inspection (and the associated
loss of income through reduced production) and the potential safety risks to imspec-
tors caused by the disassembly process and the requirement to work in confined
areas.

However, as invasive inspection is frequently dependent on the ability of the
inspectors to identify system defects, it may not be as reliable as it is perceived to be.
Information gathered through invasive inspection techniques is frequently qualitative
rather than quantitative, which may not be sufficient to satisfy the legal system
monitoring requirements placed on the system owner. Consequently, alternative
techniques, which offer cheaper, and possibly more defensible, solutions, have been

sought,.

1.2.2 Non-invasive inspection

Non-invasive inspections are not, in general, as extensive as invasive inspections.
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NII techniques involve sampling sections of the system, as total inspection using
most NII techniques is infeasible due to either the time or cost involved in inspection.
This clearly creates the additional problems of determining where to sample, and
how the sampled locations relate to the unsampled locations.

There are many different NII techniques, although the majority have the same

format. [67] identifies the following five stages in any NII technique [72]:

1. A suitable form and distribution of energy is supplied to the test object from

an external source.

2. The supplied energy distribution is modified within the test object as a result

of discontinuities, flaws and other variations in material properties.

3. The modifications to the energy distribution are detected by a sensitive detec-

tor.

4. The energy measurement from the detector are recorded in a form useful for

interpretation.

5. The recorded values are interpreted and used to assess the cwrrent system

state.

The objective of such procedures is to learn about structural differences in the
systern. Different inspection techniques are better at detecting different types of de-
fects or damage. We discuss specific inspection techniques relevant to our examples

in section 3.3. Commonly used techniques include [9):

e Ultrasonic techniques - use of sound waves as the energy source.

Radiographic techniques - use of X-rays as the energy source.

Eddy current techniques - use of electromagnetic fields to detect defects.

Penetrant techniques - use of dye (or similar) to seep into the surface, which

is then absorbed by defects.

Magnetic particle techniques - use of magnetic fields to highlight defects.
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risk-based inspection, which develops RBI methods for a variety of applications. The
RBI approach is summarised by [23], and some recommendations for best practice
in RBI methods are given by [71].

RBI has traditionally treated inspection planning as a univariate problem. Un-
der this approach the risks associated with component failure are calculated and the
components that pose the greatest ‘threat’ are inspected. Risk is usually defined to
be the probability of component failure multiplied by the cost of the consequences
of component failure. This quantity is calculated for each component within a sys-
tem, allowing a ‘visk ranking’ of components to be procduced. Components are then
selected for inspection based on their risk ranking. Baker and Descamps [4] propose
considering not just the risk, but also the probability of component failure and the
cost of component failure to create a combined ranking that assigns greater impor-
tance to components that are likely to fail or have greater financial consequences if
they fail.

Recent work in RBI studies ([56]) has treated the calculation of risks as a joint
problem, taking into account the influence that components have on each other
when evaluating the failure probabilities. However, we do not know how widely this

approach is currently being implemented.

1.3 Problem structure

Inspection planning problems occur across a wide range of industries. For the
purposes of this thesis we will restrict to a specific subset of problems, that of
monitoring corrosion damage within the petrochemical industry. In considering this
class of problems we illustrate a large mumber of issues that are of relevance to
a wider class of inspection planning problems. However, the methods developed
within this thesis are constructed specifically with corrosion applications in mind.

Throughout this thesis we will use the following terminology to describe our

problems:

Component - A region (of variable size), that is consistent with respect to its
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physical properties and corrosion behaviour.

System - An organised set of components thal acts to perform a function.

Our definition of a component is intended to be sufficiently flexible to allow for
different parts of a system with the same structure and corrosion behaviour to be
considered as a single component even if they are in different physical locations.
The intention is to allow components to be defined by their corrosion properties.
In practice, we treat components as contiguous regions defined by their physical
pfoperties due to the difficulties in distinguishing between corrosion processes in
operating systems. In addition to systems and components, we may also consider
subsystems. Subsystems are defined as smaller subsets of system components (con-
taining at least 2 components) that satisfy owr definition of a system. By requiring
that our systems are both organised and functional we ensure that not every set of
components will form either a system or a subsystern.,

The petrochemical industry offers a particularly challenging set of inspection
problems. The systems used within the petrochemical industry are often large and
complex, with many subsystems performing a variety of different functions. There
are also a range of different installation types used by the petrochemical industry, in-
cluding offshore platforms, refineries and other processing plants. All of these carry
out complex operations involving large systems, the condition of which needs to be
monitored. There is a clear need for good inspection practice within the petrochemi-
cal industry motivated by the consequences of system failure. Petrochemical system
failure can have extremely severe consequences, therefore the careful monitoring of
these systems to ensure successful detection of potential problems is an important
consideration for companies and regulators within this industry.

We will focus on the problems of inspecting pipework systems for corrosion dain-
age. Pipework systems are an important part of the petrochemical industry, provid-
ing the means of transporting hydrocarbons through the extraction and processing
procedures. The pipework used is generally metallic and is therefore subject to
corrosion, which can weaken the pipe. Corrosion is a time dependent process, in
which the damage progressively increases over time, and can therefore be addressed

if detected sufficiently early. Corrosion can spread over an entire surface, or can
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remain localised in specific points. Therefore we need to consider the impact of
both general and localised corrosion behaviour.

Our objective is to develop a procedure for identifying locations within a cor-
roding system that will tell us most about the corrosion behaviour throughout the
entire systern, and thereby identify components in need of repair or other appro-
priate maintenance. To achieve this we will need to model system-wide corrosion
behaviour in such a way that the relationship between corrosion levels at different lo-
cations is captured, and subsequently establish a consistent and repeatable method

for identifying which points of a system are informative about corrosion behaviour.

1.4 Literature review

Inx this section we review the existing literature within areas related to inspection.
We consider these to be the fields of corrosion modelling and Bayesian design, and

we review each of these in turn.

1.4.1 Corrosion modelling literature

One key difficulty of inspection planning problems is that they consist of two
substantial problems, that of modelling the degradation of the system, and then us-
ing the degradation model as a basis for design selection. [20] consider this to be the
fundamental structure of maintenance problems, and review existing ‘deterioration
models’. They classify existing models into failure rate, reliability index, Markov
and renewal models.

The available engineering literature details some of the physical models used to
describe corrosion behaviour. [49] review models for water pipelines damage. Water
pipelines are frequently buried and therefore subject to slightly different degrada-
tion mechanisms than the exposed systems we will consider, but the review offers
an insight into typical water pipeline failure behaviour. A number of papers address

specific types of corrosion behaviour: [50] offer a detailed description of corrosion
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fatigue modelling in unfavourable conditions; [43] and [29] address COy driven cor-
rosion; [70] tackle the problem of pitting corrosion; [65] propose a model for crevice
corrosion and [41] deals with the problems of modelling marine corrosion damage.
This illustrates the potential range of corrosion mechanisms that could affect a sys-
tem.

A relatively large amount of the existing literature for corrosion modelling con-
siders reducing the problem to a univariate situation, by treating components as
independent. For large systems, such as those found in the petrochemical indus-
try, this is a pragmatic assumption that allows the modeller to handle potentially
intractable modelling problems. However, this 1s not usually a realistic assump-
tion. [37], [36] consider the use of a spatio-temporal dynamic linear model to model
the corrosion behaviour over an entire surface of a system (furnace). [57] and [21]
consider partial inspection problems using models that relate components to each
through a covariance structure.

There is a range of different system properties that liave been modelled. One
of the most commonly modelled quantities is the time to component failure. [61]
propose using a conjugate gamma process approach to model time to failure, which
can be easily updated given inspection data. [21] treat the system problem as one of
modelling a set of correlated binary variables, which are either operating correctly
or have failed, and conditions can be set on the number of components required to
be operating for the system to be operating successfully. Both models require the
specification of failure rates as initial parameters. [6], [62] and [33] choose to model
‘deterioration’ - assessed as the difference between the stresses (or loads) applied
to the system and the remaining ‘strength’ of the system based on its material
properties.

Alternatively, related quantities for the corroding surface can be modelled di-
rectly. The spatial approach of [37] models wall thickness behaviour, and [48] model
the changing mass of the corroding components. The conjugate gamima process
approach is also adapted to measure defect size in [63]. In all of these cases it is
possible to relate the modelled quantity to component failure by a deterministic rule

concerning minimun acceptable standards. Arguably, these approaches have more
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relevance for inspection models than the time to failure methods.

A common approach in the corrosion modelling literature is to treat a system as
a set of unrelated components, in which corrosion properties remain approximately
constant. [48] advocate using a dynamic model that reflects changes in the rate of
corrosion which are consistent with the properties of the type of corrosion occurring
at a particular site. The use of a dynamic linear model in [37] also allows for control
of variation in the corrosion rate. [53] proposes the use of a fuzzy logic based method
to account for the uncertainty in the choice of corrosion model and [73] suggest a
method for modelling multiple site crack corrosion using different competing models.

The literature contains a variety of proposed corrosion modelling methodologies.
Many of these do not consider the situation of correlated components within sys-
tems, but this is usually as a consequence of difficulties this creates in solving the
subsequent design problem. The geostatistics literature contains examples of spa-
tial modelling with a view to design. [14] and [5] both present methods for selecting
designs for learning about the behaviour of random spatial fields. However both

authors comment, on the computational intensity of their suggested approaches.

1.4.2 Bayesian design literature

There is also a well developed literature for the Bayesian approach to mainte-
nance optimisation. A nunber of articles focus on determining optimal time intervals
for inspection, such as [16], [55] and [28], in which the ain is to identify the optimal
point to inspect the system so that the useful life of all components is maximised.

The risk-based inspection (RBI) techniques - favoured in industry for inspection
planning - lend themselves naturally to use with Bayesian deterioration models. In
RBI procedures, the aim is to identify the components with the greatest risk of
failure (overviews of the RBI methodology are provided by [23], [44]), and use the
risk ranking as a guide to which components are in need of inspection. All RBI
procedures require a model for the probability of failure, which is re-stated after the
observation of the systemn. Bayesian methods provide a coherent framework for the

updating of failure probabilities given new inspection data, as illustrated by [28],
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[61] and [51].

In a number of industries, component failure probabilities are difficult to estimate
due to a lack of available historical data. This can be because the consequences of
failure are deemed to be so severe that extremely conservative maintenance policies
are adopted and failure data is therefore scarce. Alternatively, this can be a result
of the use of a new design of component, for which there is no historical data. In
such cases it is necessary to employ expert judgement based methods to establish
beliefs about failure probabilities and component failure. Such methods are also
readily implemented in Bayesian models. [53] and [47] contain examples about the
incorporation of Bayesian expert judgement into design selection problems.

The theoretical basis for Bayesian design problems is well established. An exten-
sive review of Bayesian experimental design literature is presented by [10], who com-
ment on the lack of applications to support the theory. The benefits of a Bayesian
approach to design are discussed in [46], which concludes that Bayesian methods
allow for model uncertainties to be accounted for more straightforwardly. The prin-
ciples of Bayesian design are summarised in [10], in which the expected utility of a
design is maximised over all values of the data that could potentially be observed.
The optimal design is the design that returns the greatest expected utility value.
This approach is based on the work of Raiffa and Schlaifer (1961) and Lindley (1972)
[34], who suggested the use of Bayesian decision theory as a means of optimisation.

Bayesian decision theory is widely used as a means of solving Bayesian design
problems. The basis for the decision is the utility function, which must be carefully
constructed to reflect our design aims. The importance of carefully constructed
utility functions is emphasised by [10], [60] and [47]. [14] illustrate how the utility
criterion changes as the inspection goals change from prediction to estimation.

The decision theoretic approach has been applied to a mumber of different ex-
amples recently. [11] demonstrate the use of Bayesian decision theory in selecting
inspection plans for the reliability of aircraft wings, [66] applies the method to the
problem of building metamodels of complex computer simulation models (i.e. iden-
tifying and selecting influential components). Applications in clinical trials, [32],

and the placement of security sensors, [59], have also been considered. [28] consid-
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ers applying the method to corrosion within pipework, but restricts to the problem
of recominending component replacement, times, rather than inspection locations.

A frequently occurring problem in Bayesian inspection/experimental design is
that of computational burden. Evaluating the expected utility of a design over all
potential observation sets is often a problem that has to be solved using numerical or
simulation methods. [10], [14], and [39] all comment, on the computational intensity
of Bayesian design methods. [15] develop a Bayesian design method for regression
variable selection, but comment on its Intractability for non-linear problems. Im-
provements in available computational power over recent years have reduced this
problem, but for large complex systems of the type in which we are interested, the
computational burden of traditional approaches to Bayesian design is still a very
large problem.

The computational difficulties of Bayesian decision problems are also discussed
in the RBI literature. [55] develops a tractable method for assessing reasonable
inspection intervals by restricting to simple inspection policies. The assumptions
made in adopting the approach are tested in [16). [58] proposes an interpolation
approach to reduce the computational burden of a full Bayesian design procedure.
It is suggested that the ‘value’ of a number of generic designs can be evaluated prior
to the design -process, and that the value of specific designs can be established by
interpolating between the values of the generic designs. [52] suggests the use of
maximum entropy sampling as a means of identily sensible designs.

Maximum entropy sampling is appropriate whenever the entropy of the obser-
vations does not functionally depend on the design. This makes it useful for linear
and variable selection problems, but impractical for spatial problems. (3] describes
how entropy methods can be used to identity optimal designs for spatio-temporal
problems, when we are working with a multivariate Gaussian field; however, these
methods are still reasonably computationally intense.

[17] consider the optimal repair problem from an adequate safety/optimal cost
perspective. A Bayesian decision theoretic approach is developed in which inspection
Is treated as beyond the modeller’s control. [30] and [7] illustrate the use of cost-

benefit analysis to assess inspection worth in the software industry, but the issues
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addressed are slightly different to those found in the petrochemical industry.

[37], [36] and [35] develop a method for computationally efficient inspection plan-
ning using Bayes linear methods for applications in industry. Bayes linear methods
have also been applied, in theory, to other design problems in [13], [19] and [54],
where methodology offers a tractable approach to complex design problems.

[56] deals with the problem of planning inspection assuming correlated compo-
nents. The generic RBI method of [58] is adopted to reduce computational load and
correlations are included between identified corrosion ‘hotspots’ via a covariance
matrix which accounts for the ‘similarity’ of the hotspots. Methods for building

covariance structures for large, complicated systems are discussed in [18].

1.5 Thesis outline

In chapter 2 we outline our proposed method for modelling corrosion in large
systems, using a dynamic linear model to take account of global trends and a separate
sub-model to describe local behaviour. In chapter 3 we illustrate how we would
apply the model to a real system with an example taken from an industrial site.
The model is developed for illustrative purposes, so certain characteristics of the
data have been emphasised to provide a more effective 1llustration. This example
will be used throughout the thesis to illustrate both the modelling and inspection
planning procedures in practice, and the initial modelling, which is discussed in
chapter 3, forms the basis for the simulations used to assess design performance
in later chapters. Updating is considered in chapter 4. With a view to proposing
a tractable design selection procedure we make use of the Bayes linear approach
to updating; the motivation behind this choice and the details of the Bayes linear
method are discussed here. The use of Bayes linear methods allows us to evaluate
properties of the design more rapidly than a fully Bayesian update would permit,
leading to a tractable design methodology, even for large systems. In chapters 5 and
6 we deal with the design selection process. Chapter 5 considers the problems of

identifying a suitable criterion for choosing between designs and details how we can
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caleulate a utility based criterion for design ‘worth’. Chapter 6 discusses how we can
then apply this criterion to the problem of selecting sensible inspection designs. The
criterion balances inspection cost against the benefit of the inspection in terms of
information gained. Therefore a design that performs well according to our criterion
will improve our understanding of the system, and our decision making ability, so
that the savings made from making better decisions outstrip the cost of performing
the inspection. This process is then illustrated using the example from chapter 3.
We conclude the thesis with a veview of the comupleted work and consider the scope

for further research in chapter 7.



Chapter 2

Modelling large industrial systems

In this section we describe the modelling approach that will be used throughout.
As stated in chapter 1 we will be concentrating on the problem of corrosion damage
to large pipework systems. We develop the model with these systems and corrosion
in mind, but it is possible to generalise the method to handle many situations in
which we wish to model a multiple component system evolving in time.

Ultimately, we will be interested in planning inspections for large industrial sys-
tems. However, informed inspection planning requires an understanding of the sys-
tem we are planning to inspect and its current operating state. Modelling the system
gives us a way of representing what we believe to be happening within the system.
We can then use data from previous inspections to update these beliefs - in line with
standard Bayesian practice.

The model provides the mechanism for us to wnterpret owr observations in terms
of system behaviour. It will also be used to describe our beliefs about future sys-
tem behaviour, which is a crucial part of inspection planning. Therefore the model
should accurately characterise the corrosion process in which we are interested. How-
ever, we are concentrating on planning inspections for systems with many different
components, each with distinct properties, so any model we consider will have to
retain sufficient flexibility to account for these different operating environments. We
must also consider the scale of the systems we wish to model and remember that, in

addition te building a model which adequately characterises component corrosion
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behaviour, the calculations required for mspection planning should remain com-
putationally tractable for large numbers of components. The data associated with
such systems can often consist of complicated functions of the corrosion state, them-
selves requiring additional modelling which adds to the computational load of the
inspection planning problems.

This chapter describes how we construct such a model. Section 2.1 details the
necessary properties of any corrosion damage model by giving an outline description
of the chemical process of corrosion and expert judgement on typical corrosion be-
haviour. Section 2.2 gives a broad description of the model structure and sets up our
notation. Section 2.3 presents the need for a separate measurement model, which
is described in detail in section 2.5. Section 2.4 explains in detail how each model
term: behaves with respect to evolution in time and interaction between components.
Defining the model covariance structures is described in section 2.6 and all other
aspects of model specification are discussed in section 2.7. Section 2.8 explains how
we can use a simulation approach to obtain full covariance structures between any

model term and our observations for any time point of interest.

2.1 Impact of corrosion damage

Corrosion is a process mostly affecting metallic materials in which the material
reacts with its environment to produce a new material. In general, this new material
is less effective for its intended function than the original uncorroded material. For
the situation of pipeline corrosion, we will consider that each of our components is
initially constructed from a known material which is subject to corrosion. A cor-
roded component will usually not function as well as an uncorroded component, and
in extreme cases corrosion can even be a cause of component failure. Component
failure is an expensive consequence of corrosion, resulting in unwanted expenditure
on emergency repair work and loss of income due to related parts of the system not
functioning. More commonly, corrosion damage is repaired before failure occurs,

but a loss of income can still be incurred due to the inefficient operation of corroded
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components. The loss of income, and potential threat posed by the release of chem-
icals from damaged components provides the motivation for tackling the corrosion
problem. The scale of the problem is highlighted by (2], which estimated the annual
cost of corrosion effects in the U.S.A. in 1998 to be $ 276 billion. Furthermore, [45]

claim that 13% of all hydrocarbon releases are due to corrosion /erosion.

2.1.1 How corrosion occurs

Corrosion is a chemical process driven by environmental factors causin g a {(gen-
erally unwanted) change in the nature of the material being acted on. [42] states

that 5 steps are involved in the corrosion of metallic materials:

1. The metal has to give up electrons (and thus create positively charged ions)

m order to begin the process.
2. Tons require a medium in which to move (usually water).
3. There must be a supply of oxygen present.
4. The reaction requires a driving force.
5. A new material is formed. This may react further with the enviromment.

In most situations the reaction driving force will be something very simple, such as
the presence of oxygen ions in water. To illustrate these 5 steps we will consider
the example of iron rusting. This is a very familiar example of a corrosive process
i which iron reacts with water and oxygen in the environment to form (hydrated)
iron oxide. The process begins with the iron (Fe) atoms giving up electrons to the
surrounding water and therefore becoming positively charged ions (Fe?/ %), Rusting
takes place in wet conditions, so the transfer medivn for the ions (step 2) is water.
Water contains a lot of dissolved oxygen, so step 3 is also satisfied. In this reaction,
the driving force is provided by the oxygen atoms ( 0,) (in the water) taking on the
released electrons to form negatively charged oxygen ions. The positively charged

iron ions then react with the negatively charged oxygen lons and the water (step 5)
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as follows:

9Fe + Oy + HyO — 2Fe(OH),

forming iron hydroxide (Fe(OH),). In this case the iron hydroxide then reacts again
with the oxygen:

4Fe(OH)2 + Oy — 2H,0O + 2Fe2 03.H, O

to give water and hydrated iron oxide, The hydrated iron oxide is the flaky brown
substance seen in a typical rusting process.

Rusting is typical of many corrosion processes in that it follows the five defined
steps. This gives us an idea of the type of reaction which is typically taking place.

We now move on to considering more typical forms of corrosion behaviour,

2.1.2 Types of corrosion

There are many different types of corrosion. Two important classes are uniform
and localised corrosion. The main difference between these types of corrosion are
the extent to which they affect the surface upon which they are acting. Uniform
corrosion occurs over the majority of the surface and consequently is usually easy
to detect. The rate of uniform corrosion is usually stable and in isolation it is
usually easy to handle by including sufficient redundancy into the system to allow
for typical uniform corrosion. However, when occurring in conjunction with forms
of localised corrosion, the impact of uniform corrosion can be much more damaging,
providing an already weakened surface for the localised corrosion to act upon, and
also camouflaging the effects of localised corrosion during inspection.

Localised corrosion only occurs at specific points on the component surface and
could have one of several different causes. Localised corrosion behaviour such as
pitting, crevice or intergranular corrosion is caused by corrosion attacking weak
points of the surface, such as those where protective coatings have been worn away,
points at which components are joined or simply defects in the component surface.
Problems such as galvanic corrosion and selective attack occur as a result of using

alloys in which one constituent part is more susceptible to corrosion than others,
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resulting in the metal being structurally weakened. The function of a component is
also important in determining localised corrosion behaviour. Fatigue, stress corro-
sion cracking and fretting corrosion are all brought about by strains repeatedly put
on the material of the component, either by repetitive motion or by static tensile
stress. These strains can cause weak points in the surface of the material, resulting
in increased susceptibility to corrosion. Localised corrosion is nmach harder to detect
than uniform corrosion and can occur at much higher rates. It therefore poses a
much greater threat to components and accounts for the majority of component
failures.

Both uniform and localised corrosion will be affected by environmental factors
such as location, temperature and pressure. Also, we are dealing with systems in
which there is a directed flow. This can create further corrosion damage by the
abrasive action of substances flowing through the system and also the further effect

of corroded materials being swept along by the flow.

2.1.3 Modelling corrosion behaviour

We know corrosion is a process that causes component degradation. We also
know that these changes due to corrosion are irreversible, 1.e.0nce part of the com-
ponent surface has reacted it does not become paxt of the component again at some
future time point. So any model we choose must be strictly monotonic.

The perception amongst corrosion experts is that corrosion rates are approxi-
mately constant once corrosion has initiated (see [42], [40}, [64]). This applies to
both uniform and localised corrosion although the uncertainty associated with this
constant rate is much higher for localised corrosion cases. Due to the different na-
tures of uniform and localised corrosion it is reasonable to propose a model structure
that has separate terms for each type of corrosion. The consensus of expert opinion
in favour of an approximately constant corrosion rate also suggests our model should
Incorporate this feature.

Factors such as material, function and environmental conditions can influence

corrosion behaviour (particularly localised corrosion behaviour). Our model should
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reflect this knowledge and allow us to build in any auxiliary information at our
disposal. Finally, we want to retain a sufficiently simple structure so that compu-
tational tractability is ensured for systems with large numbers of components. To

summarise, we require a model that:
1. Allows us to use awxiliary information to distinguish between components.
2. Allows us to separate global and local corrosion effects.
3. Gives an approximately constant corrosion rate.
4. Allows us to correlate components with similar locations/characteristics.

5. Remains computationally tractable for high dimensions.

2.2 Modelling corrosion through wall thickness

Modelling the underlying process, in this case corrosion, is an important stage
in solving the inspection planning problem. The model will be used as the basis
for our predictions for future system behaviour and should therefore be carefully
considered. In this section we will outline our modelling strategy. Further details
are given in sections 2.3 - 2.5. Iollowing the definitions of system and component
given in section 1.3 we will start by considering how to model corrosion within a
single component and then move on to the many component (system) problem.

We must establish which quantity we are modelling. We are interested in com-
ponent (and consequently system) integrity with respect to corrosion. Corrosion is a,
difficult quantity to measure directly, so we will have to use a related quantity which
tells something about the effect of any corrosion processes taking place within the
system. One such quantity is wall thickness, which is a commonly measured quantity
in the inspections performed by our industrial collahorators.

The interpretation of wall thickness for a pipe is illustrated by Figure 2.1. We
can relate wall thickness to corrosion by attributing decreases in wall thickness (wall

loss) to degradation caused by corrosion.
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Figure 2.1: Drawing of a cross section through an uncorroded and corroded pipe

In section 2.1 we stated that corrosion is an irreversible process. In terms of
wall thickness this means that only wall loss can occur, i.e.bur model should not
allow wall thickness to increase. Given that expert judgement informs us corrosion
is approximately constant at typical inspection frequency, we will therefore choose

to model wall thickness as having an approximately linear decreasing trend.

2.2.1 Modelling wall thickness in a single component

Fach component is characterised by beliefs about the properties of the corrosion
process occurring at sites within the component and auxiliary information about
the component. The exact nature of the auxiliary information will depend on the
specific data set, but we can expect to have some knowledge of the design -and
function of each modelled component. This information can be used to shape our
beliefs about the type and rate of the corrosion process(es) within the component.

We will model an individual component as a grid of s, locations. The size of
sc will be determined by the characteristics of the component. The size, design

and function of a component could all play a role in influencing the extent of local
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variation seen in a component - and therefore the size of the grid necessary to model
this variability. We refer to points on the grid as ‘locations’. For each location, [, at
time ¢, we assume there is an underlying true wall thickness value, denoted uy;. We
choose to model the w; values using two terms, the global term, z, and the local
term, 7y That is, uy == x; + 7. Note that the global term (2;) does not depend on
location. A corrosion based interpretation would be to view z, as modelling global
corrosion and 7y as modelling localised corrosion.

Separating the model into global and local terms also allows us to distinguish
(where possible) between the different corrosion types and it also provides the flex-
ibility to treat different types of auxiliary information differently. Characteristics
such as component function, material or design could reasonably be expected to af-
fect all areas of the component in a similar fashion and should therefore be modelled
by the global term, z;. More dynamic characteristics such as temperature, weath-
ering or system flow effects could be expected to have a less consistent influence on

the wall loss and be more susceptible to local fluctuations, thereby making them

more suitable to model using the local term ryy. However, such ideas would have to

be confirmed either by expert judgement or data before being implemented.

In principle, the x;, and ry terms can take any form. Indeed, as much or as little
structure as is felt to be necessary or appropriate can be built into each term. We
have chosen to concentrate most of the structure into the global term, z;, which we
will be modelling with a linear trend dynamic linear model (DLM). Full details of
the construction and evolution of this model are given in section 2.4, but the key

properties of the model are described by the coupled equations:
Ty = Ty + Qg+ €y (2.1)
oy = 1+ Ew (22)
15 the trend term and ey, €4 are independent deviations from the global term

value. The deviations associated with the z, (£4) and oy (Eqz) terms are independent

of each other and are drawn from separate populations with Normal distributions:

e ~ N(0,02)

Eat ™ ]V(an-a?ut)
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We will use the notation i, to denote the expectation of a random variable v,
throughout, where the variable will be written including any relevant subscripts, b.
Similarly, all variances will be labelled as U,:‘:b and all covariance matrices as %, .

The 7, values are chosen to have a simple form and are modelled as:

Ty = Tp—1 + Qu (2.3)

where,
e ~ N(O,Uét), (2.4)

so mn principle each location could have its own specific distribution, although in
practice this may be difficult to specify. In effect this means the r; values are
simply the sum of ¢ draws from Normal populations with mean 0 and variance 02“.
By choosing to build a trend only into the global termm we are emphasising the
impact of global factor over local ones. More emphasis could be placed on localised
corrosion by building more structure into the local term, possibly to include its own
decreasing trend and also an initiation factor. Parameters for the local trend term

should be chosen to ensure there is no possibility of increasing wall thickness.

2.2.2 Modelling wall thickness over many components

We want to model systems consisting of large numbers of components. In this
section we describe how we move from the single component model to the many
component model. The system is to be modelled as n components. We use the
index ¢ to distinguish between these. For each component we have a grid of s,

locations. The underlying true wall thickness values are now given by:
Wit == Lot + Tlet- (2.5)

The model structure corresponds directly to the single component case. The
global term (z.;) depends only on component and time and not on location, meaning
we have a separate trend for each component. Treating the the global terms as n
distinct linear trend DLMs would, in general, allow us to simplify the inspection

design problem. However, this would not allow us to model interactions hetween
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components. We instead consider each global term (z. for ¢ = 1,...,n) as an
element of a multivariate DLM [24]. The nultivariate DLM provides a natural
framework for modelling correlated components as they evolve in time. The only
difference this makes to modelling the global term is that the coupled evolution
equations (2.1) and (2.2) are now written in terms of n-vectors in which the cth

element of each vector corresponds to the global term for the cth component:

Ty = Zy T+ Ey (2.6)
g_'t - at ..... 1+§-at (27)

E44> Eqy aT€ NOW draws from a multivariate Normal population with distribution:

Ext

§—cut ~ ]\T(Q= Eé‘at)

~ N(O,%,,)

“Ext

Correlation is introduced via the deviations; these will be correlated across compo-
nents at each time point. Therefore the covariance matrices ¥, are the means by
which our beliefs about the system correlation structure are entered into the model.

We continue to use minimal structure on the local term r;y. Following the
approach adopted for a single component, we have the value of 1 given by equations
(2.3) and (2.4). We are therefore assuming the extent of local variation is specific to
the component and location being modelled. We also assume there is no correlation
between the local variation in different components, i.e.that any between component
correlation is accounted for by the global term. We can construct Y., as the s, X s,
matrix Y, = (0¢,, )l fer, Where og, 15 the covariance between locations [ and

. We would require an s, X s, maftrix for each component c.

Our overall aim is to produce an efficient iuspection design methodology which
will remain tractable for very large systems. The model sketched here offers a
structure that is both sufficiently flexible to characterise difterent aspects of the
problem in question, yet sufficiently simple to scale up to many components. The
model is not proposed as a definitive corrosion model, but as a modelling framework

for tackling the large system problem with a view to inspection planning.
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2.3 The observation process

In addition to building a model which describes the nature of the corrosion
process taking place within a system we also need to build models to describe the
observation process.

In any physical process there is a gap between what can be observed and the
actual system state. In general, measurements will be made with error. This -
troduces a level of uncertainty into the inspection process that has to be modelled.
"This uncertainty stems from not knowing exactly what our observations are telling
us about the true system behaviour.

We treat the observation process as a distinct part of the model. We do this
because the observation process is different o the corrosion process. The source of
the uncertainty being modelled is associated with the measurement methods used.
Although the choice of measurement method may be influenced by the characteristics
of the system, it is not determined by the extent of corrosion damage within the
system. This approach allows us to model many different, observation procedures
without alteration to the system model. Consequently we will have two models, the
system model and the observation model. The systemn model tracks the evolution of
corrosion damage to the system in time, as outlined in section 2.2. The observation
model provides our method for interpreting observations and how they relate to
system behaviour.

Observations could be any computable function of the system. As a general
structure we will use the form Y, = Fla, + i z)’ in which f is the observation
function and §( . is a location specific measurement error vector. By adopting this
structure we can account for a range of different observation processes. The error
term is included inside the function to represent our belief that any measurement
device will take measurements with some degree of inaccuracy, so the observation
will not simply be a transformation of the underlying true wall thickness value but
in fact a transformation of a value which is in some sense ‘near’ to the underlying
true wall thickness (where ‘near’ is controlled by & ). The observation function then

=ct

operates on this inaccurate value.
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The form of the observations v, will be determined by the observation function,
f - the choice of which will be determined by the inspection aims. For example
if the goal of the inspection is to learn about corrosion behaviour over the whole
surface then f should return a value for each observed location, giving y,8asa
vector. However, if we are interested in identifying components that are experiencing
greater levels of corrosion then a summary statistic such as the mean or minimum
wall thickness value may be more appropriate, thus y,, would take a single value for
each component. If the inspection was only interested in overall system performance
with respect to corrosion then it might be suitable to use a function, f, which only
returns a single y; value for the entire system.

To illustrate the observation model we consider how it could be used to generate

two plausible ohservation processes:
1. Total observation with Normal measurement error.
2. Minimum component wall thickness with under-estimated error.

The first process requires a value to be returned for each observed location, it rep-
resents simple observation with error. For this case we would model &, as being
Normally distributed with mean 0 and variance ogm, le. & ~ N ((),ngct). This
is then sufficient to model the observation process we want, so for this example
the observation function f would simply be the identity, therefore return a vector
of length s, for each component ¢ as our observations, Y, We can control the

size of the measurement error through ngct. For example, perfect inspection would

The second observation process is more complicated. Firstly, we require only
one value to be returned for each component (the minimum wall thickness), so our
observations 7., will be scalar for this observation process. Secondly, we are told
that this value is always underestimated. To model either under- or over-estimation
we choose £ to have an appropriate one-sided distribution (e.g.éamma, Beta); the
degree of over- or under-estimation can be controlled through the parameters of this

distribution. In this case the observation function f is minimisation with respect to
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location,!, of the wall thickness values observed with error. That is:

Yot = mlin{wc:, + &ier}

for each component, c.

2.3.1 Inspection designs

The observation model will also depend on the nspection plan, d. d tells us how to
inspect the system by specifying which locations and which components to measure
and also which measurement technique to use. The model structure gives us a
representation of the systemn at each time point through the underlying true wall
thickness values (w). Our observations will take the form of a transformation of
some or all of these uy,; values which have been measured with error. We use the
subscript d to identify which w are to be included in an inspection. This takes
the form of a set of components which are to be mspected (denoted Cy) and set of
locations to be inspected (L., for all ¢y € Cy), individual locations are denoted ;.
So the wall thickness value for a particular location included i the design would be
denoted wuy,.,:; for notational simplicity we will refer to the inspection sites as those
included in the vector u,,. Similarly, our observations will be denoted by y, (where

it
d is as described and ¢ is time), and are defined to be:

Yy = fua + ). (2.8)

2.4 System model: Linear growth DLM

A brief description of the model was given in section 2.2. We now expand on
that description to provide more detail on the evolution of the model in time.

The role of the system model is to produce representations of the behaviour of the
surface of each component as we progress in time. As has been described, we expect
corrosion to act on components at a roughly constant rate and therefore components
to become more corroded as we move further forward in time. We model wall

thickness (an observable quantity related to corrosion damage) at multiple locations
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within a component as the sum of a global trend term (z.) and an independent
local variation term (ryq).

Although this structure allows us a great deal of flexibility and offers the potential
to construct very detailed models of the component surface, we have chosen to work
with a relatively simple model. This is motivated by our ultimate goal of producing
an efficient means of designing an inspection plan for large systems. To be able to
evaluate the worth of a single designed inspection, d, we will have to update owr
model for each possible set of inspection data Yy For large systems performing this
becomes a computationally intensive calculation, particularly if the measurements
Yy have a cormplicated form. On top of this we will want to assess many designed
inspections, so we will have to carry out multiple updates to account for the range
of potential observation for each designed inspection, d. Consequently, the amount
of the coruputation involved in comparing inspection plans can grow very rapidly.

We have made the following simplifying assumptions in our model:

1. We are modelling a system in which corrosion has initiated, so the issue of
corrosion initiation becomes a retrospective one. It still has to be modelled,
but can now be handled as part of defining mitial conditions, and not directly

as part of the model.

2. Localised variation is not given a downward trend. We assume any trends can

be modelled by the global terms.

A discussion of how these assumptions could be relaxed is included in chapter 7.

2.4.1 Linear growth DLM

As stated in Section 2.2 we will be modelling the global z, term using a linear

trend dynamic linear model (DLM), as given by equations (2.6) and (2.7):
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The assumption of approximate linearity is modelled by the trend term q,. ¢
controls the rate of change in z,, and remains roughly constant, subject to the
random deviation controlled by g,,.

A Gaussian DLM is, in general, defined by the equations [24]:

1‘1‘, = FtQt + §-¢? Zt ~ IV(Q.) EU) (29)
O, = Gullrten &~ NO ) (2.10)

where (2.9) is the observation equation and (2.10) is the system equation. The DLM
is defined by the quadruple {F, G,%,, &}, and its initial conditions, which will be
specified as a mean g " and variance Yy, of the initial state vector ,, such that
(6p] Do) ~ N (Hoo’ Yg,) where Dy is the information available at time ¢ = 0. More
generally D, is the information available at time ¢. This general DLM structure can
be related to the linear growth DLM we will be using as follows. We can define
the state vector as 8, = [z], a7 |7, the 2n-vector constructed from the n-vectors for
system level and system slope. The error vector is given by g, = [e7,,e7.]7. We can
recover equations (2.6) and (2.7) through the choice of G. The choice of G which

gives us a linear trend model is:

OTL I'II
for all £. X can be constructed using the covariance matrices for g, and g,,:

E.’L‘ + E(I E(.\:

Yi o

Ye =

Owr observation equation will typically be more complicated than the standard
DLM observation equation given in (2.9), and for this we will use a separate observa-
tion model, as described in section 2.5. However, if we were interested in observing

the exact system level values we could do this by choosing:

Lo
On

F = , 2, =0 Vt.

This ensures that our DLM ‘observation equation’ simply returns our system level
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values, z,. In summary, the DLM we will be using has the form:

Qt B GQL ----- 1 +§t7 & ]\T(Q, EE) (212)

and is defined by the quadruple {F, G, 0, .. } for all values of t. This stage identifies
the values .of &, from the system vector 0, for use as the global term; we then have
to bring in the local variation term 7, before considering observations. However,
we can use this DLM framework to learn about the distribution of z,.

For any DLM, the k time step ahead forecast distributions are well defined.

These are given by [24] to be:
(Qt+ktDt) ~ N[Qt(k)> Vt(k)] (2.13)

for the system state distribution. The forecast distribution for the system “obser-
vations” is given as:

(2, 1| Pe) ~ N1, (K), Qu(K)]. (2.14)
The quantities a,(k), Vi(k), f,(k), Q,(k) ave defined rectusively using the defining

quadruple of the DLM. For a general DLM, these recursion relations are [24]:

a(k) = Gurg(k—1)
V{(k) - G],..|..]‘~Vt(k' - l)GZHx + E(.;H_k
f(k) = Fia(k)
Qt(k') - Flt+-kvt(k)Ft--!-k + E”t+k
L
where @,(0) = Hy, = Ea, , the system level and system slope expectations at
Fo
- }J.’L‘t >~3Tt »Ot -
time ¢, and V(0) = Yo, = , the system level (¥,,) and system

.l .
Lahl‘t Lat
slope (%,,) variance matrices, plus the system level and slope covariance matrix

(Vapz:)- In the case where the defining quadruple is constant in time (as applies to
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our model), these can be simplified to:

a(k) = G, (2.15)
ko1 ‘

Vik) = G*5,G*+)> GIn.GY (2.16)
=0

f(k) = FGu, (2.17)

Q,(k) = F'V,(k)F +5,

and for our model, in which {F, G, %,, L.}, are given by {F, G, 0, X} for all #, the
definition of Q,(k) further simplifies to:

Q.(k) = F'V,(k)F. (2.18)
So we can describe our beliefs about future system level behaviour in termns of:
E (Et) = L)(t)
var(z,) = Qot)

We can see from equations (2.16) and (2.18) that 33 is important in determining
the forecast system variance. Therefore the constituent elements of X, ¥, and ¥,
are influential in establishing covariance between components. (2.16) shows how
this covariance structure is introduced over time. Our assumption is that we can
use these matrices to capture the full “between component” covariance structure,
and therefore not have to build a trend or any correlations into the local variation

terni.
2.4.2 Local variation

For each time point, t, the local variation terms 7. form an s X n matrix

Ry = ("'lct)le, et

where
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Fach column represents the values at the s. locations in component ¢. We model

N(0, agc), an independent random draw from a normal population. For any ¢, these
differences form an s x n matrix, Z, = ({u)i; »;. Each column of Z, is a draw

from the multivariate normal distribution N(0, cr?c.Is). With (., defined as:

The initial conditions Rg will be determined by beliefs about the system state at
t = 0. For details see section 2.7

We have adopted the simplest local variation structure, that of uncorrelated
random deviation from the mean. It would be possible to allow for greater between
component, correlation by allowing the off-diagonal elements of ¥, to take non-
zero values. Bach row of Z,; would then be a draw from multivariate Normal with
covariance structure given by .. If we had reason to believe certain regions of
a component were behaving differently to others we could model this by allowing
those regions to take different variance values. In effect this would mean giving each
component a full s, X s, covariance matrix, ¥, so each column of Z, would be

drawn from N(0, ¥¢,).

2.4.3 System Model

This gives us a method for modelling the underlying true wall thickness value

Ujer 8S Ujey == Tey + Tier- 11 mabrix form this would be written as:
U, =1z +Ry (2.19)

where 1 is an s-vector of ones.
At each time point we represent the underlying true wall thickiess values as an

s X n matrix U; in which each column corresponds to the values taken at each of the
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critical wall thickness We (for component c). Systems are assumed to operate as
efficiently as their weakest component and in turn components are deemed to be
as strong as their weakest point. Therefore a system ceases to operate effectively
if a single component, ¢ is operating inefficiently. Reduced wall thickness clearly
increases the likelihood of a component failure, but it can also act to reduce compo-
nent efficiency. We denote by Wg the critical wall thickness value - below which a
component’s ability to function efficiently cannot be guaranteed and the probahbility
of component failure is greatly increased. If any point on its surface (uyy) falls below
We, we shall treat the component as though it has failed. This simplified view of
component and system failure is in line with typical inspection and maintenance
practice, where the consequences of actual component failure are seen as so severe
that these ‘breakdowns’ are used as a trigger for maintenance. Component break-
down is not the same as component failure - in which the component completely
ceases to function - but should be regarded as the step that immediately precedes
component failure. We can thus formulate a definition of component breakdown in
terms of the minimum wall thickness value; a component, ¢, is said to have broken
down if and only if its minimum wall thickness value is less than We.

The observation function could, in general, be any function of the underlying wall
thickness values. For this account we restrict discussion to the case of minimisation
over a component, or more precisely over the locations within a component. We

model the ‘true’ component minimum as:
Mgy = mlin{ulcj, 1= mlin{a:ct + Tt} = T + mlin{rlct} (2.20)

and denote by m, the vector of component minima for the full system. Note that
the minimisation is carried out over the locations, /, so the global trend term, which
does not depend on I, can he taken out of the minimisation.

The distribution of these component minima is not easy to write down analyt-
ically. We know the minimisation does not act on the global term, z,, which has
distribution N{f (t), Qu(t)]. However, the distribution function of the minimum of
independent draws from a Normal population is given by the distribution of the

population to the power of the number of locations over which we are minimising.

In the limiting case, where s, is sufficiently large, this will be a, Gumbel distribution.
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However in most situations we consider, s, will be not be sufficiently large. This is
a consequence of our location model. We model the component surface using a grid
in which locations are sufficiently spaced so as to be independent of each other, so
the value of s, is relatively small. Increasing the number of locations will violate
the assumption of spatial independence, also meaning we cannot use the limiting
results. The exact distributional form will lie somewhere between a Normal and a
Gumbel distribution. As the exact distribution depends on the value of s, we cannot
write down a concise expression for the distribution, but, using the independence of

the global and local terms, the expected value and variance can be written as:

E(m,) = io(t) + B (mlin{'rlct}>
var(m,) = Qq(t) + var (mlin{rlc,,}> :

We assume we are using an imperfect measurement device and will therefore need
to account for measurement error. Measurement error could take any form, but we
use Gaussian errors. Consequently, our & term is distributed as & ~ N(0, agc),
where agc 1s the measurement error variance for component ¢. We allow this variance
to depend on c to reflect the belief that some components, due to operational factors,
environmental effects or physical inaccessibility may be more difficult to observe

accurately than others. Our observation equation therefore takes the form:

v = 1 (g 1E,)

2c
= 1'1’2-111 {"'(;cdt + "'ldadt +- gldcdt} &dcdt ~ -NY(O) Ogc)
d
= :L‘Cdt """ II}ill {‘rldcdt [ gldcdt} gldcdt ~ N(O? (Tgc)
‘d
= Tyt + ‘Dcdt (221)

for each ¢4 € Cy and where @, is the minimum of the 7y,c,; + &« terms.

This distribution is as complicated as that of the true component minima. We
have the same problem as before of the precise form depending on the number of
locations over which we have minimised. For the case of historical data, the problem
is compounded by uncertainty over the number of inspected locations. We have no
way of checking how many locations were inspected to find the reported minimum,

and therefore no way of writing down the full distribution for the observation model.
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For simulated observations, the problems faced are the same as those for the ‘true’
Ininimum case.

These distributional uncertainties lead us into using a simulation based approach
to assess the relationship between observations and system behaviour, which is de-

tailed in Section 2.8.

2.6 Building covariance structures

We will need to define covariance matrices for the evolution errors of the DLM
(¥e), the extent of local variation between time steps (3¢) and measurement ervor
Eez O'n.

(Z¢). Recalling the structure of ¥ X, = , We can see that we must
071 EEQ

specify Y, and X,. As X, ¥, X and ¥ are all constructed similarly, each being
defined by multiple inputs, we propose a general framework for defining covariance
matrices.

For large inspection planning problems we will usually have auxiliary information
which is relevant to the construction of the correlation structure. Characteristics
such as component design, usage and location can be expected to have an influence
on corrosion behaviour and should therefore be used for guidance in quantifying ¥, _,
Y, and ¢, X¢ will have a different set of relevant characteristics, but information
concerning the inspection procedure is also likely to be available. Precisely what
these characteristics are will be determined by the specific problem and data set
being analysed, but for any application it is reasonable to assume the existence of
some useful auxiliary information.

We want a method for defining X, ., and ¥, in terms of auxiliary informa~
tion relevant to system behaviour and X in terms of information relating to the

inspection procedure.
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2.6.1 Representing uncertainty

mformation. These can be used to define the behaviour of a system with respect
to each of £,€, and ¢ and therefore help in quantifying the respective covariance
matrices. We assume that the deviations €, €, and ¢ can be modelled as a linear
combination of independent terins - one term for each characteristic hy, each with a
known weighting e, s, (respectively A n,, Ach, OF Agn, depending on which deviation
is being calculated) - and an independent Gaussian noise term ¥, with variance Xy,
(the specific variation). We can then write ¢, as:

N
€, = Z A e + e, . (2.22)

k=1
Assuming each of these characteristics to be Normally distributed with mean 0 and

variance X, , we can then write ., as:
}\T
S, =) ML, + 3y (2.23)
fx T Eg;]’l,k hfk Ve '
K1

and similarly %o, = 00 A2, Ty, + By and B = S0 A2, T, 4 ¥

Sl Chy

We will be interested in the relationship between an auxiliary variable and the

e

component corrosion rate. Considering rate allows us to handle the observational
data on a standard scale. Our covariances will be built up from the corrosion rate
behaviour associated with each characteristic. To illustrate, we consider a simplified
version of the characteristics component type (CT) and pipe diameter (PD). Com-
ponent type is a categorical variable with three levels: Straight (CT1), Bend (CT?2)
and Tee (CT3). These describe the shape of pipework in the section of system we
are modelling. We have data from similar systems that allows us to estimate the
standard deviation of the corrosion rate for each level of the characteristic, giving
us quantities: oeri, o2, 0ors. Pipe Diameter is a continuous variable and the
standard deviation, opp, for a component is taken to be a function of its pipe di-
ameter. For this example, the €, term for an individual component with type bend

and Pipe Diameter 3mm would have covariance given by:

2 2
Ocy = Ayor0cre + A, pporn(3) + oy,
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Each of the ¥, terms represents our uncertainty over system corrosion behaviour
with respect to characteristic ;. These terms are conunon uncertainties, character-
istics which affect every component in some way. We use the covariance matrix to
describe the extent of the relationship between components. For an n component
systern, these matrices will be of size n x n, where the (¢, ¢)th entry is the covariance
between component ¢ and component ¢/. We build up the individual characteristic

covariance matrices, X, , elementwise, using the function:

Ohgec! = ThypeThye! eXP{—Thk I IC - C,HQ} (224)

where the quantities oy, represent the standard deviation of characteristic hy, with
respect to the value of hy, taken in component ¢. The ||c — ¢||* term is a measure
of distance between components ¢ and ¢ where ‘distance’ may depend on factors
such as adjacency rather than physical distance, and 7, (> 0) is an importance
weighting associated with distance. We can control the impact of distance through
The- 1f we believe a characteristic to be unaffected by distance (i.e. association is
based entirely on the value of h; taken within components ¢ and ¢’) we can choose
Th, close to 0 to reflect this view. Similarly if we believe distance to be important in
determining the extent of a characteristic’s influence on the covariance structure we
can choose 73, to be large. In general, the 7, values will have to be elicited and then
validated with data from related systems. The inclusion of a distance measure into
the evaluation of the covariance matrices allows us to introduce spatial correlation
into the model.

So for the component type example, the full covariance would be constructed

elementwise using (2.24). Suppose we have a four component system, with structure:

-] -3~

where ¢ == 1 is a tee joint ¢ == 2 and ¢ == 3 are straights and ¢ = 4 is a bend. Il we let

our distance measure be defined as the difference between ¢, the resulting covariance
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matrix would have the form:

Ol ocrsoerie”™T  oorsoerie T oorsoore” T
ocriocrse” T Oém o&me T ocr10cTee” 4T
CCT100TS e~ 4tcr 02}7"1@_TCT Ué_’[‘l ger10cree” °T
ocraoerse T ooraoorie T ooraoorie TCT ‘7?:7"2

The variance values aikc depend on the value of characteristic iy taken by com-
ponent ¢. This structure is a natural one for categorical and ordinal variables, in
which groups already exist within the data. This interpretation is less readily ap-
plied for continuous variables, where it will be necessary either to find a suitable
way to discretise the contimous variable and apply the same treatment, or simply
use a continuous covariance measure, similar to that used for distance.

We would have to estimate matrices for each characteristic hy € H. Having
evaluated all of these covariance matrices, we must also consider the specific variation
term y_ ~ N (0,24, ). This term accounts for the variation we can expect to see in
an individual component distinct from the ‘explained’ variation from the common

causes of uncertainty.

2.6.2 Defining weights ),

In general only a subset of characteristics will contribute to each covariance
matrix. We can control the influence of characteristics hy through their weight-
ings, Aegn, (respectively Acp, and Ac,). For each covariance matrix we wish to
define there exists a set of weights A,, A, and A, in which the individual elements
An, are the weighting associated with characteristic hy. These values will either
be estimated from data, or more likely elicited from experts. Weights will be as-
signed non-negative values with a weight of 0 being equivalent to the belief that the
characteristic does not contribute to the final covariance structure. Higher weights

correspond to characteristics that are considered to be more influential.

Overall, this provides us with a structured way of incorporating auxiliary in-

formation and using it to build justifiable covariance structures. It provides a
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structured method for taking variables we know are related to corrosion and/or
measurelnent properties and using the information they provide to inform our be-
liefs about system covariances. Making decisions as to which variables contribute to
which covariance matrices is a difficult question with no definitive answer. Where it,
is possible to identify a variable that clearly forms part of one of the four matrices
Yieyr Dea, 2¢ OF X¢ then that variable should be used to form part of that matrix.

Usually we will have to rely on expert judgement.

2.7 Model specification

For any particular system we wish to model, we will need to know how to move
from the general model, as described so far in this chapter, to the specific model for
that system. The system model is completely specified by the evolution covariance

matrices for the global term, 3. and X,

Ea?

the local deviation covariance matrices X,
and the initial conditions for system level, x,, system slope, a,, and local deviation,
Ry. Having specified each of these, we will then be able to evolve the model in
time to obtain forecasts of future system behaviour. We will also need to specify
parameters for the observation model. The two elements we need to determine the
observation model will be the observation function f and the observational error
variance Y.

This gives us 8 quantities we are required to specify: 3 for system model co-
variances, 3 sets of initial conditions and 2 for observation model parameters. Each
of these could have multiple elements, so we describe here exactly what specifying
these quantities entails. In chapter 3 we carry out such a specification for an example

based on data from an industrial installation provided by our collaborators.

2.7.1 Specifying covariances

We use the factor model approach described in section 2.6. This provides us with

each of the covariances we need for evolving the model in time. We have to rely on
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auxiliary data to establish a set of characteristics that we believe influence corrosion
behaviour. These beliefs will be based on a combination of trends observed in the
data and prior judgements of experts validated through data analysis. As stated
previously, determining where the influence of an individual characteristic hy € H
should be built into the model may be difficult. This will always be a subjective
process dependent on the modeller and his/her interpretation of the system.

In general, particular characteristics will often be useful in defining more than
one of the covariance matrices, ., , 2, 2i,. This is because certain characteristics,
such as location or component function, are important in learning about more than
one type of corrosion behaviour. How these matrices are determined and exactly
how the factor modelled is constructed will depend on the system being modelled,
but we can make some broad statements about ¥, , ., X¢,.

Y, 18 the covariance matrix for the evolution deviation in system level at each
time step. Therefore characteristics that affect the system directly, and so make the
impact of corrosion more unpredictable, should be given more weight in factor model
for ¥¢,. X, is the covariance matrix for the evolution deviation in system slope
at each time step. This corresponds to the change in the wall loss rate between
successive time points, so characteristics that affect the rate of change in system
level rather than system level should be incorporated here. ¥, represents the corro-
sion behaviour at individual locations within a component, and can be viewed as a
measure of how predictable the localised corrosion behaviour is within a component.
Components with high local variability can be interpreted as being those more sus-
ceptible to localised corrosion, so characteristics important in explaining localised
corrosion behaviour should he given higher weighting in the factor model [or these

matrices.

2.7.2 Specifying initial conditions

The nature of the initial conditions again depends on the system being modelled,
and the data available. We have assumed we will be modelling older systems in which

corrosion has initiated. In general, components do not begin corroding instantly,
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but there is instead a period between a component’s installation T and the point at
which it begins to corrode. We use the notation ¢ to indicate the point at which
corrosion initiated in component ¢ (corrosion is unlikely to initiate in all components
simultaneously), and ¢ = 0 as the first point in our model. Therefore both T and
tei will, in general, be negative. We restrict ourselves to considering systems in
which corrosion has initiated, and therefore the model structure as described can be
applied without modification.

[f we assume we know when the system started corroding (and at what rate),
then we can use our model to obtain estimates for the mean and variance of z,
and o by using the DLM forecast equations for the ¢, time steps for which each
component has been corroding. Similarly, we can estimate the mean and variance

of Ry as the sum of t; Normal N (0, ,) distributions, for each component, c.

started corroding, or the initial corrosion rate. Therefore the wall thickness values
at ¢ = 0, and the associated rates a;, will be random. We can estimate wall loss
rates from data for corroding systems, and by using our assumption that wall loss
due to corrosion occurs at an approximately ‘constant rate, these estimates will be
directly comparable to the initial wall loss rates. More precisely, we use data to
obtain estimates {for the mean and variance of the wall loss rate, where the wall loss

rate in component ¢ at time ¢ is modelled as:

t
Qp = Qe g -4 Z Eaj Eaj ~ N(O, Uzuc (225)
J=tei

and a4, is constructed as the weighted sum of characteristic wall loss rates (i.e.

our factor model for wall loss rate):

Cetes ™ Z ’\ahk hk(c) + e Pe N(O> 0':5',0) (226)

where hy(c) is the contribution of characteristic i to the wall loss rate for the value
of characteristic hy taken by component c.

We denote the vector of initial wall loss rates by o, where we acknowledge that
the initiation time could be different for each component, although this is not explicit

in the notation. Our expectation for o, , denoted ug, , is given by the expectation of
=t



2.7. Model specification 46

our factor model (2.26), the sum of expected contributions from each characteristic.
Similarly, the variance is given by the sum of the variances for the factor model for
wall loss rate, which is denoted ¥,,.

It is likely that we will have some historical data from the system we are mod-
elling, in which case we may be able to identify thie initiation point, or at least
narrow the range in which it lies. We may also be able to use the historical data
to provide improved estimates for our initial wall thickness values, removing the
need to estimate these. In situations where we have good historical data, then it is
preferable to use these values as our initial conditions. However, for situations in
which we have no data from the system we are modelling, methods for estimating
initial conditions using auxiliary data from other systems will have to be considered.

We estimate initiation time by considering historical data. In situations where
the data set has a mixture of corroding and non-corroding components, we can use
the age of the system and the number of new initiations within the time frame
covered by the data to provide a plausible estimate of the initiation rate, 5. As we
are only considering initiation as part of the initial conditions, and not as part of the
full model, we make the simplifying assumption that the time of corrosion initiation
is exponentially distributed and independent for each component, with parameter,
5. That is:

plty = t) = Bexp{—0t} Ve

However, it would be possible to use a more involved model without compromising
tractability, whilst the initiation modelling is treated as part of the initial conditions.
We can then randomly generate the vector of initiation times ¢; as a draw from this
exponential distribution. The combination of the initiation time vector, £,, and
initial wall loss rate distributed as N (“Qti’ Ve, ) Will allow us to estimate a mean
and variance for z; and ¢, using the DLM forecast equations, as we now have an

estimated initial rate and time. Rg can be estimated from N(0,%;5¢), once the

initiation time is known.
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2.7.3 Observation model specification

The observation model is the most straightforward aspect of model specification.
The observation function is determined by the inspection aims and the available
inspection equipment, and should therefore follow directly from an understanding
of these two things. Although the observation function f may itselfl be complicated,
specifying it should be simple, as the relationship between the observation and the
true system values should, in principle, be known. The observational ervor variance
could be constructed using the factor model as described in Section 2.6, however it is
more likely that there will be detailed prior information about the typical accuracy
of inspection tools used. This tolerance mformation can be used to produce a final

estimate {or the observation error variance matrix.

2.8 Simulation approach

Due to the issues presented by the approximation of component surfaces intro-
duced by the location model and the difficulties caused by complicated observation
functions, we have chosen not to rely on an analytic approach, but instead use
simulation based methods for the model inference and updating. The goal of the
simulation approach is to provide an understanding of the relationship between the
elements of the system model and the elements of the observation model, thereby
allowing us to use observational data to update the system model in an informed
way, and also to make predictions about future system behaviour based on typi-
cal model behaviour as understood through the simulations. The introduction of
a simulation based approach is motivated by the goal of producing a method for
comparing different inspection designs. Comparing designs is a computationally in-
tensive process, and using a direct simulation approach allows us to avoid evaluating
computationally demanding integrals and therefore makes the process computation-

ally more tractable.
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2.8.1 A simulation realisation

A simulation realisation is one run of the simulation algorithm. We now describe
how to generate one such realisation. Each realisation of our simulation will produce
one simulated system evolved over a specified number of time steps, T. So, we
simulate a wall thickness value for every modelled location, I, in all components, ¢,
for all times ¢ € [1,...,7T]. In addition to this, we can then simulate observations of
this simulated system for any designed inspection, d, thus allowing us to build up
information about the relationship hetween system evolution and observations.

The first stage of the simulation process is setting up the simulation algorithm.

The key steps of ours are listed below:

1. Defining simulation inputs (i.e. initial conditions)
2a. Generate 9, for t € [1,..., 7] using DLM.

2b. Generate R, for t € [1,...,T).

3. Generate uy, values Using vy = Tep + Tiot-

4a. Generate observations of the system for designed inspection d, using Yy, =

f(-@d'[; + §dt)

5. Store required output for t € [1,...,T].

This provides us with a set of instructions for what needs to be defined to set up
the simulation. We work through these steps in order by way of explaining the

simulation procedure.

1. Defining simulation inputs

We will be using our model structure for the simulation procedure. Therefore
our inputs will be the same as the initial conditions for the model for the system of
interest. That is, we will need to specify distributions for z;, oy, Ry and covariance

matrices Y, , 2e,, ¢ for the system simulation, and give an observation function,
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f, and an observational error covariance matrix 2 for the simulated observation
process. Specification of these parameters is discussed in section 2.7. For those
parameters for which an initial distribution is given, the value used for a particular

realisation of the simulation will be drawn randomly from the specified distribution.

2. Generating the system

Using the model structure discussed in section 2.4, we generate the 9, and R,
values independently. The s.-vectors r,, are generated as the sum of independent
draws, ¢ o from the Normal population N(Q, ¥, ), using the relationship 1, = r,_+
gc " This gives us an r,, vector for each component, and n in total for each time
point, ¢, each of potentially different length. We store these as an n x s matrix,
R:, where s = max,.{s.}, the greatest number of locations in a single component.
The cth column of R; contains the s, location values for component ¢. For those
components in which s, < s, the location values are entered as elements 1,.. ., s; of
column ¢ and the remaining elements of R; are assigned a non-numeric identifier.
This identifies these elements of the matrix as not corresponding to modelled location
on the system and excludes these elements of R; from any further analysis.

For each time step, ¢, §, is generated as:

I’I'L ITL
OTL I'n,

Qt = GQtHl + §t Where G =

and g, is an independent random draw from N(0,%¢). We store the z, values as

length s.
This gives us X; and R; as matrices of equivalent size. Kach element of R; which
takes a numeric value corresponds to a modelled location on the system. We will

have both an X, and an R, matrix for every t € [1,...,T].

3. Generating U,
Our system realisations are determined by the X; and R; values, in line with
the model. We obtain U; as an n x s matrix by taking U, = X; + R;. The non-

numeric identifiers will appear in the U, matrix in the same places as they appeared
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in Ry, and will retain the same interpretation. So we obtain a matrix U, for each
te[l,...,T]. Overall, U, X and R will be stored as 3 dimensional arrays in which

the 3rd dimension is indexed by time.

4. Generating observations

Sirmulating the observation process allows us to learn about how our observation
model relates to our system model. Rather than build the observation process fully in
to the simulation, which would require us to run a full simulation for each different
designed inspection we wish to consider, a more practical approach would be to
partially incorporate the inspection process into the simulation. Whilst generating
the underlying system values U, we can also generate a representation of the surface
with observation error, by adding the error matrix Z; (size n X s), generated as

s draws from the n-dimensional distribution N(0, ;). We will call the resulting

error. Once we have the W, matrix of locations observed with error, we can apply
any observation function, f, to any number of elements of W, we choose. This gives
us the option of comparing many different observation processes without needing to
simulate many times.

It is reasonable to assume we will be interested in the output of the observation
function for both the system observed with error, and the system observed without
error (i.e.the ‘“true’ value of the observation function for our system). For any real
systemn, this is unobservable, but within the simulation framework, we can easily find
both the observed value y 4, and the true value m,,. For example, if the observation
function is component minima then we can find the true component minimum for
our simulated system by minimising U, with respect to the location index (in this
case, by taking the column minima), but our observations Yy will be given by
columnwise minimisation over only the locations and components of W, specified
by d. Recording both of these quantities allows us to learn about the relationship
between our observation model and system model. For our simulation out put, the

vector of true surface minima at time ¢ by:

m, = min{U,}
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and the vector of observed surface minima at time ¢ for all ¢ is defined to be:

5. Storing output
The simulation output will be determined by exactly what we are trying to learn

about the system and its observations. However, it will not be more than:
e The system vector 4,.
e The local variation matrix R,;.
o The system plus error matrix Wy.

each for all t € [1,...,T]. All other variables discussed can be recovered as functions
of these three quantities.

In practice, we may only be interested in a subset of these values. The complete
simulation output above allows us to describe full system behaviour for a particular
system as defined by our initial conditions. We are not especially interested
the behaviour of a single realisation of the system, but more so in typical system
and model behaviour. In order to develop an understanding of model behaviour in
general we have to consider many realisations of the system and the observations.
By repeating steps 1-5 many times we will be able to build up a large number of
output sets and by examining the typical properties of these sets learn about the
behaviour of all aspects of the system.

In particular, we may wish to learn about the distributional behaviour of the
simulation output. Empirical distributions can be created directly from the simu-
lation output for each of z,, @,, my, Y, We could either use these immediately or
fit a standard distributional form to the empirical distribution to allow us to make
probability statements about system behaviour. We will also be interested in the
covariance structure between pairs of variables, and we can also use the simulation
output to learn about this.

The mformation we will be interested i will be the variances of the trend, true

minimum and observed mininum within components at each time point, the means
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of these quantities and the covariances between them. So for each time point we

would have the following output:
e Means:

— E(8,) - system (2n x 1);

— E(m,) - true minimum (n x 1);

— E(yt) - observed minimum (n x 1);
e Variances:

— var(8,) (2n x 2n);

— var(m,) (n x n);

— var(y,) (n x n);
e Covariances:

= cov(y,, @), cov(y,, &), cov(y,, My);

- cov(m, o), COV(ﬂu Z,);

— cov(z, @) alln X n



Chapter 3

Modelling large systems in

practice: Site A data

In this chapter we focus on applying the ideas of chapter 2 to a real world exam-
ple. Our objective is to use the Site A data set as an illustration of the modelling
process described in chapter 2. We go through each aspect of model building for the
particular system we are modelling both to indicate how to implement the model
structure discussed in chapter 2 and also to highlight potential difficulties encoun-
tered when modelling real world systems. Where difficulties are encountered, we
demonstrate by example how these can be negotiated.

The development of the model for this data set is important for illustrating the
methods of chapter 2, but it will also be used as our standard example throughout
the thesis. The model developed for the Site A data set will be the model used to
Mustrate our updating approach and the inspection planning procedure proposed in
chapters 4, 5 and 6.

We begin by discussing the Site A data set (section 3.1) in terms of its structure
and contents. Section 3.2 cullines what behaviour expert judgement would lead us
to expect. Section 3.3 discusses the observation techniques used and how this should
influence our modelling of the ohservation process. In section 3.4 we carry out an
analysis of the Site A data set with the aim of identifying which elements of the
data set are to be used in our model and verifying the expert assessments of 3.2.

53
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How we can use the framework set up in chapter 2 to construct the model and which
quantities we will use to specify our model parameters is also discussed in section

3.4. Section 3.5 then deals with the practicalities of specifying these parameters.

3.1 Site A data

The Site A data set consists of wall thickness measurements taken from the
pipework elements of a large industrial system belonging to Shell. The data set is
made up of observations made on 4910 different components. These measurements
take the form of an irregular time series of between 1 and 9 observations for each
component. Only components that have been observed are included in the data
set. The 4910 components belong to a single very large system (Site A) that can be
sphit into smaller units called ‘Corrosion Circuits’. The very large systems are built
up from individual components by firstly constructing smaller sections by welding
groups of components together to form a single unit of pipework consisting of joined
components. These sections are then bolted together to form the very large system.
A corrosion circuit corresponds to one of these sections of welded components, and
these are the smallest units for which replacement is economically feasible. Individ-
ual corrosion circuits vary greatly in size, but can still contain many components.
There are 63 corrosion circuits in the Site A data set, containing between 1 and 908
observed cornponents.

The data set contains 6203 observations made over the 4910 distinct components
during the period spanning 16/04/1998 to 29/09/2004. Multiple observations in
titne have been made at 828 of the components. We have auxiliary information
about each component in the form of 113 descriptive variables. For this data set,
no component takes values for all 113 variables. The descriptive variables can be

categorised in one of 3 ways:
1. Variables which describe component properties.

2. Variables which describe the observation process.
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3. Variables which describe expected corrosion behaviour within a component.

Variables of type 3 are in general expert subjective judgements:

Type 1 Variables: component properties

Variables of this type account for 26 of the 113 descriptive variables, and describe
properties of the component that are at least semi-permanent, i.e.those which either
cannot be changed or require changes to the whole system to change. These include
variables related to the design specifications of each component, such as Component
Type, Internal/External Pipe Diameter and Material Type. The age of an individual
component can be measured from the Commissioning Date variable. Component
function is summarised by the Piping Schedule and Product variables. These tell
us what substance is travelling through the pipes and the regularity of component
usage. Function is a good example of a semi-permanent component property; it is
something which could be changed, unlike component design. However, there are
no recorded instances of a component changing function throughout the span of the

data.

Type 2 Variables: observation process

45 of the 113 variables are of this type. These variables contain information
relating to both the inspection output and also describing how the observations were
made. There are 3 clear subsets of type 2 variables, each one corresponding to a
different inspection technique. The 3 observation techniques are given as Ultrasonic
(UT), Radiographic (FAM M A) and Time of Flight (TOF D). For the Site A data
set, only the ultrasonic and radiographic techniques were used to malke observations,
so we can immediately discount the Time of Flight subset. Only one technique is
used for any single observation. Detailed descriptions of the observation technigues
that were used to take the measurements for the Site A data set will be given in

section 3.3.

Type 3 Variables: corrosion process
There are 39 variables that could be viewed as describing the corrosion properties

of a component. Expected corrosion rates (not based on observed values) are given
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for components and corrosion circuits. These have been specified using a risk based
method, which will be covered in section 3.2. There are also 16 likelihood ratings for
different types of corrosion behaviour. The relevance of these quantities to actual
corrosion behaviour will have to be verified by data analysis.

Type 3 variables include a set of consequence ratings describing the consequences
of component failure. These will not be of direct use when building the system
model, but they could be used during the inspection planning process. For inspection
planning we will require a way of assigning a cost to component degradation and

these consequence ratings can help us to do this.

In addition to the Site A data set, we also have access to corrosion rate informa-
tion from two further large systems. However we only have time series information
for Site A. We can also gain spatial information for system layout in the form of
schematic diagrams of the system. The data set is a potentially rich source of in-
formation, but we have some initial problems to work around. The scale of the
system is a potential problem; the intricactes involved i modelling the entire Site A
system are such that modelling the whole system would require a far more detailed
treatment than it would be feasible to present here as an example. Another issue is
our confidence in the auxiliary information.

We intend to resolve the issue of scale by modelling only a subset of the data -
we will identify a modelling set, which will consist of the components we intend to
model - and a training set, which we will use to learn about the corrosion behaviour
in Site A. The model is developed for illustrative purposes, to show how the method
could be applied, and to develop a non-trivial model on which to base our design
procedure. With this in mind we will choose a modelling set that has sufficient
complexity to illustrate the different aspects of the modelling process, but which
remains interpretable.

Consultation with experts in the field of industrial inspection and maintenance
will provide us with greater insight into how we should interpret the Site A data
set. An illustrative analysis of the data set will allow us to detect any trends or
patterns within the data. This analysis (detailed in section 3.4) will help us identify

a conceptually more manageable subset of descriptive variables on which to base
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our modelling. It will also allow us to assess the validity of the subjective expert
judgements we have (either directly or from type 3 variables) and learn how we

should interpret these for modelling purposes.

3.2 Factors relevant to corrosion

In this section we discuss corrosion behaviour we would expect to ohserve in
the Site A system. We then offer an assessment of these judgements based on data
analysis in section 3.4. Experts helieve the following factors to be important in

deternining a component’s corrosion behaviour:
e substance within the component;
e presence of corrosion in adjacent components;
e age of a component;
e flow of substances through components;
e temperature and pressure within the component;
e material from which a component is made.

We consider each of these in turn, providing an explanation of how we should inter-

pret these factors.

3.2.1 Substance

It seems reasonable to assume that the substance a component is carrying will
affect its corrosion behaviour. We would expect a component carrying a more re-
active substance to be at more risk of severe corrosion than a component carrying
a relatively inert substance. There is a wide range of substances carried by the
components of the Site A installation, including both very inert substances such as

water and air and very reactive substances like nitric acid and hydrogen sulphide.
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Information on these factors can be described by the product variable, which gives
details on how the component is being used and which substances are being moved
through the component. Product is a potentially dynamic variable, as the use of a
component, could change with time, however no such changes are observed during

the time frame covered by the data.

3.2.2 ‘Nearby’ corrosion

Presence of other corroding components nearby being deemed as an important
factor indicates a helief in some degree of spatial association involved in corrosion.
We can check this by informally using the schematic representations of the systems
to assess if there is historical evidence to support the notion that components ex-
periencing high levels of corrosion occur near to each other. It may be that the
effect we are expected to observe within the components is that of adjacent compo-
nents being in similar physical locations and consequently being exposed to similar

environmental conditions.

3.2.3 Age

The age of a component can make it more susceptible to certain types of cor-
rosion. Therefore we would expect older components to be more corroded than
newer ones. In particular, we would expect the minimum wall thickness to be lower
for older components as more types of corrosion begin to take effect. Our beliefs
concerning the inttiation phase of the corrosion process imply that new components
will not, in general, be subject to high levels of corrosion. The age of components
can be measured using the Commissioning Date variable. This gives the date at
which the compounent was first put into operation, so the component’s age at each
inspection point can be found relative to this. There is no record n the data of any
component replacement, so we assutne the Commissioning Date gives an authentic

representation of the component age.
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3.24 Flow

Flow of product through a component, and in particular disruption to flow, is
considered to be an influential factor in determining the extent ol corrosion, How-
ever, flow is a difficult and/or an expensive quantity to measure directly, so we have
to make use of what we helieve to be associated variables to learn about the effects
of flow. Variables providing information on the effects of flow are expected to be the
Component Type, Product and Piping Schedule variables. Component Type tells us
about the design of a component, which can inform our views on how much flow
disruption we can expect. For example, a straight section of pipe will probably be
subject to fewer disruptions in low than a T-shaped componeut. The Product vari-
able tells not only what is flowing through the component, but also gives details on
the nature of the process taking place within the component. Components involved
in processes such as water injection and drainage are likely to suffer greater flow
disruption than those involved m simple conveying processes. Piping Schedule de-
tails how substances are pumped through the system. This is a categorical variable
in which the different piping schedules can tell us how the components are used, in
particular whether the usage is continual or more intermittent. This information

can again be used to learn about the flow within a component.

3.2.5 Environmental conditions

All componernts are exposed to internal and external environmental conditions.
Temperature and pressure are two such examples of these conditions. We can learn
about the internal pressure from the Piping Schedule variable, but we have little
information on temperature. This is typical of most environmental factors; although
they are believed to exert an influence, we have no variables that provide good
information about them. This lack of information, and resulting inability to account
for the effects of environmental factors in an informed way means we exclude them

from the analysis. If reliable data on these factors were available, we could model
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them explicitly as a term in the factor model. The factors are implicitly modelled
by the spatial measures used in the model. By including information on the spatial
relationships between components we can learn about which components are likely
to be experiencing similar environmental conditions as a result of being in similar

locations.

3.2.6 Material

Different materials respond to attack by corrosion in different ways, therefore we
would expect material to play an important role in determining corrosion behaviour,
and to see differences in corrosion behaviour between components made from dif-
ferent materials. However, the Material variable shows us that all parts of the Site
A system included in the data set are made from carbon steel. Different types of
carbon steel are used throughout the system, with different treatments and linings
applied to them, but the underlying material used for each component remains es-
sentially the same. The PMC (pipe material code) variable provides information on
any additional treatments and/or linings that have been used on a component, and
as such we could expect to see differences between the corrosion behaviour for the

different levels of this variable.

3.3 Observation procedures

The observation method used can have a significant influence on the observation
values. For the Site A data set two different measurement, techniques are employed;
these are ultrasonic and radiographic (or Gamma) testing. Both methods are part of
a larger group of inspection techniques known as ‘non-destructive testing’ (NDT) or
‘non-intrusive inspection’ (NI1) methods. This is because either can be carried out
without the need for disassembly of the system, and therefore cause less disruption
to the operation of the system during inspection. We provide a description of each

and discuss the modelling implications of using either technique.
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nent, which may make it impractical for some systems. Operation of the equipment
requires extensive training as defect detection can depend on the orientation of the
emissions beam. Particularly thick components require longer exposure times for
image generation, making the process more costly and increasing radiation exposure
for the inspectors. However, the method works well for components with thin walls
and offers the potential to inspect multilayered systems without direct contact with

all components.

3.3.3 Modelling implications

An understanding of the way the observation process works is a vital part of
modelling the observation error. The descriptions of each technique tell us that
both methods have potential advantages and disadvantages, and both are subject
to different sources of error, such as mismeasurement by the device itself, and human
error due to the difficulty of interpreting the results. The inspection techniques are
both quite different and should therefore be modelled sepa;rately. We choose to use
a Gaussian observation error term. We assume the distribution of the measurement

. n . . .
error can be written as: N(0, X¢), where 3¢ = {agc}cml is an n X n diagonal matrix

in which n is the number of components and the values of agc are determined by
the mspection technique used in component ¢. This simple structure allows us to
illustrate the principle of modelling measurement error in a rational way, but retain
computational tractability for high dimensions.

For our example we will base our estimates for agc on elicited values for typical
measurement error. Kxpert judgement informs us that ultrasonic testing is accurate
to within .Bmm and radiographic testing is accurate to within lmm when used to
predict wall thicknesses. Validating these values from the available data would be a
difficult process, requiring different data from that which is available to estimate the
extent of measurement error, and in particular to determine different sources of error.
From the available minimum wall thickness data it will be difficult to dissociate
variation due to genuine wall loss and the variation due to measurernent error.

Due to these difficulties, and in the interest of obtaining a plausible solution to the
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inspection planning problem, we have decided to trust these values. We will interpret

these values as being equivalent to 3 standard deviations of the Normal distribution

¢ was inspected using the ultrasonic method, so that, under the assumption of
Normality, 99% of observation errors fall within 0.5mm of the true underlying values.
Similarly, we set o7 = (1/3)? if radiography was used.

It would be possible to implement a more careful model for the measurement
error that takes into account what we know about the inspection techniques and the
associated sources of error. A factor model, based on characteristics hops, € Hops,
similar to that used previously, could be constructed specifically for the measurement

error:
Nins

glct = Z /\nbsk hobsk + 'lf/)obslct-
Under this model the measurement error would be constructed as the sum of inde-
pendent terms describing different characteristics of component inspection. These
could include equipment inaccuracy and human error and can be used to allow the
measurement to depend on component characteristics. We know that ultrasonic
inspection is less accurate for lower wall thicknesses; given more precise information
we could use the factor model to reflect this understanding, and similarly represent
the reduced effectiveness of radiographic testing for large wall thicknesses. However,
despite the advantages of a more careful measurement model, the difficulty of es-
timating the influence of each characteristic (via Acbsy hobsk) leads us to the more

pragmatic choice of the simple model described earlier.

3.4 Data analysis for the Site A data

We identify a subset of the Site A data set which we wish to model. A subset
of auxiliary data is also identified for use in model verification. Firstly, we give an
overview of the subsets identified for modelling and model assessment. We then
illustrate how we could fit the two-term model of chapter 2 to our chosen subset.

Our intention is to demonstrate the feasibility of such a model for this type of data.
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The model introduced here will be used throughout later sections as the basis for
our inspection planning examples. For this account we will not attempt to plan an
inspection for the entire Site A system, but instead focus on a conceptually more
manageable subset. Each corrosion circuit can be treated as a contiguous, complete
unit and can therefore be considered separately. We have selected Circuit A to be
the primary data as the wall loss behaviour within the circuit can be seen to be
typical of wall loss behaviour throughout the systemn, but it is also a well observed
circuit featuring several components with multiple observations in time, and few of
the potentially anomalous readings seen elsewhere in the data. A further 12 circuits
(accounting for approximately 40% of the total data) have been selected for use as
the auxiliary data. These circuits - B, C, D, E, F, G, H, I, J, K, L and M - have been
selected to provide a data set containiug components with similar characteristics to
the components of Circuit A.

The aim of this section is to construct an example based on the properties of a
real world system for which we can then propose an inspection plan designed using
a rational method. As such, the primary objective of our data amalysis will be to
ensure that the initial values we will specify for the model are of a similar order
of magnitude as is seen for those guantities in the data set, rather than to provide

exact parameter estimates.

3.4.1 Primary Data - Circuit A

Circuit A will be treated as our system. Circuit A consists of 46 distinct fea-
tures and 73 welds, as depicted in Figure 3.3. We will restrict our model to the
observed components. In general, components do not have to have been observed
to be modelled, but in this situation we have no available data for the unobserved
components, hence the need for this restriction. Figure 3.3 also provides us with the
available spatial information for Circuit A, which tells us about the connectivity of
components, but not the physical scale or even relative proportions of components.

The components of Circuit A belong to 7 different component types, summarised

in Table 3.1. The division of the components into different material types, pipe
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Figure 3.3: Plan of Circuit A
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Component Type | Component Type Code | Frequency
Wellhead KeyPoint(2) 11
Bend (small radius) Bes 8
End Cap Cap 1
Straight Str 6
Weld Weld 13
Tee, equal sized TEQ 1
Branch connections KeyPoint(4) 6

Table 3.1: Component type summary for Circuit A

material codes (PMC') and piping schedules is shown in Tables 3.2. The continuous
variable information is summarised in Figure 3.4 in which the lower plot shows the
spread of the initial wall thickness values and the upper plot shows the spread of the
pipe diameter variable. The model components are numbered in the order in which
they appear in Circuit A. The Product, Confidence Rating and Commissioning Date
variables take the same value for all components within Circuit A, these are the level
P, Medium and 18/11/1978 respectively. These are all common levels of the Product,
Confidence Rating and Commissioning Date variables seen frequently in the data
set as a whole. The adjacency matrix Adj , is shown in Figure 3.5, where nearer
components are denoted by blues and and red colours represent large distances be-
tween components. a.», the adjacency value between components ¢ and ¢ is defined
to be the number of component boundaries we cross in moving between component;

c and ¢. Under this system if ¢ = ¢, a.v = 0, and if ¢ and ¢ are immediately next

The number of components experiencing wall loss within Circuit A is 40, there-
fore the value of n in our system model is 40. So to set-up a model for Circuit A we
will need to define and verify 40-vectors z,, ¢, for the initial wall thickness values
and wall loss rate (WLR) values. We will also need to define and validate the 40 x 40
variance/covariance matrices Y, ¥, for the correlated DLM evolution deviations
and 3¢ for the local variation terms. For this process we will use the auxiliary data

set.
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3.4.3 Regression Analysis

To further test which variables we should regard as important characteristics in
our model we conduct a regression analysis on the W LR > 0 subset of the auxiliary

data. We build a model using the following variables:
1. Component Type
2. PMC
3. Material
4. Piping Schedule
5. Pipe Diameter
6. Nominal Wall Thickness
7. Commissioning Date/Inspection Date (i.e. Age)
8. Confidence Rating
9. Criticality

These are the variables from the Site A data set we consider to be relevant to
the wall loss process, rather than the observation process, which will be of limited
importance in determining wall loss behaviour. The difficulties posed by this set of
variables for regression stem from the different types of variables we have. Variables
5 - 7 are continuous and can therefore be used without alteration. Variables 1 - 4 are
categorical and will therefore have to be coded into the regression model as dummy
variables, i.e. a categorical variable v with N, levels will first have to be converted
into IV, —1 0-1 valued variables. We also have the ordinal variables, Criticality and
Confidence Rating. We choose to model these as categorical variables. Ultimately,
this gives us a set of predictor variables X,y consisting of 46 dummy variables and
3 continuous variables.

The response variable Yreg is defined to be the percentage wall loss at time of

inspection. We choose this quantity as it allows us to put our response variable
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Model fitted Adjusted R? value
All variables 0.4072
All except Component Type 0.3461
All except PMC 0.3788
All except Material 0.4082
All except Piping Schedule 0.4040
All except Pipe Diameter 0.4071
All except Nominal Wall Thickness 0.4077
All except Age 0.3959
Component Type, PMC and Age 0.4005

Table 3.5: Adjusted R? values for regression model fit for use in variable selection

on the same scale for all components. Components have a range of different wall
thicknesses, so suffering a loss of l1mm may be severe wall loss for some components,
but relatively minor damage for another component. Using percentage wall loss we
can compare directly across components. Yreg is defined as:
WT,,
Yoy =1- WT

_——nom

where W', is the vector of wall thicknesses at inspection and WT,, .. is the vector
of nominal (or initial) wall thickness values. We then perform a linear least squares
fit of the predictor variables X4 on to Yyeyr To assess the importance of each variable
we then refit the model omitting each variable in turn. For the categorical variable
we omit all dummy variables associated with the original categorical variable. We
compare the model fit using the R? statistic representation of residual error. The
results are shown in Table 3.5.

The reduction in the R? statistic when the variables Component Type, Age and
PMC are taken out of the model indicates that these are relatively important vari-
ables in determining wall loss behaviour. Indeed, if we fit a model based solely
on these terms we obtain an R? value of 0.4005 - almost the same as that of the
full model. However, it is also clear that there is considerable residual error in the

model. The lack of fit can be partially explained by the fact that our set of Yseg val-
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ues are based on measurements taken with error. Therefore in addition to the error
caused by lack of fit of the model, the R? values are also affected by the influence of
measurement error, so the true error for the regression model in predicting actual
percentage wall loss values is lower than that which is observed.

A further potential problem with the preliminary model is that it overlooks the
initiation phase. The modelled values are based on percentage wall loss values at
time ¢ in components which we know experience wall loss at some stage. By using
Age as our time predictor, we fail to take into account at which point a component
begins to experience wall loss. To address this we fit a second regression model
based on the Component Type and pipe material code (PMC) variables, in which
the response variable, Yyega? values are defined to be the change in wall thickness
between two points on a component which has already shown evidence of wall loss.
That is, the difference between wall thickness (WT') readings at ¢ + k and ¢, given
that the wall thickness reading at ¢ is less than the Nominal Wall Thickness value
for that component.

Ypeoo = WL —WT, V k21

Zreg2
This definition removes the dependence of our data Yyeqe O1 the Nominal Wall
Thickness variable, present in the first regression, so Nominal Wall Thickness should
be brought back into the predictor set. As it is a continuous variable, this is a
simple process. The time predictor Age is redefined to be equivalent to the value
of k, the number of time steps between observations. We aim to model change in
wall loss between observations as a function of Component Type, PMC, Nominal
Wall Thickness and time between inspections. The predictor set can be written as
a matrix, X,eg in which each column corresponds to a variable shown in Table 3.6.

The rhodél takes the form:
y b ' Xpeqn 4 e (3.1)

Irega ~ =
where b is the vector of coefficients (Table 3.6) obtained via linear least squares fit
and e is the residual (error) vector. The levels of the Component Type and PMC
variables which are poorly represented (fewer than 10 observations) in the predictor
set are modelled as part of the intercept. The value of the adjusted R? statistic for

this model, and the models resulting from leaving out individual variables are shown
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Column in Variable Regression
X reg2 Coefficient (b;)
1 Intercept 1.2445
2 Bend (small) 0.3129
3 Cap 1.2645
4 Straight 0.2003
5 Weld -0.5229
6 Reducer -0.8968
7 Key Point (9) 0.3482
8 PMC2 -0.5037
9 PMC3 0.0585
10 PMC4 -0.1938
11 PMC5 -0.2929
12 PMC6 0.1146
13 PMC7 1.0571
14 Age -0.1834
15 Nominal Wall Thickness -0.1620

Table 3.6: Variables and their associated coefficients for second regression model

in Table 3.7. Thesge indicate an improvement in model fit.
The model structure of (3.1) mirrors the model for the minimum underlying wall

thickness value, my,, given by (2.20) in chapter 2:
My =Tyt Ty (3.2)

where g, is a trend term and 7, is a vector of deviations from the trend. Similarly
in (3.1) we have:

U bTXreg2 + [

Zreg2 -4
in which b_TXTegz models the expected change in wall thickness between observations
and e measures the observed deviation from this trend. As such, we will use the

fitted regression model to inform our initial beliefs about wall loss rate, and the
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Component Variance No. of
Type of WLR | Observations
KeyPoint(2) 0.0750 5
Bends (small) 0.3116 23
Cap 0.0908 7
Straight 0.0781 20
Weld 0.2506 51
TEQ NaN 0
Branch 0 2
PMC Variance No. of
Level of WLR | Observations
1 0.3105 20
2 0.0954 8
Nominal Wall Variance No. of
Thickness of WLR | Observations
NWT <46 0.0081 9
46 < NWT <64 | 0.0544 11
64 < NWT <72 0.0022 11
T2<NWT <12 0.4838 17
12< NWT <182 | 0.2044 27
182 < NWT <183 | 0.4742 105
183 < NWT 0.2624 10

Table 3.13: W LR variance values by descriptive variable level



Chapter 4

Bayes linear updating for the

corrosion model

We are adopting a Bayesian approach to modelling and inspection planning as it
provides a natural framework for the combination of informed expert judgement and
observed data, both of which we believe to offer valuable information for modelling
wall loss behaviour. In this chapter we discuss how we update our beliefs as we
receive new data. Section 4.1 considers the wall loss problem and the necessary
updates. In section 4.2 we offer an alternative solution to a full Bayesian update
- the Bayes linear update - and consider its relevance to this problem. Section 4.2
discusses the different ways in which the Bayes linear approach could be interpreted
for the wall loss problem and the advantages of using Bayes linear methods for
imspection planning problems. We detail how we will apply the updating strategy
to our wall loss example (Circuit A), and the implications for our simulations in

section 4.3.
4.1 Updating the Model

The model takes observation values, " defined as in section 2.3.1, which are

Y4
functions of a subset of the underlying true wall thickness values, u,, and an ob-
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servation error §_di, where each term is a vector over components and the locations
and components to be observed are specified by design d. Recalling the model form

from section 2.3.1, an observation for a particular component, ¢, is defined as:

Yo = f (uldct + gldct,)

Upget = Lot + Tiget

We want to use the observable quantity y.; to learn about the behaviour of u.
Our model for uy, consists of the global trend term z.; and the local deviation term
Tiet, @bout which we have made certain distributional assumptions (described fully
in chapter 2). These assumptions provide us with beliefs about the behaviour of the
underlying true wall thickness w at location [ in component ¢ at time £, and it is
our beliefs about this quantity that we wish to update.

We will usually observe more than one component. The set of observations made
at a particular inspection are denoted Yo where Yy is either a vector, containing an
element for each ¢ € Cy (the set of components included i design d), or a matrix,
in which each row describes the observations made for component ¢y, depending on
thé choice of observation function. We use the subscript d as a shorthand for lcg,
which would provide a complete, but more cumbersome notation. The quantity

gcli:
is therefore defined as a vector over ¢g:

Y = f (:L—L'l‘dt +§¢d1,-) (4-1)

where u, , and § g e vectors over ¢y
In general, we may want to learn about the relationship between our observations
and any other function of the underlying wall thickness values. Comimonly, this
function will be the same as the observation function, but without measurement
error. In our case f is componentwise minimisation, and we will be interested in
the relationship between our observations, y o and the true minimum wall thickness

value for each component, m,, defined as:

my = f () (4.2)

where y;, is a vector over all c.
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This relationship can be described by the (posterior) distribution p(m,] y,,), eval-

uated as:
p(y,,Im,)p(m,) .
plmly,) = —4——~— (4.3)
' py,,)

The distributions of p(y, [m,), p(ny,) and p(y,,) will depend on the observation
function f and the measurement error term &, In addition to the distributions of
the model terms, p(z,), and p(r;,). The model structure gives us the distributions
for p(g,), and p(r;,). However, this will not always be straightforward to relate to
p(y,,lm,), p(m,) and p(y,). As discussed for the minimisation case in chapter 2,
the distribution of our observations Yy, and component minimum m, are difficult to
write down analytically. Similarly, the likelihood function p(ydtl m,) for minimisation
is not easy to write down. Consequently, for the case of choosing component wise
minimisation as the observation function, f, we are forced into using a simulation
approach to evaluate the posterior distribution, as we cannot derive any of the
components of equation (4.3) analytically.

We may also be interested in updating our beliefs about individual model terms,
such as the trend term, z, or the minimum of the local deviation terms 7,. This allows
us to use new data to learn about model behaviour rather than a particular function
of the model. This will be useful if we are interested in producing an improved model
for forecasting future wall thickness behaviour rather than a particular function of
wall thickness at a given time. The equations for calculation of the relevant posterior

distributions for these updates are:

plzly,) = ) (4.4)
~ - p(gdt ) p(z,)

For the case of the componentwise minimisation we encounter the same problems in
evaluating the posterior distributions as we had for (4.3). Performing these updates
also requires numerical/simulation methods.

This is a consequence of the choice of observation function. If the observation
function is sufficiently simple, then it may be possible to perforin full Bayesian

updates in closed analytic form. However, for many choices of observation function,
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f, we will not be able to carry out our updates analytically, and instead have to rely
on numerical/simulation methods to evaluate the posterior distributions.

This reliance on simulation methods for updating distributions will affect the
tractability of the inspection planning process. Given that we want to consider
models for complicated systems with large numbers of components, evaluating po-
tential benefits for a large number of different inspection designs would become very
time consuming, as, for each design, we would need to generate many samples and
for each such sample we must evaluate the posterior distribution by simulation. In
section 4.2 we discuss an alternative Bayesian updating approach and review its

merits for ingpection design applications

4.2 The Bayes linear approach

The Bayes linear approach to updating is a suitable way of handling problems
in which beliefs have only been partially specified. These partial belief specifica-
tions arise because it is either unnecessary or inappropriate to specify a complete
prior probability density. This could be because our partial belief specifications are
sufficient to characterise the behaviour of the quantity of interest, or because it is
felt that assigning a full density to our random quantity is making a more definite
statement about our beliefs than the available information allows. For an overview
of the motivations and principles of the Bayes linear approach see [22].

Bayes linear methods use expectation as a basis for making quantitative state-
ments about random guantities instead of probability. A Bayes linear prior specifi-
cation consists of the first and second order moments for the vector of interest, B,
namely, an expectation, E(B) and variance var(B) for the random quantity. We will
also have to be able to specify values for the covariance structure between our ran-
dom quantity, B, and the observable vector, D. The general form of the Bayes linear
updating equations, for a specific observation, d, when var(D) is positive definite,
is:

Ep(B) = E(B) +cov(B,D)var™" (D) [d — E (D)] (4.6)
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varp (B) = var (B) — cov (B, D) var* (D) cov (D, B). 4.7

In general, the Bayes linear equations adjust our beliefs about a random quantity,
B, linearly, by data, D. B and D can be scalar or vector quantities. To illustrate this,
we consider a small example. Suppose we have a collection of 3 related quantities

B, with current expectation and variance:

7 4 08 0.05
EB)=|4]| var(B)=| 08 1 02
9 005 0.2 0.25

Suppose further that there exists a related observable quantity, D, with expectation

E(D) and variance var(D):

7 2 0 0
ED)= |5 | var(D)=|0 125 0 |,
1 0 0 1

whose relationship to B can be characterised via the covariance matrix,

1.5 04 —03
cov(B,D) = | 04 06 0.
~0.3 0.1 0.2

D can be considered as an observation of B made using an inaccurate measuring
tool, or as an observation of a different, but dependent quantity (for example, an
individual’s height can be used as a predictor of his weight). The covariance matrix
cov(B, D) is required to quantify the relationship between the two quantities.

How would observing a particular realisation, d, of the related observable quan-

tity, D, change our beliefs about B? Assume we observe,

8

we can evaluate the adjusted expectation (using (4.6)) as:

Ep(B) = E(B) +cov (B, D)var™ (D) [d - E (D)]
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7 15 04 —03|]05 0 0 8 7
Ep(B) = |4+ 04 06 01 0 08 0 6 |1-15
2 ~0.3 0.1 02 0 0 1 0 1

[ 8.37

= | 458

| 173

We can see that the Bayes linear update has acted here to increase the expectation
for those elements for which a larger than expected value was observed, and reduce
the expectation for the element in which the observed value was lower than expected.

Using (4.7) we find the adjusted variance to be:

2.657 0.338 0.303
varp(B) = | 0.338 0.622 0.192
0.303 0.192 0.157

Note that the calculation of the adjusted variance does not depend on the particular
values of d observed. So given any set of observations in which we see a value for
each element of our collection, D, the value of the adjusted variance, varp(B) will
be the same.

Suppose we only see the observations for the first and third elements of our
collection. To update our beliefs, we identify the parts of var(D) and cov(B, D)
which relate to the observed elements. So for a different set of observations, d, in
which the first and third elements are observed, the expectation E(D), variance

var(D) and covariance cov(B, D) are taken to be:

K
E(D) =
Ll
[ 2 0
var(D) =
EU 1
15 —0.3
cov(B,D) = 04 0.1
~03 02
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These values are defined by identifying and extracting the first and third elements
of the full mean vector, the first and third columns of the full covariance matrix
and the values of the full variance matrix relating to the first and third elements.

Updating for this data, we find:

7 15 —03
05 0 8
Ep(B) = |4 |+ ]| 04 0.1 —
0 1 0
9 —03 0.2
8.05
= | 410

1.65
and )
[ 9.785 0530 0.335
varp(B) = | 0.530 0.910 0.240
| 0335 0.240 0.165

We can see that the updated values for this data show similar behaviour to those
of the full update. Our beliefs about the second element of B have been updated,
despite us having not observed it. In comparison to the results achieved from the
update based on the full set of observations, we have not been able to reduce the

variance as much, which is consistent with us not having seen as much.

4.3 Adjusted assessments

In this section we illustrate the updating calculations we advocate using the
Circuit A example. We update the model for all available data by performing a
sequence of updates based upon the order in which we receive data. For a general
data set, observed over the time period [0, ¢], we receive data at times {¢,...,t.}.
These data will, in general, be a partial observation of the system at time ¢;, denoted
Yo, Depending on the goals of the update we will either want to learn about the
underlying model behaviour (through updating our beliefs about e, and z,), or

learn about the system minima (by updating for m,,). For the initial process of
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model improvement, we will be interested in updating @, and z, , using the Bayes

linear updating equations:

[ydﬁi —E <:y—-df,i ] (4-8)
Ey‘“i (@) =P () + cov (g‘“’ ‘gdim‘) var (y-dti L?’.’dti —E <Ly—dti } (4.9)

Eydti (Eti) - B (Qiti) + cov (g_ti,gdti) var ™ (gdtz) )
vary (ﬁti) = var (:C-cz) —cov (J—E-ti’_y_qt) var~! ydt) cov (y_di',gti) (4.10)

vary, (a,) = var () — cov (gci,gdti) var~! @dti) cov (_y.dr,,-’gﬁi (4.11)
This requires us to have values for var(y, lti), cov(zy,,y dti) , cov(y iy Qg,), Plus the
initial expectations and variances for z, (E(zy,) and var(z,,)) and ag, (E(ey,)
and var(ay,)). We obtain assessments of these quantities by simulation. Using the
process described in section 2.8, and the initial conditions obtained in section 3.5, we
simulate S realisations of the system for the time interval [0, ¢+ k|, where [0, ] covers
the period for which data are available and (¢, ¢+ k] is the period into the future we
wish to consider. We can then use the simulation output to provide assessments of
the required quantities, and thus carry out our updates.

The simulations provide ' realisations based on our initial beliefs for all inspec-
tion times ¢;. That is, S values of each model term we want to update, z, and o,
and S realisations of our system observations, Y, This simulation output can be
used to provide assessments of the covariances between the observations and the
underlying model terms, as described in section 2.8.

We are interested in updating our beliefs about the underlying model at time
t, the final point for which we have data. Therefore we must assess the values of
the covariances between the observations in the components for which we have ob-
servations and the system level at time ¢, cov(z,, gd“) Similarly, we must assess
the covariance between our observations and the system slope, at time ¢, cov(ey,
Yy r]‘ti). It is also necessary to provide an assessment of the variance matrix of the
observations, vm‘(gdti), which describes the extent of the variation for a particu-
lar observation and also the relationships between the different observations. The

process can be summarised as follows:

1. Simulate S realisations of the system from time 0 to time ¢ + &, using initial

simulation conditions as described in section 2.8.
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2. Obtain assessments of the necessary expectations, E(g,), E(z,) and E(th‘)’ as
the vector with elements defined as:

s s
E(ag) = _ZL:;_?‘.‘.’E, E(zg) = 2k Ttk v e

Ef~1 Ye gtk
E(ycdi,i) = _——:_S;_w- v Cd € Cd

3. Assess values of the required variance/covariance matrices var(e,), var(z,),
var(y, )), cov(y . , o) and cov(y , ,z,) as the matrices with (7, 7')-th element
Ldt;//? i, ==t Zdt;’ =i ’

defined to be:

i S S S (412)

S S )
- 2t VikVjk _ (Zk_l Vik D ket I/j’k-)
VJ’I/. .

where v, v; represent the pair of variables under assessment.
4. Calculate Eydti (z,) and Ey ) (o) using (4.8) and (4.9).

5. Calculate var, (z,) and vary (o) using (4.10) and (4.11).

4.3.1 Data for Circuit A

We wish to update Circuit A for all available data using the procedure outlined
above. Circuit A is a corrosion circuit consisting of 40 corroding components, 6
non-corroding components and 73 components for which there is no data. We are
modelling wall loss behaviour in the 40 corroding components using a dynamic linear
model with time steps of length 6 months. Our model starts running at 01/01/98
at steps in half yearly intervals to 01/01/04 (see Table 4.1). We have observational
data for Circuit A taken during time steps {5,9,10,11,12}. In total there are 46
observations and every corroding component is observed at least once. Full details
of Circuit A and the wall loss model for this example are given in section 3.4 and
section 3.5.

We are interested in updating our beliefs about the expectations and variances of

z, and ¢ t is taken to be equivalent to the final point for which real inspection data
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Time Step | Start Date | End Date
0 01/01/1998 | 30/06/1998
1 01/07/1998 | 31/12/1998
2 01/01/1999 | 30/06/1999
3 01/07/1999 | 31/12/1999
4 01/01/2000 | 30/06/2000
5 01/07/2000 | 31/12/2000
6 01/01/2001 | 30/06/2001
7 01/07/2001 | 31/12/2001
8 01/01/2002 | 30/06/2002
9 01/07/2002 | 31/12/2002
10 01/01/2003 | 30/06/2003
11 01/07/2003 | 31/12/2003
12 01/01/2004 | 30/07/2004

Table 4.1: Model Time Steps

will then be used in subsequent simulations as our best estimates for the true values
of Z;5 and a;,. Ideally, we would also like to improve our estimates for the covariance
structures 2., and %, through updating. However, this is a more involved process
than updating for expectations, requiring us to construct our simulation differently,
and store different information in the simulation output. [69], [68] provide a method
for updating covariance structures using Bayes linear methods, but for this thesis we
limit ourselves to updating expectations, as this will form the basis for a tractable
inspection methodology for large systems.

The observational data Yo, for Circuit A are shown in Figures 4.1 - 4.5. Each
plot shows the value of the observed data (and which components were observed)
at a different observation time. The observed data. (y, lt.i) are marked as red circles.
The black line shows the initial wall thickness values for each component and the
green line shows the expected value of y " according to the model. These points
are marked with a grey area indicating a distance of 3 standard deviations either

side of the expectation. These indicate the plausibility of the observations given the
























Chapter 5

Evaluating the worth of an

inspection design

So far we have developed methods for modelling large systems of components and
updating these models for observational data. In this chapter we propose a rational
quantitative criterion for assessing how ‘good’ a particular inspection design is. The
problems of selecting inspection designs are tackled in chapter 6.

Our objective is to provide a sensible method for planning future inspections.
Consequently, we need to develop design criteria that will allow us to discriminate
between superior and inferior inspection designs. Such criteria should be defined
in relation to our inspection aims. It is necessary to establish what we hope to
achieve by inspecting the system in order to determine whether or not a particular
inspection design has performed well in helping us to achieve the inspection goals.

We introduce‘ the concepts of inspection design and design criteria in section 5.1,
discuss the problem structure we will he tackling and propose a method for evaluat-
ing the worth of an inspection design in section 5.2. In section 5.3 we describe how
we assign utility values to designs, and we illustrate how we can explicitly evaluate
this criterion under certain distributional assumptions in section 5.4. Finally, we
give examples of calculating the criterion for a specific inspection design based on

our real world system in section 5.5
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5.1 Inspection design

We consider an inspection design to be a set of instructions detailing how to
perform a particular inspection. We denote by D the set of all possible inspection
designs and an mdividual inspection design is labelled d. For this account, an indi-
vidual inspection design, d, will consist of instructions for each component indicating
if that component is to be inspected, which locations within the commponent are to
be inspected, and which inspection technique is to be used. This is consistent with
the definition given in section 2.3.1.

Our aim is to provide a method for comparing inspection designs to identify those
which are, in some sense, ’better’ than others. To achieve this we require a rational
way of comparing different inspection designs. The choice of design criteria should
depend on the aims of the inspection procedure. The ultimate goal of inspection is
to use the observational data to ensure that the system is well maintained, and that
any components approaching failure are identified. A ‘good’ inspection design is one
that helps the inspectors to achieve these goals. For the case of corrosion, during
any inspection we will want to learn about the current wall thickness (i.e.the current
system level) and also update our beliefs about the expected wall thickness at future
time points (future system level). Our objectives are to use the updated beliefs about
the state of the system to determine what maintenance work is required.

Frequently, design criteria are based on either the variance of a related quan-
tity or maximising the ‘information’ gained [12], [8]. Variance minimisation criteria
seek to achieve the maximum reduction in the variance (and therefore decreased
uncertainty) of the objective function over all locations/components based on the
observation of a subset of locations. The subset that yields the smallest overall
variance is then the optimal design set. Maximal entropy (ENT) [52] and the Shan-
non Information Index (SII) [3] criteria are examples of information maximisation
criteria. These aim to find the set of sites that yield the most information about the
uninspected sites for a stated observation function. Both criteria are maximised by
the design, d, which gives the greatest overall information for all sites, conditional

on the observation sites.
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We would prefer to use a criterion on a more readily interpretable scale. By
considering the outcome of the inspection as a decision problem, in which we must
choose what maintenance to perform on the basis of our inspection results, we can
measure design performance in terms of utility. We can assign utilities U(d) based
on the consequences of our decisions, d, which are based on the observations y . In
this framework, ‘good’ designs are those which allow us to make the ‘right’ decisions
most often.

We have to compare expected performance. Our criterion will assess expected
inspection plan performance over all possible values of the observations, y , which
will in general be written as y. Our focus is comparing typical design performance
over a large design space, D, so we would like to ensure that any design criterion can
be easily calculated. If possible, we would like to avoid conducting computationally
intensive simulation experiments for each choice of design, d, simply to evaluate the
design criterion as this will restrict how many d € D we will be able to compare.
Making our criterion straightforward to calculate will allow us to search D more
thoroughly for inspection plans d with ‘good’ typical performance. By taking the
utility of the expected outcome over all values of y, we will obtain a measure of
typical inspection performance.

We need to develop a criterion with the following properties:
1. Prefers designs that recuce ‘uncertainty’ (in some measure).
9. Prefers designs that minimise loss (in some measure).

3. Easily computable to allow more designs to be compared.
4. Basily interpreted output (preferably utility).

In general, designs that are cheap to implement will not be good at reducing un-
certainty, and designs that are good at reducing uncertainty will not be cheap to
implement, so the criterion will have to balance these conflicting requirements.

We describe how to define one such suitable criterion, the expected loss of a de-
sign where loss is taken to be equivalent to negative utility. Adopting this approach

requires us to structure our inspection problem more carefully.
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5.2 Problem structure

We can formulate inspection choice as a Bayesian decision problem. For each
component, we can choose to perform the appropriate level of maintenance work
based on our updated beliefs about the current and future state of the system. All
maintenance work will have an associated loss, as will comnponent failure. These
losses will form the loss function for our action space, defined as the set of possible
decisions, A, we can make with respect to a component, c.

We consider the situation of planning maintenance for the finite time interval
[t,t+k], where t is the current time and ¢k is the time of the next major inspection.
The decision problem is treated as the simple case in which there are only two
maintenance policies - either replacing component ¢ (action a) or doing nothing
(action @) and only two potential outcomes - component failure, F', before ¢ + £,
and component survival to ¢ - &, F. This gives us four outcome/decision pairs. The
losses associated with each pair are shown in Table 5.1. We have made the further
assumption that a replaced component will not fail during the time interval under

consideration, that is before ¢ - k.

F T
a LR((,) LR(C)
a|Lp(c)| O

Table 5.1: Loss Function

For each component, we can represent this problem as a simple decision tree as
shown in Figure 5.1. The chance node associated with ‘replacement’ has 2 branches.
These represent possible behaviour of the unreplaced component. This gives us
a way of taking into account the effect of unnecessary replacement. We treat a
replacement action as a single, nnrepeated cost. Our formulation considers that a
replaced component will not fail before ¢t + k. This is a simplification introduced
to make the decision problem more tractable, which we acknowledge may not be

realistic. Working from top to bottom, the four leaves of this tree represent:
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W C)
F
replacement
///,
7 —
,,,,, - Lg(c)
B
~—
S p(F) =g Le(c)
no replacement
0
'i
Figure 5.1: Decision tree representation of component replacement problem

1

§

|

i

1 1. Component replaced, if unreplaced would have failed. Loss Lg(c).

|

! 2. Component replaced, if unreplaced would not have failed. Loss Lg(c).

3. Component not replaced, and fails. Loss Lr(c).
4. Component not replaced, and does not fail. Loss 0.

Decisions 1 and 4 can be said to represent ‘correct’ decisions that minimise main-
tenance expenditure, and decisions 2 and 3 illustrate ‘wrong’ decisions in which
unnecessary component replacement was performed and failing components were
not replaced. In the decision problem framework, inspection plans with ‘good’ typ-
ical performance are those which allow us to make the ‘right’ decision more often.

We aim to produce criteria that allow us to select inspection designs which will, in

general, help inspectors make more correct decisions than incorrect decisions, by giv-
ing high probability of observing inspection data which leads to improved decision
making for many components as a result of increased confidence over the probability

of component failure (¢) for many components.
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5.2.1 Sources of loss

The loss associated with any given inspection design is an accumulation of the
costs incurred by component replacement, component failure and the cost of making
the inspection. For the component replacement problem, replacing a component that
would not have failed or not replacing a component that then fails are perceived to be
‘wrong’ choices of action. The costs associated with these ‘wrong’ actions are greater
than those associated with the complementary action for a particular outcome. The
cost of each action-outcome pair (Table 5.1), is henceforth written as Ly, Lp and
¢ in place of Lr(c), Lr(c) and g(c) to represent the replacement cost, failure cost
and failure probability of a generic component ¢. We also assume that replacement
is a necessary consequence of failure, so failure incurs a loss of at least Lg (i.e.
Lr > Lg). Each ¢ has its own replacement cost, failure cost and failure probability
and actions are chosen componentwise.

Describing inspection losses (i.e. the costs of making the inspection) is open to
many different models. We choose to model L; (the inspection losses) as an initial

cost and an incremental cost.
Ly = Lsy +nglje. (51)

The initial cost models the price of ‘setting up’ the inspection. The losses incurred
by transportation of the inspectors, preparing the site for inspection, and any other
activities caused by the decision to inspect, would be included in this part of the
model. The incremental cost measures the extra loss incurred as the scale of the
inspection increases, and could, for example, be used to account for factors such
as the cost of materials used during inspection or losses due to reduced operating
capacity. We base the incremental cost on the number of components inspected
as part of design d (ny). This provides a measure of time and effort expended on
making the inspection.

The loss associated with making the inspection is independent of the other losses.
This allows us to incorporate it into the expected loss criterion simply by adding it to

the other losses. Accounting for inspection cost in the criterion means it is possible
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to compare designs that cost different amounts to implement. For example, consider
a design which allows us to predict failure perfectly, but is extremely expensive to
carry out. Although we would prefer to inspect perfectly, the extra cost of domg
so may force us to choose a less effective design. By adding the cost of making the
inspection into the criterion we have a method of assessing whether or not it is worth

paying the extra for the gain in predictive power a more expensive design offers.

5.3 Design utility

The strength of our prelerences for particular inspection designs is measured
by the utility of the design, U(d). We choose to work with loss that is defined
as negative utility because this offers a more natural interpretation for assigning.
Consecuently, we will seek to minimise loss, which will in turn maximise utility.
The value of L is a function of the outcome, O, and our decision, §(y). Our decision
5(y), is determined by the values of y we observe, and, therefore, by the posterior
probability of failure, P(Fly). For an inspection planning problem, the values of y
are random, and therefore our decision is random. Our aim is to choose the decision
procedure §(y), from the set of all possible decision procedures, A, such that the
loss associated with our decision procedure is minimised. So, the utility of a design,
d, is given by the loss associated with our decisions plus loss incurred by making the

inspection:

U(d) - - {Emin{deA} [L (O’ 5(7/))] + L[} (52)
—{EL(0,6"(y)] + L1}

I}

where §* is the Bayes decision function, the decision function that minimises (5.2).

For any decision 6(y), the expected loss associated with a particular outcome,
o € O, is given by the product of the value of the loss function associated with
decision §(y) and outcome o, (Llo,8(y)]), and the probability of outcome o, given
observations, y. The expected loss, conditional on y, for a design d is the sum of

the outcome expected losses for all possible outcomes. For the simple case under
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consideration, there are only two outcomes and the expected loss for a design can

be calculated as:

— E{L(F,6() P(Fly) + L (F,0()) P(Fly)}  (5.3)

We may use (5.3) to identify the Bayes decision {function.

5.3.1 The Bayes decision function

The decision to replace or not to replace is taken componentwise on the basis of
our observations y and our posterior probability of failure, updated for y. Losses
associated with our decisions depend on component failure and are therefore ran-
dom. We will always choose the action that minimises the expected loss. Having
observed y, we choose a (to replace) or @ (not to replace) a component depending
on min{ E[L(O, )|y, E[L(O, a)|y]}. These can be calculated using Table 5.1 as:

E[L(O,a)ly] = L(F,a)P(Fly)+ L (F,a) P(Fly)

= LgP(Fly) + Lr(l — P(Fly))

= Lp (5.4)
E[L(O,a)ly] = L(Fa) P(Fly)+L(F,a)P(Fly)

= LpP(Fly) +0.P(Fly)

which tells us to choose a (i.e. to replace) if the posterior probability of failure is
greater than the proportion of the failure cost contributed by the replacement cost.
That is, to replace if:

P(Fly) > 5= = p
and not to replace otherwise. Therefore, for any realisation of the observations, the

Bayes decision function is:

§*(y) = aif p(Fly) >p (5.6)

aif p(Fly) <p (5.7)

(=
%
fown
<
~—
I
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5.3.2 Calculating E[L(d)]

The utility of an inspecting a component can be calculated as the sum of the
expected value of the loss function associated with our Bayes decision function,
6*(y), and the inspection cost, L;. The expected loss of our decisions for a design,

d, is denoted E[L(d)] and is evaluated, using (5.3), as:

EIL(d)] = EIL(F,&y)P(Fly)+ L(F,8* () P(Fly)]
= E|L(F,a)P(Fly) + L(F, a) P(F|y)|d" (y) = a]P(6"(y) = a)
+E[L(F,a)P(Fly) + L(F, @) P(F|y)|6* (y) = a] P(6"(y) = &)
= E[L(F,a)P(Fly) + L(F,a) P(F|y)|P(Fly) > p|P(P(Fly) > p)
+E[L(F,a)P(Fly) + L(F,a) P(Fly)|P(Fly) < AlP(P(Fly) < p)

where each term corresponds to the different decisions. The first termn describes the
expected loss due to replacement, and the second the expected loss due to inaction.
Recalling the expected values of the loss function for each decision (5.4), (5.5), this

can be written as:
E[L(d)] = LrP(P(Fly) > p) + LrE[P(F|y)|P(Fly) < plP(P(Fly) < p) (5.8)

We see, from (5.8), that the expected loss of our decisions for a design, d, is de-
termined by the probability that, using design d, we will observe data y for which
P(F|y) > p and by the expected value of P(Fly) over all y for which P(Fly) < p.

For example, consider the best conceivable design. This would be the design in

we could identify failing components with certainty. In this case, E[L(d)] would be

given by nrLg, where ng is the number of components in need of replacement. The

incur a failure loss. Components will be replaced (with loss Lg) if P(Fly) =1, and

y) =0

and we know, with certainty, they will not fail before ¢ + k, and therefore cause no

we therefore know they will fail before t4-k, or they will not be replaced if P(F

loss in utility. Such a design minimises unnecessary expenditure.
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In practice, even using complete inspection will not provide us with perfect
information, so our E[L(d)] values will instead include some unavoidable random
loss. These are losses introduced by replacing components that would not have failed
or by failing to replace components that will fail.

Calculating E[L(d)] requires us to be able to evaluate the posterior probability
of component failure, which for notational simplicity we set to be P(Fly) == q(y).
The posterior probability of component failure ¢(y) is also a random quentity, as it
depends on the unknown quantity y, and has its own probability distribution, which

we will also need to describe. The evaluation of F[L(d)] requires the evaluation of:

1. P(P(Fly) > p) = p(q(y) > p), which is equivalent to the integral:

pmw>m=/pmwwwzh. (5.9)

4

can be expressed as:

Ela(y)le(y) < plplely) < p) = /0 ’ q(y) ;(%dq@) plaly) < p)

- [t =5 510
3. The expected loss of our decisions for a design can thus be written as:
E[L(d)] = Lrly + Lzl (5.11)
and the utility of a design is:
U(d) = ~{Lrh + Lgl, + L;}

To evaluate these integrals we require an expression for ¢(y) = p(Fly).
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5.4 Approximating posterior failure probabilities

From (5.8), assessment of E[L(d)] for an inspection design, d, depends on assess-
ment of the posterior probability of component failure, conditioned on our inspection

observations, y. This is given by:
P(Fly) = qly) = P(mu.x < Wely) (5.12)

Expressing this probability explicitly requires assumptions to be made about the
distributions of the random quantity myyy, which is the minimum wall thickness.
The method could equally be applied to any well defined observation function; for
this model, the observation function is the component minimmun wall thickness. We

choose to approximate the behaviour of my,, given y with a Normal distribution:

Mg ~ Npeer(y), 0“7:24-;:(9)] (5.13)

In general this may not be an appropriate assumption, and the validity of any distri-

butional assumptions should be checked. In our situation we are modelling minmmum

and system simulation, the global trend term, w;14, is Normally distributed and
Fuox is expected to be distributed with, approximately, an extreme value distribu-
tion. The exact form will depend on the choices made with respect to the munber of
locations within a component, but the expected distribution will lie somewhere be-
tween a Normal and a Gumbel distribution. Figure 5.2 illustrates the distributions
we can expect to be associated with the minimum wall thickness m, for a single
component of the Circuit A system for simulations of length ¢ = {1,5,10,15} steps.
Plots for other components in Circuit A follow a similar pattern (see Appendix).
These indicate that the assumption of Normality is not grossly unreasonable for
these quantities. The determination of appropriate values for fu., (y) and o? 1Y)
will be described in section 5.4.1.

The assumnption of Normality allows us to evaluate ¢(y) from the standard Nor-
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‘The Bayes linear updating equations allow us to resolve our problem to one of
uncertainty over the behaviour of my, ., which is controlled by the random quan-
tity pix(y). We have obtained expressions for the expectation and variance of
both quantities that depend on the updated expectation and variance values. It
is still necessary to assign appropriate distributions to these moments to allow the
determination of the values of q(y) and ?(g(y)), and even given such assurnptions
the integrals I; and I; may not be easy to evaluate. However, this provides a clear
method for evaluating a basic prop erty of an inspection design that incorporates the
updated variance and presents the results on an Interpretable scale - the expected
loss per component of the decisions made as result of using design d.

"To convert the individual component expected loss values into a design expected
loss, we sum the expected loss over all components. This simplification follows as
we are making decisions about component replacement independently of the other
components. It would be possible to construct a more realistic model of the decision
making process, which allowed for joint decision making and the adjusting of utilities
as the scale of necessary repair work increases (thereby allowing us to account for
potential non-linearity of utilities), but the proposed method offers a plausible order

of magnitude assessment of design quality.

5.4.2 Evaluating I;

Following from the assumptions of Normality mace previously, the standardised
quantity,
We — penily
o(y) = Yo terly)

5.21
P~ (5.21)

on which we base our probability of failure estimate,

9(y) = @ (2) (5.22)
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can be assumed to follow a Normal distribution with expected value:

B(z) = B(M)

i1k
VVC ‘E[I_Lt-}-k(y)]
Ttk

which we denote as pi,, and variance given by:

Weo — )
var(z) = var (J__ﬁtﬂi?/l)

Otk
var (11 (y))
oLk
var (k) — vary(meg) N
=0

2 4
Otk

labelled o2, We also define:

ai = var(mx) — vary(mesr) (5.24)

to represent the variance associated with g, x(y). Consequently,

2
ot = (:‘.u> (5.25)
Ttk

We will use this notation to condense our expressions for Iy and I,.

Recall from (5.11) that E[L(d)] = Lp(pl; + o) where:

I = / 1 p(a(y))dg(y)

This integral is equivalent to calculating the probability that the posterior failure
probability will be greater than p, the ratio of replacement and failure costs. We
can write I; as:
1
L= / pla())da(y) = p (a(y) > p) = p [p(musn < Wely) > gl
P

Using our assumptions of Normality for my (5.19) and pqx(y) (5.20), we can then
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say:

We — flesk
plp(mers S Wely) > p] = p [‘I’ (...EM) > /J}

Ttk
= p[uei(y) <Wo =7 (p) 0pr]

@C%~®%@m%~Em%@» ----- -----

Vvar(myr) — vary(mek)

Terk {zv_c_—ﬂ_ru_) ~oi(p)

Cttk

ou

which can be written more succinctly in terms of p, (5.23) and o, (5.25) as:

plats) > p) =0 |- (L) (5.26)

0

We can then evaluate I; from a standard (cumulative) Normal distribution function.

5.4.3 Evaluating I

This is a more involved calculation. The required integral is given by:

We have assumed that g(y) can be written as g(y) = @ (w) = ®(z) (see

Ttk
section 5.4 for details). Changing variables from ¢(y) to z is a change of variable
q(y) — A(rr) = f2(2), but we will treat it as setting g(y) = ®(z) = dg =
¢(2)dz, where ¢(2) is used to denote the derivative of ®(z) (in this case ¢(z) would
be a Normal pdf). Denoting the pdf of the posterior probability of failure, p(g) by
[y, We can express I, as an integral in z:

®~1(p)
b=/ 0(2) £,(8(2))d(2)dz

-0

£,(®(2)) can be found as the derivative of Fy. F, = p(q(y) < =), arguing as for I,
(section 5.4.2) gives:

We — fty0s (2
p[P(mt--x--k < Wc|y) < I] = P [(I) <——L—-——'L—“—i—k—(—u—)~) < LE}

Otk
= p [,Ufr,..|_k(y) >We — (I)_l (.L) Ut--l-k]
L (WC - & (@) o — E (’mt..i..k))

o
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Setting:

o= T2 2 ]1 g (Mo Bl — ot )

du dx Op

and using the chain rule with J = ®~!(x):

dF,  dF, dJ

de  dJ da

qu —Ot4k VVC — E(?’Ilt,i..k) - at,.},.k:]
= ~¢

dJ O'M 0'“

J = o Yz) oz =0(J)

we find:

5, = <_Z‘L+k> <“*(f’) [Wa - E(W‘Z+k) - a,,+kJ]) (G
u 2

Substituting for J, this can be written as:

Py We — E(myy) — 0497 Hz) 1 Otk
' ; SETE@) o

I
Which, when z is replaced by the variable of interest ®(z), gives the expression
required to evaluate [,

_ @=(p) ) We — E(myyg) — 004421 (8(2)) ouik$(2)dz
I, = / ‘I(Z)d)< e > d(D-1(D(2)))o,

00 I3
/(I)_I(P) (I)( )d) (I/VC ...... E("”t-{—k) AAAAA - 0i+kz) d)(z) O-t+kdz
= V4
-0 (T# (/)(Z) O—/J'

_ We—B(mer)
/(I) l(p)‘l’(v)qf) Tuitk <__Et—+:i_ z) Otk

o0 0# 0!—’-

Using (5.23, 5.25) this can be rewritten as:

@) —z\ dz
I :/ b(2)é ("z ) (5.27)

—00 z op”

which will be evaluated numerically.
For I, we are left with an integral that depends on the three quantities y,, o,

and p, and must be evaluated using numerical methods.
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5.5 Evaluating the expected loss criterion

In this section we illustrate how to apply the expected loss criterion to a real
system. The system will again be the Circuit A corrosion Circuit from the Site
A platform. Our intention is to consider the inspection planning problem for this
system, which we demonstrate in chapter 6. Here we show how to calculate the
expected loss for gpecific inspection designs.

The expected loss criterion can be used as a way of planning the next inspection,
based upon the need to run the system for a given time [rame, so we are required
to specify which time frame we will be considering. The UK Health and Safety
Executive Regulations require that a safety case for the running of industrial systems
is prepared at least every 5 years [27]. The safety case provides details on the
safety implications of running the system, and provision made for handling failures.
Therelore planning an inspection within around five years of the final update should
be considered suitable for the Circuit A problem. The last available real data point is
at ¢ = 12 in our initial model, which covers the period 01/01/1998 - 30/06 /2004 (see
Table 4.1). We will be interested in planning an inspection before 31/12/2009, which
translates to 11 further times steps in our model - specified in Table 5.2. Therefore
the value of k, the number of steps into the future which we will consider will be 11
and the final time point for inspection planning procedure is ¢ + &k = 12 + 11 = 23,
equivalent to 31/12/2009.

To carry out an expected loss calculation it is also necessary to specify other key

aspects of the problem:

1. Initial beliefs - our beliefs about the future state of the system will be based on
the current system state. Therefore it will be necessary to specifly our current

beliefs.

2. Losses - to formulate the decision problem it is necessary to specily values
for the losses associated with component failure, component replacement and

performing the inspection.
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Time Step | Start Date | End Date
13 01/07/2004 | 31/12/2004
14 01/01/2005 | 30/06/2005
15 01/07/2005 | 31/12/2005
16 01/01/2006 | 30/06/2006
17 01/07/2006 | 31/12/2006
18 01,/01/2007 | 30/06/2007
19 01/07/2007 | 31/12/2007
20 01/01/2008 | 30/06/2008
21 01/07/2008 | 31/12/2008
22 01/01/2009 | 30/06/2009
23 01/07/2009 | 31/12/2009

Table 5.2: Model Thne Steps

3. Design - we must stipulate the design for which we want to evaluate the ex-

pected loss value.

5.5.1 Simulating future system behaviour

When conducting the initial simulation we should consider how far into the
future we will want to plan, and simulate realisations up to this time. Adopting this
approach means no further simulation will be required. The output from the initial
simulation will be sufficient to estimate the variances and covariances required.

The information required to perform the updates consists of the values of the
system property of interest - which to us will be the minimum wall thickness - from
the final time point, 1, ,, and the observation fanction values from every time point,
Yy vj € {l,...,k}. It is preferable to generate realisations for all observation
funictious that may be used as part of the iitial simulation, as this avoids the
need for further simulation if the observation function is changed. We will consider
the options for our observation functions to be minimisation over different amounts

of the component surface. It is therefore necessary to establish a plausible set of
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observation functions before simulating. In general these could be any function of
the underlying true wall thickness values (uy) for which it is possible to obtain a
value via some observation technique currently in use.

In the case of Circuit A, we are concentrating on minimum observed values,
but would like to consider the possibility of partial component observation. Partial
component observation offers the possibility of ‘missing’ the true mmimum during
inspection, and is also a slightly more realistic representation of the inspection pro-
cess, where inaccessibility and other practical constraints are likely to apply to parts
of components as well as whole components. For this illustration we consider the
two observation functions of complete component inspection, in which we take the
minimum over every location observed with error, and half component inspection,
where the minimum is taken over half the locations observed with error. Due to
the lack of correlation between locations within components in our simulation, it is
acceptable to select those locations that form the ‘observed half’ of the component
at random.

Using a simulation approach, we must ensure that our simulation output includes
all information that will be required to calculate the values of the observation fumnc-
tions we wish to consider, to allow computation to proceed.

To forecast behaviour at the time point of interest, we simulate S system real-
isations at time ¢ + &, using the simulation approach described in section 2.8. For
Circuit A, our updated beliefs about the global term level z,, and slope gy, values
are used as the basis for our simulation. We then generate S realisations of the
system to time 23 (31/12/2009), and observations of the system for each time step,
for both observation functions. To account for all design possibilities, it will be nec-
essary to store the S m,, , realisations, and the S realisations of the two observation
functions for each time point. We denote by gﬁ)} the complete component observa-
tions and by yﬁj) the half component observations. Simulation output is stored in

the S x 40 array My, in which the ¢-th column contains S simulated vahies for

Y09 which contains and S x 40 array for each tine step.

To evaluate the expected utility criterion we need to estimate the variance of
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the minimum wall thickness at ¢ + &, adjusted for the planned observations. We
will concentrate on planning an inspection at the next available time step, so the

adjustment we need to consider is, in general:

1
va o) =V 1, e 7 b VW )
B.rde_l (m['*l‘) ar (ZLH’]“) cov (mH‘k’ ydt»}-l) var (y-dt{"l) cot (ydt»iul’ﬂlhk>

and for the Circuit A case it is:

. , — var (- _ 1 .
ALY a1 (ma3) = var (mag) —cov (m%’y-dl?-{»l) vat (lezﬂ) cov (gd].2+1’m23) '

All of these quantities, and the unadjusted expectation E(m,, ) - which will also be
required, can be estimated from the simulation output as described in section 4.3.2.

For a large system, with many simulation realisations, it would be impractical
to store all the simulation output. However, as our interest is in the mean and
variance structure of the variables, we can recover this information by recording
the cumulative means and the sums of squares and cross products for each of the
simulation outputs.

Using the simulation output we will be able to evaluate these quantities for any
inspection design. This, in combination with the loss information, will allow us to

evaluate the expected loss criterion.

5.5.2 Specifying loss values

Specifying the losses associated with each outcome is a fundamental part of
solving the decision problem. Table 5.3 shows the values assigned to component
replacement, which are based around the cost of replacing a Straight component:

The losses reflect the cost of a new component and the effort required to install
the new component. Higher costs reflect those components that are either more
expensive to construct, difficult to replace or both. For example, a Cap would be a
cheap component that is easy to replace, hence its low value. Obtaining estimates
for replacement losses will, in general, be reasonably straightforward. The cost of a
new component, and the labour required to install such a component, will usually

be approximately known for most practical problems.
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Component Type | Replacement Cost
Bend (short radius) 1.5L
Branch 2L
Cap 0.1L
Straight L
Weld 0.6L
Wellhead 2L

Table 5.3: Losses incurred through component replacement

Failure costs are constructed using the consequence data from the Site A data
set. The consequence data takes the form of subjective assessments of failure con-

sequences for different groups. Each component has the {ollowing ratings:

1. Location (Lp;) - where on the platform the system is located, and how easily

failure could be contained.
2. Fluid Characteristics (Lps) - mdicator of threat posed by system contents.
3. Fluid Pressure (Lps) - highly pressurised fluids are potentially more dangerous.
4. Criticality (Lpy) - effect of component failure on larger system.
5. Environmental (Lps) - damage caused to surroundings by failure.
6. Commercial (Lpg) - lost revenue caused by failure.

Qualitative ratings are assigned to each consequence ranging from ‘Low’ to ‘Ex-
treme’. These are assigned values as shown in Table 5.4. The ‘Extreme’ values
have been adjusted to allow for a more interesting design example. In practice it is
reasonable to assume that the ‘Extreme’ consequence cost of failure would be much
more than 8§ times larger than the ‘Low’ consequence cost. For this example, we
adopt a simple linear model for combining the ratings to obtain a single value for

component failure cost:
6
LF B E l,‘LFi, (528)
i=1

where the [; are weights allowing us to rescale factors according to importance.



5.6. Designs 138

Consequence | Failure Cost
Low L
Medium 2L
High 4L
Extreme 8L

Table 5.4: Losses associated with severity of component failure

Consequence Rating | Loss | Weight (I;)
Location High 4L L
Fluid Characteristics | Extreme | 8L Iy
Fluid Pressure Medium | 2L I3
Criticality Extreme | 8L Iy
Environmental Extreme | 8L I5
Commercial Extreme | 8L lg

Table 5.5: Losses associated with component failure in Circuit A

Within Circuit, A all components are processing the same substances and per-
forming very similar functions. As a result, all consequence ratings are determined
to be equal over the system, meaning we can calculate a single value for the loss
due to failure for all of Circuit A. Using Table 5.5 and (5.28), the loss incurred by

component failure will be given by:

Lp=2L(ls +2(0 + 2(la + Iy + s + 1g))) (5.29)

Lic = .025. These values have been set to be comparatively smaller than the Ly

and Ly values so that the ‘value’ of reducing uncertainty is higher.

5.6 Designs

As explained in section 2.3.1, an inspection design will consist of instructions

stating which components are to be inspected, what percentage is to be inspected
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(now restricted to either 50% or 100%), and when they are to be inspected. For
our discussion we are restricting to designs in which the smallest unit is half a
component. That is a component can be half inspected, completely inspected or not
inspected. Even under this restriction we are still left with 2% potential designs, as
we have 80 half components that are either inspected or not inspected.

We will show how to calculate the utility of the following designs. Firstly, the case

in which there is no further inspection. In this situation we base our replacement

the design in which we inspect all components. This will give us an idea of the most
it is possible to learn about the system at time ¢ == 13, but we must also counsider
the expense of inspecting. To obtain a scale on which to compare expected loss
values it is advisable to first consider the scores obtained for the two extreme cases
- those of no inspection and total inspection. Assessing the performance of these
baseline cases is important for making expected loss values more interpretable. We
work through the expected loss calculations for these designs and then show how
to evaluate the expected loss of a partial inspection design. In chapter 6 we will
consider how to icdentify potentially ‘good’ inspection designs, but here we illustrate
the calculations involved in evaluating design utility.

We must specily a time point for the inspection. To learn most about the system
at t + k = 23 we would like to inspect close to ¢ + k, but delaying too long before
inspecting may result in [ailures prior to inspection and losses being incurred. For
our illustration we will consider a total inspection at ¢ = 13, near the start of the
[t,t + k] = [12,23]. In general, the problem of when to inspect should be treated as
carefully as that of where to inspect, as fixing the inspection point constrains us to
being able to find the best inspection plan for this time step, which is not necessarily
the same as the best inspection plan, but for the purposes of our illustration we omit

the further considerations required for delaying inspection.

5.6.1 Lower baseline: the no inspection case

The value of the no inspection case allows us to establish the minimum level
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of performance we require from a design to make it worth implementing. The
no inspection case will always have the lowest inspection loss (L; = 0) and the
least influence on our predictive ability (no improvement). In certain situations,
it may still prove to be the most effective design. For example, when the cost
of inspection is high but the benefits minimal or when the cost of replacement is
approximately equal to the cost of failure (Lp ~ Lg), then choosing not to inspect
and replace components as they fail will be the best option. However, in many
situations Ly >> Lg, and so no inspection becomes a less attractive option.

To evaluate the expected loss criterion for the no inspection case we need to

calculate, from (5.8):

Y)|P(Fly) < LIP(P(F

y) < p)

Ly = Lsy+nglic. (5.30)

As we will not be inspecting, there is no uncertainty over the probability of choosing
action a or &. Our beliefs will not bhe updated, because we receive no new data, so we
can make all replacement decisions based on our initial beliefs (for Circuit A, beliefs
at time t = 12), so for the no inspection case, we do not have to deal with the more
complicated integration that usually forms part of the expected loss calculation.
Instead it is sufficient to consider:
. We — By, (my)
- vary, (my;3)

and ®(z) where yy, is the available historical data. The critical wall thickness values
are set as being 40% of the nominal wall thickness or 3mm, whichever is larger.
The values used in calculating z for this example are given in Tables 5.6 and 5.7.
Note that a positive value for We — By, (1) indicates that we are expecting the
component to have failed by ¢ = 23.

®(z) gives us a vector of failure probabilities, in which each element corresponds
to the failure probability of a particular component. We then construct the vec-
tor p(d*(y) = a) (the vector of probabilities of choosing to replace a component)

elementwise as:

1 B(z) > 729

0 otherwise

p(6;) =
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Difference between

Variance of min

Variance of min

Variance of min

Component critical and wall thickness wall thickness wall thickness
Number | expected minimum | No Inspection | Full Inspection | Partial Inspection
wall thickness vary, (mys) vary, ., (my,) vary, 413 (Mos)

(Wo = By, (1m93))
1 -4.6776 11.8499 5.1172 11.6023
2 -6.6283 2.4654 0.6394 0.6411
3 -4.4668 10.5392 4.9645 7.5551
4 -4.1153 9.2645 4.9271 4.9517
5 -6.5509 24212 0.6356 2.4010
6 1.2695 2.0453 1.5085 1.5097
7 -2.9031 8.0491 4.6223 6.6256
8 -5.1638 6.4560 3.1338 3.1825
9 -9.7274 0.9586 0.5337 0.9207
10 -4.6723 1.3541 0.6210 0.6223
11 -4.6538 1.5631 0.7220 1.4237
12 -1.1529 7.4594 4.1057 4.1103
13 -4.6758 1.5771 0.7246 1.4069
14 -2.7634 9.8367 4.7685 4.7740
15 -7.4621 2.3040 0.9443 2.1068
16 -4.6273 9.2711 4.9363 4.9375
17 -6.6482 2.4530 0.6357 24311
18 -6.7314 2.4146 0.6333 0.6337
19 1.6827 1.5804 0.9213 1.4575
20 -5.8960 3.8255 0.6874 0.6888

Table 5.6: Changes in variance values for different inspection designs
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Difference between

Variance of min

Variance of min

Variance of min

Component, critical and wall thickness wall thickness wall thickness
Number expected minimum No Inspection | Full Inspection | Partial Inspection
wall thickness vary, (1y;) vary, 1, (1y;) vary, a3(1ys)

(Wo — Ey, (ma3))
21 -0.4959 5.3345 2.3208 4.8294
22 -0.4673 5.2698 2.3153 2.3190
23 -0.0354 1.4637 0.9775 1.3604
24 -0.2010 1.3393 0.9841 0.9923
25 0.2271 41741 1.9117 4.1053
26 0.2689 4.0869 1.8845 1.8875
27 1.7683 1.7323 0.9442 1.7320
28 -5.8235 3.8319 0.6971 0.6972
29 -5.6854 3.7369 0.6843 3.7183
30 1.0838 1.0707 0.7507 0.7510
31 -1.3110 1.9394 1.1618 1.7639
32 -2.6150 2.8071 1.4482 1.4736
33 -0.5081 1.4885 1.0579 1.3349
34 -2.8080 2.7079 1.4478 1.4761
35 0.5704 1.3857 0.9267 1.2391
36 0.5509 1.3635 (0.9240 0.9343
37 -3.1682 2.8960 1.4655 2.5595
38 -0.7959 5.4764 1.6344 1.6370
39 0.8535 1.0882 0.9321 1.0774
40 0.5318 1.3425 0.9354 0.9384

Table 5.7: Changes in variance values for different inspection designs
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So p(6}) takes value 1 if the component is to be replaced and 0 if no action is

deemed necessary. For the no further inspection case, (5.8) can be rewritten in

E[L(d)] = Lg' p(8"(y)) + Lz’ [(} - p(8"(¥)))-2(2)] (5.31)

The inspection loss, Lj, for the no inspection case is always 0.
The necessary numbers for the explicit expected loss calculation are given in

Tables 5.8 and 5.9. Recalling the definition of the expected utility:
U(d) = — (LrP(P(Fly) > p) + LrE[P(Fly)|P(Fly) < plP(P(Fly) < p) + L1)

we can see we are left with two terms to calculate (Ly = 0 in this case). The 2nd
and 3rd columns of Tables 5.8 and 5.9 correspond to the values of P(P(Fly) > p)
and E[P(F|y)|P(Fly) < p|P(P(F|y) < p) respectively. We then multiply the first
of these quantities by the component replacement loss and the second by the failure
loss to obtain an overall loss per component. These losses are then summed to give
the total decision based loss for the design. The cost of implémenting the design
(L; = 0) is then added to this quantity to give the full loss value for the desigu.
The presence of a 1 in column 2 of Tables 5.8 and 5.9 indicates we would choose
to replace a component. In the no further inspection case we can say with certainty
which components we would replace. For this example we would recommend re-
placing 26 of the 40 components, at a loss of 30.3. The 14 unreplaced components
generate an expected loss of 1.8003, most of which is attributable to component
16, in which the probability of failure falls just below the accepted standard. This
expected loss is obtained as the probability of component failure multiplied by the
cost, of failure. For the no further inspection case components can only have either
a replacement cost or a failure cost, as there is no uncertainty over our decisions.
Surnming the values in Tables 5.8 and 5.9 we find the utility value for the no

Inspection case to be

U@ = —{E[L®)] +L;} = —(Lgli+Lply+ L)
= —(30.3 + 1.8003 + 0) = —32.1003
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E|P(Fly)|
Component | P(P(Fly) > p) | P(Fly) < p]x | Replacement | Failure | Component
Number (1) P(P(Fly) < p) Costs Costs Utility
(12) Ly.I Lp.Iy | Lrly + Lrly

1 ! 0 1.5 0 1.5
2 0 0.0000 0 0.0002 0.0002
3 i 0 1.5 0 1.5
4 1 0 1.5 0 1.5
5 0 0.0000 0 0.0003 0.0003
6 1 0 1.5 0 1.5
7 1 0 1.5 0 1.5
8 0 0.0211 0 0.4213 0.4213
9 0 0.0000 0 0.0000 0.0000
10 0 0.0000 0 0.0006 0.0006
11 0 0.0001 0 0.0020 0.0020
12 1 0 1.5 0 1.5
13 0 0.0001 0 0.0020 0.0020
14 1 0 1.5 0 1.5
15 0 0.0000 0 0.0000 0.0000
16 0 0.0643 0 1.2858 1.2858
17 4] 0.0000 0 0.0002 0.0002
18 0 0.0000 0 0.0001 0.0001
19 1 0 2 0 2
20 0 0.0013 0 0.0257 0.0257

Table 5.8: Necessary elements of the expected loss calculation for each component

in the no further inspection case, excluding inspection cost information
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E[P(Fly)]
Component | P(P(F|y) > p) | P(Fly) < p]x | Replacement | Failure | Component
Nurmber (Iy) P(P(Fly) <p) Costs Costs Utility
() Lad, Ledy | Lply + Lrly

21 1 0 2 0 2
22 1 0 2 0 2
23 1 0 0.6 0 0.6
24 1 0 0.6 0 0.6
25 1 0 2 0 2
26 1 0 2 0 2
27 1 0 2 0 2

28 0 0.0015 0 0.0293 0.0293

29 0 0.0016 0 0.0327 0.0327
30 1 0 0.6 0 0.6
31 1 0 0.6 0 0.6
32 1 0 0.6 0 0.6
33 1 0 0.6 0 0.6
34 1 0 0.6 0 0.6
35 1 0 0.6 0 0.6
36 1 0 0.6 0 0.6
37 1 0 0.6 0 0.6
38 1 0 0.6 0 0.6
39 1 0 0.6 0 0.6
40 1 0 0.6 0 0.6

Table 5.9: Necessary elements of the expected loss calculation for each component

in the no further inspection case, excluding inspection cost information
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5.6.2 Upper baseline: the total inspection case

Calculating the expected loss value for the total inspection case provides us with
a way of establishing the maximum we should pay for an inspection. It is impossible
to learn more about the system state by using another design, but total inspection
will always be the most expensive inspection (under our choice of cost function).
Total inspection is unlikely to be a practical choice of inspection design in practice,
but by evaluating the worth of a complete inspection we can ascertain how successful
other potential designs are in improving our predictive ability relative to the best

performing design in terms of information gain.

(5.8) and (5.30). In this case, unlike the no further inspection case, we are uncertain
about our choice of action, as we have not yet seen the inspection data. Therefore
we will need to use the method of section 5.4 to calculate E[L(1,...,40)]. To do
this we need to update our beliefs about the variance of 12,3 given a total inspection
at t = 13.

For the total design we are considering {full inspection of all components, so our
design set d = {1,2,...,39,40}. To find the adjusted variance for this design we

need to evaluate:

Ay o e vay (1 ; art s 4 ’
Valy, s (11293) = var (1ny5) — cov (ﬂha,_y_h,m) var (gh,l‘d) cov (gh’w,ﬂhs) (5.32)

The chosen d has 40 elements, so the variance matrix of our design observations,

var(y,,)is of size 40 x 40. The covariances, cov (s, ) and cov(y, ..,m,3), are

Ypa ALY
both of size 40 x40, as are the vary (my3) and var, (my3) matrices. We can esti-
mate the required quantities from the simulation output. To estimate the covariance
structure, we require the output relating to the whole component observations at
time ¢ = 13 for every component. This is given by the columns of Y(l‘? corresponding

to the design elements, in this case, all columns. We will also need the simulation

M,3. The covariance matrix is then defined to be the matrix in which the (,, j)-th
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element, is equal to:

0'1niyj - S g S (533)

where 7 ranges from 1,...,40 and 7 ranges over the elements of d.
Using the Bayes linear formula for adjusted variance and the simulation output
for observations at ¢ = 13 and system minima at ¢ = 23, we can estimate var, (1m53)

and thus evaluate p_ and g? as:

We — E(mg;
u = We — Blmg) (5.34)

Va'ryh,w (ﬂl_zg)

sigma® = _varlmy) 1 (5.35)
- valy, o (12293)

which is sufficient to allow the evaluation of the integrals I; and I5.

=1(,) &=1(p) —
IL =@ {—- <M_/_Lf.>} and [; = / () (Mz z) _(_if
o, Jooo o o

thereby calculating the expected loss value.

We can use a standard Normal cdf to estimate the value of Iy for all ¢. I3 can be
estimated, either by using software packages designed for integral evaluation, or by
using simulation techniques. We adopted a simulation approach, based on a change

of variable in integral I from z to g, where:

Z — lhy
g m
Oz
allows us to write I, as:
"Pg
L= [ 8o+ n)olo)ds (5.36)
where, ’
_ &) — g
pg =~
O-Z

We can treat (5.36) as evaluating the conditional expectation of a function of g,
thus:

Iy = E[®(0.9+ p:)lg < pglplg < py)- (5.37)
g ~ N(0,1), by construction, so we can estimate the value of I; using the following

simulation routine:
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1. Generate a sample G of size |G| independent draws from a standard Normal

distribution with mean () and variance 1.
2. Find all g € G such that g < p,, call this set I".

3. Let || be the size of set I'. The expectation we want is estimated by:

der‘ q

|Gl

E[®(0.9+ p)lg < po) =

4. Estimate the probability of g < p, by:

T
pg < pg) = H

the proportion of g € G less than p,.

5. Bstimate I, by

fy o Zeerd T Fper
N I (G (€

It may be necessary to make the size of |G| very large in order to ensure convergence,

Tables 5.10 and 5.11 contains all the necessary information for calculating the
expected loss value for the total inspection case. The table has the same layout as
that of Tables 5.8 and 5.9. In this case, we are not certain about our decision, so
every component takes a value for both the I; and I, terms, even if this value is
negligible in some cases. Using the values in Tables 5.10 and 5.11 we can show the
expected loss from decisions E[L(1,...,40)] = 26.1073, which can be split into an
expected loss of 23.4375 from replacement and 2.6698 from failure. As a consequence
of the uncertainty introduced into our decision making through inspecting, the loss
due to replacement can no longer be definitely stated, but is now replaced by an
expected loss evaluated as the sum of the expected loss due to replacement for
each component. This is calculated as the product of the probability of choosing
to replace a component multiplied by the cost of replacing that component. The
expected loss due to failure is calculated as previously. In this case we also need to
specify the inspection cost. Using the specified values for Lgy = .5 and L;c = .0125,

the total inspection loss is:

Lp=.5+80%.0125=15
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and the overall expected loss for this design is therefore:

U(1,...,40) = —{B[L(1,...,40)] + L;} = —(Lgl +Lply+ Ly)

= —(23.4375 + 2.6698 + 1.5) = —27.6073

The main reason for the reduction in expected loss we see here is the decrease i
the number of components we believe it is necessary to replace. A definite replace-
ment, policy will depend on the particular data observed. However, the probabilities
of our deciding to replace each component are shown in columnn 2 of Tables 5.10 and
5.11. The reduction in variance achieved by fully inspecting at ¢ = 13 can be seen
by comparing the 3rd and 4th columns of Tables 5.6 and 5.7.

The values of Table s5.10 and 5.11 are presented without adjustment for inspec-
tion cost. We see that the extra certainty we have gained in our predictive ability,
because of the reduction in variance brought about by updating, ensures that the
loss in utility is at most as large as when not inspecting, and in general reduced. In
particular, if we consider component 16, which contributed most of the failure cost
in the no further inspection case, due to it having an expected probability of failure
close to the value of p, we can see that its loss value has been halved. This occurs as
a consequence of introducing the possibility of replacing component 16, depending
on what we observe during our inspection. The updated distribution of the proba-
bility of failure for component 16 is such that we would expect to replace it 24.63%
of the time. Allowing the possibility of replacement - dependent on the actual ob-
servations - has for this component reduced the expected loss. For components such
as 1, 3 and 4, allowing the possibility of not replacing has caused the reduction in
expected loss. These components also have an expected probability of failure close
" to the value p (as for component 16), but slightly greater meaning without further
inspection these components would always be replaced. Further inspection allows
us to confirm situations in which this is the most appropriate action.

The benefits of inspection can be seen here to be that of allowing decisions to be
delayed until more relevant information is available. For those components with an
expected probability of failure close to the value of p, further inspection is partic-

ularly valuable. Inspection does not necessarily change the number of components
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that must be replaced, but it allows a more appropriate decision to be made on the
basis of stronger evidence.

From evaluating F[L(d)] when d is equivalent to total inspection we know that
greatest possible gain in information we can achieve from any design is that which

allows us to get close to -26.1073. Partial designs will not allow us to gain a greater
nearly as much for lower L;.

5.6.3 Partial inspection

The procedure for evaluating the expected loss criterion for a partial inspection
design is similar to that of evaluating the criterion for a full inspection design. The
same calculations are performed using the same methods outlined in section 5.6.2.
We consider inspecting all the even number components fully at time 13. This means
we take the minimum over every location on the surface observed with error for 20
components within Circuit A. At this stage we make no attempt to select these 20
components in an informed way. The purpose at this stage is to illustrate how to use
the criterion for a given partial design, not to select an optimal design. The set of
components to be inspected is Cy = {2,4,...,38,40}, components 1,3,5,...,37,39
will not be inspected.

Evaluating expected loss for any design relies on calculating the adjusted vari-
ance. For our partial design we are considering full inspection of the even numbered
comporents, so our design set d = {2, 4,6, ...,38,40}. To find the adjusted variance

for this design we need to evaluate:

VaTy, s (1295 = valy, (1m9) + co V(m%’Z{h.,dl.'i)varml(31113)Cov(yh,,dlii"m%) (5.38)

: rr e var (1) — cov [ . ar— [ v ’r

vary . (19y) = var (11193) — cov (gig;,,gh'dm) var (gh’(m) con (gh(dm,ﬂ%)
(5.39)

The chosen d has 20 elements, so the variance matrix of our design observations,

var(y,,,) is of size 20 x 20. The covariances, cov(mm,gh,dw) and cov(gh)dw,m%),

are of size 40 x 20 and 20 x 40 respectively. Both the var, . (miy;) and vary (mas)
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E[P(Fly)|
Component | P(P(Fly) > p) | P(Fly) < p]x | Replacement | Failure | Component
Number (I) P(P(Fly) < p) Costs Costs Utility
(I,) Ll Lpdy | Lal, + Lrl,

1 0.2919 0.0112 0.4379 (0.2244 0.6623

2 0.0000 0.0000 0.0000 0.0003 0.0004

3 0.2969 0.0121 0.4453 0.2427 0.6880

4 0.3293 0.0134 0.4940 0.2686 0.7626

5 0.0000 0.0000 0.0000 0.0003 0.0004

6 1.0000 0.0000 1.5000 0.0001 1.5000

7 0.5413 0.0132 0.8119 0.2632 1.0751

8 0.0561 0.0091 0.1122 0.1829 0.2951

9 0.0000 (0.0000 0.0000 0.0000 (.0000

10 0.0000 0.0000 0.0000 0.0006 0.0006

11 0.0002 0.0001 0.0002 0.0018 0.0020

12 0.8323 0.0059 1.2484 0.1171 1.3655

13 0.0002 0.0001 0.0002 0.0018 0.0020

14 0.5670 0.0111 0.8506 0.2213 1.0719

15 0.0000 0.0000 0.0000 0.0000 0.0000

16 0.2463 0.0129 0.3694 0.2587 0.6281

17 0.0000 0.0000 0.0000 0.0003 0.0003

18 0.0000 0.0000 0.0000 0.0002 0.0002

19 0.9998 0.0000 1.9997 0.0002 1.79999

20 0.0032 0.0004 0.0064 0.0073 0.0137

Table 5.10: Necessary elements of the expected loss calculation for each component

in the full inspection case, excluding inspection cost information
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E[P(Fly)|
Component, | P(P(Fly) > p) | P(Fly) < p|x | Replacement | Failure | Component
Number () P(P(Fly) < p) Costs Costs Utility
(1) Lgp.I4 Lp.Iy | Lpli + Lrls
21 0.7993 0.0083 1.5985 0.1655 1.7640
22 0.8058 0.0082 1.6117 0.1634 1.7751
23 0.9956 0.0001 0.5973 0.0017 0.5990
24 0.9974 0.0001 0.5984 0.0011 0.5995
25 0.9081 0.0042 1.8162 0.0848 1.9009
26 0.9141 0.0040 1.8283 0.0809 1.9092
27 0.9997 0.0000 1.9993 0.0003 1.9996
28 0.0036 0.0004 0.0073 0.0079 0.0152
29 0.0041 0.0005 0.0081 0.0092 0.0173
30 1.0000 0.0000 0.6000 0.0000 0.6000
31 0.7917 0.0028 0.4750 0.0557 0.5307
32 0.3815 0.0045 0.2289 0.0903 0.3192
33 0.9851 0.0003 0.5911 0.0053 0.5964
34 0.3137 0.0047 0.1882 0.0946 0.2828
35 0.9998 0.0000 0.5999 0.0001 0.5999
36 0.9998 0.0000 0.5999 0.0001 0.5999
37 0.2281 0.0040 0.1368 0.0809 0.2178
38 7 0.7941 0.0018 0.4765 0.0360 0.5125
39 | 1.0000 0.0000 0.6000 0.0000 (.6000
40 0.9999 0.0000 0.5999 0.0001 0.6000

Table 5.11: Necessary elements of the expected loss calculation for each component

in the full inspection case, excluding inspection cost information
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matrices are 40 x 40. We can estimate the required quantities from the simulation
output. To estimate the covariance structure, we require the output relating to the
whole component observations at time ¢ = 13 for the components in the design.
This is given by the columns of Y%) corresponding to the design elements, i.e.the

2nd column of Y%) contains the output for component 2, the 4th the output for

component 4 etc. We will also need the simulation output for the cornponent minima

then defined to be the matrix in which the (4, j)-th element is defined using (5.33)
where 7 ranges from 1,...,40 and j ranges over the elements of d.

Having estimated the relevant variance and covariance structures, it is possible
to calculate the adjusted variance matrix for design d. This is sufficient to allow
the computation of y_and g, as in (5.34) and (5.35), which allows us to evaluate
the expected loss criterion for this design. Comparing the adjusted variances for
the partial design to those from the full and no inspection designs (Tables 5.6 and
5.7), we can see that the partial design performs nearly as well as full inspection
in the components we have observed, indicating that the majority of explainable
variation in most components is learned about through direct observation of the
component. However, the design also achieves variance reduction in the components
we do not inspect, most notably in components 3 and 7. Learning about uninspected
components through the system covariances is an important aspect of inspection
planning. Partial inspection designs are cheaper to implement than total inspections
Therelore if we can successlully target our inspections to the components that are
most informative about not just themselves, but also the system as a whole, we will
be able to develop more cost effective inspection plans.

The necessary information for calculating the expected loss values for this paz-
tial inspection case is shown in Tables 5.12 and 5.13. As for full inspection, ev-
ery component must take a value for both I; and I, as partial inspections act to
reduce uncertainty over the whole system, not just in the inspected components.
Assessing the loss values componentwise we can see that the partial design com-
pares favourably with the full design in the inspected components, achieving similar

reductions in loss, but less well in the uninspected components. However, it still
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outperforms not inspecting, achieving a loss less than or equal to that seen in the no
further inspection case (as must happen). For example, if we again consider com-
ponent 16, the partial design achieves an almost identical reduction utility to the
full design, implying that information from other components is of less importance
when learning about component 16, If we assess the performance of components 1
and 3 - neither inspected under the partial design, we can see a noticeable difference
in degree of reduction achieved. Component 1 has an associated loss of 1.5 given no
further inspection, but this drops to 0.6623 under full inspection. Our partial design
manages to reduce the loss to just 1.4198, which is not much of an improvement,
indicating that we have to consider components outside of the current partial design
to learn effectively about component 1. Component 3 also has an associated loss
of 1.5 given no further inspection, and achieves a similar reduction to 0.6880 under
full inspection. However, for this component, the partial design allows us to reduce
loss to 0.9433, a considerable improvement on not inspecting, but not as much as is
offered by full inspection. This tells us component 3 is a component we can learn a
non-trivial amount about through inspecting other components.

The partial design does not offer as much improvement in our decision mak-
ing ability as the full design, and consequently both the losses due to replacement
(25.2752) and due to failure (2.7750) are higher than those for the full inspection
case, however, the design is cheaper to implement, as we inspect half as many units

(40 half components as opposed to 80). The losses due to inspection are:
Ly =.5+40%.0125 =1

and the overall expected loss for this design is therefore:

So of these three designs, the full inspection is preferable. This will not always be
the case. The arbitrary fashion in which this design was selected meant the quality
of its performance could not be predicted. We will demonstrate in the next chapter

that the use of sensible design selection procedures will allow the inspection planner
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to identify partial inspection designs which, due to their reduced cost, offer better

value information than total inspection.
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E[P(Fly)|
Component | P(P(Fly) > p) | P(Fly) < p]x | Replacement | Failure | Component
Number (Iy) P(P(Fly) < p) Costs Costs Utility
(I) LTy Ledy | Luly + Lel,

1 0.6750 0.0204 1.0125 0.4074 1.4198

2 0.0000 0.0000 0.0000 0.0003 0.0004

3 0.3839 0.0184 0.5759 0.3674 0.9433

4 0.3303 0.0135 0.4954 0.2695 0.7649

5 0.0000 0.0000 0.0000 0.0003 0.0003

6 1.0000 0.0000 1.5000 0.0001 1.5000

7 0.7493 0.0116 1.1240 0.2327 1.3567

8 0.0559 0.0093 0.1117 0.1865 0.2983

9 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0006 0.0006

11 0.0000 0.0001 0.0000 0.0020 0.0020

12 0.8327 0.0058 1.2490 0.1168 1.3658

13 0.0000 0.0001 0.0000 0.0020 0.0020

14 0.5674 0.0111 0.8511 0.2210 1.0721

15 0.0000 0.0000 (0.0000 0.0000 0.0000

16 0.2463 0.0129 0.3694 0.2588 0.6283

17 0.0000 0.0000 0.0000 0.0002 0.0002

18 0.0000 0.0000 0.0000 0.0002 0.0002

19 1.0000 0.0000 2.0000 0.0000 2.0000

20 0.0032 0.0004 0.0064 0.0074 0.0137

Table 5.12: Necessary elements of the expected loss calculation for each component

in the no further inspection case, excluding inspection cost information




5.6. Designs 157
EP(Fly)|
Jomponent | P(P(Fly) > p) | P(Fly) < p]x | Replacement | Failure | Component
Number (I) P{P(Fly) < p) Costs Costs Utility
(1) Lg.I1 LpIy | Lph + Lpl,

21 (.9995 0.0000 1.9989 0.0006 1.9995
22 0.8062 0.0082 1.6125 0.1635 1.7759
23 1.0000 0.0000 0.6000 0.0000 0.6000
24 0.9977 0.0001 0.5986 0.0010 0.5997
25 1.0000 0.0000 2.0000 (0.0000 2.0000
26 0.9144 0.0041 1.8289 0.0811 1.9100
27 1.0000 0.0000 2.0000 0.0000 2.0000

28 0.0036 0.0004 0.0073 0.0079 0.0152
29 0.0000 0.0016 (.0000 0.0328 0.0328
30 1.0000 0.0000 0.6000 0.0000 0.6000
31 0.9977 0.0001 0.5986 0.0011 0.5998
32 0.3869 0.0046 (0.2322 0.0923 (0.3244
33 1.0000 0.0000 0.6000 0.0000 0.6000
34 0.3187 0.0048 0.1912 0.0959 0.2872
35 1.0000 0.0000 0.6000 0.0000 0.6000
36 0.9999 0.0000 0.5999 0.0001 0.6000
37 0.3919 0.0095 0.2351 0.1891 0.4243
38 0.7944 0.0018 0.4767 0.0361 0.5127
39 1.0000 0.0000 0.6000 0.0000 0.6000
40 0.9999 0.0000 0.5999 0.0001 0.6000

Table 5.13: Necessary elements of the expected loss calculation for each component

in the no further inspection case, excluding inspection cost information




Chapter 6

Selecting inspection designs

For the inspection of any system, there will be a choice of inspection design that
is optimal under our modelling assumptions. In the decision problem framework,
this is the design which allows us to make correct decisions most often, and, m
terms of our formulation of the problem, it is the design which yields the greatest
improvement in decision making ability offset against the cost of implementing the
design. We have discussed previously some of the computational issues involved in
planning inspection for large systems, and these are again relevant when considering
how best to select an inspection design. The number of possible inspection designs
for any real system is likely to be too large for it to be feasible to analyse all designs,
unless stringent constraints are placed on how inspection is carried out. For example,
even if we restrict to the simplest case of recommending whole components within an
n component system are either inspected or not inspected, the number of potential
designs will be 27, so, even for this simple procedure, we would have to abandon
‘exhaustive search routines for comparatively small n. Given that inspection designs
are, in general, more complex, it becomes clear that attempting to search the whole
design space is not a sensible policy.

Exhaustive analysis of the design space is guaranteed to find the optimal design.
However, it will in general be too computationally intensive to be practical. Conse-
quently, we need to consider rational methods for selecting designs, which reduce the
nmumber of designs it is necessary to compare whilst identifying designs that perform

158
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well in terms of Improving our decision making ability.

In this chapter we discuss choosing between inspection designs (section 6.1). In
section 6.2 we outline the different search strategies we will use and how we select
initial designs from which to start searching. In section 6.3 we illustrate the use of
the different routines to plan an inspection for the Site A subsystem Circuit A, and
we analyse the performance of the recommended designs in section 6.4. In section

6.5 we assess the impact of varying the failure costs.

6.1 Identifying good designs

The design criterion described i chapter 5 is used to choose between designs.
The expected utility criterion has been defined in such a way that both the losses
incurred as a result of the system behaviour and those involved in making the in-
spection are taken into account within the criterion. This means we can compare
different designs (made at the same time point) which cost different amounts to im-
plement directly through the expected utility criterion, without the need for further
calculation.

We always prefer designs which have a higher expected utility value. Therefore
the optimal design is the single design d* € D which has the minimum associated
expected loss in utility (or simply expected loss), and ‘good’ designs are those which
take expected loss values close to this minimum. The cost of making the inspection
plays an important role here, and the optimal design is the one which balances the
reduction i loss due to increased confidence in our decision making against the price

_paid to achieve that gain in confidence.

6.1.1 Inspection blocks

Throughout the rest of this chapter we will refer to ‘inspection blocks’. An
inspection block, is defined to be smallest unit of a system which can be inspected.

Blocks should be regarded as a partitioning of the system into regions for inspection
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purposes. It should be assumed that there is no overlap between blocks, and that
every point on the surface of the system can identified with one (and ouly one)
inspection block. Individual blocks are denoted, b;, and the set of all inspection

blocks contained in the system is B.

6.2 Search routines

We will use a stepwise search method to identify designs. Stepwise search is a
simple method which adds/removes blocks from a design one at a time until there
is no further benefit from adding or deleting more blocks, or until the maximum
inspection budget is reached, whichever occurs first. ‘Benefit’ in our search algorithm
will be determmed by the design utility values.

We consider 3 stepwise approaches; stepwise addition of inspection blocks, step-
wise deletion of inspection blocks and finally a combination of the two. We outline
the algorithms used in sections 6.2.1 - 6.2.3. These searches follow the methods used

in regression analysis for variable selection.

6.2.1 Stepwise Add

In implementing the stepwise procedures we will use the notation d; to indicate
the design at the j-th step of the process. Furthermore, we denote the initial design
to be dy and the final recommended design as d.

To illustrate the process consider a system with n inspection blocks. dy = 0,
“i.e.there are initially no inspection blocks included in the design. To find d; we
must identify which block, b € B, we should inspect if we can only inspect one. To
do this we evaluate the expected loss from our decisions, E[L({b;})], for the design
inspeeting only b;, for all b; € B. We then let L(b;) be the loss associated with
inspecting b; and let b be the choice of block b; which minimises E[L(b;)] over all

choices b; € B. We then set:
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The recommended design at the next step consists of the previous recommended
design, plus the inspection block b; that yields the minimum expected loss (i.e;; the
maximum effect on all the remaining uninspected sites). Having identified the next

proposed point we check:

U(dy) > Uldy)
& ~{E[L{d)] + Li(d)} > —{E[L(d)]+ Li(dy)} (6.1)
& EB[L(d)] + Li(d) < E[L(dp)]

(6.2)
i.ethat the total loss of inspecting the new set is less than that incurred from
inspecting the old set. If (6.1) is true, we recommend using d; and proceed to add
another block. However, if (6.1) does not hold there is no benefit from adding an
inspection block to the design, so we stop the stepwise process and recommend using

dp as our inspection design. Using this method, our design set at step j will consist

of the set of points {bf{, LA b;}, where b} = b; such that:

max {U(b3, B, ..

hen

BB = UL, B, B) (6.3)

The stepwise add algorithm (at the j-th step) is summarised below:

Stepwise Add

1. Using dj_; = { H S b;'-,l}, identify the set of uninspected blocks, B —
{v3, 85, ..., b;~1}-

2. Evaluate U (b5, b5, ...,55_1,b;) V b inB — {o3,05,..., b;r_]_} using the expected

loss criterion.”
3. Find the block, % so that (6.3) is satisfied, and set:
{CZJ 1, “' = {b b;, 7 1,b:}

4. 1f B[L(d;)] + Li(d;) > E[L(d;.1)] + Li(d;—1) repeat from 1, else stop.
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This process should be repeated until either the stopping point is reached,
i.e.when U(d;) < U(d;..1), or the maximum inspection budget is reached.

Using a stepwise approach has the advantage of reducing the munber of designs
for which the utility must be evaluated, relative to exhaustive search. For any one-
way stepwise search in which components can only be inspected once, the number of
designs for consideration decreases by one at each step, as once an inspection block
has been added to the design, it remains part of the design. Therefore, the number
of designs cousidered in finding the preferred design for system with n inspection

blocks using a one-way stepwise search is at most:

n+(n.-1)+(n—2)+...+‘zzzz’:’—”—(ﬂ-2fi)—1:%(nu)(n—l)
2

and
1

E(n 4 2)(n 1) << 2™ as n increases

However, adding blocks to a design sequentially does not take account of relation-
ships between components particularly well. A search strategy which helps to ad-

dress this problem is stepwise delete

6.2.2 Stepwise Delete

The stepwise delete procedure is essentially the same as stepwise add, but instead
of adding a block to the design, at each step one is removed. The computational
load is the same as that of stepwise add but the delete approach allows us to take

into account relationships between components differently. For example, consider

the situation in which we have two inspection blocks which are both, individu-

ally, relatively uninformdtivé, but in combination tell us a gi‘édt deal about syétém o

behaviour. Under stepwise add these blocks would both be late additions to our de-
sign and their joint predictive power overlooked. However, using stepwise delete the
strong joint effect would mean both were retained as part of the design for longer,
strengthening the designs influence on our decision making ability.

We consider applying a stepwise delete procedure to a system which has been

partitioned into n inspection blocks. For this process we will take the initial design,
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write B as the set of selected blocks, 0%, B = {b},..., b}, ..., b} At the first stage
we identify b* ;, as the block, b; € B, we can remove with the least impact on the

expected loss. That is, the block b; satisfying:

The block, b7 ;, for which the maximum utility is attained is then removed from the

design dy to give d;, so we have:

dy = {{bL E,,b;} _bij}‘

We then repeat this process until we reach a suitable stopping point.
As for stepwise add, the stopping point (i.e.the point at which we derive no

benefit from continuing to delete points) occurs when:
U(d;) < U(dj-)

However, if we are working to an inspection budget, we may reach this point whilst
still in excess of our budget. In which case it will be necessary to continue deleting
points until we have a design which satisfies the budgetary constraints.

The stepwise delete algorithm, for the j-th step, is:

Stepwise Delete
1. Identify the inspected blocks, dj.1 = {b},65,. .., b;_l}.

2. Evaluate U({ b3,03,...,05,} — b)) Vb € dj_; using the expected loss

criterion.

3. Identify b ; to be the point satisfying 6.4, and define the new design set, d; to

be:

dj = {dj1 — b} = {{b5, 85, ..., 05} — b7}

4. 1T U(d;) > U(d;_1) repeat from 1, else stop.
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Both stepwise add and stepwise delete provide a structured way of searching the
design space. However, they do not necessarily find the optimal design. The designs
found using stepwise searches should perform well with respect to our criterion, and
the use of a structured search procedure greatly reduces the computational burden,
which compensates for the loss of optimality in our design.

We have stated that a stepwise delete search is more likely to identify jointly
informative subsets of inspection blocks, which makes it preferable to a stepwise
add approach. However, for very large systems it will often be impractical to use
a stepwise delete procedure from a saturated design, particularly if the scale of the

design we wish to (or can afford to) implement is very much smaller than the system.

6.2.3 Combining stepwise add and stepwise delete methods

If we are planning inspections for a very large system, adopting a stepwise delete
approach is unlikely to be sensible. A less time consuming method would be to use
a combination of the stepwise add and delete techniques. In general, we will be
inspecting a proportion of the system which is relatively small. Therefore it makes
more sense to start from nothing and sequentially add blocks to the design, as we
will reach the most cost-effective design more efficiently. However, we may not take
account of any important joint relationships, so to counteract this we suggest using

stepwise add followed by stepwise delete, as below:

Stepwise Add and Delete
1. Identily an initial design, dy

2. Add blocks sequentially to the design using stepwise add algorithm, up to
stopping point (either authentic or budget) at step j*.

3. Add a further 7* blocks to the design using stepwise add.

4. Remove blocks sequentially fromi design dy:« using stepwise delete algorithm
¢ 5 )

until a stopping point is reached.
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Using a combination method should improve on simply using the stepwise add
procedure, but allows for a design search to be started from a more appropriate
initial design - or at least one which is nearer in size to the design which we can
afford to implement. However, in some very large systems it may not be appropriate
to start a stepwise search from either an empty or a saturated design, so we will

need a method for identifying reasonable starting points for our searches.

6.2.4 Identifying dj

For very large systems stepwise searches from either empty or saturated designs
are likely to remain time consuming. Therefore we propose the following method
to identify plausible starting designs, dp, which can then be improved using the
stepwise search procedures,

To identify a reasonable starting point we must 1dentily blocks which are worth
imspecting, namely those blocks for which we are most unsure of the outcome, and
those which tell us most about system behavionr overall. Identifying blocks that
allow us to learn about overall system behaviour is not straightforward, but we can
identify blocks where we can achieve the greafest improvement in understanding
individual component behaviour by considering the one dimensional updates for
each block. That is, we only take into account what data from an inspection block
tells us about the component of which it forms a part, and not what it tells us about
the whole system.

For each component we have beliefs about the expectation and variance of the

wall thickness values, which we use to describe the probability of component failure

~through the assumption of Normality. To update beliefs about a single component,

¢, we use the equations:
By, (Me(irr)) = E (Me(erry) -+ oV (Megen), Yet) var™" (Yer) [Yer — B (Yer))

Valy, (’”'Lc(t,+k)) == var ('rnc(t-}—k,)) — cov (mc(t+k),’ycr,) var ' (Yer) cov (’yct, "n‘LC(Hk))

in which all quantities are scalars. In the inspection design situation, where we deal

with potential data, rather than observed data, E{E,, (musr)] = E(Meuir)), (see
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section 5) so the only changes to our beliefs come from updating var(me(4r)). From
the updated variances we can obtain a measure of the importance of inspecting the
component.

Consider the variance of me(.). This can be written as:

which is equivalent to:

E[Tnc(t-l»k) _E(Trl'(:(t+k))]2 =F [Tn‘c(t-l»k) - Eyct (nl'(:(t-}-lc)) + Eyct ('Tn'(.:(t+k)) - E("L(:(t-l»k))] :
Using independence, we can write:
2 2
Elneprr) — E(meen)l” = B o) = Bya(Mein)]” + B [Bye (Mieeiny) — Blmygan)]
= VL (M) + Vo (B (o)

This allows us to write var (mc(tJr k)) as the sum of the adjusted variance of Me(zk) and
the variance of the adjusted expectation of Me(i+k), and thereby obtain an expression

for the adjusted expectation of M)

var (Me(rsk)) = Valyy (Mogrin)) + var(Byg, (Mg iny))
Var (Mg k)) = Valyy (Mo(esr)) = var(Ey, (Megrs)))

\/ var(Me(r)) = Vary, (Megir)) = SD(E,, (Meterr)))

Considering the standard deviation of the adjusted variance allows us to assess
the effect of the one dimensional update. In addition, we weight this by the difference

between the expected value of Mo(+k) and the critical wall thickness, We:

Op
pryr —~ We

Q- \/ Var (Meg k) — Vary, (M) )

. 6.5
E(n’bct+k) - M/C ( )

{2 provides a measure of the impact observing v has on our beliefs about ¢.

As a consequence of using the Bayes linear updating equations vary, (Mek

) <
var(me.x), so the numerator of Q is always positive. For a component expected

to be in acceptable condition, We < gk, so the denominator will, in general, be
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positive. However € can also take a negative value if We > py14, i.e.1f the component
wall thickness is expected to have fallen below the acceptable level. Our interest is
in identifying those components expected to be close to failure, and looking at those
Q with a large absolute values allows us to do this.

1 is a criterion for measuring which components we learn most about through in-
dividual component inspection. The difference between var,,, (me4x) and var(mg ;)
quantifies the increased confidence in our probability of failure value, and weighting
this by pyen —~ We allows us to measure the relevance of improving beliefs about this
component. Reducing uncertainty in components which are either certain to fail or
certain to survive ig not particularly important.

Evaluating 2 for each component allows us to identify the set of components
which tell us most about themselves when inspected. We select the number required
to form a sensible initial design dy by selecting those with the highest € values. This
criterion makes no attempt to measure what inspecting component c tells us about
the uninspected components and we rely on the asswmption that the components
which are most informative about themselves will also be mmformative about other
components. Therefore we do not propose using {2 as a way of identifying final
recommended designs, but instead suggest it as a sensible method for obtaining a
starting point from which the stepwise selection algorithms can then be used to

improve the design.

6.3 Design selection for Site A example

_We now apply the methods outlined in section 6.2 to the Site A subsystem
Sircuit A, Circuit A is sufficiently small that we can legitimately perform a stepwise
add routine taking dy = () and similarly a stepwise delete starting from a saturated
design. We illustrate both procedures here (stepwise add in section 6.3.1, stepwise
delete in section 6.3.2), and also demonstrate how to use the € criterion to suggest
a rational search staring point in section 6.3.3. We assume that our designs are

not subject budgetary constraints. Qur inspection blocks will correspond to half a



6.3. Design selection for Site A example 168

component, and we will therefore have 80 blocks for this system. The blocks will
be labelled as b,y or by, where ¢ is the component number and 1,2 distinguishes
between different halves of the component.

We will restrict ourselves to identifying the best possible inspection design for

also recommending an inspection time, but for this illustration we deal with the
constrained problem of identifying the best possible design for immediate imple-

mentation.

6.3.1 Selection using the stepwise add algorithm

We apply the stepwise add algorithm with an initial design of no inspection
dy = 0. We simulate 100,000 realisations of the Circuit A system for the 23 time
steps which cover the time period 01/01/1998 - 31/12/2009, and 100,000 observed
minimum values (i.e.the simulated component minimum plus a simulated observa-
tion error) based on simulated errors for observing half the locations within each
component and simulated errors for observing the whole component. These simula-
tions will provide us with the necessary information for evaluating the expectations,
variances and covariances required to update our beliefs about components, and
therefore to calculate the utility values for any given inspection design, and corre-
spond to the results generated in section 2.

At the first stage of our additive stepwise search we have to evaluate the utility
of all designs which only consider a single inspection block. Let us start by consid-

ering how inspecting half of component 1 alters our beliefs about the probability of

“component failure. We know from section 5.6.1 that the design with no mspection

has an expected utility of 32.1003. The expected minimum wall thickness, adjusted

by the historical data, y, (&

y, (M) and the critical wall thickness values (EC)

will remain constant over all designs, these values are given in Table 6.1.
Table 6.2 shows the components of the expected loss term for components 1
to 10. This table should be compared to Tables 5.8 and 5.9 to see how the half

component observation has influenced our beliefs about the probability of failure
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ditional dot), we see that many of the components are amongst the highest scoring
components. Note that components 25 and 26 have tle lowest 2 score of all com-
ponents, but are included in the recommended design by both the stepwise add and
stepwise delete method. This exemplifies the need to consider the absolute value of
this quantity. The ) criterion emphasises the relevance of looking at a component
by dividing the potential reduction in variance by the difference between the a com-

ponent’s critical wall thickness and its expectation. Therefore those components

large positive scores. However, if a component has an expected minimum at ¢ = 23
which is slightly less than the critical wall thickness it receives a large negative score.
Consequently, it is worth considering the two extremes of the Q scale, and this can

be done through looking at the largest absolute values.

6.4 Analysis of design performance

To assess how well our design performs it is necessary to establish how often it
allows us to make the correct maintenance decision. That is, on the basis of the data
available to us, how often do we replace components which go on to fail and how
many times are we right not to replace a component. We use a simulation study,
based on our previous modelling assumptions, to estimate our typical prediction
accuracy using the design proposed by both the stepwise add and stepwise delete.

In section 6.3 we showed that for the Circuit A system the design preferred

by both the search methods coincided. The recommended design was to inspect

_half of each of the following components, 1, 3, 4, 7, 8, 12, 14, 16, 21, 22, 25, 26,

28, 29, 31, 32, 34, 37 and 38 . This design had an expected loss of 26.9209 (to 4
dp), of which 0.7375 can be attributed to inspection costs. We will compare the
performance of this design to that of the two baseline cases - no inspection and total
inspection. When comparing performance we must consider which decisions a design
instructs us to make. The particular choice of inspection design and consequently

maintenance decisions depends on the particular data set observed. The expected
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loss provides a guide to designs which typically perform well, but does not guarantee
good performance for all data sets.

Tables 6.6 and 6.7 show the probabilities of choosing to replace each component
under the designs of no inspection, total inspection, and the recommended partial
design.

This probability of choosing to replace changes as we inspect, this is a result of
increased certainty in component behaviour. The fact that this quantity is random,
except in the no inspection case, means we can only establish the typical performance
properties of a design. To further assess the quality of the design we have identified,
we carry out a simulation study.

We generate 10000 realisations of our system, Circuit A, from time ¢ = 12 to

initial conditions for the system slope, ¢, and system level z,, are taken to be

draws from MVN populations with distributions:

Gy N[Ey(.c."_m)"’a*ry(gilz)] (6.7)
Ty~ N[By(z10), vary(z)] (6.8)

the simulated data from time 13 to update our beliefs about the wall loss behaviour
by inspecting according to each of our three considered designs. On the basis of these
updates, we then make our decisions about the need for component replacement.
We then compare how often our designs allowed us to make the correct decision for
every component within the system, by recording how many times each component

has failed by ¢ == 23, and we use this to assess whether or not our decisions were

good. Our test procedure can be summarised as:”

9. Sample simulated data from time ¢ = 13 according to the recommencled partial

design, d, and the saturated design, d;.

3. Update beliefs using simulated sample data.
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Component | Prob. of replacement | Prob. of replacement | Prob. of replacement
Number No inspection Partial inspection Total Inspection
1 1 0.2925 0.2919
2 0 0.0000 0.0000
3 1 0.2985 0.2969
4 1 0.3306 0.3293
5 0 0.0000 0.0000
6 1 1.0000 1.0000
7 1 0.5432 0.5413
8 0 0.0560 0.0561
9 0 0.0000 0.0000
10 0 0.0000 0.0000
11 0 0.0000 0.0002
12 1 0.8339 0.8323
13 0 0.0000 0.0002
14 1 0.5691 0.5670
15 0 0.0000 0.0000
16 0 0.2472 0.2463
17 0 0.0000 0.0000
18 0 0.0000 0.0000
19 - 1 10000 -0.9998
20 0 0.0000 0.0032

Table 6.6: Number of component failures in simulation experiment
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Component | Prob. of replacement | Prob. of replacement | Prob. of replacement
Number No ingpection Partial inspection Total Inspection
21 1 0.8004 0.7993
22 1 0.8070 0.8058
23 1 1.0000 0.9956
24 1 1.0000 0.9974
25 1 0.9092 0.9081
26 1 0.9153 0.9141
27 1 1.0000 0.9997
28 0 0.0036 0.0036
29 0 0.0041 0.0041
30 1 1.0000 1.0000
31 1 0.8002 0.7917
32 1 0.3893 0.3815
33 1 1.0000 0.9851
34 1 0.3242 0.3137
35 1 1.0000 0.9998
36 1 1.0000 0.9998
37 1 0.2339 0.2281
38 1 0.7965 0.7941
39 1 1:0000 --1.0000
40 1 1.0000 0.9999

Table 6.7: Number of component failures in simulation experiment
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Component would | Component would | Total

have failed not have failed
Replacement 101908 158092 260000
recommmencded (25.48%) (39.52%) (65%)
Replacement 523 139477 140000
not recommended (0.13%) (34.87%) (35%)
Total 102431 297569 400000
(25.61%) (74.39%) (100%)

Table 6.8: Performance of the no inspection design

4. Record maintenance decisions (replace/do nothing) for the system compo-

nents.
5. Record simulated system condition at ¢ = 23.
6. Compare maintenance decisions and outcomes.

The output we will be interested in is which decisions we make, and how often those
are the correct decisions.

The simulation results are summarised in Tables 6.8 - 6.10. We summarise the
results by recording how many times we recommend replacement for components
which would have failed, how many replacements are recommended for components
which would not have failed, how many components we do not replace which would
then fail and how many unreplaced components would not have failed.

We can see that the results for the full design and the recommended partial

design give similar results. There is a noticeable decrease in the number of unnec-

essary replacements carried out under the designs which involve further inspection.
This is offset by an increase in the number of component failures not prevented by
replacement. There are still a large number of unnecessary replacements (~ 1/4 of
all components), but this is due to the uncertainty we cannot resolve, even under full

inspection. The results indicate that scheduling a second inspection, or considering

the system. However, the proposed method does not allow quantitative compari-
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Component would | Component would | Total
have failed not have failed

Replacement 99517 99997 199514
recommended (24.88%) (25.00%) (49.88%)
Replacement 2914 197572 200486
not recommended (0.73%) (49.39%) (50.12%)
Total 102431 297569 400000
(25.61%) (74.39%) (100%)

Table 6.9: Performance of the recommended partial inspection design

Component would | Component would |  Total
have failed not have failed

Replacement 99511 99626 199137
recommended (24.88%) (24.91%) (49.79%)
Replacement 2920 197943 200863
not recommended (0.73%) (49.49%) - (50.21%)
Total 102431 297569 400000
(25.61%) (74.39%) (100%)

Table 6.10: Performance of the saturated inspection design
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No inspection | Partial inspection | Full inspection
Correct 241385 297089 207454
decisions (60.35%) (74.27%) (74.'36%)
Wrong 158615 102911 102546
decisions (29.65%) (25.73%) (25.64%)

Table 6.11: Effect of inspection design on decision making ability

son between designs at different time points, so a meaningful comparison canuot be
made without further work.

Tables 6.8 - 6.10 provide us with all the necessary information for calculating
how often our designs allow us to make the correct decision. Our simulation was
conducted for 10000 realisations of a 40 component system. This gives us a total
of 400000 decisions to compare. The decisions to replace a failing component and
not to replace a component which would not have failed are deemed to be ‘correct’.
Using the data from Tables 6.8 - 6.10, we find the number of ‘correct’ decisions to
be as shown in Table 6.11

Table 6.11 shows a considerable empirical improvement in our decision making
as a result of further inspection. We are getting 3 in 4 decisions correct as oppose to
3 in 5 under no inspection. However, we are also observing more failures, so how do
the inspection policies compare financially? We consider the average cost of ‘wrong’
decisions for a realisation of the decision making process.

For the no inspection cost we have 158092 unnecessary replacements at a cumu-
lative cost of 175929, and 523 unexpected failures at a cumulative cost of 10460.

The average cost of wrong decisions for a system realisation based on not inspecting

~(based on our simulation) is: -

175929 +- 10460

= 18.6389.
10000 18.6389

The total inspection design has just 99626 unnecessary replacements at a much
lower cumulative cost of 114571, but many more unexpected failures, contributing a
cost of 58400 - much more than seen for the no inspection case. This is a consequence

of allowing more components to not be replaced depending on the data observed.
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The average cost of wrong decisions per system realisation given full inspection is:

114571 + 58400
10000

= 17.2971.

The typical cost is lower, showing our improved decision making ability offers a
financial benefit. However, when we consider the cost of total inspection, we see
that the combined cost of wrong decisions and making an inspection is 17.2971 +
1.5 = 18.7971, which is greater than the cost of the wrong decisions made when not
inspecting, so for this situation we would prefer not to inspect rather than mspect
fully.

Our recommended partial inspection design compares favourably with the full
inspection design in terms of information gain. We have a similar number of un-
necessary replacements (99997), with a cumulative cost of 115128, and a similar
number of unexpected failures (2914) with a cost of 58280. The average cost of

wrong decisions per system realisation given partial inspection is:

115128 + 58280
10000

= 17.3408.
This is slightly higher than the cost associated with full inspection. However, the
reduced cost of implementing a partial inspection scheme means that the overall
average cost of wrong decisions and inspection for this design is: 17.3408 4 0.7375
= 18.0783, lower than the cost of total inspection and of no inspection. This shows
that the improved decision making ability that comes from reducing uncertainty,
when obtained at a more reasonable cost via implementing a partial inspection
design, offers financial benefits over not inspecting.

If we allow the failure cost to vary we see that the performance of the total

inspection design relative to the no inspection design and recommended partial

desriréﬁsmi'ﬁlprid;réisr towards the extremes of the failure costs. Table 6.12 tells us that
when Ly is small (Lp = 2) we see that there is a convergence in empirical design
performance, with all three designs producing similar levels of correct decisions.
For medium values, such as those explored initially, we saw a great Improvement
for both total inspection and partial inspection in terms of correct decision making
over not inspecting. When we set Lz to be much larger than our replacement cost,

we observe complete agreement between the partial and the total design. This is
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Lp =20 No inspection | Partial inspection | Full inspection
Correct 241385 297089 297454
decisions (60.35%) (74.27%) (74.36%)
Wrong 158615 102911 102546
decisions (39.65%) (25.73%) (25.64%)
Lp =2 No inspection | Partial inspection | Full inspection
Correct 308839 315856 316407
decisions (77.21%) (78.96%) (79.10%)
Wrong 91161 84144 83593
decisions (22.79%) (21.04%) (20.90%)
Lg =2 x 10° | No inspection | Partial inspection | Full inspection
Correct 122256 222250 222250
decisions (30.56%) (55.56%) (55.56%)
Wrong 277744 177750 177750
decisions (69.44%) (44.44%) (55.56%)

Table 6.12: Effect of inspection design on decision making ability
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probably because for such a large failure cost, most replacement decision are unlikely
to be influenced by inspection. The partial design will inspect all of the locations
where it can have some influence. So the agreement of these numbers is evidence of
the redundancy in the total inspection, in this case.

Clearly, all of these outcomes are sensitive to the replacement, failure and -
spection costs (as well as to the underlymg model). We have attempted to use
values which are of a similar order of magnitude to those found in real systems, but
different systems with different inputs may not show the same improved decision
making ability. However, the method established here will allow inspection planners

to ascertain whether or not inspection is beneficial in a structured, rational manner.

6.5 Choice of loss function

Varying the loss function will cause the design selection process to produce dif-
ferent results. In this section we consider how design selection and expected loss
change if we allow the loss associated with component failure Ly to vary. Lp is
likely to be the most unpredictable element of the loss calculations. It is reasonable
to assume that good information about the losses involved in replacing components
and making an inspection will be available. These are planned events which oc-
cur at regular intervals, with clearly defined primary (e.g.materials) and secondary
(e.g.ioss of production) losses. Losses for component failure are more difficult to
specify, which can often follow from the consequences of failure being difficult to

specify. Within large, complex systeins, component failure will often have wnplica-

_tions for the performance of other components, and possibly also have some external

effects (such as damage to the environment, or personnel). As such, combining the
different sources of loss to give a reliable estimate of the loss due to failure is not a
straightforward task and such estimates can be inaccurate.

We allowed Lp to take 15 values in the range [2, 2,000,000] (these are shown in
Table 6.13), all other aspects of the example system remain unchanged. Our aim

was to establish if there were any obvious changes in the behaviour of either the












6.5. Choice of loss function 196

the recommended design (see Figure 6.14). When L = 2, the recommended design
is considerably smaller. This is probably because at Lp = 2, the failure costs and
replacement cost will be equal (or nearly equal) for many of components, therefore
we are indifferent between replacing now or replacing at failure, and mspection will
not change this, so the number of blocks available for inclusion in the design is
reduced. For all other costs, the size of the design is within the range 16-20 blocks,
indicating that for this system we can expect an optimal design to involve looking
at between 20% - 25% of the available inspection blocks. The size of the designs for
Lp = 200000 and Lz = 2000000 is lower than that seen for smaller values. It would
make sense that as Lp increases to being very much larger than the replacement
cost Lp, the amount of inspection necessary decreases. This is a consequence of
our decision rule, in which any component with a probability of failure greater than
i—’; is replaced. As Lp ~» 00, %}% — 0, 50 a large mumber of components could be
counted as ‘certain’ failures without needing to inspect them.

The recommended partial inspection design changes as Lp is increased. The 15
recommended designs are shown in Figure 6.15. Each square of the displayed grid
gives inspection instructions for a component given a failure cost. IFor example, the
square in row 12 and column 4, tells us what we should do with component 12 if
Lp = 10, the 4th failure loss under consideration. In this case, the square is green,
which means we should inspect half of the component. Maroon squares mean full
inspection and navy means no inspection for that component.

The focus of inspection shifts as the value of Lp increases. Partial inspection
designs observe components about which our decisions are most uncertain, with
the aim of improving our decision making ability. For example, if we consider two
-components, A and-B. A has a probability of failure p4 = 0.12, and B has probability
of failure pg = 3 x 107, based on our beliefs updated with available data up to time
t = 12. When 2—? ~ 0.1, B will be deemed to be not worth inspecting, as we are
confident that ppjy, will be less that 0.1. However, p4 is close to the value at which
we decide to replace, so we would be interested in improving our knowledge about
p4. Consequently a design for %% ~ 0.1, would favour inspecting components which

help us to learn about ps over those which tell us about pg. Furthermore, when
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%ﬁ ~ 1078 component A would almost always be replaced, as we would be confident
that Py, will exceed 10~¢, but learning about pp may be useful. Therefore, a design
for }—? ~ 107% would favour inspecting components which help us to learn about

pp over those which tell us about pa.

Figure 6.15). This design concentrates almost exclusively on components with small
failure probabilities (see Tables 6.4 and 6.5), but also includes half of component
12 - a component which is expected to fail almost 1 in 3 times. Component 12
is included with a view to learning about components 10,11 and 13 through the
covariance structure. Similarly, if we look at the components for the design when
L = 4, we see that components 32 and 34 are included in the design, despite having
expected failure probabilities of 0.0593 and 0.0440, both much less than the value of
Ir
learn, through the covariance structure, about components 31 and 33, which have
initial failure probabilities of 0.1733 and 0.3385 - both closer to the cut-off point of
0.15.

We can conclude that the focus of the recommended inspection design shifts as
the value of Ly increases. The expected utility criterion concentrates on identifying
inspection blocks that allow us to learn about components that have a probability
of failure close to the critical value of %’;— (the value which determines whether a
component is replaced or not), both through direct observation of the component

and also by proposing the observation of related components.
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Chapter 7

Discussion

Within this thesis we have developed an approach for planning inspections for
large industrial systems with correlated components. The aim of the work has been
to demonstrate that it is possible to establish a tractable Bayesian method for in-
spection planning for large systems, given a non-trivial system model. We have
proposed a structure for planning inspections for large industrial systerns which
allows for system components to be jointly modelled and for the quantitatively de-
fensible selection of inspection designs given a suitable system model. This improves
on most current industrial practice, by explicitly representing dependencies between
components, and also offers a practical solution to the computational problems of
using Bayesian design ideas to address real world examples.

The standard Bayesian approach to inspection planning problems is to formulate
the inspection planning problem as a Bayesian decision problem. In the decision

theory context our inspections yield observations, y, which allow us to identify the

" Bayes decision, §*(y). The Bayes decision is defined to be the best available decision

from a set of potential decisions, A, having observed y. All potential decisions
have an associated reward, or utility, that depends on the state of the system.
The best available decision is the decision which maximises this utility. We must
take expectations over all data values, y, that we could potentially observe, and
therefore determine the expected utility of inspecting. Evaluating this expectation

is frequently a computationally intensive calculation, and therefore assessing many

198
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different inspection designs using fully Bayesian techniques is impractical. Bayes
linear variance adjustment depends on the location of the inspected components,
and not on the specific values of y observed. This reduces the computation required
to evaluate the expected utility for a single design, thereby making it feasible to
compare a much larger number of designs.

Adopting a Bayes linear approach allows us to specify beliefs about quantities
of interest in terms of expectations and variance/covariance structures, without the
need to specify a full probability distribution. Specifying meaningful coherent joint
distributions for systems with large numbers of correlated components performing
a variety of different tasks is very difficult. Specifying covariance matrices to de-
scribe associations between components without the need to further constrain joint
behaviour is advantageous, particularly when the joint distribution is uncertain.
Modelling correlations is an essential part of describing system behaviour, and the
use of Bayes linear methods to update variance structures retains tractability whilst
allowing us to learn about components we do not inspect, as well as those we do
inspect. Evaluating expecting utility for models with correlated components using
traditional Bayesian methods is extremely computationally intensive, so the imple-
mentation of a Bayes linear approach, allowing a more computationally efficient
method of inspection design selection for systems represented by non-trivial models,
is very useful.

The proposed method offers a structured approach to tackling inspection design

problems. The building blocks of the method are:

1. Modelling - developing a model which accurately characterises the system

properties of interest.

2. Developing suitable criteria for our inspection goals - it is important to use
criteria which measure inspection performance in terms of what we are trying
to achieve through inspection. Criteria must be chosen so that they identify the
designs which allow us to learn most about the quantity of interest. Therefore

successfully identifying the inspection goals is also important.

3. Producing tractable methods for evaluating design criteria over all potential
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observations, and many possible designs.

The use of Bayes linear methods allows us to tackle the computational problems
usually associated with Bayesian design problems. The application of Bayes linear
methods to design problems, with a view to establishing a tractable design method-
ology is the most important aspect of the thesis. The choice of modelling technique
and inspection goals will depend on the particular system being modelled.

We now discuss ways in which the methodology could be extended.

7.1 Modelling

7.1.1 System Modelling

We have considered the use of a simple, but flexible structure for the modelling
of corrosion behaviour. We have chosen to model corrosion using a semi-spatial
model for component ‘wall thickness’. The model is split into a ‘global term’, which
describes the average wall thickness level throughout the component, and a ‘local
term’ which describes the deviations from the global term at specific locations within
the component.

We have chosen to use a linear trend dynamic linear model (DLM) to describe
the behaviour of the global term. A linear trend was adopted following consultation
with the experts at Shell. The linear trend DLM allows for the trend to vary in time
via, the introduction of evolution errors to the trend at each time step. The DLM
has a term for each component being modelled. The use of a correlated evolution
—error-structure allows us.to-correlate component. behaviour at the global term level.

The local terms were modelled as independent Gaussian noise. The choice to
enforce independence on these terms, both within components and between compo-
nents, is why the model is referred to as ‘semi-spatial’. There is an acknowledgement
of different corrosion behaviour at different locations within a component, but there
is an absence of a defined relationship between locations.

The chosen model characterises the experts’ views about corrosion to a sufficient
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level of detail to suggest efficient overall inspection schemes for the system. However,
the adopted model should not be seen as a definitive corrosion model. There is
provision within the model structure to allow for trends, and correlations, within
the local term, if these are deemed necessary. The global term is not restricted to a
linear trend. Dynamic linear models allow for a large number of different behaviour
types to be modelled. The flexibility of dynamic linear models and the range of
potential applications are covered by [24]. If it was felt that a particular component
needed further structure, it would be possible to introduce an intermediate model
term to describe behaviour only occurring in certain regions of the component. In
our model the balance hetween global and local terms is in favour of the global
term. That is, the component wall thickness behaviour is controlled by the linear
trend DLM, and the local terms are regarded as noise. However, this balance can be
adjusted as is felt to be appropriate through the structuring and parameterisation

of the model, while still allowing for a tractable design methodology.

7.1.2 Observation Modelling

It is necessary to model observations as a distinct process from system modelling.
Firstly, this is a more realistic representation of the observation process, especially
in the context of detecting corrosion damage. Secondly, observation procedures are
likely to change more frequently than the system evolution will change. Having
a separate observation model means that in the event of a different observation
technique being used, there is minimal change to the modelling process.

We have considered two different observation techniques, but have modelled them

in the same way. Our inspection aim was to detect failing components. A compo-

nent fails when the wall thickness becomes too thin to remain structurally sound.
Consequently a component’s minimum wall thickness is a quantity of interest to
inspectors. The available data consisted of minima observations, and our inspection
aims directed us to consider minima. Therefore our observation model identified the
minitnum wall thickness values within a corponent.

A simple model was adopted, in which a proportion of the locations within
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a component were observed with error (usually half or all of the locations), and
the minimum of these values was returned. That is, the minimum observed wall

thickness, vy, for a component ¢ at time ¢ is given by:
e =m0 {tr + Eiec} (7.1)

where . is the ‘true’ value (from the model), and &, is the observation error.
The ultrasonic and radiographic measurement techniques were used to collect
the available data. We adopted the minima observation model for both techniques,
using Gaussian errors. The variance of the errors differed between the two models,
but otherwise they were the same. A more detailed analysis may highlight sys-
tematic differences between the two measurement techniques that necessitates more
careful modelling of the two practices, but the adopted model provided a pragmatic
approach, which was suitable both for the level of available information about in-
spection procedures, and for the purposes of establishing a non-trivial model for

analysis.

7.1.3 Modelling for the example

The illustrative model provided for the example was intended to provide a cor-
rect order of magnitude assessment of the relevant parameters. For any serious
implementation of the method, a more careful analysis of the available data would
be require. The model as implemented demonstrates the plausibility of the de-

sign methodology for a model of this type, but does not fully address the issues of

specifying model parameters accurately.

In pé)fficulaﬁ';r the assessment of the covariance structures could be improvédf
We have adopted a standard model for our covariance structures which ensures they
will be positive definite. To use the Bayes linear approach, it is useful to ensure our
variance/covariance matrices are at least positive semi-definite (see [22]). By using

covariance structures where the (4, 7)-th eletnents are of the form:

aij = 0,05 exp{~Tl|¢ ~ 31*} (7.2)



7.2. Updating 203

where ||z — j|| is a measure of distance between ¢ and j, we can guarantee positive
definiteness, but this does not necessarily provide the most realistic representation
of the actual covariances between components.

The available data merits more careful consideration, and a more detailed inves-
tigation of the data will allow the successful identification and verification of trends
in the data which were not detected by the analysis in this thesis. A detailed ap-
proach to model parameterisation will provide a better representation of the real
system, and therefore inspection plans which are more directly applicable, but it
should not affect the efficiency of the design selection procedure.

The illustrative model provides an example on which we can base our design
selection procedure. By concentrating on achieving a parameterisation that is of
a similar order of magnitude to the effects which we can observe from an analysis
of the data, we can demonstrate that the procedure is tractable for models of this
type. Changing the model will change the design outputs, but the design proceclure

will operate consistently given a coherently specified model.

7.2 Updating

Bayesian methods are the natural approach for handling inspection planning
problems. In most inspection problems we are seeking to acquire further knowledge
about a system for which we already have some understanding, either {rom expert
judgement or historical data. The Bayesian framework provides a clear method of

combining of historical data with new information through the updafting process.

____The traditional Bayesian method requires the specification of complete proba-

bility distributions for our priors and likelihood functions. By following the Bayes
linear approach we can reduce the extent of specification required, and also remove
the need to specify a particular distribution. Updating via Bayes linear methods is
conducted using the Bayes linear updating equations (chapter 4). The use of the
Bayes linear update allows us to avoid dealing with the potentially intractable inte-

grals sometimes found in full Bayesian analyses, and the difficulties that can arise
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from being unable to obtain closed form expressions for our posterior distributions.

However, it is necessary to be able to express beliefs about the mean, variance
and covariance structures between all quantities of interest. We learn about these
quantities through simulation. To achieve an accurate representation of these beliefs,
a large initial simulation covering the entire time frame in question has to be run.
This initial simulation could potentially be time consuming. However, we only need
to conduct this simulation once, to establish our belief structure. To implement a
full Bayes strategy we would have to run a similarly large simulation as part of the
evaluation of every design we wish to consider. So although there is a significant
sirulation task as part of our proposed procedure, this is still & much lower level of
computation than would be necessary under a full Bayes approach.

We have adopted a full simulation approach to updating, in which we perform a
single large simulation to obtain estimates for all the covariance structures we may
need to consider over the entire time interval we are interested in. However, for very
large systems it may be beneficial to consider a sequential simulation approach.
Under this approach, our single initial simulation would be split into a series of
smaller simulations which run between the times of historical inspections up to the
present, and a final step which runs from the present to a designated point i the
future. Using this procedure we would adjust our simulation parameters after each
historical observation and run the simulation with the new parameters to the time
of the next historical observation, at which stage we would then update again.

In summary, the sequential procedure, with real historical observations made at

times t;, 1 = {1,...,w} would be:

1. Simulate S realisations of the system from time ¢ = 0 to time ¢;, using initial
simulation conditions as described in section 2.8.
2. Estimate var(gdti), cov(Zyy,, gdm) , cov(gdti, Qs )s E(zy,)s var(zy,), E(ay,) and

var () from simulation output, for ¢ = 1.

3. Calculate Egd " (lit,-) and Eydt1 (¢y,), using the Bayes linear updating equations,
; Y

forz = 1.
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4. Simulate S realisations of the system from time &; to time ¢;,q, using the

5. Repeat steps 2~-4 fori=2,...,w.

Sequential updating may provide updated values which are of greater relevance
to the particular system being modelled, by adjusting to simulate around the ob-
served values at more regular intervals. Sequential updating was considered as it 1s
computationally more appealing. For a 40 component system (as modelled in this
thesis), the difference in computational load between the two approaches is negligi-
ble. However, for very large systems, the sequential method may be a more efficient
simulation which concentrates computational resources on sirnulation realisations
that lie closer to the observed data. The sequential method is an approximation to
the full simulation, so the effects of implementing a sequential updating technique on
the simulation accuracy need to be investigated further before definite conclusions
can be drawn.

Our current updating strategy allows us to learn about the means and variances
of the model outputs, such as the minimum component wall thickness, or the cor-
rosion rate. However, we would like to be able to update the underlying model
parameters, such as the DLM evolution deviation covariance matrix. This quantity
drives the correlation structure in the model, and we would like to be able to learn
about it from the historical data. Currently, our model retains the same covariance
structure throughout its life, which is not ideal. To be able to update the covari-
ance structure we need to record information about the 4th order moments of the

system. Recording higher order moments would also allow us to consider skewness

in the data. This could be handled within the Bayes linear context by fitting our

adjusted moments to appropriater ﬁon—ceutml distribﬁfrions.r VBéeresﬂliﬁéé,r updaiirig
of covariance matrices is discussed in [69], and including the ability to learn about
the structure of the underlying model in this way is an important requirement of
the modelling strategy. As with the necessity for an improved data analysis be-
fore considering a serious implementation of the design selection procedure, this is
an additional modelling consideration, which should not affect the way in which

inspection designs are selected.
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7.3 Design Selection

We have shown by illustration that our chosen inspection design selection method
leads to the identification of inspection designs that performm well in terms of im-
proving our decision making ability. There are several potential developments which
would be beneficial.

We would like to be able to consider a wider class of decision problems. We have
currently considered the simplest case of using the inspection data to determine
whether or not a compohent should be replaced. For most real inspection planning
applications, there will more than two potential maintenance decisions. Expanding
to consider a large number of maintenance decisions should be reasonably straight-
forward in theory, as this resolves to specifying utilities for each maintenance de-
cision, and constructing decision rules such that the Bayes decision can be chosen.
However, such considerations will further complicate the calculation of the design
criterion, so it may be necessary to restrict to a small set of potential decisions to
maintain efficient computation.

The evaluation of the expected loss criterion depends on the assumption of Nor-
mality at two key points. Firstly, we assume the probability of component failure
(defined as a component’s minimum wall thickness being less than a specified criti-
cal value) can be described by a Normal distribution with expectation and variance
equal to the expectation and variance of the component’s minirmun wall thickness at
the final time of the interval, adjusted for the unseen inspection data. Secondly, we

further asswme that the adjusted expectation - which is itself a randomn quantity n

inspection problems, as it depends on the unseen data - has a Normal distribution.
It would be useful to investigate the appropriaténééé of Vtihése ermssﬁmpt:ironé,' and to
what extent they could be relaxed. Both assumnptions could be replaced by any form
of distribution solely parameterised by location and scale parameters, with similar
analysis to that which we have described.

Calculating the expected loss criterion requires the evaluation of two integrals.
The first of these simply corresponds to a cumulative Normal distribution function.

However, the second is less tractable and requires evaluation by numerical methods.
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This difficulty can be resolved by the use of specialist software packages for evalu-
ating integrals, or by the use of simulation routines. Given different distributional
assumptions for the probability of component failure and the adjusted expectation,
the resulting integrals may be more difficult to evaluate. Consequently, the need to
evaluate this integral numerically for each inspection design could hamper the com-
putational tractability of the method. In the case of the integrals being intractable,
it would be possible to tabulate results for generic values of the quantities on which
the integrals depend. Calculating these tables would be a time consuming operation,
but again it would only be necessary to perform these calculations once.

The current method does not explicitly allow for the comparison of inspection
designs made at different times. To be able to compare inspections made at different
times, we must factor in the costs incurred by delaying the inspection. Under the
cwrrent decision model, the only costs of delaying inspection would be the losses due
to component failures prior to inspection. By incorporating this additional loss into
the expected loss criterion it would be possible to compare all potential inspection
designs within the interval of interest, and thus determine an improved inspection
policy which maximises utility taking all potential time points into consideration.

Implementing a selection procedure across multiple time points is not straight-
forward. It would probably be necessary to identify the best available design at each
time point individually, and then carefully compare the performance of these best
available designs in terms of improved decision making ability and expected cost of
delaying inspection.

The quality of search routines used in the design selection process could also

conie in for scrutiny. We have used stepwise search routines, which are efficient for

~the scale of example considered.. However, it may be more sensible for larger systems

to investigate alternative methods. In particular, consideration could be given to

the intelligent choice of starting point for design searches.

Many of the issues outlined in the discussion can be tackled within the framework
laid out in this thesis. There are still many interesting related research problems, and
potential extensions to the method, but we have shown, in principle, the viability

of our approach to inspection planning for large systems.



Bibliography

1]
[2]

Pipeline inspection gauges. http://en.wikipedia.org/, Januray 2007.

Federal Highways Administration. Corrosion costs and preventive strategies in

the united states. Report Number: FHWA-RD-01-156, 2002.

J. M. Angulo and M. C. Bueso. Random perturbation methods applied to

multivariate spatial sampling design. Environmetrics, 12:631-646, 2001.

M. J. Baker and B. Descamps. Reliability-hased methods in the inspection plan-
ning of fixed offshore steel structures. Journal of Constructional Steel Research,

52:117-131, 1999.

Milena Banjevic. Optimal Network Designs in Spatial Statistics. PhD thesis,
Stanford University, 2004.

B. Bhattacharya and B. Ellingwood. A new CDM-based approach to structural
deterioration. International Journal of Solids and Structures, 36:1757-1779,

1999.

S. Biffl and M. Halling. Investigating the defect detection effectiveness and cost

~benefit of nominal inspection teams. IEEE Transactions on Software Engineer-

ing, 29:385-397, 2003.

G. E. P. Box. Statistics for experimenters:an introduction to design, data anal-

ysis, and model building. Wiley, Chichester, 1978.

NDT Resource Center. NDT method summary. http://www.ndt-ed.org/.

208



Bibliography 209

[10]

11

[12]

[13]

[16]

[17)

K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statis-

tical Science, 10:273-304, 1995.

T. J. Chen and A. C. Thornton. Quantitative selection of inspection plans. In
Proceedings of the 1999 ASME Design Engineering Technical Conference, pages
DEC/DTM-8759, 1999.

D. R. Cox and N. Reid. The theory of the design of experiments. Chapman &
Hall, Boca Raton, 2000.

P. S. Craig, M. Goldstein, J. C. Rougier, and A. H. Seheult. Bayesian forecast-
ing for complex systems using computer simulators. journal of the American

Statistical Association, 96:717-729, 2001.

P. J. Diggle and S. Lophaven. Bayesian geostatistical design. Working paper 42,
Johns Hoskins University, Dept of Biostatistics, 2004.

M. L. Eaton, A. Giovagnoli, and P. Sebastiani. A predictive approach to
the bayesian design problem with application to normal regression models.

Biometrika, 83:111-125, 1996.

S. Engelund, J. D. Sorensen, M. H. Faber, and A. Bloch. Approximations
in inspection planning. In 8th ASCE Speciality Conference on Probabilistic

Mechanics and Structural Reliability, pages PMC200-198, 2000.

A. C. Estes and D. M. Frangopol. Minimum expected cost-oriented opti-
mal maintenance planning for deteriorating structures: application to concrete

bridge decks. Reliability Engineering and System Safety, 73:281-289, 2001.

(18]

[19]

M. Farrow. Practical building of subjective covariance structures for large com-

plicated systems. Statistician, 52:553-573, 2003.

M. Farrow and M. Goldstein. Bayes linear methods for grouped multivariate
repeated measurement studies with application to crossover trials. Biometrika,

80:39-59, 1993.



Bibliography 210

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

D. M. Frangopol, M.J. Kallen, and J. M. van Noortwijk. Probabilistic models for
life-cycle performance of deteriorating structures: review and future directions.

Prog. Struct. Engng Mater., 6:197-212, 2004.

J. Casemyr and B. Natvig. Bayesian mference based on partial monitoring of
components with applications to preventive system maintenance. Nawval Re-

search Logisitics, 48:551-577, 2001.

M. Goldstein. Bayes linear analysis. In S. Kotz et al, editor, Encyclopedia of

Statistical Sciences, volume 3. Wiley, 1999.

J. Goyet. Integrated approach for RBI offshore installations. Technical briefing,
Burean Veritas, 2001.

J. Harrison and M. West. Bayesian Forecasting and Dynamic Models. Springer-

Verlag, New York, 1989.

Health and Safety Executive. Control of Major Accident Hazards Regulations
1999. Queen’s Printer of Acts of Parliament, 1999.

Health and Saftey Executive. Reducing riskd, protecting people. Her Majesty’s
Stationery Office, 2001.

UK Health and Safety Exccutive. The Offshore Installations (Safety Case)

Regulations 2005. Queen’s Printer of Acts of Parliaanent, 2005.

S. G. Hellevik, I. Langen, and J. D. Sorensen. Cost optimal reliability based

inspection and replacement planning of piping subjected to COj corrosion.

_ International Journal of Pressure Vessels and Piping, 76:527-538, 1999.

29

[30]

S. Hernandez and S. Nesic. Use of artificial neural network for predicting crude
oil effect on CO4 corrosion of carbon steels. Technical report, Ohio University,

2003.

P. M. Johnson. Reengineering inspection. In Communications of the ACM,

volume 41, pages 49-52, 1998.



[39]

Bibliography 211

[31]

[32]

[33]

[34)

[35]

[36]

[37]

(38]

[40]

[41]

Daniel Lewandowski. Gas pipelines corrosion data analysis and related topics.

Master’s thesis, Delft University of Technology, 2002.

R. J. Lewis and D. A. Berry. Group sequential clinical trials: A classical evalu-
ation of bayesian decision-theoretic designs. Journal of the American Statistical

Association, 89:1528-1534, 1994.

C. Q. Li. Compuation of the failure probability of deteriorating structural

systems. Computers and Structures, 56:1073-1076, 1995.
D. V. Lindley. Bayesian Statistics - A review. SIAM, Philadelphia, 1972.

J. Little, M. Goldstein, and P. Jonathan. Efficient bayesian ampling inspection
for industrial processes base on transformed spatio-temporal data. Statistical

Modelling, 2004.

J. Little, M. Goldstein, P. Jonathan, and K. den Ileijer. Spatio-temporal mod-
elling of corrosion in an industrial furnace. Applied Stochastic Modelling in

Business and Industry, 2004.

John Little. Bayesian saptio-temporal modelling for inspection and prediction
of complex problems in the petrochemical industry. PhD thesis, University of

Durham, 2003.

H. Lofsten. Management of mdustrial maintenance - economic evaluation of
maintenance policies. International Jowrnal of Operations € Production Man-

agement, 19(7):716-737, 1999.
T. Loredo. Bayesian adaptive exploration. In press: Bayesian Inference and
Maximum Entropy Methods in Science and Engineering, 2003.

Lisa, McConnell. Alignment and calibration of s-nii methodology with s-rbi

methodology and safety cases. Master’s thesis, University of Aberdeen, 2003.

R. E. Melchers. Corrosion uncertainty modelling for steel structures. Journal

of Constructional Steel Reseasrch, 52:3-19, 1999.



Bibliography 212

[42]

43

[44]

48]

j49]

B. Nimmo and G. Hinds. The beginners guide to corrosion. National Physical

Library, 2003.

M. Nordsveen, S Nesic, R. Nyborg, and A. Stangeland. A mechanistice model
for carbon dioxide corrosion of mild steel in the presence of protective iron

carbonate films - part 1: Theory and verification. Corrosion, 59:443-465, 2003.

T. Onoufriou and D. M. Frangopol. Reliability-based inspection optimization of
complex structures: a brief retrospective. Computers and Structures, 80:1133~

1144, 2002.

| R. Patel and J. Rudlin. Analysis of corrosion/erosion incidents in offshore

process plants and implications for non-destructive testing. Insight, 42, 1997.

D. F. Percy. Bayesian enhanced strategic decision making for reliability. Buro-

pean Journal of Operations Research, 139:133-145, 2002.

H. Procaccia, R. Cordier, and S. Muller. Application of bayesian statistical
decision theory for a maintenance optimization problem. Reliability Engineering

and System Safety, 55:142-149, 1997.

S. Qin and W. Cui. Effect of corrosion models on the time-dependent reliability

of steel plated elements. Marine Structures, 16:15-34, 2003.

B. Rajani and Y. Kleiner. Comprehensive review of structural deterioration of

water mains: physically based models. Urban Water, 3:151-164, 2001.

D. V. Ramsamooj and T. A. Shugar. Modelling of corrosion fatigue in metals

_in an agressive environment. Internationasl Journal of Fatigue, 23:5301-5309,

[51]

[52]

2001.

D. T. Rusk, K. Y. Lin, D. D. Swartz, and G. K. Ridgeway. Bayesian updat-
ing of damage size probabilities for aircraft structural life-cycle management.

Technical briefing, Naval Air System Command, 2001.

P. Sebastiani and H. P. Wynn. Maximum entropy sampling and optimal

bayesian experimental design. J. Royal Statistical Society B, 62:145-157, 2000.



Bibliography 213

[53]

54

55

[56]

57)

150]

[60]

[61]

A. Sergaki and K. Kalaitzakis. A fuzzy knowledge based method for mainte-
nance planning in a power system. Reliability Engineering and System Safety,

77:19-30, 2002.

S. C. Shaw and M. Goldstein. Simplifying complex designs: Bayes linear exper-
imental design for grouped multivariate exchangeable systems. In A. P. Dawid
J. M. Bernardo, J. O. Berger and A. F. M. Smith, editors, Bayesian Statistics
6. Oxford University Press, 1998.

J. D. Sorensen, M. H. Faber, and A. Bloch. Simplified approach to inspection
planning. In 8th ASCE Speciality Conference on Probabilistic Mechanics and
Structural Reliability, pages PMC200-188, 2000.

D. Straub. Generic Approaches to Risk Based Inspection Planning for Steel
Structures. PhD thesis, Swiss Federal Institute of Technology, Zurich, 2004.

D. Straub and M. H. Faber. On the relation between inspection quantity
and quality. In 8rd European-American Workshop on NDE Reliability, page
http:/ /www.ndt.net/article/v09n07 /straub /straub.htm, 2002.

] D. Straub and M. H. Faber. Computational aspects of risk-based inspection

planning. Computer-Aided Civil and Infrastructure Engineering, 21:179-192,
2006.

K. Tanaka and G. J. Klir. A design condition for incorporating human judgment,
into monitoring systems. Reliability Engineering and System Saftey, 65:251~

958, 1999.

K. Tang, R. Plante, and H. Moskowitz. “Multiattribute bayesianacceptance -
sampling plans under nondestructive inspection. Management Science, 32:739-

750, 1086.

Kallen/Delft, University. Inspection and maintenance decisions based on imper-

fect inspections.



Bibliography 214

[62]

| [63]

[64]

165]

[66]

[68]

[69]

[70]

[71]

J. M. van Noortwijk, R. M. Cooke, and M. Kok. A bayesian failure model based
on isotropic deterioration. European Journal Operational Research, 82:270~282,

1995.

J. M. van Noortwijk and H. E. Klatter. Optimal inspection designs for the
block mats of the eastern-scheldt barrier. Reliability Engineering and System

Saftey, 65:203-211, 1999.

A. Volker, Frits Dijkstra, Sieger Terpstra, Jan Heerings, and Max Lont. Mod-
elling of NDFE reliability. Technical report, TNO, Rontgen Technische Dienst,
Shell Global Solutions International, 2004.

J. C. Walton, G. Cragnolino, and S. K. Kalandros. A numerical model of crevice

corrosion for passive and active metals. Corrosion Science, 38:1-18, 1996.

G. G. Wang and S. Shan. Review of metamodelling techniques in support of
engineering design optimization. ASME Transactions, Journal of Mechanical

Design, page To appear, 2006.

S. A, Wenk and R. C. McMaster. Choosing NDT': applications, costs and benefits

of non-destructive testing in your quality assurance program, page 96. Colum-

bus, 1987.

D. J. Wilkinson. Bayes linear variance adjustment for lbcally linear DLMs.

Journal of Forecasting, 16:329-342, 1997.

D. J. Wilkinson and M. Goldstein. Bayes linear adjustment for variance matri-

ces. In A.F.M. Smith J. O. Berger, A.P. Dawid, editor, Bayesian Statistics 5,

pages 791-799. OUP, 1996.

D. E. Williams, C. Westcott, and M. Fleischmann. Stochastic modesl of pitting

corrosion of stainless steels. Journal of the Electrochemical Society, 132:1796—

1804, 1985.

J. B. Wintle, B. W. Kenzie, G.J. Amphlett, and S. Smalley. Best practice for
risk based inspection as a part of plant integrity management. Health and Safety

Executive. Her Majesty’s Stationery Office, 2001.



Bibliography 215

[72] S. Yella, M. S. Dougherty, and N. K. Gupta. Artificial intelligence techniques
for the automatic interpretation of data from non-destructive testing. Insight,

48:10-20, 2006.

(73] R. Zhang and S. Mahadevan. Model uncertainty and bayesian updating n
reliability-based inspection. Structural Safety, 22:145-160, 2000.




Appendix A

Tables

216



Chapter A. Tables 217
E[P(Fly)|
Component | P(P(Fly) > p) | P(Fly) < p]x | Replacement | Failure | Component
Number (I) P(P(Fly) <p) Costs Costs Utility
(L) Lr.Iy Ligdy | Lrli + Lrl,
1.0000 0.2928 0.0113 0.4392 0.2253 0.6644
2.0000 0 0.0000 0 0.0002 0.0002
3.0000 0.4855 0.0240 0.7282 0.4801 1.2083
4.0000 0.7482 0.0163 1.1222 0.3264 1.4486
5.0000 0 0.0000 0 0.0003 0.0003
6.0000 1.0000 0 1.5000 0 1.5000
7.0000 1.0000 0 1.5000 0 1.5000
8.0000 0 0.0211 0 0.4213 0.4213
9.0000 0 0 0 0 0
10.0000 0 0.0000 0 0.0006 0.0006
11.0000 0 0.0001 0 0.0020 0.0020
12.0000 1.0000 0 1.5000 0 1.5000
13.0000 0 0.0001 0 0.0020 0.0020
14.0000 1.0000 0 1.5000 0 1.5000
15.0000 0 0.0000 0 0.0000 0.0000
16.0000 0 0.0643 0 1.2860 1.2860
17.0000 0 0.0000 0 0.0002 0.0002
- 18.0000 - 0 0.0000 0 0.0001 0:0001
19.0000 1.0000 0 2.0000 0 2.0000
20.0000 0 0.0013 0 0.0257 0.0257

Table A.1: Losses for the cl update
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E[P(Fly)|
Component | P(P(Fly) > p) | P(Fly) < plx | Replacement | Failure | Component
Number (1) P(P(Fly) < p) Costs Costs Utility
(I2) Lg.1y Lp Iy | Lrli + Lrls
21.0000 1.0000 0 2.0000 0 2.0000
22.0000 1.0000 0 2.0000 0 2.0000
23.0000 1.0000 0 0.6000 0 0.6000
24.0000 1.0000 0 0.6000 0 0.6000
25.0000 1.0000 0 2.0000 0 2.0000
26.0000 1.0000 0 2.0000 0 2.0000
27.0000 1.0000 0 2.0000 0 2.0000
28.0000 0 0.0015 0 0.0293 0.0293
29.0000 0 0.0016 0 0.0327 0.0327
30.0000 1.0000 0 0.6000 0 0.6000
31.0000 1.0000 0 0.6000 0 0.6000
32.0000 1.0000 0 0.6000 0 0.6000
33.0000 1.0000 0 0.6000 0 0.6000
34.0000 1.0000 0 0.6000 0 0.6000
35.0000 1.0000 0 {).6000 0 0.6000
36.0000 1.0000 0 0.6000 0 0.6000
37.0000 1.0000 0 .6000 0 0.6000
~38.0000 1.0000 0 770:6000° “0~ | 0:6000 |
39.0000 1.0000 0 (0.6000 0 0.6000
40.0000 1.0000 0 0.6000 0 0.6000

Table A.2: Losses for the ¢l update
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E[P(Fly)|

Component | P(P(Fly) > p) | P(Fly) < p]x | Replacement | Failure | Component

Number (I) P(P(Fly) < p) Costs Costs Utility
(I2) Lr.Iy Lply | Lyl + Lely

1.0000 0.4979 0.0231 0.7468 0.4625 1.2093
2.0000 0.0000 0.0000 (0.0000 .0002 0.0002
3.0000 0.3014 0.0124 0.4521 0.2487 0.7008
4.0000 0.4429 0.0206 0.6643 0.4119 1.0762
5.0000 0.0000 0.0000 0.0000 0.0003 0.0003
6.0000 1.0000 0.0000 1.5000 0 1.5000
7.0000 1.0000 0.0000 1.5000 0 1.5000
8.0000 0.0000 0.0211 0.0000 0.4213 0.4213
9.0000 0.0000 (.0000 0.0000 0 0
10.0000 0.0000 0.0000 0.0000 0.0006 0.0006
11.0000 0.0000 0.0001 0.0000 0.0020 0.0020
12.0000 1.0000 0.0000 1.5000 0 1.5000
13.0000 .0000 0.0001 0.0000 0.0020 0.0020
14.0000 1.0000 0.0000 1.5000 0 1.5000
15.0000 0.0000 0.0000 (0.0000 0.0000 (.0000
16.0000 0.0000 0.0643 0.0000 1.2861 1.2861
17.0000 (0.0000 0.0000 0.0000 0.0002 0.0002

~18.0000 ~0.0000 (.0000 0:0000 - 0.0001 "t - 0:0001
19.0000 1.0000 0.0000 2.0000 0 2.0000
20.0000 0.0000 0.0013 (.0000 0.0257 0.0257

Table A.3: Losses for the ¢3 update




Chapter A. Tables 220
E[P(Fly)|
Component | P(P(F|y) > p) | P(Fly) < p]x | Replacement | Failure | Component
Number () P(P(Fly) <p) Costs Costs Utility
(1) Lg.I Lply | Lrli + Lply
21.0000 1.0000 0.0000 2.0000 0 2.0000
22.0000 1.0000 0.0000 2.0000 0 2.0000
23.0000 1.0000 0.0000 0.6000 0 0.6000
24.0000 1.0000 0.0000 0.6000 0 0.6000
25.0000 1.0000 0.0000 2.0000 0 2.0000
26.0000 1.0000 0.0000 2.0000 0 2.0000
27.0000 1.0000 0.0000 2.0000 0 2.0000
28.0000 0.0000 0.0015 0.0000 0.0293 0.0293
29.0000 0.0000 0.0016 0.0000 0.0327 0.0327
30.0000 1.0000 0.0000 0.6000 0 0.6000
31.0000 1.0000 0.0000 0.6000 0 0.6000
32.0000 1.0000 0.0000 0.6000 0 ().6000
33.0000 1.0000 0.0000 0.6000 0 0.6000
34.0000 1.0000 0.0000 0.6000 0 0.6000
35.0000 1.0000 0.0000 0.6000 0 0.6000
36.0000 1.0000 0.0000 0.6000 0 0.6000
37.0000 1.0000 0.0000 0.6000 0 0.6000
38.0000 1.0000 0.0000 |  0.6000 0 70.6000
39.0000 1.0000 0.0000 0.6000 0 0.6000
40.0000 1.0000 0.0000 0.6000 0 0.6000

Table A.4: Losses for the ¢3 update
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0:2040-

Component | vary, (mees) | vary, ca(meas) | By, (Mes)— Q
Number We
1 11.8499 5.1172 4.6776 0.5539
2 2.4654 0.6394 6.6283 0.0238
3 10.5392 4.9645 4.4668 0.5261
4 9.2645 4.9271 4.1153 0.5042
5 2.4212 (1.6356 6.5509 0.0247
6 2.0453 1.5085 -1.2695 -0.2121
7 8.0491 4.6223 2.9031 0.6353
8 6.4560 3.1338 5.1638 0.3514
9 0.9586 0.5337 9.7274 0.0189
10 1.3541 0.6210 4.6723 0.0591
11 1.5631 0.7220 4.6538 0.0759
12 7.4594 4.1057 1.1529 1.5840
13 1.5771 0.7246 4.6758 0.0882
14 9.8367 4.7685 2.7634 0.8121
15 2.3040 0.9443 7.4621 0.0590
16 9.2711 4.9363 4.6273 0.4479
17 2.4530 0.6357 6.6482 0.0223
18 2.4146 (0.6333 6.7314 0.0199
19 15804 1 0.9213 =1.6827 -
20 3.8255 0.6874 5.8960 0.0130

Table A.5: Values for calculating the Q criterion
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Component | vary, (Mes) | vary, cia(mes) | By, (Me2s)— Q
Number We
21 5.3345 2.3208 0.4959 3.4948
22 5.2698 2.3153 0.4673 3.6721
23 1.4637 0.9775 0.0354 4.0250
24 1.3393 0.9841 0.2010 0.6164
25 4.1741 1.9117 -0.2271 -6.6076
26 4.0869 1.8845 -().2689 -5.5030
27 1.7323 (0.9442 -1.7683 -0.0111
28 3.8319 0.6971 5.8235 0.3035
29 3.7369 (.6843 5.6854 0.3065
30 1.0707 0.7507 -1.0838 -0.0293
31 1.9394 1.1618 1.3110 0.6640
32 2.8071 1.4482 2.6150 0.4397
33 1.4885 1.0579 0.5081 0.7817
34 2.7079 1.4478 2.8080 0.3904
35 1.3857 0.9267 -0.5704 -0.6098
36 1.3635 0.9240 -0.5509 -0.6243
37 2.8960 1.4655 3.1682 0.3710
38 5.4764 1.6344 0.7959 2.4572
39 1.0882 0.9321 | -08b35
40 1.3425 0.9354 -0.5318 -0.0272

Table A.6; Values for calculating the () criterion

00122 |
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Appendix C

Code

function [A,X,M,Y1,Y2] = SimJoint(x0,a0,nTim,nRls,nloc,Sx,Sa,Sr,Sobs)

hsimulates the joint distributions between:

%_
%__
%_.
%_
hby

#x0
%ha0
T
%nR
%nL

%Sx

X
Y
A
M

(dlm level);
(observed minima);
(dlm slope);

(true minima).

running the forward model

im

1s

oC

nStr vector defining initial wall thickness
nStr vector defining initial wall loss rate
- number of time points to run model (scalér)
- number of simulation realistations (scalar)
-~ no. of locations within a component (scalar)

nStr x nStr correlated standard deviation matrix wall thickness values

%Sa
%Sr

nStr x nStr correlated standard deviation matrix wall loss rates

nStr x nStr diagonal matrix of local variation standard deviations

“Sobs - nStr x nStr observation error standard deviation matrix (diagonal)

nsSt
Xo
Ao

r

i

i

= length(x0); %define value of nStr for future calculations
x0*ones{1,nRls);%Wall thickness values at t=0

aO*ones(1,nRls);%Wall loss rate at t=0

228
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%create arrays for storing output

X
A
R
M
Y1
Y2

NaN*ones(nRls, nStr, nTimt+1);
NaN*ones(nRls, nStr, nTimt+1);
zeros(nRls, nStr, nlLoc);

NaN*ones(nRls, nStr, nTimt+1);

NaN*ones(nRls, nStr, nTimt+1);

H

NaN+ones(nRls, nStr, nTim+1);

Ydefine initial conditions

X(:,:,1) = Xo’;

AC:,:,1) = Ao’;

hstep model forward in time

for iTim = 2:nTim+1

AC:,:,iTim) = A(:,:,iTim-1) + randn(nRls,nStr)*Sa; %evolve trend term
A(£ind(A>0))=0; Y%stop trend term being positive
X(:,:,iTim) = X(:,:,iTim-1) + A(:,:,iTim) + randn(nRls,nStr)*Sx; %evolve level

X(£ind(X<0))=0; %stop level term being negative

Rt = zeros(nRls, nStr, nLoc); %

E = zeros(nRls, nStr, nLoc);

for iLoc = 1:mLoc

~———Rt1(:;+yikoc) ~= randn(nRls,nStr) *Sr;—Generates-min-local -deviation-term

E(:,:,iloc) = randn(nRls,nStr)*Sobs; %Generates observation error term

end

R = Rt + R; Ycumulative local deviation effect

Er = R+E; Y%cumulative local deviation + observation error
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en

fu

%e

)

b

h

h

h

h

Lr

Mz

Sz

M(:,:,iTim) = X(:,:,iTim) + min(R,[],3); %true surface minima

Y1(:,:,iTim) = X(:,:,iTim) + min(Er,[],3); %observed surface minima

i

¥2(:,:,iTim)

X(:,:,iTim) + min(Er(:,:,1:5),[],3); %observe half surface min

d

nction [EL, I1, I2]

ExpLoss(Lr,Lf ,Wc,mu0,sigD,sig0,RndDat)

valuates the expected loss for a design with known adjusted variance

Lr - vector of replacement costs

Lf - vector of failure costs

We - vector of critical wall thicknesses
mu0 - expected wall loss

sigD - updated standard deviations

sig0 - prior standard deviations

RndDat - random sample from N(0,1) - ensures same sampling errors for each run

OvrLf = Lr./Lf; %define ratio of costs

(We - mu0)./sigD; %estimate expectation of z

sqrt((sig0./sigD)."2 -~ 1); %estimate standard deviation of z

Lmt = norminv(LrOvrLf); %define integration limits

for iC = 1:length(8z); %loop over components

if 8z(iC) > 0; Ycheck for consistency of variances

I1(iC) = normcdf ((Mz(iC)-Lmt(iC))./S8z(iC)); %evaluate prob of replacing c
elseif Mz(iC) > Lmt(iC); Ycomponent has failed

I1(iC)

1;
else;

I1(iC)

]

0; Ycomponent

end;
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I2(iC) = EstI2(Mz(iC),Sz(iC),Lmt(iC),RndDat);
%evaluate prob of failure if not replacing c

end;

EL = sum(Lr.*I1’ + Lf.*I2’); Y%return overall expected loss from decisions

function I2=EstI2(Mz,Sz,Lmt,RndDat);

%approximates the I2 integral as part of the expected loss calculation

YMz, Sz, Lmt - parameter of the integral

%RndDat - N(0,1) sample, read in to ensure consistency of estimation error

X=RndDat;
nX=size(RndDat,1);

if Sz>0;
tLmt=(Lmt-Mz) /Sz;
tInt=normcdf (X.*Sz+Mz) ;
Kep=X<=tLmt;
I2=sum(tInt(Kep)) /nX;
else;

if Mz>Lmt;

12=0;

else;

I2=normcdf (Mz) ;
end;

end;
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Corrosion | Comp. | Comp PMC | Product | Material | Pipe Piping Nominal | Inspection | Inspection | Inspection
Circuit No. Typ% Type | Diam. | Schedule Wall Date ~ Method Reading
Code Thickness
A 1 Bes 9 P 9 6 PS3 93 |10/11/2002| UT 99
A 2 Wel]heja,d 2 P 2 6 PS3 18.24 12/12/2000 UT 18
A 3 Bes 2 P 2 6 PS3 23 10/11/2002 UT 22
A 4 Bes| 2 P 2 6 PS3 23 17/05/2003 uT 20.5
A 4 Besi 2 P 2 6 PS3 23 12/12/2000 UT 22
A 5 VVel]he@d 2 P 2 6 PS3 18.24 12/12/2000 UT 18
A 6 Besf 2 P 2 1 PS3 6.35 12/12/2000 UuT 5.35
A 6 Bes; 2 P 2 1 PS3 6.35 18/05/2003 UT 3.35
A 7 Bes 2 P 2 6 PS3 18.24 17/05/2003 UT 17
A 7 Bes 2 P 2 6 PS3 18.24 12/12/2000 uT 17.5
A 8 TEQ 2 P 2 6 PS3 18.24 17/05/2003 UT 20
A 9 Caﬁ 2 P 2 6 PS3 18.24 12/06/1998 UT 18.24
A 9 Caﬁ 2 P 2 6 PS3 23 17/05/2003 UT 19.5
A 10 Strj 1 P 1 0.75 PS1 3.91 18/05/2003 UT 391
A 11 Str% 2 P 2 4 PS3 13.49 10/11/2002 UT 13
A 12 Str§ 1 P 1 4 PS2 11.13 10/11/2002 UT 13
A 13 Besi 1 P 1 4 PS2 11.13 10/11/2002 UT 12.5

Table D.1: Data for the circuit A example
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Corrosion | Comp. | Comp. PMC | Product | Material | Pipe Piping Nominal | Inspection | Inspection | Inspection
Circuit No. Typei Type | Diam. | Schedule Wall Date Method Reading
Code ‘ Thickness

A 14 Str 1 P 1 4 PS2 11.13 10/11/2002 UT 13

A 15 Bes. 1 P 1 4 pPSs2 11.13 10/11/2002 UT 15

A 16 Strj 1 P 1 4 PS2 11.13 10/11/2002 uT 22

A 17 Str 1 P 1 0.75 PS1 3.01 18/05/2003 uT 3.91
A 18 Bes% 2 P 2 6 PS3 18.24 17/05/2003 UT 20

A 18 Bes. 2 P 2 6 PS3 18.24 12/12/2000 UuT 20

A 19 VV'elﬂléad 2 P 2 6 PS3 18.24 12/12/2000 UuT 18

A 20 Wellhead 2 P 2 6 PS3 18.24 12/12/2000 UuT 18

A 21 VVelﬂléad 2 P 2 6 PS3 18.24 12/12/2000 UT 18.24
A 22 VV*elﬂléad 2 P 2 6 PS3 18.24 12/12/2000 UT 18.24

: 23 Branéh 2 P 2 0.5 PS3 4.78 12/06/1998 UuT 4.78

£ 24 Wellhéad 2 P 2 6 PS3 18.24 12/06/1998 UT 18.24
A 25 Branch 2 P 2 2 PS3 8.74 12/06,/1998 UT 8.74
A 26 Branéh 2 P 2 2 PS3 8.74 12/06,/1998 uT 8.74
A 27 W'elci 2 P 2 1 PS3 6.35 18/05/2003 UuT 5.35
A 27 Weld 2 P 2 1 PS3 6.35 12/12/2000 UuT 5.35
A 27 ’eld 2 P 2 1 PS3 6.35 12/06/1998 UuT 6.35

Table D.2: Data for the circuit A example
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Corrosion | Comp. Com;j). PMC | Product | Material | Pipe Piping | Nominal | Inspection | Inspection | Inspection
Circuit, No. Typé Type | Diam. | Schedule Wall Date Method Reading
Code Thickness

A 28 VVel@ 2 P 2 1 PS3 6.35 18/05/2003 uT 5.35
A 28 W'eldj 2 P 2 1 PS3 6.35 12/12/2000 uT 5.35
A 28 VVel& 2 P 2 1 PS3 6.35 12/06/1998 uT 6.35
A 28 fel(ji 2 P 2 1 PS3 6.35 31/08/2003 uT 6.35
A 29 Bra,ncjh 2 P 2 1.5 PS3 7.1 12/06/1998 uT 7.1

A 30 Branéh 2 P 2 1.5 PS3 7.1 12/06/1998 uT 7.1

A 31 Branch 2 P 2 0.5 PS3 4.78 12/06/1998 uT 4.78
A 32 V\"el]hefad 2 P 2 6 PS3 18.24 12/06/1998 uT 18.24
A 33 Wellhejad 2 P 2 6 PS3 18.24 12/06/1998 UT 18.24
A 34 W’elcj 2 P 2 0.5 PS3 4.78 12/06,/1998 uT 4.78
A 35 "'e1<ji 2 P 2 0.5 Ps3 4.78 12/12/2000 UT 4.78
A 35 W’elé{ 2 P 2 0.5 PS3 4.78 18/05/2003 uT 4.78
A 36 Weld 2 P 2 2 PS3 8.74 12/06/1998 UT 8.74
A 36 VVel(ji 2 P 2 2 PS3 8.74 18/05/2003 uT 8.74
A 36 W'elcgi 2 P 2 2 PS3 8.74 12/12/2000 UT 8.74
A 37 \Vel& 1 P 1 4 PS2 13.5 17/05/2003 uT 12

A 38 VVelé 2 P 2 1 PS3 6.35 31/08/2003 UuT 6.35

Table D.3: Data for the circuit A example
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Corrosion | Comp. Comp. PMC | Product | Material | Pipe Piping Nominal | Inspection | Inspection | Inspection
Circuit No. Typé Type | Diam. | Schedule Wall Date Method Reading
Code Thickness
A 38 Weld 2 P 2 1 PS3 6.35 12/06/1998 uT 7.1
A 38 \?Velci 2 P 2 1 PS3 6.35 12/12/2000 UuT 7.1
A 39 Wellhead 1 P 1 1.5 PS1 7.14 12/12/2000 UT 7.14
A 40 eld 1 P 1 4 PS2 13.5 12/12/2000 UT 13
A 40 Weld 1 P 1 4 PS2 13.5 17/05/2003 UT 13
A 41 VVelci 1 P 1 0.75 PS1 5.56 18/05,/2003 UT 5.56
A 42 7elci 1 P 1 0.75 PS1 5.56 18/05/2003 UT 5.56
A 42 W’eld 1 P 1 0.75 PS1 5.56 12/12/2000 UuT 5.56
A 43 VVeld 1 P 1 4 PS2 13.5 17,/05/2003 UT 14
44 Wellhead 1 P 1 1.5 PS1 7.14 12/12/2000 UuT 7.14
A 45 Weld 1 P 1 0.75 PS1 5.56 31/08/2003 UuT 2.6
A 45 \fVeki 1 P 1 0.75 Ps1 5.56 08/04/2004 UuT 2.8
A 45 VVelci 1 P 1 0.75 Ps1 5.56 18/05/2003 UT 3.56
A 46 W'elci 1 P 1 0.75 PS1 5.56 12/12/2000 UT 5
A 46 Weld 1 P 1 0.75 Ps1 5.56 18/05,/2003 UuT 5.56

Table D.4: Data for the circuit A example
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