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Abstract 

The implementation of consistent and repeatable methods for inspection planning 

is a problem faced by a wide range of industries. The theory of Bayesian design 

problerns provides a. well established method for the treatment of inspection plaxming 

problems, but is often difficult to implement for laxge systems clue to its associated 

computational burden. We develop a tractable Bayesian method for inspection 

planning. The use of Bayes linea;r methods in the place of traditional Bayesian 

techniques ·allows us to assess properties of proposed inspection designs with greater 

computational efficiency. This improvement in efficiency allows a greater range of 

designs to be assessed and the design space to be searched more effectively. Vve 

propose a utility based criterion for the identification of designs that offer improved 

prediction for future systern properties. Designs with good typical performance are 

identified through utility maximisation. The viability of the method is demonstrated 

by application to an example based on data from a real industrial system. 
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Chapter 1 

Inspection planning problems 

The objective of this thesis is to develop a rational method for tackling problems 

encountered when planning inspections for systems consisting of many different, but 

related, components, performing a variety of functions. Systems of this kind occur in 

a range of areas. Examples of cornplex systems consisting of a munber of subsystems 

carrying out different tasks can be found in fields such as computing, manufacturing, 

transport planning and the environmental sciences. We consider developing methods 

for applica.tions in industry which provide a structured a.nd defensible strategy for 

the planning of an inspection. 

Inspection planning problems can be described as the problem of deterrnining 

which parts of a system we should inspect to leam most about the overall system 

condition. The exact interpretation of 'system condition' will depend on the system 

under consideration, but will in general be some measurable property of the systern 

- or the components within a system- that provides a quantification of the system's 

current level of performance. Identifying sets of points that allow us to learn more 

about the system improves the quality of the inspection; our aim is to produce a 

method which allows us to consistently select 'improved' design sets. 

In this chapter we introduce the problems we addres::J in the rest of the thesis. \A/e 

describe the uses of inspection in industry in section 1.1. In section 1.2 we consider 

current inspection practice and inspection planning methods. The particular type of 

inspection problems we will be considering will be explained in section 1.3. Existing 

1 



1.1. The role of inspection and maintenance within industry 2 

inspection planning methods within the Bayesian literature are reviewed in section 

1.4, and finally we outline the structure of the rest of the thesis in section 1.5. 

1.1 The role of inspection and maintenance within 

industry 

Inspection and maintenance plays an important role in most industries. Inspec­

tion is the means by which industries learn about the performance/condition of the 

Hystem. Maintenance deciHions a.re then made on the basis of the inspection results. 

Maintenance is defined as actions taken to ensure the good performance/ condition 

of the system [38]. Maintenance actions include repairing or replacing of some or all 

of the system, or less invasive treatments such as cleaning or lubricating components. 

The aim of ensuring systems are kept in a good condition is to maximise system 

efficiency and guard against potential safety hazards. Many industrial systems are 

expected to degrade over time. System degradation can be caused by mechanisms 

such as corrosion of the materials from which the system is constructed, build up 

of dirt or sediment within the system or weakening of system components through 

use. These factors, and others, can reduce the ability of the system to function 

properly. Systen.ts that nm at a reduced level of functionality are at best an incon­

venience. More often, underperforming systems result in a serious loss of income, 

or can present a safety risk. The goal of maintenance is to ensure good system per­

formance, and therefore maximise tlw systern't> productivity, or minimise the risk to 

the system's environment (including openttors) introduced by system degradation. 

Industrial inspection and maintenance is motivated by a range of considera­

tions. In addition to the financial benefits of operating a system in good condition 

there are also safety factors. System owners have a. legal responsibility to minimise 

both the individual and socicta.l risks of operating a system. Tndividua.l risks arc 

defined to be the chances of harm to the individual of a certain activity, and soci­

cta.l risk is treated as the risk of incidents which, for example, cause "widespread 

or large scale detrirnent or the occurrence of rnultiple fa.ta.lities in a. single event" 



1.2. Current practice 

126]. The Health and Sa.fety Executive (HSE) is responsible for the enforcement of 

Health and Safety legislation in the U.K., and for revievving the risk assessments 

conducted by system owners. Inspection is not explicitly requested by the Gov­

ernment's Health and Safety regulations, but operators are required to produce a 

"major accident prevention policy document" in which they must specify rnethods 

for performance monitoring and identifying major hazaJ:ds [25], a regulation that, in 

practice, makes inspection unavoidable. The motivation for complying with health 

and sa.fety regulations is frequently the 'loss in public and employee confidence' that 

follows major system failures. This can greatly affect an organisation's profitabil­

ity, and consequently provides a strortg reason for avoiding system failure through 

effective inspection and ma.intenance. 

Good quality inspection information accurately describes current system perfor­

mance and allows the system owner to make informed decisions about necessax-y 

maintenance work. Effective inspection and maintenance allows the system to op­

erate in a good condition and avoid system failure. However, the down side is that 

inspections a.re not necessarily cheap to irnplement or easy to plan. Poor quality 

inspection information can lead to bad maintenance decisions, resulting in expensive 

and ineffectual maintenance. Consequently, there is a need to plan inspections so 

that the information obta.ined allows us to make better maintenance decisions. Vve 

also have to be willing to trade off the quality of information we receive against 

the cost of the inspection. If inspection is cheap, we can inspect more thoroughly, 

however if inspecting the system is expensive, relative to the cost of repairing the 

system; thorough inspection will not be a sensible option. 

1.2 Current practice 

Many different types of inspection are available to industry. The particular 

choice of an inspection method is determined by a cornbina,tion of the suitability of 

the method for the system in question and the cost of implementing inspection us­

ing this technique. Inspection methods can be split into two major groups, invasive 
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inspection techniques and non-invasive techniques. Invasive inspection involves the 

system being shut clown tLnd inspected internally by the inspectors. Non-invasive in­

spection (NII) or non-destructive testing (NDT) methods do not necessarily require 

system shutdown, and inspection is conducted from outside the system. 

1.2.1 Invasive inspection 

Invasive inspection techniques require internal access to the system, which ne­

cessitates system shutdown. Invasive inspection techniques are, in general, thorough 

and engender high customer confidence. The techniques thernselves are frequently 

quite simple, with visual inspection of the system (or enhanced images of the sys­

tern), being primarily favoured [40]. 

The perception of invasive techniques is that they offer a more 'complete' picture 

of current system behaviour, as shutdown enables almost total inspection and all 

'significant' problerns will be detected. The disadvantages of invasive techniques are 

held to be the length of time required to conduct the inspection (and the associated 

loss of income through reduced production) and the potential safety risks to inspec­

tors caused by the disassembly process and the requirement to work in confined 

areas. 

However, as mvas1ve inspection is frequently dependent on the ability of the 

inspectors to identify system defects, it may not be as reliable as it is perceived to be. 

Information gathered through invasive inspection techniques is frequently qualitative 

rather than quantitative, which may not be sufficient to satisfy the legal system 

monitoring requirements placed on the system owner. Consequently, alternative 

techniques, which offer cheaper, and possibly more defensible, solutions, have been 

sought. 

1.2.2 Non-invasive inspection 

Non-invasive inspections are not, in general, as extensive a,s invasive inspections. 
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Nil techniques involve sampling sections of the system, as total inspection using 

most Nil techniques is infeasible due to either the time or cost involved in inspection. 

This clearly creates the additional problems of determining where to sample, and 

how the sampled locations relate to the unsampled locations. 

There are many different NII tedntiques, although the r.na,jority have the san.1.e 

format. [67J identifies the follcrwing five stages in any NII technique [72]: 

1. A suitable form and distribution of energy is supplied to the test object from 

an external source. 

2. The supplied energy distribution is modified within the test object as a result 

of discontinuities, flaws and other variations in materia.! properties. 

3. The modifications to the energy distribution are detected by a sensitive detec­

tor. 

4. The energy measurement from the detector are recorded in a form useful for 

interpretation. 

5. The recorded values a,re interpreted and used to assess the current systern 

state. 

The objective of such procedures is to learn about structural differences in the 

systern. Different inspection techniques are better a.t cletectirtg different types of de­

fects or damage. We discuss specific inspection techniques relevant to our examples 

in section ~3.3. Commonly used techniques include [9]: 

• Ultrasonic techniques - use of sound waves as the energy source. 

• Radiographic techniques - use of X-ra.ys as the energy source. 

• Eddy current techniques - use of electromagnetic fields to det.ect defects. 

• Penetrant techniques - use of dye (or similar) to seep into the surface, which 

is then absorbed by defects. 

• Magnetic paxticle techniques - use of magnetic fields to highlight defects. 



1.2. Current practice 6 

Figure 1.1: An articulated pig for use in pipe cleaning 

1.2.3 Pigs [1] 

Pigs (or pipeline inspection gauges- a retrospectively defined acronym), are tools 

used by industries that rely on the use of pipelines, such as the petrochemical and 

natural gas industries. Pigs have a variety of uses, including pipeline cleaning and 

fluid separation functions. An example of a typical pig is shown in figure 1.1. 

Pigs are designed to fit inside a pipeline and almost fill the pipe. They are moved 

along the pipeline by the pressure built up by the pipe contents. [31] discusses the 

use of 'intelligent' or 'smart' pigs in inspection. Pigs can be fitted with sensors 

and other forms of inspection tools to detect internal pipe damage and can record 

the condition of the pipeline as they are moved along. This is an example of a 

compromise between invasive and non-invasive inspection. The pig is monitoring 

the entire pipe surface, but there is no need to shutdown the pipeline. However, this 

method is expensive to implement and is therefore not widely considered. 

1.2.4 Risk-based inspection 

The choice of technique is dependent on the type of defect about which the system 

owner is most worried and, more often, the cost of implementing the technique. 

Risk-based inspection (RBI) methods are generally favoured for the determination 

of inspection locations. There is an extensive literature surrounding techniques in 
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risk-based inspection, which develops RBI methods for a variety of applications. The 

RBI approach is summarised by [23], and some recommendations for best practice 

in RBI methods are given by [71]. 

RBI has traditionally treated inspection planning as a univariate problem. Un­

der this approach the risks associated with component failure are calculated and the 

components that pose the greatest 'threat' are inspected. Risk is usually defined to 

be the probability of component failure multiplied by the cost of the consequences 

of component failure. This quantity is calculated for each component within a sys­

tem, allowing a 'risk ranking' of components to be produced. Components are then 

selected for inspection based on their risk ranking. Baker and Descarnps [4] propose 

considering not just the risk, but also the probability of component failure and the 

cost of component failure to create a combined ranking that assigns greater impor­

tance to components that are likely to fail or have greater financial consequences if 

they fail. 

Recent work in RBI studies ([56]) has treated the calculation of risks as a joint 

problem, taking into account the influence that components have on each other 

when evaluating the failure probabilities. However, we do not know how widely this 

approach is currently being implemented. 

1.3 Problem structure 

Inspection planning problems occur across a wide range of industries. For the 

purposes of this thesis we will restrict to a specific subset of problems, that of 

monitoring corrosion damage within the petrochemical industry. In considering this 

class of problems we illustrate a large number of issues that are of relevance to 

a wider class of inspection planning problems. However, ·the methods developed 

within this thesis are constructed specifically with corrosion applications in mind. 

Throughout this thesis we will use the following tenninology to describe our 

problems: 

Component - A regwn (of variable size), that is consistent with respect to its 
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physical properties and corrosion behaviour. 

System - An organised set of components that ads to perform a function. 

Our definition of a, component is intended to be sufficiently flexible to allow for 

different parts of a. system with the same structure a.nd corrosion behaviour to be 

considered as a single cornponent even if they are in different physical locations. 

The intention is to allow components to be defined by their corrosion properties. 

In practice, we treat components as contiguous regions defined by their physical 

properties due to the difficulties in distinguishing between corrosion processes in 

operating systems. In addition to systems a.nd components, we may also consider 

.':mbsystems. Subsysterns are defined as smaller subsets of systen1 cornponents (con­

taining a.t least 2 components) that satisfy om definition of a system. By requiring 

that our systems are both organised and functional we ensure that not every set of 

components will form either a system or a. subsystem. 

The petrochemical industry offers a particularly challenging set of inspection 

problems. The systems used within the petrochernica.l industry a.re often large and 

complex, with many subsystems performing a variety of different functions. There 

are also a range of different installation types used by the petrochemical industry, in­

cluding offshore platforms, refineries and other processing plants. All of these carry 

out complex operations involving large systems, the condition of which needs to be 

monitored. There is a clear need for good inspection practice within the petrochemi­

cal industry motiva,ted by the consequences of system failure. Petrochemical system 

failure can have extremely severe consequences, therefore the careful monitoring of 

these systems to ensure successful detection of potential problerns is an important 

consideration for companies and regulators within this industry. 

'vVe will focus on the problems of inspecting pipevvork systems for corrosion dam­

age. Pipework systems are an important pa.rt of the petrochemical industry, provid­

ing the mea.ns of transporting hydrocarbons through the extraction and processing 

procedures. The pipevvork used is generally metallic and is therefore subject to 

corrosion, which ca.n weaken the pipe. Corrosion is a time dependent process, in 

which the damage progressively increases over time, a.nd can therefore be addressed 

if detected sufficiently early. Corrosion can spread over an entire surface, or can 
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remain localised in specific points. Therefore we need to consider the impact of 

both general and localised corrosion behaviour. 

Our objective is to develop a procedure for identifying locations within a cor­

roding system that will tell us most about the corrosion behaviour throughout the 

entire system, <~nd thereby identify cor.n.ponents in. need of repa.ir or other appro­

priate maintenance. To achieve this \Ve will need to model system-wide corrosion 

behaviour in such a way that the relationship between corrosion levels at different lo­

cations is captured, and subsequently establish a consistent a.ndrepeatable method 

for identifying which points of a system are informative about corrosion behaviour. 

1.4 Literature review 

In this section we review the existing literature within areas related to inspection. 

Vve consider these to be the fields of corrosion modelling and Ba.yesian design, and 

we review each of these in turn. 

1.4.1 Corrosion modelling literature 

One key difficulty of inspection planning problems is that they consist of two 

substantial problems, that of modelling the degradation of the system, a.nd then us­

ing the degradation model as a basis for design selection. [20] consider this to be the 

funda:rnental structure of maintenance problems, and review existing 'deteriora.tion 

models'. They classify existing models into failure rate, reliability index, l'v1a:rkov 

and renewal models. 

The available engineering literature details some of the physical models used t.o 

describe corrosion behaviour. [49] review models for water pipelines damage. Water 

pipelines a.re frequently buried and therefore subject to slightly different degrada,. 

tion mechanisms than the exposed systems we will consider, but the review offers 

an insight into typical water pipeline failure behaviour. A number of papers address 

specific types of corrosion behaviour: [50] offer a deta.iled description of corrosion 
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fatigue modelling in unfavourable conditions; [43] and [29] address C02 driven cor­

rosion; [70] tackle the problem of pitting corrosion; [65] propose a model for crevice 

corrosion and [41] dea.ls with the problems of modelling marine corrosion damage. 

This illustrates the potential range of corrosion mechanisms that could affect a sys­

tem. 

A relatively large amount of the existing literature for corrosion rnodelling con­

siders reducing the problem to a univariate situation, by treating components as 

independent. F.<"'or large systems, such as those .found in the petrochemical indus­

try, this is a pragmatic assumption that allows the modeller to handle potentially 

intractable rnodelling problerns. However, this is not usually a realistic &':lsump­

tion. [37], [36] consider the use of a spatio-temporal dynamic linear model to model 

the corrosion behaviour over an entire surface of a system (furnace). [57] and [21] 

consider partial inspection problems using rnodels that relate cornponents to each 

through a covariance structure. 

There is a range of different system properties that have been modelled. One 

of the most commonly modelled quantities is the time to component failure. [61] 

propose using a conjugate gamma process approach to model time to failure, which 

can be easily updated given inspection data. [21] treat the system problem as one of 

modelling a set of correlated binary variables, which are either operating correctly 

or have failed, and conditions can be set on the number of components required to 

be operating for the system to be operating BUccessfully. Both models require the 

Bpecification of failure rates as initial parameters. [6], [62] and [33] choose to model 

'deterioration' - asBessed a.s the difference between the stresses (or loads) applied 

to the system and the remaining 'strength' of the system based on its material 

properties. 

Alternatively, related quantities for the corroding iiurface can be modelled di­

rectly. The spatial approach of [37] models wa.ll thickness behaviour, and 148] model 

the cha.n.ging JTta8s of the corroding components. The conjuga.te garmn.a. process 

approach is also adapted to measure defect size in [63]. In all of these cases it is 

possible to relate the modelled quantity to component failure by a deterministic rule 

concerning minimum acceptable standards. Arguably, these approaches have more 
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relevance for inspection models than the time to failure methods. 

A common approach in the corrosion modelling literature is to treat a system as 

a set of unrelated components, in which corrosion properties remain approximately 

constant. [48] advocate using a dynamic model that reflects changes in the rate of 

corrosion which are consistent with the properties of the type of corrosion occurring 

at a particular site. The use of a dynan1ic linear rnodel in [37] also allows for control 

of variation in the corrosion rate. [5:3] proposes the use of a fuzzy logic based method 

to account for the uncertainty in the choice of corrosion n:.todel and [73] suggest a, 

method for modelling multiple site crack corrosion using different competing models. 

The literature contains a variety of proposed corrosion. modelling rnethodologies. 

Many of these do not consider the situation of correlated components within sys­

tems, but this is usually as a consequence of difficulties this creates in solving the 

subsequent design problem. The geostatistics literature contains examples of spa,­

tial modelling with a view to design. [14] and [5] both present methods for selecting 

designs for learning about the behaviour of random spatial fields. However both 

authors comment on the computational intensity of their suggested approaches. 

1.4.2 Bayesian design literature 

There is aJso a well developed literature for the Bayesia,n approach to Inaiu.te­

nance optimisation. A number of articles focus on determining optimal time intervals 

for inspection, such as [16], [.55] and [28], in which the aim is to identify the optimal 

point to inspect the system so that the useful life of all components is maximised. 

The risk-based inspection (RBI) techniques- favoured in industry for inspection 

planning - lend them.selves natmally to use with Bayesian deterioration models. In 

RBI procedures, the aim is to identify the components with the greatest risk of 

failure (overviews of the RBI methodology are provided by [23], [44]), and use the 

risk ranking as a guide to which components are in need of inspection. All RBI 

procedures require a model for the probability of failure, which is re-stated after the 

observation of the systern. Bayesian methods provide a, coherent frarnework for the 

updating of failure probabilities given new inspection data, as illustrated by [28], 
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1611 and 151_1. 

In a number of industries, component failure probabilities are difficult to estimate 

due to a lack of available historical data. This can be because the consequences of 

failure are deemed to be so severe that extremely conservative maintenance policies 

are adopted and fa,ilure data is therefore scarce. Alternatively, this can be a result 

of the use of a new design of component, for which there is no historical data. In 

such cases it is necessary to employ expert judgement based methods to establish 

beliefs about failure probabilities and component failure. Such rnethods a.re aJso 

readily implemented in Bayesian models. [53] a.nd [47] contain examples about the 

incorpora.tion of Bayesian expert judgement into design selection problems. 

The theoretical basis for Bayesian design problems is well established. An exten­

sive review of Bayesian experimental design literature is presented by [10], who com­

ment on the lack of applications to support the theory. The benefits of a Bayesian 

approach to design are discussed in [46], which concludes that Bayesian methods 

allow for model uncertainties to be accounted for more straightforwardly. The prin­

ciples of BayesiaJl design are summarised in [10], in which the expected utility of a 

design is maximised over all values of the data that could potentially be observed. 

The optirna.l design. is the design that returns th.e greatest expected utility value. 

This approach is based on the work of Raiffa and Schlaifer (1961) and Lindley (1972) 

[34], who suggested the use of Bayesian decision theory as a means of optimisation. 

Bayesian decision theory is widely used as a means of solving Ba.yesian design 

problems. The basis for the decision is the utility function, which must be carefully 

constructed to reflect our design aims. The irnporta.nce of carefully con::>tructed 

utility functions is emphasised by [10], [60] and [47]. 1141 illustrate how the utility 

criterion changes as the inspection goals change from prediction to estimation. 

The deci::lion theoretic approach has been applied to a number of different ex­

amples recently. [ 11] demonstrate the use of Bayesian decision theory in selecting 

inspection plans for the reliability of a.ircraft wings, [66] applies the rnethod to th.e 

problem of building metamodels of complex computer simulation models (i.e. iden­

tifying and selecting influential components). Applications in clinical trials, [32], 

and the placement of security sensors, [59], have also been considered. [28] consid-
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ers applying the method to corrosion within pipework, but restricts to the problem 
of recommending component replacement times, rather than inspection locations. 

A frequently occurring problem in Bayesian inspection/experimental design is 
that of computational burden. Evaluating the expected utility of a. design over all 
potential observation sets is often a problem that has to be solved usiJJ.g nurnericaJ or 
simulation methods. [10], )14], and [39) all comment on the computational intensity 
of Bayesian design methods. [15] develop a Bayesian design method for regression 
va.ria.ble selection, but comment on its intractability for non-linear problems. Im­
provements in available computational power over recent years have reduced this 
problem, but for large complex systems of the type in which we are interested, the 
computational burden of traditional approaches to Bayesian design is still a very 
large problem. 

The computa.tional difficulties of Bayesian decision problerns are also discussed 
in the RBI literature. [55] develops a tractable method for assessing reasonable 
inspection intervals by restricting to simple inspection policies. The assumptions 
made in adopting the approach are tested in [16]. [58] proposes an interpolation 
approach to reduce the computational burden of a full Bayesian design procedure. 
It is suggested that the 'value' of a, number of generic designs can be evaJuated prior 
to the design process, and that the value of specific designs can be established by 
interpolating between the values of the generic designs. [52] suggests the use of 
maxirnum entropy sampling as a means of identify sensible designs. 

Ma.ximum entropy sampling is appropriate whenever the entropy of the obser­
vations does not functiona.lly depend on the design. This rnakes it useful for linea.r 
and variable selection problems, but impractical for spa.tial problems. [.3) describes 
how entropy methods can be used to identify optimal designs for spatia-temporal 
problems, when we are working with a. multivariate Gausf:lian field; however, these 
methods are still reasonably computationally intense. 

[17] consider the optimal repair problern front a.rt adequate safety/ optimal cost 
perspective. A Bayef:lian decision theoretic approach is developed in which inspection 
is treated as beyond the modeller's control. [30] and [7] illustrate the use of cost­
benefit analysis to assess inspection worth in the software industry, but the issues 
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addressed are slightly different to those found in the petrochemical industry. 

[37], [36] and [3.5] develop a method for computationally efficient inspection plan­

ning using Bayes linear methods for applications in industry. Bayes linear methods 

have also been applied, in theory, to other design problems in [13], [19] and [54], 

where methodology offers a. tra.cta.ble approacl.t to complex design problerns. 

[56J dea.ls with the problem of planning inspection assuming correlated compo­

nents. The generic RBI method of [58] is adopted to reduce computational load and 

con:elations are included between. identified corrosion 'hotspots' via a covaria.nce 

matrix which accounts for the 'similarity' of the hotspots. Methods for building 

covaria:nce structures for large, con.tplica.ted systems are discussed in [18]. 

1.5 Thesis outline 

In chapter 2 we outline our proposed method for modelling corrosion in large 

systems, using a dynamic linear model to take account of global trends and a sepaxate 

sub-model to describe local behaviour. In chapter 3 we illustrate how we would 

apply the model to a real system with an example taken from an industrial site. 

The model is developed for illustrative purposes, so certain characteristics of the 

data have been emphasised to provide a more effective illustration. This example 

will be used throughout the thesis to illustrate both the modelling and inspection 

planning procedures in practice, and the initial modelling, which is discussed in 

chapter 3, forms the basis for the simulations used to assess design performance 

in later chapters. Updating is considered in chapter 4. With a view to proposing 

a tractable design selection procedure we make use of the Bayes linear approach 

to updating; the motivation behind this choice and the details of the Bayes linear 

1nethod aJ·e discussed here. The use of Ba,yes lin.ea.r methods allows us to eva.lua.te 

properties of the design more rapidly than a fully Bayesian update would permit, 

leading to a tractable design methodology, even for large systems. In chapters 5 and 

6 we deal with the design selection process. Chapter .5 considers the problems of 

identifying a suitable criterion for choosing between designs and details how we can 
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ca.lcula.te a. utility based criterion for design 'worth'. Chapter 6 discusses how we can 

then apply this criterion to the problem of selecting sensible inspection designs. The 

criterion balances inspection cost against. the benefit of the inspection in terms of 

information gained. Therefore a design that performs well according to our criterion 

will improve our understanding of the systern, and our decision making ability, so 

that the savings made from making better decisions outstrip the cost of performing 

the inspection. This process is then illustrated using the example from chapter 3. 

\Ne conclude the thesis with a review of the cornpleted work and consider tl1e scope 

for further research in chapter 7. 



Chapter 2 

Modelling large industrial systems 

In this section we describe the modelling approach that will be used throughout. 

As stated in chapter 1 we will be concentrating on the problem of corrosion damage 

to large pipework systems. vVe develop the model with these systems and corrosion 

in rnind, but it is possible to generalise the method to ha.ndle rnany situations n1 

which we wish to model a multiple component system evolving in time. 

Ultimately, we will be interested in planning inspections for large industrial sys­

tems. However, infonned inspection planning requires an understanding of the sys­

tem we are planning to inspect and its current operating state. Modelling the system 

gives us a, way of representing what we believe to be happening within the systern. 

\Ve can then use data from previous inspections to update these beliefs - in line with 

standard Bayesian practice. 

The model provides the rnechanism for us to interpret our observa.tions in tenus 

of system behaviour. It will also be used to describe our beliefs about future sys­

tem behaviour, which is a crucial part of inspection planning. Therefore the model 

should accurately characterise the corrosion procet:>s in which we are interested. How­

ever, we are concentrating on planning inspections for systems with many different 

contponents, each with distinct properties, so any rnodel we consider will have to 

retain sufficient flexibility to account for these different operating environments. We 

must also consider the scale of the systems we wish to model and remember that, in 

addition to building a model which adequately characterises component corrosion 

16 
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behaviour, the calculations required for inspection planning should remain com­

putationally tractable for large numbers of components. The data associated with 

such systems can often consist of complicated functions of the corrosion state, them­

selves requiring additional modelling ivhich adds to the computational load of the 

inspection planning problems. 

This chapter describes how we construct such a model. Section 2.1 details the 

necessary properties of any corrosion damage model by giving aJl outline description 

of the chernical process of corrosion and expert judgement on typical corrosion be­

haviour. Section 2.2 gives a broad description ofthe model structure aJld sets up our 

notation. Section 2.3 presents the need for a separate measurement model, which 

is described in detail in section 2.5. Section 2.4 explains in deta,il how each model 

term behaves with respect to evolution in time and interaction between components. 

Defining the model covariaJ1ce structures is described in section 2.6 and all other 

aspects of model specification a.re discussed in section 2. 7. Section 2.8 explains how 

we can use a simulation approach to obtain full covariance structures between any 

model term and our observations for any time point of interest. 

2.1 hnpact of corrosion damage 

Corrosion is a process mostly affecting metallic materials in which the material 

reacts with its environment to produce a new material. In general, this new material 

is less effective for its intended function than the original uncorroded material. For 

the situa.tion of pipelin.e corrosion, we will consider tha.t each of our compor1en.ts is 

initia.lly constructed from a known ma.terial which is subject to corrosion. A cor­

roded component will usually not function as well as an uncorroded component, aJld 

in extreme cases corrosion can even be a cause of component failure. Component 

failure is aJl expensive consequence of corrosion, resulting in unwaJlted expenditure 

on emergency repair work aJld loss of income due to rela.ted pa.rts of the system not 

functioning. More commonly, corrosion daJllage is repa.ired before fa.ilure occurs, 

but a loss of income can still be incurred due to the inefficient operation of corroded 
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components. The loss of income, and potential threat posed by the release of chem­
icals from damaged components provides the motivation for tackling the corrosion 
problem. The scale of the problem is highlighted by [2], which estimated the annual 
cost of corrosion effects in the U.S.A. in 1998 to be$ 276 billion. Furthermore, [4.5] 
clain1 that 13% of all hydrocarbon releases are due to corrosion/erosion. 

2.1.1 How corrosion occurs 

Corrosion is a, chemical process driven by environmenta.l factors causing a (gen­
eraJly unwanted) change in the nature of the rnaterial being acted on. [42] states 
that 5 steps are involved in the corrosion of metallic materials: 

1. The metal has to give up electrons (and thus create positively charged ions) 
in order to begin the process. 

2. Ions require a n1edium in whicb to move (usuaJly water). 

3. There must be a supply of oxygen present. 

4. The reaction requires a driving force. 

5. A new material is formed. This ma.y react further with the environment. 

In most situations the reaction driving force will be something very simple, such as 
the presence of oxygen ions in water. To illustrate these 5 steps we will consider 
the exarnple of iron rusting. This is a. very fan1iliar example of a corrosive process 
in which iron reacts with water and oxygen in the environment to form (hydrated) 
iron oxide. The process begins with the iron (f<'e) atoms giving up electrons to the 
surrounding water and therefore becoming positively charged ions (Fe213+). Rusting 
takes place in wet conditions, so the tr~nsfer mediurn for the iontS (step 2) is water. 
Water contains a lot of dissolved oxygen, so step 3 is also satisfied. In this reaction, 
the driving force is provided by the oxygen atoms ( 0 2) (in the water) taking on the 
released electrons to form negatively cha,rged oxygen ions. The positively charged 
iron ions then react with the negatively charged oxygen ions and the wa.ter (step 5) 
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as follows: 

2Fe + 02 + H20 ____. 2Fe(OH) 2 

forming iron hydroxide (Fe(OH) 2). In this case the iron hydroxide then reacts again 

witl1 the oxygen: 

to give water and hydrated iron oxide. The hydrated iron oxide is the fhky brown 

substance seen in a typical rusting process. 

Rusting is typical of many corrosion processes in that it follows the five defined 

steps. This gives us an idea of the type of reaction which is typically taking place. 

'vVe now move on to considering more typical forms of corrosion behaviour. 

2.1.2 Types of corrosion 

There are many different types of corrosion. Two important classes are uniform 

and localised corrosion. The main difference between these types of corrosion are 

the extent to which they a.fTect the surface upon which they are acting. Uniform 

corrosion occurs over the majority of the surface and consequently is usually easy 

to detect. The rate of uniform con:osion is usua.lly stable a.nd in isolation it is 

usually easy to handle by including sufficient redundancy into the system to allow 

for typical uniform corrosion. However, when occurring in conjunction with forms 

of localised corrosion, the impact of uniform corrosion can be much more dama.ging, 

providing an already weakened surface for the localised corrosion to act upon, and 

a.lso camouflaging the effects of localised corrosion during inspection. 

Localised corrosion only occurs at specific points on the component surface and 

could have one of several different causes. Localised corrosion behaviour such as 

pitting, crevice or intergranular corrosion is ca.usecl by corrosion attacking weak 

points of the surface, such as those where protective coatings have been worn away, 

points at which cornponents are joined or simply defects in the componertt surface. 

Problems such as galvanic corrosion and selective attack occur as a result of using 

alloys in which one constituent part is more susceptible to corrosion than others, 
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resulting in the metal being structurally weakened. The function of a component is 

also important in determining localised corrosion behaviour. Fatigue, stress corro­

sion cracking and fretting corrosion are all brought about by strains repeatedly put 

on the material of the component, either by repetitive motion or by static tensile 

stress. These strains can cause weak points in the surface of the material, resulting 

in increased susceptibility to corrosion. Localised corrosion is much harder to detect 

than uniform corrosion and can occur at much higher rates. It therefore poses a 

rnuch greater threa.t to components and accounts for the rnajority of component 

failures. 

Both uniform and localised corrosion will be affected by environmental factors 

such as location, temperature and pressure. Also, we a;re dealing with systems in 

which there is a directed flow. This can create further corrosion damage by the 

abra..':live action of substances flowing through the systern and also the further effect 

of corroded materials being swept along by the flow. 

2.1.3 Modelling corrosiOn behaviour 

VIe know corrosion is a process that ca.uses cornponent degradation. vVe also 

know that these changes due to corrosion are irreversible, i.e.once part of the com­

ponent surface has reacted it does n.ot become part of the cornponent again at sorne 

future time point. So any model we choose must be strictly monotonic. 

The perception amongst corrosion experts is that corrosion rates are approxi­

mately constant once corrosion has initiated (see [42], [40!, [64]). This applies to 

both uniform and localised corrosion although the uncertainty associated with this 

constant rate is much higher for localised corrosion. cases. Due to the different nar 

tures of uniform and localised corrosion it is reasonable to propose a model structure 

that has separate terms for each type of corrosion. The consensus of expert opinion 

in favour of an approximately constant corrosion rate also suggests our model should 

incorporate this feature. 

Factors such as rnateriaJ, function and environmental conditions can influence 

corrosion behaviour (particularly localised corrosion behaviom). Our model should 
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reflect this knowledge and allow us to build in any auxiliary information at om 

disposal. Finally, we want to retain a sufficiently simple structure so that compu­

tational tractability is ensured for systems with large numbers of components. To 

summarise, we require a model that: 

l. Allows us to use auxiliary information to distinguish between components. 

2. Allows us to separate global and local corrosion effects. 

:3. Gives an approximately constant corrosion rate. 

4. Allows us to correlate components with simila;r locations/characteristics . 

. 5. Remains computationally tractable for high dimensions. 

2.2 Modelling corrosion through wall thickness 

Modelling the underlying process, in this case corrosion, is an important stage 

in solving the inspection planning problem. The model will be used as the ba.'3is 

for our predictions for future system behaviour and should therefore be ca.refully 

considered. In this section we will outline our m.odelling strategy. Further details 

are given in sections 2.3 - 2.5. Following the definitions of system and component 

given in section 1.3 we will sta;rt by considering how to model corrosion within a 

single component and then move on to the many component (system) problem. 

Vve must establish which quantity we are modelling. We are interested in com­

ponent (and consequently system) integrity with respect to corrosion. Corrosion is a 

difficult quantity to measure directly, so we will have to use a related quantity which 

tells something about the effect of any corTobion procebses taking place within the 

system. One such quantity is wall thickness, which is a commonly measured quantity 

in the inspections perforrned by our industrial collaborators. 

The interpretation of wall thickness for a pipe is illustrated by Figure 2 .1. We 

can relate wall thickness to corrosion by attributing decreases in wall thickness (wall 

lobs) to degradation caused by corrosion. 
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Figure 2.1: Drawing of a. cross section through an uncorroded and corroded pipe 

In section 2.1 we stated that corrosion is an irreversible process. In terms of 

wall thickness this means that only wall loss can occur, i.e.our rnodel should not 

allow wall thickness to increase. Given that expert judgement informs us corrosion 

is approximately constant at typical inspection frequency, we will therefore choose 

to model wall thickness as having an approximately linea,r decreasing trend. 

2.2.1 Modelling wall thickness in a single component 

Ea.ch component is chara.cterised by beliefs about the properties of the corrosion 

process occurring at sites within the component and auxiliary information about 

the component. The exact nature of the auxiliary information will depend on the 

specific data set, but we can expect to have sorne knowledge of the design and 

function of each modelled component. This information can be used to shape our 

beliefs about the type and rate of the corrosion process( es) within the component. 

We will model a.n individuaJ component as a grid of s" locations. The size of 

se will be determined by the characteristics of the component. The size, design 

and furtction of a component could all play a role in influencing the extent of local 
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variation seen in a component - and therefore the size of the grid necessary to model 

this variability. VVe refer to points on the grid as 'locations'. For each location, l, at 

timet, we assume there is an underlying true wall thickness value, denoted ult. Vle 

choose to model the 'l.Lrt values using two terms, the global term, Xt and the local 

term, Tu. That is, 'ILtt "" ;Ct + Tlt. Note that the global term (::D1) does not depend on 

location. A corrosion based interpretation would be to vie>v Xt as modelling global 

corrosion and ru as modelling localised corrosion. 

Separating the model into global and local terms also a.llows us to distinguish 

(where possible) between the different corrosion types and it also provides the flex­

ibility to treat different types of auxiliary infonnation differently. Characteristics 

such as component function, material or design could reasonably be expected to a.f­

fect all areas of the component in a similar fashion and should therefore be modelled 

by the global term, Xt. More dynamic characteristics such as temperature, weath­

ering or system flow effects could be expected to have a less consistent influence on 

the wall loss and be more susceptible to local fluctuations, thereby making them 

more suitable to model using the local term rlt. However, such ideas would have to 

be confirmed either by expert judgement or data before being implemented. 

In principle, the :r1 and Tu terms can take any fonn. Indeed, as much or as little 

structure as is felt to be necessary or appropriate can be built into each term. We 

have chosen to concentrate most of the structure into the global term, Xt, which we 

will be modelling with a linea;r trend dynamic linear model (DLM). Full details of 

the construction and evolution of this model are given in section 2.11, but the key 

properties of the model are described by the coupled equations: 

(2.1) 

(2.2) 

O:t is the trend terrn and E:xt, Eat are independent deviationt> frorn the global term 

value. The deviations associated with the Xt (c.,,t) and Ot (E',~t) terms are independent 

of each other and are drawn from separate populations with Normal distributions: 

,,, N(O a-2 ) 
' Cxt 

N(O, a-;,J 
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We will use the notation flvb to denote the expecta.tion of a. random variable vb 

throughout, where the variable will be written including any relevant subscripts, b. 

Similarly, all variances will be labelled as O".~b and all covariance matrices as I;"b. 

The Tu values are chosen to have a simple form and are modelled as: 

T = T + 1 
lt l,t-1 ',lt (2.3) 

where, 

(2.4) 

so in principle each location could have its own specific distribution, although in 

practice this rnay be difficult to specify. In effect this means the Tu values are 

simply the sum oft dra\vs from Normal populations with mean 0 and variance O"Ztt. 

By choosing to build a trend only into the global term we are emphasising the 

impact of global factor over local ones. j\1ore emphasis could be placed on localised 

corrosion by building more structure into the local term, possibly to include its own 

decreasing trend a;nd also an initiation factor. Parameters for the loca.l trend tenn 

should be chosen to ensure there is no possibility of increasing wall thickness. 

2.2.2 Modelling wall thickness over many cmnponents 

We want to model systems consisting of large numbers of components. In this 

section we describe how we move from the single component model to the rwu1y 

component model. The system is to be modelled as n components. We use the 

index c to distinguish between these. For each component we have a grid of .Se 

locations. The underlying true wall thickness values are now given by: 

'Utct = Xct ·+· Tzct· (2.5) 

The model structure corresponds directly to the single component case. The 

global term (::Dct) depends only on component and time and not on location, rnea.ning 

we have a separate trend for each component. Treating the the global terms as n 

distinct linear trend DLMs would, in general, allow us to simplify the inspection 

design problem. Huwever, this would not allow us to model interactions between 
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components. Vve instead consider each global term (xct for c = 1, ... , n) as an 

element of a multivariate DLM [24]. The multivariate DLM provides a natural 

frarnework for modelling correlated components as they evolve in time. The only 

difference this makes to modelling the global term is that the coupled evolution 

equations (2.1) and (2.2) a.re now written in tenns of n-vectors in which the cth 

element of ettch vector corresponds to the global term for the cth component: 

X -t 

Qt 

!ft 1 + g_t + Sxt (2.6) 

(2.7) 

Lt, Lt are now draws from a multivariate Normal population with distribution: 

Correlation is introduced via the deviations; these will be correlated across compo-

nents at each time point. Therefore the cova.riance rna.trices )~""t are the rnea.ns by 

which our beliefs about the system correlation structure are entered into the model. 

We continue to use minimal structure on the local term Tfct· Following the 

approach adopted for a single compon.ent, we have the value of Ttct given by equations 

(2.3) and (2.4). We are therefore assuming the extent of loca.l variation is specific to 

the component and location being modelled. vVe also assume there is no correlation 

between the local variation iu different components, i.e. that any between cornponeut 

correlation is accounted for by the global term. vVe can construct E(ct as the se x se 

matrix >:~(et = (O"(u'cJL1 l'=l' where O"(u'ct is the covaria.nce between locations l and 

l'. We would require an se x se matrix for each component c. 

Our overall aim is to produce an efficient inspection design methodology whiclJ 

will rema.in tractable for very large systems. The model sketched here offers ~L 

structure that is both sufficiently flexible to characterise different aspects of the 

problem in. question, yet sufficiently simple to scale up to many components. The 

model is not proposed as a definitive corrosion model, but as a modelling framework 

for tackling the large system problmn with a view to inspection planning. 
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2.3 The observation process 

In addition to building a model which describes the nature of the corrosiOn 

process taking place within a system we also need to build models to describe the 

observation process. 

In any physical process there is a ga.p between what can be observed and tl1e 

actual system state. In general, measurements will be made with error. This in­

troduces a level of uncertainty into the inspection process that has to be modelled. 

This uncertainty stems from not knowing exactly what our observations are telling 

us about the true system behaviour. 

Vve treat the observation process as a distinct part of the rnodel. We do this 

because the observation process is different to the corrosion process. The source of 

the uncertainty being modelled is associated with the measurement methods used. 

Although the choice of measurement method may be influenced by the characteristics 

of the system, it is not determined by the extent of corrosion damage within the 

systern. This approach allows us to rnodel many different ob::;ervation procedures 

without alteration to the system model. Consequently we will have two models, the 

system model and the observation model. The system model tracks the evolution of 

corrosion damage to the sy::;tem in time, a.'l outlined in section 2.2. The obO:>ervation 

model provides our method for interpreting observations and how they relate to 

system beltaviour. 

Observations could be any computable function of the syO:>tern. As a general 

structure we will use the form '!-Let = f('!:!!ct + .Lt), in which f is the observation 

function and E is a location specific nwa.'lurement mror vector. By adopting this .:..d; • ' 

structure we can account for a. range of different observation processes. The error 

term is included inside the function to represent our belief that any measurement 

device will take measurements with sornc degree of ina.ccura.cy, so the observation 

will not simply be a transformation of the underlying true wall thickness value but 

in fact a transformation of a. va.lue which is in some sense 'nea,r' to the underlying 

true wa,ll thickness (where 'near' is controlled by S:). The observation function then 

operates on this inaccurate value. 
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The form of the observations y will be determined by the observation function, =-et 

f - the choice of which will be determined by the inspection aims. For example 

if the goal of the inspection is to learn about corrosion behaviour over the whole 

surface then f should return a value for each observed location, giving Jj_ct as a 

vector. However, if we a,re interested in identifying components that axe experiencing 

greater levels of corrosion then a summary statistic such a.s the mean or minimum 

wall thickness value may be more appropriate, thus '!L;t would take a single value for 

each coinponent. lf the inspection was only interested in overall system perforrna.nce 

\Vith respect to corrosion then it might be suitable to use a function, f, which only 

returns a single Yt value for the entire system. 

To illustrate the observation model we consider how it could be used to generate 

two plausible observation processes: 

1.. Total observation with Normal mea.':n.n·ement error. 

2. Minimum component wall thickness with under-estimated error. 

The first process requires a value to be returned for each observed location, it rep-

resents simple observation with error. For this case we would model ~let as being 

Normally distributed with mean 0 and variance aL, i.e. 6ct ,.._, N(O, aL)· This 

is then sufficient to model the observa.tiort process we want, so for this example 

the observation function .f would simply be the identity, therefore return a vector 

of length se for each component c as our observations, ~~-· 'vVe can control the 

size of the measurement error throurrh a 2 . For examr)le, perfect insl")ection would b !;!et !:" 

correspond to a~ = 0. 
~let 

The second observa,tion process is m.ore complicated. Firstly, we require only 

one value to be returned for each component (the minimum wall thickness), so our 

observations Yet will be scalar for this observation process. Secondly, we a.re told 

that this value is always underestimated. To model either under- or over-estimation 

we choose ~let to have an appropriate one-sided distribution (e.g.Gamma, Beta); the 

degree of over:- or under-estimation can be controlled through the pa.rarneters of this 

distribution. In this case the observation function .f is minimisation with respect to 
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location,l, of the wall thickness values observed with error. That is: 

Yet= min{uzc~. + (zct} . l 

for each component, c. 

2.3.1 Inspection designs 

The observation model will also depend on the inspection plan, d. cl tells us how to 

inspect the system by specifying which locations and which components to measure 

and a.lso which rnea...surement technique to use. The rnodel structure gives us a 

representation of the system at each time point through the underlying true wall 

thickness values ( 'l.Lzct). Our observations will take the form of a transformation of 

some or all of these Uzct values which have been measured with error. We use the 

subscript d to identify which Uzct are to be included in an inspection. This takes 

the form of a set of components which are to be inspected (denoted Cc~) and set of 

locations to be inspected (L,d for all cd E Cc~), individual locations are denoted ld. 

So the wall thickness value for a particular location included in the design would be 

denoted Utdcdt; for notational sirnplicity we will refer to the inspection sites a.s those 

included in the vector :!ku· Similarly, our observations will be denoted by ?i.dt (where 

d is a.s described and t is time), and are defined to be: 

?i.dt = f (Y.cZt + ~dt). (2.8) 

2.4 System model: Linear growth DLM 

A brief description of the model was given in section 2.2. vVe nmv expand on 

that description to provide more detail on the evolution of the model in time. 

The role of the system model is to produce representations of the behaviour of the 

surfa.ce of each component a.s we progress in titne. As l1as been described, we expect 

corrosion to act on components at a roughly constant rate and therefore components 

to become more corroded as we move further forward in time. We model wall 

thickness (an observable quantity rela.ted to corrosion damage) at multiple loca.tions 
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within a component as the sum of a global trend term (:r:ct) and an independent 

local variation term (rzct). 

Although this structure allows us a great deal of flexibility and offers the potential 

to construct very detailed models of the component surface, we have chosen to work 

with a rela.tively sirnple lTtodel. This is motivated by our ultirna.te goal of producing 

an efficient means of designing an inspection plan for large systems. To be able to 

evaluate the worth of a single designed inspection, d, we will have to update our 

rnodel for each possible set of inspection data y _, . J:<"'or la.rge systems performing this 
-ut 

becomes a cornputationally intensive calculation, particularly if the measurements 

JLu have a complicated form. On top of this we will want to assess ma.ny designed 

inspections, so we will have to carry out multiple updates to account for the range 

of potential observation for each designed inspection, d. Consequently, the amount 

of the computation involved in cornpa.ring inspection plans eau grow very rapidly. 

We have made the following simplifying assumptions in our model: 

1. We are modelling a system in which corrosion has initiated, so the issue of 

corrosion initiation becomes a retrospective one. It still has to be modelled, 

but can now be handled as part of defining initial conditions, and not directly 

as pa.rt of the model. 

2. Localised variation is not given a downward trend. \Ve assume any trends can 

be modelled by the global terms. 

A discussion of how these assumptions could be relauxed is included in chapter 7. 

2.4.1 Linear growth DLM 

As stated in Section 2.2 we will be modelling the globa.l !ft tenn using a linea.r 

trend dynamic linear model (DLM), as given by equations (2.6) aJld (2.7): 

Qt Qt···-1 + Sxt 
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The assumption of approximate linearity is modelled by the trend term g_1 . Q.t 

controls the rate of change in £t, and remains roughly constant, subject to the 

random deviation controlled by f..,}t. 

A Gaussian DLM is, in general, defined by the equations [24]: 

!!.t ""' N (Q, I;,,) 

f.t '"'j N (Q, )~") 

(2.9) 

(2.10) 

where (2.9) is the observation equation a.nd (2.10) is the systern equation. The DLM 

is defined by the quadruple {F, G, L;v, I;c:}t and its initial conditions, which will be 

specified as a mean fl·o and variance )~oo of the initial state vector [}_0 , such that 
-a 

(~IDo) rv N(f:!:.
00

, l:;o0 ) where Do is the information available at timet = 0. More 

generally Dt is the information available at timet. This general DLM structure can 

be related to the linear grmvth DLJ\il we will be using a,c; follows. Vvc ca.n define 

the state vector as fit = [£.[, g_TJT, the 2n-vector constructed from then-vectors for 

system level and system slope. The error vector is given by f.t = [f..~t' f?:tV. We can 

recover equations (2.6) and (2.7) through the choice of G. The choice of G which 

gives us a linear trend model is: 

for all t. L;c: can be constructed using the covariance matrices for f.xt. and L.,1.: 

Our observation equation will typically be more complicated than the standard 

DLM observation equation given in (2.9), and for this we will use a. sepa.ra.te observa­

tion model, as described in section 2.5. However, if we were interested in observing 

the exa.ct systern level values we could do this by choosing: 

I;,= 0 \j t. 

This ensures that our DLM 'observation equation' simply returns our system level 
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values, ;f1_. In summary, the DLM we will be using has the form: 

I -t 

0 -t f..t; rv N (Q, ~£) 
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(2.11) 

(2.12) 

and is defined by th.e quadruple {F, G, 0, )~£}for all va.lues oft. This stage identifies 

the values of ;f1. from the system vector fL for use as the global term; we then have 

to bring in the local variation term rlct. before considering observations. However, 

we earl use this DLM fra.rnework to learn about the distribution of ±t· 

For any DLM, the k time step ahead forecast distributions are well defined. 

These are given by [24] to be: 

(2.13) 

for the system state distribution. The forecast distribution for the system "obser-

vations" is given as: 

(2.14) 

The quantities f!.t ( k), V t ( k), J.) k), Qt ( k) are defined recrl.rsively using the defining 

quadruple of the DLM. For a general DLM, these recursion relations are [24]: 

f!.t.(k) 

v,_(k) 

L(k) 

Qt(k) 

Gt+kf!.t(k- 1) 

Gt. 1 ~cVt(k- l)G~+k + ~':t+k 

F~:kf!.t(k) 

F~+k Vt(k)Ftlk + ~'/t+k 

where a (0) = 'l = ( f!:..x:t ) , the system level and system slope expectations at 
-I. E-Ot 

f!:..at [ }~.ct ).~Xt O:t l 
tirne t, and Vt(O) 2~ot · ·· ' , the system level (>-=xt) and systern 

~at ,~et l.':at 
slope (~at) variance matrices, plus the system level and slope covariance matrix 

(2~<>t,xt). In the case where the defining quadruple is constant in time (as applies to 
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our model), these can be simplified to: 

k····l 

Gkl: G'k + ""'Gjl: G'.i 
~ ~ E 

L(k) 

Qt(k) 

F'Gk . P·o 
-t 

j=O 
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(2.15) 

(2.16) 

(2 .17) 

and for our model, in which {F, G, l:v, l:e}t are given by {F, G, 0, l:e} for all f:, the 

definition of Qt(k) further simplifies to: 

(2.18) 

So we can describe our beliefs about future system level behaviour in terrns of: 

E(;ft) 

var(;f1) 

'Ne can see from equations (2.16) and (2.18) that E" is important in determining 

tlH3 forecast systern variance. Therefore the constituent elements of )=s, I-:"x and ~="" 

are influential in establishing covariance between components. (2.16) shows how 

this cova.riance structure is introduced over time. Our assumption is that we can 

use these matrices to capture the full "between component" covariance structure, 

and therefore not have to build a trend or aJlj' correlations into the local vru·iation 

term. 

2.4.2 Local variation 

Bor each time point, t, the local variation terms Tzct form an 8 x n. matrix 

R = (Tt )s n · ·t .et 1=1. c=l 

where 

8 = max{8c}· 
c 
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Each column represents the values at the se locations in component c. We model 

Tict - rlc(t 1), the difference in local variation between successive times, as (let "' 

N(O, a~J, an independent random draw from a normal population. For any t, these 

differences form an s X n matri..x, Zt = ( (lct)l=l ~~1 . Each column of Zt is a draw 

from the multivariate normal distribution N (Q, a~c .Is). \Vith (let defined as: 

(let = T[ct - Tlc(t 1) 

we can write the evolution of the matrix Rt in time to be: 

The initial conditions Ro will be detennined by beliefs about the system state at 

t = 0. For details see section 2. 7 

vVe ha.ve adopted the simplest local varia.tion structure, that of uncorrelated 

random deviation from the mean. It would be possible to allow for greater between 

component correlation by allowing the off-diagonal elements of I;( to take non­

zero values. Each row of Zt would then be a draw from multivariate Normal vvith 

covaria.nce structure given by I;(· If we had reason to believe certain regions of 

a component were behaving differently to others we could rnodel this by allowing 

those regions to take different variance values. In effect this would mean giving each 

component a full s, x se covariance matrix, I.;(c, so each column of Z1 would be 

drawn from N (Q, I.;(c). 

2.4.3 System Model 

This gives us a method for modelling the underlying true wall thickness value 

lilc:t as 'Ulct = Xct + Tlct· In matrix form this would be written as: 

(2.19) 

where 1 is an s-vector of ones. 

At each time point we represent the underlying true wall thickness values as an 

s x n ma.trix Ut in which each column correspond8 to the values taken at each of the 
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.. 

.. 

Figure 2.2: Mapping a regular lattice to a pipe 

locations within a component c. The expected value and variance at each of these 

locations can be evaluated as the sum of the expectation and variaJ1ce of the relevant 

global and local terms. From the DLM theory [24], we know ±t is distributed as 

Nllo(t), Q0 (t)], where L/t) and Q0 (t) are defined as in Section 2.4.1. The local 

variation term is distributed as N(Q, t~<). So for any location l in a component c, 

the expected value of Uzct is f...o(t) + Q = f...o(t) . SimilaJ·ly, the variance of Uz ct is given 

by Q0 (t) + t~r;· 

2.4.4 Graphical representation of corrosion surfaces 

The matrix Ut can be easily converted in to a visual representation of the sys­

tem in terms of the underlying true wall thickness values . For each component we 

would be able to produce a plot of the wall thickness behaviour. This is done on a 

componentwise basis simply for ease of interpretation. We model the surface of a 

component as a regular 2-dimensionalla x lb lattice, where la x lb = s (see Figure 

2.2) . In most cases the surface we model will not be rectangular , so we will have 

to define a mapping between the lattice and the real surface shape. In the example 

of pipework (with which we will most ly be dealing) we can consider the rectangular 

lattice as conesponding to the cylindrical pipe by identifying the edges b1 and b2 of 

the lattice with each other, so that these conespond to adjacent locations on the 

cylinder . Essentially, we 'fold the surface around' to fonn a cylinder. 
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Having related the lattice to the component we are modelling, vve can then build 

t he visual representation. vVe identify each of the Se locations for which we have 

a value wit h a point on the component surface. So fo r each location we will have 

co-ordinate pairs (a, b) , which tell us where the location l lies on the lattice . For 

each l , we then have the 1Ltct which tells us tbe rnodelled wall thickness value at 

that point. So at a. given time t for location l in component c we can write clown a 

vector (a , b, ·ulct) = i/"lct that allows us to identify where on the component 's surface 

a location is and wha.t the Vi'all t hickness value is at that location , l. By repeating 

this for all locations , l , within component c at time t, we obtain a. matrix V et , in 

which each row can be seen as a set of co-ordinates to be plotted in 3-dirnensional 

space . By plott ing each row of Yet we can obtain a 3-dimensiona.l representation of 

t he surface of the component. 

As we always nu1p our cornponent surface on to a regular lattice, we can create a 

2- dimensional representation of the component surface, by colouring each location, I, 

according to its <Ltct value. 2-climensional representations can be easier to interpret 

than 3-dimensional ones, which provides the mot ivation for this extra step. \ Ve 

define a fixed colour scale for the wall thickness, so that EtJlY value of 1ttct has a 

eo lour associated with it . Our rH~"~>V representation uses vectors (a , b, C 0 L(ulct)) - for 

each location l in component c at time t - to generate the plot. a and b define t he 

co-ordinates of the lattice associated with location l and COL ( <L1ct) tells us how we 

colour the location. Having coloured each location, we colour the rectangles between 

lo cations by interpolation based on t he colours at the 4 locations corresponding to 

the 4 vertices of the rectangle. 

For example, if we consider a. new component for \Vhich the surface can be 

represented by 30 locations arranged a-s a 6 x 5 grid, the evolution of t he surface of 

this component over the first 8 time steps can be represented a!:> shown in Figure 

2.3. The colour scheme chosen here attaches red colours to low wall thickness values 

a.ncl dark blues to high \va.ll thickness values. Problern area;; are therefore coloured 

in red, and in general we can track the evolution of the wall thickness values of the 

new component from all being equal (as they must b e in a new component) at t ime 

1: = 0, through each time t>tep until /; = 8, at which poiut we can t>ee a few reddish 
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Figure 2.3: Visual representation of system degradation 

areas starting to develop. 

Visualisation is important for circumstances in which modelling the whole com­

ponent surface is the aim. It offers a quick reference for viewing the model output 

which may be useful for both model validation and identifying regions of the system 

which may be in need of more careful analysis. 

2.5 Observation model 

We follow the modelling approach discussed in section 2.3. That is, for a designed 

inspection, d, our observations 'lLtt = f (.1k:tt + ~t). As stated in 2. 3, the choice of 

observation function is determined both by our inspection aims and the available 

inspection tools, so to understand our observation function we must refer back to 

our problem structure (section 1. 3). 

The aim of inspection for the systems we will be considering is to identify those 

components at risk of imminent breakdown and to help inform decisions about 

whether or not the remaining components will be able to function safely up to the 

next inspection. Breakdown is defined as the component's wall thickness having 

fallen below some known acceptable minimum value, henceforth referred to as the 
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critica.l wall thickness H1
0 (for component c). Systems are assumed to operate as 

efficiently as their weakest component and in turn components are deemed to be 

as strong as their weakest point. Therefore a. system ceases to operate effectively 

if a single component, c is operating inefficiently. Reduced wall thickness clearly 

increases the likelihood of a component failure, but it can also act to reduce cornpo­

nent efficiency. Vve denote by W0 the critical wa.ll thickness value - below which a 

component's ability to function efficiently cannot be guaranteed and the probability 

of component failure is greatly increased. If any point on its surface (-u.zct) falls belo1-v 

We, we shall treat the component as though it has failed. This simplified view of 

component and system failure is in line with typical inspection and maintenance 

practice, where the consequences of actual component failure are seen as so severe 

that these 'breakdowns' are used as a trigger for maintenance. Component break­

down is not the sarne as component failure - in wh.ich the component completely 

ceases to function - but should be regarded as the step that immediately precedes 

component failure. We can thus formulate a definition of component breakduwn in 

terms of the minimum wall thickness value; a component, c, is said to have broken 

down if and only if its minimum wall thickness value is less than vll c. 

The observation function could, in general, be any function of the underlying wall 

thickness values. For this account we restrict discussion to the case of minimisation 

over a component, or more precisely over the locations within a component. vVe 

rnodel the 'true' component minimum as: 

nLct = min{utct} = min{Xct + Tzct} = Xct + min{Tzct} 
l l l 

(2.20) 

and denote by ·rnt the vector of component minirna for the full system. Note that 

the minimisation is carried out over the locations, l, so the global trend term, which 

does not depend on l, can be taken out of the minimisation. 

The distribution of these component minima is not easy to write down ana.lyt­

ically. vVe know the minimisation does not act on the global term, :It, which has 

distribution. N[£
0
(t), Q0 (t)]. However, the distribution function of the rninirnurn of 

independent draws from a Normal population is given by the distribution of the 

population to the power of the number of locations over which we are minimising. 

In the limiting case, where se is sufficiently large, this will be a. Gumbel distribution. 
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However in most situations we consider, se will be not be sufficiently large. This is 

a consequence of our location model. VVe model the component surface using a grid 

in which locations are sufficiently spaced so as to be independent of each other, so 

the value of se is relatively small. Increasing the number of locations ·will violate 

the assumption of spatial independence, also meaning we cannot use the limiting 

results. The exact distributional form will lie somewhere between a Normal and a 

Gumbel distribution. As the exact distribution depends on the value of s, we cannot 

write clown a con.cise expression for the distribution, but, using the independence of 

the global and local terms, the expected value and variance can be written as: 

E('mt) - l 0 (t) + E (min{rzct}) 
var(mt) Q0(t) + var ( mjn{r~cr}) . 

Vve assume we are using an imperfect measurement device and will therefore need 

to account for measurement error. lVIeasurement error could take any form, but we 

use Gaussia.n errors. Consequently, our €zct term is distributed as 6ct rv N(O, cr~J, 

where cr~c is the measurement error variance for component c. Vve allow this variance 

to depend on c to reflect the belief that some components, due to operational factors, 

environrnenta.l effects or physical inaccessibility rna.y be more difficult to observe 

accurately than others. Our observation equation therefore tal{es the form: 

Ycdt J ( J£.,dt + tdl) 

1nin {:ccdt +- Tzdcdt +- €zdcdt} 
ld 

:ccdt +- min {rzdcdt ·+· ~ldcdt} 
Id 

;r;cdt + Wcdt 

6dcdt r-.J N(O, crD 
€zdcdt "' N (0, cr~J 

for each Cd E cd and where Wcdt is the minimum of the rzdcdt + €zdcdt terms. 

(2.21) 

This distribution is as complicated as that of the true component minima. We 

have the same problem as before of the precise form depending on the number of 

locations over which we have min.imised. For the case of historical data, the problern 

is compounded by uncertainty over the number of inspected locations. We have no 

way of checking how many locations were inspected to find the reported minimum, 

and therefore no way of writing clown the full distribution for the observation model. 
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For simulated observations, the problems faced are the sarne as those for the 'true' 

mmmnnn ca.se. 

These distributional uncertainties lead us into using a simula.tion based approach 

to assess the relationship between observations and system behaviour, which is de-

ta.iled in Section 2.8. 

2.6 Building covariance structures 

We will need to define covariance matrices for the evolution errors of the DLM 

(>:~,J, the extent of local variation between tinw t>tepo (>..~d and rneaourernent error 

(~€). Recalling the structure of ~": ~<: = , we can see that we must 
[ 

~Ex On ] 

On ~"" 
specify ~""' and ~"". As ~c,, ~"", ~( and ~t; are all constructed similarly, each being 

defined by multiple inputs, we propose a general framework for defining covariance 

matrices. 

For large inspection planning problems we will usually have auxiliary information 

which is relevant to the construction of the correlation structure. Characteristics 

such as component design, usage and location can be expected to have an influence 

on corrosion behaviour and should therefore be used for guidance in quantifying >..-:;""', 

~"" and ~(. ~~ will have a different set of relevant characteristics, but information 

concerning the inspection procedure is also likely to be ava.ilable. Precisely wh.at 

these characteristics are will be determined by the specific problem and data, set 

being analysed, but for any application it is reasonable to assume the existence of 

sorne useful auxiliary information. 

vVe want a method for defining ~""', ~"" and ~( in terms of auxiliary informar 

tion relevant to system behaviour and ~E in terms of information relating to the 

inspection procedure. 
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2.6.1 Representing uncertainty 

We define Jl = {hk}i~, 1 to be the set of chara.cteristics d.escribed by the auxiliary 

information. These can be used to define the behaviour of a system with respect 

to each of C:x, C:a and ( and therefore help in quantifying the respective covariance 

matrices. vVe a.ssurne that the deviations c:x, c:" and ( can be modelled as a linear 

combination of independent terms - one term for each characteristic hk, each with a 

known weighting Ac,hk (respectively Acahk, A(hk or A(hk depending on which deviation 

is being calculated) - and an independent Gaussian noise term :/!_x, with variance I.:.4,, 

(the specific variation). We can then write C:x as: 

N 

C:,, = L Acxhkhk + ·l/Jc, · 

k=l 
(2.22) 

Assuming each of these characteristics to be Normally distributed with mean Q and 

variance L.:hk, we can then write I.:e, as: 

N 

I: = """ ).. 2 I:, + I: ' €x 6 Exhk l,k 1flcx (2.23) 
k=l 

and similarly I.:"a = 'I:~=l >...;ahkL.;hk + E,iJa and Ec = I::=l A~hkL.:hk + L.:,;,c 

We will be interested in the relationship between an auxiliary variable artd the 

component corrosion rate. Considering rate allows us to handle the observational 

data on a. standa,rd scale. Our covariances will be built up from the corrosion rate 

behaviour associated with each characteristic. To illustrate, we consider a simplified 

version of the characteristics component type ( CT) and pipe diameter (PD). Com­

ponent type is a categorical variable with three levels: Straight (CTl), Bend (CT2) 

and Tee (CT3). These describe the shape of pipework in the section of system we 

are modelling. vVe have data from similar systems that allows us to estimate the 

standard deviation of the corrosion rate for each level of the characteristic, giving 

us quantities: o-cr1, o-cr2, o-0 r3 . Pipe Diameter is a continuous variable and the 

standard deviation, O"pD, for a, cornponent is taken to be a, function of its pipe di­

ameter. For this exarnple, the c:," term for an individual component with type bend 

and Pipe Diameter :3mm would have covariance given by: 
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Each of the Ehk terms represents our uncertainty over system corrosion behaviour 

with respect to characteristic hk. These terms are common uncertainties, character­

istics which affect every component in some way. \Ale use the covariance matrix to 

describe the extent of the relationship between components. For an n component 

systern, these matrices will be of size n X n, where the (c, c!)th entry is the covariance 

between component c and component c'. \Ale build up the individual characteristic 

covariance matrices, Ehk, elementwise, using the function: 

(2.24) 

where the quantities O"J,kc represent the standard deviation of characteristic hk with 

respect to the value of hk taken in component c. The lie- dll 2 term is a measure 

of distance between components c and c' where 'distance' may depend on factors 

such as adjacency rather than physical distance, and nk (~ 0) is an importance 

weighting associated with distance. We can control the impact of distance through 

Thk. If we believe a characteristic to be unaffected by distance (i.e. association is 

based entirely on the value of hk taken within components c and c') we can choose 

Thk close to 0 to reflect this view. Similarly if we believe distance to be important in 

determining the extent of a cha;racteristic's influence on the covariance structure we 

can choose Thk to be large. In general, the Thk values will have to be elicited and then 

validated with data from related systerns. The inclusion of a distax.tce measure into 

the evaluation of the covariance matrices allows us to introduce spatial correlation 

into the model. 

So for the component type example, the full covariance would be constructed 

elementwise using (2.24). Suppose we have a four component system, with structure: 

where c = 1 is a tee joint c = 2 and c = 3 are straigltts and c = 4 is a bend. If we let 

our distance measure be defined as the difference between c, the resulting covariance 
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matrix would have the form: 

2 
CJCT:3 CJcT;~CJCTle-TCT (J C'T:i (J CTl e - 4TCT (J C'T:~CJ CT2e_gTCT 

CJ CTl CJ CT:3 e 
... TCT 2 2 --TCT CJcTl CJcT2e···tlTCT CJCTl CJCTl e 

CJcr1CJcr:3e-470r CJ2 e-Tcr 2 CJcrlCJcr2e-Tcr CTl (JC'Tl 

CJcT2CJcT:~e-970r CJcT2CJcne-4Tcr CJcT2(JCTle-TCT (!2 
CT2 

The variance values CJ~kc depend on the value of characteristic hk taken by com­

poneut c. This structure is a natural oue for ca.tegorical and ordinal variables, in 

which groups already exist within the data. This interpretation is less readily ap­

plied for continuous variables, where it will be necessary either to find a suitable 

way to discretise the continuous variable and apply the same treatrnent, or silnply 

use a. continuous covariance measure, similar to that used for distance. 

We would ha.ve to estimate matrices for ea.ch cha.ra.cteristic hk E H. Having 

evaluated a.ll of these covariance matrices, we must also consider the specific variation 

term 7j; rv N (.Q, '5:,,1,. ) . This term accounts for the variation \Ve can expect to see in 
-£x x 

an individual component distinct frorn tl.te 'explained' variation from the common 

causes of uncertainty. 

2.6.2 Defining weights Av"k 

In general only a subset of characteristics will contribute to each covana.nce 

matri..'C. Vve can control the influence of characteristics hk through their weight­

ings, )..<xhk (respectively Ac:c.hk and A(hk). For each covariance matrix we wish to 

define there exists a set of weights 1\c, A" and A(, in which the individual elements 

Ahk are the weighting associated with cha:ra.cteristic hk. These values will either 

be estimated frorn data, or more likely elicited from experts. ·weights will be as­

signed non-negative values with a. weight of 0 being equivalent to the belief that the 

characteristic does not contribute to the final covaria.nce structure. Lligher weights 

correspond to characteristics that are considered to be more influential. 

Overall, this provides us with a structured way of incorporating auxiliary m­

formation and using it to build justifiable covariance structures. It provides a 
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structured method for taking variables we know are related to corrosion and/or 

measurement properties and using the information they provide to inform our be­

liefs about system covariances. Maldng decisions as to which variables contribute to 

which covariance matrices is a difficult question with no definitive answer. Where it 

is possible to identify a. variable that clearly forms part of one of the four rna.trices 

I;""', I; ea, I;( or I;€ then that variable should be used to form part of that matrix. 

Usually we will have to rely on expert judgement. 

2. 7 Model specification 

For any particular system we wish to model, we will need to know how to move 

from the general model, as described so far in this chapter, to the specific model for 

that system. Th.e systern model is completely specified by the evolution covariance 

matrices for the global term, I;""' and I;"a, the local deviation covariance matrices I;(c 

and the initial conditions for system level, !f.o, system slope, Qo, a.ncllocal deviation, 

Ro. Having specified each of these, we will then be able to evolve the model in 

time to obtain forecasts of future system behaviour. V/e will also need to specify 

parameters for the observation model. The two elements we need to determine the 

observation model will be the observation function .f and the observational error 

variance )~€. 

This gives us 8 quantities we a.re required to specify: 3 for system model co­

variances, 3 sets of initial conditions and 2 for observation model parameters. Each 

of these could ha.ve multiple elements, so we describe b.ere exactly what specifying 

these quantities entails. In chapter 3 we carry out such a specification for an example 

based on data from an industrial installation provided by our collaborators. 

2.7.1 Specifying covanances 

vVe use the factor model approach described in section 2.6. This provides us with 

ea.ch of the covariances we need for evolving the model in tirne. VIe have to rely on 
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auxiliary data to establish a set of characteristics that we believe influence corrosion 

behaviour. These beliefs will be based on a combination of trends observed in the 

data and prior judgements of experts validated through data analysis. As stated 

previously, determining where the influence of an individual characteristic hk E H 

should be built into the model may be difficult. This will always be a. subjective 

process dependent on the modeller and his/her interpretation of the system. 

In general, particular characteristics will often be useful in defining more than 

one of the covariance matrices, )=ex, >-~sa, }~(c. This is because certain cl:ta.ra.cteristics, 

such as location or component function, are important in learning about more than 

one type of corrosion behaviour. How these 1natrices are detennined and exactly 

how the factor modelled is constructed will depend on the system being modelled, 

but we can make some broad statements about l:~c:x, ~ea, ~(c. 

2~cx is the covariance matrix for the evolution deviation in system level at each 

time step. Therefore characteristics that affect the system directly, and so make the 

impact of corrosion more unpredictable, should be given more weight in factor model 

for ~ex. ~ea is the covaria.nce matrix for the evolution devia,tion in system slope 

at each time step. This corresponds to the change in the wall loss rate between 

successive time points, so characteristics that affect the rate of change in system 

level rather than system level should be incorporated here. ~(c represents the corro­

sion behaviour at individual locations within a component, and can be viewed as a 

measure of how predictable the localised corrosion behaviour is within a component. 

Components with high local variability can be interpreted as being those more sus­

ceptible to localised corrosion, so characteristics important in explaining localised 

corrosion behaviour should be given higher weighting in the factor model for these 

matrices. 

2.7.2 Specifying initial conditions 

The nature of the initial conditions again depends on the system being modelled, 

and the data. available. \Ve have assumed we will be modelling older systems in which 

corrosion has initiated. In general, components do not begin corroding instantly, 
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but there is instead a period between a component's installation T and the point at 

which it begins to corrode. We use the notation tci to indicate the point at which 

corrosion initiated in component c (corrosion is unlikely to initiate in all components 

simultaneously), and t = 0 as the first point in our model. Therefore both T and 

tc; will, in gen.eraJ, be negative. \Ve restrict ourselves to considering systems in 

which corrosion has initiated, and therefore the model structure as described can be 

applied without modification. 

If we assume we know when the system started corroding (and a.t what rate), 

then we can use our model to obtain estimates for the mean and variance of ;Io 

and Qo by using the DLM forecast equations for the t; time steps for which each 

component has been corroding. Similarly, we can estimate the mean and variance 

of Ro as the sum of tci Normal N(Q, I;(J distributions, for each component, c. 

However, we will not usually know at which time point t; E [T, 0) the system 

started corroding, or the initial corrosion rate. Therefore the wall thickness values 

at t = 0, and the associated rates Q 0 , will be random. VVe can estimate wall loss 

rates from data for corroding systems, and by using our assumption that wall loss 

due to corrosion occurs at an approximately 'constant rate, these estimates will be 

directly comparable to the initiaJ wall loss rates. More precisely, we use data to 

obtain estimates for the mean and variance of the wall loss rate, where the \vallloss 

rate in component c at time t is modelled as: 

O'ct = O'c t · + ~ €a · , et L.J J (2.25) 
j=tci 

·md (..\' is constructed a..s the weighted sum of cha.racteristic wall loss rates (i.e. ',.. c,tci 

our factor model for wall loss rate): 

N 

Ctc,tci = L /\0/hk hk(c) + ·l/Jc 

k=.1 

2 ) '!f;c ''' N ( 0, 0' '!f.!c (2.26) 

where hk(c) is the contribution of characteristic hk to the wall loss rate for the value 

of cha.ra.cteristic hk taken by cornponent c. 

VVe denote the vector of initial wall loss rates by Q 1; where we acknowledge that 

the initiation time could be different for each component, although this is not explicit 

in the notation. Our expectation for c.v . denoted tt . is given bv the expectation of -tt' ,.. f!ti' ..., 
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our factor model (2.26), the sum of expected contributions from each cha.ra.cteristic. 

Similarly, the variance is given by the sum of the variances for the factor model for 

wall loss rate, which is denoted I;n· 

It is likely that we will have some historical data from the system we are mod­

elling, in which ca.se we ma,y be able to identify the initiation point, or at least 

narrow the range in which it lies. vVe may also be able to use the historical data 

to provide improved estimates for our initial wall thickness values, removing the 

need to estimate th.ese. In situations where we have good historical data, then it is 

preferable to use these values as our initial conditions. However, for situations in 

which we have rto data from the system we a.re rnodelling, methods for estimating 

initial conditions using auxiliary data from other systems will have to be considered. 

vVe estimate initiation time by considering historical data. In situations where 

the data set has a mixture of corroding and non-corroding components, we ca.rt use 

the age of the system and the number of new initiations within the time frame 

covered by the data to provide a plausible estimate of the initiation rate, ,6. As we 

are only considering initiation as pa.rt of the initial conditions, and not as part of the 

full model, we make the simplifying assumption that the time of corrosion initiation 

is exponentially distributed and independent for each component, with paJ~arneter, 

(3. That is: 

p( tci = t) = ,6 exp{ -f3t} V c. 

However, it would be possible to use a more involved model without compromising 

tractability, whilst the initiation modelling is treated as part of the initial conditions. 

Vve can then randomly generate the vector of initiation times t as a draw from this 

exponential distribution. The combination of the initiation time vector, ti, and 

initial wall loss rate distributed as N (f.J,a . , )~s") will allow us to estimate a rnea.n 
-t, 

and variance for .:fo and Qo using the DLM forecast equations, as we now have an 

estimated initial rate and time. R 0 can be estimated from N(O, tii;c;), once the 

initiation time is known. 
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2. 7.3 Observation model specification 

The observation model is the rnost straightforward a..':lpect of model specification. 

The observation function is determined by the inspection aimi:i and the available 

inspection equipment, and should therefore follow directly from an understanding 

of thei:ie two things. Although the observation function f may itself be complicated, 

specifying it should be simple, as the relationship between the observation and the 

true systern values should, in principle, be known. Tbe observational enor variance 

could be constructed using the factor model as described in Section 2.6, however it is 

more likely that there will be detailed prior information about the typical accuracy 

of inspection tools used. This tolerance information can be used to produce a, finc.Ll 

estimate for the observation error vaJ:ia.nce ma.tri.'C. 

2.8 Simulation approach 

Due to the issues presented by the approximation of component surfaces intro­

duced by the location model and the difficulties caused by complicated observation 

functions, we have chosen not to rely on an analytic approach, but instead use 

simulation based methods for the model inference and updating. The goal of the 

simulation approach is to provide an understanding of the relationship between the 

elernents of tl1e system rnodel and the elernents of tbe observa.tion model, thereby 

allowing us to use observational data to update the system model in an informed 

way, and also to make predictions about future system behaviour based on typi­

cal model behaviour as understood through the sirnulations. The introduction of 

a simulation based approach is motivated by the goal of producing a method for 

compa.ring different inspection designs. Comparing designs is a cornputationa.lly in­

tensive process, aJlcl using a direct simulation approach allows us to avoid evaluating 

computationally demanding integrals and therefore makes the process computation­

a.lly more tractable. 
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2.8.1 A simulation realisation 

A. sirnulation rea.lisation is one nm of the sirnula.tion a.lgorithrn. Vve now describe 

how to generate one such realisation. Ea.ch realisation of our simulation will produce 

one simulated system evolved over a specified number of time steps, T. So, we 

simulate a wall thickness value for every modelled location, l, in all components, c, 

for all times t E [ 1, ... , T]. In addition to this, we can then simulate observations of 

this 8irnulated system for any designed inspection, d, thm.> allowing us to build up 

information about the relationship between system evolution and observations. 

The first stage of the simulation process is setting up the simulation algorithm. 

The key steps of ours are listed below: 

1. Defining simulation inputs (i.e. initial conditions) 

2a. Generate flt fortE [1, ... , T] using DLM. 

2b. Generate Rt. fortE [1, ... , T]. 

3. Generate 'Uzct values using Uzct = Xct + Tzct· 

4a. Generate observations of the system for designed inspection d, usmg y 
-di 

4b. Find 'true' system values for the observation function f, i.e. '!!..t: = f(uzct). 

5. Store required output fortE [1, ... , T]. 

This provides us with a. set of instructions for what needs to be defined to set up 

the simulation. \Ve work through these steps in order by way of explaining the 

simulation procedure. 

1. Defining simulation inputs 

We will be using our model structure for the simulation procedure. Therefore 

our inputs will be the same as the initial conditions for the model for the system of 

interest. That is, we will need to specify distributions for ;r0, g 0, Ro and covariance 

matrices I;"x, 2:;"", 2:;( for the system simulation, and give ar1 observation function, 
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f, and an observational error covariance matrix 2:;~. for the simulated observation 

process. Specification of these parameters is discussed in section 2. 7. For those 

parameters for which an initial distribution is given, the value used for a particular 

realisation of the simulation will be drawn randomly from the specified distribution. 

2. Generating the system 

Using the model structure discussed in section 2.4, we generate the f}_1 and Rt 

values independently. The se-vectors 'Let. are generated as the sum of independent 

draws, f.ct? frorn the Normal population N(Q, >:.:(J, using the relationship 'Let = 'Lct-l + 
( . This gives us an r .1 vector for each component and n in total for each time 
~t -c. ' 

point, t, each of potentia.lly different length. We store these as an n x s matrix, 

Rt, where s = ma;xc{s,J, the greatest number of locations in a single component. 

The cth column of Rt contains the se location values for component c. For those 

components in which Se < s, the location values are entered a.s elements 1, ... , se of 

column c and the remaining elements of Rt are assigned a non-numeric identifier. 

This identifies these elements of the matrix as not corresponding to modelled location 

on the system and excludes these elements of Rt from any further a.na.lysis. 

For each time step, t, f}_1 is generated as: 

and s:_1 is an independent random draw from N(Q, 2:;€)· vVe store the !ft values as 

the n X s matrix Xt, which is defined as Xt = l,.!f[, where L is a vector of ones of 

length s. 

This gives us Xt and Rt as matrices of equivalent size. Each element of Rt which 

takes a nurneric value corresponds to a, modelled location on the systent. Vve will 

have both an Xt and an Rt matrix for every t E [1, ... , T]. 

3. Generating Ut 

Our system rea.lisa.tions a.re determined by the Xt and Rt values, in line with 

the model. We obtain Ut as ann x s matri.'< by taking Ut. = Xt +Rt.· The non­

numeric identifiers will appear in the Ut matrix in the same places as they appeared 
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in Rt, and will retain the smne interpreta.tion. So we obtain a matrix Ut for each 

t E [1, ... , T]. Overall, U, X and R will be stored as 3 dimensional m-rays in which 

the 3rd dimension is indexed by time. 

4. Generating observations 

Sinmla.tiug the observation process allows us to learn a.bout how our observation 

model relates to our system model. Rather than build the observa.tion process fully in 

to the simulation, ·which would require us to run a full simulation for each different 

designed inspection vve wish to consider, a rnore practical approach would be to 

partially incorporate the inspection process into the simulation. Whilst genera.ting 

the underlying system values Ut, we can also generate a representation of the surface 

with observation error, by adding the error matrix Bt (size n x 8 ), generated as 

8 draws from the n-dimensional distribution N(Q, I:~). We will call the resulting 

matrix W t = Ut ··!·· Bt, our simula.tion of every location in the systern observed with 

error. Once we have the Wt matrix of locations observed with error, we ca.n apply 

any observation function, f, to any number of elements of W t, we choose. This gives 

us the option of comparing ma.ny different observation processes without rteeding to 

simulate many times. 

It is rea.sonable to assume we will be interested in the output of the observation 

function for both the system observed with error, and the system observed ·without 

error (i.e.the 'true' value of the observation function for our system). For any real 

system, this is unobservable, but within the sirnulation framework, we can ea.sily find 

both the observed value '!!..dt and the true value met· For example, if the observation 

function is component minima then we ca11 find the true component minimum for 

our simulated system by minimising Ut with respect to the location index (in this 

case, by taking the column minima), but our observations '!!.at. will be given by 

column wise minimisation over only the locations and components of W t specified 

by d. Recording both of these quantities allows us to learn about the relationship 

between our observation model and system model. For our simulation out put, the 

vector of true surface minima at time t by: 

rnt = min{Ut} 
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and the vector of observed surface minima at timet for all c is defined to be: 

Jf_t = min{Wt} 

5. Storing output 

The simulation output ·will be determined by exactly what we are trying to learn 

about the system and its observations. However, it will not be more than: 

• The system vector flt. 

• The local variation matrix R 1 .. 

• The systen1 plus error rnatrix Wt. 

each for all t E [1, ... , T]. All other variables discussed can be recovered as functions 

of these three quantities. 

In practice, we may only be interested in a subset of these va.lues. The complete 

simulation output above allows us to describe full system behaviour for a. particular 

system a..'l defined by our initial conditions. We are not especially interested in 

the behaviour of a single realisation of the system, but more so in typical system 

and model behaviour. In order to develop an understanding of model behaviour in 

genera.l we have to consider many realisations of the system and the observations. 

By repeating steps 1-5 many times we will be able to build up a large number of 

output sets and by exan1ining the typical properties of these sets learn about the 

behaviour of all aspects of the system. 

In particular, we may wish to learn about the distributional behaviour of the 

simula.tion output. Empirical distributions can be created directly from the simu­

lation output for each of !f.t, f!.t, m.t, I!_t· We could either use these immediately or 

fit a standard distributional form to the empirical distribution to allow us to make 

probability statements about system behaviour. \Ve will also be interested in the 

covariance structure between pairs of variables, and we can also use the simulation 

output to learn about this. 

The information we will be interested in will be the variaJ1ces of the trend, true 

minimum and observed minimum within components at each time point, the means 
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of these quantities and the covariances between them. So for each time point we 

would have the following output: 

• Means: 

- E(fl_t)- system (2n x 1); 

E(m1.)- true minimum (n x 1); 

E(y) - observed minimum (n x 1); 

• Variances: 

- var(fl_t) (2n x 2n); 

- var(n•t) (n X n); 

- var(y) (n x n); 
-t 

• Covariances: 

cov(y (.X ) cov(y :c ) cov('u M ) · -t' -t ) -t' -t ) !!._t' t ) 

- cov(;r., g) all n x n 



Chapter 3 

Modelling large systems in 

practice: Site A data 

In this chapter we focus on applying the ideas of chapter 2 to a real world exam­

ple. Our objective is to use the Site A data set as an illustration of the modelling 

process described in chapter 2. "\Ve go through each aspect of model building for the 

particular system we are modelling both to indicate how to implement the model 

structure discussed il1 chapter 2 and also to highligltt potential difficulties encoun­

tered when modelling real world systems. ·where difficulties are encountered, we 

demonstrate by example how these can be negotiated. 

The development of the model for this data set is important for illustrating the 

methods of chapter 2, but it will also be used as our standard example throughout 

the thesis. The .model developed for the Site A data bet will be the rnodel used to 

illustrate our updating approach and the inspection planning procedme proposed in 

chapters 4, 5 and 6. 

We begin by discussing the Site A da.ta set (section 3.1) in terms of its structure 

and contents. Section 3.2 outlines what behaviour expert judgement would lead us 

to expect. Sectiort ~L~ di::;cusses the ol:mervation techniques used and how this ::;hould 

influence our modelling of the observation procesr:;. In section 3.4 we ca.rry out an 

analysis of the Site A data. set with the aim of identifying which elements of the 

data. set a.re to be used in our model and verifying the expert assessrnentf:i of :3.2 . 

. 53 



3.1. Site A data 54 

How vve can use the framework set up in chapter 2 to construct the model and which 

quantities we will use to specify our model parameters is also discussed in section 

3.4. Section 3.5 then deals with the practicalities of specifying these parameters. 

3.1 Site A data 

The Site A data set consists of wall thickness measurements taken from the 

pipework elements of a large industrial system belonging to Shell. The data set is 

made up of observations made on 4910 different components. These measurements 

take the fonn of an irregula,r time series of between 1 and 9 observations for each 

component. Only components that have been observed are included in the data 

set. The 4910 components belong to a single very large system (Site A) that can be 

split into sma.ller units called 'Corrosion Circuits'. The very large systerns are built 

up from individua.l components by firstly constructing sma.ller sections by welding 

groups of components together to form a single unit of pipework consisting of joined 

components. These sections are then bolted together to form the very large system. 

A corrosion circuit corresponds to one of these sections of welded components, and 

these axe the smallest units for which replacement is economically fea.sible. Individ­

ual corrosion circuits vary greatly in size, but can still conta.in rna.ny components. 

There are 63 corrosion circuits in the Site A data set, containing between 1 and 908 

observed components. 

The data set contains 6203 observations made over the 4910 distinct components 

durin.g the period spanning 16/04/1998 to 29/09/2004. Multiple observations il1 

time have been made at 828 of the components. We have auxiliary information 

about each component in the form of 113 descriptive variables. For this data set, 

no component talces values for a.ll 113 va.ria.bles. The descriptive variables ca.n be 

categorised in one of 3 ways: 

1. Varia,bles which describe component properties. 

2. Variables which describe the observation process. 
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3. Variables which describe expected corrosion behaviour within a. component. 

Variables of type 3 are in general expert subjective judgements. 

Type 1 Variables: component properties 

Variables of this type account for 26 of the 113 descriptive variables, and describe 

properties of the component that are at least semi-permanent, i.e.those which either 

cannot be changed or require changes to the whole system to change. These include 

variables related to the design specifications of each component, such as Component 

Type, Jnternnl/Extenwl Pipe D·iameter and .MateT"ial Type. The age of an individual 

component can be measured from the Commissioning Date variable. Component 

function is summarised by the Piping Schedule and PToduct variables. These tell 

us what substance is travelling through the pipes and the regular·ity of component. 

usage. Function is a good example of a semi-permanent component property; it is 

something which could be changed, unlike component design. However, there are 

no recorded instances of a component changing function throughout the span of the 

data. 

Type 2 Variables: observation process 

45 of the 113 variables are of this type. These variables contain information 

relating to both the inspection output and also describing how the observations were 

made. There are 3 clear subsets of type 2 variables, each one corresponding to a 

different inspection technique. The 3 observation techniques are given as Ultrasonic 

(UT), Radiographic (GAMMA) and Time of Flight (TOFD). For the Site A data, 

set, only the ultrasonic and radiographic techniques were used to make observations, 

so we can immediately discount the Time of Flight subset. Only one technique is 

used for any single observation. Detailed descriptions of the observation techniques 

that were used to take the measurements for the Site A data set will be given in 

section 3.3. 

Type 3 Variables: corrosion process 

There are 39 variables that could be viewed as describing the corrosion properties 

of a component. Expected corrosion rates (not based on observed values) are given 
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for components a.nd corrosion circuits. These have been specified using a risk based 

method, which will be covered in section 3.2. There are also 16 likelihood ratings for 

difierent types of corrosion behaviour. The relevance of these quantities to actual 

corrosion behaviour will have to be verified by data analysis. 

Type 3 variables include a set of consequence ratings describin.g the consequences 

of component fn,ilure. These will not be of direct use when building the system 

model, but they could be used during the inspection planning process. For inspection 

planning we will require a way of assigning a cost to component degradation and 

these consequence ratings can help us to do this. 

In addition to the Site A data set, we also have access to corrosion rate infonna­

tion from two further large systems. However we only have time series information 

for Site A. \Ve can also gain spa,tiaJ information for systern layout in the form of 

schematic diagrarns of the system. The data set is a potentially rich source of in­

formation, but we have some initial problems to work around. The scale of the 

systern is a, potential problern; the intricacies involved in modelling the entire Site A 

system are such that modelling the whole system would require a far more detailed 

treatment than it would be feasible to present here as an example. Another issue is 

our confidence in the auxiliary information. 

vVe intend to resolve the issue of scale by modelling only a subset of the data -

we will identify a rnodelling set, which will consist of the components we intend to 

model - and a training set, which we will use to learn about the corrosion behaviour 

in Site A. The model is developed for illustrative purposes, to show how the method 

could be applied, and to develop a non-trivial model on which to base our design 

procedure. With this in mind we will choose a modelling set that has sufficient 

complexity to illustrate the different aspects of the modelling procet>t>, but which 

remains interpretable. 

Consultation with experts in the field of industrial inspection and maintenance 

will provide us with greater insight into how we should interpret the Site A data 

set. An illustrative analysis of the data set will allow us to detect any trends or 

patterns within the data. This analysis ( deta,iled in section 3.4) will help us identify 

a conceptually more manageable subset of descriptive variables on which to bai:ie 
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our modelling. It will also allow us to assess the validity of the subjective expert 

judgements we have (either directly or from type 3 variables) and learn how we 

should interpret these for modelling purposes. 

3.2 Factors relevant to corrosion 

In this section we discuss corrosion behaviour we would expect to observe in 

the Site A system. We then offer an asse:ssrnent of these judgements based on data 

analysis in section 3.4. Experts believe the following factors to be important in 

detennining a. cornponent's corrosion behaviour: 

• substance within the component; 

• presence of corrosion in adjacent components; 

• age of a component; 

• flow of substances through components; 

• temperature and pressure within the component; 

• material from which a component is made. 

We consider each of these in turn, providing an explanation of how we should inter­

pret these factors. 

3.2.1 Substance 

It seems reasonable to assurne that the substance a. component is carrying will 

affect its corrosion behaviour. We would expect a. component canying a more re­

active substance to be at more risk of severe corrosion than a component carrying 

a relatively inert substance. There is a wide range of substances carried by the 

components of the Site A installation, including both very inert substances such as 

water and a.ir and very readive substances lik.e nitric acid a.n.d hydrogen sulphide. 
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Information on these factors can be described by the product variable, which gives 

details on hovv the component is being used and which substances are being moved 

through the cmnponent. Product is a potentially dynamic variable, as the use of a 

component could change with time, however no such changes are observed during 

the time fnu:ne covered by the data. 

3.2.2 'Nearby' corrosiOn 

Presence of other corroding components nearby being deemed as an important 

factor indicates a belief in sonw degree of spaJ.ial association involved in corrosion. 

vVe can check this by informally using the schematic representations of the systems 

to assess if there is historical evidence to support the notion that components ex­

periencing high levels of corrosion occur near to each other. It ma.y be tha.t the 

effect we are expected to observe within the components is that of ad.iacent compo­

nents being in similar physical locations and consequently being exposed to similar 

environmental conditions. 

3.2.3 Age 

The age of a component can mal<e it more susceptible to certain types of cor­

rosion. Therefore we would expect older components to be more corroded than 

nevver ones. In particular, we would expect the minimum wall thickness to be lower 

for older components as more types of corrosion begin to take effect. Our beliefs 

concerning the initiation pha..<>e of the corrosion process imply that new components 

will not, in general, be subject to high levels of corrosion. The age of components 

can be measured using the Commissioning Date variable. This gives the date at 

which the component was first put into operation, so the component's age at each 

inspection point can be found relative to this. There is no record in the data of any 

cornponeut replacement, so we a.ssurne the Cornm/is.'rio·ning Date gives an authentic 

representation of the component age. 
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3.2.4 Flow 

Flow of product through a cornponent, and in particular disruption to flow, is 

con:::;idered to be an influential factor in determining the extent of corrosion. How­

ever, flow is a difficult and/or an expensive quantity to measure directly, so we have 

to make use of what we believe to be aosociated variables to learn about the effects 

of flow. Variables providing information on the effects of flow are expected to be the 

Component Type, Prod·uct and Piping Sched·ttle varia,bles. Component Type tells u:::; 

about the design of a component, which can infonn our views on how much flow 

disruption we can expect. For example, a straight section of pipe will probably be 

subject to fewer disruptions in flow than a, T-shaped component. The Prod·uct vari­

able tells not only what is flowing through the component, but also gives details on 

the nature of the process taking place within the con1pouent. Components involved 

iu proce:::;ses :::;uch ao water injection aud drainage are likely to :::;ufl'er greater flow 

disruption than those involved in simple conveying processes. Piping Schedule de­

tails how sub:::;tances are pumped through the systern. This is a categorical varia.ble 

in which the different piping schedules can tell us how the component:::; are used, in 

particular whether the usage is continual or more intermittent. This information 

can again be used to learn about the flow within a contponent. 

3.2.5 Environmental conditions 

All components are exposed to internal and external environmental conditions. 

Temperature and pressure are two such examples of these conditions. vVe can learn 

about the internal pressure from the Piping Schedule variable, but we have little 

information on temperature. This is typical of most environmental fa,ctors; although 

they are believed to exert an influence, we have no variables that provide good 

information about them. This lack of information, and resulting inability to account 

for the effects of environmental factors in an informed way means we exclude them 

from the analysis. If reliable data. on these factors were available, we could model 



3.3. Observation procedures 60 

them explicitly as a term in the factor model. The factors are implicitly modelled 

by the spatial measures used in the model. By including information on the spatial 

relationships between components we ca.n learn about which components are likely 

to be experiencing similar environmental conditions as a result of being in similar 

locations. 

3.2.6 Material 

Different materials respond to attack by corrosion in different ways, therefore we 

would expect ma.teriaJ to play an irnporta.nt role in determining corrosion behaviour, 

and to see differences in corrosion behaviour between components made from dif­

ferent materials. However, the MateTial variable shows us that all parts of the Site 

A system included in the data set are made from carbon steel. Different types of 

carbon steel are used throughout the system, with different treatments and linings 

applied to them, but the underlying rnaterial used for each component rernains es­

sentially the same. The PNIC (pipe material code) variable provides information on 

any additional treatments and/or linings that have been used on a component, and 

as such we could expect to see differences between the corrosion behaviour for the 

different levels of this variable. 

3.3 Observation procedures 

The observation method used can have a significant influence on the obt~ervation 

values. For the Site A data set two different measurement techniques are employed; 

these a.re ultrasonic and radiographic (or Gamma) testing. Both methods are part of 

a larger group of inspection techniques known as 'non-destructive testing' (NDT) or 

'non-intrusive inspection' (NII) 1nethods. Thi<:> i::> becau<:>e either can be carried out 

without the need for disassembly of the system, and therefore cause less disruption 

to the operation of the system during inspection. We provide a description of each 

and discuss the modelling implications of using either technique. 
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Figure 3.1: Representation of Ultrasonic Testing Procedure [9] 

3.3.1 Ultrasonic testing 

Ultrasonic testing methods are based on the use of sound waves to measure 

wall thicknesses. Sound waves are forced through the object to be inspected via 

a transducer. The reflected waves are then received by another transducer that 

displays the results. The first transducer converts a generating signal of known 

frequency into the corresponding sound wave, which is then introduced into the 

component at a known point. The sound wave travels through the component and 

is received by the second transducer that converts the information from received 

sound energy and the time it is received into an output signal. The output signal 

can be compared to the known input signal and other reference readings to assess 

wall thickness. 

Ultrasonic testing can be used to provide wall thickness readings based on the 

sound velocity and attenuation measurements taken by the receiving transducer, and 

can be used to detect defects within materials and changes to material properties. 

It also requires minimal access to components to test them, needing only points 

at which the transducers can be attached, which is advantageous when inspecting 

complex systems. Such flexibility means ultrasonic testing is widely used within 

industrial inspection. However it is not without disadvantages. Interpreting results 

can be difficult and requires extensive training. Even for highly skilled inspectors the 
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Figure 3.2: Representation of radiographic testing procedure [9] 
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use of reference readings are necessary to distinguish between nonnal and abnormal 

behaviour. The technique is less efficient if the wall thickness is low or if the defects 

run parallel to the line of inspection (although this is a problem faced by the majority 

of inspection techniques). 

3.3.2 Radiographic testing 

Radiographic (or Gamma) testing can be regarded as taking an X-ray of parts of 

the system. As with medical X-rays, the part we wish to observe is placed between 

a radiation source and a film or plate that is sensitive to radiation. The amount of 

radiation reaching the film creates an image, with the darker areas corresponding to 

those areas in which more radiation has penetrated through to the film. The extent 

of radiation penetration is controlled by the thickness and density of the material 

being observed. Therefore areas experiencing degradation and wall loss will show 

up as darker patches on the resulting output. 

Radiographic testing can be used to detect defects within a component or to 

inspect components that are hidden inside larger components. As an NII technique 

it requires little disruption to system operation to perform inspection and is suitable 

for use on most materials. The results are more easily interpretable than those for 

ultrasonic testing. However, the method requires access to both sides of a compo-



3.3. Observation procedures 63 

nent, which may make it impractical for some systems. Operation of the equipment 

requires extensive training as defect detection can depend on the orientation of the 

emissions beam. Particularly thick components require longer exposure times for 

image generation, making the process more costly and increasing radiation exposure 

for the inspectors. However, the method works well for components with thin walls 

and offers the potential to inspect multilayered systems without direct contact with 

all components. 

3.3.3 Modelling implications 

An understanding of the way the observation process works is a vital part of 

modelling the observation error. The descriptions of each technique tell us that 

both methods have potentia.! advantages and clisadwmtages, a.nd both are subject 

to different sources of error, such as mismeasurement by the device itself, and human 

error due to the difficulty of interpreting the results. The ir.tspection techniques are 

both quite different and should therefore be modelled separately. \Ve choose to use 

a, Ga.ussia.n observation error term. We assume the distribution of the measurement 

error can be written as: N(Q, ~E), where ~E = { o-iJ ~=l is ann x n diagonal matrix 

in which n is the number of components and the values of oL are determined by 

the inspection technique used in component c. This simple structure allows us to 

illustrate the principle of modelling measurement error in a rational way, but retain 

computational tractability for high dimensions. 

For our example we will base our estimates for aL on elicited values for typical 

measurement error. Expert judgement informs us that ultrasonic testing is accurate 

to within .5rmn a.nd radiographic testing is accurate to within lmm when used to 

predict wall thicknesses. Validating these values from the available data would be a 

difficult process, requiring different data from that which is available to estimate the 

extent of measurement error, and in particular to determine different sources of error. 

From the available minimum wall thickness cla.ta it will be difficult to dissociate 

variation due to genuine wa.ll loss and the variation clue to mea.'':llU"ernent error. 

Due to these difficulties, and in the interest of obtaining a plausible solution to the 
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inspection planning problem, we have decided to trust these values. We will interpret 

these values as being equivalent to 3 standard deviations of the Normal distribution 

representing measurement error. Consequently, we set o-~c = (.5/3) 2 if component 

c was inspected using the ultrasonic method, so that, under the assumption of 

Normality, 99% of observation. errors fall within 0.5rnrn of the true underlying values. 

Similarly, we set oL = (1/3)2 if radiography was used. 

It would be possible to implement a more careful model for the measurement 

error that takes into account wha.t we know about the inspection techniques a.nd the 

associated sources of error. A factor model, based on characteristics hobsk E Hobs, 

similar to that used previously, could be constructed specifically for the measurem.ent 

error: 
Nins 

~let = L /\obsk hobsk + ·1/Jobstct · 

k=l 

Under this model the measurement error would be constructed as the sum of inde-

pendent terms describing different characteristics of component inspection. These 

could include equipment inaccuracy and human error and can be used to allow the 

measurement to depend on component characteristics. We know that ultrasonic 

inspection is less accurate for lower wall thicknesses; given more precise information 

we could use the factor model to reflect thi::; understanding, ar.td :oimilady represent 

the reduced effectiveness of radiographic testing for large wall thicknesses. However, 

despite the advauta.ge::; of a rnore careful measurerneut model, the difficulty of ef:i­

timating the influence of each characteristic (via Aousk, hobsk) leads us to the nwre 

pragmatic choice of the simple model described earlier. 

3.4 Data analysis for the Site A data 

We identify a subset of the Site A data set which we wish to model. A subset 

of auxiliary data is also identified for use in model verification. Firstly, we give an 

overview of the subsets identified for modelling a.nd model assessment. We then 

illustrate how we could fit the two-term model of chapter 2 to our chosen subset. 

Our intention is to demonstrate the feasibility of such a model for this type of data. 
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The model introduced here will be used throughout later sections 118 the basis for 

our inspection planning examples. For this account we will not attempt to plan an 

inspection for the entire Site A system, but instead focus on a conceptually more 

manageable subset. Each corrosion circuit can be treated as a contiguous, complete 

unit and can therefore be considered separately. Vve have selected Circuit A to be 

the primary data as the wall loss behaviour within the circuit can be seen to be 

typical of wall loss behaviour throughout the system, but it is also a well observed 

circuit featuring severa.l comportents with multiple observations in tirne, and few of 

the potentially anomalous readings seen elsewhere in the data. A further 12 circuits 

(accounting for approxirnately 40% of the total data) have been selected for use as 

the auxiliary data. These circuits- B, C, D, E, F, G, H, I, .J, K, Land M- have been 

selected to provide a data set containing components with similar characteristics to 

the components of Circuit A. 

The aim of this section is to construct an example based on the properties of a 

real world system for which we can then propose an inspection plan designed using 

a rational method. As such, the primary objective of our data analysis will be to 

ensure that the initial values we will specify for the model are of a similar order 

of rna.gnitucle a.s is seen for those quantities in the data set, rather tha.n to provide 

exact parameter estimates. 

3.4.1 Primary Data - Circuit A 

Circuit A will be treated as our system. Circuit A consists of 46 distinct fea­

tures and 73 welds, as depicted in Figure 3.3. We will restrict our model to the 

observed components. In general, components do not have to have been observed 

to be modelled, but in this situation we have no available data for the unobserved 

components, hence the need for this restriction. Figure 3.3 also provides us with the 

available spatial information for Circuit A, which tells us about the connectivity of 

components, but not the physical scale or even relative proportions of components. 

The componertts of Circuit A belong to 7 different component types, sun1r.na,rised 

in Table 3.1. The division of the components into different material types, pipe 
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Component Type Component Type Code Frequency 

Wellhead KeyPoint(2) 11 

Bend (small radius) Bes 8 

End Cap Cap 1 

Straight Str 6 

Weld Weld 13 

Tee, equal sized TEQ 1 

Branch connections KeyPoint(4) El 

Table 3.1: Component type summary for Circuit A 

material codes (PMC) and piping schedules is shown in Tables 3.2. The continuous 

variable informa.tion is summarised in Figure 3.4 in which the lower plot shows the 

spread of the initial wall thickness values and the upper plot shows the spread of the 

pipe diameter variable. The model components are numbered in the order in which 

they appear in Circuit A. The PToduct, Confidence Rating and Cornmissioni.nq Date 

variables take the same value for a.ll co.mponents witb.in Circuit A, these are the level 

P, Medium and 18/11/1978 respectively. These a.re all common levels of the Product, 

Confidence Rating aJld Commissioning Date variables seen frequently in the data 

set a..s a whole. Tb.e adjacency rnatrix Adj , is shown in. Figure 3.5, where nearer 

components aJ'e denoted by blues and and red colours represent large distances be­

tween components. ace', the adjacency vaJue between components c a.nd c' is defirted 

to be the number of component boundaries we cross in moving between component 

c and c'. Under this system if c = c', ace' = 0, and if c and c' are immediately next 

to each other ace' = l, aJld so on. 

The number of components experiencing wall loss within Circuit A is 40, there­

fore the value of n in our system model is 40. So to set-up a model for Circuit A we 

will need to define and verify 40-vectors .:!:o, go:0 for the initial wall thickness values 

aJld wall loss rate (WLR) values. We will also need to define and validate the 40 X 40 

variance/ covariance rnatrices )~ex, 2.~c" for th.e correlated DLM evolution deviations 

and ~( for the local variation terms. For this process we will use the auxiliary data 

set. 
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' . 
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Nominal walllhickness(mm) 

Figure 3.4: Boxplots of Nominal Wall Thickness and Pipe Diameter variables for 

Circuit A 
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Figure 3.5: Distance (adjacency) matrix for modelled Circuit A components 
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Material Frequency 

1 17 

2 29 

Pipe Maintenance Code Frequency 

1 17 

2 29 

Piping Schedule Frequency 

PS2 9 

PS3 29 

PS1 8 

Table 3.2: Categorical variable summary for Circuit A 

3.4.2 Auxiliary data 

The auxiliary (or training) data set consists of the information relating to circuits 

B, C, D, E, F, G ,HI, J, K, L and M. In total, this gives us information for 2009 

different components, observed 2728 times during the time frame covered by the 

data. However, analysis of the data reveals that a key feature of the data set is 

the large number of components in which no wall loss has been recorded. Of the 

2009 observed components, there are 1166 components in which the observed wall 

thickness value never falls below its initial value, and 843 in which some wall loss 

is observed. This is a pattern reflected over the entire Site A data set, in which 

approximately 64% of components have no recorded loss in wall thickness. As we 

are mostly interested in modelling the behaviour of components experiencing wall 

loss, the number of components showing no wall loss in Circuit A is considerably 

lower than this typical value (6 of 46). However, consistency with this value was 

harder to achieve with the much larger auxiliary data set. Due to the large number 

of components with a wall loss rate ( WLR) of 0 we choose to treat the data set as 

2 groups: the subset of components in which W LR = 0, and the subset in which 

WLR> 0. 

The levels of the categorical variables represented in the W LR > 0 subset of the 
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Component Type Component Type Code Frequency 

Wellhead KeyPoint(2) 47 

Bend (small radius) Bes 40 

End Cap Cap 17 

Straight Str 48 

Weld Weld 106 

Tee, equal sized TEQ 8 

Branch connections KeyPoint(4) 8 

Others 569 

Table 3.3: Component type summary for Auxiliary Data 

auxiliary data are given in Tables 3.3 and 3.4. As can been seen here all the values 

taken by these variables in Circuit A are well represented in the auxiliary data set, 

with the exceptions of the T-joint and End Cap, which are not well represented in the 

data. The Branch Connections variable is also under represented in the W LR > 0 

subset of the auxiliary data. This is because a large number of these components 

have no recorded wall loss values. The large number of 'other' PMC levels seen is 

due to the large number of PMC levels ( 45) found in the Site A data set. 

To help establish which variables should be treated as characteristics involved 

in determining wall loss behaviour we examine whether or not there are significant 

differences between the zero and nonzero subsets of the auxiliary data. Figures 3.6 

- 3.9 show the number of components belonging to each subset for different levels 

of the categorical variables Component Type, PMC, Material and Piping Schedule. 

The number of components we would 'expect' to see in each of these groups is also 

displayed. We make the assumption that if there is no difference between the levels of 

the categorical variables the ratio of components belonging to the zero and nonzero 

W LR subsets will be the same as that seen in the whole data set. Approximately 

64% of components in the Site A data set belong to the subset experiencing no 

wall loss (the W LR = 0 set) , so we would expect to see approximately 64% of the 

components for each categorical variable belonging to the W LR = 0 subset. Under 

this hypothesis any significant deviations from this ratio tell us that a variable level 
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Material Frequency 

1 547 

2 107 

Others 186 

Pipe Maintenance Code Frequency 

1 43 

2 49 

Others 751 

Piping Schedule Frequency 

PS2 26 

PS3 520 

PS1 41 

Others 256 

Product Frequency 

p 192 

Others 651 

Table 3.4: Categorical variable level summary for Auxiliary Data 
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Figure 3.6: Members of zero/nonzero subsets displayed by component type 

may be associated with a components wall loss behaviour. 
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There are considerable differences between the observed and the expected values 

for some of the levels of each of these categorical variables. The lack of consistency 

displayed across the different levels, with some following the expected pattern very 

closely and others deviating greatly, indicates that it is reasonable to assume that 

the illustrated variables do play some role in determining a components wall loss 

behaviour. That is, the subset to which a component belongs is not independent of 

the values it takes for the variables Component Type, PMC, Material and Piping 

Schedule. 

The significance of these deviations can be tested using a x2 test, the results 

of which are displayed in Figure 3.10. Figure 3.10 plots the x2 values for each 

level of the variables in question. The three black lines indicate .95, .99 and .999 

significance levels for a x2 test on one degree of freedom. Many of the differences are 

not significant. However, there is at least one very large value associated with each 

variable, suggesting that the variables Component Type, PMC, Material, Piping 

Schedule and Product at least have a role in determining whether or not wall loss 

initiates within a component, if not in influencing the rate of wall loss . 
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Figure 3.8: Members of zerojnonzero subsets displayed by Material type 
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3.4 .3 Regression Analysis 

To further test which variables we should regard as important characteristics in 

our model we conduct a regression analysis on the W LR > 0 subset of the auxiliary 

data. We build a model using the following variables: 

1. Component Type 

2. PMC 

3. Material 

4. Piping Schedule 

5. Pipe Diameter 

6. Nominal Wall Thiclmess 

7. Commissioning Date/Inspection Date (i.e. Age) 

8. Confidence Rating 

9. Criticality 

These are the variables from the Site A data set we consider to be relevant to 

the wall loss process, rather than the observation process, which will be of limited 

importance in determining wall loss behaviour. The difficulties posed by this set of 

variables for regression stem from the different types of variables we have. Variables 

5-7 are continuous and can therefore be used without alteration. Variables 1- 4 are 

categorical and will therefore have to be coded into the regression model as dummy 

variables, i.e. a categorical variable v with Nv levels will first have to be converted 

into Nv -1 0-1 valued variables. We also have the ordinal variables, Criticality and 

Confidence Rating. We choose to model these as categorical variables. Ultimately, 

this gives us a set of predictor variables Xreg consisting of 46 dummy variables and 

3 continuous variables. 

The response variable y is defined to be the percentage wall loss at time of 
-reg 

inspection. We choose this quantity as it allows us to put our response variable 
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Model fitted Adjusted R2 value 

All variables 0.4072 

All except Component Type 0.3461 

All except PMC 0.3788 

All except Material 0.4082 

All except Piping Schedule 0.4040 

All except Pipe Diameter 0.4071 

All except Nominal Wall Thickness 0.4077 

All except Age 0.3959 

Component Type, PMC and Age 0.4005 

Table 3.5: Adjusted R2 values for regression model fit for use in variable selection 

on the same scale for all components. Components have a range of different wall 

thicknesses, so suffering a loss of lmm may be severe wall loss for some components, 

but relatively minor damage for another component. Using percentage wall loss we 

can compare directly across components. y is defined as: 
-reg 

_ 1 _ !i'l:.ins 
'l!..reg- WT 

--nom 

where WTins is the vector of wall thicknesses at inspection and WT nom is the vector 

of nominal (or initial) wall thickness values. We then perform a linear least squares 

fit of the predictor variables Xreg on toy . To assess the importance of each variable -reg 

we then refit the model omitting each variable in turn. For the categorical variable 

we omit all dummy variables associated with the original categorical variable. We 

compare the model fit using the R2 statistic representation of residual error. The 

results are shown in Table 3.5. 

The reduction in the R 2 statistic when the variables Component Type, Age and 

PMC are taken out of the model indicates that these are relatively important vari­

ables in determining wall loss behaviour. Indeed, if we fit a model based solely 

on these terms we obtain an R2 value of 0.4005 - almost the same as that of the 

full model. However, it is also clear that there is considerable residual error in the 

model. The lack of fit can be partially explained by the fact that our set of y val-
-re9 
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ues are based on measurements taken with error. Therefore in addition to the error 

caused by lack of fit of the model, the R2 values are also affected by the influence of 

measurement error, so the true error for the regression model in predicting actual 

percentage wall loss values is lower than that which is observed. 

A further potential problem with the preliminary model is that it overlooks the 

initiation phase. The modelled values are based on percentage wall loss values at 

time t in components which we know experience wall loss at some stage. By using 

Age as our time predictor, we fail to take into account at which point a component 

begins to experience wall loss. To address this we fit a second regression model 

based on the Component Type and pipe material code (PMC) variables, in which 

the response variable, y 
2

, values are defined to be the change in wall thickness 
-reg 

between two points on a component which has already shown evidence of wall loss. 

That is, the difference between wall thickness (WT) readings at t + k and t, given 

that the wall thickness reading at t is less than the Nominal Wall Thickness value 

for that component. 

1Lre92 = WTt+k- WTt V k 2:: 1 

This definition removes the dependence of our data y 
2 

on the Nominal Wall 
-reg 

Thickness variable, present in the first regression, so Nominal Wall Thickness should 

be brought back into the predictor set. As it is a continuous variable, this is a 

simple process. The time predictor Age is redefined to be equivalent to the value 

of k, the number of time steps between observations. We aim to model change in 

wall loss between observations as a function of Component Type, PMC, Nominal 

Wall Thickness and time between inspections. The predictor set can be written as 

a matrix, Xreg2 in which each column corresponds to a variable shown in Table 3.6. 

The model takes the form: 

Y = bTX 2+e -reg2 - reg - (3.1) 

where Q. is the vector of coefficients (Table 3.6) obtained via linear least squares fit 

and§. is the residual (error) vector. The levels of the Component Type and PMC 

variables which are poorly represented (fewer than 10 observations) in the predictor 

set are modelled as part of the intercept. The value of the adjusted R2 statistic for 

this model, and the models resulting from leaving out individual variables are shown 
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Column in Variable Regression 

Xreg2 Coefficient (bi) 

1 Intercept 1.2445 

2 Bend (small) 0.3129 

3 Cap 1.2645 

4 Straight 0.2003 

5 Weld -0.5229 

6 Reducer -0.8968 

7 Key Point (9) 0.3482 

8 PMC2 -0.5037 

9 PMC3 0.0585 

10 PMC4 -0.1938 

11 PMC5 -0.2929 

12 PMC6 0.1146 

13 PMC7 1.0571 

14 Age -0.1834 

15 Nominal Wall Thickness -0.1620 

Table 3.6: Variables and their associated coefficients for second regression model 

in Table 3.7. These indicate an improvement in model fit. 

The model structure of (3.1) mirrors the model for the minimum underlying wall 

thickness value, llit, given by (2.20) in chapter 2: 

mt = !ft + ft (3.2) 

where ift is a trend term and ft is a vector of deviations from the trend. Similarly 

in (3.1) we have: 

Y - bTX +e -reg2 - - reg2 -

in which !lXreg2 models the expected change in wall thickness between observations 

and§. measures the observed deviation from this trend. As such, we will use the 

fitted regression model to inform our initial beliefs about wall loss rate, and the 
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Model fitted Adjusted R2 value 

Initial regression model 0.4005 

All variables (Second regression) 0.4632 

All except Component Type 0.4329 

All except Pipe Maintenance Code 0.4432 

All except Nominal Wall Thickness 0.4150 

All except Age 0.4237 

Table 3.7: Adjusted R2 values for second regression model fit 

Figure 3.11: Distribution of residuals 

residuals ~ to learn about the order of magnitude of the local variation term. We 

will describe fitting the model in detail in section 3.5. 

If we consider the distribution of the residuals (see Figure 3.11), we notice there 

is a considerable positive skewness. This indicates that the regression model will in 

general predict greater wall loss than is observed. This skewness in the data can 

be expected as a result of the nature of our response variable. We are considering 

minimum wall thickness readings, and fitting a linear regression model, consequently, 

skewness should be expected in the distribution of the residuals. However, the lower 

tail of the distribution is very long, and these values represent where the model has 

underestimated the extent of wall loss. As can be seen from Figure 3.11, when the 
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wall loss is particularly extreme, the residuals become relatively very large meaning 

the model is likely to be very inaccurate. 

The regression analysis highlights the importance of the Component Type, PMC, 

Nominal Wall Thickness and Age variables, which we now discuss in greater detail. 

Component Type The Component Type variable contains information which 

tells us about the structural design of a component. This is a fixed variable which 

will not change throughout the life of the component. The component type cannot 

be changed without changing the component. Component Type is a categorical 

variable with 22 levels. 10 of these levels belong to the set of Key Points. Unlike 

other levels of the component type variable, Key Points are not defined by their 

physical characteristics, but are instead registered as points which it is important to 

inspect. We can recover the meaning of the Component Type variable by grouping 

together Key Points which share the same design to form new levels of the variable. 

These new levels are labelled Key Point (i) for i = 0, ... , 9 and are treated in the 

same way as the original levels. 

Despite the poor fit of the initial regression model, the Component Type variable 

could be seen to be influential, and the difference plots (Fig. 3.6) highlighted there 

were particularly unusual patterns for the levels of the variables which occur in the 

modelling Circuit Circuit A. Therefore Component Type will be used in constructing 

our model inputs. 

When we consider the plot of residuals of the regression model fitted against 
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Figure 3.13: Residuals plotted by PMC level 

81 

their component type values (Figure 3.12), we can see that in general the spread 

of the distribution remains around the same order of magnitude for those variable 

which have been well observed. 

PMC The Plv!C (pipe material code) variable describes from what the compo­

nent is built. We know that all components are effectively a form of carbon steel, 

but this variable allows us to distinguish between different types of treatments and 

linings which have been applied to the steel. This is also a fixed variable which 

will not change its value unless the component is changed. There are 45 different 

Plv!C levels taken by components within the Site A data set, each well represented. 

Consequently, by the time we have restricted ourselves to considering corroding com­

ponents which have been observed at least twice - a necessary condition for being 

able to estimate wall loss rate using our model - the amount of available data is not 

that large (see Table 3. 13). 

However, we can see from the regression modelling that PMC is an influential 

factor in determining wall loss behaviour, and so we will be using it to help determine 

our initial corrosion rate values. The residual plot for this variable indicates there 

are noticeable changes in variation between the well observed variable levels, with 

certain codes behaving in a much more predictable fashion than others. 

Nominal Wall Thickness Nominal Wall Thickness is a continuous variable 

which tells us the initial wall thickness value for a new component. The Nomi-
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Figure 3.14: Residuals plotted against Nominal Wall Thickness 

nal Wall Thickness values range from 3.9lmm to 35mm and are required in the 

model to describe the scale information. The residual plot (Figure 3.14) indicates 

that the wall loss behaviour becomes less predictable as Nominal Wall Thickness 

increases. 

Product It is reasonable to assume that the Product variable may be an influential 

variable. However, because all components in Circuit A are involved in the same 

production process, the effect of this variable will not be built into the model. 

In a more detailed model, it would be reasonable to consider the effects of the 

interact ions between the descriptive variables. In our case, we are restricting our­

selves to producing a model which is of the conect order of magnitude, and based on 

clear trends in the auxiliary data, as our main objective is to provide a procedure for 

solving the inspection planning problem. For any detailed application, in which one 

was intending to apply the methods in practice, a more involved modelling strategy 

should be used which would take into account the full range of subtleties introduced 

by the complexity of the system. 

\Ve have seen that factors relating to a components design (Component Type) and 

construction (PMC) show evidence of influencing wall loss behaviour. Component 

age at inspection was also highlighted as a relevant factor by the regression. These 

were factors identified as potentially influential by the expert judgement. A more 

detailed analysis would allows us to determine exactly how influential each of these 

factors would be in fixing the wall loss rate for a particular component. Each of 
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these will be built into our model for the wall loss. The key aspect of estimating 

our model parameters will be determining the rate of wall loss, and the relationship 

between the wall loss rates of different components. 

3.5 Illustrative model, based on the Site A data 

The model will initially run over the time frame for which we have observations, 

which for Circuit A means 12/6/1998 to 08/04/2004. Each time step will be of length 

6 months and no distinction is made as to which point within a time step observations 

are made. We will start our model with the half year beginning 01/07/1998, giving 

us a total of 12 time steps until the end of the data period in 2004. The dates 

corresponding to each time step are shown in Table 4.1. Time step t = 0 represents 

our initial belief state. We use any observations from this period to quantify the 

initial wall thickness values. All time steps referred to when discussing this model 

can be assumed to be of length 6 months. Similarly, all wall loss rates are given 

as their 6 monthly rate, i.e.the amount of wall loss we expect to occur in a single 

model time step. 

3.5.1 Parameter assessment 

Our objective is to fit an illustrative model for the purposes of demonstrating 

the inspection planning procedure. However, we still wish to fit a model which 

possesses similar characteristics to the real system, and behaves in a superficially 

similar fashion. vVe therefore use the auxiliary data to provide us with a guide to the 

scale of the quantities we want to model, rather than to estimate quantities directly. 

Clearly if such a process was to be implemented in practice, the model fitting stage 

would require a great deal more attention, but, for the purposes of this account, a 

model which has similar order of magnitude behaviour will be sufficient. 

We first obtain values for our initial wall thickness values~· We have readings for 

15 of the 40 corroding components at t = 0 and for these components we simply use 
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Nominal Wall Estimated Mean Standard Deviation No. of 

Thickness Percentage Wall Loss of estimate Observations 

NWT::::.; 7.2 0.0771 0.0228 23 

7.2 < NWT ::::.; 12 0.1492 0.0283 12 

12 < NWT ::::.; 18 0.0495 0.0156 11 

18 < NWT 0.0364 0.0290 10 

Table 3.8: Mean Percentage wall loss at t = 0 

these readings as our initial values. However, the remaining 25 values are calculated 

based on the typical wall loss behaviour seen at this time point in the auxiliary data 

set. The auxiliary data set contains 169 measurements taken during the t = 0 time 

step, of which 58 belong to components which are either experiencing wall loss at 

t = 0 or will go start suffering wall loss before t = 12. The percentage wall loss 

seen in the corroding components at time 0 has mean 0.0799 and variance 0.0102. 

The small number of observations means that considering any further breakdown of 

this subset into component types or materials offers little meaningful information. 

However we can split the data into groups by Nominal Wall Thickness, the results are 

shown in Table 3.8. The standard deviations of these estimates are generally large, 

relative to the estimated means, indicating that relying on the mean estimates may 

not be reasonable (Figure 3.16). If we consider the distribution of the percentage 

wall loss observed in components at t = 0 (Figure 3.15), we can see there is a heavy 

skew to the right, with a large number of components experiencing less than 5% 

wall loss. Given this information, it would be unsuitable to use the mean estimate 

(of 7.99%) to predict how much wall loss we can expect to have taken place at t = 0. 

Instead, we group the wall loss at t = 0 into three categories: no wall loss as yet, 

moderate wall loss and severe wall loss. We estimate the unknown~ values as: 

Xc = (1- 1fc)WTrwm 

where 

~, I 0 with probability 0.45 

I 0.08 with probability 0.33 

0.27 with probability 0.22 
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Figure 3.15: Distribution of W LR values of corroding components at t = 0 
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and the three values correspond to each of the wall loss states. These values are 

estimated from the auxiliary data, as are the probabilities of belonging to each group. 

Which group a component belongs to will be decided at random. [Expectation and 

variance of this constructed distribution are .0858 (against .0799 from data) and 

.0108 (against .0102).] 

More data is available for the assessment of the wall loss rate. Our assumption 

that once wall loss has initiated, it continues at an approximately constant rate 

allows us to use data between any pair of observations for the same component. 

The rate of wall loss typically seen over the levels of the variables found in Circuit 

A is shown in Figure 3.16. These W LR values are calculated from the data as: 

for all components in which the wall thickness (WT) is measured at least twice. 

This is a similar quantity to that which we were using as the response variable in 

our regression analysis. Therefore it seems reasonable to make use of the regression 

model here. We use the model described earlier to predict our initial trend values 

based on the Component Type, pipe material code PMC and Nominal Wall Thick­

ness variables. The Age will always be 1, as we are interested in predicting the half 

year rate for a component. For example, if we consider component 27 in Circuit C. 
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Variable Level 

1 Component Type Key Point(2) 

2 Component Type Bends (small) 

3 Component Type Cap 

4 Component Type Straight 

5 Component Type Weld 

6 Component Type Key Point ( 4) 

7 PMC 1 

8 PMC 2 

9 Piping Schedule PS2 

10 Piping Schedule PS3 

11 Piping Schedule PSI 

12 Nominal Wall Thickness NWT ~ 4.6 

13 Nominal Wall Thickness 4.6 < NlVT ~ 6.4 

14 Nominal Wall Thickness 6.4 < NvVT ~ 7.2 

15 Nominal Wall Thickness 7.2 < NWT ~ 12 

16 Nominal Wall Thickness 12 < NWT ~ 18.2 

17 Nominal Wall Thickness 18.2 < NWT ~ 18.3 

18 Nominal Wall Thickness 18.3 < NWT 

19 ALL ALL 

Table 3.9: Key to variable levels in Figure 3.16 
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Figure 3.16: Mean wall loss rates for different variable levels,± 2 standard deviations 

This is a weld, with pipe maintenance code (PMC) 2 and nominal wall thickness 

18.3mm. For this component, our predictor vector would be: 

Component:I'ype N ominalWallThickness 

X 27 = [1 0 0 0 1 0 0 ~~ J:8.3' ]' 
Plv!C Age 

and we would obtain our prediction for CYco for c = 27 from: 

CYco = Q.'X27 = -2.9298 (3.3) 

where Q is the vector ofregression coefficients given in Table 3.6. A rate of -2.9298mm 

per half year would be assigned to component 27 of Circuit C. This is a particularly 

high rate of wall loss, but if we consider the time series of observations made on 27 

(shown in Figure 3.17), we see that this component is prone to large drops in wall 

thickness over short time periods. The anomalous upward jumps in wall thickness 

could be a consequence of changes in measurement policy between observations, or 

component replacement, or measurement error. However, this is difficult to confirm. 

The initial wall loss rate values for Circuit A, and the variable information on 

which the calculations are based are shown in Tables 3.10 and 3.11. 
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Figure 3.17: Time series of observations for component 27 

3.5.2 Local Variation 

The local variation term ft of our model is controlled through the variance matrix 

~(· The value of ft for a given component c is defined to be the minimum of se 

independent sums oft independent draws from a Normal population N(O, O"~c). For 

an n component system the matrix ~( is constructed as the diagonal n x n matrix in 

which the (c, c)-th element is O"~c· For simplicity of specification, we will not evaluate 

a value for all n components, but rather use a single estimate for the influence of 

local variation based on the regression residual values. 

To assess the order of magnitude of the local variation matrix ~(, we have to 

consider the differences between what we would expect to happen if there is no local 

variation and what is observed in the data. The regression modelling provides us 

with a means of considering a related quantity in the form of the residuals. To relate 

the residual error to the local variation term we use the following procedure: 

1. Identify a set of components (in the auxiliary data) which are observed at 

t and again at t + k. These components should be sufficiently far apart to 

minimise spatial interaction effects. 

2. Extract the resid uals (ft,t+k) for this subset from the full residual vector (.~.). 
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Component Component PMC Nominal Wall llco 

ID Type level Thickness 

1 Bes 2 23 -2.4188 

2 KP2 2 18.24 -1.6323 

3 Bes 2 23 -2 .1488 

4 Bes 2 23 -2.1488 

5 KP2 2 18.24 -1.6323 

6 Bes 2 6.35 -0.2605 

7 Bes 2 18.24 -1.6528 

8 TEQ 2 23 -2.4875 

9 Cap 2 18.24 -0.6816 

10 Str 2 13.49 -0.9962 

11 Str 1 13.11 -0.7874 

12 Bes 1 13.11 -0.6796 

13 Str 1 13.11 -0.7874 

14 Bes 1 18.24 -1.5051 

15 Str 1 23 -2.3788 

16 Bes 2 23 -2.1488 

17 KP2 2 18.24 -1.6323 

18 KP2 2 18.24 -1.6323 

19 KP4 2 4.78 -0.4444 

20 KP2 2 18.24 -1.6323 

Table 3.10: Variable information for Circuit A 
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Component Component PMC Nominal Wall a eo 

ID Type level Thickness 

21 KP4 2 8.74 -0.1928 

22 KP4 2 8.74 -0.1928 

23 Weld 2 6.35 -0.5863 

24 Weld 2 6.35 -0.5863 

25 KP4 2 7.10 -0.0711 

26 KP4 2 7.10 -0 .0711 

27 KP4 2 4.78 -0.4444 

28 KP2 2 18.24 -1.6323 

29 KP2 2 18.24 -1.6323 

30 Weld 2 4.78 -0.3337 

31 ·weld 2 8.74 -0.9709 

32 Weld 1 13.50 -1.5892 

33 Weld 2 7.14 -.07135 

34 Weld 1 13.50 -1.5892 

35 Weld 1 5.56 -0.3115 

36 Weld 1 5.56 -0.3115 

37 Weld 1 13.50 -1.5893 

38 Weld 1 13.50 -1.5892 

39 Weld 1 5.56 -0.3115 

40 Weld 1 5.56 -0.3115 

Table 3.11: Variable information for Circuit A 
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Figure 3.18: Distribution of residuals 

3. Calculate the value for model local variation (aD which would have produced 

the observed residual variation. 

4. Check scale of 8"~ against estimates from other sets. 

Three suitable subsets of observations were identified. These are the subsets of 

components observed at times 7 and 12, 7 and 13 and 4 and 7. A large number 

of components were observed at time step 7, of which some were observed again at 

time point 12 and some at time point 13. The subsets have been constructed so 

that components observed at time step 7 and then again at time points 12 and 13 

only appear in one of the 7 - 12 or 7 - 13 subsets. The distribution of residuals in 

these subsets is shown in Figure 3.18. 

The variance we are interested in learning about is not immediately related to 

the variance of the residuals. The residual variance is telling us about the variability 

we expect to see in the difference between observed wall thickness values at known 

time points. In our model this would be written (for a single component) as: 

- -
Wt+k- Wt = 
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Figure 3.19: Identifying appropriate standard deviat ion values for the local variation 

term 

We are interested in the behaviour of (ti· We have information for the approximate 

scale of the measurement error (~t) , so we need to know what value of 0"2 would 

produce a similar level of variation as that observed in the residuals. A simulation 

study allows us to obtain estimates for the level of variability in the quantity Wt+k-Wt 

expected for different values of 0"2 , and hence obtain a most likely value for O"Z. It is 

necessary to repeat this simulation for each different pair of time steps considered. 

We generate realisations of the value of the quantity Wt+k - Wt for a given 0"2 

by simulating draws s from the Normal populations N(O, t0"2 + O"D and N(O, (t + 
k)0"2 +O"D . We then take the difference between the minima of these two samples as 

a realisation of Wt+k - Wt. We repeat this process a large number of times and take 

the variance of our sample as an estimate for the variance we would expect to see 

for our given value of 0"2- We then repeat this for many different values of 0"2- From 

this simulated data we can identify the value of a2 that lies closest to our observed 

variance. 

Using this procedure we obtain estimates for the value of a2 for each of the sets 

to be as shown in Table 3.12 (see also Figure 3.19). 

There is a similarity between the values taken for the 4 - 7 and 7 - 13 subsets. 
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Subset Residual variance A2 
O'c; 

4-7 1.0891 .2750 

7- 12 1.0588 .1547 

7- 13 2.1099 .2968 

Table 3.12: Order of magnitude estimates for 0'~ 

If further data were available , it would be possible to assess whether there is any 

reason for this similarity, or if it is simply a chance occurrence. The observed residual 

variance value for the 7- 12 subset seems small with respect to the other two values, 

but given the lack of available information (sample sizes are between 20 and 34), we 

would expect variation. We would expect the variance of the residual to increase the 

further apart measurements are taken in time, so the fact that the variance of the 

residuals in the 7 - 12 subset is slightly smaller than that of the 4 - 7 subset makes 

us suspicious of that value. Given our concerns about the validity of the variance 

for the 7- 12 subset, the similarity of the values for the two sets, and the absence of 

further data to allow greater clarification, we choose our value by drawing it from 

the Normal population N(.285, .03752
). This is in line with the data, and is set to 

be smaller than the typical variance of the global term, so that the correlated global 

term dominates, which should produce more interesting decision problems. 

3.5.3 Spatial effects 

The spatial information available to us for Circuit A, is also available for the 

circuits which mal<e up the auxiliary data. Testing for spatial association over the 

entire data set would be impractical, so we instead focus on the spatial association 

between components of some of the smaller conosion circuits in the auxiliary data 

- B, C and E. We have suitable observational data (i.e.a time series of at least two 

points with no increases in wall thickness) for 16 points for B, 23 points for C and 

10 points for E. As stated previously, the schematic diagrams for the circuits are 

topologically accurate, but offer no information on scale or actual location of an 

individual circuit. We have no physical measure of distance, but we can ascertain 
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where components are placed in relation to each other, so we use adjacency as 

our measure of space. The adj acency matrix, Aajc (for Circuit C) is defined as 

previously and illustrated in Figure 3.21. 

We test for spatial association by calculating the correlation between all com­

ponents a known distance from each other. We begin by evaluating the correlation 

between all immediately adjacent components, the move to components separated 

from each other by an intermediate component, and progressively increase the dis­

tance. As we move further away, observations are pooled due to lack of data, so our 

final groups are assessed as, for example, the correlation between all components 

between 15 and 20 components removed from each other rather than as all compo­

nents separated by 20 components. The effect of distance on correlation for Circuits 

B, C and E is illustrated in Figure 3.22 

These results imply that as we increase the distance between components the 

correlation between their wall thickness readings decreases, eventually descending 

to approximately 0. The relationship between correlation and distance implies there 

may be a spatial pattern to wall loss, and as such it is not unreasonable to base our 

con elation/ covariance structures on distance, as described in section 2. We proposed 

a model for the correlated evolution deviation matrix of the form (2.24) : 

where hk was a characteristic determining wall loss behaviour. In our model these 

will be the Component Type and Pipe Material Code variables. The values of O"hkc 

are equivalent to the variance for a particular level of the variable. These are given 

in Table 3.13 and can be estimated directly from the data. The order of magnitude 

of the covariance between variables separated by equivalent distances has been cal­

culated as part of finding the correlation between the same sets. This provides us 

with a guide to scale we should be restricting to when defining O"hkcc'. The values of 

Thk can be used to achieve an appropriate rescaling. 
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Figure 3.22: Correlation values in Circuits B, C and E against distance between 

components 



8.5. Illustrative rnodel, based on the Site A data D7 

Cornponent Variance No. of 

Type of \IV LR 0 bserva.tions 

KeyPoint(2) 0.0750 5 

Ben.ds (srnall) 0.311.6 23 

Cap 0.0908 7 

Straight 0.0781 20 

Weld 0.2506 51 

TEQ NaN 0 

Branch 0 2 

PMC Variance No. of 

Level of ~VLR Observations 

1 0.3105 20 

2 0.0954 8 

N orninal Wall Variance No. of 

Thickness of \IV LR Observations 

1VlVT ~ 4.6 0.0081 9 

4.6 < NV1lT ~ 6.4 0.0544 11 

6.4 < JVWT ~ 7.2 0.0022 11 

7.2 < .NvVT ~ 12 0.4838 17 

1.2 < JVWT ~ 18.2 0.2044 27 

18.2 < NWT ~ 18.3 0.4742 105 

1.8.3 < .NvVT 0.2624 10 

Table 3.1~~: VVLR varia.nce values by descriptive variable level 



Chapter 4 

Bayes linear updating foi· the 

corrosion model 

Vve are adopting a Bayesian approach to modelling and inspection planning as it 

provides a natural frrunework for the combination of informed expert judgement and 

observed data, both of which we believe to offer valuable infonnation for rnodelling 

wall loss behaviour. In this chapter we discuss how we update our beliefs as we 

receive new data. Section 4.1. considers the wall loss problern ar1.d the necessary 

upda.tes. In section 4.2 we offer an alternative solution to a full Bayesian update 

- the Bayes linear update - and consider its relevance to this problen1. Section 4.2 

discusses the different ways in which the Bayes linear approach could be interpreted 

for the wall loss problem aJ.ld the advru1tages of using Bayes linear methods for 

inspection planning problems. We detail how we will apply the updating strategy 

to our wall loss exarnple (Circuit A), and the i1nplications for our sirnulations in 

section 4.:3. 

4.1 Updating the Model 

The rnodel takes observation values, y_,, defined as in section 2.3.1, which are 
-u.t 

functions of a subset of the underlying true wall thickness values, Y.dt' and an ob-
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4.1. Updating the Model 

servation error ~ z , where each terrn is a vector over cornponents and the locations 
.::..et 

and cornponents to be observed are specified by design d. Recalling the model fonn 

frorn section 2.3.1, an observation for a particular cornponent, c, is defined as: 

vVe \Va.nt to use the observable quantity Yet to learn about the behaviour of Uzct· 

Our rnoclel for U.zct consists of the global trend tenn :rct and the local deviation terrn 

Tzct:, about which we have made certain distributional assumptions (described fully 

in chapter 2). These assurnptions provide us with beliefs about the belu:wiour of the 

underlying true wall thickness U.zct at location l in cmnponent c at tirne t, and it is 

our beliefs about this quantity that we wish to update. 

We will usually observe rnore than one cornponent. The set of observations n1ade 

at a particular inspection are denoted Jl..dt, where '}!_dt is either a vector, containing an 

elernent for each cd c Gel (the set of cornponents included in desigr.t d), or a rna.trix, 

in which each row describes the observations made for component cd, depending on 

the choice of observation function. Vve use the subscript cl as a shorthand for ldcd, 

which would provide a cornplete, but rnore cumbersorne notation. The quant.itv y 
v :?..clt: 

is therefore defined as a vector over cd: 

(4.1) 

where ·u and c are vectors over cd -ldt ?..zdt 

In general, we may want to learn about the relationship between our observations 

and any other function of the underlying wall thickness va.lues. Cornrnonly, this 

function will be the sarne as the observation function, but without rneasurernent 

error. In our case f is componentwise minimisation, and we will be interested in 

the relationship between our observations, yd·, a,nd the true Irtin.imurn wall th.ickness 
- t 

value for each conrponent, rnt, defined as: 

(4.2) 

where Ym is a vector over all c. 
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This relationship can be described by the (posterior) distribution p(IT!~t;l~dt), eval­

uated as: 
p(y_dt I mt )p (rnt) 

p(nttiY ) = _...:::;;:._...,-...,--
-dt p(y ) 

:I..dt 

(4.:3) 

The distributions of p(~Jrr!,t), p('m,t) and p(]:!_dt) will depend on the observatior1 

function f and the measurement error term ~t' in addition to the distributions of 

the rnodel terms, p(!f.t), a.nd p(ru). The model structure gives us the distributions 

for p(!f.t), and p(ru). However, this will not always be straightforward to relate to 

p(y_dt i·mt), p( rrtt) and P(JLu). As discussed for the rniniinisation case in chapter 2, 

the distribution of our observations !Lzt and component rninirnur.n rnt axe difficult to 

write down analytically. Silnilarly, the likelihood function P(ILdtl·m1J for rninirnisation 

is not easy to 'vrite down. Consequently, for the case of choosing component wise 

n1inirnisation as the observation function, .f, we are forced into using a sirnulation 

approach to evaluate the posterior distribution, as we cannot derive any of the 

cornpon.ents of equation. (4.3) a.nalytically. 

\Ve may a.lso be interested in updating our beliefs about individual n10del tenns, 

such as the trend tenn, !f.t or the rninilnum of the local deviation tenns ft· This allows 

us to use new data to learn about rnodel behaviour rather than a particular function 

of the rnodel. This will be useful if we are interested in producing an in1proved model 

for forecasting future wall thickness beha,viour rather than a particular function of 

wall thickness at a given tin1e. The equations for calculation of the relevant posterior 

distributions for these updates are: 

''J (:r; I 'l' ) 
1" -t ~lt 

P(}Ldti~t)P(.£t) 

P(JLu) 
P(~dtif.t)P(f..t) 

p(y_dt) 

(4.4) 

(4.5) 

For the case of the cmnponentwise minimisation we encounter the same problems in 

evaluating the posterior distributions as we had for ( 4.3). Perfonning these updates 

also requires nurnerical/ sinmla.tion 1nethods. 

This is a consequence of the choice of observation function. If the observation 

function is sufficiently sirnple, then it rnay be possible to perfonn full Bayesian 

updates in closed analytic forrn. However, for rnany choices of observation function, 
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f, we will not be able to carry out our updates analytically, and instead ha,ve to rely 

on numerical/siinulation rnethods to evaluate the posterior distributions. 

This reliance on sirnulation rnethods for updating distributions \Vill affect the 

tractability of the inspection planning process. Given that we want to consider 

rnodels for corr.1.plicated systerns with. large nurnbers of cornponents, evaJuating po­

tential benefits for a large nurnber of different inspection designs would becorne very 

tiine consun1ing, as, for each design, we would need to generate rnany san1ples and 

for each such sarnple we rnust evaluate the posterior distribution. by simula,tion.. In 

section 4. 2 we discuss an alternative Bayesian updating approach and review its 

rnerits for inspection design applications 

4.2 The Bayes linear approach 

The Bayes linear approach to updating is a suitable way of handling problerns 

m which beliefs have only been partially specified. rnJ.ese paxtial belief specifica­

tions arise because it is either unnecessary or inappropriate to specify a con1plete 

prior probability density. This could be because our partial belief specifications are 

sufficient to characterise the behaviour of the quantity of interest, or because it is 

felt that assigning a full density to our random quantity is rnaking a rnore definite 

staten1ent about our beliefs than the available information allows. For an overview 

of the rnotivations and principles of the Bayes linear approach see [22]. 

Bayes linear rnethods use expectation as a basis for rnaking quantitative state­

rnents about randorn. quantities instead of probability. A Ba,yes linear prior specifi­

cation consists of the first and second order mornents for the vector of interest, B, 

namely, an expectation, E(B) and variance var(B) for the random quantity. vVe will 

also ha,ve to be able to specify values for the cova.riance structure between our n.u.t­

donl quantity, B, and the observable vector, D. The general fonn of the Bayes linear 

updating equations, for a specifi.c observation, d, when var(D) is positive definite, 

lS: 

Ev (B)= E (B)+ cov (B, D) var--·l (D) [d-E (D)] (4.6) 
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varD (B) = var (B) - cov (B, D) var-1 (D) cov (D, B). (4.7) 

In general, the Bayes linea.r equations adjust our beliefs about a ran.don.t quantity, 

B, linearly, by data, D. B and D can be scalar or vector quantities. To illustra.te this, 

we consider a small exarnple. Suppose we have a collection of 3 related quantities 

B, with current expectation and variance: 

E(B) = [: l 0.8 0.05] 
1 0.2 

0.2 0.2S 

Suppose further that there exists a related observable quantity, D, with expectation 

B(D) and variance var(D): 

whose relationship to B can be characterised via the covariance rnatri...'X, 

[ 
1.5 0.4 -0.3] 

cov(B, D) = 0.4 0.6 0.1 

---0.3 0.1 0.2 

D can be considered as an observation of B made using an inaccurate rneasuring 

tool, or as an observation of a different, but dependent quantity (for exan1ple, an 

individual's height can be used as a predictor of his weight). The covariance matrix 

cov(.B, D) is required to quantify tl.te relationship between the two quantities. 

How would observing a particular realisation, d., of the related observable quan­

tity, D, change our beliefs about B? Assume we observe, 

we can evaluate the adjusted expectation (using ( 4.6)) as: 

E!l (B) = E (B)+ cov (B, D) var-1 (D) [.d-E (D)] 
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[ 

7] [ 1.5 0.4 -0.3] [ 0.5 0 0 l [ ( 8 ) ( 7 ) l 
: + ~~43 ~:: ~:~ ~ 0~8 ~ ~ : 

[ 

8.37] 
4.58 . 

1.73 

V'le can see tha.t the Bayes linear update has acted here to increase the expectation 

for those elernents for which a larger than expected value was observed, and reduce 

the expectation for the elernent in which the observed value wa..s lower than expected. 

Using ( 4. 7) we find the adjusted variance to be: 

[ 

2.657 0.3;)8 

var12(B) = 0.338 0.622 

0.303 0.192 

0.303] 
0.192 . 

0.1.57 

Note that the calculation of the adjusted variance does not depend on the particular 

values of d observed. So given any set of observations in which we see a value for 

each elernent of our collection, D, the value of the adjusted variance, varv(B) will 

be the same. 

Suppose we only see the observations for the first and third eler.nents of our 

collection. To update our beliefs, we identify the parts of va.r(D) and cov(B, D) 

which relate to the observed elen1ents. So for a different set of observations, d, in 

which the first and third elernent.s aJ·e observed, the expectation E(D), variance 

var(D) and covariance cov(B, D) are taken to be: 

E(D) 

var(D) 

cov(B, D) 

[ : ] 
[ ~ ~ ] 

[ 
1.5 -0.3] 
0.4 0.1 

-0.3 0.2 
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These values are defined by identifying and extracting the first and third elernents 

of the full mean vector, the first and third coltunns of the full covariance matrix 

and the values of the full variance rnatrix relating to the first and third elernents. 

Updating for this data, we find: 

and 

varv(B) 

[ : l + [ ~0:3 ~0~3] [ 0;)5 ~ ] [ ( ~ ) c ) ] 
[ 

8.05] 
4.10 

1.65 

[ 

2.785 0.5:30 0.335] 

0.530 0.910 0.240 

0.335 0.240 0.165 

VVe can see that the updated values for this data show silnilar behaviour to those 

of the full update. Our beliefs about the second elernent of B have beer.t updated, 

despite us having not observed it. In cornparison to the results achieved frorn the 

update based on the full set of observations, we have not been able to reduce the 

variance as rnuch, which is consistent with us not having seen as rnuch. 

4.3 Adjusted assessments 

In this section we illustrate the updating calculations vve advocate using the 

Circuit A exarnple. vVe update the rnodel for all available data by perforrr.1.ing a 

sequence of updates based upon the order in which we receive data. For a general 

data set, observed over the tin1e period [0, t], we receive data at times {t1, ... , tw}· 

These data will, in general, be a partial observation of the systern at tirne ti, denoted 

lLzti. Depending on the goals of the update we will either want to learn about the 

underlying rnodel behaviour ( th.rough updating our beliefs about f!ti and lf..ti), or 

learn about the system minima (by updating for rTLtJ. For the initial process of 
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nwdel in1prover.nent, we will be interested in upda.ting 9!.t;i and ~ti, using the Bayes 

linear updating equations: 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

This requires us to have values for var(~u)' cov(:f.dti, 'JLlt) , cov('~dti, 9!.dtJ, plus the 

initial expectations ar.td va.r.i.a.nces for !£dti (E(;sltJ and var(&uJ) and 9!.dti (E(g_dtJ 

and var(~tJ). VVe obtain assessments of these quantities by simulation. Using the 

process described in section 2.8, and the initial conditions obtained in section 3.5, we 

sirnulate 8 realisations of the systen.t for the thne interval [Cl, t+k], where [Cl, tJ covers 

the period for which data are available and ( t, t + k] is the period into the future we 

wish to consider. VVe can then use the sirnulation output to provide assessrnertts of 

the required quantities, and thus carry out our updates. 

The siinulations provide 8 realisations based on our initial beliefs for all inspec­

tion tirnes ti. That is, S values of each rnodel terrn we want to update, :f.t and Qt, 

and S realisations of our system observations, '}l_ti. This sirnulation output can be 

used to provide assessrnents of the covariances between the observations and th.e 

underlying rnoclel terrns, as described in section 2.8. 

Vve are interested in updating our beliefs about the underlying model at time 

t, tl.1.e final point for wh.icl.1. we h.a.ve data. Therefore we rnust assess the values of 

the covariances between the observations in the components for which we have ob­

servations and the system. level at tirne t, cov(f.u ~t). Sirnilarly, we must a..ssess 

the covariance between our observations and the systen1 slope, at tilne t, cov(g_t, 

'}l_dti). It is also necessary to provide an assessment of the variance n1atrix of the 

observations, var(y J .), which describes the extent of the variatior.t for a particu-
-<l·t~ 

lar observation and also the relationships between the different observations. The 

process can be surnmarised as follows: 

1. Sin1ulate S realisations of the systen1 from time 0 to time t + k, using initial 

sinrulation conditions as described in section 2.8. 
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2. Obtain assessrnents of the necessary expectations, E(g'IJ, E(.f.t) and E(ILdt)' a,s 

the vector with elements defined as: 

8 
T?( ) _ I:k=l Q;ctk 

. C.t C~ct ---· 8 ' 
8 

E( ) I:k=l ~Cctk ,,. - \• . 
· "'et ---· S , V c 

3. Assess values of the required variance/covariance matrices var(gt), var(.f.t), 

var(~u) ), cov('fLdti, g_t) and cov(ILdti, !:ft) as the rnatrices with (j, j')-th elernent 

defined to be: 

(4.1.2) 

where z~7 , vj represent the pair of variables under assessment. 

4. Calculate Ey (!:ft) and Ey (.gt) using (4.8) and (4.9). 
-dti -dti 

.5. Calculate varJl.dti (!ftJ and var~ti (g_t) using (4.10) and (4.11). 

4.3.1 Data for Circuit A 

vVe wish to update Circuit A for all available data using the procedure outlined 

above. Circuit A is a corrosion circuit cor1sisting of 40 corrodir1g cornpon.ertts, 6 

non-corroding c01nponents and 73 cornponents for \vhich there· is no data. vVe are 

rnodelling wall loss behaviour in the 40 corroding cmnponents using a dynamic linear 

model with tirne steps of length 6 rnontlts. Our model starts running at 01/01/98 

at steps in half yearly intervals to 01/01/04 (see Table 4.1). We have observational 

data for Circuit A taken during tiJne steps {5, 9, 10, 11, 1.2}. In total there are 46 

observations a.nd every corroding cornponent is observed at lea .. st once. B'ull details 

of Circuit A and the wall loss rnodel for this exaruple are given in section 3A and 

section 3.5. 

\Ve are interested in updating our beliefs about the expectations and variances of 

.f.t and g_t. t is taken to be equivalent to the final point for which real inspection data 

are available, which for this exarnple is t = 1.2. Tb.ese adjusted belief specifications 
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Time Step Start Date End Date 

0 01/01/1998 30/06/1998 

1 01/07/1998 31/12/1998 

2 01/01/1999 30/06/1999 

3 01/07/1999 31/12/1999 

4 01/CH/2000 30/06/2000 

5 01/07/2000 31/12/2000 

6 01/01/2001 ~30 /06/2001 

7 01/07 /20()1 31/12/2001 

8 01/01/2002 30/06/2002 

9 01/07/2002 31/12/2002 

10 01/01/2003 30/06/2003 

11 01/07 /200~~ ~H/12/2003 

1.2 01/CH/2004 30/07/2004 

Table 4.1.: 1\1odel Tirne Steps 

will then be used in subsequent sinmlations as our best estirnates for the true values 

of .f.12 and fh2 . Ideally, we would also like to improve our estimates for the covariance 

structures )~x and ~a through upda,ting. However, this is a, rnore involved process 

than updating for expectations, requiring us to construct our sin1ulation differently, 

a,nd store different information in the sinmlation output. (69], (68] provide a rnethod 

for updating covariance structures using Bayes linear Inethods, but for this thesis we 

lilnit ourselves to updating expectations, as this will fonn the basis for a tractable 

inspection rnethodology for large systems. 

The observational data liciti for Circuit A are shown in Figures 4.1 - 4.5. Each 

plot shows the value of the observed data (and which components were observed) 

at a different observation tirne. The observed data (y l .) are rnarked as red circles. 
"'--lit 

The black line shows the initial wall thickness values for each component and the 

green lir1.e shovvs the expected value of y t·· according to the rnodel. These points 
-Cl.i 

are 1narked with a grey area indicating a distance of 3 standard deviations either 

side of the expectation. These indicate the plausibility of the observations given the 
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Figure 4.1: Observational data for t = 5, plus simulated expected range for obser-

vat ions 

model. We assume components to have been lOO% observed and the minimum wall 

thickness value recorded . This assumption cannot be verified from the available data, 

but is assumed to be a plausible assumption aLout the nature of the observation 

procedure. 

4.3.2 Estimating the necessary means and vanance for up-

dating 

At the first observation time, t = 5, 17 observations are taken at different compo­

nents as indicated in Figure 4.1. Vve call this set Cd, in line with previous notation, 

and denote by cdj the j-th member of Cd. Our simulation output takes the form of 

n x S matrices Y t, Mt, At and Xt for each time point . In this example, the number 

of components, n = 40, and the number of simulation realisations, S = 100000. We 

construct the 40 x 17 matrix cov(g_12 , ~r, ) elemelltwise, where the (j, j')-th element 

of cov(g_12 , ~5 ) is defined as in equation (4 .12) , with Vj = CXc12 and vj = Yc"5· The 

full 40 x 46 covariance structure cov(g_12 , '!l..JJ is constructed similarly, using the 
' 

information from all other time points. 

The construction of cov(;f12 , ~5 ) follows the same procedure and the variance ma-
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Figure 4.5 : Observational data for t = 12, plus simulated expected range for obser-
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Figure 4.6: Updating beliefs for x 12 given Yd5 
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trix var(~u) is also evaluated elementwise using (4.12). It is necessary to construct 

a full 46 x46 matrix for var(~u) so that the relationships between observations 

made at different times are t aken into account . This is particularly relevant when a 

component has been inspected twice. var(Q12 ) and var(;!2.12 ) are also estimated using 

the same method. 

Estimation of the necessary expectations, E (Q12 ), E (;!2.12 ) and E(~t) is more 

straightforward. We estimate E(Q12 ), E(;!2.12 ) as the sum of the columns of A 12 and 

X 12 divided by S = 100000. E(~t) is estimated as the sum of the relevant columns 

of Y t; divided by S = 100000. For this example, E(~t) will be a vector of length 

46. 

4.3.3 Updating for Circuit A 

'0/e illustrate the effects of updating by the available historical data, Yh , with 

Figures 4.6- 4. 10. Each plot has the same format, the blue line represents the initial 

wall thickness, the green line the expected value of the ;!2.t at t = 12, the magenta 

line shows the effect of adjusting for all the available data up to the time stated in 

the figure . The darker grey region indicates the value of Ey(;f12) ± 3Jvary(!f12 ) aml 

the lighter grey region shows the values covered by E(;!2.d ± 3Jvar(;!2_12 ). The plots 
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should be considered sequentially as a way of demonstrating the effect of including 

progressively more observation points in the set Yh· 

\Ne can see from the sequence of plots that the adjusted standard deviation band 

narrows at each inspection point. This is a necessary consequence of Bayes linear 

updating. As the system is observed our variance must be reduced. We also note 

that the general trend in the observations is for them to be greater than the expected 

value as predicted by our model. That is, the system is not degrading as rapidly as 

we would have expected . This can be seen as the magenta line showing the adjusted 

expectation lies , in general, above the green line showing our unadjusted beliefs. 

It is noticeable that the majority of observations lie above the expect ed global 

value, indicating some inaccuracy in the model. The model may be over-estimating 

the severity of the global corrosion rate as a consequence of emphasising its role as 

driving wall loss, but basing parameter estimation on minima dat a. This discrepancy 

will have to be addressed before implementing the method in practice. 

Figure 4.11 shows the effect of updating our beliefs about g_12 by the available 

data Yh · We can see that, in line with the patterns in the historical data, the wall loss 

rate is generally closer to 0 than is predicted by the model. However , we observe 

there is a lot of variability in the wall loss rate, so our ability to predict future 

behaviour with confidence is not good. 



Chapter 5 

Evaluating the worth of an 

inspection design 

So far we have developed methods for modelling large systems of components and 

updating these models for observational data. In this chapter we propose a rational 

quantitative criterion for assessing how 'good' a particular inspection design is. The 

problems of selecting inspection designs are tackled in chapter 6. 

Our objective is to provide a sensible method for planning future inspections. 

Consequently, we need to develop design criteria that will allow us to discriminate 

between superior and inferior inspection designs. Such criteria should be defined 

in relation to our inspection aims. It is necessary to establish what we hope to 

achieve by inspecting the system in order to determine whether or not a particular 

inspection design has performed well in helping us to achieve the inspection goals. 

vVe introduce the concepts of inspection design and design criteria. in section 5.1, 

discuss the problem structure we will be tackling and propose a method for evaluat­

ing tlte worth of a.n inspection design in section 5.2. In section 5.3 we describe how 

we assign utility values to designs, and we illustrate how we can explicitly evaluate 

this criterion under certain distributional a.."!sumptions in section 5.4. Finally, we 

give examples of calculating the criterion for a specific inspection de::;ign based on 

our real world system in section 5.5 
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5.1 Inspection design 

'vVe consider an inspection design to be a set of instructions detailing how to 

perform a pa.rticular inspection. We denote by D the set of all possible inspection 

designs and an individual inspection design is labelled d. For this account, an indi­

viduaJ inspection design, d, will consist of instructions for each cornponent indicating 

if that component is to be inspected, which locations within the component a.re to 

be inspected, and which inspection technique is to be used. This is consistent with 

the definition given in section 2.3.1. 

Our aim is to provide a method for comparing inspection designs to identify those 

which are, in sorne sense, 'better' than others. To a,chieve thiH we require a rational 

way of comparing different inspection designs. The choice of design criteria should 

depend on the aims of the inspection procedure. The ultimate goal of inspection is 

to use the observational data to ensure that the system is well maintained, and that 

any components approaching failure are identified. A 'good' inspection design is one 

that helps the inspectors to achieve these goab. For the case of corrot:iion, during 

any inspection we will want to learn about the current wall thiclmet:iH (i.e.the current 

system level) and also update our beliefs about the expected wall thickness at future 

time points (future system level). Our objectives are to use the updated belief~:> about 

the state of the systern to determine what maintenance work is required. 

Frequently, design criteria are based on either the variance of a related quan­

tity or ma.ximiHing the 'informa.tion' ga.ined [12], [8]. Va;riance minimisation criteria 

seek to achieve the maximum reduction in the variance (and therefore decrea.sed 

uncertainty) of the objective function over alllocationH/componentH based on the 

observation of a subset of locations. The subset that yields the smallest overaJl 

variance is then the optimal design set. Maximal entropy (ENT) [52] and the Shan­

non Information Index (SII) [3] criteria a.re examples of infonna.tion rna.xirnisation 

criteria. These aim to find the set of sites that yield the most information about the 

uninspected sites for a stated observation function. Both criteria a.re ma.ximised by 

the design, d, which gives the greatest overall information for all sites, conditional 

on the observation sites. 
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We would prefer to use a criterion on a more readily interpretable scale. By 

considering the outcome of the inspection as a decision problem, in which we must 

choose ·what maintenance to perform on the basis of our inspection results, we can 

measure design performance in terms of utility. We can assign utilities U (d) based 

on the consequences of our decisions, 8, which are based on the observations '!Lit· In 

this framework, 'good' designs are those which allow us to make the 'right' decisions 

most often. 

We have to cornpa.re expected performa.nce. Our criterion will assess expected 

inspection plan performance over all possible values of the observations, }!_clt' ·which 

will in general be written as y. Our focus is comparing typical design performance 

over a large design space, D, so we would like to ensure that any design criterion can 

be easily calculated. If possible, we would like to avoid conducting computationally 

intensive simulation experiments for each choice of design, cl, simply to evaluate the 

design criterion as this will restrict how many d E D we will be able to compare. 

Making our criterion straightforward to calculate will allow us to search D more 

thoroughly for inspection plans d with 'good' typical performance. By taking the 

utility of the expected outcome over all values of y, we will obtain a measure of 
-ut 

typical inspection performance. 

We need to develop a criterion with the following properties: 

1. Prefers designs that reduce 'uncertainty' (in some measure). 

2. Prefers designs that minimise loss (in some measure). 

3. Easily computable to allow more designs to be compared. 

4. Easily interpreted output (preferably utility). 

In general, designs that are cheap to implement will not be good at reducing un­

certainty, and designs that are good at reducing uncertainty will not be cheap to 

implement, so the criterion will have to balance these conflicting requirements. 

\Ve describe how to define one such suitable criterion, the expected loss of a de­

sign where loss is taken to be equivalent to negative utility. Adopting this approach 

requires us to structure our inspection problem more carefully. 
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5.2 Problem structure 

vVe can formulate inspection choice as a Bayesian decision problem. For each 

component, we can choose to perform the appropriate level of maintenance work 

based on our updated beliefs about the current and future state of the system. All 

ma.intena.nce work vvill have an associated loss, as will component failure. These 

losses will form the loss function for our action space, defined as the set of possible 

decisions, Ll, we can make with respect to a component, c. 

We consider the situation of planning maintenance for the finite time interval 

[t, t+k], where t is the current time and t+k is the time of the next major inspection. 

The decision problem is treated as the simple ca..c;e in which there are only two 

maintenance policies - either replacing component c (action a) or doing nothing 

(action a) and only two potential outcomes- component failure, F, before t + k, 

and component survival to t -+ k, P. This gives us four outcome/decision pairs. The 

losses associated with each pair are shown in Table 5.1. vVe have made the further 

assumption that a replaced component will not fail during the time interval under 

considera.tion, that is before t + k. 

F F 

a LR(c) LR(c) 

a. Lp(c) 0 

Table 5.1: Loss Function 

For each component, we can represent this problem as a simple decision tree a.s 

shown in Figure 5.1. The chance node associated with 'replacement' has 2 branches. 

Thet>e represent JXlssible behaviour of the umepla.ced component. This gives m; 

a way of taking into account the effect of unnecessary replacement. We treat a 

replacernent action as a single, 1.mrepeated cost. Our fonnulation cOJJHiders that a 

replaced component will not fail before t + k. This is a simplification introduced 

to make the decision problem more tractable, which we acknowledge may not be 

realistic. Working from top to bottom, the four lea.ves of this tree represent: 
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p(F)= q 

replacement 

~-----~--

p(not F) = q --------,, ,, 0 

Figure 5.1: Decision tree representation of component replacement problem 

1. Component replaced, if unreplaced would have failed. Loss Ln.(c). 

2. Component replaced, if unreplaced would not ha.ve failed. Loss LR(c). 

3. Component not replaced, and fails. Loss Lp(c). 

4. Component not replaced, and does not fail. Loss 0. 

Decisions 1 and 4 can be said to represent 'correct' decisions that minimise main­

tenance expenditure, and decisions 2 and 3 illustrate 'wrong' decisions in which 

unnecessary component replacement was performed and failing components were 

not replaced. In the decision problem frame·work, inspection plans with 'good' typ­

ica,l performance are those which allow us to make the 'right' deci!-:lion more often. 

We aim to produce criteria that allow us to select inspection designs ·which will, in 

general, help inspectors make more correct decisions than incorrect decisions, by giv­

ing high probability of observing inspection data which leads to improved decision 

making for many components as a result of increased confidence over the probability 

of component failure (q) for ma.ny components. 



5.2. Problem structure 120 

5.2.1 Sources of loss 

The loss associated with any given inspection design is an accumulatim1 of the 

costs incurred by component replacement, component failure and the cost of rnaking 

the inspection. For the component replacement problem, replacing a component that 

would not have failed or not replacing a component that then fails are perceived to be 

'wrong' choices of action. The costs associated >vith these 'wrong' actions are greater 

than those associated with the co1nplementary action for a, particular outcorne. The 

cost of each action-outcome pair (Table 5.1), is henceforth written as Lu, Lp and 

q in place of Ln(c), Lp(c) and q(c) to represent the replacement cost, failure cost 

and failure probability of a generic component c. We also assume that replacement 

is a necessary consequence of failure, so failure incurs a loss of at least Ln (i.e. 

Lp ~ Ln). Each c has its ow11 replaceuwnt cost, failure cost and failure probability 

and actions are chosen componentwise. 

Describing inspection losses (i.e. the costs of making the inspection) is open to 

1na.ny different 1110dels. Vve choose to model L1 (the inspection losses) as a.n initial 

cost a.nd an incremental cost. 

(5.1) 

The initial cost models the price of 'setting up' the inspection. The losses incurred 

by transportation of the inspectors, preparing the site for inspection, and 1my other 

activities caused by the decision to inspect, would be included in this part of the 

model. The incremental cost measures the extra loss incurred as the scale of the 

inspection increases, and could, for example, be used to account for factors such 

as the cost of materials used during inspection or losses due to reduced operating 

capacity. VIe base the incremental cost on the munber of components inspected 

as part of design d ( nd). This provides a measure of time and effort expended on 

making the inspection. 

The loss associated with making the inspection is independent of the other lof:>~:>es. 

This allows us to incorporate it into the expected loss criterion simply by adding it to 

the other losses. Accounting for inspection cost in the criterion means it is possible 
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to compare designs that cost different amounts to implement. For example, consider 

a design which allows us to predict failure perfectly, but is extremely expensive to 

carry out. Although we would prefer to inspect perfectly, the extra cost of doing 

so may force us to choose a less effective design. By adding the cost of making the 

inspection into the criterion we have a method of assessing whether or not it is worth 

paying the extra for the gain in predictive power a more expensive design offers. 

5.3 Design utility 

The strength of our preferences for particulax iuspectiou designs is 1.nea~:mred 

by the utility of the design, U (d). We choose to work with loss that is defined 

as negative utility because this offers a more natural interpretation for assigning. 

Consequently, we will seek to minimise loss, which will in turn maximise utility. 

The va.lue of Lis a function of the outcome, 0, and our decision, li(y). Our decision 

li(y), is determined by the values of y we observe, and, therefore, by the posterior 

probability of failure, P(Fiy). For an inspection planning problem, the values of y 

are random, and therefore our decision is random. Our aim is to choose the decision 

procedure li(y), from the set of all possible decision procedures, 6., such that the 

loss associa.ted with our decision procedure is minimised. So, the utility of a design, 

d, is given by the loss associated with our decisions plus loss incurred by making the 

inspection: 

U(d) - { Emin{oEtl} [L ( 0, li(y) )] + Lr} (5.2) 

- {E [L (0, o*(y))] + L1} 

where (j* is the Bayes decision function, the decision function that minimises (5.2). 

For any decision o(y), the expected loss a.ssociated with a particular outcome, 

o E 0, is given by the product of the value of the loss function associated with 

decision b(y) and outc01ne o, (L[o, o(y)]), and the probability of outcome o, given 

observations, y. The expected loss, conditional on y, for a design d is the sum of 

the outcome expected losses for all possible outcomes. For the simple case under 
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consideration, there are only two outcomes and the expected loss for a design can 

be calculated as: 

.E [L (0, il(y))] B {E [L (0, il(y))]Jy} 

- E { L (F, S(y)) P(FJy) +· L (.F, J(y)) P(FJy)} (5.3) 

We may use (5.3) to identify the Bayes decision function. 

5.3.1 The Bayes decision function 

The decision to replace or not to replace is taken componentwise on the basis of 

our observations y and our posterior probability of failure, updated for y. Losses 

associated with our decisions depend on component failure and are therefore ran­

dom. We will always choose the action that minimises the expected loss. Having 

observed y, we choose a (to replace) or a (not to replace) a component depending 

on min{E[L(O, a)Jy], B[L(O, a)Jy]}. These can be calculated using Tahle 5.1 as: 

E[L(O, a)Jy] - L (F, a) P(FJy) +· L (.F, a) P(FJy) 

LRP(FJy) + LR(l- P(FJy)) 

B[L(O, a)Jy] L (F, a) P(FJy) + L (P, a) P(FJy) 

LpP(FJy) + O.P(FJy) 

LpP(FJy) 

(5.4) 

(5.5) 

which tells us to choose a (i.e. to replace) if the posterior probability of failure is 

grea,ter than the proportion of the failure cost contributed by the replacement cost. 

That is, to replace if: 

P(FJy) > LLR = p 
F 

and not to replace otherwise. Therefore, for any realisation of the observations, the 

Bayes decision function is: 

5* (y) 

8*(y) 

a if p(FJy) > p 

a. if p(FJ·y) ~ p 

(5.6) 

(5.7) 
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5.3.2 Calculating E[L(d)] 

The utility of an inspecting a con1ponent ca.n be ca.lculated a8 the surn of the 

expected value of the loss function associated with our Bayes decision function, 

8* (y), and the inspection cost, L r. The expected loss of our decisions for a design, 

d, is denoted E[L(d)] and is evaluated, using (5.3), as: 

E[L(cl)] E[L(F, 8*(y))P(Fiy) + L(F, 8*(y))P(Fiy)] 

EIL(F, a)P(Fiy) + L(F, a)P(Fiy)IO"*(y) = a]P(8*(y) =a) 

+E[L(F, a)P(Fiy) + L(F, a)P(Fiy)i8*(y) = a]P(8*(y) =a) 

E[L(F, a)P(Fiy) + L(F, a)P(Fiy)IP(Fiy) > p]P(P(Fiy) > p) 

+E[L(F, a)P(Fiy) + L(F, a)P(Fiy)IP(Fiy):::; p]P(P(Fiy) :::; p) 

where each term corresponds to the different decisions. The first tenn describes the 

expected loss due to replacement, and the second the expected loss due to inaction. 

Recalling the expected values of the loss function for each decision (5.4), (5.5), this 

can be written as: 

E[L(d)] = LRP(P(Fiy) > p) + LpE[P(Fiy)IP(Fiy) :S p]P(P(Fiy) :S p) (5.8) 

vVe see, from (5.8), that the expected loss of our decisions for a design, d, is de­

termined by the probability that, using design d, we will observe data. y for which 

P(Fiy) > p and by the expected value of P(Fiy) over ally for which P(Fiy) :::; p. 

For example, consider the best conceivable design. This would be the design in 

which our upda.ted beliefs allow for perfect prediction, i.e. P(Fiy) ' 0 or 1, and so 

we could identify failing components with certainty. In this case, E[L(d)J would be 

given by nRLR, where nR is the nurnber of components in need of replacement. The 

expected value E[P(Fiy)IP(Fiy):::; p] = 0 under perfect prediction, as we will never 

incur a failure loss. Components will be replaced (with loss LR) if P(Fiy) = 1, and 

we therefore kn.ow they will fail before t+k, or they will not be replaced if P(Fiy) = 0 

and we know, with certainty, they will not fail before t + k, and therefore cause no 

loss in utility. Such a design minimises unnecessary expenditure. 
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In practice, even using complete inspection will not provide us with perfect 

information, so our E[L(d)] values will instead include some unavoidable random 

loss. These are losses introduced by replacing components that would not have failed 

or by failing to replace components that will fail. 

Calculating E[L(d)] requires us to be able to evaluate the posterior proba.bility 

of component failure, which for notational simplicity we set to be P(Fiy) = q(y). 

The posterior probability of component failure q(:y) is a.lso a random quantity, as it 

depends on the unknown. quantity y, and has its own probability distribution, which 

we will also need to describe. The evaluation of E[L(d)] requires the evaluation of: 

l. P(P(Fiy) > p) :::: p(q(y) > p), which is equivalent to the integral: 

p(q(y) > p) = t p(q(y))dq(y) = /1. 
JP 

(5.9) 

2. E[P(Fiy)IP(Fiy) S: p]P(P(Piy) S: p) ::: E[q(y)iq(y) S: p]p(q(y) S: p), which 

can be expressed as: 

E[q(y)iq(y) S: p]p(q(y) S: p) j 'P p(q('tJ)) 
q(y) ( ( ) << ) dq(y).p(q(y) s: p) 

0 pqy _p 

[P q(y)p(q(y))dq(y) =h. (5.10) lo 

3. The expected loss of our decisions for a design can thus be written as: 

(5 .11) 

and the utility of a design is: 

To evaluate these integrals we require an expression for q(y) = p(Fiy). 
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5.4 Approximating posterior failure probabilities 

From (5.8), assessment of E[L(d)] for an inspection design, d, depends on assess­

ment of the posterior probability of component failure, conditioned on our inspection 

observations, y. This is given by: 

P(Fiy) = q(y) = P(rnti-k < WciY) (5.12) 

Expressing this probability explicitly requires assumptions to be made about the 

distributions of the random quantity rnt+k. which is the minimum wall thickness. 

The method could equally be applied to any well defined observation function; for 

this model, the observation function is the component minimum wall thickness. Vve 

choose to approximate the behaviour of Tnt+k given y with a Normal distribution: 

(5.13) 

ln general this may not be an appropriate assumption, and the validity of any distri­

butional assumptions should be checked. In our situation we are modelling minimum 

wall thickness as rnt+k = :Dtlk + ft-J-k, where from data analysis, expert elicitation 

and system simulation, the global trend term, :c1+k, is Normally distributed and 

ft+k is expected to be distributed with, approximately, a.n extreme value distribu­

tion. The exact fonn will depend on the cl1oices made with rt:lspect to the nu1nber of 

locations within a. component, but the expected distribution will lie somewhere be­

tween a Normal and a Gumbel distribution. Figure 5.2 illustrates the distributions 

we ca.n expect to be associa.ted with the rninimurn v.ra.ll thickness nl,t for a single 

component of the Circuit A system for simulations of length t = {1, 5, 10, 15} steps. 

Plots for other components in Circuit A follow a similar pattern (see Appendix). 

These indicate that the assumption of Normality is not grossly unreasonable for 

these quantities. The determination of appropriate values for ft11 "(y) and ai+k (y) 

will be described in section 5.4.1. 

The assumption of Normality allows us to evnluate q(y) from the standard Nor-
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Figure 5.2 : Histogram of simulated minimum wall thickness values for 4 different 

time points in the life of component 8 from Circuit A 

mal cdf. Standardising by f.lt+k (y) and a}+k (y) , we have: 

q(y) = P(rnt+k < WciY) 

so that q(y) = 

where both f.l t+k (y) and crt+k (y) are random quantities depending on the inspection 

design . VVhile (5. 14) will often give a reasonable order of magnitude assessment for 

the posterior failure probability in practice, observe that we could replace the as­

sumption of posterior Normality by any alternative pdf which was fully characterised 

by the post erior mean and variance. 

5.4.1 Assessment of posterior moments 

V./e described in chapter 4 the Bayes linear method for updating beliefs. 1Ne again 

choose to employ the Bayes linear approach to update our beliefs about the minimum 

wall thickness, mt+k, given the observational data, y. Characterising the behaviour 

of both Tnt+k and y with a spec ified distribution is not straightforward, and a lso 

not necessarily appropriate. Simulation a llows us to learn about the expectation, 

variance and covariance structures of these quantities directly from the underlying 

model. To update beliefs about mt+k given a particular realisation of the data, y*, 
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we will use the following equations: 

2 ( *) (Jt+k y 

Ey (mt+k) = E (mt+k) + cov (mt+k, y) var- 1 (y) [y* - E (y)] (5. 15) 

vary (mt+k ) = var (mt+k ) - cov (mt+k, y) var- 1 (y) cov (y, mt+~~. 16 ) 

Assessing t he value of CJZ+k (y) for a part icular inspection design using Bayes linear 

adjustment allows us to remove the dependence of our estimat e on the particular 

values of the observations, y . This can be seen from (5. 16), in which the specific 

values of the observations, denoted y* , are not involved in the calculation , but 

expectation and variance properties of the general quantity, y , are used. Therefore, 

under this approximation , the value of CJZ+k (y) is fixed for a given design, and we 

have CJZ+k (y) = CJZ+k Vy. 

The Bayes linear updat e of f.tt+k (y) does depend on the particular values of 

y. Therefore we have to regard f.t t+k (y) as a random quantity. f.tt+k (y) has an un­

known distributional form (about which we can learn through simulation) . Recalling 

f.tt+k(Y) = Ey(mt+k), assessments of the expectation of f.tt+k (Y) can be found from: 

E[J.tt+k(Y)] E[Ey, (mt+k)] 

E(E(mt+k + cov(mt+k, y)var- 1(y)[y - E(y)]) 

E(mt+k) + cov(mt+k, y) var - 1 (y) [E(y)- E(y)] 

E(mt+k ) 

Similarly, an assessment of the variance of f.tt+k (Y) is given by: 

'0/e then use the relation: 

(5. 17) 

to rewrite nLt+k as the sum of two uncorrelat ed terms. Taking the variance of this 

express10n gives: 

var(Ey[mt+k]) + var(mt+k- Ey [mt+k ]) 

var(J.tt+k (y)) + vary(mt+k) 

(5. 18) 
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Figure 5.3: Hist ograms of adjusted expectation values for component 8 from Circuit 

A based on simulated realisations of observations a t 4 different time points 

where vary(mt+k ) = a}+k' as given by (5. 16). 

To be able to perform calculations using this quantity, we have to make further 

assumptions about the distribution of 1-Lt+k(y) . For this account, we approximate 

1-Lt+k (Y) by a Normal distribution, with moments as given by (5. 17, 5.18). Figure 

5.3 :shows the behaviour of the adjusted expectation for the minimum at time 15, 

Ey (m15 ) , in a component of Circuit A based on total observation of the system at - t 

times t = {1 , 5, 10, 14}. The plots are typical of those produced for this quantity in 

most components, and indicate that the choice of a Normal approximation is again 

not grossly unreasonable. It would be possible to adopt any approximating distribu­

tion for this quantity, which could be summarised by its expect ation and variance, 

but this account only considers Normal approximat ions. This choice provides us 

with sufficient structure for evaluating ! 1 and ! 2 . 

In summary, we assume that m t+k is Normally distributed with mean J.Lt+k (Y) 

(itself a random quantity, dependent on y) and variance iJZ+k . We also assume that 

our beliefs about the random quantity J.L t+k (Y) follow a Normal distribut ion wit h 

mean E (mt+k ) and variance var(mt+k ) - vary(mt+k ), i.e. 

N [J.Lt+k(y) , (Jt+k ] 

N[E (mt+k ), var(rnt+k) - vary (mt+k )] 

from equations (5.17, 5. 18) . 

(5. 19) 

(5.20) 
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The Bayes linear upda.ting equations allow us to resolve our problem to one of 
uncertainty over the behaviour of mt+k, which is controlled by the random quan­
tity f.lt+k(y). 'vVe have obtained expressions for t;he expecta,tion and variance of 
both quantities that depend on the updated expectation and variance values. It 
is still necessaJ:y to assign appropriate distributions to these moments to a.llow the 
determination of the values of q(y) and p(q(y)), and even given such assumptions 
the integrals 11 and 12 may not be easy to evaluate. However, this provides a clear 
method for evalua,ting a basic property of an inspection design that incorporates the 
updated variance and presents the results on an interpretable scale - the expected 
loss per co1nponent of the decisions made as result of using design rl. 

To convert the individual component expected loss values into a design expected 
loss, we sum the expected loss over all components. This simplification follows as 
we are making decisions about component replacernent independently of the other 
components. It would be possible to construct a more realistic model of the decision 
making process, which allowed for joint decision making and the adjusting of utilities 
as the scale of necessary repair vvork increases (thereby allowing us to account for 
potential non-linearity of utilities), but the proposed method offers a plausible order 
of magnitude assessment of design quality. 

5.4.2 Evaluating h 

Following from the assumptions of Normality made previously, the standtlJ:dised 
quantity, 

( ) We- f.lt+k(Y) 
z y = ' 

Clt+k 
(5.21) 

on which we base our probability of failure estimate, 

q(y) = <D (z) (5.22) 
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can be assumed to follow a Normal distribution with expected value: 

E(z) = E (We ·- /Lt+k(Y)) 
Cft+k 

We -- B[J.Lt-fk(Y)] 
Cft+k 

We --- E(rnt+k) 

Cft-f-k 
= fLz 

which we denote as J.Lz, and variance given by: 

var(z) = 

labelled a;. 'vVe also define: 

(
We- /Lttk(Y)) var 

Cft+k 

var(J.Lt+k(Y)) 
2 

(Jt+k 

var(nttlk) - vary(mt-t··k) 
(!2 

t+k 

to represent the va.ria.nce associate.d with P.t+k (y). Consequently, 

'vVe will use this notation to condense our expressioms for 11 and h. 

Recall from (.5.11) that E[L(d)] = LF(Pil + I2) where: 

I1 = 11 

p(q(y))dq(y) 
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(5.23) 

(5.24) 

(5.25) 

This integral is equivalent to calculating the probability that the posterior failure 

probability will be greater than p, the ratio of replacement and failure costs. We 

can write 11 as: 

It = 11 

p(q(y))dq(y) = p (q(y) > p) = p [p(mtih: :S: lVciY) > p] 
p 

Using our assumptions of NonrwJity for rnt+k (5.19) and J.Lt+k(Y) (5.20), we can then 
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sa.y: 

___ P [w (We- P>t+k(Y)) > PJ 
at+k 

P [f-Lt+k(Y) <We- <r)- 1 (p) (J"t-t-~<] 

1> (We -cp-l (p) at+k -- .B[P·t+k(Y)]) 
Jvar(mt·t-k) ·- va.ry(n~t+k) 

(

at+k { Wc-E(mt+k) ....... cp-l(p)}) 
1> O"t+k 

a,J. 

·which can be written more succinctly in terms of f-Lz (5.23) and az (5.25) as: 

p(q(y) > p) = <[> [- ( cp-l(~z -- Jl-z)] , 
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(5.26) 

vVe can then evaluate 11 from a standard ( curnula.tive) N orrnal distribution function. 

5.4.3 Evaluating J2 

This is a more involved ca.lculation. The required integral is given by: 

/2 = 1p q(y)p(q(y))dq(y) 

We have assumed that q(y) can be written as q(y) = 1> (Wc-~:::k(Y)) = ci>(z) (see 

section 5.4 for deta.ils). Changing variables frorn q(y) to z is a change of variable 

q(y) ~ h(ILt+k) ~ h(z), but vve will treat it as setting q(y) = ci>(z) => dq = 

</J(z)dz, where </J(z) is used to denote the derivative of ci>(z) (in this case </J(z) would 

be a Normal pelf). Denoting the pelf of the posterior probability of failure, p(q) by 

frn we can express 12 as an integral in z: 

j
.q,-l(p) 

/2 = -= ci>(z).fq(<P(z))<P(z)dz 

.{q(ci>(z)) can be found as the derivative of F~. J:~ = p(q(y) <:e), arguing as for l1 

(section 5.4.2) gives: 

P [1> ( VVc - ftttk (y)) S :r] 
at+k 

P [1-Ltl-k(Y) >We- <r?- 1 (x) atlk] 

1 __ <I) (We - 1> -l (x) at.+k - E(mt+k)) 
a,, 
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Setting: 

]q = dFq = _:}_ [l _ <.P (TiVc- E(n1t+k)- CTf+k<.P-
1(x))] 

cl:t; cl:c CJ 1, 
<md using the chain rule with J = <_p· 1(x): 

we find: 

dFq 

dx 
dFq 
d.J 

J 
dx 

dJ 

dFq d.J 
-·-
d.J dx 

( -::lh') (-~[We- E(n~1:k)- CJqk.l]) 

<_p-l (x:) {::? x = <.P( .J) 

~(.J) 

Substituting for J, this can be written as: 

132 

V\:1lich, when x is replaced by the variable of interest <.P(z), gives the expression 

required to evaJuate I 2 . 

Using (5.23, 5.25) this can be rewritten as: 

(5.27) 

whicl1 will be evaluated numerically. 

For I 2 , we are left with an integral that depends on the three quantities f-lz, O"z 

and p, and must be evaluated using numerical methods. 



5.5. Evaluating the expected loss criterion 133 

5.5 Evaluating the expected loss criterion 

In this section we illustrate how to apply the expected loss criterion to a real 

system. The system will again be the Circuit A corrosion Circuit from the Site 

A platform. Our intention is to consider the inspection planning problem for this 

systern, which we demonstrate in chapter G. Here we show how to calculate the 

expected loss for specific inspection designs. 

The expected loss criterion can be used as a way of planning the next inspection, 

based upon the need to run the system for a given Lime frame, so we a:re required 

to specify which time frame we 1.vill be considering. The UK Health and Safety 

Executive H.egulations require that a safety ca.se for the runrling of industrial systems 

is prepared at least every 5 years [27]. The safety case provides deta.ils on the 

safety implications of running the system, and provision made for handling failures. 

Therefore planning an inspection within around five years of the final update should 

be considered suitable for the Circuit A problem. The last available real data point is 

at t = 12 in our initiallnodel, which covers the period Ol/Ol/1.998- 30/06/2004 (see 

Table 4.1). We will be interested in planning an inspection before :31/1.2/2009, which 

translates to 11 further times steps in our model- specified in Table 5.2. Therefore 

the value of k, the nurnber of ::;teps into the future which we will consider will be 11. 

and the final time point for inspection planning procedure is t + k = 1.2 + 11 = 23, 

equivalent to 31/12/2009. 

To carry out an expected loss calculation it is also necessary to specify other key 

aspects of the problem: 

1.. Initial beliefs - our beliefs about the future state of the ::;ystem will be based on 

the current system sta.te. Therefore it will be necessa.ry to specify our cuiTent 

beliefs. 

2. Losses - to formulate the decision problem it is necessary to specify va.lues 

for the losses associated with component failure, component replacement and 

performing the inspection. 
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Time Step Start DaLe End Date 

13 01/07/2004 31/12/2004 

14 01/01/2005 30/06/2005 

15 01/07/2005 31/12/200.5 

16 01/01/2006 30/06/2006 

17 01/07/2006 31/12/2006 

18 01/01/2007 30/06/2007 

19 01/07/2007 31/12/2007 

20 01/01/2008 30/06/2008 

21 01/07/2008 31/12/2008 

22 01/01/2009 30/06/2009 

23 01/07/2009 31/12/2009 

Table 5.2: Model Time Steps 

3. Design- we must stipulate the design for which we want to evaluate the ex-

pected loss value. 

5.5.1 Shnulating future syste1n behaviour 

\N'hen conducting the initial simulation we should consider how far into the 

future we will want to plan, and simulate realisations up to this time. Adopting this 

approach means no further simulation will be required. The output from the initial 

simulation will be sufficient to estimate the variances aud covariances required. 

The information required to perform the updates consists of the values of the 

[';iysten:t property of interest - which to us will be the u.tinimurn wall thickness - fron.t 

the final time point, Tnt+k> and the observation function values from every time point, 

}!_t+j V.j E {1, ... , k }. It is preferable to generate realisations for all observation 

functious that 1nay be used as part of the initial sinmlatiou, as this a.voids tl1e 

need for further simulation if the observation function is changed. We will consider 

the options for our observation functions to be minimisation over different amounts 

of the component surface. It is therefore necessa.ry to establish a. plausible set of 
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observation functions before simulating. In general these could be any function of 

the underlying true wall thickness values ('uzct) for which it is possible to obtain a 

value via some observation technique currently in use. 

In the case of Circuit A, we are concentrating on minimum observed values, 

but would like to consider the possibility of partial component observation. PartiaJ 

component observation offers the possibility of 'missing' the true minimum during 

inspection, and is also a slightly more realistic representation of the inspection pro­

cess, where inaccessibility and other practical constraints are likely to apply to pa.rts 

of components as well as whole components. For this illustration we consider the 

two observation functions of complete cornponent inspection, in which we take the 

minimum over every location observed with error, and half component inspection, 

where the minimum is taken over half the locations observed with error. Due to 

the lack of correlation between locations within components in our sirnulation, it is 

acceptable to select those locations that form the 'observed half' of the component 

at random. 

Using a simulation approach, we must ensure that our simulation output includes 

all information that will be required to calculate the values of the observation func-

tions we wish to consider, to allow computation to proceed. 

To forecast behaviour at the time point of interest, we simulate 8 system real­

isations at time t + k, using the simulation approach described in section 2.8. For 

Circuit A, our updated beliefs about the global term level z;,12 and slope g 12 values 

are used as the basis for our simulation. Vve then generate S realisations of the 

system to time 2:3 (31/12/2009), and observations of the system for each tin1e ::;tep, 

for both observation functions. To account for all design possibilities, it ·will be nec­

essary to store the 8 rnt+h' realisations, and the S realisations of the two observation 

functions for each time point. We denote by y(l). the cornplete component observa-
-t+·.J 

tions and by 1,(o.~) the half component observations. Simulation output is stored in 
. ~t+J 

the S x 40 arra.y Mt+k, in which the c-th column contains 8 sin:mlated values for 

the minimum of component c at time t -+ k, and the 8 X 40 X 11 arrays y(l) and 

y(o.s), which contains and S X 40 array for each time step. 

To evaluate the expected utility criterion vve need to estimate the variance of 
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the minimum wa.ll thickness at t + k, adjusted for the planned observations. 'Ne 

will concentrate on planning an inspection at the next available time step, so the 

adjustment we need to consider is, in general: 

and for the Circuit A case it is: 

var (m ) = var (·m ) - cov (m . y ) var-- 1 (z'J ) cov (11) 111 ) . 
1/.dl2+1 -23 -23 -23J ~12+1 '-rll2+l '-dl2+1' -23 

A.ll of these quantities, and the unadjusted expectation E(nLt+k) - which will also l>e 

required, can be estimated from the simulation output as described in section 4.3.2. 

Bor a la.rge systern, with many simulation realisations, it would be irnpractical 

to store all the simulation output. However, as our interest is in the mean and 

variance structure of the variables, we can recover this information by recording 

the cumulative means and the sums of squares and cross products for each of the 

simulation outputs. 

Using the simulation output we will be able to evaluate these quantities for any 

inspection design. This, in combination with the loss information, will allow us to 

evaluate the expected loss criterion. 

5.5.2 Specifying loss values 

Specifying the losses associated ·with each outcome is a fundamental part of 

solving the decision problem. Table 5.:3 shows the values assigned to component 

replacement, which are based around the cost of replacing a Straight component: 

The losses reflect the cost of a new component and the effort required to install 

the new cornponent. Higher costs reflect those cornponents that axe either more 

expensive to construct, difficult to replace or both. For example, a Cap would be a, 

cheap component that is easy to replace, hence its low value. Obtaining estimates 

for replacement losses will, in general, be reasonably straightforward. The cost of a 

new component, and the labour required to install such a component, will usually 

be a.pproxintately known for most practical probleins. 
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Component Type Replacement Cost 

Bend (short radius) 1.5L 

Branch 21 

Cap O.lL 

Straight 1 

Weld 0.6L 

Wellhead 21 

Ta.ble 5.3: Losses incurred through component replacement 

Failure costs are constructed using the consequence data from the Site A data 

set. The consequence data takes the form of subjective assessments of failure con­

sequences for different groups. Each component has the following ratings: 

1. Location (Lp1) - where on the platform the system is located, and how easily 

failure could be contained. 

2. Flv,id ChaTacte·ri::;tics (LF2) - indicator of threat posed by syt>tern cmJtents. 

~i. FhLid PTeS8'1.LTe (Lp3 )- highly pressurised fluids anJ potentially more dangerous. 

4. Crit·icality (Lp4 ) - effect of component failure on larger system. 

5. Environmental (Lp5 ) - damage caused to surroundings by failure. 

6. Commercial (Lp6 ) - lost revenue caused by failure. 

Qualitative ratings are assigned to each consequence ranging from 'Low' to 'Ex­

treme'. These are a..ssigned values a..s shown in Table 5.4. The 'Extreme' values 

have been adjusted to allow for a more interesting design example. In practice it is 

reasonable to assume that the 'Extreme' consequence cost of failure would be much 

more than 8 times larger than the 'Low' consequence cost. For this example, we 

adopt a simple linear model for combining the ratings to obtain a single value for 

component failure cost: 
G 

Lp = LlJ,F;. (5.28) 
i=l 

where the li are weights allowing us to rescale factors according to importance. 
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Consequence Failure Cost 

Low L 

Medium 21 

High 41 

Extreme 81 

Table 5.4: Losses associated with severity of component failure 

Consequence Rating Loss Weight (li) 

Location High 41 ll 

Fluid Cha,ra.cteristics Extreme 8L l2 

Fluid Pressure ·Medium 2L l3 

Criticality Extreme 81 l4 

Environmental Extreme 8L l5 

Commercial Extreme 81 l6 

Table 5.5: Losses associated with component failure in Circuit A 

\iVithin Circuit A. a,ll components are processing the same substances and per­

forming very similar functions. As a. result, all consequence ratings are determined 

to be equal over the system, meaning we can calculate a single value for the loss 

due to failure for all of Circuit A. Using Ta,ble 5.5 and (5.28), the loss incurred by 

component failure will be given by: 

(5.29) 

Inspection losses are rnodelled a:s in section 5.2.1., with values Lsu = .5 and 

Lw = .025. These vctlues have been set to be comparatively smaller than the LR 

and Lp values so tha,t the 'value' of reducing uncertainty is higher. 

5.6 Designs 

As explained in section 2.:3.1, an inspection design will consist of instructions 

stating which components are to be inspected, what percentage is to be inspected 
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(now restricted to either 50% or 100%), and when they are to be inspected. For 

our discussion we are restricting to designs in which the smallest unit is half a 

component. That is a component can be half inspected, completely inspected or not 

inspected. Even under this restriction we are still left with 280 potential designs, as 

we have 80 ha.lf con1ponents that are eith.er inspected or not inspected. 

vVe will show how to calculate the utility of the following designs. Firstly, the case 

in which there is no further inspection. In this situation we base our replacement 

decisions on our beliefs ahout the system a.t time t === 12. Secondly, we will consider 

the design in which we inspect all components. This will give us an idea of the most 

it is possible to lea.rn about the systen.t at time t ••••••• 13, but we rnust also consider 

the expense of inspecting. To obta.in a scale on which to compaJ"e expected loss 

values it is advisable to first consider the scores obtained for the two extreme cases 

- those of no inspection and tota.l inspection. Assessing the performance of these 

baseline cases is important for making expected loss values more interpretable. vVe 

>vork through the expected loss calculations for these designs and then show how 

to evaluate the expected loss of a partial inspection design. In chapter 6 we will 

consider how to identify potentially 'good' inspection designs, but here we illustrate 

the calculations involved in evaluating design utility. 

We must specify a time point for the inspection. To learn most about the system 

at t + k = 23 we would like to inspect close to t + k, but delaying too long before 

int:>pecting may result in failures prior to inspection and losses being incurred. For 

our illustration we will consider a total inspection at t = 13, near the start of the 

[t, t -+· k] = [12, 23]. In general, the problem of when to inspect should be treated a.<; 

carefully as that of where to inspect, as fixing the inspection point constrains us to 

being able to find the best inspection plan for this time step, which is not necessarily 

the same as the best inspection plan, but for the purposes of our illustration we omit 

the further considerations required for delaying inspection. 

5.6.1 Lower baseline: the no inspection case 

The value of the no inspection case allows us to establish the minimum level 
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of performance we reqmre from a design to make it worth implementing. The 

no inspection case will always have the lowest inspection loss (L1 = 0) and the 

least influence on our predictive ability (no improvement). In certain situations, 

it may still prove to be the most effective design. For example, when the cost 

of inspection is high but the benefits rninimal or when the cost of replacement is 

approximately equal to the cost of failure (Lp ~ LR), then choosing not to inspect 

and replace components as they fail will be the best option. However, in many 

situations L F > > Ln, and so no inspection becomes a less attractive option. 

To evaluate the expected loss criterion for the no inspection case we need to 

caJculate, from (5.8): 

E[L(d)] LnP(P(Fiy) > p) + LpE[P(Fiy)iP(Fiy):::; L]P(P(Fiy) :::; p) 

(5.:30) 

As we will not be inspecting, there is no uncertainty over the probability of choosing 

action a or a. Our beliefs will not be updated, because we receive no new data., so we 

can make all replacement decisions based on our initial beliefs (for Circuit A, beliefs 

at timet = 12), so for the no inspection case, we do not ha.ve to deal with the n:.tore 

complicated integration that usually forms part of the expected loss calculation. 

Instead it is sufficient to consider: 

We- EYh (m23) 
K = ==r===i====c:-:-

Jva.ryh (m23 ) 

and <r)(K) where Yh is the available historical data. The critical WC:l.ll thickn.ess values 

are set as being 40% of the nominal wall thickness or 3mm, whichever is larger. 

The values used in calculating z for this example are given in Tables 5. (:i and 5. 7. 

Note tha.t a. positive value for W c - .EYh (m23 ) iudica.tes tha.t we ~:u:e expecting the 

component to have failed by t = 23. 

<r)(~) gives us a vector of failure probabilities, in which ea.ch element corresponds 

to the fa.ilure probability of a particular component. vVe then construct the vec­

tor p(Q_*(y) = a) (the vector of probabilities of choosing to replace a component) 

elementwise as: 
if <D(z ) > Ln(c) 

c LF(c) 

0 otherwise 
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Difference between Variance of min Variance of min Va;riance of min 

Component critica.l and wall thickness wall thickness wall thickness 

Number expected minimum No Inspection Full Inspection Partial Inspection 

wall thickness var11h(rn23 ) varYh,13 (m.2;~) var:Yh,dl3('m23) 

(We-- Byh(rn2a)) 

1 -4.6776 11.8499 5.1172 11.6023 

2 -6.6283 2.4654 0.639t1 0.6411 

~-3 -4.4668 10.5:-392 4.9645 7.5551 

4 -4.1153 9.2645 4.9271 4.9517 

5 -6.5509 2.4212 0.6356 2.4010 

6 1.2695 2.0453 1.5085 1.5097 

7 -2.9031 8.0491 L1,6223 6.6256 

8 -5.1638 6.4560 3.1338 3.1825 

9 -9.7274 0.9586 0.5337 0.9207 

10 -4.6723 L3541 0.6210 0.6223 

l1 -4.6538 1.5631 0.7220 1.4237 

12 -1.1529 7.4594 4.1057 4.1103 

B -4.6758 1.5771 0.7246 1.4069 

14 -2.7634 9.8367 4.7685 4.7740 

15 -7.4621 2.3040 0.9443 2.1068 

16 -4.627~-3 9.2711 4.93G::l 4.9375 

17 -6.6482 2.4530 0.6357 2.4311 

18 -6.7314 2.4146 0.633:3 0.6337 

19 1.6827 1.5804 0.9213 1.4575 

20 -5.8960 3.8255 0.6874 0.6888 

Table 5.6: Changes in variance values for different inspection designs 
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Difference between Variance of min Varia,nce of rnin Variance of rnin 

Component critical and wall thickness wall thickness wall thickness 

Number expected rninimum No Inspection Full Inspection Partial Inspection 

wall thickness va;r11h ( m 23 ) var!lh,la (n~n) varyh,dl3 (m,23) 

(We -- h711Jrnd) 
21 -0.4959 5.3:345 2.3208 4.8294 

22 -0.4673 .5.2698 2.3153 2 .. 3190 

23 -0.(1:354 1.4637 0.9775 1.3604 

24 -0.2010 1.3:393 0.9841 0.9923 

25 0.2271 4.1741 1.9117 4.1053 

26 0.2689 4.0869 1.8845 1.8875 

27 1.7683 1.7323 0.9442 1.7320 

28 -5.8235 :3.8319 0.6971 0.6972 

29 -5.6854 3.7369 0.6843 3.7183 

30 1.0838 1.0707 0.7507 0.7510 

:n -1..3110 1.9394 1.1618 1.7639 

32 -2.6150 2.8071 1.4482 1.4736 

~)3 -0.5081 1.4885 1.0579 1.3349 

34 -2.8080 2.7079 1.4478 1.4761 

35 0.5704 1.3857 0.9267 1.2391 

36 0.5509 1.36% 0.9240 0.9343 

37 -3.1682 2.8960 1.4655 2.5595 

38 -0.7959 5.4764 1.6344 1.6370 

39 0.8535 1.0882 0.9321 1.0774 

40 0.5318 1.3425 0.9354 0.9384 

Table 5. 7: Changes in variance values for different inspection designs 
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So p(o~) takes value 1 if the component is to be replaced and 0 if no action is 

deemed necessary. For the no further inspection case, (5.8) can be rewritten in 

terms of p(~*(y) =a), LR, LF and <P(~) as: 

E[L(d)] = LR'.p(~*(y)) + Lr/[(1- p(~*(y))).<PC~)] 
- - (5.31) 

The inspection loss, L 1, for the no inspection case is always 0. 

The necessary numbers for the explicit expected loss calculation are given in 

T~:tbles 5.8 and 5.9. Recalling the definition of the expected utility: 

U(d) =- (LRP(P(F\y) > p) + LpE[P(F\y)\P(F\y):::; p]P(P(F\y) :::; p) + L1) 

we can see we are left with two terms to calculate ( L 1 = 0 in this case). The 2nd 

and 3rd columns of Tables 5.8 and 5.9 correspond to the values of P(P(F\y) > p) 

and E[P(F\y)\P(F\y) :::; p]P(P(F\y) :::; p) respectively. We then multiply the first 

of these quantities by the component replacement loss and the second by the failure 

loss to obtain an overa.ll loss per component. These losses are then summed to give 

the total decision based loss for the design. The cost of implementing the design 

(LI = 0) is then added to this quantity to give the full loss value for the design. 

The presence of a 1 in column 2 of Tables 5.8 and 5.9 indicates we would choose 

to replace a component. In the no further inspection case we can say with certainty 

which components we would replace. For this example we would recommend re-

placing 26 of the 40 components, at a loss of 30.3. The 14 unreplaced components 

genera.te an expected loss of 1.800:3, rnost of which is attributable to component 

16, in which the probability of failure falls just below the accepted standard. This 

expected loss is obtained as the probability of component failure rnultiplied by the 

cost of failure. For the no further inspection case cornponents can only have either 

a replacement cost or a failure cost, as there is no uncertainty over our decisions. 

Surnming the values in Tables 5.8 and 5.9 we find the utility value for the no 

inspection case to be 

U(0) = -{E[L(0)] + LI} -(Ld1 + Lpfz + L1) 

-(30.3 + 1.8003 + 0) = -32.1003 
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EIP(Fiy)l 

Component P(P(Fiy) > p) P(Fiy) ~ p]x H.epla.cement F'a.ilure Component 

Number (11) P(P(Fiy) ~ p) Costs Costs Utility 

(12) LR.Il Lp./2 LRJl + Lph 

1 1 () 1.5 () 1.5 

2 0 0.0000 0 0.0002 0.0002 

3 1 0 1.5 0 1.5 

4 1 () 1.5 () 1.5 

5 () 0.0000 0 0.0003 0.0003 

6 1 0 1.5 0 1.5 

7 1 0 1.5 0 1.5 

8 0 0.0211 0 0.4213 0.4213 

9 0 0.0000 0 0.0000 0.0000 

10 0 0.0000 0 0.0006 0.0006 

11 0 0.00()1 0 0.0020 ().0020 

12 1 0 1.5 0 1.5 

13 0 0.0001 0 0.0020 0.0020 

14 l 0 1.5 0 1.5 

15 0 0.0000 0 0.0000 0.0000 

16 () 0.0643 0 1.2858 1.2858 

17 () 0.0000 0 0.0002 0.0002 

18 0 0.0000 0 0.0001 0.0001 

19 1 0 2 0 2 

20 0 0.0013 0 0.0257 0.0257 

Table 5.8: Necessary elements of the expected loss calculation for each component 

in the no further inspection case, excluding inspection cost information 
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E[P(Fiy)l 

Component P(P(Fiy) > p) P(Fiy) ::; p] X H.eplacement Failure Component 

Number (JJ) P(P(Fiy) ::; p) Costs Costs Utility 

(12) LR.Il LF./2 LrJ1 + LFI2 

21 1 0 2 0 2 

22 1 0 2 0 2 

23 1 0 0.6 0 0.6 

24 1 0 0.6 0 0.6 

25 1 0 2 0 2 

26 1 0 2 0 2 

27 1 0 2 0 2 

28 0 0.0015 0 0.0293 0.0293 

29 0 O.OOlG 0 0.()327 0.0~127 

30 1 0 0.6 0 0.6 

31 1 () 0.6 0 0.6 

32 1 () 0.6 0 0.6 

33 1 () 0.6 0 0.6 

34 1 0 0.6 0 0.6 

35 1 0 0.6 0 0.6 

36 1 0 0.6 0 0.6 

37 1 0 0.6 0 0.6 

38 1 0 0.6 0 0.6 

39 1 0 0.6 0 0.6 

40 1 0 0.6 0 0.6 

Table 5.9: Necessary elements of the expected loss calculation for each component 

in the no further inspection case, excluding inspection cost information 
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5.6.2 Upper baseline: the total inspection case 

Calculating the expected los::; value for the total inspection case provide::; UH with 

a way of establishing the maximum we should pay for an inspection. It is impossible 

to learn more about the system state by using another design, but total inspection 

will always be the most expensive inspection (under our choice of cost function). 

Total inspection is unlikely to be a practical choice of inspection design in practice, 

but by evaluating the worth of a complete in::;pection we can aHcertain how successful 

other potential designs are in improving our predictive ability relative to the best 

performing design in terms of information gain. 

To calculate the expected loss for total inspection a;t t = 1:3 we need to evaluate 

(5.8) and (5.30). In this case, unlike the no further inspection case, we are uncertain 

about our choice of action, as we ha.ve not yet seen the iru-;pection data. Therefore 

we will need to use the method of section 5.4 to calculate E[L(l, ... , 40)]. To do 

this we need to update our beliefs about the variance of rn23 given a total inspection 

at t = 13. 

For the tota.l design we are considering full inspection of all components, so our 

design set d = {1, 2, ... , 39, 40}. To find the adjusted variance for this design we 

r1eed to evaluate: 

The chosen d has 40 elements, so the variance matrix of our design observations, 

va.r(1[
13

)is of size 40 X 40. The covaria.nces, cov(m23 , l[h,
13

) and cov(1[,,
13

, m 23 ), are 

both of size 40 x40, as are the var!Lh,dla (m:23 ) and var!Lh (m2:~) matrices. \Ve can esti­

mate the required quantities from the simulation output. To estimate the covariance 

8tructure, we require the output relating to the whole component observations at 

timet = 13 for every component. This is given by the columns of Yi1) corre8ponding 

to the de8ign elements, in this CaHe, all colurnns. vVe will also need the simulation 

output for the component minima at time t = 23 for all components. Thir:; is given by 

M 23 . The covariance matrix is then defined to be the matrix in which the ('i,, ,j)-th 
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element is equal to: 

I:f=.l y(1)jk 

s 

where i ranges from 1, ... , 40 and .i ranges over the elements of d. 
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(5.33) 

Using the Bayes linear formula for adjusted variance and the simulation output 

for observations at t = 13 and system minima at t = 23, we can estimate vm·}'la (m23 ) 

and thus evaluate f:!:.z and Q.; a..s: 

J:!:.z 
vm·,, (rn?3) 

:...h,!3 -"' 

sigrna2 
---z 

var(z:rr23) - 1 
val· (rn,.) 

!t.h,!3 -23 

(5.35) 

which is sufficient to allow the evaluation of the integrals / 1 a1.1d / 2 . 

thereby calculating the expected loss value. 

\Ve can use a. standard Normal cdf to estimate the value of h for a.ll c. fz can be 

estimated, either by using software packages designed for integral evaluation, or by 

using simulation techniques. We adopted a simulation approach, based on a change 

of va,riable in integral/z from z to g, where: 

allows us to write /2 as: 

where, 

Z- f-Lz 
g=-­

O'z 

(5.36) 

vVe can treat (5.36) as evaluating the conditional expectation of a function of g, 

thus: 

(5.37) 

g rv N(O, 1), by construction, so we can estimate the value of /2 using the following 

simulation routine: 
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1. Generate a sample G of size IGI independent draws from a standard Normal 

distribution with mean 0 and variance 1. 

2. Find a.ll g E G such that g < p9 , call this set r. 

3. Let 11'1 be the size of set r. The expecta.tion we want is estirna.ted by: 

4. Estimate the probability of g < p9 by: 

the proportion of g E G less thar1 pg-

5. Estimate 12 by 

It may be necessary to make the size of IGI very large in order to ensure convergence, 

particularly when Ll R = p is sma.ll. 
JF 

Tables .5 .1 0 and 5.11 contains all the necessary information for calculating the 

expected loos va.lue for the tot.a.l inspectiorl case. The t.a.ble has the sarne layout as 

that of Tables 5.8 and 5.9. In this case, we are not certain about our decision, so 

every component takes a value for both the 11 and h terms, even if this value is 

11egligible in some cases. Using the va.lues in Tables .5.10 a.nd 5.11 we can show the 

expected loss from decisions E[L(1, ... , 40)] = 26.1073, which can be split into an 

expected loss of 23.4:375 from replacement and 2.6698 from fa.ilure. As a consequence 

of the uncertainty introduced into our decision rnaking through inspecting, the loss 

due to replacement can no longer be definitely stated, but is now replaced by an 

expected loss evaluated as the sum of the expected loss due to replacement for 

each component. This is calculated as the product of the probability of choosing 

to replace a component multiplied by the cost of replacing that component. The 

expected loss due to fa.ilure is calculated a..'S previously. In this case we also need to 

specify the inspection cost. Using the specified values for Lsu = .5 and L1c = .0125, 

the total inspection loss is: 

Lr = .5 + 80 * .0125 = 1.5 
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and the overall expected loss for this design is therefore: 

U(1, ... '40) = -{E[L(1, ... '40)] + LI} -(LR!l + Lplz + L1) 

-(23.4375 + 2.6698 + 1.5) = -27.6073 

The main reason for the reduction in expected loss we see here is the decrease iu 

the nurnber of cornponents we believe it is necessary to replace. A definite replace­

ment policy will depend on the particular data observed. However, the probabilities 

of our deciding to replace ea.ch component are shown in coluun1 2 of Ta.bles 5.10 and 

5.11. The reduction in variance achieved by fully inspecting at t = 1.3 can be seen 

by comparing the :3rd and 4th columns of Tables 5.6 and 5.7. 

The values of Table s5.10 and 5.11 are presented without adjustment for inspec­

tion cost. We see that the extra certainty we have gained in our predictive ability, 

because of the reduction in variance brought about by updating, ensures that the 

loss in utility is at most as large as when not inspecting, and in general reduced. In 

particular, if we consider component 16, which contributed most of the failure cost 

in the no further inspection case, clue to it having an expected probability of fa.ilure 

close to the value of p, we can see that its loss value has been halved. This occurs as 

a consequence of introducing the possibility of replacing contponent 16, depending 

on what we observe during our inspection. The updated distribution of the proba­

bility of failure for component 16 is such that we would expect to replace it 24.63% 

of the tinw. Allowing the possibility of replacement - dependent on the actual ob­

servations - has for this component reduced the expected loss. For components such 

a...s 1, 3 and 4, allowing the possibility of not replacing has caused the reduction in 

expected loss. These components a.lso have an expected probability of failure close 

to the value p (as for component 16), but slightly greater meaning without further 

inspection these components would alwa,ys be replaced. B"\nther inspection allows 

us to confirm situations in which this is the most appropriate action. 

The benefits of inspection can be seen here to be that of allowing decisions to be 

dela~ed until more relevant information is available. For those components with an 

expected probability of failure close to the value of p, further inspection is pmtic­

ula.rly va.lua.ble. Inspection does not necessarily change the number of cornponents 
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that must be replaced, but it allows a more appropriate decision to be made on the 

basis of stronger evidence. 

From evaluating E[L(d)] when d is equivalent to tota.l inspection we know that 

greatest possible gain in information we can achieve from any design is that which 

allows us to get close to -26.1073. Pa.rtial designs will not allow us to ga,in a greater 

value of information than 32.1003-26.1073 = 5.9030, but they may allow us to learn 

nearly as much for lower LJ. 

5.6 .3 Partial inspection 

The procedure for evaluating the expected loss criterion for a partial inspection 

design is similar to that of evaluating the criterion for a full inspection design. The 

sarne calcula.tions are performed using the same methods outlined in section 5.6.2. 

We consider inspecting all the even number components fully at time B. This means 

we take the minimum over every location on the surface observed with error for 20 

components within Circuit A. At this stage we make no attempt to select these 20 

components in an informed way. The purpose at this stage is to illustrate how to use 

the criterion for a given partial design, not to select an optimal design. The set of 

components to be inspected is eel= {2, 4, ... ) 38, 40}, components 1, 3, 5, ... ) 37,39 

will not be inspected. 

Evaluating expected loss for any design relies on calculating the adjusted vari­

ance. For our partial design we are considering full inspection of the even numbered 

components, so our design set d = {2, 4, 6, ... , 38, 40}. To find the adjusted vaxiance 

for this design we need to evaluate: 

(5.38) 

(:t!.h,d13) COV (~h.dl3' rn2:~) 
(5.39) 

The chosen d has 20 el<:lllteilts, so the variance rnatrix of our design observations, 

var(~13 ) is of size 20 x 20. The covariances, cov(nL23 ,~h,c!l) and cov(~h,dl3 , ·m,2:1), 

are of size 40 x 20 and 20 X 40 respectively. Both the var!l..h d
13 

(m2a) and varY.h (m23 ) 
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EIP(Fiy)l 

Component P(P(Piy) > p) P(Fiy) ~ p]x H.epla.cement P'a.ilure Component 

Number (Jl) P(P(Fiy) ~ p) Costs Costs Utility 

(12) LR.Il Lp./2 Lni1 + Lph 

1 0.2919 0.0112 o.4~n9 0.2244 0.6623 

2 0.0000 0.0000 0.0000 0.000:3 0.0004 

:3 0.2969 0.0121 0 .4t.15:3 0.2427 0.6880 

4 0.3293 0.0134 0.4940 0.2686 0.7626 

5 0.0000 0.0000 0.0000 0.0003 0.0004 

Ei 1.0000 0.0000 1.5000 0.0001 1.5000 

7 0.5413 0.01:32 0.8119 0.26:32 1.0751 

8 0.0561 0.0091 0.1122 0.1829 0.2951 

9 0.0000 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0006 0.0006 

11 0.0002 0.0001 0.0002 0.0018 ().0020 

12 0.8323 0.0059 1.2484 0.1171 1.3655 

13 0.0002 0.0001 0.0002 0.0018 0.0020 

14 0.5670 0.0111 0.850G 0.2213 1.0719 

15 0.0000 0.0000 0.0000 0.0000 0.0000 

16 0.246:3 0.0129 0.3694 0.2587 0.6281 

17 0.0000 0.0000 0.0000 0.0003 o.oom 
18 0.0000 0.0000 0.0000 0.0002 0.0002 

19 0.9998 0.0000 1.9997 0.0002 1.9999 

20 0.0032 0.0004 0.0064 0.0073 0.0137 

Table 5.10: Necessary element~:> of the expected loss calculation for each component. 

in the full inspection case, excluding inspection cost information 
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E[P(Fiy)i 

Component P(P(Fiy) > p) P(Fiy) ::;: p] X H.eplacement Failure Component 

Number (Il) P(P(Fiy) :S p) Costs Costs Utility 

(!2) Lu.Il Lp.f.:, Lnlt + LFI2 

21 0.799:5 0.0083 1.5985 0.1655 l. 7640 

22 0.8058 0.0082 1.6117 0.1634 1.7751 

23 0.9956 0.0001 0.5973 0.0017 0.5990 

24 0.9974 0.0001 0.5984 0.0011 0.5995 

25 0.9081 0.0042 1.8162 0.0848 1.9009 

26 0.9141 0.0040 1.8283 0.0809 1.9092 

27 0.9997 0.0000 1.9993 0.0003 1.9996 

28 0.0036 0.0004 0.0073 0.0079 0.0152 

29 0.0041. 0.0005 0.0081 0.0092 0.0173 

30 1.0000 0.0000 0.6000 0.0000 0.6000 

31 0.7917 0.0028 0.4750 0.0557 0.5307 

:32 CU815 0.0045 0.2289 O.Cl903 0.3192 

33 0.9851 0.0003 0.5911 0.0053 0.5964 

34 0.3B7 0.0047 0.1882 0.0946 0.2828 

35 0.9998 0.0000 0.5999 0.0001 0.5999 

36 0.9998 0.0000 0.5999 0.0001 0.5999 

37 0.2281 0.0040 0.1~168 0.0809 0.2178 

38 0.7941 0.0018 0.4765 0.0360 0.5125 

39 1.0000 0.0000 0.6000 0.0000 0.6000 

40 0.9999 0.0000 0.5999 0.0001 0.6000 

Table 5.11: Necessary elements of the expected loss calculation for each component 

in the full inspection case, excluding inspection cost information 
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matrices are 40 x 40. We can estimate the required quantities from the simulation 

output. To estimate the covariance structure, we require the output relating to the 

whole component observations at time t = 13 for the components in the design. 

This is given by the columns of Yl1) corresponding to the design elements, i.e.the 

2nd column of YW conta.ins the output for cornponent 2, the 4th the output for 

component 4 etc. We will also need the simulation output for the component minima 

at time t = 23 for all components. This is given by M23. The covariance matrix is 

then defined to be the matrix in which the (i, j)-th elernent is defined using (5.33) 

where i ranges from 1, ... , 40 and .i ranges over the elements of d. 

Having estimated the relevant variance and covariance structures, it is possible 

to calculate the adjusted variance matrix for design d. This is sufficient to allow 

the computation of l!:..z and Q.z, as in (5.34) and (5.35), which allows us to evaluate 

the expected loss criterion for this design. Comparing the adjusted va.riartces for 

the partial design to those from the full and no inspection designs (Tables 5.6 and 

5. 7), we can see that the partial design performs nearly as well as full inspection 

in the components we have observed, indicating that the majority of explainable 

variation in most components is learned about through direct observation of the 

component. However, the design also achieves varia,nce reduction in the cornponents 

we do not inspect, most notably in components 3 and 7. Learning about uninspected 

components through the system covariances is an important aspect of inspection 

planning. Partial inspection designs are cheaper to implement than total inspections 

Therefore if we can successfully target our inspections to the components that are 

most informative ahout not just them.selves, but also the system as a whole, we will 

be able to develop more cost effective inspection plans. 

The necessary information for calculating the expected loss values for this par­

tial inspection case is shown in Tables 5.12 and 5.13. As for full inspection, ev­

ery component must take a value for both h and !2, as partial inspections act to 

reduce uncertainty over the whole system, not just in the inspected components. 

Assessing the loss values componentwise we can see that the partial design corn­

pares favourably with the full design in the inspected components, achieving similar 

reductions in loss, but less well in the uninspected componeuts. However, it still 
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outperforms not inspecting, achieving a loss less than or equal to that seen in the no 

further inspection case (as must happen). For example, if we again consider com­

ponent 16, the partial design achieves an almost identical reduction utility to the 

full design, implying that information from other components is of less importance 

when learning a.bout component 16. If we assess the performance of components 1. 

ar1d 3 - neither inspected under the partial design, we can see a noticeable difference 

in degree of reduction achieved. Component 1 has an associated loss of 1.5 given no 

further in.spect.ion, but this drops to O.GG23 1.m.der full inspection. Our pmtial design 

manages to reduce the loss to just 1.L1198, which is not much of an improvement, 

indicating that we have to consider components outside of the current partial design 

to learn effectively about component 1. Component 3 also has an associated loss 

of 1.5 given no further inspection, and achieves a similar reduction to 0.6880 under 

full inspection. However, for this cornponent, the partial design allows us to reduce 

loss to 0.9433, a considerable improvement on not inspecting, but not as much as is 

offered by full inspection. This tells us component 3 is a component we can learn a 

non-trivial amount about through inspecting other components. 

The partial design does not offer as much improvement in our decision mak­

ing ability as the full design, and consequently both the losses due to replacement 

(25.2752) ru1cl clue to failure (2. 7750) ru·e higher thru1 those for the full inspection 

case, however, the design is cheaper to implement, as we inspect half as many units 

( 40 half components as opposed to 80). The lof:>ses due to inspection are: 

L 1 = .5 + 40 * .0125 = 1 

and the overall expected loss for this design is therefore: 

U(d) = -{E[L(d)] + L1} LRh + Lpl2 + L1 

-- -(25.2752 +- 2.7750 +·1) = -29.0502 

So of these three designs, the full inspection is preferable. This will not always be 

the case. The arbitrary fashion in which this design was selected meant the quality 

of its performance could not be predicted. We will denwnstra.te in the next chapter 

that the use of sensible design selection procedures will allow the inspection planner 
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to identify partial inspection designs which, due to their reduced cost, offer better 

value information than total inspection. 
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E[P(Fiy)l 

Component P(P(Fiy) > p) P(Fiy) :s; p] X H.eplacement F'a.ilure Component 

Number (IJ) P(P(Fiy) ~ p) Costs Costs Utility 

(12) LR.Il Lp.l2 Lnl1 + Lph 

1 0.67.50 0.0204 1.0125 0.4074 1.4198 

2 0.0000 0.0000 0.0000 0.0003 0.0004 

3 0.3839 0.0184 0 .. 5759 0.3674 0.9433 

4 0.~~303 0.01~j5 0.4954 0.2695 0.7649 

5 0.0000 0.0000 0.0000 0.0003 0.0003 

6 1.0000 0.0000 1.5000 0.0001 1.5000 

7 0.7493 0.0116 1.1240 0.2327 1.3567 

8 0.0559 0.0093 0.1117 0.1865 0.2983 

9 0.0000 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0006 0.0006 

11 0.0000 o.oocn 0.0000 0.0020 CJ.0020 

12 0.8327 0.0058 1.2490 0.11G8 1.3658 

13 0.0000 0.0001 0.0000 0.0020 0.0020 

14 0.5674 0.0111 0.8511 0.2210 1.0721 

15 0.0000 0.0000 0.0000 0.0000 0.0000 

16 0.246:3 0.0129 0.3694 0.2588 0.6283 

17 0.0000 0.0000 0.0000 0.0002 0.0002 

18 0.0000 0.0000 0.0000 0.0002 0.0002 

19 1.0000 0.0000 2.0000 0.0000 2.0000 

20 0.0032 0.0004 0.0064 0.0074 0.0137 

Table 5.12: Necessary elements of the expected loss calculation for each component 

in the no further inspection case, excluding inspection cost information 
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E[P(Fiy)l 

Component P(P(Fiy) > p) P(Fiy) :S: p] x H.epla.cement F'a.ilure Component 

Number (/J) P(P(Fiy) :S: p) Costs Costs 1J tility 

(12) LR.Il LF.I'l LRft + Lph 

21 0.999,15 0.0000 1.9989 0.0006 1.999S 

22 0.8062 0.0082 1.6125 0.1635 1.7759 

23 1.0000 0.0000 0.6000 0.0000 0.6000 

24 0.9977 0.0001 0.5986 0.0010 0.5997 

25 1.0000 0.0000 2.0000 0.0000 2.0000 

26 0.9144 0.0041 1.8289 0.0811 1.9100 

27 1.0000 0.0000 2.0000 0.0000 2.0000 

28 0.0036 0.0004 0.0073 0.0079 0.0152 

29 0.0000 0.0()16 0.0000 0.0328 0.0:328 

30 1.0000 0.0000 0.6000 0.0000 0.6000 

31 0.9977 0.0001 0.5986 0.0011 0.5998 

32 o.;)869 0.0046 0.2322 0.0923 0.3244 

33 1.0000 0.0000 0.6000 0.0000 0.6000 

34 0.:3187 0.0048 0.1912 0.0959 0.2872 

35 1.0000 0.0000 0.6000 0.0000 0.6000 

36 0.9999 0.0000 0.5999 0.00()1 0.6000 

;)7 0.3919 0.0095 0.2351 0.1891 0.4243 

38 0.7944 0.0018 0.4767 0.0361 0.5127 

39 1.0000 0.0000 0.6000 0.0000 0.6000 

40 0.9999 0.0000 0.5999 0.0001 0.6000 

Table 5.13: Necessary elements of the expected loss calculation for each component 

in the no further inspection case, excluding inspection cost information 



Chapter 6 

Selecting inspection designs 

For the inspection of any system, there will be a choice of inspection design that 

is optima.! under our modelling assumptions. In the decision problem framework, 

this is the design which allows us to make correct decisions most often, and, in 

terms of our formulation of the problern, it is the desigr.t which yields the greatest 

improvement in decision making ability offset against the cost of implementing the 

design. We have discussed previously some of the computational issues involved in 

pla.nning inspection for large systems, and these are again relevant when considering 

how best to select an inspection design. The number of possible inspection designs 

for any real i:>ystem is likely to be too la.rge for it to be feasible to ana.lyse all designs, 

unless stringent constraints are placed on how inspection is carried out. For example, 

even if we restrict to the simplest case of recommending whole components within an 

n component system are either inspected or not inspected, the number of potential 

designs will be 2n, so, even for this simple procedure, we would have to abandon 

exhaustive search routines for comparatively small n. Given that inspection designs 

are, in general, more complex, it becomes clear tha.t attempting to t>ea.rch the whole 

design space is not a sensible policy. 

Exhaustive analysb of the de:::;ign space is guara.nteed to find the optima.l dei:>ign. 

However, it will in general be too computationally intensive to be practical. Conse­

quently, we need to consider rational methods for selecting designs, which reduce the 

number of design::; it is necessary to compa.re whilst identifying designs that perform 

158 
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well in terms of improving our decision making ability. 

In this chapter we discuss choosing between inspection designs (section 6.1). In 

section 6.2 we outline the different search strategies we will use and how we select 

initial designs from which to start searching. In section 6.3 we illustrate the use of 

the different routines to plan ax1 inspection for tl1e Site A. subsystem Circuit A, and 

we analyse the performance of the recommended designs in section 6.4. In section 

G.5 we assess the impact of varying the failure costs. 

6.1 Identifying good designs 

The design criterion described in chapter 5 is used to choose between designs. 

The expected utility criterion has been defined in such a way that both the losses 

incurred as a result of the system behaviour and those involved in maldng the in­

spection are taken into account within the criterion. This means we can compare 

different designs (made at the same time point) which cost different amounts to im­

plement directly through the expected utility criterion, without the need for further 

calculation. 

VIe always prefer designs which have a higher expected utility value. Therefore 

the optirnal design is the single design d* E D which has the minimum associated 

expected loss in utility (or simply expected loss), and 'good' designs are those which 

take expected loss values close to this minimum. The cost of making the inspection 

plays an important role here, and the optimal design is the one which balances the 

reduction in loss due to increased confidence in our decision rnaking a.gainst the price 

paid to achieve that gain in confidence. 

6.1.1 Inspection blocks 

Throughout the rest of this chapter we will refer to 'inspection blocks'. An 

inspection block, is defined to be smallest unit of a system which can be inspected. 

Blocks should be regarded a..'> a partitioning of the system into regionlS for inspection 
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purposes. It should be assumed that there is no overlap between blocks, and that 

every point on the surface of the system can identified with one (and only one) 

inspection block. Individual blocks are denoted, bi, and the set of all inspection 

blocks contained in the system is B. 

6.2 Search routines 

Vile will use a stepwise search method to identify designs. Stepwise sea;rch is a 

simple method which adds/removes blocks from a design one at a time until there 

is no furtlter benefit from adding or deleting more block::;, or until the maxinmm 

inspection budget is reached, whichever occurs first. 'Benefit' in our search algorithm 

will be determined by the design utility values. 

We consider 3 stepwise approaches; stepwise addition of inspection blocks, step­

wise deletion of inspection blockc; and finally a combination of the two. 'We outline 

the algorithms used in sections 6.2.1- 6.2.3. These searches follow the methods used 

in regression analysis for variable selection. 

6.2.1 Stepwise Add 

In implementing the stepwise procedures we will use the notation dj to indicate 

the design at the .J-th step of the process. Furthermore, we denote the initial design 

to be d0 and the fina.l recomrnended design as d. 

To illustrate the process consider a system with n inspection blocks. d0 = 0, 

i.e.there are initially no inspection blocks included in the design. To find d1 we 

must identify which block, bi E B, we should inspect if we can only inc;pect one. To 

do this we evaluate the expected loss from our decisions, E[L({bi})], for the design 

iru,;pecting only bi, for all bi E B. We then let L(b;) be the loss associated with 

inspecting bi and let bi be the choice of block b; which minimises E[L(bi)] over all 

choices bi E B. vVe then set: 

eh = {b~} 
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The recommended design at the next step consists of the previous recommended 

design, plus the inspection block bi that yields the minimum expected loss (i.e., the 

ma.-x:imum effect on all the remaining uninspected sites). Having identified the next 

proposed point we check: 

U(d1) > U(do) 

.... ':::? -{B[L(di)] + LI(dl)} > -{E'[L(do)] -+- LI(do)} (6.1) 

{:::;> B[L(dl)] + LI(dl) < E[L(do)] 

(6.2) 

i.e.that the total loss of inspecting the new set is less than that incurred from 

inspecting the old set. If (6.1) is true, we recommend using d1 and proceed to add 

another block. However, if (6.1) does not hold there is 110 benefit from adding an 

inspection block to the design, so we stop the stepwise process and recommend using 

d0 as our inspection design. Using this method, our design set at step j will consist 

of the set of points { bi, b:J, ... , bj}, where bj = bi such that: 

max {U(bi, b;, ... , bj .. 1, b;)} = U(bi, b;, ... , bj. 1, bj) 
~EB · · 

(6.3) 

The stepwise add algorithm (at the .i-th step) is summarised below: 

Stcpwisc Add 

l. Using d.i-1 = { bi, b2, ... , bj_1}, identify the set of uninspected blocks, B -

{ bi ' b2' ... ' bj -1 } . 

2. Evaluate U(bJ., b;, ... , bj_1, bi) V bi ·inB- { bt, b2, ... , bj_ 1 } using the expected 

loss criterion. 

3. Find the block, bj so that (6.3) is satisfied, and set: 

d ····- {cl b*1 ······ {b* b* b* b*} j - j-1> .if - 1> 2> ... ' .i-l> .i 
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This process should be repea.ted until either the stopping point is reached, 

i.e.\Vhen U(di) < U(dj ... 1), or the maximum inspection budget is reached. 

Using a stepwise approach has the advantage of reducing the number of designs 

for which the utility must be evaluated, relative to exhaustive search. For any one­

way stepwise search in which con.tponents can only be inspected once, the rnunber of 

designs for consideration decreases by one at each step, as once an inspection block 

has been added to the design, it remains part of the design. Therefore, the number 

of designs considered in finding the preferred design for system with n inspection 

blocks using a one-\vay stepwise search is at most: 

~. n(n+ 1) 1 
n + (n- 1) + (n- 2) + ... + 2 = 6 z = 

2 
- 1 = -(n + 2)(n- 1) 

2 2 

and 

~ (n -+- 2) (n -- 1) < < 2n as n increa..ses 

However, a.dding blocks to a design sequentially does not take account of relation-

ships between components particularly well. A search strategy which helps to ad­

dress this problem is stepwise delete 

6.2.2 Stepwise Delete 

The stepwise delete procedure is essentiaJly the same as stepwise a.dd, but instead 

of adding a block to the design, at each step one is removed. The computational 

load is the same as that of stepwise add but the delete approach allows us to take 

into account relationships between components differently. For example, consider 

the situation in which we have two inspection blocks which are both, individu­

ally, relatively uninformative, but in combination tell us a great deal about system 

behaviour. Under stepwise add these blocks would both be late additions to our de­

sign and their joint predictive power overlooked. However, using stepwise delete the 

strong joint effect would mean both were retained as pa.rt of the design for longer, 

strengthening the designs influence on our decision making ability. 

We consider applying a stepwise delete procedure to a system which has been 

partitioned into n inspection blocks. For this process we will take the initial design, 
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do, to be the saturated design, in which every block is inspected (i.e. d0 = B). We 

write B as the set of selected blocks, bj, B = {bi, ... , bj, ... , b~}. At the first stage 

we identify b*__1, as the block, bi E B, we can remove with the least impact on the 

expected loss. That is, the block bi satisfying: 

(6.4) 

The block, b*_j, for which the rnaxinnnn utility is attained is then rernovod from the 

design d0 to give d1, so we have: 

Vvo then repeat this process until we reach a suitable stopping point. 

As for stepwise add, the stopping point (i.e.the point at which we derive no 

benefit from continuing to delete points) occurs when: 

However, if we a.re working to an inspection budget, we rnay roach this point \Vhilst 

still in excess of our budget. In which case it will be necessary to continue deleting 

points until we have a design which satisfies the budgetary constraints. 

The stepwise delete algorithm, for the j-th step, is: 

Stepwise Delete 

l. Identify the in8pected blocks, dj-1 = { bi, b2, ... , bj_d. 

2. Evaluate U({ b]',bz, ... ,bj 1}- b.;) V b; E d;_ 1 using the expected loss 

criterion. 

3. Identify b*_i to be the point satisfying 6.4, and define the new design set, cl; to 

be: 

4. If U(d;) > U(clj_ 1) repeat from 1, else stop. 
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Both stepwise add and stepwise delete provide a structured way of searching the 

design space. Hovvever, they do not necessarily find the optimal design. The designs 

found using stepwise searches should perform well with respect to our criterion, and 

the use of a structured search procedure greatly reduces the computational burden, 

which compensates for the loss of optimality in our design. 

We have stated that a stepwise delete search is more likely to identify jointly 

informative subsets of inspection blocks, which makes it preferable to a stepwise 

add approach. However, for very large systems it will often be impractical to use 

a stepwise delete procedure from a saturated design, particularly if the scale of the 

design we wish to (or can aJford to) irnplernent is very rnuch srna.ller than the systern. 

6.2 .3 Combining stepwise add and stepwise delete methods 

If we are planning inspections for a very large system, adopting a stepwise delete 

approach is unlikely to be sensible. A less tirne consur.ning rnethod would be to use 

a combination of the stepwise add and delete techniques. In general, we will be 

inspecting a proportion of the system which is relatively small. Therefore it makes 

more sense to start from nothing and sequentially add blocks to the design, as we 

will reach the most cost-effective design more efficiently. However, we may not take 

account of any important joint relationships, so to counteract this vve suggest using 

stepwise add followed by stepwise delete, as below: 

Stepwise Add and Delete 

1. Identify an initial design, d0 

2. Add blocks sequentially to the design using stepwise add algorithm, up to 

stopping point (either authentic or budget) at step j*. 

3. Add a further j* blocks to the design using stepwise add. 

4. H.ernove blocks sequentia.lly from design d2j* using stepwise delete algorithm, 

until a stopping point is reached. 
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Using a combination method should improve on simply using the st.epwise add 

procedure, but allows for a design search to be started from a more appropriate 

initia.l design - or at least one which is nearer in size t.o the design which we can 

afford to implement.. However, in some very large systems it may not be appropriate 

to start a stepwise search from either an er.npty or a, saturated design, so we will 

need a method for identifying reasonable starting points for our searches. 

6.2.4 Identifying do 

For very large systems stepwise searches from either empty or saturated designs 

are likely to remain time consuming. Therefore we propose the following method 

to identify plausible starting designs, do, which can then be improved using the 

stepwise search procedures. 

To identify a. reasonable sta.rting point \Ve must. identify blocks which aJ:e worth 

inspecting, namely those blocks for which we are most. unsure of the outcome, and 

those which tell us most about system beha.viour overa,ll. Identifying blocks that 

allow us to lea;rn about overall system beha.viour is not straightforward, but we can 

identify blocks where we can achieve the greatest improvement in understanding 

individual component behaviour by considering the one dimensional updates for 

each block. That is, we only take into account what data from an inspection block 

tells us about tl.te cornponent of which it forms a part, ar.td not what it tells us about 

the whole system. 

For each component we have beliefs about the expectation and variance of the 

wall thickness va.lues, which we use to describe the probability of component failure 

through the assumption of Normality. To update beliefs about a single component, 

c, we use the equations: 

Vai'Yct (nLc(t+k)) = var (mc(t+k))- COV (mc(t+k), 'Yet) va.r-l (Yet) COV (Yet, mc(l.+k)) 

in which all quantities are scalars. In the inspection design situation, where we deal 

with potential data, rather than observed data., E[EYct (mc(t.+k))] = E(mc(t.+k)), (see 
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section 5) so the only changes to our beliefs come from updating var(mc(t+k))· From 

the updated variances we can obtain a measure of the importance of inspecting the 

component. 

Consider the variance of mc(t+k). This can be written as: 

which is equivalent to: 

Using independence, we can write: 

2 2 
E [mc(t+k) - EycJmc(t+k))] + E [E!Ict(mc(tlk))- E(rnc(t+k))] 

var!lct ( rnc(t+k)) -+ var( E!lct (rnc(t+k))) 

This allows us to write var(rnc(t+k)) a..s the sum of the adjusted variance of rnc(t+k) and 

the variance of the adjusted expecta,tion of mc(t+k), and thereby obtain an expression 

for the adjusted expectation of Tnc(t+k) 

var(rnc(t+kJ --- varYct(rnc(t+k)) +· var(J"7yct(rnc(t+k))) 

var(rnc(t+k))- va:t.·Yct(rnc(t+k)) var(EYct(mc(t+k))) 

var(mc(t+k))- varYct(nLc(t+k)) SD(EYct(rnc(t+k))) 

Considering the standa:t.·cl deviation of the adjusted variance allows us to assess 

the effect of the one dimensional update. In addition, we weight this by the difference 

_____ ]Jetweer1 the e:xpected yalueof Tnc(t+k) and the critical wall thickness, . W0 : 

O = Jva:t.·(mc(t+k))- varYct(rnc(t+k)) =I CY1, 
1 

I· (G.5) 
E(mct+k)- We fLt+k --- H c 

0 provides a measure of the impact observing Yet has on our beliefs about c. 

As a. consequence of using the Bayes linear updating equa,tions var:Yct (nLct+k) < 
var(mct+k), so the numerator of 0 is always positive. For a component expected 

to be in acceptable condition, vVc < llt 1k, so the denominator will, in general, be 
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positive. However Q can also take a negative value if vVc > fl-t+k> i.e.if the component 

wall thickness is expected to have fallen below the acceptable level. Our interest is 

in identifying those components expected to be close to failure, and looking at those 

n with a large absolute values allows us to do this. 

n is a criterion for rneasuring which cornponents we learn rnost about through in­

dividual component inspection. The difference between varYct (met+k) and var(mct+lc) 

quantifies the increased confidence in our probability of failure value, and weighting 

this by f.Lt+k ---· vV c aJlows us to rneasure the relevance of irnproving beliefs about this 

component. Reducing uncertainty in components which are either certain to fail or 

certain to survive is not particularly important. 

Evaluating n for each component allows us to identify the set of components 

which tell us most about themselves when inspected. We select the number required 

to fonn a sensible initial design d0 by selecting those with the highest n values. This 

criterion makes no attempt to measure what inspecting component c tells us about 

the uninspected components and we rely on the assumption that the components 

which ru·e most informative about themselves will also be informative about other 

components. Therefore we do not propose using n as a way of identifying final 

recornrnended designs, but ir1stead suggest it as a sensible method for obtaining a 

starting point from which the stepwise selection algorithms can then be used to 

improve the design. 

6.3 Design selection for Site A example 

\iVenow apply the methods outlined in section 6.2 to the Sitf.l A subsystem 

Circuit A. Circuit A is sufficiently small that we can legitimately perform a stepwise 

add routine taking d0 = 0 and sirnilarly a stepwise delete starting from a saturated 

design. We illustrate both procedures here (stepwise add in section 6.3.1, stepwise 

delete in section 6.3.2), and also demonstrate ho\v to use the n criterion to suggest 

a. rational search sta.ring point in section 6.3.3. vVe a.ssume that. our designs a.re 

not subject budgetary constraints. Our inspection blocks will correspond to half a 
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component, and we will therefore have 80 blocks for this system. The blocks will 

be labelled as bc1 or bc2, where c is the component number and 1,2 distinguishes 

between different halves of the cornponent. 

We will restrict ourselves to identifying the best possible inspection design for 

time t "" B, which we consider as the 'now'. ln practice, we would need to consider 

also recommending an inspection time, but for this illustration we deal ·with the 

constrained problem of identifying the best possible design for immediate imple­

rnentation. 

6.3.1 Selection using the stepwise add algorithm 

We apply the stepwise add algorithm with an initial design of no inspection 

d0 = 0. We simulate 100,000 realisations of the Circuit A system for the 2:3 time 

steps which cover the time period 01/01/1998- 31/12/2009, and 100,000 observed 

minimum values (i.e.the simulated component minirnum plus a simulated observa­

tion error) based on simulated errors for observing half the locations within each 

component and simulated errors for observing the whole component. These simula­

tions will provide us with the necessary informa.tion for evaluating the expectations, 

variances and covariances required to update our beliefs about components, and 

therefore to ca.lcula.te the utility values for a.ny given inspection design, and corre­

spond to the results generated in section 2. 

At the first stage of our additive stepwise search we have to evaluate the utility 

of all designs which only consider a single inspection block. Let us start by consid­

ering how inspecting half of component 1 alters our beliefs about the probability of 

- c:oniponent fa.ilure. vVe knov>' from section 5.6.1 tha:t th.e design with no inspection 

has an expected utility of 32.1003. The expected minimum wall thickness, adjusted 

by the historical data, '}j_h (EJ!.h (m23 )) and the critical wall thickness values (W c) 

will remain constant over all designs, these values are given in Table 6.1. 

Table 6.2 shows the components of the expected loss term for components 1 

to 10. This table sh.ould be compared to Tables 5.8 and 5.9 to see how the half 

component observation has influenced our beliefs about the probability of failure 
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and consequently our decision about component replacement. As we might expect 

from such a small inspection the overall effect is negligible. The greatest effect is 

on component 1, and there are also noticeable effect s on components 3 and 4, but 

the effects on other components diminish as we move further from component 1 

and a large number of components retain the same var iance loss values and the 

same fixed replacement decisions. Recalling the correlation structure (Figure 6.1 ) 

for deviations at a single time st ep from chapter 3, we can see that component 1 is 

most strongly associated with components 3 and 4 and has effectively no association 

with components further away than comp onent 6, so the effects of this inspection 

plan can be seen to be consistent with the correlation structure known to be present. 

T he expected loss iu utility for this design is: 

- {(LRil + Lpl2) + Lsu + ndLrc } 

-(30 .9219 + 0.5 + 1 X 0.0125) = -31.4344 

larger than the utility for not inspecting. T his decrease in loss is caused by two 

factors; firstly, as we learn about the system the decisions we make about whether 

or not t o repair may change. For example, in this case we are no longer choosing 

to replace component 1 every time, but instead around 30% of t he time, depending 
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on the value of Ycl· Secondly, our beliefs about the probability of component fa ilure 

change, so when we choose not to replace, we do so with greater confidence in the 

eventual outcome. This is reflected by the conditional expectation of failure, having 

chosen not to replace (E[P(FJy)JP(FJy) ~ p] .P(P(FJy) ~ p)), being closer to 0 in 

components 1, 3 and 4. This is itself a consequence of updating our beliefs about 

the system variance, which has the effect of shortening the tails of the posterior 

probability of failure distribution, given our assumptions of Normality. 

Consequently, the inspection is expected to be less costly than doing nothing, 

even accounting for the set up cost Lsu, and the incremental cost L1c, which t ell us 

how expensive it is to perform the inspection. For this component, we are paying 

the inspection cost for appreciable information gain, so the utility increases, t elling 

us this is potentia lly a sensible design . 

vVe then have to evaluate U(bc1) for all other components. The results are shown 

in Figure 6.2. The figure clearly shows the expected utility value to be lowest for 

half inspection of component 3. Table 6.3 shows the element s of the expected loss 

from decisions calculations, which should again be compared to Tables 5.8 and 5.9 

to establish where improvements have been made. The full version of the table is 

in the appendix, components for which the expected losses are noticeably affect ed 

are given in Table 6.3. The critical wall thickness (W c) and expectations are the 
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Critical Expected Critical Expected 

Component Wall minimum wall Component Wall minimum wall 

Number Thickne:s:s thickne:s:s Number Thickne:s:s thickne:s:s 

(We) (Ey" (m23)) (We) (Ey" (m23 )) 

1 9.2000 13.8776 21 3.4960 3.9919 

2 7.2960 13.9243 22 3.4960 3.9633 

3 9.2000 13.6668 23 3.0000 3.0354 

4 9.2000 13.3153 24 3.0000 3.2010 

5 7.2960 13.8469 25 3.0000 2.7729 

6 3.0000 1.7305 26 3.0000 2.7311 

7 7.2960 10.1991 27 3.0000 1.2317 

8 9.2000 14.3638 28 7.2960 13.1195 

9 9.2000 18.9274 29 7.2960 12.9814 

10 5.3960 10.0683 30 3.0000 1.9162 

11 5.2440 9.8978 31 3.4960 4.8070 

12 5.2440 6.3969 32 5.4000 8.0150 

13 5.2440 9.9198 33 3.0000 3.5081 

14 7.2960 10.0594 34 5.4000 8.2080 

15 9.2000 16.6621 35 3.0000 2.4296 

16 9.2000 13.8273 36 3.0000 2.4491 

17 7.2960 13.9442 37 5.4000 8.5682 

18 7.2960 14.0274 38 5.4000 6.1959 

19 3.0000 1.3173 39 3.0000 2.1465 

20 7.2960 13.1920 40 3.0000 2.4682 

Table 6.1: Expectations and critical wall thickness values for Circuit A system based 

on data to time t = 12 

.. ~ 1.-



6.3 . Design selection for Site A example 172 

E[P(F iy)l 

Component P(P(Fiy) > p) P(Fiy) :S: p]x Replacement Failure Component 

Number (It) P(P(Fiy) :S: p) Costs Costs Utility 

(12) LR.Il L F.I2 L R}l + L Fh 

1 0.2928 0.0113 0.4392 0.2253 0.6644 

2 0.0000 0.0000 0.0000 0.0002 0.0002 

3 0.4855 0.0240 0.7282 0.4801 1.2083 

4 0.7482 0.0163 1.1222 0.3264 1.4486 

5 0.0000 0.0000 0.0000 0.0003 0.0003 

6 1.0000 0.0000 1.5000 0.0000 1.5000 

7 1.0000 0.0000 1.5000 0.0000 1.5000 

8 0.0000 0.0211 0.0000 0.4213 0.4213 

9 0.0000 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0006 0.0006 

Table 6.2: Losses having inspecting ha lf of component 3 for selected components 

same as those given in Table 6.1. Vve again learn most about the component we 

have inspected . However, in t his case we also learn about components 1 and 4. By 

inspecting these components we improve our ability to decide how to t reat them, 

and therefore reduce our expected losses as a result of our decisions noticeably. 

This results in overall reduction in the expected loss in utility of 1.5132 for this 

component . The design with the highest utility value at this first step is the design 

which recommends inspecting half of component 3, so our new preferred design is: 

d1 {do, b~ } 

{0, b3, t} = {b3,1} . (6.6) 

V\Te now carry out the same process to identify the second inspection block to 

be included in the design . We use the same proceclure of evaluating the expected 

utility for every design including one additional block to d1, t his time we identify 

inspect ing half of component 16 (see Figure 6.3 ) as the inspect ion block which allows 
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E[P(F iy)l 

Component P(P(Fiy) > p) P(F iy) ::::; p]x Replacement Failure Component 

Number (Il) P(P(Fiy) ::::; p) Costs Costs Utility 

(h) LR.Il LF .h LRI1 + LFlz 

1 0.4979 0.0231 0.7468 0.4625 1.2093 

2 0.0000 0.0000 0.0000 0.0002 0.0002 

3 0.3014 0.0124 0.4521 0. 2487 0.7008 

4 0.4429 0.0206 0.6643 0.4119 1.0762 

5 0.0000 0.0000 0.0000 0.0003 0.0003 

6 1.0000 0.0000 1.5000 0.0000 1.5000 

7 1.0000 0.0000 1.5000 0.0000 1.5000 

8 0.0000 0.0211 0.0000 0.4213 0.4213 

9 0.0000 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0006 0.0006 

Table 6.3: Losses having inspecting half of component 3 fo r select ed components 

us to achieve the greatest reduction in expect ed utility, so we set : 

This process is then repeat ed until we reach the point at which adding another 

point causes an increase in expected loss in utility. Figures 6.4 shows the general 

trend of the expected loss value as t he number of steps increases. The solid blue 

line illustrates the behaviour of the expected loss and the broken red line shows how 

the criterion would behave if we did not adjust for inspection cost. We can see both 

drop initially and then begin to level off, the red will continue to decrease as we 

include more components . However , Figure 6.5 (a close up of a section of Figure 

6.4) illustrates that the expected loss has already starts to increase as of step 19. 

The slight increase we see here indicates that the reduction in loss we can achieve by 

learning more about the system is now less than the loss incurred through inspecting 

the extra block. 

The components included in the proposed design d = d19 are shown in Figure 
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6.6, components included in the design take value one and those points not included 

in the design take value 0. Tables 6.4 and 6.5 show the comparison between the 

variances and failure probabilities of the no inspection case and the proposed design. 

The layout is the same as Table 6.3, with the index associated with the component 

number taking values 0 if a component is not inspect ed, 1 if it is half inspect ed 

and 2 if it is fully inspected . We can see that no components are fully inspected , 

indicating that , for this problem , under the current parameterisation, there is no 

b enefit from full inspection over partial inspection. That is, the further reduction in 

uncertainty offered by full inspection is not sufficiently large to overcome the cost 

of performing the inspection . 

The components included in the proposed design for st epwise add are generally 

those in which our initial uncertainty - measured as the variance for that component 

- is large. This eau Le seen in Figure 6. 7. The Figure plots the initial variance for 

each component, adjusted for all data to t = 12 (the reel line), the reduction which 

can be achieved through total inspection (green line), and the reduction achieved by 

using the design recommended by the st epwise search procedure (the blue line) . The 

components have been reordered to show the variances in decreasing order of size, 

this new order is shown on the x-axis. The design selection in this case has t arget ed 

the components about which we are most uncertain, which is a reasonable policy. 

In the cases where the selection has preferred to insp ect components with smaller 

variances, this is because the maintenance decision in the overlooked component 

cannot be influenced by inspection (because the component is either certain to fail 
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E[P(Fiy)l 

Component P(P(Fiy) > p) P(Fiy) ~ p] X Replacement Failure Component 

Number (Jl) P(P(Fiy) ~ p) Costs Costs Utility 

(!2) LR.Il LF.I2 LR!l + LFI2 

1 ( 1) 0.2925 0.0113 0.4388 0.2252 0.6640 

2 (0) 0.0000 0.0000 0.0000 0.0002 0.0002 

3 (1) 0.2985 0.0123 0.4478 0.2452 0.6930 

4 (1) 0.3306 0.0135 0.4959 0.2697 0.7655 

5 (0) 0.0000 0.0000 0.0000 0.0003 0.0003 

6 (0) 1.0000 0.0000 1.5000 0.0000 1.5000 

7 (1) 0.5432 0.0132 0.8148 0.2633 1.0782 

8 (1) 0.0560 0.0092 0.1119 0.1850 0.2969 

9 (0) 0.0000 0.0000 0.0000 0.0000 0.0000 

10 (0) 0.0000 0.0000 0.0000 0.0006 0.0006 

11 (0) 0.0000 0.0001 0.0000 0.0020 0.0020 

12 (1) 0.8339 0.0058 1.2508 0.1161 1.3669 

13 (0) 0.0000 0.0001 0.0000 0.0020 0.0020 

14 (1) 0.5691 0.0111 0.8536 0.2217 1.0753 

15 (0) 0.0000 0.0000 0.0000 0.0000 0.0000 

16 (1) 0.2472 0.0130 0.3708 0.2607 0.6315 

17 (0) 0.0000 0.0000 0.0000 0.0002 0.0002 
~ I= 

18 (0) 
. 

0.0000 0.0000 0.0000 0.0001 0.0001 

19 (0) 1.0000 0.0000 2.0000 0.0000 2.0000 

20 (0) 0.0000 0.0013 0.0000 0.0258 0.0258 

Table 6.4: Expected decision losses by component using the proposed design 
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E[P(F iy) i 

Component P(P(Fiy) > p) P(F iy) ::::; p] X Replacement Failure Component 

Number (Jl) P(P(Fiy) ::::; p) Costs Costs Utility 

(12) LR-ft LF.I2 LRI1 + LFI2 

21 (1) 0.8004 0.0083 1.6008 0.1650 1.7658 

22 (1) 0.8070 0.0082 1.6139 0.1633 1.7772 

23 (0) 1.0000 0.0000 0.6000 0.0000 0.6000 

24 (0) 1.0000 0.0000 0.6000 0.0000 0.6000 

25 (1) 0.9092 0.0042 1.8183 0.0836 1.9020 

26 (1) 0.9153 0.0040 1.8306 0.0805 1.9112 

27 (0) 1.0000 0.0000 2.0000 0.0000 2.0000 

28 (1) 0.0036 0.0004 0.0073 0.0081 0.0153 

29 (1) 0.0041 0.0005 0.0081 0.0094 0.0175 

30 (0) 1.0000 0.0000 0.6000 0.0000 0.6000 

31 (1) 0.8002 0.0027 0.4801 0.0536 0.5338 

32 (1) 0.3893 0.0047 0.2336 0.0930 0.3266 

33 (0) 1.0000 0.0000 0.6000 0.0000 0.6000 

34 (1) 0.3242 0.0049 0.1945 0.0975 0.2921 

35 (0) 1.0000 0.0000 0.6000 0.0000 0.6000 

36 (0) 1.0000 0.0000 0.6000 0.0000 0.6000 

37 (1) 0.2339 0.0043 0.1403 0.0851 0.2254 
1-

38 (1) 0.7965 0.0018 0.4779 0.0361 0.5140 

39 (0) 1.0000 0.0000 0.6000 0.0000 0.6000 

40 (0) 1.0000 0.0000 0.6000 0.0000 0.6000 

Table 6.5: Expected decision losses by component using the proposed design 
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Figure 6.7 : Variance Reduction achieved by proposed inspection plan 
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or certain not to fail). Inspecting according to this design gives an expected loss from 

decisions (not including inspection cost s) of E(L(d)) = 26.9209. The value of this 

design is lower than the value associated with not inspecting (3 2. 1003), and, as we 

showed in section 5.6.2, the best we can achieve in terms of improved decision making 

is inspecting fully, which gives us an expected loss from our decision of 26.1073 at 

a cost of 1.5 to make the inspection . Using d from the stepwise add procedure we 

can reduce losses from our decision to 26 .1834, at a cost of just 0.7375. 

6.3.2 Selection using the stepwise delete algorithm 

To apply the stepwise delete algorithm we follow essentially the same process 

we used when applying the stepwise add algorithm. We use the simulation data 

to provide estimates of the expectations, variances and covariances we require and 

we use repeated evaluation of the expected loss in ut ility criterion to establish the 

best design at every stage. The starting point for our stepwise delete process will be 

the saturated design, in which every component of Circuit A is inspected fully. We 

again restrict to the case of half or full component inspection as our only methods 

of inspecting. 

The aim of stepwise delete is to see which inspection block we can remove from 
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our design with least effect on our ability to predict. We know from section 5.6.2 

that saturated design (i .e . d = B) has a utility of: 

U(B) - (LRil + LFI2 + Lsu + ndLIC) 

- (26. 1073 + .5 + 80 X .0 125) = -27.6073. 

\Ne want to identify inspection blocks such that the increase in loss due to decision 

making (separate from that of inspecting) that must occur as we reduce the scope of 

the design is less than the cost of inspecting that block. T he utilities for removing 

one block from each component individually are negligible at the first step, so, in 

this case, any action we choose will be an improvement. The range of values covered 

by the expected losses is very small, but component 3 is deemed to be the least 

influential (as the design without half of component 3 has the highest utility), so 

we remove inspection of one half of this component from the design set. The new 

design, d1, instructs us to inspect everywhere fully except component 3 (where we 

will only inspect half the component). 

'Ne now repeat the process using d1 as the starting design. Again we evaluate 

the utility for every design which can be found by removing a single inspection block 

from d1 . The results from this step have a very similar pattern to the first st ep, 

with every value below the best value from step 1 and all utilities close to each 

other. In this case the design with the highest utility is the one which omits half of 

component 5, so we remove this block from the design and set d2 to be the design 

which inspects everything but half of components 3 and 5. 

This process is then repeated until the utility value stops increasing. For this 

example, 62 steps have to taken before we see an increase in utility. Figure 6.8 

shows the behaviour of the minimum expected loss (i .ethe loss which corresponds 

to the select ed design) at each of the 62 steps. The broken red shows the behaviour 

of the loss from our decisions. This quantity can be thought of as describing our 

performance with respect to information gained or lost , without t aking into account 

the cost of inspection. The amount of information it is possible to learn remains 

approximately constant through the first 50 steps, causing the expected loss to 

decrease smoothly at a gradient approximately equivalent to the cost of inspecting 
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a single block. When the amount of information lost through not inspecting starts 

to increase, the expected loss curve begins to level off, and eventually increase, as 

highlighted in Figure 6.9. 

For this example, the recommended design using the st epwise delete algorithm 

coincides with the design recommended by the stepwise add algorithm. In general 

this is unlikely to be the case, due to the reasons outlined in sections 6.2. 1 and 6.2.2 . 

The reduction in expected loss which can be achieved for this system via inspec­

tion at t = 13 is based on learning about the distribution of the posterior failure 

probabilities of the components. When the expected component failure probability 

is large, reducing uncertainty will push the expected component failure probabil­

ity closer to 1, but small expected component failure probabilities will move closer 

to 0 as uncertainty is reduced. This has the effect of increasing our confidence in 

our decision making, causing us to make the 'correct' decision (i .e.replacing failing 

components and not replacing safe components) more often. Choosing the correct 

maintenance policy more frequently, based on the observation data, allows us to 

reduce the expected loss for a component. Figure 6. 10 shows the reduction in loss 

our design achieves for each component, relative to non inspection. 

The large number of steps (relative to the maximum number which could have 

been taken) required to reach the preferred design using the stepwise delete pro­

cedure is an indication of the importance of choosing sensible starting points for 

searches. Poor selection of initial designs can result in large amounts of unneces-
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sary computation being required, or inferior design selections, and consequently bad 

decisions, being made. 

6 .3 .3 Selecting initial designs for Circuit A 

\Vc now illustrate hmv to apply the n criterion outlined in section 6.2.4 to t he 

Circuit A system, and use the resulting design as a starting point for stepwise search 

routines. 

To calculate the values of 0 for our syst em , we need to evaluate the 1-dirnensiona.l 

variance updates for each component in our system. Vve use the simulated observa-

t i011s ba. .. sed on whole cornponent observation, but the choice here does not rna.tter, 

as long as t he same form of observations is used for a ll updat es. The values used to 

calculate n are given in the Appendix, where we used the values from Table 6.1 as 

part of the calculation. Figure 6. 11 shows the result ing n scores for each component . 

Our reconunended design from both the stepwise add a,nd stepwise delete pro­

cedures consisted of half inspecting 19 components, in no situation was the benefit 

from fully inspecting a component deemed worthwhile. \Ve can check the n score 

of these components on Figure 6. 11 (they are the components marked with an ad-
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ditional dot), we see that many of the components are amongst the highest scoring 

components. Note that components 2.5 and 26 have the lowest n score of all com­

ponents, but are included in the recommended design by both the stepwise add and 

stepwise delete method. This exemplifies the need to consider the absolute value of 

this quantity. The n criterion emphasises the relevance of looking a.t a component 

by dividing the potential reduction in variance by the difference between the a com­

ponent's critical wall thickness and its expectation. Therefore those components 

wh.ich are expected to be close to failure at t c:c 23, but not to have failed return 

large positive scores. Ho\'lever, if a component has an expected minimum at t = 23 

which is slightly less than the critical wall thickness it receives a large negative score. 

Consequently, it is worth considering the two extremes of the n scale, and this can 

be done through looking at the largest absolute values. 

6.4 Analysis of design performance 

To assess how well our design performs it is necessary to establish how often it 

allows us to make the correct maintenance decision. That is, on the basis of the data 

available to us, how often do we replace cornponents which go on to fail and h.ow 

many times are we right not to replace a component. Vie use a. simulation study, 

based on our previous modelling assumptions, to estimate our typical prediction 

accuracy using the design proposed by both the stepwise add and stepwise delete. 

In section 6.3 we showed that for the Circuit A system the design preferred 

by both the search methods coincided. The reconnnended design was to inspect 

halfofeachof_the following components, 1, 3, 4, 7, 8, 12, 14, 16, 21, 22, 25, 26, 

28, 29, 31, 32, :34, :37 and 38 . This design had an expected loss of 26.9209 (to 4 

dp ), of which 0. 7375 can be attributed to inspection costs. vVe will compare the 

performance of this design to that of the two baseline cases - no inspection and total 

inspection. \iVhen comparing performance we must consider which decisions a design 

instructs us to make. The particular choice of inspection design and consequently 

maintenance decisions depends on the particular data set observed. The expected 
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loss provides a guide to designs which typically perfonn well, but does not guarantee 

good performance for all data sets. 

Tables 6.6 and 6.7 show the probabilities of choosing to replace each component 

under the designs of no inspection, total inspection, and the recommended partial 

design. 

This probability of choosing to replace changes as we inspect, this is a result of 

increased certainty in component behaviour. The fact that this quantity is random, 

except in the no inspection case, rnea.ns we can only establish the typical perfonnance 

properties of a design. To further assess the quality of the design we have identified, 

we carry out a simulation study. 

We generate 10000 realisations of our system, Circuit A, from time t = 12 to 

t = 23. The simulation method used is the same as that employed previously. Our 

initial conditions for the system slope, Q 12 and system level .;f12 are talmn to be 

draws from MVN populations with distributions: 

Q12 

!!2.12 

N[Ey(Q12 ), vary(Q12 )] 

N[Ey(!f12 ), va,ru(!f12 )] 

(6.7) 

(6.8) 

where y represents a11 the observed data up tot= 12. For every realisa.tion, we use 

the simulated data. from time 13 to update our beliefs about the wall loss behaviour 

by inspecting according to each of our three considered designs. On the basis of these 

updates, we then make our deci..'>ions about the need for component replacement. 

vVe then compare how often our designs allowed us to make the correct decision for 

every component within the system, by recording how many times each cornponent 

has failed by t = 23, and we use this to assess whether or not our decisions were 

-good: Out test ptocedure can be summarised as: 

l. Generate a new rea.lisa.tion of the system for tirnes t = 12 to t = 23. 

2. Sample simulated data from time t = 13 according to the recommended partial 

design, dp an.d the saturated design, d8 • 

3. Update beliefs using simulated sample data. 
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Component Prob. of replacement Prob. of replacement Prob. of replacement 

Number No inspection Partial inspection Total Inspection 

1 1 0.2925 0.2919 

2 0 0.0000 0.0000 

~) 1 0.2985 0.2969 

4 1 0.3306 0.3293 

5 0 0.0000 0.0000 

6 1 1.0000 1.0000 

7 1 0.5432 0.5413 

8 0 0.0560 0.0561 

g 0 0.0000 0.0000 

10 0 0.0000 0.0000 

11 0 0.0000 0.0002 

12 1 0.8339 0.8323 

13 0 0.0000 0.0002 

14 1 0.5691 0.5670 

15 0 0.0000 0.0000 

16 0 0.2472 0.2463 

17 0 0.0000 0.0000 

18 0 0.0000 0.0000 

19 - 1 1.0000 0.9998 

20 0 0.0000 0.0032 

Table 6.6: Number of component failures in simulation experiment 
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Component Prob. of replacement Prob. of replacement Prob. of replacement 

Nmnber No inspection Partial inspection TotaJ Inspection 

21 1 0.8004 0.7993 

22 1 0.8070 0.8058 

23 1 1.0000 0.995Ei 

24 1 1.0000 0.9974 

25 1 0.9092 0.9081 

26 1 0.9153 0.9141 

27 1 1.0000 0.9997 

28 0 0.003() 0.0036 

29 0 0.0041 0.0041 

30 1 1.0000 1.0000 

31 1 0.8002 0.7917 

32 1 0.3893 0.:3815 

33 1 1.0000 0.9851 

.'34 1 0.3242 0.3137 

:35 1 1.0000 0.9998 

36 1 1.0000 0.9998 

37 1 0.2339 0.2281 

38 1 0.7965 0.7941 

-I 39 1 1.0000 LOOOO 

40 1 1.0000 0.9999 

Table 6.7: Number of component failures in simulation experiment 
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Component would Component would Total 

have failed not have failed 
-

Replacement 101908 158092 260000 

recommended (25.48%) (39.52%) (65%) 

Replacement 523 139477 140000 

not recommended (0.13%) (34.87%) (:35%) 

Total 102431 297569 400000 

(25.61 %) (74.39%) (lOO%) 

Table 6.8: Performance of the no inspection design 

4. Record maintenance decisions (replace/do nothing) for the system compo­

nents. 

5. Record simulated system condition at t = 23. 

6. Compare maintenance decisions and outcomes. 

The output we will be interested in is ·which decisions we make, and how often those 

are the correct decisions. 

The simulation results are summarised in Tables G.8- 6.10. We summarise the 

results by recording how many times we recommend replacement for components 

which would have failed, how many replacements are recommended for components 

which would not have failed, how many components we do not repla,ce which would 

then fail and how many unreplaced components would not have failed. 

Vve can see that the results for the full design a.nd the reconnnended partial 

design give similar results. There is a noticeable decrease in the number of unnec­

essary replacements carried out under the designs ·which involve fm::ther inspection: 

This is offset by an increase in the number of component failures not prevented by 

replacement. There are still a large number of unnecessary replacements (;:::; 1/1 of 

all componenbo), but this is due to the uncertainty we cannot resolve, even under full 

inspection. The results indicate that scheduling a second inspection, or considering 

inspecting closer to t = 23 may be beneficial, as this ·would allow us to learn about 

the systern. However, the proposed nwthod does not allow quantitative compari-
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Component would Component would Total 

have failed not have failed 

Replacement 99517 99997 199514 

recommended (24.88%) (2.5.00%) (49.88%) 

H.eplacement 2914 197572 200486 

not recommended (0.73%) (49.39%) (50.12%) 

Total 102431 297569 400000 

(25.61%) (74.:39%) (100%) 

Table 6.9: Performance of the recommended partial inspection design 

Component would Component would Total 

have failed not have failed 

Replacement 99511 99626 199137 

recormnended (24.88%) (24.91 %) (49.79%) 

Replacement 2920 197943 200863 

not· recommended (0.73%) (49.49%) (50.21 %) 

Total 102431 297569 400000 

(25.61%) (74.39%) (100%) 

Table 6.10: Performance of the saturated inspection design 
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No inspection Partial inspection Full inspection 

Correct 241385 297089 2974.54 

decisions (60.35%) (74.27%) (74.36%) 

Wrong 158615 102911 102546 

decisions (29.65%) (25.73%) (25.64%) 

Table 6.11: Effect of inspection design on decision making ability 

son between designs at different time points, so a meaningful comparison cannot be 

made without further work. 

Tables 6.8 - 6.10 provide us with a.ll the necessary information for calculating 

how often our designs allow us to mal<:e the correct decision. Our simulation was 

conducted for 10000 realisations of a 40 component system. This gives us a total 

of 400000 decisions to compare. The decisions to replace a failing component and 

not to replace a component which would not have failed are deemed to be 'correct'. 

Using the data from Tables 6.8 - 6.10, we find the number of 'correct' decisions to 

be as shown in Table 6.11 

Table 6.11 shows a considerable empirical improvement in our decision maldng 

as a result of further inspection. We are getting 3 in 4 decisions correct as oppose to 

3 in 5 under no inspection. However, we are a.lso observing more failures, so how do 

the inspection policies compare financially? V.,Te consider the average cost of 'wrong' 

decisions for a realisation of the decision maldng process. 

For the no inspection cost we have 158092 unnecessary replacements at a cumu­

lative cost of 175929, and 523 unexpected failures at a cumulative cost of 10460. 

The a.verage cost of wrong decisions for a system rea.lisa,tion based on not inspecting 

. -(based on our simulation) is: 

175929 + 10460 = 18 6389. 
10000 . 

The total inspection design has just 99626 unnecessary replacements at a much 

lower cumulative cost of 114571, but many more unexpected failures, contributing a 

cost of 58400 - much more than seen for the no inspection case. This is a consequence 

of allowing more components to not be replaced depending on the data observed. 
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The a.verage cost of wrong decisions per system realisation given full inspection is: 

114571 + 58400 =] 7.2971 
10000 . . .. 

The typical cost is lower, showing our improved decision making ability offers a 

financial benefit. However, when we consider the cost of total inspection, we see 

that the combined cost of wrong decisions and making an inspection is 17.2971 + 
1.5 = 18.7971, which is grea.ter than the cost of the wrong decisions m.ade when not 

inspecting, so for this situation we would prefer not to inspect rather than inspect 

fully. 

Our recommended partial inspection design compaJ:es favourably with the full 

inspection design in terms of information gain. We have a simila.r number of un­

necessa.ry replacements (99997), with a cumulative cost of 115128, and a sirnilar 

number of unexpected failures (2914) with a cost of 58280. The average cost of 

wrong decisions per system realisation given partial inspection is: 

115128 + 58280 = 17.3408. 
10000 

This is slightly higher thaJ1 the cost associated with full inspection. However, the 

reduced cost of implementing a partial inspection scheme means that the overall 

average cost of wrong decisions and inspection for tl.tis design is: 17.3408 ·+- 0. 7375 

= 18.0783, lower than the cost of total inspection and of no inspection. This shows 

that the improved decision making ability that comes from reducing uncertainty, 

when obtained at a more reasonable cost via implementing a. partial inspection 

design, offers financial benefits over not inspecting. 

If we allow the failure cost to vary we see that the perforrnance of the total 

inspection design relative to the no inspection design and recommended partial 

designs improves towards the extremes of the failure costs. Table 6.12 tells us that 

when Lp is small (Lp = 2) we see that there is a convergence in empirical design 

performance, with all three designs producing similar levels of correct decisions. 

For rnedium values, such as those explored initially, we saw a. great irnprovement 

for both total inspection and partial inspection in terms of correct decision making 

over not inspecting. vVhen we set Lp to be much larger than our replacement cost, 

we observe complete agreement between the partial and the total design. This is 
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LF = 20 No inspection Partial inspection Full inspection 

Correct 241385 297089 297454 

decisions (60.35%) (74.27%) (74.36%) 

Wrong 158615 102911 102546 

decir:;ions (39.65%) (25.73%) (25.G4%) 

LF = 2 No inspection Pa,rtia.l inspection I:<'ull inspection 

Correct 308839 315856 316407 

decisions (77.21%) (78.96%) (79.10%) 

Wrong 91161 84144 83593 

decir:;ions (22.79%) (21.04%) (20.90%) 

LF = 2 X 106 No inr:;pection Partial inspection Full inspection 

Correct 122256 222250 222250 

decisions (30.56%) (55.56%) (.55.56%) 

Wrong 277744 177750 177750 

decisions (69.44%) (44.44%) (55.56%) 

Table 6.12: EfTect of inspection design on deci::;ion making ability 



6.5. Choice of loss function 192 

probably because for such a large failure cost, most replacement decision are unlikely 

to be influenced by inspection. The partial design will inspect all of the locations 

where it can ha.ve some influence. So the agreement of these numbers is evidence of 

the redundancy in the total inspection, in this case. 

Clearly, all of these out.cornes axe sensitive to the replacement, fa.ilure and in­

spection costs (as well as to the underlying model). We have attempted to use 

values which are of a similar order of magnitude to those found in real systems, but 

different systems with different inputs r.nay not show the same irnproved decision 

making ability. However, the method established here will allow inspection planners 

to ascertain whether or not inspection is beneficial in a structured, rational manner. 

6.5 Choice of loss function 

Varying the loss function will cause the design selection process to produce dif­

fercmt results. In this section we consider how design selection and expected loss 

change if we allow the loss associated with component failure Lp to vary. Lp is 

likely to be the most unpredictable element of the loss calculations. It is reasonable 

to assume that good infonnatim.t about the losses involved in replaCing components 

and making an inspection will be available. These are planned events which oc­

cur at regular intervals, with clearly defined primary (e.g.materials) and secondary 

( e.g.loss of production) losses. Losses for component failure are more difficult to 

specify, which can often follow from the consequences of failure being difficult to 

specify. \Nitbin large, complex systen.ts, component failure will often have irnplica,­

tions for the performance of other components, a.ndpossibly also have some external 

effects (such as damage to the environment, or personnel). As such, combining the 

different sources of loss to give a reliable estimate of the loss due to failure is not a 

straightforward task and such estimates can be inaccurate. 

We allowed LF to take 15 values in the range [2, 2,000,000] (these a,re shovvn in 

Table 6.1.3), all other aspects of the example system remain unchanged. Our aim 

was to establish if there were any obvious changes in the behaviour of either the 
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Test LF value Test LF value Test LF value 

1 2 6 20 11 200 

2 4 7 25 12 2000 

3 8 8 50 13 20000 

4 10 9 75 14 200000 

5 16 10 100 15 2000000 

Table 6. 13: Test values for varying failure cost 
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Figure 6. 12: Plot showing the behaviour the expected utility with respect to com­

ponent failure loss 

design selection process or the expected utility criterion. One expected change is 

shown in Figure 6. 12, there is an increase in the expected loss for all designs as the 

loss associated with component failure, L F, increases. 

This can be explained by both the increased loss of component failure, and 

a lso the increased number of replacements it becomes necessary to carry out as 

LF grows. Our decision rule is determined by the ratio of replacement and failure 

cost. As failure cost increases, the acceptable probability of failure decreases and 

so, typically, more components will be replaced. 

Figure 6.12 shows the behaviour of the expected loss criterion for the two baseline 

designs of no inspection and complete inspection, and a lso the performance of our 
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Figure 6.13: Plot showing the behaviour the expected utility of full inspection and 

best partial inspection with respect to component failure loss 

recommended inspection design as L F is varied. The recommended design, was 

identified for LF = 20, and so should perform well around this value. The plotted 

values are adjusted for inspection cost, so they reflect the 'value' offered by each 

inspection design. Figure 6.1 2 shows us that the benefits of inspection become 

more pronounced as the consequences of failure become more severe . This can be 

seen from the red line showing the expected loss associated with total inspection 

increasing less rapidly than the expected loss incurred by not inspecting (the blue 

line). We can also see that our recommended inspection design performs well for 

smaller values of LF, but is progressively less eflective as LF grows, indicating that 

the design is no longer relevant to the areas of interest, due to the changing costs . 

To assess design behaviour, we cousider the performance of the recommended 

design (selected using the stepwise add algorithm with each of the 15 failure values 

in turn). Figure 6.13 shows the performance of the best design in comparison to 

complete inspection. In this case inspection costs have not been taken into account. 

It can be seen that the green line (the recommended partial inspections) compares 

favourably with the red line (the full inspection). Indeed, when inspection costs are 

taken into account, the partial designs will almost always be the preferred choice. 

There is no clear pattern as to the eflect varying inspection cost has on the size of 



6.5. Choice of loss function 195 

20 . .... ·· ··· • ·· · .. ··· ·· ·• · ... . ·· • .... .. . ... • . .. ... . ...... ·· ·· ··· ··· • ····· 

18 . .. .. ....... . ..... . . ···· -• -··· ..... . ·········-· • ·- · . 

8 ... ··· ··· • ··· 

0 15 

Figure 6.14: Number of components involved in a design chosen via st epwise search 

for different failure losses 

Figure 6.15: Selected components in designs for different fa ilure losses 
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the recommended design (see Figure 6.14). \iVhen LF = 2, the recommended design 

is considerably smaller. This is probably because at Lp = 2, the failure costs and 

replacement cost will be equal (or nearly equal) for many of components, therefore 

we are indifferent between replacing now or replacing at failure, and inspection will 

not change this, so the number of blocks available for inclusion in the design. is 

reduced. For all other costs, the size of the design is within the range 16-20 blocks, 

indicating that for this system we can expect an optimal design to involve looking 

at between 20% - 25% of the available inspection blocks. The size of the designs for 

LF = 200000 and Lp = 2000000 is lower than that seen for smaller values. It would 

make sense that as L F increa.ses to being very much larger than the replacernent 

cost LR, the amount of inspection necessary decreases. This is a consequence of 

our decision rule, in which any component with a probability of failure greater than 

LLR is replaced. As Lp ..... -> oo, LLR .... -> 0, so a large number of components could be 
JF >F 

counted as 'certain' failures without needing to inspect them. 

The recommended partial inspection design changes as Lp is increased. The 15 

recormnended designs are shown in Figure 6.15. Each square of the displayed grid 

gives inspection instructions for a component given a failure cost. For example, the 

square in row 12 and column 4, tells us what we should do with cornponent 12 if 

Lp = 10, the 4th failure loss under consideration. In this case, the square is green, 

which means we should inspect half of the component. lVIaroon squares mean full 

inspection and navy means no inspection for that component. 

The focus of inspection shifts as the value of Lp increases. Partial inspection 

designs observe components about which our decisions are most uncertain, with 

the aim of improving our decision making ability. For example, if we consider two 

·components, A and B. A has a probability of failure PA = 0.12, and B has probability 

of failure p 8 = 3 x 10-6 , based on our beliefs updated with available data up to time 

t = 12. ·when i; ~ 0.1, B will be deemed to be not worth inspecting, as we aTe 

confident. tha.t PBIYd will be le:ss that. 0.1. However, PA is close to the value a.t which 

we decide to replace, so we would be interested in improving our knowledge a.bout 

PA· Consequently a design for f! ~ 0.1, would favour inspecting components which 

help us to learn about PA over tho::;e which tell us about p B. Furthermore, wheu 
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LLR ~ 10 6
, component A would almost ahvays be replaced, as we would be confident 

"F 

that PAIYd will exceed 10-6
, but learning about p B may be useful. Therefore, a design 

for LR ~ 10-6 would favour inspectinu components which help us to learn about 
LF ' b 

p B over those which tell us about p A. 

A.n example of the latter ca.n be seen in the design. for Lp ::c 2 x lOG (colunm 15 in 

Figure 6.15). This design concentrates almost exclusively on components with small 

failure probabilities (see Tables 6.4 and 6.5), but also includes half of component 

12 - a component which is expE)cted to fail almost 1 in 3 tinws. Component 12 

is included with a view to learning about components 10,11 and 13 through the 

covariance structure. Similarly, if we look at the components for the design when 

L F = 4, we see that components 32 and 34 are included in the design, despite having 

expected failure probabilities of 0.0593 and 0.0440, both much less than the value of 

LLR =: 0.15 for these components. However, they are included in the design to help 
JF 

learn, through the covariance structure, about components 31 and 33, which have 

initial failure probabilities of 0.1733 and 0.3385- both closer to the cut-off point of 

0.15. 

We can conclude that the focus of the recommended inspection design shifts as 

the value of Lp increases. The expected utility criterion concentra.tes on identifying 

inspection blocks that allow us to learn about components that have a probability 

of failure close to the critical value of t; (the value which determines whether a 

component is replaced or not), both through direct observation of the component 

and also by proposing the observation of related components. 



Chapter 7 

Discussion 

·within this thesis we have developed an approach for planning inspections for 

large industrial systems with correlated components. The aim of the work has been 

to demonstrate that it is possible to establish a tractable Bayesian method for in­

spection planning for large systems, given a mm-trivia.l system rnodel. We have 

proposed a structure for planning inspections for large industrial systems which 

allows for system components to be jointly modelled and for the quantitatively de­

fensible selection of inspection designs given a suitable system 1nodel. This irnproves 

on most current industrial practice, by explicitly representing dependencies between 

components, and also offers a practical solution to the computational problemf:l of 

using Bayesian design ideas to address real world examples. 

The standard Bayesian approach to inspection planning problems is to formulate 

the inspection planning problem as a Bayesian decision problem. ht the decision 

theory context our inspections yield observations, y, which allow us to identify the 

Bayes deCision,- o* (:y). The Bayes decision is defined to be the best available decision 

from a set of potential decisions, ~. having observed :y. All potential decisions 

have an associated reward, or utility, that depends on the state of the system. 

The best available decision is the decision which rnaxirnises this utility. We must 

take expectations over all data values, y, that we could potentially observe, and 

therefore determine the expected utility of inspecting. Evaluating this expectation 

is frequently a computationally intensive calculation, and therefore assessing many 

198 
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different inspection designs using fully Bayesian techniques is impractical. Bayes 

linear variance adjustment depends on the location of the inspected components, 

and not on the specific values of y observed. This reduces the computation required 

to evaluate the expected utility for a single design, thereby making it feasible to 

compare a rnuch larger number of designs. 

Adopting a Bayes linear approach allows us to specify beliefs about quantities 

of interest in terms of expectations and variance/ covariance structures, without the 

need to specify a full probability distribution. Specifying meaningful coherent joint 

distributions for systems with large numbers of correlated components performing 

a variety of different tasks is very difficult. Specifying covaria.nce matrices to de­

scribe associations between components without the need to further constrain joint 

behaviour is advantageous, particularly when the joint distribution is uncertain. 

Modelling correlations is an essential part of describing system behaviour, and the 

use of Bayes linear methods to update variance structures retains tractability whilst 

allowing us to learn about components we do not inspect, as well as those we do 

inspect. Evaluating expecting utility for models with correla.ted components using 

traditional Bayesian methods is extremely computationally intensive, so the imple­

mentation of a Bayes linea.r approach, allowing a rnore cornputationally efficient 

method of inspection design selection for systems represented by non-trivial models, 

is very useful. 

The proposed method offers a structured approach to tackling inBpection deBign 

problems. The building blocks of the method are: 

1. Modelling - developing a. model which accurately characterises the system 

properties of interest. 

2. Developing suitable criteria for our inspection goals - it is important to use 

criteria which measure inspection performance in terms of what we are trying 

to achieve through inspection. Criteria must be chosen so that they identify the 

designs which allow us to lea.rn most about the qua.ntity of interest. Therefore 

successfully identifying the inspection goals is also important. 

3. Producing tractable methods for evaluating design criteria over aJl potential 
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observations, and many possible designs. 

The use of Bayes linear methods allows us to tackle the computational problems 

usually associated with Bayesian design problems. The application of Bayes linear 

methods to design problems, with a view to establishing a tractable design method­

ology is the most important aspect of the thesis. The choice of rnodelling technique 

and inspection goals will depend on the particular system being modelled. 

'Ne now discuss ways in which the methodology could be extended. 

7.1 Modelling 

7 .1.1 System Modelling 

We have considered the use of a simple, but flexible structure for the modelling 

of corrosion behaviour. We have chosen to model corrosion using a serni-spatiaJ 

model for component 'wall thickness'. The model is split into a 'global term', which 

describes the average wall thickness level throughout the component, and a 'local 

term' which describes the devia.tions from the global term at specific loca.tiow; within 

the component. 

Vve have chosen to use a. linear trend dyna.rnic linear rnodel (DLM) to describe 

the behaviour of the global term. A linear trend was adopted following consultation 

with the experts at Shell. The linear trend DLM allows for the trend to vary in time 

via. the introductiort of evolution errors to the trend at each time step. The DLM 

has a term for each component being modelled. The use of a. correlated evolution 

error structure allows us to correla.te component behaviour at the global term level. 

The local terrns were modelled a..'l independent Ga.ussia.n noise. The choice to 

enforce independence on these terms, both within components and between compo­

nents, is why the model is referred to as 'semi-spatia.!'. There is an acknowledgement 

of different corrosion behaviour a.t different locations within a. component, but there 

is an absence of a defined relationship between locations. 

The chosen model characterises the experts' views about corrosion to a. sufficient 
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level of detail to suggest efficient overall inspection schemes for the system. However, 

the adopted model should not be seen as a definitive corrosion model. There is 

provision within the model structure to a,llow for trends, and correlations, within 

the local term, if these are deemed necessary. The global term is not restricted to a 

linea,r trend. Dynamic linear models allow for a laxge number of different beha.viour 

types to be modelled. The flexibility of dynamic line& models and the range of 

potential applications are covered by [24]. If it was felt that a particular component 

needed further structure, it would be possible to introduce an intermediate model 

term to describe behaviour only occurring in certain regions of the component. In 

our m.odel the balance between global and local terms is in favour of the global 

term. That is, the component wall thickness behaviour is controlled by the linear 

trend DLM, and the local terms are reg&ded as noise. However, this balance can be 

adjusted as is felt to be appropriate through the structuring and parameterisation 

of the model, while still allowing for a tractable design methodology. 

7.1.2 Observation Modelling 

It is necessary to model observations as a, distinct process fro1n system modelling. 

Firstly, this is a more realistic representation of the observation process, especially 

in the context of detecting corrosion darnage. Secondly, observation procedures a,re 

likely to change more frequently than the system evolution will change. Having 

a separate observation model means that in the event of a different observation 

technique being used, there is minimal change to the modelling process. 

vVe have considered two different observation techniques, but have modelled them 

i~1 the s~m~ wa,y. C)\.u· inspection aim was to d(~tectfailing cornponents. A compo­

nent fails when the wall thickness becomes too thin to remain structurally sound. 

Consequently a component's minimum wall thickness is a quantity of interest to 

inspectors. The available data consisted of minima observations, and our inspection 

aims directed us to consider minima. Therefore our observation model identified the 

1ninimurn wall thickness values within a cornponent. 

A simple model was adopted, in which a proportion of the locations within 
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a component were observed with error (usua.lly half or all of the locations), and 

the minimum of these values wa..<s returned. That is, the minimum observed wall 

thickness, y, for a component c at time t is given by: 

(7.1) 

where ttzct is the 'true' value (from the model), and 6ct is the observation error. 

The ultrasonic and radiographic mea..<surement techniques were used to collect 

the available data. We adopted the minima observation model for both techniques, 

using Gaussian errors. The variance of the errors differed between the two models, 

but otherwise they were the sarne. A rnore detailed ana.lysis ma.y highlight sys­

tematic differences between the two measurement techniques that necessitates more 

careful modelling of the two pra.ctices, but the adopted model provided a. pragmatic 

approach, which was suitable both for the level of available information about in­

spection procedures, a.nd for the purposes of establishing a non-trivial model for 

analysis. 

7 .1.3 Modelling for the example 

The illustrative model provided for the example was intended to provide a cor­

rect order of magnitude assessment of the relevant parameters. For any serious 

implementation of the method, a more careful analysis of the available data would 

be require. The model as implemented demonstrates the plausibility of the de­

sign methodology for a model of this type, but does not fully address the issues of 

specifying rnodel pa.ra.rneters accurately. 

In particular, the assessment of the cova.rittnce structures could be improved. 

We have adopted a stancla.rcl model for our covariance structures which ensures they 

will be positive definite. To use the Bayes linear approach, it is useful to ensure our 

variance/cova.riance matrices a.re at least positive semi-definite (see [22]). By using 

covaria.nce :structures where the ('t, j)-th elernents are of the fonn: 

(7.2) 
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where lli - j 11 is a measure of distance between i and j, we can guarantee positive 

definiteness, but this does not necessarily provide the most realistic representation 

of the actual covaria.nces between components. 

The available data merits more careful consideration, and a more detailed inves­

tigation of the data will allow the successful identification and verification of trends 

in the data which were not detected by the analysis in this thesis. A detailed ap­

proach to model para.meterisation will provide a better representation of the real 

systern, and therefore inspection plans which an~ more directly applicable, but it 

should not affect the efficiency of the design selection procedure. 

The illustrative model provides an example on which we can base our design 

selection procedure. By concentrating on achieving a parameterisation that is of 

a similar order of magnitude to the effects which we can observe from an analysis 

of the da.ta, we can denwnstrate that the procedure is tractable for models of this 

type. Changing the model will change the design outputs, but the design procedure 

vvill operate consistently given a coherently specified model. 

7.2 Updating 

Bayesian methods aa:-e the natural approach for handling inspection planning 

problems. In most inspection problems we are seeking to acquire further knowledge 

about a system for which we ah·eady have some understanding, either from expert 

judgement or historical data. The Bayesian framework provides a clear method of 

combining of historica.l data with new information through the updatir1g process. 

The traditional Bayesian method requires the specificati911 of complet~ proba­

bility distributions for our priors and likelihood functions. By following the Bayes 

linear approach we can reduce the extent of specification required, and also ren:wve 

the need to specify a particular distribution. Updating via Bayes linear methods is 

conducted using the Bayes linear updating equations (chapter 4). The use of the 

Bayes linear update allows us to avoid dea.ling with the potentially intractable inte­

grals sometimes found in full Bayesian analyses, and the difficulties that can arise 
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from being unable to obtain closed form expressions for our posterior distributions. 

However, it is necessary to be able to express beliefs about the mean, variance 

and covariance structures between all quantities of interest. vVe learn about these 

quantities through simulation. To achieve an accurate representation of these beliefs, 

a. large initial simulation covering the entire time frame in. question has to be run. 

This initial sinmlation could potentially be time consuming. However, we only need 

to conduct this simulation once, to establish our belief structure. To implement a 

full Bayes strategy we would have to run a similarly large simulation as pa:rt of th.e 

evaluation of every design we wish to consider. So although there is a significant 

sirnulation task a..<J part of our proposed procedure, this is still a much lower level of 

computation than would be necessa.ry under a full Bayes approach. 

vVe have adopted a full simulation approach to updating, in which we perform a 

single large simulation to obta.in estimates for all the covariance structures we r.na.y 

need to consider over the entire time interval we are interested in. However, for very 

large systems it may be beneficial to consider a sequential simulation approach. 

Under this approach, our single initial simulation would be split into a series of 

smaller simulations which run between the times of historical inspections up to the 

present, ax1d a final step which runs frorn the present to a designated point in the 

future. Using this procedure we would adjust our simulation parameters after each 

historical observation and run the simulation with the new parameters to the time 

of the next historical observation, at which st;:tge we would then update again. 

In summary, the sequential procedure, with real historical observations made at 

times t.;, -i = {1, ... , w} would be: 

1. Simulate S realisations of the system from time t = 0 to time t1, using initial 

simulation conditions as described in section 2.8. 

2. E::;timate var(It,u)' cov(!fdt;> 'fLu) , cov(Itdt;' g,.ltJ, E(~tJ, var(>fdtJ, E(Q,uJ ax1d 

var(g_,uJ from simulation output, fori = 1. 

3. Calculate .l!~t; (;r:tJ axtd I~dt 1 (QtJ, using the Bayes linear updating equations, 

fori = 1. 
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4. Simulate S realisations of the system from time ti to time ti+l, using the 

adjusted expectations as part of the initial simulation conditions, for i = 1. 

5. Repeat steps 2- 4 fori = 2, ... , w. 

Sequential updating may provide updated values which are of greater relevance 

to the particular system being modelled, by adjusting to simulate around the ob­

served values at more regular intervals. Sequential updating was considered as it is 

computationally more appealing. For a 40 component system (as modelled in this 

thesis), the difference in computa.tionalloa.d between the two approaches is negligi­

ble. However, for very large systems, the sequential method may be a more efficient 

simulation which concerttmtes computationa,l resources on simulation realisatiorts 

that lie closer to the observed data.. The sequential method is a.n approximation to 

the full simulation, so the effects of implementing a sequential updating technique on 

the simulation accuracy need to be investigated further before definite conclusions 

can be drawn. 

Our current updating strategy allows us to learn about the means and variances 

of the model outputs, such as the minimum component wall thickness, or the cor­

rosion rate. However, we would like to be able to update the underlying model 

parmneters, such as the DLM evolution deviation covariance ma,trix. This quantity 

drives the correlation structure in the model, and we would like to be able to learn 

about it from the historical data. Currently, our model reta.ins the same covariance 

structure throughout its life, which is not ideal. To be able to update the covari­

ance structure we need to record information about the 4th order moments of the 

system. Recording higher order moments would also allow us to consider skewness 

in the data. This could be handled within the Bayes linear context by fitting our 

adjusted moments to appropriate non-central distributions. Bayes linear updating 

of covm·im1ce matrices is discussed in [69], a.11d including the ability to learn about 

the structure of the underlying model in this way is an important requirement of 

the modelling strategy. As with the necessity for an irnproved data ana.lysis be­

fore considering a serious implementation of the design selection procedure, this is 

an additional modelling consideration, which should not affect the way in which 

inspection designs are selected. 
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7.3 Design Selection 

vVe have shown by illustration that our chosen inspection design selection method 

leads to the identification of inspection designs that perform well in terms of im­

proving our decision making ability. There are several potential developments which 

would be beneficial 

vVe would like to be able to consider a wider class of decision problems. We have 

currently considered the simplest case of using the inspection data to determine 

whether or not a component should be replaced. For most real inspection planning 

applications, there will more than two potential maintenance decisions. Expanding 

to consider a large number of maintenance decisions should be reasonably straight­

forwa.rd in theory, as this resolves to specifying utilities for each maintenance de­

cision, and constructing decision rules such that the Bayes decision can be chosen. 

However, such considerations will further complicate the calculation of the design 

criterion, so it may be necessary to restrict to a small set of potential decisions to 

rnaintain efficient computation. 

The evalua.tion of the expected loss criterion depends on the a.ssumption of Nor­

mality at two key points. Firstly, we assume the probability of component failure 

(defined as a, component's minirnum wall thickness being less than a specified criti­

cal wtlue) can be described by a Normal distribution with expectation and variance 

equal to the expectation and variance of the componertt's 1ninirnum wall thickness at 

the final time of the interval, adjusted for the unseen inspection data.. Secondly, we 

further assume that the adjusted expectation - which is itself a random quantity in 

inopection problerns, as it depends on the unseen data,- lms a NorntaJ distribution. 

It would be useful to investigate the appropriateness of these assumptions, and to 

what extent they could be relaxed. Both assumptions could be replaced by any form 

of distribution solely parameterised by location and sca,le parameters, with similar 

analysis to that which we have described. 

Calculating the expected loss criterion requires the evaluation of two integrals. 

The first of these simply corresponds to a. cumulative Normal distribution function. 

However, the second is less tractable and requires evaluation by numerical methods. 
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This difficulty can be resolved by the use of specialist software packages for evalu­

ating integrals, or by the use of simulation routines. Given different distributional 

assumptions for the probability of component failure and the adjusted expectation, 

the resulting integrals may be more difficult to evaluate. Consequently, the need to 

evaluate this integral munerically for each inspection design could harnper the corn­

putational tractability of the method. In the case of the integrals being intractable, 

it would be possible to tabulate results for generic values of the quantities on which 

the integra.ls depend. Calculating these tables would be a time consuming operation, 

but again it would only be necessary to perform these calculations once. 

The current method does not explicitly allow for the comparison of inspection 

designs made at different times. To be able to compare inspections made at different 

times, we must factor in the costs incurred by delaying the inspection. Under the 

current decision model, the only costs of delaying inspection would be the losses due 

to component failures prior to inspection. By incorporating this additional loss into 

the expected loss criterion it would be possible to compare all potential inspection 

designs within the interval of interest, and thus determine an improved inspection 

policy which maximises utility taking all potential time points into consideration. 

hnplementing a selection procedure across multiple time points is not straight­

forward. It would probably be necessary to identify the best available design at each 

time point individually, and then carefully compare the performance of these best 

available designs in terms of improved decision making ability and expected cost of 

delaying inspection. 

The quality of search routines used in the design selection process could also 

come in for scrutiny. vVe have used stepwise search routines, which are efficient for 

.. the scale of example considered. However, it may be more sensible for larger systems 

to investigate alternative methods. In particular, consideration could be given to 

the intelligent choice of starting point for design searches. 

lVlany of the issues outlined in the discussion can be tackled within the framework 

laid out in this thesis. There are still many interesting related research problems, and 

potential extensions to the method, but we have shown, in principle, the viability 

of our approach to inspection planning for large systems. 
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E[P(Fiy)i 

Component P(P(Fiy) > p) P(Fiy):::; p]x Replacement Failure Component 

Number (11) P(P(.Fiy):::; p) Costs Costs Utility 

(12) LR.ft LF.I2 LR!t + LF'I2 

1.0000 0.2928 0.0113 0..4392 0.2253 0.6644 

2.0000 0 0.0000 0 0.0002 0.0002 

3.0000 0.4855 0.0240 0.7282 0.4801 1.2083 

4.0000 0.7482 0.0163 1.1222 0.3264 1.4486 

5.0000 0 0.0000 0 0.0003 0.0003 

6.0000 1.0000 0 1.5000 0 1 .. 5000 

7.0000 1.0000 0 1.5000 0 1.5000 

8.0000 0 0.0211 0 0.4213 0.4213 

9.0000 0 0 0 0 0 

10.0000 0 0.0000 0 Cl.0006 0.0006 

11.0000 0 0.0001 0 0.0020 0.0020 

12.0000 1.0000 0 1.5000 0 1.5000 

13.0000 0 0.0001 0 0.0020 0.0020 

14.0000 1.0000 0 1..5000 0 1.5000 

15.0000 0 0.0000 0 0.0000 0.0000 

16.0000 0 0.0643 0 1.2860 1.2860 

17.0000 0 0.0000 0 0.0002 ().0002 

18.00UO 0 0.0000 0 0.0001 0:0001 

19.0000 1.0000 0 2.0000 0 2.0000 

20.0000 0 O.OOU 0 0.0257 0.0257 

Table A.l: Losses for the cl update 
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E[P(F\y)\ 

Component P(P(F\y) > p) P(F\y) ~ p]x Replacement Failure Component 

Nmnber (Jl) P(P(F\y) ~ p) Costs Costs Utility 

(12) LR.Il Lp.I2 LRI\ + Lph 

21.0000 1.0000 0 2.0000 0 2.0000 

22.0000 1.0000 0 2.0000 0 2.0000 

23.0000 1.0000 0 0.6000 0 0.6000 

24.0000 1.0000 0 0.6000 0 0.6000 

25.0000 1.0000 0 2.0000 0 2.0000 

26.0000 1.0000 0 2.0000 0 2.0000 

27.0000 1.0000 0 2.0000 0 2.0000 

28.0000 0 0.0015 0 0.0293 0.0293 

29.0000 0 0.0016 0 0.0327 0.0327 

30.0000 1.0000 0 0.6000 () 0.6000 

31.0000 1.0000 0 0.6000 0 0.6000 

32.0000 1.0000 0 0.6000 0 0.6000 

3.3.0000 1.0000 () 0.6000 0 0.6000 

34.0000 1.0000 0 0.6000 0 0.6000 

35.0000 1.0000 0 0.6000 () 0.6000 

36.0000 1.0000 0 0.6000 0 0.6000 

37.0000 1.0000 0 0.6000 () 0.6000 

--- -- -- ----- --------- --- - ·····-·1..0000 0 -Cr6000 o- ·- . ·0:6000 ..... 

38.0000 

39.0000 1.0000 0 0.6000 0 0.6000 

40.0000 1.0000 0 0.6000 0 0.6000 

Table A.2: Losses for the cl update 
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E[P(Fiy)i 

Component P(P(Fiy) > p) P(Fiy):::; p]x Replacement Failure Component 

Number (I1) P(P(Fiy):::; p) Costs Costs Utility 

(!2) LR.h Lr.I2 LRh + Lpl2 

1.0000 0.4979 0.0231 0.7468 0.4625 1.2093 

2.0000 0.0000 0.0000 0.0000 0.0002 0.0002 

3.0000 0.3014 0.0124 0.4521 0.2487 0.7008 

L!.OOOO 0.4429 0.0206 0.66t±3 0.4119 1.0762 

5.0000 0.0000 0.0000 0.0000 0.0003 0.0003 

6.0000 1.0000 0.0000 1.5000 0 1..5000 

7.0000 1.0000 0.0000 1.5000 0 1.5000 

8.0000 0.0000 0.0211 0.0000 0.4213 0.4213 

9.0000 0.0000 0.0000 0.0000 0 0 

10.0000 0.0000 0.0000 0.0000 0.0006 0.0006 

11.0000 0.0000 0.0001 0.0000 0.0020 0.0020 

12.0000 1.0000 0.0000 1.5000 0 1.5000 

13.0000 0.0000 0.0001 0.0000 ().0020 Cl.0020 

14.0000 1.0000 0.0000 1..5000 0 1.5000 

15.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

16.0000 0.0000 0.0643 0.0000 1.2861 1.2861 

17.0000 0.0000 0.0000 0.0000 0.0002 0.0002 

..... T8.0000. ···o.oooo 0.0000 0:0000 0.0001 0:0001 

19.0000 1.0000 0.0000 2.0000 0 2.0000 

20.0000 0.0000 0.0013 0.0000 0.0257 0.0257 

Table A.3: Losses for the c3 update 
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E[P(Fiy)l 

Component P(P(Fiy) > p) P(Fiy) :::; p] X Replacement Failure Component 

Nurnber (Tl) P(P(.Fiy) :::; p) Costs Costs Utility 

(12) LR.h Lf'.I2 LRlt + LF'I2 

21.0000 1.0000 0.0000 2.0000 0 2.0000 

22.0000 1.0000 0.0000 2.0000 0 2.0000 

23.0000 1.0000 0.0000 0.6000 0 0.6000 

24.0000 1.0000 0.0000 0.6000 0 0.6000 

25.0000 1.0000 0.0000 2.0000 0 2.0000 

26.0000 1.0000 0.0000 2.0000 0 2.0000 

27.0000 1.0000 0.0000 2.0000 0 2.0000 

28.0000 0.0000 0.0015 0.0000 0.0293 0.0293 

29.0000 0.0000 0.0016 0.0000 0.0327 0.0327 

30.0000 1.0000 0.0000 0.6000 0 0.6000 

31.0000 1. 0000 0.0000 0.6000 0 0.6000 

32.0000 1.0000 0. 0000 0. 6000 0 0. 6000 

33.0000 1.0000 0.0000 0.6000 0 0.6000 

34.0000 1.0000 0. 0000 0. 6000 0 0. 6000 

35.0000 1.0000 0.0000 0.6000 0 0.6000 

:36.0000 1.0000 0.0000 0.6000 0 0.6000 

37.0000 1.0000 0. 0000 0. 6000 0 0. 6000 

- - 3-8.oooo - ronou 0.0000 . 0.6000 0 0.6000 

39.0000 1.0000 0.0000 0.6000 0 0.6000 

40.0000 1.0000 0.0000 0.6000 0 0.6000 

Table A.4: Losses for the c3 update 



Chapter A. Tables 221 

Component va;rlJh ( mc23) Val'yh .Cl3 ( rnc2.3) Eyh(mc2a)- n 
Number We 

1 11.8499 5.1172 4.6776 0.5539 

2 2.4654 0.6394 6.6283 0.0238 

3 10.5:392 4.9645 4.46G8 0.5261 

4 9.2645 4.9271 4.1153 0.5042 

5 2.11212 0.6356 6.5509 0.0247 

G 2.0453 1.5085 -1.2695 -0.2121 

7 8.0491 4.6223 2.9031 0.6353 

8 G.45GO ~U338 5.1638 0.3514 

9 0.9586 0.5337 9.7274 0.0189 

10 1.3541 0.6210 4.672:3 0.0591 

11 1.5631 0.7220 4.6538 0J)759 

12 7.4594 4.1057 1.1529 1.5840 

13 1.5771 0.7246 4.6758 0.0882 

14 9.8367 4.7685 2.7634 0.8121 

15 2.3040 0.9443 7.4621 0.0590 

1() 9.2711 4.9363 4.G273 0.4479 

17 2.4530 0.6357 6.6482 0.0223 

18 2.4146 0.6:333 6.TH4 (J.0199 

19 1.5804 0.9213 ~1:6827 ~0.2040 

20 3.8255 0.6874 5.8960 0.0130 

Table A.5: Values for calculating the n criterion 
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Component Val'yh ( ffic2::l) VaJ.'Yh ,Gl3 ( 171c2:.{) EYh(mc2:J)- n 
Number We 

21 5.3345 2.3208 0.4959 :3.4948 

22 5.2698 2.3153 0.4673 3.6721 

23 1.4637 0.9775 0.0354 4.Cl250 

24 1.3393 0.9841 0.2010 0.6164 

25 t1.1741 1.9117 -0.2271 -6.6076 

26 4.0869 1.8845 -0.2689 -5.5030 

27 1.7323 0.9442 -1.7683 -0.0111 

28 3.8319 0.6971 5.8235 0.3035 

29 3.7369 0.6843 5.6854 0.3065 

30 1.0707 0.7507 -1.0838 -0.0293 

31 1.9394 1.1618 1.3110 0.6640 

32 2.8071 1.4482 2.61.50 0.4397 

33 1.4885 1.0579 0.5081 0.7817 

34 2.7079 1.4478 2.8080 0.3904 

35 1.3857 0.9267 -0.5704 -0.6098 

36 1.3E335 0.9240 -()..5509 -O.E3243 

37 2.8960 1.4655 3.1682 0.3710 

38 5.47E34 1.6;H4 0.7959 2.4572 
... - ---- 39- - ·-- -- - 1.0882 - 0.9321' ___ - -~0~8535-- - ·=0:0122 

40 1.3L125 0.9354 -0.5318 -0.0272 

Table A.6: Values for calcula.ting the n criterion 
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Figure B .1: Histogram of simulated muurnum wall thickness values for 4 different 

time points in the life of component 16 from Circuit A 
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Figure B.2: Histogram of simulated mm1mum wall thickness values for 4 different 

time points in t he life of component 24 from Circuit A 
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Figure B.3: Histogram of simulated rmnnnum wall thickness values for 4 diflerent 

time points in the life of component 32 from Circuit A 
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Figure B .4: Histogram of simulated mmnnum wall thickness values for 4 diflerent 

time points in the life of component 40 from Circuit A 
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Figure B.5: Histograms of adjusted expectation values for component 16 from Cir­

cuit A based on simulated realisations of observations at 4 different time points 
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Figure B.6: Histograms of adjusted expectation values for component 24 from Cir­

cuit A based on simulated realisations of observations at 4 different time points 
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Figure B.7 : Histograms of adjust ed expectation va lues for component 32 from Cir­

cuit A based on simulat ed realisations of observations at 4 different time points 

Figure B.8: Histograms of adjust ed expect ation values for component 40 from Cir­

cuit A based on simulat ed realisations of observations at 4 different time points 
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Code 

function [A,X,M,Y1,Y2] = SimJoint(xO,aO,nTim,nRls,nLoc,Sx,Sa,Sr,Sobs) 

%simulates the joint distributions between: 

%-X (dlm level); 

%- Y (observed minima); 

%-A (dlm slope); 

%-M (true minima). 

%by running the forward model 

%xO - nStr vector defining initial wall thickness 

%aO - nStr vector defining initial wall loss rate 

%nTim - number of time points to run model (scalar) 

%nRls - number of simulation realistations (scalar) 

%nLoc - no. of locations within a component (scalar) 

%Sx - nStr x nStr correlated standard deviation matrix wall thickness values 
--- -----------

%Sa - nStr x nStr correlated standard deviation matrix wall loss rates 

%Sr - nStr x nStr diagonal matrix of local variation standard deviations 

%Sobs - nStr x nStr observation error standard deviation matrix (diagonal) 

nStr = length(xO); %define value of nStr for future calculations 

Xo xO*ones(1,nRls);%Wall thickness values at t=O 

Ao aO*ones(1,nRls);%Wall loss rate at t=O 

228 
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%create arrays for storing output 

X = NaN*ones(nRls, nStr, nTim+1); 

A NaN*ones(nRls, nStr, nTim+1); 

R zeros(nRls, nStr, nLoc); 

M= NaN*ones(nRls, nStr, nTim+1); 

Y1 NaN*ones(nRls, nStr, 

Y2 = NaN*ones(nRls, nStr, 

%define initial conditions 

X(: , : , 1) = Xo'; 

A(:,:,1) Ao'; 

nTim+1); 

nTim+1); 

%step model forward in time 

for iTim = 2:nTim+1 

229 

A(: ,:,iTim) = A(:,:,iTim-1) + randn(nRls,nStr)*Sa; %evolve trend term 

A(find(A>O))=O; %stop trend term being positive 

X(: ,:,iTim) =X(:,: ,iTim-1) +A(:,: ,iTim) + randn(nRls,nStr)*Sx; %evolve level 

X(find(X<O))=O; %stop level term being negative 

Rt = zeros(nRls, nStr, nLoc); % 

E = zeros(nRls, nStr, nLoc); 

for iLoc = 1:nLoc 

·- Rt1(: ;:,i[;oc) = randn{nRls,nStr)*Sr;-%Generates min local deviation-term 

E(:,: ,iLoc) = randn(nRls,nStr)*Sobs; %Generates observation error term 

end 

R = Rt + R; %cumulative local deviation effect 

Er = R+E; %cumulative local deviation + observation error 
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M(: ,:,iTim) =X(: ,:,iTim) + min(R,[] ,3); %true surface minima 

Y1(:,: ,iTim) = X(:,:,iTim) + min(Er,[] ,3); %observed surface minima 

Y2 ( : , : , iTim) X(: ,:,iTim) + min(Er(:,:,1:5), [] ,3); %observe half surface min 

end 

function [EL, 11, 12] = ExpLoss(Lr,Lf,Wc,muO,sigD,sigO,RndDat) 

%evaluates the expected loss for a design with known adjusted variance 

% Lr - vector of replacement costs 

% Lf - vector of failure costs 

% We - vector of critical wall thicknesses 

% muO - expected wall loss 

% sigD - updated standard deviations 

% sigO - prior standard deviations 

% RndDat - random sample from N(0,1) - ensures same sampling errors for each run 

LrOvrLf Lr./Lf; %define ratio of costs 

Mz (We- muO)./sigD; %estimate expectation of z 

Sz sqrt((sigO./sigD).A2- 1); %estimate standard deviation of z 

Lmt norminv(LrDvrLf); %define integration limits 

for iC = 1:length(Sz); %loop over components 

if Sz(iC) > 0; %check for consistency of variances 

I1(iC) = normcdf((Mz(iC)-Lmt(iC))./Sz(iC)); %evaluate prob of replacing c 

elseif Mz(iC) > Lmt(iC); %component has failed 

I1(iC) = 1; 

else; 

11(iC) 0; %component 

end; 
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end; 

I2(iC) = Esti2(Mz(iC),Sz(iC),Lmt(iC),RndDat); 

%evaluate prob of failure if not replacing c 

231 

EL sum(Lr.*I1' + Lf.*I2'); %return overall expected loss from decisions 

function I2=Esti2(Mz,Sz,Lmt,RndDat); 

%approximates the I2 integral as part of the expected loss calculation 

%Mz, Sz, Lmt - parameter of the integral 

%RndDat - N(0,1) sample, read in to ensure consistency of estimation error 

X=RndDat; 

nX=size(RndDat,1); 

if Sz>O; 

tLmt=(Lmt-Mz)/Sz; 

tint=normcdf(X.*Sz+Mz); 

Kep=X<=tLmt; 

I2=sum(tint(Kep))/nX; 

else; 

if Mz>Lmt; 

12=0; 

else; 

I2=normcdf(Mz); 

end; 

end; 
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' 
I 

Corrosion Comp. Comri>. PMC 

Circuit No. Type 

Code 
' 
I 

A 1 Bes: 
! 

2 

A 2 Wellh~ad 2 

A 3 Bes 2 

A 4 Bes' 2 

A 4 Bes 2 

A 5 WellhElad 2 

A 6 Bes 2 

A 6 Bes, 2 

A '7 Bes 2 I 

A 7 Bes 2 

A 8 TEQ 2 

A 9 Cap 2 

A 9 Cap 2 

A 10 Str: 1 

A 11 Str 2 

A 12 Str 1 

A 13 Bes 1 

Product Material Pipe Piping Nominal 

Type Diam. Schedule \V all 

Thickness 

p 2 6 PS3 23 

p 2 6 PS3 18.24 

p 2 6 PS3 23 

p 2 6 PS3 23 

p 2 6 PS3 23 

p 2 6 PS3 18.24 

p 2 1 PS3 6.35 

p 2 1 PS3 6.35 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 6 PS3 23 

p 1 0.75 PS1 3.91 

p 2 4 PS3 13.49 

p 1 4 PS2 11.13 

p 1 4 PS2 11.13 

Table D.l: Data for the circuit A example 

Inspection Inspection 

Date l\:Iethod 

10/11/2002 UT 

12/12/2000 UT 

10/11/2002 UT 

17/05/2003 UT 

12/12/2000 UT 

12/12/2000 UT 

12/12/2000 UT 

18/05/2003 UT 

17/05/2003 UT 

12/12/2000 UT 

17/05/2003 UT 

12/06/1998 UT 

17/05/2003 UT 

18/05/2003 UT 

10/11/2002 UT 

10/11/2002 UT 

10/11/2002 UT 

Inspection 

Reading 

22 

18 

22 

20.5 

22 

18 

5.35 

5.35 

17 

17.5 

20 

18.24 

19.5 

3.91 

13 

13 

12.5 

Q 
::"' 
Pl 
'0 
M­
CD 
"'! 

tj 

tj 
pj 
M­
P' 

N 
CN 
c..o 



' 

Corrosion Comp. Corn~. PMC 
I 

' 

Circuit No. Type 

Code i 
' 

A 14 Str 1 

A 15 Bes 1 

A 16 Str ' 1 

A 17 Str 1 

A 18 Bes' 2 

A 18 Bes. 2 

A 19 \Vellhead 2 

A 20 Wellhead 2 

A 21 Wellhead 2 

A 22 Wellhead 2 

A 23 Branch 2 

A 24 Wellh~ad 2 

A 25 Branch 2 

A 26 Branch 2 

A 27 Weld 2 

A 27 Weld 2 

A 27 \Veld 2 

Product Material Pipe Piping Nominal 

Type Diam. Schedule \V all 

Thickness 

p 1 4 PS2 11.13 

p 1 4 PS2 11.13 

p 1 4 PS2 11.13 

p 1 0.75 PS1 3.91 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 0.5 PS3 4.78 

p 2 6 PS3 18.24 

p 2 2 PS3 8.74 

p 2 2 PS3 8.74 

p 2 1 PS3 6.35 

p 2 1 PS3 6.35 

p 2 1 PS3 6.35 

Table D.2: Data for the circuit A example 

Inspection Inspection 

Date Method 

10/11/2002 UT 

10/11/2002 UT 

10/11/2002 UT 

18/05/2003 UT 

17/05/2003 UT 

12/12/2000 UT 

12/12/2000 UT 

12/12/2000 UT 

12/12/2000 UT 

12/12/2000 UT 

12/06/1998 UT 

12/06/1998 UT 

12/06/1998 UT 

12/06/1998 UT 

18/05/2003 UT 

12/12/2000 UT 

12/06/1998 UT 

Inspection 

Reading 

13 

15 

22 

3.91 

20 

20 

18 

18 

18.24 

18.24 

4.78 

18.24 

8.74 

8.74 

5.35 

5.35 

6.35 

I 

I 

I 

I 

Cl 
::r' 
;:ll 
"0 
et­
Cl) 
""!! 

u 
u 
;:ll 
ct­
;:ll 

I:-' 
c.o 
;!::>.. 



Corrosion Comp. Corn~. PMC 
! 

Circuit No. Typ~ 

Code 

A 28 Weld 2 
i 

A 28 \Veld 2 
I 

A 28 Weld 2 

A 28 Weld 2 

A 29 Branch 2 
! 

A 30 Branch 2 

A 31 Branch 2 
' 

A 32 Wellhead 2 

A 33 Wellhead 2 

A 34 \Veld 2 
! 

A 35 Weld 2 
' 

A 35 Welcl 2 

A 36 \Veld 2 

A 36 ·weld 2 

A 36 ·weld 2 

A 37 Weld 1 

A 38 \Veld 2 

Product Material Pipe Piping Nominal 

Type Diam. Schedule \V all 

Thickness 

p 2 1 PS3 6.35 

p 2 1 PS3 6.35 

p 2 1 PS3 6.35 

p 2 1 PS3 6.35 

p 2 1.5 PS3 7.1 

p 2 1.5 PS3 7.1 

p 2 0.5 PS3 4.78 

p 2 6 PS3 18.24 

p 2 6 PS3 18.24 

p 2 0.5 PS3 4.78 

p 2 0.5 PS3 4.78 

p 2 0.5 PS3 4.78 

p 2 2 PS3 8.74 

p 2 2 PS3 8.74 

p 2 2 PS3 8.74 

p 1 4 PS2 13.5 

p 2 1 PS3 6.35 

Table D.3: Data for the circuit A example 

Inspection Inspection 

Date Method 

18/05/2003 UT 

12/12/2000 UT 

12/06/1998 UT 

31/08/2003 UT 

12/06/1998 UT 

12/06/1998 UT 

12/06/1998 UT 

12/06/1998 UT 

12/06/1998 UT 

12/06/1998 UT 

12/12/2000 UT 

18/05/2003 UT 

12/06/1998 UT 

18/05/2003 UT 

12/12/2000 UT 

17/05/2003 UT 

31/08/2003 UT 

Inspection 

Reading 

5.35 

5.35 

6.35 

6.35 

7.1 

7.1 

4.78 

18.24 

18.24 

4.78 

4.78 

4.78 

8.74 

8.74 

8.74 

12 

6.35 I 

Q 
l:r" 
ill 

'"Cl 
M­
(1) 
"'! 

u 
u 
ill 
M-
ill 

~ 
c.c 
C,)1 



.~\ 
,-:,:J' 

.. M ,:;·t.P~j \f!.:..._;,.\)b/ 

.d!fi~/ 

....... 

Corrosion 

Circuit 

Code 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

I 

I 

Comp. Comj). PMC 

No. Type 

I 

38 Weld 2 

38 Weld 2 

39 Wellh~ad 1 

40 Wekf 1 

40 Weld 1 

41 Weld 1 

42 Weld 1 

42 \iVeld 1 

43 \Veld 1 

44 Wellhead 1 

45 Weld 1 

45 Weld 1 

45 \Veld 1 

46 Weld 1 

46 \Veld 1 

Product Material Pipe Piping Nominal 

Type Diam. Schedule Wall 

Thickness 

p 2 1 PS3 6.35 

p 2 1 PS3 6.35 

p 1 1.5 PS1 7.14 

p 1 4 PS2 13.5 

p 1 4 PS2 13.5 

p 1 0.75 PS1 5.56 

p 1 0.75 PS1 5.56 

p 1 0.75 PS1 .5.56 

p 1 4 PS2 13.5 

p 1 1.5 PSI 7.14 

p 1 0.75 PS1 5.56 

p 1 0.75 PS1 5.56 

p 1 0.75 PS1 5.56 

p 1 0.7.5 PS1 5.56 

p 1 0.75 PS1 5.56 

Table D .4: Data for the circuit A example 

Inspection Inspection 

Date Method 

12/06/1998 UT 

12/12/2000 UT 

12/12/2000 UT 

12/12/2000 UT 

17/05/2003 UT 

18/05/2003 UT 

18/05/2003 UT 

12/12/2000 UT 

17/05/200:3 UT 

12/12/2000 UT 

31/08/2003 UT 

08/04/2004 UT 

18/05/2003 UT 

12/12/2000 UT 

18/05/2003 UT 

Inspection 

Reading 

7.1 

7.1 

7.14 

13 

13 

5.56 

5.56 

5.56 

14 

7.14 

2.6 

2.8 

3.56 

5 

5.56 

Q 
:::;' 
p; 

'"0 
et-
CD 
1-l 

d 

d 
Pl 
et-
Ill 

!>.:) 

c.o 
~ 


