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Abstract 

It is a common misconception that shallow water biogenic carbonate 
development is inhibited in areas of active siliciclastic input. However, an increasing 
number of examples of ancient and modern coral communities are being identified 
which are affected by siliciclastic input and are developing in areas traditionally 
regarded as unfavorable. Corals can develop in nearshore settings affected by high 
sedimentation rates, turbidity, mobile substrates and episodic (storm-related) 
discharges of freshwater and terrestrially-derived sediments. Coral reefs in these 
systems are not necessarily impacted reefs, and represent natural states of 
development with coral abundance and diversity comparable to clear-water systems. 
Accepted models of shallow water carbonate production in clear water conditions 
only represent one end-member in a diverse range of shallow coral-dominated 
communities. 

In order to investigate the development of shallow water, biogenic carbonate 
development under the influence of siliciclastic input, two mixed carbonate­
siliciclastic successions have been studied from the Tertiary of Spain. The Vie Basin 
(NE Spain) and the Fortuna Basin (SE Spain) provide contrasting examples of coral 
reef development within siliciclastic shallow marine shelf environments bordering 
temperate-humid and semi-arid land areas respectively. The methods employed in this 
investigation were 1) high resolution sedimentary logging and sample collection, 2) 
petrographic and palaeontological analysis of samples and 3) quantification of non­
carbonate content through acid digestion. The correlation of logged sections, and 
development of a facies scheme for each study area, has enabled the temporal and 
spatial relationships between carbonate development and siliciclastic sedimentation to 
be deciphered. 

The Calders study area is situated within the Vie Basin. The broad 
environment of deposition was a moderate energy, northward-prograding siliciclastic 
shelf where high sediment input and unstable substrates inhibited the development of 
sessile calcareous biota. Carbonate development occurred following abandonment of 
the siliciclastic substrate. Abandonment facies, which developed on dune foresets and 
topsets, are dominated by large benthic forarninifera and coralline algae. Carbonate 
development, as high-energy foralgal shoals and muddy coral-dominated sediments, 
occurred down-slope. Carbonate units developed as very low angle clinoforms. Coral 
development was variable, existing as metre-scale patch reefs with associated debris 
and protected low-energy environments. Coral framework was only locally evident. 
Six isolated carbonate intervals are identified within the siliciclastic-dorninated 
succession. The change from carbonate development to siliciclastic deposition is 
abrupt. 

It is proposed that sediments situated stratigraphically above the main Calders 
section in the Sant Amanc area are part of the Terminal Complex. The broad 
environment of deposition was a protected, inner-shelf that developed in the latest 
stages of marine sedimentation in the Pyrenean foreland prior to regional deposition 
of continental sediments. Nutrient-rich conditions persisted due to terrigenous input 
and terrestrial run-off. Metre-scale patch reefs developed through the baffling effect 
of the perennial seafloor vegetation that acted as a substrate for large benthic 
foraminifera. 

The Altorreal study area is situated within the Fortuna Basin. The environment 
of deposition was a marginal marine, high-energy fan delta system. Only robust 
organisms such as oysters were able to tolerate the periodic high-magnitude input of 
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coarse-grained siliciclastics. The temporary abandonment of fan-delta lobes provided 
a site for coral colonization. Abandonment facies are siliciclastic packstones with 
laminar stromatolites in up-slope areas. Carbonates contain minor siliciclastic material 
and form laterally restricted sigmoidal units. Corals formed a framework, with 

I 

variations in coral morphology a function of water depth. Carbonate production was 
halted through the combined affects of freshwater input, emergence and erosion. 
Eroded carbonate bodies were buried by fan-delta sediments as the locus of 
sedimentation changed. 

The main impacts of sediment input on photoautotrophs are physical burial, 
reduction in rates of photosynthesis though increased turbidity and changes in 
seawater chemistry, particularly salinity and nutrients. The amount and grainsize of 
siliciclastic sediment input has influenced the biota in both study areas. Siliciclastic­
dominated sediments contain a low diversity fauna dominated by echinoids, molluscs 
and burrowing organisms. The reduction of siliciclastic input created a new 
environment that was initially colonized by organisms acting as r-strategists. These 
transitional settings are dominated by larger benthic foraminifera at Calders. At 
Altorreal, a prolonged period of non-deposition led to the formation of a hardground. 
Coral development at Calders occurred during a constant input of clay to silt-grade 
siliciclastics. In low-energy areas where sediment input was particularly high, 
constratal growth of branching corals is inferred. In marginal marine reef areas at 
Altorreal, coarse lithoclastic grains supported stick-like coral branches. Demise of 
coral communities is attributed to a number of factors. At Altorreal, emergence and 
erosion of the reef is inferred from erosional contacts. The development of columnar 
stromatolites is associated with a prolonged period of non-deposition and possibly a 
change in seawater chemistry that was detrimental to corals. 

The development of coral communities in siliciclastic settings can be aided 
through the existence of a protection mechanism. At Calders and Altorreal, 
temporarily abandoned siliciclastic substrates provided sites away from silts of high 
siliciclastic input. Autogenic factors such as delta lobe switching were the most 
important controls on coral development in the studied areas although allogenic 
factors such as climate and the tectonic regime influenced rates, magnitude and 
grainsize of input were also important. 
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Introduction 

1. Introduction 

1.1 Aims of study 

Deposits of Eocene age from NE Spain and of Miocene age from SE Spain 

allow the study of carbonate systems strongly influenced by siliciclastic input. The 

presence of these carbonate systems within siliciclastic-dominated environments is 

widely recognised. However, few studies evaluate the effects of siliciclastic sediment 

input on facies development, biota and evolution of the environment. 

The primary objectives of this research are: 

1. To determine the depositional environments of the deposits from the Calders 

area (Vie Basin, NE Spain) and the Altorreal area (Fortuna Basin, SE Spain), 

and to construct a detailed facies model for their evolution. 

2. To assess the effects of siliciclastic input as a control on the nature and 

development of carbonate producing organisms within siliciclastic-dominated 

environments. 

3. To compare the characteristics of mixed carbonate-siliciclastic systems within 

subtropical humid and semi-arid settings. 

4. To compare the mixed carbonate-siliciclastic settings of the study areas with 

similar modem and ancient settings. 

To meet these aims this study combines detailed field logging and sampling of 

carbonate and siliciclastic lithologies within both study areas with detailed 

petrographic, palaeontological and acid digestion analysis. Regional literature studies 

were undertaken to establish the broader context of the carbonate systems studied. 

1.2 Outline of thesis 

Chapter 1: Brief introduction to the thesis, including the aims and objectives of the 

study. 



Introduction 

Chapter 2: Geological context of the Calders area in NE Spain and the Pyrenees. The 

tectonic and sedimentary evolution of the SE Pyrenean Foreland Basin is discussed, 

with particular emphasis on the Tertiary. The chronology and lithostratigraphic terms 

for the Eocene of the Pyrenean Foreland are described. 

Chapter 3: Detailed description and environmental interpretations of facies from the 

Calders and Sant Amanc study area. A facies scheme is proposed for Eocene 

(Bartonian) inner-shelf mixed carbonate siliciclastic environments. The temporal and 

spatial evolution of facies is described and evaluated. 

Chapter 4: Geological context of the Altorreal study area in SE Spain and the Betic 

Cordillera. The tectonic and palaeogeographic evolution of the western Mediterranean 

region from the Cretaceous to Recent is discussed, with particular emphasis on the 

Miocene. 

Chapter 5: Detailed description and environmental interpretation of facies of the 

Altorreal study area, Fortuna Basin. A detailed facies scheme is proposed for 

Tortonian/Messinian inner shelf mixed carbonate siliciclastic environments. The 

temporal and spatial evolution of facies is described. 

Chapter 6: An assessment of the effects of siliciclastic sediment input on biota in the 

Calders study area. 

Chapter 7: A comparison of the studied sediments from -the Calders and Altorreal 

areas with comparable modern and ancient examples. This chapter presents a detailed 

discussion of the characteristics of carbonate production within siliciclastic-dominated 

environments. The features of carbonate systems within different tectonic, climatic 

and hydrodynamic settings will be discussed. 

Chapter 8: Summary and future work 
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Appendices: 

Appendix 1: A review of the techniques and terminology used during this study. 

Appendix 2: A review of benthic forarninifera palaecology, focusing on diagnostic 

genera present in the study areas. 

Appendix 3: Tabulated thin data data, Calders and Sant Amanc study area 

Appendix 4: Tabulated thin section data, Altorreal study area 

Appendix 5: Sedimentary logs, Calders and Sant Amanc study area 

Appendix 6: Sedimentary logs, Altorreal study area 
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2. Regional Geology and Field Areas, Northern Spain 

2.1 Introduction 

The aim of this chapter is to summanse previOus work on the regional 

geological and palaeoenvironmental evolution of the Pyrenees, in particular the 

southeastern areas. In order to put the studied sections in the Vie Basin into regional 

context, this chapter provides a detailed review of the South Pyrenean Foreland and 

Vie Basin stratigraphy. 

2.2 Regional Geology of the Pyrenean Region 

The geology of the Pyrenean region has been influenced by a series of major 

structural events (Figure 2.1). These are the Hercynian orogeny, which produced 

major NE-SW structural lineaments reactivated during later tectonic episodes (Gisbert 

et al. 1983) and the break-up of Pangea (and the formation of the Tethys Ocean). The 

present tectonic configuration is attributed to oblique collision and shearing of the 

Iberian microplate with the European plate during the Late Cretaceous to Miocene 

Alpine Orogeny (Mufioz 1992, Puigderabregas and Souquet 1986, Masson and Miles 

1984). Although collision is related to the Alpine Orogeny, there is no continuity 

between the Alpine Mediterranean and Pyrenean mountain belts, and there are distinct 

differences in deformation style between the Pyrenees and other parts of the Alpine 

orogenic belt (Banda and Wickham 1986). Therefore, the collisional event in the 

Pyrenees is referred to herein as the Pyrenean Orogeny. 

Between the Hercynian and Pyrenean Orogenies, sedimentation in the 

Pyrenees was near continuous. The Pyrenees is an example of a polyhistory basin 

where successive stages of development are recorded as Mesozoic and Tertiary 

tectono-sedimentary cycles (Puigdefabregas and Souquet 1986, Kingston et al. 1983). 

The chronology of these cycles is summarized in Figure 2~1. 

The pre-Hercynian tectonic setting of the Pyrenees is uncertain although Zwart 

( 1986, 1979) provides an exhaustive review of Hercynian geology. The first grouping 

of tectono-sedimentary cycles (Cycles 1 to 4, Figure 2.1) corresponds to major 

periods of intra-continental rifting, lasting from the Permian to the Early Cretaceous. 

Extension was controlled by inherited E-W, NE-SW and NW-SE orientated fractures, 

and led to the formation of assymmetric fault-bounded basins that existed throughout 

the Permian (Gisbert et al. 1983). Rocks of Permian age include alluvial fan 
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Pyrenean 
Age Basin Types Tectonics 

Cycles 

Miocene- ~ 

10 Oligocene Last stage foreland basins 

I -34-5 Ma 

Q,l 

Q,l .i!: 
Col "' Q,l 

= "' Col Q,l 

Eocene Turbidite to fluvial fill of the 
Q,l 

Thrust sheet ... = 1)1) 
1)1)~ 9 ... = ... -55-34 Ma migrating foreland 

Q,l 
emplacement ... ... Q,l 

= c.e = ~ Q,l u I 

1~r ~ 

8 
Palaeocene 

Transition to foreland basins I~~ 
-65-55 Ma 

Late Santonian-
Wrench basin including local 

7 Maastrichtian 
folding and uplift with Initial collision in the 

-85-65 Ma 
submarine and subaerial eastern Pyrenees 
erosion 

= ~ Middle = ";l 
Cenomanian- Deeper turbidite wrench basin "' Q,l ... 

6 Middle and related back-stepping 
Q, 

Wrenching "' = Santonian carbonate platforms. E 
-93-35 Ma E-o 

I ~r 
Middle Albian- Strike-slip turbidite troughs I~~ ... 

= 
Early along the North Pyrenean = Cll 

5 Sinistral wrenching .2 ·.: 
Cenomanian Fault Zone. Initial turbidite - Q,l 

Cll .c ---110-94 Ma deposition. = cz:: 

Q, 
:I 

.:l: 
Rhombic sub-basins in a NW-

Cll 
Q,l 

Early Aptian- ... 
SE trending rift system along = Rifting of the Bay of 

4 Albian 
inherited basement directions "3 Biscay 

-115-JJOMa = (Parentis, Adur and Pyrenees) 
Q,l 

= ~ 

= Q 

Neocomian- • 3 . Marremian Unstable -platform 
-140-115 Ma 
Lias-Malm Synrift alluvial deposits to 

2 
-210-240Ma carbonate platform controlled Ligurian Tethys and Atlantic 
Triassic by normal faulting along NE- rifting 
-250-210Ma SW inherited basement 

l 
Permian 

Interior fracture basins 
Intra-continental 

>250Ma riftiJ!g_ 

Figure 2.1 Summary of Pyrenean Permian to Miocene Pyrenean tectono-sedimentary cycles. 
Cycles 1 to 4 (shaded) represent a phase of intracontinental rifting. The final rifting phase was 
marked by accumulation of Cycle 5. Cycles 6 and 7 (shaded) were deposited during the change 
from a strike-slip to a convergent tectonic regime. Cycles 8 to I 0 formed under a convergent 
tectonic regime. After Puidefilbregas and Souauet ( 1986). See text for discussion. 
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conglomerates, red mudrocks, local slope breccias and volcanoclastics, with 

associated andesites, rhyolites and basalts (Puigdefabregas and Souquet 1986 and 

references within). 

Extension continued through the Triassic and Jurassic. Triassic sediments are 

red conglomerates and mudrocks (interpreted as braided fluvial systems) that grade 

upward into fine-grained lagoonal and evaporite deposits (Puigdefabregas and 

Souquet 1986 and references within). Puigdefabregas and Souquet ( 1986) interpret 

this as a classic intra-continental rift succession. By the early Jurassic, a carbonate 

platform influenced by eustatic fluctuations extended over most of the Pyrenean 

region (Peybernes 1976, Faure 1980, 1984). By the Middle Jurassic (Dogger), shallow 

water carbonate development was restricted by differential subsidence related to 

faulting to a major horst structure known as the Occitan High (Puigdefabregas and 

Souquet 1986). Shallow marine deposits covered the Occitan High while deeper 

hemipelagic carbonates accumulated in the adjacent basins of the eastern and western 

Tethyan domains (Peybernes 1976, Faure, 1980, 1984; Puigdefabregas and Souquet 

1986). A deeper water area had formed to the west by the Late Jurassic (Maim), 

indicated by condensed ammonite intervals and hemipelagic shales and mudrocks 

exposed in the western Pyrenees. Eastern areas of equivalent age are characterised by 

shallow marine carbonates (including limestone-dolomite complex collapse breccias 

and dark lagoonal limestones and dolomites) exposed in the Central and Eastern 

Pyrenees (Peybernes 1976, Faure, 1980, 1984; Puigdefabregas and Souquet 1986). 

The change from extensional to transtentional tectonics at the base of the 

Cretaceous is associated with a sudden relative sea level fall, resulting in 

discontinuous sedimentation and localised erosion surfaces (Puigdefabregas and 

Souquet 1986). Fracturing and erosion of the Jurassic carbonate platform was 

followed by the deposition of ~ p_pJyroi~t carbonate breccia exposed in the central­

eastern Pyrenees. A NW -SE trending rift system evolved in response to initial rifling 

in the Bay of Biscay and the neighbouring Cantabrian and Iberian mountain chains, 

and created the Parentis, Adour and Pyrenees sub-basins. These basins increased in 

areal extent in the Early Cretaceous (Neocomian) as a response to relative sea level 

rise, although sedimentation rates were still low and influenced by the inherited 

fracture systems (Puigdefabregas and Souquet 1986). In the Tethyan domain to the 

east, relative sea level rise is inferred from the development of a westward-onlapping 

eustatically influenced carbonate platform (the Urgonian Limestones). A Tethys-
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Atlantic Ocean connection via the rift system during the Early Cretaceous is inferred 

from the lateral extent of marine facies (Peybernes 1982, Puigdefabregas and Souquet 

1986). 

Middle Albian-early Cenomanian sea-floor spreading in the North Atlantic 

induced rotation and a change in a trajectory of Iberia, leading to the final break-up of 

the Iberian and European plates (Puigdefabregas and Souquet 1986). Tectono­

sedimentary Cycle 5 (Figure 2.1) was deposited during the tectonic activity that 

caused crustal stretching along the North Pyrenean Fault Zone (NPFZ), together with 

the development of a deep wrench basin system (Debroas 1987). Crustal stretching at 

the NPFZ was accompanied by alkaline magmatism, thermal metamorphism and 

diapirism of Triassic evaporates (Puigdefabregas and Souquet 1986 and references 

within). Progressive basin extension in the Mid- to Late-Cretaceous is associated with 

the deposition of retrogradational turbidites in subsiding troughs with minor carbonate 

platform development on the basin margins (Souquet 1985). Puigdefabregas et al. 

( 1986) infer a diachronous change from transtentional to transpressional tectonics. 

The next grouping of tectono-sedimentary cycles (Cycles 6 and 7) was 

deposited during the gradual change from strike-slip displacement to oblique plate 

convergence during the Mid- to Late-Cretaceous (Figure 2.1). The change in tectonic 

regime is interpreted as a direct result of the oblique collision of the Iberian and 

Eurpoean plates during the Pyrenean Orogeny. Continent-continent collision resulted 

in the northward subduction of the lower crust and lithospheric mantle of the Iberian 

plate below the more stable European plate (ECORS-Pyrenees Team 1988, Roure et 

al. 1989, Muii.oz 1992). The onset of deformation was slightly earlier in the east than 

the west, and initial collision resulted in emergence of compressive ridges in the 

eastern Pyrenees (Plaziat 1981, Puigdefabregas and Souquet 1986). The Late 

Cretaceous glol?~J sea level faH l~d to the exposure and erosion of the ridges and 

widespread deposition of alluvial to shallow marine successions known as known as 

the Garurnnian Facies (Puigdefabregas et al. 1986, Puigdefabregas et al. 1992). 

Fluvial and lacustrine red beds of the Garumnian Facies occur in the central and 

eastern Pyrenees, both to the north and south of the Axial Zone of the Pyrenean 

Orogen (Puigdefabregas et al. 1992). The Garumnian beds overlie Hercynian 

basement in the north and Triassic sediments in the south (Jurado 1988). Deep-water 

carbonate, siliciclastic and turbidite sedimentation similar to the earlier Mesozoic 

wrench basins prevailed in the west until the late Paleocene (Pujalte et al. 1989). 

7 
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Convergent plate conditions also characterise the fourth grouping of tectono­

sedimentary cycles (Cycles 8, 9 and 10) (Figure 2.1). The transition from deep 

marine wrench basin to foreland basin occurred during the Paleocene (Puigdefabregas 

and Souquet 1986, Puigdefabregas et al. 1986). Migrating foreland basins were fully 

established by the early Eocene, and their development was directly related to thrust 

sheet emplacement (Puigdefabregas et al. 1986, Burbank et al. 1992). The preceding 

wrench basin was systematically incorporated into the growing thrust-belt of the 

mountain chain. The east-west trending orogen consists of a double-verging wedge 

that developed by propagating thin-skinned, linked thrust systems in foreland areas 

(Puigdefabregas et al. 1992 and references within). Progressive unconforrnities 

developed during the Late Oligocene-Miocene in response to the final sub-aerial 

emergence of the Pyrenean thrust sheets. A siliciclastic wedge comprising alluvial 

fan, fluvial and lacustrine sediments accumulated ahead of the final thrust sheet 

(Puigdefabregas and Souquet 1986, Turner et al. 1984). The tectono-sedimentary 

evolution of the foreland basin is described in more detail in Section 2.3.2. 

2.3 The Pyrenean Foreland Basin System 

From north to south, the Pyrenean Orogen comprises the Aquitain Retro­

Foreland Basin, the Northern Thrust Wedge, the Axial Zone, the South Pyrenean 

Thrust System and the South Pyrenean Foreland Basin (Figure 2.2) (Puigdefabregas 

and Souquet 1986, Verges et al. 1995). The southeastern and southwestern margins of 

the foreland are occupied by the Catalan Coastal Range and Iberian Range 

respectively. The Vie Basin study area is situated in the undeforrned southeastern part 

of the Pyrenean Fore land Basin. 

2.3.1 The North Pyrenean Thrust System and the Aquitain Retro-Foreland 

Basin 

The North Pyrenean Thrust System consists of an imbricate system of north­

verging thrust sheets (Mufioz 1992). Thrusting involved Hercynian basement and the 

Mesozoic and Tertiary cover (Fischer 1984, Deramond et al. 1993). The Aquitain 

retro-foreland basin evolved by flexure of the European plate in response to the load 

of the north Pyrenean thrust sheets (Desegaulx et al. 1990). During Tertiary 

compression, the thrust sheets were translated over the autochthonous parts of the 

Aquitain Foreland (Oimara and Klimowitz 1985, Williams 1985). 
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2.3.2 The Pyrenean Axial Zone 

The Pyrenean Axial Zone comprises the central part of the orogen (Figure 

2.2), and consists of Cambrian to Carboniferous-age rocks, affected by low- to high­

grade metamorphism during the Hercynian Orogeny and later intruded by granitic 

bodies in the Permian (Zwart 1979, Vissiers 1992). Post-Hercynian rocks 

uncomformably overlie the deformed basement (Verges et al. 1995). The North 

Pyrenean Fault (NPF), bounding the northern part of the axial zone (Figure 2.2), is 

interpreted as the suture between the Iberian and European plates (Choukroue 1976, 

Puigdefabregas and Souquet 1986, Muiioz 1992). Axial zone rocks are arranged in an 

antiformal stack of three main tectonic units named, from top to bottom, Nogueres, 

Orri and Rialp (Muiioz 1992). The present-day structure of the Axial Zone, 

determined from the results of the Pyrenees ECORS profile (Choukroune et al. 1989, 

Roure et al. 1989, Munoz 1992 and others) is illustrated in Figure 2.3. The 

incorporation of post-Hercynian rocks into these thrust sheets confirms that thrusting 

is Alpine in age (Mufioz 1992). 

2.3.3 The South Pyrenean Thrust System and South Pyrenean Foreland Basin 

The Southern Thrust System (Figures 2.2 and 2.3) extends laterally for over 

1500 kilometres from east to west, measures up to 50 kilometres from north to south, 

and is considered the more significant of the two thrust systems (Puidefabregas et al. 

1986, Millan et al. 1995, Verges et al. 1995). The Southern Thrust System comprises 

a piggyback sequence of three major thrust sheets known as, in· order of emplacement, 

the Upper, Middle and Lower Thrust Sheets. The Upper Thrust Sheets were emplaced 

in the Late Cretaceous to Early Eocene and are composed of Mesozoic sedimentary 

rocks. The Middle Thrust Sheets were emplaced in the Eocene below the Upper 

Thrust Sheets. The sheet§ cqn~in Hercynian basement rocks, a reduced Mesozoic 

cover and Paleogene foreland sedimentary sequences. The Lower Thrust Sheets were 

emplaced in the late Eocene-Oligocene and comprise Silurian basement and a much 

reduced Mesozoic cover section (Puigdefabregas and Souquet 1986). Based on 

balanced cross-section data, the total estimated shortening across the eastern sector of 

the Southern Thrust System is approximately 146 kilometres or up to fifty percent 

(Puigdefabregas et al. 1986, Verges et al. 1995). Shortening rates decreased from a 

maximum of around 4.5 mm a-1 in the early- to mid-Eocene to around 2.0 mm a-1 by 

the end of Pyrenean deformation (Verges et al. 1995). 

10 
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The South Pyrenean Foreland Basin (Figures 2.2 and 2.3), within which the 

study area in NE Spain is situated, developed in the Tertiary as a direct result of the 

tectonic loading and southward displacement of the southern thrust sheets over a 

stable Lower Eocene carbonate platform. Overthrusting led to the fragmentation and 

geographic isolation of what were previously interconnected parts of the relatively 

depressed foreland (Puidefabregas et al. 1986, Molenaar et al. 1996). The foreland 

basin developed on pre-Mesozoic basement and forms an irregular triangular shape 

bounded by the Pyrenees to the north and the Catalan Coastal Range to the southeast 

(Taberner et al. 1999). Sedimentation in the South Pyrenean Foreland Basin was 

contemporaneous with development of the thrust system (Puigdefabregas et al. 1986, 

Burbank et al. 1992). Palaeogene remnants of the foreland basin occur as 

allochthonous thrust sheets (Figure 2.2). The Iberian and Catalan Coastal Ranges, 

situated to the west and south-east respectively, bound autochthonous foreland strata 

(Puigdefabregas et al. 1986, Puigdefabregas and Souquet 1986, Burbank et al. 1992). 

Sediments along the northern margin of the Pyrenean Fore land are typically 

deformed, while sediments on the southern margin are predominantly undeformed. 

2.3.4 The Catalan Coastal Range 

The intraplate Catalan Coastal Range delimits the active distal margin of the 

Pyrenean Orogen and southeastern margin of the South Pyrenean Fore land Basin 

system (Figures 2.2 and 2.3). The Catalan Coastal Range is an important geological 

feature since it was a positive topographic feature in the Eocene shedding siliciclastic 

material to the southern foreland margin, and into the study area in the Vie Basin 

(Lopez-Blanco 1993, Monstad 2000). The Catalan Coastal Range affected the rates of 

subsidence across southeast foreland basin and therefore played an important role in 

the development of the basin stratigraphy (Verges et al. 1998). The range developed 

as a major reactivated strike-slip fault system during the Alpine Orogeny 41.5 Ma ago 

(Anadon et al. 1985, Verges et al. 1998). Structurally, the Catalan Coastal Range 

consists of two major late Palaeozoic and Mesozoic fault systems (Lopez­

Blanco 1993). Alpine deformation reactivated these old fault lineaments within the 

Coastal Range as a series of NE-SW stepping, left lateral strike slip faults which 

extend laterally for about 200 kilometres (Lopez-Blanco 1993, Monstad 2000). A 

series of SE-NW oriented thrusts and folds were generated, uplifting slices of Lower 
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and Middle Triassic basement and Mesozoic cover as push-up blocks, folds and 

flexures forming a zone of high relief in front of the relatively depressed foreland 

(Monstad 2000). 

A series of syntectonic alluvial and fan delta complexes (including the 

Montserrat and Sant Lloren9 del Munt complexes) formed on the down-thrown side 

of the strike-slip fault system during the Lutetian to Priabonian (Lopez-Blanco 1993, 

Busquets 1995). Proximal fan conglomerates stacked up along the basin margins 

undergoing rapid uplift and erosion (Cabrera et al. 1986). Detailed studies of the 

conglomerates has yielded up to four orders of cyclicity due to relative sea level 

changes and variations in siliciclastic supply, both ultimately controlled by the 

tectonic situation at the basin margin (Lopez-Blanco 1993). 

Alluvial fan systems evolved into fan deltas following a major transgression in 

the basal Bartonian (Lopez-Blanco 1993). In some areas, carbonate platform systems 

with an areal extent up to 12 km2 developed. Carbonates are Nummulites shoals and 

bars, and barrier and coastal reef systems (Lopez-Blanco 1993, Monstad 2000). 

The present day Catalan margin is characterised by Plio-Quatemary uplift, and 

a well-developed horst and graben structure extending to the Valencia Trough in the 

southeast (Millan et al. 1995). 

2.4 The Southeastern Pyrenean Foreland Basin: Development and Stratigraphy 

The latest Maastrichtian to early Oligocene sedimentary evolution of the 

Southeast Pyrenean Foreland Basin has been differentiated into nine depositional 

sequences in the sense of V ail et al. ( 1977) (Figure 2.4) (Puidefabregas et al. 1986). 

"Each sequence comprises a body of genetically related strata bounded by 

unconformities, correlative conformities or by abrupt vertical changes in regional 

facies distribution" (Puidefabregas et ql. 1986). Ti!ble 2.1 S\.llllillarises important 

sedimentary formations within each depositiona1 sequence. The Palaeogene South 

Pyrenean Foreland Basin-fill is broadly asymmetric in cross-section. The total 

sediment thickness is up to 4.0 km in the north, thinning to a few hundred metres in 

the south (Hirst and Nichols 1986). The most complete depositional record occurs in 

the thrust sheets to the north and along the southeast basin margin bordering the 

Catalan Coastal Range. In the centre and southeast, earlier depositional sequences are 

known only from well log data (Puidefabregas et al. 1986). 
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Tectono-sedimentary Units/Formations Authors 
Sequence 

Solsona Artes Formation 
Riba 1976 
Busquets et al., 1985 
Busquets et al., 1985 

Cardona Cardona Formation Tabemer et al., 1983 
Puigdefabregas et al., 1975 
Regaunt 1967 

Folgueroles Formation Ferrer 1971 
Collbas Formation Ferrer 1971 
Igualada Formation Gich 1972 
Milany Formation Palli 1972 

Milany Roca Corba Formation Gich 1972 
Santa Magdelana Formation Anitdon et al., 1975 

Montserrat Formation Ferrer 1971 
Tossa Formation Tabemer et al., 1999a 

Collsuspina Formation Hendry et al., 1999 
Alvarez et al., 1995 

Banyoles Formation Rios and Masachs 1953 
Barcons Formation Gich 1972 

BeUmunt 
Bellmunt Formation Gich 1972 
Tavertet Formation Regaunt1967 
Rom_g_ats Formation Colomba 1980 

Beuda Beuda Formation Orti et al., 1985 

Campdevanol Turbidite sequences 
Burbank and Puigdefabregas 
1985 

Armancies 
Penya Formation Estevez 1973 

Pontils Group Anitdon 1978 

Corones 
Sagnari Formation Gich 1972 
Corones Formation 

Cadi Formation 
Mey et al., 1968 

Cadi 
Orpi Formation 

Ferrer 1971 
Gich 1972 

Table 2.1 List of important sedimentary formations and authors classified into relevant depositional 
sequences in the Southeastern Pyrenean Foreland Basin. 
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2.4.1 Tectonosedimentary Units of the Southeast Pyrenean Foreland 

Cadi Sequence 

Shallow marine platform carbonates dominate the Cadi tectono-sedimentary 

sequence (Puidefabregas et al. 1986, Burbank. et al. 1992). The sequence represents 

the development of an extensive carbonate platform system on the continental red 

beds and lacustrine deposits of the Late Cretaceous Garumnian Facies (Figure 2.4) 

(Puidefabregas et al. 1986 and references within). 

Corones Sequence 

Basin inversion in the Llerdian-early Cuisian occurred as a consequence of 

initial emplacement of the Upper Thrust Sheets (Figures 2.4). Deltaic sediments 

derived from the uplifted area in the north prograded southwards (Puidefabregas et al. 

1986 and references within). Minor tectonic uplift on the passive margin related to 

thrusting is inferred from the development of unconformities and deposition of 

southerly-derived siliciclastic material on the Llerdian carbonate platform (Burbank et 

al. 1992). 

Armimcies Sequence 

Rapid deepening in the foreland as a consequence of continued thrust sheet 

emplacement during the Cuisian is recorded in the sediments of the Armancies 

sequence (Figures 2.4). This sequence also coincides with a high global sea level 

(Haq et al. 1987). The Armancies sequence is characterised by slope deposits 

including shale, carbonate turbidites and megaturbidites. Within the megaturbidites 

are Llerdian-aged limestone clasts (derived from the carbonate platform of the Cadi 

sequence) within an upper-Cuisian Nummulites-rich matrix (Puidefabregas et al. 

1986). In summary, this tectono-sedimentary sequence represents the destabilisation 

of the carbonate shelf as a precursor to catastrophic shelf margin collapse during 

submarine thrusting. A contemporaneous carbonate platform developed over the 

southern passive margin as relative sea level rose. 

Campdevanol Sequence 

The tectonic load created as a result of Upper Thrust Sheet emplacement led to 

the formation of a deep turbidite trough in the late-Cuisian (Figure 2.4) (Burbank et 
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al. 1992). The turbidites of Campdevanol sequence indicate a sudden terrigenous 

influx and a switch from carbonate to siliciclastic deposition (Puidefabregas et al. 

1986, Burbank et al. 1992). Loading caused by emplacment of the Pedraforca and 

Montgri Upper Thrust Sheets also led to development of a fore-bulge along the 

southern passive margin of the foreland where carbonates and evaporates continued to 

develop. 

Beuda Sequence 

Eustatic Sea level fall of around 50 metres and basin restriction occurred at the 

Cuisian-Lutetian boundary (Haq et al. 1987). This coincided with final Upper Thrust 

Sheet emplacement and emergence, and deposition of evaporates and red beds of the 

Beuda Sequence (Figure 2.4) (Burbank et al. 1992). 

Bellmunt Sequence 

Middle Thrust Sheet (Cadi) emplacement commenced in the Lutetian 

(Burbank et al. 1992). This coincided with a rapid relative sea level rise (Haq et al. 

1987). Erosion of the recently emergent Pedraforca thrust sheet fed alluvial fans and 

fan deltas of the Bellmunt Sequence, which prograded southward over the Beuda 

evaporites (Figures 2.4) (Martinez et al. 1988). The development of the Freser Valley 

antiformal stack below the Cadi thrust sheet (and consequent topographic 

rejuvenation) increased siliciclastic input and accelerated delta progradation 

(Puidefabregas et al. 1986). Consequently, the carbonate platform on the southern 

basin margin retreated. 

Milany Sequence 

The transgressive base of the Bartonian succession in the southeast foreland 

shows a switch from alluvial to the shallow marine depositional systems of the 

Bartonian Milany Sequence (Figure 2.4) (Puidefabregas et al. 1986, Santesteban and 

Taberner 1988). The Milany sequence is the final fully marine sedimentary succession 

in the southeastern foreland (Taberner et al. 1999). Sediments of the southerly­

prograding delta systems of the Milany Sequence were sourced from granitic 

basement rocks brought to the surface through the out of sequence thrusting behind 

the Freser Valley antiformal stack. Reactivation of fault systems along the southern 

foreland margin, and consequent uplift and erosion of Triassic basement blocks, fed 
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numerous northward-prograding alluvial fan and fan delta systems (Anadon et al. 

1985, Puigdefabregas et al. 1986, Lopez-Blanco 1993). High sedimentation rates, as a 

consequence of north and south progradation, contributed to the gradual restriction of 

the basin (Puigdefabregas et al. 1986). The Calders study area within the Vie Basin is 

situated within the northward prograding delta system of the southern foreland basin 

margin (Section 2.5). 

Cardona Sequence 

Deposition of evaporites of the Cardona depositional sequence coincide with 

the largest and most abrupt eustatic sea level fall of the late Eocene-Oligocene, and 

are associated with final basin restriction (Burbank et al. 1992). Puigdefabregas et al. 

( 1986) attribute the diminshing siliciclastic influx in the late Eocene to the fact that 

the Upper Thrust Sheets (including the Vallfogona thrust) had not yet emerged. The 

Vallfogona thrust sheet moved along a ramp and was finally emplaced in the 

Oligocene, defining the northern margin of the youngest South Pyrenean Foreland 

Basin (Figure 2.4) (Puigdefabregas et al. 1996). 

Solsona Sequence 

The Solsona depositional sequence is the non-marine deposits that finally 

filled the basin (Figure 2.4) (Riba 1976, Busquets et al. 1985). Progressive 

unconformities developed within the continental conglomerates and red beds as a 

result of movement of the Vallfogona thrust sheet (Puigdefabregas et al. 1986). 

2.4.2 Controls on patterns of Pyrenean Foreland sedimentation 

"Patterns of sedimentary infilling of a flexural basin respond to complex 

interactions of subsidence, sediment supply, base level change, sediment sorting and 

transport efficiency" (Burbank et al. 1992). Ultimately, basin geometry and patterns 

of sedimentation in the southeastern Pyrenean foreland were controlled by 

development of the thrust system. During the Pyrenean Orogeny, as deformation 

progressed southward, the northern parts of the foreland were progressively 

incorporated into the younger thrust sheets and basin depocentres migrated southward 

(Puigdefabregas et al. 1986). Figure 2.5 illustrates the massive depocentre migration 

between deposition of the Cadi to the Cardona Sequences. Periods of decreasing 

subsidence rates in the southern Pyrenean Foreland Basin are associated with the 
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progradation of coarse-grained facies. Conversely, periods of accelerating subsidence 

are times of fine-grained facies deposition according to Burbank et al. (1992). In 

addition, topographic relief produced by thrusting and the structural development of 

the neighbouring Catalan Coastal and Iberian Ranges, also played a fundamental role 

in the final sequence geometry and sediment supply, particularly to the southern 

margin of the southern foreland (e.g. Gimenez -Montsant and Salas 1997, 

Puigdefabregas and Souquet 1986 and Guimera 1984). 

In summary, the late Cretaceous to early Oligocene history of the Pyrenean 

Foreland Basin can be broadly divided into two stages. The first, lasting from the late 

Cretaceous to the middle Lutetian (and consisting of the Cadi to the lower part of the 

Bellmunt depositional sequences of Puigdefabregas and Souquet (1986)) is 

characterised by low topographic relief, submarine emplacement of the thrust front, 

fast shortening rates, widespread marine deposition and an erosion rate virtually equal 

to detrital foreland accumulation. The second stage, lasting from the middle Lutetian 

to the Oligocene and consisting of the upper Bellmunt to Solsona depositional 

sequences, is characterised by increased topographic relief, sub-aerial emplacement of 

the thrust front, decreased shortening rates, widespread continental sedimentation and 

mountain erosion rates approximately three times basin accumulation. 
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2.5 Study Area: The Paleogene Vie Basin 

The Vie Basin is located in the eastern-most Catalan sector of the Southeast 

Pyrenean Foreland Basin and is the only sector where both north and south-sourced 

Eocene marine platform depositional systems are exposed (Taberner et al. 1999). The 

sedimentary fill of the Vie Basin is Palaeocene to Oligocene in age, and the 

sedimentary succession is interpreted to represent final open marine sedimentation in 

the eastern foreland prior to widespread continental alluvial, lacustrine and evaporitic 

deposition (Taberner 1983, Taberner et al. 2000). The Vie Basin-fill spans the 

Bellmunt, Milany, Cardona and the Solsona Sequences illustrated on Figure 2.4. The 

basin deposits are largely undeformed and the present exposed margin of the basin is 

approximate to that of the Palaeogene margin (Taberner and Bosence 1985). 

The Vie Basin existed in the Early Eocene as an east-west trending gulf that 

connected the Mediterranean to the Atlantic via the Navarra-Basque zone in the north­

central Pyrenees (Alvarez et al. 1994). By the late Middle Eocene, the eastern 

connection to the Mediterranean through this gulf was severed. Connections with the 

Atlantic and Mediterranean remained open to the south (Figure 2.6). Thick marl 

successions were deposited in distal and deeper areas of the Vie Basin during the 

Middle Eocene, and north and south-sourced deltaic systems developed on the 

shallow northern and southern margins (Figure 2.7) (Alvarez et al. 1994). 

The final stages of marine sedimentation in the Vie Basin during the Bartonian 

are known as the Marine Sequence (e.g. Taberner et al. 1999, Trave et al. 1996 and 

Burbank et al. 1992). The Montserrat conglomerates deposited as alluvial fan 

complexes on the northern margin of the Catalan Coastal Range (Section 2.3.4) 

interfinger with the Marine Sequence (Busquets 1995). The duration of the Marine 

Sequence was approximately I 0 Myr, lasting from 46 Ma to 35 Ma (Taberner et al. 

1999). Sediments of the Marine Sequence were successively deposited within 

increasingly southerly positions as the basin depocentre migrated from north to south 

as a consequence of thrust emplacement (Section 2.4.2) (Puigdefabregas et al. 1986). 

Strong basin-fill asymmetry is recognised during this time. Magnetozones in marginal 

marine sediments in the north are considerably thicker than those in the south. 

Continental and marine sediments derived from the Catalan Coastal Range onlap and 

eventually overlap the Palaeozoic and Mesozoic basement in an area known as the 

Centelles high, which is suggested to represent the southern Pyrenean fore-bulge 
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(Tabemer et al. 1999). For the duration of most of the Marine Sequence (up to 38.11 

Ma) the Vie Basin therefore existed as two sub-basins, a northern and southern sub­

basin, separated by the east-west trending Centelles high (Tabemer et al. 1999). 

Time-equivalent units were deposited in each sub-basin, but similar facies types were 

not always contemporaneous on each margin (Taberner et al. 1999). Sediments in the 

southerly back-bulge area were derived from the southern margin of the basin (the 

tectonically re-activated Catalan Coastal Range), and sediments in the north were 

derived from erosion of the Pyrenean thrust sheets. The studied section at Calders was 

deposited in the southerly sub-basin. 

The Middle Eocene marine and transitional sediments of the Vie Basin have 

been described as seven sedimentary cycles: four Lutetian cycles, two Bartonian 

cycles, and a final late Bartonian to early Priabonian cycle (Serra-Kiel et al. 1997). 

Each cycle is identified as the package of sediments deposited in the basin from the 

base of a transgressive system up to the base of the next transgressive system (Serra­

Kiel et al. 1997, following Bates and Jackson 1987). The sedimentary cycles are 

summarised in the following sections. 

2.5.1 Lutetian marine sedimentation in the Vie Basin 

Lutetian marine sediments are only exposed in the eastern sector of the Vie 

Basin. Lutetian sediments overlie the laterally extensive fluvio-alluvial facies of the 

Pontils and Vilanova de Sau Formations (part of the Bellmunt Sequence). Total 

sediment thickness is approximately 1300 metres on the northern margin, thinning to 

only a few hundred metres in the south (Serra-Kiel et al. 1997). A summary of the 

Lutetian stratigraphy of the Vie Basin is illustrated in Figure 2.8. 

2.5.1.1 Lutetian Cycles 1 and 2 

The first two sedimentary cycles, within the Tavertet Limestone Formation, 

show deepening trends. Cycle 1 consists primarily of lagoonal deposits and Cycle 2 

consists of siliciclastic nearshore facies with longshore bars and Nummulites banks. 

The top of the second cycle is an intensely bioturbated limestone rich in Alveolina sp., 

Orbitolites sp., miliolids, echinoids, oysters and ferruginous concretions, and is 

interpreted as a condensation layer by Serra-Kiel et al. (1997). 
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2.5.1.2 Lutetian Cycle 3 

The third Lutetian sedimentary cycle is interpreted as a transgressive and 

regressive sedimentary package. Deposits at the base of the transgressive cycle onlap 

the Tavertet Limestone (Figure 2.8). The transgressive system is characterised by a 

1000 metre thickness of blue marl and bioclastic sands that constitute the lower and 

middle parts of the Colla de Malla and Banyoles Formations. The marls interdigitate 

with marly limestone condensation horizons. These layers are rich in Ophiomorpha 

and Thalassanoides burrows, Nummulites and molluscs (Serra-Kiel et al. 1997). 

Towards the south, the marls of the third cycle pass laterally into the continental 

sediments of the Romagats Formation, which were deposited on the southern margin 

of the basin (Colombo 1980, Serra-Kiel et al. 1997). 

The regressive system of Cycle 3 consists of the upper portion of the Colla de 

Malla and Banyoles Formations, and contains prodelta and distal platform sediments 

coarsening upward into the fluvio-alluvial facies of the Bracons and Bellmunt 

Formations (Figure 2.8). The thickness of the regressive portion of Cycle 3 is up to 

around 450 metres in the north, thinning and fining considerably to the south (Serra­

Kiel et al. 1997). 

2.5.1.3 Lutetian Cycle 4 

The fourth Lutetian sedimentary cycle has an overall shallowing trend, 

although sediments on the northern and southern margins of the Vie Basin are 

considerably different at this time. On the southern margin, inner platform limestone 

beds consisting of Nummulites and Alveolina packstones pass laterally and vertically 

into the continental sediments of the Romagats Formation (Figure 2.8). The 

sediments of Cycle 4 were the most southerly deposited marine sediments in the mid­

Eocene (Serra-Kiel et al. 1997). Siliciclastic input was more important on the northern 

margin during deposition of Cycle 4, and limestones are relatively rare. 

2.5.2 Bartonian marine sedimentation in the Vie Basin 

Bartonian marine sediments of the Catalan sector of the Southeast Pyrenean 

Foreland are exposed in the Vie and Igualada Basins (Serra-Kiel et al. 1997). In both 

basins, the Bartonian is represented by two transgressive-regressive cycles composed 

of siliciclastics and carbonates (Romero et al. 2001). A summary of Bartonian 

stratigraphy is illustrated in Figure 2.9. 
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Figure 2.8 Lutetian chronostratigraphy of the SE Pyrenean Foreland Basin. Note the strong basin 
assyrnetry. After Serra-Kiel et al. ( 1997) 
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Figure 2.9 Bartonian chronostratigraphy of the SE Pyrenean Foreland Basin. The studied succession 
exposed at Ca1ders is part of the Collsuspina limestones (indicated), located within the regressive part 
of the second Bartonian cycle. After Serra-Kiel et al. ( 1997) 
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2.5.2.1 Bartonian Cycle 1 

At 46 Ma, an isochronous transgression affected the Vie Basin. The 

subsequent depositional conditions were open marine (Taberner et al. 1999). The 

transgressive beach facies of the Seva Sandstones and the El Cerda Limestone 

Formation overlie continental late-Lutetian sediments on the southern basin margin 

(Figure 2.9) (Taberner 1983). The sandwave system of the glauconitic Folgueroles 

Formation overlies Lutetian marine sediments in the basin-centre, with the deltaic 

Puigsacalm Formation on the northern margin (Gich 1969, Reguant 1967, Taberner et 

al. 1999). The larger-foraminifera (Nummulites, Operculina, Discocyclina) rich marts 

of the Vie Formation in the basin centre, complete the transgressive part of this cycle 

(Reguant 1967, Serra-K.iel and Trave 1995, Serra-K.iel et al. 1997). 

On the southern basin margin, the regressive system of the first Bartonian 

cycle consists of prograding siliciclastic sediments of the lower part of the Centelles 

Formation that alternate with carbonate buildups of the El Mas Blanc Limestone 

Formation (Figure 2.9) (Serra-Kiel et al. 1997). On the northern margin, the 

regressive system consists of pro grading sandstones of the Puigsacalm Formation that 

change basinward into the upper part of the Vie Marl Formation (Serra-Kiel et al. 

1997). 

2.5.2.2 Bartonian Cycle 2 

The transgressive system of the lower part of the second Bartonian cycle is 

represented by a siliceous sponge rich marl in the centre of the Vie Basin (the Guixa 

Marl Formation of Reguant (1967)). The marl becomes rich in bryozoa and larger 

foraminifera towards the basin margins (Serra-Kiel et al. 1997). The top of the 

transgressive system consists of the Gurb Marl Formation, which is rich in bryozoa, 

siliceous sponges, larger foraminifera, gastropods and decapods (Reguant 1967). 

The northern and southern margins of the regressive system of the second 

Bartonian cycle are characterised by delta-reef complexes (Taberner and Bosence 

1985, Santisteban and Taberner 1988, A1varez et al. 1994, Hendry et al. 1999). The 

reef buildups of the Collsuspina Formation alternate with the sandstones of the upper 

part of the Centelles Formation on the southern basin margin. The Calders study area 

(Section 2.5.3) is situated within this regressive cycle and its stratigraphic location is 

indicated on Figure 2.9. Deltaics and reef systems of the Sant Marti Xic Formation on 
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the northern basin margin pass basinward into the non-fossiliferous mar) of the 

Vespella Formation (Serra-Kiel et al. 1997 and Reguant 1967). 

2.5.3 Bartonian-Priabonian sedimentation in the Vie Basin 

The Bartonian and Priabonian sediments of the Vie Basin record the very final 

phase of marine sedimentation in the Pyrenean foreland, and the transition to 

continental sedimentation as the foreland switched from the underfilled to overfilled 

stage of its development (in the sense of DeCelles and Giles 1996). 

2.5.3.1 The Terminal Complex 

Defined by Trave ( 1992), the Terminal Complex is "an interval of sediments 

overlying the Milany Depositional Sequence, bounded at the top and bottom by two 

regional unconforrnities, exposed along the entire eastern margin of Southeast 

Pyrenean Foreland Basin". The Terminal Complex, accompanied by the Cardona 

Evaporites, is the final interval of marine sedimentation in the Southeastern Pyrenean 

Foreland Basin (Trave et al. 1996). Sedimentological analysis of a small portion of 

the Terminal Complex in the Sant Amanc area (immediately to the east of the Calders 

area) has formed a part of this study (Section 2.5.5). 

The terminal complex facies shoal upward and accumulated during a gradual 

change from mesotrophic to eutrophic conditions as basin restriction commenced 

(Trave et al. 1996). The complex can be divided into three lower siliciclastic horizons 

and three upper carbonate units (Serra-Kiel et al. 1997 and Trave et al. 1996). The 

Lower Cabonate Unit was deposited in normal marine salinity in a mesotrophic 

platform environment colonised by foraminifera and coralline algae. The Middle 

Carbonate Unit, characterised by coralline algae bioherms alternated with 

cyanobacterial mats, was deposited in a platform environment controlled more by 

local variations in nutrient and organic resources, salinity and freshwater influx. The 

Upper Carbonate Unit is characterised by an abundance of cyanobacterial mats 

indicating more eutrophic conditions and a greater meteoric influence than in previous 

units (Trave et al. 1996). 
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2.5.3.2 The Cardona Evaporites 

Evaporite deposition in the Vie Basin commenced 35 Ma and continued 

through to the Priabonian (Taberner et al. 1999). During the earliest stages of 

evaporitic deposition in the basin centre, the basin margins were areas of oolitic and 

stromatolitic development (Trave 1992, Hendry et al. 1999, Taberner et al. 1999). 

The sedimentary record of the Terminal Complex is considerably thicker in the north 

than the south of the Vie Basin, suggesting a diachronous basin transition (Taberner et 

al. 1999). 

The evaporites of the Cardona Formation cover an estimated area of 700 km2
, 

and can be observed to in-fill marine depocentres after normal marine sedimentation 

ceased (Taberner et al. 2000). Carbonate and sulphate deposits outcrop along the 

Paleogene basin margins, and evaporitic facies (i.e. anhydrite, halite etc.) occupy the 

relatively deeper areas. The evaporitic sequence comprises in ascending stratigraphic 

order I) laminated and selenitic gypsum pseudomorphs, 2) banded halite, 3) a potash 

unit and 4) alternating cycles of halite, clay and thin laminated anhydrite (Taberner et 

al. 2000). The potash unit was precipitated when the basin was virtually isolated from 

the open sea, and the upper halite unit is representative of a continental regime 

(Taberner et al. 2000). 

2.5.4 Lateral correlation with the lgualada Basin 

Bartonian sedimentary cyclicity is also recognised m the Igualada Basin, 

which is located to the southwest of the Vie Basin (Figures 2.6 and 2.10). The first 

Bartonian transgressive-regressive cycle in the Igualada Basin is referred to as the 

Collbas Cycle, the second as the Igualada Cycle (Serra-Kiel et al. 1997, Romero et al. 

2002). The stratigraphy of the Igualada Basin is dominated by marts and reefal 

carbonates (the Igualada Mart Formation and the Collbas and Tossa Formations 

respectively), and there is a markedly less-significant siliciclastic influence compared 

to the Vie Basin as marts and reefal limestones dominate (Romero and Caus 2001). 

The lateral equivalent of the Collsuspina Formation of the Vie Basin is the Tossa 

Formation in the Igualada Basin (Serra-Kiel et al. 1997). These formations are time 

equivalent, but are isolated systems (Figure 2.10). The late-Bartonian to Priabonian 

sediments of the Igualada Basin is also represented by the Terminal Complex and 

Cardona Evaporites which precede final basin emergence and infilling by fluvio­

alluvial sediments of the Artes Formation (Serra-Kiel et al. 1997). 
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Figure 2.10 Correlation of Bartonian sedimentary cycles of the lgualada and Vie Basins. The 
Calders study area (indicated) in situated towards the top of the second Bartonian cycle in the Vie 
Basin. TRST= transgresive systems tract HSST=highstand systems tract, m.fl.s.=maximum 
flooding surface, Sb=sequence boundary. SBZ=Shallow benthic zone. The Calders study area is 
situated within SBZ 18, characterized by the larger foraminifera Nummulites bedai. Modified 
from Romero and Caus (2002). 

2.5.5 Study Area 

The Calders and Sant Amanc study area is located on Figure 2.11. The study 

area is covered by the 1: 50 000 Manresa topographic map (Sheet 363) published by 

the Instituto Tecnol6gico Geominero de Espana (ITGE). In addition, the I :20 000 

Moia Sheet 363-11, also published by the ITGE, was used. 

2.5.5.1 Calders and Sant Amanc 

The Calders section is situated immediately south of the village of Calders, 

approximately half way between Manresa and Moia (Figures 2.11 and 2.12). 

Exposure is as roadcut sections along the B 124 road running from Calders to 

Monistrol de Calders between K36 and K38.5, and within adjacent small east-west 

trending valley systems (Figure 2.12). The area of the Calders section is 

approximately 4.0 km2
• The stratigraphic thickness is 130 to 135 m. Calders is the 
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type locality of Nummulites bedai, which is characteristic of Shallow Benthic Zone 18 

of Serra-Kiel et al. ( 1998). The Sant Amanc section is located in the far northeastern 

margin of the Calders area (Figure 2.12). The studied succession is situated within 

the regressive system of the second Bartonian cycle (Figure 2.9) and was deposited 

on the southern basin margin (Figures 2.6 and 2.7). 

Lithological units exposed in the Calders section are (from base to top), the 

Centelles Formation (including the Collsuspina limestones), the Complejos de Calders 

Formation and the Artes Formation (after the terminology used by Hendry et al. 

1999). The litho logical units of the Calders section are part of the Milany and Solsona 

depositional sequences of Puigdefabregas et al. (1986). The Sant Amanc section is an 

exposure of the Terninal Complex (Section 2.5.3.1). Also exposed are the Complejos 

de Calders Formation and the Artes Formation. 
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Figure 2.11 Summary 
geoglogical map of the 
eastern Vie Basin. The 
study area is situated to 
the immediate south of 
Calders (indicated on 
map). The sediments in 
this area are undeformed. 
After Peon et al. (1973) 
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Figure 2.12 Summary topographical map of the study area. The Centelles Formation and the 
intercalated Collususpina Limestones are continuously exposed along the B 124 road that runs 
between Calders and Monistrol de Calders (indicated). Further exposures are identified within 
the NE-SW trending valleys. 
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3. Calders facies and palaeoenvironmental analysis 

3.1 Introduction 

The principal aims of Chapter 3 are to present and synthesize facies data from 

the Calders and Sant Amanc areas, and to present a three-dimensional 

sedimentological/palaeoecological depositional reconstruction. A summary of the 

regional context of the studied sections and a description of sediments underlying and 

overlying the Calders section is presented in Section 3.2. Sections 3.3 and 3.5 

describe and interpret the different facies identified within the Calders and Sant 

Amanc successions respectively. Facies associations and three-dimensional 

palaeoenvironmental evolutionary models are proposed in Sections 3.4 and 3.6. It has 

not been the aim of this thesis to study the diagenesis of these sediments. However, a 

summary of the main diagenetic phases present is included within the facies 

descriptions. For a detailed review of the diagenesis of the Calders carbonates, refer to 

Hendry et al. ( 1999). 

The Tertiary units of the Southeastern Pyrenean Foreland system have been 

described in detail by many authors, particularly in terms of sedimentary cyclicity in 

response to the eustatic and tectonic evolution of the foreland system (Taberner et al., 

1999, Burbank et al., 1992, Puigdefabregas and Souquet 1986, Puigdefabregas et al., 

1986). The succession has also been studied with regards to the apparent juxtaposition 

of shallow marine carbonate and siliciclastic facies (Hendry et al., 1999, Taberner and 

Bosence 1995, Santisteban and Taberner 1988). For a complete review of the 

stratigraphy and sedimentology of the Southeastern Pyrenean Foreland, refer to 

Chapter 2. This chapter presents the first complete facies scheme for the Calders area 

of the Vie Basin based on outcrop, petrological and micropalaeontological data. A 

summary map of the studied area illustrating the locations of logged sections and 

collected samples is presented on Figure 3.1. The logging, sampling and petrological 

techniques used are described in detail in Appendix 1. Thin-section data is presented 

in Appendix 3. Appendix 5 presents logged sections that encompass field and thin 

section information. Samples have been classified using the limestone classification 

schemes ofDunham (1962) and Insalaco (1998), and are summarised in Appendix 1. 

The identification of larger benthic foraminifera assemblages has aided environmental 

interpretation of facies. For detailed information on the palaeoecology of larger 

benthic foraminifera, refer to Appendix 2. 
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Figure 3.1a Regional location 
map of the study area. 

Figure 3.1b Summary topographic 
map of the study area at Calders. The 

-------------------.....J location of logged sections Is 
indicated on the topographic map. 

•569 Spot height ~ Riverbed ~ Topographic contour (metres) 
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3.2 Regional context and associated sediments 

Formations present in the study area, from oldest to youngest, are Vespella 

Formation, Centelles Formation (including the Terminal Complex), Complejos de 

Calders Formation and the Artes Formation. The Centelles Formation and the 

Terminal Complex formed the focus of study for this thesis, thus less attention has 

been paid to the other formations exposed. However, in order to clarify the 

stratigraphic and palaeoenvironmental context of the studied section, the facies 

encountered in the sediments underlying and overlying the main Calders reef are 

described in the following sections. The facies scheme for these sediments is 

presented in Table 3.1. 

3.2.1 Arenaceous marl 

(Vespella Formation, Milany Depositional Sequence) 

Lithologies: Marly sandstone 

Occurrence and bed characteristics 

Extensive thicknesses of this facies are encountered 2.5 km to the south of 

Calders village between K 35 and K 34 along the Bl24 road (Figures 3.1 and 3.2a). 

This facies is characterised by a succession of homogeneous diffusely laminated 

marly sands tones. Bed thickness ranges from 10 cm to 1 m, although bedding is 

poorly defined (Figure 3.2). The lateral extent of this facies cannot be determined due 

to the lack of laterally continuous exposure. 

Lithological description 

The arenaceous marl facies is poorly consolidated. Exposed surfaces weather 

to a light brown to pale-grey colour (Figure 3.2b). Fresh surfaces are a blue/grey 

colour. This facies is very well sorted, comprising 50 to 70 % micrite matrix. Detrital 

siliciclastic grains, comprising up to 50 % of this facies, are sub-spherical to sub­

angular. Grain size ranges from 0.1 to 1 mm. Siliciclastic grains are monocrystalline 

quartz, lithics, orthoclase feldspar and calcite. Body fossils comprise up to 10 % of 

this facies. Fossils include gastropods up to 4 cm in length, with oysters, pectinid 

bivalves and undifferentiated skeletal debris. 
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Figure 3.2a Outcrop exposure of the marly litharenite (part of the Vespella Formation). The height of this 
exposure is approximately 30 metres. Photograph taken from GR 18252530, facing NW. 

Figure 3.2b Poorly-defmed lamination in the rnarly litharenite facies. Photograph taken from 
GR 18292530, facing NW. Harnmer=45cm. 
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Interpretation: depositional environment 

A marine depositional environment is concluded for the arenaceous marl 

facies from the presence and moderate abundance of marine fauna. Deposition at 

depths below the lower limit of the photic zone is suggested from the absence of 

photosynthetic organisms in this facies. Deposition from suspension in a low-energy 

setting below fair weather wave base is inferred from the high-percentage of fine­

grained material and the presence of fine laminations. Deposition some distance from 

the sediment source is concluded from the textural and compositional maturity of 

detrital siliciclastic grains. Due to the association of the arenaceous marl with the 

overlying Centelles Formation (Section 3.3), a relatively low-energy deltaic 

environment of deposition (distal delta front) is inferred. 

3.2.2 Cross-stratified gravelly litharenite 

Complejos de Calders Formation (Solsona Depositional Sequence) 

Lithologies: Pebbly litharenite 

Pebbly litharenitic siltstone 

Occurrence and bed characteristics 

This facies is encountered in isolated outcrops along the N 141 approximately 

1 km to the west of Calders (Figure 3.1). Isolated outcrops of this facies are also 

exposed in the Sant Amanc study area overlying the Terminal Complex (Section 3.6) 

thus this facies extends laterally for at least 4 km. Measured bed thickness is 0.25 to 

0.5 m. This facies is characterised by decimetre-scale trough cross-stratified pebbly 

litharenitic sandstone that grades vertically into less pebbbly, planar cross-stratified 

sandstone (Figures 3.3a and c). Trough cross beds range from 5 to 10 cm in height. 

Planar cross-sets are up to 15 cm in height and 1.5 m in length (Figures 3.3b and c). 

Lithological description 

The cross-stratified gravelly litharenite facies is poorly consolidated, and the 

fine matrix has preferentially weathered out. Exposed surfaces weather to a light 

brown colour (Figure 3.3). Fresh surfaces are a light brown-buff colour. This facies is 

matrix-supported and very poorly sorted (Figures 3.4b and c). Grain size ranges from 

0.01 mm to 0.5 cm. Mean grain size is around 1.75 mm. Siliciclastic grains are 

unstrained and strained quartz, chert, lithics, orthoclase feldspar and calcite. 

Monocrystalline and polycrystalline quartz comprise up to 45 % of grains within this 
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b) Figure 3.3 a) to c) Field exposures of the cross­
stratified gravelly litharenite facies situated to the 
west of Calders along theN 141 (GR 15402619). 
Scale bar=2m. b) Trough-cross stratified beds (i) 
overlie a nodular, poorly fossiliferous carbonate 
unit thought to be a component of the Terminal 
Complex exposed in the Sant Arnanc area. Trough­
cross beds pass vertically in planar cross-stratified 
pebbly mudrocks (ii). Scale bar=50cm. c) Cross­
stratification is defined by alignment of pebbly 
lithic clasts (blue arrow). Scale bar=15cm. 



Calders facies and palaeoenvironmental analysis 

Figure 3.4a Photomicriograph (XPL) of the cross-stratified gravelly litharenite facies (sample LCA 81, 
GR 15402619). (i) lithic grain (siltstone), (ii) silty sandstone, (iii) chert. Coarse grains float within a 
muddv matrix. Scale bar=2 mm. 

Figure 3.4b Thalassanoides burrows (arrowed) within a muddy horizon of the cross-stratified gravelly 
litharenite facies. Sant Amanc area. Scale bar= 50 cm. 
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facies. Quartz grams are typically angular with a low sphericity. Lithic grams 

compose up to 45 %of grains (siltstone with minor quartz-mica schist). Lithic grains 

are typically very well rounded with moderate sphericity and micas have commonly 

broken-down into yellowish clay observed in thin section. Angular calcite grains up to 

0.25 mm comprise less than 1 % of grains within this facies. The matrix of the cross­

stratified gravelly litharenite facies comprises mixed carbonate siliciclastic mud to 

fine sand. Matrix comprises up to 50 % of this facies. 

Body fossils are absent in the cross-stratified gravelly litharenite facies. 

Peloids up to 2 mm are relatively rare (less than 1 % of grains). Fugichnia and 

Thalassanoides trace fossils are common in the upper, less pebbly parts of the cross­

stratified gravely litharenite facies (Figure 3.4b ). 

Interpretation: depositional environment 

A high energy, marine depositional environment above fair weather wave base 

is inferred for the cross-stratified gravelly litharenite facies due to the presence of 

vertical burrows and trough cross-stratification. A proximal depositional environment 

is inferred from the compositional immaturity of this facies. High sedimentation rates 

are inferred from the presence of fugichnial escape burrows. Substrate instability due 

to high sedimentation rates is interpreted to have inhibited colonisation by calcareous 

benthic organisms. However, waning energy is inferred from the gradual change from 

trough to planar cross stratification and the gradual fining upward within this facies. 

In summary, deposition within a high-energy, fluvial-marine environment with 

high sedimentation rates is interpreted for the cross-stratified gravely litharenite 

facies. Hendry et al. ( 1999) have interpreted this facies as fluvio-deltaic. This facies is 

part of the Complejos de Calders Formation (Tabemer 1983, Hendry et al. 1999). 

3.2.3 Miliolid micritic arenite 

(Terminal Complex, Milany Depositional Sequence) 

Lithologies: Miliolid micritic arenite 

Occurrence and bed characteristics 

The miliolid micritic arenite facies is encountered in a single locality close to 

the intersection of theN 141 and B 124 roads within Calders village (GR16322692-

Figure 3.1). This facies occurs stratigraphically below the peloidal wacke/grainstone 
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facies (Figure 3.5a, Section 3.2.4). The lateral extent of this facies cannot be 

determined due to the lack of laterally continuous exposure. Measured bed thickness 

is consistently around I m. Upper and lower bed contacts are sharp and planar and 

sedimentary structures are absent (Figure 3.5a). Skolithos burrows up to 5 cm are 

common in the field. 

Litho/ogica/ Description 

The exposed surface of this facies weathers to a buff/light brown colour 

(Figure 3.5a). Bedding parallel, reddened horizons are visible in outcrop 

(Figure 3.5a). These horizons are up to 35 cm in thickness. Fresh surfaces are a pale 

blue-grey colour. Siliciclastic grains are monocrystalline unstrained and strained 

quartz (35 %), with minor lithic grains (10 %) and orthoclase feldspar (10 %). Rare 

calcite grains are also observed (< I%). Siliciclastic grains are angular, moderately 

well sorted with low sphericity. Maximum siliciclastic grainsize is 2 mm (Figure 

3.5b). 

This facies is characterised by a moderate abundance of miliolid foraminifera 

(<5 %). Miliolids are very low diversity and may be large (up to 1 mm). Miliolids are 

preserved intact although they are abraded and tests may be reddened (Figure 3.5b ). 

Other rare bioclasts associated with the rniliolid micritic litharenite facies are small, 

undifferentiated benthic foraminifera (<I %) and heavily rnicritized and abraded silt 

grade laminar coralline algae fragments ( < 1% ). Internal structure is poorly preserved. 

Up to 50 % of this facies consists of dark brown rnicrite with localised 

microspar patches (Figure 3.5b ). Intra granular microspar cements are observed 

within rniliolid tests and iron-rich clay-grade material can be seen to accumulate along 

mm-scale dissolution seams. 

Interpretation: depositional environment 

The miliolid micritic arenite facies contains fauna characteristic of a marine 

environment, although protected conditions, possibly with enhanced salinities, is 

inferred from the very low faunal diversity and presence of rniliolids 

(Chaproniere 1975, Ghose 1977, Hallock and Glenn 1986, Murray 1991, Geel2000). 

Proximity to a siliciclastic source is inferred from the abundance of 

siliciclastic material within the miliolid micritic arenite facies. The medium sand 
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Figure 3.5a Outcrop exposure of the miliolid micritic arenite and peloidal wacke/grainstone facies. Note 
the slightly reddened horizons, interpreted as possible oxidation surfaces, within the miliolid micritic 
arenite facies (arrowed). Photograph taken from GR 16322692, facing north. Scale bar=2 m. 
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patches are interpreted to be a product ofbioturbation. Scale bar=2mm.. 

40 



Calders facies and palaeoenvironmental analysis 

grade component would have been transported as bedload material. Limited abrasion 

due to transport or reworking prior to deposition and lithification is inferred from the 

angular nature of the siliciclastic grains. Low-energy conditions may be deduced by 

the significant amount of fine-grained carbonate matrix. The micrite is interpreted, at 

least in part, to be detritus from bioerosion and abrasion of bioclasts. 

The bedding-parallel reddened horizons are interpreted to represent temporary 

subaerial exposure of sediments and oxidation of the muddy matrix. These horizons 

may be incipient palaeosol horizons, although no distinctive pedogenic structures are 

observed in thin section and no erosive contacts are observed in outcrop. In 

developing soil horizons, the patchy transformation of iron mobilized in pore waters 

to iron oxides in areas with a variable redox potential of groundwater results in 

mottled textures and red colouration (as well as green, brown and ochre). Red 

pigmentation may also occur however in relatively humid conditions where the water 

table is low resulting in oxidising conditions (Besly and Turner 1983). Red 

pigmentation as a consequence of groundwater evaporation/transpiration is highly 

unlikely as the climate in this region during the late Middle Eocene was subtropical to 

temperate (Plaziat 1981, Cavagnetto and Anadon 1996). 

In summary, the miliolid micritic litharenite facies represents deposition in a 

low- to moderate-energy paralic environment undergoing period exposure and 

oxidation, in proximity to a siliciclastic source. This facies is comparable to the 

porcellaneous foraminifera micrite arenite facies observed in the Sant Arnanc area 

(Section 3.6), although a direct correlation is not possible due to the lack of 

continuous exposure. This facies is a candidate for a further exposure of the Terminal 

Complex (see Section 2.5.3.1). 

3.2.4 Pelletal wacke/grainstone 

Lithologies: Pelletal wacke/grainstone 

Occurrence and bed characteristics 

The pelletal wacke/grainstone facies is encountered in a single locality close to 

the intersection of theN 141 and B 124 roads within Calders village (GR16322692-

Figure 3.1). This facies occurs stratigraphically above the miliolid micritic arenite 

and the main carbonate-siliciclastic succession described in Section 3.3. The pelletal 

wacke/grainstone facies is well bedded with a measured bed thickness of 1 m (Figure 
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3.5a). Observed bed contacts are sharp and planar. Lateral extent of this facies cannot 

be determined due to lack of exposure. 

Lithological description 

Exposed surfaces of the pelletal wacke/grainstone facies weather to a buff to 

grey colour and have a crystalline sugary texture (Figure 3.6a). Fresh surfaces are a 

homogenous blue-grey colour. Pellets are 0.05 to 0.2 mm in diameter and comprise up 

to 75 % of this facies. Pellets demonstrate ovoid ellipsoidal morphologies with 

micritic to microcrystalline internal fabrics (Figures 3.6b and c). Green-brown 

coloured micritic matrix is patchily distributed, constituting up to 20 % of this facies 

(Figure 3.6b ). Intergranular microspar cement is also present (Figure 3.6). Iron-rich 

clays occur concentration long dissolution seams (Figure 3.6a). Fossils are very rare 

in this facies. Small benthic foraminifera up to 0.1 mm comprise less than 1 % of this 

facies (Figure 3.6b ). 

Interpretation: depositional environment 

'Difficult' environmental conditions, with probable enhanced salinity, are 

inferred from the low faunal diversity of the pelletal wacke/grainstone facies. Modem 

pellets (and peloids) are a common constituent of Recent shallow subtidal to intertidal 

environments (Fliigel 1972) where they are the product of gastropods or crustaceans. 

Wilson (1975), Scoffin (1987) and Tucker and Wright (1992) suggest peloids/pellets 

typify environments with moderate or restricted circulation, although agitated 

conditions are inferred from the patchy preservation of micrite. Currents were not 

strong enough however to remove small foraminifera tests. 

In summary, the pelletal wacke/grainstone facies was deposited in a restricted 

shallow water setting under low to moderate energy conditions. Due to its association 

with the miliolid micritic arenite, it is inferred that this facies is also a component of 

the Terminal Complex, although no similar lithologies are encountered in the Sant 

Amanc area (see Section 3.6), or described from Terminal Exposure outcrops 

described from the eastern Vie Basin (Trave 1992, Trave et al. 1996). 
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a) 

Figure 3.6 Photomicrographs (PPL) of the pelletal wacke/grainstone facies (sample LCA 76, GR 16323692). 
a) Iron-rich, clay-grade material (arrowed) concentrated along dissolution seams. Scale bar=5 mm. b) 
Variable texture, with rnicrite (M) patchily distributed between pellets (P). lntergranular areas have been 
cemented with calcite spar (S). Small, hyaline benthic forarninifera (F) are present but very rare. Scale bar 
=2mm. c) Detailed view of pellets (P). The pellets are structurelss in PPL, and are interpreted to be faecal in 
origin. Scale bar= 1 mm. 
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3.2.5 Red mudstone 

(Artes Formation, Solsona Depositional Sequence) 

Lithologies: Red siltstone 

Muddy quartz arenite 

Occurrence and bed characteristics 

The red mudstone facies is encountered in isolated outcrops along theN 141 

road (GR 16052680) and isolated outcrops in the Sant Amanc area (GR 18062680). 

This facies is stratigraphically the youngest present in the study area, and occurs 

above the main Calders succession (described in Section 3.3) and above the Terminal 

Complex sediments at Sant Amanc (see Section 3.6). It is stressed that the red 

mudstone facies does not directly overlie the sediments of the main Calders 

succession. It is inferred from occurrences in the Sant Amanc area and to the far west 

of the study area, that this facies extends laterally for at least 3 km. This facies is 

characterised by parallel-laminated red mudrocks with thin (< 10 cm) quartz arenite 

interbeds (Figure 3.7a). 

Lithological description 

The fresh and weathered surfaces of this facies are a pale red to pink colour 

(Figure 3.7a). Grains are angular, well sorted with low to moderate sphericity 

(Figure 3.7b). Mean grainsize is around 0.1 mm. Siliciclastic grains are 

predominantly detrital quartz (40 %) with relatively rare lithics (<5 %), mica (<1 %) 

and calcite (<1 %). Lithic grains are siltstones. Muscovite mica occurs as rare platy 

grains up to 3 mm, and is often altered to chlorite. Matrix comprises up to 50 % of the 

red mudstone facies. Matrix consists of iron-rich, clay to fine silt-grade material. 

Calcite spar intergranular cement is locally developed within samples of this facies. 

Cement comprises less than 5 % of this facies. The red mudstone facies is 

unfossiliferous, however, variability of the matrix and disturbance of fine laminae is 

evident in thin section (Figure 3. 7b ). 

Interpretation: depositional environment 

Limited abrasion of grains due to transport or reworking prior to deposition 

and lithification is interpreted from the angular nature of grains. A low energy 

environment of deposition is inferred by the significant percentage of muddy matrix. 
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Figure 3.7a Field exposure of the red mudstone facies (assigned to the Artes Formation). Laminated red 
mudrocks and siltstones occur interbedded with well-lithified quartz arenite. Photograph taken from GR 
18062680 (within the Sant Amanc area), facing north. Scale bar=lOcm. 

Figure 3.7b Photomicrograph (PPL) of the red mudstone facies (sample LCA 74, GR 16052680). The 
textural variability of this facies is attributed to pedogenic activity. Scale bar=5mm. 
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A continental environment of deposition is interpreted by the abundance of iron-rich 

matrix, the presence of potential pedogenic structures and the absence of marine 

fauna. Hendry et al. (1999) have previously interpreted the red mudstone facies as 

alluvial sediments. The red mudstone facies is assigned to the Artes Formation. 

3.3 Calders facies 

The Calders succession is exposed as a series of roughly east-west trending 

valley systems located along the B 124 road to the south of Calders village 

(Figure 3.1). Individual lithological units may be traced and sampled (where access 

permits) for several kilometres (Figure 3.8). 

Three facies groups are defined according to the dominant composition i.e. 

predominantly carbonate, siliciclastic or mixed carbonate-siliciclastic composition. 

The facies scheme for all identified facies in the Calders area is presented on Table 

3.2. The facies scheme is necessarily complicated due to the diversity of components 

identified in the succession. Limestones are classified according to the schemes 

devised by Dunham ( 1962), Embry and Klovan ( 1971) and lnsalaco ( 1998) 

(Appendix 1). Six carbonate intervals, intercalated with siliciclastics, are identified in 

the Calders sedimentary succession (Figure 3.9). 

3.3.1 Carbonate-dominated facies group 

Facies included in this grouping are predominantly carbonate in composition, 

although they may contain a moderate to low siliciclastic component (0 to 34 %). 

Facies included in this grouping contain a diverse biota dominated by corals, coralline 

algae and benthic foraminifera. Subordinate biota include echinoids, molluscs, 

sponges and serpulids. A diversity of carbonate textures identified within this facies 

group include mixstone, rudstone, floatstone, grainstone and packstone (Table 3.2). 
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Figure 3.8 Photomontage (a) and interpretation (b) of the studied sedimentary succession at Calders. Although the area has undergone post-depositional faulting, 

beds are undeformed, and individual units may be traced laterally over 3 km. Photograph taken from GR 16252674, facing approximately NE. 



Facies group and Dominant textures Bed Bedding Bed Lateral . Components Clastic Sedimentary Energy Environmental 
facies thickness characteristics contacts continuity wt.% structures level interpretation 

Carbonate-dominated facies (Section 3.3.1) 

Mixstone Nodular Gradational 
Corals, coralline 

Coral mixstone Pillarstone 
Up to weathering., lower. Sharp Unknown 

algae, encrusting 17 to 
None Moderate 

In situ coral growth. 
3.5 m forarninifera, 27.5 Biostrome. 

Platestone clay partings upper 
molluscs. 

Corals, coral line 

Nodular Gradational 
algae, encrusting 

Coral domestone Domestone I to 1.5m weathering, upper, sharp Up to 10 m 
forarninifera, 11 to 

None Moderate 
In situ coral growth. 

miliolids, 12.5 Biostrome. 
clay partings lower 

serpulids, 
texturaliids 

Rudstone 
Sharp, non- Corals, coralline Bedding 

Coral bioclastic 
Packstone 

Up to Nodular erosional 
Up to I km 

alage, encrusting 7.5 to (inferred from Moderate Fore-reef debris 
pack/rudstone 2.65 m Crystal! ine upper and forarninifera 20.5 alignment of to low 

Floatstone lower molluscs nodules) 

Constratal coral 
Wacke/floatstone 

Nodular 
Sharp, non-

Corals, coral! ine 
Bedding growth in a low-

Coral wacke/ Floatstone erosional 12 to (inferred from energy, muddy 
floatstone Floatlpillarstone 

Upto3rn weathering, 
upper and 

Up to 2 km algae, gastropods, 
34 alignment of 

Low 
setting with 

Floatlplatestone 
mar! interbeds 

lower 
bryozoa nodules) significant non-

carbonate input 

Coral gal Nodular 
Sharp, non- Corals, coral! ine 

Bedding Proximal fore-reef 

forarninifera Rudstone 
1.2 to 

weathering, 
erosional Upto500 m algae, encrusting 

5 to (inferred from Moderate debris with in situ 

rudstone 
2.4 m clay partings upper and forarninfiera 

21.5 alignment of to high suprastratal coral 
lower nodules) growth 

Coral gal Nodular 
Diffuse, 

Corals, coralline 
Bedding 

Distal fore-reef 
Floatstone 0.5 to gradational Sto (inferred from Moderate 

forarninifera 
Floatlrudstone 1.5m 

weathering, 
upper and 

Up to 500 m algae, encrusting 
12.5 alignment of to low 

debris with patchy in 

floatlrudstone clay partings 
lower 

forarninfiera nodules) 
situ coral growth 



Facies group and 
Dominant textures 

Bed Bedding Bed Lateral 
Components 

Clastic Sedimentary Energy Environmental 

fades thickness characteristics contacts continuity wt.% strodures level interpretation 

Carbonate-dominated facies (Section 3.3.1) 

Sharp but 
Encrusting and 

Packstone articulated 
Foralgal pack/ Pack/grainstone Massive, 

non- coralline algae, 5.5 to High to 
Shallow water with 

Up to 2 m erosional >I km None open marine 
grainstone Grains tone locally nodular 

upper and 
diverse benthic 14.5 moderate 

circulation 
Grain/rudstone foraminifera, in 

lower 
situ coral colonies 

Sharp but Gypsina, Shallow water with 

Grainstone 1.4 to Massive, non- Rotorbinella. 7.5 to High to open marine 
Gypsina grainstone erosional >I km Calcarina, None 

Pack/grainstone 1.8 m locally nodular 
upper and Amphistegina. 

21.5 moderate circulation, vegetated 

lower coral I ine algae 
shoals 

Miliolid coral line 
Nodular Sharp lower, Miliolids, 

Bedding Shallow water with 

algae pack/ 
Packstone Up to I m weathering, gradational Upto500m Orbitolites. 

7to defined by Moderate partially restricted 

grainstone 
Pack/grainstone crystalline coralline algae 

26.5 alignment of marine circulation 
texture 

upper nodules 

Mixed carbonate-siliciclastic larger benthic foraminifera facies (Section 3.3.2) 

Upper and 

Nummulites 
Packs tone lower bed Nummulites, Moderate Reworked 

siliciclastic 
Grainstone I to 3.4 m Tabular beds. contacts >2km 

Gypsina. 14 to Planar cross- to high, 
Nwnmulites 

pack/grainstone 
Pack/grainstone Sandy texture with carbon- Discocyc/ina, 50 stratification quiet accumulation 
Pack/wackestone ates may be coralline algae periods 

dissolutional 

Nwnmulites 
Bedding, 

Discocyclina 

Discocyclina Packstone Up to Tabular beds. Gradational Discocyclina. 14 to chaotic accumulation 

siliciclastic Wacke/packstone 1.7m Sandy texture 
upper and >500m Nummulites. 38.5 

stacking of Low reworked by low-

packstone 
lower Operculina foraminifera energy currents 

tests 
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Facies group and 
Dominant textures 

Bed Bedding Bed Lateral 
Components 

Clastic Sedimentary Energy Environmental 

facies thickness characteristics contacts continuity wt.% structures level interpretation 

Mixed carbonate-siliciclastic larger benthic forarninifera facies (Section 3.3.2) 

Operculina, Low-energy open 
delicate bivalves, 

Operculina Mudstone Up to Weathers Sharp, non- 1 km undifferentiated 35 to 
None Very low marine within the 

mudstone Wackestone 1.6m recessively erosional fine-grained fossil 
37.5 lower portion of the 

debris 
photic zone 

Gradational 
Nummulites, Moderate energy, 

Nummulites coral line Packstone 0.85 to lower, sharp 
coral line algae, 

15 to Moderate 
open marine setting 

algae sil iciclastic Wacke/packstone Sandy texture > 1 km foralgal None with high clastic 
packstone Pack/ grainstone lm non-erosive rhodoliths, 

26.5 to high input and unstable 
upper siliciclastic grains substrates 

Coral gal Sharp, non- Corals, coral! ine Bedding 
Patchy coral 

forarninifera 
Massive to 

erosional algae, encrusting 22 to (defined by Moderate development within 

siliciclastic 
Float/rudstone l.Sm locally nodular 

upper and 
>500m 

forarninifera, 23.5 alignment of to low 
an open marine, 

floatlrudstone 
beds lower siliciclastic grains nodules) 

agitated setting with 
a siliciclastic input 

Bioclastic siliciclastic-dominated facies (Section 3.3.3) 

Sharp, non- Gypsina, Shallow marine, 

Gypsina calcarenite Sandstone 1 to2.5m 
Sandy texture, erosional 
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Figure 3.9 Main carbonate intervals referred to in the text (highlighted in pale blue) 
situated within the predominantly siliciclastic sedimentary succession at Calders. Logs 
CA-7, CA-4a and CA-7b illustrate the succession exposed along the Bl24 road (Figure 
3.1) 
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3.3.1.1 Coral mixstone 

Lithologies: Coral mixstone 

Coral platestone 

Occurrence and bed characteristics 

Ca/ders facies and pa/aeoenvironmental analysis 

Stratigraphically, the coral mixstone facies is identified in the upper portion of 

the studied succession at Calders (within carbonate intervals 5 and 6-Figure 3.9). This 

facies is exposed along the B 124 road between GR 16402692 and 16502675 

(log CA-4b, bed 13), and GR 16752642 (log CA-4a, bed 13) (Figure 3.1). The lateral 

extent of this facies cannot be determined through the absence of laterally continuous 

exposure. Measured bed thickness ranges from 3.25 to 3.5 m. Lower bedding contacts 

with the coral domestone facies (log CA-4b, beds 12 and 13) are gradational over a 

vertical distance of 50 cm. Upper contacts are not exposed in the study area. 

The coral mixstone facies has a nodular weathered texture. Each nodule 

typically corresponds to a coral colony with blue-green to brown mud surrounding 

each nodule. This facies has a brecciated appearance towards the top of the exposure 

due to post-depositional faulting. 

Lithological description 

Exposed surfaces of the coral mixstone facies weather to a light brown-grey 

colour (Figure 3.4). Fresh surfaces are a pale blue-grey colour and with a crystalline 

texture. This facies is characterised by an abundance of in situ coral colonies. The 

total coral skeletal volume of this facies ranges from 50 to 55 %. Coral morphologies 

observed are branching, head, platy, foliaceous and massive (Figure 3.10). Coral 

colony size is highly variable (from 3 cm to 0.75 m). Platy coral colonies may 

become increasingly abundant towards the top of this facies (log CA-4b, bed 13). 

Coral genera identified are Porites, Goniopora, Acropora, Siderastrea, Astreopora, 

Alveopora, Stylophora and Favites (cf. Vilaplana 1977). A packlrudstone matrix 

containing abundant angular coral debris is observed in between the in situ colonies. 

Beds of this facies contain up to 30 % packlrudstone matrix. Coral fragments up to 

5 cm are poorly sorted. 

Branching coral colonies are encrusted by coralline algae (Figures 3.11a and 

b) and may be extensively bored by Lithophaga (Figures 3.11 c and d). Borings are 

cylindrical in cross section and almond shape in longitudinal section. Lithophaga tests 
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may be preserved within coral colonies (Figure 3.11c). Elliptical rhodoliths up to 5 

cm in diameter are present in this facies (Figure 3.12). Bioclasts act as nuclei for 

growth of tight, concentric algal laminae. Thin branches, up to 1 cm in length and 2-3 

mm thick, often succeed this initial concentric layer (Figure 3.12). A final tight, 

concentric layer is the latest growth phase. Large encrusting foraminifera are present 

within coral debris. Foraminfera present are Haddonia (Figure 3.11b), victoriellids 

(Figure 3.11e), Fabiania and acervulinids. Fabiania and Haddonia tests are up to 4 

mm and are preserved intact. 

Dark-brown muddy matrix compnses up to 50 % of this facies, and is 

preserved locally in pockets between coral colonies. Seventeen to 27.5 wt. % of the 

matrix is composed of clay-grade non-carbonate material. Relatively rare fine sand­

grade siliciclastic grains (<2 %) are monocrystalline and polycrystalline quartz, 

orthoclase feldspar (1 %) and lithic grains (1 %). Lithic grains are siltstone and quartz 

mica schist. Feldspars commonly have a brown, altered appearance in thin section. 

Siliciclastic grains are angular, poorly sorted and have a low sphericity. 

Other fossils present in the matrix of the coral mixstone facies include small 

hyaline benthic (0.5 %) and texturaliid foraminifera (0.5 %), green calcareous algae 

(0.5 %-Figure 3.1ld) and molluscan debris (2 %). Rare specimens of Amphistegina 

are also observed. Well-preserved, robust Amphistegina tests are up to 1 mm in 

diameter. 

Diagenesis 

Originally aragonitic bioclasts, such as corals and green algae, have been 

leached with the resultant mouldic pores completely occluded with inclusion-free, 

drusy calcite spar cement (Figure 3.11b, d and e). Drusy calcite cements have also 

occluded macropores within Haddonia tests (Figure 3.11b). It was not possible to 

distinguish intergranular cements from the muddy matrix using standard petrological 

techniques employed in this study, although some degree of cementation and/or 

matrix recrystallisation is inferred from the nodular appearance of this facies in 

outcrop. Compaction of sediments is evident from dissolutional contacts between 

nodules where clays are concentrated. This is evident in thin section with iron-rich 

clays concentrated along dissolution seams between coral fragments (Figure 3.11d). 
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Figure 3.10a Small branching 
Acropora colony (arrowed) within 
the coral mixstone facies (log CA-
4b, bed 13). The colony is 
preserved intact, and is situated 
within a bioclastic wackestone 
matrix. Pencil=l4cm. 

Figure 3.10b Foliaceous Porites 
colony (arrowed) within the coral 
mixstone facies (log CA-4a, bed 
13). Pencil=l4cm. 

Figure 3.10c Large head coral 
colony (Sinuosiphyllia) identified 
at the transition between the coral 
domestone and coral mixstone 
facies (log CA-4b, bed 13). 
Pencil= 14cm. 



Figure 3.1la) Coralline algae crust on a 
branching coral (Cereiphyllia) (log CA-
4a, bed 13). Scale bar=5 cm. b) 
photomicrograph (PPL) of the coral 
mixstone facies. Corals (i) are composed 
of secondary drusy calcite spar. Corals 
are encrusted by Haddonia (ii) and 
coralline algae (iii). The clay-rich matrix e) 
(iv) is a brown-green colour in PPL. 
(sample LCA 64, log CA-4b bed 13). 
Scale bar=2mm. c) Lithophaga borings 
(arrowed) with bivalves preserved 
within. Scale bar=5cm. d) (PPL) Borings 
(i) within a coral (ii). The boring has 
been infilled with clay-rich, green-brown 
matrix (iv). Green algae (iii), composed 
of secondary calcite, are present in the 
matrix (sample LCA 65, log CA-4b, bed 
13). Scale bar=2mm. e) (PPL) 
Victoriellid (ii) encrusting a coral (i). 
Iron-rich clays occur concentrated along 
dissolution seams (arrowed) (sample 
LCA 65, log CA4b, bed 13) 

Calders facies and palaeoenvironmental analysis 
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Interpretation: Depositional environment 

The coral mixstone facies contains a marine faunal assemblage. Open marine 

conditions are inferred from the diversity of biota and the presence of in situ corals. 

Deposition within the photic zone is concluded from the abundance of in situ 

coral colonies. Although tightly packed, no discernable topography developed. Large 

encrusting foraminifera (Haddonia, Fabiania and victoriellids) colonized cryptic 

environments within coral rubble (cf. Romero 2001, Romero et al. 2002). 

Variable depositional energies are inferred from the changing growth forms of 

rhodoliths. The switch from tight, concentric algal laminae to delicate branching 

growth is consistent with a switch from relatively high to low energy conditions (cf. 

Bosence 1983). It is postulated that fine-grained siliciclastic input accompanied the 

higher-energy periods, and settled from suspension as water energy decreased. The 

development of thin, laterally extensive coralline algae crusts on corals is consistent 

with a lack of competition for space either due to enhanced nutrients or low incident 

light (Minnery et al. 1985, Minnery 1990). The high incidence of bioerosion in the 

coral mixstone facies may be an indicator for slightly enhanced nutrient levels 

(Hallock 1988), although the abundance of corals indicates oligotrophic conditions 

were the norm. 

A progressive decrease in incident light in the final carbonate interval, related 

to either increasing water depths or enhanced turbidity, is interpreted from the switch 

from a diversity of coral morphologies at the base of this facies to the abundance of 

platy coral morphologies at the top. The development of flat, platy morphologies is a 

response of a photosymbiont-bearing organism increasing the surface area dedicated 

to harvesting light for energy (Titlyanov and Latypov 1991 ). 

In summary, the coral mixstone facies is interpreted as a biostrome influenced 

by variable depositional energies and fine-grained siliciclastic input. Faunal 

assemblages dominated by corals, coralline algae and large encrusting foraminifera, 

comparable with the coral mixstone facies, are described from the Eocene of the 

lgualada Basin (Romero 2001, Romero et al. 2002). These assemblages have been 

interpreted as a barrier reef complex, and lack of significant topographic relief is 

attributable to lack of wave exposure (Romero et al. 2002). 
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3.3.1.2 Coral domestone 

Lithologies: Coral domestone 

Occurrence and bed characterisitics 

Calders facies and palaeoenvironmental analysis 

The coral domestone facies is exposed at the top of the Calders section only 

(carbonate interval 6-Figure 3.9) and can be traced laterally for 10 m. Measured 

thickness ranges from 1 to 1.5 m. The lower contact of this facies with the foralgal 

grainstone is sharp but non-erosional. The upper contact with the coral mixstone is 

gradational, with a gradual diversification in coral colony morphology over a distance 

of approximately 50 cm. 

This facies has a nodular weathered appearance in outcrop. Nodules are up to 

75 cm and often correspond to an individual coral colony. Green-grey coloured clays 

occur between nodules. 

Lithological description 

The exposed surface of this facies weathers to a grey-brown colour. Fresh 

surfaces are a blue-green colour. The coral domestone facies is characterised by an 

abundance of small do mal coral colonies (Figures 3.13a and b). Colonies are closely 

packed apparently fonning a framework. The total coral skeletal volume ranges from 

50 to 55%. Coral genera identified include Stylophora, Actinacis and undifferentiated 

faviids. Coral colony size ranges from 15 to 50 cm and there is a noticeable vertical 

increase in size. Lithophagid bivalve borings are evident on coral colonies (Figure 

3.13b). 

Beds of the coral domestone facies are composed of up to 30 % bioclastic 

pack/rudstone rich in coral fragments. The pack/rudstone matrix occurs in pockets 

between in situ coral colonies. The matrix contains abundant dark brown mixed 

carbon~te siliciclastic mud (11.5 to 53 %) (Figure 3.14a to c). Up to 25 wt.% of the 

mud is non-carbonate in composition. The matrix contains coral fragments (20 to 

50.5 %), molluscs (2.5%), coralline algae (2 to 11.5%), miliolids (0 to 5%), 

texturaliids (0 to 1.5%), bryozoa (<1%) and echinoids (0.5 to 3%). All fossils in the 

matrix are fragmented. Coral fragments are encrusted by coralline algae, larger 

foraminifera (victoriellids) and serpulids (Figures 3.14a to c). 

58 



Calders facies and palaeoenvironmental analysis 

Diagenesis 

Originally aragonitic coral skeletons have been leached, with the resultant 

mouldic pores completely occluded with coarse, inclusion-free, drusy calcite spar 

cement (Figure 3.14a). Fine-grained intragranular calcite cements have also occluded 

porosity within foraminifera tests (Figure 3.14a). Locally, the muddy matrix has been 

recrystallised into inclusion-rich microspar (Figure 3.14c). The concentrations of 

green-grey clays around nodules are interpreted as macro-dissolution seams. 

Interpretation: depositional environment 

The coral domestone facies contains a marme faunal assemblage. Normal 

marine conditions within the photic zone are inferred from the abundance of in situ 

corals and the general diversity of stenohaline biota. The corals form a low-density 

framework although there is no evidence of topographic relief. Victoriellid encrusting 

foraminifera inhabited cryptic environments within coral debris (Romero 2001, 

Romero et al. 2002). 

Shallow water depths with high incident light are concluded from the 

dominance of domal coral morphologies (Reiss and Hottinger 1984). Low-energy 

conditions are inferred from the abundance of fine grained matrix and the presence of 

texturaliid foraminifera that have a tendency to undergo post-mortem disaggregation 

in high-energy conditions (Goureau and Goureau 1973). Fine-grained, non-carbonate 

material was deposited from suspension. Enhanced nutrient levels, possibly related to 

this non-carbonate input, are inferred from the high incidence of bioerosion in this 

facies (Hallock 1988). 

In summary, the coral domestone facies is interpreted as a low-energy, 

shallow marine coral biostrome with a moderate fine-grained non-carbonate input. 
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Thin branches 

5cm 
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Tight laminar 
core 

Figure 3.12 Sketch of a typical 
elliptical rhodolith found within 
the coral mixstone facies. The 
nucleus is often a coral fragment. 
The initial growth is tight 
concentric laminar, followed by 
delicate branches. A switch back 
to tight, concentric laminar 
growth represents the fmal growth 
stage. These variations in growth 
texture are interpreted to represent 
relative changes in water energy 
and possibly non-carbonate 
sediment input. 

Figure 3.13a An in situ faviid coral 
colony demonstrating dornal growth 
morphology, characteristic of the 
coral domestone facies. Log CA-4b, 
bed 12. Scale bar= Scm. 

Figure 3.13b Lithophagid borings 
(arrowed) within an in situ domal 
coral colony. Clays (stained yellow 
in this photograph) surround 
nodules in this facies . Log CA-4b, 

~~~~~~~~>lllll"t bed 12. Scale bar = Scm 
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Figure 3.14a. Photomicro­
graph (PPL) of the coral 
dome- stone facies. Corals 
(Stylophora-i) are com­
posed of secondary drusy 
calcite, and may be 
encrusted by coralline 
algae (ii). Miliolids (iii) are 
present in the matrix. 
Porosity within miliolid 
chambers has been 
occluded by drusy calcite 
cement (sample LCA 60, 
log CA-4b, bed 13). Scale 
bar=2rnm. 

Figure 3.14b. Photomicro­
graph (PPL) of the coral 
dome- stone facies. Corals 
are encrusted by coralline 
algae (i) and victoriellid 
foraminifera (ii). Worm 
tubes (iii) and texturaliid 
foraminifera (iv) are 
present in the matrix 
(sample LCA 61, log CA-
4b, bed 13). Scale bar= 
2mm 

Figure 3.14c. Detailed 
view (PPL) of the coral 
dome-stone facies 
illustrating a large 
victoriellid foram (i) and a 
Lithoporella crust (ii) on a 
coral fragment (Actinacis). 
The matrix is locally 
composed of neomorphic 
calcite spar (iii) (sample 
LCA 63, log CA-4b, bed 
13). Scale bar= 0.5rnm 



3.3.1.3 Coral bioclastic packlrudstone 

Lithologies: Coral bioclastic rudstone 

Calders facies and palaeoenvironmental analysis 

Coral bioclastic pack/rudstone 

Coral bioclastic wacke/packstone 

Occurrence and bed characteristics 

The coral bioclastic pack/rudstone facies is encountered in all of the carbonate 

intervals illustrated on Figure 3.9. Measured bed thickness is up to 2.65 m, and beds 

may be traced laterally (along strike) for several hundred metres. This facies has a 

nodular weathered appearance. Nodules are up to 10 cm in diameter and are aligned. 

Alignment of nodules is inferred to be remnant bedding, with beds dipping up 5° 

consistently towards the northwest. Upper and lower bedding contacts are sharp and 

non-erosional. 

Lithological description 

The exposed surface of the coral bioclastic pack/rudstone facies weathers to a 

buff to grey colour. Fresh surfaces are a pale blue-grey colour. This facies is 

characterised by sparsely distributed colonial corals situated within a bioclastic 

pack/rudstone. The estimated coral skeletal volume of this facies is 25 to 30 % and 

corals are not forming a framework. Coral colonies up to 35 cm occur in situ, 

overturned (Figure 3.15a) and fragmented, and are often encrusted by coralline algae, 

larger foraminifera (i.e. Gypsina, Haddonia and victoriellids) and bryozoa. 

The bioclastic pack/rudstone matrix is dominated by coral fragments (2.5 to 

34.5 %) that range from 2 mm to 15 cm in length (Figures 3.15b and c). Coral 

fragments often form the nuclei for rhodoliths. Rhodoliths are up to 7.5 cm in 

diameter, and show the same growth characteristics identified in the coral mixstone 

and coral domestone facies (Figure 3.12) with an initial concentric laminar crust 

succeeded by delicate branches. Elliptical rhodoliths up to 6 cm in diameter with thick 

columnar branches are also present in this facies. 

The coral bioclastic pack/rudstone facies contains a very diverse forarninifera 

assemblage includingAmphistegina (0 to 3 %), Gypsina (0 to 7.5 %), miliolids (0.5 to 

2 %), texturaliids (0 to 1.5 %) and large encrusting forarninifera including 

victoriellids, Haddonia, Fabiania and Chapmanina (0 to 4.5 %). Small, robust forms 

of Amphistegina up to 1.2 mm in diameter have relatively thick test walls 
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Figure 3.15a Large, 
overturned branching coral 
colony within the coral 
bioclastic pack/rudstone 
facies (log CA-4a, bed 2) 
Scale bar=SOcm 

Figure 3.15b. Photomicro­
graph (PPL) of the coral 
bioclastic pack/rudstone 
facies. This facies contains 
abundant coral fragments (i), 
with small, robust 
Amphistegina tests (ii), small 
Nummulites (iii), echinoids 
(iv) and worm tubes (v) 
(sample LCA 99c, log CA-
10, bed 1). Scale bar=2mm 

Figure 3.15c Photomicro­
graph (PPL) of the coral 
bioclastic pack/rudstone 
facies. Small, abraded coral 
fragments (i) are composed of 
secondary drusy calcite spar. 
Larger encrusting 
foraminifera present include 
Gypsina (ii) and victoriellids 
(iii). Abraded coralline algae 
(iv) and bryozoa (v) are also 
abundant (sample LCA 38, 
log CA-4a, bed 2). Scale bar= 
2mm 



a) 

b) 

c) 
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Figure 3.16 a) 
(arrowed) within 
pack/rudstone facies 
Scale bar=5cm 

Small solitary coral 
the coral bioclastic 
(log CA-4a, bed 2). 

b) Detailed photomicrograph (PPL) of a 
foraminifera crust on a coral fragment 
composed of Haddonia (i) and a victoriellid 
(ii). Note the drusy calcite spar cement 
within foraminifera chambers (arrowed) 
(sample LCA 19, log CA-4a, bed 2). Scale 
bar=l mm 

c) Photomicrograph (PPL) of large coral 
fragments and bryozoa (i) floating in a dark, 
muddy matrix. Small micro!Tactures 
(arrowed) are cemented with drusy calcite 
(sample LCA 205, log CA-7 bed 5). Scale 
bar=2mm 
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(Figure 3.15b). Amphistegina tests occur intact and as angular fragments in the 

matrix. Gypsina tests, with rounded and laminar morphologies, up to 2 mm in 

diameter, occur intact and as angular to highly abraded fragments (Figure 3.14c). 

Victoriellid foraminifera are preserved intact, with tests up to 2.5 mm in diameter 

(Figures 3.15c and 3.16b). Solitary corals (Figure 3.16a) are also present in this 

facies but are considered an insignificant component of this facies. 

Other bioclasts represented in this facies include detached, laminar crusts of 

coralline algae (0 to 12.5 %), echinoids (1 to 5 %), molluscs (0 to 4.5 %), sponge 

spicules (<0.5 %) and fenestrate bryozoa (Figure 3.16c). In general, bioclasts are sub­

angular and poorly sorted. Peloids, interpreted as highly abraded coralline algae 

fragments, are particularly common in some samples of this facies (up to 19 %). 

A combination of rnicrite and non-carbonate mud comprises 25.5 to 65 %of 

the coral bioclastic pack/rudstone facies. The total non-carbonate content ranges from 

7.5 to 20.5 wt. %. Minor silt-grade quartz grains (<1 %) are angular and very well 

sorted. 

Diagenesis 

Post-depositiona1 cementation of this facies is inferred from the nodular 

appearance in outcrop, although intergranular cements cannot be differentiated from 

the muddy matrix. Green-grey clays locally preserved between nodules are interpreted 

as macro-dissolution seams where non-carbonate material has become concentrated 

through compaction and dissolution. Originally aragonitic organisms have been 

leached with the resultant mouldic pores completely occluded with clear drusy calcite 

spar cement (Figures 3.15c and d). Drusy calcite cements are also observed within 

foraminifera tests (Figure 3.16b). 

Interpretation: depositional environment 

The coral bioclastic pack/rudstone facies contains a marine fauna} assemblage. 

Normal marine conditions are inferred from the abundance of stenohaline biota 

(Murray 1991 ). Deposition within the photic zone is inferred from the presence of 

symbiont-bearing forarninifera (Amphistegina) and in situ coral colonies (Hallock and 

Glenn 1985 and Leutenegger 1984). Coral colonies have a low coral skeletal volume 

in this facies and do not form a framework. 
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Low depositional energies are inferred from the abundance of fine-grained 

matrix and clay to silt-grade siliciclastic material that was deposited from suspension. 

However, agitation of this environment is indicated from the presence of rhodoliths 

(Bosence 1983), with energies high enough to fragment and disperse skeletal 

organisms. The robust, lenticular morphology of Amphistegina is also indicative of 

high-energy/agitated conditions within the shallow to intermediate parts of its depth 

range (Hallock and Glenn 1985 and Leutenegger 1984). It is concluded that a 

significant proportion of bioclasts are derived from a relatively high-energy reef 

setting, probably in relative shallow water, and were transported into this fore-reef 

setting during storm events and/or through the effects of gravity. Amphistegina, 

moderately abundant in this facies, is commonly recorded in Recent fore-reef settings 

(Hallock and Glenn 1986, Li and Jones 1997, Li et al. 1997). Large, encrusting 

foraminifera (Haddonia, Chapmanina, Fabiania) lived within cryptic environments 

within the coral debris (Franques-Faixa 1996, Romero 2001, Romero et al. 2002). 

In summary, the coral bioclastic packlrudstone facies is interpreted as debris 

derived from a nearby coral reef environment, deposited in a fore-reef setting. This 

facies has similarities with SMF 6 of Wilson 1975, however the coral bioclastic 

packlrudstone facies contains a significant percentage of fine-grained matrix and 

therefore may be the lower energy/distal equivalent. 

3.3.1.4 Coral wacke/floatstone 

Lithologies: Coral floatstone 

Coral wacke/floatstone 

Coral float/platestone 

Coral float/pillarstone 

Occurrence and bed characteristics 

The coral wacke/floatstone facies is common, and is encountered in all of the 

carbonate intervals illustrated on figure 3.9. This facies characteristically succeeds a 

mixed carbonate-siliciclastic facies (described in Section 3.3.2). 

This facies is characterised by poorly exposed units with a nodular weathered 

appearance (Figure 3.17a). Measured bed thickness is up to 3 m (although the 

contacts of this facies are poorly exposed), and beds may be traced laterally for up to 

l km. Visible upper and lower bedding contacts are sharp but non-erosional. Nodules 
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are 5 to 15 in length and are often aligned (Figure 3.17a). Nodules are set within 

blue-grey marl matrix that weathers to a pale grey/white colour. 

Lithological description 

The exposed surface of the coral wacke/floatstone facies has a finely 

crystalline texture and weathers to a white to pale grey colour. Fresh surfaces are a 

pale green-grey to blue-grey colour. 

This facies is characterised by the occurrence of sparse in situ delicate coral 

colonies up to 15 cm in diameter (Figure 3.17b and c). Coral skeletal volume is up to 

I 0 %, and colonies do not make up a framework. Branching coral morphologies 

predominate, although platy forms are identified in carbonate interval 2 (Figure 3.9). 

In the western limit of the study area, the first carbonate interval is dominated by 

laminar and branching forms of Cyathoseris (log CA-8, bed 2). Coral fragments, 

comprising up to 20 % of the matrix, are up to 1 0 cm in length but more typically are 

around 2 mm. In situ corals and coral fragments may demonstrate thin (<1 mm), 

laterally extensive, laminar coralline algae crusts (Figure 3.17c). Crusts may also 

comprise foraminifera (Gypsina), and bryozoa. Laminar fragments of coralline algae 

are present in the matrix (0 to 2.5 %). Coralline algae fragments show good 

preservation of internal structure. 

Other bioclasts represented in this facies are Amphistegina (< 0.5 %), miliolids 

(0 to 3.5 %), small benthic foraminifera (< 0.5 %), echinoids (0 to 2.5 %), bryozoa 

(0 to 3.5 %) and undifferentiated bioclast debris (Figure 3.17d). Bioclasts may be 

concentrated in millimetre-scale vertical and sub-horizontal burrows. Most fossils are 

well preserved, although miliolids have an abraded appearance. 

Fine-grained, green-brown matrix comprises up to 80 % of the coral 

wacke/tloatstone facies (Figures 3.11c and d). The matrix is composed of micrite 

(48.5 to 62 %) and non-carbonate material (12 to 34 wt.%). Non-carbonate material 

is largely clay grade, although rare(< 2 %) silt-grade quartz grains are evident. 
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Figure 3.17a. Outcrop of the coral 
wacke/floatstone facies (log CA-7. bed 
7). This facies demonstrates a nodular 
weathered appearance. Nodules are 
often aligned (arrowed), with the 
alignment a relict of bedding. Nodules 
are surrounded by blue-grey mar!. It is 
postulated that the original depositional 
texture of this facies was coralline 
limestones interbedded with siliciclasitc 
rich marls. Scale bar=50cm 

Figure 3.17b In situ delicate branching 
coral (log CA-7, bed 7 as shown in the 
above photograph). Pencil= 14 cm 

Figure 3.17c Photomicrograph (PPL) of 
the coral wacke/floatstone facies, 
illustrating a coral colony with a thin 
coralline algae crust (arrowed). Note the 
dark brown, homogenous matrix (sample 
LCA 37, log CA-4a, bed 1). Scale 
bar=5mm 

Figure 3.17d Photomicrograph (PPL) of 
the coral wacke/floatstone facies. This 
facies contains a modest diversity of biota, 
inctuding fenestrate bryozoa (i), Cerithium 
gastropods (ii) and miliolids (iii) situated 
within a dark brown day-rich micrite 
matrix (iv) (sample LCA 50, log CA-4 bed 
11). Scale bar=2 mm 
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Diagenesis 

Local recrystallisation of micrite into microspar is evident in most samples of 

this facies. All originally aragonitic biota have been leached with the resultant 

mouldic macropores completely cemented with inclusion-free, coarse drusy calcite 

cement (Figures 3.17b and c). Echinoid spines often show poorly developed syntaxial 

overgrowths. The nodular weathering is attributed to cementation of this facies, 

although it is has not possible to differentiate intergranular cements from the matrix. 

Interpretation: depositional environment 

Alignment of nodules is interpreted to be a remnant of depositional bedding. It 

is postulated from the preservation of bedding that the original depositional texture of 

this facies was coralline limestones interbedded with non-fossiliferous, siliciclastic 

rich marls. Deposition under normal marine conditions within the photic zone is 

interpreted from the presence of in situ coral colonies (Hallock and Glenn 1985, 

1986). Coral colonies are sparsely distributed and small in comparison to the coral 

mixstone and coral domestone facies. 

Low-energy conditions are inferred from the presence of delicate coral 

colonies. This is consistent with the fine-grained matrix. It is concluded from the high 

non-carbonate component of samples that this environment experienced a significant 

siliciclastic input. The gastropod Cerithium is described from a number of brackish 

settings in the Eocene of the Nummulitique (Pairis and Pairis 1975, Sayer 1995). It is 

postulated that inputs of freshwater may have accompanied siliciclastic input, limiting 

the growth potential of corals and other stenohaline biota. The thin, laterally extensive 

laminar growth form of coralline algae is consistent with low-energy settings where 

competition for space is limited (Minnery et al. 1985, Minnery 1990). 

Clay to silt-grade siliciclastic grains would have been deposited from 

suspension. Branching corals are relatively common in settings where sedimentation 

rates are high, as steep upright faces are less susceptible to sediment settling (Grasso 

and Pedley 1988). Steep surfaces will experience a lower degree of incident radiation, 

thus would not be advantageous in turbid settings. It is suggested that turbidity was 

within tolerable levels as sediment would have settled quickly from suspension in a 

low energy setting, and clays may flocculate thus settle from suspension at higher 

water energies. Relatively high turbidity is suspected for beds where platy 

Cyathoseris corals developed rather than branching corals (i.e. log CA-7, bed 16). 
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It is postulated that the delicate, branching coral colonies grew constratally i.e. 

within the sediment with only a small proportion of the colony above the substratum. 

A constratal growth fabric is one in which the vertical organic growth occurred at a 

similar rate to sediment accumulation (lnsalaco 1998). Constratal growth is supported 

by the relative absence of a cryptic community that was well developed in the coral 

mixstone and coral domestone facies (Sections 3.3.1.1 and 3.3.1.2). 

In summary, the coral wacke/floatstone facies represents patchy coral 

colonisation within a low-energy marine setting with a significant siliciclastic input. 

Conditions within this environment favoured a limited biota in comparison to other 

carbonate-dominated facies in the Calders study area. Similar facies are encountered 

within coeval carbonate sediments on the northern margin of the Vie Basin (Alvarez 

1991, Franques-Faixa 1996). Platy Cyathoseris corals developed directly on the slope 

of delta lobe deposits, where incident light was low and horizontal growth was 

favoured over vertical growth due to shallow water depths (Alvarez 1995). 

3.3.1.5 Coralgal foraminifera rudstone 

Lithologies: Coralgal foraminifera rudstone 

Coralgal foraminfera rhodolithic rudstone 

Occurrence and bed characteristics 

This facies is encountered within carbonate intervals I to 6 (Figure 3.9) and 

often occurs associated with the coralgal foraminifera float/rudstone and foralgal 

grainstone facies. The coralgal foraminifera rudstone facies have a nodular weathered 

appearance. Nodules are up to 15 cm in diameter and often include a colonial coral 

colony. Beds dip consistently to the northwest. Nodules are surrounded by blue-grey 

non-carbonate mud. Measured bed thickness ranges from 1.2 to 2.4 m. Upper and 

lower bed contacts are sharp but non-erosional. This facies can be traced laterally up 

to 500 m. 

Lithological description 

Exposed surfaces of this facies have a crystalline texture with a buff to light 

grey colouration. Fresh surfaces are a light blue-grey colour with localised pink 

patches. The coralgal foraminifera rudstone facies is characterised by in situ, toppled 

and fragmented colonial corals with a rich encrusting community, situated within a 

bioclastic rudstone matrix. The total coral skeletal volume of this facies ranges from 
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20 to 40 %, and colonies do not form a framework. Coral colonies are up to 50 cm 

and demonstrate branching, dome and foliaceous growth morphologies. Coral genera 

identified include Acropora, Porites, Actinacis and Favites, although more genera are 

likely to be present. Coralline algae, foraminifera and serpulids encrust in situ coral 

colonies (Figure 3.18a). 

Foralgal rhodoliths, comprising up to 8.5 % of this facies, have tight, 

concentric laminar growth forms, often with thick columnar branches up to 0.5 cm in 

length. Rhodoliths are up to 6 cm in diameter and nucleated on coral fragments 

(Figure 3.19a). Foraminifera present within rhodoliths are Gypsina, Fabiania and 

Haddonia. Laminar Gypsina nodules up to 1 cm in diameter are also present in this 

facies (Figure 3.18b). 

The rudstone matrix contains abundant angular coral fragments ( 4 to 25 %) up 

to 10 cm in length (Figure 3.19b). Laminar coralline algae fragments (1.5 to 25 %), 

detached from rhodoliths and corals, are up to 4 mm in length. The coralgal 

foraminifera rudstone facies contains a diverse benthic foraminifera assemblage that 

includes Amphistegina (0 to 7.5 %), Gypsina (0 to 4 %), Nummulites (0 to 2%), 

Calcarina (0 to 3 %), miliolids (0 to 5%) and discorbids (0 to 4.5 %). Large 

encrusting forms (Fabiania, Haddonia, Chapmanina and victoriellids) comprise up 

15 % of this facies. Foraminfera are preserved intact and largely unabraded. 

Amphistegina and Nummulites tests demonstrate robust, lenticular morphologies with 

thick test walls. Test diameter ranges from 1 to 5 mm. 

Other biota present are bryozoa (0 to 4 %), echinoids (0 to 4.5 %), gastropods 

(0.5 to 3.5 %) and undifferentiated fine-grained bioclastic debris (Figures 3.19b and 

c). Most fossils are fragmented and poorly sorted. 

Thirty two to 65 % of this facies is composed of dark brown micrite. The total 

non-carbonate component ranges from 5 to 21.5 wt. %. Non-carbonate grains are clay 

to very fine silt grade, and cannot be differentiated from the micrite (Figures 3.19a 

and b). 
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Figure 3.18a Photomicrograph (PPL) of the coralgal foraminfera rudstone facies. Coral fragments (i) are 
encrusted by laminar coralline algae (ii) and acervulinid foraminfera (iii) (sample LCA 53, log CA-4 bed 
7). Scale bar=2 mm. 

Figure 3.18b Photomicrograph (PPL) of the coralgal forarninfera rudstone facies. Larninar Gypsina nodule 
(i) that nucleated around matrix or sea grass, which later decayed. Texturaliid forarninfiera (ii) are also 
present in this facies (sample LCA 54, log CA-4 bed 5). Scale bar=2 mm. 
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Figure 3.19a Photomicro­
graph (PPL) of the coralgal 
foraminfera rudstone facies. 
Thick coralline algae (i) and 
Haddonia (ii) crusts 
developed around coral 
fragments (iii) (Sample LCA 
53, log CA-4b). Scale 
bar=2mm. 

Figure 3.19b Photomicro­
graph (PPL) of the coralgal 
foraminfera rudstone facies. 
Replacement calcite spar 
may be inclusion rich (i) or 
relatively clear (ii). Other 
foraminfera present include 
Calcarina (iii) and 
discorbids (iv) (sample LCA 
99e, log CA-ll bed 1 ). 
Scale bar=2mm. 

Figure 3.l9c Photomicro­
graph (PPL) of the coralgal 
foraminfera rudstone facies. 
Coral fragment (i) 
demonstrating multiple thick 
coralline algae and Gypsina 
crusts. Fragmented and 
abraded echinoid plates (ii) 
are present in the matrix. The 
matrix of this facies is 
composed predominantly of 
micrite that shows local 
recrystallisation to microspar 
(sample LCA 51, log CA-4b). 
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Diagenesis 

The micrite matrix has undergone patchy recrystallisation (Figure 3.19c). 

Intragranular microspar (recrystallised matrix) is observed within foraminifera tests, 

and echinoid spines demonstrate syntaxial calcite overgrowth cements. The original 

skeletons of corals and molluscan fragments have been leached with the resultant 

biomoulds occluded with equant and drusy calcite spar cement (Figure 3.19b and c). 

Centimetre-scale dissolution vugs partially in-filled with coarse blocky calcite are 

observed in the field. Blue-grey clay partings observed in outcrop are interpreted as 

macro-dissolution seams that developed late in the diagenetic history as a 

consequence of compaction. 

Interpretation: depositional environment 

The coralgal foraminifera rudstone facies contains a marine faunal 

assemblage. Normal marine conditions are interpreted from the diversity of 

stenohaline biota and the abundance and diversity of in situ coral colonies 

(Ghose 1977, Hallock and Glenn 1985, Hohenegger et al. 1999, Geel2000). 

Deposition within the photic zone is inferred from the presence of symbiont­

bearing larger foraminifera such as Amphistegina, Calcarina and Nummulites 

(Leutenegger 1984, Hallock and Glenn 1985, 1986). The robust lenticular 

morphology of Amphistegina and Nummulites is indicative of the shallow to 

intermediate part of their depth range in moderate to high-energy, agitated conditions 

(Hottinger 1983, Hallock and Glenn 1985). Agitation is confirmed by the presence of 

tight, laminar foralgal rhodoliths (Bosence 1983). Gypsina, Amphistegina and 

Calcarina adapt to an epiphytic lifestyle, encrusting sea grass and macroalgae 

(Hohenegger et al. 1999). 

There is no evidence to suggest the coralgal foraminifera rudstone facies 

possessed any topographic relief. It is inferred that the growth type tended towards 

suprastratal (in the sense of Insalaco 1998), with coral colonies extending vertically 

beyond the rudstone substrate. This is supported by the diverse, flourishing cryptic 

community (e.g. Haddonia, Chapmanina, victoriellids etc ). It is postulated that the 

vertical development (and topographic relief) may have limited by the lack of 

accommodation space i.e. the water was too shallow. 

A moderate siliciclastic input is indicated from the significant percentage of 

non-carbonate material in the matrix of this facies. Low-energy periods are inferred 
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from the fine grams1ze of siliciclastics that would have been deposited from 

suspension. Alternatively, in situ corals that stand proud of the substrate may 

influence and modify the hydrodynamic conditions trapping sediment in their 

immediate vicinity (lnsalaco 1998). Suprastratal growth fabrics have a high potential 

for trapping sediments from suspension (Insalaco 1998). 

In summary, the coralgal foraminifera rudstone facies is interpreted as coral 

debris with patchy in situ coral development within a moderate to high-energy fore­

or back-reef setting. This facies is comparable to the Coralgal Packstone Bindstone 

and Algal Binds tone facies of Say er ( 1995), which are interpreted as patch reefs and 

algal shoals that developed within an agitated inner-ramp setting. Repeated 

overgrowth of corals by coralline algae as a consequence of changes in incident light 

(through variations in water depth and turbidity) is described from the Early Eocene 

Sabassona Reef situated on the northern margin of the Vie Basin (Taberner and 

Bosence 1985). 

3.3.1.6 Coralgal foraminifera float/rudstone 

Occurrence and bed characteristics 

The coralgal foraminifera float/rudstone facies is encountered within 

carbonate intervals l to 6 (Figure 3.9). This facies is often interbedded with the 

coralgal foraminifera rudstone and coral mixstone facies. 

This facies demonstrates a nodular weathered appearance with blue-grey clay 

partings that extend laterally less than 1 m. Nodules up to 10 cm in length may be 

aligned and often include a coral colony. Measured bed thickness ranges from 0.5 to 

1.5 metres. This facies can be traced laterally for several hundred metres. 

Lithological description 

Exposed surfaces of the coralgal foraminifera float/rudstone facies have a 

crystalline texture and weather to buff to light grey colour. Fresh surfaces are a light 

blue-grey colour with localised pink patches. This facies is characterised by sparsely 

distributed in situ and overturned colonial corals situated within a bioclastic 

float/rudstone matrix. The total in situ coral skeletal volume is less than 20 %. In situ 

and toppled corals are mainly branching forms with rare domal and foliaceous 

colonies. Coral genera identified are Porites, Actinacis, Cereiphyllia, Acropora and 

Stylophora. 
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The float/rudstone matrix contains a diverse biota including coral fragments 

(0.5 to 48.5 %) that are encrusted by coralline algae and foraminifera such as 

Fabiania (Figures 3.20a and b). Coral fragments are up to 5 cm and may act as nuclei 

for rhodoliths (Figure 3.20c) that comprise up to 10 % of this facies. Coralline algae 

crusts are less than 1 mm thick. Fragments oflaminar coralline algae up to 0.5 cm are 

quite common in the matrix, comprising 3 to 21 % of this facies. In addition, coralline 

algae peloids up to 0.5 mm comprise up to 2% ofbioclasts within this facies (Figures 

3.21a and b). 

This facies contains a diverse foraminifera assemblage (Figures 3.21a and b) 

including miliolids (0 to 2.5 %), Gypsina (0 to 5 %), Amphistegina (< 0.5 %) and 

Nummulites (0 to 2.5 %). Large encrusting foraminifera such as Haddonia, Fabiania 

and victoriellids comprise 1.5 to 9 % of this facies. Gypsina occurs as laminar forms 

up to 2 mm in length. Miliolid tests are highly abraded and may be slightly reddened 

(Figure 3.2lb). Amphistegina and Nummulites tests are less than 2 mm in diameter, 

and demonstrate robust, lenticular morphologies with thick test walls. 

Minor components of the coralgal foraminifera float/rudstone facies are 

echinoids (0 to 2.5 %), Cerithium gastropods (0 to 6.5 %), bivalves (< 0.5 %), sponge 

spicules (<0.5 %) and fenestrate bryozoa (0 to 5.5 %). Most fossils are fragmented, 

although Cerithium gastropods up to 20 cm in length are preserved intact (Figure 

21c). In summary, most fossils in the coralgal foraminifera float/rudstone facies are 

fragmented and poorly sorted. 

Micrite comprises up to 50 % of this facies. Micrite is dark brown to grey 

colour in thin section. The total non-carbonate content of this facies ranges from 8 to 

12.5 wt. %. Non-carbonate grains are clay-grade and cannot be differentiated from 

micrite. 

Diagenesis 

Patchy recrystallisation of the micrite is evident, with samples of this facies 

containing 1 to 9.5 %replacement microspar. Intragranular calcite microspar cement 

is observed within foraminifera tests, and echinoid spines have well-developed 

syntaxial calcite overgrowth cements. Originally aragonitic organisms have been 

leached with the mouldic pores later occluded with inclusion-free drusy and equant 

calcite cement (Figures 3.20a and b). 
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Figure 3.20a Photomicro­
graph (PPL) of the coralgal 
foraminifera float/rudstone 
facies. Corals such as 
Actinacis (i) are encrusted by 
larger foraminfera such as 
Fabiania (ii) (sample LCA 
18, log CA-3 bed 3). Scale 
bar=2mm. 

Figure 3.20b Photomicro­
graph (PPL) of the coralgal 
foraminifera float/rudstone 
facies. Fragment of 
Stylophora (i) encrusted by 
Fabiania (ii) and coralline 
algae (iii) (sample LCA 27, 
log CA-3 bed 4). Scale 
bar=2 mm. 

Figure 3.20c (PPL) 
lrregular, nodular rhodolith 
(arrowed) within the coralgal 
foraminifera float/rudstone 
(sample LCA 27, log CA-3 
bed 4). Scale bar=2 mm. 
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Figure 3.21a Photomicro­
graph (PPL) of the coralgal 
foraminfera float/rudstone 
facies. The matrix contains 
a diverse faunal 
assemblage including 
laminar Gypsina (i), 
Haddonia (ii), abraded 
coralline algae (iii) and 
coral fragments (iv) 
(sample LCA 45, log CA-
4). Scale bar=2 mm. 

Figure 3.2lb Photomicro­
graph (PPL) of the coralgal 
foraminfera rudstone facies. 
Fossils in the matrix are 
typically fragmented and 
include fenestrate bryozoa 
(i), peloidal coralline algae 
(ii) and miliolids (iii) 
(sample LCA 43a, log CA-
4). Scale bar=2 mm. 

Figure 3.21c Large 
Cerithium gastropod 
(arrowed) within the 
coralgal foraminifera 
tloat/rudstone facies (log 
CA-4a, bed 14). Pen=l5cm 
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Interpretation: depositional environment 

The coralgal foraminifera float/rudstone facies contains a manne faunal 

assemblage. Normal marine conditions are inferred from the diversity of stenohaline 

biota. Deposition within the photic zone is inferred from the occurrence of in situ 

coral colonies and well-preserved symbiont-bearing larger benthic foraminifera (i.e. 

Amphistegina and Nummulites) (Ghose 1977, Hallock and Glenn 1985, Hohenegger et 

al. 1999, Geel 2000). 

There is no evidence to suggest the coralgal foraminifera float/rudstone facies 

possessed any topographic relief. Suprastratal coral growth, with rare colonies 

extending vertically beyond the float/rudstone substrate, is inferred from the diverse, 

flourishing cryptic community (e.g. Haddonia, Fabiania). Suprastratal growth fabrics 

have a high potential for trapping sediments from suspension (Insalaco 1998). Corals 

that stand proud of the substrate may influence and modify the hydrodynamic 

conditions trapping suspended sediment in their immediate vicinity (Insalaco 1998). 

Due to the patchy nature of coral colonisation in this facies, it is postulated that an 

overall low-energy hydrodynamic regime aided the deposition of fine-grained 

sediments from suspension. 

In addition to the factors described above, slight variations m the 

hydrodynamic regime have also influenced the texture of this facies. The small, robust 

morphology of Amphistegina is characteristic of the shallower parts of its depth range 

in agitated waters (Leutenegger 1984, Hallock and Glenn 1985). An abundance of 

Gypsina and miliolids may also be characteristic of shallow, high-energy, agitated 

environments (Chaproniere 1975, Reid and Macintyre 1988, Hallock 1998, Murray 

1991, Geel 2000). It is suggested that these relatively high-energy fauna have been 

transported into this environment during periods of high-energy. This is consistent 

with the fragmented nature of most fossils in this facies, although the limited abrasion 

demonstrates bioclasts have not been transported large distances. 

In summary, the coralgal foraminifera float/rudstone facies is interpreted as 

deposits of patchy coral development within a low-energy environment experiencing 

a moderate siliciclastic sediment input. From its common association, it is postulated 

that this facies represents the distal or partially protected equivalent of the coralgal 

foraminifera rudstone facies (Section 3.3.1.5). 
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3.3.1.7 Foralgal pack/grainstone 

Lithologies: Foralgal packstone 

Foralgal pack/grainstone 

Foralgal pack/grainstone 

Foralgal rhodolith grainstone 

Occurrence and bed characteristics 

Calders facies and palaeoenvironmental analysis 

The foralgal pack/grainstone facies is a very common facies and is 

encountered in carbonate intervals 2 to 6 (Figure 3.9). This facies is characterised by 

massive beds that locally demonstrate nodular weathering. Measured bed thickness is 

up to 2 m. Beds can be traced laterally (along strike) for over I km. Upper and lower 

bedding contacts are sharp but non-erosional. This facies is often intercalated with the 

Gypsina grainstone, Gypsina arenite and the miliolid coralline algae pack/grainstone 

facies. 

Lithological description 

The exposed surface of the foralgal grainstone facies has a crystalline texture 

and weathers to a pale brown-grey colour. Fresh surfaces are a blue-grey colour with 

localised pink-grey patches. 

The foralgal pack/grainstone facies is characterised by sparsely distributed in 

situ branching and domal coral colonies situated within a bioclastic pack/grainstone. 

The total in situ coral skeletal volume ranges from 20 to 25 %. Coral colony size 

ranges from 3 to 15 cm. Coral genera identified are Porites, Acropora, Cereiphyllia 

and Favites. Coralline alage, foraminifera and bryozoa encrust corals (Figure 3.22). 

Coral fragments up to 7 cm in length comprise 1 to 15 % of this facies. 

Foraminifera and fragmented coralline algae dominate the foralgal 

pack/grainstone facies. Coralline algae occur as fragmented and abraded laminar 

forms up to 2 mm in length (6.5 to 21.5 %), sand-grade peloids (up to 20 %) and 

articulated forms (Corallina) (Figure 3.23a). Foralgal rhodoliths up to 7.5 cm in 

diameter are common in this facies (Figure 3.23b ). Rhodoliths are subspherical to 

elliptical with tight, concentric laminar crusts. Branching rhodoliths are rare. Where 

present, branches are columnar and <5 mm long. 

The foralgal pack/grainstone facies contains a diverse foraminifera assemblage 

that includes miliolids (0.5 to 3 %), texturaliids (0.5 to 3.5 %), Gypsina (1 to 10 %), 
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Calcarina (0 to 2 %), Rotorbinella (0 to 9.5 %), Amphistegina (0 to 2.5 %), 

Nummulites (0 to 1 %) and Discocyclina (Figures 3.23c and 3.24b and c). Large 

encrusting foraminifera (Fabiania, Haddonia, Chapmanina and victoriellids) 

comprise up to 9.5% of this facies. Miliolids (up to 0.75 mm in diameter) are 

preserved intact but have an abraded appearance. Gypsina tests, up to 3.0 mm in 

length, may show poorly developed micrite envelopes (Figure 3.23c). Amphistegina 

and Nummulites are small (typically less than 5 mm) with robust lenticular test 

morphologies. Discocyclina tests are up to 1 cm in diameter, and demonstrate 

flattened discoidal test morphologies (Figure 3.24b ). Spinose Cat carina tests, up to 2 

mm in diameter, are preserved intact within samples containing a higher percentage of 

micrite (Figure 3.24a). 

Subordinate bioclasts represented in this facies are bryozoa (0.5 to I %), 

echinoids (0 to 6.5 %), molluscs (0.5 to 1 %) and serpulids (0 to 1 %). Dark brown, 

mixed carbonate-siliciclastic mud comprises 1.5 to 18% of this facies. The total non­

carbonate content of this facies ranges from 5.5 to 14.5 wt. %. Siliciclastic grains are 

clay to medium sand grade (Figure 3.22a). 

Diagenesis 

Intergranular areas have been cemented with equant calcite spar 

(Figure 3.23b ). Intergranular calcite spar cement comprises up to 59 % of this facies. 

Micrite has locally recrystallised into microspar. Originally aragonitic fossils have 

been leached with the resultant mouldic macropores completely occluded with clear, 

drusy calcite cement. Pores within foraminifera chambers have also been occluded 

with calcite (Figure 3.23b ). Syntaxial calcite overgrowth cements have developed on 

echinoid spines. 

Interpretation: depositional environment 

The foralgal pack/grainstone facies contains a manne faunal assemblage. 

Normal, open marine conditions are inferred from the diversity of stenohaline biota. 

Deposition within the photic zone is inferred from the presence of in situ 

corals and symbiont-bearing larger foraminifera such as Ca/carina, Amphistegina and 

Nummulites (Leutenegger 1984, Hallock and Glenn 1985, 1986, Hohenegger et al. 

1999). Is inferred from the diverse cryptic community preserved in this facies that 

corals were growing suprastratally (in the sense of Insalaco 1998). Large encrusting 
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foraminifera (such as Haddonia, Chapmanina and Fabiania) inhabited cryptic 

environments within coral debris (Franques-Faixa 1996, Romero 2001, Romero et al. 

2002). The presence of sea floor vegetation (sea grass) is inferred from the abundance 

of epiphytic foraminifera (Gypsina and Calcarina) and articulated coralline algae 

(Chaproniere 1975, Ghose 1977, Carbone et al. 1994, Trave 1996, Hohenegger et al. 

1999). 

The robust lenticular morphology of Amphistegina and Nummulites is 

indicative of the shallow to intermediate part of their depth range in moderate to high­

energy conditions (Hottinger 1983, Hohenegger 1984, Hallock and Glenn 1986). An 

abundance of Amphistegina and Gypsina is an indicator of current-swept conditions 

(Hallock and Glenn 1985, 1986, Li and Jones 1997, Li et al. 1997, Hohenegger et al. 

1999). This is consistent with the abundance of abraded miliolids and the highly 

abraded nature of most bioclasts in this facies (Chaproniere 1975, Ghose 1977, Geel 

2000). It is postulated that samples containing a more significant proportion of micrite 

(i.e. LCA 231, log CA-15) were deposited within a relatively lower-energy setting. 

This is consistent with the well-preserved spinose Calcarina tests (Figure 3.24a). 

In summary, it is concluded that the foralgal pack/grainstone facies formed 

within an agitated setting with open marine circulation in the shallow part of the 

photic zone. This facies has affinities with the Algae Debris Packstone facies of Sayer 

(1995), interpreted as a fore-bank wash-over shoal deposit. The foralgal 

pack/grainstone facies is also comparable with bioclastic pack/rudstone sediments 

described from the Eocene Qum Formation (Iran) that are interpreted as shallow water 

shoals, although more restricted conditions are indicated from the absence of corals 

(Okhravi and Amini 1998). 
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Figure 3.22 Photomicrograph (PPL) 
(a) and interpretation (b) illustrating 
the sequential encrustation of corals 
(in situ colonies and fragments) by 
bryozoa, coralline algae and 
Haddonia. This facies is characterised 
by an abundance of epiphytic and 
encrusting foraminifera such as 
Gypsina (i), Fabiania (ii) and 
Haddonia (iii). Abraded coral 
fragments (iv) are also present. Some 
samples of this facies contain angular 
siliciclastic grains (v) up to medium 
sand grade (sample LCA 95, log CA-9 
bed 2). Scale bar=2 mm. 
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Figure 3.23a Photomicrograph 
(PPL) of the foralgal 
pack/grainstone facies. This 
facies is characterized by an 
abundance of abraded coralline 
algae fragments (i) situated 
within a partially winnowed 
matrix (sample LCA 37, log 
CA-3 bed 17). Scale bar=5 mm. 

Figure 3.23b (PPL) Foralgal 
rhodolith composed of 
Haddonia (i) and laminar 
coralline algae (ii). Note the 
clear drusy calcite cement (iii) 
within Haddonia chambers 
(sample LCA 41, log CA-4a). 
Scale bar=5 mm. 

Figure 3.23c (PPL) Abundant 
Gypsina tests (i) associated with 
serpulids (ii). An epiphytal 
mode of life is inferred from the 
rounded, elongated morphology 
of Gypsina. Note the dark 
outlines of foraminifera tests, 
interpreted as incipient micrite 
envelope development (sample 
LCA 87a, log CA-4b). Scale 
bar=2 mm. 
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-ll":"'t~ •r'7?~~~iil~1 Figure 3.24a Photomicro­
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graph (PPL) of the foralgal 
pack/grainstone facies. The 
symbiont-bearing foram 
ea/carina is common in 
some samples of this facies 
(sample LCA 231, log CA-
15 bed 9). Scale bar=2 
mm. 

Figure 3.24b Photomicro­
graph (PPL) of the foralgal 
pack/grainstone facies. 
Larger benthic forams 
present include Disco­
cyc/ina (i) and victoriellids 
(ii). Gypsina is observed 
encrusting coral fragments 
(iii) (sample LCA 231, log 
CA-15 bed 9). Scale bar=2 
mm. 

Figure 3.24c Photomicro­
graph (PPL) of the fora! gal 
pack/grainstone facies. In 
addition to encrusting 
forms, articulated coralline 
algae (i) is common in this 
facies. Coral fragments are 
encrusted by coralline 
algae (ii). Texturaliid 
foraminifera (iii). Note the 
preservation of dark brown 
micrite (iv) (sample LCA 
231, log CA-15 bed 9). 
Scale bar=2 mm. 



3.3.1.8 Gypsina grainstone 

Lithologies: Gypsina grainstone 

Gypsina pack/grainstone 

Occurrence and bed characteristics 

Calders facies and palaeoenvironmental analysis 

This facies is encountered throughout the studied section but is particularly 

abundant in the upper half of the succession (carbonate intervals 4 to 6). Measured 

bed thickness ranges from 1.4 to 1.8 m. Bedding contacts are sharp but non-erosional, 

and beds can be traced laterally along strike for at least 1 km. Units are largely 

massive, with a locally developed nodular weathered appearance. 

Lithologica/ description 

Exposed surfaces of the Gypsina grainstone facies weather to a dark grey 

colour. Fresh surfaces are a pale grey colour. Up to 25 % of this facies is composed of 

intact and fragmented laminar Gypsina tests (Figure 3.25a). Tests are up to 5 mm in 

length and may have a poorly developed rnicrite envelope. Other forarninifera present 

in this facies are miliolids (2 to 2.5 %), texturaliids (0 to 5 %), Calcarina (0 to 6 %), 

Amphistegina (0 to 8 %), Rotorbinella (0 to 3.5 %) and Nummulites (< 0.5 %). 

Abraded miliolids and texturaliids are up to 1.5 mm in diameter. Calcarina is 

typically fragmented, although rare intact specimens up to 2 mm in diameter are 

present. Amphistegina and Nummulites tests have a robust lenticular morphology with 

thick walls. Tests are typically fragmented. 

Fabiania and Haddonia are typical constituents of spheroidal, concentric 

laminar foralgal rhodoliths, although detached tests are also observed (Figure 3.25b ). 

Rhodoliths are up to 2 cm in diameter and are often fragmented. Rhodolith nuclei are 

coral fragments. Coralline algae also occur as detached and fragmented larninar crusts 

(1 to 9 %) and articulated forms(< l %). Fragments show moderate abrasion. Other 

fossils present in this facies are corals (0 to 12.5 %), echinoids (1 to 5 %), molluscs(< 

1 %), bryozoa (0 to 1.5 %) and serpulids (< 1 %) (Figure 3.25b). Fossils are 

fragmented and poorly sorted, and show evidence of abrasion. 

The matrix of the Gypsina grains tone facies is texturally variable, comprising 

microspar with localised dark brown mixed carbonate-siliciclastic mud patches and 

skeletal hash. The non-carbonate proportion of this facies ranges from 7.5 to 



Calders facies and palaeoenvironmental analysis 

Figure 3.25a Photomicrograph (PPL) of the Gypsina grainstone facies. This facies is dominated by 
Gypsina (i) with subordinate Rotorbinella (ii). The contacts between foraminifera may be dissolutional 
(arrowed). Clays occur concentrated along dissolution seams (sample LCA 181, log CA-12 bed 19). Scale 
bar=2mm. 

Figure 3.25b Photomicrograph (PPL} of the Gypsina grainstone facies. Subordinate biota present in this 
facies include corals (i), Rotorbinella (ii), Fabiania (iii) and echinoids (iv). Corals are composed of a 
secondary drusy calcite cement. Also note the calcite cements within chambers of Rotorbinella. (sample 
LCA 98, log CA-9 bed 11). Scale bar=2 mm. 
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21.5 wt. %. Non-carbonate grains are clay to fine silt grade, and may be concentrated 

along dissolution seams (Figure 3.25a). 

Diagenesis 

Intragranular equant calcite cement is observed within foraminifera chambers 

(Figure 3.25b) and echinoid spines have well-developed syntaxial calcite overgrowth 

cements. Intergranular equant to locally drusy calcite comprises 23.5 to 30 % of this 

facies. Patchy recrystallisation of micrite into microspar is evident in some samples of 

this facies. Aragonitic fragments have been leached with the resultant porosity 

completely occluded with coarse, drusy calcite cement (Figure 3.25b}. Post­

depositional compaction of this sediment is evident from the dissolution seams, along 

which clays are concentrated (Figure 3.25a). 

Interpretation: depositional environment 

The Gypsina grainstone facies contains a marine faunal assemblage. Normal 

open marine conditions are interpreted from the abundance of stenohaline biota. 

Deposition within the photic zone is inferred from the presence of symbiont-bearing 

larger foraminifera such as Calcarina, Nummulites and Amphistegina (Leutenegger 

1984, Hallock and Glenn 1985, 1986, Murray 1991, Hohenegger et al. 1999). The 

robust lenticular morphology of Amphistegina and Nummulites is indicative of the 

shallow to intermediate part of their habitat range in higher energy conditions 

(Hottinger 1983, Hallock and Glenn 1985, 1986). This is consistent with the presence 

of tightly concentric foralgal rhodoliths (Minnery et al. 1985, Reid an<;l Maclntyre 

1988, Minnery 1990) and the fragmented abraded bioclasts in the matrix. Large 

encrusting foraminifera such as Fabiania and Haddonia are derived from the 

rhodoliths, but also inhabited cryptic environments within coarse fossil debris 

(Romero 2001, Romero et al. 2002). The presence of sea grass is inferred from the 

abundance of Gypsina with miliolids, Orbitolites and Calcarina (Chaproniere 1975, 

Kitazato 1988, Murray 1991, Hohenegger et al. 1999). Articulated coralline algae are 

also known to have to have an epiphytic mode oflife (Carbone et al. 1994). 

Although grainstone textures imply high-energy conditions, the significant 

clay component suggests low-energy periods where sediment was deposited from 

suspension. It is postulated that the baffling effect of sea grass and flocculation of 

clays, encouraged the deposition of suspended sediment. 
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In summary, it is concluded that the Gypsina grainstone facies formed within 

an open marine, agitated shallow-water setting in the upper part of the photic zone. 

Fine-grained siliciclastic material was deposited from suspension during relatively 

quiet periods, and was trapped by sea floor vegetation. 

3.3.1.9 Miliolid coralline algae packlgrainstone 

Lithologies: Miliolid coralline algae pack/grainstone 

Miliolid coralline algae packstone 

Occurrence and bed characteristics 

The miliolid coralline algae pack/grainstone facies is identified in carbonate 

intervals 5 and 6 only (Figure 3.9). This facies demonstrates a nodular weathered 

appearance. Nodules are up to 10 cm in length and may be aligned. Measured bed 

thickness is consistently around l m, and beds may be traced laterally up to 500 m. 

Lower bedding contacts are sharp but non-erosional. Upper contacts are gradational. 

Lithological description 

Exposed surfaces of the miliolid coralline algae pack/grainstone facies has a 

crystalline texture and weathers to a pale grey to buff colour. Fresh surfaces are a pale 

blue/grey colour with pink patches. The miliolid coralline algae facies is characterised 

by an abundance ofmiliolids (9.5 to 10.5 %), peloids (10 to 15 %) and coralline algae 

(up to 12.5 %) (Figure 3.26a and b). The miliolid assemblage characteristic of this 

facies is highly diverse. Miliolid tests up to 0.5 mm in diameter are reddened and 

abraded (Figure 3.26b ). Peloids, interpreted as abraded coralline algae fragments, are 

up to 0.25 mm in diameter. Laminar coralline algae fragments are up to 0.5 mm in 

length (Figure 3.26b ). 

Subordinate biota present in the miliolid coralline algae pack/grainstone facies 

are fragmented corals (5 %), Gypsina (0 to 4.5 %), Orbitolites (< 0.5 %), texturaliids 

(0 to 2 %), echinoids (0 to l %), bryozoa (0 to 1.5 %) and molluscs (0.5 to 2 %). 

Encrusting foraminifera (Chapmanina and victoriellids) comprise up to l % of this 

facies. Orbitolites and Gypsina tests are up to 0.75 mm in length. All bioclasts are 

abraded. Micrite comprises 2 to l 0 % of this facies, and is patchily distributed through 

samples. Clay-grade non-carbonate material comprises 7 to 25.5% of this facies. 
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Figure 3.26a Low-magnitude photomicrograph (PPL) of the miliolid coralline algae pack/grainstone. This 
facies is characterized by an abundance of abraded miliolids and coralline algae with rare Orbitolites 
(arrowed) (sample LCA 36, log CA-3 bed 16). Scale bar=2 mm. 

Figure 3.26b Photomicrograph (PPL) of the miliolid coralline algae pack/grainstone. Abraded miliolid 
tests (i) have slightly reddened tests. Coralline algae are always fragmented (ii) (sample LCA 36, log CA-3 
bed 16). Scale bar=2 mm. 
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Diagenesis 

Intergranular drusy calcite spar cement with localised equant spar cement 

comprises 35.5 to 50 % of this facies. Intragranular microspar cements are observed 

within foraminifera tests and echinoid spines demonstrate syntaxial cements. 

Originally aragonitic bioclasts have been leached with the resultant mouldic 

macropores completely occluded with clear, drusy calcite cement. Red-brown 

coloured clay-grade material occurs concentrated along mm-scale dissolution seams. 

Interpretation: depositional environment 

Alignment of nodules is interpreted as a remnant of bedding. The miliolid 

coralline algae pack/grainstone facies contains a marine fauna} assemblage. Restricted 

marine circulation is inferred from the relatively scarcity of stenohaline biota, 

although the presence of texturaliids and Gypsina indicates a marine connection 

(Chaproniere 1975, Ghose 1977, Hallock and Glenn 1986, Murray 1991, Geel2000). 

Deposition in a shallow marine setting with very high incident light is inferred from 

the abundance of miliolids and dearth of rotaliid foraminifera such as Amphistegina 

and Nummulites (Ghose 1977, Hallock and Glenn 1986, Geel 2000). 

Moderate to high-energy, agitated conditions are inferred from the 

pack/grainstone texture and the fragmented nature of bioclasts, although the presence 

of clays (that would have been deposited from suspension) suggests (intermittent) 

low-energy periods. In addition, current energies were not sufficient to remove small 

foraminifera tests. Proximity to a reef-type environment is inferred from the presence 

of reef-derived debris (corals, large encrusting foraminifera). This sediment would 

have been too fine grained to supported large encrusting foraminifera such as 

victoriellids and Chapmanina that would have inhabited cryptic environments within 

coarse skeletal debris (Romero 2001, Romero et al. 2002). 

In summary, the miliolid coralline algae pack/grainstone facies formed within 

a very shallow marine setting characterised by variable depositional energies, and 

received debris from nearby coral-rich areas. The comparable Skeletal Grainstone 

facies from the Nummulitique of the French Alps has been interpreted as a winnowed 

back shoal to lagoonal environment (Sayer 1995). Similar facies are also described 

from the Qum Formation, Iran, and are interpreted as inner-shelf shallow lagoon 

sediments (Okhravi and Amini 1998). However, true lagoon development in the 
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Calders area is thought unlikely due to the absence of topographic relief within the 

carbonate facies. 

3.3.2 Mixed carbonate-siliciclastic larger benthic foraminifera facies group 

Facies included in this grouping contain roughly equal amounts of carbonate 

and siliciclastic components, and have a sandy texture in outcrop. Siliciclastic 

material may constitute up to 50 % of facies within this group. Facies are 

characterised by the presence of larger benthic foraminifera, in particular Nummulites, 

Discocyc/ina, Operculina and Gypsina. Subordinate biota includes coralline algae, 

smaller benthic foraminifera, molluscs, echinoids and serpulids. The dominant 

textures observed are siliciclastic grainstone, packstone and wackestone (Table 3.2). 

3.3.2.1 Nummulites siliciclastic packlgrainstone 

Lithologies: Nummulites siliciclastic packstone 

Nummulites siliciclastic wacke/packstone 

Nummulites grainstone 

Occurrence and bed characteristics 

The Nummulites siliciclastic pack/grainstone facies is encountered in most 

logged sections in the Calders area, but is more prevalent in the lower half of the 

succession within carbonate intervals l to 4 (Figure 3.9). This facies occurs as 

massive, apparently tabular units that can be traced laterally for at least 2 km (across 

the extent of the studied area). Measured bed thickness ranges from l to 3.4 m. Lower 

bedding contacts with the lenticular polymict conglomerate facies are gradational over 

l 0 to 15 cm. The contact may be enhanced by dissolution, with dark-brown clays 

concentrated along dissolution seams (Figure 3.27a). The upper contact with other 

larger foraminifera siliciclastic facies is gradational. Upper contacts with carbonate­

dominated facies are sharp to gradational (over tens of centimetres), and may be 

delineated by dissolution seams along which clays are concentrated (Figure 3.29c). 

Crude cross-stratification is locally present (Figure 3.27b ). A north to north-west 

directional dip direction (with dips up to 20°) is measured from cross sets. 
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Figure 3.27a Outcrop of the 
contact between the lenticular 
polymict conglomerate and the 
overlying Nummulites 
siliciclastic pack/ grains tone 
facies that has been enhanced by 
dissolution. Dark brown clays are 
concentrated along the 
dissolution seam (arrowed). 
Solitary corals (i) are present but 
rare in this facies . Photograph of 
bed 14, log CA-7. Pencil=14 cm. 

Figure 3.27b Planar cross­
stratification of the Nummulites 
siliciclastic pack/grainstone facies 
(arrowed). Apparent progradation 
direction of fore sets is towards the 
north-northwest. Photograph of bed 
21, log CA-7, facing east. Scale= 15 
cm. 

Figure 3.27c Detailed view of 
Nummulites. Note the presence of 
large lenticular to discoidal (i) and 
smaller robust (ii) forms. Bedding­
normal fractures ( arrowed) have 
been cemented with calcite. 
Photograph of bed 21, log CA-7. 
Scale=S cm. 
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Litho/ogica/ description 

The exposed surface of the Nummulites siliciclastic pack/grainstone facies 

weathers to a reddish-brown/grey colour (Figures 3.27b and c). Fresh surfaces are a 

homogenous pale blue-grey colour. This facies is characterised by an abundance of 

Nummulites (17 .5 to 45 % of grains) (Figure 3.27c). Nummulites tests have a robust 

to lenticular morphology and are up to 3 cm in diameter (Figures 3.27c and 3.29a). 

The typical diameter is around 0.5 cm (Figure 3.28a). Larger Nummulites tests are 

more common towards the top of beds of this facies. Tests are locally imbricated and 

may be concentrated and aligned in large vertical burrows. Tests are well preserved, 

although fragments are present in the matrix. Fragments (up to coarse sand grade) are 

angular to slightly abraded (Figure 3.29a). 

The Nummulites siliciclastic pack/grainstone facies contains a diverse benthic 

foraminifera assemblage that includes Gypsina (0 to 10.5 %), Discocyclina (0 to 

6.5 %), Opercu/ina (<1 %), Amphistegina (< 1 %), Calcarina (0 to 5.5 %), milio1ids 

(0 to 5 %), texturaliids (0 to 2 %) and undifferentiated small benthics (< 1 %). 

Gypsina occurs as laminar forms (Figure 3.28b ). Discocyclina and Operculina tests 

have a flattened lenticular morphology, and are often fragmented. Angular fragments 

are up to 1 mm in length. Miliolids and Gypsina have an abraded appearance. Large 

encrusting forarninifera (Fabiania and Haddonia) are often constituents of foralgal 

rhodoliths. Spheroidal rhodoliths are rare ( < 1 % of grains), and are composed of tight, 

concentric alternating algal and foraminifera laminae. 

Other biota present in the Nummulites siliciclastic pack/grainstone facies 

includes coralline algae (0 to 10 %), echinoids (0 to 5.5 %), fenestrate bryozoa (0 to 

7.5 %) and molluscs (0 to 3.5 %). Large robust oyster valves are observed in situ 

within beds of this facies (Figure 3.29b ). Coralline algae occur as rounded warty­

branching fragments that have good preservation of internal structure. Coarse sand­

grade coralline algae peloids (0 to 7.5 %) are very well sorted. Spheroidal to elliptical 

structures composed of fabric destructive dolomite are interpreted as coprolites 

(Figure 3.28b ). 

Micrite (0.5 to 44.5 %) is locally absent (Figure 3.28a and b). Micrite is grey 

to dark brown in thin section (Figures 3.28c). Non-carbonate material comprises 14 

to 50 wt. % of this facies. Siliciclastic grains are clay to coarse sand-grade, and 

comprise mono-and polycrystalline quartz, orthoclase feldspar and lithics (siltstone 
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Figure 3.28a Photomicro­
graph (PPL) of the 
Nummulites siliciclastic 
pack/grain-stone facies. 
Nummulites tests (i) are 
typically 2-5 mm in 
diameter, and occur in 
association with laminar 
Gypsina (ii) and 
Rotorbinella (iii) (sample 
LCA 30, log CA-3 bed 7). 
Scale bar=2 mm 

Figure 3.28b Photomicro­
graph (PPL) of the 
Nummulites siliciclastic 
pack/grain-stone facies. 
Dolomitised coprolites (i) 
and rounded Gypsina tests 
(ii). This facies contains 
abundant fine to medium 
sand-grade material (iii) 
(sample LCA 30, log CA-
3 bed 7). Scale bar=2 mm 

Figure 3.28c (PPL) Dis­
solutional grain contacts 
(arrowed). Insoluble clays 
are concentrated along the 
dissolution seams (sample 
LCA 230, log CA-15) 
Scale bar=2 mm 
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Figure 3.29a Photomicrograph 
(PPL) of the Nummulites siliciclastic 
pack/grain-stone facies illustrating 
the variability of Nummulites test 
size. The matrix (grey-brown 
colour) contains abundant 
foraminifera debris (sample LCA 
22, log CA-2 bed 7). Scale bar=2 
mm 

Figure 3.29b Large, robust oyster 
within the Nummulites siliciclastic 
pack/grainstone facies (bed 14, log 
CA-7). Scale bar=5 cm 

Figure 3.29c Field exposure of the 
upper contact of the Nummulites 
siliciclastic pack/grainstone and 
coral wacke/floatstone facies (log 
CA-7, beds 13 and 14). The contact 
(arrowed) is enhanced by 
dissolution with dark siliciclastic 
grains concentrated along the 
dissolution seam (arrowed). The 
initial coral colonizers (i) have platy 
morphologies. Scale bar=l5 cm. 
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and quartz-mica schist). The mtcas have commonly been altered to rusty-brown 

coloured clay observed in thin section. Siliciclastic grains are angular, moderate to 

well sorted and have a low sphericity. 

Diagenesis 

Intragranular microspar cements are observed within foraminifera tests and 

echinoid spines demonstrate syntaxial calcite overgrowth cements. The contacts 

between larger foraminifera tests may be sutured along dissolution seams along which 

clays are concentrated (Figures 3.28c). Winnowed intergranular areas have been 

cemented with equant calcite spar, and patchy recrystallisation of the micrite matrix is 

evident. 

Interpretation: depositional environment 

The Nummulites siliciclastic pack/grainstone facies contains a marine fauna} 

assemblage. Normal open marine conditions are inferred from the diversity of 

stenohaline biota. Deposition within the photic zone is inferred from the abundance of 

symbiont bearing larger benthic foraminifera (Nummulites, Discocyclina, Operculina, 

Amphistegina and Calcarina) (Ghose 1977, Hallock and Glenn 1985, 1986; Murray 

1991, Gee12000). The flattened test morphology of Discocyclina and Operculina are 

characteristic of deeper parts of the photic zone, towards the lower parts of their 

habitat range (Hallock and Glenn 1985, 1986). The intermediate, robust test 

morphology of Nummulites is characteristic of moderately agitated conditions within 

intermediate depths of their habitat range (Hottinger 1983, Hallock and Glenn 1985). 

The robust morphology of large Nummulites (within the 1 to 3.5 cm range) is 

suggestive of shallow waters with stressed environmental conditions, delaying 

reproduction (Hallock 1988, Hallock and Glenn 1986, Purton and Brasier 1999). 

Environmental stress may relate to a combination of limited nutrients, suostrate 

instability and turbidity (Hallock 1988). 

Proximity to a siliciclastic source is concluded from the significant proportion 

of siliciclastic material in this facies. It is suggested that fine-grained siliciclastic 

material was deposited from suspension during relatively quiet periods. Agitated 

conditions are confirmed from the presence of concentric, laminar rhodoliths and 

warty coralline algae (Minnery et al. 1985, Minnery 1990). 
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It is postulated that substrate instability, as a consequence of siliciclastic input 

and a moderate to high-energy hydrodynamic regime, inhibited the development of a 

sessile calcareous benthic community. Nummulites, inferred to have undergone 

limited transport and reworking prior to deposition and lithification, is thought to have 

been able to extract itself if buried (see Chapter 6 for discussion). Miliolids, 

Amphistegina, Gypsina and Calcarina can adapt to an epiphytic mode of life (Ghose 

1977, Rei ss and Hottinger 1984, Kitazato 1988, Hohenegger et al. 1999). It is 

postulated that these foraminifera were able to inhabit an environment with unstable 

substrates through attaching themselves to sea floor vegetation. These foraminifera 

have undergone more abrasion than Nummulites, thus are not preserved in situ. 

In summary, the Nummulites siliciclastic pack/grainstone facies formed within 

a moderate to high-energy marine environment with a high siliciclastic input and an 

unstable substrate. This facies has similarities to the Nummulite Packstone facies of 

Sayer ( 1995), which is interpreted as part of an authochthonous Nummulite-ramp 

system. The Nummulites siliciclastic packstone grainstone facies contains a 

significantly higher proportion of coarse clastic material than the Nummulite 

Packstone facies. Similar nummulitic facies, interpreted as reworked nummulitic bank 

deposits, are described from the Seeb Limestone of Oman (Racey 1988, 2001 ). 

3.3.2.2 Nummulites Discocyclina siliciclastic packstone 

Lithologies: Nummulites Discocyclina siliciclastic packstone 

Nummulites Discocyclina siliciclastic grainstone 

Occurrence and bed characteristics 

The Nummulites Discocyclina siliciclastic packstone facies is differentiated 

from the siliciclastic Nummulites pack/grainstone facies by a relative abundance of 

orthophragminids. This facies is particularly common in the lower portions of the· 

Calders studied succession within carbonate intervals 1 to 3 (Figure 3.9). Measured 

bed thickness is consistently around 1.7 m and upper and lower bedding contacts are 

transitional. This facies can be traced laterally up to 500 m. The Nummulites 

Discocyclina siliciclastic packstone typically succeeds the siliciclastic Nummulites 

packstone grainstone facies. 
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Lithological Description 

The exposed surface of the Nummulites Discocyclina siliciclastic packstone 

facies weathers to a buff/light brown red colour. Fresh surfaces are a light blue-grey 

colour. This facies is characterised by an abundance of Nummulites (6 to 10 %) and 

Discocyclina (3.5 to 25 %). Nummulites are robust/lenticular forms up to 3 mm in 

diameter (Figures 3.30a and b). Nummulites are always fragmented. Fragments are 

abraded and poorly sorted. Discocyclina tests are up to 2 cm in diameter. Tests 

demonstrate thin, discoidal morphologies (Figure 3.30b ), and are typically preserved 

intact. Larger foraminifera tests demonstrate chaotic stacking (Figure 3.30b ). 

Subordinate bioclasts present in this facies are miliolids (0 to 2.5 %), 

texturaliids (< 0.5 %), Amphistegina (< 1 %), Operculina (0 to 2 %), Gypsina (0 to 

2 %), echinoids (0 to 2 %), molluscs (0 to 3.5 %), corals (0 to 2.5 %), bryozoa (0 to 

2.5 %) and small hyaline benthic foraminifera (< 0.5 %). Miliolids and Amphistegina 

tests are preserved intact but are abraded. Operculina is always fragmented. 

Fragments are < 1 mm in diameter (Figure 3.30b ). 

Micrite comprises up to 58 % of this facies (Figures 3.30a and b). The total 

non-carbonate content of this facies ranges from 14 to 38.5 wt. %. Siliciclastic grains 

are clay to silt grade. 

Diagenesis 

Intragranular mtcrospar cement IS observed within foraminifera tests. 

Originally aragonitic bioclasts have been leached with the resultant mouldic pores 

completely occluded with drusy calcite cement. Echinoid spines may have syntaxial 

calcite overgrowths. In some samples the originally rnicritic matrix has recrystallised 

into microspar (up to 64.5 %). 

Interpretation: depositional environment 

The Nummulites Discocyclina siliciclastic packstone facies contains a marine 

faunal assemblage. Normal marine conditions are inferred from the abundance of 

rotaliid forarninifera and the diversity of stenohaline biota. 

Deposition within the photic zone is inferred from the presence of symbiont­

bearing larger formanifera (Nummulites, Discocyclina and Amphistegina). Moderate 

to deeper-water depths and/or low incident light are inferred from the dominance of 
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Figure 3.30a Photomicrograph (PPL) of the Nummulites Discocyclina siliciclastic packs tone facies. 
Large, flattened Discocyclina (i) occurs with lenticular Nummulites (ii) and fragmented Operculina 
(iii). Siliciclastic grains are angular (iv) (sample LCA 235, log 15 bed 1). Scale bar=2 mm. 

Figure 3.30b (PPL) Chaotic stacking of Discocyclina (i), Nummulites (ii) and Operculina (iii) tests. 
Note the presence of dark-brown clays concentrated in the matrix (iv) (sample LCA 235, log 15 bed 
1). Scale har=2 mm. 
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flattened and intermediate forms of Discocyclina over relatively small robust forms of 

Amphistegina and Nummulites. In general, orthophragminid foraminifera such as 

Discocyclina inhabited lower levels of the photic zone within mid- to outer shelf 

environments (Aigner 1982, Ghose 1977, Hallock and Glenn 1986, Racey 1988, 

Bryan 2001 ). This is consistent with the paucity and abrasion of miliolids, which are 

more common in shallower water/inner shelf environments with high incident light 

(Ghose 1977, Hallock and Glenn 1985). It is suggested that miliolids and the more 

spherical forms of Nummulites and Amphistegina and coral fragments have been 

transported into this environment from a high-energy, shallow part of the photic zone. 

Low-energy conditions are confirmed from the significant percentage of clay 

to silt-grade siliciclastic material that would have been deposited from suspension. It 

is postulated that turbidity would have been high in this environment as a 

consequence of this fine-grained input. Low amplitude in situ reworking of 

foraminifera tests is interpreted from the localised stacking of tests (Figure 3.30b) 

Chaotic stacking of large discoidal Discocyclina tests has been interpreted as low­

amplitude storm reworking within Eocene deposits of the Nummulitique 

(Sayer 1995), Egypt (1983) and Oman (Racey 1988, 2001). 

In summary, the Nummulites Discocyclina siliciclastic packstone facies 

formed within an open marine, moderate to low-energy environmental setting within 

the intermediate to deeper parts of the photic zone but quite close to the shoreline. 

Similar facies are described from the Seeb limestone of Oman (Racey 1988, 200 l) 

and the Nummulitique of the French Alps (Sayer 1995). These facies are interpreted 

as low-relief foraminiferal banks deposited within a mid-shelf shelf below fair 

weather wave base. 

3.3.2.3 Operculina mudstone 

Lithologies: Operculina mudstone 

Operculina Nummulites wackestone 

Occurrence and bed characteristics 

This facies is difficult to identify and sample as it weathers recessively due its 

muddy texture. This facies is identified in the upper portions of the Calders section at 

the base of carbonate intervals 5 and 6 (Figure 3.9). This facies succeeds a 

siliciclastic facies. Measured bed thickness ranges from 0.1 to 1.6 m. Beds have a 
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muddy appearance in outcrop. Upper and lower bedding contacts are sharp and non­

erosive. 

Lithological description 

The exposed surface of the Nummulites Operculina siliciclastic wackestone 

facies weathers to a light-brown/buff colour. Fresh surfaces are a buff colour with 

dark grey patches. This facies is largely unfossiliferous but contains rare large 

discoidal Operculina (up to 5 %) and Nummulites (< 1 %). Operculina tests have a 

flattened lenticular morphology and are up to 7 mm in diameter (Figure 3.31a). 

Operculina tests typically occur intact, but minor fragments up to 1 mm in length are 

observed in the matrix. 

Other bioclasts present in this facies are miliolids (< 1 %), Gypsina (< 1 %), 

Iaminar coralline algae(< 0.5 %), echinoid spines (<1 %), corals(< I %), brachiopod 

spines (< 0.5 %), bryozoa (0.5 %) and bivalves (I %). Rare delicate bivalves are 

preserved articulated (Figure 3.31 b). Most fossils are fragmented and abraded. 

Dark brown mixed carbonate-siliciclastic mud comprises up to 85 to 90 % of 

this facies (Figures 3.31a and b). Rare ( < 5 %) angular silt grade siliciclastic grains 

are evident in thin section (Figure 3.3lb). Grains are monocrystalline quartz (3 %) 

and lithic grains (1 %) with relatively minor orthoclase feldspar (1 %). The total non­

carbonate content of this facies ranges from 37 to 37.5 wt.%. 

Diagenesis 

The matrix of the Nummulites Operculina siliciclastic wackestone facies 

includes localised patches of neomorphic microspar. Intragranular calcite cements are 

observed within foraminifera tests and echinoid spines occasionally have syntaxial 

calcite overgrowths. 

Interpretation: depositional environment 

The Operculina mudstone facies compnses a marine faunal assemblage. 

Normal open marine conditions are interpreted from the presence of Operculina and 

Nummulites (Chaproniere 1975, Murray 1991, Hohenegger et al. 1999, Geel 2000), 

and the diversity of stenohaline biota. Deposition within the photic zone is inferred 

from the presence of symbiont-bearing foraminifera. Large, flattened discoidal 
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Figure 3.3la Photomicrograph of the Operculina mudstone facies is 
characterized by the presence of large discoidal Operculina (arrowed) (sample LCA 6, log 
CA-6 bed 3). Scale bar=2 mm. 

Figure 3.3lb Photomicrograph (PPL) of a delicate bivalve preserved intact and articulated 
(arrowed) within the Operculina mudstone facies. (sample LCA 7, log CA-6 bed 5). Scale 
bar=2mm. 
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Opercu/ina tests are characteristic of the deeper parts of their habitat range, in the 

lower part of the photic zone (Hottinger 1983, Hallock and Glenn 1985, 1986, Geel 

2000). Low-energy conditions are inferred from the high percentage of fine-grained 

material in this facies (which is interpreted to have been deposited from suspension) 

and the preservation of articulated delicate bivalves. Operculina typically has a 

preference for soft substrates in low-energy environments (Chaproniere 1975, Murray 

1991, Hohenegger 1999). 

It is inferred from the lack of abrasion of Operculina tests that they are in situ. 

Nummulites tests in comparison are slightly abraded and commonly fragmented, and 

therefore are interpreted to have been transported down-slope from a high-energy to a 

lower-energy environment. Most bioclasts are fragmented and abraded, thus it is 

inferred that they were also transported from a high to low-energy environment. 

In summary, the Operculina mudstone facies is interpreted as a marine, low­

energy moderately deep-water environmental deposit, probably from below fair 

weather wave base, in the lower part of the photic zone. Opercu/ina is more-or-less in 

situ but abraded bioclasts, including Nummulites, have been transported downslope 

from a relatively shallow environment, accompanied by minor reef detritus. This 

facies has affinities with the Larger Forarninifera Wackestone facies of Hallock and 

Glenn ( 1985), interpreted as slope deposits and the Discocyclina Operculina 

Wackestone facies of Sayer (1995), interpreted as a mid- to outer ramp, deep water 

facies. 

3.3.2.4 Nummulites coralline algae siliciclastic packstone 

Lithologies: Nummulites coralline algae siliciclastic packstone 

Nummulites coralline algae siliciclastic wacke/packstone 

N"!_mmulites rhodolithic siliciclastic IJack/grai_ns!QI!<;: 

Occurrence and bed characteristics 

The Nummulites coralline algae siliciclastic packstone facies is common and is 

present in carbonate intervals 1 to 4. This facies is always associated with the 

Nummulites siliciclastic packs/grainstone. Measured bed thickness ranges from 0.85 

to 1 m. Beds are largely massive but may have a nodular weathered appearance. 

Lower bedding contacts are gradational over 5 to 10 cm. Upper bedding contacts are 

sharp and non-erosional. 



Calders facies and palaeoenvironmental analysis 

Lithological description 

Exposed surfaces of the Nummulites coralline algae siliciclastic packstone 

facies weather to a pale brown-grey colour. Fresh surfaces are a blue-grey colour with 

localised pink-grey patches. This facies is characterised by an abundance of 

Nummulites (11 to 40 %) and coralline algae (5 to 25 %) (Figures 3.32a and b). 

Nummulites tests up to 4 mm in diameter have a robust lenticular morphology. In 

axial cross-section some Nummulites tests appear to have an enlarged (megalospheric) 

pro loculus (figure 3.32b ). Nummulites tests occur intact and fragmented. Fragments 

up to 1 mm are angular to abraded. 

Coralline algae occur as fragmented thick, warty branches up to 6 mm 

(Figure 3.32a), thin laminar crusts (Figure 3.32b), and small foralgal rhodoliths 

(Figure 3.33). Thick branches demonstrate well-preserved internal structures and may 

be bored by lithophagid bivalves (Figure 3.32a). Thin laminar coralline algae 

fragments are up to 0.1 mm thick are abraded poorly preserved primary structures 

(Figure 3.32b ). Subspherical to elliptical rhodoliths with delicate, warty branches are 

up to 5 cm in diameter. Rhodoliths may contain Gypsina and/or Fabiania 

(Figure 3.33). Incorporation of forarninifera into rhodoliths has modified the 

morphology, with stout branches developing on initially tight, concentric forms 

(Figure 3.33c). Well-sorted, coarse sand-grade coralline algae peloids (0 to 7.5 %) are 

present in this facies. 

The Nummulites coralline algae siliciclastic packstone facies contains a 

diverse benthic foraminifera assemblage that includes texturaliids (0 to 1 %), Gypsina 

(0 to 13.5 %), Discocyclina (0 to 5 %), Amphistegina (0 to 2 %), Calcarina (0 to 5 %) 

and miliolids (0 to 1.5 %). Encrusting foraminifera (Fabiania and Haddonia) 

comprise up to 5 % of this facies. Discocyclina, Amphistegina and Calcarina are 

always fragll!ented. FragmeQts up tQ 1 mm in h:mgth are_ angular to abraded. 

Discocyclina tests demonstrate robust, lenticular morphologies. Miliolids are small ( < 

0.25 mm), typically fragmented and abraded. Subordinate bioclasts present in this 

facies are echinoids (0 to 1.5 %), molluscs (0 to 1.5 %), brachiopod spines(< 0.5 %) 

and bryozoa (0 to 3.5 %). In general, bioclasts are poorly sorted and show no 

preferred orientation. 

Micrite comprises up to 40 % of this facies. The total non-carbonate material 

in this facies ranges from 15 to 26.5 wt.%. Siliciclastic grainsize ranges from clay to 
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Figure 3.32a Photomicrograph (PPL) of the Nummulites coralline algae siliciclastic packstone facies. This 
facies is characterized by the presence of thick, nodular coralline algae growths (i) and Nummulites (ii). 
Coralline algae are often bored (arrowed). In this instance, the almond-shaped boring suggests a 
lithophagid bivalve (sample LCA 31, log CA-3 bed 7). Scale bar=S mm. 

Figure 3.32b Photomicrograph (PPL) of the Nummulites coralline algae siliciclastic packstone facies. 
Nummu/ites are often the megalospheric form (i), and occur in association with Gypsina (ii) and Haddonia 
(iii). Coralline algae are also present as laminar crusts (iv). Sample LCA 31, log CA-3 bed 7). Scale bar=S 
mm. 
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2mm 

!1!!1!! Coralline algae • Fabiania D Gypsina . 

• Detached from substrate 

Branch develops 

• 
Figure 3.33a Photomicrograph of the Nummulites coralline algae siliciclastic packstone facies. 
Microspheric, lenticular Nummulites (i) are present in addition to megalospheric forms. Siliciclastic grains 
(ii) are angular and well sorted. Sample LCA 88, log CA-7 bed 13 (top)). Scale bar=5 mm. 

Figure 3.33b Interpretation of the foralgal rhodolith in a). 

Figure 3.33c Stylized 'encrustation history' of the foralgal rhodolith. The initial warty coralline algae 
branch was attached to a hard substrate, possibly a coral and became detached. The growth of encrusting 
foraminfera (Fabiania and Gypsina) produced a small area of topography that provided a relatively stable 
site for further crust development. These successive crusts developed into a stout branch. 
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medium sand. Sand-grade siliciclastic grains identified are predominantly mono- and 

polycrystalline quartz with lithics and orthoclase feldspar. Lithic grains are siltstone 

and quartz-mica schist. The micas have commonly weathered to a yellow to rusty­

brown coloured clay observed in thin section. Siliciclastic grains are angular, 

moderately well sorted and have a low sphericity (Figure 3.33a). 

Diagenesis 

lntragranular microspar is observed within foraminifera tests, and echinoid 

spines commonly have well-developed syntaxial calcite overgrowths. Intergranular 

areas are locally composed of neomorphic microspar (0 to 20.5 %). 

Interpretation: depositional environment 

The Nummulites coralline algae siliciclastic packstone facies contains a marine 

faunal assemblage. Normal marine conditions are inferred from the abundance of 

rotaline foraminifera (Nummulites, Amphistegina and Calcarina), and the diversity of 

stenohaline biota (Murray 1991 ). Deposition within the photic zone is inferred from 

the presence of symbiont-bearing larger foraminifera and coralline algae (Chaproniere 

1975, Hottinger 1983, Hallock and Glenn 1985, 1986). The robust lenticular 

morphology of Nummulites is indicative of moderate energy and intermediate to 

shallow depths within their habitat range (Hottinger 1983, Hallock and Glenn 1985, 

1986). It is suggested from the limited abrasion of Nummulites, and the well­

preserved nature of warty Mesophyllum branches, that they have undergone limited 

transport and reworking prior to lithification 

An agitated marine environment is deduced from abraded bioclasts, foralgal 

rhodoliths and thick, warty coralline algae branches (Bosence 1983, 1985, Reid and 

Maclntyre 1988, Minnery et al. 1985, Minnery 1990). It is suggested that thin, 

laminar coralline algae fragments and larger encrusting foraminifera floating in the 

matrix (i.e. Fabiania, Haddonia and Gypsina) are derived from fragmented rhodoliths 

(Minnery et al. 1985, Minnery 1990). 

A siliciclastic input is inferred form the significant non-carbonate component 

of this facies. It is postulated that unstable substrates, related to constant input of 

siliciclastics and the moderate-energy hydrodynamic regime, inhibited the 

colonisation of this environment by large sessile calcareous benthic organisms such as 

corals. The presence of sea grass in this facies is inferred from the modest abundance 
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of Amphistegina, Calcarina and miliolids (Chaproniere 1975, Murray 1991, 

Hohenegger et al. 1999, Geel 2000). These foraminifera are preserved fragmented and 

abraded and have undergone reworking prior to lithification. Sea grasses may also 

have provided a substrate for coralline algae (Carbone et al. 1994), and may have 

acted as a baffle, trapping suspended sediment. 

In summary, the Nummulites coralline algae siliciclastic packstone facies 

formed within an agitated, shallow marine environment within the shallow to 

intermediate depths of the photic zone, and with a high siliciclastic input and unstable 

substrates. This facies has similarities with the Nummulite-algal Packstone facies of 

Say er ( 1995), which is interpreted as debris locally derived from a shallow shoal area. 

3.3.2.5 Coralgal foraminifera siliciclastic tloat/rudstone 

Lithologies: Coralgal foraminifera siliciclastic float/rudstone 

Occurrence and bed characteristics 

The coralgal foraminifera siliciclastic float/rudstone facies is identified in 

carbonate interval 5 (Figure 3.9). This facies is a massive unit with a local nodular 

weathered texture. Nodules are up to 10 cm in length and may contain a coral colony. 

Alignment of nodules is a remnant of bedding. Measured bed thickness is consistently 

around 1.5 m. Upper and lower bedding contacts are sharp and non-erosional. 

Lithological description 

The exposed surface of this facies weathers to a light brown colour. Fresh 

surfaces are a buff colour. The coralgal foraminifera siliciclastic float/rudstone facies 

is characterised by sparsely distributed, in situ branching and foliaceous coral colonies 

situated within a siliciclastic float/rudstone matrix. Porites and Actinacis colonies up 

to 15 cm in height dominate corals. The total coral skeletal volume ranges from 10 to 

15 %, and corals do not make up a framework. 

The bioclastic float/rudstone matrix contains abundant coral (18.5 to 28.5 %), 

coralline algae (2 to 5%) and foraminiferal debris (Figure 3.34a). Abraded coral 

fragments up to I cm form the nuclei for foralgal rhodoliths (Figure 3.34b ). Tightly 

concentric, elliptical rhodoliths range from 0.5 to 5 cm in diameter. Rhodolith laminae 
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up to 3 mm thick are composed of a combination of coralline algae, Haddonia and 

acervulinids (Figure 3.34). The incorporation of foraminifera into the rhodoliths has 

led to the development of stocky branches. Abraded thin, laminar coralline algae 

fragments and medium to coarse grade coralline algae peloids (21 to 28.5 %) are 

present. 

Forarninifera present in this facies are rniliolids (0.5 %), texturaliids (< 0.5 %), 

Gypsina (0 to 2 %), Nummulites (2 %), Amphistegina (< 0.5 %) and Ca/carina (< 0.5 

%). Large encrusting foraminfera (victoriellids, Haddonia and Fabiania) comprise 1.5 

to 3.5 %of this facies. Miliolids are abraded with reddened tests. Lenticular, slightly 

flattened Nummulites tests up to 3 mm and Amphistegina tests up to 0.5 mm are 

preserved intact but slightly abraded. Calcarina tests are up to around 2 mm. 

Subordinate biota present in this facies are echinoids (0.5 to 2 %), brachiopod spines 

(< 0.5 %), Cerithium gastropods (l %), bivalves (< 0.5 %), bryozoa (0.5 %) and 

sponge spicules (< 0.5%). 

Micrite comprises 2 to 7 % of this facies. The total siliciclastic content of this 

facies ranges from 22 to 23.5 wt. %. Siliciclastic grainsize ranges from clay (up to 

9 %) to coarse sand (up to 14.5 %). Siliciclastic grains are mono- and polycrystalline 

quartz (< 8.5 %), lithics (< 6 %) and minor orthoclase feldspar (< 0.5 %). Lithic 

grains are micaceous siltstones. The micas have commonly weathered to rusty brown 

coloured clay and orthoclase feldspar grains have a dusky, altered appearance. Sand­

grade siliciclastic grains are angular, moderately well sorted with low sphericity 

(Figures 3.34a and b). 

Diagenesis 

Coral and molluscan fragments have been dissolved out and the resultant 

mouldic pores have been occluded with drusy calcite cement (Figure 3.34a). 

Intragranular microspar cements occur within foraminifera tests and echinoid spines 

have syntaxial calcite cements. Red-brown clays occur concentrated along dissolution 

seams. The originally micritic matrix has locally recrystallised into microspar 

(Figure 3.34a). 

Interpretation: depositional environment 

The coralgal foraminifera siliciclastic float/rudstone facies contains a marine 

faunal assemblage. Normal open marine conditions are inferred from the diversity of 
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Figure 3.34a Photomicrograph (PPL) of the coralgal foraminifera siliciclastic float/rudstone facies. This 
facies is characterized by an abundance of corals (i) and coralline algae (ii) with abundant angular 
siliciclastic grains (iii) in the neomorphic microspar matrix. Note that corals are composed of a replacive 
drusy calcite spar cement (sample LCA 74, log CA-8). Scale bar=S mm. 

Figure 3.34b Photomicrograph (PPL) of the coralgal foraminifera siliciclastic float/rudstone facies. 
Rhodoliths are nucleated on coral fragments (i), and demonstrate thick, laminar coralline algae crusts (ii) 
with additional Haddonia (iii) and acervulinid crusts (iv) that have developed into short, stout branches. 
(sample LCA 43b, log CA-4a). Scale bar=2 mm. 
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stenohaline biota (Blondeau 1972, Chaproniere 1975, Murray 1991 ). Deposition 

within the photic zone is interpreted from the presence of symbiont-bearing larger 

foraminifera such as Ca/carina, Amphistegina and Nummu/ites, and the presence of in 

situ coral colonies (Hottinger 1983, Hallock and Glenn 1985, Murray 1991, 

Hohenegger et al. 1999). 

The significant percentage of non-carbonate material within samples of this 

facies indicates that this environment experienced a significant siliciclastic input. It is 

postulated from the presence of cryptic fauna (e.g. Haddonia) that corals were 

growing suprastratally, although there is no evidence to suggest the corals made up a 

framework. Colonies that stand proud of the sediment can influence the 

hydrodynamic conditions in their immediate vicinity, effectively trapping suspended 

sediment (Insalaco 1998). It is suggested that the significant percentage of fine­

grained material is attributed to a combination of baffling by corals and/or low-energy 

conditions at times. 

Although most biota are fragmented, mmor abrasion indicates limited 

transport and reworking. The lenticular, robust morphologies of Amphistegina and 

Nummu/ites are characteristic of the shallower parts of their depth range in agitated 

waters (Leutenegger 1984, Hallock and Glenn 1985, Hallock 1988). Additionally, the 

presence of tight concentric rhodoliths (Bosence 1983a, 1983b, Minnery et al. 1985, 

Minnery 1990) and an abundance of Gypsina, Calcarina and miliolids may also be 

characteristic of shallow, agitated conditions (Chaproniere 1975, Reid and 

Maclntyre 1988, Hallock 1998, Murray 1991 ). 

It is concluded that this environment experienced variable hydrodynamic 

conditions, with fragmentation of fauna during high-energy incursions. High-energy 

periods are associated with coarse siliciclastic input. Coarse siliciclastic input and 

unstable substrates may have inhibited widespread colonisation of this environment 

by corals. 

In summary, the coralgal foraminifera siliciclastic float/rudstone facies is 

interpreted to represent patchy coral development within a periodically agitated, open 

marine environment experiencing a significant siliciclastic input. This facies was 

deposited in a similar environment to the coralgal foraminifera float/rudstone (see 

Section 3.3.1.6), but experienced a more significant siliciclastic input. 
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3.3.3 Bioclastic siliciclastic-dominated facies group 

Facies included in this grouping are predominantly siliciclastic in composition, 

although they may contain a significant carbonate component as a combination of 

bioclasts, cement and detrital carbonate grains. The dominant texture is sandstone, 

and grains are well-sorted, sub-angular and sub-spherical. Biota are dominated by 

benthic foraminifera including Gypsina, Nummulites and Amphistegina, with 

molluscs, brachiopods, echinoids and serpulids (Table 3.1). 

3.3.3.1 Gypsina calcarenite 

Lithologies: Gypsina calcarenite 

Gypsina siliciclastic pack/wackestone 

Occurrence and Bed Characteristics 

The Gypsina calcarenite facies is encountered in the upper part of the Calders 

succession between carbonate intervals 5 and 6 (Figure 3.9). This facies occurs as 

planar cross-stratified beds that may be traced laterally for over 1 km. Set height is up 

to 5 m, and foresets dip consistently towards the north. Measured bed thickness 

ranges from 1 m to 2.5 m, and beds can be traced laterally for at least 1 km. Upper 

and lower bedding contacts are sharp and non-erosional. Bioturbation includes 

vertical and horizontal Skolithos and Ophiomorhpa-type burrows. 

Lithological description 

The weathered surface of the foraminifera litharenite facies ranges from buff 

to dark grey in colour. The total non-carbonate content of this facies ranges from 35.4 

to 69 wt. %. Non-carbonate grains range from clay to coarse sand grade (Figure 

3.35a). Maximum siliciclastic grainsize is 0.5 mm. Coarse grains are angular and 

moderately well-sorted (Figures 3.35a and b). Siliciclastic grains are predominantly 

mono- and polycrystalline quartz (up to 20.5 %), lithic grains (8.5 to 15 %) with 

orthoclase feldspar (up to 4 %) (Figure 3.35b). Lithic grains are siltstones and quartz­

mica schist. The micas have commonly weathered to a yellow to rusty-brown 

coloured clay observed in thin section and orthoclase feldspar grains have a brown 

altered appearance (Figure 3.35b ). 

Carbonate material comprises up to 64 % of this facies as a combination of 

bioclasts, detrital calcite grains, cement and micrite matrix. Micrite comprises up to 
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28.5 % of this facies. This facies has a moderately diverse foraminifera assemblage 

dominated by Gypsina (up to 21 %) with Rotorbinella (0 to 7.5 %), Amphistegina (0 

to 1.5 %), Fabiania (up to 3 %), ea/carina (< 0.5 %), miliolids (0 to 1.5 %) and 

Nummulites (0 to 3.5 %). Gypsina tests are rounded in thin section (Figure 3.35a). 

Robust lenticular forms of Amphistegina and Nummulites tests are up to 0.8 mm and 

are fragmented and abraded. Miliolids are small (less than 0.4 mm) and are abraded. 

Fabiania tests up to 2 mm occur intact and as abraded fragments (Figure 3.35b). 

Rotorbinella tests are always fragmented (Figure 3.35a). 

Other biota present in this facies are coralline algae (0 to 11.5 %), peloids (1 to 

7.5 %), echinoids (0 to 7.5 %), bryozoa (0 to 3.5 %), molluscs (0 to 2 %) and micritic 

serpulid tubes (0 to 2.5 %) (Figures 3.35c and d). Coralline algae are present as 

abraded laminar fragments with poorly preserved internal structure. Peloids are very 

well sorted and are interpreted as heavily abraded coralline algae fragments. 

Diagenesis 

Gypsina tests with a rounded morphology occasionally have thin micrite 

envelopes (Figure 3.35b ). Intragranular microspar cement is observed within 

foraminifera tests and echinoid spines demonstrate well-developed syntaxial calcite 

cements. Originally aragonitic molluscan fragments have been leached with the 

resultant biomouldic pores completely occluded by clear, drusy calcite cement. Patchy 

neomorphic microspar (5 to 10 %) is present in intergranular areas. 

Interpretation: depositional environment 

The Gypsina calcarenite facies contains a manne faunal assemblage. 

Deposition is inferred to have taken place within the photic zone from the presence of 

symbiont-bearing benthic foraminifera such as Amphistegina, Nummulites and 

ea/carina although some transport and reworking of grains is deduced 

(Leutenegger 1984, Hallock and Glenn 1985, 1986; Murray 1991, Hohenegger et al. 

1999). 

A moderate siliciclastic input, and consequent unstable substrates, is inferred 

from the abundance of siliciclastic material in this facies. The sand grade component 

would have been transported as bedload with fmer-grained material deposited from 

suspension. Limited abrasion due to transport or reworking prior to deposition and 

lithification is interpreted from the angular nature of the siliciclastic grains. Moderate-
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Figure 3.35 Photomicrographs (all PPL) of the Gypsina calcarenite facies. a) Gypsina tests (i) associated 
with fragmented Rotorbinella (ii). Siliciclastic grains (iii) up to coarse sand-grade are well-sorted (sample 
LCA 49, log CA-4 bed 23) Scale bar=2mm. b) Intact Fabiania (i) test. Gypsina tests (ii) show incipient 
micrite envelopes. Orthoclase feldspar (iii) is identified through its brown colour in thin section (sample 
LCA 47, log CA-4a bed 21). c) Echinoids (i) and bryozoa are present in this facies (sample LCA 99a, log 
CA-10 bed 6). Scale bar=1 mm. d) Intact serpulid tube, interpreted to have encrusted sea grass or 
macroalgae (sample LCA 49, log CA-4a bed 21). Scale bar=2mm. 
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energy, agitated conditions are consistent with the presence of coralline algae peloids 

(Wolf 1965, Friedmann et al. 1973). 

The robust lenticular morphology of Amphistegina is indicative of the shallow 

to intermediate part of its depth range in higher energy/agitated conditions 

(Hottinger 1983, Hallock and Glenn 1985, 1986). The presence of sea grass is inferred 

from the abundance of Gypsina, Amphistegina, Calcarina and miliolids (Chaproniere 

1975, Ghose 1977, Parsons-Hubbard et al. 1998, Hohenegger et al. 1999, Walker 

2001 ). It is postulated that the baffling effect of sea grass may have trapped suspended 

sediment. The foraminifera assemblage characteristic of this facies contains 

foraminifera that often have an epiphytic lifestyle. It is suggested that foraminifera 

that were able to adapt an epiphytic lifestyle had an advantage in this environment as 

siliciclastic input and unstable substrates would have inhibited colonisation by most 

calcareous benthic organisms. Strictly benthic foraminifera (i.e. Nummulites) are 

relatively rare. 

In summary, it is interpreted that the Gypsina calcarenite facies represents 

deposition in a siliciclastic-dominated, agitated, shallow marine environment with 

unstable substrates. The Gypsina calcarenite facies is comparable to the back-reef 

platform sediments of the Miocene Ziqlag Formation, Israel (Buchbinder 1977) and 

the Quartzitic Grainstone facies of Sayer ( 1995). Comparable foraminifera 

associations are identified in sands tones of Eocene outcrops in the northern Vie Basin 

(Alvarez et al., 1995; Franques-Faixa 1996). These sediments have been interpreted to 

represent a back-reef and/or lagoonal depositional setting. 

3.3.3.2 Nummulites arenite 

Lithologies: Nummulites arenite 

Occurrence and bed characteristics 

The Nummulites arenite facies 1s only encountered underlying the first 

carbonate interval (Figure 3.9). Measured bed thickness ranges from 1.15 m to 

1.65 m, and can be traced laterally over 500 m. Upper and lower bedding contacts are 

gradational. Bioturbation is evident in the form of slight blue mottling of fresh 

surfaces of this facies. 
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Lithological description 

The surface of the Nummulites arenite facies weathers to a reddish-brown 

colour. Fresh surfaces are a light brown to buff colour. This facies is composed of 

well-sorted, angular to sub-rounded monocrystalline quartz (25.5 to 40 %), lithic (2.5 

to 5 %) and orthoclase feldspar (up to 1 %) grains situated within a neomorphic 

microspar matrix (Figure 3.36). Maximum siliciclastic grainsize is 1.75 mm. Mean 

siliciclastic grainsize is 0.5 mm. Lithic grains are siltstone and quartz-mica schist. The 

micas have commonly weathered to rusty-brown coloured clay observed in thin 

section. Orthoclase feldspar grains have a brown, altered appearance in thin section. 

The Nummulites arenite facies contains a low diversity foraminifera 

assemblage dominated by intermediate lenticular forms of Nummulites (2.5 to 4 %) 

with Gypsina (1.5 %) and miliolids (0.5 %) (Figure 3.36). Nummulites test size 

ranges from 0.5 mm to 4 mm. Tests are typically fragmented and fragments are 

abraded. Laminar Gypsina tests up to 3 mm in length are fragmented and abraded 

(Figure 3.36). Miliolids are abraded with slightly reddened tests. Subordinate 

bioclasts within the Nummulites arenite facies are fragmented echinoid spines 

(< 0.5 %), bryozoa (< 0.5 %) and brachiopod spines(< 0.5 %). Fragmented bioclasts 

are angular and poorly sorted. 

Diagenesis 

The originally micritic matrix of the Nummulites arenite facies has 

recrystallised into microspar (Figure 3.28). Intragranular calcite cement is observed 

within foraminifera chambers and echinoid spines show poorly developed syntaxial 

calcite overgrowth cements. 

Interpretation: depositional environment 

The Nummulites arenite facies contains a manne faunal assemblage. 

Deposition in a shallow marine environment within the photic zone is inferred from 

the modest abundance of Nummulites (Ghose 1977, Hallock and Glenn 1986, 

Hallock 1988). The intermediate, lenticular morphology of Nummulites is indicative 

of the shallow to intermediate part of its habitat range in moderate energy conditions 

(Hallock and Glenn 1985, 1986). It is suggested from the fragmented and slightly 

abraded nature of foraminifera that they have undergone in situ reworking. Water 

agitation was probably sufficient to remove smaller bioclasts. 
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Rapid deposition prior to reworking and abrasion is inferred from the angular 

nature of grains. It is postulated that high siliciclastic sedimentation rates and/or 

unstable substrate inhibited colonisation of the sediment by calcareous benthic 

organisms. This is supported by the scarcity of fauna in this facies. Variable 

depositional energies are inferred from the locally present micrite matrix (that has 

transformed into neomorphic spar). It is suggested that Nummulites colonized this 

environment during relative quiet periods. 

In summary, the Nummulites arenite facies formed within a shallow marine, 

siliciclastic shelf setting characterised by unstable substrates. Similar poorly 

fossiliferous facies are described from the Nummulitique (Sayer 1995). These 

sediments are interpreted as shallow marine offshore sand shoals and bars. 

3.3.3.3 Bioclastic siltstone 

Lithologies: Bioclastic mudstone 

Bioclastic muddy litharenitic siltstone 

Occurrence and bed characteristics 

The bioclastic siltstone facies is only encountered within carbonate interval 5 

(Figure 3.9). Measured bed thickness is 0.4 m, although the lateral extent cannot be 

determined due to poor exposure. Upper and lower bedding contacts are sharp and 

non-erosional. 

Lithological description 

Exposed surfaces of the bioclastic siltstone facies weather to a buff colour. 

Fresh surfaces are a grey-brown colour with blue-grey patches. This facies contains 

clay to silt-grade siliciclastic grains floating within a muddy matrix (Figure 3.37). 

Siliciclastic grains are mono- and polycrystalline quartz (5 %) with lithics (0.5 %) and 

orthoclase feldspar (0.5 %). Lithic grains are micaceous siltstones. The micas have 

commonly weathered to rusty brown clay. Grains are angular with a low sphericity, 

and are very well sorted. The matrix of the bioclastic siltstone facies is a homogenous 

dark brown colour in thin section. The matrix is composed ofmicrite (up to 47.5 %) 

and non-carbonate clay (up to 40 %). 

Poorly sorted bioclasts constitute a relatively minor percentage of this facies, 

and include intermediate Nummulites (up to 2 %) and robust, lenticular Amphistegina 
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(0.5 %). Nummulites tests up to 4 mm in diameter are preserved intact and slightly 

abraded (Figure 3.37). Other bioclasts found in this facies are Gypsina (0.5 %), corals 

(0.5 %), echinoid spines (1 %), bivalves (2 %) and coralline algae (0.5 %). Delicate 

bivalves are preserved articulated. Coralline algae fragments are highly abraded, and 

little internal structure is preserved. Bioclasts may be concentrated within small 

Skolithos-type vertical burrows (Figure 3.37). 

Diagenesis 

Intragranular microspar cements are observed within foraminifera tests, and 

originally aragonitic bioclasts have been leached with the mouldic pores completely 

cemented with calcite spar. Patchy recrystallisation of the originally micritic matrix 

into microspar (2 %) is also evident. 

Interpretation: depositional environment 

The bioclastic siltstone facies contains a marine faunal assemblage. Normal 

marine conditions are inferred from the stenohaline biota (Chaproniere 1975, Hallock 

and Glenn 1986, Murray 1991, Geel 2000). Low-energy conditions are inferred from 

the fine-grained nature of this facies. It is interpreted that clay to silt-grade siliciclastic 

material was deposited from suspension. Limited transport and abrasion prior to 

deposition and lithification is inferred from the angular nature of siliciclastic grains. 

Deposition within the photic zone is inferred from the presence of Nummulites 

and Amphistegina (Leutenegger 1984, Hallock and Glenn 1985, Murray 1991). The 

intermediate morphology of Nummulites and Amphistegina is indicative of the 

intermediate part of their habitat range within moderate energy conditions (Hottinger 

1983, Hallock and Glenn 1985, 1986). It is postulated that abraded bioclasts and 

foraminifera tests have been washed-in from a relatively higher energy environment. 

In summary, the bioclastic siltstone facies accumulated in an open marine, low 

energy setting with a moderate siliciclastic and bioclastic input from high-energy 

parts of the shelf. This facies has affinities with the Foraminiferal Mudstone facies of 

Sayer (1995). These sediments were deposited within a very low-energy, offshore 

environment unaffected by shallow marine currents. 
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Figure 3.36 Photomicrograph of the Nummulites arenite facies. This facies contains large, lenticular 
Nummulites (i) and laminar Gypsina (ii) tests. Highly abraded coralline algae fragments (iii) are also 
present (sample LCA 17, log CA-2 bed 1). Scale bar= I mm 

Figure 3.37 Photomicrograph of the bioclastic siltstone facies. Bioclasts including Nummu/ites (i), 
coralline algae (ii) and echinoid spines (iii) occur aligned in burrows (sample LCA 46, log CA-4a). Scale 
bar=2mrn. 
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3.3.4 Siliciclastic-dominated facies group 

Facies included in this grouping are predominantly siliciclastic in composition, 

although they may contain a moderate carbonate component as a combination of 

cement and detrital carbonate grains. The dominant texture is sandstone, and grains 

are well to poorly sorted, sub-angular and sub-spherical. This facies grouping differs 

from the bioclastic siliciclastic-dominated facies group in that bioclasts are very rare, 

although bioturbation is typically evident (Table 3.1). 

3.3.4.1 Cross-stratified calcarenite 

Lithologies: Calcarenite 

Muddy calcarenite 

Calcarenitic siltstone 

Interbedded calcareous litharenitic silt and sandstone 

Occurrence and bed characteristics 

This facies occurs throughout the succession (Figure 3.9). Measured bed 

thickness ranges from less than 10 cm to 3 m. Beds of the cross-stratified calcarenite 

facies have a planar to low-angle sigmoidal morphology, and are characterised by 

metre-scale cross-stratification (Figures 3.38a and b). Foresets and topsets are 

preserved, with set height ranging from l to 5 m (Figures 3.38a and c). Cross-sets 

show clear progradational morphology, with foresets dipping 15° to 35° towards the 

north. Upper and lower bed contacts are typically sharp and non-erosional. The upper 

contact with the lenticular polyrnict conglomerate facies is always erosional (Figure 

3.39a). 

Swaley cross stratification is observed in some localities (Figure 3.39a). 

Symmetrical ripple lamination is superimposed on swaly cross-beds. Small channel 

structures are observed in the cross-stratified calcarenite facies (Figure 3.38c). 

Channels have an erosional base, and channel in-fills include lateral accretion 

surfaces. Siltstone and shale interbeds, up to 10 cm in thickness, comprise up to 10 % 

of this facies (Figure 3.38c). Vertical Skolithos and Ophiomorpha-type burrows are 

present locally. Burrows do not cross upper bedding contacts. 
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Figure 3.38a Cliff exposure 
of metre scale cross­
stratification within the cross­
stratified calcarenite facies. 
Set height is approximately 
5 m. The progradation 
direction (blue arrows) is 
oblique into the cliff face 
(broadly northward). The 
Nummulites siliciclastic pack/ 
grainstone facies was 
deposited on the distinct 
topset surface (indicated). 
Photograph taken from GR 
16902625, facing NNW. 
Scale bar=5 m approx. 

Figure 3.38b Low-angle 
sigmoidal bedding within the 
cross-stratified calcarenite 
facies (log CA-7 beds 51 to 
52). Facing NE. Scale bar=2 
m approx. 

Figure 3.38c Interbedded 
sandstones and grey shales. 
Note the dm-scale cross­
stratification (blue arrows 

'
Ji.~~~~r~;i indicating flow put of the 

page) and the small channel 
... "'!"''W':I,._.~~IIi;;il~-1 structure (white arrow). The 

channel infill shows lateral 
accretion surfaces. 
Photograph taken from GR 
16752675, facing SE. Scale 

..... Apparent palaeoflow/progradation direction 
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Lithological description 

Fresh surfaces of this facies are a pale-brown to buff colour. Weathered 

surfaces are a dark brown colour. Grains are angular, well sorted and subspherical 

(Figures 3.39b and c). Grainsize ranges from clay to coarse sand. Siliciclastic grains 

identified are monocrystalline strained and unstrained quartz (20 to 46 % }, lithics ( 5 to 

45.5 %), feldspar 0.5 to 2.5 %) and muscovite mica (up to 2 %). Lithic grains are 

siltstones, quartz-mica schist and compacted clay grains (Figure 3.39c). Micas 

commonly have a 'rotted' appearance, and are altered to a yellow to rusty-brown 

coloured clay. Detrital carbonate (calcite and dolomite) comprises 2 to 30% of grains. 

Calcite grains and dolomite rhombs are interpreted to be reworked cements. Dolomite 

is only abundant in sample LCA 229 (log CA-15 bed 10) (Figure 3.39c). The matrix 

of this facies is composed of a combination of micrite (6 to 20 %) and non-carbonate 

clays (1.5 to 30 %). 

The cross-stratified calcarenite facies is largely unfossiliferous. Large irregular 

echinoids up to 8 cm are preserved intact (log CA-4a, bed17). In addition, Cerithium 

gastropods up to 45 cm in length are abundant in one horizon (log CA-5, bed 7). 

Subordinate biota present are fragmented echinoid spines (0 to 1.5 %), Gypsina (0 to 

2 %), miliolids (0 to I %) and coralline algae peloids (0 to 5 %). Bioclasts are highly 

abraded. 

Diagenesis 

Intergranular areas have been cemented with equant calcite spar (up to 40 %). 

Originally aragonitic biota have been leached, although biomouldic macropores have 

not been occluded. Echinoid spines may show syntaxial calcite overgrowth cements. 

Interpretation: depositional environment 

Deposition of this facies in a marine environment is concluded from the 

marine biota and presence of symmetrical ripple lamination. Metre-scale cross­

stratified beds are interpreted as subaqueous dunes (Reading 1996). Deposition at 

depths above fair weather wave base with a strong current influence is interpreted 

from the presence of dunes. It is postulated that mudstone and shale interbeds were 

deposited either during relatively low-energy periods or in inter-dune areas. Periodic 

deposition between storm and fair weather wave base in the offshore transition zone is 

concluded from the presence of swaley cross-stratification (Reading 1996). 
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Figure 3.39a Possible swaley 
cross-stratification of the 
cross-stratified calcarenite 
facies (arrowed). The upper 
contact of the sandstone with 
the lenticular polymict 
conglomerate is erosional 
(indicated). (log CA-7 beds 
ll to 13). Scale bar= 1 m 
approx. 

Figure 3.39b Photomicro­
graph (XPL) of the cross­
stratified calcarenite facies. 
This facies is dominated by 
quartz (i) with calcite (ii) and 
feldspar (iii). Highly abraded 
coralline algae fragments (iv) 
are present in some samples 
(sample LCA 21, log CA-3 
bed 6). Scale bar=2 mm. 

Figure 3.39c Photomicro­
graph (XPL) of a dolomite­
rich calcarenite. This sample 
contains mono-crystalline 
unstrained and strained quartz 
(ii), with detrital dolomite (iii) 
and compacted mud clasts 
(iv). Dolomite rhombs are 
inferred to be detrital in origin 
from the presence of circum­
granular clay coatings and the 
presence of fragmented and 
abraded rhombs (sample LCA 
229, log CA-15 bed 10). Scale 
bar= 0.5 mm 
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Limited abrasion of siliciclastics prior to deposition and lithification is inferred 

from the angular nature of grains, although the grains are very well-sorted. Rapid 

deposition is inferred from the sharp nature of contacts and the largely structureless 

nature of beds. Rapid deposition of sediment is also suggested from the truncation of 

burrows at bedding contacts. Only mobile calcareous biota (gastropods and echinoids) 

are preserved in situ in this facies. Foraminifera and coralline algae are highly abraded 

and thus have been reworked from another facies. It is suggested that a consequence 

of rapid sedimentation there was an unstable substrate that inhibited colonisation by 

sessile calcareous benthic organisms. Silt and shale interbeds are interpreted to have 

been deposited during relatively quiet periods. A progradational sedimentary regime 

is concluded from the cross-stratifcation of beds of this facies. Pro gradation direction 

is consistently towards the north. 

In summary, the cross-stratified calcarenite facies represents siliciclastic­

dominated deposition within a marine setting at depths ranging from above fair 

weather base down to storm wave base. High sedimentation rates and unstable 

substrates inhibited the development of a sessile calcareous benthic community. 

Matrix-rich examples of this facies are comparable with the Quartzitic Wackestone 

facies of Sayer (1995). Well-cemented examples, characterised by negligible fine­

grained matrix, are comparable with the Quartzitic Grainstone facies of Sayer (1995). 

Sayer (1995) attributes the presence/absence of matrix to variable water energies. The 

Quartzitic Wackestone and Quartzitic Grainstone facies have been interpreted as 

offshore shoal and bar-type environments reworked by continual wave and current 

action. 

3.3.4.2 Lenticular polymict conglomerate 

Lithologies: Polymict conglomerate 

Occurrence and bed characteristics 

The lenticular polymict conglomerate facies weathers recessively and is only 

exposed in cut sections along the B124 road (Figure 3.1b). This facies occcurs as 

lenticular sedimentary bodies that are traced 15 to 20 m along strike (Figure 3.40) 

and up to 100 m down-dip. Measured bed thickness is up 1.4 m. The lower bed 

contact with calcarenitic sands is erosional. Scours up to 15 cm infilled with massive 
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conglomerate are common (Figure 3.40). Steep cross-stratification is observed (1 0° to 

45°), although the lenticular polymict conglomerate is largely lacking internal 

structure (Figures 3.41a and b). 

Lithological description 

The lenticular polymict conglomerate facies weathers to a grey to dark red­

brown colour. This facies is a matrix-supported conglomerate. Clasts within this 

facies range from clay-grade up to 7 cm in diameter. Clasts are sub-angular to very 

well rounded, poorly sorted with low to moderate sphericity. Clasts consist of quartz 

(up to 45 %), lithics (up to 50 %) with minor feldspar (less than 5 %). Lithic grains 

are quartzite, chert, siltstone, sandstone and schists. Matrix consists of muddy, coarse­

sand grade calcarenite. Matrix comprises up to 40 % of this facies. Bioclasts are 

largely absent within the lenticular conglomerate facies. Reworked spherical 

Nummulites tests up to 0.4 cm in diameter occur along the upper limits of this facies. 

Nummulites are largely intact but highly abraded. 

Interpretation: depositional environment 

The lenticular polyrnict conglomerate facies contains a very low diversity 

marine fauna. The small, robust forms of Nummulites are abundant in the shallow, 

high-energy part of their habitat range in the upper portions of the photic zone 

(Hallock and Glenn 1985, Murray 1991). Deposition in an environment close to the 

sediment source is inferred from the coarse-grained, poorly sorted nature of 

sediments. High-energy deposition is inferred from the erosive nature of the base of 

this facies and the coarse clast size. The steep cross stratification surfaces are 

orientated perpendicular to the main progradation direction of the underlying cross­

stratified calcarenite facies. These surfaces are interpreted as lateral accretion 

surfaces, thus the lenticular conglomerate facies is interpreted as a high-energy 

channel-fill deposit. Deposition in a marine setting is inferred from the association of 

this facies with the cross-stratified calcarenite and Nummulites siliciclastic 

packlgrainstone facies. 
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Figure 3.40 Roadcut exposure (a) 
and interpretation (b) of a 
lenticular polymict conglomerate 
unit, interpreted as a 
conglomerate-filled channel. 
Channel structures can be traced 
laterally for > 20 m. The lower 
contact with the cross-stratified 
calcarenite fcaies is erosional. 
Erosional scours up to 35 cm 
deep, are infilled with massive 
conglomerates. Photograph taken 
from GR 16752609, facing ENE. 
Scale bar=2 m approx. 
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Figure 3.41a Cross-stratification 
within the lenticular polyrnict 
conglomerate facies. Foresets 
(arrowed) are interpreted as lateral 
accretion surfaces (log CA-7, bed 
14, facing N). Scale bar= 50 cm. 

Figure 3.41b Massive bedded 
conglomerates (log CA-7, bed 14). 
Scale bar= 50 cm . 

.lh••"!ft._.~, Figure 3.41c Margin of a 
lenticular conglomerate unit 
(arrowed). The contact between 
the conglomerate and underlying 
calcarenite is erosional. (log CA-7, 
bed 14). Scale bar= 50 cm. 
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3.4 Calders facies associations and depositional models 

Detailed logging and log correlation has made it possible to reconstruct the 

temporal and spatial facies variations in the Calders area, and to examine the 

relationship between carbonate production and siliciclastic sedimentation. Sixteen 

sections in total were logged and sampled in the Calders area (Figure 3.1 and 

Appendix 5). Six main carbonate intervals are identified in the Calders succession 

(Figure 3.9). Each carbonate interval, coupled with a siliciclastic interval, forms a 

carbonate-siliciclastic cycle. The only exception is cycle 5 that contains an additional 

carbonate interval (interval 5a) in the east of the study area (Figure 3.44). There are 6 

full carbonate-siliciclastic cycles. Cycles 1 to 4 are represented by logs in the southern 

parts of the Calders study area, with cycles 4 to 6 represented by logs in the northern 

area (Figure 3.42). Facies correlations of the southern and northern parts of the 

Calders study area are presented in Figures 3.43 and Figure 3.44 respectively. 

Logged section 
Northern area I Southern area 

Cycle Ll? <9 CX( <» I .... 
~ (") ,.._ ,. 0 .... '<f ~I N (") 10 

.( .... .( I et: <( <( <( <( 
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I I (.) et: et: et: (.) (.) (.) (.) (.) <(I (.) (.) (.) 

(.) (.) (.) (.)I (.) (.) (.) 

I 
6 I I I I I I 5 

I 4 
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I -- --- -- -
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Figure 3.42 Coverage of carbonate-siliciclastic cycles by logged sections. Logged sections in the 
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Figure 3.43 a) F acies correlation. 
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Facies association 

Facies association l 
(Section 3.4.1) 

Facies association 2 
(Section 3.4.2) 

Facies association 3 
(Section 3.4.3) 

Facies 

Cross-stratified calcarenite, 
Lenticular polymict conglomerate, 
Nummulites litharenite, 
Gypsina calcarenite, 
Operculina mudstone 

I 

' Nummulites siliciclastic 
pack/ grainstone, 
Nummulites Discocyc/ina siliciclastic 
packstone, 
Nurnmulites coralline algae 
siliciclastic packstone, 
Operculina mudstone 

Coral bioclastic pack/rudstone, 
, Coralgal foraminifera rudstone, 
Coralgal foraminifera float/rudstone, 
Coral wacke/floatstone 

I 

Dominant biota 

Rare biota 
include Gypsina, 
Operculina, 
miliolids, 
Nummulites and 
coralline algae. 

Larger benthic 
foraminifera 
(Nummulites, 
Discocyc/ina, 
Gypsina) and 
coralline algae 
(encrusting forms 
and rhodoliths) 

Corals, 
encrusting 
coralline algae 
and foraminifera 
(Haddonia, 
Fabiania, 
Chapmanina) 
with free-living 
and epiphytic 
foraminifera 

Characteristics Interpretation 

ShaUow marine prograding 
siliciclastic shelf 

Progradation of dunes with 
Metre-scale cross-stratified accumulation offmes during 
calcarenites interbedded low-energy periods and within 
with silts, mudstones and inter-dune areas 
foraminifera-rich 
sandstones. Short-lived conglomeratic 

channels 

Colonisation of abandoned 
dunes by foraminifera 

Well-bedded mixed 
Current re-worked larger 

carbonate-siliciclastic 
foraminifera and coralline 

lithologies rich in larger 
algae accumulations 

benthic foraminifera. Crude 
cross-stratification and 

Colonisation of high-energy, 

chaotic stacking of 
unstable siliciclastic substrates 

foraminifera tests. 
No preserved topography 

Sparse coral development 

Development of coeval high 
Bedded units containing and low-energy areas 
sparsely distributed in situ 
corals situated within a Constratal coral growth in 
bioclastic wackestone to muddy, siliciclastic-rich 
rudstone matrix. sediments 

No framework development or 
topography 



Facies association Facies Dominant biota Characteristics Interpretation 

Foraminifera 
High-energy, winnowed 

include Gypsina, 
Calcarina, 

shoals 

Rotorbinel/a, 
Intercalcated packstones and Patchy coral development 

Foralgal pack/grainstone, 
Amphitstegina, 

grainstones rich in abraded 
Facies association 4 Gypsina grainstone, 

Nummulites, 
benthic foraminifera. Deposition of fines during low-

miliolids and 
(Section 3.4.4) Miliolid coralline algae 

larger encrusting 
Foraminifera dominated by energy periods 

pack/grainstone 
forms. Coralline 

Gypsina. Patchy coral 

algae present as 
growth. Possible sea floor vegetation 

upon which epiphytic 
laminar crusts, 

foraminifera and articulated 
articulated forms 

coralline algae were attached 
and rhodoliths. 

In situ coral growth 
Corals. Various 
morphotypes In situ, densely packed coral Localised framework 

Facies association 5 Coral mixstone, present include colonies with a bioclastic development 
(Section 3.4.5) Coral domestone branching, packstone matrix situated in 

domal, platy and pockets between colonies. Supratstratal coral growth with 
foliaceous. a flourishing cryptic 

community 



Calders facies and palaeoenvironmental analysis 

Individual facies development in the Calders area was influenced by a complex 

interaction of abiotic factors. The most important were light intensity, hydrodynamic 

energy levels and siliciclastic sediment input (Figure 3.45). The facies described in 

Section 3.3 occur in 5 facies associations, summarised within Table 3.3. An area­

wide correlation illustrating the lateral and vertical extent of facies associations is 

presented on Figure 3.45. 

3.4.1 Facies association 1 

Facies: Cross-stratified calcarenite 

Lenticular polymict conglomerate 

Gypsina calcarenite 

Nummulites arenite 

Operculina mudstone 

Occurence 

Facies association comprises the majority of the studied succession at 

Calders (Figure 3.46). In addition, this was the first facies association to be deposited 

in the area, indicated by cross-stratified calcarenites overlying the prodelta Vespella 

Marls (log CA-7, beds 1 and 2). This association extends laterally> 2 km and beyond 

the limits of the study area. Facies association 1 attains a maximum thickness of 40 m 

and a minimum thickness of 2 m within cycle 1 (log CA-12, Figure 3.46). Typical 

thickness is around 10 m. Facies association 2 often succeeds this facies association 

vertically (Figure 3.46). 

Characteristics 

This facies association compnses sandstones, siltstones and shales, 

interbedded with foraminifera-rich sandstones and mudstones. Figure 3.47 is a 

summary log of a typical succession through this facies association. 

The majority of this association is composed of the cross-stratified calcarenite 

facies (Figure 3.47). Cross-stratified calcarenites occur intercalated with the Gypsina 

calcarenite (log 12, bed 15; log CA-13 bed 16), or the lenticular polymict 

conglomerate facies (log CA-7, bed 13; log CA-11, bed 7). Bed morphologies range 

from tabular to sigmoidal (Figure 3.38). Beds are cross-stratified, with set height up 
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Figure 3.47 Summary log through a representative succession offacies association l (from log 
CA-6 part i). Facies association 4 in the upper portion of the log is situated at the base of 
carbonate interval 6. See Appendix 1 for key to log. 
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Calders facies and palaeoenvironmental analysis 

to 5 m (Figure 3.38a). Swaley cross-stratification with symmetrical ripple lamination 

superimposed on upper surfaces is evident within cycle 2 (Figure 3.39a). Palaeoflow 

directions towards the north and northeast are interpreted from assymetrical current 

ripple lamination. Sediments are largely unfossiliferous, although rare fragmented and 

abraded miliolids, coralline algae and small benthic foraminifera occur. Infaunal 

echinoids and large Cerithium gastropods are abundant on discrete horizons (Section 

3.3.4.1). This facies contains vertical burrows, although burrows are terminated at 

bedding contacts. 

The Gypsina calcarenite facies extends laterally for at least I km 

(Figure 3.43). Contacts with the cross-stratified calcarenite facies are sharp and non­

erosional. Gypsina dominates the biota. Subordinate biota includes Rotorbinella, 

Nummulites, Calcarina, miliolids, echinoids, serpulids and bryozoa (Section 3.3.3.1). 

Most fossils in this facies are abraded (Figure 3.35). Siliciclastic grains are well 

sorted, subangular and subspherical. Mixed carbonate-siliciclastic mud-grade matrix 

is locally abundant. Winnowed intergranular areas are composed of equant calcite 

spar (Figure 3.35a). 

Conglomerate units demonstrate lenticular morphologies up to 20 m in width 

and several hundred metres in length. Lateral equivalents of lenticular conglomeratic 

units are thin (<20cm) conglomeratic stringers intercalated calcarenite sediments 

(Figure 3.48). The lower contact between the lenticular polymict conglomerate and 

cross-stratified calcarenite facies is always erosional (Figures 3.39a, 3.41b). Scours 

are in-filled with massive, matrix-supported conglomerate (Figure 3.41b). The 

conglomerates are largely unfossiliferous, and may contain rare reworked Nummulites 

tests in some localities (log CA-7, bed 36). 

Th~ }lumf11u[jtes arenite and Opf!_rculina mudstone facies are rrunor 

components of this facies association (Figure 3.47). The Nummulites arenite is 

encountered in cycle I (Figures 3.43 and 3.46). The lower contact with the cross­

stratified calcarenite is gradational. The Operculina mudstone facies occurs 

intercalated with the cross-stratified calcarenite (Figure 3.38c). The Operculina 

mudstone facies is characterised by thin, often laminated mudstones and wackestones 

containing well-preserved, large, thin, discoidal foraminifera tests (Figures 3.31 and 

3.44). 
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Figure 3.48 Pebbly stringers within the Gypsina calcarenite facies, interpreted as the lateral equivalent 
of the lenticular polyrnict conglomerate facies (log CA-4a, bed 17). Scale bar=SO cm 

0 Cross-stratified calcarenite 

0 Lenticular polymict conglomerate 

• Nummulites arenite 

• Gypsina calcarenite 

0 Operculina mudstone 

Figure 3.49 Placement of constituent facies of facies association 
1 into LES space. This facies association is characterized by 
high siliciclastic sediment input and moderate to high 
depositional energies. The light intensity will vary according to 
grainsize of the sediment input i.e. fme vs. coarse sediment in 
suspension. Variable hydrodynamic energies are inferred from 
the presence of shale and silt interbeds. See text for discussion. 
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Interpretation 

Normal open marine conditions are inferred for facies association 1 from the 

presence of stenohaline biota. Cross-stratification of beds and dune formation 

indicates a strong current influence and deposition above fair weather wave base 

(Reading 1996). Deposition between storm and fair weather wave base is inferred 

from the presence of swaley cross-stratified beds towards the base of the studied 

succession. It is interpreted that fine-grained interbeds and the Operculina mudstone 

facies accumulated during quiet periods and/or in inter-dune areas. Dunes are only 

exposed in two dimensions, thus the three-dimensional dune morphology cannot be 

determined. 

It IS postulated that substrate instability during deposition of the cross­

stratified calcarenite facies inhibited colonisation by sessile carbonate-producing 

organisms. Mobile and infaunal organisms dominate the biota assemblage. 

Accumulation of the Nummulites arenite facies is interpreted to represent initial 

colonisation of the substrate as a consequence of reduced siliciclastic input and 

substrate stabilisation. 

It is interpreted that the transition from cross-stratified calcarenites to Gypsina 

calcarenites represents stabilisation of the siliciclastic substrate and colonisation by 

sea grass and foraminifera. This was associated with a decrease in siliciclastic input, 

although water energies were high enough to rework siliciclastic grains and abrade 

biota (Section 3.3.3.1). The presence of sea grass in inferred from the abundance of 

Gypsina that often adapts (although not exclusively) to an epiphytic lifestyle in high­

energy settings (Chaproniere 1975, Ghose 1977, Hohenegger et al. 1999, Walker 

et al. 2001 ). 

Erosive-based lenticular conglomeratic units are interpreted as short-lived 

high-energy subaqueous marine channels (Section 3.3.4.2). There is no evidence for 

subaerial exposure of channels and development of interdistributary areas or palaeosol 

horizons. It is inferred that pebbly-stringers observed in laterally equivalent beds 

represent flooding events. 

In summary, facies association 1 formed within a high-energy, shallow marine 

setting with high siliciclastic input (Figure 3.49). This association represents 

deposition and basinward (northward) progradation of large subaqueous dunes, with 
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colonisation by foraminifera as siliciclastic input decreased. The calcarenite facies 

association is part of the Centelles Formation that has been interpreted as deltaic in 

origin (see Chapter 2). There is not enough exposure in the Calders area to validate a 

deltaic origin. 

3.4.2 Facies association 2 

Facies: 

Occurrence 

Nummulites siliciclastic pack/grainstone 

Nummulites Discocyclina siliciclastic packstone 

Nummulites coralline algae siliciclastic packstone 

Operculina mudstone 

Facies association 2 occurs throughout the studied succession, and is identified 

at the base of carbonate intervals I to 6 (Figure 3.46). The measured thickness of this 

association ranges from 1 to 3.5 m, and extends laterally> 1 km (Figure 3.46). This 

facies association typically succeeds the calcarenitic facies association. The lower 

contact between facies association 2 and lenticular polymict conglomerates of facies 

association l is gradational (Figure 3.50). In the absence of conglomerates, the 

transitional units are Nummulites-poor sands (log CA-7, beds 3 and 4). Contacts are 

sharp but non-erosional. 

Characteristics 

This facies association contains mixed carbonate and siliciclastic lithologies 

dominated by siliciclastic-rich larger benthic foraminifera and coralline algae 

dominated packstones and grainstones. Up to 50 wt.% of sediments are composed of 

non-carbonate material. Figure 3.51 is a summary log of a typical succession through 

this association. 

The Nummulites siliciclastic packlgrainstone is dominated by small robust and 

larger lenticular mono-specific Nummulites (Figure 3.27c) with a diverse 

foraminifera assemblage that includes Gypsina, Amphistegina, Discocyclina, 

Calcarina, miliolids and texturaliids (Section 3.3.2.1). Siliciclastic grain size ranges 

from clay to coarse-sand. Beds display crude cross-stratification (Figure 3.27b) and 

foraminifera chambers may be aligned in burrows. 
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Figure 3.50 Field sketch of the contact between facies associations 1 and 2 (GR 16952614, facing N). Small robust Nummulites tests occur reworked within the 

underlying conglomerates. There is a noticeable vertical increase in foraminifera size (indicated) attributed to increasing energy levels and preferential 

winnowing of smaller tests by currents, or delayed reproduction and prolonged growth of foraminifera. See text for discussion. 
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Figure 3.51 Summary log and interpretation through a portion of log CA-7 (part i) illustrating the 
stratigraphic relationship between the facies associations 1, 2 and 3. The lower contact of facies 
association 2 with facies association 1 is gradationaL Within facies association 2, the Nummulites 
siliciclastic pack/grainstone facies is typically succeeded by the Nummulites coralline algae 
siliciclastic packstone. The Nummulites Discocyclina siliciclastic packstone may succeed this facies, 
but often occurs isolated within the calcarenites. See appendix 1 for key to log. 
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The Nummulites siliciclastic pack/grainstone is typically succeeded by the 

Nummulites coralline algae siliciclastic packstone facies. The contact is gradational 

over 5 to I 0 cm. Sediments contain the same foraminifera assemblage as the 

preceding facies, although coralline algae (as rhodoliths and laminar crusts) becomes 

increasingly abundant and Nummulites are dominated by large robust lenticular forms 

up to 3.5 cm in diameter. 

The Nummulites Discocyclina packstone occurs in the absence of the 

Nummulites coralline algae siliciclastic packstone facies. The contact between the two 

facies is gradational. Sediments are dominated by large (up to 2 cm), flattened, 

discoidal Discocyclina tests with lenticular intermediate Nummulites and subordinate 

Operculina (Figure 3.30a). Foraminifera tests display chaotic stacking (Figure 

3.30b ). In the western limit of the study area, this facies association is represented by 

accumulation of the Operculina mudstone facies (log CA-8, bed 1 0). Thin, discoidal 

Operculina tests occur intact within laminated muds. 

Interpretation 

This facies association contains a marine faunal assemblage. It is inferred from 

the stenohaline biota that open marine conditions prevailed throughout accumulation 

of this association (Ghose 1977, Hallock and Glenn 1986, Gee I 2000). Deposition 

within the photic zone is inferred from the abundance of coralline algae and 

symbiont-bearing foraminfera (Chapronierre 1975, Ghose 1977, Hallock 1988). High­

energy conditions are inferred from the presence of rhodoliths and thick, warty 

coralline algae crusts (Reid and Maclntyre 1988, Minnery et al. 1985, Minnery 1990). 

Reworking of sediments is inferred from the presence of cross-stratification and 

chaotic stacking offoraminifera tests (Aigner 1983, Racey 1988, 2001). This occurred 

in situ as the state of preservation of tests indicates that have not undergone 

transportation. This in situ reworking has locally removed fines and fragmented more 

fragile bioclasts such as bryozoa and molluscs. 

The abundance of non-carbonate material in the matrix of sediments indicates 

their accumulation under the influence of a siliciclastic input and/or the influence of 

currents reworking pre-deposited siliciclastic sediments. It is inferred that unstable 

substrates inhibited the development of a sessile calcareous organisms such as corals. 

Larger benthic foraminifera such as Nummulites were able to use their pseudopodia to 

144 



Calders facies and palaeoenvironmental analysis 

extract themselves if buried (van der Zwann et al. 1999). Progressively more stable 

environmental conditions with a decrease in coarse siliciclastic sediment input are 

inferred from the progressive vertical increase in the abundance of coralline algae, 

although maintained high-energies are inferred from the dominance of larger 

Nummulites tests over smaller forms that have been preferentially winnowed (cf. 

Aigner 1982, 1983). 

Large, flattened Discocyclina and Operculina tests are characteristic of poorly 

illuminated conditions (Hottinger 1983, Leutenegger 1984, Hallock and Glenn 1985, 

Trevisani and Papazzoni 1996). It is postulated that Nummulites Discocyclina 

siliciclastic packstone and Operculina mudstone facies were deposited in relatively 

deep, protected or turbid waters. Siliciclastic sediments within the matrix are clay to 

silt grade, and would have remained in suspension before deposition. 

In summary, facies association 2 represents reworked larger foraminifera and 

coralline algae accumulations that developed on siliciclastic substrates within the 

photic zone (Figure 3.52). 

0 Nummu/ims coraltine algae siliciclastic packstone 

0 Nummulites silicidastic packstone 

0 Nummu/ites Oiscocycfina siliciclastic packstone 

0 Operculina mudstone 

Figure 3.52 Placement of the constituent facies of facies association 2 into LES space. Most facies 
were deposited within moderate to high-energy settings characterised by high siliciclastic input and 
variable light intensities. The Operculina mudstone facies formed within poorly illuminated conditions. 
Although the matrix contains siliciclastic material, low energy conditions and the fine-grained nature of 
sediments resulted in low rates sediment of sediment accumulation. 
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3.4.3 Facies association 3 

Facies: 

Occurrence 

Coral bioclastic pack/rudstone 

Coralgal foraminifera rudstone 

Coralgal foraminifera float/rudstone 

Coral wackelfloatstone 

Facies association 3 is encountered in all carbonate intervals of the Calders 

succession (Figure 3.46). This facies association is up to 9 m in thickness and extends 

laterally > 1 km (Figure 3.46). This association is often intercalated with facies 

association 4 (Figure 3.46, carbonate interval 5), and overlies facies association 2 

(Figure 3.53). The contact is sharp but non-erosional. In some localities, the lower 

contact with facies association 2 is often enhanced by later dissolution during burial 

(Figure 3.29c). 

Characteristics 

This facies association contains carbonate-dominated sediments with a 

variable abundance of corals, coralline algae, encrusting foraminifera and fine-grained 

matrix. Textures include wacke/floatstone, rudstone, float/rudstone and 

pack/rudstone. Figure 3.53 is a typical log through this facies association. 

The first facies to be deposited is typically the coral wacke/floatstone. Platy 

corals are locally abundant where this facies overlies the larger benthic foraminifera 

coralline algae facies association (Figure 3.29c). Sediments are composed of sparsely 

distributed small branching corals situated within a muddy mixed carbonate­

siliciclastic matrix (Figure 3.17). Matrix can comprise up to 80 % of sediments, and 

clay to silt-grade siliciclastic material comprises 12 to 34 wt. %. Coral colonies may 

demonstrate thin coralline algae crusts (Figure 3.17c) with fragile bioclasts such as 

bryozoa well preserved in the matrix (Figure 3.17d). 

The coral wacke/floatstones are succeeded by and/or intercalated with coral 

bioclastic pack/rudstones (Figure 3.53). The contact is sharp but non-erosional. 

Sediments are characterised by sparsely distributed in situ coral colonies that are often 

overturned (20 to 30 % of facies volume) (Figure 3.15a). The intervening 

pack/rudstones contain abundant coral, coralline algae and foraminifera debris 

(Figures 3.15b and c). Fragmented bioclasts show minor abrasion. Foraminifera 
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include benthic forms (Amphistegina and Gypsina), with large encrusting Haddonia, 

Fabiania, Chapmanina and victoriellids (Figure 3.16b). Concentric laminar 

rhodoliths with delicate and columnar branches up to 7.5 cm in diameter are also 

present. Clay to silt-grade siliciclastics comprise 7.5 to 20.5 wt.% of sediments 

(Section 3.3.1.3). 

The final sediments to be deposited in this association are coralgal foraminfera 

rudstones and float/rudstones (Figure 3.53). These sediments are characterised by in 

situ branching, domal and foliaceous coral colonies with an intervening bioclastic 

matrix. Corals often demonstrate thick laminar and warty coralline algae-foraminifera 

crusts (Figures 3.18a, 3.19a and 3.20b). Spheroidal concentrically laminated 

rhodoliths are common (Figure 3.20c ). Sediments contain a diverse foraminifera 

assemblage dominated by encrusting forms (Gypsina, Haddonia, Fabiania) with 

miliolids, Amphistegina and small hyaline benthics. Bioclasts are situated within a 

mixture of micrite (up to 65 %) and clay to silt grade siliciclastic material (5 to 

21 wt.%). 

Interpretation 

This facies association contains a marine faunal assemblage, with normal open 

marine conditions indicated from the stenohaline biota. The coral wacke/floatstones 

are interpreted to have formed within a low-energy setting with a significant input of 

fme-grained siliciclastic sediment that would have been deposited from suspension 

(Section 3.3.1.4). It is interpreted that the initial phase of platy coral growth on the 

larger foraminifera coralline algae facies association is attributed to low light levels 

with fine-grained siliciclastic sediments kept in suspension. A progressive increase in 

the relative abundance of delicate branching corals is attributed to increased 

deposition of suspended part!culate sediments through decreasing water energy and/or 

increased water clarity through reduced suspended sediment input. It is inferred from 

the negligible cryptic community that branching corals were living constratally 

(Section 3.3.1.4). 

The coral bioclastic packlrudstones, coralgal foraminifera rudstone and 

coralgal foraminfera float/rudstone facies contain a greater abundance and diversity of 

in situ corals. It is inferred from the flourishing cryptic community (crustose coralline 

algae and large encrusting foraminfera) that corals were growing suprastratally, 
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although there is no evidence to suggest the development of any topographic relief 

(Sections 3.3.1.3, 3.3.1.5 and 3.3.1.6). Moderate to high-energy conditions and 

competition for space is inferred from the development of thick, warty coralline algae 

crusts, particular within rudstones (Reid and Maclntyre 1988, Minnery et al. 1985, 

Minnery 1990). Agitated conditions are confirmed from the presence of rhodoliths 

(Bosence 1983b ). In situ fragmentation and limited transportation of organisms is 

inferred from moderate to low abrasion of bioclasts. 

A moderate siliciclastic input is indicated from the significant percentage of 

non-carbonate material. Intermittent low-energy periods are inferred from the fine 

grainsize of siliciclastics and the local abundance of micrite. Additionally, the 

suprastratal coral growth fabrics can locally modify the hydrodynamic conditions, 

creating sheltered areas and trapping suspended sediment (lnsalaco 1998). 

In summary, it is interpreted that facies association 3 represents patchy in situ 

coral development within a shallow marine shelf setting. Rudstone textures with 

abundant encrusting organisms formed in local high-energy areas. Float/rudstones and 

pack/rudstones formed in adjacent low-energy areas receiving the detritus of erosion 

of the local coral accumulations. Coral wackelfloatstones formed within the lowest­

energy setting within neighbouring shallow, muddy partially protected environments 

(Figure 3.54). 

3.4.4 Facies association 4 

Facies: Foralgal pack/grainstone 

Gypsina grainstone 

Miliolid coralline algae pack/grainstone 

Occurrence 

This facies association is encountered in carbonate intervals 2, 5 and 6 (Figure 

3.46). Within carbonate interval 6, the foraminifera grainstone facies association can 

be traced laterally for over 2 km (Figure 3.46). The measured thickness of sediments 

ranges from 1 to 3.5 m, although within carbonate interval 5 this association is up 20 

m thick (Figure 3.46). This facies association often succeeds facies association 1 

where the larger benthic foraminifera and coralline algae association is absent or very 

thin (e.g. carbonate interval 6, Figure 3.46). The contact with facies association 1 is 

sharp and non-erosional. This facies also occurs intercalated with facies association 3 
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(i.e. log CA-4a, beds 4 to 12), and may be succeeded by facies association 5 (Figure 

3.46). 

Characteristics 

This facies association is composed of carbonate-dominated sediments with 

packstone and grainstone textures. Figure 3.55 represents a typical log through this 

succession. If present, the miliolid coralline algae packlgrainstone is the first facies to 

be deposited in this association. The contact between the miliolid coralline algae 

packlgrainstone and overlying foralgal packlgrainstone facies is gradational. 

Sediments are moderately well sorted. Abraded miliolids and coralline algae 

fragments with subordinate Gypsina and Orbitolites are the dominant biota. Clay to 

silt grade siliciclastic material comprises up to 25.5 wt. %of sediments. 

The majority of this facies association is composed of intercalated Gypsina 

grainstones and foralgal pack/grainstones (Figure 3.53). The two facies differ only in 

that Gypsina dominates the former, comprising up to 25 % of sediments. Other 

forarninifera present in abundance are miliolids, texturaliids, Rotorbinella, Calcarina, 

Amphistegina, Nummulites, Haddonia, Chapmanina, Fabiania and victoriellids. 

Coralline algae occur as spheroidal concentric laminar rhodoliths, peloids and 

articulated forms. Patchily distributed in situ branching corals are observed, although 

corals do not make up a framework. Intergranular areas are largely cemented with 

calcite spar (up to 59 %), although micrite and clay to silt-grade siliciclastic material 

can comprise up to 20 % of sediments. 

Interpretation 

Facies association 4 contains a marine faunal assemblage and deposition 

within the photic zone is inferred from the presence of symbiont-bearing forarninifera 

such as Amphistegina, Calcarina and Nummulites (Ghose 1977, Hallock and Glenn 

1985, Hohenegger et al. 1999). Moderate to high-energy conditions are inferred from 

the packlgrainstone textures, abraded bioclasts and the dominance of robust 

Nummulites and Amphistegina with thick test walls (Hallock and Glenn 1985, Hallock 

1988). Intermittent, low-energy periods are inferred from the accumulation of clay to 

silt grade siliciclastic material. Accumulation of fines may have been locally 

enhanced through the presence of in situ corals (see Sections 3.3.1.7 and 3.3.1.8). It is 
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postulated that sea grass (not preserved) was abundant in this environment. Miliolids, 

Amphistegina, Calcarina and articulated coralline algae can adapt to an epiphytic 

mode of life in high-energy conditions where substrates may be unstable or unsuitable 

(Ghose 1977, Carbone et al. 1994, Hohenegger et al. 1999). It is inferred from the 

abundance of miliolids and dearth of rotaliids that the miliolid coralline algae 

pack/grainstone facies was deposited in a shallower setting than the foralgal 

pack/grainstone and Gypsina grainstones. 

In summary, facies association 4 formed within a moderate to high-energy 

marine environment within the upper parts of the photic zone (Figure 3.56). This 

environment was subject to fme-grained siliciclastic sediment input during low­

energy periods. Accumualtion of fines was also encouraged through the baffling 

effect of corals and sea floor vegetation. 

3.4.5 Facies association 5 

Facies: 

Occurrence 

Coral mixstone 

Coral domestone 

Facies association 5 is present in carbonate intervals 5, 5a and 6 (Figure 3.46). 

This facies association can be traced laterally 50 to 100 m, and measured thickness 

ranges from 3 to I 0 m (Figure 3.57). This association is intercalated with facies 

association 3 (log CA-4a beds 12 and 13) and facies association 4 (log CA-4b beds 12 

and 13). The upper and lower facies association contacts are sharp and non-erosional. 

Description 

This facies association is composed of carbonate-dominated sediments that 
-

have mixstone and domestone textures. Figure 3.57 is a summary log of a typical 

succession through this facies association. 

Where present, the coral domestone underlies the coral mixstone. The upper 

contact with the coral mixstone is gradational, marked by a gradual diversification in 

coral colony morphology over a distance of approximately 50 cm (log CA-4b, beds 12 

and 13). Coral mixstone comprises most of this association (Figure 3.57). In situ 

corals dominate the biota, with coral skeletal volumes up 55 %. Colonies demonstrate 

branching, domal, foliaceous and massive morphologies (Figures 3.10 and 3.13), and 
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locally make up a framework (although there is no evidence to suggest they formed 

significant topographic relief). Coralline algae and larger foraminifera may encrust 

corals. Corals have also been extensively bored by lithophagids (Figure 3.11c and d). 

A bioclastic packstone matrix is preserved within pockets between coral colonies. Up 

to 27.5 wt. % of the matrix is clay-grade siliciclastic material. Well-preserved, 

unabraded bioclasts in the matrix include laminar coralline algae, encrusting 

foraminifera (Haddonia, Fabiania, victoriellids and acervulinids), bryozoa and 

molluscs. Elliptical rhodoliths up to 5 cm in diameter show variable growth 

morphologies, from tight concentric laminae to delicate branches (Figure 3.12). 

Interpretation 

It is interpreted from the abundance of in situ corals that this facies association 

formed within the photic zone in an open marine setting. Suprastral growth and 

moderate nutrient influxes are inferred from the flourishing cryptic community and 

boring of coral colonies by lithophagids. Variable depositional energies are inferred 

from the changing growth morphology of rhodoliths. A siliciclastic input is inferred 

from the abundance of fine-grained siliciclastic sediment in the matrix. 

In summary, facies association 5 is interpreted as localised, dense in situ coral 

development within a shallow marine setting periodically influenced by a fine-grained 

siliciclastic input (Figure 3.58). 

3.4.6 Summary and depositional model 

Each individual carbonate-siliciclastic cycle represents the deposition and 

colonisation of a siliciclastic substrate, initially by a foraminifera-dominated 

community and then diversification into a coralgal-dominated community. The 

following summarises the temporal and spatial evolution of facies in the Calders area. 

A palaeoenvironmental model, based on the conclusions in the following, is presented 

on Figure 3.61. 

Cyclel 

The first carbonate-siliciclastic cycle was deposited on the arenaceous marls of 

the Vespella Formation. Up to 5 m of siliciclastic sediments were deposited (facies 

association 1 ). Siliciclastic sediments show a broad northward progradation direction. 
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A decrease in siliciclastic input and onset of the carbonate factory is represented by 

deposition of facies association 2. Up to 1. 7 m of nummulitic and coralline algae-rich 

sediments were deposited (Figure 3.56), representing development of Nummulites 

and coralline algae siliciclastic shoals. A progressive increase in hydrodynamic 

energy selectively winnowed smaller foraminifera tests, with deposits containing 

abundant Nummulites up to 3.5 cm in diameter within the highest-energy settings. 

These deposits can be traced laterally >500 m (Figure 3.46). 

The cessation of coarse-grained siliciclastic input and a decrease in 

hydrodynamic energy is interpreted from the deposition of facies association 3. Low­

energy, partially protected conditions prevailed in the east (log CA-7), indicated by 

accumulation of 4.6 m of the coral wackelfloatstone facies. Contemporaneous 

moderate to high-energy conditions prevailed approximately 700 m to the west (logs 

CA-2 and CA-3), where the coralgal foraminifera rudstone and coral bioclastic 

pack/rudstone facies formed. It is interpreted that the area to the west was 

characterised by patchy coral development with localised (< 50 m in diameter) areas 

of more dense coral growth. It is postulated that the development of corals to the west 

provided protection from marine currents to the area in the east. 

Cycle2 

Carbonate development ceased as a consequence of siliciclastic input. The 

sharp, non-erosional contact between facies associations 3 and 1 indicates that the 

change from carbonate development to siliciclastic sedimentation was rapid. Up to 

6 m of siliciclastic sediments were deposited, thinning to 2.4 m towards the east (CA-

13). High-energy, shallow marine conditions in the southeast are inferred from the 

presence ofthe lenticular polyrnict conglomerate facies (log CA-7). 

Decreasing siliciclastic input and initiation of the carbonate factory is inferred 

from the deposition of facies association 2, although the lateral extent of sediments 

cannot be determined due to lack of continuous exposure. High hydrodynamic energy 

is inferred from the large Nummulites test size and abundance of rhodoliths. 

The cessation of sand-grade siliciclastic input and the development of more 

stable substrates are interpreted from the development of facies association 3 

(Figure 3.46). As described for cycle 2, low-energy conditions existed in the east with 
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the accumulation of the coral wacke/floatstone facies (log CA-7) with relatively high­

energy conditions with abundant in situ corals towards the west (log CA-3). The 

development of a contemporaneous shallow, high-energy foralgal shoal setting 

approximately 200 m to the east is evident from the gradation of facies association 3 

into facies association 4 between logs CA-7 and CA-13. 

Termination of carbonate production within cycle 2 was less abrupt than 

cycle 1, evident by the deposition of up to 3.4 m of facies association 2 above the 

coral-dominated facies (Figure 3.46). The contact is gradational over 10 cm. It is 

interpreted that increasing rates of siliciclastic input caused mortality of sessile biota 

such as corals. However, siliciclastic input was within the tolerable limits of more 

mobile organisms such as Nummulites and rhodoliths. 

Cycle3 

The mortality of most calcareous benthic organisms resulted from the area­

wide deposition of up to 13 m of facies association 1 (Figure 3.46). High-energy 

conditions prevailed, inhibiting the development of a sessile benthic community. The 

dominant biota were infaunal burrowing echinoids and soft-bodied beasts, although a 

thin accumulation of facies association 2 is evident (log CA-7, bed 21). Larger 

foraminifera are dominated by thin, discoidal Discocyclina, thus were deposited under 

low-light conditions (Hallock 1988, Racey 1988, 2001 ). This is interpreted as a 

localised phenomenon as this interval cannot be traced laterally. 

Widespread (> 1 km) deposition of up to 1. 7 m of facies association 2 

represents a decrease in siliciclastic input and onset of carbonate production. High­

energy conditions are inferred from Nummulites tests reworked in conglomeratic 

channels (Figure 3. 50). 

The development of thick carbonate units is evident in the west of the study 

area (log CA-3), with deposition of up to 2.4 m of facies association 3. It cannot be 

ascertained if carbonate development occurred during cycle 3 towards the east due to 

lack of exposure (Figure 3.46). Patchy, locally dense coral development (CA-3) was 

contemporaneous with the deposition of coral detritus (coral bioclastic bioclastic 

pack/rudstones) 500 m to the northwest (log CA-8). 
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Cycle4 

Widespread deposition of up to 13 m of facies association 1 halted carbonate 

development in Cycle 3. Facies association 1 thins to 10 m down-dip (towards the 

west and northwest) (Figure 3.46). Rapid sedimentation and burial ofbiota is inferred 

from the sharp lower contact with facies association 3. Subsequent accumulation of 

0.4 to 1.5 m of facies association 2 indicates initiation of the carbonate factory as 

siliciclastic input decreased. 

With continued decrease in siliciclastic input, carbonate-dominated deposition 

resumed. As described in the previous cycles, low-energy conditions with abundant 

clay-grade siliciclastic input prevailed in the east (CA-7), with accumulation of the 

coral wacke/floatstone facies. Carbonate development in the far eastern limit of the 

study area (logs CA-12 and CA-13) can only be inferred. Contemporaneous 

moderate-energy conditions with patchy, locally dense coral development prevailed 

approximately 150 m to the west (CA-3) with accumulation of the coralgal 

foraminifera rudstone facies. Low to moderate-energy conditions existed 1 km to the 

northwest, with accumulation of the coral bioclastic pack/rudstone facies (CA-8). 

CycleS 

Widespread deposition of facies association 1 terminated carbonate production 

of Cycle 4. Facies association 1 thins from 16 m in the west (CA-8) to 6m2 km to 

the east (Figure 3.46). The subsequent cessation of siliciclastic input in the east (CA-

12) is marked by the deposition of the Gypsina calcarenite facies (Figure 3.43 and 

3.46). In the central part of the study area (CA-9), the transition is marked by the 

Nummulites siliciclastic packstone facies (Figures 3.44 and 3.46). The transition is 

marked by the deposition of the Operculina mudstone facies to the west (Figures 3.44 

and 3.46). An east to west decrease in hydrodynamic energy, siliciclastic input and 

possibly incident light is interpreted from this facies trend. 

Two carbonate intervals developed during cycle 3. The main carbonate 

interval (interval 5) thickens significantly from 5 m in the west (CA-8) to 

approximately 18 m in the east (CA-ll) (Figure 3.46). Carbonate interval 5 is 

dominated by intercalation of facies associations 3 and 4, and culminates with the 

development of facies association 5 (Figure 4.46). The development of 

contemporaneous high-energy, shallow foralgal shoals and relatively lower-energy 

coral development in adjacent areas is interpreted from this association. More 
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persistent high-energy conditions are inferred for the east from the thick accumulation 

of facies association 4 (CA-ll) (Figures 3.44 and 3.46). Unstable environmental 

conditions and shifting facies belts are inferred from the intercalation of detrital facies 

with facies containing a significant proportion of in situ corals. Development towards 

stable environmental conditions is inferred from the culmination in a coral mixstone 

(Figure 3.46). 

Carbonate interval 5a thickens from < 2 m to 6 m over a distance of 

approximately 1 km (Figures 3.44 and 3.46). Facies association 3, composed of coral 

wacke/floatstones) passes laterally into facies association 5 (Figure 3.46). A 

progressive increase in water energy from west to east is inferred from this 

arrangement of facies. 

Cycle6 

As described in all of the previous cycles, widespread deposition of 12 to 20 m 

of facies association I terminated carbonate production in Cycle 5. Facies association 

I within cycle 6 culminates with the deposition of the Gypsina calcarenite facies 

(Figure 3.47). This facies demonstrates a progradational morphology and is observed 

to thin significantly down-dip towards the northeast (Figure 3.59). This facies 

represents the colonisation of an unstable siliciclastic substrate by sea floor vegetation 

and non-symbiont-bearing larger benthic foraminifera (Sections 3.3.3.1 and 3.4.1). 

It is interpreted that the carbonate factory was established as siiiciclastic input 

decreased and water became less turbid, allowing colonisation by symbiont-bearing 

biota (Figure 3.59c). Facies association 4 formed within high-energy conditions on 

abandoned foresets and thickened down-slope roughly northward (Figure 3.59c). The 

base of carbonate interval 6 is marked by the wide spread (>2 km) accumulation of up 

to 8 m of facies association 4 (Figures 3.44 and 3.46). Facies association 4 passes 

laterally (down-slope) into coral wacke/floatstones of facies association 3 

(Figure 3.59). It is inferred that this facies developed in a sheltered, low-energy area. 

Carbonate interval 6 is well exposed only along the B 124 road between K38 

and K39 (Figure 3.1), and is represented by log CA-4b (Appendix 5). The coral 

wacke/floatstone facies IS succeeded vertically by coralgal foraminifera 

float/rudstones and rudstones, culminating with facies association 5 (Figures 3.44 and 

3.60). This is interpreted as a shallowing upward succession, and represents the 

increasingly dense development of corals and associated fauna. The presence of a 
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Figure 3.59 Photomontage (a) and close-up field sketch (b) from GR 17352620 (looking NNE) of a 
clinoform structure at the base of carbonate interval 6. The Gypsina calcarenite facies thins towards 
the northeast over a distance of ~50 m. The overlying foralgal grainstone facies thickens towards the 
northeast. 
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Figure 3.59c Depositional model based on the 
observations above. The thinning, cross-stratified 
Gypsina calcarenite unit is interpreted as a 
foreset that was colonized by seagrasses and 
Gypsina. The carbonate factory became 
established as siliciclastic sediment input reduced 
and the substrate became stable. A thick 
accumulation of the foralgal packlgrainstone 
developed (facies association 4), and coral 
wacke/floatstones (facies association 3) formed 
down-dip in a relatively protected area. 
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Figure 3.60 Photomontage (a) and interpretation (b) illustrating the relationship between the coral 
mixstone, coralgal foraminifera rudstone and foralgal grainstones facies (facies associations 5, 3 and 4 
respectively) within carbonate interval6. GR 16142676 (looking NNE). Scale bar= 2 m approximately. 
Field of view = 50 metres. 

Patchy coral development 

Dense coral development 

160 

• 
Facies associationS 
(Coral mixstone racies) 

• 
Facies associatlon3 
(Coralgal roraminifera rudstone facies) 

• 
FaCles assocla1Jon3 
(Coral wackeJfloatstone facies) 

• 
Facies assoclabon 4 
(Foralgal gra.nstone fac~es) 

F acies assoc~abon1 
(Gypsina calcarenite fac1es) 

I Sea grass j8l Coral 3 ,eoral t l!J Currents 
ragrnen s 

Figure 3.60c Depositional model based on the 
observations above and those presented on 
Figure 3.59. The previously deposited coral 
wacke/floatstone facies grades vertically and 
down-dip into the coralgal foraminifera facies, 
culminating in the development of the coral 
mixstone facies (facies association 5). Note the 
presence of a contemporaneous high-energy 
foralgal shoal to the east (facies association 4). 
Facies association 5 is interpreted as a small area 
(up to - 50 metres in length) of dense coral 
development. See text for discussion. 
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contemporaneous, high-energy foralgal shoal to the immediate east is inferred from 

the intercalation of facies association 4 (Figure 3.60). The coral mixstone facies is 

observed to pass laterally into facies association 5 towards the east (Figure 3.60). 

In summary, the Calders succession represents the deposition of six carbonate­

siliciclastic cycles. Sedimentation and the development of biota was influenced by 

water energy, sediment supply and incident light. Each cycle is represented by an 

initial siliciclastic lithology with a progradational architecture. Abandonment and 

stabilisation of siliciclastic macro-bedforms occurred as a consequence of decreased 

sediment input. The initial biota to develop were tolerant of moderate to high energy 

levels, sediment input and unstable substrates as marine currents reworked 

siliciclastics. Biota were dominated by the larger benthic foraminifera Nummulites, 

Discocyc/ina and Gypsina, and coralline algae. With establishment of the carbonate 

factory and the cessation of coarse siliciclastic input, coral-dominated facies 

developed. Carbonate development was terminated by a rapid input of siliciclastics 

that caused the mortality of most biota. 

3.5 Sant Amanc facies 

The studied units at Sant Amanc are situated along a northeast-southwest 

trending ridge in the northwestern sector of the study area (Figure 3.1b). The units 

are situated stratigraphically above the carbonate-clastic succession described in 

Sections 3.2 to 3.4. A stratigraphic contact between the carbonates of the main 

Calders succession and the Sant Amanc succession is not clearly exposed. However, 

the red mudrocks and sandstones (Artes Formation) and cross-stratified gravelly 

litharenites and mudrocks (Complejos de Calders Formation) encountered 

stratigraphically above the Calders section along the N-141 (Figures 3.3, 3.4 and 3.7) 

are also encountered stratigraphically above the units of the Sant Amanc section. 

Siliciclastic lithologies situated stratigraphically above carbonate interval 6 of the 

Calders succession are exposed at GR17502641 (log CA-16). A correlation between 

these sediments and the Sant Amanc succession is presented in Figure 3.62. 

The exposures at Sant Amanc are orientated northeast-southwest, roughly 

parallel to the palaeoshoreline trend determined from progradational sedimentary 

structures in the underlying Calders section. There is no evidence to suggest a 
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a) Sketch map of the calders-Sant Amanc study area, iDustrating 
the location of sedimentary logs CA-16 and SA-30 
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b) Correlation of sedimentary logs from the 
Calders (LCA 16) and Sant Amanc (SA-30) 
areas, illustrating the lateral continuity of 
facies 
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Figure 3.62 Correlation of ~e Calders and Sant Amanc 
successions. Although the contact between carbonate interval 6 
and the Sant Amanc sediments cannot be observed directly, the 
succession exposed at GR17502641 (log CA-16) represent the 
first beds encountered above the top of the carbonate interval. 
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(a) Location map 

N-141 
to Sant Fruitos 

de Bages 

metres 
4.5 

4.0 

35 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

•16 •18 

• 569 Spot heigt\t ....__ Riverbed .....--........Topographic contour 

Detailed map of logged section 

• SantAmanc 

418 
0 

100 Metres 

b) Three-dimensional facies correlation of the Sant Amanc area. Correlation ties lines have been traced 
in the field . Note the extreme vertical exaggeration of sedimentary logs. 
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Figure 3.68 

Figure 3.64 
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Stratigraphic 
occurence 

Facles Characteristics Depositional environment 

Upper 
Thin beds. MM-scale crinkly 
laminations of dark micrite and 

Carbonate Unit Micritic and 
light micrisparite with fenestrae. 

Bottom colonization by 
microsparitic cyanobacterial mats in a 
laminated Low diversity fauna comprising 

restricted intertidaVsupratidal 
mudstone discorbids, small porcellaneous 

setting, possible hypersalinity. 
foraminifera and ostracods. 
Pedogenic nodules. 
Units thicken over bioherm 
crests. Fauna dominated by 

Serpulid packstone 
micritic serpulid tubes with rare Nutrient-rich, high-energy 
ostracodes, dasycladaceans, conditions. 
porcellaneous and texturallid 
foraminifera. 
Grains dominated by peloids, 
porcellaneous foraminifera 

Porcellaneous 
(miliolids, Spirolina, Taberina) 

Shifting bioclast sand shoals 
and texturaliids. Also contains 

foraminifera 
coralline algae ( Coral/ina, 

periodically fixed by 
grains tones 

Jania, Lithoporella), with 
cyanobacterial mats. 

alternating with Environmental conditions 
Middle micritic laminated 

echinoids, ostracods, bryozoa, 
alternate between storm and 

Carbonate Unit mudstone 
bivalves, gastropods, and 

calm intervals. 
dasycladacean algae. Crinkly E .. 
micritic laminae represent ~ 
cyanobacterial mats. 01 

Megaripples. Variable thickness c. ... 
beds. Foraminifera dominated Ol 

..0:: 
by Taberina, Orbitolites, "' Porcellaneous ~ 
Spirolina texturaliids and ~ Current-reworked setting. 

foraminifera and c 

coralline algae 
peneroplids. Green .5 Shallow conditions with normal 
(dasyclasdaceans) and red algae ..; marine salinities. grains tones 
(Lithoporella and Corallina and !:! .. 

~ 

Jania). Oolitic coatings present 0 
on some bioclasts. 

.. 
g. 

Variable relative proportions of 
articulated coralline algae 

Crustose coralline (Jania and Corallina), corals, 
algae, bryozoa and serpulids and siliciclastics. Also Longshore current influenced 
attached encrusting algae (Lithoporella elongate bioherms. Patchy 
foraminifera and Lithothamnion) and macro-algae vegetation. 
bounds tones foraminifera (victoriellids and 

haddoniids). Encrusters may 
form a framework. 
Tabular units, often bioturbated. 
Highly diverse foraminiferal 
assemblage dominated by 

Lower alveolinids, soritids, 
Carbonate Unit Porcellaneous 

peneroplids, miliolids, 
Shallow mesotrophic setting 

foraminifera and with normal marine salinities . 
- - - coralliile algae 

. agglutinated. forms and 
· Larger porcellaneous 

valuvulinids. Minor small 
wackestone-

hyaline forms including 
foraminifera lived epiphytically 

packstone 
discorbids, bolvinids and 

on perennial vegetation. 

cibicids. Articulated coralline 
algae ( Corallina and Jania) and 
encrusting Lithoporel/a. 

Table 3.4 Summary offacies present in the Eocene "Terminal Complex" sediments of the eastern Pyrenean 
Foreland Basin, as defmed by Trave (1992) and Trave et al. (1996). 
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dramatic change in shoreline orientation between deposition of the Calders and the 

Sant Amanc successions. 

Due to its stratigraphic location and the type of facies present, it is interpreted 

that the Sant Amanc section is a currently unidentified exposure of the "Terminal 

Complex" defmed by Trave (1992). The Terminal Complex is an interval of 

sediments overlying the Milany Depositional Sequence bounded by two regional 

uncomformities. The complex represents the final open marine to restricted marine 

carbonate interval of the eastern Pyrenean Foreland Basin prior to continentalisation 

and deposition of the Solsona Depositional Sequence (Chapter 2). The Terminal 

Complex is composed of three carbonate units interlayered with prograding 

siliciclastic sediments. A summary of the characteristics and depositional 

environments of the terminal Complex is presented in Table 3.4. 

Lithologies are moderately well exposed within a forested area allowing 

detailed logging and lateral correlation of beds. Forty-nine sections were logged and 

correlated (Figure 3.63). The facies scheme used to sub-divide the Sant Amanc 

succession is presented on Table 3.5. 

3.5.1 Coral-dominated facies 

Coral-dominated facies are predominantly carbonate in composition, although 

they may contain a moderate to low fine-grained siliciclastic component (0 to 10 %). 

Facies are characterised by in situ and reworked colonial corals, and only rarely form 

a framework. Coral colonies are rarely in contact. Subordinate biota includes 

porcellaneous foraminifera, coralline algae, molluscs, echinoids and bryozoa. 

Carbonate textures are floatstone, rudstone, bafflestone and wackestone (Table 3.4). 

3.5.1.1 Coral wacke/floatlbaffiestone 

Lithologies: Coral wacke/floatstone 

Coral float/bafflestone 

Occurrence and bed characteristics 

This facies is common in the Sant Amanc section. Upper and lower contacts of 

this facies are sharp to gradational over a few centimetres. Measured bed thickness 

ranges from 30 cm to 1.5 m. Units are preserved as very low-relief mound like 
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Figure 3.64a) Location of logged sections, Sant Amanc 
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Figure 3.64b) East-west correlation of logs A-1 to SA-9 illustrating lateral thickness vanat1ons of the coral 
wacke/floatlbafflestone facies. All logs are ·'hung .. from the base of the coral wacke/floatlbafflestone tacies. Correlation tie­
lines have been traced in the field. Note the extreme vertical exaggeration. 
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Figure 3.65a) Location of logged sections. ant Amanc 
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structures that may be traced laterally for 50 to 100 m (Figure 3.64). Two coeval, 

isolated mounds are identified (Figure 3.63). The first is situated towards the 

northeastern limit of the exposure and is represented by logs SA-l to SA-9 (Figure 

3.64). A second larger mound is identified towards the southwestern limit of the 

exposure, and is represented by logs SA-25 to SA-49. Part of this structure is 

illustrated on Figure 3.65. The coral wacke/float/bafflestone facies often passes 

laterally into the porcellaneous foraminifera wacke/packstone facies (Figure 3.65). 

The coral wackelfloat/bafflestone facies has a nodular appearance. This facies 

weathers a pale grey to white colour (Figure 3.66a). Fresh surfaces are pale grey to 

green-blue in colour. Nodules are up to 15 cm and may be locally aligned sub-parallel 

to bedding. Blue-grey clay-grade material often surrounds nodules, and may form thin 

( <3 cm) laterally restricted horizons. 

Lithological description 

This facies is characterised by an abundance of in situ and/or fragmented 

branching and massive corals (Figure 3.66). In situ corals rarely make up a 

framework and are only locally in contact with one another. Angular, unabraded coral 

fragments range from 0.2 mm to 10 cm and comprise 15.5 to 48.5 % of this facies 

(Figure 3.66b). Primary internal cavities are in-filled with matrix and bioclastic 

debris. Coral fragments occasionally have thin crusts (<lmm) of coralline algae 

(mainly Lithoporella and Lithothamnion). Laminar coralline algae crusts comprise up 

to 5.5 % of this facies. Crusts are often detached and are preserved floating in the 

matrix. 

The coral wacke/float/bafflestone facies contains a moderately diverse faunal 

assemblage, although fossils typically comprise less than 50 % of this facies. 

Foraminifera include miliolids (0 to 2 %), Orbitolites (0 to 2.5 %), texturaliids 

(< 1 %) (Figure 3.67a), undifferentiated hyaline benthics (a mixture of discorbids, 

bolvinids and cibicids) (0.5 to 3 %) and encrusting forms such as Haddonia and 

victoriellids (0 to 1.5 %). Orbitolites tests, up to 5 mm in diameter, have a flattened, 

discoidal morphology. Tests show moderate abrasion and fragmentation. Miliolids, 

dominated by Quinqueloqulina, are up to 2 mm in diameter, and are preserved intact 

alt~ough may be abraded. Red staining of porcellaneous foraminifera tests is observed 

in some samples of this facies. 
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Other fossils present in this facies include gastropods (0.5 to 3 %), bivalves 

(0.5 to 2 %), echinoid spines and plates (0.5 to 3.5 %}, peloids (possibly highly 

abraded coralline algae fragments) (up to 11.5 %) and very rare bryozoa (< 0.5 %). 

Delicate bivalves up to 2.5 cm are preserved disarticulated and unfragrnented. 

Ornamented gastropods ( Cerithium sp.) up to 2 cm are typically preserved intact 

(Figure 3.67b ). 

Dark-brown micritic matrix compnses 49.5 to 70 % of this facies 

(Figures 3.66b and 3.67b ). The matrix is interpreted to contain some clay-grade 

organic and/or terrigenous material by its dark, locally patchy nature. Silt-grade 

quartz comprises 0 to 2.5 % of this facies. Quartz grains are well sorted, angular and 

subspherical. 

Diagenesis 

Cementation of this facies is inferred by its nodular appearance, although it is 

difficult to resolve carbonate cement from the fine, muddy matrix. Formerly 

aragonitic fossils (molluscs and corals) have been leached with the resultant 

biomouldic pores fully occluded with drusy calcite spar cement (Figure 3.67b ). 

Sutured nodule contacts are observed in some localities, and blue-grey circum­

nodular clays indicate dissolution and concentration of insolubles. Milimetre-scale 

drusy calcite spar cemented microfractures are observed in thin section 

(Figure 3.67a). Blue-grey mud surrounding nodules is interpreted as circum-nodular 

dissolution seams and their formation is likely related to post-depositional compaction 

and dissolution of the succession. 

Interpretation: depositional environment 

The coral wackelfloat/bafflestone facies contains a marine faunal assemblage. 

Normal marine salinities are inferred from the presence of corals and Orbitolites 

(Ghose 1977, Leutenegger 1984, Geel 2000). Recent larger porcellaneous 

foraminifera comparable to Orbitolites may inhabit high-salinity settings, although 

they tend to adopt aberrant morphologies that are not observed in this facies (Reiss 

and Hottinger 1984). Orbitolites is an endosymbiont-bearing foraminifera, thus 

deposition within the photic zone is interpreted from its presence (Leutenegger 1984, 

Geel2000). 
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a) 

b) 

Figure 3.66a Field exposure of the coral wackelfloatlbafflestone facies, log SA-32, bed 3. Hammer for 
scale=45cm. 

Figure 3.66b Photomicrograph (PPL) of the coral wackelfloatlbafflestone facies (Sample LCA 110, log 
SA-8, bed 3). (i) Large coral fragments, (ii) miliolid, (iii) agglutinated foraminifera, (iv) rounded 
coralline algae fragment, (v) echinoid spine. Scale bar=2mm. 
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Figure 3.67a Photomicrograph (PPL) of the coral wacke/float/bindstone lithofacies. Sample 
LCA 145, log SA-44, bed 4). (i) texturaliid foraminifera, (ii) dark brown-green muddy matrix 
which comstitutes upto 70% of this lithofacies, (iii) fine dissolution seams in-filled with 
calcite. Scalebar=1mm. 

Figure 3.67b Photomicrograph (XPL) of the coral wacke/float/baffiestone lithofacies. Sample 
LCA 147, log SA-47, bed 3). (i) Intact, omamented Cerithium gastropod. Note that the shell is 
composed of secondary calcite spar and retains no primary structures, (ii) fine skeletal hash 
nresent within the dark muddv matrix. Scalehar=2mm. 
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Porcellaneous foraminifera, such as miliolids and Orbitolites, often adapt an 

epiphytic lifestyle, living on sea grasses and/or macro-algae (Chaproniere 1975, 

Hallock and Peebles 1993, Geel 2000). The presence of perennial sea floor vegetation 

is inferred from the occurrence of large discoidal Orbitolites that are thought to have 

had a long (annual) lifespan. The baffle capacity of this vegetation may have 

promoted the accumulation of carbonate mud. Larger encrusting foraminifera 

(Haddonia and victoriellids) are typical of cryptic environments within the coral 

debris or on vegetation rhizomes feeding on organisms present in interstitial waters 

(Reiss and Hottinger 1984). In this facies, however, they are largely detached. The 

dearth of large encrusting forarninifera suggests that their environmental requirements 

were not met, and colonisation may have been inhibited by the abundance of 

intergranular mud (burying benthic habitats). 

Low-nutrient conditions are concluded from the presence of corals and 

symbiont-bearing larger forarninifera. Local nutrient-rich areas must have existed 

however to support the moderate array of deposit feeders and grazers (i.e. bivalves, 

gastropods, echinoderms etc) and non-symbiont bearing small benthic foraminifera. It 

is suggested by Kitazato (1988) that a moderate abundance of small, free-living 

benthic foraminifera indicates relatively eutrophic conditions at the sediment-water 

interface where nutrients are recycled through burrowing. 

Low-energy conditions are concluded from the high percentage of fine­

grained matrix and the well-preserved nature of delicate bivalves and gastropods. 

Thin, laterally extensive coralline algae crusts are also indicative of lower-energy 

marine environments where competition for space is limited (Reid and 

Maclntyre 1988, Minnery et al. 1985, Minnery 1990). A terrigenous influence is 

inferred from the presence of silt-grade quartz. It is inferred from their angular nature 

that siliciclastic grains were deposited from suspension and underwent limited post­

depositional reworking and/or abrasion prior to deposition and lithification. It is 

suggested that fragmented and abraded bioclasts such as coralline algae are derived 

from a relatively high-energy environment, as other bioclasts in the coral wackestone 

floatstone facies are relatively well preserved. 

The coral wackelfloatlbafflestone facies occurs as very low-relief patch reef 

accumulations, interpreted as biostromes. Log correlations demonstrate that the long 

axis (and maximum thickness) of coral wacke/floatlbafflestone units is orientated 

174 



Calders facies and palaeoenvironmental analysis 

roughly perpendicular to the palaeoshoreline (Figure 3.63). It is inferred from this 

that offshore-directed currents influenced the final morphology of units of this facies. 

This is in contrast to Trave (1992) and Trave et al. ( 1996) who demonstrate that 

longshore currents strongly influenced the morphology of coralgal bioherms of the 

Terminal Complex exposed in the eastern Vie Basin. 

In summary, it is interpreted that the coral wacke/float/bafflestone facies 

represents coral colonisation in a low-energy, mud-rich environment with open 

circulation, probably close to or below fair-weather wave base. Beds of this facies are 

interpreted as very low relief bioherms. Thickness variations across individual facies 

units imply some topographic relief, although there is no evidence to suggest that true, 

framework-dominated patch reefs with significant relief existed. This facies has 

affinities with SMF 8 of Wilson (1975) and the Coral Wackestone facies of Sayer 

(1995). 

3.5.2 Mixed carbonate-siliciclastic facies 

Facies included in this grouping are predominantly carbonate in composition, 

although fine to coarse sand-grade siliciclastic material may constitute up to 50 %. 

Facies are characterised by the presence of larger porcellaneous benthic foraminifera, 

in particular Orbitolites, Rhabdorites and Quinqueloculina. Subordinate biota 

includes coralline algae, smaller rotaline benthic foraminifera, molluscs, echinoids 

and bryozoa. The dominant textures observed are siliciclastic packstones and 

wackestones (Table 3.5). 

3.5.2.1 Porcellaneous foraminifera wacke/packstone 

Lithologies: Porcellaneous foraminifera siliciclastic packstone 

Porcellaneous forarninifera wacke/packstone 

Miliolid wacke/packstone 

Bioclastic packstone 

Occurrence and bed characteristics 

This facies is very common m the Sant Amanc study area. Units of the 

porcellaneous foraminifera wacke/packstone facies can be traced laterally for at least 

200 m along the length of the ridge (Figure 3.63). Measured bed thickness ranges 
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from 15 cm to 1.25 m. This facies is also identified in an isolated exposure situated to 

the west of the Sant Amanc ridge (Figure 3.62). 

Surfaces of the porcellaneous foraminifera wacke/packstone facies weather to 

a grey-brown colour. Fresh surfaces are a pale-grey to green colour. Beds of this 

facies are nodular to massive. Nodules are up 15 cm in length and may be surrounded 

by a soft grey-green siltstone/mudstone. Nodules are commonly aligned forming 

pseudo bedding. Pseudo beds are parallel to bedding contacts. Vertical and sub­

horizontal Thalassanoides-type burrows up to 5 cm in length are observed in some 

beds (e.g. log SA-7, bed 3). 

Upper and lower bedding contacts may be sharp to diffuse. Lower bedding 

contacts with the porcellaneous foraminifera micritic litharenite are gradational, and 

the relative percentage of siliciclastic material decreases vertically from up to 21 %at 

the contact (e.g. LCA 149, log SA-49) to less than 1 % a few centimetres from the 

contact (e.g. LCA 106, log SA-2). Upper and lower contacts of the porcellaneous 

foraminifera wacke/packstone facies with the coral wacke/floatlbafflestone facies are 

often gradational (e.g. log SA-9, beds 3 and 4; log SA-39, beds 3 and 4) but may be 

sharp (e.g. log SA-32, beds 3 and 4). 

The porcellaneous foraminifera wacke/packstone facies is also observed to 

grade laterally into the porcellaneous foraminifera micritic litharenite facies (e.g. logs 

SA-22 and SA-24) and also the coral wackelfloatlbafflestone facies (e.g. logs SA-8 

and SA-9) over distances of around 10 metres (Figure 3.68). 

Lithological description 

This facies is characterised by a moderate abundance and diversity of 

porcellaneous benthic foraminifera including Orbitolites (0 to 5.5 %), Rhabdorites 

(0 to 5 %), miliolids (1.5 to 10 %) and smaller hyaline benthics (0 to 5 %) 

(Figures 3.69a and b). Foraminifera contribute 6 to 19.5 %of samples of this facies. 

Orbitolites tests range from 2 mm to 1 cm. Tests have a flattened, discoidal 

morphology and are typically preserved intact and unabraded (Figure 3.69a). 

Rhabdorites tests have an extended, conical morphology. Tests are up to 6 mm, are 

typically preserved intact although they may be abraded (Figure 3.69a and 3.70a). 

Miliolid tests are up to 5 mm and are typically preserved intact, although some tests 
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Figure 3.69a Photomicrographs 
(all PPL) of the porcellaneous 
foraminifera wacke/packstone 
lithofacies. a) Sample LCA 105, 
log SA-l, bed 3. (i) Flattened 
Orbitolites test, (ii) Rhabdorites, 
(iii) Quinqueloculina, (iv) intact 
Cerithium gastropod. Note the 
abundance of fine-grained, 
muddy matrix. Scalebar =2mm. 

Figure 3.69b. Sample LCA 133, 
log SA-35, bed 2 (i) Rhabdorites, 
(ii) rounded coralline algae 
fragment, (iii) slightly reddened 
miliolid test. Scalebar=2mm. 

Figure 3.69c. Sample LCA 109, 
log CA-7, bed 5 (i) branching 
coralline algae (ii) coral 
fragments, (iii) angular 
siliciclastic grain (iv) miliolid. 
Scalebar=2mm. 



a) 

b) 
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Figure 3.70 Photomicrographs (PPL) of relatively siliciclastic-rich samples of the porcellaneous 
foraminifera wacke/packstone lithofacies. a) Sample LCA 117, log SA-14, bed 3 (i) Rhabdorites, (ii) 
bolvinid small benthic foram, (iii) discorbids, (iv) Orbitolites, (v) ostracod, (vi) angular clastic grains. 
b) Sample LCA 123, log SA-30, bed 2 (i) Planolinderina, (ii) discorbids, (iii) peloid, probably 
highly-abraded coralline algae, (iv) clastic grains. Scalebar=2mm. 
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have a slightly reddened appearance. Other foraminifera present in lesser numbers are 

Spirolina, Valvulina, Planolinderina (Figure 3. 70b) and a moderate diversity of small 

hyaline benthics (discorbids and rare bolvinids). Discorbids are particularly abundant 

in relatively clastic-rich samples (e.g. LCA 117, log SA-14) (Figure 3.70a). 

Other fossils present in this facies include delicate fragmented branching 

corals (0 to 7.5 %), gastropods (0 to 2%), bivalves (0 to 8 %), fenestrate bryozoa 

(< 0.5 %), echinoid spines and plates (0 to 5.5 %), coralline algae (0 to 6.5 %), 

ostracods (0 to 0.5 %), brachiopods (< 0.5 %) and undifferentiated skeletal debris (1.5 

to 12.5 %) (Figures 3.69a and b). Coralline algae occur as fragmented, well-abraded 

laminar (crustose) and articulated forms up to 1.5 cm in length, and peloids (::S 15 %) 

(Figure 3.69c). Primary structures are poorly preserved and fragments are abraded. 

Coral fragments, up to 4 cm in length, are always fragmented and abraded (Figure 

3.69c). Bivalves and ornamented gastropods are typically preserved intact and have 

thin walled shells. 

Dark-brown rnicritic matrix comprises 35.5 to 75.5 % of this facies. Evidence 

for bioturbation in thin section is provided through localised concentrations of 

bioclasts and diffusely peloidal matrix (e.g. sample LCA 140, log SA-40). Siliciclastic 

material comprises < 0.5 to 21 % of samples of this facies. Siliciclastic grains 

identified are predominantly detrital quartz (mono- and polycrystalline varieties) with 

a lesser abundance of lithics (quartz-mica schist and siltstones) and calcite 

(Figure 3.69c). Grainsize ranges from 0.1 to 0.5 mm. Siliciclastics are moderately 

well sorted, angular to subangular and subspherical. 

Diagenesis 

Originally aragonitic bioclasts (corals, bivalves and gastropods) have been 

leached, and the resultant mouldic macropores have been completely occluded with 

calcite spar cement. Forarninifera chambers have been cemented with poikilotopic 

calcite. Recrystallisation of the rnicrite matrix is evident in some samples (e.g. LCA 

123, log SA-9), although this is atypical of this facies. Extensive cementation of this 

facies is inferred by its nodular appearance in the field, although it is difficult to 

resolve carbonate cement from the fine, muddy matrix. Sutured nodule contacts are 

observed in some localities, and mm-scale microsparitic seams are observed in thin 

section. 

180 



--------- --

Calders facies and palaeoenvironmental analysis 

Interpretation: depositional environment 

The porcellaneous foraminifera wacke/packstone facies contains a marine 

fauna! assemblage. Normal marine salinities are inferred from the presence of large 

discoidal Orbitolites rather than the abberant form more typical of higher salinity 

settings (Leutenegger 1984, Geel 2000). Depostion within the photic zone is inferred 

from the presence and well-preserved nature of the symbiont-bearing foraminifera 

Orbitolites, Rhabdorites and Spirolina (Leutenegger 1984, Geel 2000). 

The presence of perennial sea floor vegetation (i.e. sea grasses, macroalgae 

etc.) is inferred from the relative abundance of the large epiphytic foraminifera 

Orbitolites and miliolids, although miliolids are also common in benthic habitats 

(Reiss and Hottinger 1984, Hallock and Peebles 1993). Recent miliolids such as 

Quinqueloculina and Triloculina feed on the superficial algal-bacterial film on 

vegetation (Kitazato 1988). Articulated and branching coralline algae are moderately 

abundant in this facies and are thought to have been a suitable substrate. It is 

postulated that sea grasses were present, but as they contained no hard parts, their 

preservation in the rock record would be unlikely. The baffle capacity of this 

vegetation may have promoted the accumulation of carbonate mud that is the most 

significant component of this facies (cf. Porcellaneous foraminifera and Coralline 

Algae Wackestone-packstone facies ofTrave (1992) and Trave et al. (1996)). 

Oligotrophic conditions are deduced from the presence of large, symbiont­

bearing foraminifera (Reiss and Hottinger 1984). However, the possibility of localised 

nutrient-rich areas is suggested by the abundance of deposit feeding and burrowing 

organisms, and non-endosymbiont bearing smaller benthic foraminifera ( discorbids 

and bolvinids ). Trave ( 1992) and Trave et al. ( 1996) attribute a mixture of larger 

foraminifera with burrowing organisms to the presence of a thin eutrophic layer at the 

sediment-water interface. The majority of the thickness of the water column is 

however, oligotrophic. 

There is no evidence of in situ coral growth within the porcellaneous 

foraminifera wacke/packstone facies although large coral fragments and encrusting 

foraminifera (Planolinderina) were derived locally. The development of significant 

coral accumulations may have been inhibited in this environment by the moderately 

high nutrient levels (discussed above) as corals favour nutrient-poor conditions. 

181 



Calders facies and palaeoenvironmental analysis 

Proximity to a siliciclastic source (i.e. the coastline) is inferred from the 

moderate abundance of quartz and lithic grains in this facies. Limited abrasion due to 

transport and re-working prior to deposition and lithification is interpreted from the 

angular nature of grains. Low-energy conditions and an absence of winnowing 

currents are inferred from the abundant fine-grained matrix. 

In summary, the porcellaneous foraminifera wacke/packstone facies is 

interpreted to represent a low-energy, partially protected (but not isolated) marine 

environment, close to the coastline. Siliciclastic sedimentation rates were low 

allowing substrate colonisation by calcareous benthic organisms. Available substrates 

were also provided on vegetation. This facies has affinities with the Porcellaneous 

Foraminifer and Coralline Algae Wackestone Packstone facies of Trave (1992) and 

Trave et al. (1996). This facies is interpreted as a mesotrophic, partially protected 

inner platform setting. In comparison, there was a higher siliciclastic input in the 

porcellaneous foraminifera wacke/packstone facies of the Sant Amanc section. 

3.5.3 Siliciclastic facies group 

Facies included in this grouping are predominantly siliciclastic in composition, 

although they may contain a significant carbonate component as a combination of 

bioclasts, cement and detrital carbonate grains. The dominant textures are sandstone 

and pebbly sandstone. Grains are well-sorted, sub-angular and sub-spherical. Biota 

may be dominated by benthic foraminifera including Orbitolites, Rhabdorites and 

Quinqueloculina, with molluscs, echinoids and serpulids (Table 3.5). 

3.5.3.1 Porcellanaeous foraminifera micritic litharenite 

Lithologies: Porcellaneous foraminifera micritic litharenite 

Porcellaneous foraminifera litharenite 

Occurrence and bed characteristics 

Stratigraphically, the porcellaneous foraminifera micritic litharenite facies 

always occurs towards the base of the exposed succession, above the interbedded 

calcareous siltstone and sandstone and below the porcellaneous foraminifera 

wacke/packstone and coral wacke/floatlbafflestone facies (Figure 3.63). The lateral 

extent of the porcellaneous foraminifera micritic litharenite facies cannot be 
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determined in the field due to the lack of continuous field exposure. However, this 

facies can be traced across the extent of the Sant Amanc area and thus its lateral 

extent exceeds 500 m. This facies was also encountered in an isolated exposure 

situated to the west of the main ridge (log CA-16, GR 17502641 ), suggesting a lateral 

extent exceeding 1 km. 

Measured bed thickness of this facies ranges from 45 cm to 1.45 m. Upper and 

lower bedding contacts are gradational (e.g. log SA-6, beds 1 to 3). The porcellaneous 

micritic litharenite facies is observed to grade laterally into the porcellaneous 

foraminifera wacke/packstone facies (e.g. logs SA-12 and SA-12) over distances of 

less than 20 m. 

Fresh and weathered surfaces are a pale-brown to buff colour (Figure 3.71a). 

Beds may be nodular, with nodules ranging from 10 to 15 cm in length. Nodules are 

often aligned forming pseudobedding (Figure 3.62a). Pseudo-crossbeds dip 

consistently northward (logs SA-7 bed 2, SA-9 bed 2), normal to the inferred 

palaeoshoreline orientation and consistent with palaeotransport directions measured 

from the underlying Calders succession. Beds may also be characterised by the 

presence of vertical and horizontal Skolithos and Thalassanoides-type burrows (e.g. 

log SA-20 beds l and 2, log SA-32 bed 2). Burrows are up to 10 cm in length. 

Lithological description 

This facies is a matrix-supported sandstone with variable bioclast content. 

Siliciclastic grains are angular, moderately well to poorly sorted and subspherical. 

Grainsize ranges from 0.1 to 0.5 mm. Siliciclastic grains identified are mono- and 

polycrystalline quartz (10 to 35.5 %), lithics (2 to 15.5 %), and feldspar (0 to 1 %). 

Lithic grains are siltstones and quartz-mica schist. Micas may have a 'rotted', 

appearance, and are altered to a yellow to rusty-brown coloured clay observed in thin 

section. Grains are supported within a dark brown, micrite matrix, comprising 42 to 

71.5% of this facies (Figures 3.7lb and c). 

Bioclasts are angular and poorly sorted, comprising up to 34.5% of this facies. 

This facies contains a diverse benthic foraminifera assemblage with foraminifera 

comprising up to 18.5 %of a sample. Foraminifera present include Orbitolites (0 to 

3.5 %), Rhabdorites (~0.5 %), miliolids (1 to 10 %), Spirolina (0 to 1.5 %), 
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Figure 3.71a In situ echinoid 
preserved within the por­
cellaneous foraminifera micritic 

\ litharenite facies. Scalebar=5cm. 

Figure 3.71b. Photomicrograph 
(PPL) of the porcellaneous 
foraminifera micritic litharenite 
facies. Sample LCA 114 (log SA-
12, bed 2). (i) miliolid with 
reddened test, (ii) rounded 
echinoid plate fragment, (iii) 

"A"WI!~~'JISI angular siliciclastic grain. 
Scalebar=2mm. 

Figure 3.71c Photomicrograph 
(PPL) of the porcellaneous 
foraminifera micritic litharenite 
facies (sample LCA 139, log SA­

bed 2). Finer-grained sample, 
dominated by mud to fine-sand 
grade siliciclastic grains. Also 

is the large encrusting 
foraminifera 

(i). Scale 
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Planolinderina (0 to 2 %) and small hyaline benthics (0 to 5 %) (Figures 3.71a and 

b). Small benthics are dominated by discorbids with rare bolvinids. Flattened, 

discoidal Orbito/ites tests are typically fragmented, although rare intact fonils are 

pres(;!rved. Tests are up to 7.5 mm. Slightly reddened miliolid tests are up to 2.5 mm 

and are abraded. (Figure 3.71b). Other fossils present in this facies include bivalves 

(0 to 2 %), gastropods (~0.5 %), fenestrate bryozoa (~0.5 %) and echinoid spines and 

plates (0.5 to 2.5 %) (Figure 3.71b). Coral fragments are present in some samples 

(LCA 119 and LCA 120), although this is atypical of this facies in general. 

Interpretation: depositional environment 

The porcellaneous foraminifera micritic litharenite facies contains a marine 

faunal and ichnofossil assemblage. Although fragmentation and abrasion of fossils 

indicates re-working, deposition under normal marine salinities within the photic zone 

is inferred from the abundance of discoidal Orbitolites tests (Leutenegger 1994). As 

discussed in the above sections, Orbitolites may be a free-living or epiphytic forin. An 

abundance of the long-lived larger fonilS may indicate the presence of perennial 

vegetation (e.g. sea grasses and coralline algae) (Leutenegger 1984, Hallock and 

Peebles 1993). Sea floor vegetation may have had a baffling effect, promoting 

sediment accumulation. 

A low-nutrient depositional setting is inferred from the pre[ience of th!;! larger 

foraminifera Orbitolites (Hallock and Glenn 1986, Hallock 1988). However, 

(localised) high~nutrient areas are inferred from the abundance of burrowing and 

deposit-feeding organisms such as bivalves, molluscs and gastropods. An abundance 

of smaller benthic foraminifera is also consistent with high nutrient availability (Trave 

1992, Trave et al. 1996). Coral colonisation may have been inhibited m this 

-- environment oy tlie irueried-liign nutrient andlor:-unstaole substraTes. 

Deposition relatively close to the sediment source in a shoreline-proximal 

marine environment is concluded from the coarse, typically poorly sorted nature of 

siliciclastics. Limited abrasion due to transport and reworking prior to deposition is 

inferred from the angular nature of grains. Deposition in a moderate to low-energy 

environment around fair-weather wave base is concluded from the significant 

percentage of muddy matrix. Current energies were not strong enough to remove 

small foraminifera tests. 
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In summary, the porcellaneous foraminifera micritic litharenite facies 

represents the deposition of siliciclastic material in a low-energy/partially protected 

marine environment, close to a source of siliciclastic sediment. In terms of fauna, this 

facies has similarities to the Porcellaneous Foraminifer Coralline Algae Wackestone 

Packs tone facies of Trave ( 1992) and Trave et al. ( 1996), interpreted as an inner shelf 

protected platform. The porcellaneous micritic litharenite described here contains a 

significantly higher percentage of siliciclastic material. Trave et al. ( 1996) suggest a 

relative increase in siliciclastic material is a consequence of deposition in increasingly 

proximal environments closer to a siliciclastic source. 

3.5.3.2 Interbedded calcareous litharenitic siltstone and sandstone 

Occurrence and bed characteristics 

This facies is very common and encountered throughout the Sant Amanc study 

area (Figure 3.63). The interbedded calcareous litharenitic siltstone and sandstone 

facies is the lowest stratigraphic unit present in the Sant Amanc section, and is always 

encountered below the porcellaneous foraminifera wacke/packstone and 

porcellaneous foraminifera micritic litharenite facies (Figures 3.63 and 3.72a). This 

facies can be traced to isolated exposures in fields situated to the south 

(GR 18352656) and west (GR 17502641-log SA-50, bed 3) of the Sant Amanc ridge 

(Figure 3.62). It is inferred that this facies extends laterally over 1 km, and probably 

beyond the limits of the study area. 

Exposure of this facies is quite poor on the main Sant Amanc ridge section, 

and true bed thickness cannot be measured here. Measured thickness of this facies is 

approximately 5 m at GR 17502641. At GR 18352656, exposed thickness is 

approximately 2.5 m (Figure 3.73a). Individual siltstone and sandstone beds are up to 

30 cm thick (Figures 3.73a and b). Upper and lower bed contacts are sharp but non­

erosional (Figure 3. 73b ). Cross-stratification of beds is evident in some localities. 

Beds dip consistently northwest. Beds may also be characterised by the presence of 

symmetrical ripple and planar lamination occasionally disturbed by vertical and 

horizontal Skolithos and Thalassanoides-type burrows. Burrows are up to 10 cm in 

length. Fresh and weathered surfaces of this facies are a yellow-brown to yellow 

colour (Figure 3.73a). 

186 



a) 

b) 

Ca/ders facies and palaeoenvironmental analysis 

Figure 3.72a Field view of the gradational contact between the interbedded calcareous siltstone 
and sandstone and porcellaneous foraminifera micritc litharenite lithofacies (log SA-20 beds l and 
2). Scalebar=50cm. 

Figure 3.72b Photomicrograph (XPL) of the interbedded calcareous litharenitic siltstone and 
sandstone (sample LCA 142, log SA-3 bed 1). Abundant biota include discoidal Orbitolites (i), 
miliolids and Triloculina (iii). Scalebar=2 mm 
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Litho/ogical description 

Matrix-supported interbedded sands and silts with very rare bioclasts comprise 

this facies. Siliciclastic grains are angular, moderately well to poorly-sorted and 

subspherical. Grainsize ranges from 0.1 to 0.5 mm. Siliciclastic grains identified are 

detrital quartz (20 to 35.5 %) and lithics (5 to 15 %) with trace amounts of feldspar. 

Mono- and polycrystalline quartz varieties are present. Lithic grains include siltstone, 

sandstone and quartz-mica schist. Micas may have a 'rotted', appearance, and are 

altered to a yellow to rusty-brown coloured clay observed in thin section. Dark-brown 

micrite matrix comprises up to 51.5 to 64 % of this facies. 

Body fossils are quite rare, comprising up to 8 % of this facies. Foraminifera 

present are Orbitolites (0 to 1.5 %), miliolids (0 to 3.5 %) and small hyaline benthics 

(0.5 %) (Figure 3.72b). Flattened, discoidal Orbitolites tests are fragmented and 

abraded. Miliolids (Quinqueloculina and Triloculina) are preserved intact but are 

abraded (Figure 3.27b). Echinoid spines (0 to 1 %) and undifferentiated skeletal 

debris (0 to 2 %) are also present. 

Interpretation: depositional environment 

Deposition of this facies in a marine environment is concluded from the 

moderate diversity of stenohaline fauna. Open marine conditions within the photic 

zone are implied from the presence of the symbiont-bearing larger foraminifera 

Orbitolites, although tests are not in situ and have undergone some transport and 

abrasion. Nutrient-rich areas are inferred from the presence of burrowing fauna such 

as echinoids (cf. Trave et al. 1996). 

Limited abrasion of siliciclastics prior to deposition and lithification is inferred 

from the angular nature of grains, although the grains are moderately well-sorted. 

Variable energy conditions are concluded from the presence of fine-grained silt 

interbeds and the significant amount of micrite matrix. Rapid deposition is inferred by 

the sharp nature of contacts, although contacts are non-erosional. Deposition at depths 

above fair weather wave base is inferred from the presence of current ripple 

lamination and cross-stratification. 

In summary, the interbedded calcareous litharenitic siltstone and sandstone 

facies is interpreted to represent deposition within a shallow marine, low to moderate­

energy setting at/above fair weather wave base. 



b) 
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Figure 3.73a Field exposure of the interbedded litharenitic siltstone and sandstone lithofacies, facing 
north (GR 18352656). This facies is poorly exposed, although at this locality cross-stratification of 
beds is observed. Measured surfaces yield a north-west progradation direction. Scalebar=lm. 

Figure 3. 73b Close-up of cross-stratified units. Individual sandbodies have mm/cm-scale parallel 
laminae (arrowed). Lens cap=6.5cm. 
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3.6 Sant Amanc depositional model 

Four distinct facies have been defined for the Sant Amanc study area, and the 

characterisitics of each facies are summarised in Table 3.5. Facies occur in the same 

stratigraphic order across the Sant Amanc study area with only minor variations that 

are discussed below. The typical stratigraphic succession, and an interpretation of the 

changing depositional environments, is illustrated in Figure 3.74. 

The first facies to be deposited was the interbedded calcareous litharenitic 

siltstone and sandstone. This facies can be traced along the entirety of the Sant Amanc 

ridge, and thicknesses of up to 5 metres are measured in isolated exposures to the 

south and west (log CA-16, bed 3). Thickness variations cannot be determined across 

the Sant Amanc area due to poor laterally continuous exposure. This facies is 

succeeded vertically by the porcellaneous foraminifera micritic litharenite 

(Figure 3.74). The contact is gradational to sharp and planar (Figure 3.74). The 

porcellaneous foraminifera micritic litharenite may be traced along the entire length 

of the ridge exposure (> 500 m) and is also present present in isolated exposures to the 

west (log CA-16 bed 4), although this facies grades both vertically (Figure 3.74) and 

laterally (Figure 3.68) into the porcellaneous foraminifera wacke/packstone facies. In 

the western limits of the Sant Amanc area, the porcellaneous foraminifera micritic 

litharenite is succeeded vertically by the coral wacke/floatlbafflestone facies (logs 

SA-47 and 48). The porcellaneous foraminifera wacke/packstone facies is vertically 

succeeded by the coral wackelfloatlbafflestone facies (Figure 3.74). The contact is 

gradational. The coral wacke/floatlbafflestone facies occurs as low relief, mound-like 

beds that extend laterally for 50 to lOO m (Figure 3.64). Beds pinch-out laterally, and 

the long axis is arranged normal to the palaeoshoreline (Figure 3.64c). This facies is 

vertically succeeded by the porcellaneous foraminifera wacke/packstone facies, which 

caps the carbonate succession at Sant Amanc (Figure 3.74). 

The four facies identified within the Sant Amanc sections typically occur 

together as described above, thus are interpreted to collectively to represent a single 

mixed carbonate-siliciclastic facies association. Facies contain a variety of stenohaline 

biota and are interpreted to have accumulated under normal open to slightly restricted 

marine conditions within the photic zone. The maintainance of moderate to low­

energy, possibly partially protected conditions is concluded from the significant 

percentage of fine-grained matrix present within all facies in the Sant Amanc 
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LOCATION: Sanl Amanc 

Facies 

Coralwackemoatstone 

Porcellaneous foraminlfera 
sUiclclastlc wackelpackstone 

Porcellaneous foramlnlfera 
mlcrltic litharenite 

Interbedded calcareous litharenitic 
silts and sands 

LOG I.D: SA-411 

Interpretation 

Fluvlo-deltalc sedimentation 

High clastic input inhibits carbonate 

·"'~""""' 1 
Low-energy, protected carbonate 
platform with patchy bioherm 
development 

Patchy coral development on local 
topographic highs generated through the 
baffling of sediment by perennial vegetation 

Negligable coral framework 

1 
Low-energy, protected carbonate 
platform 

Waning clastic input 

Abundant perennial sea floor vegetation 
and associated epiphytic foraminiferal 
assemblage 

Environment stabllisation 

Stable environmental conditions 

Constant, steady clastic input 

Substrate stabilsation and colonisation by 
calcareous benthos and perennial sea floor 

i 
Shallow marine sedimentation 

Variable depositional energy, basinward 
progradation 

Moderate sedimentation rates and unstable 
substrates inhibit colonisation by benthic 
organisms 

1 
Figure 3.74 Typica1log through the Sant Amanc succession. 
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Key: 

t;;l Gtavelly lrtharenrte (Complejos de Calders Formation) 

t-:; Coral wackelfloatlbafflestone 

• Porcellaneous foraminifera siliciclastJc wacke/packstone 

• Porcellaneous foraminifera m1critic htharenite 

0 Interbedded calcareous lrtharenitic sandstone and siltstone 
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Figure 3. 75 Schematic reconstruction illustrating temporal and spatial facies variations in the Sant 
Amanc study area based upon the correlations illustrated on Figures 3.63 to 3.65 and 3.68). The 
orientation of the palaeoshoreline was roughly east-west. a) Widespread deposition of inter-bedded 
silts and sands. b) Decrease in energy and siliciclastic input, tentative colonization by benthic 
organisms. c) Development of muddy, wacke/packstones in low-energy areas. d) and e) 
Development of low-relief bioherm. Development may have been aided by the baffling effect of sea 
floor vegetation. t) Progradation of the inner-shelf wacke/packstones and coral development ceases. 
g) Carbonate production is terminated by the input of coarse siliciclastics of the Complejos de 
C:alrlers Formation. See text for discussion. 
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succession. The lower 2 to 5 metres of this association are interpreted to represent 

widespread deposition of cross-stratified sands and silts at water depths at and above 

fair weather wave base (Figure 3.75a). Variable depositional energies are inferred, 

with sandstone beds representing relatively high-energy clastic inputs and laminated 

siltstones representing low-energy deposition from suspension. Moderate to low­

energy conditions overall are concluded from the absence of erosional structures at 

the base of sands tones and the abundance of micrite matrix. Variations in coarse 

clastic input are attributed to the seasonality of the Late Eocene climate in the eastern 

Pyrenean region (Cavagnetto and Anad6n 1996). The measured progradation 

direction is towards the northwest, roughly perpendicular to the inferred 

palaeoshoreline orientation. The sedimentary characteristics of this facies are not 

distinctive of a particular palaeoenvironment, although the biota present, including 

Orbitolites, miliolids and small benthics, are indicative of a protected inner-shelf 

platform-type setting (Trave 1992, Trave et al. 1996, Romero et al. 2002). 

The transition from interbedded silts and sands to deposition of porcellaneous 

foraminifera-rich micritic sandstones is interpreted to represent a distinct change in 

environmental conditions from variable to more stable depositional energies with a 

constant input of silt to sand grade clastics (Figure 3. 75b ). Stabilisation of the marine 

substrate and the development of a diverse benthic community under oligotrophic 

conditions are construed from the increased abundance of larger foraminifera 

although the presence of nutrient-rich areas is interpreted from the presence of 

deposits feeding and burrowing organisms and small benthic foraminifera such as 

discorbids. Colonisation by larger sessile benthic organisms such as corals was 

inhibited either by the still significant input of siliciclastics, the muddy nature of the 

substrate or the presence of nutrient-rich areas. It is postulated that the development of 

perennial sea floor vegetation, (e.g. sea grass, macroalgae) aided colonisation by 

foraminifera such as Orbitolites, and non symbiont-bearing miliolids, through their 

ability to adapt to an epiphytic mode of life (Figure 3. 75b ). 

It is interpreted that the gradational lateral transition of porcellaneous 

foraminifera-rich sandstones into porcellaneous foraminifera-rich wacke/packstones 

demonstrates how clastic input/accumulation varied spatially over small distances 

(less than 20 m). It is postulated that these variations may be due to local currents 

regimenting siliciclastic transport pathways and/or the presence of a number of 
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Figure 3.76 Proposed 
mechanism for the development 
of low-relief muddy bioherms 
in the Sant Amanc area. 

a) The·development of sea-floor 
vegetation (i.e. sea grasses, 
articulated cora11ine algae) local 
modifies the hydrodynamic 
conditions forming localized 
low-energy areas. 

b) Sea-floor vegetation 
effectively baffles particulate 
sediments and a low-relief mud 
mound may develop . 

c) Even though the relief above 
the sea floor may only be a few 
centimeters, these low-relief 
mounds provide relatively good 
colonization sites for corals. 
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localised siliciclastic sources along the shoreline. Significant post-depositional 

reworking is not consistent with the abundance of intergranular muddy matrix. 

The gradual decrease in clastic input over time is seen through the vertical 

transition from porcellaneous foraminifera-rich sandstones to porcellaneous 

forarninifera-rich wacke/packstones (Figure 3.75c). The decreasing clastic input is 

accompanied by an increase in biota abundance and diversity. Larger benthic 

foraminifera, in particular Orbitolites and Rhabdorites, may have inhabited true 

benthic as well as epiphytic substrates provided by sea grasses, articulated and 

branching coralline algae. Although oligotrophic conditions are interpreted from the 

abundance of larger benthic foraminifera, locally high nutrient levels close to the sea 

floor are inferred from the abundance of deposit feeding and burrowing organisms, 

and the abundance of small, non symbiont-bearing benthic foraminifera. 

The vertical and lateral gradational transition of the porcellaneous 

foraminifera wacke/packstone facies into coral wacke/float/bafflestone facies is 

interpreted to represent the development of low-relief muddy bioherms 

(Figure 3.75d). The presence of perennial sea floor vegetation (sea grasses, 

articulated coralline algae etc) is inferred from the abundance of the large, long-lived 

forarninifera Orbitolites. It is postulated that the baffling effect of this sea floor 

vegetation promoted the accumulation of fine-grained sediments leading to the 

development of localised topographic highs (Figures 3. 75b and 3. 76). These highs 

may only have been a few centimetres above the sea floor, but provided suitable sites 

for coral recruitment. Coral development may have been inhibited within the 

porcellaneous foraminifera wacke/packstone facies due to a number of factors such as 

the lack of available substrate, substrate instability or high nutrient levels on the sea 

floor. Reef development on mobile, sandy substrates along the Jesira and Bajuni 

Archipelago, Somalia, has been aided through the binding of sediment by the sea 

grass Thalassodendon (Carbone et al. 1994). Thalassodendron meadows provide 

support for a diverse community of epiphytes including coralline algae, foraminifera 

and bryozoa. The sea grass meadows have effectively trapped fine sediment building 

low flat mounds rising from the surrounding substrate (Carbone et al. 1994). 

Muddy coral biostromes extended laterally 50 to 100 m in the Sant Amanc 

area, with the long axis (and thickest part of the accumulation) orientated normal to 

the inferred palaeoshoreline (Figure 3.75e). As a comparison, the long axes of coral 
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bioherms from the Terminal Complex exposed in the eastern part of the Vie Basin are 

orientated parallel to the palaeoshoreline as a response to manipulation by shoreline­

parallel (longshore) currents (Trave 1992, Trave et al. 1996). It is suggested that 

shoreline-normal currents rather than longshore currents influenced the morphology 

of the muddy coral bioherms in the Sant Amanc study area. The mechanism for these 

currents can only be speculated in this thesis due to dearth of palaeoflow data 

throughout the study area. The degree of current reworking of a structure with low 

topographic relief would have been limited in a partially protected setting such as that 

interpreted for the Sant Amanc area. Coral breakage through the action of predators 

and/or current action is inferred from the presence of coral fragments in laterally 

equivalent wacke/packstones. Corals are loosely packed, with rudstone and 

bafflestone textures only locally developed. It is thought that the lack of framework 

development, attributed to limiting environmental conditions (e.g. turbidity, high 

nutrients), prevented coral biostromes developing into bioherms. 

A further porcellaneous foraminifera wacke/packstone unit, interpreted to 

represent progradation of the protected carbonate inner-shelf, may succeed the coral 

wackelfloatlbafflestone facies (Figure 3. 75t). The upper contact between the coral 

bioherms and the overlying wacke/packstones is gradational and non-erosional, thus 

rates of coral growth and carbonate production were insufficient to build up to sea 

level. 

The cessation of carbonate development in the Sant Amanc area is attributed 

to siliciclastic input (Figure 3.75g). Trough cross-stratified pebbly sandstones, 

interpreted as part of the fluvio-deltaic Complejos de Calders Formation, followed by 

red silty mudrocks of the Artes Formation, vertically succeed the carbonate 

succession. Trave ( 1992), and Trave et al. ( 1996} conclude that the top of the 
~ 

Terminal Complex in the eastern part of the Vie Basin is an unconformity. This 

conclusion cannot be verified in the Sant Amanc area as the contact is poorly 

exposed. 

3.7 Summary 

The Calders and Sant Arnanc sedimentary successions were deposited within 

an over all siliciclastic-dominated setting with no significant slope (inferred from the 

gentle inclination of beds and absence of slump or slide deposits). Where colonised by 
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carbonate producers, the areas were dominated by a benthos of coralgal-foraminifera 

reefs and diverse larger benthic forarninifera (the palaeoecology of which are 

described in Appendix 2), which were used to define facies (Sections 3.2 and 3.4). 

The Calders sedimentary succession represents the development of 

foraminifera and coralline algal shoals on abandoned siliciclastic substrates. Waning 

siliciclastic influx was typically marked with the colonisation of stabilised substrates 

by larger benthic foraminifera and development of laterally extensive foralgal shoals. 

Localised coral growth occurred within the shoals in relatively seaward environments. 

The change from carbonate development to siliciclastic deposition was rapid. The 

mechanism invoked for such a sharp, laterally extensive facies change may be 

switching of delta lobes. 

The mixed carbonate-clastic succession exposed in the Sant Amanc area is 

interpreted to be an as yet unstudied exposure of the Terminal Complex, as defined by 

Trave ( 1992), and Trave et al. ( 1996). These sediments were deposited within a 

partially protected, inner-shelf, shallow marine setting at depths around and above fair 

weather wave base within the photic zone. Carbonate production and diversification 

of the biota was influenced by silciclastic input. Oligotrophic conditions prevailed in 

the water column, although mesotrophic, and possibly eutrophic conditions, existed at 

the sediment-water interface. These high-nutrient areas supported a diverse 

community of deposit feeding and burrowing organisms, as well as small benthic 

forarninifera. Sea floor vegetation, a mixture of sea grasses with branching and 

articulated coralline algae, acted as a baffle, effectively trapping fine-grained 

sediment and encouraging the development of low-relief coral bioherms. Carbonate 

development was eventually terminated through massive clastic input as the Pyrenean 

Foreland Basin moved from its under-filled to over-filled stage. 

In conclusion, the Calders and Sant Amanc depositional success10ns 

demonstrate the variability of facies that may be encountered on shallow/marginal 

marine shelf systems. The successions demonstrate that facies vary laterally over 

small distances (10s to 1000s metres). This is comparable to facies changes observed 

in modem reef environments. These lateral and vertical facies variations are attributed 

to changes in siliciclastic input, relative water depth and depositional energy. 
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4. Regional Geology and Field Areas, South-Eastern Spain 

4.1 Introduction 

The aim of this chapter is to summarise previous work on the regional 

geological and palaeoenvironmental evolution of the Betic Cordillera in order to put 

the studied section in the Fortuna Basin into a regional context. Particular attention 

will be paid to the post-Cenozoic evolution and development of the Neogene 

intramontane basins, of which the Fortuna Basin is an example. Although this chapter 

aims to summarize the geology of the region, it should be noted that the Neogene 

tectonic evolution of the Betic-Alboran-Rif region is still controversial (Graces et al. 

2001). 

4.2 Regional geology of the Betic-Alboran-Rif Area 

The geology of the southwestern Mediterranean region has been influenced by 

two major tectonic events. These are the oblique collision of the Iberian microplate 

with the African plate (and closure of the Tethys Ocean) during the Cretaceous to 

Miocene, and major extensional events in the Oligo-Miocene (Dewey et al. 1989, 

Sanz de Galdeano 1990, 1992; Doglioni et al. 1997, Calvert et al. 2000). 

The Betic Cordillera, together with the Rif (northern Africa), is the western­

most part of the circum Alpine-Mediterranean orogenic chain that evolved through 

collision of the Iberian and African plates during the Cenozoic (Sanz de Galdeano and 

Vera 1992, Lonergan and White 1997). Neogene continental deformation along the 

African-Iberian plate boundary was distributed over a broad zone 500 km wide, 

extending from the Betic Cordillera (SE Spain) to the High Atlas mountains (northern 

Morocco) (Figure 4.1) (Calvert et al. 2000). The NE-SW striking Betic and Rif 

mountain belts form an arcuate orogen, delimiting the Miocene to Recent Alboran 

Basin (Figure 4.1) (Calvert et al. 2000, Doglioni et al. 1997, Lonergan and White 

1997). Continental collisional was accommodated by over 200 km of north-south 

shortening during the Late-Creataceous to Early Miocene, and 50 km of northwest­

southeast shortening from the Late Miocene onward (Soria et al. 2000, Watts et al. 

1993, Dewey et al. 1989, Platt and Vissers 1989). In SE Spain, this shortening was 

accompanied by the development of the Guadalquivir Foreland Basin (Figure 4.1) 

(Fernandez et al. 1998, Lonergan and White 1997). 
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The later stages of orogenesis in the Middle to Late Miocene (Tortonian) 

throughout the western Mediterranean region were characterised by coeval shortening 

and extension accommodated by detachment processes and strike-slip movement 

(Montenat et al. 1992, Sanz de Galdeano and Vera 1992, Doglioni et al. 1997, 

Lonergan and White 1997, Martinez-Martinez et al. 1997). A compressional tectonic 

regime with contemporaneous shoshonitic to lamphroitic volcanism, dominated the 

Betic region from the Tortonian onward. (Montenat et al. 1992, Martinez-Martinez et 

al. 1997). The Betic Cordillera underwent general uplift from the late Miocene to 

Pliocene (Sanz de Galdeano and Vera 1992). 

4.2.1 Tectonic Provinces oftbe Betic Cordillera 

The Betic Cordillera occupies a belt in southern Spain extending 600 km east 

to west and up to 200 km north to south (Figure 4.1) (Soria et al. 1999, Sanz de 

Galdeano and Vera 1992). The Cordillera is not a continuous mountain range, 

consisting of several mountainous areas with intervening Miocene basins 

(Section 4.2.1.4). The Betics consist of four major tectonic provinces that were 

clearly delimited by the early Neogene (Balanya et al. 1987). These are I. External 

Zones, 2. Internal Zones, 3. the Campo de Gibraltar Complex and 4. Neogene 

extensional basins (Figure 4.1) (Calvert et al. 2000, Lonergan and White 1997, Sanz 

de Galdeano and Vera 1992 and others). The characteristics of each tectonic province 

will be summarised in the following sections. 

4.2.1.1 The Internal Zones 

The allochthonous syn-orogenic sediments of the Betic Internal Zones were 

originally deposited on the Alboran sub-plate (original Tethyan oceanic crust) that 

was located to the east of the present Betic Cordillera (Calvert et al. 2000, Lonergan 

and White 1997, Sanz de Galdeano and Vera 1992). During the Oligocene, the 

Internal Zones of the Betics and Rif, as well as the Tertiary metamorphic belts of the 

Tell Atlas, Sardinia, Calabria, Sicily and Kabylies, constituted a NE-SW trending 
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Figure 4.1 Schematic sketch of the main tectonic provinces of the western Mediterranean region. 
Modified from Calvert et al. (2000). 

Cretaceous-Paleogene mountain belt that existed along the coasts of southeastern 

France and eastern Spain (Figure 4.2a) (Calvert 2000, Lonergan and White 1997). 

This mountain belt was situated to the northeast of a northward dipping subduction 

zone (Lonergan and White 1997). Large extensional basins, (including the Alboran 

Basin) evolved in the western Mediterranean during the Late Oligocene to Early 

Miocene as a consequence of rollback of this subducting slab (Jolivett and Faccenna 

2000, Zeck 1999, Verges and Sabat 1999, Doglioni et al. 1997, Lonergan and White 

1997). ~a}? rQ_llbiick l~d _!o th~ _ ~outhward migr~tion 9f the sllbductio11 ~op.~ and 

extension and dispersal of the Internal Zones (Figure 4.2b) (Jolivet and Faccenna 

2000, Verges and Sabat 1999, Lonergan and White 1997, Coward and Dietrich 1989). 

When the subduction zone collided with the North African continental margin, it 

separated into two major fragments. An eastern fragment continued to roll back and 

eventually evolved-into the Calabrian Arc forming the Tyhrrenian Sea (Figure 4.2b). 

The western fragment rolled back to the west, generating the Alboran Sea and the 

Betic-Rif orogen as the Internal Zones were emplaced onto the Iberian and North 

African passive margins during the Early to Middle Miocene (Figure 4.2b) (Lonergan 
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Figure 4.2 Major geodynamic events in the western Mediterranean. (a) During the Late Oligocene (-35 Ma), 
Internal Zone rocks were located behind a northward-dipping subduction zone. Flysch deposits of the Campo de 
Gibralta complex may also have been deposited here. (b) In the mid-Miocene (-18 Ma), the subduction zone 
split to form two branches that roll back to the east and west. Internal Zone rocks were emplaced onto the lberic 
and African plate margins. After Lonergan and White ( 1997). 
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and White 1997). The Internal Zones were emplaced onto the southern passive margin 

of the Iberian Massif as nappe structures, with the load inducing subsidence of the 

Iberian margin and the compressive deformation of the Betics (Banks and Warburton 

1991, van der Beek and Cloetingh 1992). 

The Internal Zones of the Betic Cordillera contain three tectonically 

superposed nappe complexes that are exposed as east-west trending domes: the 

Nevada-Filabride Complex, the Alpujarride Complex and the Malaguide Complex 

(Sanz de Galdeano and Vera 1992). The original boundaries between these complexes 

have been cut or reactivated by large low angle extensional detachment faults 

(Lonergan and Platt 1995, Platt and Vissers 1989, Platt 1986). The Nevada-Filabride 

and Alpujarride Complexes consist of Precambrian, Palaeozoic and Triassic 

metasediments. These rocks have been affected by early high-pressure, low­

temperature metamorphism associated with crustal stacking in the Betics, and later 

low-pressure high- temperature metamorphism related to extension and exhumation 

of deep crustal rocks (Balanya et al. 1997, Monie et al. 1994, Bakker et al. 1991, De 

Jong 1991, Goffe et al. 1989). The Malaguide Complex contains relatively 

unmetamorphosed Palaeozoic, Mesozoic and Cenozoic sediments (Sanz de Galdeano 

and Vera 1992). 

4.2.1.2 The External Zones 

The Betic External Zones are the folded and detached sedimentary cover that 

was originally deposited on the submerged southern Iberian and African plate margins 

during the Mesozoic to Cenozoic (Figure 4.2a) (Sanz de Galdeano and Vera 1992, 

Fernandez et al. 1998, Comas and Garcia Dueiias 1988). The sedimentary cover is 

divided into the Subbetic and Prebetic zones (Figure 4.1). The Subbetics are 
- - - -

composed of deep marine sediments including fine-grained turbidites (the 'Tap' 

deposits) with olistostromes (Sanz de Galdeano and Vera 1992). The Prebetics are 

predominantly composed of siliciclastics with minor algal carbonates that were 

deposited in a coastal, shallow marine environment (Sanz de Galdeano and V era 

1992). 

Major WNW-ESE orientated compression affected the Subbetics during the 

late Aquitanian-Burdigalian as a consequence of the westward drift of the Internal 

Zones (Figure 4.2a) (Lonergan and White 1997, Sanz de Galdeano and Vera 1992). 
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The consequence of this was deformation and the development of internal erosional 

unconformities. The Prebetics were affected to a lesser extent (Sanz de Galdeano and 

Vera 1992). 

4.2.1.3 The Campo de Gibra1ta Complex 

The allochthonous flysch units of the Campo de Gibralta Complex are 

exposed in the Gibralta region in Spain, with time-equivalent sediments exposed in 

the Tell region of Morocco (Figure 4.1). Sediments are turbidites and hernipelagites 

originally deposited during the Mesozoic to Miocene on Tethyan crust in the deep 

subduction trough to the north of of the Internal Zones (Figure 4.2a) (Lonergan and 

White 1997). Fragments of the Campo de Gibralta Complex were relocated onto the 

southern Iberian passive margin with the Internal Zones during the lowermost 

Miocene (Figure 4.2a) (Lonergan and White 1997). 

4.2.1.4 The Neogene Basins 

Neogene sedimentation in the Betic regiOn occurred within the recently 

developed Guadalquivir Foreland Basin (Figure 4.1), and a number of strike-slip 

basins that developed predominantly within the Internal Zone massifs (Figure 4.3). 

Basins in southeastern Spain (including the Fortuna Basin within which the studied 

section at Altorreal is situated) developed along tht: Internal-External Zone boundary 

within a wide (>250 km) left-lateral shear zone (the Trans-Alboran Shear Zone) 

trending NE-SW from Alicante to Almeria (Figure 4.5) (Sanz de Galdeano and Vera 

1992, Montenat and Ott d'Estevou 1990, Montenat et al. 1987). 

The Neogene strike-slip basins contain a record of Neogene and Quaternary 

syn- and post-orogenic sediments that lie uncomfo_rmably on Betic basement. The 

different basins contain remarkably similar sedimentary facies, including pelagic 

marts, fanglomerates, turbidites, reefal carbonates and evaporites (Soria et al. 1999, 

Lonergan and Schreiber 1993, Pomar 1991, Braga et al. 1990, Martin et al. 1989, 

Santisteban and Taberner 1988). These inter-linked basins are thought to have 

evolved within in the Betic Strait (also referred to as the Guadalentin Corridor) (Sanz 

de Galdeano and Vera 1992). The Betic Strait was an open marine connection 

between the Atlantic Ocean and the Mediterranean Sea that existed from earliest 

Tortonian to early Messinian time (Figure 4.4) (Sanz de Ga1deano and Vera 1992). 
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Surface uplift of the central Cordillera caused relative lowering of sea level and basins 

lost their marine character during the late Tortonian-Messinian (Sanz de Galdeano 

and Vera 1992). 

4.3 Study Area: The Fortuna Basin 

Formation of the Fortuna Basin was initiated during the early Tortonian as a 

faulted basin (Graces et al. 2001, Sanz de Galdeano and Vera 1992). Movement along 

major faults (the Crevillente and Alhama de Murcia Faults, which approximately 

mark the present northern and southern basin margins respectively) controlled basin 

evolution (Figures 4.5 and 4.6) (Graces et al. 2001, Poisson and Lukowski 1996). 

The basin-fill is predominantly siliciclastic with isolated intercalations of carbonates 

and evaporites (Montenant 1973, Graces et al. 2001, Krijgsman 2000, Poisson and 

Lukowski 1996, Santisteban and Taberner 1988). In northern areas, sediments were 

sourced mainly from External Zone massifs that consisted predominantly of 

Mesozoic-Cenozoic carbonates (Montenat 1973). Siliciclastic input from the Internal 

Zones was restricted to alluvial-fan delta systems in southern basin areas (Montenat 

1973). Relicts of the Internal Zone rocks on the southern basin margins include the 

Orihuela and Callosa Massifs to the SE, and the Sierra Espuiia mountain range in the 

SW (Figures 4.6 and 4.7) (Graces et al. 2001). 

The Fortuna Basin existed in the Tortonian-Messinian as a 15 to 20 km wide, 

60 km long trough (Graces et al. 2001). The basin-fill succession consists of three 

basin-wide units: the Lower Marine Unit, the Evaporite Unit and the Continental Unit. 

4.3.1 Early Tortonian- the Lower Marine Unit 

The- Fortuna Basin -had- an open marine connection to the adjacent strike-slip 

basins during the early Tortonian through the Betic Strait (Montenat et al. 1990). 

During this time, subsidence rates greatly exceeded the rate of sedimentation. This 

resulted in a significant relative deepening of the basin and deposition of thick 

accumulations of pelagic sediments (Graces et al. 2001). The Lower Marine Unit is 

up to 500 m thick, consisting of turbidites and pelagic marls collectively known as the 

Los Baiios Formation (known also as the Fortuna Marls) (Miiller and Hsii 1987). The 

marls grade laterally into deltaic and reef facies (Lonergran and Schrieber 1993 and 
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a corridor connecting the Mediterranean with the Atlantic Ocean. Tectonism lead to 
closure of the strait in the late Tortonian, leading to basin restriction. The approximate 
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during the early to late Tortonian. Modified from Reinhold (1995). 
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Santisteban 1981 ). These interdigitating deltaic and reefal facies were studied during 

this project. Significant thickness variation of the pelagic units across the basin at this 

time is related to a complex underlying horst and graben structure (Graces et al. 

2001). 

4.3.2 Late Tortonian-the Evaporite Unit 

A drastic change in basin configuration occurred during late Tortonian time 

(Graces et al. 2001). Restriction of marine water circulation and the initiation of 

hypersaline conditions are related to tectonic actitivity along the Alhama de Murcia 

fault and the evolution of a topographic high in the east (Graces et al. 2001). The 

resultant Evaporite Unit is up to 200 m thick and consists of a regressive succession 

of gypsiferous marts, diatomites, massive gypsum and coarse terrigenous siliciclastics 

collectively known as the Rio Chicamo Formation (Muller and Hsu 1987). 

Restriction of the Fortuna Basin is coeval with increasing sedimentation rates 

that were up to 1.0 m kyr· 1 (Graces et al. 2001). The relative shallowing trend of the 

upper Tortonian sedimentary succession represents the rapid basin filling as 

sedimentation rates exceeded the rate of creation of accommodation space through 

subsidence (Graces et al. 2001). Once the Fortuna Basin reached the 'overfilled 

stage', sedimentation rates decreased to 30-40 cm kyr-1
, matching the generation of 

accommodation space (Graces et al. 2001). Movement of major fault systems in the 

region manifest themselves through the development of numerous angular 

uncomformities (Montenat and Ott d'Estevou 1990). 

4.3.3 Late Tortonian-Messinian-the Continental Unit 

During the Late Tortonian-Messinian, the Fortuna Basin was partially 

confined with localised shallow lacustrine and palustrine environments in distal and 

marginal areas of large alluvial fan systems (Graces et al. 2001). Basin confinement 

led to development of evaporites (the Rio Chicamo Formation) that grade vertically 

into continental sediments of the Rambla Salada Formation (Muller and Hsu 1987). 

The Rambla Salada Formation is characterised by lacustrine grey mart and limestones 

alternating with alluvial red clays and conglomerates (Muller and Hsu 1987). Relative 

sea level fall associated with the Mediterranean Messinian Salinity Crisis 5.5 to 5 Ma 
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led to a significant decrease in accommodation space in the Fortuna Basin. Alluvial 

systems rapidly prograded basinward, depositing coarse siliciclastic sediments in 

distal marine trough environments (Graces et al. 2001, Krijgsman et al. 1999). 

Although largely confined, the Fortuna Basin maintained a minor open marine 

connection to the south-southeast during the Messinian (Miiller and Hsii 1987). 

4.3.4 Late Messinian-Piiocene 

A marine transgression and the (temporary) re-establishment of basin-wide 

normal marine conditions in the Fortuna Basin occurred during the latest Messinian to 

Pliocene (Graces et al. 2001). The marine influx was confined to narrow depressed 

areas parallel to the NW-SE striking Alhama de Murcia fault (Graces et al. 2001). 

The final stage of basin evolution was controlled by a phase of transpressional 

left-lateral shear with N-S to NNW-SSE compression along the Alhama de Murcia 

fault during the Pliocene (Graces et al. 2001). The consequence was uplift of the 

eastern basin margin-the present Carrascoy Massif (Figure 4.6) (Sanz de Galdeano 

1998). Syn-depositional folding of Pliocene sediments was related to basin uplift 

(Graces et al. 2001). 

4.3.5 The Tortonian Salinity Crisis 

Several intramontane marine basins in the eastern Betics contain a thick late 

Miocene evaporite unit. Evaporites of the inner Neogene basins (those located furthest 

from the Mediterranean during the late Miocene, including the Fortuna and adjacent 

Lorca Basins) have been dated as upper Tortonian to lower Messinian (Krijgsman et 

al. 2000, Dinares-Turell et al. 1999). Marginal basins (those situated in the vicinity of 

the Mediterranean·, including the-san Miguel de Salinas, Almeria, Sorbas and-Nijar­

Carboneras Basins) contain evaporite units dated as late Messinian to early Pliocene. 

It is these younger deposits that have been associated with the famous Mediterranean 

'Messinian Salinity Crisis' (Playa et al. 2000). The evaporites of the inner basins 

typically have a mixed marine and non-marine character (Krijgsman et al., 2000). In 

contrast, the evaporites of the marginal basins have a marine signature throughout 

(Playa et al. 2000). 

209 



Regional geology and field area, SE Spain 

Widespread marine sedimentation in the F ortuna Basin ended in the Late 

Tortonian (7.8 Ma) (Krijgsman 2000). Interpretation ofthe Evaporite Unit has proved 

controversial, mainly due to the difficulty of dating evaporitic strata and the lack of 

biostratigraphic control (Garces et al. 2001). Muller and Hsii (1987), Lukowski et al. 

(1988) and Dinares-Turell et al. (1999) have related the evaporites of the Fortuna 

Basin to the Mediterranean Messinian Salinity Crisis. In contrast, Krijgsman (2000) 

relates the evaporites to a localised phase of basin restriction in the Tortonian named 

the Tortonian Salinity Crisis {TSC). The duration of basin restriction is dated by 

Krijgsman (2000) as 200 ka (7.8 to 7.6 Ma). The TSC was followed by 

continentalisation of most of the basin 7.6 Ma as a consequence of the regional 

tectonic uplift of the metamorphic complexes along the eastern basin margin (Garces 

et al. 2001, Krijgsman et al. 2000). 

4.3.6 Lateral Correlation with other Neogene basins 

The same broad open marine to restricted evaporitic-diatomitic and 

continental sedimentary succession observed in the Fortuna Basin is also present to 

the west in the adjacent Lorca Basin (Figure 4.5) (Garces et al. 2001). 

Magnetostratigraphic correlation has shown that the F ortuna and Lorca Basins had a 

similar Miocene evolution. Both basins were influenced by movement along the 

Alhama de Murcia and Crevelliente Faults (Garces et al. 2001). Continentalisation of 

the Fortuna and Lorca Basins 7.6 Ma was roughly coeval with a regression event in 

the marginal Guadix-Baza and Granada Basins in the central and western Betics 

respectively (Soria et al. 1988). 

4.3.7 Study_Area~the Altorreal Section 

The study area in SE Spain is covered by the I :50 000 Orihuela geological 

map published by the Instituto Tecnol6gico Geominero de Espana (ITGE) (Boer et al. 

1974). The equivalent 1:50 000 Orihuela topographic map (Sheet 19, 27-36), 

published by the Servicie Geognifico Ejercito, was also used. An additional I :20 000 

Santomera topographic map, published by the Instituto Geognifico Nacional, was 

used. 
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The sedimentary succession studied in the Fortuna Basin is located 

approximately 10.0 km north of the city ofMurcia (and the A-7 motorway), 15.0 km 

south of Fortuna and 9.0 km to the west of the Sierra de Orihuela, in the southern 

limits of the basin. The location of the Altorreal section is illustrated on Figures 4.6 

and 4.7. Sediments are exposed within an east-west trending quarried valley system 

approximately 500 m in length. Isolated outcrops are also exposed 0.7 to 1.0 km south 

of the main valley. The maximum stratigraphic thickness is 50 m. The lithological 

unit exposed in the Altorreal section is the Los Bafios Formation. 
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5. Altorreal facies and palaeoenvironmental analysis 

5.1 Introduction 

The principal aims of Chapter 5 are to describe and synthesize facies data 

from the Altorreal study area and to present a three-dimensional sedimentological and 

palaeoecological model. This section briefly summarises the regional geology and 

previous work undertaken in the immediate area, described in detail in Chapter 4. A 

description and environmental interpretation of all facies present in the Altorreal 

study area are described in Section 5.2. Although not the focus of the study, Section 

5.3 briefly discusses diagenetic features and porosity evolution. Facies associations, 

and the palaeoenvironmental evolution of the area are described in Section 5.4. 

Many authors have described the sedimentology of the Miocene intramontane 

basins of SE Spain. Poisson and Lukowski ( 1990), Sanz de Galdeano and Vera 

(1990), Pomar (1991), Braga and Martin (1996) and Soria et al. (1999) discuss the 

basins in terms of sedimentary evolution in response to the eustatic and tectonic 

evolution of the region. Santisteban and Tabemer ( 1988), Martin et al. ( 1989), Braga 

et al. (1990), Riding et al. (1991), Lonergan and Schreiber (1993), Rheinhold (1995) 

and Wrobel and Michalzik (1999) have discussed the relationship between shallow 

marine carbonate and siliciclastic facies in selected basins. In addition, significant 

work has been published concerning basin restriction and the Mediterranean 

Messinian Salinity Crisis (Graces et al. 1998, Dinares-Turell 1999, Krijgsman et al. 

2000, Playa 2000). A detailed facies scheme of the studied Altorreal section within 

the Fortuna Basin has not until now been undertaken, although Santisteban (1981) and 

Santisteban and Tabemer (1988) have produced a brief review of coral species and 

the relationship between corals and siliciclastics. 

Miocene sediments of the Los Bafios Formation are the objects of this study. 

Metasediments of the Betic Internal Zones (Fortuna Basin basement rocks) are not 

exposed in the Altorreal section, although basement is exposed to the Sierra Espuiia to 

the northeast and Carrascoy Massif to the south (Figure 4.4). The logging, sampling 

and petrological techniques used in this study are described in Appendix 1. For thin 

section data refer to Appendix 4. Appendix 6 presents logged sections that 

encompass field and thin section information. Comparisons are made with relevant 
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Figure 5.2 Photomontage (a) and interpretation (b) of the north ridge section (photograph 
taken from GR 61501350, facing N). Only the upper carbonate interval is visible. 
Conglomerate units demonstrate a clear progradational morphology. Siliciclastic packstone 
units are less steeply inclined. The siliciclastic bioclastic packstones pass laterally (eastward) 
into the laminated coral platestone facies. 
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Figure 5.3 Photomicrograph (a) and interpretation (b) of the succession exposed on the southern 
ridge section at Altorreal (taken from GR 61751375. facing S). Structure within the carbonate 
interval is interpreted as bedding. The upper carbonate surface is erosional, with conglomerates 
and sandstones onlapping the irregular surface. 
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facies examples, specifically those from the neighbouring Neogene Basins of SE 

Spain and the Mediterranean (Figure 4.2). 

5.2 Altorreal facies 

Carbonate lithologies are classified using the schemes of Dunham ( 1962) and 

Insalaco (1998). Classification schemes are presented in Appendix 1. Facies 

classification is based upon a combination of field and thin section data. A detailed 

facies scheme for the Altorreal area is presented in Table 5.1. Facies are classified 

according to a number of lithological, palaeontological and diagenetic characteristics 

and occur in three distinct facies groupings: 1) predominantly siliciclastic, 2) mixed 

carbonate siliciclastic and 3) a predominantly carbonate grouping (Table 5.1). 

A summary map of the study area and photomontage of the northern and 

southern Altorreal ridge sections are illustrated on Figures 5.1 to 5.3 respectively. 

5.2.1 Lithoclast-dominated facies 

These facies are predominantly siliciclastic in composition although they 

contain a moderate carbonate component as lithoclasts, cement fragments, bioclasts or 

cement. 

5.2.1.1 Calcareous lithoclastic conglomerate 

Lithologies: Calcareous lithoclastic conglomerate 

Pebbly calcarenite 

Siltstone 

Occurrence and bed characteristics 

The calcareous lithoclastic conglomerate facies is volumetrically the most 

important facies in the Altorreal area, and is encountered in all logged sections 

(Figures 5.2 and 5.3). The calcareous lithoclastic conglomerate can occur in 

association with any of the facies described in the studied area. The lower contact 

with the marly silt facies is erosional (Figure 5.4a). The depth of erosion is up to 50 
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cm. The calcareous lithoclastic conglomerate overlies and may grade down-dip into 

the calcareous litharenite facies (Figure 5.4b). 

This facies is well-bedded with measured bed thickness ranging from I 0 to 50 

cm. Upper and lower bed contacts are sharp. Lower contacts may be erosional. This 

facies is composed of conglomerate beds intercalated with thin ( < I 0 cm) pebbly 

siltstone and calcarenite beds. Beds are arranged to form cross-stratified sigmoidal 

clinoform geometries up to 20 m thick and extending laterally over 200 m (Figure 

5.2). Clinoforms have a progradational geometry. The apparent dip of individual beds 

increases vertically within a clinoform package (from f to around 16.) (Figure 5.2). 

In three-dimensions, large-scale trough cross-stratification of beds is observed 

(Figure 5.4b ). Individual beds may be characterised by coarsening upward trends and 

localised clast imbrication (Figure 5.5a). 

Lithological description 

Exposed beds of this facies weather to a red-brown colour. Fresh surfaces are 

a pale red-brown colour. The calcareous lithoclastic conglomerate facies is 

characterised by very poorly sorted granule/pebble to cobble grade lithic clasts with a 

calcarenitic coarse sand grade matrix. Measured clast size ranges from 0.25 to 75 cm. 

Pebble to cobble-grade clasts are dominated by a variety of low-grade metasediments, 

that include quartzite (0 to 17 %), marble (0 to 8.5 %), and laminated quartz-mica 

schist (21 to 37.5 %), with laminated limestone (Figure 5.5b) (4.5 to 41.5 %), 

microconglomerates (0 to 29.5 %) and intraclasts (Figure 5.7). Intraclasts are marl 

(1.1 to 35.5 %), siliciclastic packstone (0 to 28.5 %) and laminated coral pillarstone (0 

to 4.5 %). Mart clasts are typically stained red, pale green or yellow. Angular 

laminated coral pillarstone boulders up to 75 cm in diameter occur on discrete 

bedding planes and have been bored by lithophagid bivalves (Figure 5.5c). There are 

no significant changes in grain composition along the studied section (Figure 5.6). 

Clast morphology is highly variable with sub-spherical and sub-angular to well 

rounded clasts. 

Pebble to boulder-grade clasts are supported within a poorly sorted silt to 

granule-grade matrix. Matrix comprises 5 to 60 % of this facies. Grain compositions 

of the matrix reflect conglomeratic clasts. Lithic grains, that include quartz-mica 

schist (2 to 19 %) and laminated limestone (0 to 10 % ), are well rounded, poorly 
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Figure 5.4a Field photograph (GR62501350, facing E) demonstrating the 
erosional lower contact of the calcareous lithoclastic conglomerate with 
the silty mar! facies. Scale bar = 1 m. The depth of erosion is less than 50 
cm. Lenses of silty mar! occur in the lower 2 m of the conglomerate. 

Figure 5.4b The stratigraphic relationship between the calcareous 
lithoclastic conglomerate, calcareous litharenite and siliciclastic bioclastic 
packstone facies. Conglomerates demonstrate metre-scale trough cross­
stratification. The angle of foresets increases vertically within a 
conglomerate package. Two distinct erosively based conglomerate 
packages are identified. These are interpreted as two different phases of 
delta lobe progradation. The progradation direction (blue arrows) is 
obliquely into the page (roughly north). 

tJ Foresets and approximate progradation direction 
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Figure S.Sa Coarsening 
upward sequences (indicated) 
within relatively sand-rich 
beds of the calcareous 
lithoclastic conglomerate 
facies (log CA-5, bed 6). 
Scalebar = 50 cm. 

Figure S.Sb Out-sized limestone 
boulder within the calcareous 
lithoclastic conglomerate facies. Note 
the abundant cylindrical borings on 
the upper surface (arrowed) (log CA-
9, bed I 0). Scalebar = 50 cm. 

Figure S.Sc Out-sized laminated 
coral pillarstone boulder within the 
calcareous lithoclastic conglomerate 
facies (log CA-9, bed 10). It is 
interpreted that this is a large 
intraclast derived from the 
neighbouring area of coral 
development. Scalebar = 50 cm. 
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sorted and sub-spherical (Figure 5.7b). Lithic grainsize ranges from 0.05 to 1.4 cm. 

Other grains are moderately well sorted, angular and sub-spherical mono- and 

polycrystalline quartz (2.5 to 38.5 %), feldspar (0.5 %) and mica {<0.5 %). Micrite is 

locally present (0 to 3 % of samples). In siltstone and sandstone interbeds, micrite 

comprises 35.5 to 63 %of samples. Clay-grade, orange-red coloured material (<1 %) 

has accumulated along siliciclastic grain boundaries (Figure 5.7d). Clay-grade 

material constitutes less than 1 % of the matrix of this facies. 

A moderately diverse assemblage of fragmented and abraded bioclasts is 

present in the matrix. Upper surfaces of cobble-grade clasts may have oyster 

encrustations and cylindrical borings up to 4 mm in diameter (Figures 5.5b and 5.7b). 

Fragmented and abraded bioclasts include bivalves (3.5 to 10.5 %), coralline algae (0 

to 10 %), planktonic foraminifera (Globergerinids) (0 to 4 %), gastropods (1-2 %), 

echinoids (0 to 5 %) and serpulid tubes {< 5 %) (Figure 5.7c and e). In situ and 

overturned branching Porites colonies up to 80 cm in diameter occur on discrete 

bedding planes (Figure 5.7a). 

Porosity and diagenesis 

Diagenetic features of the calcareous lithoclastic conglomerate facies vary (cf. 

Figures 5.7c and e). Poorly developed micrite envelopes are observed on some 

carbonate intraclasts. Intergranular equant to drusy calcite spar with intragranular 

drusy and blocky calcite spar rim and pore-filling cements are common (Figure 5.7e). 

Echinoid spines commonly have syntaxial calcite overgrowth cements. Aragonitic 

bioclasts, including corals and some molluscan fragments, have been dissolved. The 

resultant mouldic macropores may have been occluded with secondary drusy calcite 

spar cement. Vuggy, mouldic and intergranular porosity comprises up to 38% of this 

facies. 

Interpretation: Depositional environment 

Deposition of siliciclastics proximal to the sediment source is inferred from 

the textural and compositional immaturity of this facies. Lithic grains in the Fortuna 

Basin are sourced from the uplifted and eroded Internal Zone massifs (see Chapter 4) 

(Santisteban and Taberner 1988, Lonergan and Schreiber 1993, Graces et al. 2001). 

Siliciclastic grains of the Altorreal section are likely to be sourced from the Carrascoy 
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Massif, based on proximity to the mountain range and the general northward 

progradation of conglomerates. Low-grade metasediments (quartz-mica schists, 

quartzites etc) and laminated limestones are characteristic of the Malaguide Complex 

that is exposed in the Carrascoy Massif. Minor erosion of relatively recently deposited 

sediments is inferred from the presence of intraclasts (marl, siliciclastic packstone and 

coral clasts) that are found in neighbouring areas of the Fortuna Basin (Santisteban 

1981, Santisteban and Tabemer 1988). 

Rapid deposition of clasts from cohesive mass flows is interpreted from the 

very poorly sorted nature of beds (Nemec and Steel 1984, Mather 1993). Coarsening 

upward trends within beds is attributed to deposition from relatively poorly cohesive 

surging mass flow events (Nemec and Steel 1984, Mather 1993). Mather ( 1993) 

attributes the presence of silt and sandstone interbeds as evidence of the development 

of bipartite flows. Fluidization may be expected from rapidly deposited sediments, 

although it is noted by many authors that it is very difficult to fluidize very coarse­

grained deposits as the intergranular porosity would allow easy escape of fluids 

(Lowe 1975, Postma 1983). Each individual bed is interpreted to correspond to a 

discrete flow event. This allowed colonisation by oysters (encrusting boulders) and 

branching Porites colonies during quiescent periods. 

Mass flow deposits are characteristic of fan delta front environments (Postma 

1984, Mather 1993). The steep cross-stratification characteristic of this facies is 

interpreted to represent the prograding palaeoshelf profile. Haematite coatings on 

siliciclastic grains, in addition to the presence of carbonate nodules ( caliche ), has been 

interpreted by Mather (1993) to indicate pedogenic alteration. Caliche are absent in 

the Altorreal study area, thus it is suggested that either 1) there was insufficient time 

to allow pedogenic processes beyond haematite-coating of grains or 2) another 

process is responsible for the coatings. 

It is concluded that this depositional system prograded into a marine body of 

water from the presence of marine fauna (bivalves, echinoids and planktonic 

foraminifera). High-energy conditions are confirmed from the moderate abundance of 

robust, encrusting oysters and fragmented and abraded bioclasts in the matrix. 
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Figure 5.6 Figure to illustrate the composition of pebble to boulder-grade clasts along the exposed profile of the calcareous lithoclastic conglomerate facies. No 
significant trends are identified. 



a) 

c) 

e) 

Altorreal facies and palaeoenvironmental analysis 

227 

b) 

Figure 5.7a Isolated in situ Porites 
colony situated within the calcareous 
lithoclastic conglomerate facies (log 
FA-9, bed 10). Scale bar=50 cm. 

Figure 5.7b Encrustation of a cobble­
grade metasediment clast by robust 
oysters (log CA-9, bed 10). Pen=l2cm 

Figure 5.7c, d and e Photomicrographs 
of the calcareous lithoclastic 
conglomerate facies. c) (PPL) A high­
porosity sample (porosity in blue) 
containing abundant lithics (i) and 
quartz (ii) grains, with patchy micrite 
(iii) and planktonic foraminifera (iv). 
Scalebar=2mm (sample LFA 66, log 
FA-ll bed 11). d) (PPL) Detailed view 
of haematite-coatings around 
siliciclastic grains (sample LCA 64, log 
FA-9, bed 10). Scalebar=0.5 mm. e) 
(XPL) Calcite cemented sample 
containing abundant oyster fragments 
(i) and serpulids (ii). Calcite cement 
(iii) is coarse with blocky equant 
crystals (sample LFA 28, log FA-5 bed 
5). Scalebar=2mm. 
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Proximity to an area of coral development is inferred from the presence of 

large coral-microbial blocks that are found adjacent in some outcrops. In the Sorbas 

Basin, Braga and Martin (1996) infer the destruction of previous reef deposits (by 

siliciclastic debris flows) from the presence of reef blocks and reef-derived debris 

within fan delta conglomerates. 

In summary, the calcareous lithoclastic conglomerate facies represents 

moderate to very high energy, intermittent deposition of siliciclastic material in a 

proximal marine fan-delta environment. Although the actual areal extent of the fan 

was not calculated in this study, comparable fan bodies of the Sorbas Basin are 

hundreds of metres across (Braga and Martin 1996). This facies is comparable to the 

Fan Delta facies of the eastern Fortuna Basin, adjacent to the Sierra Espufia described 

by Lonergan and Schreiber (1993) and Mankiewicz (1995). In addition, similar 

proximal fan delta facies are documented from the Miocene of the Sorbas Basin 

(Braga and Martin 1996), the San Miguel de Salinas Basin (Reinhold 1995), the 

Granada Basin (Martin et al. 1989, Braga et al. 1990) the Guadix Basin (Soria et al. 

1999), the Lorca Basin (Wrobel and Michalzik 1999) and the Llucmajor Area of 

Mallorca (Pomar 1991, Pomar et al. 1996). In the Guadix and Lorca Basins, large 

prograding clinoforms and lense-shaped bed morphologies of bioclastic 

conglomerates are interpreted as the foresets and bottomsets of Gilbert-type deltaic 

systems that were located along basin margins (Soria et al. 1999 and Wrobel and 

Michalzik 1999). A distributary pattern with steep gradients and channels with a high 

bedload ratio is inferred from the coarse-grained nature of siliciclastics in fan deltas of 

the Lorca Basin (Wrobel and Michalzik 1999). Soria et al. ( 1999) interpret deposition 

of the bioclastic conglomerates of the Guadix Basin in extremely shallow marine 

conditions (close to fair weather wave base) during low sea level. Subaerial 

emergence is interpreted from the presence of palaeosols at the top of fan delta 

conglomerate sequences in the Granada Basin by Braga et al. (1990), although this is 

not seen in the Altorreal area. 
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5.2.1.2 Calcareous litharenite 

Lithologies: Calcareous litharenite 

Pebbly litharenite 

Occurrence and bed characteristics 

Altorreal facies and palaeoenvironmental analysis 

This facies is encountered in most logged sections in the Altorreal area. This 

facies often occurs below and intercalated with the calcareous lithoclastic 

conglomerate facies and above the siliciclastic bioclastic packstone facies (Figures 

5.4b and 5.8a). Lower contacts of the calcareous litharenite facies with the 

siliciclastic bioclastic packstone facies are erosional (Figure 5.4b). Upper contacts 

with the calcareous lithoclastic conglomerate are erosional (Figure 58.b ). 

Beds occurs as tabular (Figure 5.4b) and lenticular units (Figure 5.8a). 

Tabular beds are up to 2 m thick and extend laterally in excess of 100 m. Tabular beds 

demonstrate relative shallow inclination compared to conglomeratic units. Poorly 

developed symmetrical ripple lamination is observed on discrete bedding surfaces, 

although this facies is largely massive. Ripple height is up to 3 cm, and ripple crests 

are sharp, sinuous and bifurcating. Small lenticular beds are up to 0.3 m thick and 2 m 

long (Figure 5.8a). Trough cross-stratification is observed in smaller sandstone 

bodies (Figure 5.8a). 

The calcareous litharenite facies is locally pebbly and beds may be 

characterised by rapid fining upward with localised clast imbrication. In addition, 

randomly orientated, fragmented and abraded branching coral fragments (probably 

Porites) up to approximately 10 cm in length may occur (Fig 5.8b). 'Crinkly' laminae 

are observed on the upper surfaces of beds of this facies (Figure 5.8b ). Laminae are 

defined by concentration of silt-grade grains. 

Litho/ogical description 

Exposed surfaces of the calcareous litharenite facies weather to a pale brown 

to buff colour (Figures 5.8a and b). Fresh surfaces are a buff colour. This facies 

comprises subangular to well-rounded quartz ( 17.5 to 30 % ), metasediments ( 1.5 to 

15 %), limestone (0 to 7 %) and calcite cement fragments(< 3 %) (Figures 5.9a and 

b). Micrite matrix is locally preserved, comprising 3 to 47.5 % of samples. Non­

carbonate clay-grade material rich in haematite often coats grains and may be 

concentrated along irregular laminae (Figure 5.9b ). 
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Figure 5.8a Lenticular calcareous litharenite unit (arrowed). Log FA-6, bed 8). Scalebar=50 cm. 

Figure 5.8b The erosional upper contact of the calcareous litharenite facies with the calcareous lithoclastic 
conglomerate (arrowed). The calcareous sandstone facies at this locality contains abundant reworked 
Porites branching coral fragments (indicated). Irregular laminae are also evident (log FA-11 , bed 4). 
Scalebar=50 cm. 
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Figure 5.9a Photomicrograph of the calcareous litharenite facies. This facies contains angular, moderately 
well-sorted quartz (i) and lithic grains (ii). Calcite grains (iii) demonstrate syntaxial overgrowth cements. 
Planktonic foraminifera (iv) are also present (sample LFA 70, log FA-8, bed 11). Scalebar=50 cm. 

Figure 5.9b Photomicrograph of the calcareous litharenite facies. In many samples, grains are coated with 
a haematite-rich clay that is yellowish in thin section. Clays are also concentrated along irregular laminae 
(i). Primary intergranular and secondary vuggy pores (ii) are preserved (sample LFA 65, log FA-9, bed 9). 
Scalebar=50 cm. 
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The calcareous litharenite facies contains a moderately diverse fossil 

assemblage comprising bivalves (2 to 10 %), gastropods (0.5 to 1 %), echinoids (1.5 

to 5 %), planktonic foraminifera (0.5 to 3.5 %), Amphistegina (<0.5 %), coralline 

algae (<0.5 %) and small hyaline benthic foraminifera (< 0.5 %) (Figure 5.9a). 

Bivalves are dominated by robust oysters, with pectens more abundant in finer­

grained sediments. Amphistegina tests up to 0.5 mm in diameter have a robust, almost 

spherical morphology. Most fossils are fragmented and abraded. 

Porosity and diagenesis 

Originally aragonitic bioclasts (corals and gastropods) have been leached and 

the resultant mouldic pores have been locally occluded with blocky calcite cement. 

Many biomouldic pores have remained open. In comparison, oysters are well 

preserved. Calcite overgrowth cements (0.5 to 1.5 %) have developed on calcite 

grains and blocky calcite cements have developed within intergranular pores (Figure 

5.9a). Up to 20 % of sediments comprise primary intergranular and secondary 

mouldic porosity. 

Interpretation: environment of deposition 

The composition of sediments of the calcareous litharenite facies is 

comparable to that of the calcareous lithoclastic conglomerate facies (Section 

5.2.1.1), thus sediments are derived from the same source. However, deposition 

within a setting characterised by relatively low gradients is inferred from the low 

inclination of beds. Transport and reworking of coarse sand to pebble-grade 

siliciclastics prior to deposition and lithification is inferred from the well-rounded 

nature of grains. Tabular beds are largely massive, although the presence of wave­

ripple lamination indicates deposition above fair weather Wave base (Reading 1996). 

Normal marine conditions with open circulation are inferred from the presence 

of planktonic foraminifera and the modest diversity of the bioclast assemblage. Most 

bioclasts are fragmented and abraded, thus have undergone transport and reworking 

prior to deposition and lithification. The robust, almost spherical forms of 

Amphistegina are characteristic of high-energy, shallow water conditions 

(Leutenegger 1984, Hallock and Glenn 1985) thus an input of erosional detritus from 

a high-energy shallow marine environment is inferred. Broadly low to moderate 
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energy conditions are inferred from the micrite matrix, although reworking by marine 

currents at depths above fair weather wave base is suggested from wave-ripple 

laminae. It is concluded that tabular calcareous litharenite beds that occur 

stratigraphically below the calcareous lithoclast conglomerate facies represent the 

relatively distallow-energy equivalent of the conglomerates. 

Trough cross-stratification, present within smaller lenticular sand bodies 1s 

characteristic of alluvial sedimentary settings, and represents migration of three­

dimensional dunes (Reading 1996). The lenticular calcareous litharenite units situated 

within the calcareous lithoclastic conglomerate facies (Figure S.?b) are interpreted to 

represent small (dm-scale) channel systems. Similar features described by Mather 

( 1993) are interpreted as in-filled scours. 

It is suggested that the crinkly laminar features observed on some beds of the 

calcareous litharenite facies (Figure S.8b) are microbial in origin (i.e. a microbial 

mat) although no primary microbial structures remain. Microbial communities may 

produce mats with crinkled morphologies as well as flat mats (Logan et al. 1974, 

Kinsman and Park 1976). Modem microbial development is particularly common in 

inter-tidal to shallow sub-tidal environments and the crinkly nature of laminae could 

also be a consequence of subaerial exposure and dessication of a microbial mat 

(Riding 1991, 2000, Tucker and Wright 1990). Haematite-rich coatings on grains 

have been used to infer subaerial exposure and incipient soil development 

(Mather 1993 ). Nofke ( 1998) suggests that the growth of microbial mats occurs 

during pauses in sedimentation. Microbially laminated sandstones are not described 

from any of the other Neogene basins of SE Spain or the Mediterranean. Microbialites 

have been described from modem lithified lacustrine alluvial fan sediments ofNevada 

(Osbome et al. 1982). 

In summary, the calcareous litharenite facies formed within a low to moderate­

energy fan-delta front to prodelta setting, and is interpreted to be the relatively distal 

equivalent of the calcareous lithoclastic conglomerate facies. Bioclast-rich calcareous 

sandstones closely associated with conglomeratic facies are described from the 

Granada Basin (Braga et al. 1990), Guadix Basin (Soria et al. 1999), Lorca Basin 

(Wrobel and Michalzik 1999) and the Sorbas Basin (Braga and Martin 1996). 

Bioclastic sands of the Lorca Basin are interpreted as delta front to prodelta mouth bar 

sands, coastal barrier sands and subaqueous levees (Wrobel and Michalzik 1999). 
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5.2.2 Mixed carbonate-siliciclastic facies 

These facies are characterised by a mixed carbonate siliciclastic composition. 

The textures present in this grouping are clastic-rich marl and packstone. Facies 

present in this grouping are characterised by a low/negligible siliciclastic influx. 

5.2.2.1 Silty marl 

Lithologies: Silty marl 

Occurrence and bed characteristics 

The silty marl facies is present at the base of all measured sections. The 

thickness and nature of the lower contact of this facies cannot be determined, although 

Lonergan and Schreiber ( 1993) and Mankiewicz ( 1995) describe an erosional lower 

contact with Betic Internal Zone rocks in the western parts of the Fortuna Basin. The 

silty marl facies is always succeeded by the calcareous lithoclastic conglomerate 

facies in the Altorreal ridge sections, and is not obsetved in association with any of 

the other facies present in the study area (Figure 5.2). The upper contact with the 

calcareous lithoclastic conglomerate facies is undulating and erosive (Figure 5.4a). 

The silty marl facies is largely massive with localised mm-scale laminations. 

Lithological description 

Exposed surfaces of this facies weather to a white friable mud (Figure 5.10a). 

Fresh surfaces are a pale grey colour. Up to 48 % of the silty marl facies comprises 

homogeneous micrite, with minor silt-grade quartz (<3.5 %) and quartz-mica schist 

(<1 %) (Figure 5.10b). Grains are moderately well sorted, angular with low 

sphericity. Grains are predominantly detrital quartz with minor quartz-mica schist and 

calcite (Figure 5.10b). This facies contains a modest biota dominated by planktonic 

foraminifera (< 3.5 %) and echinoids (< 1%). Planktonic foraminifera tests are 

presetved intact and range in size from 0.01 to 0.05 mm (Figure 5.10c). 
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Figure S.lOc Detailed view of the silty marl 
facies. This facies is characterised by the presence 
of planktonic foraminifera (sample LFA 66-m, 
log FA-ll, bed 1). Chambers have been cemented 
with poikilotopic calcite (clear in thin section) 
Scalebar=0.25 mm 

Figure 5.10a Field exposure of the silty marl 
facies (GR62201385, facing E). This facies 
weathers to a white friable mud. Sediments are 
often crosscut by gypsiferous veins ( arrowed), 
interpreted as a late diagenetic feature. 

Figure S.lOb Thin section photomicrograph of the silty marl facies. This facies is characterised by 
planktonic forarninifera (i) and rare echinoids (ii) situated within microporous micrite. 
Microporosity is indicated from the blue hue of the thin section. Siliciclastic grains (iii) are silt­
grade, angular and very well sorted (sample LFA 66-m, log FA-11, bed 1). Scalebar=2 mm. 
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Diagenesis 

Gypsum-vein networks can be observed in some localities (Figure S.lOa). 

Veins crosscut diffuse laminations and may extend laterally up to 2 m. The silty marl 

facies contains up to 20 %matrix microporosity (Figure S.lOb). Poikilotopic calcite 

cements are observed within foraminifera tests (Figure S.lOc). 

Interpretation: environment of deposition 

Open marine depositional conditions are inferred for this facies from the 

presence of planktonic forarninifera and rare echinoid spines. Constraining the depth 

of this facies is difficult because of the apparent absence of sedimentary structures 

and ichnofabrics although low-energy conditions and deposition at/below storm wave 

base are inferred from the abundance of fine-grained micrite and localised presence of 

diffuse, fissile laminations. It is interpreted that fine-grained siliciclastic material was 

deposited from suspension. Limited abrasion prior to deposition and lithification is 

inferred from the angular nature of siliciclastic grains. 

In summary it is interpreted that this facies was deposited in an open marine, 

low-energy distal environment, below storm wave base, with a moderate siliciclastic 

influx. This facies has affinities with Standard Microfacies 3 of Wilson (1975). 

Comparable marts rich in planktonic foraminifera are described from the Guadix 

Basin (Soria et al. 1999), Sorbas Basin (Braga and Martin 1996) and the Alicante­

Elche Basin (Calvet et al. 1996). In addition, turbidites and distinct slump horizons 

are described within the marl horizons of the Guadix, Alicante-Elche and San Miguel 

de Salinas Basins (Soria et al. 1999, Calvet et al. 1996 and Rheinhold 1997). This is 

not observed in the marl of the Altorreal study area, and a relatively flat depositional 

environment is inferred. 
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5.2.2.2 Siliciclastic bioclastic packstone 

Lithologies: Siliciclastic bioclastic packstone 

Molluscan packstone 

Bioclastic packstone 

Occurrence and bed characteristics 

The siliciclastic bioclastic packstone facies is encountered in the middle part 

of the studied succession (Figure 5.2). This facies overlies the calcareous lithoclastic 

conglomerate facies, and may be intercalated with the calcareous litharenite facies. 

This facies is also observed to pass laterally into the laminated coral platestone facies 

(Figure 5.2). Measured bed thickness ranges from 0.4 to 3.3 m with typical 

thicknesses around 1.4 m. Beds of this facies are typically horizontally stratified 

(Figure 5.2). Upper and lower bed contacts are typically poorly defined, and beds 

appear to amalgamate along section yielding total thickness of this facies up to 4.4 m 

(e.g. log FA-ll, bed 3). Lower bedding contacts with conglomerates are gradational 

(Figure 5.11a). Poorly sorted, sub-angular and sub-spherical cobble-grade clasts up to 

50 cm may occur at the base of this facies (i.e. FA-11, bed 5, Figure 5.11a). Beds 

extend laterally along the entire east-west length of the main ridge (> 200 m). 

Lithophagid borings up to 0.5 cm in diameter (Figure 5.11b) are common on 

the upper surfaces of a bed of this facies that precedes the calcareous lithoclastic 

conglomerate facies (e.g. log FA-10 bed 10, log FA-ll bed 3) (Figure 5.4b)./n situ, 

warty-branching coralline algae occur locally on the bored horizons (Figure 5.11b). 

Lithological description 

Exposed surfaces of this facies weather to a pale brown-buff colour. Fresh 

surfaces are a pale buff colour. Up to 10 % of this facies comprises coarse sand to 

pebble grade siliciclastic grains. Pebble-grade grains up to 1.5 cm are poorly sorted, 

well rounded and sub-spherical. 

The siliciclastic bioclastic packstone facies contains a moderately diverse 

fossil assemblage, comprising oysters (7 to 25 %), gastropods (0 to 3 %) coralline 

algae, bryozoa (0 to 2 %), coral fragments (< 0.5 %), worm tubes (< 0.5 %), 

planktonic foraminifera (0.5 %), miliolids (0 to 1 %), Amphistegina (<0.5 %), 

victoriellids (0 to 1 %) and undifferentiated smaller benthic foraminifera (< 0.5 %) 
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Figure S.lla Outcrop of the 
siliciclastic bioclastic packstone 
facies (log FA-11, bed 5). Where this 
facies succeeds the calcareous 
lithoclastic conglomerate facies, out­
sized boulders (in this instance a 
limestone clast-arrowed) are present 
at the base. Lithic boulders fme 
upwards over 50 cm. Scalebar=50 
cm. 

E~~T~~iiJimE~~J!"~~~~~U:~i;~:-) Figure S.llb Outcrop of the 
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siliciclastic bioclastic packstone 
facies (log F A-1 0, bed 1 0). It is 
interpreted that abundant lithophagid 
borings on the upper surface of this 
bed (arrowed) represent a hardground. 
See text for details. Scalebar=5 cm. 

Figure S.llc Fragmented and 
abraded oysters within the 
siliciclastic bioclastic packstone 
facies (isolated exposure within 
the Casa de Penalver area-location 
indicated on Figure 5.1). 
Scalebar=5 cm. 
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Figure 5.12c In situ warty 
branching coralline algae situated 
on the upper surface of the 
siliciclastic bioclastic packstone 
facies (log F A-8, bed 10) 
Scalebar=2mm. 
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Figure 5.12a Photomicro-
graph (PPL) of the 
siliciclastic bioclastic 
packstone facies (sample 
LF A 32, log F A-6, bed 3). 
Most bioclasts in this facies 
have been leached, although 
moulds of bivalves (i) and 
gastropods (ii) are 
recognized. Other clasts 
include well-preserved 
oysters (iii), echinoids with 
syntaxial overgrowths (iv) 
and lithic grains (v). 
Scalebar=2mm. 

Figure 5.12b Photomicro-
graph (PPL) of the 
siliciclastic bioclastic 
packstone facies (sample 
LF A 33, log F A-6, bed 5). 
Larninar encrusting coralline 
algae (i) with algae-encrusted 
oyster fragments (ii). 
Scalebar=2rnm. 
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(Figure 5.12a). Planktonic foraminifera up to 0.25 mm are preserved intact. Miliolids 

up to 1.5 mm are typically preserved intact, although tests are highly abraded with a 

dusky appearance. Robust, intermediate Amphistegina tests up to 2 mm are relatively 

rare (less than 1 % bioclasts) and may be fragmented and abraded. Victoriellids are 

very rare (less than 1 % of bioclasts). Most fossils are fragmented and partially 

abraded. Oyster fragments are up to 2.5 cm across (Figure 5.11c). Coralline algae are 

present as elliptical, concentric laminar rhodoliths up to 2 cm in diameter. Rhodolith 

nuclei are bivalve and bryozoan fragments. Coralline algae also occur as fragmented, 

laminar crusts that are detached from their substrate, and in situ warty growths 

(Figure 5.12b and c). 

Micrite is rare in most samples of this facies, although it is locally abundant 

comprising up to 50 % of a sample. Siliciclastic grains are mono- and polycrystalline 

quartz (1 to 22 %), metasediments (2 to 20.5 %) and laminated limestone (2 to 30 %). 

Peloidal, silty interbeds are composed predominantly of dark brown, peloidal 

micrite (63.5 %) with quartz (5.5 %), metasediments (12.5 %), laminated limestone 

clasts (3.0 %) also containing abraded coralline algae (5.5 %), bivalves (2.5 %), 

echinoids (1.5 %) and planktonic foraminifera (0.5 %) (Figures 5.13a and b). 

Diagenesis 

Originally aragonitic orgamsms have been leached, and resultant mouldic 

pores have been partially occluded with blocky calcite rim cement (10 to 22.5 %) 

(Figure 5.12a). Up to 55 % of the siliciclastic bioclastic packstone facies is 

secondary mouldic porosity with locally preserved intergranular primary porosity 

(Figures 5.12 a and b). It is postulated that significant leaching of the matrix has also 

occurred. Leaching of sediments is particularly prevalent along the Lithophaga-bored 

horizon (Figure 5.2). 

Interpretation: environment of deposition 

A marine depositional environment with open marine circulation is interpreted 

from the presence of planktonic foraminifera. Deposition within, or close to, the 

photic zone is inferred from the presence of coralline algae and Amphistegina 

(Ghose 1977, Hallock and Glenn 1986). Laterally extensive coralline algae are 
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Figure 5.13a Photomicrograph of a peloidal, silty interbed within the siliciclastic bioclastic packstone 
facies. This sediment is dark in pp!, with dark brown peloidal micrite (i) with silt-grade, angular well­
sorted siliciclastic grains (ii) (sample LF A 44a, log 8, bed 8). Scalebar=2 mm. 

Figure 5.13b Detailed photomicrograph of the above sample (sample LF A 44a, log 8, bed 8). Sediment is 
dominated by peoidal micrite (i) with planktonic forarninifera (ii) and angular siliciclastic grains (iii). 
Porosity is dominated by mouldic pores (iv), which are combination of leached calcite grains and bioclasts. 
Scalebar=2 mm. 
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consistent with moderate to lower-energy settings, where competition for space is 

limited (Minnery et al. 1985, Minnery 1990). 

Proximity to a siliciclastic source and/or a noticeable siliciclastic input is 

inferred from the significant percentage of coarse, siliciclastic material within 

sediments. Transport and/or re-working of siliciclastics prior to deposition and 

lithification is inferred from the well-rounded morphology of pebble-grade lithics, 

although beds of this facies are largely massive, with little evidence of continuous 

wave or current re-working (i.e. ripple lamination). However, periodic winnowing by 

currents or variations in the depositional energy is inferred from the localised textural 

variability of this facies. In addition, most bioclasts are fragmented and abraded, 

indicating transport and reworking prior to deposition and lithification. It is inferred 

that robust oyster fragments are derived from a nearby high-energy environment 

comparable to the calcareous lithoclast conglomerate facies where oysters are 

observed in situ encrusting boulders (see Section 5.2.2.1). 

A period of very slow deposition, syn-depositional cementation and 

subsequent boring is inferred from the presence of lithophagid borings on the top 

surface of the bed illustrated on Figure 5.4b. This feature is not observed on the 

upper surface of other beds of this facies. This surface is interpreted as a hardground. 

Recent hardgrounds form just below the sea floor, and typically develop in areas of 

slow sedimentation and high current activity (Tucker and Wright 1990). Boring of 

hardgrounds by lithophagid bivalves is common (Tucker and Wright 1990). 

Cementation of this facies and hardground development was probably aided by its 

high porosity that would ease movement of porewaters through sediment and 

periodically agitated energy conditions. It is inferred that blocky calcite rim cements 

(Figure 5.12a) developed soon after deposition within the marine diagenetic 

environment. These cements are particularly well developed in samples from the 

packstone horizon illustrated on Figure 5.4b. 

In summary, the siliciclastic bioclastic packstone facies is interpreted as a 

moderate-energy, marine shelf deposit that accumulated within or very close to the 

photic zone in an area with a moderate siliciclastic and bioclastic influx with periodic 

reworking by currents. Comparable facies are described from the Granada Basin 

(Martin et al. 1989), the Guadix Basin (Soria et al. 1999) and the Lorca Basin 

(Wrobel and Michalzik 1999). Siliciclastic packstone beds in these basins have been 
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interpreted as the marine offshore-equivalents of coastal fan delta systems and as 

carbonates that developed on conglomeratic shoreline-attached platforms. Bioclastic 

carbonate facies of the Lorca Basin contain up to 15 % terrigenous siliciclastic 

material, and are interpreted as a shallow water carbonate-platform environment. 

However, although lithologically comparable, the siliciclastic packstones of the 

Granada Basin show no evidence of early lithification and hardground formation such 

as inferred at Altorreal. 

5.2.3 Carbonate-dominated facies 

Facies belonging to this grouping are characterised by platestone, pillarstone and 

mixstone textures. Carbonate facies occur as sigmoidal clinoforms that pinch out 

laterally perpendicular to dip direction units (Figure 5.2). Two carbonate intervals 

situated within siliciclastic sediments are identified on the northern and southern ridge 

sections (Figures 5.2, 5.3 and 5.14). A minor interval is identified in the Casa de 

Penalver area (Figure 3.1). Correlation of these is discussed in Section 5.3. 

Measured lateral extent of the carbonate units perpendicular to the dip 

direction of the siliciclastic sediments is up to 50 m. Carbonate units extend laterally 

down-dip up to 100 m (Figure 5.14). Vertical thickness is up to 10 m. Bedding and 

other internal sedimentary structures are largely absent. There are distinct vertical and 

lateral transitional changes in coral colony morphology, with larninar, platy forms 

dominating at the base. These platy forms progressively change to predominantly 

head, massive and foliaceous forms in the middle and top of the carbonate units. 

Stick-like, branching forms occur towards the margins of carbonate bodies. Coral 

morphology can be used to determine relative water depths (Santisteban 1981, 

Santisteban and Tabemer 1988, Esteban 1996). This zonation of colony morphology 

is unusually clear due to the low coral diversity typical of late Miocene Mediterranean 

reef systems (Esteban 1996). Zonation of colonial coral morphology can therefore be 

used (in conjunction with other sedimentological evidence) to reconstruct the 

environment in terms of relative water depth, siliciclastic influx etc. (Santisteban 

1981, Grasso and Pedley 1988, 1989, Esteban 1996). 
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passes vertically into the 
coral mixstone facies 
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Figure 5.14 Correlation of selected logs from the northern ridge section at Altorreal illustrating the morphology and lateral continuity of carbonate units. Two 
isolated carbonate intervals (shaded grey for clarity) are identified in the northern ridge. The base of the carbonate intervals is typically marked by a thin(< lm) 
interval of the laminated coral platestone facies that passes gradationally into the coral mixstone. Logs are "hung" from the base of the upper carbonate interval. 
All correlation tie lines have been traced in the field. 
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5.2.3.1 Laminated coral platestone 

Lithologies: Laminated coral platestone 

Occurrence and bed characteristics 

This facies is not volumetrically important although it is encountered at the 

base of both carbonate intervals identified on the northern ridge section (logs F A-1, 

F A-2, F A-4 to F A-7). This facies is not encountered in the southern ridge section, or 

to the far south of the study areas at Casa de Peiialver (Figure 5.1). The laminated 

coral platestone facies typically comprises the lower metre of the carbonate unit and 

passes vertically into the laminated coral pillarstone and/or the coral mixstone facies. 

Upper contacts are gradational. The laminated coral platestone facies also passes 

laterally into the siliciclastic bioclastic packstone facies (Figure 5.2). The base of this 

facies may contain granule to boulder grade siliciclastic grains. 

Lithological description 

Exposed surfaces of the laminated coral platestone facies weather to a pale 

grey to white colour (Figure 5.15a). Fresh surfaces are white and have a finely 

crystalline texture. This facies is characterised by the presence of mm-scale, highly 

irregular sub-horizontal laminations that extend laterally for at least 1 m and in total 

are up to 75 cm thick (Figure 5.15a). In thin section, sub-mm scale dark brown 

micritic laminations alternate with orange-brown micrite with scattered siliciclastic 

grains (Figure 5.15b). Siliciclastics are well-sorted, sub-angular to well rounded and 

sub-spherical. Robust platy to massive corals are preserved towards the top of this 

facies (Figure 515a). Colonies are up to 75 cm across. 

A bioclastic wacke/packstone matrix is locally preserved in this facies. The 

matrix comRrises micrite (50.5 %), coral fragments (0.5 %), gastropods (5 %), 

echinoids (1.5 %), bivalves (8.5 %), bryozoa (0.5 %), coralline algae (1.5 %) and 

planktonic foraminifera (< 2 %). Siliciclastic grains are quartz (0.5 to 11.5 %), 

metasediments (<9.5 %) and limestone (2 %). Grains up to 0.25 mm are well sorted, 

angular and subspherical. 
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Figure 5.15a Outcrop of the laminated coral platestone facies (log F A-2, bed 7). Sediments are 
characterized by laterally extensive, irregular laminae (i) with sparse platy coral colonies (ii). 
Scalebar=SO cm. 

Figure 5.15b Detailed photomicrograph of the laminated coral platestone facies (sample LFA 16, log 2, 
bed 7). Sediment is characterized by irregular light and dark brown micritic laminae. Rare silt-grade 
siliciclastic grains (arrowed) occur randomly scattered throughout this sediment. Scalebar=2 mm. 
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Diagenesis 

Intergranular drusy and equant calcite spar rim cement comprises up to 5 % of 

this facies. All aragonitic bioclasts (including corals and molluscs) have been 

dissolved and wholly, or partially, replaced with intragranular drusy calcite spar 

cement. Up to 30 %of the laminated coral platestone facies is vuggy, biomouldic and 

intergranular porosity. 

Interpretation: environment of deposition 

Irregular, mm-scale laminae defined by alternations of dark and light micrite 

are consistent with structures interpreted as microbial in origin by Esteban ( 1979), 

Riding ( 1991, 2002) and Nofke ( 1998). Using the classification scheme provided by 

Riding (2002), these structures are classified as stromatolites. No cellular microbial 

structures are preserved in thin section. The principal organisms involved in the 

growth of microbial biofilms and mats are bacteria (particularly cyanobacteria), small 

algae and fungi (Riding 2000). Noffke ( 1998) has suggested that growth of bacterial 

mats occurs mainly during pauses in sedimentation thus accretion of sediments on 

bacterial mats is likely to be episodic (Riding 2000). Modern microbial structures are 

ubiquitous on tidal flat areas (Tucker and Wright 1999). However, a subtidal 

environment of deposition is inferred for the laminated coral platestone facies since 

this facies includes in situ stenohaline biota. Steneck et al. ( 1998) suggest stromatolite 

development is restricted to environments where ecological processes such as 

colonisation, growth, competition and predation (herbivory) are low. Kendall and 

Skipwith (1968) attribute the abundance of microbial mats in the Persian Gulf lagoon 

to the limited grazing of invertebrates, perhaps as a consequence of reduced 

invertebrate populations due to enhanced salinities. Additionally Garrett (1970) has 

suggested that gastropod grazing was responsible for the apparent restriction of well­

developed microbial mats in intertidal environments of the Bahama Banks. Reitner 

and Neuweiler (1995) suggest a more important factor promoting microbial 

development is nutrient-enrichment. 

Normally, platy coral morphologies are consistent with environments with 

reduced light penetration, such as deep or turbid water (Santisteban and Taberner 

1988, Pomar et al. 1996). However, coral colonies within this facies are thick 

suggesting agitated conditions. It is suggested from the association with laminar 
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microbialte that platy corals developed within very shallow water. It is postulated that 

horizontal growth predominated over vertical growth due to a lack in available 

accommodation space. Platy coral development is described from the shallow-water, 

high-energy reef crest zone of Miocene reefs in the Sorbas Basin (Riding 1991 ). 

A moderate input of siliciclastics is inferred from the presence of siliciclastic 

grains in the matrix. Some transport and reworking of siliciclastic grains prior to 

deposition and lithification is suggested from the rounded nature of lithic grains in the 

matrix. 

In summary, this facies represents the development of microbial mats and 

platy coral colonies within an agitated, very shallow-water subtidal setting. Similar 

facies are described from the Sorbas Basin (Riding 1991 ). 

5.2.3.2 Coral mixstone 

Lithologies: Coral mixstone 

Coral mixlpillarstone 

Occurrence and bed characteristics 

The coral mixstone facies comprises the majority of the carbonate intervals 

identified in the northern ridge section (Figure 5.14). This facies is also encountered 

on the southern ridge section (Figure 5.3) and to the south at the Casa de Penalver 

section (Figure 5.1). The coral mixstone facies vertically succeeds the laminated 

coral platestone facies. The contact is gradational. The coral mixstone facies is also 

observed to overly the calcareous lithoclastic conglomerate and siliciclastic bioclastic 

packstone facies (Figures 5.14 and 5.16a). These contacts are sharp and undulating 

but non-erosive. The coral mixstone facies is typically succeeded by the calcareous 

lithoclastic conglomerate facies (Figure 5.14). The contact is erosional 

(Figures 5.16b and c). The maximum measured thickness of this facies is 10 m, 

although beds are observed to pinch out down-dip of underlying siliciclastic 

sediments (Figure 5.14). 

Lithological description 

Exposed surfaces of the coral mixstone facies weather to a pale brown-yellow 

colour (Figures 5.16 and 5.17a). Fresh surfaces are a pale grey-brown colour. This 
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Figure 5.16a The nature of the lower contact between the coral mixstone and siliciclastic bioclastic 
packstone facies (dashed line). The contact is irregular but non-erosional. At this locality, the coral 
mixstone is dominated by flat, thin platy coral colonies (Casa de Pefialver section, GR 61401296, 
facing S). Scalebar=l m. 

Figure 5.16b and c The erosive nature of the upper contact of 
the coral mixstone with the calcareous lithoclastic 
conglomerate facies (white dashed line). Along the northern 
ridge section (b, log FA-2, beds 8 and 9) the apparent depth of 
erosion is estimated to be at least I m. Equivalent depths are 
estimated for the carbonate interval exposed on the southern 
ridge (c, GR 61251318). The absence of conglomerate clasts 
within the reef framework indicates that coral development did 
not coexist with siliciclastic input. Layered conglomerates 
onlap the irregular upper surface of the coral mixstone (c), thus 
inferring that reef erosion occurred prior to burial by 
siliciclastics. See text for discussion. 
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facies is characterised by an abundance of in situ coral colonies that demonstrate 

platy, foliaceous and domal morphologies (Figures 5.16a, 5.17a and b). Colonies are 

tightly packed forming a framework. In addition to corals, the coral mixstone facies 

contains a moderately diverse fossil assemblage. Intact echinoids up to 7 cm in 

diameter and gastropods up to 2 cm are present in interskeletal areas. 

Bioclastic pack/wackestone matrix occurs locally in interskeletal areas, and 

may have been recently eroded out (Figures 5.16a and 5.17a). The matrix is 

dominated by dark brown micrite (56.5 %) with minor silt-grade quartz (<0.5 %) and 

quartz-mica schist (<0.5 %). This facies contains a diverse biota that comprises 

bryozoa (2 %), echinoids (l %), bivalves (5 %), coralline algae (2 %), victoriellids 

(0.5 %), small benthic foraminifera (1 %), planktonic forarninifera (1.5 %) and 

Amphistegina (<0.5 %). Most fossils are fragemented and show evidence of abrasion. 

Gastropods and echinoids are often preserved intact. Bivalves are dominated by 

pectens with subordinate oysters. Fragments are up to 2 cm across. 

Locally, and particularly at the Casa de Pefialver section (Figure 5.1), the 

upper surfaces of the coral mixstone facies are characterised by columns of 

concentrically laminated carbonate (Figures 5.17c and d). Laminae are around 1 mm 

thick. Measured column width and height is up to 15 cm. Fine-grained carbonate 

material may be preserved between laminae. The upper surfaces of columns are 

planar and commonly demonstrate small, cyclindrical borings (Figure 5.17d). 

Diagenesis 

Intergranular drusy and equant calcite spar cement occurs around bioclasts and 

siliciclastic grains. All originally aragonitic bioclasts (including corals, bivalves and 

gastropods) have undergone dissolution and mouldic pores have been wholly, or 

partially, cemented with drusy calcite spar. Very high inter-skeletal macroporosity (up 

to 50 %) has developed with the preferential weathering of the soft wack/packstone 

matrix (Figures 5.16a and 5.17a). 

Interpretation: environment of deposition 

The coral mixstone facies contains a marine faunal assemblage. Deposition 

within the photic zone under normal open marine conditions is inferred from the 

abundance of stenohaline biota. Agitated conditions are suggested from the presence 
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Figure S.l7a Massive and foliaceous coral 
colonies (log FA-12, bed 9). The matrix 
has preferentially weathered. Scalebar=1m. 

Altorreal facies and pa/aeoenvironmental analysis 

Figure S.l7b Domal coral colony (Goniastrea?) within 
the coral mixstone facies (Casa de Peiialver section). 
Scalebar=2 cm. 
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Figure 5.17c Columnar stromatolites 
observed on the upper surface of the 
coral mixstone facies (Casa de 
Penalver, GR 61501292). Individual 
columns are up to 15 cm in height, 
although erosion is inferred from the 
planar surfaces. Original microbial 
structures have been replaced with 
calcite, hence the white crystalline 
appearance of columns. Scalebar=50 
cm. 

Figure 5.17d Detailed view of the 
columnar stromatolites pictured 
above. Columns are composed of 
numerable tightly concentric calcite 
laminae. The upper surfaces are 
often planar, inferred to be a 
consequence of erosion. Note the 
abundant small, cyclindrical borings 
on the upper surfaces (arrowed). 
Scalebar=50 cm. 
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of fragmented and abraded bioclasts in the matrix, although broadly low-energy 

conditions are suggested from the abundance of micrite. It is postulated that the 

accumulation of micrite would have been encouraged by the dense coral growth 

(Insalaco 1998). 

The concentrically laminated carbonate columns present on the upper surfaces 

of this facies are interpreted as microbial in origin, although no organic microbial 

structures have been preserved. Using the classification scheme provided by Riding 

(2000), these structures are classified as columnar stromatolites. There is no evidence 

of microbial/stromatolite growth within the irregular coral framework. It is concluded 

therefore that stromatolite growth occurred post-reef. 

Modern stromatolite/microbialite development tends to occur in intertidal 

environments (Tucker and Wright 1990). In the Bahamas, columnar stromatolites 

occur in subtidal, lagoonal environments (Reid et al. 1999). An abundance of 

microbial structures has been attributed to the limited grazing by invertebrates, 

perhaps as a consequence of enhanced salinities/environmental degradation (Kendall 

and Skipwith 1968, Garrett 1970 and Riding et al. 1991 ). Riding (2000) states that 

although biologically stimulated, the over-riding environmental control on 

stromatolite development is seawater chemistry and the supersaturation state of 

seawater with respect to carbonate minerals. Detailing the changing seawater 

chemistry was beyond the scope of this study and thus this hypothesis cannot be 

tested. A significant change in environmental conditions towards the top of the coral 

mixstone facies is inferred from the transition from a diverse stenohaline assemblage 

to a limited, microbial-dominated assemblage. 

In summary, the coral mixstone facies is interpreted as an in situ coral build­

up that developed in moderate depths in a normal marine environment with a low 

siliciclastic influx. Towards the closing stages of coral growth, environmental 

perturbations such as unfavourable changes in seawater chemistry, decrease in 

abundance of grazers etc, resulted in the development of columnar stromatolites. 

Comparable mixstone coral build-ups are described from a number of the Upper 

Miocene Mediterranean basins. The coral mixstone facies is interpreted as an 

equivalent of the 'Thicket Zone' of the Sorbas Basin, as described by Braga and 

Martin (1996). In addition, irregular laminar coral growth forms are described from 

the Reef Core facies of the Melilla-Nador Basin, Morrocco (Saint Martin and Comee 
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1996), and the reef slopes of the Llucmajor Area, Mallorca (Pomar et al. 1996). 

Comparable stromatolitic facies are described from the Sorbas Basin (Riding et al. 

1991 ), although the columnar stromatolites are more typically associated with coarse 

siliciclastics rather than corals. 

5.2.3.3 Laminated coral piUarstone 

Lithologies: Coral pillarstone 

Occurrence and bed characteristics 

This facies is only encountered at the margins of the carbonate units in the 

northern ridge. The laminated coral pillarstone facies can only be traced laterally for 5 

metres. This facies is not encountered on the southern ridge or in the Casa de Pe:fialver 

section. The lower contact of this facies with the laminated coral platestone is 

gradational. The upper contact with the calcareous lithoclastic conglomerate facies is 

sharp and locally erosional. 

Lithological description 

Exposed surfaces of this facies weather to a pale grey to light brown colour. 

Fresh surfaces are white and have a finely crystalline texture. The laminated coral 

pillarstone facies is characterised by an abundance of dissolved stick-like branching 

coral colonies with concentrically laminated calcite crusts up to 1.5 cm thick (Figures 

5.18a and b). Calcitic laminae are less than I mm thick, quite poorly defined and have 

a crystalline texture (Figure 5.18b). Coarse calcareous litharenitic sand with well­

rounded lithic pebbles is preserved between coral colonies in the upper 50 cm of this 

facies (Figure 5.18b). Siliciclastic grains are up to 1.5 cm in diameter. Grains are 

dominated by metasediments (up to 30 %), limestone (up to 5 %) and intraclasts (up 

to 2 %) floating within a coarse-sand matrix. Grains are well-rounded, moderate to 

poorly sorted and sub-spherical (Figure 5.18b). 

The matrix within the lower 50 cm of this facies is dominated by micrite ( 12 

to 30 %) with minor silt-grade quartz (0.5 %) and quartz-mica schist (0.5 %). Biota 

include gastropods (1 to 2 %), bivalves (5 %), echinoids (0.5 to 5%), bryozoa (0.5 to 

2 %), victoriellids (< 0.5 %), miliolids (0.5 %), Amphistegina (< 0.5 %), victoriellids 

(< 0.5 %), planktonic forarninifera (< 0.5 %) and small hyaline benthic foraminifera 
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Figure 5.18a Field view of the laminated coral pillarstone facies. Stick-like corals (arrowed) have been 
completely dissolved out. This facies occurs only at the margins of carbonate bodies. Scalebar=5 cm. 

Figure 5.18b Close-up of above. Vertical stick-like corals have been completely 
leached (i), although the outline of branches has been preserved by concentric, 
laminar microbial structures (ii). Coarse sand-grade siliciclastic material (iii) occurs 
between coral branches. Scalebar=2cm. 
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Figure 5.19a Photomicrograph of the laminated coral pillarstone facies. Clotted micritic textures (i) are 
interpreted to be microbial in origin. The original coral skeleton has been leached, with the resultant 
mouldic pores completely occluded with drusy calcite cement (ii) (sample LF A 75). Scalebar=5 cm. 

Figure 5.19b Photomicrograph of the laminated coral pillarstone facies. Originally aragonitic coral 
skeletons have been completely dissolved. Mouldic pores have been partially occluded with blocky calcite 
rim cements (i), although significant porosity remains in this sample (sample LFA 19b, log FA-3 bed 5) 
Scalebar=2cm. 
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(< 0.5 %). Most fossils are fragmented with evidence of abrasion. Fragments are up to 

2 cm across. 

Diagenesis 

Originally aragonitic bioclasts (corals and bivalves and gastropods) have been 

dissolved out and biomouldic pores wholly, or partially, infilled with drusy and 

equant calcite spar cement (Figures 5.19a and b). Clotted, micritic textures may be 

associated with corals in this facies (Figure 5.19a). Twenty to 40 % of the laminated 

coral pillarstone facies is vuggy, biomouldic and intergranular porosity (Figure 

5.19b). 

Interpretation: environment of deposition 

The laminated coral pillarstone facies contains a marine faunal assemblage. 

Deposition within the photic zone under normal marine conditions is concluded from 

the abundance of stenohaline biota. Branching coral morphologies characteristic of 

this facies are consistent with Miocene examples of coral occurrences in shallow 

water depths in areas of active (siliciclastic) sedimentation (Santisteban and Taberner 

1988, Pomar et al. 1996). The coral Porites, dominant in the Mediterranean during the 

late Miocene, is well known for its ability to withstand high levels of (fine-grained) 

siliciclastic input (Hubbard and Pocock 1972). It has been suggested that the stick 

morphology responds to a need for fast growth rates (to compete for space, to avoid 

burial and to maximise light availability) (Grasso and Pedley 1988, 1989, Saint 

Martin 1990). Intuitively, the relatively narrow Porites branches would be fragile and 

high-energy environments, or environments experiencing influxes of coarse 

siliciclastic material, would quickly result in fragmentation of colonies. It is suggested 

by Esteban et al. (1977) and Esteban (1979) however, that sediment packed around 

branches effectively supported them. Agitated conditions are inferred from the 

presence of abraded and fragmented bioclasts in the matrix and proximity to a 

siliciclastic source is inferred by the occurrence of silt to pebble-grade lithic and 

detrital quartz clasts. Some transport and reworking of siliciclastic grains prior to 

deposition and lithification is suggested from the rounded nature of lithic grains in the 

matrix. 
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The laminated calcitic crusts present around often dissolved-out coral 

branches are interpreted as microbial in origin although no primary cellular microbial 

structures are preserved. Using the classification scheme of Riding (2000), these 

structures are classified as stromatolites. In thin section, clotted micritic fabrics 

associated with coral skeletons are also interpreted to be microbial in origin. Using the 

classification scheme of Riding (2000) these textures would be classified as 

thrombolites. Modern microbial structures are commonly associated with tidal flat 

and inter-tidal environments (Tucker and Wright 1990) although a sub-tidal 

environment of deposition is favoured due to their association with in situ stenohaline 

biota, and the absence of features that could indicate subaerial exposure. 

Kendall and Skipwith (1968), and Riding et al. (1991) have attributed an 

abundance of microbial structures to limited grazing by invertebrates, perhaps as a 

consequence of enhanced salinities/environmental degradation. Normal open marine 

conditions are interpreted for this facies. Nutrient availability (and excess) is a 

potential control on the development of microbialites (Reitner and Neuweiler 1995). 

A coral reef framework with cavitites and vertically dipping substrates (i.e. vertical 

branches) may favour microbialite accretion by providing protection from grazers 

such as gastropods (Riding et al. 1999). 

Determining the relative timing of microbial encrustation on corals is difficult. 

It has been suggested by Martin et al. (2000) that microbial crust development can 

accompany coral growth in normal marine conditions with apparently no detrimental 

effects. It has been suggested that stromatolite accretion could occur at the base of 

actively growing branching coral colonies (Riding, pers. comm. 2002). Microbial 

coatings may have a beneficial role in strengthening coral reef frameworks in high­

energy marginal marine environments, particular those that are characteristic of the 

Mediterranean in the late Miocene (Riding et al. 1991 and Martin et al. 2000). 

In summary, this facies is interpreted as branching coral development with 

contemporaneous microbial encrustation in a moderate to high-energy, shallow 

marine environment with a coarse, siliciclastic influx in the later stages of its 

development. The laminated coral pillarstone facies is interpreted to be the equivalent 

of the branching Porites and Tarbellastraea zone of the coral-microbial bioherms of 

the Sorbas Basin, as described by Riding et al. (1991) and Martin et al. (1998). In 

addition, microbial crusts on branching corals are documented in Messinian reefs of 
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the San Miguel de Salinas Basin (Reinhold 1995). Microbial crusts of the San Miguel 

de Salinas Basin are however biotically more diverse than those observed in the 

Altorreal section (Reinhold 1999). In addition crusts, which may be up to 1 cm thick, 

comprise coralline algae (Lithothamnion sp.) and encrusting (acervulinid) 

foraminifera (Reinhold 1999). 

5.3 Altorreal Facies Associations and Summary 

Excluding the silty marl, the facies described in Section 5.2 were all deposited 

in a moderate to high-energy, shallow-marine (subtidal) environment proximal to the 

coastline. Characteristics of modern-day equivalent systems, and Miocene equivalents 

from SE Spain and the Mediterranean have been used to aid interpretation of these 

facies associations. A depositional model of the Altorreal area may be formulated by 

understanding the three-dimensional facies architecture. The three-dimensional facies 

architecture has been reconstructed from the lateral correlation of graphic logs 

(Figures 5.20 and 5.21). Numbered sections are roughly parallel and perpendicular to 

the dip (and progradation) direction of units. 

5.3.1 Facies associations 

The identified facies of the Altorreal section occur m three associations 

summarised in Table 5.2. Facies are not exclusive to an association. A summary log 

through the Altorreal section illustrating the diagnostic characteristics of identified 

facies associations and the stratigraphic arrangement of associations is presented on 

Figure 5.22. 

5.3.1.1 Facies association 1 

Facies: Calcareous lithoclastic conglomerate 

Calcareous litharenite 

Siliciclastic bioclastic conglomerate 

Silty marl 

Characteristics 

Siliciclastic sediments comprise the majority of studied sections within the 

A1torreal study area (Figures 5.2 and 5.3). The calcareous lithoclastic conglomerate, 

with intercalations of the calcareous litharenite and siliciclastic bioclastic packstone 

258 



Location of logged sections 

FA-11 FA-10 

FA-11 

FA-10 

·' 
MciCcl :~ 

l"J • ~ 

·:l 
·:~ 
" .. 
·' ·3 

:0 • .. , .. 
' ·:i 

::i .. , 
t!J :~ 

FA-O 

FA-7 

Figure 5.20 Correlation of logged sections through the sedimentary succession 
exposed on the north ridge. Facies associations are shaded for clarity. Sections 
are "hung" from the top surface of facies association 2. All tie-lines have been 

I 

traced in the field. 

0Facies association 1 

0Facies association 2 

QFacies association 3 

E 



Sketch location map 

C8SlldePare!Yef 

s61 1 . '-
to Murc1a 

... Basinward 

s62 

Facies association 

F acies assoe~abon 1 

F acies assoaation 2 

Facies association 3 

N 

Metres 
35 

30 

25 

20 

15 

10 

FA-6 
Figure 5.21 Proposed correlation of the succession exposed on the northern ridge 
(F A-6), southern ridge (F A-12) and Casa de Penalver sections. The locations of logs 
are indicated on the sketch map. Beds cannot be directly correlated in the field. 
However, columnar stromatolites are observed on the upper surface of the coral 
mixstone facies, inferring a correlation surface. Logs are therefore "hung" from the 
base of the coral mixstone unit. It is stressed that this is not a unique interpretation, 
and the carbonate intervals may be coeval but isolated within the siliciclastic 
sediments. 

Columnar stromatollte Interval 

? 

+---- 300 m ~ 20 +----600 m ~ --------------- --------- ----- - ---- s 
------- ------ -----.-- tr------. -----

·~ 

5 

0 



Alto"eal facies and palaeoenvironmental analysis 

FACIES ASSOCIATION INTERPRETATION 

Facies association 1 

---
Facies association 3 

Facies a~ 

Facies association 1 

Facies association 3 

I I 

(( 
I I 

Facies association 2 

Facles association 1 

.~!I E . 
l{) :.=t---....J 

I I I I I I 
Silty Mart 

CSFMCG 

Facies 
!li Coral mixstone 

~ Laminated coral platestone 

~ Sillciclastic bioclastlc packstone 

~ Calcareous litharenite 

~ Calcareous lithoclastic conglomerate 

Fan delta progradation 

Coral-~ ~·-.- '"""' 

Waningsiliciclastic input 

Fan delta ..,~u!:loauauu11 

Waning siliciclastic input and establishment of a 
shoreline-attached carbonate platform 

l 
Fan delta progradation 
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facies, characterise this association. The association is typically 10 to 15 m thick 

(Figure 5.2). The fauna present is marine, and consists of robust oysters, pectens, 

gastropods, echinoids, serpulids, Amphistegina, small rotaline and planktonic 

forarninifera. Most fossils are fragmented, and fragments are angular and poorly 

sorted. Relatively fine-grained units within this association may be bioturbated and 

large boulders may be encrusted by oysters or bored by lithophagids. 

Bioclastic conglomerates and sands of this association are observed to directly 

overlie the silty marl facies (Figures 5.4a and 5.22). The contact is erosional, sharp 

and undulating. Lenses of silty marl within the calcareous lithoclastic conglomerate 

facies are interpreted as large rip-up clasts (Figure 5.4a). 

Beds within this association are arranged as mega-forsets (clinoforms), and 

show vertical increases in inclination over distances of less than 10 metres. Bottom­

sets, fore-sets and occasionally top-sets are preserved (Figure 5.2). Fore-sets have 

progradational geometries (Figure 5.2). Measured foreset orientation shows two 

different progradation directions (Figure 5.24). The lower conglomerates that directly 

overlie the silty marl facies show a northwest progradation direction. Conglomerates 

from the top of the exposed succession that overlie the upper carbonate interval 

demonstrate a west to southwest progradation direction (Figure 5.24). Conglomerates 

exposed within a valley to the north of the study area demonstrate a southeast 

progradation direction (Figure 5.24). 

Within the clinoforms, the calcareous lithoclastic conglomerate facies is 

observed to pass down-dip into interbedded pebbly calcareous litharenites and 

siliciclastic packstones (Figures 5.2 and 5.20). Deposition is interpreted to have been 

intermittent and from debris-flows (Section 5.2.1.1). A schematic representation of 

this facies association is presented in Figure 5.23a. 

Interpretation 

Facies association 1 is interpreted to represent the deposition of coarse-grained 

material in high-energy marine fan delta environment proximal to the siliciclastic 

sediment source. A dominant progradational sedimentary regime is inferred from the 

cross-stratified nature of beds within this association. It is inferred from the apparent 

juxtaposition of high and low-energy facies at the base of this association 
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(Figure 5.4a), that the high-energy delta system with locally very steep gradients was 

prograding directly onto sediments of a deeper, prodelta-type setting. This situation is 

characteristic of Gilbert-type delta systems (Postma 1990). Facies association 1 

represents the proximal fore-sets of a fan-delta, dominated by debris flows. Water 

depths are estimated to have been around 10 to 15 m, based upon the preservation of 

bottom-, fore- and occasionally topsets. In comparison to other Gilbert-type delta 

environments described from the Miocene basins of SE Spain (i.e. the Granada Basin, 

Braga et al. 1990), there is no evidence for prolonged sub-aerial exposure (i.e. mature 

soil development) and erosion although the potential for minor early pedogenesis is 

discussed in Section 5.2.1.1. 

The progradation direction of upper and lower carbonate packages differs 

slightly (Figure 5.24), although the composition of clasts does not change, inferring 

that there was no change in sediment provenance. A broad west-southwest to 

northwest progradation direction is concluded for the fan delta system. The 

progradation direction of conglomerates to the north of the study is significantly 

different (Figure 5.24), thus it is suggested that these sediments are deposits of an 

unconnected lobe. 

Facies association 1 is comparable to the siliciclastic dominated (sd) facies of 

Wrobel and Michelzik ( 1999), also interpreted as proximal fan-delta deposits. In 

addition, Braga et al. ( 1990) describe a number of fan-delta megasequences, 

consisting of silty marls followed by silts and sands and then sands and conglomerates 

and finally conglomerates. These sequences, representing evolution from a deep 

marine to shallow marine environment, are typically topped off by red palaeosols, 

which represent continental emergence. 

5.3.1.2 Facies association 2 

Facies: Siliciclastic bioclastic packstone 

Laminated coral platestone 

Characteristics 

This association vertically succeeds facies association 1 (Figure 5.22). The 

mixed carbonate-siliciclastic association is 2 to 3 metres in thickness and contains 

beds of the siliciclastic bioclastic packstone and laminated platestone facies. The 
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siliciclastic bioclastic packstone facies grades laterally into the laminated platestone 

facies (Figure 5.2). 

This facies association is characterised by an open marine fauna including 

oysters, pectens, coralline algae, gastropods, bryozoa, corals and small rotaline 

benthic foraminifera. Beds of this facies association are characterised by a relatively 

low siliciclastic influx with sediment reworking, probably by marine currents and 

wave action. These beds are characterised by early syn-sedirnentary cementation (i.e. 

hardground development) accompanied by boring and encrustation by manne 

organisms, and stromatolite mat development (Sections 5.2.2.2 and 5.2.3.1). 

Interpretation 

Facies association 2 is interpreted to represent a waning siliciclastic influx and 

the establishment of a low-angle, shoreline-attached carbonate platform environment. 

Negligible siliciclastic influx and low accumulation rates resulted in hardground 

development. It is suggested that stromatolite development may have been 

influenced/favoured by syn-sedimentary cementation (Riding pers. comm. 2002), 

which would be typical of shallow marine environments with high current activity 

and/or reduced sedimentation. 

The evolution from facies associations I to 2 is interpreted to represent a 

change from a progradational to retrogradational and aggradational sedimentary 

regtme (Figures 5.22 and 5.23b ). A similar facies succession is described and 

interpreted in the same way from the Lorca Basin (Wrobel and Michelzik 1999). 

5.3.1.3 Facies association 3 

Facies: Coral rnixstone 

Laminated coral pillarstone 

Characteristics 

Facies association 3 may succeed facies association 2 or facies association 1 

(Figures 5.20 and 5.22). The carbonate facies association contains the coral mixstone 

and laminated coral pillarstone facies (Figure 5.22). This association forms laterally 

restricted sigmoidal carbonate units that extend laterally (perpendicular to the 

siliciclastic progradation direction) up to 70 m (Figures 5.2 and 5.14). The lateral 

extent of this facies parallel to the dip direction is estimated to be up to 750 m, 
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although quarrymg of the section has made correlation of beds difficult as 

stratigraphic contacts are not continuously exposed (Figure 5.21 ). Vertical thickness 

is up to 10 m. The carbonate association thickens down-dip from 0 to 3 m where the 

laminated platestone and laminated coral pillarstone dominates, to over 10 m where 

the coral mixstone dominates (Figure 5.14). 

The carbonate association is dominated by in situ corals and fragmented reef­

associated fauna including echinoids, gastropods, pectens, coralline algae and 

bryozoa. The corals in the carbonate facies association have a very low diversity and 

consist almost entirely of Porites. Time-equivalent reefs in the Fortuna Basin also 

contain Tarbellastrea, Monastrea and Siderastrea (Santisteban 1981, Santisteban and 

Tabemer 1988). 

Interpretation 

The carbonate facies association 1s interpreted as an in situ reef build-up 

representing further substrate colonisation by corals, in addition to pre-existing 

microbial mats, during a period of negligible siliciclastic input. It is postulated that the 

sigmoidal morphology of the carbonate units (and facies association 3) reflects the 

morphology of the siliciclastic substrate. 

Relative depositional depths for each part of the carbonate unit have been 

determined using coral colony morphologies, as schematically illustrated on Figure 

5.23c. The shallowest water conditions occurred where the carbonate units pinch-out 

and are dominated by vertical stick-like branching coral colonies. The coral mixstone 

facies developed down-dip in relatively deeper water conditions unaffected by 

siliciclastic input. It is postulated that this facies formed thicker units as a response to 

higher accommodation space (and deeper water conditions). It is interpreted that the 

facies association 3 represents a predominantly aggradational sedimentary regime, 

with a relatively minor progradational element (as shown by the bedding in the 

southern ridge section, Figure 5.3). 

The nature of microbialite development varied. Development in very shallow 

water with a moderate siliciclastic input is represented by the laminated coral 

pillarstone facies. The absence of microbialite development in the coral mixstone 

facies indicates microbial development only occurred in very shallow water 

environments. Columnar stromatolite development was not contemporaneous with 
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coral growth (Section 5.2.3.2). Columnar stromatolite development is related to 

environmental degradation and the loss of stenohaline biota (including corals). 

Columnar stromatolites are common within low-energy, shallow marine lagoonal 

settings, often with slightly enhanced salinities (Reid et al. 1999, Pomar 2001). A 

significant change in the conditions of the depositional environment is inferred from 

the development of columnar stromatolites. 

5.3.1.3.1 The carbonate-siliciclastic boundary 

In all studied sections of the Altorreal study area, facies association 1 always 

succeeds facies association 3. The contact is sharp and erosional (Figure 5.16b and 

c). Clinoforms of facies association 1 are observed to onlap the carbonate bodies 

(Figure 5.16b). The depth of erosion is typically around 1 m. Carbonate fragments 

are relatively rare in the overlying conglomerates although boulder-grade fragments, 

inferred to be locally derived, are observed (Figure 5.5c). 

In conclusion, the boundary is interpreted as a sharp change from a carbonate­

dominated, aggradational sedimentary regime characterised by in situ coral growth to 

a siliciclastic dominated, progradational sedimentary regime characterised by 

conglomeratic and coarse litharenite deposition. A period of exposure and erosion of 

the reef carbonate units is interpreted prior to burial by siliciclastics. This is supported 

from the development of columnar stromatolites that often represent a significant 

period of non-deposition (Hubbard, pers. comm. 2003). It is suggested that reefs had 

undergone cementation prior to burial from the rarity of carbonate fragments in the 

overlying siliciclastics. Rapid burial by siliciclastics would also have precluded reef 

destruction. 

5.3.2 Depositional model 

Using the facies characteristics and interpretations described in Sections 5.2, 

in combination with the lateral sedimentary log correlations illustrated on Figures 

5.14 and 5.21), a three-dimensional evolutionary model of the main ridge section of 

the Altorreal depositional succession is proposed (Figure 5.25). 
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Stage 1: Mar I deposition 

This initial stage is characterised by widespread deposition of the silty marl 

facies in a low-energy, open marine environment below storm-wave base 

(Figure S.2Sa). Depth of deposition was in the order of tens of metres. Based upon 

the available stratigraphic literature for the Fortuna Basin (reviewed in Chapter 4), 

marl deposition was likely to have been a basin-wide event, although this cannot be 

determined using data from the Altorreal study area alone. 

Stage 2: Fan-delta progradation 

The second depositional stage represents the advance of a Gilbert-type fan­

delta system into the low-energy silty marl environment. This high-energy incursion 

is characterised by erosional lower contacts with the underlying silty marl facies, and 

the presence of large silty marl rip-up clasts in the lower portions of the fan-delta 

(Figure S.4a). There is no evidence for lobe margins or change in grain composition, 

and it is therefore interpreted that this lower fan-delta package was deposited from a 

single lobe/sediment source. Sedimentation was episodic, and deposition was 

dominated by debris flow events. Beds have a clear pro gradational geometry, and 

northwest fan-delta progradation is concluded from palaeocurrent data (Figure 5.24). 

Stage 3: Siliciclastic hiatus 

This stage represents a significant reduction in terrigeneous siliciclastic influx 

and a change from siliciclastic to mixed carbonate-siliclastic sedimentation with the 

development of a carbonate ramp-type system, with low rates of sedimentation. The 

biota is dominated by oysters, pectens and gastropods, with subordinate coralline 

algae, bryozoa and corals. Stromatolite development occurred in relatively 

shoreward/shallow parts of the environment. The presence of robust, platy coral 

colonies indicates subtidal, normal marine conditions throughout deposition. 

Stage 4: Coral reef colonisation and growth 

The prolonged period of low sedimentation rates and substrate stabilisation 

allowed coral colonisation. Reef growth is apparently laterally restricted, evidenced 

by the preservation of small carbonate bodies, and absence of reef talus. 
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Stage 5: Fan-delta progradation resumes 

Fan-delta progradation resumes, burying the earlier reef system. Fan-delta 

progradation is towards the northwest (Figure 5.24). Siliciclastic deposition was 

episodic and high-energy. Robust oysters and branching Porites colonies 

opportunistically developed on pebbles and foreset surfaces respectively during 

quiescent periods. Within down-slope areas where the inclination of beds is reduced, 

the relative proportion of sandstone and siliciclastic packstone increased (Section 

5.3.1.1). 

Stage 6: Siliciclastic hiatus 

A significant reduction in siliciclastic influx and subsequent carbonate 

development occurred during this phase. High current activity combined with the high 

porosity of carbonate sediments and low sedimentation rates resulted in hardground 

development but only at the top of the unit. Patchy, contemporaneous stromatolite 

development occurred also occurred. The hardground, which was significantly bored 

by lithophagid bivalves, acted as a stable substrate to colonisers such as warty 

branching coralline algae, oysters and byrozoa and eventually provided a stable 

substrate allowing coral colonisation (Stage 7). 

Stage 7: Carbonate factory re-established 

The pre-existing fan-delta sediments dipped broadly towards the northwest 

(Figure 5.24). The upper carbonate package in the northern ridge section developed 

as a laterally restricted clinoform, with bed thickness increasing down-dip (Figures 

5.14 and 5.20). The carbonate unit pinched out in relatively high-energy shallow 

water where vertical, stick-like coral colonies with stromatolitic coatings dominated 

(Section 5.3.1.3). Down-slope, corals filled the available accommodation space 

(Figure 5.23c). It is interpreted therefore that the inheritied morphology of the 

siliciclastics strongly influenced the morphology of carbonate units. It is concluced 

that carbonate development occurred either towards the edge of a lobe or in a 

submarine depression on the fan i.e. an abandoned channel. None of the reef packages 

identified can be seen to interdigitate with prodelta sediments. A relative absence of 

reef talus material typically associated with reef deposits is explained by the 
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significant syn-sedimentary cementation and microbial encrustation of corals, which 

ultimately strengthened the reefbuild-up. 

A significant change in the depositional environment is inferred from the 

development of columnar stromatolites and the loss of stenohaline biota. 

Stromatolites are often related to periods of enhanced salinity, non-deposition and 

high nutrient input (accompanied by subtle changes in seawater chemistry) (Section 

5.2.3.2). 

Stage 8: Fan-delta progradation resumes 

The re-establishment of a fan-delta system and resumed input of coarse 

terrigeneous siliciclastic material into the basin is inferred by the transition from the 

carbonate to the siliciclastic facies association. It is possible that the reef system may 

have undergone a brief period of exposure and erosion (Figure 5.16). Prolonged 

subaerial exposure was unlikely due to the absence of features associated with this 

process, such as karstification. Reefal carbonate were progressively on-lapped by the 

prograding fan-delta. 

In summary, the sedimentary success ton at Altorreal compnses repetitive 

phases of siliciclastic progradation, a sedimentary hiatus and carbonate development 

(Figure 5.22). During the progradational phase siliciclastic material was transferred 

into a low-energy environment via a gravel-rich Gilbert-type delta system. The 

sedimentary hiatus represents abandonment of the fan-delta and switch to a mixed 

carbonate-siliciclastic sedimentary regime. Finally, the reefal carbonates represent the 

aggradational phase. 

The overall arrangement of facies in the Altorreal section is progradational, 

inferred from the clinoform bed morphologies and the slight basinward movement of 

separate carbonate packages (Figure 5.20). The locus of carbonate development 

varied little between phases exposed in the north ridge section. It is inferred that the 

morphology of carbonate units is inherited from the siliciclastic substrate. 
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5.3.3 Altorreal-evidence for salinity variations in the Fortuna Basin? 

Traditionally, the occurrences of stromatolites/microbialites have been used to 

identify 'difficult' environmental conditions where processes such as colonisation, 

growth, competition and predation are low (Steneck et al. 1998). In the studied area, it 

is estimated that up to 50 % of reef bioconstructors in shallow waters were microbial. 

This appears to contradict traditional views of microbialite development because 

normal marine conditions are inferred throughout, due to the co-occurence of in situ 

stenohaline biota. It is apparent however that coral diversity in the Altorreal reefs is 

very low, and dominated by Porites. Porites is notable for being resistant to wide 

salinity variations (19-45 %) (Braithwaite 1971, Downing 1985). However, most 

coral reefs in the Mediterranean underwent radical reductions in diversity towards the 

Late Miocene, and particularly around the Late Tortonian-Messinan (Esteban 1996) 

thus in this respect, the low diversity of the Altorreal reefs may be a response to a 

more regional factor. 
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6. The effects of siliciclastic input on biota 

6.1 Introduction 

Carbonate production can occur in sites of active siliciclastic input e.g. the 

Red Sea (Purser 1987). There are numerous examples of carbonate provinces whose 

evolution has been directly influenced by siliciclastic sediment input e.g. the Great 

Barrier Reef (Larcombe and Woolfe 1999 a,b; Woolfe and Larcombe 1998 a,b), 

Kenyan coast (McClanahan and Obdura 1997) and Thailand (Tudhope and Scoffin 

1994). Clastic material, as either bedload or suspended in the water column, has long 

thought to be detrimental to carbonate-producing marine organisms. Sediment may 

affect organisms in a variety of ways including physical burial and smothering, 

reduction in light levels through increased particulate matter suspended in the water 

column and changes in seawater chemistry. 

A number of descriptive studies have been undertaken in order to understand 

the effects of siliciclastic input on biota in both modern (Tudhope and Scoffin 1994, 

Woolfe and Larcombe 1998a, 1998b, Larcombe and Woolfe 1999) and ancient 

depositional systems (Kumar and Saraswati 1997). Despite these numerous studies, 

there is limited published data quantifying the effects of clastic input on carbonate­

producing biota. Studies by Lokier (2000), Lokier and Wilson (2002) and Wilson 

(submitted) aimed to quantify the effects of volcanoclastic and siliciclastic 

sedimentation on biota. The aim of this chapter is to describe and analyse 

quantitatively the response of carbonate organisms to siliciclastic input in the Calders 

study area. Sections 6.1.1 to 6.1.3 aim to summarise the main effects of clastic input 

on carbonate-producing organisms, in particular photoautotrophs such as corals and 

larger benthic forarninifera. The methodology and results of acid digestion of samples 

from the Calders reefs are presented in Sections 6.2 and 6.3. Sections 6.4 and 6.5 

describe and discuss the effects of siliciclastic input on the benthic community in the 

Calders study area and relevant examples in the available literature. Samples from the 

Altorreal study area were unsuitable for acid digestion as coral-dominated carbonate 

units contain very little siliciclastic material. Qualitative observations regarding the 

relationship between biota and siliciclastics at Altorreal will be discussed where 

relevant. For a review of the depositional environments and the interaction between 

carbonate and siliciclastic facies in the area, refer to Chapter 5. 



The effects of siliciclastic sediment input on biota 

6.1.1 Physical burial and smothering of organisms 

The effect of burial on a benthic marine organism will depend upon a number 

of factors including the rate and magnitude of sedimentation and the ability of an 

organism to excavate itself once buried. Burial is particularly hazardous to sessile 

benthic organisms such as corals, bryozoa and coralline algae that cannot excavate 

themselves if buried. An increase in amounts of sedimentation can often be related a 

decrease in coral growth rates (Tomascik et a/.1993). 

The build-up of sediments on coral colonies can have lethal and sublethal 

effects (Gleason 1998). Sediment build-up can kill tissues through smothering 

(Rogers 1983, Stafford-Smith and Ormond 1992). Smothering leads to mortality 

through coral bleaching, tissue necrosis and/or anoxia (Riegl 1995, Riegl and 

Bloomer 1995, Wesseling 1999). On a more moderate scale, settling of sediments 

onto live coral surfaces can lead to significant increases in coral respiration while 

simultaneously decreasing net photosynthesis of endosymbiotic algae (Riegl 1995, 

Riegl and Branch 1997). Once coral polyps start to die, surrounding polyps are more 

suscepitable to being overwhelmed by sediment (Scoffin 1997). 

Corals have several mechanisms for clearing sediments from their tissues. 

These include distension of tissues through the uptake of water, ciliary and tentacular 

action, and the secretion of mucus that carries away sediment (Roy and Smith 1971, 

Stafford-Smith and Ormond 1992). Surface cleaning using these mechanisms may 

prove detrimental to coral health as time and energy expended in shedding sediments 

may further decrease colony fitness by limiting resources available for other processes 

such as food capture, growth, tissue repair and reproduction (Hubbard and Pocock 

1972, Kendall et al. 1975, Rogers 1990, Bames and Lough 1999). 

The benthic community structure in shallow marine settings largely reflects 

the nature of the substrate. Benthic communities within soft-bottomed, unstable 

sedimentary environments will be dominated by organisms with some degree of 

mobility thus are less susceptible to burial. Hard-bottom communities, where 

sedimentation rates are lower, often contain abundant sessile organisms as the need to 

excavate ones self does not arise (Heikoop et al. 1996). However, even mobile 

organisms are subject to burial if the amount of sediment input is very large. Certain 

coral species show a morphological adaption to sediment shedding, aiding their 
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survival in high settings with sedimentation rates. The development of funnel-shaped 

Acropora c/athrata and Tubinaria peltata was observed in a high sedimentation 

environment off the coast of Natal, South Africa (Riegl et al. 1996). The funnel­

shaped growth serves two different purposes. In calm waters with minor currents 

(corresponding to water depths of 18 to 25 metres) funnel shaped colonies act as 

sediment traps directing sediment to the apex of the funnel where coral tissue 

underwent necrosis, although tissues around the margins remained unaffected by 

sediment and healthy (Riegl et al. 1996). In relatively high-energy areas 

(corresponding to water depths of 8 to 14 metres) funnel-shaped corals were self­

cleaning through a process of vortex-shedding (Riegl et al. 1996). Flume experiments 

have demonstrated that flow separation occurs on the funnel upstream edge as 

currents accelerate over the top (Figure 6.1). Turbulent eddies develop inside the 

funnel, capturing and transporting sediment away along the downstream margin 

(Figure 6.1). Current speeds as low as 30 to 90 cms-1 were enough to completely 

clean surfaces of sediment (Riegl et al. 1996). 

The susceptability of corals to mortality from burial is largely species specific. 

Experiments have demonstrated that Porites can survive and recover from complete 

but short-term burial (up to 6 hours), although high rates of tissue damage and 

bleaching are recorded at burial times exceeding 20 hours (Wesseling et al. 1999). In 

Misima Island, Papua New Guinea, increased sedimentation rates associated with the 

construction of an open-cut gold mine resulted in high mortality rates of the Recent 

coral Porites (Barnes and Lough 1999). In cases where burial was incomplete, corals 

could tolerate up to 156 mg/crn2/d over a three year period (Bames and Lough 1993). 

Monastrea, Siderastrea and Colpophyllia are tolerant of high sediment loading in 

addition to Porites (Edinger and Risk 1994). In comparison, Acropora is particularly 

susceptible to the -effects of sedimentation, with complete colony mortality occuring 

after less than 6 hours burial (W esse ling et al. 1999). Burial mortality rates will be 

strongly affected by the sediment grainsize, with clays and silts more hazardous than 

sands (Wesse1ing et al. 1999, Thompson 1980). 

Analysis of shallow coral communities m Kenya clearly demonstrates the 

relationship between coral generic abundances and sedimentation rates (McClanahan 

and Obdura 1997). Areas of low sedimentation are dominated by Favia, Montipora 
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and Poccillopora, high sedimentation areas are dominated by Echinopora, Galaxea, 

Hydnophora, Millepora and Platygyra, and 'intermediate' areas are dominated by 

Acropora, Astreopora, Favites and Porites (McClanahan and Obdura 1997). 

Importantly, the abundance and generic richness does not vary considerably with 

regards to sedimentation, and thus it cannot be assumed that a decrease in coral 

abundance will accompany increased sedimentation rates (McClanahan and Obdura 

1997). 

6.1.2 Increasing turbidity 

If clastic input is very fine grained, it can remain in suspension in the water 

column, attenuating available light levels. Turbidity has the greatest impact on benthic 

organisms that require light to produce energy via photosynthesis. Photosynthesis 

takes place using either chloroplasts (e.g. coralline algae) or through the incorporation 

of algal symbionts (e.g. corals, larger benthic foraminifera). In addition, precipitation 

of calcium carbonate in corals is dependent upon photosynthetic rates of 

endosymbiotic algae (Goreau 1959), thus reduced light intensity can lead to reduced 

rates of colony growth and algae endosymbiont productivity (Kendall et al. 1975, 

Rogers 1990). Many photoautotrophic benthic organisms are particularly at risk from 

suspended particulate material as they are unable to relocate themselves. 

The amount of material in suspension, and the duration particles remam 

suspended, 1s fundamentally controlled by local and regional hydrodynamic 

conditions. In moderate to high-energy regimes, material may be carried into 

suspension, remaining in suspension for longer than in lower energy areas, thus 

having a greater impact. In such settings, clays and fine silts are often subject to 

resuspension, inducing turbidity even when sediment input from an external source is 

relatively low (Larcombe and Woolfe 1999). Patch reefs situated within the shallow 

inner shelf of the central Great Barrier Reef are often affected by frequent but short­

lived turbidity events generated through a combination of wave and tidal activity and 

longshore currents (Larcombe et al. 2001 ). Clay and fine silts are largely derived in 

situ from a Holocene post-glacial muddy terrigenous wedge (Larcombe et al. 200 l, 

Woolfe and Larcombe 1998). 

The depth-related zonation of corals is often compressed in high-turbidity 

settings, with typically deep-water corals inhabiting relatively shallow habitats within 
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the photic zone (Figure 6.2). Corals that grow in turbid waters often show 

morphological adaptations to low light levels akin to those of a depth increase 

(Titlyanov and Latypov 1991, Wilson and Lokier 2002). Corals demonstrating platy, 

encrusting and corymbose morphologies, more typical of deeper water settings with 

low light intensities, occur in shallow waters (Titlyanov and Latypov 1991). Studies 

of turbid water reef development in the Miocene proto-Mahakam Delta, Borneo, 

demonstrate that extremely thin, platey coral morphologies are most common in low­

energy environments that were characterised by high-suspended particulate matter 

(Wilson and Lokier 2002, Wilson, submitted). In addition, Tubastrea, an 

azooxanthellate that does not require sunlight, commonly occupies environmental 

niches in the patch reefs characterised by high turbidity. Tubastrea is present in a 

number of turbid marine settings in Indonesia (Tomascik 1997). 

6.1.3 Changes in water chemistry 

Coral and larger benthic foraminiferal communities typically develop in 

nutrient-deficient, oligotrophic marine waters (Hallock and Schlager 1986, Brasier 

1995, Kumar and Saraswati 1997, Geel 2000, Hallock 2001 ). An input of siliciclastic 

material is often associated with rapid changes in sea water chemistry, in particular 

nutrient levels but also salinity and pH. Organisms with narrow tolerances to 

variations in salinity (stenohaline organisms) may die during such fluctuations (Lees 

1975). 

High nutrient levels may result from a terrestrial input, as sediment and/or run 

off within which organic material may be present as either organic plant material, or 

nitrate or phosphate ions in solution. High-nutrient environments are fundamentally 

unfavourable for carbonate production (Schlager 1992) since nutrients, particularly 

inorganic compounds, inhibit calcification rates (Simkis 1964). However, there is 

evidence to suggest that slightly elevated nutrient concentrations can result in 

increased growth rates in corals (Tomascik et al. 1997) and bivalves (Belda et al. 

1993). This increased growth is accompanied by a decrease in skeletal density 

(Tomasacik et al. 1997). 

A sudden increase in nutrients can have a number of detrimental effects on the 

benthic community. In high-nutrient settings, carbonate producers are effectively out­

paced by non-skeletal competitors such as fleshy algae, soft corals and sponges 
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(Schlager 1992). Benthic community shifts from coral-dominated to coral/algae­

dominated to macroalgae/sponge-dominated are primarily controlled by increased 

nutrient supply (Littler et al. 1991, Hallock 2001). An increase in the amount of 

fleshy algae, stimulated by high nutrient levels, will reduce the amount of stable 

substrate available for colonisation by other organisms (Hallock and Schlager 1986, 

Schlager 1992, Brasier 1995). Algae may also encrust and kill living corals, such as is 

observed off Belize and Florida (Antonius and Ballesteros 1998). Destruction of reef 

framework through bioerosion also increases with increasing nutrient levels as a 

consequence of an increased abundance of infaunal suspension feeders such as 

molluscs (Hallock and Schlager 1986, Schlager 1992, Edinger and Risk 1994). 

Care needs to be taken when interpreting biota response to physiochemical 

parameters in the rock record. Initially, a change from coral-dominated to algal­

dominated reefs in the Carribbean was related to pollution (and enhanced nutrient 

levels) (Bonem and Moses 1998). However, water sampling and further biota studies 

demonstrated that the increase in algal cover was actually due to reduced herbivory 

and mortality of the echinoderm Diadema antillarium (that fed exclusively on algae). 

In summary, an input of terrigenous sediment to the shallow marine 

environment can have a number of detrimental effects on the benthic community. 

Organisms may be buried if the sediment input is large and they are unable to extract 

themselves. Changes in salinity may prohibit precipitation of carbonate. An increase 

in turbidity associated with high suspended sediment concentrations may reduce the 

habitable depth of the photic zone for organisms dependent on light. Sedimentation 

may result in organism mortality or alterations in body morphology. An increase in 

nutrients associated with sediment input can result in a switch from a benthic 

community dominated by corals and larger benthic foraminifera to a dominance of 

coralline and fleshy algae (depending upon the degree ofherbivory). 

6.2 Methodology 

Sections at Calders were chosen for acid digestion since these sediments 

contained in situ carbonate-siliciclastic sediments (sensu Mount 1984). Bioclasts 

identified in the facies from the Calders study area ranged from less than 1 mm (i.e. 

smaller foraminifera) to nearly a metre (corals). In order to compare the relative 

abundance of different biota it has been necessary to combine visual abundance 
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estimates from outcrops and hand specimens with point counting data from thin 

sections. This method is therefore prone to a small degree of error. 

Six distinct carbonate intervals intercalated with siliciclastics sediments 

characterise the Calders sedimentary succession (Chapter 3, Figure 3.9). In 

summary, the carbonate intervals represent colonisation of a siliciclastic substrate by 

corals, coralline and larger benthic foraminifera during times of significantly reduced 

siliciclastic input. The switch between siliciclastic and carbonate-dominated 

deposition is particularly well exposured along the B-124 road, represented by logs 

CA-4 (28 samples) and CA-7 (32 samples). Further less well-exposed areas of the 

Calders succession have also been chosen for acid digestion analysis as they can be 

directly correlated with the carbonate intervals of the road exposures. Further samples 

were selected from logs CA-2 (8 samples), CA-3 (14 samples), CA-5 (4 samples), 

CA-8 (5 samples), CA-9 (6 samples), CA-10 (4 samples) and CA-ll (4 samples). 

Samples analysed cover all of the facies identified in the Calders area. 

In order to study the relationship between clastic input and relative abundance 

of biota, 106 whole rock samples of both carbonate and siliciclastic lithologies from 

the Calders area were treated with hydrochloric acid to determine the relative weight 

percentage of carbonate to non-carbonate material. The methodology for this 

procedure is explained in Appendix 1. 

6.3 Relationship between biota and siliciclastic sediments in the study area 

As with any with sedimentary study that involves reconstructing 

palaeoenvironments, it is not possible to establish every environmental parameter that 

influenced the development of the biota. For example, turbidity can only be inferred 

from the presence of clay-grade clastic material that must have been deposited from 

suspension. Turbidity itself is a transient hydrodynamic attribute of a sedimentary 

system that may leave no evidence in the rock record. It is possible, however, to 

observe the relative abundance and abundance trends of organisms and trace fossils 

with relation to amount of siliciclastic material, its grainsize and sedimentary 

structures. In this way, it is possible to hypothesise the characteristics of the 

depositional environment and how this has effected the development of the biota. In 

addition, care has been taken to differentiate between biota change as a consequence 
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of an environmental perturbation (such as increased sediment input or turbidity) or a 

natural ecological succession. 

6.3.1 The relationship of biota to total non-carbonate content 

The results of acid digestion of samples from the logged sections have been 

plotted against the weight percentage volume of carbonate within the lithologies 

examined in thin section. All data are illustrated in Appendix 1. Selected samples are 

presented in Figure 6.3. The data have also been plotted against the relative 

abundances of the main marine organisms for logged sections CA-2 (Figure 6.4), 

CA-3 {Figure 6.5), CA-4 (Figure 6.6) and CA-7 (Figure 6. 7). Additional plots show 

the correlation between weight percentage of non-carbonate and corals (Figure 6.8) 

coralline algae (Figure 6.9), large free-living benthic foraminifera (Figure 6.10), 

Gypsina (Figure 6.11), larger encrusting foraminifera (Figure 6.12) and molluscs 

(Figure 6.13). In most cases, a broad relationship can be observed between relative 

abundance ofbiota and non-carbonate content. 

6.3.1.1 Carbonate-siliciclastic interactions in the Calders succession 

In the Calders study area, six carbonate intervals are situated within a 

predominantly siliciclastic succession. The measured thickness of the succession is 

approximately 130 m (Figure 3.9). Carbonate intervals range from < 2.5 m (interval 

3) to 22.5 m (interval 6) in thickness. 

The studied interval starts above the deep marine marly sandstones of the 

Vespella Formation, situated in the far south of the study area along the B124 road 

(Figures 3.1 and 3.9). Shallow marine sedimentation commenced with deposition of 

2.5 m of fossilifierous sandstones, containing abundant Nummulites (Figure 6.7). 

Nummulites tests are up to 1.5 cm in diameter, and have intermediate lenticular 

morphologies. Down-dip, these nummulitic sands interdigitate with bioclastic 

rudstones and grainstones (Figure 6.4). The initiation of mixed carbonate-siliciclastic 

development is marked by the vertical transition of the nummulitic sandstones into 

siliciclastic-rich packstones, which contain abundant Nummu/ites, Discocylina and 

Amphistegina with coralline algae (as spheroidal concentric laminar and concentric 

columnar rhodoliths and detached laminar algal fragments), as well as other smaller 
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benthic and encrusting foraminifera (Figures 6.4 and 6.5). The siliciclastic packstones 

contain, on average, 35-37 wt% of non-carbonate sediment. Bioturbation is present 

but rare, evident through alignment ofbioclasts in large, domichnial burrows. 

The initiation of carbonate-dominated deposition, and the development of a 

typical reef fauna, is represented by a sharp change in lithologies, from larger 

foraminifera and coralline algae dominated siliciclastic packstones to wackestones, 

packstones and rudstones (Figures 6.5 and 6.7). In outcrop, this change is associated 

with a colour change as beds go from brown and dark grey to pale grey and white. 

Wackestones, dominated by largely in situ delicate branching corals, often contain a 

high percentage (up to 26.5 wt. %) of clay to silt grade non-carbonate (Figure 6.7). 

Although preserved intact, corals do not make up a framework. Packstones and 

rudstones contain abundant corals that are often encrusted by coralline algae and 

foraminifera such as Gypsina, Fabiania, Chapmanina, Haddonia and victoriellids 

(Figures 6.4, 6.5 and 6.7). Coral fragments act as the nucleus for tightly, concentric 

spheroidal foralgal rhodoliths. 

The cessation of carbonate production is marked by deposition of a 3.0 m 

thickness of non-fossiliferous sandstones and conglomerates (Figure 6.7). The 

contact is sharp but non-erosional. These siliciclastic lithologies contain up to 25 % 

carbonate as intergranular, drusy calcite cement. The conglomerates contain reworked 

Nummulites tests, and pass vertically into nummulitic siliciclastic packstones (the 

second carbonate interval-Figures 6.5 and 6.7). The siliciclastic packstones contain 

22 to 35 wt. % non-carbonate material, and are dominated by moderately reworked 

Nummulites and coralline algae, with Amphistegina and Gypsina (Figure 6. 7). 

Nummulites test size increases vertically through the siliciclastic packstone beds (from 

< l cm to 3.5 cm), although larger tests are quite robust, giving an approximate 

diameter to thickness ratios of 0.07 to 0.2. As before, coralline algae occur as larninar, 

tightly concentric spheroidal rhodoliths with common laminar and warty algal 

fragments in the matrix. Rare coral fragments are identified in siliciclastic packstones, 

although corals are not observed in situ. The siliciclastic packstones are succeeded 

vertically by approximately 2.5 m of coral floatstones and bindstones that comprise 

the second carbonate interval (Figures 6.5 and 6.7). Corals initially show platy 

morphologies (Figure 6. 7), although are rapidly supplanted by branching forms. 
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Corals exhibit thin, laterally restricted coralline algae crusts that are often detached 

and preserved floating in the muddy matrix. Foraminfera are dominated by miliolids. 

Echinoids, molluscs and fenestrate bryozoa are also present in appreciable amounts in 

this carbonate interval. The micritic matrix contains up to 20.5 wt. % non-carbonate 

material interpreted as optically non-resolvable clays (Figure 6.5). The top of the 

second carbonate interval is marked by a Nummulites-dominated siliciclastic 

packstone, containing up to 26.5 wt. % non-carbonate (Figures 6.5 and 6. 7). This 

lithology is not observed at the top of any of the other carbonate intervals and its 

significance will be discussed in Section 6.4.1.2.1. 

The second carbonate interval is suceeded vertically by a further thickness (up 

to 10 m) of cross-stratified sandstones (Figures 6.4, 6.5 and 6. 7). Some sandstone 

horizons are bioturbated and contain molluscan debris (Figure 6.7). Stratigraphically 

isolated wacke/packstone units, containing flattened discoidal Nummulites and 

Discocylina, occur within the sandstone (Figure 6. 7). The sandstones culminate in a 

conglomerate that passes vertically into the third carbonate interval (Figures 6.4, 6.5 

and 6.7). The third carbonate interval is relatively thin(< 2.5 m), and as observed in 

lower parts of the succession, is composed of a siliciclastic packstone dominated by 

Nummulites, that passes vertically into a siliciclastic Nummulites, Discocylina and 

rhodolith-dominated packstone (Figure 6. 7). Rhodoliths are composed of coralline 

algae and encrusting forarninifera (Gypsina, Fabiania and Haddonia), and have 

laminar concentric spheroidal growth forms, with coral fragments as nucleii. The 

incorporation offoraminifera has often resulted in mis-shapen rhodoliths (discussed in 

Section 6.4.1.4). The siliciclastic packstones are succeeded vertically by 

rudlbindstones that are dominated by corals with multiple (up to 1 cm thick) laminar 

crusts of coralline algae and foraminifera (Gypsina, Haddonia and victoriellids). 

These carbonate lithologies contain < 10 % non-carbonate material (Figure 6.5). 

Larger benthic foraminifera such as Nummulites and Discocylina, are absent although 

small, robust forms of Amphistegina are moderately abundant (Figure 6.5). 

The third carbonate unit is succeeded by a 10 m thickness of bioturbated 

siliciclastics (Figure 6. 7). Body fossils are absent. Burrows, up to 10 cm in length, are 

oriented normal to bedding. The sandsones may comprise up to 45 wt. % carbonate as 

intergranular, drusy calcite cement. The fourth carbonate interval follows the same 
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relative abundances of the principal biota within facies oflogged section CA-3. Abundances of 
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pattern as stratigraphically lower intervals, with siliciclastic-rich Nummulites and 

Discocylina packstones passing vertically into 7 to 10 m of coral-dominated 

floats tones, rudstones, bindstones and mixstones containing < 10 wt. % non-carbonate 

material (Figure 6.5 and 6. 7). Coralline algae and large foraminifera such as 

Haddonia, Gypsina and Fabiania often encrust corals. Crusts are up to l cm thick. 

The fourth carbonate unit is succeeded by a poorly-exposed sandstone unit whose 

thickness is around 7.5 m (Figure 6.5). 

The fifth carbonate unit is approximately 22.5 m thick, and unlike observed 

for the underlying units, the larger foraminiferal, siliciclastic-rich packstone is absent 

(Figure 6.6). This carbonate interval is composed of coral, coralline algae and larger 

encrusting foraminifera dominated floatstones, rudstones, grainstones, rudlbindstones 

and mixstones (Figure 6.6). The total non-carbonate content is less than 20 wt. %, 

although a sharp-based, coarse siliciclastic unit is present towards the base of the fifth 

carbonate unit (Figure 6.6). Coralline algae occur as laminar to columnar spheroidal 

rhodoliths, and as thick concentric crusts on corals. Large encrusting foraminifera, in 

particular Fabiania, Haddonia, Gypsina, Chapmanina and victoriellids, are also 

observed encrusting corals, and as a constituent of foralgal rhodoliths. 

The transition between the fifth carbonate unit and overlying siliciclastics is 

very well exposed. The fifth carbonate unit culminates in a coral mixstone dominated 

by branching corals and containing less than 10 wt. % non-carbonate grains 

(Figure 6.6). The coral mixstone is succeeded initially by a thin coral bioclastic 

packlrudstone (0.45 m) containg 26 wt. %non-carbonate and a 0.4 m thick bioclastic 

siltstone containing 45 wt. % non-carbonate (Figure 6.6). Corals are absent in the 

siltstone, although large, discoidal Nummulites are preserved within burrows. 

The fifth carbonate interval is followed by a 20 m thickness of siliciclastics, 

dominated by non-fossilifierous, bioturbated sandstones interbedded with mudstones, 

shales and siltstones. Rare large, flattened Operculina are identified within 

mudstones. Operculina tests are very thin, with a typical test thickness of 1 to 2 mm 

with approximate diameter to thickness ratios of 0.02 to 0.1. Isolated floatstone 

lithologies, containing 34 wt. % non-carbonate, are present within the siliciclastics 

(Figure 6.6). Floatsones are composed of delicate branching corals with rare thin 

coralline algae crusts. 
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Figure 6.6 The total weight percentage of non-carbonate component compared with the 
relative abundances of the principal biota within facies of logged section CA-4 (parts a and b). 
Abundances of organisms are based upon thin section point counting data in combination with 
hand specimen and outcrop observations. 
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The sixth carbonate interval is approximately 22.5 m in thickness, and is 

dominated by corals, coralline algae and larger encrusting foraminifera (Figure 6.6). 

The lower 10 m is composed of mainly reworked facies with abundant rhodoliths and 

larninar coralline alage fragments. Rhodoliths, up to 7.5 cm in diameter, are often 

composed of coralline algae and foraminifera such as Gypsina, Haddonia and 

Fabiania. Rhodolith morphologies include spheroidal concentric larninar and 

spheroidal columnar and branching. Incorporation of foraminifera has often resulted 

in mis-shapen rhodoliths (Section 6.4.2.2). These lower lithologies contain 5.5 to 27 

wt. % of fine-grained, non-carbonate material. The upper 5 metres of this carbonate 

interval is dominated by in situ corals. A head coral-dominated unit (2 m thickness) is 

succeeded by a coral mixstone with branching, head, massive and platy colony 

morphologies (Figure 6.6). These lithologies contain 22 to 38 wt. % fine-grained 

non-carbonate material. The contact of the final carbonate interval and the overlying 

siliciclastic sediments cannot be observed directly in the field, although a siliciclastic 

unit 4 m in thickness and containing Gypsina, stratigraphically separates the top of the 

Calders reef and the Sant Amanc succession (Figure 3.62). 

6.3.1.2 The relationship of weight percentage non-carbonate sediment to biota 

From the plots presented as Figures 6.3 to 6.13, the following relationships 

between biota and the amount of non-carbonate sediment can be observed: 

• Branching corals are abundant in sediments containing up to 38.0 % clay to silt­

grade non-carbonate material (Figures 6.3 and 6.8). Corals are not observed 

where the weight percent of non-carbonate material exceeds this value 

(Figure 6.3). 

• Corals are most abundant in sediments containing around 10 wt. % of non­

carbonate material (Figure 6.8). 

• Coralline algae are observed in lithologies containing up to 38.5 wt. % non­

carbonate material, although at higher percentages fragments show moderate 

abrasion and therefore have been reworked (Figure 6.9). 

• Coralline algae are most abundant in sediments containing 10 to 30 wt. % non­

carbonate sediment (Figures 6.3 and 6.9). 
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Figure 6.8 Plot of coral abundance (%) against whole-rock non-carbonate content for samples from 
logs CA-2 to CA-ll (106 samples). Coral abundances were determined through point counting. 
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Figure 6.9 Plot of coralline algae abundance(%) against whole-rock non-carbonate content for samples 
from logs CA-2 to CA-ll (106 samples). Coralline algae abundances were determined through poi~t 
counting. 
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Figure 6.10 Graph of larger benthic foraminifera abundance within hand specimen samples 
against whole rock non-carbonate content for samples from logs CA-2 to CA-ll (106 samples). 
Foraminifera abundances were determined through point counting. 
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Figure 6.11 Graph of Gypsina abundance against whole rock non-carbonate content for samples 
from logs CA-2 to CA-ll (106 samples). Gypsina abundances were determined through point 
counting. 
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Figure 6.12 Graph of larger encrusting forarninifera abundance against whole rock non-carbonate 
content for samples from logs CA-2 to CA-ll (106 samples). Forarninifera abundances were 
determined through point counting. 
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Figure 6.13 Graph of molluscan abundance against whole rock non-carbonate content for samples 
from logs CA-2 to CA-ll (106 samples). Mollusc abundances were determined through point 
counting. 
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The effects of siliciclastic sediment input on biota 

• The larger benthic forarninifera Nummulites, Discocyc/ina and Operculina occur 

at the highest levels of non-carbonate sedimentation, and are moderately common 

in sediments containing up to 65 wt.% non-carbonate material (Figure 6.10). 

• The encrusting foraminifera Gypsina is abundant in sedirnents containing 3.2 to 

69 wt. % non-carbonate (Figure 6.11). Gypsina is most abundant in sediments 

containing 3 to 30 wt.% non-carbonate sediment (Figures 6.3 and 6.11). 

• Larger encrusting forarninifera are abundant in sediments with a narrow range of 

weight percentage non-carbonate (Figures 6.3 and 6.12). Encrusting foraminifera 

are present in sediments containing up to 54.5 wt. % non-carbonate, although are 

more common are levels of <1 0 wt. % (Figure 6.3). 

• Molluscs are able to tolerate a wide variety of levels of non-carbonate, and occur 

in moderate abundances in sediments ranging from < l 0 to 50 wt. % non-carbonate 

(Figure 6.13). 

6.3.2 Relationship of biota to non-carbonate sediment grainsize 

The median grain diameters of the largest non-carbonate grains within selected 

samples were calculated using the method described in Appendix 1. The relative 

abundance of carbonate components, determined through point counting, has been 

plotted against the maximum siliciclastic grainsize (Figures 6.14 to 6.18). Several 

relationships are observed: 

• It has already been noted (Section 6.3.1.1) that branching corals are present in 

sediments containing large quantities of non-carbonate material (up to 38 wt. %). 

Branching corals are able to tolerate a variety of grainsizes of non-carbonate 

material, although corals are more abundance where the median grainsize is < 250 

J.liil (and are particularly common where non-carbonate grainsize is 4 J.llll) (Figure 

6.15). 

• Branching corals are absent where the median clastic grainsize > 1 000 J.liil 

(Figure 6.15). 

• Coralline alage are present at non-carbonate grainsizes up to 4000 J.llll, although 

are most abundant where the grainsize ranges from 4 to 1000 J.liil (Figure 6.16). 
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• Large benthic foraminifera (Nummulites and Discocyclina) are abundant at 

grainsizes ranging from 4 to 1000 IJ.IIl (Figure 6.17). Operculina is abundant 

where non-carbonate grainsize <125 IJ.IIl. 

• The encrusting form of Gypsina is able to tolerate a wide variety of non-carbonate 

grainsizes, although is most abundant where the grainsize is around 1000 Jlm 

(Figure 6.18). 

6.4 Responses of biota to siliciclastic sediment input 

Siliciclastic input has been a significant influence on the benthic marine biota 

m the Calders study area. Importantly, this input has not always proved to be 

detrimental to all organisms present. Corals, coralline algae and larger benthic 

foraminifera are the most important organisms present within the Calders succession, 

thus form the focus of the investigation of the effects of clastic input on biota. Other 

organisms considered include large encrusting foraminifera, molluscs and soft-bodied 

infaunal organisms. 

6.4.1 Corals 

Corals are one of the most important biotic components of the carbonate 

intervals of the Calders depositional succession, although corals are absent from 

siliciclastic lithologies. This is to be expected, considering the siliciclastic facies were 

deposited within moderate to high-energy settings characterised by unstable substrates 

(Section 3.3.3 and 3.3.4). Shifting sands would have effectively inhibited colonisation 

by corals in their larval stages. 

The relative abundance of corals shows a correlation to both the non-carbonate 

sediment abundance (Section 6.3.1.1) and grainsize (Section 6.3.2). Corals are absent 

from lithologies containing > 38 wt. % non-carbonate sediment (Section 6.3.1.1, 

Figure 6.12), likely due to the effects of smothering (cf. Rogers 1983, Stafford-Smith 

and Ormond 1992). Corals are absent from lithologies where the non-carbonate 

grainsize exceeds 1000 IJ.IIl (Figures 6.14 and 6.15). It is suggested that this is related 

to damage of coral polyps through ingestion of coarse angular grains (cf. James and 

Kendall1992) and/or to the abrasion of soft tissue resulting in mortality (Woolfe and 

Larcombe 1999). 
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Corals are particularly abundant where non-carbonate grainsize ranges from 4 

to 125 J.Ull (Figure 6.15). Fine-grained siliciclastic sediment suspended in the water 

column will result in increased turbidity with a reduction in the depth of the photic 

zone and the habitable area ofthe shelf(Section 6.1.2). This will have an effect on the 

abundance, distribution and morphology of corals. Corals may adapt flattened, platy 

morphologies as a consequence of low incident radiation (Titlyanov and 

Latypov 1991 ), although this adaptation is not advantageous if rates if sediment 

settling are high. Corals develop branching morphologies in settings characterised by 

high sedimentation rates where competition for space is high (cf. Gras so and 

Pedley 1988). Steep, upright faces of branching corals make them less susceptible to 

sediment settling than planar or concave surfaces. However, steep surfaces will 

experience a lower degree of incident radiation, thus would not be advantageous in 

turbid low-light settings. In the Calders area, corals present in lithologies containing 

very abundant (>25 wt. %) fine-grained, non-carbonate sediment have delicate 

branching morphologies (Figure 6.13). It is postulated that corals within muddy, 

silicicasltic-rich lithologies of the Calders area developed branching morphologies as 

a response to high inputs of fine siliciclastic sediment. Fine-grained, non-carbonate 

sediment would have settled from the water column relatively quickly in a low-energy 

depositional setting (Section 3.3.1.4), thus the water column may have been turbid for 

short periods of time only. Platy coral development is evident in the second carbonate 

interval within lithologies containing up to 26 wt. % non-carbonate (Figure 6.13). It 

is inferred that the second interval developed under more turbid conditions, with re­

suspension of fine sediment and lower net sedimentation rates. 

6.4.2 Larger benthic foraminifera 

A summary of the dominant larger benthic foraminifera within the identified 

facies of the Calders succession, and a definition of their environmental restrictions, is 

provided in Appendix 1. 

Most larger benthic foraminifera are dependent upon algal endosymbionts for 

photosynthesis. This requirement restricts them to the photic zone, which, in clear 

water settings, may be as deep as 130 m (Ghose 1977, Hottinger 1983, Hallock and 

Glenn 1986, Murray 1991, Hohenegger et al. 1999, Geel 2000). Their occurrence and 

abundance is controlled by a number of external environmental factors such as 
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temperature, oxygenation, salinity, nutrient levels, incident light, energy regime and 

the nature and stability of the substrate (Blondeau 1972, Hallock and Glenn 1986, 

Racey 1990). Foraminifera test morphology can be related to water depth (and degree 

of light intensity) and water energy. Thick, robust tests are common within a high­

energy regime and/or where the light intensity is high. Conversely, thin tests, often 

with an increased diameter, occur where the light intensity is lower and/or within a 

low-energy regime (Hottinger 1983, Hallock and Glenn 1986). Foraminifera with a 

large diameter also develop in settings where the nutrient supply is sufficient to 

sustain growth, but does not promote reproduction (Geel 2000). 

Larger, free-living foraminifera are typical of muddy substrates (Hallock and 

Glenn 1986, Racey 1990), and are able to clean their tests using their pseudopodia 

(Van der Zwann et al. 1999). Larger foraminifera mortality may result from burial, as 

symbiotic algae are prevented from photosynthesising. Some species are mobile and 

can excavate themselves in the event of shallow burial (Alve 1999). 

6.4.2.1 Larger benthic foraminiferal abundance 

It is evident from this study that larger benthic foraminifera are able to tolerate 

prolonged inputs of non-carbonate sediment (Section 6.3.1). It is demonstrated that 

Nummulites and Discocyclina are able to survive in sediments containing 65 wt. % 

non-carbonate material, and Operculina can tolerate up to 50 wt. % non-carbonate 

(Figure 6.10). Larger benthic foraminifera may be the only biota present in any 

abundance in siliciclastic sediments with concentrations of l 0 to 30 wt. % non­

carbonate (Figure 6.10). Their abundance may be attributed to a lack of competitors 

(or predators) in a stressed environmental setting, an ability to survive burial for a 

short period of time, to excavate themselves following shallow burial and an ability to 

colonise barren substrates. 

Larger benthic foraminifera are not observed where the grain size of the non­

carbonate sediment is > 4 mm, and are most abundant at grain sizes ranging from 

4 ~ to 2 mm (Figure 6.17). Operculina is not present where non-carbonate grain 

size > 125 ~· Their absence within very coarse-grained siliciclastic lithologies may 

be related to the increased abrasion of large grains, particularly in shallow, high­

energy settings. Nummulites observed along the upper surfaces of conglomeratic units 
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(Figure 3.50) are reworked. The ability of larger benthic foraminifera to modify their 

test morphology in order to adapt to low light intensities may explain their relative 

abundance in fine-grained sediments. 

6.4.2.2 Morphological response of larger benthic foraminifera to sediment input 

Larger benthic foraminifera within the studied sedimentary succession at 

Calders show a variety of test morphologies. These morphological variations are 

related to environmental stresses such as siliciclastic sediment input and low light 

intensity. 

Large test diameters in larger benthic foraminifera are usually associated with 

growth under the influence of low levels of incident light, within a deep-water, low­

energy setting (Hottinger 1983, Hallock and Glenn 1985, 1986). The growth of a large 

test will increase the surface area available for photosynthesis by algal symbionts. A 

similar morphological response can be triggered in shallow water where an input of 

clay to silt-grade sediment that remains in suspension will reduce the photic zone. 

Larger test diameters are associated with low incident light and low energy 

conditions, thus tests are thin and delicate. Conversely, in high-energy, clear shallow 

water conditions, foraminifera tests are small with thick walls that limit the amount of 

ultra violet radiation entering the test, protecting its protoplasm from radiation 

damage (Hottinger 1983, Hohenegger et al. 1999). 

The larger foraminifera Operculina is found in abundance only in muddy, 

mixed carbonate-siliciclastic sediments (Section 3.3.2.3). Operculina tests are large 

(up to 2.5 cm) and thin with diameter to width ratios up to 0.08. The large diameter of 

Operculina in the studied sediments is related to a reduced photic zone as a 

consequence of turbidity (not depth as Operculina is found within shallow-water 

sediments-see Section 3.4.1). Nummulites and Discocyclina tests within siliciclastic 

packstone lithologies are also large with diameters ranging from 1.0 mm to 3.5 cm. 

The largest foraminifera tests, typically encountered just below the transition from 

mixed carbonate-siliciclastic to carbonate-dominated sedimentation, demonstrate 

thick test walls, with diameter to width ratios up to 0.2. Therefore, it is proposed that 

these large foraminifera test diameters were associated with non-carbonate sediment 

input but in moderately shallow water with high levels of incident light. Where 
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environmental conditions are stressful (but tolerable for growth), reproduction of 

larger benthic foraminifera is delayed until conditions become more suitable 

(Figure 6.19). The stressful conditions in this environment are thought to be related to 

a combination of sediment input and an energetic hydrodynamic regime. 

Rotaline foraminifera present within the carbonate-dominated lithologies, 

(predominantly Amphistegina with relatively rare Nummulites) have small, robust test 

morphologies in response to high incident light. Carbonate-dominated lithologies 

contain no siliciclastic grains > 1 mm, but may contain up to 38 wt. % clay to silt 

grade non-carbonate. This grain size fraction could remain in suspension for some 

time prior to deposition, although no reduction in incident light can be inferred from 

the morphology of Nummulites and Amphistegina. It can be concluded from this that 

although the carbonate lithologies were influenced by a fine-grained, non-carbonate 

sediment input, but sediment did not remain in suspension for a long enough period to 

significantly influence the development of larger benthic foraminifera. 

Normal size of 
reproduction. 

Time 

Figure 6.19 Schematic illustration of the 
continued growth of larger benthic 
foraminifera under stressful conditions 
(from Lokier 2000). 

Under stressful cond1t1ons an individual will continue 
to grow either until more favorable conditions allow 
reproduction or until mortality. Under such circumstances 
larger tests accumulate and are oreserverd in the 
palaeoenvironment. 
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6.4.2.3 Sediment re-colonisation by larger bentbic foraminifera 

The Calders sedimentary succession developed due to repetitive re­

colonisation of a siliciclastic substrate by carbonate-producing organisms following a 

rapid sedimentation event that destroyed the previous benthic habitat and effectively 

created a new one (Chapter 3). Nummulites, often followed by Discocyclina, are 

typically the first organism to re-colonise the 'new' habitat in appreciable numbers 

following an extended input of siliciclastic material. Re-colonisation by larger benthic 

forarninifera following I 00 % mortality of biota is potentially a difficult process, as 

foraminifera have to reach the new site. Alve (1999) notes that most motile benthic 

organisms have four different ways of dispersion: 

1. The release of gametes, zygotes or embryonic agamonts following sexual and 

asexual reproduction into the water column; 

2. Self-locomotion along the sea floor; 

3. Passive entrainment into the water column and subsequent transport of 

different growth stages; 

4. Adaptation to a rneroplanktonic juvenile life stage with subsequent passive 

spread by currents. 

Dispersal through the release and transport of embryonic juveniles is thought to be 

the main mechanism for larger benthic forarninifera (Alve 1999). Benthic 

foraminifera are not easily entrained while alive as they cling to the sediment with 

their pseudopodia (Severin and Lipps 1989), and self-locomotion is a very slow 

process, efficient over very small distances only (centimetres to metres) 

(Kitazato 1988a). The adaptation to a temporary planktonic life stage is only 

identified for a few species of smaller benthic foraminifera, and is not thought to be 

an important mechanism for larger benthic foraminifera (Alve 1999). 

The rate of colonisation of a new substrate is related to the hydraulic regime in, 

and the transit time from, the source area inhabited by species capable of colonizing 

the new habitat, assuming food and other environmental requirements are not limiting 

factors (Alve 1999). If high-energy conditions dominate in the source area (bottom 

current velocities> 20 cm/s) the transit time for more species into the new habitat will 
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be short (hours to days), colonisation may occur within days and stabilisation may 

occur within days to weeks. There are no obvious breaks in sedimentation in the 

Calders area, such as erosion surfaces, hardgrounds or palaeosol horizons, with 

siliciclastic to carbonate contacts being transitional, thus there was no sedimentary 

hiatus before colonisation of the siliciclastic substrate that would leave a mark in the 

geological record. 

The first organisms to colonize the new environment will be r-strategists 

(opportunists) that have high reproduction capacity and short life cycles (Alve 1999). 

The r-strategists will be succeeded by more habitat-selective, k-strategists. The 

abundance of Nummulites, and to a lesser extent Discocyclina, within siliciclastic 

packstone lithologies that succeed the largely non-fossiliferous sandstones 

(Figures 6.4 to 6.6) is consistent with an initial episode of re-colonisation by r­

strategists. These foraminifera are absent throughout the majority of the siliciclastic 

lithologies, and therefore may have been transported into the area during the 

embryonic juvenile stage of reproduction (see above). It is postulated that transport of 

foraminifera in their juvenile stages may have been difficult in this environment as 

low to moderate-energy conditions are inferred for the Vie Basin from the abundance 

of carbonate mud (Chapter 3). However, the northern and southern margins of the 

Vie Basin were populated by a large number of indepenent reef systems during the 

late Middle Eocene (Chapter 2), thus potential colonisers had only a small distance 

(tens of kilometres) to be transported to the Calders area. 

6.4.3 Larger encrusting and epiphytic foraminifera 

There is a great generic diversity of encrusting and epiphytic forarninifera in 

the Calders sediments, and there is evidence to suggest that non-carbonate sediment 

input influenced their abundance through creating and modifying/destroying habitats. 

Larger encrusting and epiphytic foraminifera identified are Gypsina, Haddonia, 

Chapmanina, Fabiania and victoriellids (Korobkovella and Gyroidinella). Although 

major contributors to Recent tropical bioconstructions, these large encrusting 

foraminifera do not posess photosymbionts and thus their abundance and distribution 

would not have been influenced by turbidity and light penetration but the nature of the 
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substrate ie. hard vs. soft (cf. Romero et al. 2002). It is postulated that the nature of 

the substrate would have been strongly affected by non-carbonate input. 

The acervulinid foraminifera Gypsina is able to tolerate variable amounts of 

siliciclastic sediment input, and is found to inhabit a variety of carbonate and 

siliciclastic-dominated habitats in the Calders area (Chapter 3). Gypsina is found in 

in sediments containing up to 69 wt. % non-carbonate (Figures 6.3 and 6.11), 

although it is most abundant at non-carbonate concentrations around 2 to 20 wt. %. It 

is interpreted that in environments characterised by high siliciclastic sediment input 

and unstable substrates, Gypsina adapts to an epiphytic mode of life (Chapter 3). 

This is inferred from the curved nature of Gypsina tests. Sea grass meadows, which 

can develop in such environments, provide adequate stable substrates for epiphytic 

organisms where the risk of burial is negated (cf. Carbone et al. 1994). Gypsina is 

also seen encrusting in situ corals (in association with coralline algae) within 

environments characterised by low to moderate inputs (<20 wt. %) of fine-grained 

non-carbonate sediment (Figures 6.5 and 6.6). Perrin (1992) suggests that Gypsina is 

a common component in reefal environments where there is reduced competition for 

substrate encrustation, often related to low-light levels. This is interpreted as an 

indicator of periods of enhanced turbidity at sites of reef growth. 

The large encrusting forarninifera Haddonia, Fabiania, Chapmanina and 

victoriellids (Gyroidinella and Korobkovella) inhabited cryptic environments within 

coral debris (Chapter 3). It is postulated that an input of fine-grained non-carbonate 

would result in mortality of these organisms through burial (as they are sessile and 

unable to relocate) and destruction of their preferred habitat through the infiltration of 

fine-grained sediment into cryptic environments. Large encrusting foraminifera are 

present in sediments containing up to 54.5 wt. % non-carbonate material, although are 

more abundant at concentrations < 10 wt. % (Figure 6.12). Larger encrusting 

forarninifera are more abundant where the grain size of non-carbonate sediment is 

< 1 mm (Figure 6.14). Haddonia and Fabiania, in addition to Gypsina, are also 

important constituents of foralgal rhodoliths (Section 6.4.4), and it is proposed that in 

environments where the risk of burial is high, a free-living mode of life may offer 

some advantages. 
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6.4.4 Coralline algae 

Coralline algae are important sediment binders and framework builders in reef 

environments. Coralline algae are photosynthetic organisms and their distribution is 

controlled by incident light (Adey and Adey 1973, Ghose 1977). The algae grow in 

the photic zone at maximum depths of 130 m (Tsuji 1993), though a typical depth of 

< 90 m is more common (Bosence 1993). Coralline algae are common inhabitants of 

reef and forereef settings in both Tertiary and Recent environments (Adey and 

Maclntyre 1973, Wray 1977, Ghose 1977) and are an important biotic component of 

the Calders sediments (Chapter 3). In the study area, coralline alage are present as 

laminar crusts on corals, rhodoliths and articulated forms (Chapter 3). The potential 

influences of silicicilastic sediment input on coralline algae abundance and 

morphology is demonstrated in sediments in the Calders area. 

6.4.4.1 Coralline algae abundance 

As described in Section 6.3.1, there is a distinctive change in coralline algae 

abundance in response to non-carbonate sediment input. Coralline algae occur in 

sediments containing up to 38.5 wt.% non-carbonate material, and are most abundant 

at concentrations of 10 to 30 wt. % (Figure 6.9). Rapid deposition of siliciclastics 

would result in the burial and mortality of coralline algae, essentially as the alga is a 

sessile organism and unable to excavate itself if buried. This is suggested from the 

dearth of coralline algae in siliciclastic-dominated sediments (Figures 6.3 and 6.9). In 

addition, a constant supply of siliciclastic sediments would create an unstable 

substrate that would be unsuitable for colonisation by most benthic fauna. 

The absence of coralline algae in sediments where the grain size of non­

carbonate grains exceeds 4 mm, and the rarity of algae at grain sizes between 2-4 mm 

(Figure 6.16) is attributed to the abrasion of soft tissues. Coralline algae are very 

abundant in sediments where the non-carbonate grain size fraction is between 4-

500 IJlil (Figures 6.14 and 6.16). This seems unusual as it is thought that clay to silt­

grade sediment, which would remain in the water column effectively reducing light 

penetration, would reduce the depth of the photic zone. Where algae are no longer 

able to photosynthesise, mortality would result. Turbidity would be enhanced at 

moderate energy levels, and turbidity could be maintained through the constant re-
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suspension of fine-grained sediment. The success of coralline algae in these muddy 

settings in the Calders area could be attributed to a number of factors. Firstly, low to 

moderate energy conditions are interpreted for most of the carbonate-dominated 

depositional environments (Chapter 3), and thus turbid periods may have been of a 

short enough duration not to significantly affect algae growth. Secondly, clay-grade 

material may flocculate and thus settle from the water column at lower current 

energies. Flocculated clays would also be less susceptible to re-suspension. Finally, 

coralline algae are most commonly encountered encrusting corals, thus they would 

have occupied an elevated position where the effects of turbidity or sedimentation 

would be reduced. 

6.4.4.2 Changes in coralline algae morphology 

Coralline algae occur as a variety of growth forms including articulated, 

laminar crustose, complex branching morphologies and rhodoliths. It is postulated 

that sedimentation, and turbidity generated as an effect of non-carbonate sediment 

input, has influenced coralline algae morphology. 

Thin (<0.5 mm), but laterally extensive laminar coralline algae crusts are 

identified on delicate branching corals in sediments where the amount of non­

carbonate exceeds 30 wt. %. Steneck (1986) describes how thin, laterally extensive 

coralline algae crusts are typical of deep-water, low-energy conditions where 

competition for space and predation is limited. Turbidity, generated through an input 

of fine-grained siliciclastic sediments, reduced the incident light, resulting in the 

development of a deep-water growth form in relatively shallow water. More nodular 

growth forms characterise relatively high-energy settings with a significant 

siliciclastic input in the study area (Figure 6.19). Nodular growth forms of coralline 

algae are more common in higher-energy settings and where competition for growth 

space is high (Minery et al. 1985, Minnery 1990). 

Rhodoliths are an important constituent of a number of facies in the study 

area, in particular the coralgal foraminifera rudstone (Section 3.3.1.5) and coral 

bioclastic pack/rudstone (Section 3.3.1.3) facies that were deposited in moderately 

high energy conditions. High-energy conditions may be beneficial for coralline algae 

growth as fine-grained material is removed from the environment, and it will 
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encourage the turning of rhodoliths. Rhodoliths m the studied sediments often 

demonstrate highly complex columnar branching. Concentric laminar and densely 

branching radial forms tend to develop in higher-energy environments, with more 

loosely laminated and open branching forms in lower-energy environments (Bosence 

1991). A change from large, spheroidal concentric laminar rhodoliths to smaller, more 

complex branching and columnar forms has been observed in sediments containing a 

high percentage of clastic material (Lokier 2000). 

In unstable sedimentary environments there may be a lack of suitable substrate 

for sessile encrusting organisms. However, hard surfaces of rhodoliths provide ideal 

attachment sites for organisms such as foraminifera (cf. Lokier 2000). It has been 

noticed in this study that incorporated into rhodoliths are large encrusting 

foraminifera, in particular Haddonia, Fabiania and Gypsina (Figure 6.20). 

Foraminifera that have encrusted rhodoliths may have been subsequently overgrown 

by coralline algae resulting in an area of local topographic relief at the rhodoliths 

surface. Such areas have been amplified through successive growth layers of coralline 

algae or further encrustation by foraminifera. 

6.4.5 Burrowing fauna 

Bioturbation is difficult to identify in the carbonate-dominated lithologies due 

to the recrystallised nature of the sediments, and the very well sorted nature of the 

micrite matrix. Bioturbation is only identified in carbonate lithologies through subtle 

colour variations of the matrix and localised concentrations and alignment of 

bioclasts. Bioturbation is better preserved within siliciclastic-dominated lithologies 

due to clear grain size variations. Trace fossils present are dominated by Skolithos and 

Thalassanoides-type forms orientated perpendicular to bedding. Burrows do not cross 

bedding contacts. It is inferred from the dearth of bioturbation within the majority of 

the siliciclastic sediments (Figures 6.10 to 6.13) that high-sedimentation rates 

prevailed, inhibiting colonisation by most burrowing organisms. The only fauna 

identified within siliciclastic-dominated sediments are irregular echinoids 

(Echinolampas) and large gastropods (Cerithium). 
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Figure 6.20a (PPL) Example of 
a complex foralgal rhodolith 
contammg, in addition to 
coralline algae, Haddonia (H), 
Fabiania (F) and acervulinid 
encruster (A). The nucleus is a 
coral fragment (sample LCA 
99e, log CA-10). Scale 
bar=Smm. 

Figure 6.20b (PPL) ln some 
circumstances, foraminifera are 
observed to encrust the 
exposed, hard surface of a 
rhodolith creating an area of 
localized microtopography. If 
the rhodolith is not turned 
frequently, further encrustations 
will increase the rekief, forming 
a protuberance (sample LCA 
43b, log CA-4a). Scale 
bar=2mm. 

Figure 6.20c (PPL) Warty 
coralline algae growth within a 
moderate to high-energy, mixed 
carbonate-siliciclastic setting 
(sample LCA 31, log CA-4). 
Scalebar=2mm. 
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6.5 Summary 

There have been a number of studies investigating the development of 

carbonates in siliciclastic settings (Santisteban and Tabemer 1988, Woolfe and 

Larcombe 1998, Larcombe et al. 2002). However, these studies have not aimed to 

quantitatively assess the effects of sediment input on the biota present. Studies on 

modem reefs have concentrated on individual species or organisms, rather the 

community as a whole (Gleason 1998, Bames and Lough 1999 and Wesseling et al. 

1999). Studies quantitatively detailing community change associated with 

volocanoclastic and siliciclastic input have been presented by Lokier (2000), Wilson 

and Lokier (2002), Wilson (submitted). A summary of the effects of clastic input on 

biota in the Calders study area is presented below. 

6.5.1 Benthic community change 

It is expected that a sediment input (or conversely a variation in sediment 

input) into a shallow marine environment would result in a distinctive change in the 

benthic community. The punctuated nature of siliciclastic input in the Calders area 

resulted in the development of two distinctly different environments: prograding 

clastic shelf and prograding/aggrading coral gal reef with associated detrital sediments. 

The carbonate accumulations at Calders developed on a periodically abandoned, 

shallow marine siliciclastic substrate, situated on the southern margin of an east-west 

trending oceanic inlet. Although the sedimentary regime was siliciclastic-dominated, 

carbonate development occurred during windows of opportunity provided by 

abandonment of the siliciclastic substrate or significant reductions in siliciclastic 

input. 

Siliciclastic-dominated beds in the study area are largely devoid of body 

fossils, indicating unstable substrates with sedimentation rates too high to allow 

colonisation and habitation. High sediment accumulation rates are confirmed from the 

presence of vertical and sub-vertical domichnial burrows. Fossils preserved are 

fragmented and abraded, indicating that they were transported into the environment 

and/or reworked prior to deposition, and therefore do not represent an in situ 

community. A strategy adapted by some organisms for survival in settings with 

mobile substrates is the ability to lead an epiphytic lifestyle. Epiphytic forms of 

313 



The effects of silicic/as tic sediment input on biota 

Gypsina are particularly common in siliciclastic rich sediments in the Calders study 

area. It is inferred that an abundance of encrusting forms of Gypsina proliferated in an 

environment where there was little competition for space. 

The switch from high to low/moderate siliciclastic sedimentation rates and 

early stabilisation of the substrate resulted in the proliferation of a low-diversity 

benthic community dominated by mobile organisms including larger foraminifera 

(Nummulites, Discocyclina and Operculina) and robust, tightly laminar foralgal 

rhodoliths. Although sedimentation rates were relatively low, the substrate was prone 

to reworking, as shown by the development of ephemeral channels. This reworking 

would have inhibited the development of many sessile organisms, including colonial 

corals, articulated coralline algae and bryozoa. 

A further decrease in siliciclastic sedimentation rates, accompanied by 

stabilisation of the substrate, resulted in the development of a highly-diverse benthic 

community. This diverse community, dominated by corals, encrusting foraminifera, 

coralline algae and molluscs, thrived. A constant fine-grained clastic input is 

identified in the Calders area. However, this background sedimentation was 

insufficient to bury biota, probably because it remained in suspension through a 

combination of local and longshore currents, and corals were able to effectively 

remove sediment from their tissues using one or more of the mechanisms described in 

Section 6.1.1. High/increasing nutrient levels associated with continental runoff led to 

increased encrustation by coralline algae and a high incidence of bioerosion, 

particularly by lithophagid bivalves. 

6.5.2 Scarcity of fauna within siliciclastic horizons 

The switch from carbonate-dominated to siliciclastic-dominated deposition is 

abrupt. The absence of an intermediate, larger foraminiferal community between the 

coralgal reefs and shelf clastics in all but one instance indicates that the sediment 

input was large and rapid. Sedimentation rates were too high to allow colonisation by 

most sessile benthic organisms, with the rare fauna dominated by burrowing echinoids 

and soft-bodied burrowing invertebrates. 

The relative scarcity of fauna within siliciclastic horizons in the Calders study 

area is a consequence of the amount and rate of sediment input. Substrate instability 
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would have inhibited colonisation by corals in their larval stages. Coral larvae cannot 

remain stable on immobile substrates, and growth will only initiate where the rate of 

particulate sedimentation is zero or slightly negative (Woolfe and Larcombe 1998, 

1999). Larger benthic foraminifera (Nummulites) and epiphytic foraminifera are the 

only biota present in appreciable amounts in siliciclastic-dominated sediments. 

Nummulites was able to survive in this setting through its ability to excavate itself 

from sediment following burial, and its ability to adapt morphologically to low-light 

conditions. Gypsina was able to survive in a siliciclastic-dominated environment 

through adapting to an epiphytic mode of life, encrusting sea grass that provided a 

relatively stable substrate. A summary of the relative abundance of benthic 

foraminifera encountered in different sedimentary environments is presented on 

Table 6.1. 

6.5.3 Preservation potential of carbonate communities 

The rapid physical burial of a reef with sediment can preserve an entire 

community, preventing post-mortem degradation through bioerosion, and physical 

breakge and transport by currents. The continuity of section exposed at Calders, and 

the apparent absence of erosion surfaces, hardgrounds etc, suggests that close to the 

full suite of hard-bodied benthic biota present may have been preserved. It should be 

noted that some benthic fauna i.e. larger benthic foraminifera, might be able to 

excavate themselves upon burial, surviving an input of sediment. In such a case, the 

remaining community will represent a death assemblage or organisms with hard parts, 

containing only sessile organisms that were unable to excavate themselves rather than 

representing the true benthic community present. 

6.6 Conclusions 

In the Calders area of NE Spain, the varying input of clastic material had a 

strong influence on the development and preservation of the benthic biota. These 

effects depended upon the organisms present, the amount of sediment input and the 

sediment grainsize. A divese benthic community, comparable in diversity of modern 

reefs, existed during times of low siliciclastic input. High rates of sediment input, 

related to channel avulsion episodes, resulted in the burial and mortality of all sessile 

315 



The effects of silicic/astic sediment input on biota 

benthic marine biota. This resulted in the establishment of a new environment that 

was re-colonised by an r-selective oligotrophic to mesotrophic biota dominated by 

larger benthic foraminifera (Nummulites, Discocyclina and Operculina) and coralline 

algae. 
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7. Carbonate development in siliciclastic environments 

7.1 Introduction 

Traditionally, carbonates and siliciclastics have been studied separately, likely 

a consequence of the high degree of specialisation in sedimentology and the different 

methods of analysis employed to study the two types of deposit. A great deal of 

information about depositional environments in mixed shelf settings may be acquired 

from the study of these types of sedimentary successions as a whole. Ancient coral 

reef systems are useful palaeoindicators of shelf morphology, tectonic activity, local 

circulation systems, climatic conditions and relative sea-level fluctuations (Leinfelder 

1997). The presence of reefs within and adjacent to siliciclastic sediments at Calders 

(Chapter 3) and Altorreal (Chapter 5) provides evidence that reefs were also 

influenced by sedimentary processes of fan-delta systems and siliciclastic shelves. 

There is a common misconception that significant shallow water carbonate 

development is inhibited in areas of active siliciclastic input. However, a diversity of 

mixed carbonate siliciclastic sedimentary deposits are known from the rock record 

(Quaternary: e.g. Purser 1987, lryu et al. 1998, Katsutoshi and Seiko 1998; Tertiary: 

e.g. Santisteban and Taberner 1988, Reinhold 1995, Hayward et al. 1996, Wilson and 

Lokier 2002; Mesozoic: e.g. Nose 1995, Nose and Leinfelder 1997, Leinfelder 1997, 

Bernecker et al. 1999; Paleozoic: e.g. Nield 1982, Ma1sheimer et al. 1996, Long 

1997). Additionally, recent work has shown that carbonates accumulate in a diversity 

of modern siliciclastic settings (e.g. Roy and Smith 1971, John son and Risk 1987, 

Acevedo et al. 1989, Tudhope and Scoffin 1994, El-Sammak et al. 1997, Leinfelder 

1997, Larcombe and Woolfe 1999, Woolfe et al. 2000). 

The information gained on the development of the mixed carbonate­

siliciclastic successions at Calders and Altorreal is here compared with previously 

published examples in order to review and critically evaluate the temporal and spatial 

coexistence patterns between carbonate reef systems and siliciclastics. This chapter 

will review and discuss characteristic features of mixed carbonate-siliciclastic 

successions deposited under different climatic (Section 7.2.1), tectonic (Section 

7.2.2) and hydrodynamic regimes (Section 7.2.4). Autogenic influences will be 

discussed in Section 7.2.3. In addition, this chapter will discuss the palaeogeographic 

(Section 7.2.4) and biotic (Section 7.3) attributes of siliciclastic-influenced reefs, and 

review sequence development (Section 7.4). A further aim of this chapter is to 
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provide a unified model of reef growth and development in different siliciclastic 

settings, and to comment on the validity of modem reef classification models. 

7.2 Controls on the deposition of shallow marine mixed carbonate-siliciclastic 

successions 

Major controls on the deposition of biogenic carbonate successtons are 

climate, tectonics and (relative) sea level changes (Tucker and Wright 1990) 

(Figure 7.1). On mixed carbonate-siliciclastic shelves, these allogenic controls will 

ultimately determine: 

• The grainsize, rate and amount of terrigenous siliciclastic input to the shelf 

• Where in the marine system sediment will accumulate (with regards to the 

availability of accommodation space and relative depth of the photic zone) 

• The nature of the accumulation i.e. types of sedimentary facies, facies 

distributions and sediment stacking patterns 

On a local scale, autogenic sedimentary processes intrinsic to the depositional 

setting such as hydrodynamic regime, biological activity and water chemistry 

influence facies patterns. In addition to the factors listed above, these autogenic 

processes may influence: 

• Relative depth of the photic zone through presence/absence of turbidity 

• Type and diversity of biota 

• Nutrient flux 

• Salinity of marine waters 

This section will review and critically evaluate the allogenic and autogenic 

controls on the deposition of shoreline-attached mixed carbonate siliciclastic 

successions using the studied examples from NE and SE Spain (documented in 

Chapters 2 to 5) and relevant examples. It should be noted that all of the processes 

above interact, producing a complex range of effects on carbonate development. A 

specific effect may be the result of a complex interaction of different processes, thus it 

is not always possible to establish a single cause for an effect when studying 
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carbonate depositional systems. In mixed systems establishing a single 'cause' for an 

'effect' is even more difficult since the two systems respond differently to allogenic 

and autogenic influences. 

7.2.1 Climate 

"The two main aspects of climate are temperature and precipitation. Absolute 

temperature and precipitation rates are important, but of equal importance are their 

fluctuations on a seasonal and non-seasonal scale, and the magnitude and frequency 

of extreme events" (Reading and Levell 1996). Climate is a major control on the 

frequency, magnitude and grainsize of terrigenous flux to continental shelves. Climate 

influences the grainsize of siliciclastics transported to marine environments through 

the degree of physical and chemical weathering of grains, producing fine silt/clay­

grade material. This in turn exerts control on the nature of siliciclastic substrates in 

areas proximal to siliciclastic input i.e. soft and muddy vs. coarse and relatively hard. 

In addition, the climatic regime may influence marine water chemistry. High 

precipitation rates and continental runoff can influence nutrient levels, pH and salinity 

(see Section 6.1.3). 

The influences of climate (as sediment grainsize, the frequency and magnitude 

of sediment input, and precipitation and continental runoff rates) on biogenic shallow 

marine carbonate development are summarised in the following. The influence on 

biota has been discussed in Chapter 6. 

1) Grainsize: Where the siliciclastic input is very fine-grained, it may remain in 

suspension in the water column for a considerable period of time, prolonging 

turbidity, reducing light penetration and reducing the depth of the photic zone 

(Section 6.1.2). This process will reduce the habitable depth for photoautotrophs. In 

comparison, where the siliciclastic input is coarse-grained, sediments rapidly settle 

out from the water column, and the water may clear within a relatively short period of 

time (Section 6.1.2). Excluding complete burial of biota, the most significant effect of 

coarse input would be abrasion of soft tissues and skeletal breakage (see Chapter 6). 

The grainsize of a potential substrate influences reef initiation. In the Red Sea, 

gravelly sediments provide an ideal substrate for coral planulae to settle on and 
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develop. Corals grow directly on non-lithified pebble clasts greater than 60 mm in 

diameter (Hayward et al. 1996). Material finer than this is not normal colonised. 

2) Frequency of sediment input: In areas of continuous siliciclastic sedimentation, 

settlement of photoautotrophs such as corals in their larval stage may be inhibited by 

an unstable substrate (see Chapter 6). It follows that in more humid, equatorial 

regions characterised by a constant influx of fine-grained, terrigenous sediment, coral 

recruitment may be difficult in the absence of a pre-existing, stable substrate such as 

exposed bedrock, pre-existing skeletal build-up etc. In contrast, windows of 

opportunity for settlement and carbonate production occur during periods of minimal 

siliciclastic input in semi-arid environments characterised by punctuated siliciclastic 

input (providing other criteria such as correct temperature and water chemistry are 

fulfilled). 

3) Magnitude of sediment input: High rates of sedimentation may result in the 

burial and ultimately the death of sessile carbonate producing organisms such as 

corals, coralline algae and bryozoa (see Chapter 6). Organisms within soft-bottomed, 

unstable environments may have adapted a degree of mobility, allowing self­

extraction if buried (Heikoop et al. 1996). However, even motile benthic organisms 

are vulnerable to physical burial if the amount of sediment input is large. 

4) Precipitation and continental runoff: An input of freshwater into a manne 

system in conjunction with an input of terrigenous siliciclastic material can result in 

rapid changes in water chemistry, including changes in pH, salinity and nutrient 

levels. High nutrient levels are generally unfavourable to carbonate systems (Schlager 

1992, Hallock 1988). Corals and larger benthic foraminifera are oligotrophic (Hallock 

and Schlager 1986, Schlager 1992, Geel 2000), although some genera may adapt to 

heterotrophy in if nutrient input is high (Antony 2000, Antony and Fabricus 2000). 

The growth of fleshy algae, which may encrust and effectively suffocate benthic 

communities, is stimulated by an increase in nutrient availability (Hallock and 

Schlager 1986, Hallock 1988). Additionally, an input of freshwater in the marine 

system may cause fluctuations in marine water salinity in nearshore areas. This may 

have detrimental consequences for stenohaline organisms that cannot tolerate such 
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fluctuations (Lees 1975). It should be noted that rates of continental run-off are a 

function of the hinterland topography, size of the drainage area, vegetation cover and 

the effectiveness of sediment transport, in addition to the climate. 

Siliciclastic sediment flux to near-shore and shoreline-attached depositional 

systems may vary between humid equatorial settings and arid subtropical settings due 

to the differing precipitation. In humid equatorial regions sediment input is roughly 

constant (although many equatorial regions have a seasonal climate). In comparison, 

in sub-tropicaVtemperate semi-arid regions, sediment flux to the coastal system may 

be punctuated but of high magnitude with short-lived, catastrophic events 

(Hayward 1985, Ahmed et al. 1993, Wilson and Lokier 2002). 

7.2.1.1 Tropical humid to subtropical temperate sediment tluxes 

In humid equatorial to subequatorial regions, precipitation and runoff are 

moderately high and near-shore or shoreline-attached carbonate systems may be 

affected by near continuous terrigenous siliciclastic input (Wilson and Lokier 2002). 

Chemical weathering and long sediment transport pathways yield fine-grained 

sediments. Many studies investigating the transitions between fine siliciclastics and 

carbonates found modern reef systems to be many kilometres offshore where water 

clarity is high (Flood and Orme 1988, Friedman 1988, Murray et al. 1988). 

Siliciclastic input to the Calders area during the late Bartonian was punctuated, 

yielding sharp based, muddy sandstone, siltstone and shale beds typically 50 cm in 

thickness (Figure 3.38c), often forming clinoform geometries (Figure 3.38a and b). 

Siliciclastic environments were characterised by unstable shifting sandy substrates, 

which effectively inhibited colonisation by sessile benthic organisms (Section 

3.3.4.1). Sandstones are muddy, and it is inferred that the clay to fine silt fraction 

remained in suspension for some time, reducing water clarity, suppressing the photic 

zone thus inhibiting photosynthesis and the proliferation of photoautotrophs. 

Siliciclastic facies were inhabited mainly by large Cerithium gastropods, echinoids 

and some larger benthic foraminifera (mainly Gypsina if sea grasses were present) 

(Section 3.3.1.8). The biota assemblage of the Calders carbonates includes a range of 

organisms that are typical of warm latitudes (Table 7.1). No climatic data concerning 

the Vie Basin have been published, although late Tertiary climatic conditions of the 

Igualada Basin, neighbouring the Vie Basin, are well constrained. During the late 
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Middle Eocene (Bartonian-Priabonian), the dominance of herbaceous open vegetation 

reflects a seasonal climatic regime (Cavagnetto and Anadon 1996). The inferred 

implications of this would be a punctuated sediment input, reflecting variations in 

precipitation and continental runoff into the Vie Basin on an annuaVmonthly time 

scale. 

Organism Temperature 
range (°C) 

Amphistegina Generally > 20° 

Operculina 25° +/- 3° 

Hermatypic corals > 18 ° 

Table 7.1 The temperature ranges of organisms within 
the Calders depositional succession (data from 
Blondeau 1972, Murray 1991) 

Coral reef systems developed under siltation stress in the Lower Jurassic 

Saxony Basin, Germany. At this time, the basin was situated at a palaeolatitude of 

39°N within the warm-temperate subboreal realm, although the climate was humid, 

with distinct wet and dry seasons (Bertling 1997 and references within). The inner 

shelf was affected by seasonally high continental runoff, with sporadic fme-grained 

siliciclastic influxes resulting in coral mortality (Bertling 1997). Phases of reef 

proliferation coincided with periods of reduced run-off, although the amount of 

suspended sediment and the persistence of turbidity was influenced by the local 

hydrodynamic regime. Permanently turbid/low light conditions are inferred from the 

dominance of platy and sheet like coral colonies (Bertling 1997). 

7.2.1.2 Subtropical arid sediment fluxes 

In comparison to warm and wet settings, terrigenous sediment in arid settings 

is often locally supplied to the coastline via ephemeral wadis or fan systems. In these 

arid areas, sedimentation events are often short-lived, of high-magnitude and are 

typically related to storms (Hayward et al. 1985, Purser 1987, Rheinhold 1995). 

Between major sedimentation episodes, prolonged periods of minor siliciclastic input 

allows colonisation by photoautotrophs, assuming other environmental conditions 
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such as temperature, salinity and nutrient levels, are suitable. As a result of localised 

and punctuated input, reefs develop in clear waters, and deposits may contain little, if 

any, siliciclastic material. 

There are no published data at present concerning climate during the Late 

Miocene of the Fortuna Basin, although there is a wealth of indirect sedimentary 

evidence from the lithoclastic facies of the Altorreal study area described in 

Section 5.2.1.1, and the coeval Mediterranean basins of the Spanish Betic region (see 

Chapter 4). Semi-arid conditions are inferred from the absence of chemical 

weathering of grains and the coarse grainsize of sediments (see Section 5.2.1.1). 

Sedimentation was from discrete, high magnitude events, with sediment locally 

derived from uplifted Internal Zone massifs (Chapter 5). Although the periodicity of 

sedimentation 'events' cannot be established with the available data, incipient soil 

development, inferred from the haematite-staining of siliciclastic grains, provides 

evidence for prolonged subariel exposure of lithoclastic beds between sediment pulses 

(cf. Mather 1993). 

Large oysters encrusted the upper surfaces of boulders between phases of 

siliciclastic sediment input (Figure 5.7b). When the time between successive 

sediment pulses was sufficient to allow coral colonisation, small Porites colonies 

developed (Figure 5.7a). Carbonate production at Altorreal (in the form of coral­

microbial reefs) was rarely synchronous with siliciclastic input, evidenced from the 

virtual absence of siliciclastic material within the reef framework (Section 5.2.3). The 

exception to this was in proximal areas, where coarse siliciclastics supported the 

narrow, branching Porites colonies (Section 5.2.3.3). Generally, biogenic carbonate 

developed on (temporarily) inactive portions of the fan delta system, with reef demise 

partially attributable to physical burial as the fan was reactivated and sedimentation 

resumed (Section 5.3). The presence of microbial structures (Figures 5.17c and d) 

and the evidence for reef erosion prior to siliciclastic deposition (Figures 5.16b 

and c), indicate that a number of factors in addition to the sedimentation and the 

climatic regime were responsible for the demise of the Altorreal patch reefs. 

Stromatolites are perceived as indicators of enhanced salinity (Kendall and Skipwith 

1978, Riding et al. 1991, Steneck et al. 1998) but at Altorreal, stromatolite 

development was at least partly synchronous with coral growth (Section 5.3.2). Hardy 

corals such as Porites have relatively wide tolerances for salinity variations 
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(Braithwaite 1971, Downing 1985) but it is unlikely enhanced salinities were 

responsible for microbial growth, mainly due to the modest faunal diversity. 

Stromatolite development is related to enhanced nutrient input, a consequence of 

terrestrial runoff during storm events. Evidence is provided by the temporal and 

spatial occurrence patterns of stromatolite with respect to corals and lithoclastic 

facies, discussed in Section 5.4.3. It is postulated that there were punctuated influxes 

of fresh, nutrient-rich water as runoff to the marginal marine environment, even 

during times of delta lobe abandonment. 

Coral reef development in the Miocene Mediterranean Basins (Table 7 .2), and 

the Miocene to Recent of the Red Sea region, is comparable to that of Altorreal (in 

terms of both climate and sedimentation style). Reefs have developed in close 

association with coarse siliciclastics in the Gulfs of Suez and Aqaba since the 

Miocene. Mean annual rainfall in the Gulf of Suez is <10 mm yr- 1 (Friedman 1968). 

Sediments are locally derived, and are transported to the coast via ephemeral fluvial 

and wadi systems where they are rapidly deposited in near-shore environments 

(Hayward et al. 1985, Purser 1987). Sedimentation occurs as catastrophic, high­

magnitude but infrequent, short-lived events of 1-2 days duration (Hayward 1985, 

Purser et al. 1987, Ahmed et al. 1993, El-Sarnmak 1997). As was deduced for the 

Altorreal study area (Section 5.3), areas of fans are inactive at any point in time. 

These areas are typically sites of carbonate development (Hayward 1985, Ahmed et 

al. 1993, El-Sammak 1997). 

Sporadic sediment influx, deposition in marginal marine environments and 

intermittent reef growth is described from a number of Miocene basins in southeastern 

Spain where a subtropical, semi-arid climate prevailed. Examples include the San 

Miguel de Salinas Basin (Rheinhold 1995), the Granada Basin (Braga et al. 1990), the 

Almanzora Corridor (Saint Martin et al. 1989) and the Lorca Basin (Wrobel and 

Michalzik 1999). Sediment is locally sourced from uplifted Internal and External 

Zone Massifs, and transported to the coastline via alluvial fans, fan delta and braid 

delta systems. As described in the Fortuna Basin (see Chapter 5), and the examples 

from the Red Sea, reefs developed on temporarily inactive portions of these 

siliciclastic sedimentary systems. 

A potential consequence of high evaporation rates m arid environments, 

particularly in (partially) land-locked basins such as the Fortuna Basin, is increased 
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salinity of marine water. Land-locked basins would be particularly susceptible to 

variations in water chemistry. This may lead to the development of evaporites. 

Evaporation rates in the Gulf of Suez range from 2400 to 4250 mm yr-1 (Assaf and 

Kessler 1976). Consequently, evaporites developed in marine structural depressions 

and with sabkha development onshore (Purser 1987). Evaporites are not present in the 

Altorreal section, although extensive evaporite deposition occurred within eastern 

portions of the Fortuna Basin in the late Miocene (Garces et al. 2001, Rouchy et al. 

2001). By the late Tortonian, the Fortuna Basin was semi-restricted. It is postulated 

that significant input of terrestrial runoff into marginal marine system would have an 

exaggerated effect on sea water chemistry, in particular water salinity and nutrient 

levels. The most distinctive indicator of 'difficult' environmental conditions in the 

studied sections at Altorreal is the presence of stromatolitic structures (discussed 

above). 

7.2.1.3 Summary 

The sites and duration of reef development at Calders and Altorreal were 

influenced to variable extents by the climatic regime, which in turn was an influence 

on the rate, magnitude and composition of sediment input. 

In subtropical, semi-arid settings, such as the Altorreal study area, terrestrially 

derived sediment is supplied locally to the coastline via ephemeral fluvial or wadi 

systems during infrequent storm events. Sediments have short transport pathways, and 

are typically coarse-grained. Reef systems develop in near-shore clear waters during 

quiet periods between storm events with little siliciclastic interruption. In comparison, 

nearshore reefs within temperate and humid settings where runoff and precipitation 

rates are high, such as the Calders study area, may be characterised by near­

continuous freshwater and siliciclastic input. Sediments may be finer grained because 

of longer transport pathways and chemical weathering. 

7.2.2 Tectonic setting and sediment supply 

"Tectonism affects sedimentation in a number of different ways and on many 

different scales ... movement along faults, growth of folds, block tilting, differential 

subsidence and uplift provide a critical and delicate control on the type, thickness and 

distribution of sedimentary facies" (Reading and Levell 1996). In addition to 

influencing the siliciclastic input to the marine realm, the tectonic regtme also 
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influences shelf morphology that in turn will influence the sites and geometry of 

shallow carbonate deposits. This is discussed in Section 7.2.4.2. Tectonism may lead 

to the development of physical barriers that can modify water circulation patterns. 

Changes in circulation patterns may modify seawater chemistry (i.e. nutrient supply, 

salinity) and the velocity and direction of local water flow. The importance of water 

chemistry on reef organisms is reviewed in Section 6.1.3. Since it is the aim of thesis 

to evaluate the effects of sediment input on carbonate development, the effects of 

tectonism on water circulation patterns are only discussed briefly in this section. 

Modem and ancient mixed carbonate-siliciclastic successions accumulated 

under a range of tectonic regimes (Table 7.2). Tectonic settings with common 

siliciclastic input include 1) ex tensional basins, some with a degree of transtension or 

transpression, 2) passive margins and 3) foldbelts. Volcanoclastic input associated 

with carbonate development is common in many tectonic settings; this is not covered 

here since it has been discussed in detail by Lokier (2000) and Wilson and Lokier 

(2002). The relationship between tectonic environment and effect on reef 

development is discussed in the following sections. 

7.2.2.1 Extensional settings 

Tectonic activity is an important allogenic control on sedimentation, and is 

most important for timescales > 106 years. Smaller-scale tectonism, such as movement 

along faults has a strong influence on sediment input in rift systems or compressive 

plate margins, some with a strong strike-slip component. The development of 

carbonate provinces in close proximity to siliciclastic sediments in strike-slip settings 

and graben zones is common within the Miocene of the western Mediterranean 

(including the Fortuna Basin-this study). Extensive Miocene to Recent reef systems of 

the Red Sea (including the Gulfs of Aqaba and Suez) also developed in extensional 

settings characterised by block faulting (Purser 1987, Purser et al. 1996). 
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The style of marginal marine siliciclastic sedimentation in the Miocene of the 

Mediterranean region is often dominated by punctuated inputs of poorly sorted 

lithoclastic sediments (Martin et al. 1989, Braga et al. 1990, Rheinhold 1995, Saint­

Martin and Cornee 1996, Purser et al. 1996). Individual episodes of siliciclastic input 

are often related to flash floods (see Section 7.2.1.2), although these sediment pulses 

can also be related to tectonic pulses (Lonergan and Schrieber 1993). Tectonism may 

adversely affect reef development through stimulating debris flows, which may lead 

to reef burial. Substrate instability due to protracted tectonism also inhibits reef 

development. An indicator of tectonism would be the presence of metre-scale 

allochthonous blocks within a sedimentary succession (Lonergan and Schreiber 

1993), although these features may also occur in extreme flash floods or from cliff 

collapse (Garcia-Mondejar and Fernandez-Mendiola 1993). In addition, tectonic uplift 

of basement provides a ready source of material that may be eroded and reef burial 

occurs at a later date. 

The Fortuna Basin developed within a large left-lateral shear zone extending 

from Alicante in the northwest to Almeria in the southeast (Sanz de Galdeano and 

Vera 1992, Montenat and Ott d'Estevou 1990, Montenat et al. 1987) (Chapter 4). 

The northern and southern margins were faulted and tectonically active throughout 

the Neogene (Montenat et al. 1987, Montenat and Ott d'Estevou 1990, Sanz de 

Galdeano and Vera 1992). The present southern margin of the Fortuna Basin is 

bounded by the Alhama de Murcia Fault, located just to the north of Murcia and 

relatively close to the site of reef development at Altorreal (Figure 4.6). Early in the 

development of the basin-fill, the overall tectonic regime was extensional. However, 

from the Tortonian onward, north-south to northwest-southeast compression of 

southeastern Betic region led to inversion of extensional structures associated with the 

Alhama de Murcia fault, and the creation of topographic highs (Garces et al. 2001). 

These topographic highs, composed of Betic Internal Zone lithologies, would have 

provided an adequate sediment source feeding fan delta systems on the basin margins 

(Santisteban and Taberner 1988, Garces et al. 2001). 

There is no direct evidence for fault-controlled sedimentation at Altorreal, 

such as growth fault structures or soft sediment deformation. However, short sediment 

transport pathways and rapid deposition of clasts from cohesive mass flows is 

indicated from the textural and compositional immaturity of beds (cf. Nemec and 
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Steel 1984, Mather 1993) (Section 5.2.1.1). Sediments are sourced from an uplifting 

Internal Zone basement block and were transported to the study area at Altorreal 

through infrequent but high magnitude flash flood events. Internal Zone massifs were 

largely eroded in the Neogene but are preserved locally as the Orihuela and Carroscoy 

Massifs to the northeast and south of Altorreal respectively (Figure 4.6). 

Carbonate production on a tectonically-active basin margin; Fortuna Basin, SE Spain 

Uplift • Subsiding basin • 

Faulted basin margin 

-Internal Zone massif-+----- Fortuna Basin--------. 

~;;_':;:-*J Proximal fan delta ?Y~ Medial fan delta l Prodelta marl c::::=::::. Reef lense 
"L': '"L "'"• ~=· :·~·=· .: ! 

\ \ Direction of movement on fault ~ Mass flow sediments 

Figure 7.2 Stylised illustration of fault-controlled sedimentation on the western margin of the 
Fortuna Basin during the Tortonian. Patch reef development occurred on the hanging wall during 
tectonically-quiescent periods. After Lonergan and Schreiber (1993) 

Fault-controlled sedimentation is observed on the western margin of the 

Fortuna Basin. Mesozoic Betic basement rocks within the Sierra Espufia are 

juxtaposed against Late Miocene fan delta sediments that are intercalated with 

coralgal and Porites reefs (Lonergan and Schreiber 1993) (Figure 7.2). Syn­

sedimentary extensional faulting along the basin margin occurred as a consequence of 

rapid uplift of basement rocks and coeval subsidence of the Fortuna Basin in the late 

Tortonian (Lonergan and Schreiber 1993). Clasts of fan-delta deposits, comprising 

Permo-Triassic red beds, dolomites and Mesozoic platform carbonates, are sourced 
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from the footwall. Movement along the fault triggered mass flow events, depositing 

steeply inclined conglomerate beds with little internal structure and large 

allochthonous blocks (Lonergan and Schreiber 1993). Reefs developed on the 

ex tensional fault blocks during times of tectonic quiescence, and were influenced little 

by siliciclastic input. Reef demise in this locality is related largely to resumed 

tectonism (i.e. movement along the basin-bounding fault) and rapid burial by mass 

flow deposits (Lonergan and Schreiber 1993). The sedimentary succession is 

comparable with that observed in the southern Fortuna Basin in the Altorreal area 

(Chapter 5), with inclined, poorly sorted lithoclastic beds often containing shelly 

debris. However, the presence ofboulders in excess of2.5 metres in the western basin 

margin suggests that there was either a higher magnitude tectonic influence at the 

Sierra Espufia locality and/or that the Altorreal succession was deposited further from 

an active fault. 

Evidence for syn-tectonic reef development in the western Mediterranean is 

evident in the Miocene of Malta. The Ghar Lapsi reef complex developed in 

association with the tectonically active Malta Graben (Pedley 1996). Block faulting in 

the region produced a stepped shelf margin with coral reef development largely 

restricted to the shelf break of slope on a synsedimentary fault scarp (Pedley 1996). 

Periodic physical disruption of reef development due to earthquakes is inferred from 

the preservation of metre-scale allochthonous blocks, comparable to those described 

in the western Fortuna Basin by Lonergan and Schreiber (1993). 

Assuming depositional conditions are favourable, phases of coral reef 

development are likely to occur during periods of tectonic quiescence. Coral reef 

development on the Kimmeridgian Castanheira fan delta in the Lusitanian Basin, 

Portugal, are correlated with phases of tectonic quiescence, yielding sedimentary 

successions very similar to those of the western Fortuna Basin (Leinfelder 1994, 

1997). Reef systems developed in association with syn-tectonic marginal marine fan 

deltas. Reefs were destroyed when there was a resurgence of tectonic activity, buried 

by significant thicknesses of amalgamated debris flow and collapse breccia deposits 

(Leinfelder 1987, 1994). 

In summary, the generation of topographic highs in settings dominated by 

block faulting affects reef development in two ways. Firstly, faulting may lead to reef 

destruction through seismic activity, triggering debris flows and leading to reef burial. 
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Secondly, the generation of local topographic highs provides sources of sediment that 

over time are eroded and transported to the coastline. 

7 .2.2.2 Foreland basins and associated passive margins 

The development of extensive carbonate provinces in foreland basin settings is 

common throughout geological time. Study of foreland carbonates has largely been 

focussed on syn-orogenic carbonate platforms that developed during the earliest 

stages of foreland subsidence and transgression such as the Nummulitique carbonates 

of the Alpine Foreland Basin (Sayer 1995). Carbonate ramps developed on the fore­

bulge during the underfilled stage of basin development when siliciclastic material 

shed from the advancing orogenic wedge was trapped in the proximal foredeep. 

Siliciclastic detritus was prevented from reaching the carbonate system and reducing 

productivity (Figure 7.3a). Carbonate development in these settings is influenced by 

the flexure of the plate (and thus the extent of the cratonic margin within the photic 

zone), migration of the fore-bulge through continued collision, relative sea-level 

changes and siliciclastic input (Dorobeck 1995, Sayer 1995). 

Carbonate development on the distal margin of a foreland system in the late 

underfilled stage of basin development is considered unusual due to high siliciclastic 

input derived from erosion of the passive margin and the encroaching orogenic 

wedge. In the late Middle Eocene (Bartonian), Calders was located on the southern 

passive margin of the Southeastern Pyrenean Foreland Basin (Chapter 2). The 

Calders succession is part of the Marine Sequence, the final open marine sediments 

deposited in this part of the foreland prior to continentalisation of the basin 

(Section 2.5.2). Significant siliciclastic input to the southern margin of the Pyrenean 

foreland in the vicinity of the Vie Basin has been attributed to the reactivation of 

Mesozoic fault systems in the Catalan Coastal Range during the Alpine Orogeny 

(Lopez-Blanco 1993, Verges et al. 1998) (Section 2.3.4). The Catalan Coastal Range 

was a topographically positive feature in the Tertiary, shedding siliciclastic sediment 

into the basin via major alluvial fan systems such as Montserrat and Sant Lloren9 del 

Munt (Monstad 2000). The Centelles Formation, within which the carbonates of the 

studied sections at Calders are preserved, is the basinward equivalent of these coastal 

fan systems (Figure 7.3b). 
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a) Sites of syn-orogenlc carbonate development In the underfilled stages of a foreland basin system 
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Figure 7.3 Carbonate development in association with siliciclastic sediment input in foreland basin settings. 
Carbonates typically develop during the under-filled stage (a) where most of the erosional detritus from the 
advancing orogenic wedge is trapped in the foreland. However, carbonates developed in the Vie Basin during 
the late under-filled stage, and were affected by siliciclastics derived from the advancing orogenic wedge and 
passive margin (b). Carbonates developed in association with proximal fan delta sediments in the Kasaba 
Basin, Turkey (c). 
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The relationship between fault movements in the Catalan Coastal Range and 

sedimentation is well documented in the Sant Lloren9 del Munt fan (Monstad 2000). 

However, there is no evidence to suggest sedimentation at Calders was fault­

controlled. Characteristics of fault-influenced sedimentary successions such as over­

steepened bedding, deposition from mass flows and soft-sediment deformation (cf. 

Lonergan and Schreiber 1993) are not evident at Calders. Additionally, although a 

wide variety of carbonate facies formed, there was little variation in the relative 

depths of deposition (see Chapter 3). Carbonate-siliciclastic cyclicity at Calders is 

attributed predominantly to intrinsic changes in the marine system and is discussed 

fully in Section 7.2.3. On the timescale represented by the Calders depositional 

succession, tectonism was important in providing an elevated hinterland and 

siliciclastic sediment source, although accommodation space was created through 

subsidence related to emplacement of the orogenic wedge to the north (Tabemer et al. 

1999). 

Carbonate development in the Catalan sector of the Pyrenean foreland also 

occurred in the northern Vie sub-Basin during the Middle Eocene (Taberner 1982; 

Taberner and Bosence 1985, 1995; Alvarez et al. 1994, Franques 1998). The northern 

sub-basin received the erosional detritus derived from the advancing Pyrenean thrust 

sheets and led to the deposition of the Sant Marti Xic Formation (Tabemer 1982, 

Tabemer et al. 1999) (Figure 7.3b). Carbonate bioherms and fringing reef systems 

developed on temporarily abandoned delta lobes (Taberner and Bosence 1985, 

Alvarez et al. 1994, Franques 1998). Sedimentation and consequent reef development 

was not fault controlled, although the deltaic sediments succeeding the La Trona reef 

complex described by Alvarez et al. (1995) and Franques-Faixa (1998) are highly 

deformed (pers. obs.) (Figure 7.4). 

Miocene carbonate reef systems of the Kasaba Basin, southwestern Turkey, 

developed on fan delta systems in close proximity to rapidly advancing thrust sheets 

(Hayward et al. 1996). The Kasaba Basin evolved into a foreland system in the 

Miocene through subsidence induced by the loading of the foreland by the southerly 

migrating Lycian Nappes (Hayward et al. 1996) (Figure 7.3c). The foreland 

progressively filled with a sha11owing upward succession of submarine fan to fan­

delta siliciclastics. Sedimentation in marginal marine areas was largely fault-
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controlled, and sediments had short transport pathways. Importantly, rapid subsidence 

associated with the regional emplacement of the Lycian Nappes and extensive 

migration of the basin depocentre resulted in high sedimentation rates across the delta 

fans (Hayward et al. 1996). The scattered development of reefs within the siliciclastic 

sequence indicates conditions for growth were only satisfied sporadically, possibly as 

the locus of sedimentation switched during times of tectonic quiescence. 

The Miocene reef systems of the Kasaba Basin, that developed in a foreland 

basin setting proximal to the orogenic wedge are in many ways similar to those of the 

Altorreal study area and the Miocene to Recent Red Sea reefs i.e. coarse grainsize, 

proximal location of reefs relative to the sediment source, sporadic reef development 

etc. However, the Red Sea reefs and the Altorreal succession were deposited in a very 

different tectonic setting. Subsidence and active progradation of fans in the Kasaba 

Basin, as a consequence of the proximal foreland location, was far more extensive 

(Hayward et al. 1996). The success of reefs in this location is thought to be related to 

the arid climate and the periodicity of siliciclastic sediment input (Section 7.2.1.2). 

7.2.2.3 Foldbelts 

Reefs associated with Miocene fold belts of the Mediterranean regton 

developed on submerged, thrust-generated sea floor bathymetric highs. Tortonian to 

Early Messinian examples are preserved in Sicily and Tuscany (Pedley 1988 and 

references within). Extensive reef development in Orania, Algeria, also occurred on 

submarine Tortonian-aged folds during a transgressive phase in the Messinian (Saint 

Martin 1996). Reefs closely follow pre-existing topography with small bioherms and 

laterally extensive linear fringing reefs, preserved in the Traras, Tessala and Beni 

Chougrane Mountains (Saint Martin 1996). Carbonate development on active fold 

belt systems is largely inliibited by tectonically induced vast gravity slides and the 

development of siliciclastic sediment prisms flanking emergent orogenic zones. 

Colonisation by carbonate producers was inhibited largely by high sedimentation rates 

(Pedley 1996). Reef development in this tectonic setting would be largely restricted to 

the highest submerged bathymetric points away from debris flows. 
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7.2.3 Autogenic influences 

Processes intrinsic to the depositional setting may be responsible for changes 

in sedimentation patterns (Tucker and Wright 1990, Reading and Levell 1996). These 

processes are autogenic and contrast with the allogenic processes described in 

Sections 7.2.1 and 7.2.2. Autogenic process may be an important influence on 

sedimentation occurring on timescales 103 to 105 years. In carbonate systems, a 

carbonate platform will prograde when carbonate production exceeds the rate at 

which accommodation space is being created, producing shallowing upward cycles 

over time (Tucker and Wright 1990). In a siliciclastic delta system, distributaries will 

avulse as steeper routes to the sea become available. Within a dynamic sedimentary 

environment, these autogenic changes are inevitable, although the timing may be 

governed by an unusual event such as a high magnitude flash flood or seismic shock 

(Reading and Levell 1996). 

Repetitive depositional sequences are observed in both the Calders 

(Figure 3.9) and Altorreal (Figure 5.22). Autogenic processes such as switching of 

siliciclastic depocentres were important control on patterns of sedimentation 

(Figure 7.5). The Calders succession is part of the late Bartonian Marine Sequence 

and represents the regressive part of the second Bartonian cycle (see Chapter 2). Six 

repetitive cycles of varying thickness and completeness are identified at Calders. A 

typical cycle, from bottom to top, is composed of: 1) cross-stratified siliciclastic­

dominated unit, often topped with a lenticular conglomeratic channel-fill, 2) a unit 

rich in larger benthic foraminifera with a variable clay to pebble-grade siliciclastic 

component and 3) in situ and reworked carbonate units deposited within a variety of 

reef environments. Slight shallowing upward trends are inferred for each cycle, but 

there are no indicators of significant bathymetric changes both within and between 

cycles (Section 3.4.6). However, each cycle becomes more carbonate rich vertically, 

indicating changes towards environmental conditions more favourable for carbonate­

producing organisms (i.e. water clarity, relative depth of the photic zone, substrate 

stability, nutrient levels etc). Each cycle represents the reduction/cessation of 

siliciclastic input and colonisation of an abandoned siliciclastic substrate, initially by 

larger benthic foraminifera and coralline algae, and culminating with the development 

of a coralgal reefs (see Section 3.4.6). The composition of siliciclastics within each 

cycle does not change (i.e. calcarenitic to litharenitic sands with a variable clay 
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Figure 7.5 Development of carbonate­
siliciclastic cycles through delta-lobe 
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This model predicts coeval development 
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component) indicating that the cessation of siliciclastic input was temporary and the 

siliciclastics within each cycle have the same provenance. The upper and lower 

contacts between cycles are conformable with no evidence of erosion and non­

deposition thus no catastrophic event was responsible for these cycles. 

The units rich in foraminifera are dominated by Nummulites bedai, indicating 

deposition of the Calders succession within Shallow Benthic Zone 18 (SBZ 18). The 

duration of SBZ 18 is approximately 1.4 Ma (Serra-Kiel et al. 1998). Assuming 

sedimentation continued throughout this period in the Calders area, each depositional 

cycle has a mean duration in the order of 105 yr i.e. within the timescale of 

autocyclicity. This is likely to be an exaggeration, as episodes of non-deposition and 

erosion, together with post-depositional compaction and dissolution, will result in 

reduced sedimentary thickness and missing cycles. In conclusion, abandonment of the 

siliciclastic substrate and the development of shallow water carbonates is attributed to 

autogenic processes. Santisteban and Tabemer (1988), Alvarez et al. (1994) and 

Franques-Faixa (1996), attribute the development of carbonate-siliciclastic cycles in 

the Vie Basin to channel avulsion episodes and abandonment of delta lobes 

(Figure 7.5). It was not possible to confirm a deltaic origin for siliciclastic sediments 

in the Calders study area, although strong basinward currents are inferred from the 

development of metre-scale cross-stratified units. 

Carbonate-siliciclastic cycles are defined within the succession at Altorreal in 

the Fortuna Basin. A typical cycle, from bottom to top, comprises: 1) cross-stratified, 

coarse-grained lithoclastic units with a clear progradational geometry, 2) a pebbly 

molluscan detrital packstone and 3) in situ carbonates, composed principally of corals 

and stromatolite. There are no significant bathymetric variations within each cycle, 

and, as at Calders, cycles are not inferred to shallow upward. However, each cycle 

indicates vertical (and lateral) changes toward conditions more favourable to 

photoautotrophs including increased water clarity, substrate stability and lower 

nutrient levels. Each cycle represents the cessation of siliciclastic input and 

colonisation of a temporarily inactive siliciclastic substrate, initially by molluscs and 

coralline algae, and culminating with the development of coral-microbial carbonate 

ramp-type system (see Chapter 5). 

In contrast to cycle boundaries at Calders, there is evidence of erosion and 

non-deposition both within and between cycles. Initially, stromatolitic carbonates 
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developed in up-slope/proximal areas synchronous with hardground development in 

downslope/distal areas (Section 5.2.3.1). A prolonged period of non-deposition is 

indicated by hardground development. Early cementation is encouraged by the high 

depositional porosity and the marginal marine locality (with an influx of freshwater 

probably as run-off and groundwater) (Section 5.3). The contact between cycles is 

often erosional, with depth of erosion up to 1.5 metres, and erosional cavities are 

filled with lithoclastics (Figure 5.22). Karstification of some of the carbonate bodies 

is inferred. The dearth of erosional reef detritus within lithoclastic units indicates that 

erosion of the carbonate bodies was not through shifting fan delta distributaries and 

siliciclastic input. Erosion of some carbonate bodies is thought to be related to local 

uplift and subaerial exposure rather than re-activation of the delta lobe as during the 

late Miocene the F ortuna Basin was dominated by a transpressional tectonic regime 

with the generation of uplifted fault block terranes (Garces et al. 2001). Eroded 

carbonate bodies were subsequently buried by siliciclastics, preventing immediate 

recolonisation. Carbonate development accompanied later episodes of delta lobe 

abandonment. 

In summary, autogenic switching of delta distributaries and abandonment of 

siliciclastic substrates provides temporary sites for carbonate development, assuming 

other environmental conditions are acceptable for carbonate-producing 

photoautotrophs. Carbonate production ceases abruptly when the siliciclastic supply 

resumes. 

7.2.4 Palaeogeographic setting and shelf morphology 

Within siliciclastic-dominated environments, carbonate development is a 

transient condition and the short (geological) time spans over which carbonate 

accumulates tends to be strongly controlled by processes pertaining to the 

depositional environment such as the basin setting, the presence of pre-existing 

bathymetric highs and the hydrodynamic regime. 

7.2.4.1 Basin setting and energy regime 

The Calders and the Altorreal reef systems developed in comparable 

palaeogeographic situations in that deposition occurred in semi-isolated (but fully 

marine) waters (Chapters 2 and 4). Carbonate provinces may develop in 
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environments with a wide range of contemporaneous energy regimes. The incident 

energy on a carbonate province can affect the dominant organisms, formation of 

sedimentary structures, sediment grainsize and sediment sorting. The energy regime 

and the effects on biota development in each of the study areas are discussed below. 

7 .2.4.1.1 Calders energy regime 

In the late Middle Eocene, the Vie Basin was situated in an oceanic inlet, open 

to the west with a narrow strait leading to the Atlantic Ocean. The basin was subject 

to moderate longshore currents (Tabemer pers. comm. 2002) although it is unlikely 

that there was sufficient fetch across the Vie Basin to generate major storm waves. 

Sediments in the Calders area were deposited in a range of energy regimes 

(Chapter 3). The highest-energy deposits are grainstones and rudstones that formed 

as foralgal shoals and laterally restricted coralgal biostromes respectively. Low­

energy deposits are wackestones and packstones that formed in a range of 

environments including protected inner shelf, fore-shoal and back-shoal (Chapter 3). 

It is inferred from the absence of laterally extensive erosion surfaces and coarse, 

angular coral rubble that grainstone and rudstone carbonate facies are a result of in 

situ winnowing in shallow shoal type environments, not high-energy storm re­

working (Section 3.3.1). The dominant energy regime during times of carbonate 

production was moderate to lower energy, with limited modification of carbonate 

facies distribution and architecture by waves. Biota present include a mixture of 

sessile (i.e. corals, articulated coralline algae, encrusting algae and forarninifera) and 

free-living forms (large benthic foraminifera, rhodoliths) indicating a stable substrate 

but energies high enough to turn rhodoliths (see Chapter 3). Fine-grained micrite and 

porcellaneous forarninifera-dominated facies formed within protected, low-energy 

inner shelf environments (represented by the Sant Amanc section, Section 3.5). The 

environment of deposition is inferred to be lagoonal or back-reef, and the 

development of small ( < l m) patch reefs are indicative of stenohaline conditions. 

While there is no indication of storm reworking at this locality, modification of small 

patch reefs by currents is inferred from the elongate nature of carbonate bodies 

(Section 3.5.1). 

Siliciclastic and mixed carbonate-siliciclastic facies formed in areas of 

unstable substrate (Sections 3.3.2, 3.3.3 and 3.3.4). The arrangement of larger benthic 
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foraminifera tests within the mixed carbonate-siliciclastic facies is indicative of 

accumulation on unstable substrates under variable energy conditions (Section 3.4.2). 

Only organisms with a degree of mobility and a tolerance to higher sedimentation 

rates (i.e. Nummulites, rhodoliths) could survive in this setting (Section 6.4). 

Siliciclastic-dominated facies formed in a high-energy regime, with highly 

unstable substrates and a low fauna} diversity (Section 3.4.1). Siliciclastic facies are 

arranged as metre-scale clinoforms (Figures 3.38a and 3.38b ), pro gradation of which 

would have required the current-mobilisation of grains. Additionally, swaley cross­

statification is evident (Figure 3.39a) indicative of storm reworking (Leckie and 

Walker 1982). High-energy conditions resulted in the development and maintenance 

of a mobile substrate, inhibiting the establishment of an attached benthic community 

(Section 3.4.1). Carbonate producing organisms associated with these substrates 

include echinoids, molluscs, larger benthic foraminifera and rare rhodoliths. Where 

sea grass shoals are inferred to have developed, a secondary epiphytic community 

dominated by Gypsina developed (Section 3.3.3.1). 

In summary, although Calders was not affected by high-magnitude storm 

events, moderate to high-energy conditions accompanying siliciclastic input yielded 

unstable substrates inhibiting colonisation by sessile benthic organisms. 

7.2.4.1.2 Altorreal energy regime 

In the Miocene, the Fortuna Basin was situated within the Betic Strait, a 

corridor connecting the Atlantic and Mediterranean, which remained open until the 

latest Tortonian (Sanz de Galdeano and Vera 1992, Garces et al. 2001). As a 

consequence of regional uplift and uplift of faulted basement blocks, the Betic Strait 

was a highly sinuous route by the late Tortonian (Figure 4.4). It is envisaged that 

there was insufficient fetch to generate large storm waves thus longshore and local 

currents would have been relatively important. 

Silty marls of the Fortuna Basin were deposited under a low energy regime 

(Section 5.2.2.1). The Altorreal system was characterised by the intermittent, high­

energy input of siliciclastics within the shallow subtidal zone, with carbonates 

developing during quiescent periods (Section 5.3). Siliciclastic facies, of poorly 

sorted lithoclastic units, demonstrate progradational morphologies (Figure 5.2). 
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Basinward progradation of coarse lithoclastic sediments occurred through a 

combination of cohesive and surging mass flow events (Section 5.2.1.1). Substrate 

instability largely inhibited colonisation by sessile benthic organisms although local 

colonisation occurred when pauses between mass flow events were long enough to 

allow the settling of coral larvae (Figure 5.7a). The dominant fauna within this 

unstable environment were fast-growing large encrusting oysters (Figure 5.7b), often 

preserved fragmented in the matrix. More significant colonisation only occurred when 

siliciclastic input ceased and a stable hardground developed (Section 5.3.1.3.1). 

Individual reef bodies at Altorreal were not affected by storms, and carbonate 

developed under low-energy conditions. There are no major erosional surfaces within 

carbonate bodies, and corals are preserved largely in situ. 

In summary unstable substrates, as a consequence of high-energy siliciclastic 

input, largely inhibited colonisation by sessile benthic organisms. Colonisation by 

corals in shallow water accompanied hardground formation in water depths of a few 

tens of metres. 

7 .2.4.1.3 Storm-influenced carbonates 

Modem biogenic warm-water carbonates are often affected by short-lived, 

high magnitude environmental perturbations, such as storms and hurricanes (Geister 

1983, Blanchon et al. 1997). The suspended load of erosional detritus and 

siliciclastics within hurricane waves may be transported many kilometres across a 

shelf (Blanchon et al. 1997). It is postulated that material will remain in suspension a 

considerable time after the storm event, effectively reducing light penetration and 

limiting the ability of corals that have survived to photosynthesize. Additionally, due 

to the energetic nature of hurricane waves, material in suspension is relatively coarse­

grained and may cause damage to coral tissues through abrasion (Section 6.1.1). 

However, the low frequency of very high magnitude storm events allows time for 

coral recovery. The impact of these perturbations may be limited (or exaggerated) 

depending upon the basin setting i.e. whether the reef system is situated within an 

open setting or a protected setting. 

It has been established that the carbonates at Calders and Altorreal were not 

affected by major storm events, possibly due to their isolation from large tracts of 

open ocean. There are abundant examples of reef systems, in both the Recent and 
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geological past, which have undergone modification by high-magnitude storm­

generated waves. 

Triassic reefs of Adnet, Austria, developed under the influence of high­

magnitude storm events (Bernecker et al. 1999). A storm influence is evident through 

rapid vertical and lateral facies changes and deep erosion surfaces. A major impact of 

storms was the fragmentation of in situ coral colonies and the introduction of large 

amounts of siliciclastic sediment into the reef system, modifying coral abundance and 

distribution (Bernecker et al. 1999). Bernecker et al. (1999) also noticed a tendency 

towards the development of low-relief facies bodies. 

The Ordovician to Early Silurian reefs of the Chicotte Formation, Anticosti 

Island, developed on a storm influenced carbonate platform and were subjected to 

non-monsoonal tropical cyclones (Wilde 1991, Brunton and Copper 1994, Long 

1996). The reef was situated approximately 1 oo to 20°S in the subtropical belt (Long 

1996). The carbonate platform was exposed with strong through currents and intense 

storm and wave action, leading to an overall high-energy shelf regime (Sami and 

Desrochers 1992, Brunton and Copper 1994). Small patch reefs and bioherms 

composed of tabulate corals, stromatoporoids and bryozoa were situated within vast 

crinoid meadows (Brunton and Copper 1994). Terrigenous influx was not important at 

Anticosti Island, even during storm events. However, reef demise was a result of 

burial by storm-reworked crinoid ossicles preserved as tempestites and megaripples 

(Brunton and Copper 1994). Termination, albeit temporary, of carbonate production 

can therefore occur through rapid burial by locally generated storm detritus. The 

effects of burial by skeletal detritus would be comparable to the effects of burial by 

siliciclastic sediments. 

7.2.4.2 Shelf morphology and siliciclastic bypassing mechanisms 

The presence of pre-existing bathymetric highs, and the availability of stable 

substrates, are important controls on the presence of carbonates in shallow marine 

settings where there is a siliciclastic input (Leinfelder 1997, Ferro et al. 1999, 

Cunningham et al. 2003). Photoautotrophic biogenic carbonate development can be 

initiated where the seafloor lies within the photic zone. In cases of high turbidity due 

to siliciclastic input or current/wave re-suspension, the seafloor may barely lie within 

the photic zone, severely limiting the growth, development and reproduction of 
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photoautotrophs. In addition, colonisation by immobile calcareous benthos, e.g. 

colonial corals, in areas undergoing siliciclastic sedimentation is difficult because of 

an unstable substrate and inability of organisms to settle in their larval stage 

(Section 6.1). Protection from siliciclastic influx may be offered by pre-existing shelf 

structures, of tectonic or sedimentary origin, that provide colonisation sites. Elevated 

sites such as uplifted basement relief (horst and graben structures, tilted fault blocks 

etc) and former karst relief are ideal sites as coarser grains, transported as bedload, 

will be trapped in bathymetric depressions (Leinfelder 1997). Bathymetric relief 

related to sedimentary structures and abandoned sedimentary systems may provide 

suitable sites for carbonate development (Cunningham et al. 2003). The cessation of 

carbonate development on the Florida Platform during the Miocene is attributed to 

siliciclastic input. However, prograding delta lobes provided a substratum for later 

rejuvenation of the carbonate platform in the Quaternary (Cunningham et al. 2003). A 

similar scenario is described from the Belize margin, where shelf-edge siliciclastic 

delta and slope fan wedges provided a substrate for modem barrier reef development 

(Ferro et al. 1999). 

Examples of carbonate systems strongly influenced by shelf tectonism are 

numerous (Section 7.2.2). Sites of carbonate development in the Gulf of Suez in the 

Red Sea region have been controlled by the availability of tectonic highs since the 

Miocene (Purser 1987). Horst and graben structures have evolved in the gulf as a 

consequence of rifting. Carbonate development is largely restricted to horsts and 

coarse-grained siliciclastics are trapped in the intervening grabens (Purser al. 1987). 

The success of this trapping mechanism is attributed to the coarse-grained nature of 

sediments, which are transported as bedload (Purser et al. 1987). Siliciclastic 

grainsize in the Red Sea region is a function of the semi-arid climate and short­

sediment transport pathways (see Section 7.2.1.2). 

Near-shore siliciclastic trapping mechanisms may also be environmental i.e. 

estuaries, estuarine deltas, beach barrier shelter swamps and lagoons (Leinfelder 

1997). In the Bahia Tapon Bay (Vieques Island, Puerto Rico), trapping of terrigenous 

sediment within mangroves has allowed carbonate development in adjacent 

embayments (D' Aluisio-Guerrieri and Davis 1988). Additionally, reef development 

within alluvial channels in the Red Sea is facilitated by trapping of siliciclastics 

behind wave-built berms (Hayward 1985). 
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Carbonate development at Calders and Altorreal is not thought to have been 

restricted to tectonic bathymetric highs and there is no evidence to suggest a 

nearshore environmental trapping mechanism (see Chapters 3 and 5). Development 

peaked during temporary periods of low siliciclastic input related to autogenic 

influences and the redirection of si liciclastics (Section 7 .2.3). 

The locus of carbonate production varies little over the period of the Marine 

Sequence represented by the sedimentary succession at Calders (Section 3.4; Figures 

3.43, 3.44 and 3.46). Carbonate production was halted through the variable effects of 

siliciclastic input, although when siliciclastic input ceased/decreased sufficiently to 

allow recolonisation by photoautotrophs, carbonate development resumed in a similar 

position on the shelf, producing vertically-repetitive facies cycles (Figure 3.9). It is 

suggested that this is not purely a coincidence, and that carbonate accumulations 

developed as minor topographic highs, possibly demonstrating only a few centimetres 

relief (Chapter 3). These minor depositional highs may have been preserved within 

overlying siliciclastic facies, providing locally elevated sites for future carbonate 

development. Additionally, differential compaction of siliciclastics and carbonate 

sediments can produce bathymetric variations. Mechanical compaction will begin as 

soon as soon as there is overlying sediment (Tucker and Wright 1990). The effects of 

compaction will be most marked in fine-grained siliciclastic and carbonate sediments 

compared to grainy sediments (Figure 7.6). It is postulated early cementation within 

skeletal and grainy facies such as the coral mixstone (Section 3.3.1.1) and foralgal 

grainstone (Section 3.3.1.7) would make them less susceptible to compaction than 

adjacent siliciclastic and mud-rich carbonate facies. With progressive burial, 

bathymetric highs will be accentuated above carbonate deposits (Figure 7.6). This 

process is thought to have been less important at Altorreal due to the coarse-grained 

nature of siliciclastics and the development of carbonates within bathymetric lows as 

laterally restricted carbonate ramp-type deposits (Section 5.3.2). 

Reef initiation in an area of active siliciclastic input off the coast of Bahia, 

Brazil, was facilitated by the presence of antecedent reefal bathymetric highs (Leao 

and Ginsburg 1997). Coral colonisation of the inner shelf of the Great Barrier Reef 

has been restricted through the presence of a post-glacial terrigenous muddy wedge 

(Belperio 1983, Larcombe and Woolfe 1999). However, exposure of late Pleistocene 

to early Holocene cobbles and conglomerates has provided stable substrates in inner-
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shelf areas where water depth< 20 m (Woolfe and Larcombe 1998, Larcombe et al. 

2002). Reefs are absent in the inner shelf at depth greater than 20-40 m as a 

consequence ofhigh turbidity (Woolfe and Larcombe 1999). 

a) Cllltlonale development on slllelclastlc substrate. Early cementation. 

b) Depa51tlon of slllclclastlc5. Posl-doposiUonal compacllon. Preferenlla 
compaetlon of muddy siDclclastle sadlments 

c) Development of minor balhymetrlc relief v4111 continued secllmentaUon 
and preferential compact Ion of un-c:ementod mudtly slllclclastlcs. 
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Figure 7.6 Stylised 
development of minor 
bathymetric relief as a 
consequence of the 
differential compaction 
of cemented carbonates 
and muddy, uncemented 
siliciclastics. The bathy­
metry generated may 
only be a few 
centimetres above the sea 
floor, but this can raise 
the substrate into the 
photic zone in turbid 
waters. 

During sea level lowstand, siliciclastics may completely bypass the inner 

shelf. The Miocene Ziglag and Pattish Formations, deposited within the eastern 

Mediterranean region, represent extensive fringing reef development in association 

with coarse-grained siliciclastics (Buchbinder 1996). The basin margin was 

characterised by a local continental drainage system feeding coarse siliciclastic 

material to the coast mainly as gravity flows. Siliciclastics bypassed the inner shelf, as 

gravity flows were channelled into submerged canyons depositing debris sheets that 

evolved into submarine fans (Buchbinder 1996). Conditions in the inner shelf were 

therefore ideal for reef development, evident through the development of laterally 

extensive fringing reef systems (Buchbinder 1996). 
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7 .2.4.3 Hydrodynamic trapping and diverting mechanisms 

Sites of carbonate development are often away from sites of significant 

siliciclastic input such as temporarily abandoned delta lobes (Section 7.2.3). Suitable 

substrates can develop through the action of local and regional currents that 

manipulate suspended sediment transport pathways. This may be one of the most 

important controls on reef development in siliciclastic settings over short time 

periods. Wind-generated longshore currents that develop offshore may trap particulate 

material forming a turbid coastal boundary layer (Leinfelder 1997, Woolfe et al. 

2000). Trapping of sediment in these boundary layers limits the shelfward migration 

of turbid waters by deflecting turbid water plumes to an orientation virtually parallel 

to the coastline. 

Coral and Halimeda patch reef systems have developed in delta front 

environments in close association with siliciclastic sediments of the Mahakam Delta, 

Borneo since the Miocene, despite a massive sediment input to the coast from the 

Mahakarn River of 8 x 106 m3 year-1 (Allen et al. 1976, Wilson and Lokier 2002). 

Recent carbonate-producing areas are concentrated around the northern parts of the 

delta. This distribution is because the southern lobe is currently more active than the 

northern lobe. In addition, the southward flowing Indonesian Throughflow Current 

results in relatively less turbid waters to the north (Roberts and Sydow 1996, Wilson 

and Lokier 2002). 

The presence of longshore current systems and restriction of suspended 

material to a brackish coastal boundary layer, has allowed the development of a large 

offshore carbonate province in the Caribbean, off the coast of Nicaragua 

(Roberts 1987, Murray et al. 1988, Leinfelder 1997). The humid setting with high 

precipitation rates, in conjunction with significant hinterland relief and high 

continental runoff, has resulted in constant high siliciclastic input to the coastline. 

Freshwater discharge is approximately 1.45 x 1011 m3 yr-1
, supplying an estimated 

sediment input to the coast of 24 to 32 x 106 mt yr- 1 (Murray et al. 1988). The 

brackish, turbid coastal boundary layer is very wide, ranging from 20 to 30 km 

limiting extensive coral reef development to the shelf edge where waters are clear 

(Murray et al. 1988). 

High-energy inner-shelf perturbations can also favourably manipulate 

terrigenous sediment pathways. The Ordovician to Silurian carbonate ramp system of 
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Anticosti Island, Canada, developed in a foreland basin setting on the Laurentian 

margin, and was subjected to severe tropical cyclones during a marked warm season 

(Wilde 1991, Long 1996). There was a moderate siliciclastic input into the carbonate 

ramp via delta and estuarine sources. Under fair-weather conditions, fine-grained 

detritus may have been confined to the inner parts of the shelf by coastal boundary 

currents. (Long 1996). However, siliciclastics bypassed the inner shelf and were 

redistributed by hurricane-driven storms across the ramp producing clear-water 

conditions along the inner shelf (Long 1996). 

7.2.4.4 Turbidity and sedimentation 

Despite the myriad case studies that conclude that carbonate development is 

normally away from sites of direct siliciclastic input e.g. on the inactive portions of a 

delta system or a bathymetric high (Sections 7.2.4.2 and 7.2.4.3), "net sediment 

supply into coastal environments cannot be directly correlated with the regional 

presence or absence of coral carbonate provinces" (Woolfe and Larcombe 1998). 

Sediment supply to the inner shelf may vary temporally and spatially, often by several 

orders of magnitude. The sites and longevity of coral development are affected by 

autogenic factors such as delta lobe switching (Section 7.2.3), but also shorter-term 

environmental perturbations, in particular turbidity, related to the local and regional 

hydrodynamic regime. Turbidity may be generated through the re-suspension of fines 

by wave action and/or unidirectional currents (Larcombe and Woolfe 1999). This 

requires a source of fines for re-suspension. 

The main phases of carbonate development at Calders and Altorreal coincided 

with the virtual cessation of sandy or coarse-grained siliciclastic input (see Chapters 

3 and 5). This is related to phases of abandonment of the siliciclastic substrate 

(Sections 3.4, 5.3 and 7.2.3). However, coral-dominated carbonate facies at Calders 

may contain up to 38 % non-carbonate material by weight (see Chapter 6). The 

grainsize of this material ranges from clay to coarse silt, probably input gradually as 

fallout from suspended load (Section 3.4). The amount of material in suspension at 

Calders during times of coral development cannot be quantified directly as turbidity is 

a physical attribute of a system that exists at a point in time and does not necessarily 

leave a physical deposit. In addition, fine-grained sediment may be continually re­

suspended and re-deposited, with no net sediment input or transport (cf. Roy and 
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Smith 1971, Woolfe and Larcombe 2000). The amount of non-carbonate material in 

the matrix of reef facies provides a lower limit for siliciclastic input (Chapter 6). 

Fine-grained siliciclastics within the matrix of carbonate facies are likely derived 

from the re-suspension of material from siliciclastic facies in the vicinity. From the 

laterally extensive nature of carbonates at Calders (> 2 km parallel to the 

palaeoshoreline ), it is inferred that suspended material was transported several 

kilometres from adjacent siliciclastic-rich areas (Chapter 3). There may also have 

been a degree of in situ reworking of siliciclastics by wave action. If turbidity is to be 

inferred for periods of reef growth at Calders, the duration of turbid water events and 

the sedimentary impacts were at sub-lethal levels (cf. Larcombe et al. 2000). In 

addition, the morphological effects of turbidity on corals, e.g. the development of 

thin, laterally extensive platy morphotypes (see Chapter 6) is not apparent at Calders. 

The transport of suspended material is therefore thought to have been periodic, 

possibly related to seasonal climatic variations (Section 7.2.1.1). 

Re-suspension of siliciclastics would not have been an important influence on 

carbonate development in the Altorreal area. Siliciclastic sediments range from sand 

to cobble grade with negligible clays and silts (Section 5.2.1), and would have been 

too coarse to be re-suspended under normal fair weather conditions (Hayward 1985, 

Ahrned et al. 1993, El Sarnmak et al. 1997). This is confirmed from the absence of 

siliciclastics within carbonate units (Section 5.2.3). However, re-working of coarse 

material into branching coral thickets is inferred along the margins of the reef in 

shallow water areas (Section 5.2.3.3). This is not thought to have been detrimental to 

corals, but coarse siliciclastics probably supported colonies in high-energy conditions 

(Section 5.2.3.3). 

The re-suspension and transport of fine-grained material can lead to reefs 

being affected by siliciclastic input some distance from the sediment source. The local 

and regional hydrodynamic regime plays an important role on the distribution of 

sediments and turbidity on the inner shelf of the Great Barrier Reef (Belperio et al. 

1983, Belperio 1988). The inner shelf is strongly influenced by episodic wave­

induced re-suspension of fine material (Larcombe and Woolfe 1999). Discrete 

turbidity events are 60 to 100 hours in duration (Larcombe et al. 2002). Particulate 

sediments in Halifax Bay, a site of turbid zone reef growth in the central Great Barrier 

Reef, are derived from the Burdekin River Delta situated 200 km to the south (Woolfe 

351 



Carbonate development in silicic/as tic settings 

and Larcombe 1998, Larcombe et al. 2001). The Burdekin River supplies 2.7 to 8.5 

Mt of terrigenous sediment to the inner shelf annually (Moss et al. 1993, Neil and Yu, 

1995). Particu1ate sediments are transported northward (parallel to the shoreline) by 

the SE trade winds and tidal currents. During these high turbidity episodes, 

insufficient sediment is deposited on the corals to cause smothering as sediment is 

continually re-suspended and transported alongshore by wave and wind-driven 

currents (Larcombe and Woolfe 1999). 

Turbidity around fringing reefs off the coast of Phuket, Thailand, is 

attributable to the re-suspension of mud-grade material through tidal currents and 

wave action (Tudhope and Scoffin 1994). Transport and re-suspension has resulted in 

a gradient in water clarity from inshore to offshore areas (Tudhope and Scoffin 1994). 

Suspended siliciclastic sediments affect the Albrolhos Reefs, off the coast of Bahia, 

Brazil, although the reefs are situated >200 km from the siliciclastic source (Leao and 

Ginsburg 1997). Under normal fair weather conditions, transport of coarse 

siliciclastics is limited to the inner shelf and muds flocculate and tend to be deposited 

in near-shore areas (Leao and Ginsburg 1997). Strong longshore currents affect the 

coast during winter storms and reefs are subjected to high turbidity (Leao and 

Ginsburg 1997). 

7.2.4.5 Size and morphology of reefs in siliciclastic settings 

The morphology of carbonate units is dependent upon a variety of factors 

including the type of carbonate producers, the presence/absence of antecedent 

topography, depth range of carbonate producing biota, relative sea-level changes and 

the period of carbonate development (Wilson and Lokier 2002). Carbonates in mixed 

carbonate-siliciclastic sedimentary successions demonstrate a variety of morphologies 

and are extensive laterally from a few metres to many tens of kilometres. 

The carbonate units at Calders and Altorreal reflect the depositional 

morphology of the siliciclastic substrate. Laterally extensive (> 2 km) carbonates and 

low-angle clinoforms reflect the wide, low-angle morphology of the siliciclastic shelf 

at Calders (Section 3.4). Coral development was localised with patchy in situ 

framework development (Chapter 3). Most carbonate facies are detrital, consisting of 

coral fragments floating within a mixed carbonate-siliciclastic matrix, and form low­

angle clinoforms and tabular bodies with no evidence of topographic relief (Section 
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3.3.1). In comparison, the relatively narrow, steep shelf morphology at Altorreal has 

produced laterally restricted (< 100 m down-dip) sigmoidal carbonate units (Section 

5.2.3, Figures 5.14 and 5.20). Coral development was dense forming a framework 

with steep slopes (Section 5.2.3). 

Carbonates within semi-arid fan delta systems develop as large fringing reefs 

at the shelf slope break forming clinoform-shaped deposits, smaller patch reefs and 

accumulations within abandoned fan-delta channels (Santisteban and Tabemer 1988, 

Braga et al. 1990, 1995, Mankiewicz 1995). During the late Miocene, fringing reef 

systems several kilometres in length developed on the break of slope of large fan­

delta systems in the Fortuna Basin (Santisteban and Tabemer 1988, Poisson and 

Lukowski 1990, Mankiewicz 1995), the Lorca Basin (Wrobel and Michelzik 1999) 

and the Granada Basin (Braga et al. 1990, Braga and Martin 1996). Within the Red 

Sea region, Miocene to Recent reefs associated with fan delta siliciclastics range from 

small reefs (100 to 350 m across) that developed on structural highs and within 

abandoned channels, and as kilometre-scale fringing reefs seaward of alluvial fans 

(Hayward 1985, Purser et al. 1987). Siliciclastics have limited influence on the type 

and morphology of biota that develop in semi-arid settings because sediment input is 

intermittent and does not typically accompany carbonate development (Section 

7 .2.1.2). Reef systems that develop in these settings tend to be high relief with vertical 

walls and overhangs. 

In tropical, humid environments carbonates may experience near-continuous 

siliciclastic input (Section 7.2.1.1) that exerts control on carbonate development 

through influencing the biota present, biota distribution and deposit morphology 

(Wilson and Lokier 2002). Distinct differences in reef size, morphology and 

environments between turbid water and non-turbid water reefs are well demonstrated 

on the Panwa Peninsula, Thailand. Reefs in muddy environments develop wide (>300 

m) inter-tidal reef flats (where coral cover is highly variable), a narrow linear reef 

front of large living coral colonies and a mud-dominated fore-reef (Tudhope and 

Scoffm 1994). In clearer water areas, which coincidentally are more hydraulically 

exposed, reefs develop as more isolated clumps of massive corals and branching coral 

thickets situated amongst sands and gravels (Tudhope and Scoffin 1994). The clear­

water reefs are lacking inter-tidal reef flat areas, and the reef front is irregular 

(Tudhope and Scof:fin 1994). Carbonates that developed in turbid waters of the 
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Mahakam Delta, Borneo, are up to 4 km across with very low relief with no evidence 

of framework development (Wilson and Lokier 2002, Wilson (in press)). 

In summary, it is inferred that the affect of siliciclastic input on carbonate 

morphology is quite different in semi-arid and more humid settings experiencing 

siliciclastic input. The siliciclastic morphology and the presence of bathymetric highs 

is a fundamental control on sites and the extent of carbonate development, and basic 

carbonate morphology. In low-energy areas of constant, fine-grained siliciclastic 

input, carbonates tend to be low relief with limited in situ framework development. In 

semi-arid areas, carbonate development is not continuously affected by siliciclastic 

input and deposits tend to demonstrate higher topographic relief and evidence for 

framework development. 

7.3 Sedimentary and biological components of reefs in siliciclastic settings 

Organism biology is a major control on carbonate production. The biological 

components of a reef system in turn reflect water temperature, chemistry, pH and 

salinity, and to a certain extent physical parameters such as water depth, energy level 

and the nature of the substrate (James and Kendall 1992). Reef systems that develop 

in siliciclastic-influenced settings often show differences in the biota, in terms of 

diversity and morphology, when compared to communities of clear water reefs. 

Through acid digestion analysis of carbonate units, it has been shown that 

there was a significant quantity of clay to silt-grade siliciclastic material in the matrix 

(Chapter 6). Slightly enhanced nutrient levels as a consequence of this siliciclastic 

input are inferred from the flourishing coralline algae, the high incidence of 

bioerosion of the in situ reef framework, and abundant detrital muddy matrix (Hallock 

1988). 

Continentalisation of the Vie Basin (and the southeastern Pyrenean foreland) 

occurred in the late Priabonian (Puigdefabregas and Souquet 1986). Significant 

evaporite development commenced in the Vie Basin during that time (the Cardona 

Formation) (Taberner 1982, Hendry at al. 1999, Taberner et al. 1999, Tabemer et al. 

2000). The abundance and diversity of stenohaline organisms throughout the 

succession demonstrate that salinity was never a control on reef development or 

demise at Calders (Section 3.2). Although there was not a connection with the 
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Mediterranean through this portion of the foreland basin in Bartonian time, the basin 

was still open to the Atlantic through a western connection (pers. comm. Tabemer 

2002). 

As would be expected, different biotic assemblages are present in shallow­

water siliciclastic-dominated environments compared with carbonate-dominated 

environments (Section 3.3). An intermediate community is present within transitional 

environments i.e. where there is a significant siliciclastic component within a 

carbonate lithology and vice versa (Section 3.3.2). The diversity of organisms present 

within reef and reef-associated environments at Calders are due in part to the diversity 

of habitats (Section 3.2, Table 3.2). Herrnatypic corals, coralline algae and large 

encrusting foraminifera dominated shallow carbonate environments (Section 3.3.1). 

Siliciclastic environments had a relatively impoverished fauna, and were dominated 

by infaunal echinoids, Cerithium gastropods, rhodoliths and large benthic 

foraminifera (Sections 3.3.4 and 3.3.4). Transitional environments at Calders are 

represented by current-reworked tabular accumulations of larger benthic foraminifera. 

Accumulations are largely monospecific, composed of a single species of nummulite 

(Nummulites bedai) with subordinate Discocyclina, Operculina and Amphistegina. A 

summary of main biota in the studied sediments at Calders is presented on Table 7.3. 

A low diversity fauna is present within both siliciclastic and carbonate 

deposits at Altorreal in comparison with those at Calders (Table 7.3). Towards the 

end of the Tortonian, the Fortuna Basin was becoming gradually isolated from the 

Mediterranean as the Betic Strait closed (Section 4.3). However, there is no evidence 

within the studied sediments to suggest enhanced salinities (Section 5.2). 

Different biotic assemblages are present in shallow water siliciclastic­

dominated environments compared with carbonate-dominated environments (Table 

5.1). Robust oysters are the dominant organism within siliciclastic-dominated facies 

(Section 5.2.1) as a consequence of their ability to quickly colonise available 

substrates. A more diverse community developed with the cessation of siliciclastic 

input, comprising oysters, pectens, gastropods, coralline algae, serpulids and benthic 

foraminifera (miliolids and Amphistegina). In up-slope areas, laminar stromatolite 

development is associated with a freshwater input and possibly enhanced nutrients 

(Section 5.2.2.2 and 5.3.1.2). In situ corals with gastropods, bivalves, coralline algae 

and benthic foraminifera dominated carbonate environments. Morphological changes 
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Dominant Biota 

Facies Calders and Sant Altorreal, SE Spain 
Amanc, NE Spain Late Miocene 

Late Middle Eocene (Tortonian-Messinian) 
(Bartonian) 

Hermatypic corals, encrusting, 
branching and articulated 
coralline algae, rhodoliths, 
bivalves, brachiopods, echinoids 
and bryozoa. High occurrence 

Corals (low-diversity fauna 
of encrustation (mainly by 

dominated by Porites) (Section 
coralline algae and 

Carbonate-dominated foraminifera) (Section 3.3.1). 
5.2.3). 

In situ reef environments Often demonstrate a very 
Microbialte as larninar 'mats' 

with associated detrital diverse non-symbiont bearing 
and concentric crusts on 

facies. Siliciclastics may forarniniferal assemblage 
branching corals (Section 

be present in the matrix in comprising miliolids, Gypsina, 
5.2.3.3) 

variable quantities Calcarina, Haddonia, 
Lithoclasts locally present 

Fabiania,and Gyroidinella 
between coral branches 

(Section 3.3.1) 
(Section 5.2.3.3). 

Siliciclastics are locally 
important, and are dominated by 
detrital clays and silts (Section 
6.3) 

Transitional facies 
Forarniniferal pack-grainstones Assorted skeletal fragments 

Increasing or decreasing dominated by mono-specific including oysters, pectins, 

carbonate production Nummulites with Discocyclina, miliolids, coralline algae, 

(relative to siliciclastic Operculina, Gypsina, miliolds, bryozoa, gastropods and 

input) and establishment 
coprolites, solitary corals and encrusting larger forarninfera 
assorted skeletal fragments (Section 5.2.2.2) 

of a more sediment- (Section 3.3.2). 
tolerant community 

Siliciclastic-dominated 

Inner-shelf, marginal-
marine environments Echinoids, gastropods Large oysters encrusting 

characterized by unstable (Certihium), Nummulites and boulders with variable skeletal 

substrates. Often Gypsina (Sections 3.3.3 fragments. Rare in situ coral 

demonstrates 
and 3.3.4). colonies (Section 5.2.1). 

pro gradational 
sedimentary geometries 

Table 7.3 Comparison of the dominant biota present in carbonate-dominated, siliciclastic-dominated and 
transitional facies of the studied sections at Calders and Altorreal. 
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of coral colonies are related to changes in water depth rather than siliciclastic input 

(Section 5.3.1.3). Coral growth is only thought to have occurred in association with 

siliciclastics in up-slope areas where stick-like branching corals dominate (Section 

5.2.3.3). It is postulated that upslope areas were affected by freshwater input due to 

the development of stromatolitic coatings on branches (Figure 5.18). 

A number of possibilities are suggested for reef termination at Altorreal. A 

freshwater input, possibly as a precursor to the reactivation of the fan delta lobe, had a 

detrimental effect on seawater salinity and nutrient levels. This is evident from the 

development of columnar stromatolites (Sections 5.2.3.2 and 5.3.1.3). Enhanced 

nutrients often hinder the development of photoautotrophs, although it has been 

shown that some species of coral can adapt from an autotrophic to heterotrophic mode 

oflife (Antony 2000, Antony and Fabricus 2000). Additionally, erosion of reef bodies 

is observed, with siliciclastic sediments onlapping the irregular contact (Figure 5.16). 

7.4 Synthesis: mixed carbonate-siliciclastic sequence development 

An important aspect of the study of mixed shallow marine successions is the 

development of a depositional model of carbonate production within siliciclastic 

settings applicable to a diversity of successions. Excluding a volume of work 

published in the last century (Doyle and Roberts 1988), and a recent study by Lokier 

and Wilson (2002), limited attention has been paid to mixed carbonate-siliciclastic 

sequence development. While it is not the aim of this thesis to produce a full sequence 

stratigraphic model for all types of carbonate-siliciclastic succession, this section will 

outline the fundamentals of a potential model using observations from the two studied 

sections in NE and SE Spain and further examples from the literature. 

7.4.1 Sequence stratigraphic models 

Arguably, there is no universally accepted sequence stratigraphic model for 

mixed carbonate-siliciclastic successions. In the majority of examples presented in the 

literature, carbonates within marine mixed successions have been classified as 

highstand deposits. It is improbable that every biogenic carbonate accumulation 

within a marine siliciclastic-dominated succession should correspond to a highstand. 

The study of the successions at Altorreal and Calders has provided insight into 
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mechanisms for successful biogenic carbonate production and reef development 

within environments atypical of classic reef models. 

Mutually exclusive depositional models have been used to describe the 

evolution of carbonate and siliciclastic sequences. This is because most carbonate in 

shallow marine environments is produced in situ by organisms whose diversity is 

typically a function of relative depth of the photic zone. It is noted by Schlager ( 1992) 

that most biogenic carbonate is produced in less than 10-20 m water depth, and that 

carbonate productivity is reduced rapidly below these depths to the base of the photic 

zone, typically around 50-100 m water depth (Figure 7.7). The stratigraphic response 

of a shallow marine carbonate system to variations in relative sea level will be 

governed by its growth potential and hence the productivity of carbonate producing 

organisms in the shallow euphotic zone (Schlager 1981, Kendall and Schlager 1981, 

James and Kendall 1992, Bosscher and Schlager 1992, Bosscher 1992). In contrast, 

siliciclastic systems are dependent upon the external sediment supply into the 

depositional environment that can be cut off and restarted at any water depth 

(Schlager 1992). The response of a carbonate system to (relative) changes in sea-level 

has been reviewed in detail by Schlager (1981, 1989, 1991 ), Kendall and Schlager 

(1981), Burchette and Wright (1992), Hunt and Tucker (1993), Tucker et al. (1993) 

and Handford and Loucks (1993) and thus is not reviewed here. 
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The thickness and geometry of a carbonate succession records the relationship 

between the rate of carbonate production to available accommodation space, eustatic 

sea-level change and tectonically driven subsidence (or uplift). Relative sea-level 

change is the sum of tectonic rates (uplift or subsidence) and rates of eustatic change. 

The accommodation space provided by a relative change in sea level represents the 

accumulation potential of a carbonate sequence (Sarg 1988). Facies distributions, 

thickness and geometry of the carbonate sequence are ultimately dictated by the 

response of the carbonate system to the creation of accommodation space (Sarg 

1988). 

7.4.2 Relative sea-level changes associated with siliciclastic input 

In mixed carbonate-siliciclastic successions, the conventional interpretation of 

depositional sequences is that they are due to reciprocal sedimentation in response to 

relative sea-level changes (Mack and James 1985, Buchbinder 1996, Rankey 1997). 

Accordingly, transgressive and highstand deposits are composed of carbonate 

deposits, and lowstands of siliciclastics (Ahmed et al. 1993, Holland 1993, Holmes 

and Christie-Blick 1993). The development of carbonate-siliciclastic cycles in 

response to glacio-eustatic sea level fluctuations is typical of Permo-Carboniferous 

strata (Mack and James 1985, Rankey 1997). 

During a transgression, the locus of siliciclastic sedimentation moves 

shoreward and accommodation space becomes available allowing carbonate 

development within areas of the sea floor that are within the photic zone. Highstand 

carbonates are therefore 'pure' and show little mixing with siliciclastic facies. Upon 

emergence, pure carbonates are prone to erosion, dissolution and karstification 

(Garcia Mondejar and Fernandez Mendiola 1993, Rankey 1997, Ferro et al. 1999). 

Highstand carbonates have been reported from the modern (Belize- Ferro et al. 1999, 

Florida -Cunningham et al. 2003) and ancient (Miocene, Mediterranean- Buchbinder 

1996, Saint-Martin 1996; Mesozoic, Spain - Garcia Mondejar and Fern{mdez 

Mendiola 1993; Tertiary, Spain- Luterbacher et al. 1997; Paleozoic, USA- Holland 

1993, Rankey 1997). 

Biogenic carbonate development will only occur during a transgression if 

there is a decrease in siliciclastic input and improvement in water clarity to 

compensate for the increase in water depth (Figure 7.8) (Wilson, in press). An 
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Figure 7.8 Schematic illustration of the postulated effects of turbidity on facies distribution on broad 
shallow and steep narrow shelves. 
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increase in water depth, or persistently turbid conditions, will reduce the habitable 

depth of the shelf (Figure 7 .8). The effect of this will depend upon factors such as 

rate of relative sea-level rise, the amount of suspended siliciclastic material and the 

morphology of substrate (Figure 7 .8). Drowning of carbonates can occur if the rate of 

carbonate production cannot keep pace with the rate of relative sea-level change 

(Schlager 1999; Wilson, submitted). Consequently, transgressive carbonates within 

carbonate-siliciclastic cycles often demonstrate deepening upward trends (Holland 

1993, Rankey et al. 1999). Highstand shelves can still be subject to turbid conditions 

through the action of longshore currents (Saint-Martin 1996, Larcombe et al. 1999, 

Larcombe and Woolfe 1999). On the modem Mahakam Delta, a relative still stand in 

sea level during a highstand has resulted in renewed progradation of siliciclastics onto 

the shelf (Roberts and Sydow 1996). Highstand carbonate production is highly 

localised due to turbidity and siliciclastic input, with in situ mixing of carbonate and 

siliciclastic sediments (Wilson, submitted). 

7.4.3 Carbonate-siliciclastic sequence development in the Vie Basin, NE Spain 

Sediment input to the eastern Pyrenean Foreland has varied over time with 

periods of rapid sedimentation corresponding to allogenic processes such as tectonic 

uplift and erosion of the hinterland (Puigdefabregas and Souquet 1986, Burbank et al. 

1999). Bartonian sediments of the Vie Basin were deposited during a late Middle 

Eocene highstand (Figure 2.20). On the scale of the deltaic Centelles Formation, the 

Bartonian-Priabonian part of which forms the focus of Chapter 3, sediment supply to 

the shallow marine siliciclastic shelf was localised due to autogenic processes such as 

delta lobe switching (Tabemer 1983, Tabemer and Santisteban 1988, Alvarez et al. 

1994, Franques-Faixa 1998, Tabemer et al. 1999). Shoreward or lateral movement of 

the locus of siliciclastic influx resulted in an apparent, localised transgression, 

providing conditions that were locally favourable for carbonate development. Metre­

scale carbonate-siliciclastic cycles, comparable to those described from the Calders 

area (Chapter 3), occur throughout the Middle Eocene Marine Sequence on the 

northern and southern margins of the Vie Basin (Chapter 2). Carbonate intervals are 

not coeval (Burbank et al. 1999, Tabemer et al. 1999) and are of limited lateral 

extent, thus confirming that autogenic processes were important. 
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The thickness of carbonate cycles is variable and there are no patterns in 

thickness of carbonate or siliciclastic intervals within cycles (Figure 3.9). The 

diversity of depositional settings represented by carbonates is attributed to localised 

variations in water energy, turbidity and siliciclastic input rather than changes in 

water depth (Section 3.3). The absence of erosion surfaces, and evidence to suggest 

karstification or a sedimentary hiatus, indicates that adequate accommodation space 

was generated to allow carbonate development. As noted above, the effects of 

abandonment of the siliciclastic substrate are akin to an apparent transgression. 

However, the accumulation of 20 m of carbonates (e.g. carbonate intervals 5 and 6, 

Figure 3.9), requires a relative sea-level rise and/or subsidence. A relative sea-level 

rise is discounted for the reasons described above, therefore subsidence was 

important. The Bartonian Marine Sequence was deposited during the late under-filled 

stage of foreland basin development when subsidence rates are generally low 

(DeCelles and Giles 1996). On the southern margin ofthe Pyrenean Foreland (i.e. the 

Vie Basin), subsidence was enhanced through tectonism in the Catalan Coastal 

Ranges (Taberner et al. 1999). The carbonates at Sant Amanc, which were the final 

marine sediments to be deposited in the SE Pyrenean Foreland, were deposited in a 

significantly different setting to the sediments at Calders (Section 3.5). The change 

from oligotrophic open marine to mesotrophic partially protected is attributed to a 

combination of factors, but gradual basin exposure through reduced subsidence and 

changes in the basin configuration (i.e. basin isolation) are thought to be the most 

important (Trave 1992, Trave et al. 1996). 

Preservation of the carbonate sediments at Calders is attributed to highstand 

siliciclastic input. Although subsidence and siliciclastic abandonment provided 

accommodation space for carbonate development, carbonates would have been 

susceptible to erosion and/or karstification during the subsequent lowstand and basin 

emergence (Garcia Mondejar and Fernandez Mendiola 1993, Wilson in press). It is 

suggested therefore that the chances of preservation of highstand carbonate 

preservation may be enhanced during areas of highstand siliciclastic pro gradation. 
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7 .4.4 Carbonate-siliciclastic sequence development in the Fortuna Basin, 

SE Spain 

Sediment input into the F ortuna Basin during the Miocene was controlled by 

allogenic processes, in particular movement of basin-bounding faults, and uplift and 

erosion of Betic basement (Montenant 1973, Graces et al. 2001, Krijgsman 2000, 

Poisson and Lukowski 1996, Santisteban and Taberner 1988). Sediment supply was 

also strongly influenced by the semi-arid climatic regime, with sedimentation from 

discrete, high magnitude events (Sections 5.3.1.1 and 7.2.1.2). Comparable to the 

scenario described above for the Vie Basin, lateral shifts in the locus of siliciclastic 

sedimentation and improved water clarity provided conditions that were locally 

favourable for carbonate development (Section 5.3.2). Smaller, laterally restricted 

carbonate intervals within the Fortuna Basin did not develop at the same time, 

indicating an autogenic control on their evolution. Development of massive fringing 

reef systems (>5 km), exposed on the northern (pers. obs.) and western (Mankiewicz 

1995) basin margins would have been strongly influenced by allogenic controls, in 

particular relative sea-level change. 

In the Altorreal area, carbonate-siliciclastic cycles are interpreted to represent 

the progradation of a high-energy fan-delta into a low-energy, semi-restricted basin 

with carbonate development on temporarily abandoned delta lobes (Section 5.3.2) 

Carbonate development, in the form of a siliciclastic bioclastic packstone, was 

initiated on the fan delta top and foresets, forming a small-scale (< 200 m across) 

shoreline attached ramp-type system (Section 5.3.2). In one siliciclastic-carbonate 

transition, a sedimentary hiatus is indicated from the development of a hardground 

with a contemporaneous laminar stromatolite unit (Section 5.3.1.2). Coral-dominated 

carbonates that succeed the transitional siliciclastic packstones are relatively 'pure' 

containing negligible siliciclastic material. 

The succession at Altorreal is consistent with the reciprocal sedimentation 

model described in Section 7.4.2. Lithoclastic conglomerates were deposited during 

the lowstand, with coral development during the highstand. The same interpretation is 

made for the coeval 'El Desastre' reef-fan delta complex outcropping 10 km to the 

northwest of Altorreal (Mankiewicz 1995). The lithoclastic conglomerates, interpreted 

as marine throughout from the presence of oysters and corals, were deposited during a 

lowstand. This is supported by erosional lower contacts with prodelta marls (Figure 
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5.4a) and coral-dominated carbonates (Figure 5.16). Fan delta lobe abandonment and 

carbonate ramp initiation (Section 5.3.2) represents siliciclastic starvation and 

transgression, although laminar stromatolites and pebble-grade lithoclasts indicate 

water depths did not increase significantly. The development of coral-dominated 

clinoforms represents the highstand. Prior to the onset of siliciclastic sedimentation, a 

period of non-deposition and freshwater inundation, indicated from the presence of 

columnar stromatolites, contributed to the termination of carbonate development. The 

erosive nature of the upper contact of the carbonates with the fan-delta conglomerates 

is consistent with a fall in base level (Holmes and Christie-Blick 1993, Mankiewicz 

1995). Changes in water depth however would have been minor (less than 1 m based 

on the depth of erosion of carbonates) as there is no evidence to suggest movement of 

the shelf margin break in slope between phases of siliciclastic progradation (Section 

5.3). Siliciclastics deposited on top of carbonates are coarse-grained sediments 

deposited within shallow, high-energy conditions. 

7.4.5 Sequence development: Calders vs. Altorreal 

A summary and comparison of the major controls on sequence development at 

Calders and Altorreal is presented on Figure 7.9. The studied sediments were 

deposited under different tectonic and climatic regimes, and the resultant successions 

are different in terms of depositional texture and architecture, and the biota present. 

However, the mechanisms proposed for the development of carbonate-siliciclastic 

cycles are essentially the same. Temporary abandonment of a siliciclastic substrate 

through shifting of the locus of sediment input provided a suitable colonisation site 

within the photic zone. Initial carbonate production is as a siliciclastic-rich limestone 

representing the cessation of siliciclastic input and the transformation of conditions 

towards those more suitable for photoautotrophs. The cessation of carbonate 

development and switch back to siliciclastic sedimentation caused mass mortality of 

carbonate producing organisms. 
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Figure 7.9 Summary of the main controls of carbonate-siliciclastic sequence development at Calders 
(NE Spain) and Altorreal (SE Spain) 
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8. Summary 

The aim of this thesis was to investigate the development of carbonates within 

siliciclastic-dominated settings through a detailed analysis of mixed carbonate­

silciciclastic successions exposed in NE and SE Spain. A brief review of depositional 

environments is provided in Section 8.1. Section 8.2 summarises the main effects of 

siliciclastic input on biota abundances and the influence of siliciclastic input on 

sequence development is summarised in Section 8.3. 

8.1 Depositional environments 

A summary of facies and depositional environments for the Calders and 

Altorreal study areas is provided on Tables 3.2 and 5.1 respectively. A summary of 

depositional environments identified in the Sant Amanc area is presented on 

Table 3.5. 

8.1.1 Calders and Sant Amanc study area, Vie Basin, NE Spain 

* The studied sediments at Calders are Bartonian to Priabonian in age (evident 

from the presence of Nummulites bedai), and comprise part of the Marine 

Sequence that represents the final marine deposits in the SE Pyrenean 

Foreland Basin. The studied carbonate siliciclastic succession overlies 

prodelta marly sandstones of the Vespella Formation (Section 3.2.1). The 

studied section is overlain by fluvial and continental sediments of the 

Complejos de Calders Formation (Section 3.2.2) and the Artes Foramation 

(Section 3.2.5). Partially-restricted marine sediments of the Terminal 

Complex are also exposed (Sections 3.2.3 and 3.2.4). 

* In the Calders study area, 19 facies have been identified (Section 3.3). Facies 

are grouped into carbonate-dominated (Section 3.3.1), mixed carbonate­

siliciclastic (Section 3.3.2) and siliciclastic-dominated groups (Sections 3.3.3 

and 3.3.4). Siliciclastic-dominated sediments may be fossiliferous or non­

fossiliferous. Sediments in the Calders study area occur in 5 facies 

associations (Table 3.3). 

* The sedimentary succession at Calders is divided into 6 siliciclastic-carbonate 

cycles (Figure 3.46). Each cycle represents the colonisation of a siliciclastic 

substrate during phases of reduced siliciclastic input initially by a foraminifera 
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and coralline algae-dominated benthic community and then diversification into 

a coralgal foraminifera-dominated community (Section 3.4.6). Two types of 

siliciclastic to carbonate transition are identified (Figure 3.61). The first 

involves the colonisation of the siliciclastic substrate by Nummulites and 

coralline algae followed by development of coral reef-type facies. The second 

involves the development of siliciclastic sea grass shoals that supported an 

array of epiphytic biota, in particular Gypsina (Figure 3.61). The second 

transition type occurred in relatively upslope, high-energy areas in comparison 

to the first transition-type. 

* It is proposed that sediments exposed in the Sant Amanc area to the immediate 

northeast of Calders are an as yet unstudied part of the Terminal Complex, as 

defined by Trave (1992). Four facies are identified (Section 3.4). Facies are 

grouped into coral dominated, mixed carbonate-siliciclastic and siliciclastic 

facies groups. Interbedded calcareous litharenitic siltstones and sandstones, 

and porceallaneous foraminifera micritic litharenite facies exposed in the Sant 

Amanc study area, overlie the upper-most carbonate unit of the Calders 

succession (Figure 3.62) and represent a change from open marine to partially 

restricted marine deposition. 

* The siliciclastic to carbonate transition in the Sant Amanc area is marked by 

the widespread development of larger benthic foraminifera-dominated 

vegetated shoals (Section 3.6). Foraminifera are dominated by Orbitolites, 

Rhabdorites and miliolids with smaller hyaline benthics and molluscs. 

Oligotrophic conditions persisted in the water column, although locally 

mesotrophic conditions existed at the sediment-water interface. The baffling of 

sediment by sea floor vegetation generated minor topography, providing 

slightly elevated colonisation sites for corals. 

* Carbonate development in the Vie Basin was terminated in the late Middle 

Eocene through massive siliciclastic input as the Pyrenean Basin system 

progressed from its underfilled to overfilled stage. 

8.1.2 Altorreal study area, Fortuna Basin, SE Spain 

* The studied sediments in the Altorreal area are Upper Tortonian in age, and 

were deposited along the boundary between the Internal and External Zones of 
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the Betic Cordillera (Chapter 2). The studied succession formed prior to the 

Tortonian Salinity Crisis of the western Mediterranean, and open marine 

conditions prevailed. 

* In the Altorreal study area, 7 facies are identified (Section 5.2). Facies are 

grouped into siliciclastic-dominated (Section 5.2.1), mixed carbonate­

siliciclastic (Section 5.2.2) and carbonate-dominated (Section 5.2.3) groups. 

* Isolated metre-scale carbonate bodies occur within fan delta sediments 

(Section 5.2.3) although carbonate development was not contemporaneous 

with silciclastic input in the Fortuna Basin. The siliciclastic to carbonate 

transition is marked by a period of slow deposition and the development of a 

siliciclastic-rich molluscan packstone. Laminar stromatolites developed in 

ups lope areas (Section 5.2.3.1 ). Coral development occurred along the slope 

of fan-delta foresets. 

8.2 Biota response to siliciclastic input 

* Acid digestion allowed the quantification of the total non-carbonate content of 

samples (as a weight percentage) and an estimate of the siliciclastic sediment 

input during phases of carbonate development. Plots of the weight percentage 

of non-carbonate material against the relative abundance of organisms has 

allowed the effects of varying amounts and grainsize of siliciclastic input on 

biota to be made. Sediments from the Calders area (NE Spain) were chosen for 

acid digestion analysis since these sediments contained in situ carbonate­

siliciclastic sediments (sensu Mount 1984). 

* Variations in siliciclastic input results in changes in the benthic community 

through the creation of essentially different depositional environments. The 

punctuated nature of siliciclastic input in the Calders area resulted in the 

development of two distinctly different environments: prograding siliciclastic 

shelf and coral reef. Each environment contains a distinct benthic community. 

* The scarcity of biota within siliciclastic horizons is attributed to the rate and 

amount of siliciclastic input. Colonisation of siliciclastic substrates by 

immobile calcareous organisms was inhibited largely due to immobile 

substrates. Gypsina was able to survive in a silciclastic-dominated setting 
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through adapting to an epiphytic mode of life encrusting sea grass that 

provided a relatively stable substrate. Large benthic foraminifera such as 

Nummulites are able to tolerate moderate sediment input through their ability 

to extract themselves. 

* The relative abundance of corals shows a correlation to both non-carbonate 

sediment abundance and grainsize. Delicate branching corals were present in 

sediments containing up to 38 wt. % non-carbonate material, although corals 

are absent where the non-carbonate grainsize >I OOOJ.U11. Corals are thought to 

have grown constratally in these settings as sedimentation rates were high and 

turbidity was moderate to low (or only periodically high). In low-energy 

settings where turbidity was high, platy coral dominated sediments formed. 

* Larger benthic foraminifera, such as Nummulites and Discocyclina, were often 

the first organisms to colonise siliciclastic substrates. Larger benthic 

foraminifera were moderately common in sediments containing up to 65 wt. % 

non-carbonate and thus were able to tolerate prolonged periods of silciclastic 

input. Larger foraminfera are absent in sediments where the siliciclastic 

grainsize >4 mm as coarse grains would have abraded and damaged tests. A 

relative abundance of larger foraminifera within siliciclastic sediments may be 

attributed to a lack of competitors (or predators) in a stressed environmental 

setting, an ability to survive burial for a short period of time, an ability to 

extract themselves following shallow burial and an ability to colonise barren 

substrates. 

~ Coralline algae are present in sediments where the non-carbonate content is up 

38.5 wt. % and are most abundant at concentrations of I 0 to 30 wt. % 

(Section 6.3.1.2). In transitional settings (and in association with larger 

benthic foraminifera), coralline alage occur mainly as rhodoliths, a growth 

form adapted to immobile substrates. Rhodoliths may provide stable substrate 

colonisation sites for sessile encrusting organisms in unstable sedimentary 

settings with an immobile substrate. Irregular rhodoliths develop where large 

encrusting foraminifera such as Gypsina, Haddonia and Fabiania have been 

incorporated. 
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8.3 Influences on sequence development 

* It is difficult when studying mixed carbonate-siliciclastic systems in the rock 

record to isolate a simple mechanism for sequence development. Allogenic 

factors (the climatic and tectonic regimes and sea-level changes) and 

autogenic factors (hydrodynamic regime, type and diversity of biota, nutrient 

flux, salinity of marine waters) will influence mixed carbonate-siliciclastic 

sequence development. 

* The sites and duration of reef development at Calders and Altorreal were 

influenced to variable extents by the climatic regime, which in turn influenced 

the rate, magnitude and composition of sediment input. In subtropical semi­

arid settings, terrigenous sediment is often locally supplied to the shelf via 

ephemeral fluvial or wadi systems during infrequent storm events. 

Consequently, reef development can occur in shoreline attached, shallow 

water areas such as Altorreal. In relatively humid settings such as Calders 

where runoff and precipitation are high, the shelf may be characterised by 

near-continuous siliciclastic and freshwater input. Carbonates tend to develop 

in relatively offshore positions of the shelf during phases of siliciclastic 

abandonment, although resuspension of chemically weathered sediments may 

limit carbonate development by inhibiting photosynthesis. 

* Modem and ancient mixed carbonate-siliciclastic successions accumulated 

under a range of tectonic regimes including extensional, compressional, 

passive margin and foldbelt settings. The effects of tectonism on sequence 

development at Calders and Altorreal are not strongly evident. The Fortuna 

Basin developed within an extensional setting dominated by block faulting. 

Uplifted Betic basement provided a nearby source of sediment that was 

transferred to the shelf through fan delta systems. In other locations in the 

Fortuna Basin, it has been demonstrated that phases of reef development 

coincided with tectonic quiescence (Lonergan and Schreiber 1993). The 

Calders and Sant Amanc successions developed on the southern passive 

margin of a foreland basin system. Carbonate development on foreland 

passive margins is common as it is typically a site of minimal siliciclastic 

input. However, siliciclastic input to the Vie Basin is attributed to the 

reactivation of Mesozoic fault systems in the hinterland. The Catalan Coastal 
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Range shed siliciclastic sediments into the southern foreland basin margin 

through major alluvial fan and fan delta systems. 

~ A seemingly underestimated factor in understanding the relationship between 

carbonate production and siliciclastic sedimentation is the local hydrodynamic 

regime. Under situations where the sediment influx is not high magnitude such 

as flash flood dominated deposition characteristic of the Red Sea coast, it is 

not so much as how much sediment reaches the coastal system but what 

happens to it when it gets there. It has been demonstrated that coral reefs tend 

not develop close to point sources of siliciclastic sediments such as river 

mouths. The Abrolhos (Brazil) and Paluma Shoals (central GBR) reefs 

developed only a few kilometres from the shore in areas where fine fluvially­

derived sediments are re-suspended by the action of longshore currents. 

Longshore currents also influence the morphology of the reef. 

~ Autogenic processes on timescales of I 03 to 105 years are thought to have 

been the most significant influence on the development of carbonate­

siliciclastic cycles at Calders and Altorreal. The dominant influence on 

sequence development is thought to have been delta lobe switching that 

provided temporary sites shielded from siliciclastic input. Autogenic factors 

such as the hydrodynamic regime influenced the generation of turbidity. Coral 

development was influenced by particulate non-carbonate sediment input 

during phases of siliciclastic abandonment. Turbidity was generated through a 

combination of re-suspension of locally-derived muddy siliciclastic sediments, 

and an input of sediments through the action of longshore currents. 

~ In mixed carbonate-siliciclastic successions, the conventional interpretation of 

depositional sequences is that they are due to reciprocal sedimentation in 

response to relative sea-level changes. Accordingly, transgressive and 

highstand deposits are carbonates and lowstands are represented by 

siliciclastics. Biogenic carbonate production can only occur during a 

transgression if there is a decrease in siliciclastic input and an improvement in 

water clarity to compensate for the increase in water depth. Highstand shelves 

can still be subject to turbid conditions through the action of longshore 

currents and highstand progradation of siliciclastic shelf systems. 
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