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Abstract 

Abstract 

This thesis consists of three studies examining the sources of momentum profits in equity 

market. This thesis extracts from both risk-based and behavioural based theories in 

searching for explanations to the existence of momentum payoffs. 

Chapter 2 examines whether business cycle variables and behavioural biases can explain 

the prof"itability of momentum trading in three major European markets - France, 

Germany and the UK. Unlike previous studies, the chapter nests both risk-based and 
behavioural-based variables in a two-stage model specification in an attempt to explain 

momentum profits. The findings show that, although momentum profitability in 

European markets is unexplained by conditional asset pricing models, it is attributable to 

asset mispricing that systematically varies with global business conditions. In addition, 
behavioural variables do not appear to matter much. Thus risk factors, which are 

undetected thus far and are largely attributable to the business cycle, could explain the 

momentum payoffs in European stock markets. 

Chapter 3 examines whether limits to arbitrage, overconfidence, divergence in investors' 

opinion, and risk factors can explain the persistence in momentum profits. The results 

reveal that momentum profits: (i) are driven almost entirely by loser stocks that are 

difficult to short; (ii) the investors' inability to short-sell loser stocks defeats the original 

theme of momentum trading that argues for a self-financing hedge portfolio and; (iii) the 

persistence in momentum profits is caused by limits to arbitrage rather than investors 

under-reacting to firm-specific information. Overall, momentum profits are caused by 

mispricing due to limits to arbitrage and overconfidence, and divergence in opinion does 

not play a role in overvaluation. 
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Abstract 

Chapter 4 examines the role of analyst bias and uncertainty in explaining momentum 

profits internationally. Momentum payoffs around the world are large and significant 

among higher uncertainty stocks, decrease monotonically as uncertainty decrease. Within 

each of the uncertainty group, the extreme winner and loser portfolios arc among higher 

analyst bias groups. The results suggest that analysts who are concerned for their 

reputations report forecasts in favour with client's beliefs and hence greater analyst bias 

when there is greater uncertainty. The extreme winner and loser stocks continue to move 

to same directions reflecting investors' belief rather than the true set of information. In 

addition, the findings show that by forming a momentum strategy that buys low 

uncertainty winner and sells high uncertainty loser earns higher profits (includes most 

Asian countries) than the Jcgadeesh-Titman (1993) momentum strategy. Thus investment 

strategies can be formed based on systematic behavioural biases among different groups 

of market participants. 

i 
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Chapter 1: Introduction 

1. Introduction 

1.1 Efficient market hypothesis and the momentum anomaly 

An efficient market is a market in which 'prices always fully reflect available 

information' (Fama, 1970, p. 383). Plainly speaking, it means that the past movement or 

direction of the price of a stock or market cannot be used to predict its future movement. 

The hypothesis is that stock prices instantaneously and unbiasedly adjust to new 

information, which is seen as an implication of rational, utility-maximising investor 

behaviour in competitive markets. Fama (1970) states that for a market to be efficient, 

'there are no transaction costs in trading securities, all available information is costlessly 

available to all market participants, and all agree on the implications of current 

information for the current price and distributions of future price of each security' (p. 387). 

Expectation of future price is thus simplified by assuming that investors have 

homogeneous beliefs. The theory also implies a belief that stock price changes are 

independent of each other and have the same probability distribution, but over time 

maintains an upward trend. In short, the idea that stocks take a random and unpredictable 

path. The random walk model of asset prices is an extension of the efficient market 

hypothesis (EMH), as are the notions that the market cannot be consistently beaten and 

'free lunches' are generally unavailable. 

Theoretical challenges to the EMH question the assumed rationality of investors. 

Drawing on the 1970s pioneering work of cognitive psychologists Kahneman and 

Tversky (1974), the mid 1980s and early 1990s economists (see Black, 1986; De Long et 

al., 1990a) speculated that many traders (e. g. noise traders') act not on information but on 

premonition and that the market absorbs no more rationality of calculation than it does 

Noise traders are investors whose beliefs and preferences conform to psychological factors rather than 

normative economic models. 
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Chapter 1: Introduction 

mere noise. More recent theorising on investor behaviour has considered the nature of 
investor attitudes towards risk and the way investors make decisions using attention and 

memory more than probabilistic analysis, thus investors act irrationally in making the 

investment decisions. 

In reality, there are a lot of imperfections in the market. First, a market is normally 

characterised by non-instantaneous availability and incomplete dissemination of 
information to all participants. This may prevent the price from incorporating the 

information fully and instantaneously. Secondly, there are positive information and 

trading costs and other institutional constraints in the market. Jensen (1968) looks at the 

fund managers' performance and finds that any advantage that the portfolio managers 

might have is consumed by fees and expenses. This has led Jensen (1978) to define an 

efficient market as 'A market is efficient with respect to information set 0t if it is 

impossible to make economic profits by trading on the basis of information set 0 t. By 

economic profit, we mean the risk-adjusted returns net ofall costs'(p. 96). 

Over the past twenty years there has been. a growing body of literature that raises doubts 

as to the efficiency of the capital markets. According to this literature, a number of 
trading strategies exist which generate abnormal returns based solely on publicly 

available information. In particular, weakness from market ineffiýiency has been 

documented by Jegadeesh and Titman (1993), their trading strategy (momentum strategy) 
involves taking long (short) positions in firms which experience large positive (negative) 

abnormal returns in the previous quarter, and states that such price behaviour is consistent 

with positive feedback trading. In addition, Fama and French (1996) concede that 

momentum trading is the only CAPM-related anomaly that their three-factor model fails 

to explain. Subsequently, a number of behavioural models based on irrationality and 

psychological theories have developed in attempts to explain the momentum anomaly 
(see for example Barberis and Thaler, 2003). This thesis therefore proposes to examine 
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Chaptcr 1: Introduction 

the sources and implications of the momentum strategies. 

1.2 Asset pricing model 

Testing for market efficiency is difficult. It requires the market to be able to incorporate 

new information in prices instantly and the success of the asset pricing model in 

measuring the true risk factors. Flaws in asset pricing, however, cast doubts about the 

reliability of the existing empirical research - both the work that appears to contradict 

market efficiency as well as that which supports it. The continued search for appropriate 

risk factors to explain the apparent anomalies inform the study in chapter 2. 

Chapter 2 investigates whether the apparent profitability of momentum trading can be 

explained by business cycle variables and behavioural characteristics in three major 

European markets namely France, Gen-nany and the UK. Considering the increased 

debate and evidence on the role of investors' behaviour in explaining cross-sectional and 

time series patterns of stock returns, this chapter enhances the conditional model of 

Avramov and Chordia (2006) to incorporate behavioural characteristics. In addition, 

given the prominence of price momentum in international stock markets, this chapter 

applies the conditional asset pricing model of Avramov and Chordia (2006) in assessing 

the possible business cycle patterns within momentum profits in European markets. This 

offers an out of sample test of Avramov and Chordia's (2006) model in the context of 

momentum in stock returns in three major European markets. 

The findings of chapter 2 suggest that momentum profits in Europe are largely 

attributable to asset mispricing that systematically varies with global business conditions. 

This confirms that the idiosyncratic component of stock returns does not play any 

prominent role in explaining momentum profits in European markets, but business cycle 

variables may offer a better explanation. In addition, the results of the Avramov and 
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Chapter 1: Introduction 

Chordia (2006) model that incorporate behavioural variables display a mixed role for 

behavioural variables across the countries, illustrating that investors' behaviours are less 

likely to be correlated with the business cycle and are unlikely to explain momentum 

profits. Moreover, the inclusion of behavioural variables does not affect the notion that 

momentum patterns are risk-based. Overall, the findings of chapter 2 suggest that the 

profitability of momentum strategies in Europe could be explained by risk factors, which 

are undetected thus far and are largely attributable to the business cycle. 

1.3 No free lunch and limits to arbitrage 

In an efficient market, 'prices are right' in that they are set by rational agents. And there is 

'no free lunch', which means that no investment strategy can earn excess risk-adjusted 

returns, or average returns greater than are warranted for its risk. Barberis and Thaler 

(2003) suggest that even when an asset is wildly mispriced, strategies designed to correct 

the mispricing can be very risky (e. g. fundamental risk), rendering them unattractive. As 

a result, behavioural finance states that 'prices are not right'. However, prices distant 

from fundamental value do not necessarily mean that there are any excess risk-adjusted 

returns for the taking. Not only arbitrageurs find that the strategies are risky but every 

investor does as well. Even if there is no fundamental risk, there is risk associated with 

unpredictable sentiment. 

From the theoretical point of view, there are reasons to believe that arbitrage is a risky 

process and therefore that it is only of limited effectiveness. Also, there is some empirical 

evidence of limited arbitrage provided, such as twin shares, closed-end fund, ADR's and 

index inclusion. In addition, De Long et al. (1990a) show that noise trader risk is 

powerful enough that, even with this single form of risk, arbitrage can sometimes be 

limited. As a result, the theory of limited arbitrage could cause deviations from 

" For surveys of the vast literature on capital market inefficiencies, including discussions of the reasons 

why mispricings are not easily arbitraged away, see Shleifer (2000) and Barberis and Thaler (2003). 
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Chapter 1: Introduction 

fundamental value and contradict the assumption of EMH. The notions of 'no free lunch' 

and limited arbitrage underlie chapter 3 which examines whether momentum profits are 

caused by limits to arbitrage and overconfidence, and whether momentum profits could 

be exploitable. 

Using a unique sample of data on UK ownership distribution from the 

PricewaterhouseCoopers Corporate Register published by Hemmington-Scott to capture 

short selling activities, Chapter 3 finds that momentum profits come from loser stocks. 

There is strong evidence of a positive relationship between short-sale constraints and the 

magnitude of momentum profits. The known risk factors cann ot explain the momentum 

profits. However, the results are inconsistent with Miller's (1977) view that stocks that 

are subject to both short-sale constraints and high divergence in opinion are initially 

overvalued and generate low subsequent returns. This thesis finds that momentum profits 

are linked with short sale constraints but not with divergence in opinion. On the other 

hand, excessive optimism together with self attribution bias leading to overvaluation and 

therefore low subsequent returns explains the momentum profits. Overall, momentum 

profits are caused by mispricing due to limits to arbitrage and overconfidence, and 

momentum profits would hardly be exploitable due to the absence of short sales. 

1.4 Behavioural explanations 

The consistent profitability of the momentum strategy poses a strong challenge to the 

efficient market hypothesis, and considerable numbers of papers have explored some 

behavioural explanations for the strategy's existence. Jcgadecsh and Titman (1993) claim 

that the positive stock return autocorrelation is driven by either underreaction or a 

delayed overreaction that can be attributed to what DeLong et al. (1990b) called positive 

feedback trading. As investors persistently and irrationally under-react to firm specific 

information, rational investors can profit from their irrational counterparts. Daniel et al. 
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Chaptcr 1: Introduction 

(1998) and Hong and Stein (1999), each employing different behavioural or cognitive 

biases, suggest that over-reaction is the source of momentum profits. Barberis et al (BSV, 

1998) and Zhang (2006) suggest that investors under-react to new information and stock 

prices continue to move in the same direction. 

Chapter 4 attempts to propose a new behavioural explanation for the profitability of 

momentum strategies based on global data. Using a sample of 22033 stocks covering 41 

countries over the periods from 1983 to 2002 for the US, and from 1987 to 2002 for the 

rest of the world. Chapter 4 finds that momentum payoffs around the world are large and 

significant among higher uncertainty stocks, decreasing monotonically as uncertainty 

decreases. Within each of the uncertainty groups, the extreme winner and loser portfolios 

are among the higher analyst bias groups. The results suggest that analysts who are 

concerned for their reputations report forecasts in accordance with clients' beliefs and 

hence greater analyst bias when there is greater uncertainty. The extreme winner and loser 

stocks continue to move in the same directions reflecting investors' beliefs rather than the 

true set of information. In addition, the findings show that by forming a momentum 

ýqýýthat buys low uncertainty winn_ers. -and-sells, 
higil pricertainty losers investors earn 

ýLigher I its (including most Asian countries) Lhan under the Jegadeesh-Titman 
'prof 

momentum strategy. Thus investment strategies can be formed based on systematic 

behavioural bias among different groups of market participants. 
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Chapter 2 

2. Profitability of momentu ra strategies in international markets: 

The role of business cycle variables and behavioural biases 

2.1 Introduction 

iegadeesh and Titman (1993) report that a trading strategy that buys stocks that have 

recently performed well and shorts stocks that have recently performed poorly can 

generate significant positive returns. The successes of momentum trading strategies have 

challenged the rational expectations based predictions of modem finance theory as they 

violate the central theme of the efficient market hypothesis that past stock returns cannot 

be used in generating excess returns. Fama and French (1996) concede that momentum 

trading is the only CAPM-related anomaly that their three-factor model fails to explain. 

The profitability of momentum strategy is not limited to the US market; it has been 

evident in many markets around the world. For instance, Rouwenhorst (1998) examined 

twelve European countries from 1980 to 1995 and reports that taking long positions on 

winner portfolios and short positions on loser portfolios can generate a risk-adjusted 

return of more than I% per month'. 

While the existence of momentum in stock returns is well documented, there is 

considerable controversy in the literature about the sources and the interpretations of the 

apparent profits. In particular, both risk and investor behaviour based explanations have 

been put forward. Regarding risk-based explanations, Grundy and Martin (2001) use the 

Fama and French three-factor model to adjust for cross-sectional differences in risk. They 

report that neither the cross-sectional variability in required returns nor the reward for 

bearing industry risk can fully explain momentum profits. Apparently at odds with this 

view, Chordia and Shivakumar (2002) find that momentum is driven by business cycle 

variables 4. By applying a predictive regression framework, they identified a possible path 

for rational pricing theories to explain momentum profits. They show that the profitability 

3 The literature on the profitability of momentum trading is very extensive. Interested readers are advised 
to consult Swinkels (2004) for an excellent survey of the literature on this issue. 
4 The motivation of using the business cycle/macroeconomic variables to explain momentum profits is 
because previous studies such as Fama and French (1989) and Pontiff and Schall (1998) show that 
macroeconomic variables can successfully predict market returns, therefore could be applied to firm-level 
momentum. 
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of momentum strategies is due to the cross-sectional differences in expected returns and 
that momentum profits are only a compensatio r bearing business cycle risk. However, 

Cooper et al. (2004) show that the predictive regression model of Chordia and 
Shivakumar (2002) cannot explain momentum profits following up-turns, even though it 

to some extent explains the cross section of stock returns following down-turns. 

Therefore, the ability of the business cycle to explain momentum profits remains 

unresolved. On the other hand, Cooper et al. (2004) find that momentum strategies are 

only profitable following period of UP market states, suggesting that the results are in 

line with the overreaction models of Daniel et al. (199ý) and Hong and Stein (1999). 

According to Daniel et al. (1998), the level of overconfidence increase during up-markcts 

will produce stronger over-reaction and therefore higher medium term momentum. 
Meanwhile, Hong and Stein (1999) suggest that due to the drop in risk aversion during 

wealth increase leads to stronger delayed overreaction, therefore greater momentum. 
Nevertheless, some behavioural finance theorists argue that the persistence in momentum 
profits may be attributed to the disposition effect, implying that investors are reluctant to 

sell losers and eager to dispose of winners (see Shefrin and Statman, 1985). Ranguelova 

(2001) points out that the disposition effect operates entirely through the selling 
behaviour of individual investors. As a result, momentum profits could exist in both UP 

and DOWN market states. 

Although the findings of Grundy and Martin (2001) and Chordia and Shivakumar (2002) 

are apparently at odds, they are not inconsistent. In particular, Avramov (2004) shows that 

return predictability based on explanatory variables in predictive regressions can be 

attributable to either predictable asset mispricing or predictable risk premiums or both. As 

a result, the findings of Chordia and Shivakumar (2002) do not necessarily trace 

momentum profitability to risk based asset-pricing models. Avramov and Chordia (2006) 

overcome the limitations of Chordia and Shivakumar's (2002) model and extend the 
literature further by examining "... the empirical performance of conditional asset pricing 
models in a framework where factor loadings may vary with firm specific market 
capitalization and the book-to-market ratio as well as with business cycle related 
variables. " (p. 1). Based on such a model they report a business cycle pattern to 
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Chaptcr 2 

momentum profits and conclude that the profitability of momentum strategies is 

attributable to a systematic rather than idiosyncratic component of stock returns. Overall, 

they show that momentum profit in the US is entirely captured by asset mispricing that 

varies with macroeconomic variables' 

The primary motivation of this chapter is twofold. First, considering the increased debate 

and evidence on the role of investors' behaviour in explaining cross-sectional and time 

series patterns of stock returns, this chapter enhances the conditional model of Avramov 

and Chordia (2006) to incorporate behavioural characteristics. In addition, this chapter 

starts by investigating whether momentum profits in European stock markets can be 

predicted using the business cycle variables in the framework of Chordia and Shivakumar 

(2002). 

Second, given the prominence of price momentum in international stock markets, this 

chapter applies the conditional asset pricing model of Avramov and Chordia (2006) in 

assessing the possible business cycle patterns within momentum profits in European 

markets. This offers an out of sample test of Avramov and Chordia's (2006) model in the 

context of momentum in stock returns in three major European markets - France, 

Germany and the UK. 

Overall, this chapter makes two major contributions. First, it examines conditional 

pricing in European stock malLe ýsi the context of explaining momentum profitability, 

whereas previous work focused 
' 
on US markets. Second, it nests both risk-based as well 

as behavioural-based variables" in a robust two-stage specification. The results help in 

bridging the gap of the unresolved issues on how risk and behavioural variables 2lay 

ayoffs from momentum trading. parts iý generatinU 

5 Wu (2002) shows that it is possible to capture return momentum by incorporating conditional information 
(lagged macroeconomic variables and a conditional version of the Fama-French threc-factor) into asset 
pricing. Although he sh 

* 
ows that risk is not linear when cross-sectional restrictions are imposed, the risk 

exposures remain unidentified. Unlike Wu (2002), Avramov and Chordia (2006) investigate individual 

stocks, rather than portfolios, and allow alpha to vary with business conditions. The variation in alpha 
captures momentum profitability. 
6 The behavioural variables used in the chapter include the dispersion in analysts' earnings per share (EPS) 
forecasts, the mean forecast error and the analyst coverage. These are in essence firm-specific variables. 

19 



Chaptcr 2 

In summary, this chapter demonstrates that momentum strategies are profitable in all 

three major European markets. An application of the predictive regression framework of 

Chordia and Shivakumar (2002) cannot capture momentum profits. However, when the 

conditional asset pricing model of Avramov and Chordia (2006) is applied, momentum 

profits are found to be related to model mispricing that varies with business cycle 

variables. This confirms that t hým-ar. e, husiness-cycle-pattems-within-momg. ntunLpr! 2f, t, SI 

but not all risk factors that are responsible for momentum in stock returns are identified. 

These findings are consistent with the evidence reported by Avramov and Chordia (2006) 

for the US markets. Moreover, the performance of the Avramov-Chordia model in 

European markets is robust to the inclusion of behavioural variables. The role of 

behavioural variables is mixed across countries, illustrating that such variables arc less 

likely to be correlated to the business cycle and unlikely to be able to explain momentum 

profits. Therefore, it would be premature to reject the ability of rational expectations 
based asset pricing models to explain momentum in stock returns. 

The rest of the chapter is structured as follows. The next section explains the models and 

section 3 describes the sample. Section 4 discusses the profitability of momentum trading 

strategies and the possible sources of momentum profits. Section 5 concludes the chapter. 

2.2 Momentum strategies and business cycle 

2.2.1 Price momentum strategies 
To offer comparability of the results with the evidence reported in the literature, this 

chapter starts by examining the presence of price momentum in the sample countries. The 

chapter follows Jegadeesh and Titman (1993) in constructing the momentum strategies. 
One month is skipped between the formation and holding periods to avoid capturing any 

short-term price reversals or bid-ask bounce effects detected in previous studies 
(Jegadeesh and Titman, 1995). Portfolios are formed (rebalanced) each month. Equally 

weighted holding period returns are estimated for all deciles and for winner minus loser 

(W - L) portfolios. Overlapping portfolios are constructed to increase the power of the 

tests (see, Jegadeesh and Titman, 1993, for an explanation). The Newey and West (1987) 

procedure is used to control for heteroscedasti city and autocorrelation in standard errors. 
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2.2.2 Business cycle model 
Chordia and Shivakumar (2002) show that business cycle variables can explain 

momentum profits 
Qý]ýTherefbre, 

the chapter starts by employing a business cycle 

model similar to that of Chordia and Shivakumar (2002) to investigate whether 

momentum profits in Europe are explained by a set of such vari ables. The 3-month 

Treasury bill yield (YLD), the value-weighted market dividend yield (DIP), the default 

risk premium (DET) and the term spread (TERM are included in the business cycle 

model. Table 2.1 presents the details (definition, measurement and source) of these 

variables for each sample country. One-month ahead-predicted returns for each sample 

stock are obtained using equation (2.1) as in Chord ia and Shivakumar (2002): 

4 

+I (pi, j BCj,, 
-, + 

J. 1 

where, Rjj is return (inclusive of dividends) of firm i in month t, BC is the vector ofj (for 
j=I to 4) macroeconomic variables representing business cycle variables (DIV, YLD, 
TERM, and DET), and cjj is the error term of stock i at time t. For each month/stock 

observation, the parameters of the model ((pij, j =0 to 4) are estimated using the previous 
60 monthly returns '. These time-varying coefficients are used to estimate the 
one-month-ahead predicted return for each stock. Next, the stocks are ranked using the 
predicted returns and long and short positions taken accordingly. The stocks are held for 
6 months from the month of portfolio formation. 

7 This chapter follows Chordia and Shivakumar (2002) to restrict the sample to stocks that have at least 24 
observations in the estimation period in order to avoid spurious parameter estimates. 
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Table 2.1 Business cycle variables, sources and their measurement 

Country 
Short-term Market Dividend Corporate Bonds Long-term 

financial securities Yield government bonds 

UK FTA Debenture and 

3-month Treasury Dividend yield on Loan Stock Redemption U. K. Gross 
UK bill Financial Times all Yield (1977.1-1995.10) and Redemption Yield 

Share Price Index Corporate Bond Yield on 20-year Gilts 
(1995.11-2002.6) 

Dividend yield on Germany 3-month FIBOR Germany DS-Markct Corporate bonds rate' 
constituents 

Long Term 
Government Bond 
Yield (9-10 Years 
Maturity) 

Dividend yield on Obligations private sector Government 
France Call money Rate France DS-Market yield ratC2 Guaranteed Bond 

constituents Yield (EP) 

Notes: 
1 Source: the Economist 
2 Source: Banque de France 
Unless otherwise indicated, all data are obtained from Datastream 

Measurement of variables: 
1. YLD is measured by the rate of return on short-term financial securities. 
2. DIV is measured by dividend on value-weighted broad based market index. 
3. DEF (default risk premium) is measured as 'the yield on corporate bonds' less 'the yield long-term 
government bonds'. 
4. TERM (term spread) is measured as 'the yield on long-term government bonds' less 'the yield on 
short-term financial securities'. 

2.2.3 Business cycle, known riskfactors andfirm characteristics 
The extant literature on the profitability of style investing shows that stock returns are 
dependent on firm characteristics. On the other hand, severaLas -models 

(for §Lsýing 
instance, the CAPM, the Arbitrage Pricing Theory, and the Fama-French three factor 

model) ýre used in-estimating-ft risk agLsted x ectR4 returns. If the known risk factors 

and business cycle variables are sufficient in explaining the variation in stock returns, the 

explanatory power of firm characteristics should be insignificant. 

In search for an asset pricing model that can explain momentum profits, this chapter 

employs the two-pass cross-sectional regression based on the framework of Avramov and 
Chordia (2006). In their model, individual stocks are used to avoid any data-snooping 
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biases that are frequently present in portfolio based asset pricing tests. It also avoids any. - 
loss of information that coulcLpotentially arise when stocks are sorted into portfolios. 

Some conditional asset pricing framework in the literature, for example Wu (2002), only 

condition time-varying risk on market-wide information. However, in the first-pass time 

series regressions of Avramov and Chordia (2006) model, the factor loadings are allowed 

to vary with firm characteristics (size and book-to-market ratio)' and business cycle 

conditions as in equation (2.2): 

4333 

(2.2) &, =aj, O+ZajjBC -, 
FFj,, +Lg,. jBM,,, -IFFj,,, +Ap J,, -, +Lp,,, FF,,, +LrjSizq,, 

J. 1 J. 1 J-1 

where, Rij is the return on stock i at time t, BC is the vector of business cycle variables 

identified earlier, FF vector represents the Fama-French three factors', Size is the natural 

logarithm of market capitalisation, and BM is the natural logarithm of book-to-market 

ratio. 

In the second-pass cross-sectional regressions (equation 2.3), the returns that are adjusted 

for known risk factors and business cycle variables (R, ',,, obtained from equation 2.2) are 

regressed on firm specific variableg (firm size, book-to-market ratio and past raw 

returns): 

> 
-, + c,., 

.ý 
YJ�CCJ, I�-l + 2ý il., iPR., j� (2.3) R�, =Co + 

j. 1 M. 1 - 

(the dependent variable) is the sum of constant and residual return (ajo+ ýtjj) where, Rj' 

of equation (2.2). CCjit represents a vector of firm characteristici (forj = 1,2; firm size, 

book-to-market ratio) for security i at time t. PR, jj represents three sets of past 

it can also be argued that size and especially book-to-market ratio have behavioural implications. 
I thank Stefan Nagel for providing the UK 3-factor data. I also thank Kenneth French for making the 

ffML data for Germany and France available. Details about the construction of the variables can be 
obtained from http: //mba. tuck. dartmouth. edu/paees/faculty/ken. french/. I have constructed my own series 
of SMB for France and Germany following Fama and French (1996). 
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cumulative raw returns ( for m=I to 3) over the second through third (RET2-3), fourth 

through sixth (RET4-6), and seventh through twelfth (RET7-12) months prior to the 

current month to capture the medium term momentum returns. If the predictive power of 

firm characteristics is represented by the known risk factors (FF) and business cycle 

variables (BC) in equation (2.2), the coefficients of firm characteristics (yj,, ) and past 

cumulative returns (ii. j) in equation (2.3) should be insignificant. If the cross-sections of 

expected returns (aio + gij of equation 2.2) continue to experience momentum after 

adjusting for the business cycle variables and Fama-French three factors, the coefficients 

of past return variables (il .. ) should be significant and ositive. This would d alcAhc p JO& 

failure of the business cycle and-the Fama-French Mactor models to explain momentum 

profits. Statistically significant coefficients of firm specific variables (yj) and/or the firms' 

own past cumulative returns (il. ) would imply that these variables could explain the 

cross-section of individual stocks' business cycle and risk-adjusted returns. On the 

contrary, insignificant yj and il. would suggest that the business cycle model, controlled 
for known risk factors, could capture the effects of size, book-to-market ratio, and 

momentum in stock returns. 

2.2.4 Behavioural characteristics and stock returns 

A growing body of literature on behavioural finance (see for example Barberis and Thaler, 

2003) suggests that momentum in stock returns is driven by investors9 behaviour and 
divergence in opinions. If so, the variables representing business cycle, known risk 
factors and firm characteristics may not be able to explain fully stock returns and 

momentum profits. No prior study, to my knowledge, has combined both risk factors and 
behavioural characteristics. This chapter contributes to the literature by examining the 

impact of investors' behaviour on the explanatory power of the business cycle model by 

revising equation (2.3) to equation (2.4) that incorporates three measures of investor 

behaviour: 

(2.4) R, ', = Co + 1, vj., CCj�� +1 ii��IPR���, + Etk�BFk., 
', 

+ ei', 
j=I m-1 k-1 
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,, 
(the dependent variable), CCjjj(company characteristics), and PR,,,,,., (past where, R, * 

cumulative raw returns) are identical to those in equation (2.3). The newly introduced 

vector BFk, jj represents k (for k=I to 3) measures of behavioural variables. The measures 

of behavioural variables are: (a) the dispersion in analysts' earnings per share (EPS) 

forecasts (Disp), (b) the mean forecast error (MFE), and (c) the analyst coverage (Cov). 

The choice of these three behavioural factors is motivated by three behavioural theories 

that have been proposed to explain momentum returns. Daniel et al. (DIIS, 1998) suggest 
investor overconfidence causes over-reaction and generates momentumjhqover-reaction 

in vrices will eventually be corrected in the long run as investors observe future news and 

realize their-aror. As a result, increased ovcrconfjdence generates momentum ii-tfi-e-slio-if 

run and reversal in the long run. This chapter employs mean forecast error as Jackson 

(2005) to capture analyst optimism, i. e. the level of (over)conridence. 

Hong and Stein (HS, 1999) argue that private information diffuses only gradually through 

the marketplace leading to an initial under-reaction to news; subsequently positive serial 

correlation in returns attracts the attention of the momentum traders who trade actively 

and ovcr-react. Eventually, prices revert back to their fundamental levels. Hong, Lim, and 

Stein (2000) use residual analysts' coverage as a proxy for the rate of information 

diffusion to test the HS model, found that the diffusion of information is lower for 

momentum stocks. 

Barberis et al (BSV, 1998) show that investors are subject to a conservatism bias which 

causes them to under-react to earnings and other corporate news, causing short-run 

positive autocorrelation, but when they observe trends of earnings rising, the positive 

signal causes them to switch to over-reaction, causing long-run negative autocorrclation. 
In particular, investors exhibit conservatism and underreact to information that contains a 
high weight when adjusting their beliefs. Doukas and McKnight (2005) use dispersion in 

analysts' forecast to proxy the weight of information. 

If momentum returns that are not explained by business cycle variables and known risk 
factors are related to behavioural variables then their coefficients (Xk) will be statistically 
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significant. In addition, a significant (non-zero) Co would suggest that these variables 
(business cycle variables, known risk factors, firm characteristics, past returns and 
behavioural variables) cannot fully explain company returns and hence there are other 

risk factors that are yet to be identified. 

2.3 The sample 
The sample includes all stocks listed (including subsequently delisted) in the French 

(Paris Bourse), German (Frankfurt Stock Exchange) and the UK (London Stock 

Exchange) stock markets between January 1977 and December 2002. The initial sample 

consists of 1,996 stocks for France, 3,063 stocks for Germany, and 4,816 stocks for the 

UK. The models used require at least three years' monthly share price data reducing the 

final sample to 1,531 stocks for France, 1,622 stocks for Germany, and 3,845 stocks for 

the UK. 

Dispersion in analysts' EPS forecasts (Disp), mean forecast error (MFE) and analyst 

coverage (Cov) that are used to represent behavioural variables are obtained/derived from 

I/B/E/S Historical Summary file. I/B/E/S records the analysts' EPS forecasts for the 

sample countries from 1987 onwards only. Therefore, in the model that requires this set 

of data, a shorter period (1987-2002) is analysed. The dispersion in analysts' forecasts 

is measured by the standard deviation of forecasted EPS scaled by the stock price per 

share at the beginning of the month of forecast. To estimate the standard deviation of the 

EPS forecast, at least two analysts are required to follow the sample stock (company). 

The mean forecast error is the difference between the average forecasted EPS and the 

actual EPS of the year, deflated by the absolute value of the mean EPS forecast. The 

analysts' coverage is set equal to the number of analysts that supply one-year EPS 

forecasts. If the number of analysts following any company is not available, the coverage 
is set to zero. 

The differential information hypothesis (Freeman, 1987) suggests that larger (smaller) 

companies are followed by more (fewer) analysts. It implies a high degree of correlation 

between the size of a firm and the intensity of its analysts' coverage. Therefore, the 
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chapter controls for the effects of firm size on analysts' coverage and measures it by the 

residual (eit) of equation (2.5): 

(2.5) ln(AC,., ) = ao + a, ln(Size,,, ) + el,, 

where, AQ, is (I+number of analysts) of firm I at month I and Sizejj is the market 

capitalization of firm I at the beginning of month t. Stock returns (111) are defined as the 

first difference of the natural log of the monthly return index (includes capital gains as 

well as dividend payment). Unless otherwise stated, all data are collected from 

Datastream. The states of the business cycle (expansionary and contractionary periods) 

are obtained from the website of Economic Cycle Research Institute 

(http: //www. businesscycle. com). 

2.4 The results 
2.4.1 Price momentum 
To examine the profitability of price momentum, the commonly used 6x6 strategy is 

used, f6flowing the methodology outlined in Jcgadeesh and Titman (1993). For each 

month t, sample stocks in each country are grouped into deciles based on their 6-month 

form ation-peri od returns. The portfolios are held for 6 months. Equally weighted returns 

are estimated for two extreme (winner and loser) portfolios for each month. The results 
(Table 2.2) show that this strategy generates (statistically significant) monthly profits of 

2.10%, 1.82% and 1.44% for the UK, Germany and France respectively. Except in the 

case of France, a large portion of momentum profits comes from loser stocks. The 

apparent profitability of this strategy is consistent with the extant evidence reported in the 

literature. In addition, focusing on the US, previous studies show negative momentum 

profitability over January (for example, Jcgadeesh and Titman (1993), Chordia and 

Shivakumar (2002) and Avramov, Chordia, Jostova and Philipov (2007)). That is, at least 

in US markets, January cannot trigger momentum. Thus, the chapter also examines 

whether January records negative payoffs in the European markets investigated. 

Momentum profits for January and non-January months are estimated separately. For all 

three countries, the average monthly momentum returns for both January and 
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non-January months are positive and statistically significant. Although momentum 

payoffs in January are not negative in Europe, they are lower than in non-January months, 
indicating that the January effect does not 'oil the wheels' of momentum. 

The chapter also examines whether the profitability of momentum strategies identified 

above is related to the business cycle conditions. For both expansionary and 

contractionary periods, stocks are grouped into deciles and returns from two extreme 

portfolios (winner and loser) are analysed. Table 2.2 presents momentum profits during 

different periods of business cycle for a6x6 strategy. The estimates show that 

momentum profits are positive and signiricant during both expansionary and 

contractionary periods in all three countries. These estimates contradict the findings of 
Chordia and Shivakumar (2002) for the US that momentum prorits are positive during 

expansionary periods and insignificant during recessionslo. Further analysis of each 

market's expansionary and contractionary stages of business cycle during the sample 

period (not reported in the table) reveal evidence of country and business cycle stage 

specific variations in the profitability of momentum trading. In the UK, during 

expansionary (contractionary) periods momentum gains originate largely from winner 

(loser) portfolios. However, there were no such patterns in the cases of France and 
Germany. The variation in the source of momentum prorits with the stages of business 

cycle in the UK indicates that during the expansionary (contractionary) periods most 
investors continue to be optimistic (pessimistic) about the stocks that are performing well 
(poor) in the recent past while they remain almost neutral about others. This suggests a 

possibility that the momentum profits are time varying and associated with the business 

cycle in the UK kutnotin. France-and-Germany. 
-One possible reason that the results of 

UK is differ from Germany and France might be due to the institutional difference of the 

.,, 
which are capital market oriented economies compared to France and Germany, UK 

which is bank oriented economies. Nevertheless, such contemporary relation between 

momentum profits and the stages of business cycle does not confirm the predictive ability 

of the business cycle model. This requires further analysis as presented in the next 

section. 

10 Appendix 2 shows the performance of momentum strategies for each of the business cycle in details. 
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Table 2.2 Payoffs (Raw returns) of Price Momentum Strategies 
The average monthly returns (raw) from the 6x6 momentum trading strategy are reported. For each month 
t, sample stocks in each country are grouped into deciles based on their 6-month formation-period (from 0 
to t-2) returns. The portfolios are held for 6 months. Equally weighted returns of two extreme (winner and 
loser) portfolios for each month arc estimated. The states of business cycle (expansionary and 
contractionary periods) are obtained from the Economic Cycle Research Institute (ECRI). The column 
entitled 'O/o>O' shows the percentage of winner minus loser (W-L) cases that are positive. The p-values (in 
parenthesis of column 'O/o>O') represent the significance level of sign test that measures whether the 
proportion of positive cases is significantly more than 50%. T-statistics (in parentheses) are based on the 
Newey-West autocorrelation consistent standard errors. *(**) denotes significance at the 5(10)% level. The 
sample period is January 1977 to December 2002. 

Country No. of Sample Winner (W) Loser(L) W-L %>O 
f inns (T-stat) (T-stat) (T-stat) (P-value) 

January 1.56 -0.28 1.85 76.00 
(2.59*) (-0.40) (4.25*) (0.01) 

Non-January 0.87 -1.26 2.13 83.96 
(2.79*) (-2.98*) (6.83*) (0.00) 

UK 4816 Expansions 1.18 -0.56 1.74 80.64 
(3.34*) (-1.24*) (5.94*) (0.00) 

Recessions 0.34 -2.99 3.34 95.55 
(I. 11) (-3.77*) (5.96*) (0.00) 

Overall 0.93 -1.17 2.10 83.28 
(3.10*) (-2.90*) (6.65*) (0.00) 

January 0.81 -0.70 1.51 70.83 
(2.4 8 *) (-0.69) (1.51) (0.06) 

Non-January 0.34 -1.50 1.84 81.04 
(1.91**) (4.91 *) (5.85*) (0.00) 

Germany 3063 Expansions 0.68 -0.73 1.41 80.39 
(1.89**) (-1.73**) (4.0 1 *) (0.00) 

Recessions -0.30 -3.05 2.75 79.77 
(-0.85) (-2.65*) (4.74 *) (0.00) 

Overall 0.38 -1.44 1.82 80.20 
(1.41) (-2.96*) (6.04*) (0.00) 

January 0.82 -0.26 1.08 78.07 
(2.21 *) (-0.35) (1.26) (0.00) 

Non-January 0.86 -0.62 1.48 79.17 
(4.34*) (-2.83*) (5.33*) (0.01) 

France 1996 Expansions 0.71 -0.64 1.35 75.96 
(1.83**) (-1.39) (4.34*) (0.00) 

Recessions 1.40 -0.40 1.80 86.66 
(3.07*) (-0.64) (4.14*) (0.00) 

Overall 0.85 -0.59 1.44 78.16 
(2.81 *) (. 1.63) (5.4 8 *) (0.00) 

2.4.2 The role ofpredicted and stock-specific returns in momentum 
Chordia and Shivakumar (2002) argue that momentum in individual stock returns is 

related to business cycle risk in the economy. If their model holds for the sample 
countries and the business cycle can explain momentum profits, the holding period 
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returns not explained by the business cycle model should not be significantly different 

from zero. To examine this proposition, momentum portfolios are formed on raw returns. 
However, the holding period returns are adjusted for the one month ahead predicted 
return obtained from the business cycle model (equation 2.1)! '. The unexplained portion 

of the returns is defined as the intercept plus the residual (i. e. yio + eit) of equation (2.1). 

The intercept (9jo) is considered not predictable as it may capture part of returns from the 
formation period. Predicted returns are defined as actual returns less unexplained returns. 
Thus, this model controls for any differences in average returns that are not related to 
business cycle. 

Table 2.3 (panel A) reports the average holding period returns from momentum strategies 
that are controlled for business cycle effects. The estimates show that the profits are 

statistically insignificant for the UK (-0.47%) but significant for Germany (4.64%) and 
France (3.56%). These findings indicate that the predictive power of past returns is 

limited to the portion of returns that is predictable by business cycle variables for the UK, 
but not for France and Germany. However, it is also possible that the business cycle 

model simply captures the information contained in past raw returns. Hence, whether the 

momentum profits are attributable to the predicted part of the business cycle model or the 

unexplained portion of the returns is further investigated. If momentum payoff is 

attributable only to the predicted portion of returns, then no momentum profits should be 

earned by sorting stocks on the basis of their returns or on the unexplained part of returns. 

To compare the profitability of momentum strategies based on the components of returns 

predicted by business cycle variables with the profitability of strategies based on the 

unexplained component of returns (or stock-specific returns), as in Grundy and Martin 

(2001), all stocks are ranked into quintile portfolios according to their compounded 

stock-specific returns (unpredicted) during the six-month formation-period. The predicted 

and stock-specific returns are estimated as follows. Using equation (2.1), 

one-period-ahead predicted returns for each stock are obtained. The unexplained (or 

stock-specific) return is defined as the sum of the intercept and residual of the business 

Appendix 3 shows the descriptive statistics of business cycle variables used in this chapter. 
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cycle model (i. e. 9jo + cij of equation 2.1). The momentum strategy based on these 

stock-specific returns takes a long (short) position on the stocks with the highest (lowest) 

stock-specific returns during the formation period. The holding period starts one month 

after the end of the formation period and stocks are then held for the subsequent 

six-month period. Table 2.3 (panel B) presents the monthly profits from portfolios based 

on stock-specific (unexplained) returns. The estimates show that payoffs from this 

momentum trading are not significantly different from zero in any of the sample countries. 

However, the strategies based on predicted returns (panel C, Table 2.3) seem to generate 

positive and significant profits for the UK (1.10%) but not for France and Germany. 

These 
- 
results confirm the findings of the preceding section that momentum profits can be 

12 A two-way dependent sort is conducted between momentum portfolios based on past raw returns and 
predicted returns. The effects of conditioning on the state of the market are also analysed. Both 
investigations, however, confirm the earlier conclusions. 
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Table 2.3 Payoffs from Momentum Strategy and the Business Cycle 

Business-cycle adjusted holding period (6-month) returns from two extreme deciles are reported in all three 
panels. Portfolios in panel A are formed on raw returns (R) during the formation period. Portfolios in panel 
B are formed on stock-specific returns that are not predicted by business cycle. Portfolios in panel C are 
formed on the returns predicted by the business cycle model. Business-cycle-adjusted returns and predicted 
returns for each stock i (and for each month 1) are computed by estimating equation (2.1): 

4 

(2.1) R1,1 = (pi, +Z (pi, j BCj,, 
-, + ej,, 

J. 1 
Where, BC represents business cycle variables (DIV, YLD, TERM, and DEF). The adjusted return is given 
by the unexplained portion of the model (i. e. 91, o + ej, I), while the predicted return (PR) is actual minus 
unexplained. The model parameters are estimated using data from time 1-1 through 1-60. The column 
entitled 'O/o>O' shows the percentage of winner minus loser (W-L) cases that are positive. The p-values (in 
parenthesis of column '%>O') represent the significance level of the sign test that measures whether the 
proportion of positive cases is significantly more than 50%. T-statistics, given in parenthesis, are adjusted 
for autocorrelation and hcteroscedasti city. *(**) denotes significance at the 5(10)% level. The sample 
period is January 1979 to December 2002 and firms that have a minimum of three years'data are included. 

Panel A: Sort on raw returns, R; adjusted payoffs are (pio + C1, & 
Winner (W) Loser (L) W-L %>O 

Country (T-stat) (T-stat) (T-stat) (P-value) 
4.57 5.04 -0.47 59.26 UK (4.41 *) (2.97*) (-0.23) (0.00) 

Germany 3.50 -1.14 4.64 64.68 
(2.41 *) (-0.75) (4.18*) (0.00) 

France 11.29 7.34 3.56 56.67 
(7.52*) (3.92*) (2.60*) (0.05) 

Panel B: Sort on (pi. 0 + c1j; payoffs are raw returns, 
Winner (W) Loser (L) W-L %>O 

Country (T-stat) (T-stat) (T-stat) (P-value) 

-0.31 -0.15 -0.17 48 70 UK (-0.70) (-0.47) (-0.74) . (0.71) 

Germany -0.01 -0.23 0.22 53.02 
(-0.04) (-0.65) (0.86) (0.39) 

France 0.05 0,03 0.02 45.69 
(0.12) (0.07) (0.06) (0.21) 

Panel C: Sort on predicted return, PR; Ta offs are raw returns, R. y Its 
Country Winner (W) Loser (L) W-L %>O 

(T-stat) (T-stat) (T-stat) (P-value) 

UK 0.20 -0.90 1.10 72.86 
(0.58) (-2.21 *) (4.40*) (0.00) 

Germany -0.04 -0.16 0.12 56.47 
(-0.11) (-0.49) (0.49) (0.06) 

France 0.17 -0.12 0.29 59.05 
(0.44) (-0.35) (1.01) (0.01) 
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2.4.3 The effects of conditioning on the state of the market 
A recent paper by Cooper et aL (2002) documents that momentum strategies arc 

significantly influenced by market conditions, given that prorits of momentum strategies 

are substantially higher when the market is bullish. Additionally, they illustrate that using 
the macroeconomic model suggested by Chordia and Shivakumar (2002) fails to explain 
the asymmetries in the momentum prorits. Thus, the aim of this section is to investigate 

how the state of the market affects the profitability of momentum strategies in the sample 

countries. 

For the reported results, the equal ly-wei ghted returns of all securities listed on the 
London Stock Exchange for the UK, Frankfurt Stock Exchange for Germany and the 
French Stock Market over the 36 months prior to the beginning of the strategy's holding 

period have been employed. If the market's three-year mean return is non-negative 
(negative), the state of the market is defined as UP (DOWN). Consideration has also been 

given to a two-year and a one:. year definition of the market's state. 

In Panel A of Table 2.4, the average raw returns to the momentum strategy that follow 
three-year UP market is 1.65% in the UK, 1.29% in Germany and 1.22% in France. 
Besides, the performances of the momentum strategy under two-year and one year UP 

states are similar in all three countries. In addition, Panel B shows that profits can also be 

earned following DOWN market. All three DOWN states in the sample countries provide 
significantly positive payoffs, which are higher than UP states and associated with higher 

standard deviations. Contrary to the results documented by Cooper et al. (2002) that 
momentum profits exclusively follow UP periods, the results do not support the view that 
by conditioning on the state on the market has dramatic impact on the momentum profits. 

In order to examine the robustness of the macroeconomic model (2.1) in explaining the 

profits of momentum strategies in the UK". Table 2.5 presents two-way dependent sorts, 

stocks in each month are first sorted into deciles based on their predicted returns (t to t+5) 

13 The previous sections suggest that the macroeconomic model does not explain momentum profits in 
Germany and France. Thus, this chapter only focus on the performance of model in explaining the UK 
momentum profits. 
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from the business cycle model (2.1), each of these deciles are then further sorted based on 
the raw returns in the formation period (1-7 to t-2). The average monthly return to each of 
the 100 portfolios over the holding period Q to t+5) is reported, and separated into UP 

and DOWN markets at time t-1. Finally, the average payoffs to momentum strategy 

within each of the predicted return deciles are also reported. 

Panel A of Table 2.5 shows that within each of the predicted return deciles, the mean 

returns are generally decreasing across the raw return deciles. Furthermore, the strategy 

that buys winners and sells losers based on raw returns is found to earn significantly 

negative payoffs for all ten predicted return deciles. Similar results are found in Panel B 

and suggest that there is no momentum profits after DOWN states. 

Unlike Cooper et al. (2002), who documented that there are significant momentum 

profits after UP states within all of the predicted return deciles. Rather, the results suggest 
that no profits could be earned in each of the predicted return decilcs, thus provide a 

strong belief that the macroeconomic model is capable to explain the momentum profits, 

there is no evidence on different perspective between UP and DOWN market in the UK. 

34 



N 

c 

W 

iz 

E- 

, 't 

0 'm u c2. = 

Gn 0 

0 

c: 0 rl 

000 
78 0 CZ 4ý 

LU- 
p. -, 

*g '0 :j !ný 

> 1. D 
r- 

r- 9, -0- r. 0- 0 Ei b. E 
Alo 

. 
0 *o 

. 0. 
-- 

2 
0 c3.0 U 
10 >, ýr +.. ä 

. ce 0 
c> = -bi 2t 

. Z) Ecý 12. r. 
% 

0 

m l* 2 1-1.2 - 

r, >0 
ý- 

10 >u 00U 11) CJ 

.2ý 0-0 - 
ia ý. 2 

.0 
-CJ 0 1-. 

(a 05 
2 .2 . 

2: rA x 

ý, -2 9Ag 4- to) 
r. t: r- r. 0 r- =00 

Z2 -2 r 

.5Mý t-.: , :i 

0 

.5Qýý0 =eEZ +VA 
cu le :i 

ýý g ýý ZEI 

0 2p = -'4 

0 >.. r. :D0 
0 

= 0 c; « 0u -TJ ý L4 tu c4.4 M -4 

IZ tA rl 
tn co in 'r 

-1 
m 
In 

m 
vi 

C4 "t 

19! ei ri W l el 00 
> 00 .0 " m ti 

I? 
ILI 

M 00 
o-I 
C14 t- 00 'I. 

-.. 0 

t 

14.1 

tn 

Zo 

Im oý 

oo 09 :ý oo -1: 
E J., 1? 2ý 9 9, 

r4 
,' 

"ý m 
0 ri 

0 

lz 00 rý 

en , 
::, " tn 

IN 

r. 4 
00 cq 

. 

C4 

wi 
ý;, 

". (7" -1 0ý 
o.. % 

G 
ON 0-% 

-11 
, 6-j 0 Q 

'4q 

rA 

A 
00 

z 

cz r- en en Iq "I Cý vi N IT N 

12 
rn cz 

ý N -j 

f4 

r. 

0" c> C> ýo 14 

V 
0"- 
--- 

>1 

COS cn 

vi rn 



Chaptcr 2 

Table 2.5 Two way dependent sorts: Ranked by Predicted Returns and then Raw 
Returns in UP and Down States in the UK 

For each month t, all stocks are first sorted into deciles based on their six-month (t to t+5) 
cumulative predicted returns from the business cycle model. Each predicted returns decile is then 
further sorted into deciles based on their raw returns over the prior six months (1-7 to t-2). 
Non-negative (negative) mean equal ly-weightcd returns of all securities listed on London Stock 
Exchange during month 1-36 to t-I define UP (DOWN) markets. The two-way dcpendent sorts 
result in 100 portfolios. All stocks are equally weighted in a portfolio. For each portfolio, the table 
reports the mean monthly returns (in %) over the holding period months t to t+5) following 
UP(DOWN) markets. The sample period is January 1979 to June 2002. t-statistics (in parenthesis) 
are adjusted for autocorrelation and heteroscedasticity. * denotes significance at the 5% level. 

Predicted 
returns 

1 
(Low) 

2 3 

Panel A: Three-year UP markets 
Raw retums 

45678 9 10 
(Iligh) 

High - Low 
Q-stat) 

I (Low) -2.61 -3.22 -3.04 -3.48 -2.91 -3.08 -2.88 -3.18 -3.07 -3.50 -0.89 (-1.92) 
2 -0.87 -0.89 -0.88 -1.06 -1.02 -1.16 -1.09 -1.14 -1.28 -1.83 -0.95 (-2.57)* 
3 0.10 -0.38 . 0.31 -0.24 -0.35 -0.40 -0.58 -0.42 -0.76 -1.22 -1.32 (-3.87)* 
4 -0.06 0.18 0.00 0.21 0.13 0.11 0.07 -0.09 -0.30 -0.62 -0.56 (-1.73) 
5 0.64 0.43 0.98 0.51 0.48 0.41 0.38 0.15 0.39 -0.14 -0.78 (-2.22)* 
6 1.29 0.74 0.88 0.90 0.74 0.76 0.49 0.48 0.36 0.00 -1.29 (-4.05)* 
7 1.54 1.27 1.20 1.03 1.16 1.13 0.90 1.15 0.91 0.09 -1.45 (-4.51)* 
8 1.84 1.60 1.69 1.47 1.58 1.60 1.40 1.37 0.91 0.44 -1.40 (-4.13)* 
9 2.73 2.32 2.17 2.14 2.25 1.92 1.88 1.67 1.42 1.01 -1.73 (-4.71)* 
IO(High) 4.20 3.42 3.21 3.15 2.72 2.83 2.96 2.56 2.09 1.49 -2.71 (-5.06)* 

Predicted 
returns 

1 
(Low)_ 

2 

Panel B: Three-year DOWN markets 
Raw returns 

345678 9 10 
(Ifigh) 

H igh - Low 
(1-stat) 

I (Low) -4.63 -5.33 -5.97 -5.72 -6.64 -5.24 -5.77 -6.09 -5.95 -6.10 . 1.47 (-1.90) 
2 -1.54 -2.20 -2.46 -2.50 -2.95 -2.86 -2.81 -3.24 -3.26 -2.51 . 0.98 (-1.53) 
3 -1.32 -1.42 -1.68 -1.56 -1.49 -1.62 -1.83 -1.44 -1.62 -2.05 . 0.73 (-1.20) 
4 -0.41 -0.52 -0.64 -0.72 -0.81 -0.74 -0.75 -0.85 -0.76 -0.97 -0.56 (-0.96) 
5 0.33 0.09 0.31 -0.07 0.02 -0.05 -0.19 -0.10 -0.37 -0.52 -0.85 (-1.63) 
6 1.15 0.56 0.36 0.51 0.50 0.65 0.24 0.21 0.29 0.15 -1.00 (-2.19)* 
7 1.25 0.82 1.14 0.85 0.79 0.92 0.89 0.98 0.69 0.45 -0.80 (-1.65) 
8 2.07 1.44 1.46 1.45 1.42 1.54 1.32 1.29 1.21 1.10 -0.97 (-1.83) 
9 2.50 2.13 1.94 2.02 2.05 1.90 1.87 1.96 1.88 1.68 -0.82 (-1.41) 
10(fligh) 4.59 3.64 3.20 3.52 3.25 3.42 3.29 3.44 3.41 2.73 -1.86 (-1.99)* 
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2.4.4 Decomposition ofmomentum profits 
Thus far, this chapter finds that employing a macroeconomic multifactor model can 

explain momentum profits in the UK, while the model fails to explain the momentum 

profits in'Germany and France. This section follows Chordia and Shivakumar (p. 1009, 

2002) to decompose the momentum profits to provide a robustness test for the preceding 

sections. This section is based on the following model: 

LM 

(2.6) ult +I Ak At + 1: Otm zmt + eu 
k-I M-I 

where r is the return on security i, ýLj, is the expected return on security i conditional on 

the information set at time t. fk, is the return on the factor mimicking portfolio k, PA 

is the factor loading of security I on factor k, e,, is the firm-spccific component of return, 

z., represents industry portfolio returns orthogonal to the returns on the factor-mimicking 

portfolios, and 0 im is stock i's sensitivity to the return on industry m. 

During construction, the K factor portfolios, the industry components, and the 
idiosyncratic terms are contemporaneously uncorrelated. We therefore assume 

E(fitfkt-, ) = 0, for all I#k; 

E(ei, fj, 
-, 

)=O, forall I#j; 

E(z, 
nlz,,, -, 

)=O, forall mon; 
E(z,,, 

tfkt-h)=O, forallm, kandh=±1; 

E(eitfkl-h) = 0, for all i, k, and h =: Ll; 

E(e,, z,,,, -h) = 0, for all i, m, and h= ±1; 

where E(e,, ) =0 for all i, and E(z,,,, ) =0 for all m. 

Momentum strategies are formed based on the previous sections. For each month t, all 
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stocks in each country are allocated into deciles based on their six- month formation 

period from t-7 to t-2. Decile portfolios are formed monthly by weighting equally all 
firms in that decile ranking. The position is held for the following six. month period (t to 

t+5). In order to obtain a profitable self- financing momentum strategy, past winner have 

to continue to outperform and past losers have to continue to underperform. The expected 

momentum profits are: 

(2.7) E[(r,, -r, )(r,, 
-, -r> 

where a bar over a variable denotes its cross-sectional average. 

Based on the assumed return-generating process, the momentum profits can be 

decomposed as followed: 
K-2 

(2.8) E[(ri, - Ft)(rt-I - FI-1)] ý-- (pil - Tt)(pit-I - ; 71-1) + Y, (Pik - flk ) Cov(fkl, fkt-1) 
k-I 

m 
(0j" 

M=l 
")2 

COV(Z Z .. 
+ Cov(ei,, e,, -, 

) 

Average over all N stocks, the momentum profits equal 
i Ar L Al 

2 COV(, 
mt, , nt_, 

) 

., 
(, u,, -+1: a" Cov(fkt, fkt-0 + Za (2.9) -1: 6k 0. N j=1 k=l M-1 

N 

L Cov(ei,, ei, -, 
) 

N j=1 

where 
2 

and a2 are the cross-sectional variances of the portfolio loadings and the I 07A 0. 

industry sensitivities, respectively. 

Equation 2.9 decomposes expected momentum profits into four components. The first 

component , (pi, - A)(, u,, -, - 
T, 

-, 
) , is the cross-sectional variance of expected returns. 

If stocks that have expected returns that are higher than the cross-sectional mean, during 

both portfolio formation and holding periods, this component will increase momentum 
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L 

profits. The second component , Laý, C6v(fkt, fk, 
_j) , is the serial correlation in the 

k=1 

M 

factors. The third component, ZaO. Cov(zmtpzmt_j), is the serial correlation in the 
M=1 

industry return components. The last term , Cov(e,,, e,, -, 
) , is the average serial 

correlation of the idiosyncratic component of returns, determined by stock price reactions 

to firm-specific information. 

I 

Table 2.6 reports the results of the decomposition of momentum proflits. The main 

contribution to the UK momentum profits is due to the cross-sectional variance of 

expected returns (86.75%). Further, the cross-sectional variance of expected returns 

remains as the main contribution to the momentum profits within both winner and loser 

portfolios. Rather, the situation with respect to France and Germany are very different. 

This chapter does not find any clear contribution for the momentum strategies in 

Germany and France. Yet, this chapter does not find any main sources of momentum 

profits in the winner portfolio. Rather, the findings show that the main contribution to 

momentum profits in France and Germany are due to underreaction to firm-spccific 

information from the loser portfolios. To sum up, the decomposition of momentum 

profits thus reinforce the previous sections that momentum Profits are driven by the 

cross-sectional variation of expected returns in the UK, while underreaction to 

firm-specific information is the main source of momentum profits in France and 
Germany. This section also f"inds that the underreaction phenomenon is more pronounced 
for the losers than for the winners. 
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Table 2.6 The decomposition of momentum profits 

Momentum strategies are formed in the manner described in Table 2.2. The 
classifications of the expansionary and contractionary periods are obtained from the 
Economic Cycle Research Institute (ECRI). The percentage contributions (in 

parenthesis) are generated by dividing a, 8, (p, and Q by absolute value of the 
exnected profits, E(n). 

UK 
E(7r) Cr (P 0 

0.00131 0.00009 -0.00015 0.00026 
Winner - Loser 0.00151 (86.75%) (5.96%) (-9.93%) (19.85%) 

0.00150 -0.00001 -0.00016 0.00019 
Winner 0.00152 (98.68%) (-0.67%) (-10.52%) (12.50%) 

0.00112 0.00018 -0.00002 0.00034 
Loser 0.00162 (69 . 14%) (11.11%) (-1.23%) (20.99%) 

Germa ny 
E(n) Cr 8 (P rl 

0.00007 0.00019 0.00004 0.00027 
Winner - Loser 0.00057 (12.28%) (33.33%) '(7.02%) (47.37%) 

0.00025 0.00008 0.00004 0.00018 
Winner 0.00055 (45.45%) (14.55%) (7.27%) (32.73%) 

-0.00010 -0.00015 0.00009 0.00061 
Loser 0.00 (-22.22%) (-33.33%) (20.00%) (135.56%) 

France 
E(n) Cr q) (I 

0,00061 0.00011 -0.00015 0.00062 
Winner - Loser 0.00119 (51.26%) (9.24%) (-12.61%) (52.10%) 

0.00016 0.00015 -0.00016 0.00014 
Winner 0.00029 (55.17%) (51.72%) (-55.17%) (48.28%) 

0.00036 0.00012 -0.00009 0.00111 
Loser 0.00150 (24.00%) (8.00%) (-6.00%) (74.00%) 

Notes: 
E(n) = E[(ri, - 
cy = (pl, 

K 
ö= 1 (ßik 2 COV(fkt 

9 
fkl-1) 

k-1 
ki 

(P = 2: (0,. - Ö. ), Cov(z. � Z., -, ) m-1 Cl = 

2.4.5 Time-varying riskpremia and conditional model 

The results based on the linear time series predictive regression framework, discussed in 

previous sections, show that momentum profits can bet-explained-by-theJ2ujiness cycle 
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for the_-U]UuLnot-for-aance-and__Germaýy- Although such approach accounts for 

time-varying expected returns, it does not allow factor loadings to vary with conditioning 
information. Therefore, to examine whether the predictability of the business cycle model 
in the UK is due to time-varying risk premia, or time varying asset pricing 

misspecification or both, the two-pass cross-sectional regression model of Avramov and 
Chordia (2006) is employed. This model allows for both risk and expected return to 

vary with conditioning information. 

The coefficients of the two-pass cross-sectional regression model (equation 2.3) arc 

reported in Table 2.7. Panel A shows the payoffs from the unconditional model (similar 

to Fama and Macbeth, 1973) where yy and &U (the coefficients of product terms) of 

equation (2.2) arc restricted to zero. Panel B presents the conditional model where size 

and book-to-market ratio are the conditioning variables for the factor loadings. In both 

models (panels A and B), the coefficients of past returns (RET 2-3, RET 4-6 and RET 
7-12) are negative but insignificant in most cases. Further, the cross-sectional averages of 

coefficients of determination (iZ2 ) in panel B are slightly lower than those in panel A 
indicating that the conditional model (panel B) is marginally better in explaining the 
impact of firm characteristics on risk-adjusted returns. The results show that when alpha 

varies with business cycle variables, the firm-level momentum returns have no impact on 
the cross-section of expected returns unrelated to business cycle. This does not suggest 
that momentum profit is a compensation for bearing business cycle risk, but it reflects an 

existence of a business cycle pattern within the profitability of momentum strategies. This 

evidence is consistent with the finding of Avramov and Chordia (2006) and suggests that 

there might be an unidentified risk factor related to the business cycle that captures the 

momentum in stock prices. These findings may also be interpreted in a way consistent 

with investors' behaviour based models. For instance, investors may under-react to good 

news during expansionary periods and over-react to bad news during recessions. In 

reality, both of these could drive price momentum. To examine whether investors' 

behaviour is responsible for momentum in stock prices, this section extendi-tii-e -MOdel to 
incorporate behavioural variables (see equation 2.4). 
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Table 2.7 Two-pass cross-sectional regression and time varying alpha 

Time-series average of individual stocks' cross-sectional OLS regression coefficient (equation 2.3) for all 
securities in the UK, Germany and France are reported. 

23 

R,, = CO + PR +e (2.3) YYjjCCjj"-1+I: 17., I M"'I-I V 
J. 1 M-I 

Where, Ri*, is the unpredicted component (aj,,, +pj, j) of time series equation (2.2): 
433.3 

(2.2) A,, =ai, o +2, ai, jBCj., -, +EA, jFFj,, +2, r,,, Size,,, 
-, 

FF,,, +2:, 61, jBMI,, -IFFj,, +A,,, 
J-1 J-1 J-1 J-1 

CCj,,, t is a vector of firm characteristic j 0=1,2 i. e. firm size, book-to-market ratio of security) of stock! at 
time t (i. e. ), PR,,,, i, t are the past cumulative raw returns of stock i over the second through third (RET2-3) 
fourth through sixth (RET4-6), and seventh through twelfth (RET7-12) months prior to the current month t. 
In equation (2.2) size is the logarithm of market capitalisation, BM is the logarithm of book-to-market ratio. 
BC is a vector of business cycle variables ((DIV, YLD, TEM, and DEF) and FF is a vector representing the 
Fama-Frcnch three factors. 

Equation (2.3) is estimated for two separate dependent variables generated by unconditional and 
conditional versions of equation (2.2). First, in estimating the unconditioned dependent variable vu and 5d of 
equation (2.2) are set to zero. The estimates of equation (2.3) based on this dependent variable are reported 
in panel A. Second, to obtain the conditioned dependent variable, size and book-to-market ratio in equation 
(2.2) are set to be the conditioning variables for the factor loadings. The estimates of equation (2.3) based 

on this dependent variable are reported in panel B. Vis the time-scries average of monthlyV. T-statistics 
(reported in parenthesis) are adjusted for autocorrelation and hcteroscedasti city. All coefficients are 
multiplied by 100. *(**) Denotes significance at the 5(10)% level. 

0 Panel A: Dependent va iable ( i'l ) is unconditional 

Country Intercept SIZE BM RET2-3 RET4-6 RET7-12 iZ2 0 (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) ( 

1.213 -0.564 -0.860 -0.489 -0.461 -1.099 3 87 UK (6.5 8 *) (47.1 *) (-10.1*) (-0.86) (-0.89) (-2.16*) . 

Germany 1.094 -0.241 -1.067 2.109 4.390 . 1.313 4.55 (4.13*) (-6.90*) (-9.19*) (0.98) (1.13) (-0.26) 

France 0.568 -0.228 -0.765 -1.233 -1.050 -3.093 4.89 (1.61) (4.8 1 *) (-7.71 *) (-0.92) (-0.58) (-1.40) 

Panel B: Dependent variable (Ri*, ) is conditioned on size and book-to-markct ratio 

CI 
Intercept SIZE BM RET2-3 RET4.6 RET7-12 R2 ountry (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) 

1.173 -0.507 -0.493 -0.342 -0.586 -0.819 3 14 UK (5.64*) (- 12.6 *) (-5.44*) (-0.56) (-1.09) . (-1.66) 

Germany 
1.707, -0.285 

* 
-0.791 -3.723 -0.447 -11.164 4.05 * (6.92*) (-6.15 ) (-7.11 *) (-1.31) (-0.13) (-2.51 ) 

2.603 -0.382 -0.292 -1.903 -3.912 -6.364 4 65 France (8.33*) (-8.50*) (-3.30*) (-1.32) (-2.13 *) . (-2.30*) 
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The dependent variables (unconditional and conditional) of equation (2.4) are derived 

with and without imposing the values of Yjj and Sjj equal to zero in equation (2.2). Panel 

A of Table 2.8, where the dependent variable is derived by restricting yjj and (5ij equal to 

zero (unconditional), shows that the coefficients of prior returns (RET2-3, RET4-6 and 
RET7-12) remain negative (significant or insignificant). The, results suggest that the 
inclusion of behavioural characteristics in the model does not Kfect-the-notioq_ that 

momentum patterns are risk-based, and they are linked to business cycle. 

Panel B of Table 2.8 presents the conditional model with size and book-to-market ratio 
being the conditioning variables for the factor loadings. The sample of panel B'is also 
subdivided into three groups: portfolio PI is an equally weighted portfolio of stocks in 

the worst performing 30%, portfolio P2 contains the middle 40%,, and portfolio P3 
includes the best-performing 30%. The sub-sampling allows to examine how winner and 
loser stocks behave individually with the business cycle. The overall results suggest that 

g, i icients. e-.: _q 
the coefr _pf prior returns when behavioural 

variables are included in thq_mqdet (equation 2.4). The coefficients remain negative and, 
in most cases, significant. These negative and significant slopes of prior returns suggest 
that the conditioning information (i. e. business cycle variables and Fama-French three 
factors) over-explain the momentum profits. Such findings are in line with the findings of 
Grundy and Martin (2001) who documented that momentum strategies based on 
Fama-French three factors 

The role of behavioural variables is mixed across the countries examined, having 

relatively stronger influence in France and the UK than in Germany. Such indings 
illustrate that the behavioural variables are less likely to be correlated ajt! j_t4QIqsJiness 
cycle, and hence behavioural variables are unlikely candidates in explaining momentum 
profits. 

The results based on sub-samples show that much of the coefficient of Prior returns 
(negative and significant) are from portfolio 2 (P2). This suggests that the 
over-explanatory power by the conditioning information and risk factors concentrates on 
the non-momentum stocks, except for RET7-12 where, in most cases, the returns are 

43 



Chapter 2 

negative and significant. This implies a reversal in conditioning information adjusted 

momentum profit within a year. Overall, these results confirm the chapter's earlier 

findings that there are indeed business cycle patterns within momentum profits, even after 

controlling for investors' behaviour and prior price trend. "' 

2.4.6 Industry momentum 
Moskowitz and Grinblatt (1999) claim that industry effects are almost entirely 

responsible for the momentum effect in the US, while Grundy and Martin (2001) 

document that industry momentum and individual stock momentum are distinct 

phenomena. This section analyses the relationship between the business cycle and 
industry momentum profits and examine whether it is the industry returns or the 

component of returns predicted by macroeconomic variable that better explains 
individual stock momentum. 

For each month t, all stocks are used to compute equally weighted industry returns. Table 

2.9 shows the 10 industry classifications. The time series of industry returns is then used 

to form the winner and the loser portfolios. The winner (loser) portfolio is the equally 

weighted return of the top (bottom) industry with the highest (lowest) raw returns in the 

six-month formation-period from 0 to t-2. The momentum profit is then computed over 

the holding period Q to t+5). 

14 Equation (2.2) was revised to equation (2.2') to incorporate behavioural variables. 
4333 

(Z2') ý,, Sbg FF +Y-8,,, Bg, 4FF,,, +ALET, +, V&1; 4 +ýCbý., +144 
J=I J-1 

ý-I I't 
J-4 

Where, BC is a vector of business cycle, variables, FF is a vector representing the Fama-French three 
factors, Size is the logarithm of market capitalisation, BM is the logarithm of book-to-market ratio, Disp is 
the dispersion of analysts' forecasts, MFE is the mean forecast error, and Cov is the analyst coverage. The 
results, however, are qualitatively similar to those reported in Table 2.7 (panel B). 
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Table 2.8 Two-pass cross-sectional regression, time varying alpha and behavioural 
variables 

Equation (2.3) is estimated for two separate dependent variables generated by unconditional and 
conditional versions of equation (2.2) (see Table 2.7). First, in estimating the unconditioned dependent 
variable vj and Sy of equation (2.2) are set to zero. The estimates of equation (2.3) based on this dependent 
variable are reported in panel A. Second, to obtain the conditioned dependent variable, size and 
book-to-market ratio in equation (2.2) are set to be the conditioning variables for the factor loadings. The 
estimates of equation (2.4) based on this dependent variable are reported in panel B. 

233 

(2.4) Ri, =Co +Ivj�CCI�� +Eim, iPRm, 1, f +2:, t�, BF��, +e�, 
j=I m=I k-1 

Where, Rj*, is the unpredicted component (aj,,, +, uj,, ) of time series equation (2.2) as in Table 2.7. CCj, i, t is 

a vector of firm characteristic ja=1,2, i. e. firm size, book-to-market ratio of security) of stock i at time t. 
PR,, i, t are the past cumulative raw returns of stock i over the second through third (RET2-3) fourth through 
sixth (RET4-6), and seventh through twelfth (RET7-12) months prior to the current month t. BFk, i represent 
investors' behaviour that are measured by (a) the dispersion in analysts' EPS forecasts (Disp) measured by 
the standard deviation in EPS forecasts scaled by the stock price per share at the beginning of the forecast 
month; (b) mean forecast error (MFE) estimated as the difference between the average forecasted EPS and 
the actual EPS deflated by the absolute value of the mean forecasted EPS; and (c) analyst coverage (Cov) 
measured by the number of analysts providing one year ahead EPS forecasts. Portfolio PI is an equally 
weighted portfolio of stocks in the worst-performing 30%, portfolio P2 contains the middle 40%, and 
portfolio P3 includes the best-performing 30%. Vis the time-series average of monthly'R. T-statistics 
(reported in parenthesis) are adjusted for autocorrelation and heteroscedasticity. All coefficients are 
multiplied by 100. *(**) Denotes significance at the 5(10)% level. 

0 Panel A: The dependent variable ( Ri. t ) is unconditional 

Intercept SIZE BM RET2-3 RET4-6 RET7-12 Disp MFE COV -2 Country (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) (T-stat) 

UK -1.01' -0.11 -0.10 -1.33 -0.31 -0.58 -5.73 -22.37 0.42 9.85 (-0.95) (-0.56) (-0.32) (-0.80) (-0.22) (-0.42) (-0.60) (-1.08) ( 0.50) 

-0.06 -0.28 -1.41 -5.50 -7.62 -32.05 -0.58 -1.67 45*80 13.59 Germany (-0.06) (-2.32*) (-3.27*) (-0.82) (-1.11) (-3.66*) ( 1.02) (-5.61*) (1.32) 

France "6.28 0.49 0.32 -10.79 -0.60 -10.78 -0.23 -28.34 -1.35 22.72 (-9.85*) (4.03*) (0.88) (-1.52) (-0.14) (-2.24*) (-0.70) (-1.50) (-0.08) 
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Table 2.8 continued 

Panel B: The dependent variable ( Ri*t ) is conditioned on size and book-to-market ratio 
UK 

Intercept 
(T-stat) 

SIZE 
(T-stat) 

BM 
(T-stat) 

RET2-3 
(T-stat) 

RET4-6 
(T-stat) 

RET7-12 
(T-stat) 

Disp 
(T-stat) 

MFE 
(T-stat) 

Covt 
(T-sta 

iZ2 N 

8.70 -0.58 -0.58 -4.93 0.24 -17.52 -76.68 98.28 1.52 33 57 P3 (7.29*) (-2.83*) (-1.47) (-1.66**) (0.08) (-7.03*) (-2.48*) (1.04) 1.15) . 

P2 -0.22 -0.23 -0.23 -5.06 -2.67 -21.27 9.45 -1.43 0.01 24.61 (0.24) (-1.66**) (-0.88) (-2.41 *) (-1.52) (-11.34*) (0.62) (-0.09) (0.01) 

Pi -14.37 1.17 0.87 -1.01 0.72 -16.15 181.19 183.45 -4.75 31.38 
(-3.53*) (1.34) (0.73) (-0.78) (0.23) (-4.45*) (0.95) (1.09) (-1.54) 

Overall -1.70 -0.03 -0.62 -2.26 -1.31 -1.92 -8.71 19.26 , 1.44 5.31 (-3.20*) (-0.29) (-4.49*) (-1.77**) (-1.25) (-2.21*) (-1.14) (2.30*) (-2.49*) 

German 
Intercept 
(T-stat) 

SIZE 
(T-stat) 

BM 
(T-stat) 

RET2-3 
(T-stat) 

RET4-6 
(T-stat) 

RET7-12 
(T-stat) 

Disp 
(T-stat) 

MFE 
(T-stat) 

Cov 
R2 

(T-stat) N 

7.87 -0.51 -1.63 -2.15 10.08 -104.70 0.06 -2.73 23.39 
P3 (6.20*) (-3.82*) (-2.76*) (-0.46) - (0.87) (-8.5 1 *) (0.09) (-4.06*) 31.22 

(0.57) 

2.44 -0.40 -0.62 -3.98 7.48 -172.20 -0.27 -1.66 -54.29 31 52 P2 
(1.30) (-3.03*) (-0.83) (-0.82) (0.70) (-10.97*) (-0.43) (-3.34*) . (-0.96) 

Pi -10.78 0.39 -2.28 0.91 -4.62 -104.16 0.29 -2.98 -9.65 29.25 (-2.09*) (0.62) (-2.33*) (0.10) (-0.39) (-6.94*) (0.63) (-2.32*) (-0.87) 

Overall -0.56 -0.18 -1.91 1.34 3.21 -13.26 -0.07 -2.22 0.95 8.49 (-0.71) (-2.17*) (-6.71*) (0.33) (0.54) (-1.71**) (-0.42) (-7.07*) (0.16) 

France 

Intercept 
(T-stat) 

SIZE 
(T-stat) 

BM 
(T-stat) 

RET2-3 
(T-stat) 

RET4-6 
(T-stat) 

RET7-12 
(T-stat) 

Disp 
(T-stat) 

MFE 
(T-stat) 

Cov 
(T-stat) N 

0.38 0.87 -3.74 -30.17 -72.94 -215.47 0.62 -54.82 62.44 
P3 (0.05) (0.63) (-1.05) (-1.20) (-1.58) (-1.42) (0.16) (-0.98) 20.90 (0.47) 

P2 -8.92 1.50 -1.42 -21.43 -57.96 -224.67 0.99 -14.96 -349.36 14 34 (1.41) (1.72**) (-0.94) (-1.64**) (-2.20*) (-3.99*) (0.48) (-0.37) . (- 1.93 * *) 

Pi 
19.86 -2.99 -3.11 27.01 28.96 -52.47 -20.77 56.54 -878.68 23 82 (0.98) (-0.94) (-0.64) (0.56) (0.34) (-0.25) (-1.91**) (0.60 . (. 1.43) 

Overall -4.03 0.33 -0.77 -4.77 -2.80 -10.77 -1.59 -19.33 20.85 9 14 (4.73 *) (3.09*) (-4.04*) (-2.00*) (-0.84) (-1.81**) (-6.09*) (-4.38* . ) (1.85**) 
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Table 2.9 Datastream's industrv classifications' 
INDC3 Definitions 

BASIC Basic Industries 

CYCGD Cyclical Consumer Goods 

CYSER Cyclical Services 

GENIN General Industries 

ITECH Information Technology 

NCYCG Non-Cyclical Consumer Goods 

NCYSR Non-Cyclical Services 

RESOR Resources 

TOTLF Financials 

OTHERS Companies without classifications 

' Industry data were obtained from Datastream to construct the industry portfolios. Ten industries were 
used according to Datastream's industry classification, Datatype INDC3. 

Table 2.10 (Panel A) reports the average profits to the industry momentum, in line with 
Moskowitz and Grinblatt (1999). The profits are significantly positive in all three 

countries. While the industry momentum profits are lower than the individual momentum 

profits in the UK and Germany, the case of France is opposite. Panel A also presents the 

industry momentum profits that are based on the predicted return from the business cycle 
in equation (2.1). The results show that momentum profits based on predicted returns are 

significantly positive in the UK only. This result is consistent with those of the price 

momentum. 

In order to examine if price momentum is caused by the industry effect or if it is a 
separate phenomena, this section firstly investigates if industry momentum fully explains 
price momentum and secondly test whether the price momentum, by taking into account 
the industry effects, can be explained by the business cycle model. Table 2.10 (Panel B) 

reports the raw returns to the momentum strategy based on industry-adjusted returns. The 

industry-adjusted returns are calculated as the stock returns in excess of the industry 

returns. The results indicate that, even after adjusting for industry returns, the average 

momentum profits are significantly positive in all three countries. The findings thus 

suggest that industry momentum does not fully explain price momentum, so the two 

effects are in effect separate. Panel B also reports the industry-adjusted momentum 
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profits that are based on the predicted returns obtained from the one-period-ahead 

forecasts of the business cycle model. The results suggest that, even after adjusting for 

the industry effect, the relationship between p rice momentum and the business cycle 

remains significant in the UK only. 

Table2.10 Industry Momentum Strategy 

The 10 industry classifications used in this study are obtained from Datastream's 
industry-classification (datatype INDC3). The time series of industry returns is then used to form 
the winner and the loser portfolios. For each month t, all stocks are first sorted into deciles based 

on their six-month (t to t+5) industry returnsfindustry-adjusted returns in (Panel A/Panel B). For 
each stock i and for each month t, the industry-adjusted returns are calculated as the stock returns 
in excess of the industry returns. The winner (loser) portfolio is the equally weighted return of the 
top (bottom) industry with the highest (lowest) raw returns in the six-month formation-period 
from t-7 to t-2. The momentum profit is then computed over the holding period Q to t+5). Raw 
payoffs indicate the strategy's raw monthly returns during the holding period, while Predicted 
returns show the holding period profits that sorted by predicted returns. Predicted returns are 
computed in the manner described in Table 2.3. The column titled '%>O' is described in the 
manner as Table 2.2. t-statistics (in parenthesis) are adjusted for autocorrelation and 
heteroscedasticity. *(* *) Denotes significance at the 5(l 0)% level. 

Panel A: Payoffs from a Momentum Strategy Based on Industry Returns 

Raw Payoffs 

w L W-L %>O 

0.75 -0.69 IA3 67.58 
UK (2.97*) (-1.74**) (5.37*) (0.00) 

0.10 -0.82 0.92 56.66 
Germany (0.38) (-1.81) (3.08*) (0.03) 

Predicted return 
w L W-L %>O 

0.33 -0.40 0.73 63.85 
(1.65) (-1.76**) (2.57*) (0.00) 

-0.22 1.03 0.12 56.84 
(-0.11) (0.32) (0.58) (0.04) 

France 0.95 -0.73 1.68 65.87 0.92 0.66 0.27 58.55 
(2.50*) (-1.60) (4.99*) (0.00) (2.14*) (1.45) (0.91) (0.01) 
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Table 2.10 continued 

Panel B: Payoffs from a Momentum Strategy Based on Industry-adjusted Returns 

Raw Payoffs Predicted return 

w L W-L %>O w L W-L %>O 

0.50 0.02 0.48 60.51 0.45 0.08 0.37 62.24 
UK (2.38*) (0.07) (2.09*) (0.00) (1.95**) (0.45) (2.18*) (0.00) 

0.18 -0.37 0.54 56.88 0.15 0.08 0.07 50.83 Germany (1.07) (-0.87) (2.04*) (0.03) (0.42) (0.23) (0.28) (0.85) 

0.68 0.07 0.61 58.54 0.20 0.59 -0.39 54.63 
France (1.70) (0.20) (2.20*) (0.00) (0.45) (0.75) (-0.31) (0.18) 

One interesting question, which seems to be omitted in the literature, is whether industry 

momentum would be subsumed by price momentum? It may not be surprising to find that 

the industry momentum profits are being subsumed by price momentum if the observed 
industry momentum is a composition of the price continuation from individual stocks 

rather than the industry that experiences momentum. To test this conjecture, industry 

momentum profits are regressed on the business cycle variables including default spread 
(DEF), term spread (TERM), dividend yield (DIP) and the three month t-bill yield (YLD), 

the Fama-French three factors and price momentum. Table 2.11 (Panel A) confirms the 

previous section results, showing that the business cycle model fails to explain the 
industry momentum in Germany and France. In contrast, the intercepts are statistically 
insignificant in the UK indicating some explanatory power. Adding Fama-French 

three-factor and price momentum to the business cycle model in Panel B results show 
that the intercepts are statistically insignificant in all three countries. Such effect, however, 
is solely due to the price momentum suggesting that the observed industry momentum is 

actually subsumed by momentum at the individual stock level. 
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Table 2.11 Time series regressions of industry momentum profits on business cycle 
variables, Fama-French three-factor and price momentum 

This table presents the coefficients of regressions of industry momentum profits (Rp) on business 
cycle variables in Panel A; business cycle variables, Fama-French three-factor, and price 
momentum in Panel B. Business cycle variables are default spread, term spread, dividend yield 
and the three month t-bill yield. The industry momentum is computed in the manner described in 
Table 2.10. Vis the time-series average of the monthly adjusted R. t-statistics (in parenthesis) 
are adjusted for autocorrelation and heteroscedasticity. *(**) Denotes significance at the 5(10)% 
level. 

Panel A: Rp= ao+ Pi, DIV+ P2., DEF+ P3, TERM+ P4. r YLD +cý 

, ao Pi 02 P3 P4 K2 

UK 
0.016 1.056 -0.405 -1.033 -0.743 0.136 (1.21) (2.07*) (-1.78**) (-3.89*) (-1.09) 

Germany 0.028 -0.221 -0.287 -0.654 4.119 0 117 (2.11 (-0.60) (-1.38) (-1.88**) . (4.96*) 

France 0.026 0.458 -0.228 -0.269 -1.228 0 027 (3.41 *) (1.33) (-1.57) (-1.11) . (-2.20*) 

Panel B: Rp = uo +pI DIV + P2 DEF + P3 TERM + P4 YLD 
+ yi(R. t - Rrt) +Y 2 SMB + Y3 IIML + Y4 WML + r, 

(XO pI P2 P3 N Y1 72 Y3 74 2 

. 0.007 -0.012 0.071 -0.219 -0.106 0.038 0.043 0.065 0.767 UK (-0.69) (-0.02) (0.35) (-0.86) (-0.22) (1.09) (0.95) 0.445 (0.75) (7.03*) 

Germany -0.015 -0.346 0.158 0.079 1.615 0.057 0.133 -0.089 1,039 0.596 (-0.89) (-1.31) (0.80) (0.22) (1.17) (1.20) (3.27*)(-1.74**) (8-18*) 

France 0.005 0.401 -0.189 -0.059 -0.793 0.001 0.000 0.014 1.091 0369 (0.47) (0.96) (-0.97) (-0.19) (-1.20) (0.02) (0.00) (0.25) (4.38*) 

2.4.7 Intra-industry momentum 
Although the previous section finds that both price and industry momentum profits are 

present in all three countries, it will be interesting to see if momentum exits within each 
of the industries. The successful of intra-industry momentum will indicate that industry 

effects fail to explain price momentum. Further, it will be valuable for practitioners' 
interests as this provides an alternative trading strategy that involves lower transaction 

costs, as lesser stocks are required to form the winner/loser portfolios. To my knowledge, 
this chapter is the first to investigate intra-industry momentum strategies and their 
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relationship with business cycle within the context of Europe. 

Table 2.12 shows that intra-industry momentum strategies are presented in all three 

countries. In fact, some of the intra-industry momentum profits in the UK and Germany 

are even higher than industry momentum. The findings provide an alternative trading 

strategy suggesting that momentum profits exist within each of the industries. However, it 

is worth noting that as the intra-industry momentum appears to be profitable in almost 

every industry, it raises the question if such effect is caused by price momentum. To test 

this conjecture, intra-industry momentum profits are regressed on the business cycle 

variables including default spread (DEF), term spread (TERM, dividend yield (DIP) and 

the three month t-bill yield, (YLD), the Fama-French three factors and price momentum. 
Table 2.13 reports that almost all the intercepts are statistically insignificant. Such cffcct, 
however, is contributed to the price momentum suggesting that the observed 
intra-industry momentum is subsumed by momentum at the individual stock level. 
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Table 2.12 Intra-Industry Momentum Strategies 

The 10 industry classifications used in this study are obtained from Datastream's 
industry-classification (datatype INDC3). The winner (loser) portfolio is the equally weighted 
return of the top (bottom) 30% industry with the highest (lowest) raw returns in the six-month 
formation-period from t-7 to t-2. The momentum profit is then computed over the holding period 
(t to t+5). Raw payoffs indicate the strategy's raw monthly returns during the holding period, 
while Predicted return show the holding period profits that sorted by predicted returns. Predicted 
returns are computed in the manner described in Table 2.3. t-stat. are t-statistics that adjusted for 
autocorrelation and heteroscedasti city. *(**) Denotes significance at the 5(10)% level 

Raw Payoffs 

w L W-L (t-stat. ) 
BASIC 0.84 -0.12 0.95 (4.36*) 
CYCGD 0.60 -0.29 0.88 (3.82*) 
CYSER 1.08 -0.45 1.52 (6.74*) 
GENIN 0.62 -0.45 1.06 (4.82*) 

UK ITECH - 1.03 -0.63 1.66 (4.49*) 
NCYCO 1.06 -0.33 1.39 (7.06*) 
NCYSR 1.21 -0.47 1.67 (4.79*) 
RESOR 0.35 -0.40 0.75 (2.51 *) 
TOTLF 0.77 -0.18 0.95 (4.30*) 
OTHERS 0.16 -1.80 1.96 (5.79*) 
BASIC 0.37 -0.37 0.74 (4.08*) 
CYCGD 0.41 -0.72 1.13 (5.59*) 
CYSER 0.60 -1.12 1.72 (5.73 *) 
GENIN 0.26 -0.81 1.07 (4.75*) 
ITECH -1.41 -3.30 1.89 (2.13 *) Germany NCYCG 0.45 -0.17 0.62 (3.69*) 
NCYSR -0.12 -1.37 1.25 (2.91 *) 
RESOR 0.42 -0.22 0.64 (3.54*) 
TOTLF 0.64 -0.01 0.65 (3.16*) 
OTHERS -0.06 -0.87 0.81(l. 58) 
BASIC 0.90 0.36 0.54 (2.06*) 
CYCGD 0.74 -0.51 1.25 (4.28*) 
CYSER 1.24 0.12 1.12 (4.33*) 
GENIN 0.93 -0.11 1.04 (4.27*) 
ITECH 

France 
1.14 -0.37 1.52 (3.50*) 

NCYCG 0.80 0.17 0.64 (3.07*) 
NCYSR 1.06 0.28 0.78 (2.14*) 
RESOR 0.57 -0.29 0.86 (2.29*) 
TOTLF 0.84 0.07 0.77 (3.50*) 
OTHERS -0.13 -0.77 0.64(l. 19) 
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Table 2.13 Time series regressions of intra-industry momentum profits on business 
cycle variables, Fama-French three-factor and price momentum 

This table shows the coefficients of regressions based on the following model: Rp = ao + PI DIV+ 
P2DEF + P3 TEPM + P4 YLD + yi (R, t- Rf t)+ 72 SMB+ *Y3HML+74 TVML + c, The dependent 
variable (Rp) is the intra-industry momentum profits. Business cycle variables include default 
spread (DET), term spread (TERAI), dividend yield (DIP) and the three month t-bill yield (YLD). 
The three Farna-French factors are the excess market return (R mt -R ft), size factor (SMB) and 
book-to-market factor (HML). Price momentum (WML) is contrasted in the manner as Table 
2.2. The intra-industry momentum is computed in the manner described in Table 2.12. V is the 
time-series average of the monthly adjusted R2. * Denotes significance at the 5% level. 

ao Pi P2 P3 P4 71 72 73 Y4 2 

UK 

BASIC -0.015* 0.338 -0.066 -0.013 0.776* 0.016 -0.015 0.031 0.377* 0.39 
CYCGD -0.006 0.022 0.056 0.139 -0.019 0.010 0.037 0.039 0.409* 0.43 
CYSER 0.003 -0.059 0.023 0.091 0.051 0.012 0.005 0.026 0.560* 0.72 
GENIN -0.005 0.222 -0.029 -0.064 0.108 0.005 0.011 0.029 0.392* 0.60 
ITECH 0.000 -0.63ý 0.442 0.067 -0.892 0.014 0.029 -0.056 0.569* 0.30 
NCYCG 0.003 0.056 0.016 0.022 -0.093 -0.002 -0.001 -0.056 0.349* 0.26 
NCYSR 5 0.01 -1.603* 0.349 0.556 1.171 -0.030 -0.071 -0.171 1.112* 0.49 
RESOR 1 0.010 0.483 -0.218 -0.650* -1.275* -0.019 -0.101 -0.078 0.579* 0.32 
TOTLF -0-011* 0.176 -0.083 -0.042 0.649* -0.006 -0.005 0.025 0.693* 0.73 
OTHERS 0.002 0.428 -0.209 -0.163 1.009* -0.023 -0.010 -0.157 0.508* 0.28 

Germany 
BASIC -0-006 0.085 0.084 0.139 0.004 -0.001 0.012 -0.026 0.290* 0.27 
CYCGD -0-009 -0.101 0.228 0.477* 0.406 0.008 -0.020 -0.004 0.317* 0.29 
CYSER -0.004 -0.045 0.093 0.098 1.143* 0.021 0.024 0.008 0.799* 0.56 
GENIN 0.002 0.011 -0-005 0.072 0.124 -0.002 0.023 0.009 0.419* 0.48 
ITECH 0.128* 0.033 -1.878* -3.207* -0.780 0.068 -0.017 0.001 0.228* 0.40 
NCYCG -0.003 0.185 -0.012 -0.111 -0.125 -0,003 0.006 -0.012 0.391* 0.41 
NCYSR 0.030 0.035 -0.493 -1.041 3.006* 0.014 0.018 -0.066 0.834* 0.34 
RESOR 0.024 -0.341 -0.167 -0.359 0.284 0.013 -0.034 0.009 0.098 0.10 
TOTLF -0.012 0.063 0.129 0.346 -0.073 -0-009 -0.032 -0.045 0.339* 0.33 
OTHERS 0.007 1.462 -0.322 -0.029 1.110 -0.104 -0.025 -0.126 -0.653* 0.17 

France . 

BASIC -0-011* -0.119 0.135 0.252 0.316 0.010 0.003 -0.028 0.424* 0.18 
CYCGD 0.024 -0.147 -0.102 -0.184 -0.148 0.048 -0.017 0.031 0.329* 0.11 
CYSER 0.012 -0.075 -0.090 0.138 0.128 -0.029 -0,037 0.036 0.461 * 0.28 
GENIN 0.000 0.077 0.003 0.040 0.157 0.011 0.000 0.008 0.444* 0.27 
ITECH 0.038* -0.826 0.180 -0.601 -0.948 0.049 0.011 -0.103* 0.198 0.16 
NCYCG 0.029* 0.965* -0.633* -0.589* -1.013* -0.045 0.008 0.023 0.286* 0.32 
NCYSR 0.010 0.994* -0.501* -0.305 -0.715 0.013 -0.069 0.015 0.177 0.10 
RESOR 0.047* 0.978* -0.907* -0.369 -0.535 -0.002 -0.032 0.005 0.454* 0.18 
TOTLF 0.022 0.033 -0.224* -0.082 -0.541 0.019 0.018 -0.002 0.354* 0.27 
OTHERS -0.075* 0.134 0.880* 1.267* 1.552* -0.021 -0.033 -0.064 0.370* 0.46. 

53 



Chapter 2 

2.5 Conclusions 

This chapter investigates whether the apparent profitability of momentum trading can be 

explained by business cycle variables and behavioural characteristics in three major 
European markets namely France, Germany and the UK. The results show evidence of 

price momentum in all three countries. However, possibly due to some limitations 

inherent in the model, the predictive regression framework of Chordia and Shivakumar 

(2002) based on business cycle variables cannot capture momentum profits in these 

markets. The conditional asset pricing model of Avramov and Chordia (2006), that 

allows factor loadings to vary with firm specific variables, overcomes some of the 

limitations of the predictive regression model of Chordia and Shivakumar (2002). 

Therefore, this chapter also applies the Avramov and Chordia (2006) model to the 

European markets investigated. In line with the findings of Avramov and Chordia (2006), 

the chapter finds that momentum profits in Europe are largely attributable to asset 

mispricing that systematically varies with global business conditions. This confirms that 

the idiosyncratic component of stock returns does not play any prominent role in 

explaining momentum profits in r-gpga 

offer a better explanation. 

Inspired by the recent developments in the behavioural finance literature, especially by 

the ongoing debate on the role of investors' behaviour on price momentum, the Avramov 

and Chordia (2006) model is extended to incorporate behavioural variables. The results 
display a mixed role for behavioural variables across the countries, illustrating that 
investors' behaviour are less likely to be correlated to business cycle and unlikely to 

explain momentum profits. Moreover, the inclusion of behavioural variables does not 

affect the notion that momentum patterns are risk-based. This confirms that the findings 

of Avramov and Chordia (2006) hold for the major European financial markets and their 

model is robust to the inclusion of behavioural variables. Thus, the profitability of 

momentum strategies in Europe could be explained by risk factors, which are undetected 
thus far and are largely attributable to the business cycle. 
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3. Limits to Arbitrage, overconfidence and Momentum Trading 

3.1 Introduction 

Momentum trading strategies that take advantage of persistence in stock price 

movements short stocks that have recently performed poorly (out-of-favour stocks) to 

buy stocks that have recently performed well (favoured stocks). These strategies have 

attracted considerable attention from both practitioners and academics alike. In the UK, 

about 23 per cent of institutional traders are characterised as momentum traders (Keim, 

2004). The importance of this trading strategy for practitioners is also evident from the 

introduction of momentum indexes to measure the intermcdiate-term momentum cffects". 
In the academic literature, profits from momentum trading strategies represent one of the 

main challenges faced by modern neo-classical based finance theory. Success of this 

strategy suggests that excess returns can be earned by observing prior changes in stock 

prices and thus rejects the prediction of the efficient market hypothesis. Momentum in 

stock returns has been observed internationally (see, for instance, Jegadeesh and Titman, 

1993; Griffin et al., 2003) and attempts have been made to explain its causes. However, 

issues, such as what causes continuation in stock returns and whether momentum profits 

are genuine and exploitable or are only reflecting some kind of markct 

imperfection/friction, have remained unresolved. This study addresses these issues. 

Fama and French (1996) concede that their three-factor model fails to explain 

continuation in returns. Similarly, after controlling separately for systematic risk, size, 

price, book-to-market ratio, and the Fama-French three factors, Liu et al. (1999) confirm 

that significant momentum profits exist in the UK. Thus, the observed momentum in 

stock prices is not due to risk differences or firm specific factors. Alternative 

explanations of momentum in stock returns include market under-reaction to firm 

specific information (Jegadeesh and Titman, 1993; Chan ct al., 1996); gradual diffusion 

of information (Hong and Stein, 1999; Hong et al., 2000); investors' behaviour (Barberis 

et al., 1998; Daniel et al., 1998); cross-sectional dispersion in unconditional and 

conditional expected returns (Conrad and Kaul, 1998; Chordia and Shivakumar, 2002); 

15 See, www. momentumindex. com. 
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market frictions such as trading costs, price impact and liquidity (Korajczyk and Sadka, 

2004; Lesmond et al., 2004). Similarly, Hong et al. (2000) show that momentum profits 

are driven almost entirely by short-side portfolios and Ali and Trombley (2006) report 

that momentum profits are positively related to short-sale constraints. 

Meanwhile, an alternative model that based on overconfidence and self attribution has 
been introdu. Ced by Daniel, Hirshleifer and Subrahmanyam (DIIS, 1998) who suggest 
that over-reaction/overvaluation is the source of momentum profits. DIIS suggest 
investors are overconfident about their private information, and therefore overweight 
their private information and under-react to public signals. When public information 

confirms investors' private information their confidence increases, investors continue to 

overreact to their priors because of biased self-attribution. The over-reactio, n in prices will 

eventually be corrected in the long run as investors observe future news and realise their 

error. As a result, increased overconfidence generates momentum in the short run and 
reversals in the long run. Along this line, Zhang (2006) use proxy of information 

uncertainty variables such as firm size, firm age, analyst forecast dispersion, leverage, 

return volatility, and cash flow volatility, shows that greater information uncertainty leads 

to relatively lower future stock returns following bad news and relatively higher future 

returns following good news, indicating that uncertainty prevents timely information 
incorporation into stock prices. The difference between the behaviour arguments such as 
DHS overconfidence model and Zhang (2006) information uncertainty arguments is that, 
the behaviour arguments focus on how investors with different biases react to information, 

while information uncertainty arguments focus on how information flow due to 
uncertainty, and therefore do not specify what kind of biases. 

Miller (1977) theorised that stocks that are subject to both short-sale constraints and high 
dispersion in opinion are overvalued and generate low subsequent returns. This view rests 
on the argument that due to short-sale constraints, pessimistic traders cannot enter into 

the market and, hence, only optimistic investors continue to trade (buy) driving prices up, 
leading to overvaluation. Such overvaluation is maintained until the divergence in 

opinion is narrowed, at which point more investors realise that the stock is overvalued 
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and start off-loading their holdings. If this prediction holds, stocks that were initially 

overvalued should earn low (negative) subsequent returns. Thus, Miller's views on the 

effects of short-sale constraints (a case of limits to arbitrage) and the divergence in 

opinion on the value of stocks can be extended to examine the possible reason(s) and 

exploitability of momentum profits". Along this line, Ali and Trombley (2006) link an 
index of short-selling constraints to momentum profits, and this index includes both 
institutional ownership (the variable used here to measure short-sale constraints) as well 

as share turnover (the variable used here to measure differences of opinion). Chen, Hong, 

and Stein (2002) suggest that changes in breadth of ownership (which proxies for short 

sale constraints but is also correlated with differences of opinion in their model) are 

strongly related to momentum profits. 

However, there is a fundamental problem of Miller's overvaluation hypothesis that the 

second condition - divergence in opinion - must be high in order to drive prices up. The 

problem lies in the fact that under any circumstance of disagreement, all stocks would 

only be bought by optimistic investors, so the number of pessimistic investors could only 
be observed from the short side. But if short selling is prohibited, the number of 

pessimistic investors is unobservable. As a result, the number of investors between 

optimistic and pessimistic is unknown. To illustrate the problem, if there are ten investors 

in the market, disagreement among investors is at the highest level if five are optimistic 

and five are pessimistic. Miller's hypothesis is correct only when the number of 

pessimistic investors is higher than the number of optimistic investors, since then it will 
fulfil the second condition that high disagreement leads to high overvaluation. On the 

other hand, if there are more optimistic investors than pessimistic investors, then a lower 

disagreement would means that more optimistic investors will buy and push prices 

upward. In spite of its plausibility, no prior study has explicitly examined the implications 

of both conditions of Miller's theory (limits to arbitrage and divergence in opinion) on 

momentum returns. This study fills this gap. 

16 Although some recent studies (for instance, biether et al., 2002; Chen et. al., 2002) attempt to examine 
the overpricing hypothesis they do not consider the consequences of interaction between short-sale 
constraints and divergence in opinion simultaneously. 
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The distinction between Miller's Hypothesis and the DHS model is that, there are 

pessimistic investors in Miller's hypothesis, but these investors are constrained from 

shorting the stocks, whereas the DHS model suggests that representative investors who 

are overconfident drive the momentum effect. The ultimate question that lies between 

these two theories is to what extent do pessimistic investors contribute to overvaluation? 

The primary contribution of this study is to test whether the evidence is consistent with 

DHS model in addition to Miller's Hypothesis. 

More specifically, this chapter aims to address three main questions that are still 

unresolved: (i) what are the sources of momentum prorits? (ii) to what extent are 

momentum profits linked to overconfidence, limits to arbitrage and divergence in opinion? 

and (iii) are the apparent momentum profits exploitable? 

Given the nature of equity ownership distribution, trading strategies adopted by major 

investors, opportunities available to professional investors to engage in short-selling and 

the availability of measures of variations in investors' opinion, the UK stock market is an 

excellent platform to test for the above issues on momentum in the context of Miller's 

proposition. Unlike many other developed markets, the UK financial institutions (active 

traders) hold a large proportion of equity traded on the London Stock Exchange (LSE). 

Recent statistics (The Office for National Statistics, 2006) suggest that at the end of 

December 2006, domestic institutions were holding 41.1 per cent (E762.8 billion) of 

equity traded on the LSE, only 12.8 per cent (L238.5 billion) were owned by individual 

shareholders and the rest were owned by foreign investors. Among the domestic 

institutions, insurance companies and pension funds are the major players in the market. 
Given that only one in four UK institutional investors are momentum traders" and 

short-selling is a professional activity used by institutional investors", opportunities to 

short-sell (arbitrage opportunities) should have implications on stock returns. D'Avolio 

(2002) shows that institutional investors are the main providers of stock loan supply. 
Therefore, using the details of institutional ownership this chapter can test for the 

17 Keim (2004) categorises 23 per cent of institutional investors as momentum traders. 
" See Financial Services Authority (2006) for further details. 
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implications of arbitrage opportunities on momentum prorits. Similarly, proxy measures 

of divergence in opinion (for example, analysts' forecasts) are also available for the UK. 

All of these offer an excellent opportunity to examine the implications of limits to 

arbitrage and divergence in opinion on momentum profits on the LSE. 

This chapter arrives at several, conclusions. First, using alternative proxies of limits to 

arbitrage this chapter find that momentum profits are driven almost entirely by loser 

stocks that are costly or impossible to short. The absence of their exploitability could 

explain the persistence in price momentum. Second, the limits in short-selling loser 

stocks defeat the idea of constructing a self-financing (hedge) portfolio to profit from 

momentum trading. High costs and/or the impossibility of short-sciling out-of-favour 

stocks prohibit arbitrageurs from taking an appropriate position to exploit the profit 

opportunities and correct overpricing. Third, momentum profits originate from initial 

overvaluation brought about by excessively optimistic investors in the presence of limits 

to arbitrage (short-sale constraints), whereas, divergence in opinions do not play any role. 
The findings suggest that Miller's overvaluation hypothesis fails to explain tile 

momentum profits. On the other hand, empirical evidence has been provided to support 

the DHS model that momentum profits are caused by overconfidence and self attribution 
bias. Finally, the known risk factors fail to explain the momentum profits. Therefore, 

momentum profits are caused by limits to arbitrage and overconfidence, hence, they are 

not easily exploitable. 

The remainder of the chapter is organised as follows. Section 3.2 discusses limits to 

arbitrage and divergence in opinion and develops testable hypotheses. Section 3.3 

describes the data and methodology. Section 3.4 empirically examines tile relation 
between momentum profits and short-sale constraints and ovcrvaluation. Section 3.5 

provides tests of the DIAS overconfidence model. Section 3.6 presents tile cross-scctional 

regressions. Section 7 examines the relation between short sales constraints and the value 

premium. Section 3.8 concludes the chapter. 
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3.2 Theories and hypotheses development 

3.2.1 Miller ý overvaluation hypothesis 

Miller (1977) shows that when there is a high level of uncertainty among investors about 

the value of a security, short-sale constraints could prevent pessimistic investors' opinion 
being incorporated into stock prices. In this scenario, optimistic investors can buy or 

continue to hold the stocks driving the prices up. However, due to short-sale constraints, 

pessimistic investors face limits on the sale side trade resulting in supply constraints and 
failure to bring the prices down. On balance, this leads to overpricing. Therefore, Miller's 

hypothesis requires two conditions to be satisfied: (a) short-sale constraints and; (b) 

divergence in investors' opinion. In a system where short-selling is permitted (both by 

regulations and transaction costs) pessimists. can sell additional shares to optimists. This 

improves the supply causing the stock price to fall. However, Jarrow (1980) argues that 

the price of an individual stock can increase or decrease when short sales are allowed. For 

a strategy of buying favourable stocks with the proceeds from the short-sale of 

out-of-favour stocks to be profitable, the long position must outperform the short-position 

after accounting for transactions costs and the risks associated with short-sclling. In 

reality, the costs and the risks of short-selling a stock could be prohibitive and, hcnce, we 

cannot be sure whether prices of stocks will change to reflect the balance of opinion. 
Moreover, Diamond and Verrecchia (1987) suggest that, under rational market conditions, 

other investors will identify the existence of short-sale constraints and will alter their own 
beliefs in a way to prevent the existence of overvaluation on average. Since the 

theoretical arguments on short-sale constraints and the ovcrvaluation or undervaluation of 
stocks are inconclusive, the overpricing hypothesis is an empirical issue. 

Miller's view is important to stock market anomalies that consist of short-side portfolios 
like value vs. growth, contrarian, and momentum trading strategies. If both growth stocks 
(in value vs. growth strategy) and loser stocks (in momentum trading) are impeded by 

short-sale constraints, the stocks will be overpriced resulting in lower subsequent returns. 
These low returns may be sufficient to produce the existence of an 'illusory premium'. 
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3.2.2 Limits to arbitrage and overvaluation 
Direct costs of short-selling (a measure of arbitrage opportunities) are difficult to measure; 

therefore, studies use proxy measures. The costs of short-selling reflected in the stock 
loan market can be considered as a measure of constraints in selling short. Several studies 
(see, for example, D'Avolio, 2002; Mitchell et al., 2002) have analysed the market for 

borrowing stocks, however, their sample periods are rather short. On the other hand, 

Jones and Lamont (2002) analysed the NYSE 'loan crowd' rebate rate" as the proxy for 

the cost of short-selling with a longer sample period. Their findings suggest that stocks 

that are expensive to short or that enter the lending market with high valuations tend to 

have low subsequent returns. 

Some studies (see, for example, Figlewski, 1981; Dechow et al., 2001) measure the 
demand for short-sales with short-interest. However, this measure also suffers from some 
limitations. Short-interest represents the net short positions outstanding in the stock as of 
the settlement date, stocks that are difficult and expensive to short will have low 

short-intere 
' 
st. Stocks that are impossible to short have an infinite shorting cost; however, 

the level of short-interest is zero. To illustrate, Lamont and Thaler (2003) examine a 
sample of technology carve-outs that appeared to be overpriced. They show that the 

apparent overpricing and the implied cost of shorting fall over time, while the level of 
short-interest rises. As such, short-interest can be negatively correlated with the demand 

for shorting, overpricing, and the cost of shorting. These limitations weaken the 

reliability of empirical findings based on short-interest. 

Another proxy measure of short-sale constraints is lack of institutional ownership. 
D'Avolio (2002) shows that stocks with low institutional ownership are likely to be 

'special' and expensive to borrow. This view rests on the principle of demand and supply 

of stocks in the stock-loan market. Short-sellers must borrow the stocks and return them 

on demand. The cost of shorting is likely to be lower for stocks with substantial 
institutional ownership, since it is easier to find alternative lenders of such stocks. Nagel 

(2005) employs institutional ownership as a proxy for short-sale constraints, and finds 

19 The rebate is the interest earned on the proceeds from the sale of borrowed shares. 
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that the book-to-market effect, in particular the underperformance of growth stocks, is 

primarily concentrated in stocks that' are difficult to short. lie suggests that the 

overpricing hypothesis is behind the book-to-market anomaly. Similarly, 'Phalippou (2007) 

confirms that the value premium is created by a few overvalued stocks that are difficult to 

sell short, and suggests that limited arbitrage, rather than risk, plays a major role in the 

existence of the value premium. Ali and Trombley (2006) report that momentum profits 

are higher from stocks that experience high short-sale constraints and the results are 

mainly driven by loser stocks. Although they suggest that momentum returns are 

positively related to the cost of short-selling, they do not test the hypothesis that 
divergence in opinion drives the price/prorit of stocks that are difficult to short. Therefore, 

this chapter hypothesises that 'there is a positive association between momentum profits 

and short-sale constraints'. 

3.2.3 Interaction between short-sale constraints and dispersion In opinion 
Another factor that Miller (1977) attributes to overvaluation is high divergence in opinion. 

Scherbina (2001) used dispersion in analysts' earnings forecasts (I/B/E/S) as a proxy for 

divergence in opinion and shows that the highest dispersion in opinion portfolio earns a 
lower average return than the lowest dispersion in opinion portfolio. Chen et al. (2002) 

used breadth of ownership as a proxy for divergence in opinion and found that when few 

mutual fund managers have long positions in a given stock (low breadth of ownership), 

prices are high relative to fundamentals and that when the breadth decreases, subsequent 

returns decline. Danielsen and Sorescu (2001) contend that exchange-traded options 

mitigate short-sale constraints and examined the effects of option listings on the prices of 

underlying securities. They considered four measures of dispersion in investors' belief". 

Their results generally support the conjecture that stock options mitigate the short-sale 

constraints that would otherwise lead to overvaluation. Diether et al. (2002) show that 

stocks with higher dispersion in analysts' earnings forecasts earn significantly lower 

future returns than otherwise similar stocks. Such results suggest that disagreement in 

20 The four proxies of dispersion in investors' opinion they used are: (a) the standard deviation of weekly 
(five-day) raw returns from day 1-250 to date 1-6; (b) the standard deviation of the error terms of the market 
model estimated from day 1-100 to date 1-6 relative to the event date; (c) the ex ante mean daily trading 
volume and; (d) the dispersion of analysts' forecast. 
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investors' opinion is priced at a discount as we would expect under Miller's hypothesis. 

Previous studies on the overpricing hypothesis do not consider the interaction of 

short-sale constraints and differences in opinion simultaneously - i. e. they do not 

examine the central theme of Miller's hypothesis. This chapter tests for the implications 

of such an interaction on momentum returns. This section hypothesises that 'momentum 

profits are high when both short-sale constraints and divergence in investors' opinion arc 
hight. 

3.2.4 Overconfidence and momentum profit 
Stocks with good past performance tend to attract investors' attention. 13chavioural 

models predict that traders are either slow to react or over-rcact to good news. The 

optimistic investors, usually less sophisticated", tend to rely on their own private 

information/beliefs in determining the firm's future cash flows. As noted by Daniel ct al. 
(1998), when public information confirms investors' private information their conrldcncc 
increases. Disconfirming public news draws less attention and the investor's confidence 

in their private signals remains unchanged. It is also consistent with a particular type of 

representativeness bias, the law of small numbers in which people expect even a small 

sample to reflect the properties of the entire population 22 
. In this case, if investors 

perceive some good news about a firm, they will continue to believe that tile stock will do 

well in the future. This belief will escalate his/her confidence level, create the sclf 

attribution bias and lead to excessive optimism about the firm. In addition, short-sale 

constraints prevent a timely incorporation of bad news into prices. In other words, the 

negative opinion of pessimistic investors is not incorporated in market price. This 

suggests a testable proposition that 'there is a positive association between momentum 

profits and short-sale constraints and high momentum profits are associated with more 

good public news'. 

Tests of the above propositions are important as they shed light on how the mispricing 

21 Indeed, Barber and Odean (2007) show that small investors are more likely to trade in stocks that have 
had recent extreme performance, possibly due to attention effects. 
22 To illustrate, suppose that an investor sees many periods of good earnings, the law of small numbers 
leads her to believe that earnings growth has gone up, and thus earnings will continue to remain high in the 
future. 
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arises that eventually generates the predictability of stock returns, and indeed, tile 
momentum profits. This chapter examines whether Millcrs overpricing hypothesis based 

on JjMjtS to arbitrage and the DIIS model based on ovcrconridencc can explain the 

underperformance of loscr stocks and the momentum anomaly. 

3.3 Data and methods 
3.3.1 Data 

For the reasons stated earlier, the LSE is an excellent platform for testing the implications 

of limits to arbitrage and divergence in investors' opinion on momcntum profits. On the 
LSE, the regulations on short-sclling are fairly rclaxcd for institutional investors". TlIcy 

also hold a large fraction of stocks traded on the LSE and are activc in short-selling. 
Although direct observations on short-sale contracts are not available, as cvidcnt from the 

studies of D'Avolio (2002) and Nagcl (2005), the distribution of institutional ownership 
(hereafter 10) offers an excellent proxy of the possibilities of stock loan supply". 
Therefore, this chapter uses ownership distribution as a measure of constraints to sell 

short; stocks with lower institutional holdings experience highcr short-sale constraints. 

The data on ownership distribution comes from the PriccwatcrhouscCoopcrs Corporate 

Register published by flemmington-Scott. For each company, this unique database 

records the name of each shareholder and his/her proportion (per cent) of share holdings 

(ordinary share capital). To improve the comparability of my results with US studies that 

use the ýDA/Spcctrum Institutional Holdings (13F) database, this chapter extract 
quarterly institutional holdings from the 11cmmington-Scott databases". This chapter 
then match (manually) the ownership database with Datastrcam'6. First, for each company, 
institutions that arc holding 3 per cent or more of its equity shares are identified. Then, 

the total institutional holding of the company is estimated by adding the holdings of all 
institutions identified in the first step. If no record of institutional holding is available, it 

23 See Financial Services Authorities (2006) for further details. 
24 For an excellent discussion on the relation between short-sale constraint and institutional ownership see 
Nýgel (2005). 
25 For the definition of institutional investors, this chapter follows the CDA/Spectrum Institutional Holding 
database in order to provide comparable results. 
26 While merging these data bases this chapter uses Lexis-Ncxis and FAMC to identify company name 
changes. 
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is considered zero. The sample excludes financial companies. The final sample consists 

of 86,151 observations for 2,556 unique firms from January 1993 to December 2002. 

This choice of sample period has been guided by the availability of ownership data at the 

time of data collection 27 

3.3.2 Residual institutional ownership (RIO) 

Earlier evidence (see, for example, Nagel, 2005) shows a high degree of association 

between firm size and institutional ownership (INST). Therefore, as in Nagel (2005), this 

section measures short-sale constraints by residual institutional ownership adjusted for 

firm size". Given that the degree of institutional ownership is a proportion ranging from 

0 to 1, the residuals will not be normally distributed. Therefore, before controlling for the 

firm size a logit transformation is applied on INST (equation ý3.1)). 

(3.1) Logit (fNST)it = log 
INSTi,, (I 

- INSTj', 

If INST is below 0.0001 or above 0.9999 it is replaced with 0.0001 and 0.9999 

respectively. In equation (3.1) i, t represents firm i at time t (quarter). To control for any 

size effect, this section estimate equation (3.2): 

(3.2) Logit (INST) i, t =a+ PInSit + ct 

Where, Sij is the market capitalisation of firm i at time t. This cross-scctional equation is 

estimated for the period between January 1993 and December 2002. The residual (ct) of 

equation (3.2) is the residual institutional ownership (RIO). This allows us to measure the 

variation in institutional ownership, holding the firm size fixed. 

3.3.3 Momentum trading strategies 
For the computation of momentum profits, this chapter follow the most common used 6x 

27 Appendix 4 reports the summary statistics on firm characteristics used in this chapter. 
2' The method used in this sub-section is based on Nagel (2005). 
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6 momentum strategy", for instance, for each month t, all stocks are allocated into three 

(or five) portfolios (P=I to 3) based on their six-month formation-period Q-7 to 1-2) 

returns. Portfolio PI (i. e. P=I) is an equally weighted portfolio of stocks in the 

worst-performing 30 per cent stocks, portfolio P2 (i. e. P=2) contains the middle 40 per 

cent stocks, and portfolio P3 (i. e. P=3) comprises the best-performing 30 per cent stocks. 
The position is held for the following six-month period (to to 1+5). This chapter employs a 

one month gap between the formation and the holding period to avoid the momentum 

effect with short-term price reversals and the bid-ask bounce effects established by 

previous studies (see, for example, Jegadeesh, 1990; Jegadeesh and Titman, 1995). 

Throughout this chapter, unless otherwise stated, equally weighted portfolio returns have 

been used. 

3.3.4 Divergence in investorsopinion (Disp)and trading volume (VO) 

This section measures the divergence in investors' opinion by the dispersion in analysts' 

earnings per share (EPS) forecasts". The dispersion in analysts' EPS forecasts is defined 

as the standard deviation of EPS forecasts scaled by the stock price per share at the 

beginning of forecast's fiscal year. Both the standard deviation of EPS forecasts and 

corresponding share prices are obtained from the I/B/E/S Summary History file. To allow 
for the calculation of standard deviation, only the stocks followed by at least two analysts 

are included in the sample. Data on trading volume are obtained from Datastream. 

Trading volume is measured as the ratio of the number of shares traded to the number of 

shares outstanding. 

3.3.5 Analyst recommendations (Req) 

Analyst recommendations rate stocks as 'strong buy, ' 'buy, ' 'hold, ' 'sell, ' and 'strong 

sell. ' Analysts also use other labels such as 'market underperform' and 'market 

outperform, ' or 'underweight' and 'overweight, ' to convey their opinions,, but I/B/E/S 

standardizes the recommendations, and converts them to numerical scores where 'I' is 

strong buy, '2' is buy, and so on. This section then group the sample into three parts: 1) 

29 This chapter also reports the 30, W, M and l2xl2 momentum strategies in Appendix 5, momentum 
profits from the 6x6 strategy is indeed the highest. 
'0 Diether et al. (2002), among others, use analysts' EPS forecasts as a measure of divergence in opinion. 
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Buy portfolio which contains both 'strong buy' and 'buy' recommendation, 2) Hold 

portfolio which contains recommendation of holding the stock, 3) Sell which contains 
both 'strong sell'and 'sell' recommendation. 

3.3.6 Analystforecast revisions (FRev) 

Analyst forecast revisions for the current month are split into 'up revision', 'no change' 

and 'down revision'. This chapter standardizes the forecast revision, and converts them to 

numerical scores where 'P is 'up revision', V is 'no change', and '-P is 'down revision'. 

Forecast revisions are unadjusted for stock splits using the adjustment factors because of 

the split-adjustment bias detailed in Diether, Malloy, and Scherbina (2002) provided by 

I/B/E/S. 

3.4 Momentum profits, short-sale constraints and overvaluation 

3.4.1 Short-sale constraints and gross returnsfrom momentum trading 

To examine the hypothesis that 'there is a positive association between momentum profits 

and short-sale constraints', this section sort all stocks into quintiles at the end of each 

month t based on their returns during the six month formation period Q-7 to t-2). This 

section then group the stocks of each price momentum category into five portfolios 
(equal stocks) on the previous quarter's RIO obtained from equation (3.2)". Portfolios are 
formed at different points during the year. Such overlapping portfolios increase the power 

of tests (see Jegadeesh and Titman, 1993). To avoid the momentum effect with very 

short-term price reversals and the bid-ask bounce effects, this section allows for a one 

month gap between the formation period and the holding period. The portfolios are held 

for the subsequent six months (to to t+5). Newey-West (1987) standard errors (adjusted 

for serial dependence caused by the use of overlapping lagged data) are used. 

The results in Table 3.1 (panel A) support the predictions that momentum profits are most 

pronounced in loser stocks with high short-sale constraints. The average difference 

31 In a further test, this chapter replaces residual institutional ownership with institutional ownership (i. e. 
without adjusting for size). The results are qualitatively similar. 
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between the monthly returns of winner (P5) and loser (PI) portfolios in the lowest RIO 

quintile is 1.81 per cent (T-statistic = 4.98). In contrast, the differences between returns of 
PS and PI in R104 and R105 portfolios are statistically insignificant. The results (panel A) 

also show that almost all of the contribution to momentum profits comes from loser 

stocks. Besides, momentum returns (P5-PI) decrease monotonically with the increase in 

RIO quintiles suggesting that momentum of loser stocks can be exploited by selling the 

stocks short. This confirms the importance of opportunities to short-sell in exploiting 

momentum profit. Figure 3.1 depicts the momentum profits against the RIO quintiles and 

confirms that momentum profits from the lowest two quintiles are caused by the tendency 

of loser stocks to lag behind. This evidence supports the hypothesis that 'there is a 

positive association between momentum profits and short-sale constraints. 
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Table 3.1 Raw Returns by Price Momentum and Short-sale Constraints 
Average monthly raw returns (per cent) of portfolios composed on price momentum and three 
measures of short-sale constraints are reported. At the end of each month t, all stocks are allocated 
into five price portfolios (PI, P2,..., P5) based on their returns during the six month 
formation-period Q-7 to t-2). Stocks in each price portfolios are grouped into five further 
portfolios for each measure of short-sale constraints. The measures of short-sale constraints are: 
(a) previous quarter's residual institutional ownership (RIO), Panel A; firm size (S), Panel B; and 
the presence of exchange-traded options and/or futures, Panel C. RIO is the residual of equation 
(3.2). Firm size (S) is measured by market capitalisation. All portfolios are equally weighted. The 
position is held for six-months Q to t+5). T-statigics (in parentheses) are based on Newey-West 
autocorrelation consistent standard errors. *(**) Denotes significance at the 5(10) per cent level. 
The sample period is January 1993 to December 2002. 

Panel A: Residual Institutional Ownership (RIO) 
RI01 RI02 R103 R104 R105 1-11105 (Low) (Iligh) 

P1 (Loser) -1.81 -1.64 -1.27 -1.45 -1.16 -0.65 (-1.80**) 
P2 -0.99 -0.98 -0.91 -1.17 -0.96 -0.02 (-0.07) 
P3 -0.87 -1.20 -0.71 -1.29 -0.93 0.07(0.20) 
P4 -0.58 -0.60 -0.65 -0.85 -0.72 0.14(0.41) 

PS(Winner) 0.00 -0.38 -0.45 -0.70 -0.64 0.64(l. 53) 

P5-Pl 
1.81 1.26 0.83 0.76 0.52 1.30 (3.79*) 

(4.98*) (3.24*) (2.01*) (1.85**) (1.23) 

Panel B: Size (S) 

Si S2 S3 S4 S5 Sl-S5 (Low) (Iligh) 
Pl (Loser) -2.53 -2.24 -1.92 -1.79 -1.33 -1.20 (-2.40*) 

P2 -0.73 -1.24 -1.82 -1.44 -0.91 0.18(0.51) 
P3 -0.52 -0.75 -1.00 -0.89 -0.60 0.08(0.28) 
P4 -0.15 -0.31 -0.39 -0.40 -0.23 0.08(0.29) 

P5(Winner) -0.16 -0.23 -0.27 - -0.43 -0.07 -0.09 (-0.24) 

P5-Pl 2.37 2.01 1.64 1.37 1.26 1.11 (2.88*) 
(5.13*) (5.27*) (3.79*) (2.94*) (3.00*) 

Panel C: Individual ontions and futures 
Without options and With options and/or 1-0 futures =1 futures =0 

Pl (Loser) -2.14 -0.47 -0.35 (-1.09) 
P2 -0.78 0.13 -0.91 (-3.25*) 

P3(Winner) -0.17 0.18 -2.01 (-3.61 *) 

P3-PI 
1.97 0.65 

(4.86*) (1.63) 
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Figure 3.1 Residual Institutional Ownership and Momentum Proli(s 

'file graph corresponds to the result ol-Fable 3.1 (Panel A). At the end (O'each month i, all stocks 
are allocated into qUintile based oil their six-month l'Ormation-period From 1-7 to 1-2 and by 
proxies of short sales constraints: the end ofthe previous quarter residual institutional ownership 
(RIO). Quintile portl'()Iios are lornied monthly by Welghting C(ILIally all fill'HIS ill that L111111111C 
ranking. The position is held I'M the 1`61lowing six-month period (I to it 5). This figure reports the 
strategy's mean raw returns during the holding period. 
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This chapter examines file robLIStncss ofthe above findings using alternative measures oI' 

short-sale constraints. Some earlier studies Oor example, Chen et al. (2002) and I )icIIICI- 

et al. (2002)) SLIggCSt that III-III SiZC Call he a Proxy I11CaSLII-C of' stocks available for 

short-selling. Therel'ore, to examine whether momentum profit is firin si/e dependent this 

section groups the sample stocks on their market CapItaliSatiOII alld CS(III1atC 11101110111,1111 

prof-its. The rcsults show that momentum prol'it is inversely related to hrm size and most 

of' the profits come 1rom loser stocks (Table 3.1, pancl 11). This rcconfirills that loser 

stocks that have short-sale constraints make I substantive cownhution to momentum 

profits. Next, it is also possible that the presence of' exchange-traded optlows and/or 
I'LItUres can serve as I route to short-sales, and therelore, I-C(ILICC (lie C011SCLIIICIICCS 01' 

constraints in short-sclling. Only 108 sample firms have individual traded options and/or 

70 



Chapter 3 

futures. To maintain a reasonable number of stocks in each portfolio this section sorts 

thern into three groups (as opposed to quintiles). PI includes the worst performing 30 per 

cent stocks, P2 includes the middle 40 per cent stocks, and P3 includes the best 

performing 30 per cent stocks. The results in Table 3.1 (panel C) show that stocks that 

have individual options and futures experience significantly lower momentum profits 

than other stocks. These results reconfirm earlier findings that stocks, especially the loser 

stocks, with short-sale constraints generate higher momentum profits. 

Overall, short-sale constraints play a significant role in generating momentum profits. 
Considering Nagel's (2005) view that size can proxy for many other things, rather than 

just the short-sale constraints, and only limited observations are available on individual 

options and futures I believe that the RIO can serve as the best proxy (among the 

available alternatives) of short-sale constraints. Moreover, RIO accounts for size effects. 
Therefore, this chapter measures short-sale constraints by RIO in furthcr analysis. 

3.4.2 Short-sale constraints and excess returnsfrom momentum trading 

It is possible that the observed momentum profit discussed in the previous section is 

simply a manifestation of differences in risk premium rather than excess returns. To 

account for this possibility, this section estimates excess returns that are adjusted for three 
benchmark returns, viz. (a) market-adjusted, (b) Fama-French three-factor adjusted, and 
(c) industry adjusted. The market-adjusted return (raw return less the market return) of 

each stock is estimated for the end of each month t. Portfolios are formed on such market 
adjusted returns. Although the excess returns (Table 3.2, panel A) are smaller than gross 

returns, the overall findings support the earlier findings that the momentum profits come 
from loser stocks that face higher short-sale constraints. This evidence suggests that risk 
differences cannot explain momentum profits. 

Contemporary finance literature advocates the superiority of the Fama-French three 
factor model against other single factor models (see, for instance, Davies et al., 1999). 

Therefore this section estimates the returns that are adjusted for three risk factors as in 

equation (3.3): 
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(3.3) Rp, t=a+, 6m, (Rmt-RF)I+, BSMBSMBt+, 8HmLHMLI+eI 

,t 
is raw return from portfolio p (for p=I to 25, as in Table 3.1), RM, is market Where, Rp. 

return measured by the FTSE All share index, RF is the risk-free rate measured by the 

return on three-month Treasury bills, SMB and HML are small minus big, and high 

minus low as defined in Fama and French (1996)32 -A significant a (alpha) in equation 

(3-3) represents excess return that is not explained by the three risk factors. Table 3.2 

(panel B) documents the excess returns (alpha of equation 3.3) for each of the 25 

portfolios. The estimates confirm that the adjustment for risk using the thrce-factor model 

does not alter the earlier conclusion that momentum prorits originate largely from loser 

stocks with high short-sale constraints (i. e. low RIO). In fact, the three risk factors 

adjusted returns are slightly higher than the raw returns. In summary, this suggests that 

the Fama-French three factor model cannot explain momentum profits. 

Finally, some earlier studies show that stock returns could be industry specific reflecting 

business cycle conditions. To allow for this possibility, this chapter estimates the industry 

ad . usted excess return of each stock (stock return minus return on industry portfolio)". 

This method implies that stocks are as risky as their industry, peers. The results in Table 

3.2 (panel Q show that part of the industry adjusted momentum prorlis comes from 

winner stocks but a substantial part of momentum profits comes from loser stocks. More 

importantly, momentum profits are concentrated mainly in high short-sale constraint (low 

RIO) stocks. Therefore, the results reported in earlier paragraphs are not driven by 

industry effects. Overall, the results that loser stocks characterised by short-sale 

constraints contribute most in momentum profits continue to hold even after controlling 
for known risk and industry factors. 

32 1 thank Stefan Nagel for providing the factor returns data. Since his data is only available until 2001,1 
follow his methodology to construct the factors for the year of 2002. His methodology is important as the 
construction of the factors captures the unique characteristics of UK data (see also Dimson et al. 2003 for 
details). 
33 The industry classifications are obtained from Datastream (INDC3). 

72 



Chapter 3 

Table 3.2 Excess Returns by Price Momentum and Short-sale Constraint 
Average monthly excess returns (per cent) of portfolios composed on price momentum and 
short-sale constraint are reported. Short-sale constraint is measured by the RIO, the residual of 
equation (3.2). At the end of each month t, all stocks are allocated into five price portfolios (PI, 
P2,..., PS) based on their returns during the six month formation-period (1-7 to t-2). Stocks in 
each price portfolios are grouped into five further portfolios on each bench-mark adjusted returns. 
Bench-marks adjusted excess returns are estimated as: first, individual stock returns are adjusted 
for the market (FTSE All share index) returns, Panel A; second, individual stock returns are 
adjusted for Fama-French three factors, Panel B; and third, individual stock returns are adjusted 
for industry returns, Panel C. Industry portfolios are formed using the Datastream's 
industry-classification (data type: INDC3). All portfolios are equally weighted. The position is 
held for six-months (t to 1+5). T-statistics (in parentheses) are based on Newey-West 
autocoffelation consistent standard errors. *(**) Denotes significance at the 5(10) per cent level. 
The sample period is January 1993 to December 2002. 

Residual Institutional Ownership 

Momentum RI01 R102 RI03 R104 RI 
. 
05 RIOI -RIOS (Low) Ullgh) 

Panel A: Market Adjusted Returns 
PI (Loser) -2.18 -1.92 -1.68 -1.43 -1.23 -0.96 (-2.35*) 

P2 -1.24 -1.01 -0.98 -0.65 -0.59 -0.66 (-2.72*) 
P3 -0.74 -1.01 -0.42 -0.36 -0.08 -0.66 (-3.12*) 
P4 -0.40 -0.42 -0.27 -0.21 -0.07 -0.33 (-1.70**) 

P5(Winner) -0.09 -0.13 -0.03 0.14 0.01 -0.10 (-0.37) 

P5-pl 2.09 1.79 1.65 1.57 1.24 0.85 (2.17*) 
(6.20*) (5.77*) (5.09*) (4.17*) (3.51*) 

Panel B: Three-factor Adjusted Returns 
Pl (Loser) -2.26 -2.26 -1.69 -1.93 -1.66 -0.60 (. 1.81 * *) 

P2 -1.40 -1.41 -1.32 -1.61 -1.44 0.04(0.47) 
P3 -1.28 -1.58 -1.11 -1.71 -1.32 0.04(0.20) 
P4 -1.01 -1.01 -1.02 -1.30 -1.14 0.13(0.42) 

PS(Winner) -0.42 -0.66 -0.81 -1.08 -0.98 0.56(l. 55) 

1.84 1.61 0.88 0.85 0.68 1.16 (3.79*) P5 - Pi (5.01*) (3.82*) (2.03*) (1.86**) (1.24) 0 

Panel C: IndustrvAdiusted Returns 
Pl (Loser) -1.39 -1.35 -1.18 -0.59 -0.31 -1.08 (-4.54*) 

P2 -0.08 -0.22 -0.18 -0.38 -0.37 0.28 (2.10*) 
P3 0.36 0.14 0.34 0.06 0.08 0.28 (2.04*) 
P4 0.59 0.45 0.33 0.27 0.27 0.32 (3.17*) 

P5(Winner) 0.59 0.38 0.28 0.21 0.10 0.48 (2.37*) 

P5-pl 1.98 1.73 1.45 0.80 0.41 1.57 (5.72*) (5.09*) (6.47*) (3.66*) (1.92**) (1.42) 
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3.4.3 Divergence in opinion and excess returnsfrom momentum trading 
Miller (1977) suggests that stocks that are subject to both short-sale constraints and high 

divergence in investors' opinion are overpriced. To test this conjecture along with 

momentum profits, this section first sorts stocks in quintiles (for each I month) on the 

previous quarter's residual institutional ownership (RIO) -a proxy for short-sale 

constraints. Next, stocks in each RIO portfolios are sorted into three groups on dispersion 

in analysts' EPS forecasts during the three months prior to the first day of the portfolio 
formation period (Disp). RIO, a measure of short-sale constraints, is obtained from 

equation (3.2). Next, three equally weighted portfolios are formed on their prior price 

performance. Portfolio PI consists of the 30 per cent worst-performing stocks, portfolio 
P2 contains the middle 40 per cent, and portfolio P3 includes the 30 per cent 
best-performing stocks. This three dimensional analysis allows us to test the hypothesis 

that momentum profits are high when both short-sale constraints and divergence in 

investors' opinion are high. 

The estimates in Table 3.3 show that momentum profit is concentrated in low RIO stocks 
(high short-sale constraints), and is driven by loser stocks. Within each RIO portfolio, 
although momentum profit is most pronounced on the portfolio of stocks with high 
dispersion in analysts' EPS forecasts, there is no statistical difference between high 
dispersion and low dispersion portfolios (even among low RIO stocks). 

This result is consistent with the earlier findings that short-sale constraints are important 

in determining the magnitude of momentum profits. However, returns across divergence 
in opinion portfolios are not statistically important. The findings show that the 

overpricing hypothesis of Miller (1977) fails to explain the sources of momentum profits. 

As a robustness check, this chapter uses trading volume as an alternative proxy for the 
dispersion of investor beliefs. Table 3.4 reports the average monthly raw returns during 

the holding period Q to t+5). The result shows that momentum profits (P3-P I) are driven 

substantially by the loser stocks. In addition, momentum returns are concentrated on the 
lowest two RIO quintiles, and decrease monotonically across RIO quintiles. This result is 

74 



Chaptcr 3 

consistent with the earlier findings that short sales constraints are important in 

determining the magnitude of momentum profits. However, returns are statically 
insignificant across VO portfolios. Using alternative measures of divergence in opinion, 
this section shows that the overpricing hypothesis of Miller (1977) fails to explain the 

sources of momentum profits. 

Table 3.3 Momentum Returns by Short-sale Constraint and Divergence In Opinion 
(Dispersion in Analysts' EPS Forecasts) 

Average monthly raw returns (per cent) of portfolios composed on short-sale constraint and divergence 
in opinion are reported. Short-sale constraint is measured by the RIO, the residual of equation (3.2). 
Divergence in opinion on each stock is measured by the standard deviation in EPS forecasts made in 
3-months prior to the formation period scaled by the stock price per share at the beginning of the 
month of forecast. First, at the end of each month t, all stocks are allocated into three RIO portfolios. 
Second, stocks in each RIO portfolio are grouped into 3 further portfolios on divergence in opinion 
(Disp). All stocks belonging to each element of the (RIO x Disp) matrix are then grouped into three 
portfolios. The portfolios are PI (the worst performing 30 per cent), P2 (the middle 40 per cent), and 
P3 (the best performing 30 per cent). The position is held for six-months Q to t+5). All portfolios are 
equally weighted. T-statistics (in parentheses) are based on Newey-West autocorrelation consistent 
standard errors. *(**) Denotes significance at the 5(10) per cent level. The sample period is January 
1993 to December 2002. 

Dispersion in Analysts' EPS Forecasts portfolios 
Disp3 Disp2 Displ Disp3 - Displ RIO Portfolios (Iligh) (Low) 

P3 = -0.20 P3 = -0.32 P3 = -0 , 15 P3 - PI = 0.59 
RI01 (Low) PI = -2.49 PI= -2.04 PI =-I , 72 (0.81) P3 - PI = 2.28 P3 - PI = 1.72 P3 - PI = 1.57 

(4.12*) (2.99*) (2.82*) 

P3 -0.08 P3 -0.48 P3 -0.67 P3 - PI =0.38 
R102 PI -1.54 PI -1.54 PI -1.71 (0.56) P3 - PI = 1.45 P3 - PI = 1.06 P3 - PI = 1.04 

(2.89*) (1.89**) (1.77**) 

P3 = -0.69 P3 = -0.22 P3 = -0.81 P3 -P1 =0.25 
R103 (High) PI = -1.00 PI = -0.55 PI = -0.87 (0.34) P3 - PI = 0.31 P3 - PI = 0.34 P3 - PI = 0.06 

(0.43) (0.63) (0.10) 

RI01 - R103 P3 - PI = 1.97 P3 - PI = 1.07 P3 - PI = 1.50 
(2.66*) (1.45) (2.00*) 
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Table 3.4 Mean monthly momentum profits by residual institutional ownership and 
trading volume 

All stocks are first sorted each month t into quintile based on the end of previous quarter residual 
institutional ownership (RIO) and then 3-month period trading volume (VO) prior to the first day 
of the formation period Q-7 to t-2). RIO is obtained from a cross-sectional regression using eq. 
3.2. Trading volume is measured as the ratio of the number of shares traded to the number of 
shares outstanding. Portfolio PI is an equally weighted portfolio of stocks in the 
worst-performing 30%, portfolio P2 contains the middle 40%, and portfolio P3 includes the 
best-performing 30%. This table reports the portfolio's mean raw returns during the holding 
period Q to t+S). t-statistics (in parentheses) are based on Newey-West autocorrelation consistent 
standard errors. *(**)denotes significance at the 5(10)% level. The sample period is January 1993 
to December 2002. 

V03 (Iligh) V02 VO I (Low) V03-VOI 

RIOI (Low) 

R102 

R103 

R104 

RIOS (Ifigh) 

P3 0.71 
P1 -2.06 

P3 - PI = 2.77 
(5.32*) 

P3 0.78 
PI -1.81 

P3 - PI = 2.58 
(4.92*) 

P3 = -0.03 
PI = -1.24 

P3 - PI = 1.21 
(2.5 5 

P3 0.20 
P1 -0.37 

P3 - PI = 0.57 
(1.07) 

P3 0.01 
PI -0.37 

P3 - PI = 0.38 
(0.78) 

P3 = 0.65 
PI =-1.78 

P3 - PI = 2.43 
(5.19*) 

P3 0.37 
PI -1.75 

P3 - PI = 2.11 
(3.74*) 

P3 = -0.0 1 
PI = -0.82 

P3 - PI = 0.81 
(1.36) 

P3 0.23 
PI -0.42 

P3 - PI = 0.65 
(1.20) 

P3 = -0.10 
PI = -0.66 

P3 - PI = 0.56 
(1.23) 

P3 0.09 
PI -1.91 

P3 - PI = 2.00 
(4.11 

P3 = -0.41 
PI = -2.03 

P3 - PI = 1.62 
(3.08*) 

P3 = -0.28 
PI = -0.84 

P3 - PI = 0.57 
(1.09) 

P3 = -0.29 
PI = -0.77 

P3 - PI = 0.48 
(0.94) 

P3 = -0.30 
PI = -0.79 

P3 - PI = 0.49 
(0.86) 

P3 - PI = 0.77 
(1.28) 

P3-PI =0.97 
(1.60) 

P3 - PI = 0.64 
(1.09) 

P3 - PI = 0.09 
(0.14) 

P3-PI =-0.11 

RIOI - R105 P3-PI=2.40 P3-PI=1.87 P3-PI=1.51 
(3.79*) (3.99*) (2.76*) 

In summary, the findings of this section have major implications for trading. First, 

momentum returns are more likely to be 'paper' returns as these profits primarily come 
from loser stocks that are very costly or impossible to short. Second, investors' inability 

to short-sale loser stocks defeats the original idea of generating momentum profits from a 

self-financing (hedge) portfolio. The persistence in momentum in stock prices is therefore 

caused by limits to arbitrage rather than investors' under-reaction to firm-specific 

information reported in some earlier studies. Some behavioural finance theorists argue 
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that the persistence in momentum profits may be attributed to the disposition cfTect, 
implying that investors are reluctant to sell losers and eager to dispose of winners (see 

Sheffin and Statman, 1985). Ranguelova (2001) points out that the disposition effect 

operates entirely through the selling behaviour of individual investors. However, in this 

case, individual (unsophisticated) investors are not assumed to be subject to any irrational 

behaviour/bias in their selling decisions". This chapter only assumes that short-sale 

constraints prohibit arbitragcurs from immediately correcting mispricing. 

Institutional investors generally do not hold momentum (loser) stocks and less 

sophisticated individual investors are unlikely try to get involved in short-selling. These 

trading behaviours of investors help maintain persistence in momentum profits that come 
from loser stocks. The finding of Keim (2004) that only 23 per cent of institutional 

traders in the UK are characterised as momentum traders (50 per cent arc 
index/diversified traders and 27 per cent are valuc/fundamcntal traders) suggests that 

momentum strategies are less popular among British institutional investors. Finally, the 

findings suggest that Miller's overpricing hypothesis cannot fully explain the momentum 

profits. 

3.5 A test of DIIS's overconfidence model and momentum profit 
Discussions in the previous section confirm that momentum profit originates mainly from 

the underperformance of loser stocks, and the continued underperformance is 

concentrated in stocks with high short-sale constraints but not with high divergence in 

investors' beliefs. This section tests an alternative overvaluation theory developed by 

Daniel, Hirshleifer and Subrahmanyarn (DIIS, 1998) suggesting that overconfidence and 

self attribution are the sources of momentum profits. DIIS suggest investors are 

overconfident about their private information, and therefore overweight their private 
information and under-react to public signals. When public information confirms 
investors' private information their confidence increases, investors continue to over-react 

to their priors because of biased self-attribution. This optimism, generally excessive, 

34 The problem of using the disposition effect to explain the persistence of momentum profits is that it 

requires investors to consistently reject selling their stock. While it may be true that individual investors are 
sometimes reluctant to sell assets that are trading at a loss, it is hard to believe that they always do so. 

77 



Chaptcr 3 

together with short-sale constraints leads to overvaluation resulting in subsequent low 

retums. 

To test this proposition, this section uses short-sale constraints to capture optimistic 
investors, since pessimistic traders cannot enter into the market and, hence, only 

optimistic investors remain in the market. This section employs analyst recommendations 
and analyst forecast revisions to capture good public information in which investors 

precise as confirmation signal, create an excess optimism and push prices upward and 

generate low subsequent returns. 

Table 3.5 examines whether analyst recommendations to 'Buy' are more pronounced for 

stocks with short-sale constraints and whether this contributes to momentum profits. This 

section performs a two dimensional analysis. First, the stocks are grouped into three 

portfolios based on their previous quarter's RIO. Second, stocks in each RIO portfolio are 

then grouped again into three portfolios on their analyst recommendation (Rcc) into 

'Buy', 'Hold' and 'Sell' recommendations prior to the formation period (1-7 to t-2). 

Finally, stocks within each clement of the matrix (RIO x Rcc) are then allocated into 

three further portfolios on the basis of their return performance during the formation 

period Q-7 to 1-2). Portfolio PI contains the worst performing 30 per cent stocks, P2 

includes the middle 40 per cent stocks, and P3 includes the best performing 30 per cent 

stocks. The holding period Q to t+5) returns (raw) of these portfolios arc reported in Table 

3.5. 

The results reconfirm that momentum profits are mostly concentrated within the lowest 

RIO portfolios of loser stocks. Table 3.5 further reveals ýhat for each RIO portfolio, 

momentum returns decline monotonically from 'Buy' to 'Sell' recommendations. These 

results show that investors might be initially optimistic, when they receive a buy signal 
from analyst recommendation, they become more confident and push prices up, stocks 
become overvalued and subsequent returns are low, resulting in momentum profits 

generated by the return continuation on loser stocks. 
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Table 3.5 Momentum Returns by Short-sale Constraint and Analyst Recommendation 

Average monthly raw returns (per cent) of portfolios composed on short-sale constraints and 
analysts' recommendation are reported. Short-sale constraint is measured by RIO, the residual of 
equation (3.2). Analyst recommendation on each stock is collected from I/B/E/S. First, at the end 
of each month t, all stocks are allocated into three RIO portfolios. Second, stocks in each RIO 
portfolios are grouped into three further portfolios on analyst recommendation (Rec) including 
'Buy', 'Hold', and 'Sell' groups. All stocks belonging to each element of the (RIO x Rec) matrix 
are then grouped into three portfolios. The portfolios are PI (the worst performing 30 per cent), P2 
(the middle 40 per cent), and P3 (the best performing 30 per cent). The position is held for 
six-months Q to t+5). All portfolios are equally weighted. T-statistics (in parentheses) are based on 
Newey-West autocorrelation consistent standard errors. *(**) Denotes significance at the 5(10) per 
cent level. The sample period is January 1993 to December 2002. 

Analyst Recommendation (Rec) 

RIO Portfolios Buy Ifold Sell BUY - Sell 
P3 - PI = 2.46 P3 - PI = 2.01 P3 - PI = 0.72 P3 - PI = 1.74 

RIOI (Low) 
(3.65*) (3.95*) (1.18) (2.25*) 

P3 - PI = 1.89 P3 - PI = 0.79 P3-PI =0.86 P3 - PI = 1.02 

R102 (3.34*) (1.73**) (2.02**) (1.84**) 

P3 - PI = 1.23 P3 - PI = 1.16 P3 - PI = 0.44 P3 - PI = 0.79 

R103 (High) (1.94* *) (2.63*) (0.83) (1.23) 

R103 - R101 P3 - PI = 1.23 P3 - PI = 0.84 P3 - PI = 0.27 
(1.80**) (1.47) (0.38) 

To examine whether momentum profits are concentrated in stocks with high short-sale 

constraints and 'with analyst forecast revision upward, Table 3.6 performs a two 
dimensional analysis. First, the stocks are grouped into three portfolios based on their 

previous quarter's RIO. Second, stocks in each RIO portfolio are then grouped again into 

three portfolios on their analyst forecast revision (FRev) into 'Up', 'No change' and 
'Down' revisions prior to the formation period (1-7 to t-2). Finally, stocks within each 

element of the matrix (RIO x FRev) are then allocated into three further portfolios on the 
bas. is of their return performance during the formation period (0 to t-2). Portfolio PI 

contains the worst performing 30 per cent of stocks, P2 includes the middle 40 per cent of 

stocks, and P3 includes the best performing 30 per cent of stocks. The holding period (t to 

t+5) returns (raw) of these portfolios are reported in Table 3.6. 
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The results show that momentum profits are concentrated on loser stocks within the 

lowest RIO portfolios and analyst forecast revision upward portfolios. For each RIO 

portfolio, momentum returns decline monotonically from forecast revision 'Up' to 

'Down'. The findings suggest that investors are initially optimistic, when they receive a 
forecast revision upward signal, they become overconfident and push prices up, stocks 
become overvalued and subsequent returns are low, resulting in momentum profits 

generated by the return continuation on loser stocks. 

Table 3.6 Momentum Returns by Short-sale Constraint and Analyst Forecast Revision 
Average monthly raw returns (per cent) of portfolios composed on short-sale constraints and 
analysts' recommendation are reported. Short-sale constraint is measured by RIO, the residual of 
equation (3.2). Analyst forecast revision on each stock is collected from I/B/E/S. First, at the end 
of each month t, all stocks are allocated into three RIO portfolios. Second, stocks in each RIO 
portfolios are grouped into three further portfolios on analyst forecast revision (FRev) includes 
'Up', 'No change' and 'Down' groups. All stocks belonging to each element of tile (RIO x FRev) 
matrix are then grouped into three portfolios. The portfolios are PI (the worst performing 30 per 
cent), P2 (the middle 40 per cent), and P3 (the best performing 30 per cent). The position is held 
for six-months (t to t+5). All portfolios are equally weighted. T-statistics (in parentheses) are based 
on Newey-West autocorrelation consistent standard errors. *(**) Denotes significance at the 5(10) 
per cent level. The sample period is January 1993 to December 2002. 

Analyst Forecast Revision (FRev) 
RIO Portfolios Up No Change Down Up - Down 

RI01 (Low) P3 - PI = 2.24 P3 - PI = 1.83 P3 - PI =1.06 P3 -PI = 1.18 
(4.11 *) (3.71 *) (2.21 *) (1.91**) 

R102 P3 - PI = 1.61 P3 - PI = 1.21 P3 - PI = 1.05 P3-PI =0.56 
(3.76*) (2.65*) (2.60*) (1.18) 

R103 (High) P3 - PI = 1.17 P3 - PI = 1.55 P3 - PI = 0.88 P3 - PI = 0.28 
(2.75*) (3.20*) (1.67**) (0.52) 

R103 - R101 P3 -PI = 1.06 P3 - PI = 0.28 P3 - PI = 0.16 
(1.90**) (0.54) (0.27) 

Overall, the findings of this section are consistent with the prediction that return 
continuation on loser stocks will be most pronounced with low institutional ownership 
(high short-sale constraints) and public good signals. The results show that stocks with 
high past returns, analyst recommendations to buy, and analysts revising their forecast 
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upward provide an environment in which unsophisticated investors accelerate their 
confidence level, this might lead to excessive optimism about the firm and subsequent 

momentum profits. 

Since the previous sections find that the profitability of momentum strategies are driven 

almost entirely by the loser stocks, it will be interesting to see what happens to these loser 

stocks in pre- and post-formation periods. Figures 3.2 and 3.3 plot the cumulative raw 

returns and mean monthly returns of loser portfolios under five quintile groups of 

residual institutional ownership respectively, in the 12-month prior to formation period 
Q-17 to t-7), formation period (0 to t-2), and 24-month holding period (t-I to t+23). The 

results show that positive returns could be earned in the 12-month prior to formation 

period only at the lowest RIO quintile and slight positive returns for R102. Given that the 

earlier results show that momentum profits can only be observed from the lowest two 
RIO quintiles, the results in this section thus indicate that loser stocks under short sales 

constraints are initially overpriced. Together, the 24-month holding periods show that the 

market eventually corrects the mispricings. This is consistent with behavioural models by 

Daniel et al. (1998) and Hong and Stein (1999) that momentum is initially an over 

reaction and is followed by a long-run reversal. Yet, Figure 3.2 and 3.3 show that the 

overreaction theory does not fully explain the long-run anomaly. There is strong long-run 

reversal in all RIO quintiles despite there being no early momentum. This finding is in 

line with Cooper et al's. (2003) finding that long-run reversal can appear without 

short-run momentum. 
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Figure 3.2 Cumulative momentum returns of loser portfolios under rive quintile groups of 
residual Institutional ownership 

At the end of each month t, all stocks are allocated into quintile based on their six-month 
formation-period from 0 to 1-2 and by the end of the previous quarter residual institutional 
ownership (RIO). RIO is obtained from a cross-sectional regression using eq. 2. Quintile 
portfolios are formed monthly by weighting equally all firms in that quintile ranking. The figure 
shows the cumulative returns of loser portfolios under five quintile groups of residual institutional 
ownership. The time scale is 12-month prior formation period (1-12), formation period (13-18), 
and 24-month post formation period (19-42). 
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Figure 3.3 Mean monthly returns of loser portfolios under rive quintile groups of residual 
institutional ownership 

At the end of each month t, all stocks are allocated into quintile based on their six-month 
formation-period from t-7 to t-2 and by the end of the previous quarter residual institutional 
ownership (RIO). RIO is obtained from a cross-sectional regression using eq. 2. Quintile 
portfolios are formed monthly by weighting equally all firms in that quintile ranking. The figure 
shows the mean monthly returns of loser portfolios under five quintile groups of residual 
institutional ownership. The time scale is 12-month prior formation period (1-12), formation 
period (13-18), and 24-month post formation period (19-42). 
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To examine the interaction between momentum profits and the previously identified 

momentum-related factors, this section conducts a series of cross-sectional regressions. 
This allows us to explore the above interrelationships while controlling for the predictors. 
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It also serves as a robustness check on the methodology of two/three dimensional 

analysis applied in previous sections. 

Cross-sectional regressions are estimated for each month t from January 1993 to 

December 2002. The coefficient estimates reported in Table 3.7 are the time-series 

averages of the monthly estimates. The dependent variable is the average monthly return 

over the six-months holding periods subsequent to the current month t. Explanatory 

variables are RIO, Prior return, Disp, Rec and FRev, as defined earlier. The t-statistics are 
based on the Newey-West autocorrelation consistent standard errors. 

In Table 3.7 (Model 1), the average monthly returns over the six-month holding periods (t 

to t+5) are regressed on prior returns over the six-month formation period Q-7 to t-2) and 

RIO. The coefficient estimates are consistent with the earlier portfolio results suggesting 

the presence of momentum returns, and the strong negative relationship between 

momentum and residual institutional ownership. 

In Model 2, the average monthly returns over the six-month holding periods Q to t+5) are 
regressed on prior returns over the six-month formation period (1-7 to 1-2), RIO and Disp. 

The coefricient on RIO is -0.019 (t-statistic -2.10) and the coefficient on Disp is -0.021 
(t-statistic -0.92) confirming the previous results that momentum profits are most 

pronounced for both short-sale constraints but are not linked to divergence in opinions. 

Model 3 and model 4 look at the effect of analyst recommendation and analyst forecast 

revision in isolation and at its interaction with RIO and prior returns. The results show 

that momentum profits are strong in all cases. The findings continuous to establish the 

negative relationship between momentum and institutional ownership in both models. In 

addition, the findings suggest that momentum profits might link to overconfidence and 

self attribution bias. 

In Model 5, the average monthly returns over the six-months holding periods Q to t+S) 

are regressed on prior returns over the six-months formation period Q-7 to t-2), RIO, Disp, 
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Rec and FRev. The results show that each of these variables contain strong effects on 
future returns, except Disp, which measure for divergence in opinion. 

Table 3.7 Cross-sectional regression analysis 

This table shows average monthly regression coefficients from January 1993 to December 2002. 
The dependent variable is the average monthly return over the six-month holding periods 
subsequent to the current month t. RIO is the residual institutional ownership obtained from a 
cross-sectional regression using eq. 2. VO is the three-month period trading volume prior to the 
first day of the formation period Q-7 to t-2). Prior return is the average monthly returns over the 
six months prior to the current month t. Disp is the three-month period of analysts' forecasts 
dispersion prior to the first day of the formation period. Rec is the analyst recommendation. FRev 
is the analyst forecast revision. t-statistics (in parentheses) are based on Newey-West 
autocorrelation consistent standard errors. *(**) Denotes significance at the 5(10)% level. RI is 
the time-series average of the monthly adjusted R1. 

Model 

12345 

, 0.008 -0.005 -0.007 -0.004 0.001 
Intercept (. 1.82**) (. 1.11) (-1.28) (-1.22) (0.22) 

-0.012 . 0.019 -0.015 -0.014 -0.016 RIO (-1.76**) (-2.10*) (-2.15 *) (-2.14*) (-2.29*) 

0.122 0.105 0.188 0.181 0.242 Prior return (4.80*) (4.21 *) (6.41 (5.72*) (3.22*) 

Disp -0.021 0.006 
(-0.92) (0.43) 

Rec 0.001 0.006 
(1.65**) (2.00*) 

FRev 0.001 0.002 
(2.4 8 *) (2.43 *) 

Adj Rl(%) 2.86 6.68 5.66 6.06 21.32 

3.7 Short sales constraints and the value premium 
The previous section has established the strong link between momentum profits and 

short-sale constraints. It will be interesting to see if other zero-sum investment strategies 
based on the value premium/book-to-markct effect will also display such a pattern in the 

UK. First, this section sorts all stocks into quintiles at the end of each month t based on 
their returns during the six month formation period Q-7 to 1-2). This section then groups 
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the stocks of each book-to-markct category into five portfolios (equal stocks) on previous 
quarter's RIO obtained from equation (3.2). 

The results in Table 3.8 support the views that the value premium is most pronounced in 

low B/M stocks with high short-sale constraints. The average difference between the 

monthly returns of BM5 and BMI portfolios in the lowest RIO quintile is 2.09 per cent 
(T-statistic = 5.66). In contrast, the differences between returns of BM5 and BMI in 

R105 portfolios are statistically insignificant. The results also show that almost all of the 

contribution to momentum profits comes from low B/M stocks. The findings arc very 

similar to those of the momentum anomaly that this chapter has established earlier. In 

addition, the results arc consistent with NagcI (2005) that the book-to-markct cffect is 

primarily concentrated in stocks that are difficult to short. 

Table 3.8 Mean Monthly Portfolio Returns by Residual Institutional Ownership and 
Book-to-Market Effect 

At the end of each month t, all stocks are allocated into quintile based on their book-to-market 
ratio (B/M) at time I and by the end of the previous quarter residual institutional ownership (RIO). 
Decile portfolios are formed monthly by weighting equally all firms in that decile ranking. The 
position is held for the following twelve-month period (t to t +11). This table reports the 
strategy's mean raw returns during the holding period. t-statistics (in parentheses) are based on 
Newey-West autocorrelation consistent standard errors. *denotes significance at the 5% level. 
The sample period is January 1993 to December 2002. 

Residual Institutional Ownership (RIO) 

Book-to-Market RIOI R102 R103 R104 11105 11105 - RIOI (Low) (Iligh) 

BMI (Low) -1.82 -1.75 -1.32 -0.75 -0.49 1.33 (2.87*) 

BM2 -0.89 -1.03 -0.89 -0.80 -0.70 0.19(0.68) 

BM3 -0.73 -0.60 ' -0.71 -0.60 -0.39 0.35(l. 94) 

BM4 -0.28 -0.48 -0.16 -0.21 -0.25 0.03(0.18) 

BM5 (Iligh) 0.27 0.11 0.40 0.21 0.08 -0.18 (-1.14) 

BMS-BMI 2.09 1.86 1.72 0.96 0.57 
-1-52 (-3.34*) (5.66*) (5.52*) (5.60*) (2.99*) (1.75) 
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3.8 Conclusions 

Extensive evidence on the persistence of momentum profits has challenged the rational 

expcctation-based predictions of modem finance theory, yet its causes and exploitability 

are unknown. To fill this gap, this chapter examined three issues. They are: (a) what are 

the possible sources of momentum profits? (b) to what extent are momentum profits 
linked to overconfidence, limits to arbitrage and divergence in opinion? and (c) are 

momentum profits exploitable? More specifically, following the predictions of Miller 

(1977) this chapter examines whether stocks charactcriscd with limits to arbitrage and 
high divergence in investors' beliefs contribute to momentum profits. Several conclusions 

emerge. 

This chapter finds that momentum profits come from loser stocks. There is strong 

evidence of a positive relationship between short-sale constraints and the magnitude of 

momentum profits. The.. 
-known_risk 

factors cannot exp)pin,,. the-momentpm-prof"its. 

However, the results are inconsistent with Miller's (1977) view that stocks that are 

subject to both short-sale constraints and high divergence in opinion are initially 

overvalued and generate low subsequent returns. This chapter find that momentum prorits 

might be linked with short sale constraints but not with divergence in opinion. On the 

other hand, excessive optimism together with self attribution bias leading to 

overvaluation and therefore low subsequent returns better explain momentum prorits. 

The findings of this chapter have several implications. First, momentum profits might not 
be exploitable easily as these are generated primarily by loser stocks that arc costly or 
impossible to sell short. Second, the investors' inability to short-sell loser stocks defeats 

the original theme of momentum trading that argues for a self-financing hedge portfolio. 
Third, the persistence in momentum profits might be caused by limits to arbitrage rather 

than investors under-rcacting to firm-specific information. Finally, the results support the 

view that momentum profit results primarily from mispricing due to limits to arbitrage 

and overconfidence, while divergence in opinion does not play a role in overvaluation. 
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4. Analyst Bias, Uncertainty and Momentum Profits 

4.1 Introduction 

There is overwhelming empirical evidence documenting the apparent success of the 

momentum strategy where buying stocks with high returns over the previous 3 to 12 

months and selling stocks with poor performance over the same period of time can 
generate significant abnormal returns over a medium holding period. The apparent 
momentum in stock prices appears to be strong in the US and Europe and to a lesser 

extent in Asia. Griffin, Ji, and Martin (2003) document that 17 of the 40 countries they 

studied display positive and significant momentum profits. In addition, they found that 

momentum profits for Asia arc substantially weaker than those around the world, 
particularly to Europe. Similarly, Rouwenhorst (1999) found weaker momentum profits 
for emerging markets. In addition, Chui, Titman, and Wei (2003) found that the 

momentum effect is generally weak in Asian countries. Although the literature has 

reached a consensus on the existence of momentum in stock prices, there is still no 
consensus on the source(s) of momentum profits. 

Previous works based on behavioural theories attempted to explain the payoff of 
. momentum strategies. Daniel ct al. (1998) and Hong and Stcin (1999), each employing 
different behavioural or cognitive biases, suggest that over-rcaction is the source of 
momentum prorits. Barberis et al (BSV, 1998) and Zhang (2006) suggest that investors 

under-react to new information and stock prices continue to move in the same direction. 
According to behavioural theories, stocks that are small, have less available information 

on fundamentals, fewer investors/analysts to follow their progress, whose businesses arc 
hard to value, implementation costs are high and arbitrage rather limited should exhibit 
higher momentu Howevcr, th e)jnt behavioural finance literature has not yet been 

able to provide unifying e ýlanation to momentum proffig. In addition, there are few 

attempts to search for behavioural explanations for momentum profits across countries. 
This chapter fills this gap 

The hypothesis of this chapter is based on works in the behavioural economics and 
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finance literature. Jiang, Lee and Zhang (2005) and Zhang (2006), using information 

uncertainty variables as proxied by firm size, firm age, analyst forecast dispersion, 

leverage, return volatility, and cash flow volatility, show that momentum profits are linked 

with information uncertainty. In particular, Zhang (2006) shows that greater information 

uncertainty leads to relatively lower future stock returns following bad news and relatively 
higher future returns following good news, indicating that uncertainty prevents timely 
information incorporation into stock prices. Gentzkow and Shapiro (2006) propose a 

model of media bias that suggests that a media firm with a reputation concern will distort 

information in order to conform %ýith consumers' prior beliefs whenever the outcomes are 
difficult to observe. 

This chapter combines these two ideas and develops the hypothesis: if the momentum 
profits are linked to uncertainty, in particular, higher momentum profits when there is 
higher uncertainty and if investors are unable to gain access to their own source of 
information, their information set will be reliant on their agents i. e. analysts. Analysts 

who are concerned for their reputations will act on or reveal information depending on 
their clients' prior beliefs whenever possible in order to maximize their rewards. In sum, 
when there is more uncertainty, hence, when the true information is difficult to observe, 
analysts make earnings forecasts and recommendations that bias towards their client's 
desire, i. e. release positive news for winners stocks pushing prices upward and distort 

negative news for loser stocks pushing prices downward. As a result, momentum profits 
should be high when uncertainty and analyst bias are high. 

Risk factors are commonly used to explain the market anomaly, however, Fama and 
French (1996) concede that momentum trading is the only CAPM-related anomaly that 

their three-factor model fails to explain. In addition, the-extanLlitcrature-liasnot-yc-Uccn- 

able to identify any _ priate risk factors that might explain-the- momentum anomaly. 
Recently, Chordia and Shivakumar (2002) showed that momentum profits are linked with 
the busin 

- 
ess-cycle. Avramov and Chordia (2006) suggest that although business cycle risk 

is captured by Treasury Bill yield, the term spread, and the default spread do not directly 

explain momentum profits, however, the sources of momentum prorits can be traced to 
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undiscovered risk factors associated with the business cycle pattern. Antoniou, Lam and 
Paudyal (2007) find similar results for European stock markets. Naranjo and Porter (2004) 

document that country-neutral momentum returns are significantly correlated across 

countries and are time-varying. Their results are in line with the notion that momentum 

strategies are exposed to some common yet unidentified price risk factor. 

Given that credit risk varies over the business cycle, Avramov, Chordia, Jostova and 

Philipov (2007) show that momentum profits are linked with credit rating. Their 

cross-sectional results show that momentum profits are concentrated on high credit risk 
firms only 35 

. However, the time-series findings show that momentum profits are higher 

during expansionary periods where credit risks should be lower than those during 

recessionary periods. As a result, the inconsistency between the time-series and 

cross-sectional findings suggest that momentum profit is not a compensation for credit 

risks. This chapter attempts to examine the link between credit rating and momentum 

profits furthcr by incorporating analyst bias. 

Using a sample of 22033 stocks covering 41 countries over the periods from 1983 to 

2002 for the US, and from 1987 to 2002 for the rest of the world, this chapter finds that, 

consistent with the existing literature, momentum strategies are largely profitable on 

average around the world, and momentum profits for Asia are distinctly weaker than for 

Europe. In addition, the findings suggest that stocks with I/B/E/S coverage earn higher 

momentum profits than stocks that are not covered. The results show that the sample of 
I/B/E/S coverage firms is representative. 

Trading strategies conditional on three dispersion of analyst forecast (Disp) and three prior 

six month return groups yield momentum payoffs that increase monotonically with the 

dispersion of analyst forecast across countries. The results are more pronounced for 

countries that have experienced momentum payoffs. Similarly, based on three uncertainty 

35 Avramov and Hore (2008) build a theoretical model show that momentum profits exist in high 
information uncertainty and high credit risk stocks, suggest that the combination of leverage, which proxies 
for credit risk and information uncertainty, which represents risky cash flow firms could generate risk 
factors that could explain the momentum profits. 
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(V) and three past return portfolios, momentum payoffs increase monotonically with 

uncertainty. On the other hand, based on three diversity of analyst forecast (1-p) and three 

past return groups, the momentum profits drop monotonically with increase in diversity of 

analyst forecast, suggesting that momentum profits are stronger with higher 

agreemcnt/consensus among investors. In addition, within each of the uncertainty groups, 
the extreme winner and loser portfolios are among higher analyst bias groups. The 

findings suggests that analysts with reputational concerns report forecasts in accord with 

client's beliefs, hence greater analyst bias when there is greater uncertainty. The extreme 

winner and loser stocks continue to move in the same directions reflecting investors' 

beliefs promoted by analyst bias rather than the true set of information. 
, 

This chapter also examines the link between credit rating, analyst bias and momentum 

profits in the US". The results show that momentum profits are concentrated among high 

credit risks and high analyst bias firms during expansionary periods, and loser stocks are 
the dominant source of the profitability of momentum strategies. The findings suggest that 

analysts with reputation concern report earnings forecasts in accord with the client's desire 

and distort bad news for the poorest credit quality firms whenever the outcomes are 
difficult to detect and/or mistakes are less painful to absorb i. e. during expansionary 
periods. During recessionary periods, however, analysts will choose to forecast earnings 
close to if not the same as the consensus forecast since mistakes are more costly and 

painful. 

Finally, the chapter reports a head-to-head comparison of a strategy that based on 

uncertainty, by buying low uncertainty winners and selling high uncertainty losers, with the 

traditional Jegadeesh-Titman momentum strategy. The findings show that the uncertainty 

momentum strategy is superior to the Jegadeesh-Titman momentum strategy. 34 of 41 

countries display momentum profits for uncertainty momentum strategy compared to 24 

of 41 countries for the Jegadeesh-Titman momentum strategy. 

36 Due to lack of data available for the credit rating by S&P of other countries, this chapter only examines 
the effect on US Data. 
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This chapter makes several contributions to the behavioural economics and finance 

literature. First, this chapter establishes a strong link between uncertainty and momentum 

profits across countries. Second, the findings report that greater uncertainty with greater 

analyst bias leads to negative returns for loser stocks, and hence greater momentum 

profits. As a result, the momentum effects are more likely to reflect slow absorption of 

ambiguous information into stock price because analysts with reputational concerns 

report forecasts in accord with client's beliefs rather than the true set of information. The 

findings provide empirical evidence for the economic theory of 'herding on the priors' 

and reputational effects in sender-receiver games", as well as the finance literature on the 

sources of momentum profits. Third, this chapter provides evidence on global data that 

analysts' forecast dispersion reflects uncertainty rather than disagreement, consistent with 
Johnson (2004)". Fourth, the chapter suggests that the strong link between credit rating 

and momentum profits in the US documented by Avramov, Chordia, Jostova and Philipov 

(2007) can be explained by analyst bias. Finally, the chapter finds that profits from a 

momentum strategy based on uncertainty, by buying low uncertainty winners and selling 
high uncertainty losers, are greater (includes most Asian countries) than the 

Jegadeesh-Titman momentum strategy. 

The remainder of the chapter is organized as follows. Section 4.2discusses the related 
literature and develops the testable hypotheses. Section 4.3 discusses the sample data and 

methodology. Section 4.4 presents the empirical results. Section 4.5 concludes the 

chapter. 

4.2 Related Literature and Hypotheses Development 

4.2.1 Risk and uncertainty 
Conventional finance theory assumes complete agreement among investors about the 

probability distribution of future payoffs on assets. As a result, investors will accurately 

process all available information about the distribution of future payoffs and have 

37 For the related literature on 'herding on the priors' and rcputational effects in scnder-receivcr games, see' 
Gentzkow and Shapiro (2006). 
38 Johnson (2004) suggests that the negative relation between dispersion in analysts' forecast and future 
returns may be due to the uncertainty (or risk) rcflecting in dispersion, the option value of the firm increase 
and result in low subsequent returns. 
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complete knowledge of the distribution. In other words, the future stock return payoff is 

known with certainty. In reality, however, investors are uncertain about the true 

probability structure of stock return payoffs. Consequently, uncertainty about the future 

stock returns payoffs could influence asset prices. In particular, Knight (1921) makes a 
distinction between risk and uncertainty. Risk exists when a probability based on past 

experience can be attached to an event, whereas uncertainty exists when there i's no 

objective way to place a probability on an event. More importantly, he argues that 

investors dislike uncertainty more than risk. As a result, investors will show an extra 

aversion to uncertainty beyond their aversion to risk. Ellsberg (1961) shows that 

individuals may prefer to gamble with precise probabilities, hence risk, than to gamble 

with unknown odds, hence uncertainty. Rigotti and Shannon (2005) suggest that high 

uncertainty stops some assets being traded due to uncertainty aversion. The distinction 

between uncertainty and ! isk suggests that while higher risk is associated with higher 

expected returns, higher uncertainty could be associated with lower expected returns. 

4.2.2 Measures of uncertainty and disagreement 

Using dispersion of analyst's earnings forecasts to proxy for divergence of opinion, 
Diether, Malloy and Scherbina (2002), hereafter DMS (2002), found that stocks with 
higher dispersion in analyst's earnings forecasts tend to have lower future stocks market 

returns. They suggest that because the marginal investor fails to fully account for the 

correlation between analyst disagreement and forecast bias, high dispersion stocks are 
likely to be overvalued and to underperform otherwise similar stocks in the future. 

Another reason why increased dispersion of beliefs should be associated with lower 

prices comes from the fact that uncertainty aversion should generally increase with belief 

dispersion; that is, the fact that different investors more strongly disagree about subjective 

probabilities attached to some states is indicative of a greater difficulty of estimating 
these probabilities, and hence of greater uncertainty. Then, because of uncertainty 

aversion, the market prices for claims to states should be lower with greater dispersion of 
beliefs. Since the current findings as to whether dispersion in analysts' forecast captures 
the nature of disagreement or uncertainty are not conclusive, it is ultimately an empirical 

question. 
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Baron, Kim, Lim and Stevens (1998), hereafter BKLS (1998), argue that dispersion in 

analysts' forecasts is likely to be a poor proxy for investor disagreement. Along this line, 

Doukas et al. (2006) found that the negative relation between dispersion in analysts' 

forecasts and ex-post stock returns documented by DMS (2002) were reversed once they 

controlled for uncertainty in analysts' earnings forecasts. 

BUS argue that forecast dispersion reflects both the degree of non-redundancy in 

individual analysts' information and the lack of precision of individual analysts' forecast. 

The BUS uncertainty and diversity in analysts' forecast can be measured as follows: 

Dispersion (Disp) = V(l - p) 
Consensus =p= I-DisplV 

Diversity (Disagreement) = (I- p) 

(4.1) 

(4.2) 

(4.3) 

Where, Disp is dispersion in analysts' forecasts", i. e., the sample variance of the 

individual forecasts (FC) around the mean forecast (FC) , measured as 

n 

(FC, - TC-)'An-1), where n is the number of forecasts. p is consensus, V is 

uncertainty, i. e., the mean of the squared differences between -individual analysts' 

forecasts (FCj) and reported earnings per share (EPS) measured as 1: (FC, - EPS)21n. 40 
1-1 

If DMS' demonstration that stocks with higher dispersion in analysts' earnings forecast 

earn significantly lower future returns that otherwise similar stocks is correct, and if 

BKLS's argument on dispersion in analysts' forecast captures uncertainty is also correct, 

the combined effects suggest the testable proposition as follows. 

Hypothesis 1: the higher the uncertainty, the lower the future returns for loser stocks and 

39 It is also a product of uncertainty (V) and diversity in analysts' forecasts (I-p) 
40 The relations this chapter reports between dispersion, consensus, and uncertainty are not merely 
mechanical. Theoretically, which component, V or (1-p), has more explanatory power for dispersion is, ex 
ante, not clear (Barron et al. 1998). Also see Section 4.3 for empirical evidence that this relation is not 
merely mechanical. 
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hence the higher the momentum profits. 

4.2.3 Behavioural Theories 

Daniel et al. (DHS, 1998) suggest investor overconfidence causes over-reaction and 

generates momentum, the over-reaction in prices will eventually be corrected in the long 

run as investors observe future news and realize their error. As a result, increased 

overconfidence generates momentum in the short run and reversal in the long run. Hong 

and Stein (HS, 1999) argue that private information diffuses only gradually through the 

marketplace leading to an initial under-reaction to news; subsequently positive serial 

correlation in returns attracts the attention of the momentum traders who trade actively 

and over-react. Eventually, prices revert back to their fundamental levels. Hong, Lim, and 
Stein (2000) test the HS model and found that the diffusion of information is lower for 

momentum stocks. 

The under-reaction hypothesis has also been used to explain the momentum anomaly. 
Barberis et al (BSV, 1998) show that investors are subject to a conservatism bias which 

causes them to under-react to earnings and other corporate news, causing short-run 

positive autocorrelation, but when they observe trends of earnings rising, the positive 

signal causes them to switch to over-reaction, causing long-run negative autocorrelation. 
Zhang (2006), based on the under-reaction hypothesis, argues that momentum effects are 

more likely to reflect slow absorption of ambiguous information into stock price than 

reflect missing risk factors; such under-reaction prevents timely new information being 

incorporated into stock prices. 

Another common corollary of behavioural theories is that momentum could be the result 
of mispricing, such that overpriced stocks earn predictably low future returns and 
underpriced stocks cam predictably high returns. Ali and Trombicy (2006) found that 

momentum profits arc positively related to short sales constraints, suggesting that the 

persistence of momentum profits may be due to the fact that arbitrage is costly and any 
systematic mispricing would not be traded away quickly and completely in situations 
where arbitrage costs exceed arbitrage benefits. 
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4.2.4 Analyst Bias 

A Bayesian consumer who is uncertain about the quality of an information source will 
infer that the source is of higher quality when its reports conform to the consumer ý prior 

expectations. (Gentzkow and Shapiro, 2006, JPE) 

Based on the above statement, Gentzkow and Shapiro (2006) developed a new model of 

media bias. The model is based on the assumption that in order to build a reputation for a 

media firm, it will distort information to make it conform to consumers' prior beliefs 

rather than report true information or the true belief/opinion of the firm. Such behaviour 

is motivated by the fact that consumers always want to receive confirmation of their 

priors from the third party. However, the incentives to distort information from a media 
firm drop when the true state of the world becomes easier to observe. In other words, a 

media firm will choose to report information close to the truth rather than in accord with 

consumers' beliefs if the outcomes are soon to be observable. In addition, the model 

predicts that competition can reduce media bias. 

Since analysts care about reputation as much as media firms do, this chapter applies the 

media bias model to test if analysts are more likely to distort information and predict 
earnings in favour of his client's priors when the actual earnings are difficult or 
immediately observable. In addition, the model assumes that bias is most severe when 

clients are at their most uncertain about the future prospects of a company. 

The media bias model argues that the two key elements to determine the strength and 
direction of bias are feedback and competition. Feedback has an inverse relationship with 
bias. When feedback- is immediate i. e. the truth is easily and quickly observable, media 
firms need to make sure that their reports are close to if not the same as to the outcome. 
Applying this to analyst bias suggests that when an earnings announcement is 

approaching, analysts tend to forecast earnings very close to if not the same as the actual 

earnings i. e. the forecast error will be low. On the other hand, analysts will make their 

forecast close to their client's belief when the publication of the forecast is some time 

away from the earnings announcement. The model suggests that competition also has an 
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inverse relationship with bias. The more analysts who follow a firm, the more 
difficult/costly it is for an analyst to report an at odds forecast, as a result, competition 

reduces the forecast error. This chapter measures analyst bias as follows: 

Prior to the end of the fiscal year 
ABp =I Fp - Ap I/ SD p (4.4) 

where: ABp = Analyst bias of stockj at time t 
Fj, t = Mean forecast prior to cutoff date 
Ap = Actual earnings per share for stockj 
SD p= Standard deviation of earnings forecast 

Analyst bias is measured as the absolute forecast error, computed as the absolute value of 
the difference between mean forecast and actual EPS, and deflated by the standard 
deviation of analyst forecast. The absolute forecast error captures the feedback from the 

media bias model and the standard deviation of earnings forecast captures the feedback. 

As a result, the equilibrium analyst bias is high when forecast error is high (feedback is 

high) and the standard deviation is low (competition is high). 

Traditional interpretations on optimistic earnings forecasts tend to be that analysts want 

to win favour with firms and therefore be able to gain access to private information. 

Applying the media bias suggests that the bias does not arise from consumer choice for 

confirmatory information or analysts' incentives to express their own views. Instead, it is 

because analysts' desiring to build a reputation report forecast in accordance with their 

client's desire whenever the actual earnings are yet to be observed. 

In the presence of uncertainty, the analyst bias could influence future returns of winner 

and loser stocks differently, analysts report an increase in earnings forecast and/or 

recommendation to buy winner stocks to meet their client's desire, and therefore stock 

prices continue to increase. On the other hand, analysts knowing that clients do not want 
to realize losses on loser stocks try not to report earnings decreases and/or 
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recommendations'to sell loser stocks. This chapter therefore formulates the hypothesis as 
follows: 

Hypothesis 2: Expected momentum profits are high when uncertainty and analyst bias arc 
high. 

4.2.5 Credit rating in the US 

Avramov, Chordia, Jostova and Philipov (2007) suggest that momentum profits that arc 

mainly contributed by loser stocks are -concentrated among the highest credit risk firms. 
However, previous empirical evidence also suggests that momentum prof"Its are high 

during expansion periods, when credit risks are generally lower than during recessionary 

periods. To illustrate, Figure 4.1 shows the credit risk where 4 is the highest and I is the 

lowest. 

Figure 4.1 The disagreement between time-series and cross-scctional analysis 

Business cycle 
Credit risk 

High Low 
Expansion 

1 -- 
3 1 

[--Ke 
cession 4 2 

The puzzle lies in the fact that momentum profits are concentrated on stocks with credit 
risk equal to 3 rather than 4. Analyst bias offers an explanation for this puzzle, since 

analyst bias suggest that analysts with reputation concern continue t6 find times when 

they can report forecast in accordance with clients' desire. Stocks with high default risks 
are harder to detect, or investors are feeling less vulnerable and mistakes are less painful 
to absorb during good periods and when the market is confident. Since the true status is 
harder to detect, analysts therefore choose to recommend to buy winner stocks and to 
hold loser stocks, since investors want to realize gains but not to realize losses. . 
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4.3 Data and methods 
4.3.1 Data Sources and Sample Selection 

This section describes the data sources and the sample selection. Data on stock returns, 

market capitalisation and book to market value are from the Thomson Datastrearn (TDS) 

database. This chapter uses analyst forecasts information included in the Institutional 

Brokers Estimate System (I/B/E/S) Detail History dataset and Summary History 

datasets". The sample of 22033 stocks covers 41 countries over the periods from 1983 to 

2002 for the US42 , and from 1987 to 2002 for the rest of the world. This choice of sample 

has been guided by the availability of data from I/B/E/S. Only common and non-financial 

stocks are included. Results are reported in local currency returns. 

For current companies, this chapter match between Datastream and I/B/E/S databases 

through the SEDOL code. For dead companies, this chapter manually match the two 
databases by the company name. Stocks that are covered by I/B/E/S and with available 

returns data from Datastrearn are classified as 'Stocks with I/B/E/S coverage'. Stocks that 

are not covered by I/B/E/S but with available returns data from Datastream are classified 

as 'Stocks without I/B/E/S coverage'. 

Since a reasonable number of stocks are needed to form momentum portfolios, this 

chapter required each country to have at least 30 stocks that meet the stock selection 

criteria in any month during the sample period. Furthermore, this chapter required each 

momentum portfolio in each country to have a return history of at least five years. 
Because of the last two criteria, the sampl e includes only forty-one countries, with a total 

of 22033 individual stocks. 

Following Diether et al. (2002), this chapter computed month-end averages and standard 
deviations from the individual estimates in the Detail History file by extending each 
forecast until its revision date. For examPle, if the forecast was made in May and was last 

41 Note that although the I/B/E/S summary suffers the problems of rounding procedure (see Payne and 
Thomas (2003), the empirical results are qualitative unaffected 
42 Ince and Porter (2006) compare Datastrearn and CRSP datascts for US equities and show that after 
careful screening, inferences drawn from Datastrearn are similar to those drawn from CRSP, in particular 
for data from 1987 onward. 
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confirmed as accurate in July, it will be used in the computation of averages and standard 
deviations for May, June, and July. If an analyst makes more than one forecast in a given 

month, only the last forecast is used in the calculations. In some records, a revision date 

precedes the actual forecast date, which constitutes an error on the part of I/B/E/S. In this 

case, the forecast will be assumed to be valid only for the month in which it was made. 
This chapter deletes observations for which the absolute value of earnings forecast 

revision exceeds 100% of the prior year-end stock price. Analyst forecast data are 

adjusted for stock-split using the adjustment factor provided by Datastream. 

4.3.2 Momentum strategies 
For the computation of momentum strategies, this chapter follows the most widely 

reported results of the 6 x. 6 strategy. For each month t, all stocks in each country are 

allocated into three portfolios based on their six-month formation-period from 0 to t-2: 

Portfolio PI is an equally weighted portfolio of stocks in the worst-performing 30%, 

portfolio P2 contains the middle 40%, and portfolio P3 includes the bcst-performing 30%. 

The position is held for the following six-month period Q to 1+5). This chapter employs 

one month gap between the formation and holding period to avoid the momentum cffect 

with very short-term reversals and the bid-ask bounce effects established by previous 

studies (See Jegadeesh (1990), Jegadeesh and Titman (1995)). As in Jegadccsh and 

Titman (1993), to increase the power of the tests this chapter constructs overlapping 

momentum portfolios 

4.3.3 Uncertainty and the Divergence of Opinion Measure 

As argued by Baron, Kim, Lim and Stevens (1998) and proved by Doukas et al. (2006), 

the dispersion in analysts' forecasts is likely to be a poor proxy for investor disagreement 

since it is vitiated by the effects of uncertainty in individual forecasts about the future 

payoffs of stocks. As a result, using dispersion in analysts' earnings forecasts as a proxy 
for divergence of opinion to assess its relation with stocks returns and momentum profits 

could be erroneous. This chapter therefore uses the diversity measure of BKLS's (1-p) 

instead to proxy for divergence of opinion. BKLS show that forecast dispersion can be 

expresse d as D=V (1-p), where V is uncertainty and (1-p) is diversity (disagreement) in 
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analysts information. Diversity of analyst forecast (1-p) is defined as one minus the 

consensus (i. e. the degree of common beliefs among analysts), measured by the 

correlation in forecast errors across analysts. ' In this case, unlike previous studies, this 

chapter uses V to measure the uncertainty and (1-p) the diversity measure as a true 

measure for divergence of opinion. 

4.3,4 Credit Rating in the US 

This section uses data stocks that are rated by Standard & Poor's Long-Term Domestic 

Issuer Crediting Rating on Compustat on a quarterly basis. This chapter extract monthly 

returns on all stocks from Datastream. This chapter then match rated stocks with the 

I/B/E/S database, leaving us with 1256 rated firms with I/B/E/S coverage over the period 
July 1985 through December 2002. The beginning of the sample is guided by the first time 

firm ratings by Standard & Poor's become available on the COMPUSTAT tapes. 

Following Avramov, Chordia, Jostova and Philipov (2007), this chapter transforms the 

S&P rating into conventional numerical scores. Explicitly, I represents a rating of AAA 

and 22 reflects aD rating". As a result, a higher numerical score is equal to a higher credit 

risk, or lower credit rating. The equally weighted average rating of the 1256 rated firms is 

12.09 (compared to 8.83 by Avramov, Chordia, Jostova and Philipov, 2007), and the 

median is 12 (1313). This suggests that analysts are more interested in following high 

credit risk firms. 

4.4 Empirical Results 

4.4.1 Summary Statistics by Country 

Table 4.1 reports the summary statistics for the sample. This section splits the sample into 

two subsamples, (i) Stocks with I/B/E/S coverage (ii) Stocks without I/B/E/S coverage. 
The purpose is to make sure that the sample of stocks with I/B/E/S coverage is 

representative. First, this section identifies an interesting feature in EPS forecasts revision. 
The negative revisions are higher than positive revisions in most countries. This implies 

43 The complete list of ratings is as follows. AAA=I. AA+=2, AA=3, AA-4, A+=5, A=6, A-7, BBB+=8, 
BBB=9,131313-10, BB+=Il, 1313=12, B13-13, B+=14,13=15,13-16, CCC+=17, CCC=18, CCC-19, 
CC=20, C=21, D=22. 
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that initially the analysts publish optimistic estimates (evidence of this is well 
documented in the literature) and subsequently they revise the forecasts downwards. The 

findings are in line with Richardson et al. (2004) suggesting that analysts aim to maintain 

the flow of orders trade and provide accuracy to verify their expertise. 
Table 4.1 Summary Statistics by Country 

Mean size is the time series average market value of all firms in the sample and displays in millions of units 
of local currency. Number of stocks is the total number of firms in the sample. The forecast revision is the 
average of individual revisions by analysts who covered the firm in both months W and t. Panel A (B) 
contains stocks with (without) FB/E/S coverage. Begin dates t are as shown, and the ending date is 
December 2002. 

Panel A: Stocks with 1/130S Panel B: Stocks without I/B/LUS 
coverage cover ge 

B i Total No. No, M Si 
Forecast Revision No, M Si eg n Stocks Stocks ean ze 

Negative Zero Positive Stocks ean ze 

Africa 
Israel 8701 588 56 2554 18% 59% 23% 532 165 
South Africa 8701 1060 532 2282 32% 45% 23% 528 360 
Americas (ex. U. S. ) 
Argentina 9207 130 89 492 30% 45% 25% 38 160 
Brazil 9207 804 296 11366 27% 47% 26% 508 1578 
Canada 8501 4532 1015 391 33% 42% 25% 3517 271 
Chile 9210 220 127 167966 28% 41% 31% 93 51645 
Colombia 9406 145 34 356627 23% 56% 22% 111 78167 
Mexico 9205 265 135 5193 33% 38% 29% 146 1266 
Peru 9406 140 1 56 404 32% 44% 24% 73 423 
Asia 
Australia 8701 1881 940 470 39% 33% 27% 941 368 
China 9304 1244 296 1821 21% 62% 17% 943 3212 
1 long Kong 8701 896 640 5038 34% 40% 26% 256 2755 
India 9301 1185 489 8586 29% 48% 23% 696 6773 
Indonesia 9005 373 238 614522 33% 40% 27% 131 573206 
Japan 8701 2725 2580 178156 34% 45% 21% 101 165587 
Korea 8801 1837 989 231709 30% 44% 27% 848 44202 
Malaysia 8701 850 634 714 32% 40% 28% 216 562 
New Zealand 8701 283 157 934 38% 35% 27% 126 325 
Pakistan 9301 284 163 1694 22% 59% 18% 121 321 
Philippines 8801 291 184 6417 35% 41% 24% 107 3435 
Singapore 8701 576 342 598 33% 42% 26% 227 628 
Taiwan 8801 744 612 17568 33% 41% 26% 130 3048 
Thailand 8709 576 339 3854 33% 40% 27% 229 3967 
Europe 
Austria 8701 244 112 606 30% 48% 23% 117 1276 
Belgium 8701 591 144 2467 33% 41% 26% 428 5415 
Denmark 8701 403 244 1835 32% 39% 29% 151 1493 
Finland 8804 270 161 648 33% 41% 26% 109 636 
France 8701 2005 919 1428 34% 43% 23% 1083 4141 
Germany 8701 3489 922 919 32% 46% 22% 2560 2217 
Greece 9211 450 262 3578 32% 44% 24% 188 2356 
Ireland 8701 115 82 482 26% 50% 24% 30 421 
Italy 8701 544 332 65596 32% 43% 24% 196 35832 
Netherlands 8701 476 295 1323 32% 43% 25% 181 3304 
Norway 8701 460 234 2201 34% 37% 28% 226 1745 
Portugal 9104 216 93 1157 30% 46% 24% 123 2705 
Spain 8701 240 175 5361 31% 43% 25% 59 21508 
Sweden 8701 1034 376 4936 34% 40% 26% 658 5326 
Switzerland 8701 739 248 2458 33% 44% 23% 490 4389 
Turkey 9112 335 313 87 28% 46% 25% 22 5 
UK 1 8701 1 3780 1999 1 2381 33% 45% 22% 1779 1200 
us 1 8301 1 7122 4143 1 2148 26% 50% 24% 2979 1236 
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In addition, this section find that, for most countries, the mean size for stocks that are 

covered by I/B/E/S and with available returns data from Datastrearn is higher than stocks 

that are not covered by I/B/E/S. This is consistent with findings in previous literature that 

smaller firms are more likely to be followed by fewer analysts, as the cost of infori-nation 

acquisition is considerably higher for smaller firms than for the large ones. 

4.4.2 Momentum Profits by Country 

This section report, for each country, the profitability of momentum strategies that form 

portfolios based on the stocks' past six-month returns and holds the stocks for six months. 
For each market, stocks with performance in the bottom one-third are assigned to the 

loser (L) portfolio, while those in the top one-third are assigned to the winner (W) 

portfolio. These portfolios are equally weighted. This section uses the top and bottom 

one-third rather than the 10% cutoffs used by Jegadeesh and Titman (1993) because of 

the smaller sample sizes in most countries. 

Table 4.2 displays average winner minus loser profits for each country in local currency. 
In Panel A, this section restricts the sample to stocks with analyst coverage only. 
Consistent with the overwhelming evidence documented in the literature, this section 
finds that momentum strategies are largely profitable on average around the world. 
Despite the fact that the number of stocks used in Panel A has been restricted only to 

those with I/B/E/S coverage, the momentum returns in this chapter are similar to those 

reported in Griffin et al. (2003), suggesting that this chapter is focusing on the same 

group of stocks. 24 of 41 countries display positive momentum profits. In addition, this 

chapter collects data on whether short selling is practiced from Bris, Goetzmann and Zhu 

(2007) - Table 1. Their data is constructed using indications from market participants, 

market regulators, or institutions within a country that short selling is a common practice. 
The results show that 18 of 23 countries display positive price momentum when short 

selling is a common practice. 12 of 17 countries do not experience any momentum profits 

when short selling is not practiced. Since Hong et al. (2000) document that momentum 

profits are substantially contributed by the short side, the results suggest that momentum 

profits could be practically implementable. However, the results do not suggest that 
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momentum profits are necessarily linked with short-selling activity, since in most 

countries, short-selling is allowed only for certain stocks, in most cases, large firms. 

While stocks that contribute to momentum prorits are smaller firms (see Hong et a], 
2000). As a result, the reported results are only informative rather than conclusive. 

Interestingly, this section also finds that most of the Asian countries do not experience 

momentum, except Australia and New Zealand stocks which exhibit significant 

momentum in the Asian pacific region. One question that naturally arises is why 

momentum profits for Asia are distinctly weaker than those around the world, especially 
in contrast to Europe. 

Earlier studies such as Hong, Lim and Stein (2000) suggest that that momentum profits 
are most pronounced for small firms, growth firms and firms with low analyst coverage. 
If this is correct, this section should expect to see that stocks with no analyst coverage 
display stronger momentum and expect the sources of momentum profits to be consistent 

with the Hong and Stein (1999)'s gradual-information-diffusion model. Table 4.2 (Panel 

B) presents the momentum strategy using sample stocks that are not covered by I/B/E/S 

but with available returns data from Datastream. The table shows that 15 of 41 countries 
display momentum profits compared to 24 of 41 countries for the sample of stocks with 
I/B/E/S coverage in Panel A. Besides, the magnitude of the momentum prorits in Panel A 

is much stronger than those in Panel B. The results show that the sample of stocks with 
I/B/E/S coverage is representative. 
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Table 4.2 Momentum Profits (with and without I/B/E/S coverage) 
At the end of each month t, all stocks in each country are allocated into three portfolios based on their six 
month formation period from 0 to t-2: Portfolio PI is an equally weighted portfolio of stocks in the 
worst-performing 30%, portfolio P2 contains the middle 40%, and portfolio P3 includes the 
best-performing 30%. The position is held for the following six-month period Q to t+5). This table reports 
the strategy's mean raw returns during the holding period. Begin dates are as shown, and the ending date is 
December 2002. Panel A (B) contains stocks with (without) I/B/E/S coverage. Number of stocks is the total 
number of firms in the sample. Countries are listed as Developed or Emerging based on the International 
Finance Corporation's (IFC) categorizations. t-statistics (in parentheses) are adjusted for autocorrelation. ' 
Data is obtained from Bris, Goetzmann and Zhu (JoF, 2007) Table 1. *(**) Denotes significance at the 5(10) 
per cent level. 

Whether Panel A: Stocks with I/ BVS coverage Panel B: Stoc ks without I1B/FJS coverage 
Begin short 

selling is No P3 PI P3-PI P3-PI No. P3 PI P3-PI P3-PI 

practiced' Stocks (t-stat) Stocks (t-stat) 

Africa 
Israel 8701 No 56 -0.51 1.08 . 1.59 (-2.63*) 532 -0.66 -0.04 -0.62 (-1.35) 

South Africa 8701 Yes 532 1.10 -0.66 1.76 528 . 0.36 -1.51 1.15 (3.26*) 
Americas (ex. U. S. ) 

Argentina 9207 No 89 0.41 -0.07 0.48 (0,62) 41 -0.69 0.49 -1.18 (498) 
Brazil 9207 No 296 4.99 5.49 -0.50 (-0.33) 508 5.67 5.53 0.14 (0.10) 

Canada 8501 Yes 1015 0.58 -1.08 1.66 (5.74*) 3517 -0.78 -1.79 1.01 (2.860) 
Chile 9210 No 127 1.00 0.23 0.77 (1.89**) 93 0.72 1.11 -0.39 (4,06) 

Columbia 9406 No 34 0.25 -0.91 1.16 (3,110) 111 0.45 0.02 0.43 (1.21) 
Mexico 9205 Yes 135 1.34 0.21 1.13 (3.22*) 130 1.33 0.67 0.66 (1.51) 

Peru 9406 No 56 0.70 0.78 1 -0.08 (. 0.10) 84 . 1,85 . 0.41 . 1.44 (488) 
Asia 

Austral ia 8701 Yes 940 0.14 . 1.08 1.22 (3.670) 941 -0.71 -0.76 0.05 (0.12) 
China 9304 No 296 1.04 0.74 0.30 (0.50) 948 0.47 0.21 0.26 (0.45) 

1 long Kong 8701 Yes 640 -0.89 -0.58 -0.31 (-0.65) 256 . 1.29 -0.80 -0.49 (-0.88) 
India 9301 489 0.48 -0.65 1.13 (1.88**) 696 . 0.47 -0.29 -0.18 (-0.32) 

Indonesia 9005 No 238 -1.14 -0.54 . 0.61 (-0.97) 135 . 0.38 -0.51 0.13 (0.21) 
Japan 8701 Yes 2580 -0.79 -0.84 0.05 (0.15) 145 . 0.63 . 1.06 0.43 (1.08) 
Korea 8801 No 989 -1.17 -0.93 -0.24 (-0.42) 848 -1.55 -1.09 -0.46 (. 0.81) 

Malaysia 8701 Yes 634 0.04 0.05 -0.01 (-0.01) 216 -0.53 0.17 -0.70 (. 1.03) 
New Zealand 8701 No 157 0.58 -0.62 1.20 (4.220) 126 0.47 -0.91 1.37 (3.00*) 

Pakistan 9301 No 163 -0.81 -0.44 -0.36 (-0.70) 121 0.09 0.09 0.00 (0,00) 
Philippines 8801 No 184 . 0.40 -0.67 0.27 (0.51) 107 . 0.44 0.08 -0.52 (497) 
Singapore 8701 Yes 342 0.05 -0.23 0.27 (0.62) 234 -0.51 -0.60 0.09 (0.17) 

Taiwan 8801 No 612 -0.78 -0.93 0.14 (0.24) 132 -1.19 -1.91 0.72 (1.13i 
Thailand 8709 Yes 339 -0.70 -0.32 -0.38 (477) 237 1 -0.20 . 0.36 0.16 (0,29) 
Europe 
Austria 8701 Yes 112 0.32 -0.57 0.89 (2.78*) 132 0.47 -0.51 0.98 (2.88*) 
Belgium 8701 Yes 144 0.76 -0.40 1.17 (4.57*) 447 0.40 0.75 1.15 (4,56*) 
Denmark 8701 Yes 244 0.57 -0.36 0.93 (3.58*) 159 0.49 -0.17 0.66 (2,74*) 
Finland 8804 No 161 0.25 -0.55 0.80 (1.86") 109 0.13 . 0.48 0.61 (1.59) 
France 8701 Yes 919 0.39 -0.95 1.35 (4.16*) 1086 -0.12 -0.82 0.70 (2.92*) 

Germany 8701 Yes 922 0.16 -1.64 1.80 (5.12*) 2567 -0.47 -1.96 1.49 (3.51*) 
Greece 9211 No 262 1.36 0.51 0.84 (1.19) 188 0.89 0.46 0.43 (0,581- 
Ireland 8701 Yes 82 0.47 -0.88 1.36 (4.02*) 33 . 0.25 -0.84 0.59 (1,23) 

Italy 8701 Yes 332 0.39 -0.34 0.73 (2.17*) 212 0.43 -0.39 0.82 (2.31 *) 
Netherlands 8701 Yes 295 0.51 -1.35 1.86 (5.35*) 181 0.44 -0.95 1.39 (5.28*) 

Norway 8701 Yes 234 0.32 -0.54 0.86 (1.86**) 226 . 0.40 -1.64 1.24 (2.70*) 
Portugal 9104 Yes 93 0.15 -0.59 0.74 (2.20*) 123 -0.47 . 0.32 -0.15 (-0.48) 

Spain 8701 No 175 0.46 -0.40 0.86 (2.45*) 65 0.13 -0.60 0.73 (2.130) 
Sweden 8701 Yes 376 0.23 -0.98 1.21 (2.49*) 658 -0.25 -1.63 1.38 (2.70*ý 

Switzerland 8701 Yes 248 0.71 -0.90 1.61 (4.91 *) 491 0.05 -0.68 0.73 (2.810) 
Turkey 9112 No 313 3.66 4.44 -0.78 (493) 22 2.15 4.32 -2.17 (. 1.92*41) 

UK 8701 Yes 1999 0.22 . 1.64 1.86 (6.14*) 1781 -0.13 . 1.82 1.69 (5.53*) 
us 8301 Yes 4143 0.54 -0.83 1.37 (4.93*) 2979 -0.54 . 1.35 0.81 _ (2.77*) 

_ 
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4.4.3 A test ofthe gradual information diffusion model ofHong and Slein (1999) 

This section follows Hong, Lim and Stein (2000) to test empirically Hong and Stein's 

gradual information diffusion model. At the end of each month t, all stocks in each 

country are allocated into three portfolios based on residual analyst coverage. Portfolio 

(Cov)l is an equally weighted portfolio of stocks in the lowest 30%, (Cov)2 is the middle 
40%, and (Cov)3 is the highest 30%. For each of the residual analyst coverage portfolios, 

this section further sorts stocks into three portfolios based on returns from months 0 to 

t-2. Portfolio PI is an equally weighted portfolio of stocks in the worst-pcrforming 30%, 

P2 is the middle 40%, and P3 is the highest 30%. Residual analyst coverage is estimated 

as follows: 

ln(AC,,, ) = a, +a, ln(Size,,, ) + el, t (4.5) 

where, AQ, is (I+number of analysts) of firm 1 at month t and Size,,, is the market 

capitalization of firm iat the beginning of month t. cllis the residual analyst coverage. 

Table 4.3 shows that momentum profits are concentrated on the highest residual analyst 

coverage groups (Cov3) and decrease monotonically as residual analyst coverage 
decreases. The findings sharply contradict Hong, Lim and Stein (2000) who found that 

momentum profits in the US are most severe among low residual analyst coverage 
firmS44 . This inconsistency leads this chapter to search for alternative behavioural based 

explanations. 

44 One of the possible reasons that the UK results differ from the US might be due to the difference in 
ownership structure. In particular, 38% of the total market value of equities are held by individuals in 
the US (see http: //fic. wharton. upenn. edii/fic/Xapers/02/0216. pdf p. 14) which might follow analyst 
opinions more than 14.9% are held by individual shareholders in the UK (see Chapter 3, 
p. 58) Therefore, the analyst coverage effect are much stronger in the US and in the UK. 
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Table 4.3 Momentum Profits and Residual Analyst Coverage 
This table reports average monthly portfolios returns sorted by residual analyst coverage (Cov) and price 
momentum. At the end of each month 1, all stocks in each country are allocated into three portfolios based 
on residual analyst coverage. Portfolio (Cov) I is an equally weighted portfolio of stocks in the lowest 30%, 
(Cov)2 is the middle 40%, and (Cov)3 is the highest 30%. For each of the residual analyst coverage 
portfolios, this table further sort stocks into three portfolios based on returns from months 0 to t-2. 
Portfolio PI is an equally weighted portfolio of stocks in the worst-pcrforming 30%, P2 is the middle 40%, 
and P3 is the highest 30%. Residual analyst coverage is estimated by regressing the log (I+Analysts) on 
market capitalisation and log (Size). #(") represents countries with momentum in Table 4.2 at 5(10)% 
significant level. t-statistics in parentheses are adjusted for autocorrelation. *(**) Denotes significance at 
the 5(10) per cent level. 

Cov3 (Iligh) COV2 Cov I (Low) 
P3-P1 P3-PI P3-PI 

P3 Pi P3-Pl (t-stat) P3 PI P3-PI (t-stat) P3 P1 P3-PI (t-stat) 
Africa 
Israel 1,04 0.58 0.46 (0.74) 0.85 -0.05 0.90 (1.75**) 0.18 -0.83 1.01 (1.61) 
South Africa 1 0.54 -0.84 1.38 (3.75*) 0.67 -0.53 1.20 (3.42*) 0,69 -0.45 1.14 (3.39*) 

. 
Americas (ex. U. S. ) 
Argentina -0.90 -1.94 1.04 (1.51) . 0.04 -1.26 1.23 (2.07*) -0.3S -1.18 0.84 (1.19) 
Brazil . 1.20 -1.41 0.21 (0.30) -0.35 -0.88 0.53 (0.71) -0.50 -0.81 0.30 (0.37) 
Canada' 0.14 . 2.00 2.14 (8.28*) 0.41 -1.31 1.72 (6.780) 0.70 -0.84 1.54 (5.76*) 
Chile "' 0,08 -1.08 1.16 (2.42*) 0.48 -0,23 0.71 (1.60) 0.52 . 0.14 0.66 (1.57) 
Columbia . 1.11 -2.87 1.76 (1.93**) -0.59 . 2,24 1.65 (2.52*) -0.31 . 0.98 0.67 (1.12) 
Mexico 0 0.31 0.56 -0.25 (-0.52) 0.66 -0.06 0.72 (1.41) -0.77 . 0.88 0.11 (0.16) 
Peru -0.91 . 2.00 1.09 (1.37) -1.74 -1.68 -0.06 (407) -0.52 . 0.23 -018 (437) 
Asia 
Australia 0 0.37 -2.53 2.90 (8,91 0.49 . 1.16 1.65 (5.98*) 0.99 . 0.84 1.83 (6.02*) 
China -0.60 -1.29 0.69 (0.89) 0.47 0.26 0.21 (0.27) 1.14 0.40 0.74 (0.83) 
1 long Kong -0.29 -1.38 1.09 (2.30*) 0.16 -0.79 0.95 (2,140) -0.07 . 0.82 0.75 (1.62) 
India " -0.99 -2.54 1.54 (2.39*) 0.00 . 1.79 1.79 (3.08*) 0.85 -0.63 1.48 (2,164) 
Indonesia . 1.75 -1.90 0.15 (0.19) . 0.92 -1.15 0.23 (0.34) -0.71 . 0.97 0.26 (0.35) 
Japan . 0.92 . 1.02 0.10 (0.32) -0.78 . 0,79, 0.01 (0.03) -0.38 . 0.52 0.14 (0.41) 
Korea . 0.28 -0.47 0.19 (0.33) -0.77 -0.80 0.03 (0.06) -1.14 -1.00 -0.14 (426) 
Malaysia 0.29 0.01 0.28 (0.54) 0.32 . 0.12 0.44 (0.89) 0.29 0.00 0.29 (0.53) 
New Zealand 0 0.76 -1.76 2.52 (6.19*) 0.94 -0.81 1.75 (5.72*) 0.91 0.59 0.32 (0.81) 
Pakistan -0.57 -0.66 0.09 (0.11) -0.94 . 1.28 0.34 (0.45) -1.39 -0.09 -1.30 (-1.65) 
Philippines . 1.39 -1.32 -0.07 (-0.08) . 0.35 . 2.23 1.88 (2.54*) . 1.90 -1.66 -0.24 (436) 
Singapore -0.05 -0.56 0.51 (1.03) 0.06 . 0.47 0.53 (1,28) -0.04 . 0.20 0.16 (0.35) 
Taiwan -0.61 -0.64 0.03 (0.05) -0.90 -0.53 -0.37 (461) -0.64 -0.51 -0.13 (-0.21) 
Thailand -1.18 . 1.46 0.28 (0.44) -0.58 -1.21 0.63 (1.18) -0.68 -1.08 0.40 (0,68) 
Europe 
Austria' 0.32 -0.63 0.95 (2.09*) 0.13 . 0.76 0.89 (2.19*) 0.08 . 0.44 0,52 (1.38) 
Belgium 0 0.80 -0.12 0.92 (3.25*) 0.64 -0.44 1.08 (3.49*) 0.73 -0.25 0.98 (3.05*) 
Denmark 0.42 . 1.01 1.43 (4.39*) 0.85 -0.49 1.34 (4.92*) 0.62 . 0.45 1.07 (3.56*) 
Finland 0.85 0.53 0.32 (0.59) 0.67 -0.18 0.85 (1.65) -0.65 -1.01 0.36 (0.65) 
France" 0.43 -1.48 1.91 (4.41 *) 0.67 -0.75 1.42 (4.00*) 0.53 . 0.39 0.92 (2.74*) 
Germany -0.72 -2.08 1.36 (2.85*) . 0.43 -1.58 1.15 (2.70*) -0.05 -1,05 1.00 (2,92*) 
Greece 0.88 0.53 0.35 (1.65) 1.26 0.24 1.02 (1.13) 1.08 0.18 0.90 (1,01) 
Ireland 0 0.63 -1.40 2.03 (4.15*) 0.92 -0.63 1.55 (3.99*) -0.09 . 0.26 0.17 (0.43) 
Italy' 0.13 -0.71 0.84 (2.18*) 0.38 -0.64 1.02 (2.90*) 0.22 -0.36 0.58 (1.59) 
Netherlands 0.87 . 1.50 2.37 (5.24*) 0.78 -0.72 1.50 (4.310) 0.37 -0.55 0.92 (2.72*) 
Norway -0.44 -0.64 0.20 (0.35) 0.49 -0.55 1.04 (2.21*) 0.59 . 0.77 1.36 (2.70*) 
Portugal 0.38 -0.74 1.12 (1.85**) 0,89 0.16 0.73 (1.57) 0.21 0.03 0.18 (0.38) 
Spain 0 -0.11 -0.96 0.85 (2.01 *) 0.57 -0.15 0.72 (2.05*) 0.67 0.32 0.35 (0.93) 
Sweden 0.71 -1.11 1.82 (3.35*) 0.13 -1.22 1.35 (2,83*) 0.28 -0.78 1.06 (2.3 5 *) 
Switzerland 0.36 -1.03 1.39 (3.82*) 0.36 -0.77 1.13 (3.21 *) 0.48 -0.60 1.08 (3.30*) 
Turkey 3.37 4.61 -1.24 (-1.30) 3.25 4.79 -1.54 (-1.59) 3.23 4.79 -1.56 (-1.54) 
UK 0 0.42 . 1.83 2.25 (6.76*) 0.35 . 1.01 1.36 (4,99*) 0.28 . 1.19 1.47 (4ý65*) 
us, 0.40 -0.32 022 (3.85*) 0.55 -0.85 1.30 (5.86*) 1 0.45 -1.10 1.55 (7.15*) 
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4.4.4 Dispersion in analystsforecast and momentum projIls 
Using dispersion of analysts' earnings forecasts to proxy for divergence of opinion, 
Diether, Malloy and Scherbina (2002) find that stocks with higher dispersion in analysts' 

earnings forecasts tend to have lower future returns. On the other hand, Zhang (2006) 

employ dispersion of analysts' forecasts to proxy for information uncertainty, and find 

that higher dispersion in analysts' forecast stocks experience higher momentum profits 
that are mainly contributed from the loser stocks i. e. lower future returns. This section 

examines the link between dispersion in analyst forecast and momentum profits for the 

global data. 

Table 4.4 presents the payoff of momentum portfolios sorted on dispersion in analystSO 

earnings forecast (Disp). At the end of each month t, all stocks in each country are 

allocated into three portfolios based on forecast dispersion. Portfolio DispI is an equally 

weighted portfolio of stocks in the lowest 30%, Disp2 is the middle 40%, and Disp3 is 

the highest 30%. For each of the forecast dispersion portfolios, this section further sorts 

stocks into three portfolios based on returns from months 0 to t-2. Portfolio PI is an 

equally weighted portfolio of stocks in the worst-performing 30%, P2 is the middle 40%, 

and P3 is the highest 30%. 
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Table 4.4 Portfolios Returns by Price Momentum and Dispersion of Analysts 
Forecast (Disp) 

This table reports average monthly portfolio returns sorts by dispersion of analysts' forecast (Disp) and 
price momentum. At the end of each month 1, all stocks in each country are allocated into three portfolios 
based on forecast dispersion. Portfolio Displ is an equally weighted portfolio of stocks in the lowest 30%, 
Disp2 is the middle 40%, and Disp3 is the highest 30%. For each of the forecast dispersion portfolios, this 
table further sorts stocks into three portfolios based on returns from months 0 to t-2. Portfolio PI is an 
equally weighted portfolio of stocks in the worst-performing 30%, P2 is the middle 40%, and P3 is the 
highest 30%. Disp is the standard deviation of analyst forecasts in month t scaled by the prior year end 
stock price. 0ý') represents countries with momentum in Table 4.2 at 5(10)% significant level. t-statistics in 
parentheses are adjusted for autocorrelation. *(**) Dcnotes significance at the 5(l 0) per cent level. 

Disp 3 (1 ligh) Disp 2 Disp I (Low) 
P3-PI P3-PI P3-PI 

P3 PI P3-PI (t-stat) 
. 

P3 PI P3-PI (t-stat) P3 PI P3-PI (t-stat) 
Africa 
Israel -0.13 0.41 -0.54 (-0.63) 1.47 0.76 0.71 (1.48) 0.99 0.68 0.31 (0,61) 
South Africa 0.74 -0.77 1.51 (3.68*) 0.83 -0.28 1.11 (3.02*) 0.81 0.37 0.44 (1.21) 
Americas (ex. U. S. ) 
Argentina -2.96 -3.57 0.61 (0.73) -0.46 -0.55 0.09 (0.14) 0.07 -0.23 0.30 (0.43) 
Brazil 0.81 1.58 -0.77 (-0.73) 1.01 1.52 . 0.51 (-0.68) 0.57 0.78 . 0.21 (-0.18) 
Canada' -0.16 -2.30 2.14 (7.01 *) 0.43 -0.69 1.12 (4.340) 1.09 -0.09 1.19 (4,150) 
Chile " 0.23 0.41 . 0.18 (-0.36) 0.35 . 0.07 0.42 (0,98) 0.09 0.17 -0.08 (-0,19) 
Columbia 0 1.14 -1.55 2.69 (2.93*) -0.85 -1.39 0.54 (0.73) 0.32 0.00 0.32 (0,37) 
Mexico' -0.96 -2.17 1.21 (2.01 *) 0.25 -0.60 0.85 (1.49) 0.47 0.11 0.36 (0.74) 
Peru 0.16 . 1.89 2.05 (1.76**) . 1.61 . 1.79 0.19 (0.25) -2.10 0.23 . 2.33 (-2.66*) 
Asia 
Austral ia 0.40 -1.52 1.92 (6.66*) 0.51 -0.97 1.48 (5.60*) 0.89 . 0.13 1.02 (4.850) 
China -0.83 -0.69 -0.14 (-0.16) 0.09 0.35 -0.26 (-0.29) 0.31 0.14 0.17 (0.18) 
1 long Kong -0.03 -0.82 0.79 (1.80**) -0.11 -0.53 0.42 (0.91) 0.40 -0.11 0.51 (1.12) 
India "' -0.29 -2.30 2.01 (2.48*) 0.34 -1.05 1.39 (2.68*) 1.40 -0.03 1.43 (2,29*) 
Indonesia -1.59 -1.70 0.11 (0,17) . 1.48 . 0.69 -0.79 (. 0.99) . 1.16 0.05 1.21 (-1.47) 
Japan -0.47 -1.01 0.54 (1.47) -0.55 -0.54 -0.01 (-0.04) -0.71 -0.65 -0.06 (-0.17) 
Korea -0.91 -0.48 -0.43 (-0.76) -0.88 0.09 -0.97 (-1.910*) -0.36 0.01 -0.37 (-0.73) 
Malaysia 0.51 -0.09 0.60 (1.04) 0.49 0.31 0.18 (0.36) 0.56 0.72 . 0.16 (-0.29) 
New Zealand 0 -0.18 . 2.94 2.76 (5.35*) 0.35 -1.20 1.55 (4.22*) 1.12 . 0.17 1.29 (3.33*) 
Pakistan -1.13 -1.53 0.40 (0.42) -1.12 -1.33 0.21 (0.25) -0.62 0.11 -0.73 (489) 
Philippines -0.86 -2.25 1.39 (2.24*) -0.87 . 1.54 0.67 (1.04) -0.36 -1.26 0.90 (1.44) 
Singapore 0.22 -0.57 0.79 (1.78**) 0.39 -0.15 0.54 (1.20) 0.39 0.11 0.28 (0,64) 
Taiwan -1.64 -1.38 -0.26 (-0.43) -0.27 0.10 -0.37 (-0.75) 0.73 O. S2 0.21 (0.42) 
Thailand -1.32 -1.04 . 0.28 (-0.43) . 1.46 -1.41 -0.05 (-0.09) . 0.58 -0.92 0.34 (0.56) 
Europe 
Austria 0.15 -1.20 1.35 (2.75*) 0.21 . 0.33 0.54 (1.49) 0.59 0.44 0.15 (0.36) 
Belgium 0.26 0.19 0.07 (0.25) 0.30 -0.37 0.67 (2.52*) 1.31 0.04 1.27 (4.46*) 
Denmark 0.08 -0.92 1.00 (2.79*) 0.35 -0.10 0.45 (1,58) 1.02 0.41 0.61 (1.83") 
Finland 0.44 -0.29 0.73 (1.08) 0.85 0.47 0.38 (0.73) 1.17 0.93 0.24 (0,38) 
France ' 0.04 -0.83 0.87 (2.50*) 0.53 0.05 0.48 (1.55) 1.46 0.56 0.90 (2.3 3 *) 
Germany -2.92 -5.82 2.90 (3.46*) . 1.50 -4.29 2.79 (3.27*) . 1.54 . 3.19 1.65 (2.200) 
Greece 1.23 0.28 0.95 (1.49) 1.22 1.05 0.17 (0.22) 1.82 0.95 0.87 (0.98) 
Ireland 0 -0.24 -2.22 1.98 (3.75*) 0.96 0.03 0.93 (2.78*) 0.62 0.42 0.20 (0.43) 
Italy 0 -0.44 -1.10 0.66 (1.52) 0.35 0.11 0.24 (0.69) 1.15 0.79 0.36 (0.89) 
Netherlands 1 -0.05 -1.00 0.95 (2.21 *) 0.81 0.09 0.72 (2.46*) 1.23 0.54 0.69 (2.24*) 
Norway -0.08 -0.17 0.09 (0.15) 0.42 0.44 -0.02 (-0.04) 1.60 0.33 1.27 (2.760) 
Portugal -0.15 -1.12 0.97 (1.77**) 0.52 0.39 0.13 (0.30) 1.59 0.85 0.74 (1.55) 
Spain " -0.06 . 1.46 1.40 (2.88*) 0.43 -0.08 0.51 (1.35) 0.71 0.63 0.08 (0.25) 
Sweden -1.37 -1.30 -0.07 (-0.11) 0.42 0.44 -0.02 (-0.05) 1.74 1.21 0.53 (1.35) 
Switzerland 0 -0.29 -1.08 0.79 (1.87**) 0.71 0.11 0.60 (1.990) 1.31 0.52 0.79 (2.68*) 
Turkey 2.73 4.36 -1.63 (-1.68**) 3.19 4.58 -1.39 (-1.44) 3.85 4.78 -0.93 (-0.97) 
UK 01 -0.17 -2.47 2.30 (6.19*) 0.32 -1.06 1.38 (4.760) 0.79 . 0.67 1.46 (5.190) 
us, 1 -0.54 . 1.95 1.41 (4.16*) 0.34 -0.34 0.68 (2.770) 1.45 0.67 0.78 (3.83*) 
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Table 4.4 shows that momentum profits are concentrated on the highest dispersion in 

analysts' forecast groups (Disp 3) and decrease monotonically as dispersion in analysts' 

forecasts decrease. 17 of 24 countries that have experienced momentum Prorits in Table 

4.2 display this pattern. Remarkably, countries such as Peru, Hong Kong, Philippines and 

Singapore which display no momentum profits in Table 4.2 have also documented the 

above pattern. The results are contributed substantially by loser stocks that earn lower 

future returns. As a result, the findings are consistent with Zhang (2006) who used 

dispersion in analysts' forecast to proxy for uncertainty rather than divergence in opinion 

as suggested by Diether, Malloy and Scherbina (2002). 

4.4.5 Uncertainty and momentum profits 
One major problem of using dispersion in analysts' forecasts to proxy for uncertainty is 

that forecast dispersion is contaminated by the effect of investors' disagreement (see 

Baron, Kim, Lim and Stevens (1998)). As a result, this section examines the link between 

BKLS measure of uncertainty and momentum profits to the global data. 

Table 4.5 reports average monthly portfolio returns sorts by uncertainty (V) and price 

momentum. At the end of each month t, all stocks in each country are allocated into three 

portfolios based on uncertainty. Portfolio VI is an equally weighted portfolio of stocks in 

the lowest 30%, V2 is the middle 40%, and V3 is the highest 30%. For each of the 

uncertainty portfolios, this section further sorts stocks into three portfolios based on 

returns from months 0 to t-2. Portfolio PI is an equally weighted portfolio of stocks in 

the worst-performing 30%, P2 is the middle 40%, and P3 is the highest 30%. 

Table 4.5 presents a strong link between uncertainty and momentum proflts. Momentum 

profits are concentrated on the highest uncertainty groups, (V3) and decrease 

monotonically as uncertainty decreases. 15 of 24 countries that have experienced 

momentum profits in Table 4.2 display this pattern. Interestingly, Peru and Greece which 
display no momentum profits have also documented the above pattern. The findings are 

consistent with hypothesis I suggesting a strong link between momentum profits and 

uncertainty measured by dispersion in analysts' forecast and BKLS's uncertainty. 

110 



Chaptcr 4 

Table 4.5 Portfolios Returns by Price Momentum and Uncertainty (V) 
This table reports average monthly portfolio returns sorted by uncertainty (V) and price momentum. At the 
end of each month t, all stocks in each country are allocated into three portfolios based on uncertainty. 
Portfolio VI is an equally weighted portfolio of stocks in the lowest 30%, V2 is the middle 40%, and V3 is 
the highest 30%. For each of the uncertainty portfolio, this table further sorts stocks into three portfolios 
based on returns from months 0 to t-2. Portfolio PI is an equally weighted portfolio of stocks in the 
worst-performing 30%, P2 is the middle 40%, and P3 is the highest 30%. V, the uncertainty measure, is 
computed as in BKLS (1998). N(OO) represents countries with momentum in Table 4.2 at 5(10)% significant 
level. t-statistics in parentheses are adjusted for autocorrelation. *(**) Denotes significance at the 5(10) per 
centlevel. 

V3 (Iligh) V2 VI (LOW) 
P3-P1 P3-P1 P3_P1 

P3 PI P3-PI (t-stat) P3 PI P3-PI (t-stat) P3 PI P3-PI (t-stat) 
'Africa 
Israel 0.12 -0.90 1.02 (1.22) 1.31 0.35 0,96 (1.940*) 0.72 0.06 0.66 (1.14) 
South Africa 0 0.14 -1.62 1.76 (3.89*) 0.62 0.33 0.29 (0.81) 1.17 0.57 0.60 (1.9600) 
Americas (ex. U. S. ) 
Argentina -3.19 -3.47 0.28 (0.35) -0.90 . 0.93 0.03 (0.05) 0.47 . 0.28 0.75 (1.17) 
Brazil 0.82 1.69 -0.87 (-0.86) 0.84 1.03 . 0.19 (-0.23) 0.70 1.08 -0.38 (-0.35) 
Canada' -0.96 -2.51 1.55 (4.97*) 0.93 -0.44 1.37 (5.11*) 1.42 0.53 0.89 (3.69*) 
Chile " -0.37 -0.33 -0.04 (-0.08) 0.69 0,26 0.43 (0,99) 0.50 0.79 -0.29 (-0.76) 
Columbia # 1.17 -1.76 2.93 (3.48*) . 0.49 -0.50 0.01 (0.01) 0.01 0.49 . 0.48 (-0.61) 
Mexico . 1.45 -2.43 0.98 (1.70**) -0.02 -0.78 0.76 (1.25) 0.36 . 0.02 0.38 (0.74) 
Peru . 0.57 4.33 3.76 (2.57*) . 1.61 -0.83 -0.78 (. 0.99) . 1.61 0.89 -2.50 (-2.94*) 
Asia 
Australia 0 -0.22 -2.10 1.88 (5.75*) 0.78 -0.32 1.10 (4.460) 1.11 0.48 0.63 (3.5 1 
China -1.02 . 1.00 -0.02 (-0.01) 0.06 0.59 -0.53 (0.60) 0.50 0.83 -0.33 (-0.36) 
I long Kong -1.36 -1.41 0.05 (0.09) 0.04 . 0.10 0.14 (0.30) 0.97 0.68 0.29 (0.74) 
India " -0.68 . 2.45 1.77 (2.250) 0.48 . 0.82 1.30 (2.110) 1,03 0.17 0.86 (1.52) 
Indonesia -2.28 -1.88 -0.40 (-0.55) . 1.28 -0.70 -0.58 (-0.74) -0.76 . 0.08 -0.68 (. o, 96) 
Japan . 1.16 . 1.28 0.12 (0.30) -0.41 -0,44 0.03 (0.07) -0.27 . 0.28 0.01 (0.01) 
Korea -1.76 -0.83 . 0.93 (. 1.50) -0.56 0.07 -0.63 (. 1,26) . 0.03 0.38 -0,41 (-0.90) 
Malaysia 0.50 -0.22 0.72 (1.24) 0.66 0.57 0.09 (0.16) 0.45 0.71 . 0.26 (-0,54) 
New Zealand -1.07 . 2.65 1.58 (3.220) 0.94 -0.05 0.99 (2.99*) 1.24 0.51 0.73 (2.3 8 *) 
Pakistan -2.74 -1.63 . 1.11 (4.13) -0.69 -1.00 0.31 (0.34) -1.22 . 0.53 . 0.69 (-0.79) 
Philippines -1.89 -3.21 1.32 (1.70**) -0.40 -0.61 0.21 (0.32) 0.50 . 0.87 1.37 (2.110) 
Singapore -0.34 -0.55 0.21 (0.43) 0.35 . 0.16 0.51 (1.14) 0.66 0.47 0119 (0.44) 
Taiwan -1.57 -1.53 -0.04 (-0.07) 0.00 0.08 -0.08 (-0.16) 0.46 0.44 0.02 (0.03) 
Thailand -2.52 . 1.24 . 1.28 (-1.74*0) . 1.22 -0.97 -0.25 (-0.45) -0.18 460 0.42 (0.79) 
Europe 
Austria 0 -0.11 -0.99 0.88 (1.98*) 0.50 -0.23 0.73 (1.960*) 0.47 0.77 -0,30 (-0.83) 
Belgium 0 -0.26 -0.33 0.07 (0.19) 0.54 0.07 0.61 (2.46*) 1.37 0.28 1.09 (4.37*) 
Denmark 0 -0.28 -1.58 1.30 (3.18*) 0.37 0.29 0.08 (0.28) 1.41 0.62 0.79 (2.97*) 
Finland -0.72 -0.20 -0.52 (-0.76) 0.94 0.07 0.87 (1.41) 1.32 0,87 OAS (0,93) 
France' -0.66 -1.62 0.96 (2.34*) 0.73 -0.15 0.88 (2.33*) 1.55 0.91 0.64 (2.03*) 
Germany 1 -1.13 -2.27 1.14 (2.30*) 0.17 -0.57 0.74 (1.95**) 0.73 -0.09 0.82 (2,66*) 
Greece 1.21 -0.20 1.41 (1.86**) 1.14 0.82 0.32 (0.43) 1.71 1.40 0.31 (0.40) 
Ireland 0 . 0.49 -2.46 1.97 (3.57*) 0.82 0.66 0.16 (0,44) 1.25 0.97 0.28 (0.77) 
Italy 0 -0.43 -1.07 6.64 (1.48) 0.44 . 0.04 0.48 (1.34) 1.01 0.77 0.24 (0.65) 
Netherlands 0 -0.68 -1.03 0.35 (0.84) 1.06 0.03 1.03 (3.02*) 1.43 1.08 0.35 (1.45) 
Norway -1.09 -0.29 -0.80 (-1.25) 0.32 0.26 0.06 (0.14) 1.97 0.92 1.05 (2.68*) 
Portugal -0.18 -0.97 0.79 (1.36) 1.07 -0.16 1.23 (2.60*) 1.40 1.12 0.28 (0.65) 
Spain 0 -0.62 -1.60 0.98 (1.96**) 0.54 0.34 0.20 (0.54) 1.03 0.72 0.31 (0.99) 
Sweden -1.31 -0.97 -0.34 (-0.58) 0.21 -0.02 0.23 (0.51) 2.19 1.31 0.88 (2,510) 
Switzerland 1 -0.07 -0.89 0.82 (2.14*) 0.60 -0.23 0.83 (2.480) 1.40 0.43 0.97 (3.33*) 
Turkey 2.58 3.82 . 1.24 (-1.23) 3.12 4.88 . 1.76 (. 1.80*0) 3.92 4,95 -1.03 (. 1.06) 
UK 0 -0.15 -2.38 2.23 (5.63*) 0.62 -0.64 1.26 (4.920" 0.89 -0.22 1.11 (4.58*) 
us, -0.64 -3.21 2.57 (6,82*) 0,40 -1.21 1.61 6.650) 1 1.25 006 1.19 (6.310) 
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4.4.6 Diversity of analysts'forecast and momentum profits 
Results in the previous section demonstrate that the level of analysts' f6recasts mainly 

reflects uncertainty. This section examines the relation between diversity of analyst 
forecast (1-p) that proxy for disagreement and momentum profits. Since winner stocks 

continue to go up and loser stocks continue to go down a high level of consensus is 

required. This chapter hypothesises that expected momentum profits are high when 
diversity of analysts' forecasts are low. 

Table 4.6 reports average monthly portfolio returns sorted by diversity in analyst forecast 

(1-p) and price momentum. At the end of each month t, all stocks in each country are 

allocated into three portfolios based on diversity of analyst forecast. Portfolio (1-p)l is an 

equally weighted portfolio of stocks in the lowest 30%, (1-p)2 is the middle 40%, and 
(1-p)3 is the highest 30%. For each of the diversity in analyst forecast portfolios, this 

section further sorts stocks into three portfolios based on returns from months 0 to t-2. 
Portfolio PI is an equally weighted portfolio of stocks in the worst-performing 30%, P2 

is the middle 40%, and P3 is the highest 30%. 

Table 4.6 establishes a strong link between diversity in analysts' forecast and momentum 

profits. In particular, this section finds that 16 of 24 countries experience the highest 

momentum profits among the lowest diversity in analyst forecast groups and decrease 

monotonically when diversity in analysts' forecast increaseS45. Since the success of 

momentum strategies require a high level of agreement among investors in order to push 

prices into the same direction, the findings show that momentum profits are concentrated 
in low diversity in analysts' forecast stocks (i. e. low disagreement). As a result, the 

findings in this section provide empirical evidence to support the view that diversity in 

analysts' forecast is a better proxy for disagreement. 

45 One of the possible reasons that the UK results differ from the US might be due to the difference in 
ownership structure. (see footnote 44, p106) 
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Table 4.6 Momentum Profits and Diversity of Analyst Forecast (1- p) 
This table reports average monthly portfolio returns sorted by diversity in analyst forecast (1-p) and price 
momentum. At the end of each month t, all stocks in each country are allocated into three portfolios based 
on diversity of analyst forecast. Portfolio (1-p)l is an equally weighted portfolio of stocks in the lowest 
30%, (1-p)2 is the middle 40%, and (I. p)3 is the highest 30%. For each of the diversity in analyst forecast 
portfolio, this table further sorts stocks into three portfolios based on returns from months 0 to t-2. 
Portfolio PI is an equally weighted portfolio of stocks in the worst-performing 30%, P2 is the middle 40%, 
and P3 is the highest 30%. (1-p), the diversity of opinion measure, is computed as in BUS (1998). 0(*0) 
represents countries with momentum in Table 4.2 at 5(10)% significant level. t-statistics in parentheses are 
adjusted for autocorrelation. *(**) Dcnotes significance at the 5(10) per cent level. 

(1-p) 3 High (1-p) 2 (1-p) I Low 

P3-P1 P3-PI P3-PI 
P3 Pi P3-PI (t-stat) P3 Pi P3-PI (t-stat) P3 PI P3-PI (t-stat) 

Africa 
Israel 1.33 1.43 . 0.10 (-0.18) 0.77 0.47 0.30 (0.51) 0.51 0.15 0.36 (0.51) 
South Africa 0.70 0.36 0.34 (0.92) 0.84 . 0.34 1.19 (3.41*) 0,48 . 0.94 1.32 (3.21*) 
Americas (ex. U. S. ) 
Argentina -0.56 -0.92 0.36 (0.51) -1.26 -1.71 0.45 (0.60) -1.66 . 2.36 0.70 (0.99) 
Brazil 0.76 1.63 -0.87 (-0.86) 0.86 1.41 -0.55 (-0.64) 0.14 1.03 -0.89 (484) 
Canada' 1.00 -0.48 1.48 (5.97*) 0.72 -0.98 1.70 (6.45*) 0.25 -1.67 1.92 (6.60*) 
Chile " 0.95 0.54 0.41 (1.04) -0.11 0.27 -0.38 (-0.84) -0.07 . 0.40 0,33 (0.69) 
Columbia 1 1.26 -0.52 1.78 (2.09*) -0.37 -0.52 0.15 (0.23) 0.57 . 0.97 1.54 (2.11 *) 
Mexico' 0.32 -0.11 0.43 (0.73) 0.06 -0.62 0.68 (1.28) 0.31 . 1.34 1.65 (2.72*) 
Peru . 1.63 -0.37 . 1.26 (. 1.20) . 0.29 -1.22 0.93 (0.92) . 2.60 . 2.77 0.17 (0.19) 
Asia 
Australia 0.86 -0.27 1.13 (4.79*) 0.64 -0.68 1.32 (5.49*) 0.19 -1.46 IAS (5.970) 
China 0.42 1.22 -0.80 (-0.92) 0.01 0.20 -0.19 (-0.21) -0.39 -0.95 0.56 (0.59) 
Hong Kong 0.41 0.36 0.05 (0.12) 0.30 -0.27 0.57 (1.32) -0.74 . 1.21 0.47 (0.89) 
Ind ia '0 0.56 -0.55 1.11 (1.60) 0.53 . 1.69 2.22 (3.640) 0.08 . 1.60 1.68 (2.34*) 
Indonesia -0.79 -0.39 . 0.40 (-0.54) . 1.38 . 0.89 -0.49 (-0,70) . 2.14 . 1.59 . 0.55 (-0.64) 
Japan -0.43 -0.52 0.09 (0.27) . 0.54 -0.61 0.07 (0.21) -0.92 . 1.05 0.13 (0,37) 
Korea -0.44 0.18 -0.62 (. 1.30) . 0.69 . 0,04 . 0.65 (-1.24) -1.00 -0.51 -0.49 (-0.83) 
Malaysia 0.33 0.43 -0.10 (-0.20) 0.49 0.25 0.24 (0,44) 0.63 0.27 0.36 (0.64) 
New Zealand 0.73 -0.48 1.21 (3.28*) 0.61 -0.78 1.39 (4.20) 0.27 . 1.41 1.68 (4.550) 
Pakistan -1.88 . 1.29 -0.59 (-0.56) -0.39 -1.6S 1.26 (1.43) -1.36 0.34 -1.70 (. 1.930*) 
Philippines 0.64 -0.60 1.24 (1.870*) . 1.02 -1.36 0.34 (0.54) -1.09 -2.39 1.30 (1.710*) 
Singapore 0.67 0.13 0.54 (1.23) 0.34 -0.19 0.53 (1.20) 0.04 -0.32 0.36 (0.76) 
Taiwan 0.04 0.18 -0.14 (-0.29) -0.18 -0.32 0.14 (0.27) -0.53 -1.07 0.54 (0.88) 
Thailand -0.50 -1.19 0.69 (1.21) -1.32 . 1.43 0.11 (0.18) . 1.81 . 0.82 . 0.99 (. 1.42) 
Europe 
Austria 0 0.27 -0.09 0.36 (0.95) 0.52 -0.12 0.64 (1.57) 0.48 . 0.64 1.12 (2.56*) 
Belgium 1 0.66 0.26 0.40 (1.60) 0.68 -0.01 0.69 (2.06*) 0.40 -0.42 0.82 (2.32*) 
Denmark 0 0.32 -0.15 0.47 (1.75*0) 0.77 0.18 0.59 (1.92**) 0.13 -0.98 1.11 (3.01 *) 
Finland 1.04 0.07 0.97 (1.59) 0.62 0.42 0.20 (0.40) 0.72 0.42 0.30 (0.42) 
France' 0.81 0.39 0.42 (1.30) 0.83 -0.21 1.04 (2.99*) 0.35 -1.66 2.01 (4.46*) 
Germany 0.43 -0.65 1.08 (3.20*) 0.20 -1.05 1.25 (3.37*) -0.32 . 1.89 1.57 (3.33*) 
Greece 1.19 0.88 0.31 (0.41) 1.17 0.93 0.24 (0.32) 1.47 0.79 0.68 (0.83) 
Ireland 0 0.42 -0.28 0.70 (1.71**) 1.05 -0.18 1.23 (2.93*) 0.38 . 1.43 1.81 , (3.42*) 
Italy' 0.52 0.13 0.39 (0.96) 0.48 . 0.02 0.50 (1.30) 0.08 . 0.56 0.64 (1.54) 
Netherlands 0.98 -0.42 1.40 (3.92*) 0.91 0.35 0.56 (1.70**) 0.38 . 0.41 0.79 (2,40*) 
Norway 0.92 0.52 0.40 (0.79) 0.91 0.35 0.56 (1.22) -0.11 . 0.42 0.31 (0.54) 
Portugal 0.76 0.01 0.75 (1.56) 0.86 -0.05 0.91 (2.06*) 0.61 . 0.77 1.38 (2.42*) 
Spain 0 0.85 0.36 0.49 (1.33) 0.68 -0.04 0.72 (2.04*) . 0.25 -1.25 1.00 (2.22*) 
Swcden'v 1.23 0.34 0.89 (2.19*) 0.67 -0.25 0.92 (2.33*) 0.06 -1.01 1.07 (1.89**) 
Switzerland 0.81 0.18 0.63 (2.05*) 0.73 -0.14 0.87 (2.87*) 0.55 -0.77 1.32 (3.220) 
Turkey 3.08 4.83 -1.75 (-1.83**) 3.22 4.35 -1.13 (. 1.16) 3.34 4.70 -1.36 (-1.33) 
UKO 0.73 -0.56 1.29 (3.31*) 0,52 -0.96 1.48 (4.97*1 0 . 54 . 1.61 2.15 (5.85*) 
us 0 -0.18 -1.63 1.45 (5.02*) 0.30 -0.60 0.90 (3.49*) 

j 
12-7 0.13 1.14 (4.45*) 
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Chapter 4 

4.4.7 Uncertainty, analyst bias and momentum profits 
This section examines the link between uncertainty, analyst bias and momentum profits. 
Zhang (2006) suggests that momentum profits are high when uncertainty is high. In 

addition, greater information uncertainty produces higher future returns following good 

news and lower future returns following-bad news. The author traces the sources of 

momentum profits to the slow absorption of ambiguous information into stock price. This 

section incorporates analyst bias to examine how information incorporates into prices 

slowly under high uncertainty. 

This section performs a three dimension analysis by first sorting stocks at the end of each 

month t into three portfolios based on uncertainty (V). This section then independently 

sorts stocks into three portfolios based on analyst bias (AB). All stocks within each 

element of the matrix (V x AB) are then allocated into three portfolios based on their 

prior six-month returns. PI includes the worst performing 30%, P2 includes the middle 
40% (unreported), and P3 includes the best performing 3 0%46. 

Table 4.7 reports the portfolio's mean raw returns during the six months holding period 
(Rct 7-12) and the next six months after the holding period (Ret 13-18)41. Momentum 

profits are most concentrated among the high uncertainty and high analyst bias group, 
decreasing monotonically with uncertainty and analysts' bias decrease. In addition, loser 

stocks are the dominant source of return continuation and the proritability of momentum 

strategies. 23 of 41 countries display such a pattern. Moreover, the results show that, in 

most countries, loser stocks continue to perform poorly during the next six months after the 
holding period (Ret 13-18), suggesting that loser stocks continue to lag behind, this is 

consistent with Jegadeesh and Titman's (1993) findings that the serial correlation of returns 

can be found up to the 12 month horizon. 

46 The number of firms that is left in to each ultimate portfolio as a result of sorting procedure is ranging 
from 10 to 236 firms. 
47 Table 4.7 drops Israel, Brazil, Columbia and Peru for insufficient data. 
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Chapter 4 

Overall, the findings are consistent with hypothesis 2 suggesting that under huge 

uncertainty, analysts report earnings forecasts and recommendations in accord with their 

client's desire when the actual earnings are not yet observable. As a result, analysts 

continue to report favourable news to winner stocks and distort/delay unfavourable news 

to loser stocks. In sum, the slow absorption of ambiguous information into stock price, in 

particular for loser stocks, reflects investors' desire rather than inability to react to the 

news. 

4.4.8 Uncertainty momentum strategy vs. Standard momentum strategy 
This section computes a head-to-head comparison of a strategy based on uncertainty with 

the standard Jegadeesh and Titman (1993) (JT henceforth) momentum strategies. As in 

Table 4.2 Panel A, this section calculates the standard JT momentum strategy based on 

the past return performance of individual stocks and take a long (short) position in the 

30% of top (bottom) performing stocks. This section measures the uncertainty 

momentum strategy by buying the low uncertainty winner portfolio and selling the high 

uncertainty loser portfolio and holding the position for six months. Low uncertainty 

winner (LVW) reports the average monthly portfolio returns from portfolio VI x P3 in 

Table 4.5. High uncertainty loser (HVL) reports the average monthly portfolio returns 
from portfolio V3 x PI in Table 4.5. Table 4.8 reports, for each country, the average 

monthly portfolios returns for the uncertainty momentum strategy against the standard JT 

momentum strategy. 

The findings indicate that the uncertainty momentum strategy is more profitable than the 

standard JT momentum strategy. 34 of 41 countries display statistically and economically 

significant profits for the uncertainty momentum strategy compared to 24 of 41 countries 
for the JT momentum strategy. More interestingly, the results show that 7 of 12 Asia 

countries (except Australia and New Zealand) generate significant momentum profits by 

uncertainty compare to I of 12 Asian countries for the JT momentum strategy. This 

indicates that, unlike previous studies, momentum strategy can be profitable in Asia using 

a refined strategy based on uncertainty. 
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Table 4.8 Standard momentum strategy vs. Uncertainty momentum strategy 
The standard momentum strategy is extracted from Table 4.2 (Panel A). The uncertainty momentum 
strategy is extracted from Table 4.5. Low uncertainty winner (LVW) reports the average monthly portfolio 
returns from portfolio VI x P3. High uncertainty loser (HVL) reports the average monthly portfolio returns 
from portfolio V3 x Pl. The uncertainty momentum strategy involves buying the low uncertainty winner 
portfolio and selling the high uncertainty loser portfolio and holding the position for six months. 
Denotes significance at the 5(10) percent level. 

Standard Moment urn Stratesty Uncertainty mo enturn Stra egy 

Begin No. W L W-L W-L LvW IIVL LVW - 
LVW 
-IIVL Stocks ( t-stat) IIVL (t-stat) 

Africa 
Israel 8701 56 -0.51 1.08 -1.59 (-2.63*) 0.72 -0.90 1.62 (2.320) 
South Africa 8701 1 532 1.10 -0,66 1.76 (5-51 1.17 -1.62 2.79 (6.670) 
Americas (ex. U. S. ) 
Argentina 9207 89 0.41 -0.07 0,48 (0.62) 0.47 . 3.46 3.93 (5.37*) 
Brazil 9207 296 4.99 5.49 -0.50 (-0.33) 0.70 1.69 -0.99 (. 1.00) 
Canada 8501 1015 0.58 -1.08 1.66 (5.74*) 1.42 . 2.51 3.93 (14.15*) 
Chile 9210 127 1.00 0.23 0.77 (1.89*0) 0.49 -0.32 0.81 (1.77**) 
Columbia 9406 34 0.25 -0.91 1.16 (3.110) 0.01 -1.76 1.77 (2.660) 
Mexico 9205 135 1.34 0.21 1.13 (3.22*) 0.36 . 2.43 2.79 (4.960) 
Peru 9406 56 0.70 0.78 . 0.08 (-0.10) . 1.61 4.33 2.72 (3.16*) 
Asia 
Australia 8701 940 0.14 -1.08 1.22 (3.67*) 1.11 -2.10 3.21 (11.380) 
China 9304 296 1.04 0.74 0.30 (0.50) 0.53 -1.01 1.54 (1.65) 
I long Kong 8701 640 . 0.89 -0.58 . 0.31 (-0.65) 0.97 -1.40 2.37 (2.090) 
India 9301 489 0.48 -0.65 1.13 (1.88**) 1.03 -2.45 3.48 (4.700) 
Indonesia 9005 238 -1.14 -0.54 . 0.61 (-0.97) -0.76 -1.88 1.12 (1.45) 
Japan 8701 2580 -0.79 . 0.84 0.05 (0.15) -0.41 -0.88 0.47 (2.480) 
Korea 8801 989 -1.17 . 0.93 -0.24 (-0.42) -0.02 -0.82 0.80 (1.42) 
Malaysia 8701 634 0.04 0.05 -0.01 (. 0.01) 0.45 -0.22 0.67 (1.25) 
New Zealand 8701 157 0.58 . 0.62 1.20 (4.220) 1.24 -2.65 3.89 (9.08*) 
Pakistan 9301 163 -0.81 . 0.44 -0.36 (. 0.70) . 1.22 -1.63 0.41 (0.41) 
Philippines 8801 184 -0.40 -0.67 0.27 (0.51) 0.50 -3.21 3.71 (5.15*) 
Singapore 8701 342 0.05 -0.23 0.27 (0.62) 0,66 -0.55 1.21 (2,660) 
Taiwan 8801 612 -0.78 -0.93 0.14 (0.24) 0.46 -1.53 1.99 (3.46*) 
Thailand 8709 339 -0.70 -0.32 -0.38 (-0.77) -0.18 . 1.23 1.05 (1.71*0) 
Europe 
Austria 8701 112 0.32 . 0.57 0.89 (2.78*) 0.47 -0.99 1.46 (3.39*) 
Belgium 8701 144 0.76 -0.40 1.17 (4.57*) 1.37 -0.33 1.70 (5.140) 
Denmark 8701 244 0.57 -0.36 0.93 (3.58*) 1.40 -1.58 2.98 (8.27*) 
Finland 8804 161 0.25 -0.55 0.80 (1.86*0) 1.32 -0.19 1.51 (2,52*) 
France 8701 919 0.39 -0.95 1.35 (4.160) 1.5S -1.62 3.17 (8,00s) 
Germany 8701 922 0.16 . 1.64 1.80 (5.120) 0.73 -2.03 2.76 (6.80*) 
Greece 9211 262 1.36 0.51 0.84 (1.19) 1.71 -0.19 1.90 (2.47*) 
Ireland 8701 82 0.47 -0.88 1.36 (4.020) 1.25 -2.46 3.71 (7.90*) 
Italy 8701 332 0.39 -0.34 0.73 (2.17*) 1.01 -1.06 2.07 (5,250) 
Netherlands 8701 295 0.51 -1.35 1.86 (5.350) 1.43 -1.03 2.46 (6.92*) 
Norway 8701 234 0.32 -0.54 0.86 (1.86*0) 1.97 -0.29 2.26 (3.99*) 
Portugal 9104 93 0.15 -0.59 0.74 (2.20$) 1.41 -0.94 2.35 (4.24*) 
Spain 8701 175 0.46 -0.40 0.86 (2.45*) 1.03 -1.60 2.63 (5.79*) 
Sweden 8701 376 0.23 -0.98 1.21 (2.49*) 2.19 -0.97 3.16 (6.10*) 
Switzerland 8701 248 0.71 -0.90 1.61 (4.910) 1.40 -0.90 2.30 (6.37*) 
Turkey 9112 313 3.66 4.44 -0.78 (-0.93) 3.92 3.82 0.10 (0.09) 
UK 8701 1999 0.22 -1.64 1.86 1 (6.14*) 0.89 . 2.39 3.28 (9.01*) 
us 8301 4143 0.54 -0.83 1.36 1 (4.92*) 1.25 -3.21 4.46 (12.76*) 
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Figure 4.2 Time series average of analyst dispersion between Asia and Europe 
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Figure 4.3 Time series average of uncertainty between Asia and Europe 
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Figures 4.2 and 4.3 plot the time series average of dispersion in analysts' forecast and 

uncertainty between Asia and Europe respectively. The figures show that both dispersion 

and uncertainty in Europe are higher than those in Asia. Interestingly, both dispersion and 
uncertainty jump up during the Asian crisis suggesting investors face hugh uncertainty 
towards the future prospective about the Asian economy. It is therefore not surprising to 

see why momentum profits are more pronounced in Europe if momentum profits have 

positive association with uncertainty. 
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4.4.9 Crediting Rating in the US 

Avramov, Chordia, Jostova and Philipov (2007) report that the profitability of momentum 

strategies in the US is large and significant among high credit risk firms, but it is 

nonexistent among low credit risk firms. More importantly, they identify a puzzle in the 

disagreement between cross-sectional and time series findings. In particular, they show 

that momentum profits are concentrated on high credit risks firms during expansionary 

periods rather than recessionary, which in general should have more defaults and hence 

higher credit risks than expansionary periods. This section reproduces the findings of tile 

link between momentum profits and credit rating, and examine whether analyst bias 

could explain the puzzle. In order to make sure that the sample of stocks is representative 

and comparable to Avramov, Chordia, Jostova and Philipov (2007), Panel A of Table 4.9 

present the monthly returns for the loser portfolio (PI), the winner portfolio (P3), and tile 

momentum strategy of buying the winner and selling the loser portfolio (P3 - PI) for 

rated and unrated firms with I/B/E/S coverage. The evidence suggests that both rated and 

unrated firms generate significant momentum profits. In particular, the average monthly 

momentum profits is 0.77 (t-stat = 3.22) for rated firms and 1.44% (t-stat = 4.70) for 

unrated firms. 

The next step is to examine the link between momentum profits and credit risk, this 

section examines the average numerical credit rating for each of the three momentum 

portfolios over formation periods of six months. The results are reported in Panel B of 
Table 4.9. For each of month t, the sample is divided into the low/high credit risk group 
(group I/group 3) containing the 30% best/worst rated stocks based on their S&P rating 
for this particular month 48 

. 

The average profits to the P3 -PI strategy is 0.02% (t-stat = 0.10) for the low credit risks 

group (rating of 10.23 BBB-) and 0.20% (t-stat = 0.97) for the medium credit risks 

group (rating of 12.7 BB-). The profit is much larger as well as statistically and 

economically significant at 1.96% (t-stat = 5.25) for the highest credit risk group (rating 

of 15.87 z B-). In line to Avramov, Chordia, Jostova and Philipov (2007), the evidence 

48 The number of firms that is left in to each ultimate portfolio is ranging from 74 to 139 firms. 
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shows that momentum profits are concentrated among low-grade firms, and are 
nonexistent among high-grade firms. In addition, among the low rated firms, loser stocks 
are the dominant source of return continuation and the profitability of momentum 
strategies. 

Table 4.9 Price Momentum, Credit Rating in the US' 
This table reports the average monthly portfolio returns. For each month t, all firms that are covered by 
I/B/E/S are included in the sample. Portfolios in Panel A are formed on all firm's six-month 
formation-period from 0 to t-2: Portfolio PI is an equally weighted portfolio of stocks in the 
worst-performing 30% and portfolio P3 includes the best-performing 30%. The position is held for the 
following six month period Q to t+5). Portfolios in Panel B are formed on three credit rating groups by S&P 
(top 30%, middle 40%, and bottom 30%). Data on credit rating are collected from COMPUSTAT on a 
quarterly basis starting in 1985. The numeric S&P rating is presented in ascending order by credit risk, i. e. 
I=AAA, 2=AA+, 3=AA, ..., 21=C, 22=D. For each credit rating groups, this table further sorts stocks into 
three portfolios based on returns from months 0 to t-2. Portfolio PI is an equally weighted portfolio of 
stocks in the worst-performing 30% and P3 is the highest 30%. The average monthly portfolios returns for 
winner, loser and winner minus loser portfolios are reported for each of the credit rating x analyst bias 
groups. The sample period is July 1985 to December 2002. *(**) Denotes significance at the 5(10) per cent 
level. 

Panel A: Raw Momentum in Rated and Unrated Firm 
All Firms Rated Firms Unrated Firms 

Number of Firm 4143 1256 2887 
1.37 0.77 1.44 P3-P1 (4.93*) (3.22*) (4.79*) 

Pi -0.83 -0.22 -1.16 
P3 0.54 0.55 0.28 

Panel B: Momentum and 3 Credit Rating Groups 
Rating Group (1=Lowest Risk, 3=11ighest Risk) 

1 2 3 

P3-P1 0.02 0.20 1.96 
(0.10) (0.97) (5.25*) 

Pi 0.84 0.50 -1.71 
P3 0.86 0.70 0.25 

As mentioned earlier the empirical evidence on the impact of credit rating on the 

momentum strategy suggests that momentum payoffs are concentrated among stocks with 
high credit risks during expansionary periods, this contradicts the fact that recessionary 

periods should generally have more defaults and hence high credit risks. This section 

proposes that the analyst bias hypothesis may offer potential explanations to the puzzle. 

This section performs a three dimension analysis by first sorting stocks at the end of each 
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month t into three portfolios based on credit risk group. This section then independently 

sorts stocks into three portfolios based on analyst bias. All stocks with each of the credit 

risk x analyst bias groups are then allocated into three portfolios based on their prior 

six-month returns. PI includes the worst performing 30%, P2 includes the middle 40%, 

and P3 includes the best performing 30%. Panel A of Table 4.10 reports the portfolio's 

mean raw returns during the holding period (t to t+5). The results show that momentum 

profits are most concentrated with the highest credit risk x highest analyst bias group. 
The results are driven primarily by loser stocks. This finding indicates that the impact of 

credit ratings on momentum profitability is entirely explained by stocks with high analyst 
bias that realize lower returns. 

Panel B and Panel C of Table 4.10 split the full sample in Panel A into expansionary and 

recessionary periodS49 . During expansions, the momentum profits are again concentrated 

among stocks with the highest credit risk x. analyst bias group. The payoffs are 

statistically and economically significant 2.68% per month (t-stat = 5.34) for the poorest 

credit quality, highest analyst bias firms. On the other hand, during recessions, the 

momentum strategy payoffs in all groups are statistically insignificant". The findings thus 

reinforce the hypothesis that analyst bias might be the reason why momentum profits are 

concentrated on high credit risk firms during expansionary periods. 

49 Recessionary and expansionary months are collected from NBER (www. nber. org/cycles. htmi) 
50 It is important to note that the results should be treated with caution since the US economy experienced 
long expansionary periods during the 80's and 90's. The sample for expansionary periods consists of 184 
months compared to recessionary periods of 17 months. 
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Table 4.10 Price Momentum, Credit Rating and Analysts' Bias in the US 
This table reports the average monthly portfolios returns. For each month 1, all firms that are covered by 
I/B/E/S are included in the sample. Portfolios in Panel C are formed on three credit rating groups. Credit 
rating is calculated in the same manner as Table 4.9. For each credit rating group, stocks are further sorted 
into three portfolios based on analyst bias. Analyst bias is the absolute forecast error scaled by standard 
deviation. The average monthly portfolios returns for winner, loser and winner minus loser portfolios are 
reported for each of the credit rating x analyst bias groups. Recessionary and expansionary months are 
collected from Nl3ER(www, nberorUZg ýIs. hLt_ml). The sample period is July 1985 to December 2002. 
Denotes si2nificance at the 5(l 0) ner cent level. 

Analyst Bias Rating Group 
1 

(I=Lowest Risk, 3=11ighest Risk) 
23 

P3-Pl= 0.01 P3-Pl= 0.37 P3-Pl= 2.70 
(0.06) (1.45) (5.45*) 

AB3 Pl= 0.57 Pl= -0.03 Pl- -3.10 
P3= 0.58 P3= 0.33 P3= -0.40 

P3-Pl= -0.02 P3-Pl= 0.21 P3-Pl= 0.94 
(-0.10) (1.00) (2.87*) 

Overall AB2 Pl= 0.81 Pl= 0.51 Pl= -0.97 
P3= 0.79 P3= 0.72 P3= -0.03 

P3-Pl= 0.05 P3-Pl= 0.16 P3-Pl= 1.35 
(0.28) (0.85) (3.88*) 

ABI Pl= 1.18 Pl= 1.00 Pl= -0.35 
P3= 1.23 P3= 1.16 P3= 1.00 

P3-Pl= 0.12 P3-Pl= 0.22 P3-Pl= 2.68 
(0.60) (0.94) (5.34*) 

AB3 Pl= 0.55 PI= 0.09 Pl= -3.00 
P3= 0.67 P3= 0.31 P3= -0.32 

P3-Pl= 0.03 P3-Pl= 0.23 P3-Pl= 0.82 
(0.17) (1.18) (2.62*) 

Expansion AB2 Pl= 0.80 Pl= 0.57 Pl= -0.81 
P3= 0.83 P3= 0.80 P3= 0.00 

P3-Pl= 0.05 P3-Pl= 0.17 P3-Pl= 1.17 
(0.30) (0.85) (3.53*) 

AM Pl= 1.22 Pl= 1.00 pl=. -0.19 
P3= 1.27 P3= 1.17 P3= 0.98 

AB3 

P3-Pl= -1.12 
(-1.13) 

Pl= 0.76 
P3= -0.35 

P3-Pl= 1.96 
(1.20) 

Pl= -1.36 
P3= 0.60 

P3-Pl= 2.95 
(1.30) 

Pl= -4.18 
P3= -1.23 

Recession AB2 

P3-Pl= -0.55 
(-0.57) 

Pl= 0.89 
P3= 0.34 

P3-Pl= 0.00 
(0.00) 

Pl= -0.11 
P3= -0.11 

P3-Pl= 2.34 
(1.20) 

Pl= -2.68 
P3= -0.34 

P3-Pl= 0.04 P3-Pl= 0.06 P3-Pl= 3.29 
(0.03) (0.05) (1.62) 

AM Pl= 0.71 Pl= 0.95 Pl= -2.09 
P3= 0.75 P3= 1.01 P3= 1.21 
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4.5 Conclusion 

Using a sample of 22033 stocks covering 41 countries over the periods from 1983 to 

2002 for the US, and from 1987 to 2002 for the rest of the world this chapter establishes a 

strong link between uncertainty and momentum profits across countries. In addition, the 

empirical findings show that greater uncertainty with greater analyst bias leads to positive 

returns for winner stocks and negative returns for loser stocks. As a result, the momentum 

effects are more likely to reflect slow absorption of ambiguous information into stock 

prices that could result from analysts with reputational concerns report forecasts in accord 

with client's beliefs rather than the true set of information. The findings provide empirical 

evidence for the behavioural economics theory on 'herding on the priors' and rcputational 

effects in sender-receiver games, as well as the finance literature on the sources of 

momentum profits. This chapter further provides evidence based on global data that 

analysts' forecast dispersion reflects uncertainty rather than disagreement, consistent with 
Johnson (2004). The chapter suggests that the strong link between credit rating and 

momentum profits in the US documented by Avramov, Chordia, Jostova and Philipov 

(2007) could be explained by an4jyst bias. Finally, the chapter rinds that profits from a 

momentum strategy based on uncertainty, by buying low uncertainty winners and selling 
high uncertainty losers, are superior to the Jegadeesh and Titman (1993) momentum 

strategy. 

Overall, this chapter contribution to the behavioural economics and finance literature in 

twofold. First, the sources of momentum profits are more likely to have originated in an 
incomplete flow of information into stock prices due to analyst bias and uncertainty, 
leading investors to make decisions based on their priors rather than the true set of 
information. Second, the dispersion in analyýts' forecasts that is commonly used to reflect 
investors' disagreement is in fact indicative of uncertainty. In addition, while risk is 

compensated by higher stock returns, uncertainty has the opposite effect. 

The findings of this chapter have important policy implications to policy makers and 
financial market. In particular, the results of analyst bias, which is the tendency that 

analysts report earnings forecasts and recommendations in favour with client's desire 
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rather than reflecting the true set of information, could have a negative impact to 
financial market and investors. Such biased opinion, however, are hard to detect or 
determine. Inaddition, the deviation of stock prices to reflect the true information could 

result to a less efficient market. Nevertheless, policy makers should help investors to raise 

enough caution to all the public information during their investment decision makigg. 
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5. Conclusion 

A momentum trading strategy, buying stocks which have exhibited high returns over the 

previous 3 to 12 months and selling stocks with poor performance over the same period 

of time can generate significant abnormal returns. A plethora of explanations have been 

put forward for this in the past decade, both risk-based and behavioural-based. This topic 
is very important since it touches central themes of modern financial economics; 

specifically the efficient market hypothesis and asset pricing model. This thesis has aimed 
1) to search for risk factors to explain momentum payoffs, 2) to examine the link between 

limits to arbitrage and momentum profits, also to investigate whether momentum profits 

are exploitable, 3) to propose another behavioural explanation based on analyst bias to 

explain momentum profits on a global basis. 

Chapter 2 investigates whether the apparent profitability of momentum trading can be 

explained by business cycle variables and behavioural characteristics in thrce major 
European markets namely France, Germany and the UK. The results show evidence of 

price momentum in all three countries. However, possibly due to some limitations 

inherent in the model, the predictive regression framework of Chordia and Shivakumar 

(2002) based on business cycle variables cannot capture momentum Profits in these 

markets. The conditional asset pricing model of Avramov and Chordia (2006), that 

allows factor loadings to vary with firm specific variables, overcomes some of the 
limitations of the predictive regression model of Chordia and Shivakumar (2002). 

Therefore, this chapter also applied the Avramov and Chordia (2006) model to the 
European markets investigated. In line with the findings of Avramov and Chordia (2006), 

the chapter shows that momentum Profits in Europe are largely attributable to asset 

mispricing that varies systematically with global business conditions. This confirms that 

the idiosyncratic component of stock returns does not play any prominent role in 

explaining momentum profits in European r etsjut; -L e qr Lables may -- uglark , _bpiness_qyc 
offer a better explanation. 
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Inspired by recent developments in the behavioural finance literature, especially by the 

ongoing debate on the role of investors' behaviour on price momentum, the Avramov and 
Chordia (2006) model was extended to incorporate behavioural variables. The results 
display a mixed role for behavioural variables across the countries, illustrating that 

investors' behaviour is less likely to be correlated to the business cycle and is unlikely to 

explain momentum profits. Moreover, the inclusion of behavioural variables does not 

affect the notion that momentum patterns are risk-based. This confirms that the findings 

of Avramov and Chordia (2006) hold for the major European financial markets and their 

model is robust to the inclusion of behavioural variables. Thus, the profitability-of 

momentum strategies in Europe could be ex lained b riqk- fir-mm, which are undetected 
thus far and are largely attributable to the business cycle. Overall, the finding of this 

chapter suggests that the apparent momentum profits are really just a premium that 

compensates for time-varying risk that could systematically link to business cycles or 

external shocks. This chapter contributes to the literature by providing evidence on the 

potential risk-based explanation to the momentum anomaly. 

Chapter 3 examines whether stocks characterised with limits to arbitrage and high 

divergence in investors' beliefs contribute to momentum profits. This chapter finds that 

momentum profits come from loser stocks. There is strong evidence of a positive 

relationship between short-sale constraints and the magnitude of momentum profits. The 

known risk factors cannot explain the momentum profits. However, the results are 
inconsistent with Miller's (1977) view that stocks that are subject to both short-sale 

constraints and high divergence in opinion are initially overvalued and generate low 

subsequent returns. This chapter finds that momentum profits are linked with short sale 

constraints but not with divergence in opinion. On the other hand, the excessive optimism 
together with self attribution bias leading to overvaluation and therefore low subsequent 

returns explains the momentura profits. 

The findings of this chapter have several implications. First, momentum profits are not 

exploitable as these are generated primarily by loser stocks that are costly or impossible 

to sell short. Second. the investors' inability to short-sell loser stocks defeats the original 
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theme of momentum trading that argues for a self-financing hedge portfolio. Tbird, the 

persistence of momentum profits is caused by limits to arbitrage rather than by investors 

under-reacting to firm-specific information. Finally, the results support the view that 

momentum profit results Primarily from mispricing due to limits to arbitrage and 

overconfidence; divergence in opinion does not play a role in overvaluation. This primary 

contribution of this chapter is that plementing thq- 

momenturn--strategy must be high, prices therefore move away --frqm 
the fundamental 

values and limits to arbitrage. 

Chapter 4 establishes a strong link between uncertainty and momentum profits across 

countries. In addition, the empirical findings show that greater uncertainty with greater 

analyst bias leads to positive returns for winner stocks and negative returns for loser 

stocks. As a result, the momentum effects are more likely to reflect slow absorption of 

ambiguous information into stock prices because analysts who are concerned for their 

reputations report forecasts in accordance with clients' beliefs rather than the true set of 

information. The findings provide empirical evidence for the behavioural economics 

theory on 'herding on the priors' and reputational effects in scnder-recciver games, as 

well as the finance literature on the sources of momentum profits. This chapter further 

provides evidence based on global data that analysts' forecast dispersion reflects 

uncertainty rather than disagreement, consistent with Johnson (2004). The chapter 

suggests that the strong link between credit rating and momentum profits in the US 

documented by Avramov, Chordia, Jostova and Philipov (2007) can be explained by 

analyst bias. Finally, the chapter shows that profits from a momentum strategy based on 

uncertainty, by buying low uncertainty winners and selling high uncertainty losers, are 

superior to the Jegadeesh-Titman momentum strategy. 

Overall, this thesis contributes to the behavioural. economics and finance literature in a 

number of ways. First, there is a business cycle pattern within momentum profits, but 

whether this pattern captures any kind of risk factors remains unknown. Second, the risks 

and the costs involved in implementing the momentum strategy must be high, prices 

therefore move away from the fundamental values, and arbitragers are able to restore the 
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price value identity. Third, the sources of momentum profits are more likely to have 

originated in an incomplete flow of information into stock prices due to analyst bias and 

uncertainty, leading investors to make decisions based on their priors rather than the true 

set of information. Finally, the dispersion in analysts' forecasts that is commonly used to 

reflect investors' disagreement is in fact indicative of uncertainty. In addition, while risk 
is compensated by higher stock returns, uncertainty has the opposite effect. 

Nevertheless, this thesis is subject to a number of limitations on data availability and both 

theoretical and empirical arguments. As a result, one should exercise caution. In addition, 
based on the limitations of this thesis, there are several suggestions for further work. First, 

the findings of Chapter 2 show that momentum profits are linked to some kinds of risk 
factors with business cycle pattern. Future work could explore new risk factors with such 

pattern that could explain firm-level momentum, one suggestion steams from the recently 
proposed distress risk by Agarwal and Taffler (2008) and credit risk with uncertainty by 
Avr4mov and Hore (2008). Along this line, risk factors that are capturing part of the 
investor's behaviour but also with business cycle pattern could be the way forward. 

Second, the thesis does not examine the direct effect of trading costs to implement 

momentum strategies. One exception is that findings in Chapter 3 provide evidence on 
limits to arbitrage in line with Lesmond et al. (2004), who suggest that the momentum 

profits cannot be exploited by investors as these are driven by small illiquid stocks which 

are costly or impossible to sell short. In addition, Taffler et al. (2004) report that 

profitable opportunities to arbitrage underperformance of going-concern stocks are 

severely limited due to high trading costs. Although the measure of trading costs, in 

particular, the costs of short-selling are not easily observable. The effect of the trading 

costs is important to the success of the profitability of momentum strategies. Further 

work could explore how trading costs affect the momentum profits during 

implementation on a global basis. 

Third, Chapter 4 shows the strong relationship between momentum, analyst bias and 

uncertainty. Recently, Agarwal and Taffler (2008) show that distress risk factor could 
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explain momentum profits. In addition, Avramov and Hore (2008) show that a combine 

of credit risk and information uncertainty could explain momentum under a risk-based 

explanation framework. Further work could therefore explore how analyst bias could 
integrate into distress risk factor and uncertainty to generate enough risk aversion to 

explain the momentum anomaly. Overall, the momentum anomaly remains to be one of 

the most interesting challenge to the modem finance theory. 
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Appcndixes 

Appendix 1: Cluster Adjusted t-statistics' 

In the presence of clustering, the observations within a given cluster may not be 

treated as independent, even though the clusters themselves may be considered 
independent. The detailed calculation of the covariance matrix allowing for clustering 
is given as follows, comparing it to the OLS estimator, and the White estimator. 

OLS Variance Estimator: 

VOLS = S2 (X'X)-i 

where: s2 =( 1 )ie, 2 
Nk j-, 

Robust (White) Unclustered Variance Estimator: 

n 
Vrob = (X'X)-' j: (ejxj)'(ejxj) (X'X)-' 

[J. 

1 

I 

Robust Cluster Variance Estimator: 

(X, X)-l [ Uýuj 
](XX)-l 

where u, = Dixt 
JIA.. 

In the calculations, e, is the Ph residual and x, is a row vector of 

predictors. 

The variance of the clustered estimator will be higher than the robust estimator when 
there is positive correlation between elements of the cluster. Positive correlation 
means the cluster sums have more variability than the individual elements. Negative 

correlation within a cluster will have the reverse effect. 

" Source: http: //www. stata. com/support/fags/stat 
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Appcndixes 

Appendix 2: Performance of momentum strategies over the 
business cycle 
This table reports the strategy's monthly profits in the holding periods. The classifications of 
the expansionary and contractionary periods are obtained from the Economic Cycle Research 
Institute (ECRI). This table also shows the average coefflicients when momentum strategy 
payoffs (W-L) are regressed against two dummy variables indicating the state of the cycle: Rt 
ý aE Dexpt + aE Drect + et where R, is the momentum strategy payoffs during the holding 
period Q to t+5). Dexpt (Drec, ) is a dummy variable equal to I when the economy is in 
expansion (recession) at time t, OLE (OCE) is the average returns during an expansion (recession) 
and e, is an error term. Sd refers to the standard deviations of the profits. t-statistics are 
adjusted for autocorrelation and heteroscedasti city and reported in parenthesis. *denotes 
significance at the 5% level. 

Expansionary periods 

UK 

Germany 

France 

W-L Sd (W-L) 

01/77 - 06/79 0.93 1 04 (3.10) . 

06/81 - 05/90 1.05 
(2.56) 1.82 

04/92 - 12/01 2.34 3.19 (4.82) 
1.68 

aE (5.45) 

01/77 - 01/80 1.02 0 64 (2.32) . 

11/82 - 01/91 1.07 1.72 (2.91) 

05/94 - 01/01 1.94 2.60 (3.58) 
1.41 

aE (6.17) 

01/77 - 08/79 0.72 1.91 (0.78) 

07/80 - 04/82 0.99 1.84 (1.44) 

Contractionary periods 
W-L Sd (W-L) 

07n9 - 05/81 2.26 1.41 (5.38) 

06/90 -03/92 (4: 
14 1.32 7 10) 

3.37 
ac 

---(9.66) 
02/80 - 10/82 1.06,1.28 

(3.09) 

02/91 - 04/94 0.64 1.55 (1.21) 

02/01-12/01 12.26 4.38 (7.28) 
2.37 

ac (2.70) 

09/79 - 06/80 1.80 1.37 (2.47) 

05/82 - 12/84 ( 
1: 73) 1.32 375 

01/85 - 02/92 1.19 2.37 03/92 - 08/93 1.92 2.24 2.09) (2.10) 

09/93 - 12/01 1.55 2.53 (3.60) 

aE 
1.29 

CEC 
1.80 

(4.94) 
--(5.63) 
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Appcndixes 

Appendix 3: Descriptive statistics of business cycle variables 
This table presents descriptive statistics of business cycle variables used in this chapter. YLD 

is measured by the rate of return on short-term financial securities. DIV is measured by 

dividend on value-weighted broad based market index. DEF (default risk premium) is 

measured as 'the yield on corporate bonds' less 'the yield long-term government bonds'. 

TERM (term spread) is measured as 'the yield on long-term government bonds' less 'the 

yield on short-term financial securities'. The sources of the data arc described in Table 2.1. 

The sample period is January 1977 to December 2002. 

Mean Median St. dev. Observations 

DIV 0.043 0.043 0.012 305 

YLD 0.091 0.091 0.033 305 
UK 

TERM 0.004 0.003 0.022 305 

DEF 0.010 0.010 0.004 305 

DIV 0.024 0.022 0.008 305 

YLD 0.059 0.051 0.025 305 
Germany 

TERM 0.008 0.012 0.013 305 

DEF 0.002 0.001 0.003 305 

DIV 0.038 0.033 0.015 305 

YLD 0.083 0.084 0.035 305 
France 

TERM 0.011 0.014 0.014 305 

DEF 0.003 0.003 0.005 305 
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Appendixes 

Appendix 4: Summary statistics of firm characteristics 
Time-series averages of equal-weighted cross-sectional means and standard deviation of the 

return predictors used in this chapter. Residual of institutional ownership (RIO) is the residual 

of equation (3.2), Firm size (S) is measured by market capitalization in millions. Divergence 

in opinion on each stock (Disp) is measured by the standard deviation in EPS forecasts made 
in 3-months prior to the formation period scaled by the stock price per share at the beginning 

of the month of forecast. Trading volume (VO) is measured as the ratio of the number of 

shares traded to the number of shares outstanding. Analyst recommendation (Rec) is 

measured as described in Section 3.3.5. Analyst forecast revisions (Fred) is, measured as 
described in Section 3.3.6. RET12 (momentum) is the total individual stock return over the 

previous 12 months. All statistics are calculated cross-sectionally each month and are then 

averaged across time. The sample period is January 1993 to December 2002. 

Mean Std dev Number of obs (average) 
RIO 0.36 0.30 1500 

Firm size (S) 1183.68 739.40 1504 
Disp 0.02 0.08 512 
VO 1010.59 306.21 1003 
Rec 2.12 0.13 134 

FRev -0.11 0.12 182 
Ret12 -0.70 0.18 1400 
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Appendixes 

Appendix 5: Raw momentum strategy payoffs on overlapping 

portfolio strategies 
For each month t, all stocks are allocated into deciles based on their returns over past J 
months V= 3,6,9,12). Decile portfolios are formed monthly by weighting equally all firms 
in that decile ranking. The subsequent holding periods begin one month after the formation 
period ends. The position is then held for the following K months (K = 3,6,9,12). The 
winners (losers) portfolio refers to the decile portfolio containing stocks ranking highest 
(lowest) on prior returns. The winner-loser refers the arbitrage portfolio formed by buying 
winners and selling losers. This table reports the strategy's raw returns during the holding 
period. t-statistics (in parenthesis) are robust to heteroscedasticity and autocorrelation. * 
denotes significance at the 5% level. The sample period is January 1993 to December 2002. 

Winner (W) Loser(L) W-L T-stat 
3x3 -0.20 -2.05 1.85 3.54* 
6x6 0.03 -2.89 2.91 5.66* 
9x9 -0.19 -1.79 1.60 4.57* 

12 x 12 -0.48 -1.31 0.83 2.56* 
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