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Abstract 

Within orthopaedics, clinicians routinely take multiple measurements on patients 

during the course of their treatment, often repeating the same measurements before 

and after operations, and subsequently at periodic follow-up consultations. This 

data combined with additional factors gives a wealth of information, resulting in a 

high-dimensional data set with a mixture of data types and a longitudinal aspect; 

all of which can be problematic in statistical analysis. Therefore, general statistical 

methods for the investigation and analysis of a generic medical data set are presented 

and developed. 

Methods are proposed for supporting exploratory analysis of the data via novel 

visualisations of the patient's status over time across multiple variables, thus giving 

an easily interpretable overview of this evolution. To address the problem of high 

dimensionality of the data, a new approach to variable selection is proposed and 

developed using principal variables. The method is further extended by the use of 

temporal smoothing to tackle data with this repeated measures aspect allowing for 

the simultaneous reduction of the patient status variables over time. The ultimate 

goal of these analyses is to determine an appropriate model for the orthopaedic data, 

with a focus on the modelling of the time series of patient progress. The techniques 

of graphical modelling and, in particular, those of chain graphs lend themselves to 

this problem. Additionally, they have the added benefit of a simple and intuitive 

visualisation which is of benefit to clinicians. All of these methods are illustrated 

via their application to two large-scale case study data sets concerning total joint 

replacement. 
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Chapter 1 

Introduction 

1.1 General Background 

Clinical decision support is a term that is frequently used within the literature to de- 

scribe a computer application which employs statistical methods or techniques from 

artificial intelligence to provide a clinician with important information or results that 

could inform their decision-making process, often with regard to a specific patient. 

These clinical decision support systems (CDSS) tackle a wide variety of different 

problems within the medical domain, ranging from the suggestion of diagnoses on 

the basis of certain symptoms, to time-sensitive monitoring of ventilator systems in 

intensive care, and further to using toxicological information to warn clinicians if 

they have prescribed a dangerous drug combination. It was Wyatt and Spiegelhalter 

[129] who gave the now commonly accepted definition of a clinical decision support 

system as: 

"an active knowledge system which uses two or more items of patient 

data to generate case-specific advice. " 

From such a definition, the role of statistics and statistical methods within a CDSS 

is to provide the mechanisms by which such advice is given to the clinician on the 

basis of the data. 

It is the development and bringing together of such techniques and methods 

to form this framework of decision support that is a key goal of this thesis. The 

1 



1.1. General Background 2 

setting of this decision-support framework is that of orthopaedics and total joint 

replacement in particular. Within this area, clinicians routinely make several mea- 

surements on patients during the course of their treatment, often repeating the same 

measurements before and after treatment, and subsequently at periodic follow-up 

consultations. Consequently, a large wealth of information can soon accumulate 

and without detailed statistical investigation of these data sets the information they 

contain will typically be untapped. Thus one of the primary goals of this thesis is 

to provide the statistical support for an informative analysis of these data in order 

to inform the clinician and their decision-making. 

This task is by no means straightforward as the data themselves are typically 

complex and varied in structure and content. Typically within orthopaedics, a series 

of particular measurements will be repeatedly measured on a patient to assess and 

monitor their clinical status. These measurements are often the components of one 

of the many defined composite scores, such as the Oxford hip score [27], and are 

summed or averaged to give a single indicator of the patient's state. Whilst this 

method is a simple mechanism for assessing the patient, the combination of these 

various diverse measurements into a single quantity loses the detailed information 

present in the individual variables. Thus it becomes impossible to learn, for example, 

that a patient's status has worsened because of an increase in the individual pain 

measurements. This aggregation of these individual informative measurements into 

a single number is a severe over-simplification of the data and sacrifices a great deal 

of information on the patient in the process. Therefore, rather than perpetuate this 

simplification of the data it would be advantageous to retain the individual elements 

of these scores and analyse them together to gain a richer impression of the patient's 

condition. 

As mentioned above, a patient is usually seen on several occasions during treat- 

ment - before and after their operation and possibly at subsequent follow-up con- 

sultations. Consequently, the dimensionality of the data becomes large as the con- 

stituent measurements of the composite scores are repeatedly observed at each time 

point. This compounds the size of the data set and introduces a longitudinal or 

repeated measures element to the data. However, these patient status variables are 



1.1. General Background 3 

not the only elements present in the data set. A large number of other variables 

are also recorded, such as patient demographic characteristics, details of diagnosis 

and treatment, and complications due to surgery. These additional factor variables 

all record information that may or may not impact on the patient's condition and 

the manner in which this condition evolves over time. Furthermore, there is no 

restriction on the nature of any of the variables, be they patient status measure- 

ments or other factors. In other words, the variables in the data can be a mixture 

of continuous, categorical and ordinal quantities. 

The ultimate goal of this thesis is to attempt to provide mechanisms for the 

intelligent analysis of such data sets. However, a key restriction on the development 

of these methods is that they should apply to a general orthopaedic data set, and 

that they should not be tailored to a specific problem area. This is a formidable 

challenge to develop or apply statistical methods to an unseen arbitrary data set 

that may typically be high dimensional, have a longitudinal component, and contain 

variables of mixed types. 

A key feature of the analyses in this decision support framework is that the results 

should be easily interpretable to the clinician. Using methods that are intuitive in 

their understanding will enable clinicians to make full use of the statistical support 

being presented to them. Giving results that require interpretation by a statistician 

would be of no use in informing the clinician's decisions and so are inappropriate 

here. 

Some general techniques that could be applied to these data would include an 

investigation of the variables representing the patient's medical status. The manner 

in which these measurements change over time would be an area of significant inter- 

est and the modelling of the patient status over time may allow for the prediction 

of patient state at a later time given their current position. Additionally, the rela- 

tionships between these measurements would also be informative and could suggest 

measurements which were effectively redundant or uninformative - this would have 

direct implications for the calculation and interpretation of the composite scores. 

The effects and the interplay of the additional factor variables are also areas of pos- 

sible interest since they could potentially have strong effects on the patient's status 
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and its evolutions over time. The large size and scale of the data set can be a daunt- 

ing prospect, and hence the distillation of these large complex data structures into 

formats that are clinically useful and understandable would be of significant value, 

such as through appropriate plots and visual methods. 

1.2 Overview 

The remainder of this thesis is organised in a chronological fashion beginning with 

exploratory investigations of available orthopaedic data sets presented before moving 

onto aspects of modelling these data, the associated problems and their solutions. 

As this thesis covers a broad range of subject areas within applied statistics, we 

have refrained from presenting a single literature review in favour of presenting such 

material at the appropriate location within the text. 

Chapter 2 begins by introducing the types of orthopaedic data to be studied. An 

abstract framework for such data and their analysis in generality is proposed and the 

two major orthopaedic data sets are introduced. Chapter 3 follows on by presenting 

an exploratory analysis of these data in order to provide an understanding of the 

nature and the behaviour of the data as well as to highlight potentially problematic 

features thereof. Chapter 4 continues the exploratory theme by proposing a series of 

graphical methods for displaying complex high-dimensional data sets in a compact 

and intuitive form. 

Having explored the data, Chapter 5 moves on to consider application of the 

graphical modelling methodology to the data with a specific view to developing a 

single model for each data set. Problems due to the high dimensionality of the or- 

thopaedic data necessitated examining the possibilities of applying data or variable 

reduction strategies. Therefore, Chapter 6 discusses such strategies and develops 

a novel method for selecting important variables from a data set that is replicated 

over time. This method is tested via simulation studies and compared to other 

variable selection methods available in the literature and is shown to perform very 

well. Chapter 7 then takes this variable selection procedure and applies it to the 

orthopaedic data. Once we have identified a suitable subset of the original variables 
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from the data, we return to the graphical modelling of the data. Chapter 8 intro- 

duces a specialisation of graphical models, the chain graph model, and applies these 

techniques to the data to develop suitable final models of these data. The models 

are then used to provide predictions and the adequacy of these models and their 

goodness of fit is assessed and discussed. All of the methods and techniques pro- 

posed and presented in this thesis are discussed in Chapter 9, along with a thorough 

review of the problems and limitations that have been encountered in the course of 

the analysis. Finally, Chapter 10 contains a summary of the conclusions, both in 

general and those specific to orthopaedics and medicine. 



Chapter 2 

Data Generalisation and an 

Introduction to the Data 

The primary aim of this thesis is to investigate general sets of orthopaedic data, 

rather than focusing on a single data set. Consequently, there is a need to develop a 

general structure for such data sets so that methods and techniques can be developed 

and applied to any data which conform to this abstract pattern. Using such an 

overarching framework for the types of data sets within this domain, we can envisage 

the types of research questions that are likely to be asked and can select or develop 

appropriate statistical techniques to answer them. This chapter therefore begins 

with the development of a general data framework in Section 2.1. The uses of such 

an abstraction would be limited without real data to examine. Two significant 

orthopaedic data sets have been made available for study, and these data sets will 

be used throughout this thesis as extended case studies. Consequently, in Sect ion 

2.2 an overview of these data is presented and their origins, notable features and 

relationship to the general data model are discussed. 

2.1 Data Generalisation 

To generalise the data, we seek to develop an abstract framework encompassing 

the key features of the data's structure. In this setting, the word `structure' is not 

used to describe relationships within the data, as in the term 'correlation ýt ruc- 

6 
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ture'. Instead, it is used to describe fundamental relationships that exist a priori 

between the quantities being recorded in the data. For example, if a variable x is 

recorded chronologically before y then this ordering of the variables is a form of this 

structuring of the data. In this sense, we are specifying the meta-structure of the 

data. 

Ordinarily, one would develop specific solutions and models for specific data sets. 

However, it may then be difficult or infeasible to extend these solutions to different 

data, which thereby limits the scope of their application. By working within a 

general framework, we allow for the development of techniques and methods that 

are applicable to any data which conform to our structural pattern. This is especially 

useful since it allows for the potential generalisation of the methodology to areas 

beyond the current specific domain of research. 

Many abstractions of medical data have been developed in recent years, primarily 

motivated by the need to develop a computerised patient records system. These sys- 

tems include the HL7 Reference Information Model [5], the Good European Health 

Record [63] and the European Health Record Architecture[17]. However, these gen- 

eralisations are typically too technical in nature and too detailed in structure to be 

useful in these circumstances. Therefore a more abstract structure must be created. 

2.1.1 Towards a General Structure 

By using prior knowledge about the general forms of data within the orthopaedic do- 

main we can begin to develop a skeletal framework for an arbitrary data set. Firstly, 

the data are typically chronological in nature, with data being recorded at several 

different time points. This imposes a clear temporal structure on the variables within 

the data. This has the consequent implications that data observed at any one time 

point can depend only on observations that are either contemporaneous or prior in 

time. 

The time points or events at which the data are recorded are: 

" An Initial Consultation, 

" resulting in a Clinical Assessment, 
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Initial Clinical Treatment Follow-up 
isultatio ä sssrnent 

Figure 2.1: Process diagram of the basic 4-event structure. 

" leading to Treatment, 

" which is followed by one or more Follow-up Consultations. 

This simple general structure is displayed in a standard UML process diagram [111] 

in Figure 2.1. By considering each event in the process and the data obtained at 

each point, we can refine this basic structure into a more usable framework. 

At the first event, the Initial Consultation, we observe and record several sets 

of data. The first of which are the patient demographics. These consist of vari- 

ables directly associated with the patient such as their age and sex as well as other 

potentially interesting or significant factors such as whether the patient is being 

treated in the public or private sectors and the length of time they have been on a 

waiting list. These factors are all pre-determined and non-random. These variables 

therefore represent potentially important covariates in any model of the data, so it 

is logical to place these variables first in the temporal ordering. 

The goal of the Initial Consultation is to attempt to learn as much as possible 

about the unknown condition of the patient in order to determine the severity of 

their condition. This is achieved by measuring another key set of variables such as 

measures of the patient's pain and mobility. These variables can then be re-observed 

at the Follow-up Consultations and will allow the tracking and monitoring of the 

patient's condition. It is common in orthopaedics for such variables to form the 

components of a standard scoring system, which are summed to provide a single 

numerical score for each patient. 

The next stage is the Clinical Assessment. This could take the form of a diagnosis 

of the patient's condition. However, with rheumatoid and osteoarthritis in the hips 

and knees data the differences between the two conditions are considered to be 

such that the diagnosis can be made with certainty and is therefore treated as 
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a demographic characteristic of the patient. Another form of clinical assessment 

would be the decision on the type of treatment the patient was to receive (if any). 

However, if the patient is not treated it is likely that no data will have been recorded. 

The subsequent stage in the process is the Treatment itself and at this stage 

there are two sets of data recorded. The first is composed of factors such as, most 

importantly, the type of treatment as well as any other characteristics, such as 

the type of anaesthetic the patient received or the grade of the operating surgeon. 

The second set of data recorded is the immediate outcomes, such as whether the 

operation was successful and details of any complications that may have arisen. 

The final stage is the Follow-up Consultation at which point the key status 

variables are re-observed and recorded. Again there could be more potentially in- 

formative one-off variables recorded. Since this could also feasibly be the final stage 

in the process, it is likely that a measure of success is recorded, such as the patient's 

or clinician's satisfaction. The Follow-up Consultation could then be subsequently 

repeated, allowing for a further replication of these variables. 

One general feature of the data is likely to be the mixture of data types. Many 

variables such as patient pathology and operation type are categorical, and the data 

could also include binary variables such as whether the patient was readmitted to 

hospital. However, variables such as age, weight and other clinical measurements 

can be regarded as continuous, and more subjective measurements such as pain 

levels are typically measured on an ordinal Likert-scale. 

The complete version of the process and data collected is given in Figure 2.2. 

The reduced model for the data only is presented in Figure 2.3. 

2.1.2 Discussion 

It is clear that the most informative data to the clinician would be the set of key 

variables measuring the patient's status. In fact, these replicated observations of 

the same variables fall into the framework for repeated measures [24,31,861 or 

longitudinal data [32,1231. However these frameworks would struggle with the 

mixture of data types and the inclusion of large amounts of extraneous information 

that is not repeatedly observed. 
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Understanding the relationships between this group of key observations would 

be highly beneficial, as well as providing insights into how these relationships evolve 

over time. The effects of different treatment and other factor variables could be 

assessed by their effects on this core group of repeated observations. Prediction of 

the future status of the patient given certain treatment options would also be of 

interest to the clinician. Another interesting avenue of investigation would be to 

determine which other variables affect the final measures of success. 

Having generated this general structure of the data, we can now observe that the 

framework is not specific to data on total joint replacement, nor is it even specific 

to orthopaedics. This generalisation would cover any similar longitudinal study data 

within medicine or even in other fields. 

2.2 Introduction to the Data 

2.2.1 The Knees Data 

The first data set to be examined (hereafter referred to as the `knees data') consists 

of data on 599 patients who underwent a total knee replacement procedure between 

1987 and 1997 [88,72]. The data contains a total of observations on up to 124 

variables for each patient. These data were collected through a series of up to four 

consultations between the patient and clinician and occurred pre-operatively and 

then at one, five and ten years post-operatively. 

A total of 23 measurements were recorded at each consultation to monitor patient 

progress. These measurements form the components of the Nottingham knee scoring 

system [118] and thus compose a small repeated measures data set, corresponding to 

the Measurements in the general data structure of Figure 2.3. The 23 measurements 

are composed of a mixture of both ordinal and continuous data. The ordinal data 

represent measurements of subjective quantities such as pain levels and walking 

ability and are all measured on a 5-point Likert-scale where 1 represents the worst 

and 5 the best possible state. The continuous variables however, correspond to 

measurements of anatomical angles. It could be argued that angles should be treated 

as circular rather than continuous measurements, however since they represent the 
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range of motion of a limb the values of these measurements will only cover a fraction 

of the circle. 

In addition to these repeated measurements the data also contain several vari- 

ables recording patient details such as age, sex, and weight - these are again a 

mixture of continuous and categorical data. These variables correspond to the Pa- 

tient Demographics in the data abstraction. The data also contains information on 

the patient's diagnosis, which was one of four possible conditions, and operation 

type, which was also a four-state discrete variable corresponding to the use of ce- 

ment during the procedure. These variables are known as Diagnosis and Treatment 

in the general framework. In this case the type of treatment the patient received 

was randomised, where the patients either had an operation where either cement 

was or was not used during the procedure. Additionally, there are several binary 

variables corresponding to whether the patient experienced specific complications, 

these variables would be considered Treatment Outcomes under the data generali- 

sation. A summary of the majority of the variables in the knees data set and their 

relationship to the general model is given in Table 2.1. 

As the data is collected through a series of consultations over a 10-year period, 

there is variability in the sample size at each time point. Due to the long time-scale 

of the data collection, there is consequent attrition in the sample size at later time 

points. This is likely due to patients leaving the study, leaving the area or patient 

death. This results in a drop in the sample size from 599 cases pre-operatively to 

559,239 and 86 at one, five and ten years post-operatively. This dramatic drop 

in sample size would mean that statistical methods requiring complete cases for 

analysis would be inappropriate as we would only have 86 such cases to work with, 

and the remainder would either have to be imputed or discarded. 

A closer examination of the data revealed that two of the repeated measurements 

- Range of Motion and Other Knee Range of Motion - were linear combinations of 

other variables in the data. These variables were removed from the data since they 

did not contribute any novel information to the data. Additionally, there was a 

pair of repeated measurements where only one of the pair was ever observed. These 

variables were Corozal Tibio-Femoral Varus and Coronal Tibio-Femoral Valgus, 

ý, ýý., 
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Variable Name Scale Levels Component in Data 

Generalisation 

Age Categorical 2 Patient Demographic 

Sex Categorical 2 Patient Demographic 

Weight Continuous Patient Demographic 

Diagnosis Categorical 4 Diagnosis 

Operation Categorical 4 Treatment 

Pain Frequency Ordinal 5 Repeated Measurement 

Pain Severity Ordinal 5 Repeated Measurement 

Night Pain Ordinal 5 Repeated Measurement 

Walking Ability Ordinal 5 Repeated Measurement 

Walking Aids Ordinal 5 Repeated Measurement 

Sitting Down Ordinal 5 Repeated Measurement 

Rising Up Ordinal 5 Repeated Measurement 

Standing Ordinal 5 Repeated Measurement 

Going Up Stairs Ordinal 5 Repeated Measurement 

Going Down Stairs Ordinal 5 Repeated Measurement 

Coronal Tibio-Femoral Angle Continuous Repeated Measurement 

Fixed Contracture Continuous Repeated Measurement 

Flexion Continuous Repeated Measurement 

Extension Lag Continuous Repeated Measurement 

Hip Abduction Continuous Repeated Measurement 

Other Knee Fixed Contracture Continuous Repeated Measurement 

Other Knee Flexion Continuous Repeated Measurement 

Other Hip Abduction Continuous Repeated Measurement 

Infection Categorical 2 Treatment Outcome 

DVT Categorical 2 Treatment Outcome 

Satisfaction Ordinal 5 Outcome 

Table 2.1: Summary of several variables of the knees data set. 
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Diagnosis 

Operation OA RA Osteonecrosis Other 

Cemented 319 31 1 3 

Uncemented 212 18 1 0 

Cemented Femur, Uncemented Tibia 2 1 0 0 

Uncemented Femur, Cemented Tibia 8 3 0 0 

Table 2.2: Contingency table of Diagnosis and Operation for the knees data. 

14 

which measured an anatomical angle of the limb either towards the body (varus) 

or away from the body (valgus). In this case, the pair was combined into a single 

variable Coronal Tibio-Femoral Angle with a varus value being recorded as positive 

and a valgus value recorded as negative. 

The knees data contained many missing observations; the overall proportion of 

missing observations was 1%, which was relatively small. These missing values were 

simply imputed with the mean over all the non-missing observations [84]. This is 

common practice with orthopaedic data and is straightforward to apply, without 

introducing models for the data at this premature stage. However, imputation by 

the mean does have the negative effect of attenuation in the variance of the imputed 

variables. 

The categorical variables Diagnosis and Operation record potentially valuable 

and informative information about the patient's pathology and the type of treatment 

they received. However, as is shown in Table 2.2 we can see that the contingency 

table is somewhat sparse outside of the first two diagnoses and operations. Since 

these variables are considered to be critical factors to any analysis of these data, 

attention will be restricted to the two larger categories of each variable. The number 

of cases with the other pathologies and treatment types are so small it would be 

difficult to analyse them in the same way as the other data - it is likely that they 

should be examined individually on a case-by-case basis. 
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2.2.2 The Hips Data 

The second data set consists of data gathered by the Royal College of Surgeons 

during their National Total Hip-Replacement Outcome Survey (NTHROS) [94] (re- 

ferred to as the `hips data'). This data set is far larger than the knees data and 

contains information on 12 666 patients who received a total hip replacement in 

the United Kingdom between 1996 and 1997. The data set is also larger in terms 

of breadth as well as number of cases, with the number of variables recorded per 

patient being a maximum of 202. Unlike the knees data which were gathered at 

face-to-face consultations, these data were collected via six separate questionnaires. 

The first questionnaire is completed by the surgeon and contains 50 variables. 

These variables comprise basic Patient Demographics, such as patient sex and date 

of birth (which was used with the date of surgery to generate a continuous vari- 

able for the patient's age at that time), as well as whether the patient was private 

or NHS. Details regarding the patient's Diagnosis are recorded in a 6-state cat- 

egorical variable which specified the pathology as being one of a combination of 

osteoarthritis, rheumatoid arthritis or `other'. This variable was split into three 

binary variables each indicating the presence or absence of each individual condi- 

tion. The Treatment variables were identified to be two binary variables relating 

to the use of cement in the operation (for similarity with the knees data) and two 

categorical variables representing the designs of the components of the prostheses. 

The surgeon's questionnaire also contained a large number of binary or categorical 

variables which could be identified as Treatment Factors - these include variables 

such as whether the patient received a general anaesthetic or an epidural and the 

grade of the operating surgeon. The surgeon's questionnaire also contains two vari- 

ables relating to operative difficulties or complications which could be identified as 

Treatment Outcomes. 

The patients themselves completed three of the questionnaires in the hips data 

set. These questionnaires were collected pre-operatively and at three and twelve 

months post-operatively. These questionnaires contain variables that fall into the 

Repeated Measurements and Other Factors categories. Twelve ordinal variables 

are recorded to assess the patient's status - these variables form the components 
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of the Oxford Hip score [27]. All of the variables are measured on a 1-5 scale, 

however unlike the knees data lower values represent a better patient condition than 

higher values. To form the Oxford Hip Score, the values are simply summed. The 

remaining variables cover various areas such as the patient's medical history in the 

pre-operative questionnaire, to information on their convalescence in the 3-month 

survey. 

A further questionnaire contained some 55 variables recording specific details of 

any operative complications encountered. The final questionnaire was far smaller 

than all the others, containing only 7 variables. This questionnaire was directed at 

the patient's GP and records details such as whether the patient was treated for 

deep-vein thrombosis, and whether they were admitted to hospital. A summary of 

some of the variables in the hips data set is given in Table 2.3. 

As with the knees data, there are varying sample sizes in the hips data due to 

the level of response to the individual questionnaires. There were a total of 10 411 

completed surgeon's questionnaires and 7150,6163 and 5917 completed pre-op, 3- 

month and 12-month patient questionnaires respectively. However, if we consider 

only those cases where the surgeon questionnaire and all patient questionnaires are 

complete, then the sample size drops further to only 2474. For the complications 

and GP questionnaires the sample sizes were substantially less at 975 and 698 re- 

spectively. 

Furthermore, there is an additional complication with the hips data in that there 

is a problem with invalid data. The invalid data arose due to the nature and design 

of the questionnaires. Since all the data is categorical in nature, the questionnaire 

made it possible for a respondent to choose more than one value in a group of 

mutually exclusive categories, such as ticking both the `Yes' and the `No' boxes. 

In these cases, the data for those variables was discarded and treated as if it were 

missing. 

Missing data in the hips data is more of a prominent problem than with the 

knees data set. In fact, for the pre-operative questionnaire 43% of the 12666 ques- 

tionnaires recorded were totally blank and so were immediately discarded. The 

remaining questionnaires, however, were well answered with 92% of this remainder 
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recording values for all of the Repeated Measures variables. This leaves us only a 

small proportion of cases requiring imputation of the missing values. A similar pat- 

tern is observed in the other questionnaires with the many cases being blank, but 

with only a small amount of missing data among the remainder. 

While the knees data set was a mixture of continuous, categorical and ordinal 

data, the hips data set contains only discrete data. The only (nearly) continuous 

variable was that of the patient's age which was calculated from their date of birth 

and was exact to the day. The hips data is otherwise exclusively composed of ordinal 

and categorical data. 
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Variable Name Scale Levels Component in Data 

Generalisation 

Gender Categorical 2 Patient Demographic 

Age Continuous Patient Demographic 

Private or NHS? Categorical 2 Patient Demographic 

Pathology includes OA Categorical 2 Diagnosis 

Pathology includes RA Categorical 2 Diagnosis 

Pathology includes other Categorical 2 Diagnosis 

Femoral prosthesis type Categorical 2 Treatment 

F. P. cemented? Categorical 2 Treatment 

Surgeon Grade Categorical 7 Treatment Factor 

Usual pain Ordinal 5 Repeated Measurement 

Trouble washing Ordinal 5 Repeated Measurement 

Using transport Ordinal 5 Repeated Measurement 

Putting on socks Ordinal 5 Repeated Measurement 

Shopping Ordinal 5 Repeated Measurement 

Walking without pain Ordinal 5 Repeated Measurement 

Climb stairs Ordinal 5 Repeated Measurement 

Stand up from a chair Ordinal 5 Repeated Measurement 

Limping when walking Ordinal 5 Repeated Measurement 

Sudden severe pain Ordinal 5 Repeated Measurement 

Pain interfered with usual work Ordinal 5 Repeated Measurement 

Pain in bed at night Ordinal 5 Repeated Measurement 

Time on waiting list Ordinal 4 Pre-op Factor 

History of stroke Ordinal 2 Pre-op Factor 

Patient readmitted? Categorical 2 Post-op Factor 

Patient satisfaction Categorical 3T Outcome 

Table 2.3: Summary of several variables of the hips data set. 



Chapter 3 

Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is a well-established statistical approach which 

stems from the work of Tukey [121] and is well documented in the literature. The 

goal of EDA is to discover patterns in, and develop an understanding of, the data 

whilst generating hypotheses for subsequent investigation. The focus is typically on 

the use of visualisations [19,119] and robust methods rather than complex model 

building. Tukey described EDA as a `foundation stone' [121] in the analytic process. 

Therefore, this chapter contains an exploratory analysis of the two key data sets as 

an introduction both to the data themselves and to the nature of the problems 

encountered when analysing them. The chapter begins with a discussion of some of 

the assumptions made in the analysis. Section 3.2 then proceeds to investigate and 

explore the knees data set, and this is followed in Section 3.3 by a similar analysis 

of the hips data set. 

3.1 Initial Comments and Assumptions 

One key feature of the general orthopaedic data as defined in Section 2.1 is that it 

is composed of a mixture of data types. Many variables such as patient pathology 

and operation type are categorical, and there are also many binary variables such 

as whether the patient was readmitted to hospital. However variables such as age, 

weight and other clinical measurements can be regarded as continuous and the vari- 

ables which form the components of the hip and knee scores are measured on an 

19 
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ordinal scale. These different scales for the data necessitate the use of procedures 

that are not restricted to variables of one particular type. 

To simplify this situation, the ordinal variables are assumed to be continuous 

since ordinal data could be viewed as being the discretisation of a latent continuous 

quantity [103,56]. The reasons for this are twofold - the first being that standard 

statistical techniques could be applied to the data for the exploration to gain a basic 

insight into the data. The second reason was that the key sets of repeatedly observed 

variables measuring patient status contain in excess of 10 ordinal variables with 

approximately 5 levels each. To retain the ordinality of the data would introduce 

significant and prohibitive dimensionality problems into the analysis which would 

heavily complicate the problem and would be detrimental to interpretation. The 

most obvious evidence of this is that the contingency table for such variables would 

contain more than 9 million cells posing problems both in terms of computer storage 

and processing. 

The data sets are both fairly large with many variables. Thus, the focus of the 

exploratory analysis will be restricted. The main component of the data sets are the 

sets of repeated measurements which record the patient status, therefore most at- 

tention will be paid to these variables. In particular the properties of these variables 

(both pre- and post-operatively) along with any relationships to the diagnostic and 

treatment variables will be investigated. Any potentially informative covariates will 

also be included. 

For both data sets, an identical set of exploratory techniques is applied. Since 

a primary goal of this thesis is to develop methods that would provide statistical 

support to clinicians it is envisaged that a substantial portion of the exploratory 

analyses could be performed semi-automatically. However, in cases where the data 

or results are unusual this should be brought to the clinician's attention as it may 

suggest that the methods being applied were inappropriate. In such circumstances 

alternative analyses would need to be performed. 
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Figure 3.1: Histograms and boxplots of the Extension Lag variable in the knees 

data. 

3.2 The Knees Data 

3.2.1 Boxplots and Histograms 

Boxplots [89] of the continuous pre-operative measurements show the majority of 

the variables to be reasonably symmetric with a few possible outliers. The boxplot 

further shows that the variable Coronal Tibio-femoral Angle displays some evidence 

of skewness, and furthermore the variable Extension Lag has a zero IQR and is 

heavily skewed. Histograms also corroborate the boxplots in identifying the variable 

Extension Lag as being exceptionally skewed giving rise to a number of potential 

outliers. This is illustrated in Figure 3.1. From this we can see that the majority 

of the pre-operative observations for Extension Lag are confined in the range 0-5, 

with a lesser proportion in the range 5-15 and then a single observation at 75. This 

final value could be due to recording error or a genuine outlier. A similar behaviour 

was observed post-operatively, with notable outliers at 40 and 44. 

Boxplots of the continuous post-operative data show a change in location for 

Coronal Tibio-femoral Angle and the Fixed Contractures with the change being in 

the direction of a reduction. Otherwise, there is little difference between the pre- and 

post-operative values. The variable Extension Lag remains heavily skewed (Figure 

3.1). 
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Plots of the ordinal pre-operative scores show evidence of asymmetry for several 

variables in the data such as Going Up Stairs. The results for three such pre- 

operative ordinal variables are shown by the histograms and plots of xf 2s in Figure 

3.2, where x is the mean value and s is the sample standard deviation. The pre- 

operative values are shown on the left of that figure. Furthermore, several variables 

such as the pre-operative scores for Sitting Down and Rising Up in the knees data 

appear bimodal. The plots of the post-operative ordinal variables show a notable 

change in location in the direction corresponding to an improvement of the patient's 

condition, which suggests the intervening treatment is having a beneficial effect (as 

shown for the 3 variables to the right of Figure 3.2). Examination of histograms of 

the data shows that this change in location results in a strong skewness of the data 

in the direction of improvement. 

3.2.2 Scatterplots 

Scatterplots of the continuous variables of the knees data showed little evidence 

of associations among the variables, with the exception of the variables recording 

Hip Abduction and Other Hip Abduction. In order to better visualise the ordinal 

variables on a scatterplot a small amount of random noise or jittering was added 

to the original data [18]. This revealed that the ordinal knees variables typically 

exhibited a weak positive association. Some variable pairs such as Going Up Stairs 

and Going Down Stairs, and Sitting Down and Rising Up are particularly strongly 

associated presumably because the measurements are recording similar quantities. 

Colouring the points by pathology and treatment indicated that there was no 

clear differentiation between the different factor levels. This apparent lack of dis- 

tinction between the pathologies and treatments suggests firstly that the patient's 

pathology is not uniquely determined by the data recorded. Secondly, this would 

suggest the patient status, as recorded by these data, is not associated with the 

choice of treatment and also the different treatment types appear to have indistin- 

guishable outcomes. The only exception here was that there was a possible associa- 

tion between Weight and the patient's pathology (see Figure 3.3). The scatterplot 

would appear to suggest that patients with rheumatoid arthritis (RA) weigh less 
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Figure 3.2: Mean and error bar plots and histograms for three ordinal variables in 

the knees data measured pre- and post-operatively. 
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Figure 3.3: Scatterplot of pre-operative weight vs. fixed contracture with pathology 

as colour. 

than those with osteoarthritis (OA), which is in accordance with clinical expecta- 
tions. 

3.2.3 Clusters 

The examination of the data for clusters is a useful technique to explore whether 

there are any underlying groupings in the data. Both data sets were investigated 

for clusters within the pre- and post-operative data with missing values imputed 

by the mean. The method used was the Partitioning Around Medoids (PAvI) [70] 

method which is more robust than the standard k-Means approach [60]. There was 

significant overlap in the clusters obtained for the knees data for values of k from 

2 to 10 suggesting there was no evidence of cluster-type behaviour. The results for 

the clustering with k=2 for the knees data is shown by a Clusplot [99] in Figure 

3.4. We can see from this figure that there is a continuum of values, and there is no 

separation into clusters. 
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Figure 3.4: Clusplot showing the results of partitioning the knees data into 2 clusters. 

3.2.4 Normality 

Inspection of Normal quartile plots of the data confirm the lack of Normality high- 

lighted by the boxplots and histograms. Whilst most of the continuous variables 

such as Age and Weight appear approximately Normal, Extension Lag in the knees 

data is non-Normal (Figure 3.5(a)). The non-Normality of the ordinal variables is 

also visible with the granularity effect producing the pronounced step pattern in 

Figure 3.5(b). The extreme shapes of these quantile plots are to be expected due 

to the non-Normal nature of the variables. Applying such quantile plots in these 

circumstances is not a helpful approach to follow, however the results are shown 

here to illustrate the potential pitfalls of attempting to apply a common analysis to 

a data set, which contains variables which behave differently. 

Transformations of the data provide little improvement. As would he expected, 

transformation of Extension Lag using the maximum likelihood estimate of the 

power of the Box-Cox transformation [11] did little to improve Normality. Fur- 

thermore, a likelihood ratio test rejects the hypothesis that the optimal power of 

the Box-Cox transformation for all variables in the data is equal to 1, which is 

strong evidence that the data do not follow a multivariate Normal distribution. The 

suggested power transformations are given in Table 3.1. 
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Variable Est. Power Std. Err Variable Est. Power Std. Err 

Age 2.348 0.295 Go Up Stairs 0.248 0.064 

Weight 0.418 0.197 Go Down Stairs 0.084 0.065 

Pain Freq 0.706 0.099 CTF Angle 1.961 0.118 

Pain Severity 0.840 0.101 Fixed Cont 0.154 0.063 

Night Pain 0.921 0.092 Flexion 2.229 0.199 

Stability 0.604 0.084 Extension Lag -5.637 0.241 

Walk Ability 1.146 0.114 Hip Abduction 1.260 0.077 

Walking Aids 2.263 0.197 Oth Knee FCont 0.181 0.064 

Sitting Down 0.875 0.119 Oth Knee Flex 2.413 0.213 

Rising Up 0.578 0.103 Oth Hip Abd 1.167 0.081 

Standing 0.297 0.078 

0 
't ammo 0 

U, 
Cl) 

o 
of 

ui 
cm m 

Ö. 
FO- 

N 

a, 

0 0". 

Table 3.1: Table of the maximum likelihood estimates of the power of the Box-Cox 

transformation for variables of the knees data. 
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3.2.5 Means and Standard Deviations 

Calculation of the means of the ordinal pre-operative knees variables indicates that 

the scores are typically falling between 2 and 3 points indicating a relatively poor 

initial patient condition since 1 point is the worst possible state and 5 the best. 

Only a few variables such as Walking Ability and Sitting Down have a mean score 

over 3 points. The corresponding standard deviations appear to fall into two groups 

- Pain Frequency, Pain Severity and Walking Ability all have standard deviations 

between 0.6 and 0.7, whereas the values for the other variables fall between 1.2 and 

1.5. This could suggest that pre-operatively the patients' pain levels and walking 

ability are more consistently poor whereas there is greater variation amongst patients 

when measured on other scores. Additionally, this could be interpreted as indicating 

that some of the scores are meaningful in measuring an underlying latent variable, 

whereas the others are noisier, being more vague concepts. 

Investigation of the respective post-operative quantities showed that the mean 

values were now between 4 and 5 suggesting an increase of 1-2 points when compared 

with the pre-operative values. Standard deviations also appear to have fallen for 

the majority of variables and now generally fall between 0.7 and 0.9. This would 

suggest that an effect of the intervening treatment is to improve the condition and 

the consistency of the patients. 

3.2.6 Correlations 

Examination of the pairwise correlation coefficients between the pre-operative vari- 

ables for the knees data (Table 3.3) indicates that the variables are typically weakly 

correlated. The variables Sitting Down and Rising Up are strongly correlated with 

a value of r=0.944, which is intuitively reasonable since both require the patient to 

perform a similar task. A strong correlation is also present between Going Up Stairs 

and Going Down Stairs (r = 0.919). Having such strong relationships within the 

data may suggest that there could be redundancies within these groups since their 

information is essentially conveyed by the other variables. There also appear to be 

moderate correlations between variables that are measured on one knee or hip and 
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Pain 

Sev 

Night 

Pain 

Sit 

Down 

Rise 

Up 

Going 

Up 

Going 

Down 

Hip Ab Other 

Hip Ab 

Pain Freq 0.390 0.251 0.100 0.130 0.084 0.096 0.083 0.077 

Pain Sev 0.192 0.057 0.084 0.112 0.131 0.076 0.062 

Night Pain 0.102 0.112 -0.003 0.015 0.002 -0.031 
Sit Down 0.944 0.308 0.276 0.217 0.178 

Rise Up 0.312 0.281 0.216 0.163 

Going U 0.919 0.273 0.215 

Going D 0.281 0.239 

Hip Ab 0.722 

Table 3.2: Upper triangle of the correlation matrix for eight of the pre-operative 

knee variables. 

repeated on the other, such as between the variables Hip Abduction and Other Hip 

Abduction. Inspecting the post-operative correlations (see Table 3.3) shows that, in 

general, the variables are more correlated after treatment than before and the same 

strong relationships that existed pre-operatively persist after treatment. Addition- 

ally, the three pain scores Pain Frequency, Pain Severity and Night Pain are now 

fairly strongly correlated with r between 0.6 and 0.8. 

Calculation of the correlations between the pre-operative and the post-operative 

variables for the knees data shows several strong relationships, especially between 

Weight and the measurements on the unaffected knee or hip. The strength of these 

relationships is likely due to the fact that the treatment has little direct impact 

on the values so they are largely determined by the prior values. Only the pain 

scores, Stability, Sitting Down and Rising Up have negligible correlations with their 

post-operative counterparts. This is presumably because these scores are the most 

affected by the treatment that the patient's status on these variables will bear little 

resemblance to the prior condition. 

3.2.7 Discrete Associations 

The relationships between discrete variables can also be examined by summarising 

counts into a contingency table and performing Pearson's X2 test for independence 
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Pain 

Sev 

Night 

Pain 

Sit 

Down 

Rise 

Up 

Going 

Up 

Going 

Down 

Hip Ab Other 

Hip Ab 

Pain Freq 0.825 0.626 0.245 0.260 0.222 0.230 -0.007 -0.024 
Pain Sev 0.601 0.241 0.260 0.231 0.251 0.032 -0.031 
Night Pain 0.304 0.290 0.156 0.186 -0.023 -0.035 
Sit Down 0.954 0.449 0.433 0.259 0.213 

Rise Up 0.453 0.445 0.260 0.206 

Going U 0.928 0.382 0.286 

Going D 0.356 0.296 

Hip Ab 0.718 

Table 3.3: Upper triangle of the correlation matrix for eight of the post-operative 

knee variables. 

Diagnosis 

OA IRA 

Cemented 319 31 
Operation 

Uncemented 211 18 

Table 3.4: Contingency table for Diagnosis and Operation. 

(Fisher's exact test is inappropriate here due to the large sample sizes). Considering 

the variables Diagnosis and Operation in the knees data we obtain the 2x2 con- 

tingency table in Table 3.4. Since the data were obtained as part of a randomised 

trial with operation being assigned at random, performing a test for independence 

here would only serve to `verify' the independence that we would expect in a ran- 

domised trial. Nonetheless, using Yates' correction we obtain a value of X2 = 0.0722 

on 1 degree of freedom leading to a p-value of 0.7881. Therefore the independence 

hypothesis cannot be rejected and we conclude that the way the patient is treated 

is independent of their pathology as would be expected in such a randomised study. 

3.2.8 Comparing Subgroups 

The effects of different levels of the categorical variables can also be assessed by com- 

paring the means for the continuous variables with those levels. The pre-operative 
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means of the measurements for patients who were diagnosed with osteoarthritis 
(OA) those who diagnosed with rheumatoid arthritis (RA) are given in the first two 

columns of Table 3.5. The mean values were then compared using an independent 

sample t-test, the results of which are displayed in the remaining columns of Table 

3.5 where significant p-values at the 95% level are coloured red. This shows that 

the mean for patients with osteoarthritis is significantly different than the mean 
for patients with rheumatoid arthritis for many measurements. This difference is 

primarily on the general walking ability scores, but also includes Weight which was 

previously identified as a potentially discriminating variable in Section 3.2.2 and 

Figure 3.3. However, when repeating the tests with the post-operative data, we find 

that there are only three significant differences between diagnoses - those being in 

Weight, Walking Ability and Flexion. This may suggest that there is little distinc- 

tion post-operatively between these two groups. However, it would be prudent to 

observe at this point that some results may be spurious. When performing so many 

hypothesis tests, we would expect some spurious findings. 

Repeating the tests for the post-operative means of the measurements for pa- 

tients who received the `Cemented' treatment and those who received the `Unce- 

mented' treatment revealed no evidence of significant differences in the effects of the 

two treatments one year after the treatment. There were also no significant differ- 

ences between the pre-operative means, however in this case the lack of distinction 

is likely due to the randomisation over treatment. 

The post-operative means can also be compared to the pre-operative means by 

a paired-sample t-test as in Table 3.6. For the knees data this shows a highly signif- 

icant change in the direction of improvement for all measurements except Flexion, 

Extension Lag and Other Knee Flexion. However, the validity of the result for 

Extension Lag is likely questionable due to its profound skewness. 

The papers by Gregoire and Driver [56] and Rasmussen [103] suggest that the 

application of t-tests to ordinal data is a sensible approach in spite of the data 

not being continuous. As discussed in Section 3.1, to retain the categorical nature 

of these variables would render analyses of such as those performed above either 

infeasible or impossible due to dimension constraints. Therefore, these methods are 



3.2. The Knees Data 31 

Diagnosis 

OA RA its p 
Weight 75.848 65.531 5.738 < 10-1 

Pain Frequency 2.064 1.898 1.690 0. (L158 

Pain Severity 2.136 2.041 1.026 0.1527 

Night Pain 3.053 2.918 0.732 0.2324 

Stability 2.801 2.993 1.109 0.1339 

Walking Abililty 3.211 2.616 -1.519 <l () 

Walking Aids 4.245 3.878 3.591 0.0002 

Sitting Down 3.601 3.072 2.621 0.00,15 

Rising Up 3.522 3.071 2.239 0.0128 

Standing 2.865 2.629 1.096 0.1368 

Going Up Stairs 2.680 1.931 3.371 0.0004 

Going Down Stairs 2.555 1.867 3.153 0.0008 

Ctf Varus 7.227 -1.704 5.433 < 10-"1 

Fixed Contracture 8.833 13.673 4.079 < 10 1 

Flexion 106.826 105.490 0.489 0.3126 

Extension Lag 0.502 2.005 2.817 0.0025 

Hip Abduction 29.591 26.415 2.497 0.00(51 

Other Knee Fixed Cont. 4.254 4.168 0.108 0.4570 

Other Knee Flexion 116.193 115.309 0.338 0.3677 

Other Hip Abduction 31.544 30.353 0.971 0.1660 

Table 3.5: Comparison of the pre-operative means for the different levels of Diag- 

noses. 
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D sn Iti P 

Weight 1.321 0.184 7.171 < 10-1 

Pain Frequency 2.399 0.043 56.421 < 10-4 

Pain Severity 2.415 0.041 59.104 < 10-4 

Night Pain 1.703 0.054 31.279 < 10-4 

Stability 1.869 0.056 33.281 < 10-4 

Walking Abililty 0.745 0.037 20.124 < 10--, 

Walking Aids 0.146 0.031 4.704 < to-" 

Sitting Down 1.206 0.061 19.733 < ll) 

Rising Up 1.251 0.061 20.400 < lU 

Standing 1.455 0.062 23.534 < 10-' 

Going Up Stairs 1.338 0.063 21.347 < 10-4 

Going Down Stairs 1.412 0.065 21.684 < 10--, 

Ctf Varns -5.935 0.451 13.157 < 10--, 

Fixed Contracture -6.399 0.317 20.211 < 10-1 

Flexion -0.627 0.744 0.842 0.2000 

Extension Lag -0.185 0.205 0.901 0.1840 

Hip Abduction 3.526 0.327 10.783 < 10-1 

Other Knee Fixed Cont. -1.394 0.190 7.322 < 10-1 

Other Knee Flexion -0.198 0.462 0.428 0.3343 

Other Hip Abduction 1.315 0.317 4.156 < 10-4 

Table 3.6: Comparison of the pre-operative means to post-operative means for the 

knees data. 
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applied in a pragmatic fashion to the data assuming that it is continuous. 

It is clear from the analyses performed and results presented in this section that 

there is a wealth of information in this data set. Consequently, there is a huge 

mass of results that one might calculate and those given in this section form only a 

small portion of that total. It is clear that what is required here is a set of efficient 

methods to summarise and present the key features of the data; such methods will 

be introduced in the next chapter on visualisations. 

3.3 The Hips Data 

3.3.1 Boxplots and Histograms 

As the hips data is composed almost exclusively of discrete data, the use of boxplots 

are inappropriate. However, histograms and mean and error bar plots of the 12 

repeated ordinal pre-operative measurements display a similar degree of asymmetry 

and lack of Normality as the knees data (see Figure 3.6). There also appears to be 

some evidence of bimodality for some variables. As with the knees data, the post- 

operative values display a change of location in the direction of an improvement in 

patient condition. Again, this results in a strong asymmetry and a skewness of the 

data in this direction. 

3.3.2 Scatterplots 

Scatterplots of the jittered pre-operative variables display some weak positive as- 

sociations between the variables, though there were no tightly associated pairs or 

groups as with the knees data. Scatterplots of the post-operative variables against 

their pre-operative counterparts displayed no evidence of association for the ordinal 

variables. 

3.3.3 Clusters 

Clustering on the hips data by PAM also yielded little evidence for cluster-type 

behaviour. The results for k= 2 is shown in Figure 3.7 and, whilst the cluster 
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Figure 3.6: Mean and error bar plots and histograms for three ordinal variables in 

the hips data measured pre- and post-operatively. 
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Figure 3.7: Clusplot showing the results of partitioning the hips data into 2 clusters. 

separation is greater than that for the knees data, it shows that the data are again 

a continuum of values. The clustering is merely discriminating patients into `good' 

and 'bad' groups based on their status - there do not appear to be any intrinsic 

cluster structures. 

3.3.4 Normality 

The Normality of the hips variables was assessed via Normal quantile plots. As with 

the knees data, these plots displayed the lack of Normality of the variables. Again, 

there was a pronounced step pattern to the plots due to the boundaries of the levels 

of the ordinal variables. As with the knees data, in these cases the quantile plots of 

the ordinal variables are not a useful tool since we know a priori that the variables 

are non-Normal. Application of Box-Cox transformations to the data made little 

improvement to the Normality of the variables. 

3.3.5 Means and Standard Deviations 

Examining the means for the hips data reveals that the mean scores are typically 

quite high with values from 3--5 indicating a poor patient condition. The correspond- 

ing standard deviations are between 0.7 and 1.2 which is relatively small and indeed 
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Using Do Walk Climb Limping Usual 

Transp. Shopping w/out Stairs Work 

Pain 

Usual Pain 0.438 0.435 0.177 0.434 0.289 0.490 

Using Transp. 0.527 0.222 0.552 0.290 0.498 

Do Shopping 0.310 0.585 0.304 0.574 

Walk w/out Pain 0.267 0.127 0.263 

Climb Stairs 0.309 0.532 

Limping 0.405 

Table 3.7: Upper triangle of the correlation matrix for seven of the pre-operative 

hips variables. 

smaller than the value for the knees data. This may suggest that pre-operatively 

the status of the patients is consistently poor. The respective post-operative means 

fall between 1 and 3 which, when compared with the pre-operative scores, shows a 

drop of between zero and four points. Post-operative standard deviations are largely 

similar to their pre-operative equivalents. This suggests that there is an improve- 

ment in patient condition, but there is still a similar degree of variation amongst 

the conditions of the patients themselves. 

3.3.6 Correlations 

The hips data appear to be much more strongly correlated than the knees data 

with correlations of around 0.37 (see Table 3.7). The correlation appears also to be 

more uniform than with the knees data with all variables having a similar degree of 

association. Consequently, there does not appear to be any evidence of the apparent 

correlation structures which are present in the knees data. The correlations for the 

post-operative data are also similar, with all variables being moderately correlated 

with one another. However, the level of correlation is slightly more than that pre- 

operatively with a typical value of around 0.43. This could suggest that the noise 

evident pre-operatively has been removed or reduced. 

Unlike with the knees data, inspection of correlations for the hips reveal that the 
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post-operative variables are almost entirely uncorrelated to the pre-operative values 

with r23 < 0.07 for all variable pairs. This suggests that the status of a patient 

after the operation has little connection to their status before, implying that the hip 

replacement affects patients in a way that is independent of their initial state. 

As with Table 3.2, the correlation matrix here is hard to interpret on its own 

since it requires the simultaneous reading and comparison of multiple values in the 

table to determine the nature of the associations. Presenting information in the 

form of a table of numbers can be an inefficient method, especially when the goal 

is to communicate results to non-experts. It is clear here that a more efficient 

representation for these correlation matrices would be useful in this situation. 

3.3.7 Discrete Associations 

The hips data contains many discrete variables which could be tested for indepen- 

dence, however we shall focus on only a small subgroup. There are five binary vari- 

ables to be examined: the first two represent the presence or absence of osteoarthritis 

or rheumatoid arthritis in the patient's primary pathology (and so approximately 

correspond to the Diagnosis variable in the knees data); the second two variables 

represent where cement was used on femoral or acetabular prostheses (correspond- 

ing to Operation in the knees data); and the final variable represents whether the 

patient is private or NHS. 

Using Pearson's X2 test with Yates' continuity correction on the contingency 

tables we reject the independence hypothesis for the pathology variables (p < 2.2 x 

10-16). Examining the contingency table suggests that the presence or absence of 

osteoarthritis is associated to the presence of absence of rheumatoid arthritis with 

more patients than expected having only one of the pathologies. We similarly reject 

the hypothesis of no association when examining the two cement variables suggesting 

that the use of cement on one prosthesis is not independent of the use of cement on 

the other (p < 2.2 x 10-16) with more patients than expected receiving cement on 

only one of the prostheses. 

We fail to reject the independence hypothesis when considering the associations 

between the patient's private status and their pathology, as well as between their 
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private status and the use of cement. These results are not surprising, as we would 
expect the patient's pathology and treatment to be unassociated with their private 

status. 

When investigating the interactions between pathologies and use of cement we 
find that we reject the independence hypothesis for osteoarthritis and the use of 

cement for both prostheses (p < 1.2 x 10-4). In this case we find fewer than expected 

people with osteoarthritis received cement on the acetabular prosthesis, and more 
than expected received cement on the femoral prosthesis. The same is not true for 

rheumatoid arthritis, however, and we fail to reject the hypothesis of no association 
for all variables. 

3.3.8 Comparing Subgroups 

As with the knees data we can perform independent sample t-tests to give us an 
initial impression of whether there appear to be any notable differences between 

subgroups of the data. The hips data has several categorical variables which define 

a number of groups. The first to be examined here is that which defines whether the 

patient's primary pathology includes osteoarthritis or not. The results are presented 

in Table 3.8 in the same style as for the knees data. We can see that majority of 

variables are significantly different between these two groups. This is with the 

exceptions of Usual Pain and Standing Without Pain for which there is insufficient 

evidence to conclude that there are differences between the groups. For the variables 

which display a significant difference between these two pathology groups, we can 

see that it is typically the group without osteoarthritis that exhibit lower mean 

values and hence appear to have a more favourable average state. 

This procedure was repeated as before to compare the groups where the patient's 

pathology includes rheumatoid arthritis and those who do not. We obtain similar 

results which are not tabulated here for brevity, however they demonstrated signif- 

icant differences on all variables with the group having rheumatoid arthritis being 

in a typically poorer state pre-operatively. 

Another variable that was investigated for these pairwise differences was the 

variable which records whether the patient was treated privately or on the NHS. The 
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results for these comparisons are given in Table 3.9. Again we observe significant 

differences on all variables suggesting that there is a difference between the average 

patient in each group. Further examination show that, a priori, the patients who 

were treated privately have lower values on these variables indicating that their 

state was better than the NHS patients. This is likely due to waiting list for NHS 

treatment resulting in the patient's pathology being in a slightly more advanced 

(and hence poorer) state when they are seen by the consultant. 

The post-operative means can also be compared to the pre-operative means 

by a paired-sample t-test as in Table 3.6. As with the knees data, we observe a 

highly significant change in the direction of improvement though in this case this 

improvement is evident on all of the patient status variables. 
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No OA OA Itl P 

Usual Pain 1.428 1.494 1.795 0.0364 

Washing 2.694 2.883 3.556 0.0002 

Using Transport 2.482 2.566 2.085 0.0186 

Put On Socks 2.219 2.367 2.719 0.0033 

Do Shopping 1.906 2.264 5.351 < 10-1 

Walk W/out Pain 2.997 3.259 3.166 0.0008 

Climb Stairs 2.368 2.757 4.127 < l0-1 

Stand W/out Pain 2.371 2.445 1.609 0.0539 

Limping 1.278 1.469 4.573 < 10-1 

Severe Pain 2.122 2.298 2.643 0.0041 

Usual Work 1.889 2.163 5.813 < 10-1 

Night Pain 1.791 1.944 2.519 0.0059 

Table 3.8: Comparison of the pre-operative means for patients whose pathology did 

and slid not include osteoarthritis. 

NHS Private Iti p 

Usual Pain 1.652 1.444 7.680 < 10-1 

Washing 3.146 2.791 9.039 < 10-4 

Using Transport 2.779 2.500 9.438 < 10-"1 

Put On Socks 2.654 2.274 9.444 < 10-1 

Do Shopping 2.702 2.105 12.146 < 10-4 

Walk W/out Pain 3.377 3.195 2.941 0.0016 

Climb Stairs 2.874 2.474 10.747 < 10-"1 

Stand W/out Pain 2.703 2.369 9.795 < 10-1 

Limping 1.605 1.410 6.273 < 10-1 

Severe Pain 2.556 2.209 7.029 < 10-4 

Usual Work 2.405 2.065 9.748 < 10-4 

Night Pain 2.120 1.879 5.317 < 10-1 

Table 3.9: Comparison of the pre-operative means for NHS and private patients. 



Chapter 4 

Visualisations 

The use of graphical methods to present data and to communicate the statistical 

features thereof has a long history with Tukey [121], Tufte [119,120], Cleveland 

[18,19], and more recently Wilkinson [126] having written extensively on the subject. 

The usefulness of such methods is undisputed; as Tufte says: `Graphics reveal data'. 

By showing a great deal of information in a relatively small space, large and complex 

data sets can be made more `coherent' and easier to understand and interpret. Since 

the orthopaedic data sets we have examined thus far are typically high dimensional 

and also incorporate small time series elements, the application of appropriate visual 

methods to gain insight into the data would be a sensible and prudent course of 

action. In particular, the goal here is to present a large amount of information 

succinctly, but meaningfully to non-expert clinicians. 

This chapter introduces three visual methods for displaying either summary 

statistics of the data or the results of statistical tests in a way to enhance their 

interpretability. Section 4.1 introduces a very simple visualisation of the results of 

multiple t-tests for the differences in the means of two groups of data. Following on 

from this, in Section 4.2 a method for illustrating the correlations amongst groups 

of variables is presented, which was originally proposed by Friendly [50]. Then in 

Section 4.3 a methodology inspired by profile analysis is introduced to depict the 

changes in the mean values of all variables over time, which incorporates a suitable 

standardisation for all variables and to facilitate comparisons between the profiles 

of multiple groups. Finally, the chapter ends with some comments and remarks on 

41 
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the methods presented. 

4.1 t-Test Plots 

The comparison of the means of two groups of data is one of the most basic tests 

within statistics. The application of the standard independent and paired samples 

tests using Normal or t distributions is covered in many introductory texts on statis- 

tics [46,104,12]. As such, these tests should be familiar to any performing even 

the most basic of statistical analyses. However when performing many such tests on 

data sets containing several variables the results will take the form of tables such 

as Table 3.5 which can be both daunting and potentially difficult to interpret. In 

this section a simple visualisation of these results is presented and illustrated with 

examples. 

4.1.1 Methodology and Results 

A very simple visualisation of the results of a t-test, such as those in Table 3.5 

could be presented by a simple bar chart where each bar represents the t value for 

the two-sample test for each variable. The reasons for plotting the raw t values 

and not the associated probabilities are twofold. Firstly, large differences between 

the groups result in large is with small corresponding significance probabilities - 

this reversal would be detrimental to interpretation as the reader associates large 

changes with large values. Secondly, the t value itself provides information on the 

direction of the difference, whereas this information is unavailable when considering 

probabilities alone. For the orthopaedic data the results will be comparable across 

variables since the sample sizes are the same for all measurements, which makes the 

degrees of freedom constant. The original t statistic is plotted rather than ItI, since 

the direction of the deviation from zero is also informative. Furthermore, those t 

values which exceed the bounds for significance can be coloured to draw attention to 

these significant deviations. However as an alternative to plotting t-values, one could 

plot a function of the associated p-values such as 1- p, - log p or even sign(t) I log pl. 

However, for the purposes of this graphic, we shall be considering only the t-values. 
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Subject to the usual practical difficulties of multiple significance testing such 

as assessment of normality, the independent sample t-test would be of use when 

analysing the orthopaedic data as it will enable the comparison of means of mea- 

surements between two separate groups, such as different diagnoses and treatments. 

We assume a sample X1, 
..., 

X,, is drawn from a normal distribution that has mean 

µX and variance Q2, and an independent sample Y1,.. 
., 

Ym, is drawn from another 

normal distribution that has mean py and variance Q2. To ascertain whether the 

two samples were drawn from the same population, we test the null hypothesis that 

the two samples have the same mean, i. e. µX = µY and hence px - py = 0. Any 

evidence of deviation from this hypothesis is illustrated by significant values of the 

t-statistic: 
(X - Y) 

SP 
n+m 

where sp is the pooled sample variance: 

S2 = 
(n-1)4+(m-1)s' 

m+n-2 

and sX and sY are the sample variances for X and Y respectively. The t statistic 

follows at distribution with m+n-2 degrees of freedom. 

The t-tests in Table 3.5 assess the differences in the pre-operative means for 

the different levels of diagnosis for the knees data. These tests are illustrated via 

a t-test plot in Figure 4.1, where the difference is of the form rheumatoid arthritis 

patients minus osteoarthritis patients. Thus positive t values indicate that the mean 

for a patient with rheumatoid arthritis is larger than the corresponding value for a 

patient with osteoarthritis. The covariate Weight is included in this graph with the 

other response variables since we discovered in Chapter 3 that it could potentially 

discriminate Diagnosis. Since the sample sizes are fixed for both groups, all t values 

have the same number of degrees of freedom thus ensuring they are all directly 

comparable. It should also be noted that the majority of these variables are ordinal 

rather than discrete, which may pose a potential problem for the application of t tests 

which assume Normality of the data. However, [103] illustrated that application of 

the t test to such data is still reasonable since the ordinal variable can be viewed as 

a discretised version of a latent continuous quantity. 
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Significant t values are coloured red to add emphasis to those variables; the two 

horizontal lines correspond to the appropriate critical value of the t-distribution. 

Significant differences can be seen for the variables Weight, Coronal Tibio-Femoral 

Varus (CTFVAR) and Fixed Contracture (FCONT). In general, we can see that patients 

with osteoarthritis appear to be heavier and have better levels of general mobility. 

There appears to be little difference between the two sets of patients in terms of 

pain with Pain Severity (PAINS) and Night Pain (PAINN) non-significant and Pain 

Frequency (PAINF) just scraping past the significance threshold in favour of the 

osteoarthritis group. 

Repeating the same procedure to compare differences between the two types of 

operations gives us the plot displayed in Figure 4.2. This plot illustrates that there 

is very little distinction between the two forms of treatment since all of the scores are 

non-significant. It should be noted that since this boundary is entirely arbitrary and 

given the problems with the validity of the t-test assumptions the true `significance' 

of the difference in these cases is somewhat tenuous. 

When the two samples are not independent, such as comparing pre- and post- 

operative measurements for the same patients, we must turn to the paired sample 

t test. In this case, each Xi is paired with a corresponding Y and we work with 

the differences Di = Xi - Y, which we assume follow a normal distribution with 

E[DZ] = µX -µY = µD and Var[Di] = QD where uD is the variance of the population 

of differences. Since aD is generally unknown, the t statistic is given by: 

t=D AD 
sD 

where D is the sample mean of the differences, and sD is the sample standard 

deviation of D which is defined as sD = sD/n where SD is the sample standard 

deviation of the Di. This then follows at distribution with n-1 degrees of freedom. 

Table 3.6 displays the results of performing such a test to compare the post- 

operative means to the pre-operative means for the knees data by setting µD = 0. 

The associated t-test plot is presented in Figure 4.3 where t values outside the 

interval [-6,6] have been truncated and are indicated by the symbols A or V. We 

can see immediately from this plot that there is overwhelming statistical evidence of 

a substantial improvement in the patient condition post-operatively for all but three 



4.1. f-Test Plots 

omen-T 

m 

x 

O 

Cl) 

0 

biD 

cl 
0 

Ce 

v 

b. 0 
G 

mvý 
cýS 

r-I 

öC 

Lý. 

45 

9 "17 Z0 Z- ý- 9- 



4.1. t-Test Plots 

amen-j 

46 

C) 

C) U 

C) 

Q) 

C) 
U 

O 

C) 

O 
O 

C) 

c 
a) 

a) 

C) 
O 

aý 

C) U 

N 

'r 

bA 

ý cÜ 
cd 

71 

9jZ0 Z- t7- 9- 



4.2. Correlation Plots 47 

variables. Only Flexion (FLEX), Extension Lag (EXLAG) and Other Knee Flexion 

(0KF) display no evidence of change over the intervening period. However, it should 

be noted that whilst the statistical significance of the difference from before to after 

the operation is great, the corresponding practical change is typically only slightly 

more than a one-point increase on a scale of 1-5 with Walking Ability (WAB) and 

Walking Aids (WA) being somewhat less, and Pain Frequency (PAINF) and Pain 

Severity (PAINS) showing more than a two-point average increase. 

4.2 Correlation Plots 

The mosaic display, introduced by Hartigan and Kleiner [58] is a graphical repre- 

sentation of a contingency table. The contingency table is represented by a grid of 

rectangles or `tiles' where each rectangle represents a single cell of the contingency 

table and whose area is directly proportional to the cell frequency. This graphic 

was then subsequently extended to illustrate multi-way contingency tables [59,48] 

and incorporate the use of shading in each cell using colour or density proportional 

to sign and magnitude of the residual deviation from the model (typically that of 

independence) [49,62]. 

The concept of the mosaic plot was further developed by Friendly [50] into an 

exploratory display for correlation matrices, called a corrgram. Friendly's corrgrams 

graphically display a matrix, R, of correlations between multiple variables. Each 

pairwise correlation r3 is visually depicted using one of several methods in a larger 

rectangular grid framework reflecting the layout of the larger correlation matrix. 

Friendly presents a variety of means of displaying the individual correlation values 

using coloured cells as with a mosaic plot, or using different shapes of different 

sizes and orientations and alternative shading methods. Friendly's use of ellipses 

to display the correlation matrix is similar to the glyph-based plots of Murdoch 

and Chow [91], though the use of colour is likely an easier method to interpret the 

correlations than elliptical symbols. For our purposes however, we shall focus on the 

corrgram which is a simple variation of the mosaic plot which we shall refer to as 

a `correlation plot' to distinguish it from Friendly's other possible representations. 
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Figure 4.4: Correlation plot for selected variables of the post-operative kiices (1; lt; I. 

Each element of the matrix, raj is represented by a cell in the larger rectnmgidar grid 

and the cell is coloured according to the sign and magnitude of rij. If rij <0 their 

the cell is coloured a shade of blue, and if rij >0 then the cell is a shade of red. The 

intensity of the colour used to fill the cell is then rzj. Hence a value of rzj = 0.5 

would result in the cell being shaded with 50% red and rij =0 would result in the 

cell being white. 

A correlation plot for several variables of the post-operative knees data is pre- 

sented in Figure 4.4 - this plot corresponds the correlation matrix in Table 3.3. The 

presence of structure in the correlations can be seen from the plot. There are slight 

modifications to those presented by Friendly, in that there is no diagonal hatching 

to each cell and that variables are labelled on the main diagonal of the matrix. 

The very strong correlations between the pairs of Sitting Down/Rising Up (SD/RU). 

Going Up Stairs/Going Down Stairs (GU/GD) are visible with a lesser, though still 

strong, correlation between the hip abductions (HIPAB/OHAB). The strong relaticýii- 

ships between the three pain scores are also visible. The correlation plot has easily 

revealed these structures in a simple and efficient way that does not require the 

interpretation and comparison of the individual pairwise correlations in the overall 

correlation matrix. 

However, whilst the correlation plot in Figure 4.4 may convey information on 

both the intensity of the correlation as well as its direction, it may be more reasonable 

to ignore the sign of the correlation and plot all cells in the same colour. The eise 
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Figure 4.6: Absolute value correlation plot for the post-operative knees data. 



4.2. Correlation Plots 51 

of two colours can complicate interpretation, for example if two cells had the same 

value of I r2j I but differed in sign, it is hard to determine that they are equal or even 

similar due to the differences imposed by the colours. Furthermore, since the sign 

of the data is often an arbitrary artefact of the choice of the data collector or survey 

designer the information it contains is potentially of little value. For example, a 

variable could record a numeric indicator of the levels of the patient's pain on a 

5-point Likert scale. Depending on the choice of the physician, a value of 5 could 

represent the highest level of pain or the lowest. The information contained in the 

variable is the same but the sign has reversed. Therefore subsequent plots will use 

Ir2j rather than r2j to colour the individual cells. 

The dimension of the correlation matrices for the pre- and post-operative knees 

variables are such that it is not possible to fit them onto a single page in their entirety 

and in numerical form. However one of the advantages of the correlation plot is its 

compactness, which enables the presentation of these correlation matrices albeit in 

an alternative form. Figure 4.5 shows the complete correlation matrix between the 

pre-operative knees variables, and Figure 4.6 shows the same for the post-operative 

data (of which Figure 4.4 was a submatrix). If we firstly consider the pre-operative 

data we can see the correlations are typically quite low (< 0.25), with a group of 

variables in the centre of the plot being more strongly positively correlated. This 

central group compose the general mobility scores and are all measured so that 

larger values reflect a better patient status, so it is not unreasonable for these to 

be so associated. The closely related pairs of variables identified in Figure 4.4 are 

also present, though the associations between the pain scores are noticeably weaker 

perhaps due to the greater variability in patient conditions pre-operatively. We 

can also observe that there are a few variables with fairly weak associations to 

all others, for example Weight (the leftmost column) and Coronal Tibio-Femoral 

Angle (CTFVAR - immediately to the left of the block of central variables). The 

rightmost variable Extension Lag also illustrates a fairly weak correlation with the 

other variables, which is not surprising due to most of its values being the same. 

Comparing to 4.6 we can see that there is a great deal of similarity. However 

the intensity of the correlations post-operatively seems to have increased - the pain 
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Figure 4.7: Correlation plot for the pre-operative hips (lata 

scores in the bottom-right are now more tightly correlated and are now slight luv 

Inore correlated to the other mobility measures. This is likely due to the effect ,t 
the treatment having some form of a unifying effect across patients, reducing t Ile 

variability present pre-operatively. The other variables however seem to exhibit III 11,, 

change, though the variable measuring Corwicl /'li)M-/''r lof /f// I f"// 11(, V' 

to be slightly less correlated to other variables. 
The variables in Figures 4.5,4.6 and 4.7 have 1 ,... .". I. ý, 

scheme proposed by Friendly [50] where the variables are arranged in the angu- 

lar order of the first two eigenvectors of the correlation matrix. The order of the 

variables is determined from the order of the angles aj: 

ai =tan-i (ei2ýeýi ) 

where ei and e2 are the first two eigenvectors of R. Highly correlated variables will 

have similar locations in the biplot of el and e2 and so will have similar values of ai. 

This ordering thereby seeks to arrange the variables in a manner that will expose 

the underlying correlation structure. For the correlation plots of the knees data the 

ordering over the post-operative variables was used to arrange both plots so that 

they would be directly comparable. To linea. rise the angles, the circle is split at the 

point where the separation between two adjacent cri is greatest. 

Repeating the plots for the hips variables provides slightly less insight into the 
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structure of the variables. A correlation plot for the pre-operative variables is given 

in Figure 4.7. This shows that all variables are moderately positively correlated 

and there is little evidence of the variables falling into tightly correlated groups as 

with the knees data. The only notable feature here is that the rightmost variable 

walk. wit (how far the patient can walk without pain) appears to be slightly less 

associated with the other variables. The same is true, thought to a lesser extent, 

with the variable limping. p with its visible pale bands across the plot. Examination 

of the post-operative plots show a very similar plot with all variables exhibiting 

moderate positive correlations, and the apparently weaker associations to walk. wit 

disappear. 

4.3 Profile Plots 

4.3.1 Introduction 

One of the principal limitations of the t-test plots discussed in Section 4.1 is that the 

comparisons of variables over time can only be performed on pairs of time points. 

The visualisation of the continually changing mean values can only be attained 

through the comparison of pairs of sequential times. This restriction is somewhat 

limiting and there is a need for a mechanism to display the evolution of the means 

across all time points. 

Various methods have been developed to show such information. Andrews et 

al [4] introduce the window and interval plots where the means of various variables 

are plotted directly accompanied by an appropriate error interval in order to de- 

termine significance of differences and perform multiple comparisons. They applied 

their results to illustrate the main effects of several ANOVA models. 

Another near-identical approach can be found within profile analysis [57,117, 

114] which is a specialisation of multivariate analysis of variance (MANOVA) to a 

situation with multiple responses all on a similar scale. A further extension where 

there are several responses observed and at different times is sometimes called the 

doubly-multivariate design. If Y, i is the ith observation made at time t, then we 

fit the univariate ANOVA model Y, i =µ+ Tt + -t, i where p is the grand mean, 
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and Tt is the main effect at time t and errors, bit are assumed to follow the 'Normal 

distribution N(0, a2). The profile of Y is then simply the a+ Tt for all t for a 

particular variable, with a profile plot being the plot produced by directly graphing 

these quantities. This is, to all intents and purposes, simply a plot of the main effects 

obtained from an analysis of variance. Profile analysis is then based on the profile 

of the response variable(s) and all tests are performed in terms of the appearance of 

the profile rather than in the specifics of the results of the analysis of variance. 

When investigating the effects of an additional categorical factor variable A, the 

ANOVA model would become Yt, a, i =µ+ Tt + as + , 
Ot, a + et, a, i where 0a is the main 

effect for level a of A and /3a is the interaction term for time t and level a of A. To 

obtain the profile, we would then plot µ+ -rt + as + 13t, a for all times t and levels a of 

A. An example of two such profiles is given in Figure 4.8 and concerns the patient's 

walking ability for the two different diagnoses in the knees data set. It illustrates 

the changes in the mean of walking ability for the two groups over the four time 

points in the data and shows that the mean walking ability for the osteoarthritis 

group is better than the rheumatoid arthritis group at all time points. Whilst these 

plots are closely related to the ANOVA modelling of the data, the values plotted in 

Figure 4.8 are in fact simply the conditional means obtained directly from the data. 

Therefore these plots can be constructed directly without the need for the modelling 

itself and could thus be useful as exploratory graphics. 

One shortcoming of profile analysis or the standard ANOVA modelling approach 

of these data is that they fail to allow for a dependency between the subsequent 

observations, which is inappropriate in the case of these repeated measures data. 

A solution to this problem is given in Crowder and Hand [24], which allows for 

unconstrained covariances between the response variables. However, both of these 

methods are for use in modelling the data and, for the purposes of finding a visual 

representation of the data, using such approaches in their entirety would introduce 

a complex data model at a premature stage. A further disadvantage of some of 

these methods is the requirements for complete cases in the data, in the sense that 

observations must be made at all time points and missing values must be imputed. 

This is not appropriate in the case of the orthopaedic data under investigation where 
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Figure 4.8: Profiles of the walking ability for the two diagnoses in the knees data. 

the sample size substantially reduces over time. Therefore it would be sensible to 

focus only on the profile plots, which depict the changes in the conditional means 

over time for the different groups within the data. These mean values can simply 

be calculated from the raw data and do not require completeness of cases making 

them suitable for an exploratory graphic. 

4.3.2 Standardised Profile Plots 

The profile plot is a useful visualisation of the data and shows the evolution of the 

walking ability score over time. It also illustrates that there is only a small practical 

difference between the two groups based on diagnosis. However, this only focuses 

on a single variable and both the knees and hips data sets are highly multivariate 

which creates a problem. One approach would be to produce and examine separate 

plots for all key variables in the data set, however this would be impractical and 

would make it highly difficult to ascertain how pairs or groups of variables change 

over time. 

An alternative method for tackling this dimensionality problem would be to 

display all the profiles simultaneously. However, as we can see from Figure 4.9, 
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Figure 4.9: Unstandardised profiles of the key variables of the knees data. 
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when our response variables have substantially different scales the resulting plot is 

less than informative. Due to differences in both scales and locations of the variables, 

some trends that may be significant for variables with small means and variances 

are obscured by the effect of plotting there with variables with larger means and 

variances. For example in Figure 4.9, weight and the two flexion measures are 

obscuring any detail of the profiles of variables on smaller scales, such as the pain 

Score's. 

To compensate for this problem we can attempt to standardise the values so 

they are transformed onto a common scale. This eliminates the problems described 

above and will allow for an easy comparison between the different variables. A 

logical first step would be to use the standard transformation to t values performed 

in an independent sample t-test. So, let Y be a quantity of interest and let Yt be 

random quantities denoting the value of that variable at different times t=1, ... , 
T. 

Then the individual components of a profile are the values Yt, the sample means of 

a random sample sized nt taken from Y. If we assume that y lV(µý, a2) then, 

trivially, Yt - N(it 
, U2/nt). Since µt and or e are unknown, we can estimate them 

using the Yt's grand mean Y=Y: t(ntYt)IN where N=., t nt, and the pooled 
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Q°YQ äää3NF 0U 
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sample variance sp is given by: 

2 ý_, 
=1 

(nt - 1)st 
p N-T 

where st is the sample variance of the sample corresponding to Y. 

This leads to the first obvious transformation of the profiles, which is to use the 

standard transformation of the sample means to t values via the relation: 

Yt -Y Wt _ 
Sp/vn-t (4.1) 

This is simply a slight modification of the standard t-test for a sample mean. 

The modification being that we are pooling our variance estimate Sp over all t 

samples rather than just 2. However this still corresponds to a significance test for 

a difference in means under the hypothesis µt =y and so could be interpreted as 

such. It should be noted that we have the case that the samples Yti are not at all 

independent and so there will be a resulting dependency among the t values which 

could have misleading results. Nonetheless, if we wish to produce a profile plot, 

then we have that the components of a single profile are the Yt - the means of 

the corresponding variable at each time point. When we wish to consider multiple 

groups we can compute a separate profile for each group, where the individual group 

profiles are based on that group's conditional means. 

The application of this method of standardisation to five of the knees variables 

is shown in Figure 4.10. We can see that the problems due to scale and location 

have now been eliminated and that we can now see how the standardised profiles 

of the variables change over time and with respect to one another. For example, it 

is clear that there is little notable change in the average weight, but pain frequency 

has a relatively sharp increase and then a subsequent decline over time. 

There is a disadvantage with this scaling method and that is due to the fact 

that we do not divide each component of the profile by a constant. Since nt is not 

constant for all t, this standardisation could result in unfortunate side effects such as 

the reversal of profile values. For example, if we have two groups with the following 

values: µ= 10, Y1 = 11, YZ = 12, sp = 4, nl =9 and n2 = 2. We have the 

case that Y1 < Y2, however due to the differing sample sizes we get tl = 0.75 and 
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Figure 4.10: Standardised profiles for five variables of the knees data using method 

4.1. 

t2 = 0.71 and so ti > t2. Whilst a perfectly sensible result statistically, this artefact 

of the transformation does not preserve the original ordering of the profiles and so 

is a distinctly undesirable feature that would compromise the interpretability of the 

plot. 

To address this problem, we can move from standardising to the usual t statistics 

as in (4.1), to consider effect sizes instead. Effect sizes are widely used in the social 

sciences [45] and are commonly to be found in meta-analysis studies. The notion 

of the effect size was introduced by Cohen [20]. Cohen describes the effect size 

attributed to a particular phenomenon, such as a treatment effect, as being "the 

degree to which the phenomenon is present in the population". Cohen constructs 

the effect size to be independent of sample size in order to prevent effects in larger 

populations with correspondingly lower errors from being inflated to reflect their 

greater statistical significance. Small or zero effect sizes still correspond to a failure 

to reject the null hypothesis of no effect, and large values correspond to the converse. 

The calculation of an effect size is thus simply a modification of the t-values in (4.1) 

with the omission of the term in nt: 

Yt-Y 
Vt = Sp 

(4.2) 
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In this case, this effect size measure is similar to Cohen's d [20] and Hedges's g 
[105] though the differences to these measures are the use of a pooled estimate of 
the standard deviation and the fact that we are pooling over more than 2 samples 
respectively. 

This standardisation would preserve the ordering of the profiles but would elim- 
inate the duality of the plot with a significance test. The interpretation would now 
have to be restricted to being standardised values and any association with a t-test 

could not be made. Additionally, information concerning the sample sizes at each 
time point would be lost since it is no longer included in the standardisation. This 

information could be depicted on the plot via colour intensity. The intensity of the 

points could correspond to their relative sample sizes using: 

2j= 
n7-1 (4.3) 

maxi( ný - 1) 

where ij is the colour intensity for the jth point in the plot and nj is the correspond- 
ing sample size. By using nj -1 rather than n we ensure that iE [0,1] with the 

boundary values occurring when nj is 1 and maxi ( nýl) respectively. The lines 

joining two points on the plot can then be shaded using an intensity which equals 

the mean of the intensities of the two points being joined. 

In addition to using colour intensity, one might choose to represent the sample 

size via the size of the plotting symbol. For example, using a circle or square with 

radius or side length equal to V/'n-. Another possible alternative is to indicate sample 

size via the width of the line used to draw the line segments. This latter suggestion 

has a long history as documented in [119] where a 19th century graphic illustrates 

the terrible losses in Napoleon's army in Russia. 

The results from applying this method of standardisation to the five knees vari- 

ables are shown in Figure 4.11 for comparison with method 4.1. We can see that the 

profiles are suitably standardised but have a somewhat different shape than those in 

Figure 4.10 with the earlier profiles misrepresenting the relative sizes of the means 

for the five variables. The scale is also markedly less extreme due to the divisor no 

longer itself being divided by nt. A further choice of value for a divisor would be to 

use the results of the profile analysis itself by using the estimate of the variance of 



4.3. Profile Plots 60 

N 

aT 
CIO 
a 

CD 

ca 
a 
c 
c0 

C, ) 

(V 

Figure 4.11: Standardised profiles for five variables of the knees data using method 
4.2 showing relative sample size by colour intensity. 

the random error in the ANOVA model, (. This would given plot of profiles which 

preserves profile ordering but each profile would be scaled by a different constant to 

that in 4.2, giving profiles which are directly proportional to those in Figure 4.11. 

4.3.3 Paired Profile Plots 

One of the chief shortcomings of the standardised profile plots of the previous sec- 

tion is the assumption that the data from each time point are independent of one 

another. This assumption is violated as the condition of a patient at any time point 

is dependent on their previous state. Therefore, whilst the standard profile plots 

in the previous section give an appropriate display of the locations of the (condi- 

tional) means at the different time points, the information they convey relating to 

the change in patient condition does not take account of this dependency. For ex- 

ample in Figure 4.11, we can see that the weight profile is typically close to zero biet 

appears to drop slightly at the third time point. This is due to the fact that the 

sample size decreases over time and some of the heavier patients had dropped out 

causing a corresponding drop in the average weight. If, instead, we were to compare 

the weights of the patients at the third time point with their previous weight values, 

we would observe that the patient's weights have, in fact, increased. This is at odds 
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with the interpretation of the profile plot. 
To accommodate the dependency between time-points, we can use the standard 

theory from paired-sample t-tests. If we again let Y be the variable of interest 

and let Y be random quantities denoting the value of that variable at different 

times t=1,. 
.., 

T. We can then form the pairs from the different time points. for 

example we can pair up the first two time points Yl and Y2 giving us a series of 

values (Y1, i, Y2, i). Since we allow the sample size to change across the time points 

we will have min(nl, n2) such pairs. Assuming Yl and Y2 are samples from a Normal 

distribution, then the differences D= Y2 - Yl will be such that D' N(µ2 - µl, ýD) 

where 07D is unknown and is estimated by SD, the sample standard deviation of the 

differences. Under the null hypothesis that the mean difference is zero, the standard 

methodology is to base inferences on 

D 
SD/N IG 

(4.4) 

which follows at distribution with n-1 degrees of freedom and where D is the 

mean of the D values. 

It would be meaningless to plot these t values directly as the divisor of the fraction 

will differ from point-to-point leading us to encounter problems with reversals of 

profiles such as those encountered with using method (4.1) to standardise the profile 

plots in Section 4.3. This is due to both SD and n varying from point to point. To 

counter these problems, we can use similar techniques as those employed with the 

standardised profiles. If we firstly assume that for a single variable, all the pairwise 

differences have the same variance we can then estimate this by the pooled sample 

variance: 

s2 = 

ýý 
1 

(nj 
- 

1)sD 

p N-(T-1) 
(4.5) 

where we have sets of pairs Dj where j=1, ... ,T-1 with associated sample sizes 

nj and standard deviations sD,. 

In order to prevent the reversals of the profiles, we must adjust the standardis- 

ation in a manner similar to that of (4.2). However as before, this will also remove 

the duality with the statistical t-test, though it is a necessary mechanism to display 

the data in a manner which enables the comparison across variables, time points 
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Figure 4.12: Paired profiles for five variables of the knees data using (4.6) and 

showing relative sample size by colour intensity. 

and other groups. Therefore for each set of pairs we calculate: 

w; _ 
D; 

(4.6) 
Sp 

For visualisation purposes on the paired profile plot, the initial value for each 

profile was set to be zero. The subsequent values were then the standardised mean 

difference values corresponding to the pairs (Y1, Y2), (Y1, Y3), etc. Thus a zero value 

for wj would correspond to a mean value equal to Yi. This uses the initial time point 

as a baseline against which the subsequent data are compared and enables a sensible 

depiction of the changes over time. To display information on the sample sizes at 

each point, the colour intensity method used in Section 4.3.2 can be employed. 

The results from applying this pairwise visualisation method to the same five 

knees variables is displayed in Figure 4.12 for comparison with Figure 4.11. We 

can see that the profiles are now all arranged to start at zero, corresponding to the 

baseline value against which all the paired differences for the later time points are 

compared. We can also see that by looking at the paired differences between the 

different time points some of the profiles now have a different shape. For example, 

the standardised profile for Weight in Figure 4.11 stays close to the mean value 

and then deviates slightly upwards at the final time point. Considering the paired 

version of this profile in Figure 4.12 we see that Weight actually increases at each 

LL 

LL 

Cb 
° ä3 
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time point relative to the initial value. The apparent drop in Weight at the third 
time point in the original plot was due to some heavier patients disappearing from 

the sample, thereby giving an erroneous indication of a reduction. The paired profile 

method is more robust to such problems. 

4.3.4 Combined Profile Plots 

Both of the profile plots presented thus far have their merits. The standardised 

profile plot simply represents the relative location of the means, though there can 
be problems due to an artefact of the shifting sample size as mentioned above. The 

paired profile plot corrects this problem by displaying the mean change relative to 

a baseline. However, if we have two or more subgroups in the profile plot then 

the initial means and hence the baselines will be different for the different groups. 

However, the information about the relative locations of these starting points is 

lost as the paired profile plots will all start at zero. Thus we gain a more accurate 

insight into the changes of the mean over time with the paired profile, but we lose the 

information about relative positions which we easily represented in the standardised 

profile. 

To address both problems simultaneously, we can use the paired profile plot and 

offset the baselines from the origin by an appropriate amount to re-introduce the 

notion of location that we had with the standardised plots. To this end, we can 

construct the plot using the following form: 

Y, -Y Dj 
Sp Sp 

(4.7) 

where Y1 is the sample mean at the first time-point, and Y is the grand sample 

mean taken over all time points (sp and Dj are as previously defined). Thus we 

combine the forms of (4.2) and (4.6) to marry together the accurate depiction of the 

relative locations and evolutions over time. A summary algorithm for constructing 

this plot is given in Figure 4.13. 

The results from applying this combined profile method to the five knees vari- 

ables that have been graphed previously is presented in Figure 4.14. We can see 

from this plot that the paired profiles from Figure 4.12 have been translated to the 
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1. For each variable vi where i=1, ... , P: 

(a) For each time point tj where j=2,... , 

i. Let Yj(') be the vector of length nj containing the observations on 

variable vi at time point tj. 

ii. Calculate the mean value of vi at time tj, Yjý 

iii. Calculate the differences Dez) = Yj(z ) -Y(Ip). Calculate the mean Dpi) 

and standard deviation sD(') of the DE(Z). 

(b) Find the pooled sample standard deviation for vi, spýý using (4.5) and 

calculate the mean value of vi over all time points, 
Vi). 

(c) Calculate the paired difference values: pý') = DýýýIspýý, where D, ýý = 0. 

ýý (d) Calculate the offsets: wj 

(e) Plot the combined profile values, which are given by: xj ýý = wj 2ý + pý 

Figure 4.13: Algorithm for the construction of a combined profile plot. 
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Figure 4.14: Combined paired profiles for five variables of the knees data using (4.7) 

and showing relative sample size by colour intensity. 

locations in Figure 4.11. The trite merit of offsetting the locations of the profiles is 

not 1I11I11('(Ilately obvious when graphing only one group - the true benefits will be 

apparent when considering several subgroups of the data. 

4.3.5 Results 

Applying the combined profile plot methodology to the knees data yields the plot 

given in Figure 4.15. This plot displays the changes in the variables over time and 

all variables are now easily comparable. At first glance, one can observe that there 

is a common pattern in many of the variables - that of a steep increase from pre- 

to post-operation and then a slow decline over the subsequent time points. Those 

variables for which this is the case are the ordinal variables which correspond to 

the pain and mobility variables. The interpretation of this pattern is that there 

is a pronounced improvement in the average patient's condition as a result of the 

operation they received in the intervening time. After the second time point at 

one-year after the operation there is no longer a continued improvement and the 

mean levels of pain and mobility slowly deteriorate over time. However, they do 

not return to the level they were at prior to the operation. The improvement in 

the pain scores seem to be relatively greater than those of the other mobility scores 
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and the post-operative decline seems to be relatively less severe for these quantities. 

The interpretation of the quantities to the right of Going Down Stairs is somewhat 

more difficult since these represent anatomical angles and measurements that are 

best understood by the clinician. 

If we include an additional factor variable into the profile plot, we can split 

the profiles into two groups for comparison. The results of performing such a split 

on the Diagnosis variable are shown in Figure 4.16 where the red lines represent 

the profiles for the osteoarthritis (OA) group, and the blue profiles correspond to 

rheumatoid arthritis (RA). The paleness of the blue profiles is indicative of the 

relatively small size of the rheumatoid group when compared with the osteoarthritis 

group. The plot shows that the two groups typically follow the same pattern of 

sharp improvement and slow decline. However, it appears that rheumatoid group 

display poorer average walking ability and their mean condition at 10-years is, for 

some measurements, actually poorer than the pre-operative state. However, since 

the sample size for this final sub-group is very small (n = 9) there will be a large 

variance attached to this mean value reflecting a high degree of unreliability in the 

position of that point. Nonetheless, we can see that the profiles are typically quite 

close together suggesting a similarity of patient's conditions and their evolution 

between the two groups. The only variable for which there is a possible separation 

of the groups is Weight, as previously discovered in Section 3.2, where patients with 

rheumatoid arthritis are typically lighter. This is a characteristic that is widely 

recognised within the orthopaedic community. The only other distinctions between 

the groups are smaller in scale and occur for a small group of variables including 

Walking Ability and Walking Aids. 

Repeating the process for the two operations yields the plot displayed in Figure 

4.17. From this plot it is quite easy to see that there is very little difference between 

the two operations with the two sets of profiles all lying very close to one another. 

This corroborates previously made statements on the nature of the Operation vari- 

able in Chapter 3. The only noticeable differences are in the values of variables 

such as Weight at the final time point, it being significantly greater for the unce- 

mented operation (blue profile) than for the cemented. However, this is another case 
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of a relatively small sample size (n = 33) giving a value with comparatively high 

variance and corresponding unreliability. The addition of error bars or confidence 
bounds would indicate this unreliability however the graph is already complicated 

and adding such features would likely only confuse inexperienced viewers such as 

clinicians. 

One can also introduce both diagnosis and operation into the profile plot to 

allow for further comparisons. The results are shown in Figure 4.18. The recurring 

steep rise and slow descent pattern is still present in many variables and the strong 
difference between the diagnoses according to the patient's weight remains. However, 

the eye is drawn to the extreme values for the rheumatoid arthritis/uncemented 

combination (purple profile) for variables Fixed Contracture, Hip Abduction and 
Other Knee Fixed Contracture. This is another case of the problem described above, 

where a relatively small sample size (in this case n= 7) produces highly unreliable 

results. It should be noted that the addition of the extra two profiles to the plot has 

markedly increased its complexity and has made it somewhat harder to read and 

interpret. This is a disadvantage of static graphics such as those presented here. A 

computer package could allow for the dynamic combination and division of groups 

of variables and other functions which would aid the separation and identification 

of subgroups. 

These techniques were also applied to the hips data, though the full results are 

omitted for brevity. A standard profile plot for five of the variables in the hips 

data is given in Figure 4.19. The variables have been re-scaled so larger values now 

correspond to a better patient state, in line with the knees data. From this we can 

see that there is, as with the knees data, a sharp increase from before to after the 

operation suggesting a strong improvement. However we can also see that there 

is a second increase from 3 to 12 months suggesting the average patient condition 

continues to improve up to one year after the operation. Since the times for the 

post-operative hips data are at 3 and 12 months and those for the knees data are 

at 1,5 and 10 years it may be the case, and it is not unreasonable to expect that 

had additional data been observed we could have observed a slow decline in patient 

condition after 1 year. When comparing different pathologies, there was minimal 
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Figure 4.19: Profile plot for the five of the key variables of the hips data. 
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Figure 4.20: Profile plot for the five of the key variables of the hips data split 

according to private status. 

difference between the profiles with the exception of the patient's age where people 

with osteoarthritis were, on average, younger than the other patients. The hips data 

also had information on the NHS/private status of the patient and a profile plot with 

these groupings is displayed in Figure 4.20. The plot shows that post-operatively 

the two groups fare in a very similar manner with little distinction between the two. 

However, pre-operatively it would appear that NHS patients typically have a slightly 

poorer condition compared to those patients who went private. This may be due to 

the fact that NHS patients would likely have to spend some time on a waiting list 

before their initial consultation resulting in their condition being more developed. 
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The t-test plot is a simple visualisation for a basic statistical technique. Its usefulness 
is restricted to cases where we are performing several f-tests on a relatively large 

number of variables and it is subject to the usual assumptions associated with t-tests 
in general. However, it does provide an efficient summary of the results. A second 
weakness is that due to the nature of the t-test we can only compare two groups 

simultaneously; to compare more would require use of a plot such as the profile plot. 
The second graphical method, the correlation plot, has been shown to be an effi- 

cient and compact representation of a standard correlation matrix. The correlation 

plot straightforwardly displays the information contained in the correlation matrix 

of the data in a manner which reveals information which could easily be missed 

when examining the number alone. The presence of correlation structure within 
the data such as pairings and other groups between variables is illustrated making 

such patterns easy to detect. A possible extension to the plot would be to consider 

applying it to categorical data using a suitable method of association, such as the 

Goodman-Kruskal Gamma measure of association between ordinal variables [55]. 

The standardised profile plot tackles two of the difficulties inherent in visualising 

the orthopaedic data, namely the problems of the high number of variables and the 

time series aspect to the data. The profile plot presents data for all variables at all 

time points on the same plot, eliminating the need to produce reams of graphs and 

the difficult task of then performing several comparisons between these to interpret 

the data. Possibly the most useful aspect of the plot is that it gives insight into 

the evolution of the patient's condition over time and enables use to observe the 

recurring pattern of a sharp increase followed by a slow decline. One limitation of 

the procedure is that when comparing multiple groups on the same plot, such as 

in Figure 4.18, the plot becomes swamped with information making it difficult to 

interpret. Another problem occurs when the sample sizes are small, which results in 

unreliable values for the conditional means producing extreme values when plotted, 

such as at later time points in Figure 4.18. Using the colour intensity method to 

illustrate the relative sample sizes of each point is a possible method to combat this. 

The standardised profile plots assume that the individual time points are inde- 
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pendent of one another. This is not the case, and so the paired profile plot attempts 

to remedy this. Being similar in structure and appearance to the standardised pro- 

file plot, the paired methodology is more suitable for illustrating the change and 

evolution of the mean patient condition over time. However, information ()ii the 

differences in location that is shown in the standardised profile plots is lost in the 

paired framework. To address this, examining both plots should allow us to gain 

a sound impression of the nature and changes in patient condition over time and 

across groups. The consequent development into the combined profile plot success- 

fully combines the best properties of both plots and presents a single, informative 

plot to display the evolution of the patient status data over time. 



Chapter 5 

Graphical Modelling 

A graphical model is a statistical model which represents dependencies among ran- 
dom variables by a graph in which each variable is a node and each dependencv is 

an edge. Graphical modelling as a statistical methodology can be traced back to 
the early 20th century with foundations in statistical physics [128] and path analysis 
[54]. However, the major developments in the field are of a more recent origin with 

notable contributions by Lauritzen, Wermuth and Cox [25,124,22,83]. 

The goal of this chapter is twofold: first to provide a brief overview of the fun- 

damentals of the graphical modelling methodology; and secondly to apply these 

methods in an exploratory fashion to our orthopaedic data. The chapter is there- 

fore divided into two principal sections covering these two topics respectively. The 

first section provides a review of the notions of conditional independence, the in- 

dependence graph, the graphical models themselves and model selection methods. 

This section is intended only as an overview -a more comprehensive treatise on 

the subject can be found in the books by Edwards [38], Whittaker [125], or finally 

Lauritzen [81] who gives a thorough exposition of the theoretical foundations of the 

methodology. Some applications of these methods available in the literature are also 

presented. 

The second section deals with the application of the graphical modelling methods 

to the two orthopaedic data sets studied previously. The section reviews the assump- 

tions needed to use the graphical models and the analysis of the pre-operative and 

post-operative time points for both data sets. The chapter concludes with a review 

75 
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of the limitations of the methodology encountered in the course of the analysis in 

this chapter with a view to detailing the problems to be addressed in subsequent 
chapters. 

5.1 Graphical Models 

5.1.1 Data and Independence 

Suppose we have a set of variables, V, Il'.... 
,Z say, for which we have a set of n 

observations (vi, wi, ... , zi). To model these data we would assume that V. IV, 
... ,Z 

are random variables with a joint probability density function: 

fe(v, w,... l z), 

where 9 is some unknown parameter or vector of parameters. Thus we coin imagine 

that our data set is simply a random sample of size n from fe. We now hýisc our 

inferences about the population on the values of this unknown parameter 0. 

It is important at this stage to discriminate between two types of variables: 

continuous variables which can take any real value in R, and discrete or factor 

variables which can take values only from a finite set. If a variable X is continuous 

then its density function is written as fx(x), whereas if X is discrete, this density 

may be written as P[X = j] where j is one of the possible levels of X with jE 

{1,2,..., #X}. 

For graphical models, two key notions are those of marginal and conditional 

independence. For a thorough coverage of these topics the reader is referred to 

Chapter 2 of Whittaker [125]. Two variables X and Y are marginally independent, 

written XILY, if their joint density can be written as the product of their marginal 

densities: 

fx, r(x, y) = fx(x)fy(y)" (5.1) 

Equivalently, two variables are marginally independent if the conditional density of, 

say Y given X=x is not a function of x: 

frix(y, x) = fY(y)" (5.2) 
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The advantage of this second expression is that it illustrates that the conditional 
density of Y given X is unaffected by the value of X. 

Conditional independence is an extension of this notion of marginal indepen- 

dence. Suppose we now have three variables X, Y, and Z. If. for every value Z= ti, 

we have that X and Y are independent in the corresponding conditional distribution 

fxylz then we say that X and Y are conditionally independent given Z. In terms 

of the density functions, this statement equates to: 

fxyiz(x, ylz) = fxiz(xl z)fy-iz(yl z). (5.3) 

This is now written as X1LYIZ, where this notion is due to Dawid [261. We can also 

see that marginal independence is a special case of conditional independence when 

Z is trivially empty. It is the interpretation of such conditional independeiice rela- 

tionships that is one of the most appealing feature of graphical models. Conditional 

independence relationships can be seen as statements of irrelevance, for example 

X- LYIZ can be interpreted as: 

If we know Z, then information about Y is irrelevant or uninformative for 

knowledge of X. 

Or, to put it another way if we have observed a value of Z then observing Y does 

not provide us with any further information about the possible value of X. 

5.1.2 Independence Graphs 

The fundamental component of a graphical model is the independence graph which is 

used to depict the conditional independence relationships between pairs of variables. 

A graph, 9, is a structure consisting of a finite set, V, of nodes (or vertices) and a 

finite set, E, of edges (or arcs) between pairs of nodes. A graph can be represented 

as a diagram, such as in Figure 5.1 where nodes are drawn as circles and edges as 

lines joining those circles. These graphs are called undirected since the edges are 

directionless and are drawn with lines. An undirected edge joins two nodes, X and 

Y say, in such a way that X is connected to Y and vice versa. A directed edge 

would represent a one-way connection. Familiarity with basic graph concepts such 
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Pain Frequency Operation Type 

Figure 5.1: A simple graphical model for six variables in the knees data. 
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as adjacency, subgraphs, cycles, cliques, separation and triangulation is assumed. 
For more details see section 1.2 of Edwards [38], section 2.1 of Lauritzen [81] or 

chapter 3 of Whittaker [125]. 

The relationship between the independence graph and the graphical model is 

a straightforward one. Variables in the graphical model are represented as nodes 

in the independence graph. Since we have two types of variables in our data and 

models we represent this distinction on our model graph, which is now known as a 

marked graph since we have groups of different types of nodes. Continuous variables 

are drawn as hollow circles, and discrete variables as solid circles - as illustrated in 

Figure 5.1 where nodes x and y are discrete. Since the focus of graphical modelling 

is the conditional independence relationships between pairs of variables, these are 

represented directly on the graph. The edges drawn on the graph join those variables 

which are not conditionally independent given all other variables in the model, i. e. an 

edge represents a dependency between a pair of variables. Thus for all variable pairs 

(X, Y) such that XILYJ (all other variables), then the edge between X and Y is 

omitted from the graph; all other pairs have edges joining them. 

Formally put, the conditional independence graph of the variables X1, 
... , 

Xm is 

the undirected graph G= (V, E) where V= {Xl, X2i 
.... 

X�i} and (X2, X. ) is not 

in the set of edges E if and only if Xi1LXjlXv\{x;, x; }. 
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Thus, for example, we can see from Figure 5.1 that if this model holds then Pain 

Severity (c) is conditionally independent of Pathology (x) given the other variables 
in this model - c1Lxl{b, d, f, y}. This leads directly to one of the three properties 
that are crucial to interpreting a model graph, the pairwise Itlarkoze property for 

undirected graphs. The other two properties are the local and global Alarkov prop- 

erties which further refine the statements of conditional independence that can be 

drawn from the independence graph. The three Markov properties are: 
Pairwise If two variables are not adjacent in the model graph then they are 

conditionally independent given all other variables in the model. 

Local Each variable is conditionally independent of its non-neighbours 

given its neighbours. 

Global If two sets of variables u and v are separated by a third set of 

variables w, then u1Lv1w. 
It has been shown by Pearl and Paz [96] that all three of these Nlarkov properties 

are, in fact, equivalent. 

Here, we can then use the local Markov property to refine our previous state- 

ment c1Lxl{b, d, f, y} into c1Lxj{b, d, f }. Using the global Markov property, we 

can draw the further conclusion that c1Lxl f. Thus given Walking Ability, then 

Pathology is unrelated to Pain Severity. We can also use these properties to make 

a stronger statement of independence, that is to say that if two sets of variables u 

and v have no edges connecting one set to the other then u and v are marginally 

independent of one another (u1Lv). So from our example, we can see that Operation 

Type (y) is marginally independent of all other variables in the model, and is thus 

not informative about any of those variables. 

The local Markov property is especially useful when considering predicting one 

set of variables from the others and reflects the ideas of irrelevance discussed pre- 

viously. Suppose we wish to predict the values of YCV from the values of the 

remaining variables X=V\Y. If we are given the independence graph over [', 

we can partition X into into the set Xb, which contains the variables which are 

connected to at least one variable in Y (the boundary of Y, bd(Y)), and X, which 

contains the remaining variables. We know from the local \larkov property that 
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YILXTlXb. This statement is equivalent to saying that the conditional density of V 

given both Xb and X, can be written in terms of Xb alone, i. e. fyl{Xb, Xr} = fylXb. 
Consequently, given we know the values of Xb, no further information for predicting 
Y can be obtained from X,.. Thus, Xb are the called the `optimal predictors of Y' 
by Whittaker [125]. 

5.1.3 Association and Causality 

Associations between pairs of variables are identifiable in a graphical model. Dirt" t 

associations occur when two variables are immediately adjacent in the model graph. 
We know that the set of variables connected to a quantity of interest represent the 

variables which are most strongly associated with that quantity and are the set of 
its `optimal' predictors. For example, in Figure 5.1, we can see that Night Pain (d) 

is directly connected to Pain Frequency (b) and Pain Severity (c). 

Indirect associations occur between two variables which are connected via a path 

through other intermediate variables. For example, since there exists a path between 

Pathology (x) and Pain Severity (c), then Pathology will have an indirect association 

with Pain Severity via the intermediate variable Walking Ability. Hence, since there 

is a relationship between Pain Severity and Walking Ability and between Walking 

Ability and Pathology, then changes in Pathology will be indirectly associated with 

changes in Pain Severity via changes in Walking Ability. These associations are 

indirect and only important in the case where we may wish to predict Pain Severity 

when its immediate neighbours are unobserved. 

The application of graphical models to such data can be useful as it helps to 

reveal its underlying association structure. Statements of conditional independence 

about variables and their relationships and interactions can often, as Cox and Wer- 

moth [23] said, "point towards explanations that are potentially causal. " This is 

particularly the case if the model includes a temporal aspect. However, statisti- 

cians traditionally prefer to deal with a world of correlations and associations, and 

are cautious about drawing causal conclusions from their analyses. It is generally 

held that an association between a treatment and a particular outcome does not 

imply that the treatment caused that outcome. That said however, results from 
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well-conducted randomised trials are generally regarded as providing good evidence 
of a causal relationship between treatment and outcome. 

The area of causality has traditionally been the domain of the philosopher rather 
than the statistician, though several probabilistic frameworks for causal inference 
have been developed, such as Rubin's causal model [109] and Pearl's causal graphs 
[95]. A detailed coverage of these topics is outside the scope of this thesis, however 

a brief summary of Eells' theory [40] is as follows. An event C (e. g. treatment) can 
be said to have a causal influence on an event E (e. g. outcome) if two criteria are 
satisfied: 

I. C occurs before E, 

2. For some carefully chosen set of conditions K1..... K, t, 

P[EIC, K1,..., K,, ] P[EJC, K1. 
, 
Kr] 

or equivalently 

A 7,. 

This is intuitively reasonable, since if C was known to cause E given the conditions 
KZ were satisfied, then we would expect a dependency between the two, as the 

occurrence of C would influence the probability of the occurrence of E. However, the 

pivotal statement in this definition is the phrase "carefully chosen set of conditions". 

We may find in an analysis that C and E were conditionally dependent. However 

this dependency may be due to some spurious association with a common cause K 

such that C and E are conditionally independent given K. It is the identification 

and inclusion of all of these extraneous and potentially influential conditions that 

would enable a transition between association and causality. 

When working with temporally ordered data it can be very easy to erroneously 

draw causal statements from graphical models, particularly if the cause variable C 

precedes the effect variable E and they are associated with one another. However. 

in these cases the model would rarely satisfy Eells' second criteria as this would re- 

quire including all possible influential factors into the model to prevent any possibly 

spurious associations being designated as causal relationships. For this reason, calve 

raust be taken when interpreting graphical models and the relationships they model. 
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5.1.4 Types of Models 

5.1.4.1 Pure Discrete Models 
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A prominent advantage of graphical models is that they allow the inclusion of both 
discrete and continuous data in the same model. These so-called mixed models are a 
combination of two standard methods for dealing with exclusively discrete or exclu- 
sively continuous data. In the case where we only have discrete variables (known as 
a pure discrete model), the model corresponds to a loglinear model for discrete data. 
Loglinear modelling has been a popular method which has had extensive treatment 
in the literature, though it has now been somewhat superseded by usage of GUMS. 
To describe such models in the briefest of terms, suppose we had three discrete 

variables A, B and C with #A, #B and #C levels respectively. We would then con- 
struct the contingency table for these variables and calculate the cell probabilities 

Pikt = P[A = j, B=k, C= 1]. The simplest model for these three variables is that 

of independence which would be expressed via the logarithm of the cell probabilities 
that is written, using the notation of Edwards, as: 

In Pjk1 =U+ uý + uB k+ ui 

where the u's are the unknown main effects .. 
Since we are dealing with the log of the cell probability, the additivity of the 

terms here corresponds to multiplicity in the original scale. Therefore we could re- 

express this model as pjkl = pj++P+k+P++t, where + denotes summation over the 

respective index. Thus the cell probability is written as the product of the marginal 

probabilities, thereby demonstrating the independence of A, B and C. To represent 

a dependency, say between variables A and B, we would add a two-factor interaction 

term 14B into the model. For a more substantial coverage of loglinear models, the 

method is described in many textbooks on discrete data analysis such as that by 

Agresti [1]. 

5.1.4.2 Pure Continuous Models 

The pure continuous case corresponds to graphical Gaussian models [125] or covari- 

an ec selection models [29]. Instead of having a multi-dimensional contingency table 
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as with discrete data, our data is now in the form of a series of vectors of contin- 
uous quantities. To model these data, we first suppose that Y= (Y1, 

.... } q)T i, a 
q-dimensional random vector which has distribution Y- Ay(p, E) where u= (µi) 

and E= (air) for i=1, 
... , q, j=1, 

... , q. Covariance selection modelling is es- 
pecially interested in the precision or concentration matrix S2 = E` = ('2j). The 

reason for this focus on the inverse variance is that it has beneficial interpretations 

when we consider the conditional distribution of (Yj, Y2)j(Y;, 
.... I. ). The correki- 

tion between Yl and Y2 in this conditional distribution is the partial correlation of 
these two variables given the rest, written p12-3... 9. This partial correlation has the 

property that: 

P12.3... q=0 <==9 W12=0. ý5.1ý 

If w12 = 0, then the joint density of (Yl, Y2) can factorised into the product of 
their marginal densities. Thus by (5.3): 

Y11LY21(Ys, 
... 1YQ) w12 = 0. (5.5) 

If we have three continuous variables X, Y and Z, then the independence model 

would equate to setting S2 = diag(w ", 
wYY, wzz) To allow a dependency between 

X and Y we would allow wX ' to be non-zero. Thus these elements of the inverse 

matrix play the same role as the two-factor interaction terms in the discrete models 

and these graphical Gaussian models are defined by setting certain elements of S2 to 

zero. 

5.1.4.3 Mixed Models 

Graphical models for mixed discrete/continuous data were introduced by Lauritzen 

and Wermuth [83]. The models for mixed data to be considered here are essentially 

a combination of both loglinear models and covariance selection models which are 

known as hierarchical interaction models and were introduced by Edwards [37]. 

Suppose we have p discrete variables and q continuous variables, where the sets 

of these variables are denoted as 0 and IF respectively. Now write the corresponding 

random variables as (I, Y), and a single observation as (i, y). Here i is a p-tuple 

containing the values of the discrete variables (i. e. the cell of the contingency table 
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in which this observation lies), and y is a vector in Rq. Further suppose that the 
probability of observing this combination of discrete values, i. e. our cell probability. 
is P[I = i] = p(i), and that given I=i the distribution of Y is normal . 

9(µ(i), `'(i)) 

where both the conditional mean and variance may depend on i. This is called the 
conditional Gaussian (CG) distribution, which has density: 

. f(i, y) = p(i)I27r E(i)1-2 exp -2(y - µ(i))TE(i)-1(y - µ(t)) . (5.6) 
This distribution can be thought of as a being a different multivariate Normal dis- 

tribution for the continuous data that is found in each of the cells of the contingency 
table over the discrete data. 

The parameters of this distribution are therefore {p(i), µ(i), >(i)}iEZ, where I is 

the set of all possible i. These parameters are known as the moments parameters. 
The dependency of E on i results in a model that is heterogeneous - this means that 

we allow the variance of the Normal distributions to change across different cells 
in the contingency tables. The nature of these changes in E will depend on which 
discrete/continuous interactions are present in the model. For example if all the 

discrete variables were independent of the continuous variables then we would only 

fit a single Normal distribution to all of the continuous data and E would not depend 

on i. Conversely, if all possible discrete/continuous interactions were present in the 

model then there would be a different E for every cell in the contingency table. 

Removing the dependency and making E constant over i gives a homogeneous 

model - this equates to assuming a single variance matrix to all available data 

irrespective of the values of the discrete variables and any discrete/continuous inter- 

actions in the model. It should be noted that a model with one continuous variable 

and several discrete quantities is similar to analysis of variance (ANOVA) models, 

the only difference being that cell counts are treated as random in this framework. 

Leaving the discrete variables as fixed quantities will result exactly in the ANOVA 

setup. Thus the graphical modelling methodology provides an encompassing frame- 

work for a variety of modelling methods. 

The CG density function can be re-expressed in a more compact form: 

In (f ('i, y)) = a(i) + ß(1)T Y-1 YT Q(i. )y" (5.7) 
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Figure 5.2: A complete graph on three vertices. 
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where cap is a scalar, , 
ßi E 1184 and 1 is apxp positive-definite matrix. These are 

known as the canonical parameters. Hierarchical interaction models are constructed 
by expanding these canonical parameters into the slims of interaction terms, the 

models are then defined in a similar way to the loglinear models by setting higher- 

order interaction terms to be zero. Thus we obtain an interaction expansion for the 

density of the form: 

ln(f (t, J)) _ Aa(t) + rlaýt, )1 zJ -2 yT y (5.8) 

aCL aC acv 

where the sum is taken over all subsets, a, of the discrete variables A. 

5.1.5 Model Properties 

5.1.5.1 Graphical Models 

An important subclass of these hierarchical interaction models is the class of models 

which are graphical. These models are defined by setting a set of two-factor interac- 

tion terms (and their higher-order relatives) to zero. That is to say, the higher-order 

interactions are exclusively determined by the presence or absence of the two-factor 

interaction terms. The significance of these higher order terms is not explicitly 

tested as one might in a regression context, where after including main-effects terms 

one then could test for the presence of pairwise interactions. 

The benefit of adopting this hierarchical approach allows the models to he in- 

terpreted solely in terms of conditional independence. The simplest example of 
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a non-graphical model is a discrete model with three variables A. B, and C with 
interactions expressed as : 

1np=u+uA+uB+uC+uAB+uAC+uBC 

This model includes all pairwise interactions between the three variables u`t B c' AC 

uBC, but excludes the higher-order term uABC and so is non-graphical. Despite its 

non-graphical nature, the independence graph for this model is given in Figure 5.2. 

This graph is identical to the independence graph of the complete model with all 

possible interactions since the pairwise relationships are the same in both cases. If 

we did not restrict ourselves to models which satisfy the graphical property, then 

there would be no way of knowing which higher-order interactions were present in the 

model by looking at the independence graph alone. Thus Figure 5.2 could equally 

represent either of these models. By restricting ourselves to considering graphical 

models then Figure 5.2 would always represent the model including the third-order 

ABC interaction u 

5.1.5.2 Decomposable Models 

A second subclass of these models are the decomposable models. Whilst being some- 

what harder to understand intuitively, decomposable models have beneficial proper- 

ties when fitting a graphical model to data. Namely, the maximum likelihood param- 

eters of a decomposable model have closed-form expressions meaning that they can 

be fitted quickly and without the need of iterative fitting algorithms. Furthermore, 

various computational and theoretical aspects become far more manageable within 

the decomposable framework than when dealing with a general graphical model. 

They also have a beneficial interpretation, namely that a decomposable graphical 

model can be `decomposed' into a sequence of univariate conditional regressions. 

We define a graphical model as being decomposable if and only if: 

1. the model graph is triangulated; 

2. the model graph does not contain any path between two non-adjacent discrete 

vertices passing through only continuous vertices. 
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Whilst there are many definitions for decomposability the above 'forbidden path' 
definition is the most easily comprehensible. The exact details and theory behind 

decomposability is a large and expansive area that is well beyond the scope of this 

thesis. See Lauritzen [81] and chapter 12 of Whittaker [125] for details. 

5.1.6 Models, Graphs and Formulae 

Graphical models and their associated independence graphs provide a compact rep- 

resentation for the complex association structures of the data and the underlying 

parametric model. However, it is often useful to be able to express the model in 

terms of a model formula, rather than relying on the independence graph for its 

definition. Indeed for a given independence graph for mixed data there are two aas- 

sociated graphical models - the homogeneous model and the heterogeneous model. 

Therefore, a model formula is useful to eliminate this potential confusion. 

Both Edwards and Whittaker present methods for representing a graphical model 

in a formula, and it is the method of Edwards that shall be discussed here. Given 

an independence graph for a graphical model, we express the model formula in the 

following form: 

dl,..., ;/111. .. , l; 
/ ql q; (5.9) 

discrete linear quadratic 

The formula is composed of the following three main components, each being a 

set of generators: 

1. The discrete generators, dj, specify the interaction expansion for a(i) as 

defined in (5.7). These generators are the cliques of c, where ýý is the 

subgraph of G over the discrete variables. 

2. The linear generators, 1j, specify the interaction expansion for , Q(i), the linear 

coefficient of y in (5.7). These generators are the cliques of cýu{7} that contain 

ry for each ry E F. Note the union of these cliques for a given , form the 

discrete boundary of 'y and so represent those discrete variables which are 

directly associated to a continuous variable ^/. 
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Figure 5.3: A graph on five vertices. 
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3. The quadratic generators, qj, specify the interactions for the inverse covari- 

ance matrix S2(i), and depend on whether the model is homogeneous or het- 

erogeneous. If it is homogeneous, then the generators are simply the cliques of 
gr, since the discrete variables do not affect the expansion of Q(i). If the model 

is heterogeneous then the generators are the cliques of 9 which intersect F, 

i. e. the cliques of the model graph containing at least one continuous variable. 

The reason for defining the model formula in terms of cliques is that the cliques 

of the graph represent the set of maximal interactions for the model and so are the 

most compact representation for the model formula. To illustrate the relationship 

between an independence graph and a model formula, consider Figure 5.3 where 

we have an independence graph for variables A= {A, B} and F= {X, Y, Z}. The 

cliques of this graph are AXY, ABX, BXZ. 

The discrete generators for this graph are the cliques of the subgraph over the 

discrete variables - simply AB. The linear generators must be considered for each 

continuous variable and so are ABX, AY, BZ. The quadratic generators for the 

homogeneous model are the cliques of the subgraph of the continuous variables 

which are XY, X Z. The heterogeneous quadratic generators are the cliques of the 

model graph containing at least one continuous variable, which are all the cliques 

of the graph AXY, ABX, BXZ. So we have two possible formulae for this graph - 
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the homogenous formula: 

AB/ABX, AY, BZ/XY, XZ 

and the heterogeneous formula: 

AB/ABX, AY, BZ/AXY, ABX, BXZ. 
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The process of obtaining an independence graph from a model formula is far 

simpler. Beginning with a graph with no edges, for every pair of variables (x, y) that 

appear in the same model generator in the model formula we connect their respective 

nodes in the model graph. We can then quickly construct an independence graph 

and determine which interactions are present in the model. 

5.1.7 Likelihood, Fitting and Software 

Whilst it is perhaps difficult to grasp immediately the reasons for the nature of this 

model formula given in (5.9), if we consider the model likelihood then the benefits of 

this specification format may become apparent. To consider the model likelihood we 

first need some data. Let (i(k), y(k)) for k=1, 
... ,N 

be a sample of N independent, 

identically distributed observations of the variables (I, Y). Now, let (ni, ti, SSi) be 

the observed counts, variate totals and uncorrected sums of squares and products. 

For aCA, the marginal cell corresponding to i is written as ia; similarly for dCF, 

the subvector of y is written yd. We then express the marginal sample statistics 

corresponding to aCA and dcF as (nia) t ä, SS ä ). 

Now let us consider a model with the formula dl, 
... , 

d, 111,..., l3/ql, ... , qt. It 

can be shown that a set of minimal sufficient statistics is given by: 

1. The set of the marginal tables of the cell counts {nia}jQEZa corresponding to 

the discrete generators, i. e. a= dl, 
... , 

d,.. 

2. The set of the marginal variate totals {t ä }iaEia corresponding to the linear 

generators, i. e. a= lj n 0, 'y =inr, for j=1, ... , s. 

3. The set of the marginal tables of the uncorrected sums of squares and products 

}2QEZa corresponding to the quadratic generators, i. e. a= qjn . \. and SS j' 
d=gjnrfor j =1,..., t. 
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As these generators dictate a choice of sufficient statistics, they are also pivotal 

to the likelihood equations. If the graphical model is decomposable then the maxi- 

mum likelihood estimates of the canonical parameters have closed form expressions. 

However in general, an iterative procedure known as the MIPS algorithm [53] is used 

to obtain the parameter estimates. The fitted marginal counts, totals and sums of 

squares are denoted as mia, ET ä, and ESS a. A starting point for the algorithm 

is required but the fitting process is insensitive to this so typical values for the mo- 

ments parameters are taken to be mi = 1, µ7 = 0, and Ei =I for all i, EI and 

-yEF. 

We first convert the initial parameters and the sample statistics to canonical 

form. The algorithm consists of a series of cycles, each of which is composed of three 

steps. Each step takes the same form by updating the current canonical parameter 

estimates by adding a value calculated from our sample statistics and subtracting 

a value computed from the fitted quantities. For example, one step updates the 

discrete canonical parameters, a(i) for each i using the following update rule: 

a(i) = a(i) + ln(flja) - 1n(mtj 

for each aE {d1,. 
.., 

d,. }, i. e. a is the set of variables contained in a single discrete 

generator. The update steps are similar, though more complex, for the other steps. 

These cycles are continued until convergence occurs. If the model is decomposable 

then the algorithm will converge after the first iteration provided the steps are 

performed in a specific order. 

We can see that the model generators given in the model formula are not only 

an efficient specification in terms of the models interactions, but also for sufficient 

statistics and the calculation of the parameter estimates. 

Having obtained a set of parameter estimates, we can then use these parameter 

estimates to further deepen our understanding of the associations between pairs of 

variables that thus far have only been shown to be present or absent. Examination 

of the fitted parameters will give quantitative information on the magnitude and 

direction of these associations. For example, we know that the `optimal' predictors 

for a given variable are its immediate neighbours on the model graph so we can 

use the fitted distribution to obtain the equation for this relationship. This can 
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be achieved by marginalising the CG distribution and, essentially. integrating (or 

summing) out unwanted variables. In the case of a group of continuous variables 

we will obtain a linear equation for our dependent variable. In the case of discrete 

variables we will obtain a marginal table of probabilities. However, if the data are 

mixed then care must be taken when performing such marginalisation. For example, 
if we have a binary discrete variable, b, and a number of continuous quantities 
then we will obtain two fitted Normal distributions, one for each level of b. If b is 

independent of the continuous variables then the fitted distributions will be t he same 

and we can safely marginalise over b. If this is not the case and the t«wo distributions 

are different, then marginalising out b will not result in a Normal distribution and 

the values obtained will not be appropriate. 

Unfortunately, standard errors are not available for the fitted paraiºieters of 

graphical model obtained in the manner described. Therefore it is not possible to 

construct confidence intervals or to perform significance tests on the fitted parame- 

ters. However, for pure continuous models some work by Roverato and Whittaker 

[108] has revealed the form of these standard errors which are expressed in terms of 

the Isserlis matrix of E [64]. 

The fitting of graphical models is a complex process and is typically accomplished 

via specialised software packages tailored to manage such statistical models. One 

such package is the application MIM [38] which allows mixed data modelling of both 

undirected graphical models and chain graphs (chain graphs will be fully discussed 

in Chapter 8). MIM supports a wide range of edge deletion methods from standard 

deviance difference tests and small sample F tests to tests specific to particular 

data types such as Fisher's exact test and the Kruskal-Wallis test. A further soft- 

ware application dealing with graphical models is the DIGRAMI package [74] which 

tackles the problem of chain graph models for discrete variables again supporting 

a wide range of tests including Pearson's X2 and partial -y-coefficients for assessing 

conditional independence of variables. CoCo [6] is another program designed to deal 

with pure discrete models and analyse contingency tables. CoCo contains a vari- 

ety of exact conditional tests for decomposable models as well as supporting model 

search via the BIC criterion or p-values. TURNER [79] is another package designed 
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for analysis of discrete data with loglinear methods that are visualised by graphical 
hierarchical loglinear model. 

5.1.8 Model Selection 

The selection of a final graphical model consistent with the data is a complex and 

computationally difficult process. Two of the simplest methods are: 

1. Backward stepwise selection from the full saturated model over the variables, 

2. Forward stepwise selection from the independence (main effects) model over 

the variables, 

Both methods begin with an initial model and then attempt to include or exclude 

additional edges into the model. There are various methods of testing the importance 

of the inclusion or exclusion of an edge into or from the model. However the method 

that will be discussed here is that of the asymptotic x2 likelihood ratio test. In the 

case of backward selection, the saturated model is first fitted to the data and its 

likelihood calculated. Then the candidate edge is removed and this sub-model is 

fitted, and its likelihood calculated. The resulting likelihood ratio is then compared 

to a X2 distribution with the appropriate degrees of freedom to obtain a significance 

probability. After testing all edges in the model, the least significant edge is removed. 

For forward selection the process is reversed, with the most significant edge 

being added at each stage. The advantage of backward selection is that it begins 

with a complete model that will be consistent with the data and the model selection 

prunes away any unnecessary dependencies from the model. The key disadvantages 

with this approach are that with large problems it may not be possible to fit the 

full saturated model due to the potentially huge number of parameters and will 

typically result in models that are over-complicated. In such cases a forward selection 

strategy may be employed where we begin with the independence model and include 

significant edges. However, in this case we are starting with a model that is likely 

inconsistent with our data and are seeking to improve its performance. 

Alternatives to the 12 approach include a deviance-based F-test, exact condi- 

tional tests and, for specific data, tests such as the Jonkheere-Terpstra test for 
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ordinal data. Model comparison can also be based on the information criteria AIC 

and BIC which can be expressed as functions of the maximised likelihood under 
the model. The various model comparison tests are fully described in chapter 6 

of Edwards [38]. Drton and Perlman [35] propose an alternative step«wise, selection 

method to those given in Edwards, which directly tests for zero partial correlations 
in covariance selection models whilst controlling the error rate for incorrect edge 
inclusion. 

There are, of course, alternatives to the stepwise model selection discussed here 

-a global model search for example is a process whereby the space of all possible 

models is searched for one or more suitable models. Roverato and Paterlini propose 

such a model selection methodology using genetic algorithms [107], whereas Edwards 

and Havränek developed the EH-Procedure [39]. These global search iiicthods have 

the advantage that they are less likely to overlook good models than the stepwise 

selection methods. However, they also suffer from the problems due to the sheer 

size of the model space that they are searching when the dimensionality is large. If 

there are m variables in the model then there are rrt(nm - 1)/2 possible edges in the 

graphical model for these variables, and hence a total of 2"ß(m-1)/2 possible graphical 

models to consider. This exponential increase in the size of the search space can 

render these methods either impractical or computationally infeasible. However, 

with smaller-sized models these methods will likely provide superior results than 

the simple stepwise methods. 

5.2 Application of Graphical Models to the Or- 

thopwdic Data 

5.2.1 Methodology 

The computer package MIM [38] was used to fit graphical models to the various 

data sets using the fit or cgf it commands. Models were selected via the stepwise 

command. For both data sets mixed graphical models were constructed by using 

a forward selection strategy from the main effects model over the patient status 
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variables plus additional demographics or interesting factors. The reason for us- 
ing forward selection rather than backward elimination was because the complete 

saturated model contained too many parameters to be determined using available 

computer memory. Additionally, to use backward elimination on models when we 
have so many variables would likely result in a model that was over-complicated. A 

forward selection strategy would instead lead to a simpler final model for the data. 

The forward selection was performed in the space of heterogeneous models. That is 

to say that the variance of the conditional Gaussian distribution was allowed to vary 

between cells of the contingency table. The assumption of homogeneity whereby all 

variance matrices were considered to be equal was considered to be unreasonable 

and tests of this assumption corroborated this. 

The edge selection process used the Bayesian Information Criterion [112] rather 

than the standard X2 tests. The motivation for this is that at any stage in the 

development of the model, a number of highly significant edges will be eligible for 

inclusion in the model. Due to their large associated test statistics their p vallies 

will be close to 0. If the tests of two distinct edges had the \2 values of 50 and 50 

000 respectively with the same number of degrees of freedom (typically 1 or 2), both 

would have p-values which were imperceptibly different from 0. In this case, the first 

examined edge from the pair would be selected, rather than the one with the largest 

value of the test statistic. This often leads to models that have many significant 

edges attached to the first few important variables due to their ordering in the data 

matrix, rather than models that have included the most important edges. Use of an 

information criterion such as AIC [2] or BIC eliminates this problem as the criterion 

values for every tested edge are compared directly and the most important edge is 

then included. The reason for favouring BIC over AIC can be given by considering 

the formulae for both criteria: 

AIC = -2L - 2p, 

BIC = -2L - np, 

where L is the maximised log-likelihood tinder the model, p is the number of free 

j)1rainwters of the model and n is the number of observations. We can observe that 



5.2. Application of Graphical Models to the Orthopaedic Data 95 

since BIG incorporates a term in n, as we have an increasing number of observations 

a selection method using BIG will favour simpler models compared to selection using 
AIC. Since the orthopaedic data have many observations, we will obtain models that 

are not overcomplicated and are relatively straightforward to interpret. 

5.2.2 Verification of Initial Assumptions 

5.2.2.1 Ordinal Data 

The patient status variables in the orthopaedic data sets are either purely ordinal (in 

the case of the hips data), or a mixture of ordinal and continuous quantities (for the 

knees data). Both data sets have ten or more of these ordinal variables, each with 

a total of five possible values. If, for example, we treat these ordinal variables as 

such when fitting a graphical model to the pre-operative hips data we would seek to 

build a pure discrete model over the underlying contingency table. However the hips 

data is composed of twelve five-point ordinal variables resulting in a 12-dimensional 

contingency table containing in excess of 200 million cells. Including any additional 

factor variables into this model such as sex, diagnosis, or treatment type would 

further increase the size and dimensionality of this model. 

Needless to say such a model is unwieldy to the point of being impossible to fit 

for three reasons. Firstly, the vastness of the contingency table means that given 

the available data we would likely end up with a sparse table with ruaily zero counts 

due to the fact that a large number of the possible combinations of the values of the 

variables will be unobserved. Secondly, since the table is so large there would be 

a correspondingly huge number of parameters to estimate for the fitted model and 

there would almost surely be insufficient data to do so. Finally, the computation and 

processing power required to construct and store the contingency of the data is far 

beyond that of the 2.3GHz Pentium IV machine with 512\Ib RANI that was used to 

fit these models, which is to say nothing of what would be required to perform the 

stepwise model selection and fitting of each successive model. Even if these three 

problems were eliminated, the interpretation of such a model would be extremely 

difficult. 
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Therefore, before the graphical modelling techniques are applied to the or- 

thopaedic data sets we assume, as we did in Chapter 3, that all ordinal variables 

within both data sets can be approximated as continuous variables for the purpose 

of this analysis. This changes our patient status models to pure continuous graphical 

models which correspond to a multivariate Gaussian distribution, or a conditional 
Gaussian distribution given any further discrete factors included in the model. Using 

such an approximation will allow for the selection and fitting of a graphical model 

to the data. 

However, the model selection procedure may have differing results when compar- 
ing the final model for the ordinal variables with the final approximate continuous 

model. Whilst the models underlying the ordinal and continuous models are fun- 

damentally different and incomparable, the conditional independence structure of 

the model can be compared. To investigate this possible discrepancy, models were 

fitted over a subset of variables from the knees data. Whilst it was not possible to 

obtain a discrete model over all the ordinal variables, it was possible when restricting 

ourselves to examining a subset of seven variables. Using the package MINI, the vari- 

ables could be considered as discrete, ordinal or continuous. Therefore pure discrete 

and pure ordinal graphical models and an approximate continuous graphical model 

were fitted to the same subset of seven variables. The three models were obtained 

by forward selection from their respective main effects models. The resulting model 

graphs are shown in Figure 5.4. 

We can see immediately from Figure 5.4 that there is a strong overlap in terms 

of the detected dependencies between the seven variables with all three graphs being 

similar. The continuous model introduces arcs which are not present in the ordinal 

or discrete models - specifically Pain Severity (pains) and Night Pain (painn) are 

joined, as are Going Up Stairs (gu) and Sitting Down (sd). Closer investigation 

reveals that the ordinal model graph is, in fact, a subgraph of the continuous model 

graph suggesting a good degree of similarity in terms of the independence relation- 

ships between the variables. The model graph resulting from treating the data as 

categorical variables is almost identical to the ordinal model with the exception 

that in this discrete case it is Pain Frequency (painf) that is associated to Walking 
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painf 

(a) Continuous 

(c) Ordinal 

painf 

(b) Discrete 

Figure 5.4: Comparison of model graphs obtained for seven ordinal variables from 

the knees data when the variables are treated as ordinal, discrete or approximated 

as cont1IIluous. 
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Ability (wab), whereas in the ordinal model this association is with Pain Sez'erity 
(pains) instead. In conclusion, despite some deviations the various models appear 
to be quite similar in terms of their conditional independence structure despite the 
fact that the underlying models are fundamentally different. This appears toi be an 
encouraging result which could suggest that a continuous approximation would not 
be an unreasonable course of action. 

5.2.2.2 Multivariate Normality 

One of the fundamental assumptions underpinning the framework of the graphical 

model is that the continuous variables in the data follow a multivariate Normal 

distribution given the values of the discrete variables. We know from the exploratory 

analyses conducted on both data sets in Chapter 3 that the patient status variables 

seldom exhibited Normality. Some of the continuous variables in the knees data, 

such as Age and Weight, were approximately Normal, but others such as Extension 

Lag were heavily skewed. Box-Cox transformations of these variables did little to 

improve this situation. 

The assumption of multivariate Normality also becomes less valid now the ordinal 

data are to be approximated as continuous. As seen in the quantile plots of these 

variables in Chapter 3, there is a strong step pattern produced by the granularity of 

the ordinal data. This pronounced non-Normal behaviour of the ordinal variables 

could pose a potential problem to the development of the model. Unfortunately, 

there is little information available in the literature about the sensitivity of graphical 

modelling to departures from Normality. There has, however, been some work done 

on examining the sensitivity of the model selection process to the contamination 

of data by outliers [77]. It was demonstrated that outlier observations in the data 

exert a definite influence on the final selected model. Furthermore, it was shown that 

the degree to which the data set has been contaminated by these outliers governs 

the level of this influence with the most extreme contamination resulting in the 

most profound departures from the `true' model. However, there were typically few 

extreme observations in the orthopaedic data and those cases which were extreme 

were removed from the analysis. 
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To assess whether there would be any benefits to performing Box-C'OOX transfor- 

mations of the data prior to the modelling process, a pair of models will be con- 

structed one using raw data and the other using the transformed data. The powers 

used in the transformation are those given in Table 3.1. The resulting model graphs 

are displayed in Figure 5.5. Firstly, we can see that the model for the transformed 

data appears to be more complex with apparently more edges in the independence 

graph. Further investigation shows that the model graph for the raw data contains 

a total of 35 edges, whereas the model for the transformed data contains to edges 

which corroborates this increase in complexity. This increase is likely attributable 

to the slight improvement in the Normality of the data. Despite the differences in 

complexity, the two models do appear to be quite similar and we find that the two 

models share 25 of their edges, which is the majority for both cases. The main 

difference between the two graphs is that the model for the original data has several 

edges emanating from the node n, corresponding to Sitting Down. The transformed 

model instead connects these edges with node m (Rising Up). Both of these vari- 

ables are closely correlated to one another (r = 0.994) and so one of the pair could 

be viewed as being a proxy for the other, suggesting that these edges are actually 

common structure to both models. 

In conclusion, we can observe a strong overlap in the independence graphs ob- 

tamed from the raw and the transformed data. This reflects the fact that the 

Box-Cox transformations are having a minimal effect on the associations between 

variables thereby giving rise to a model that is fairly similar to the model of the 

original data. The main advantage of transforming the data is that we (hopefully) 

improve the Normality of our data and so are in a better position to apply the graph- 

ical modelling techniques. However, the price of obtaining this slight improvement 

is the loss of the interpretability of our model. Specifically, this is of importance 

in the clinical setting where information about the relationships between pain mea- 

sures could be easily understood, but relationships between the pain variables to 

the powers of 0.68,0.83 and 0.88 could be meaningless. 

Since the model of the transformed data is rather close to the model for our 

original data we have obtained little practical benefit from performing the transfor- 
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mation. Therefore the original untransformed data will be used, despite the violation 
of the multinormality assumption. 

5.2.3 Results - Knees Data 

5.2.3.1 Pre-operative Data 

Under the above assumptions, the graphical modelling techniques discussed in Sec- 

tion 5.1 were applied to the 20 patient status variables with the addition of five 

further variables that are either relevant demographics or potentially interesting 

factor variables. These variables are: Sex, Age, Diagnosis, Operation and Sidle,, 

where the final variable encodes whether it is the left or right knee that is to be 

replaced. A mixed graphical model was constructed by using a forward selection 

strategy from the main effects model for the 25 variables. The reason for this was 

that to perform a backward selection strategy from the saturated model where we 
have so many variables would likely result in a model that was over-complicated. 

Therefore to obtain a simpler final model for the data a forward selection strategy 

was employed instead. A further reason for not performing backward elimination 

from a full saturated model was that the saturated model could not be fitted in 

MIM. By iteratively including significant arcs into the model we can progressively 

develop and refine a conditional independence framework for the data. The resulting 

model graph is displayed in Figure 5.6 where the graph is presented in a standard 

ring layout and also in a rearranged layout which emphasises the structure present 

in the model. 

Whilst the conditional independence structure can be read from the first graph 

in Figure 5.6, it is far clearer in the rearranged layout in the second graph. From 

this graph we can observe that there is a strong group structure present among the 

variables along the lines mentioned in Chapter 3 and also seen in the correlation plots 

in Section 4.2. For example we can see that the three pain variables (nodes g, h and 

i) are all interconnected indicating that all three variables are mutually dependent. 

This is to be expected as they measure a similar quantity. The pain variables also 

appear to be closely related to Stability (node J). This marginal independence of 

0 
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Figure 5.6: Final model for the pre-operative knees data. 
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these quantities suggests that they represent an aspect of the patient's status that 

is neither represented nor captured by any of the other patient status variables. 

Other such independent groups of patient status variables include the Fixed 

Contractures (nodes s and w), the uncorrelated variable Extension Lag (node u), 

and finally the main group of walking ability scores plus the Hip Abduction and 

Flexion measures. The partitioning of the variables into these distinct groups is 

to be expected and is likely a direct consequence of the block structure within the 

correlation matrix of the data, since each of these groups exhibited moderate to 

high correlations with other group members and negligible correlations to variables 

outside the group. The correlation structure aside, its is not surprising to observed 

this group behaviour since many variables are notionally similar, such as the pain 

scores and the walking ability measures, or are the same measurement taken on both 

knees (or hips). 

A particularly useful feature of graphical models is that one can read conditional 

independence relationships directly from the model graph. For example, a node 

A that has only a single edge connecting it to another variable B is conditionally 

independent of all other measurements in the model given node B. For example, 

the node for Going Down Stairs (q) has a single edge connecting it to node Going 

Up Stairs (p) which is, in turn, connected to many other walking ability measures. 

Going Down Stairs has a direct association with Going Up Stairs, but no direct 

association with the other walking ability scores. However, it is associated with 

other walking ability variables indirectly via changes in Going Up Stairs, which could 

then influence the values of the others. We know from Section 5.1.2 that a quantity's 

optimal predictors are its direct neighbours and that other variables are redundant 

given these optimal variables. Hence, if we wish to learn about the patient's walking 

ability and we know the value of Going Up Stairs, then any information contained 

in Going Down Stairs is irrelevant to us because we have already as much as we can 

by observing Going Up Stairs. This suggests that variables like Going Down Stairs 

which `hang off' the graph in such a way are uninformative when one wishes to learn 

about the possible values of other variables in the graph, such as in prediction. 

There are many nodes in the model graph which are connected by a single 
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edge. These commonly appear to occur where we have variables that were strongly 

correlated, such as Going Up Stairs and Going Down Stairs as discussed above. 

However, this pattern also holds for the Fixed Contractures (nodes s and w), the Hip 

Abductions (v and y), and the pair {Rising Up, Sitting Down} (n, m). Uncorrelated 

variables such as Extension Lag and CTF Angle also have only a single association, 

but in these cases the associations are to discrete variables rather than continuous 

ones. Both of these variables remain marginally independent of the other patient 

status indicators in the model. 

Since every arc in the model graph represents a dependency between a pair of 

variables then examining the number of arcs associated with each variable would give 

an indication of how important a particular variable is in terms of determining values 

of others. Such values are tabulated in Table 5.1. A variable with a large number 

of edges forms a `hub' or `focus' in the model graph - this is the case with Going 

Up Stairs, Walking Ability and Rising Up (nodes p, k and n) which have many 

connections to other variables. This indicates, for example, that 7 other patient 

status variables are dependent on the value of Going Up Stairs making it a useful 

variable for determining the values of these other variables. Conversely, we can say 

that Going Up Stairs itself can be best determined using a combination of the same 

7 measurements. It should be noted that since the model graph is separated into 

disjoint groups of variables these three variables are the foci of the group of walking 

ability variables only, indicating their importance to that particular subgroup of 

variables. Nonetheless, these variables are assessments of the patients mobility and 

were all strongly correlated to many other walking ability variables therefore it is 

not unreasonable to see these variables as foci of that component of the graph. 

At the other end of the scale, variables with few arcs feeding into them exhibit 

greater conditional independence with variables such as Other Hip Abduction and 

Going Down Stairs which are conditionally independent from the majority of the 

model graph given those variables to which they are connected. Variables with no 

arcs joining them to others, such as Side, are marginally independent. This is to 

say that they are neither informed by nor informative for the values of any other 

variable. 



5.2. Application of Graphical Models to the Orthopaedic Data 105 

Variable I Num. Edges 11 Variable I Num. Edges 

Going Up Stairs Age 

Walking Ability 7 Diagnosis 

Rising Up Operation 

Sex Stability 
4 

Standing Sitting Down 
1 

Pain Severity Going Down Stairs 

Night Pain CTF. Angle 

Flexion 3 Extension Lag 

Hip Abduction OK. Fixed Cont. 

OK. Flexion Other Hip Abduction 

Weight Side 0 
3 

Pain Frequency 

Fixed Contracture 

Table 5.1: Table of the number of edges connected to each in the graphical model 

for the pre-operative knees data. 

In terms of the medical implications of this model, firstly we can see that there is 

definite structure to the various component measurements of the Nottingham Knee 

Score described in Section 2.2.1. It is clear that the components form a number 

of distinct groups of closely associated variables. These comprise a large group 

of walking ability measures plus the flexion and hip abduction scores, a group of 

the pain scores plus Stability, the group formed by the pair of Fixed Contracture 

scores and the two independent variables Extension Lag and CTF Angle. The fact 

that the majority of the variables form a single group suggests that there is some 

overlap in the information represented by these quantities and that by observing 

all of the variables in this group we will likely introduce some redundancy into the 

composite score by replicating similar information. There is also evidence of several 

measurements that are conditionally independent given a small number of other 

variables suggesting that they are perhaps representing quantities that are more 

independent of the main body of patient status variables. This may correspond 

to them conveying relatively novel information that is not captured by the other 
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variables. If so, these variables would be important inclusions into the composite 

score as they capture novel information. However conversely these variables will be 

of little use for prediction as they are minimally related to one another. 

Of the demographic variables, Sex (c) has some association with the walking 

ability scores via Walking Ability itself and Walking Aids. There will then be a 

consequent indirect association with the other variables of the group since there 

is a path from Sex to those other measurements. Sex also is the only variable in 

the model to display an apparent association with the value of CTF Angle. These 

dependencies between discrete and continuous variables correspond to significant 

sex differences in the values of these measurements. The other two demographic 

variables were Age and Weight (a and f). Age was only connected to Weight, and 

Weight to Sex. Hence they had little direct impact on the model, though their 

association to the Sex may indicate a possible, if indirect, bearing on the patient's 

status. 

In terms of the patient's Diagnosis and Operation (nodes b and e), neither vari- 

able had any major association to the patient's pre-operative status. An association 

was found between Diagnosis and Fixed Contracture, but it remained marginally 

independent of the walking ability and pain measurements suggesting a minimal 

association between the pathology and the patient's status. The veracity of this 

assertion appears to be in doubt however, as we observed there to be a noticeable 

difference between the weights of patients between the two pathology groups. This 

association in the form of an edge joining nodes f and b is not present in the model. 

Further investigation reveals that such an edge would be highly significant if in- 

cluded into the final model, however doing so would render it neither graphical nor 

decomposable. The loss of these two properties would pose significant problems for 

the interpretation and calculation of the model. However, if added the edge would 

represent a significant and obvious association. Nonetheless, in the model selection 

it appears to have been overlooked in order to preserve the mathematical properties 

of the resulting model. This raises the question of how many other potentially sig- 

nificant associations were present in the data that could not be included in the final 

model due to the constraints of the graphical modelling framework. 
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The Operation variable is also marginally independent of the majority of the pa- 
tient status variables with the exception of Extension Lag which, under the model, 
displays a small change in mean and a large change in variance between the two 
treatment groups. It is important to keep in mind that in chronological terms 

that the value of Operation would be determined after we have observed the pa- 
tient's status. Furthermore, since the data was from a trial where Operation was 

randomised we would expect to have no associations. However this association to 

Extension Lag must be present due to either sample variation or as a consequence of 
the profound non-Normality of the variable resulting in a spurious association. The 

variable Side (node d) is marginally independent of all other variables, implying 

that the side of the body that is affected has no influence on the patient's condition. 

5.2.3.2 One-Year Post-operative Data 

The final graphical model for the 1-year post-operative data was obtained using 

the same process as with the pre-operative data. The model's independence graph 

is shown in Figure 5.7 again using both the default ring layout and a rearranged 

layout to ease the interpretation of the model (note that the rearranged layout for 

the post-operative model is different from that for the pre-operative model). 

We can see by superficial comparison of the model graphs in Figure 5.6 and 

Figure 5.7 that the pre- and post-operative models differ slightly in terms of the 

arcs present. Comparison is most easily made between the graphs where the nodes 

are arranged in a ring since all the variables occur in the same locations in both 

graphs. From these graphs, we can observe that there are some changes in the 

edges present, the most obvious of which being those emanating from Sex (node c). 

Looking at the rearranged layout in Figure 5.7, we can notice that post-operatively 

all the patient status variables are now connected; the disjoint groups of variables 

seen in the pre-operative model are no longer present. This is likely due to the 

fact that the post-operative data are more correlated which would suggest more 

dependencies within the data. 

These apparent differences aside, further investigation reveals that 19 of the 

edges in the pre-operative model remain present in the post-operative graph. This 
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Figure 5.7: Final model for the 1-year post-operative knees data. 
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equates to 63% of the pre-operative edges being preserved, suggesting that there 
is a persistence in a core number of relationships which remain unaffected by the 
intervention of the operation. Looking at the table of edge counts in Table 5.2 we 

can see that Going Up Stairs, Walking Ability and Rising Up now have fewer edges 
implying their importance in terms of the other variables is reduced. Additionally, 

the post-operative model differs from the pre-operative model by the increased num- 
ber of associations with Walking Aids -a variable that was pre-operatively far less 

dependent on other measurements. 

The obvious groups of conditionally independent variables observed in the pre- 

operative model also persist in the post-operative model, though they are perhaps 
less evident as the variables are typically more connected than before. Nonetheless, 

the groups of variables such as the pain scores and the pairs of hip abductions and 
fixed contractures can be seen on the model graph. Their associations have not been 

disrupted by the intervention of the operation. This could suggest that there exist 

natural fixed relationships that exist among these variables giving rise to a degree 

of constancy in the structure of the model. 

The three demographic variables of Age, Weight and Sex have similar relation- 

ships in the post-operative model as they did pre-operatively. The only differences 

are in those variables which show a dependency on Sex, and hence exhibit notable 

sex differences such as CTF. Angle. The other two variables are Extension Lag 

and Night Pain. This suggests that there is still a difference between the status of 

patients of different sexes post-operatively. However, it also suggests that sex now 

only directly associates with the patient's pain rather than their walking ability. 

Nonetheless, since all variables are connected there will be an indirect sex relation- 

ship carried through the model via its association to Night Pain. 

The marginal independence of Diagnosis and Operation is new in the post- 

operative model. However the interpretation of these apparent independences now 

differs from that made with the pre-operative data. Since both variables were de- 

termined prior to gathering the post-operative patient status data, the directions of 

implication are reversed. Therefore, we can infer that the choice of treatment has no 

significant association with the patient's status at 1-year after the operation. That 
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Variable Num. Edges Variable `um. Edges 

Walking Aids 6 Weight 

Going Up Stairs Sitting Down 
5 2 

Night Pain Fixed Contracture 

Sex OK. Flexion 

Walking Ability Age 

Rising Up CTF. Angle 

Standing 4 Extension Lag 1 

Going Down Stairs OK. Fixed Cont. 

Flexion Other Hip Abduction 

Hip Abduction Diagnosis 

Pain Frequency Operation 0 

Pain Severity 3 Side 

Stability 

Table 5.2: Table of the number of edges connected to each in the graphical model 

for the post-operative knees data. 

is to say that the two operations types Cemented and Uncemented perform in a 

similar manner with neither treatment being apparent superior to the other on the 

basis of the given patient status information. This directly agrees with the profile 

plot in Figure 4.17. Additionally, we can say that all patients respond in a similar 

manner irrespective of their underlying pathology with the rheumatoid arthritis and 

the osteoarthritis groups showing no significant differences. We can also infer that 

both groups respond to the two treatments in similar ways with neither of the pos- 

sible treatments being most applicable to patients with one condition or the other. 

The marginal independence of Side remains in the post-operative data. 

5.2.3.3 Joining the Pre-op and Post-op Models 

In order to construct a model over both the pre-operative and the 1-year post- 

operative data requires including all variables from both time points into the model. 

Consequently the initial model would be ultimately far more complex than those 

studied in the previous sections, and the number of possible pairwise interactions 
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would be huge. Nevertheless, an attempt was made to construct such a model en- 
compassing both time points. The initial model was, as before, that of independence 

and forward selection was begun. However, due to the sheer size of the model, the 

amount of data available and the number of parameters associated with this model 

each edge inclusion test was taking approximately one minute to evaluate. This 

resulted in a model selection process that was easily running for several hours with 
little progress. 

This unacceptably slow progress of fitting a prospective model to the data is not 

reasonable for application to a clinical data setting. It is not feasible to require many 
hours or even days to fit a single two time-point model. The inclusion of the other 
two time points would obviously render this process far less suitable. Therefore, 

this graphical modelling framework as it stands is not directly suited to the analysis 

of data of this complexity. A possible solution to this problem could be to reduce 
the size of the data set and operate with a reduced number of variables, thereby 

reducing the model size and complexity. A further advantage could be gained by 

exploiting the ordering of the data given by its temporal structure. 

5.2.4 Results - Hips Data 

5.2.4.1 Pre-operative Data 

Applying the same model selection process to the pre-operative hips data as per- 
formed previously yields the model graph in Figure 5.8. First examination of the 

model graphs shows there to be a great many more edges present in the model than 

we found for the knees data. Indeed, there are a great many pairwise dependencies 

found within the 12 patient status variables as indicated by the edge counts in Table 

5.3. This is likely due to the fact that these variables were all fairly well correlated 

implying a strong degree of association amongst such measurements. Such a high 

level of dependency within these patient status variables indicates that there will 

likely be a great deal of overlap, duplication and redundancy in the information 

conveyed by these measurements. When these measurements are combined into the 

composite Oxford Hip Score, these duplications and redundancies will compound 
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themselves. 

The one status variable which is not part of the composite score is Walking Aids 

(t). Under the graphical model, this variable is marginally independent of and has 

negligible correlations with the patient status indicators. This quantity is measuring 
information that is quite different from that of the hip score measures and as such 
is a novel descriptor of the patient's status. 

Turning to the demographic variables, the variable Gender (a) has a relation- 

ship with four of the patient status variables indicating their values are not the same 
for both sexes. The variables Using Transport (j), Usual Work (r), Do Shopping 

(1) and Usual Pain (h) are all connected to the rest of the patient status variables 

which will mean that Gender will have an indirect association throughout the pa- 

tient's status. Additionally, the variable Age (b) has no relationship with the patient 

status measurements as it is marginally independent in the model. The three vari- 

ables encoding the patient's underlying pathology also have no association with the 

patient status variables suggesting that there is no difference between patients in 

the different pathology groups. 

The factor variable Private (f), which represents whether the patient is re- 

ceiving private or NHS treatment, appears to have no association to the patient's 

pre-operative state. This is slightly unexpected as we saw in Chapter 4 that the 

pre-operative states for private patients was typically slightly better than for NHS 

patients. It transpires that we are, again, victim of the restrictions of working in 

a decomposable graphical modelling framework. If we examine the significance of 

including edges from Private to the patient status variables we find significant ev- 

idence to include arcs to any of the measurements bar Walking Aids. As with the 

knees data, the introduction of such an edge would destroy the model's graphical 

and decomposable properties. Leaving such significant relationships absent from 

the model would typically cause one to conclude that such relationships were not 

present in the data when they evidently are present but have been overlooked to 

preserve the mathematical properties of the model. This behaviour is a significant 

problem and a potential barrier to interpretation of the model. Another factor vari- 

able, Waiting List (u), which represents the length of time the patient has been on a 
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Figure 5.8: Final model for the pre-operative hips data. 
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Variable Num. Edges Variable Num. Edges 

Usual Work 12 Gender 

Do Shopping Limping 4 
10 

Stand Night Pain 

Usual Pain 9 Pathology OA 

Washing Walk W/out Pain 
3 

Using Transport 8 Pathology RA 
2 

Climb Stairs Pathology Other 

Severe Pain 7 Age 1 

Put On Socks 5 Private 

Walking Aids 0 

Waiting List 

Table 5.3: Table of the number of edges connected to each in the graphical model 

for the pre-operative hips data. 

waiting list, also appears again to have no relationship with the patient's status. Ex- 

amination of the data suggests that in this case the absence of relationship appears 

to be reasonable. Whilst the patient's status does worsen slightly as Waiting List 

increases, none of the potential edges connecting it to the patient status variables 

are significant. 

5.2.4.2 Three-month Post-operative Data 

The graphical model for the 3-month post-operative hips data exhibits some com- 

mon structure with the pre-operative model. The patient status variables all remain 

strongly associated post-operatively as expected from their strong correlations. Fur- 

thermore, post-operatively the variable Walking Aids (T) is now dependent on the 

other status variables, whereas pre-operatively it was apparently independent. 

The demographic variables of Age and Gender are now both marginally inde- 

pendent of the patient's status, suggesting no sex differences or associations between 

age and the post-operative condition of the patient. Neither do we have any associa- 

tions with the variables Private and Waiting List and other variables. Furthermore, 

both the pathology variables and the two treatment variables (v and w) are also 
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independent of the patient's condition suggesting no significant differences between 

these groups either. 

The introduction of the variables Satisfaction and Readmitted to Hospital (nodes 

Z and X) reveal some interesting information about the patient's satisfaction. The 

model graph shows that the patient's satisfaction is directly associated to only three 

other variables in the model. These are Severe Pain, Usual Pain and Readmitted to 

Hospital. This implies that pain levels and whether they needed to return to hospital 

can explain the patient's level of satisfaction. Whilst this may be a reasonable 

relationship for Satisfaction, it seems unusual that Readmitted to Hospital would be 

conditionally independent of the patient's status variables given Satisfaction. Indeed 

one would expect direct associations between the status variables and Readmitted 

to Hospital with patient's who were not readmitted faring better than those who 

were. Further investigation revealed potentially significant associations between 

Readmitted to Hospital and variables such as Using Transport and (J and N) which 

were not added due to model constraints as discussed previously. However, there 

does still remain a path between Readmitted to Hospital and the status variables 

which indicates an indirect association between those variables. 

5.3 Limitations 

Throughout the course of this chapter, it has become clear that there are a number of 

limitations to the graphical modelling approach. The most obvious is that it becomes 

progressively harder to fit models when the number of variables increases. This was 

particularly true when both the pre-operative and post-operative data were included 

in the same model. The sheer size of the model became unwieldy resulting in a long 

time to perform the edge tests resulting in a slow model selection process. This issue 

of dimensionality, model complexity and the required computation involved is highly 

important as it was evident that MIM was struggling to fit the model over only two 

time points. Including the data from the later time points would result in a further 

increase in size and complexity of the model that would likely be impossible to fit 

without the aid of specialised high-performance computers. This would mean that 
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Figure 5.9: Final model for the 3-month post-operative hips data. 
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the procedure would be wholly impractical in a clinical setting. Some mechanism 

by which the size and complexity of the problem can be reduced is then required if 

a graphical modelling approach is to be followed. 

A further limitation to the results presented in this chapter is that we tvpi- 

cally violate the assumption that the data have a multivariate Normal distribution. 

This violation is either due to the data being intrinsically skewed or being origi- 

nally ordinal and then treated as continuous for simplicity. However, we saw that 

the transformations of the data did little to improve its Normality and sacrificed 

the model's interpretability. Furthermore, leaving the ordinal variables as discrete 

results in an impossibly large underlying model so it is unclear whether there are 

any ways to adequately deal with these problems. The effects of these violations on 

the resulting models are unclear, however the checks performed earlier showed that 

these violations had little apparent effect. 

Another problem encountered during the selection of the graphical models was 

that certain significant edges were not included in the model as this would result in 

the model no longer being decomposable, or graphical or both. Whilst it is necessary 

to retain the graphical property of the model in order to interpret the model graph 

correctly, sacrificing decomposability to include such relationships is possible. The 

disadvantage of doing so is that the model could no longer be fitted exactly and an 

iterative method would be required such as via the MIPS [53] algorithm. Whilst not 

necessarily a barrier to using non-decomposable methods, with many variables in 

the model this could dramatically slow down the model selection process as for each 

potential edge we would have to iteratively fit the prospective model in order to test 

it. Of course, this problem is averted when we use backward selection. However, 

this is not possible with these data as the models are too large and required the 

estimation of a huge number of parameters, rendering it impossible to fit. This 

problem can be partially addressed by modelling with chain graphs. 

To address the problems of over-complexity in the model, the next two chapters 

discuss a mechanism to reduce the number of variables. We could then build smaller 

models over this reduced set of variables which would eliminate some of the problems 

we had observed with the dimensionality of the data. In Chapter 8, we return to the 
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graphical modelling of these data using an extension of graphical models known as 

chain graphs which allow for an efficient representation of the temporal structure of 

the data. They also suffer less from the problems of significant edges being ignored 

to preserve decomposability. 



Chapter 6 

Variable Reduction and Principal 

Variables 

6.1 Introduction 

In multivariate analysis with many variables it is often desirable to be able to high- 

light which of those variables are the most important sind which variables, could he 

deemed to be redundant or uninformative. By determining such a subset of principal 

variables, it may be the case that the remaining variables can simply be discarded 

and attention can subsequently be focused on the reduced subset. In practical terms 

taking this step not only serves to reduce the dimensionality of the problem, but 

by working with a smaller group of variables we reduce the problem's complexity 

and thereby save time, reduce computational overhead and facilitate interpretation 

of the ultimate results of the statistical investigation. Such approaches can help to 

combat some of the problems encountered in Section 5.3. In addition, identifying 

the most important subset of variables can have significant implications for future 

data collection endeavours with fewer measurements needing to be recorded. 

This chapter proposes and develops a method for determining such a reduced 

subset of the original variables. The chapter begins in Section 6.2 with a review of 

several methods found in the literature. Motivated by this, in Section 6.3 a suitable 

measure of variability of a variable based on the principal component analysis of the 

correlation matrix of the data is proposed. In Section 6.4 a simple stepwise procedure 
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for variable selection is developed and refined using the defined statistic. Section 6.5 

introduces several extensions to the selection procedure - the first is the incorporation 

of temporal information and the second addresses using utility information in the 

selection process. The final extensions are proposed improvements to the search 

procedure and the presentation of some graphical aids similar to the commonly- 

used scree plots. Section 6.6 presents a discussion of ways to ascertain the effective 

dimensionality of the data in terms of the number of variables which correspond to 

a stopping rule for the selection process. The chapter ends with a presentation of 

the results of both a Monte Carlo simulation study and the analysis of real data to 

assess the performance of the selection procedure and to compare it with existing 

methods. 

6.2 Existing Data and Variable Reduction Tech- 

niques 

6.2.1 Preliminaries 

In what follows, we suppose that we collect n observations on a p-dimensional mea- 

surement vector into the nxp data matrix X. Suppose that the sample covariance 

and correlation matrices are respectively E and R. Our aim is to select some sub- 

set of m principal variables (PVs) where m<p and which best (in some sense) 

represent the original variables. Suppose that we partition the variables X into the 

subsets X (1), X (2) we can assume without loss of generality that X (1) represent our 

subset of PVs and X(2) are the remaining variables. It will be helpful to consider 

partitioning E correspondingly as 

E= 
Ell Eia 

_ 
Eli E22 

Then, the partial covariance matrix for X(2) given X (l) is 

E22-1 = E22 - Ei2Eii E21, (6.1) 

and the partial correlation matrix, R22.1, is obtained by scaling E22.1 so that diagonal 

elements are unity. If we begin with a correlation matrix R, then we further define 
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the unscaled partial correlation matrix: 

522.1 =R22-R12RliR21" (6.2) 

Another type of correlation that arises in variable reduction is the canonical 

correlation. A canonical correlation analysis seeks the vectors a and b such that the 

random variables a TX (1) and b TX (2) maximise the correlation: 

p= Cor[aTX(J) 
,b 

TX (2)]. (6.3) 

The random vectors U=a TX (1) and b TX (2) which attain this maximum are the 

first pair of canonical variables and the first canonical correlation is given by p for 

these variables. The process then continues seeking pairs of vectors which maximise 

the same correlation subject to the constraint that they are to be uncorrelated with 

all preceding pairs of canonical variables; this gives the remaining pairs of canonical 

variables and the rest of the canonical correlations. A canonical correlation analysis 

consists of finding eigenvalues and eigenvectors of the following matrix: 

1 R= R221R21Rii R12. 

The canonical correlations are given by the square roots of the eigenvalues of k and 

the canonical variates use the eigenvectors in determining their composition. 

Finally, we define the multiple correlation coefficient as the correlation between a 

response variable y and its associated covariates x1,. .., x,,. The multiple correlation 

coefficient, R, is given by: 

R= cT RXl c, (6.4) 

where RX is the matrix of correlations of the covariates and c is the vector with 

elements ci = Cor[y, xi]. The square of the multiple correlation coefficient is known 

as the coefficient of (multiple) determination and indicates the amount of variation 

in y that is explained by the predictors x1, ... , xn. 

6.2.2 Variable Reduction Methods 

6.2.2.1 Jolliffe's PCA-based Methods 

One of the most commonly used tools within multivariate data analysis for reduc- 

ing dimensionality is Principal Component Analysis (PCA) which has been well 
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documented in the literature [71,68]. Principal Component Analysis examines the 

variance or correlation matrix generated from data on p random quantities and seeks 
to explain this p-dimensional random variation by decomposing it into p separate 

and orthogonal 1-dimensional components. These components correspond to the 

eigenvectors of the variance matrix and their corresponding eigenvalues represent 
the variance of the associated component. It is therefore not surprising that there 

exist several variable selection methods based on this methodology. 
Jolliffe has discussed various techniques for variable selection based on the prin- 

cipal components methodology [66,68]. These techniques fall into three groups - 
the first using multiple correlation coefficients, the second using the principal com- 

ponents (PCs) themselves and the third using cluster analysis. Of the three groups, 

the techniques which used the principal components were the most successful. These 

techniques are referred to (using Jolliffe's notation) as methods B1, B2 and B4. 

Method B3 was determined to be unsatisfactory in its performance and so will not 
be discussed here. 

Each of Jolliffe's B methods associates a single variable with each of the prin- 

cipal components of E (or R). The PCs are ordered according to the size of their 

associated variances with the component with the largest variance being first. The 

variable chosen is then that variable which has the largest absolute loading in the 

principal component under consideration. Methods B1 and B2 then begin this as- 

sociation process with the last principal component, under the reasoning that the 

last few components typically represent near-constant relationships and are usually 

dominated by a single variable, and thus these are ideal candidates for exclusion. 

Hence the variable associated with this last component is discarded and attention 

then proceeds to the penultimate component dismissing its associated variable, and 

continues until sufficient variables had been eliminated. Method B1 iteratively per- 

forms the PCA on each remaining subset of variables, whereas method B2 operates 

only on the initial PCA. By contrast, method B4 is a forward selection approach 

and associates and retains variables with high loadings in the first m principal com- 

ponents. 

These methods were demonstrated to be both fast and efficient via a simulation 
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study. However, it is important to note that Cadima & Jolliffe [14] state that 

the underlying selections of such methods can be `seriously unreliable' as both the 

loading of a variable in a PC and the associated variance of that PC are required in 

order to determine that variable's importance. Neglecting the information conveyed 

by one or the other would likely produce inappropriate results. 

6.2.2.2 McCabe's Principal Variables 

McCabe [87] considered the various principal components optimality criteria and 

solved them directly. Consequently, he showed that the variable selection problem 

motivated by a PCA approach has a non-unique solution. In fact, there were four 

solutions to the `best' variable subset problem where the set of principal variables 

is that which satisfies one of these criteria: 

Ml maxlEill - min IE22.1l - min f Aj (6.5) 

M2 min tr(E22.1) - min E Ai (6.6) 
i 

M3 min j jE22.1112 - min E A? (6.7) 
Z 

M4 max p2 ýi=1 Pi (6.8) 

Here Ell and E22.1 are defined as (6.1); JAI and tr(A) are the determinant and 

trace of the matrix A, respectively; JJAJJ2 is the squared norm (E aý); Ai are the 

eigenvalues of E22.1; and the pi are the canonical correlations between the variables 

not selected and those selected as defined in (6.3). As McCabe points out, since 

E22.1 represents the information left in the remaining variables, once the chosen 

ones have been removed it is quite plausible that three of the optimality criteria 

should be functions of this matrix. 

Of all these four possible solutions to the variable reduction problem, McCabe 

noted that only solution M2 can be arrived at in a stepwise fashion. The stepwise 

method for finding a near-optimal set of variables that satisfy M2 can be determined 

by exploiting the following equation attributed to Okamoto [93]: 

Mm 

min tr(E22.1) = min max ajj 2(vt; v(l), ... , vu)) 
i=1 i=1 
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where Ai are the eigenvalues of E22.1, ciii is the standard deviation of variable i. 

772(x; y) is the squared multiple correlation between x and y (see (6.4)). z', is the i- 

th remaining variable and v(k) is the k-th selected variable. The stepwise procedure 

then involves, at step j, selecting the variable that maximises the sum on the right. 

This solution M2 is equivalent to the RM criterion discussed in [13] (see [15] for 

details). The RM criterion is defined to be the cosine of the angle between nxp 

data matrix X, and the nxm matrix whose columns result from regressing each of 

the p (centred) observed variables on M (i. e. orthogonally projecting them on IV), 

where M is the subspace of JR spanned by the m variables in our chosen subset. 

The remaining three solutions would require an exhaustive evaluation of all pos- 

sible variable subsets in order to determine which subset was the optimum. Whilst 

possible, but computationally expensive, for smaller subsets of variables this would 

rapidly become computationally infeasible as the number of variables increases. 

6.2.2.3 Multiple correlation method 

Beale et al [7] discuss a method for discarding variables based upon multiple cor- 

relation. They suggested that one should retain the subset of m variables which 

maximise the minimum multiple correlation between the m selected variables and 

any of the remaining variables. Let us call this method Al. However, this method 

was determined by Beale et al [7] and Jolliffe[68] to be too slow to be practically 

useful at the time of publication. This was due to the fact it required exhaustive 

enumeration of all subsets of size m, in addition to the calculation of the corre- 

sponding multiple correlations for each subset. As a potential alternative to this 

method, Jolliffe proposed a stepwise version whereby at each stage the variable with 

the highest multiple correlation with the remaining variables was excluded until only 

m variables remain (method A2). It does not appear that either of these methods 

has been investigated since Jolliffe in the 1970s. 

6.2.2.4 Krzanowski's Procrustes method 

Adopting an entirely different approach, Krzanowski [75] proposed a method based 

on Procrustes Analysis (call this method KP). To compare the various subsets, the 



6.2. Existing Data and Variable Reduction Techniques 125 

sum of squared differences between data points after being transformed to princi- 

pal component space based on the PCA of all the variables are compared with the 

sum of squared differences when transformed to the PCA-space based on a reduced 

subset of variables. Krzanowski's method intends explicitly to preserve the multi- 

variate structure of the original data as much as possible in the final variable subset, 

rather than selecting a set which seeks to maximise some variance measure over the 

variables. 

6.2.2.5 A method based on graphical Gaussian models 

A different variable selection method has been proposed by de Falguerolles et at [28] 

(DF). The proposed method is based on graphical Gaussian models and seeks to 

choose a subset of variables which are the focus of the model graph of the graphical 

model. That is to say the selected variables should have many connections to other 

variables and leave the unselected variables conditionally independent given those 

selected. To do this they seek the variable subset that minimises the deviance of 

this hypothesised model from the saturated model via the expression: 

D2 = -Nlog 
ýSa- 

Idiag(522.1) 1 

where N is the sample size and 522.1 is as (6.2). Whilst likely being predictively 

useful for the variables, it could include potentially redundant variables. For exam- 

ple, suppose we have one such key variable which is associated to all other variables 

and that given this measurement the remainder are all conditionally independent. 

We could introduce a second key variable equal to the first measurement plus some 

random noise. This variable would exhibit similar relationships as the first and may 

be selected along with the first as a focal point in the graphical model, thereby in- 

troducing unnecessary duplication of the same information. Furthermore, if we 

want to select p-1 variables, then for all p possible variable subsets we have 

S22.1 = diag(522.1) resulting in all subsets giving a D2 value of 0 preventing us 

from making a sensible choice of variable using this method. To compensate in this 

case, de Falguerolles et al recommend eliminating that variable with the maximum 

diagonal element in R-1. 
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6.2.2.6 Simple component analysis 

Another technique based on PCA is the method of simple component analysis (SCA) 

proposed by Rousson and Gasser [106]. Whilst technically a technique to reduce di- 

mensionality rather than variables, it has some interesting features which are worthy 

of mention. The goal of SCA is replace the standard PCs with a set of components 

that, whilst being suboptimal, are more easily interpreted. The results of SCA 

are most appropriate to the situation where the initial correlation matrix is either 

approximately or exactly block diagonal. First, SCA seeks to obtain a single com- 

ponent to represent each block of variables within the data - these are termed the 

block components. Secondly, SCA then obtains a set of difference components which 

represent information about the structure within a single block. 

The methods of SCA reduce the dimensionality of the data set in manner that 

is far more intuitive than PCA. By first obtaining the block components one gains 

insight into the overall block structure of the data. The difference components then 

give further details of the relationships between the variables in a single block. Inter- 

preting these simple components, one could suppose each of these blocks represents 

a single latent quantity. The selection of a single variable from each block could 

thus be a possible variable reduction strategy. 

6.2.2.7 CUR decompositions 

In many applications, huge data sets are being constructed in areas such as credit 

scoring, complex manufacturing, and image analysis for astronomical data. For 

these cases, the recent developments concerning CUR decompositions may form a 

possible means to dimension reduction [34]. The CUR decomposition is a method by 

which one seeks to replace the (n x p) data matrix X by an approximation A. The 

need to use such an approximation is peculiar to the situation with prohibitively 

large data sets whose size is such that it becomes impossible to load or manipulate 

these data within the confines of a computer's available RAM. 

The approximated data matrix is defined as A= CUR where A is the approxi- 

mate decomposition of X, and C, U, R are smaller, more easily computed matrices. 

C is an (n x c) matrix formed from c randomly chosen columns of X, and similarly 

- 
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R is an (r x p) matrix of r random rows of X. The (c x r) matrix U is then 
determined from C and R. This method is most appropriate for enormous data 

sets; application to more data of more manageable dimensions would likely result 
in approximations that were likely more crude than obtainable by other methods. 
Additionally, the selection of the variables which constitute C is random and not 
informed. This is due to the scale of the data preventing such an investigation. 

However, despite being unsuitable for data sets of modest size these decompositions 

may have significant potential for enormous and otherwise unmanageable data sets. 

6.2.2.8 Regression-based methods 

Stepwise selection procedures are well established within the framework of regression 

whereby terms are added to or removed from the original regression model. The main 

distinction between such methods and those discussed above is that regression-based 

methods have a defined response and a goal to provide the best possible prediction 

of the response using the remaining variables. This structure leads to several natural 

criterion functions which are used to motivate the selection process. These include 

Mallow's CC, the prediction error sum of squares (PRESS), the multiple correlation 

coefficient and F-ratios. Hocking [61] provides a comprehensive review of variable 

selection in regression. 

6.2.3 Assessing Dimensionality 

A further problem entwined with the topic of variable selection is the determination 

of the number of the original variables to be retained. In the domain of PCA there 

exist many techniques for assessing the number of principal components to retain. 

Jolliffe [681 proposed some techniques for determining the number of PCs to keep 

based upon the eigenvalues associated with the principal components. For example, 

one could seek to retain sufficient components so that the cumulative proportion of 

the original variability in the data was above a particular level, say 75%. A second 

approach, when working with a correlation matrix, is known as Kaiser's rule [69] 

and is to drop all PCs whose associated eigenvalues fall below a threshold of 1. 

The rationale for this is that 1 is the average eigenvalue and a PC with variance 
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less than one conveys less information than a single original variable. However, 

Peres et al [97] point out that due to sampling variation, one-half of the sample 

eigenvalues from randomly generated data will exceed this threshold. Consequently, 

Jolliffe [66] determined that a reduction of the threshold from 1 to 0.7 would be 

more appropriate and would serve to allow for this variation. 

A common graphical method for assessing dimensionality using a PCA of the 

data is the scree plot [16] where the variances of each PC are plotted in descending 

order of magnitude. This is a method also used for determining the effective dimen- 

sionality where one seeks the PC beyond which the variances decrease in a linear 

fashion - the PCs beyond this point are regarded as representing noise within the 

data. 

Wold [127] and Eastment and Krzanowski [36] propose a cross-validatory ap- 

proach for determining the number of components to retain. Eastment and Krz- 

anowski's approach is based on successively predicting each element of the data 

matrix after its row and column have been deleted, whereas Wold's method consid- 

ers using larger subgroups within the data for the cross-validation. Both methods 

then consider the prediction error sum of squares (PRESS) for different numbers 

of components and construct statistics based on functions of the various values of 

PRESS. 

Velicer [122] adopted an approach based on partial correlation in order to deter- 

mine the number of components. He proposed considering the partial correlations 

between p variables given the first m principal components in order to determine 

the number to retain. He proposed considering the statistic: 

PP (r *2 

V= 
p(-p - 1) 

i=1; i j j=1 

where ti- is the partial correlation between the ith and jth variables given the first 

m PCs. Velicer noted that V decreases and then subsequently increases as m, 

the number of retained components, increases. The optimum value for m was then 

suggested to be at the minimum value for V. However, Jolliffe [68] noted that whilst 

this was a reasonable approach for factor analysis, it was inappropriate for PCA as 

it unfairly dismisses PCs that are dominated by a single independent variable as 
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they have low partial correlations but provide information unavailable from other 

sources. 

A further method operates under the assumption that the total variance in the 

data is randomly divided amongst the principal components. Under this assump- 

tions, the expected distribution for the eigenvalues can then be assumed to follow a 

broken-stick distribution [51]. Under this model one can then calculate the expected 

proportion of the total variation associated with the individual eigenvalues. This 

expected proportion, bk, is given by: 

p 
bk E 

P 
Z=k 

where p is the number of variables. If proportion of the total variation associated 

with the eigenvalue for the kth component exceeds the corresponding value of bk 

then the component is retained. 

Peres et al [97] provide a comprehensive overview of many stopping rules for 

determining the number of non-trivial principal components. The results of the 

simulation study testing the effectiveness of many such stopping rules showed that 

the original Kaiser's rule performed poorly whereas Velicer's method was among 

the most accurate though it did tend to underestimate the number of dimensions. 

Stepwise methods for regression models typically have associated stopping rules 

which govern the complexity of the associated model, though such methods are 

typically inappropriate in the absence of a defined response variable. 

6.3 A Measure of Variability 

As McCabe [87] stated that three of the optimal subsets of variables can only be 

determined exhaustively and, furthermore, since the orthopaedic data sets under ex- 

amination have large numbers of variables, it would be sensible to pursue a stepwise 

rather than exhaustive approach to variable selection even though the solutions thus 

provided will likely be non-optimal. The exhaustive evaluation of all 2' -1 possible 

subsets for all m=i,.. ., p can be computationally infeasible, especially with the 

large orthopaedic data sets discussed in Section 2.2. Therefore it may be the case 
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that a `good' solution to the subset selection problem achieved with reasonable effort 

is to be favoured to an optimal solution obtained at great cost. 

One fundamental component of stepwise procedures is a criterion function which 

yields a numerical statement of the suitability or unsuitability of the various elements 

being considered at each stage. In the context of variable selection, this would be 

a numerical expression of the desirability to retain or discard a particular variable. 

The need for such a statement for the value of a single variable is generally peculiar 

only to stepwise procedures, as fully exhaustive methods would consider the value 

of every possible subgroup of variables in order to determine the optimum. Whilst 

guaranteeing optimality these exhaustive methods suffer a corresponding increase in 

computation and time in order to examine all possible variable subset combinations 

and as the number of variables increases we would suffer a combinatorial explosion 

in computing required to determine this subset. 

Our focus shall be directed towards the methods of both Jolliffe and McCabe 

who obtained suitable variable subsets by examining the variance or correlation 

matrix of the data using a principal components approach. Whilst these methods 

are expressed in terms of the variance matrix, E, it may be preferable to consider 

the correlation matrix. The reason for this is that variables on larger scales will 

have correspondingly higher variances which will, in turn, dominate the principal 

components of the variance matrix. By scaling the variance to correlation form we 

give equal emphasis to all variables. 

Consider the (p x p) variance matrix E, for which we shall assume full rank for 

convenience. It can be expressed in terms of its spectral decomposition as: 

A azaT = AAAT 

where A, > A2 >"""> Ap >0 are the ordered eigenvalues of E and a1,.. ., ap the 

associated eigenvectors. A is then the (p x p) orthonormal matrix whose columns 

are the ai and A is the (p x p) diagonal matrix with entries A2. 

Of the four solutions to the principal variable selection problem proposed by 

McCabe, it is to solution M3 in (6.7) that we turn. Method M3 states that we 

would seek to retain those variables which will minimise II E22.1112 - the squared norm 
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of the matrix of partial covariances of the variables remaining given those selected. 

To arrive at an expression for a suitable variable criterion function we consider the 

composition of the squared norm of a general variance matrix E: 

E112 = IIAAATII2 

= HHAAH12 
_ EA? Eaýi = EA? (6.9) 

iji 

or => >(Aiaji)2 => hj (6.10) 
jii 

or = tr(ET E) =EE Qj (6.11) 

.j 

Decomposition (6.9) expresses I JEJ 12 as a sum of the squared eigenvalues each 

representing the variability associated with each principal component or column in 

the A matrix. This leads to an obvious route of variable reduction as the basis 

for the principal components methods of Jolliffe. This approach uses Xi and ai to 

select variables by concentrating first on eigenvectors with large eigenvalues, and 

then looking to the variables with high factor loadings on them. We can see from 

(6.9) that the first eigenvalue provides the greatest contribution to IIE 12 with the 

remaining eigenvalues providing progressively less input. This of course corresponds 

to the fact that the first principal component has the largest variance of any linear 

combination of the original variables. 

The second decomposition of IIEI I2 in (6.10) suggests that we may instead ex- 

amine values hl, ... , 
hp which represent the variability of each row or variable in 

A. 

Definition 6.3.1 Given a variance matrix E= (a2j) over the variables v1, ... , VP, 

define the h statistic for the jth variable vj as: 

h7 = (Aia7i)2 
_ ý2. 

ii 

(6.12) 

Proof: Let ei be the vector of p zeros, with 1 in position i. Now let E= 

AAAT be the spectral decomposition of the variance matrix. We can now write 

Qtj = eT Eel. 
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So 

PP 

012 => e'EieierEej 

i=1 i=1 
P 

= eT E(> eieT)Eej 
i=1 

= eý EE ej 

= eý AA2 AT ej 
n 

E(Akaik)2 

k=1 

The h statistics are essentially the mean squared covariance between variable j 

and other variables. This decomposition leads to a possible route for variable selec- 
tion, which again concentrates on high eigenvalues and high loadings, but instead 

averages these across components to yield a value appropriate for individual vari- 

ables rather than linear combinations. Under this framework, we observe that the 

variable v(1) with the largest value of h provides the greatest contribution of all the 

variables to the squared norm of the variance matrix. Hence, in this context, this 

would suggest that this variable is providing the most variability of all variables. 

Thus we conclude that this is the most desirable variable (in terms of IIEI I2) to 

retain in a selection process. 

Consequently, this value hi is a useful numerical statement on the variability of 

the i-th variable. It also, by definition, combines information from both eigenvalues 

and loadings which would not lead to the problems of unreliability as mentioned 

in [14]. However, it should be remembered that by using the correlation matrix, 

the value for hi provides a measurement of the level of inter-correlations between 

variable i and other variables. Hence, a variable which is correlated with many other 

variables will score higher than a single independent variable. This means that on 

the basis of hi values alone, independent variables would seem to be undesirable, 

whereas in fact they may be highly desirable as they will contain information that 

cannot be expressed in terms of other correlated variables. 

If we restrict ourselves to correlation matrices, we can make the following state- 

ment about the properties of the h: 
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Proposition 6.3.1 For a (p x p) correlation matrix R, the value of h1 for variable 

j lies in [l, p]. 

Proof: The proof is simple and relies on the identity h3 _ >i r. When all variables 

are independent R=I and all hj = 1. Conversely, if all variables were perfectly 

correlated then R=1 and all hj _ p. Q 

6.4 Stepwise Selection Procedures 

6.4.1 The Simple Selection Procedure 

A simple stepwise variable selection procedure can be arrived at immediately. Fol- 

lowing the strategy employed in Jolliffe's B2 or B4, we calculate the h scores as- 

sociated with each individual variable and select that with the highest value (our 

first principal variable or PV). We could then continue selecting the variables with 

the highest h in the remaining set until we have enough variables (the issue of how 

many PVs is `enough' will be addressed in Section 6.6. ) 

However, this approach is somewhat simplistic and has two key limitations. The 

first is that it is important to compensate for the fact that one or more variables 

have been selected and removed from the analysis. One such way of achieving this is 

to make use of the partial variance or correlation by transforming the initial variance 

or correlation matrix to the corresponding partial form after having identified the 

variable to select. By using the partial variances of the variables under consideration 

given those already removed, we eliminate the effects of the selected PVs from the 

subsequent analysis and ensure that we have compensated for their absence when 

determining the next PV for selection. To an extent, this seeks to mirror the notion 

of orthogonality of the principal components in the principal variables. However, 

there are complications when working with correlation instead of variances - this 

will be addressed in Section 6.4.2. 

Using the decomposition of E into the hi statistics, coupled with the use of partial 

variance, it is then straightforward to arrive at a slightly more sophisticated stepwise 

procedure for variable selection. Beginning with the original variance/correlation 
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matrix, we determine the hi values for each variable vi for i=1, ... , m. Then 

we identify that variable with the largest hi value and remove it from the set of 

remaining variables. This is our first selected variable and is the most important 

and informative in terms of hi. Then we update the variance matrix to the partial 

variance matrix of the remaining variables given the variable we have just removed. 

The process then repeats: calculating h values, identifying candidate variables, re- 

moving them and updating the correlation matrix to reflect the fact that variables 

have been removed from the analysis. 

This H procedure thus corresponds, in part, to a naive pursuit of the set of 

variables which satisfy McCabe's solution M3 - min 1IR22.1112. This is since the 

selection of the variable with maximum hi will provide the greatest contribution, 

in terms of the h statistics and single variables, to II R11 112 The selection of this 

variable should then provide the greatest reduction in ý ýR22.1112 and thus is the logical 

choice at this stage. Obviously, the first principal component will always provide the 

biggest component of variation, however this is a linear combination of all variables 

and so is not useful in the variable selection scenario. This procedure to extract the 

`best' m<p variables from the set V of all p variables is expressed more formally 

in Figure 6.1. This stepwise variable selection procedure using hi statistics will be 

subsequently referred to as H. 

6.4.2 On the problems of re-scaling to correlation form 

It is likely that we will begin the variable selection process with an initial correlation 

matrix R in order to eliminate the effects of variables on larger scales dominating 

the results. We then use R to identify the first PV and then wish to transform to 

partial form. The corresponding partial correlation R22.1 is calculated via 

R22.1 =D 2 , 522,1 D2 

where 522.1 is given in (6.2), and D= diag(522.1) is used to scale the matrix so 

the diagonals are unity. However, in this case it will be advantageous not to re- 

scale this resulting matrix back to correlation form. The reason for this is that a 

variable that is tightly associated with a selected PV will have particularly small 
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1. Set V(') _ 0, V(1) = V, and S1 22.1 =R or E. 

2. For j=1,..., p 

(a) Calculate hi from 5221. Select variable v(j) with the largest Iii. 

(b) Set v2' =V 2(j) 10) } and Vi('+i) = Vi(') U {v(j) 

(c) Update 5221 to 52211) using: 

S, (j+1) (521 (j+1))T 
I 21 (j+1) 

'5 
/ (j+l) 

= S22 
- 22.1 S(j) 

where (j+l) 
S "'(jß-1) (jý 1)/ ý(7+1) T 

'S - '5 = 'S ' 22.1 21 \ 21 22 

S(j+l) 
= COV V U+1) 

22 2 

'S(1+1) = 
Cov[V(j+1) V(j)1 21 2>> 

and further §(j+1) S('+1) are simply submatrices of §(j),, ands is the zz + 21 22. (7) 

partial variance of v (j) the diagonal of S(' (ý) 
§022 

22.1' 

Figure 6.1: The iterative variable selection algorithm using h values and partial 

covariance (H). 
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corresponding values in the unsealed correlation matrix 522.1. This information is 

useful as it informs us that the merit of including this variable is now small due to 

its low h value, and so we would make an alternative choice for the next selected 

variable. 

If we were to return to correlation form, then we would rescale the variance and 

covariances associated with this variable such that the corresponding diagonal ele- 

ment of 522.1 was 1. This would artificially inflate the h score of this variable and 

would appear, erroneously, to be more desirable than it actually was. This is espe- 

cially damaging as independent variables have h values close to 1 and convey unique 

information that is not represented elsewhere in the data, and will now appear less 

desirable when compared with other variables. Furthermore, repeatedly selecting 

variables from groups of tightly correlated variables would introduce redundancy as 

each such variable would be conveying similar information. 

To illustrate the merits of not returning to correlation form, consider the follow- 

ing numerical example. Let X1, X2, X3, X4 be random quantities with correlation 

matrix R such that: 

1.00 0.90 0.80 0.00 

0.90 1.00 0.75 0.00 
R= 

0.80 0.75 1.00 0.00 

0.00 0.00 0.00 1.00 

Thus we have that variables Xl, X2, and X3 form a group of tightly correlated 

variables and variable X4 is uncorrelated with the others and seemingly independent. 

Calculation of the hi gives values of 2.45,2.30,2.13, and 1.00 for X1, X2, X3, 

and X4 respectively. Thus the selection procedure identifies Xl as being the first 

PV and it is removed. The correlation matrix R is transformed to the partial form 

of X2, X3 and X4 given X1. This matrix S22.1 is then scaled to give the partial 

correlations, R22.1: 

0.190 

S22.1 = 0.030 

0.000 

0.030 0.000 1.000 0.115 0.000 

0.360 0.000 , 822.1 = 0.115 1.000 0.000 

0.000 1.000 0.000 0.000 1.000 
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Re-calculating the hi over the correlation matrix, R22.1, for this second stage of the 

variable selection gives us values of 1.08,1.08 and 1.00 for X2, X3, and X4. So there 

is a tie between X2 and X3 resulting in one of these two being chosen randomly. At 

the next stage we get R22.1 = I, giving h2 values of 1 for both remaining variables 

which results in another tie. Thus the independent variable X4 will either be the 

third or final variable, depending on how this final tie is broken. If we consider using 

the partial covariance matrix, 522.1, instead then the h scores are 0.037,0.1296 and 

1.0 for X27 X3, and X4. Thus our second choice of PV is now the independent 

variable X4. 

Hence we can see that independent uncorrelated variables are dismissed in favour 

of including multiple closely correlated variables. This may be inappropriate when 

there is evidence of structure in the correlation matrix. Therefore calculating partial 

correlations rather than partial variances would confound and complicate the selec- 

tion process. The selection procedure H uses partial variance and so will calculate 

522.1 at each stage rather than R22.1. Consequently, it does not suffer from these 

problems of rescaling. 

Since we now use partial variance, the properties of the h scores given in Proposi- 

tion 6.3.1 will no longer apply. This is because we are no longer restricted to having 

a1 as the diagonal element of the matrix. Consequently the h values for individual 

variables will now fall in the interval [O, p]. 

6.4.3 The Correlation-Based Selection Procedures 

In the previous section we have dismissed working with partial correlation in favour 

of partial variance as it prevents problems when we have multiple tightly correlated 

variables. However, it is interesting to consider further what happens with a selection 

procedure where we rescale our partial variance to correlation form at each stage. 

The format of this new correlation-based selection process (HC) is similar to that 

of the original method H and is given in Figure 6.2. 

We know already that there are some notable shortcomings to using correlations 

as a basis for variable selection. Therefore this new method HC may suffer from 

the same negative behaviours towards independent variables and groups of corre- 

rw. 
ý. 
ý_ 
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1. Set V11 _ 0, V2(1) = V, and R22ý1 = Cor[V(1) IV1(1)] = Cor[V] = R. 

2. Forj=1,..., p 

(a) Calculate hi from R2ý1. Select variable 0) with the largest ht. 

(b) Set V('+1) = V(') \ {()} and V('+1) = VI(i) U {()}. 

(c) Update R1 to 8211) 
using: 

112211) = D-1/252 il)D-112 

where 

522.1 = 
ýä 1) 

- 
p4i+l)(14i+l))T 

R2+1) 
= Cor[V(j+1)] (= Submatrix of X2)1 determined by V('+1)) 

,)= Cor[Výj+l), v( j)] (= Partial row of R21 determined by v(3)) 
D= diag(S2211)) 

Figure 6.2: The correlation-based iterative variable selection algorithm (HC). 
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lated variables discussed previously. However, it may be possible to modify this 

correlation-based HC to compensate for these problems. One way to do this could 
be to construct weights wi for each variable and select variables based upon the 

product wihi. The nature of the wi must be such that the value of wi will be close 

to 0 for variables that are tightly correlated to a selected PV in order to reduce 

their desirability for selection; and conversely for a completely uncorrelated variable 

wi should be 1. All the wi should also be 1 at the first stage, so we make the first 

selection based on the values of hi only. This would counteract the problems due to 

working with correlations and may improve the performance of HC. 

A logical choice is to base the weighting wi on the size of the correlation between 

variable i and the last variable selected. Thus we could define the weight for variable 

v2 at the j+1 stage of selection as one of the possible wi3+1) given below: 

w(j+i) =1- ICor[vz, v(j)IV(s)]I, (6.13) 

or wýi+l) =1- (Cor[v2, v(j)IV(j)])2, (6.14) 

where 0> is the j-th PV and V(') is the set of the first j-1 PVs. From this 

expression, we see that the weight will be inversely proportional to the size of the 

correlation between variables v2 and the PV 0>. However this only reflects the 

association between this variable and the last PV. 

A second possibility for a suitable weighting is a recursive version of the above. 

Using the weight based on the squared correlation in (6.14) for reasons that will 

become clear in the next section, we could express our recursive weight in the form: 

wzj+l) = wig)(1 - (Cor[vz, V (j) V(j)1)2) (6.15) 

The potential advantage of this recursive formulation is that it will have a stronger 

`memory' of the correlations between variable v2 and the previously selected vari- 

ables. This method will be more aggressive in its discounting of inter-correlated 

groups of variables, especially if more than one variable from the same group is 

selected. 

Both of these possible forms of weighting address the problems described above 

as independent uncorrelated variables will have small correlations with the selected 

mhk 

=bhý 
llbý 
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1. Set Vý1) _ 0, Vý1) = V, and R(1) = Cor[V(1)ýV11)] = Cor[V] = R, w(l) = 1. 

2. For j=1,..., p 

(a) Calculate h2 from R2ý1. Select variable v(j) with the largest w(')hi. 

(b) Update weightings wi by one of: 

w(ý+i) =1- (Cor[v , v(7)IV(7)])2 

or wi(j+i) = w(ß)(1 - (Cor[vj, v(j)IVl(j)])2) 

(c) Set V('+1) - VU) \ {v(j)} and Vl(j+l) = Vi U {v(j)I. 

(d) Update R21 to 11) as in Figure 6.2. 

Figure 6.3: The modified correlation-based algorithm which incorporates weighting 

of the variable h values (HW1, HW2). 

variables giving a wi close to 1 and will therefore be minimally altered. Groups of 

tightly correlated variables will be reduced in importance once one candidate variable 

from the group has been selected since the high correlation with the selected variable 

will result in a value of wi close to 0 and so the remaining variables will be strongly 

down-weighted. The second formula in (6.15) has a more cumulative property which 

will more aggressively dismiss variables that are correlated to two or more of the 

selected variables. 

The weighted selection procedure using weighting in (6.14) will be referred to as 

HW1 and the procedure using the cumulative weighting in (6.15) will be labelled 

HW2. The algorithm for the weighted procedures is given in Figure 6.3. 

If we look closer at the expression for the recursive weights in (6.15), we notice 

that this expression is, in fact, closely related to the multiple correlation coefficient. 

We have from Equation 28.56 in Stuart et al [115] that: 

1- R1(2... 
p) _ (1 - P12)(1 - P13.2) ... 

(1 - Pip. 2... (p-1)), (6.16) 

where R1(2.. 
_p) 

is the multiple correlation coefficient between variable 1 and variables 
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2 to p, p12 is the correlation between variables 1 and 2, and plp. 2... (p_1) is the partial 

correlation between variables 1 and p given the variables 2 to p-1. The term on 

the right of this equation is in the same form as the expression form as the recursive 

weights in (6.15), leading to the identity for the recursive weight of variable i at step 

j+1: 

where V(') is the set of variables selected so far. 

Thus the weights can simply be expressed using the multiple correlation coef- 

ficient. Furthermore, by Equation 28.57 in Stuart et al [115], we can express the 

w(P+1) =- 1- R2(VCl (6.17) 

multiple correlation between variable 1 and a set of variables, s, using the proportion 

of remaining variance: 
2 U 

Rl(s) =1- ýi (6.18) 

where uf is the variance of variable 1 and o, i. s 
is the partial variance of variable 1 

given the set of variables s. Using this expression, we can re-express the recursive 

weight for variable i at step j+1 as: 

U 
j+1 
i- 

ýi 
(6.19) 

where V(j) is the set of PVs selected up to the current stage. Thus this form of 

weight provides the most succinct and intuitive definition of the weighting, simply 

being an expression for the proportion of variation in variable i that we have thus far 

failed to account for by the selection of the variables in V('). The weight thus will 

remain close to 1 if i is independent of the selected variables and will drop towards 

zero if one or more of the selected variables are correlated to i. 

If we apply the weighing methods to the illustrative example we can observe their 

effects on the selection process. The variable selected at the first stage is unaffected 

by the weighting strategy and is chosen on the basis of h values alone, and so remains 

as X1. Having identified Xl as our first selected variable, we can now construct 

weights for the remaining variables. Both weighting methods give weights of 0.1, 

0.2 and 1.0 for variables X2, X3 and X4. Taking the product of the weights and the 

h values gives scores of 0.108,0.216 and 1.000 for the three variables respectively. 
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Thus the next selected variable is X4, the independent variable that was previously 

dismissed. If we continue to the next stage using the first weighting strategy from 

(6.14), we obtain weights for X2 and X: of 1.00 and since both variables have h 

scores of 1.013 this results in a tie and a random choice determined their order of 

selection. Using the recursive definition from (6.15) yields weight values of 0.1 and 

0.2 which causes us to prefer variable X4 over X3 due its lower correlation to the 

already-selected variable X1. 

6.4.4 Comparison of the Simple and Cumulatively- 

Weighted Selection Procedures 

The modification of the correlation-based stepwise procedure by weighting h scores, 

which was discussed in the previous section, is a necessary amendment to prevent the 

unfair dismissal of variables which are uncorrelated or independent. In procedure 

HW2, this mechanism operates by cumulatively weighting each remaining variable 

by the product of the (1 - r2) where at each step r is the partial correlation between 

the variable in question and the variable selected at this stage given all the variables 

previously selected. However, it is conceivable that this weighting is an attempt to 

reverse the standardisation imposed by resealing to correlation form at every step 

and return us to a matrix of partial variances thereby approximating the selections 

of the original simple selection method H. 

The connection between these two selection procedures - the simple selection 

method (H) and this cumulatively-weighted correlation-based method (HW2) - is 

still somewhat unclear, therefore the specifics of these two methods shall be consid- 

ered in some detail. 

Lemma 6.4.1 The weighting of h values for HW1 and HW2 is equivalent to 

finding the h scores over a modified correlation matrix R=W2R, where R is the 

original correlation matrix and it -= diag(()w) is a diagonal matrix of weights. 

Proof: AV"ith an initial correlation matrix R= (rij), the h statistic for variable j is 
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defined as hj = >i r? 7 .. 
Weighting the h statistics gives: 

wj hj = wj r? 

2 

Thus weighted h values for R are equivalent to taking unweighted h values over the 

matrix with elements wjr2j, i. e. W2R=R. 0 

The simple selection procedure H uses R to inform its selection of principal 

variables. However we can see from the above lemma that the correlation-based 

weighted methods employ a modified matrix k instead. The selection procedures are 

the same for both methods both calculate h statistics over their input matrices and 

select the variable with the maximum h value - so the difference is in the input matrix 

alone. It is the relationship between these matrices R and R which will characterise 

the differences between the performance of the two selection procedures. Since R 

is dependent on the weights being used in the selection process, the relationship 

between H and HW2 will also depend on the form of these weights. For what 

follows, we assume that the weights are of the form given in (6.15). The connection 

between these two forms of the correlation matrix are now such that we can make 

the following statement. 

Theorem 6.4.2 At each stage of variable selection, the input matrix f7 for the 

cumulatively-weighted correlation-based variable selection procedure HW2 is given 

by 

R=SD-2, 

where 5 is the unsealed correlation matrix used by the simple selection procedure 

H and D= diag(S). 

Proof: We know from the lemma that R= WIR. Since the correlation matrix 

R is obtained by scaling S to have diagonals equal to unity, we can say that 

R=W2D-2SD-2. 

Hence to obtain the given result, all we must show is that W=D= diag(S). This 

can be shown by induction. 
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For the first variable, the initial weights are all 1, so we have that W(1) = I. 

We also know that S(1) =R at the first step, thus giving diag(S 1)) 
=I=W. 

Hence, the result holds for the first variable. 

Now assume that the result holds for variable k-1. Under this assumption, the 

diagonal elements of , S(k-1) are given by the weights W(k-1), so 

Si. 12... (k-2) = w(k-i) =1x (1 -r)x (1 - X21... X (1 - i(k-2)"12... (k-3))ý 

where si. 12... (k_2) is the ith diagonal element of §(k-1) 
, and rzj. 12... (j_l) is the partial 

correlation between the ith and jth variables given the first (j - 1) variables. 

Assuming the result holds for variable k-1, we now consider variable k. Since 

the weights are defined cumulatively, the weight for variable i will be now given by: 

(k) (k-1) 2 Ws - Wi y. - ri(k_1)"12... (k-2)) 

To find the form of we can use the definition of partial correlation to obtain 

the following result for the diagonal elements of S: 

s. A Sz. 
gj = Si. q -_ 

Si. A 
2 

r 
. A), 

where i and j are single variables and A is a set of one or more variables. This 

allows us to define the diagonal elements of B(k) as: 

2 
si-12... (k-1) = Si. 12... (k-2)(1 - ri(k-1)"12... (k-2)) 

= wýk). z 

So we have that if W= diag(5) holds for variable k-1 then it also holds for 

variable k. Since this property holds for the first variable, it must be true for all 

kEZ+. 0 

The significance of demonstrating that R can be expressed in the form SD--i 

may not be directly apparent. What this result shows is that the weighting process 

used by the correlation-based method HW2 is attempting to reverse the scaling ef- 

fect attributable to using partial correlation instead of partial covariance or unscaled 

correlation. The weighting is attempting to take k and return it to its unscaled 
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form, S, and thereby mimic the behaviour of the simple unscaled selection proce- 

dure H. However, the weighting does not successfully eliminate all of the effects of 

the rescaling process, as shown by the presence of D-2 . This failure to completely 

remove the scale effects will result in HW2 behaving as a biased and therefore in- 

ferior version of H. Due to this deficiency in the correlation-based method, in the 

future we shall exclusively prefer the variable selection procedure H which operates 

directly with the unscaled partial correlation, S22.1. 

6.5 Extensions to the Variable Selection Proce- 

dure 

6.5.1 Incorporating Temporal Information 

One key feature of the two data sets described in Section 2.2 is that several of their 

variables constitute a repeated measures data set. That is to say, a group of variables 

are repeatedly measured on the same observational units at different time points. 

These repeated measures data sets are commonplace and are neither peculiar to 

medicine nor orthopaedics. The standard selection procedure as it stands can be 

applied to each time point in the data individually and thus generate a sequence of 

variable sets each containing the extracted variables for each time point. However, 

having different sets of variables for each time point can result in different and 

contradictory variable subsets especially if the correlations change over time. It 

would therefore be preferable to determine a single overall subset of longitudinal 

principal variables to represent the full time spectrum. Doing so could provide 

significant reduction in time and cost for data collection, as well as simplifying 

subsequent analyses and their interpretations. 

Incorporating a temporal aspect into standard PCA has been examined in var- 

ious different ways. One of the main difficulties in these approaches is to account 

successfully for both the temporal and multivariate nature of the data, by exploiting 

both the correlation structure within variables at one time point and their associa- 

tions between time points. Typically methods based on stationary time series [68] 
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are inappropriate as it is unlikely that the repeated measures data will constitute 

a stationary time series, and repeated measures data sets can have only a small 

number of time points which would pose problems for such analysis. Berkey et 

al [8] discuss a longitudinal principal components regression model which performs 

principal components on the various observations of a single variable over time and 

then uses the resulting principal components as predictors in a linear model. How- 

ever, interactions between the variables are not considered, so whilst accounting for 

the longitudinal nature of the data, the lateral nature is ignored. Additionally, the 

model is one of regression with a defined response which is not appropriate to vari- 

able extraction from repeated measures data as we have no such defined responses. 

A further method for incorporating a temporal element is that of functional data 

analysis [102] whereby the data could be considered to be a functional time se- 

ries. However, this method would typically require a large number of time points 

and cases than we have available as they are based on fitting splines through the 

observations. 

The method used here to accommodate for the temporal dimension to the data is 

based on the nonparametric time dependent PCA techniques proposed by Prvan and 

Bowman [100]. Suppose we have a data matrix X containing n cases xi, i=1, ... ,n 

each observed at a time point t2. First, we choose a focal time point 8. We then 

associate with each xi a weight wz defined as: 

wi = w(ti, 0, or) = 
ti 

01 
e (6.20) 

where a is a bandwidth parameter and 0(") is the standard Normal density function. 

The purpose of these weights is to assign each case xi in the data a weight wi that 

represents the distance between its associated time point ti and the time point of 

interest 0. Cases with ti =0 will receive the highest weights and the greatest 

influence over the following calculations. Weights for other time points will become 

progressively smaller the further in time ti is from 0 giving the associated cases less 

importance. 

Having defined a weighting strategy for the cases in the data, we can now con- 

struct the weighted mean : Yc,, (O) and the weighted variance matrix S, (9) which are 
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defined as: 
1n 

jýw(0) - En 
zwixi, 

W 
x=1 Z i=1 

(6.21) 

S (9) = nl Wi(xi - jýW(e))(Xi - ýtw (e))T T. (6.22) 
ýi=1 Wi 

i=1 

From (6.22) we can obtain the weighted correlation matrix R,,, (0), by re-scaling 

S, �(O) in the usual way. Thus we have obtained a matrix of correlations over the 

variables in the data relative to a particular time point 0. The notable feature of 

this method is that we allow all the data to influence the value of the mean and 

variance at time point 0, rather than just looking at the data directly observed at 

that time. This means that, by virtue of the smoothing, data observed at a time 

close to the point under consideration has a perceptible input on the values of jW (O) 

and S, (0), and data at distant times have a minimal effect due to their low weights. 

This reinforces the notion that data observed at time points that are close together 

are likely to be related, whereas that relationship may change in the intervening 

period. 

The magnitude of the effect of temporally adjacent data and the distance in time 

over which it applies is governed by the bandwidth parameter Q. The choice of o, 

is typically subjective and is based on the plots of component loadings versus time 

discussed in [100]. The plots are constructed by first performing the temporal PCA 

for each time point at which data is recorded, then for each smoothed PC we plot 

the values of its loadings against time. The idea being that a bandwidth that is 

too large will mask curvature in the data, whereas a bandwidth that is too small 

will result in obvious displays of sample variation. Furthermore, if the loadings in 

each PC remain relatively constant over time then this suggests that there is little 

evidence of changes in structure over time. More detailed assessments of the time 

effect can be achieved via the calculation of reference bands [100]. 

Having established the fundamentals of this temporal smoothing process, we 

can then use our smoothed correlation matrix & (0) as the input to the variable 

selection procedure. This still requires us to focus at a particular time, however the 

effects of data observed at other time points are not ignored and are incorporated 

into the analysis via the smoothing mechanism. It also allows for the possibility of 
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exploring results for a time point that has not been directly observed. However, we 

must still apply the variable selection technique at each time point of interest. This 

is not desirable as an overall subset of key variables is the intended goal, rather than 

a series of likely different subsets. 

This procedure is reasonable for determining longitudinal PVs if we believe that 

the multivariate structure is preserved across time points, excepting random fluc- 

tuation. This could be checked formally by sphericity-type tests [76], as long as 

we were prepared to make further distributional assumptions. Informally, we can 

examine the plots discussed in [100] which are used for choosing o to assess this. 

To determine an overall subset of longitudinal PVs, we construct R, (tti) for each 

time point ti for which we make a measurement. We calculate hart (6.12) for each 

variable j at each time point ti. A simple guide to the selection value of each variable 

across all time points is then hj = >i hj, t,. The variable with the highest average 

value of hi could then be selected. All of the correlation matrices are then updated 

to partial covariance form given the variable we have selected. The full temporal 

algorithm is detailed in Figure 6.4, and labelled HT. 

This process allows for each time point to contribute to the overall selection 

process and provides a simple way to combine the results to generate an overall 

`best' subset. One point of note is that if it were determined that, say, five variables 

could sufficiently describe each time point and if there was evidence of a change in 

the structure or relationships between the variables over time, then five variables 

would not describe the data at all time points to the same degree. Consequently, it 

may be necessary to increase the number of variables retained in order to adequately 

describe the data at all times. This could be addressed, for example, by considering 

the scree-type plots discussed in Section 6.5.4. 

Since the calculation of the overall `best' subset involves taking a simple mean of 

the weighted scores across all time points, one could also introduce a further area of 

customisation of the procedure by introducing an additional set of weightings for the 

time points, ; and then construct a weighted mean hj* = >z mot; h3, t, " This would 

allow certain time points to have more of a contribution to the selection process. 

This could be especially applicable when the sample size is not constant across all 
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1. Set V(1) _ 0, i4' = V. For each time point t: S(122.1(t) = R,,, (t), where 

Ru, (t) is the smoothed correlation matrix for time point t. 

2. Forj=1,..., p 

(a) For each time point t: From S', 22.1(i) calculate the hi(t) for each variable 

Vi. 

(b) Calculate hz = s(hi(t))/T, where T is the number of time points under 

consideration. Select variable v(j) which maximises hi. 

(c) Set V(j+1) - V(j) \ {()} and V(j+1) = V(j) U {()}. 

(d) For each time point t: update S(', 22.1 (t) to S(' 22 i (t) as in Figure 6.1. 

Figure 6.4: The modified algorithm (HT) which incorporates a temporal aspect. 

time points and some degree of corresponding compensation is desired. In fact, there 

are a great many such extensions that could be considered to this selection process, 

however incorporating further sophistication might make little difference in a given 

application. Nevertheless, such extensions and developments of the methodology 

could be the focus for future research. 

6.5.2 Utilities 

6.5.2.1 Motivation 

Whilst the selection of variables based solely on the information conveyed in the data 

is, in many cases, the best course of action it is likely that there will be cases where 

one would wish to adjust the selection process. For example, in a medical context 

it is conceivable that a clinician will have an opinion on the relative usefulness of 

particular measurements for their diagnosis or monitoring of a patient. One would 

then wish to utilise this information to guide the selection process towards choosing 

variables that the clinician deemed more useful than others. Similarly, there may be 
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variables that one would wish to always include into, or exclude from, the returned 

subset. In the case of the former one could simply examine the remaining variables 

separately and then combine the results with that variable after the analysis. How- 

ever, this would not account for the effects of forcing the selection of that particular 

variable when the procedure was making choices over the other variables. Finally, 

the clinician may also wish to penalise variables according to how easy the data is to 

collect since measuring some variables may require great expense or great discomfort 

for the patient. 

In Section 6.4.3, the flawed correlation-based selection procedure HC was mod- 
ified to prevent the dismissal of independent, uncorrelated variables by including a 

weight term Wk to reduce the appeal of variables which were highly correlated to 

other variables that had already been selected (HW2). There, the wk term sought 

to down-weight the variables' associated hk scores - if wk was 1 then hk was un- 

modified, however if Wk was close to zero then the associated variable's desirability 

becomes negligible and it is effectively eliminated from consideration. This weight- 

ing procedure was ultimately determined to be inferior to working with the partial 

variances directly, however the notion of a weighting to modify the desirability of a 

variable still remains a potentially interesting concept. The questions being asked 

here are: is there scope to incorporate a set of user-defined subjective weights or 

utilities for the perceived merit of retaining a particular variable, and furthermore 

will it help us to tackle situations such as those described above? 

. 
The integration of such subjective information into the variable selection process 

would enable the procedure to be guided in an informed manner and would allow for 

the combination of information gathered from the data with information available 

externally. This would be most useful when there are several variables with values 

of hi close to the maximum and would allow for an alternative choice to be made 

depending on the values of the associated utilities. For example, if the utility repre- 

sented the ease of measurement of a particular variable, then in the case of a tie we 

would favour the retention of the variable that is the easiest to measure. This would 

also allow for a degree of customisability of the selection procedure with individual 

preferences becoming relevant when choosing between variables, rather than basing 
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the choice exclusively on the data alone. In addition, the use of expert judgements 

for these utilities would, no doubt, allow for results that were more practically useful 

and applicable to the context of the problem under investigation. 

6.5.2.2 Scaling and Transformations 

The incorporation of a utility term into the procedure is straightforward. Suppose 

that ui is the utility for retaining variable v1. A simple way of modifying the selection 

process is to replace h2 by hV = uih2 and to select at each stage the variable with the 

maximum value of hý. Whereas in the obsolete weighted selection procedure HW2, 

the w2 could only reduce the desirability of the variables, the utilities ui can both 

increase and decrease variable suitability. It is important however that the utility 

measures can guide the selection process, but they must not dominate the results - 
that is to say the variable selected should be done so on the basis of a combination 

the information obtained from the data and the subjective utilities. 

It would be desirable to configure the utilities so that if a variable was assigned 

the highest possible score then that variable would be forced into the resulting 

subset. Conversely, if a variable had the minimum possible score then this would 

have the opposite effect and prevent the corresponding variable's selection. If the 

utility score was scaled so that ui E [0,1] then one transformation that would have 

these properties would be: 

f(x) =x 1-x 

This function would map the ui from [0,1] to [0, oo]. This would allow for variables 

with a utility score of 0 to always have a desirability of 0 thereby effectively pre- 

venting its selection; conversely a utility score of 1 would translate to an infinite 

desirability which would force its immediate selection. Additionally, an untrans- 

formed utility score of 0.5 would be equal to 1 after the transformation, leaving the 

desirability of the variable equal to hi. 

However, there are some possible problems here when we seek to combine these 

quantities. The first problem could arise if we have a utility score of oo and hi = 0, 

which has an undefined product. In this case, it would be best to use only the utility 

score to define the variable's desirability. When we have multiple variables with the 
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equal desirability and we seek to choose between them then the choice should be 

made, again, on the basis of the utility values. We would seek to favour the expert 
utility information over that of the data in this case. If the utilities themselves are 
equal then we should break the tie randomly. 

6.5.2.3 Multiple Utilities 

Unlike with a single utility measure, the case with multiple utilities poses a different 

problem. It is not unreasonable to assume that there may exist multiple utilities for 

each variable. These could be utilities measuring different factors of the variables, 
for example in the medical context discussed above two such utilities could be the 

ease of measurement and clinical usefulness of the variable. Equally, we could have 

multiple utilities which reflect the opinions of different individuals on the same 

criterion. The primary problem arises in how best to combine such information and 

then utilise it within the variable selection framework. 

Essentially this corresponds with seeking to combine a number of different `votes' 

on which variable to choose next with each `vote' corresponding to a utility mea- 

sure. This area is known as social choice theory and method of combination we seek 

is known as a social welfare function. The simplest method of combination is the 

approach of utilitarianism [10] whereby the individual votes are simply summed. 

Thus from several utility vector u(1), ... , u(1), we construct u* = >i u(s) to aggre- 

gate the individual components and then consider the product ui hi for selection. 

Utilitarianism is not the only mechanism for combining multiple utilities in this 

manner - alternatives such as maximin, maximax, leximin, and Cobb-Douglas could 

be considered as alternative combination mechanisms. As it stands utilitarianism 

has several beneficial properties (strong Pareto, anonymity, and continuity) and is 

an intuitive and easy to apply method. See [10] for a discussion of these methods 

and their properties. 

6.5.3 Improving the Search Procedure 

The stepwise progression through the variables in the data corresponds to a form 

of search, where our goal is the best subset of variables as defined by the hi. The 

'', 
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stepwise selection procedure equates to a restricted version of a best first search with 

a heuristic equal to hi. That is to say at each step we evaluate hi for all remaining 

variables and choose the variable v which is the best and then proceed to the next 

step, never entertaining the possibility of selecting any variable other than v at this 

stage. It may be the case that selecting a non-optimal variable at this step leads to 

a better subset of variables in the end. 
Considering exploring other combinations of variables that were previously dis- 

counted is a worthy extension to the variable selection process. Thus the simple 

stepwise search could be improved upon by considering a tree-based search strategy. 
The application of simple search algorithms such as A* search [113] would likely 

improve the quality of the returned subset, at the expense of additional computa- 

tion. One advantage of using an algorithm and search strategy such as A* search is 

that it is guaranteed to find the optimum value and do so in an optimally efficient 

manner provided the heuristic is `admissible'. 

An alternative modification to the search procedure would be to consider using 

local search procedures, such as those using simulated annealing and genetic algo- 

rithms. These procedures were used in [13] to enhance the variable selection process 

when performing an exhaustive search for a suitable variable subset, rather than 

using a stepwise approach. 

At present, the variable selection procedure does not incorporate an advanced 

search routine. Such developments could be the focus for future research. 

6.5.4 `Scree'-type Plots 

The scree plot [16] is a popular method for assessing the number of principal com- 

ponents which represent the `signal' in the data. The variances of each principal 

component are plotted in descending order of magnitude and one looks for the 

principal component beyond which the variances decrease in a linear fashion. The 

components beyond this point are taken to be consonant with random noise. Such 

graphical summaries are both useful and informative and an equivalent such plot 

can also be achieved for the h-based procedure. There are several possibilities for 

a suitable scree plot which will be mentioned briefly here and developed further in 
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the context of actual data in Section 6.7.2.2. 

The first candidate for a scree-type graphic is to plot the hi of the selected 
variables in the sequence in which they were selected. That is to say, if we select 
variable v(j) at stage j with an associated h-value of h(j), then we plot h(j) against 
j. We know from the properties of hi that variables which have a score hi >1 

represent a variable that is correlated to others, but has negligible correlation to the 

variables already extracted - these variables are the ideal candidates for selection 

and are removed first. Scores of hi =1 represent a single independent variable or a 

correlated variable that now has low partial covariances due to an association with 

a previously selected variable. Finally, scores of hi <1 indicate variables which are 

moderately to strongly associated with one or more variables that have already been 

selected. Therefore, if the variables are not independent then we would expect to 

see a decreasing concave curve as the variables are selected in descending order of 

their h values. The steepness of this descent will depend upon whether there is one 
large tightly correlated group which would give a steep drop in the h or whether 

there are several smaller groups which would produce a slower reduction. The curve 

will then level off at h=0 once the most correlated variables are selected. 

Another possibility is to plot the amount of variation explained by our current 

subset of PVs. After removing j variables we obtain the unscaled partial correlation 

matrix §(j) 
2a"i We could then plot the values tr(aa Si aa22. ) or II S22. iI I2 vs. for j=0,. .. >p 

where S22)1 = R. Whilst the trace of the matrix is most commonly associated with 

the traditional proportion of variation, the squared norm is intimately related to 

the variable selection process and so could be equally useful. The trace will vary 

less dramatically due to the fact that the trace uses only the diagonal elements of 

the variance matrix whereas the squared norm uses the square of all the elements. 

Hence changes in variability will likely be more visible on plots of the squared norm. 

However, it should also be noted that tr(R) = Ei )i and II RI I2 = >i )j2, so there 

will be a strong degree of similarity between both plots of either value. 

If all the variables are independent then tr(R) = >i )ti and IIRI I2 = 1: 
i' 

would decrease in a perfectly linear fashion since each variable would have an equal 

contribution to the overall variance. However, if there is correlation then the curve 
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will be concave with an initial drop as the most correlated variables are removed 

which prompts a large reduction in the trace or squared norm. As more variables 

are removed they will become progressively more conditionally independent given 
the selected variables as the set of selected variables increases. Thus the curve will 
begin to straighten out as the hi scores of the remaining variables become close to 

zero reflecting only a small change in tr(S22.1) or 1522.1112. This is similar to t lie 

property of the scree plot for principal components where there is a straightening 

out of the scree curve once the most important components are selected. 
As an alternative to the above plot, we could plot the cumulative proportion of 

the total variation explained in terms of tr( 522.1) or II S22.1(12. In this case we would 

calculate the proportions: 

(6.23) 
tr(R) Pi ý- 

(1_t 

which we plot against j, where ip is set to 1. This would give a plot that was a 

reversal of the previous plot with the curve being convex before straightening out, 

however it is likely more interpretable than the previous plot as it operates in terms 

of the proportion of total variation than in the values of 11, §22-11 12 themselves. The 

equivalent plot could be performed using II - 112. 

Some examples of possible scree plots are given in Figure 6.5. These scree plots 

are for a data set with six variables, three of which are merely noisy copies of the 

other three. Therefore we assume that the effective dimensionality of the data is 

three. The first plot in Figure 6.5(a) is the standard scree plot of the squared 

eigenvalues in descending order. The importance of the first three components is 

evident through the large variances, the components associated with the random 

noise are indicated by their low values of A2. The plot in Figure 6.5(b) is that of h 

values of the principal variables in the order of selection. The shape clearly mirrors 

that of the standard scree plot with a sharp drop in variable importance after the 

selection of the third PV. The plot in Figure 6.5(c) is that of the II S22.1112 after the 

selection of each PV. We can see that after the selection of the third variable there 

is little subsequent change in the value of 11S22.1112 suggesting that the remaining 

variables are consonant with random noise. Finally, the plot in Figure 6.5(d) is of the 

percentage trace that is explained by the chosen PVs (see (6.23)). We can see there 
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that amount of variability explained rapidly increases as we select the first three 
PVS, but after this point we capture progressively less of the variation indicating 

that these variables are contributing less novel information. 

6.6 Assessment of Dimensionality 

The assessment of dimensionality in terms of the number of variables is an important 

component of the variable selection problem as it directly informs us about the 

number of variables to select. In essence, the dimensionality of the data acts as 

a stopping rule for the selection process. However, the existing methods discussed 

in Section 6.2.3 do not easily lend themselves to application in stepwise variable 

selection. The methods based on principal components are inappropriate when 

working with individual variables as they require retention of all variables. For 

example, Kaiser's rule of discarding components with eigenvalues less than one is 

meaningless when working in terms of variables. The cross-validatory approaches 

of Wold and Eastment & Krzanowksi are both computationally intensive and time 

consuming for large data sets and so would not lend themselves to the study of the 

orthopaedic data. 

Velicer's method of calculating the average remaining partial correlation given 

m principal components and stopping at a minimum, may be applicable. However, 

when using the H procedure the average partial covariance given the first m variables 

will typically be decreasing and will not behave in the same way as Velicer's V 

statistic. 

Methods based on arbitrary thresholds would still be appropriate when dealing 

with variables rather than dimensions. For example, one could cease the selection 

process when we have captured a% of the total variation as defined in (6.23). The 

selection procedure could then stop selecting variables once we have identified that 

our selected subset represents at least 75%, say, of the original variation of the data. 

Furthermore, as an analogue to Kaiser's rule for principal components, we know 

that the h statistics represent the contribution of an individual variable to the value 

of II RI I2 with an h value of 1 corresponding to the value of a single independent 
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variable. Therefore, if all the h statistics of the remaining variables fall below such a 
threshold then the remaining variables contain less novel information than a single 
independent variable due to their associations with the selected subset. This could 
be a logical stopping point for the selection process, though the threshold may need 

modification to tolerate sample variation as did Kaiser's rule. 

6.7 Results 

6.7.1 Artificial Data 

6.7.1.1 Simple Models 

In order to assess the efficiency of the variable selection procedures developed in 

the previous sections, a Monte Carlo simulation study was performed. This study 

was the same as the one used to compare methods of variable selection by Jolliffe 

[66], and also by Krzanowski [75]. The study was performed in four parts, each part 

testing performance on simulated data conforming to a different pre-determined 

model. Each part was then repeated 500 times, each time re-simulating the data 

to allow sample variation. Each model was created so that certain variables in the 

model were linear combinations of the others plus random noise - these variables are 

therefore redundant. With the a priori knowledge of the data structure, it is possible 

to determine what variables should be extracted from these data. Consequently, a 

returned subset can be classified as being "Best", "Good", "Moderate" or "Bad. " 

For each iteration of the simulation on a particular model, 100 cases of data were 

generated containing between six and ten variables. These data conformed to models 

defined by Jolliffe [66] as Models I-IV; the exact specification of these models is 

reproduced in Table 6.1. The structure of these models is such that the first contains 

a set of three pairs; the second is a pair, a triple and a single independent variable; 

the third is effectively three pairs though with stronger correlations elsewhere; and 

the fourth is composed of a single variable, a pair, a triple and a quadruple. The 

first three models have three key variables, whereas the fourth has four. Correlation 

plots to illustrate this structure are given for a random data set of size 100 in Figure 
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Figure 6.5: Scree plots for simulated data. 
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Model 

Variable I II III IV 

X1 z1 zi zi zi 

x2 Z2 Z2 Z2 2 

13 Z3 Z3 z3 z2 + z3 

X4 zl + 0.524 zl +0.5Z4 zl + 0.822 + 0.624 z4 

15 z2 + 0.725 z2 + 0.725 z2 + 0.725 z4 + 0.7525 

xo z3+z6 z2+z6 z3+0.526 2z4+0.7525+1.526 

17 Z7 

18 z7+0.528 

X79 2z7 + 0.5z8 + zs 

Xio 3z7+z8+z9+zio 

Table 6.1: Definition of Jolliffe's simulated data Models I-IV. 

The z, are independent standard Normal variables. 

123456 

No Variables Extracted 

(b) h Statistics 
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Type of Model 

subset I (p = 3) II (p = 3) III (p = 3) IV (p = 4) 

Best One variable {x1, x2i x3}, {x1, x2i x3}, One variable 
from each of: {x2i x3, x4} {xl, x2i x6} from each of: 

{x1, x4}, {x2, x5}, {x1}, {x2" x3}, 

1x3,41 {x4, x5, x6} 

{x7, X8, X9, x10} 

Good - 
{xl, x3, x5} {x1, x5, x6} 

{x1, x3,41 {x1, x3, x6} 

{x3, x4) x5} {x2, x47 x6} 

{x3, x4, x6} {x2, x3, x4} 

{x3, X4, x5} 

{x4, x5, x6} 

Moderate {xl, x3, x6}, - 
{x1, x4, x6} 

Bad Any other subset 
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Table 6.2: Classification rules for selected variable subsets for Models I-IV. 

6.6. The classification of variable subsets is detailed in Table 6.2. 

For each generated data set, the correlation matrix was calculated and a suite 

of eleven different variable extraction methods was then performed. These methods 

are taken from those discussed in Section 6.2 are summarised in Table 6.3. All 

calculations were run in R for Windows version 2.1.1 [101] on a Pentium IV 2.4GHz 

PC with 1.5Gb RAM. 

The results for the simulation study are presented in Table 6.4 in terms of the 

suitability of the returned subsets. The results are presented for each individual 

model, and then an overall performance is given at the bottom of the table. 

For Model I, which is composed of three correlated pairs of variables, we can see 

that the majority of the selection procedures make accurate selections by selecting 

only one from each pair of variables. The principal components forward selection 

method B4 appears to struggle with this simple model, being correct only about 

three times in four. Both the simple (H) and correlation-based (HC) selection 
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Description Type 
M1 McCabe's first solution to the principal variable problem. An Exhaustive 

exhaustive search of all subsets of appropriate dimensions to 
find that subset which satisfied min I E22.1 I. 

M2 As Ml, only returning the subset which satisfied Exhaustive 

min tr(E22.1). 

M3 As M1, only returning the subset which satisfied Exhaustive 

min II E22.1112. 
B1 Jolliffe's first backward variable selection procedure using the Stepwise 

principal components of E, removing variables associated 

with the highest loadings in the final component. The princi- 

pal component analysis is repeated for the remaining variables 

each time a variable is selected. 

B2 Jolliffe's second backward variable selection procedure using Stepwise 

the principal components of E. The principal component 

analysis is performed only once. 

B4 Jolliffe's forward variable selection procedure using the prin- Stepwise 

cipal components of E, associating selected variables with the 

highest loadings in the first components. 

Al Beale's multiple correlation method. An exhaustive search Exhaustive 

of all subsets of appropriate dimensions to find that subset 

which maximised the minimum multiple correlation between 

the p selected variables and any of the remaining variables. 

A2 Jolliffe's stepwise version of Al. Stepwise 

KP Krzanowski's Procrustes method. Stepwise 

DF The graphical Gaussian selection method of De Falguerolles Exhaustive 

et al seeking the set of variables given which the remaining 

variables are conditionally independent. 

H The initial simple selection procedure using h statistics. Stepwise 

HC The correlation-based selection procedure using h statistics. Stepwise 

Table 6.3: Summary of the variable selection methods tested via Monte Carlo sim- 

ulation. 
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methods using h statistics attain 100% accuracy on these tests. 

Moving on to the second model we can begin to observe greater differences 

in the performance of the different techniques. McCabe's methods M2 and M3 

continue to attain a high level of accuracy, whereas the method Ml based on die 

determinant suffers a notable drop in performance, though it still never selects a 
"Bad" subset. Jolliffe's methods B1 and B2 predominantly return only "Good" 

subsets rather than "Best", and the previously unreliable B4 method outperforms 
both on this model. The multiple correlation method Al appears to suffer a major 
failure by exclusively returning "Bad" subsets. Further investigation reveals that it 

excludes the independent variable X3 from all returned subsets due to its negligible 

predictive power, thus resulting in a 100% failure rate. Curiously, the purportedly 

inferior A2 appears to be less susceptible to these problems. The DF method suffers 

a similar fate, often preferring multiple variables from a group thus explaining its 

poor performance. KP never makes a bad selection with this model, though it seems 

to prefer the "Good" subsets to the "Best". As expected, the correlation-based 

stepwise procedure HC suffers from a similar problem as Al by forcing out the 

independent variable giving it a low performance, though still performs better than 

Al. The simple selection process H has a comparable performance to McCabe's 

optimal solutions. 

The third model appears to prove more of a challenge to many of the methods. 

Of McCabe's solutions, M2 and M4 retain their high level of performance, and M1 

is again performing slightly less well. However, one of the problems in interpreting 

the results from this model is the blurring between the relative merits of "Good" and 

"Best" subsets for this model. Whilst "Best" subsets are theoretically the superior, 

in practical terms the "Good" subsets could be equally valuable. Relaxing the 

classification criteria would result in a similar situation as in Model I, and so should 

probably be avoided. Nonetheless, M1 still never makes an incorrect selection of 

subset. The exhaustive method DF also fares quite well on data from this model as 

it never makes a bad selection, but its performance is not as good as M2 or M3. The 

fortunes of the principal components methods are mixed, with B1 being the best 

and the other two frequently selecting "Moderate" or "Bad" subsets indicating a 
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poor consistency of performance. Both the multiple correlation methods performed 
well on this data set. Of the stepwise methods, KP performs the best with 70.87c of 
subsets being "Best" and none being "Moderate" or worse. Method HC performs 
quite well on these data, though it is still inferior to H. However, the performance 
of H on this model is disappointing when compared with its excellent performance 
elsewhere. 

Model IV is the largest of the models having ten variables in total, only four of 
which are key signal variables. All methods except for HC, 131, DF and Al attain 
or are close to a 100% success rate. Method 131 performs reasonably well, but is 

not as successful as those previously mentioned. However Al, DF and HC again 
systematically ignore the single independent variable causing a 100% failure rate. 

In conclusion, McCabe's methods M2 and M3 are the best - they consistently 

return a high proportion of "Best" subsets. However, they are exhaustive in nature 

and hence require significant computation to enumerate and evaluate all subsets. 
Whilst simple for small toy problems such as this, trials seeking the four McCabe- 

optimal subsets of size 7 in a 20-variable problem took approximately one hour to 

simultaneously evaluate. Nonetheless, method M1 appeared to be the inferior sib- 
ling in this family of solutions; whilst still never being incorrect in its selections many 

of its choices were inferior to those made by M2 and M3. The principal components 

methods had mixed fortunes - method B1 shows a poorer overall performance to 

B2 due to its failures under Model IV and relatively poor performance on Model 

III. This is unexpected as 131 repeats the principal component analysis at each 

stage, which is assumed preferable to performing it only once as in B2. However, 

it is likely the case that re-performing the PCA on the reduced subset of variables 

is not sufficient to accommodate for the removal of each variable. Performing the 

PCA on the partial variance/correlation matrix may serve to boost the performance 

here. Both methods however retain subsets that are "Good" or better for more than 

90% of the simulations. Method B4, the forward selection method, is slightly more 

inconsistent than B1 or B2 with a higher probability of obtaining either a "Best" 

or "Bad" subset. 

Of the multiple correlation methods, the stepwise method A2 was the better 
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of the two. The reason for this disparity being that Al consistently ignores single 
independent variables due to their low predictive power and negligible impact on 
the multiple correlation. The stepwise method seems to dodge this problem, with a 
generally good performance and since it never selects a subset that was "Moderate" 

or "Bad" it also demonstrates high consistency. The KP method is conceived to 
determine the subset that best represents the multivariate structure of all the vari- 
ables, consequently its performance on these tests is quite good with no "Bad" or 
"Moderate" subsets and 69% of all subsets being "Best" - rather better indeed than 

originally reported [75]. It is also the best stepwise method for Model III. 

Of the two novel methods proposed in this chapter, we can see that the simple 

stepwise procedure (HC) based on h statistics performs poorly. This was due to 

the fact that the method ignores independent variables in much the same way as 
Al, though with slightly better performance. Nonetheless it remains the second 

poorest selection method in the study. The unscaled method H is quite different 

however, producing a high frequency of "Best" subsets (83%) and never returning a 

subset that was "Bad" or even "Moderate". This demonstrates both a high level of 

accuracy and consistency which surpasses that even of McCabe's optimal solution 

M1, though its performance is still not on a par with the other methods M2 and M3. 

Only its performance on Model III was disappointing, with a lower than average 

number of "Best" subsets. That said, H is a stepwise procedure and not exhaustive 

and so has consequent benefits in terms of computation and speed of execution that 

are lost when using McCabe's exhaustive methods. McCabe's methods aside, H is 

the best stepwise variable selection method of those studied. 

6.7.1.2 Structured Models 

The goal of Krzanowski's Procrustes method for variable selection is to determine 

a subset which preserves the original structural features of the data. To test this 

method he performed a modified version of the simulation performed above, argu- 

ing that that simulation contained "no inherent structure" with each data set being 

simply a set of points scattered about zero. Additionally, the selected variables are 

not tested to see if they preserved the structure of the data, and the classification of 
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subsets does not reflect a pursuit of such an objective. To achieve this he built addi- 
tional structure into the data and examined whether the selected subsets contained 

variables which conveyed this structure. To assess the effectiveness and performance 

of the selection method proposed in this chapter on such data, the simple selection 

method H will be tested in a simulation following Krzanowski's design. 

The data were generated via the models used in the above simulation and were 
then subsequently modified. Groupings of cases in these data were created by in- 

cluding additional structure into the data via a 32 factorial method. The first factor 

governed the type of structure to be created within the data and took three levels: 

`single outlier', `weak groups', or `strong groups'. The second factor controlled the 

amount of structure present, i. e. the number of variables in which the additional 

structure was to be found. This factor again had three levels: `in one variable', `in 

two variables' or `in three variables'. 

In the case of structure of type `single outlier', the value 10 was added to each of 

the first j variables of the first case in the data, where j was the corresponding level of 

the `amount of structure' factor, i. e. 1,2 or 3. For `weak groups', the first 25 sample 

members were unchanged, the next 25 had the value 2 added to the first j variables, 

the following 25 had the value 4 added to the first j variables and the final 25 had 

the value 6 added to those j variables. For `strong groups' the procedure was the 

same as for `weak groups' except multiples of 10 were used in place of multiples of 2. 

Variable selection was then carried out on these modified data, selecting subsets of 

the appropriate dimension. Each subset was then examined to determine how many 

of the j structure-bearing variables were present. Running this simulation 100 times 

for each combination of the type of structure, amount of structure and model type 

using the unweighted selection method (H) generated the results presented in Table 

6.5. Krzanowski's reported results are presented alongside for comparison. The HC 

procedure was not tested here due to the obvious shortcomings highlighted in the 

previous simulation study. 

The reasoning behind performing this simulation with structured data is to as- 

certain whether the `structure' inserted into several variables within the data is pre- 

served in the reduced subset by returning some of these structure-laden variables. 
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Figure 6.6: Correlation plots for simulated data for Models 1 11'. 

Number of Number of 
Structure variables structure Model 

type exhibiting variables I II III IV Overall 

structure selected H KP H KP H KP H KP H KP 

Single 1 0 47 0 48 0 2 9 0 0 21.25 2.25 

Outlier 1 53 100 52 100 98 91 100 100 75.75 97.75 

2 0 0 0 0 0 3 2 0 0 0.75 0.5 

1 99 6 98 15 8: 3 75 55 97 8: 3.75 18.25 

2 1 91 2 85 11 23 45 3 15.5 51.25 

3 0 0 0 0 0 0 0 0 0 0 0 

1 98 6 1.1 20 78 6 0 0 55.0 8 

2 2 811 19 72 21 811 100 100 43.0 85 

3 0 10 7 8 1 10 0 0 2.0 7 

Weak 1 0 46 0 18 0 0 0 0 0 23.5 0 

Groups 1 54 100 52 100 100 100 100 100 76.5 100 

2 0 0 0 0 0 0 0 0 0 0 0 

1 100 0 100 0 100 0 100 0 100 0 

2 0 100 0 100 0 100 0 100 0 100 

3 0 0 0 0 0 0 0 0 0 0 0 

1 100 0 100 0 100 0 93 0 98.25 0 

2 0 1 0 0 0 11 7 100 1.75 28 

3 0 99 0 100 0 89 0 0 0 72 

Strong 1 0 42 0 32 0 0 0 0 0 18.5 0 

Groups 1 58 100 68 100 100 100 100 100 81.5 100 

2 0 0 0 0 0 0 0 0 0 0 0 

1 100 0 100 0 100 0 100 0 100 0 

2 0 100 0 100 0 100 0 100 0 100 

3 0 0 0 0 0 0 0 0 0 0 0 

1 100 0 100 0 100 0 100 0 100 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 100 0 100 0 100 0 100 0 100 

Table 6.5: Table of number of times a structure-bearing variable is selected for each 

model with additional structure as used by Krzanowski. 
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In essence, we are assessing whether the effects of the structure-bearing variables 

should override those of the underlying model type with the structure variables 
being selected in preference to other variables. As the strength of the structure in 

the data increases, it becomes increasingly more likely that Krzanowski's method in- 

cludes structure-bearing variables in the subset selected. In fact, for weak and strong 

groups almost all structure variables are selected. However, for the H method we 
find that for both weak and strong groups on two or three variables typically only 

one of these structure-bearing variables is selected. This is likely since the structure 

variables form a tightly correlated group with strong inter-correlations. Therefore, 

once one variable of this group has been selected then the partial variance and hence 

the h values of the other variables in that group will dramatically fall thereby re- 

ducing their desirability to the selection algorithm. Essentially, the effects of adding 

this structure to the data is equivalent to there being an underlying latent variable 

representing this structure and the variables themselves being noisy realisations of 

this variable. It is therefore the case that the procedure detects the addition of 

the multiples of two and ten as being the underlying signal thus leaving the other 

structure variables effectively redundant, and reducing their desirability for selec- 

tion once one of the group has been selected. This behaviour of selecting only one 

structure variable does, in the case of H, override that of the underlying model as 

this would typically require at least two of these variables to be present to be classed 

as a `Best' subset. 

The results for H on data with a single outlier are more variable than with the 

other structure types. The subsets selected for this type of structure appear governed 

by the underlying models rather than the structure. However, the effect of inducing 

the outlier structure has been to force the procedure to favour the unaffected partners 

of the structure-bearing variables before the structure was added. This is because 

the addition of the outlier reduces its correlations with other variables, making its 

equivalent(s) prior to the addition of structure the more likely choice with higher 

correlations. It should be noted that the selection of these equivalent variables still 

yields a `Best' classification under Jolliffe's models. However it is clear that the 

procedure sees variables with a single outlier as being less desirable candidates for 
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Figure 6.7: Correlation plots for the correlation matrices of the iris and aphids data 

sets. 

inclusion in the subset when compared with its performance on the base models. 

This seeins to be the opposite to the behaviour of Krzanowski's method which is 

evidently highly sensitive to such outliers. It interprets this outlier behaviour as a 

necessary component of the underlying structure. Similar behaviour is observed for 

most structure types on single variables. 

6.7.2 Real Data 

6.7.2.1 Iris Data 

Whilst evaluation of the presented methodology on simulated data is informative, 

it is the analysis of real data that is the focus of most statistical work. The first 

real data set considered and presented here is the famous (Fisher's or Anderson's) 

iris data set [3,47]. The data consist of four size measurements on 150 samples of 

three species of iris - the correlation plot of the correlation matrix for these data is 

displayed in Figure 6.7. Whilst only being four-dimensional, this data set is not a 

realistic candidate for variable selection, however it is stich a widely used example 

data set that familiarity with it is likely. Therefore, a number of the previously 

tested variable selection methods including the unweighted stepwise method H were 

applied to the data to assess their performance on real data and to draw comparisons 

between them. The results from selecting one to three variables from this data set 
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are presented in Table 6.6 along with the corresponding values for the percentage 

variation captured by that subset as determined by tr(S22.1) and 11522.1112 per (6.23). 

For the single-variable selection problem, we can see that most methods choose 
Petal Length as the most representative variable. Only two of the principal com- 

ponents methods differ from this choice with B1 picking Sepal Width, which is a 

poor choice as evidenced by low resulting value for the percentage variance. Para- 

doxically, method B4 selects Petal Length as being the variable with the largest 

absolute loading in the first principal component and method B2 rejects the same 

variable at the first step for having the largest absolute loading in the last principal 

component. In addition, it is worth noting that one of the eigenvalues in the data 

is almost zero implying that one of the variables is redundant. 

For the selection of two variables we can see that all methods now include Sepal 

Width as a key variable, however the choice of a second variable varies among the 

different techniques. McCabe's methods along with B4, A2, DF and H all return 

Petal Length as their chosen second variable. This agreement between these methods 

would corroborate the idea the H is a stepwise attempt at finding the optimal 

solution described by M3. Jolliffe's method B1 and Krzanowski's KP prefer to 

retain both width measures with a slightly lower performance. Only method B1 

chose to retain both sepal measurements and it ranked last in terms of tr(E) and 

E 112. Interestingly, no method chose both the petal measurements despite being 

highly correlated with one another (0.82) and moderately correlated to the sepal 

measurements. The strength of this pairing could suggest that one variable could 

be used as a feasible surrogate for the other - possibly the redundancy indicated by 

the zero eigenvalue. In fact, once the effects of one of these variables are accounted 

for the partial correlations of the other variable with the sepal measurements drop 

dramatically, which indicates a likely overlap in the information contained in these 

variables. 

For the 3-variable case, all methods choose both petal variables and it is the 

differing choice for the third variable that the variation among the methods is visible. 

The best subset in terms of tr(E) and IIE112 is that chosen by McCabe's methods, 

B1, B2 and KP which prefer Petal Width over Petal Length. All of these return 
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Number of Selection Sepal Sepal Petal Petal 

Variables Method Length Width Length Width % tr(R) %IR 12 

M2 x 71.8 90.8 

M3 x 71.8 90.8 

B1 x 61.1 82.7 

B2 x 68.3 89.8 

B4 x 71.8 90.8 

A2 x 71.8 90.8 

KP x 71.8 90.8 

DF x 71.8 90.8 

H x 71.8 90.8 

2 M2 x x 94.2 99.6 

M3 x x 94.2 99.6 

B1 x x 90.3 98.6 

B2 x x 91.0 98.8 

B4 x x 94.2 99.6 

A2 x x 94.2 99.6 

KP x x 91.0 98.8 

DF x x x 94.2 99.6 

H x x 94.2 99.6 

3 M2 x x x 99.2 100.0 

M3 x x x 99.2 100.0 

B1 x x x 99.2 100.0 

B2 x x x 99.2 100.0 

B4 x x x 98.4 100.0 

A2 x x x 96.5 99.8 

KP x x x 99.2 100.0 

DF x x x 99.2 100.0 

H x x x 98.4 100.0 

Table 6.6: Selected variables for Fisher's Iris data using various selection methods. 
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subsets with a retained proportion of IIEII2 at almost 100%. However, the other 
two methods (B4 and H) choose Petal Length and have a slightly lower resulting 
value of the percentage trace. However, the difference is negligible reflecting the fact 

that the majority of the information was captured on the two variables previously 

selected. Method A2 performed relatively poorly with the three-variable problem, 
its choice of both petal measurements resulted in the lowest values for percentage 

variation. One point worthy of note is that for all the stepwise methods, we can 

observe that the `optimal' 2-variable subset is contained within the corresponding 
3-variable group which is not required to be the case for McCabe's methods as these 

require exhaustive evaluation. In fact, these methods have returned subsets with 

only a small amount of overlap. 

6.7.2.2 Aphids Data 

The second real data set to be examined consists of 19 variables measured on 40 

alate adelges (winged aphids). These data were first examined by Jeffers [65] and 

have often been subsequently examined in a variable reduction setting [75,68,67]. 

Krzanowski determined via a cross-validatory approach that the minimum number of 

variables required to adequately describe the data was four. Using this information, 

the various selection methodologies have been applied and the resultant four-variable 

subsets are given in Table 6.7 with their associated value of the percentage variance 

in terms of tr(E) and IIE11'. 

We can see immediately that all variables select variable 5 in their reduced sub- 

set, and all but KP additionally choose variable 11. However, from these subsets 

we can see that McCabe's methods return the same subsets, as do B4 and H, with 

the others all returning different groups. Overall, there is little practical difference 

in the subsets returned by the different methods with each returning a subset that 

represents 80-90% of the variation. In these terms, we can see that the McCabe 

solutions are the best with a value of 89.8%. Both H and B4 come a close second 

with 89.1% - which is close for the `optimal' exhaustive methods and the sub-optimal 

stepwise methods. This is particularly meaningful when considering that this is a 

larger problem than the iris data creating a greater consequent potential for a diver- 
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Selection Variable % tr(E) ý1 12 
Method 2 5 6 8 9 11 12 13 14 17 18 19 

M2 x x x x 89.8 99.8 
M3 x x x x 89.8 99.8 
B1 x x x x 81.7 98.1 
B2 x x x x 85.5 99.3 
B4 x x x x 89.1 99.7 
A2 x x x x 78.2 96.6 
KP x x x x 86.3 99.5 

H x x x x 
1 

89.1 1 99.7 

Table 6.7: Selected four-variable subsets for Jeffer's aphid data using various selec- 
tion methods. 

gence between the stepwise and exhaustive methods. This is an encouraging result 
for H. The other methods are slightly inferior in performance, though Krzanow- 

ski's method is still returning a good subset. B1 and A2 both make poor choices 

resulting in the two lowest value for the percentage trace and percentage squared 

norm. 

Plotting each of the four possible `scree' plots from Section 6.5.4 for the aphids 

data analysed above, we obtain the plots in Figure 6.8. Figure 6.8(a) shows the h 

scores for each of the variables as it was selected by the H procedure. We can see that 

these weighted scores decrease rapidly, and most of the variables after the third or 

fourth selected are approximately zero. The exact values of the first four h statistics 

are 13.3,1.8,0.7, and 0.3 which highlights the rapid reduction in magnitude due to 

the fact that the variables are all moderately to strongly correlated and once the key 

variables are selected the partial variances all but disappear. A red dashed line is 

drawn on the plot at h=1 since a variable with an h value below this level conveys 

less information than a single independent variable. Therefore, in Section 6.6 this 

was proposed as a threshold for the assessment of the intrinsic dimensionality of the 

data. In this case it would suggest that the effective dimensionality is 2. This does 

not agree with Krzanowski's results [751 for determining the minimum number of 

variables that can adequately represent the data. This could suggest that a threshold 



6.7. Results 173 

value of 1 is too conservative and a reduced value may be more appropriate, or it 

may indicate that h values may not be suitable for a direct estimation of intrinsic 
dimensionality. 

The plot in Figure 6.8(b) of the squared norm of the correlation matrix of re- 

maining variables is again decreasing as one would expect and in a similar fashion 

to the h scores in Figure 6.8(a). However the rate at which the values decrease 

here is slower and is likely more representative of the true situation. The value for 

111322-11 12 falls from 7.44 to 1.92,1.15 and then 0.57 over the first four variables. This 

reduction is due to the fact that with each variable we select, we are capturing more 

of the variability in the data. We can see that after the fifth variable the points are 

all close to zero and are approximately linear suggesting that they represent little 

more than noise. 

The plot of the percentage variability in terms of the trace in Figure 6.8(c) 

increases slowly, likely due to the fact we are not seeking to optimise the trace of the 

conditional variance. This plot is curved as predicted and shows the linear trend 

after the first four or five variables and so would agree with Krzanowski. It also 

illustrates that we capture 80-90% of the variability of the data in those first four 

variables with the remainder contributing a negligible and near-constant amount. 

The plot of the percentage variability in terms of the squared norm explained by 

a given number of extracted variables is displayed in Figure 6.8(d). This plot is 

simply a reinterpretation of the information in Figure 6.8(b) relative to the squared 

norm of the initial correlation matrix, which in this case equals 198. This plot shows 

that even with one variable in excess of 90% of the information is captured. This 

increase is sudden and gives an angular appearance to the plot, rather than the 

expected curve but is due to the high correlations between many of the variables in 

the data set. It also suggests we obtain nearly 100% of the variability with 2 or more 

variables. Whilst this would be at odds with Krzanowski's dimension assessment of 

4, it does agree more with the eigenvalue-based procedures such as scree plots which 

suggest the majority of the information (73%) is conveyed on the first principal 

component alone. 
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Component/Variable 

Method 123456 

SCA {X1, 
... , 

X12} {X13 
... , 

X16} {X19, 
... , 

X20} {X17, 
... , 

X18} 
- - 

H X8 X15 X2 X18 X9 X20 

Table 6.8: Block simple components and selected principal variables for the neuro- 

motor data. 

6.7.2.3 Neuromotor Data 

The third real data set to be investigated consists of 20 variables measured on 467 

children. The data was investigated by Rousson and Gasser [106] and Largo et 

al [78], and concerns the assessment of the development of neuromotor functions in 

children and adolescents. The correlation plot for these data is shown in Figure 6.9. 

The first 12 tasks concern fine motor tasks involving the feet (X1, 
... , 

X4), the hands 

(X5, 
... ) X8), or the fingers (X9 

... 7 
X12). These tasks can be separated into pairs 

where the same task is performed on the dominant and non-dominant side, thus 

accounting for the strong pairings in the data. Variables X13, ... , 
X16 correspond to 

pegboard tasks, and variables X17, 
... 7 

X20 consist of gross motor tasks. 

It is clear that these correlations are structured with many pairings of variables, 

a moderately correlated block of the first 12 variables, a more strongly correlated 

group for X13, ... , 
X16 and two final pairs of variables. This would suggest that 

dimension or variable reduction would be quite effective here. 

These data were analysed in [106] to illustrate the method of Simple Components 

Analysis, where it was determined that the data could be expressed in terms of 4 

block components and 2 difference components. The four block components were 

composed of variables X1, ... , 
X12, X13, ... , 

X16, X19, ... , 
X20, and X17, 

... , 
X18 re- 

spectively. The first difference component contrasted the pairs {(Xl, X2), (X5iX6), 

(X9, Xlo)} with {(X3, X4), (X7, X8), (Xll, X12)}; the second difference component 

contrasted X1,.. 
., 

X4 with X9,... , 
X12. 

The simple block components will be compared with the results from applying 

H in order to determine whether there is any similarity between the methods. The 

resulting simple components and principal variables are given in Table 6.8, where 
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Figure 6.9: Correlation plots for the correlation matrix of the neuromotor data set. 
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Figure 6.10: Correlation plots of the partial variance matrix for the tieuroiuotor 
data set after the extraction of the first 6 PVs. 

we have chosen to extract 6 PVs. We can see from these results that the first 2 PVs 

are are contained in the first 2 block simple components, and furthermore the third 

and fourth block components contain principal variables 6 and 4 respectively. Thus 

each of the four block simple components is represented by at least one of the first 

six principal variables. 

These first 6 PVs provide 52.7% of tr(E) and 81.1% of IIE112, which is quite good 

performance using only 30% of the variables. Looking at the remaining variation 

in the data after the extraction of these six PVs in Figure 6.10 we can see that the 

majority of the off-diagonal correlation has been eliminated and the only remaining 

residual associations exist within four pairs of variables. In fact, if we increase the 

number of principal variables to 10 we can eliminate these remaining associations 

and increase performance to 74.1% of tr(E) and 93.7% of IIE112 using only 50% of 

the data. 

The calculation of statistics such as tr(E) and II EI I' to compare these two meth- 

ods is difficult since the raw data are not available so we cannot calculate the values 

of the simple component scores in order to find the appropriate values of R22.1. 

However, it will be possible to use the percentage variance criterion introduced by 

Rousson and Gasser to evaluate both methods. Their criterion is defined as: 

Opt2(P) = 
r(EP(P'i jp)-ipT E) 

tr(Aq) 

where P is the matrix of loadings for the simple components, E is the variance 
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matrix and Aq is the (q x q) diagonal matrix of the q largest eigenvalues. \Vhen 

evaluating this criterion for H each column of the matrix P will contain a single 1 

in the position of the selected PV and zeros elsewhere. On this statistic the SCA 

method captures 99.4% of the variation, whereas H captures only 34.0%. These 

results are not surprising and are really only indicative of the number of variables 

retained by the two methods. SCA uses all 20 variables giving almost 100% of 

the variance, whereas H uses 30% of the variables and thus captures a similar 

amount of variability. Despite this obviously poor relative performance, the H 

method does appear to mirror the simplicity of the simple components by extracting 

representative variables of the block components. 



Chapter 7 

Reducing the Orthopaedic Data 

7.1 Introduction 

Having established in Chapter 5 that having ai large number of variables in a graph- 
ical model causes some difficult analytic and computational problems, reducing the 

size of the orthopaedic data sets was determined to be necessary. Chapter 6 discussed 

many existing variable reduction strategies and developed some novel methods and 

extensions that accommodate both longitudinal data and utilities for individual vari- 

ables. The focus of this chapter is to apply these variable reduction techniques to 

the repeated measurements within the orthopaedic data sets, and then to analyse 

and discuss the results. 

This chapter is divided into two main sections looking at reducing the size of 

the orthopaedic data sets. Section 7.2 considers reducing the size of the knees data 

set, and Section 7.3 moves on to consider the hips data. Restricting attention to 

the pre-operative data for brevity, each section addresses the issue of the intrinsic 

dimensionality of the data via a principal component analysis and the application 

of several methods previously discussed. Using that information an appropriate 

number of variables are chosen by applying several of the dimension reduction tech- 

niques existing in the literature. Then the stepwise selection methods proposed in 

Chapter 6 are applied to the data and compared to the results from the other meth- 

ods. Finally, a subset of variables are selected over all time points in the data by 

using the temporal extension to the variable selection process proposed in Section 

178 



7.2. The Knees Data 179 

6.5. Subsets are also obtained for the knees data using information from subjective 
variable utilities. 

7.2 The Knees Data 

7.2.1 Data Structure 

The knees data were fully discussed in Section 2.2.1 and contain a total of 20 repeated 

measurement variables representing the patient's status, each recorded at four time 

points. The times at which data is recorded are pre-operatively and at 1,5 and 

10-year follow-up consultations. Not all patients remained in the study up to the 

10-year point, so there is a consequent drop in the sample sizes at each point. 

To gain insight into the possible structure of the data, correlation plots for the 

data at each time point are presented in Figure 7.1. One variable (Coronal Tibio- 

Femoral Angle) exhibited a zero variance in the 5 and 10-year data and so has been 

removed from those plots. Looking at these plots we can see that the correlation 

structure is quite similar over the four time points, though it becomes noisier at the 

later time points due to the reduction in the sample size. Nonetheless, this suggests a 

degree of constancy to the correlation structure between these measurements which 

persists despite the passage of time. 

It is immediately clear from the plots that there is a central block of correlated 

variables. This block corresponds to the walking ability scores with the exception 

of Stability, which exhibits little association with these scores and is more closely 

related to pain measures. The average correlation in this group is approximately 

0.43 pre-operatively, with correlations increasing at later times. It also appears that 

Walking Ability is associated to Hip Abduction and Other Hip Abduction as shown 

by the horizontal and vertical bars above and to the left of the central block, which 

are most visible in the 5-year plot. Within this larger group however, we can see 

that there are two pairs of variables which are particularly strongly associated with 

r>0.9 in both cases. These are, first, Sitting Down and Rising Up (labelled SD 

and RU) and then Going Up Stairs and Going Down Stairs (labelled GU and GD). 

We can also see a second block of correlated variables towards the bottom right 
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(a) Pre-operative (ii = 599) (b) I-year post-operative (n = 559) 

(c) 5-year post-operative (n = 239) (d) 10-years post-operative (n = 86) 

0.75 
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0.25 
0 

Figure 7.1: Correlation plots of the repeated measurements in the knees data oh- 

served at each of the four time points. 
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of the three post-operative plots. This block corresponds to the three pain scores 
plus Stability. Whilst the associations within this group are fairly weak and not 
immediately noticeable pre-operatively (r ý_- 0.28), they strengthen post-operatively 
(r ^_ 0.68). The correlation between the pair Pain Frequency and Pain Severity is 

especially strong at 0.83. 

In addition to these two groups of variables, there are a number of pairings among 
the remaining variables that are highlighted by the plots. For example, Other Hip 

Abduction (labelled OHAB in the upper left corner) is noticeably associated to Hip 

Abduction. There are also similar, though weaker, pairings between both Flexion 

and Other Knee Flexion and Fixed Contracture and Other Knee Fixed Contracture. 

Thus we can see that there is significant structure underlying these knees data. 

Furthermore, the presence of groups of correlated variables as well as pairs of strongly 

associated variables would suggest the possibility of redundancy among the observed 

measurements making the data an ideal candidate for variable selection. 

7.2.2 Principal Component Analysis and Dimension Assess- 

ment 

The use of principal component analysis is common when seeking to reduce dimen- 

sionality. Whilst not directly applicable to variable reduction, it is an effective tool 

for dimension reduction and is used in several methods for ascertaining the intrinsic 

dimensionality of the data. Therefore the results of the principal component analysis 

are discussed here, before moving on to the assessment of dimensionality. 

The principal components of the pre-operative knees data were calculated via the 

singular value decomposition of the correlation matrix. The loadings for the first five 

principal components are given in Table 7.1 and their associated standard deviations 

in Table 7.2. The first principal component accounts for 22% of the variation of the 

data and is essentially an average of the patients walking ability scores combined 

with Flexion and both Hip Abductions. This component would appear to correspond 

with the large central group of variables shown in the correlation mosaics in Figure 

7.1. The second component represents only 9% of the total variation and conveys 

information on Sitting Down and Rising Up as well as several of the anatomical 
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Figure 7.2: Scree plot for the principal Cornponentti of the pre-operative knees data. 

angles, with the exception of the hip measures. It also noticeably contrasts Fixed 

Contracture with Other Knee Fixed Contracture. The third component encapsulates 

the variation in the three pain scores suggesting they commonly vary in step with 

one another. The fourth component governs the level of Hip Abduction on both 

hips. 

Having calculated the principal components we can use the results to assess the 

dimensionality of the pre-operative knees data set. The methods used are those 

discussed in Section 6.2.3 with the exception of Eastment and Krzanowski's cross- 

validatoiy method. The reason for this exclusion is that it required systematically 

predicting each element of the data matrix after its row and column have been 

deleted by using different numbers of the principal components which are calculated 

on this reduced data set. This would require 11980 calculations of the principal 

components, which was deemed to be excessive. 

Kaiser's rule using eigenvalue thresholds of 1 and 0.7 gave dimensions of 7 and 16 

respectively. By further examining the eigenvalues, we learn that to capture a total 

of 75% of the variation of the data would require 10 of the principal components. The 

scree plot of the variances of the principal components (A2) is shown in Figure 7.2 

which illustrates that the first component accounts for a large share of the variance. 
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PC1 PC2 PC3 PC4 PC5 

Weight 0.17 0.23 -0.28 
Pain Frequency 0.54 -0.19 

Pain Severity 0.55 -0.24 
Night Pain 0.48 

Stability 0.16 -0.17 
Walking Ability 0.36 -0.21 

Walking Aids 0.29 

Sitting Down 0.29 0.34 0.43 

Rising Up 0.29 0.35 0.41 

Standing 0.27 

Going Up Stairs 0.37 -0.18 -0.24 -0.23 
Going Down Stairs 0.36 -0.21 -0.23 
Coronal T-F Angle 0.36 0.20 

Fixed Contracture 0.32 -0.17 -0.16 -0.32 
Flexion 0.26 0.33 

Extension Lag -0.20 
Hip Abduction 0.26 0.54 

OK Fixed Cont. -0.48 -0.18 
OK Flexion -0.34 -0.28 0.21 

Oth. Hip Abduction 0.23 -0.19 0.55 
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Table 7.1: The first five principal components of the pre-operative knees data. 

Loadings of value < 0.15 have been omitted for clarity. 

PC1 PC2 PC3 PC4 PC5 

Standard Deviation 2.1182 1.3863 1.2536 1.2238 1.1745 

Proportion of Variance 0.2243 0.0961 0.0786 0.0749 0.0690 

Cumulative Proportion 0.2243 0.3204 0.3990 0.4739 0.5429 

Table 7.2: The importance of the first five principal components of the pre-operative 

knees data. 
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Method Dimensionality 

Kaiser's rule A<1 7 

Kaiser's rule A<0.7 16 

75% of variation 10 

Scree Plot 6 

Broken Stick 7 

Velicer 13 

Table 7.3: Table of estimates for the intrinsic dimensionality of the pre-operative 
knees data. 

but also shows a linear trend starting at the 6th component. Using the `broken stick' 

method, the proportion of variation attributed to each component is compared to its 

expected value which suggests an intrinsic dimensionality of 7. Applying Velicer's 

method of finding the number of principal components which minimises the average 

partial correlation given those components suggests a value of 13. These results are 

summarised in Table 7.3. 

The minimum number of dimensions in terms of principal components appears 

to be 7. However, this may be an oversimplification as several of the other methods 

suggest somewhat larger values, and the A<0.7 method suggests a value more 

than double that value. Nonetheless, it is not surprising that the value for the 

dimensionality of the data is this large relative to the number of variables since 

the knees data are quite sparsely correlated with small groups exhibiting moderate 

correlations within these groups and only minimal correlations between them. Ad- 

ditionally, these estimates are only considering the number of principal components, 

in practice the number of variables will be larger than this. 

7.2.3 Reducing the Pre-operative Data 

Whilst the knees data consist of four separate time points, most variable selection 

procedures can only operate on data from one time point. Therefore, the pre- 

operative data is first considered as an extended example and illustration of the 

application of the variable selection procedure. The first question to be answered 
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is how many of the original variables should be retained in order to maintain an 
adequate description of the original data. The estimates obtained above are far 
from unanimous and range from 7 to 16. On consideration, we shall favour a cut-off 
point for the proportion of variation expressed by the variables in terms of the trace 

or squared norm of the partial variance matrix of the remaining variables. This is 

natural as the variable selection procedures proposed in the previous chapter operate 
in terms of the partial variance, so providing such a threshold value would be well 

accommodated into the selection process. Therefore, the number of variables to be 

selected will be the smallest that is sufficient to express at least 75% of IIEI I2. For 

these data this corresponds to a subset of seven variables. 
Having determined a size for the subsets, the various selection procedures inves- 

tigated in Chapter 6 were applied to the data. The resulting variable subsets are 
displayed in Table 7.4 with variable names displayed in reduced form. Additionally, 

for each subset in the table the corresponding percentages of tr(E) and IIEII2 that 

are explained by that subset are given, as is the length of time taken to arrive at 

this subset. All calculations were run in R for Windows version 2.1.1 [1011 on a 

Pentium IV 2.4GHz PC. It should be noted that for the stepwise inclusion methods 

B4, HC and H the variables are listed in the order of their selection and hence are 

in descending order of importance according to the corresponding selection criteria. 

Looking first at the performance time of the different methods, we can see the 

marked difference between the exhaustive McCabe methods M1-M3 and the other 

stepwise procedures. The McCabe methods required the enumeration and evaluation 

of all 77 520 possible seven-variable subsets which took approximately three minutes. 

The other procedures returned subsets almost instantaneously, with the exception 

of the multiple correlation method A2 and Krzanowski's method KP. The reason 

for KPs slow performance was that it requires the calculation of several (n x n) 

matrices, which in this case has over 350 000 elements. 

If we look at the general merit of the subsets returned by the different routines, 

we can see that most subsets convey more than 75% of IIEII2 and 55% of tr(E). 

The exceptions to this are methods M1, B1 and A2 - it was also seen in the 

previous chapter that these methods returned subsets that were slightly inferior 
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to those returned by the other methods. This disparity in performance aside, one 
feature worthy of note is the absence of any gulf in terms of the performance of the 
returned variable subsets between the exhaustive optimal methods and the stepwise 
non-optimal methods. Whilst the subsets returned by methods `I2 and NI3 do 

perform the best, the difference between these and the other subsets appears to be 

no more than 2% of tr(E) and 3% of 11E1l2. This shows that the subsets returned 
by the stepwise selection methods are close to the optimal solutions. In practical 
terms, the significance of the differences between these two groups of solutions may 
be negligible. 

If we now consider the composition of the subsets returned by the individual 

selection procedures we can see that there is a great deal of overlap. The similar 

performance of the subsets is likely a consequence of this. If we examine the subsets 
in terms of the variable groupings that we saw in the correlation plots in Section 

7.2.1, we can firstly observe that all subsets contain one variable from the tightly 

correlated pair (Sitting Down, Rising Up). Furthermore, all methods but M1, B1 

and A2 return a subset containing one variable from the pair (Goir? g Up Stairs, 

Going Down Stairs) - this may be a reason for their slightly poorer performance. 

Similarly, all methods return at least one of the three pain score measurements with 

methods A2 and KP both returning two. Further similarity can be seen in that all 

subsets except that of A2 contain one of the Fixed Contracture measurements. This 

strong degree of overlap among the subsets selected suggests that there is a clear 

and definite structure underlying the data that is being systematically extracted. 

Focusing now on the performance of the methods HC and H, we can see that 

both the subsets returned agree in the choice and order of the three most important 

variables - Going Up Stairs, Rising Up, and Other Hip Abduction. Beyond this both 

subsets contain Pain Severity, albeit in a different position; and both contain one 

of the Fixed Contracture measurements and one of the Flexion measurements. The 

only differing choice in variable between the subsets is that HC chooses Walking 

Ability, whereas H chooses Extension Lag. This is significant as Walking Ability is 

part of the group of mobility scores and is associated with Going Up Stairs and 

Ri, cinql Up, whereas Extension Lag only has weak associations with other variables. 
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Figure 7.3: Scree plots produced from application of variable selection procedure H 

to the pre-operative knees data. 

This suggests that the HC procedure is dismissing relatively uncorrelated variables 

in favour of those which are associated with variables already selected. This is as 

predicted in Chapter 6, and it is remedied by the modifications made in H. 

Producing the scree-type plots discussed in Section 6.5.4 for the pre-operative 

knees data using method H yields the graphs in Figure 7.3. The first plot displays 

the It value for each selected variable in the sequence in which they were selected. 

That is to say the first point corresponds to the value for Going Up Stairs, the second 

for Rising Up, etc. From this we can see a steep decline for the first four variables, 

which then straightens out into a roughly linear pattern. We can notice that the h 

values do not decrease as rapidly as they did in the plot for the aphids data in Figure 

7.3(a) which reflects the fact that the variables are not as tightly and homogeneously 

N. Variables Eolractod 

(a) h scores 

No Vanabes EAraaea 

(b) Percentage of IIE112 explained 

No Variables E, trecled 

(c) Percentage of tr(E) explained 



7.2. The Knees Data 189 

correlated. It was also suggested in Section 6.5.4 that a variable with an h value 
below one is conveying less variability than a single independent variable. This was 
suggested as a potential cut-off point, similar to Kaiser's rule. In this case this 
occurs at the seventh variable, which is the same value of dimensionality suggested 
by several methods above. The percentage variation plots also differ significantly 
from the aphids data with the plot of the squared norm having a more visible curve 
before straightening out. The plot of the percentage trace is almost linear after the 
third or fourth variable has been chosen. This may suggest that the data are, to 

a degree, conditionally independent given these first few variables. An alternative 

explanation for the slow increase of the trace relative to the squared norm is that the 

trace considers only the diagonal elements of the conditional variance matrix, that is 

the conditional variances of the variables themselves. Conversely, the squared norm 
is composed of both the diagonal and off -diagonal elements accounting for variance 

and covariances. Thus if the removal of a variable had a significant effect on the 

partial covariances, this would be missed by looking at the value of the trace. 

7.2.4 Reducing All Time Points 

7.2.4.1 Individual Reduction 

The stepwise variable selection procedure H was applied to all four time points indi- 

vidually to identify a reduced subset of candidate variables. However, this procedure 

was complicated by the fact that the variable Coronal Tibio-Femoral Angle has a 

zero variance at the 5- and 10-year time points and so a matrix of correlations could 

not be constructed for all variables. Therefore, for these individual analyses this 

variable was not considered as a possibility, leaving a group of 19 variables. The 

results of these variable selections are presented in the top four rows of Table 7.5. 

Examination of these results shows that there is a significant degree of agreement 

between these subsets. For example, all time points choose one of Going Up Stairs 

(GU) or Going Down Stairs (GD) as the first chosen variable which is reasonable 

due to their good levels of correlation with other variables. All three post-operative 

time points select a pain variable as their second choice - this is not surprising as 
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the pain scores form a group of moderately correlated variables post-operatively, but 

only have weak associations with one another pre-operatively. The ordering of the 
remaining variables is not fixed across the time points, but the many of the variables 
selected are common to all four subsets. For example, Other Hip Abduction (OHAb) 

and Other Knee Flexion (OKF) are selected at all time points. Additionally, all 
subsets include one of Fixed Contracture (FCont) or Other Knee Fixed Contracture 
(OKFC). One variable from the pair Sitting Down (SD) and Rising Up (RU) can 
be found in all subsets except at five-years. The remaining variables then consist of 

at least one of the more independent variables, such as Extension Lag (EXLAG) or 
Weight. 

This overlap and collaboration between the time points is encouraging and im- 

plies that whilst there may be changes in the ordering (and hence importance) of 

the principal variables, the principal variables do appear to be similar despite the 

passage of time, with the exception of the pain variables. Another point that is 

illustrated here is that typically only one variable from a subgroup of tightly inter- 

correlated variables is selected, e. g. {GU, GD}. This may imply that one of these 

variable may act as a surrogate for the other. This is also illustrated with the pain 

scores and the other subgroups mentioned above. The application of the procedure 

to determine the overall `best' subset of variables will be able to eliminate this prob- 

lem of potentially "equivalent" variables creating superficially different principal 

subsets. Another point of note is that due to the decrease in sample sizes over time, 

the second two time points will increasingly suffer from the effects of the sample 

variation causing a greater uncertainty over their results. 

The merit of these subsets, as defined by the percentage trace or squared norm 

of the original correlation matrix, is listed in the final two columns of Table 7.5. 

We can see that the subsets become better at later time points as they explain a 

greater percentage of the variation. The reasons for this are unclear, but the jump 

in performance from the pre- to post-operative data is likely due to the fact that the 

pain scores are more correlated post-operatively. This would mean that the value of 

including a pain score in the subset is greater at later time points thereby boosting 

the percentage variation. 
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7.2.4.2 Simultaneous Reduction 

192 

Before applying the selection method HT developed in Section 6.5.1 to extract lon- 

gitudinal PVs, it is necessary to perform the nonparametric time-dependent PCA 
[100] on each time point. After examination of many possible values for the smooth- 
ing bandwidth, the value of a=1 was chosen. Briefly, the reasons for this choice 

were that the plots for larger bandwidths became homogeneous with little variation 

over time and that those for smaller bandwidths were overly distinct for the different 

times and displayed more variation. Two plots along the lines of those discussed in 

[100] for the knees data are displayed in Figure 7.4. 

The first plot in Figure 7.4(a) is of the proportion of variation explained by the 

individual PCs over time and displays that the majority of the variation is explained 

by the first few principal components, though the importance of the first PC appears 

to drop at the 5-year point, whereas the importance of the other components seem 

to increase over this period. This may suggest a change in structure at this point 

or could be indicative of more noise in the data. The second plot is a plot of the 

loadings of the variables of the knees data in the first PC over time. This plot 

is more difficult to interpret, but we can see that the first component serves to 

contrast the pain scores (oranges and yellows), the walking ability measures (greens 

and cyans) and other variables with Weight, both Fixed Contractures and Extension 

Lag. We can see that there is an abrupt shift in the size of the loadings from the 

1-year to the 5-year time point which might indicate a change in structure at this 

point. However, only one of the loadings changes sign which suggests that whilst the 

strength of associations may change, their directions remain the same. This variable 

is Other Hip Abduction and its initial loading was positive but close to zero. This 

may suggest that at earlier times this variable was merely unimportant rather than 

indicating a fundamental reversal of relationships. Similar conclusions can be drawn 

from the plots for the 18 other PCs. 

If the principal components are not calculated in a temporal fashion, then slight 

variations in the data will likely lead to quite different PC solutions at each of the 

different time points. Another possible method for investigating possible structural 

changes in the components would be to calculate the correlations between the com- 
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ponents obtained at two different time points. Excepting changes in order, if the 
structure were the same then we would expect to see each component at the first 
time point strongly correlated with exactly one of the components at the later time 

point. Performing such analysis with the knees data did not corroborate the hy- 

pothesis of no structural change. However, it is not clear whether this is evidence 
of genuinely different structure at different times, or whether these changes are at- 
tributable to small amounts of variation affecting the ordering and composition of' 
PCs. Investigating potential structural changes over time would be an interesting 

area for future research, but is beyond the scope of this thesis. 

Having applied the H method to each separate time point and obtained four 

distinct subsets, the temporal selection method HT can now be applied to all four 

time points simultaneously using the smoothing bandwidth of a=1 year to obtain 

a single subset for all the data. The results from this process are listed in the bottom 

row of Table 7.5. The subset reflects the common choices made when considering 

time points individually containing variables from each of the groups mentioned 

above. The performance of this subset is listed in terms of the percentage variation 

of the original (not smoothed) correlation matrix of the data at each time point. 

The performance on the data from each time point is encouraging. Indcecl, the 

performance actually slightly exceeds that of the individual subsets for all but the 

10-year data. This is likely due to certain combinations of variables yielding better 

results than would be expected when running a simple stepwise procedure. Per- 

forming an exhaustive search would, of course, identify these best combinations but 

would suffer from the problems involved with exhaustive methods. Nevertheless, 

the performance is still similar to the performance of the individual subsets. 

The correlation plot of the partial variances matrix of the remaining variables of 

the 1-year knees data given the seven chosen variables is shown in Figure 7.5. We 

can see that there is little off-diagonal activity reflecting the fact that most of the 

covariances have been removed with the selected variables leaving the matrix close 

to diagonal. This may suggest that these variables are approximately conditionally 

independent given the variables we have selected, which may explain the high per- 

formance of the extracted subsets in terms of percentage trace and squ<arecl norm. 
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(b) Loadings of PC1 over time 

Figure 7.4: Plots of the results of the nonparametric time-dependent PCA on the 

knees data. 
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Figure 7.5: Correlation plot of the partial variance matrix of the remaining variables 
of the 1-year knees data given the seven chosen variables. 

The lower score for the trace is due to the (relatively) high values for the partial 

variances of the variables displayed on the diagonal. 

Scree-plots illustrating the temporal selection process are given in Figure 7.6. 

The first graph plots the score of each selected variable, with the different time points 

represented by different colours. We can see that the progress of the average score 

(the black dashed line) is of a sharp initial decrease followed by a straightening out, 

as seen previously. However, the progress for the individual time points is noisier. 

For example the fourth variable is a good choice for the 1-year data (showed by a 

peak in the pink curve) and a poorer choice for the pre-op ands 1-yeai (liltal (the reel 

and blue lines). 

The percentage squared norm and trace plots are constructed using the original 

correlation matrices for the data rather than the temporally smoothed matrices 

in order to more adequately assess the performance at the different time points. 

Looking at the cumulative proportion of variation explained at each time point 

by the squared norm, we can see that this subset of variables is most suitable for 

the post-operative data. This is likely due to the fact that the structure of the 

data changes due to the intervention of treatment making the post-operative data 

relatively similar. This is shown by the inclusion of a pain score as the second 

variable - this is a sensible choice for the post-operative data as the pain scores form 

-in obvious group in the correlation matrices. However, this is not an ideal choice for 
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Figure 7.6: Scree plots produced from application of temporal variable selection 

procedure HT to the knees data. 

the pre-operative data as relationships between pain scores are rather looser. This 

choice results in only a small improvement in the percentage squared norm for the 

pre-operative data and a large improvement for the post-operative. The differences 

between the time points is also shown on the plot of the percentage trace with the 

pre-operative time point explaining the lowest percentage of the squared norm of its 

correlation matrix. 

. _ý . ýýýa.. _ 

Variable Number 

(a) It scores 

No Variables Extracted 

(b) Percentage of II E112 explained 

No Variables Extracted 

(c) Percentage of tr(E) explained 
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Weight Pain Pain Night Stability Walking Walking 

Freq. Sev. Pain Ability Ails 

Ease 9 7 6 7 5 

Use 7 8 9 7 6 5 3 

Sitting Rising Standing Going Up Going Down CTF Fixed 

Down Up Stairs Stairs Angle Cont. 

Ease 6 6 5 4 4 2 1 

Use 7 8 4 7 5 6 5 

Flexion Extension Hip 0. Knee 0. Knee 0. Hip 

Lag Abduction F. Cont. Flex. Abd. 

Ease 4 4 4 4 4 4 

Use 7 5 4 -1 6 4 

Table 7.6: Table of utilities associated with the variables of the knees data. 

7.2.4.3 Utility-based Simultaneous Reduction 

Two sets of utilities were obtained to correspond to the knees variables by scoring 

each variable on a scale of 0-10 for two different characteristics associated with 

these measurements. These utilities were obtained from an expert and so can be 

considered typical of the form of utilities one may obtain in practice. These are given 

in Table 7.6 and are subjective measures of the ease with which the measurement 

is collected and the perceived clinical usefulness of recording and examining this 

measurement. Both utilities are rated on a scale of 0 to 10 where 0 corresponds 

to most difficult to measure or least useful and 10 is easiest to measure and most 

useful. No variables are scored with a0 or a 10, so none of the variables will be 

forced into or out of the selection set. 

Application of temporal variable selection procedure to the knees data using 

these utilities individually and together yields the variable sets given in Table 7.7. 

Comparison with the temporal results from Table 7.5 demonstrates that there are 

significant differences between these variable subsets and those obtained without 

utility information. The subset obtained using the ease of measurement utility 

shares only two of its variables with the principal subset determined without using 

utilities. The variable Going Up Stairs is also notable absent from this set due to 

its low utility compared to Walking Ability and its moderate correlation with this 
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variable, suggesting Walking Ability was chosen in its place. Another point of note 

is that we are starting to introduce potential redundancies in the reduced subset 

as two pain scores, Pain Frequency (PainF) and Night Pain (Pain. N). are included 

within the group. This incorporation of redundant elements will be due to the use 

of utility scores overriding the information of the data and the normal execution 

of the variable selection process. It should also be noted that the variable Weight 

has become more important according to the utility-based subset due to its high 

utility value boosting its perceived merit. In fact, six of the seven variables returned 

(including Weight) have a utility score above 5. 

The variable subset obtained from using the `clinical usefulness' utility bears 

slightly more similarity to the original results sharing three variables between the 

two subsets of seven. This suggests that the utility here is not so strongly at odds 

with the information from the data. In fact, if we consider the possible relationships 

within the data then the two subsets become more closely related. For example, 

Rising Up in the utility-based subset is closely related to Sitting Down, which is 

present in the original set. There are also similarities in the fact that both sets 

incorporate a Flexion measure. Combining the two utility measures by simple ad- 

dition yields a subset that appears to incorporate the main features of both the 

individual subgroups with strong correspondence in the first few variables. The acct 

of summing the two utilities to combine them appears to be producing sensible and 

appropriate results. 

In terms of the performance of these subsets, we find that there is a lower per- 

centage trace and squared norm explained by these variables when compared to the 

original longitudinal subset. Typically percentage trace is reduced by between 1 and 

8% and the squared norm by between 2 and 6%. This difference is expected as we are 

no longer choosing the best variables just according to the h values alone. The act 

of using the utilities to modify the selections made forces us to choose non-optimal 

variables which have better utility values. 

Scree plots for this application of the variable selection procedure using the com- 

bined utility are given in Figure 7.7. Figure 7.7(a) shows the h scores for the selected 

variable at each stage of the selection process. We can see from the peaks and troughs 
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in this plot that the selection procedure is not choosing the best variable in terms of 
h scores. The utility information is, to an extent, overriding this information allow- 
ing the procedure to select what would otherwise be a poor variable if it has a high 

utility. Figure 7.7(b) displays the utility-weighted variable scores for the selected 

variables at each stage for each time point. We can see that the variable scores 
decrease rapidly, they then straighten out and head towards zero. The shape of this 

plot is what we would usually expect from a plot of the h values from the standard 

procedure. The fact that the utility-based method selects variables based on the 

utility-weighted h values means that a plot of these scores will indeed resemble the 

plot of the h values for the standard procedure. 

The percentage squared norm plot in Figure 7.7((, ) shows a pattern similar to 

that of Figure 7.6(b), although with a shallower and more rugged aasceiit. This is 

to be expected as we are using the utilities to adjust our selections and so we will 

not select the `best' variable according to the data so the amount of variability we 

capture will be less than in the utility-free situation. Again, we can see that the 

subsets selected are best for the post-operative time points. The plot in Figure 7.7(d) 

displays the difference between the percentage of the squared norm we explain by the 

temporal subset in Table 7.5 and the utility-weighted subset from Table 7.7. This 

is essentially the "loss" of information due to using utilities to adjust the selection 

process. This shows that after the first variable we typically only lose less than 

10% of the variability using the utility methods. The choice of Pain Frequency for 

the first variable is a poor decision in terms of the data, resulting in a loss of 15- 

40% of the information we would have captured using the first variable from the 

standard method. That said, however, once we introduce a second variable the loss 

of information becomes more tolerable and more manageable. It is also evident that 

the loss of information decreases as we include more variables, with only a negligible 

loss after the 12th variable indicating that from this point both methods have similar 

performance. 
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Figure 7.7: Four plots for the application of utilities in variable selection from the 

knees data. 
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7.3 The Hips Data 

7.3.1 Data Structure 

The hips data are discussed in Section 2.2.2 and contain eleven repeatedly-measured 

patient status variables observed at three distinct time points. All eleven variables 

are measured on a five-point Likert scale and are observed pre-operatively and at 

3 and 12 months post-operation. As with the knees data the sample size is not 

constant as patients may not have completed or returned all of the corresponding 

questionnaires. To this end, attention is restricted to all patients who had a com- 

pleted surgeon's questionnaire - this contained important information on patient 

demographics as well as their pathology and treatment. Further to this, cases where 

a majority of variables were missing were excluded with any missing data in the 

remaining cases being imputed by the mean value at that time point. In terms of 

the actual sample size, this gives samples of size 4631,2488 and 2338 for the three 

time points respectively. 

Correlation plots of the correlations between the variables observed at the in- 

dividual time points are presented in Figure 7.8. The plots for the first two time 

points illustrate a fairly homogeneous correlation structure with each variable being 

associated to a moderate degree with any other (average correlation is 0.38 pre- 

operatively). However, pre-operatively the variable Walking Without Pain appears 

to be slightly more weakly correlated with the other variables giving rise to the 

pale bands on the correlation plot. At 12 months, the associations between the 

variables appear to remain fairly similar in intensity to those displayed at the pre- 

vious two time points. Indeed it would appear that the associations appear to have 

strengthened over time with the level of correlation becoming slightly stronger at 

each successive time point. 

It is clear that the hips data exhibit a strong degree of association between vari- 

ables suggesting a strong correspondence between the information conve, vc<l by the 

variables. This implies a notable level of overlap in information and therefore redun- 

dance within the measurements. Therefore, one would expect variable reduction to 

be particularly effective for these data. 
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(a) Pre-operative (n 1361) 

fi 
(h) 3-ino11t hs post-operative (ii =2 188 ) 

1 
0.75 
0.5 

0.25 
0 

(c) 12-months post-operative (n = 2338) 

Figure 7.8: Correlation plots of the repeated measurements in the hips data observed 

at each of the three time points. 
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Figure 7.9: Scree plot for the principal components of the pre-operative hips data. 

7.3.2 Principal Component Analysis and Dimensionality As- 

sessment 

A principal component analysis of the pre-operative hips data yields the loadings 

and variances for the first five components that are presented in Tables 7.8 and 7.9. 

Examining the principal components themselves shows that the first component is 

largely a weighted average of all elements of the data set which represents 44% of 

the variation of the whole data set. This component would correspond to an optimal 

univalue hip score that would express the most variation of any single composition 

of these individual elements. The second component only accounts for 9% of the 

variation of the data set, and contrasts the three pain scores with six of the ability 

scores. The third and fourth components principally represent the single variables 

Walking Without Pain and Limping respectively. The fact that a single component 

is dominated by Walking Without Pain is not surprising due to its lower than average 

correlations to other variables. The fourth component contrasts Putting On Socks 

and Washing with several general ability measures. 

Assessing the dimensionality of the hips data using the same methods as for the 

knees data we obtain the estimates in Table 7.10. Most of the methods suggest a 

dimensionality of 1 or 2 which is likely due to homogeneous nature of the correlation 

matrix with moderate correlations between all the variables. However, this is likely 
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PC1 PC2 PC3 PC I PC5 

Usual Pain 0.30 -0.25 0.19 -0.25 
Washing 0.31 0.21 0.23 0.4-1 

Using Transport 0.32 0.18 0.19 

Put On Socks 0.29 0.24 0.30 0.5-1 

Do Shopping 0.32 0.27 -0.32 
Walking w/out Pain 0.16 0.36 -0.86 0.21 

Climb Stairs 0.32 0.23 -0.31 
Stand From a Chair 0.32 0.11 -0.17 

Limping 0.22 -0.92 
Severe Pain 0.26 -0.49 -0.17 
Usual Work 0.34 -0.2.1 
Night Pain 0.25 -0.52 -0.17 0.31 

Table 7.8: The first five principal components of the pre-operative hips data. 

Loadings of value < 0.15 have beeil omitted for clarity. 

PC1 PC2 PC3 PC4 PC5 

Standard Deviation 2.3003 1.0529 0.9393 0.8961 0.8363 

Proportion of Variance 0.4410 0.0924 0.0735 0.0669 0.0583 

Cumulative Proportion 0.4410 0.5333 0.6069 0.6738 0.7321 

Table 7.9: The importance of the first five principal components of the pre-operative 

hips data. 

_ý. 
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Method Dimensionality 

Kaiser's rule A<1 2 

Kaiser's rule A<0.7 7 

75% of variation 6 

Scree Plot 1 

Broken Stick 1 

Velicer 1 

Table 7.10: Table of estimates for the intrinsic dimensionality of the pre-operative 

hips data. 

an oversimplification and would likely be an inappropriate estimate in terms of the 

number of variables. The other methods suggest values of 6 or 7, which is markedly 

different from an estimate of 1. It is difficult to suggest which of these values is t he 

most appropriate - using a single dimension gives . 11% of the variability, but doing -O 

loses all of the detail about the individual scores. However, retaining 7 dimensions 

in this case is likely over-conservative. The true value of the intrinsic dimensionality 

probably lies somewhere in between. 

7.3.3 Reducing the Pre-operative Data 

Using the 75% 11 El 2 rule suggests a four-variable subset would be adequate to 

represent the pre-operative data. Performing the variable selection as in the previous 

section yields the results given in Table 7.11. Krzanowski's Procrustes method could 

not be performed as it required calculation of many 4634 x 4634 matrices, each 

having in excess of 21 million entries which was well beyond the confines of available 

computer memory. 

Looking at the speed of the various selection methods, we can see that all meth- 

ods returned in reasonable time. Even the exhaustive methods were quick to evaluate 

as only 195 subsets needed to be considered in this case. Turning to performance 

of the it urned subsets. we see again that all inethods returned subsets of generally 

similar quality. NicC%ihe's M3 method was the best, followed by i\12 and then the 

new methods H and HC. Again the determinant method Tell and Jolliffe's B1 per- 
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formed relatively poorly, this time with the addition of the forward selection PC: \ 

ruethod B4. The multiple correlation method A2 performed surprisingly well on 

these, data, perhaps indicating it to be more successful on homogeneously correlated 

data as it typically ignores independent uncorrelated variables. DF also works well 

on these data as there appears, from the correlation plots, to be one underlying 

dimension so the corresponding graphical model would have a single focal vvariable. 

In the absence of any strong and obvious structure to the correlation matrix of 

the hips data it is hard to divine what variables may or may not be appropriate 

selections. Nonetheless, most methods have chosen it least one of the pain scores 

(Pain at Night, Severe Pain). tiffany methods have also selected the variable Walking 

Without Pain which exhibited lower correlations than other variables. Usual Work, 

Put On Socks and Limping were also popular choices. 

The scree plots for the hips data are shown in Figure 7.10. The first plot shows 

that the h values for the variables in the data have a steeper initial drop than 

the knees data and this is followed almost immediately by an approximately linear 

pattern which may suggest that only one variable is required. The h value first falls 

below unity for the third variable selected, suggesting 3 as a possible dimensionality. 

Both of these values are reasonable and tally with the values obtained previously 

by other methods. The plot of the cumulative proportion of variation in terms of 

squared norm has a steeper initial ascent than the knees data, probably due to the 

fact that since all variables are moderately correlated then once the first variable 

is selected the remainder convey relatively little novel information. The plot of 

the percentage trace increases far more slowly, as with the knees data. This is 

representing a different story to the percentage squared norm, suggesting both of 

the subsets for the hips and the knees data have performed in an almost linear fashion 

despite the data sets being quite different in terms of the underlying structure. 

7.3.4 Reducing All Time Points 

Applying the H method to each of the three time points in the data yields the results 

in the first three rows of Table 7.12. Looking at the subsets, we can see that there is 

a strong degree of agreement between the subsets with all subsets containing Usual 



7.3. The Hips Data 

0C 

Ný 

f 

8 
e< 

9 

F 

ýý 
ä 

f 

209 

Figure 7.10: Three scree plots produced from application of variable selection pro- 

cedure H to the pre-operative hips data. 
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Work, Walking Without Pain, Put On Socks and one of Night Pain or Seinere Pain. 

In fact, the 4-variable subsets obtained for the post-operative time points contain 

exactly the same variables reflecting their similarity of correlation structure. All 

four subsets perform well, representing at least 55% of the trace of the original 

correlation matrix and at least 86% of its squared norm. This good performance on 

a small group of variables is likely due to the strong correlations exhibited by all 

variables. 

Applying the temporal method HT with a bandwidth of a=6 months to the 

data yields the subset in the final row of Table 7.12. At this point, it is worth 

noting that the temporal smoothing process increases the speed of computation in 

the variable selection process. Whilst negligible when considering the knees data, 

due to the larger sample size of the hips data set the effect is more pronounced here 

though the time required was only 2.6 seconds. It is clear that large data sets with 

high numbers of cases could cause a potential problem for this temporal method. 

Nevertheless, the longitudinally obtained subset of four variables is equivalent to that 

obtained at the 3-month and 12-month time point and is similar to the pre-operative 

subset with Severe Pain replacing Night Pain. The fact that we have obtained a 

temporal subset which is the best individual subset for both of the post-operative 

time points, is obviously due to the fact that both time points have identical four- 

variable subsets and so when averaging over time the scores for these subsets will 

be high. Looking at the performance of the subsets we can see that performance on 

this subset is identical to the performance of the individual subsets post-operatively, 

and pre-operatively we observe a slightly poorer level of captured variation in terms 

of the trace. This relatively low value for the percentage trace reflects the fact that 

pre-operatively we preferred Night Pain over Severe Pain. 

The scree-plots for the temporal selection process are shown in Figure 7.6. The 

graph of the change in h scores shows a steep initial drop representing that a great 

deal of the variation is captured in the first few variables, with the plot levelling off 

after the fourth variable. The four time points are typically in agreement over the 

choice of variable with little disagreement after the first two variables have been se- 

lected. The major initial change is also reflected in the plot of the percentage squared 
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Figure 7.11: Three scree plots produced from application of temporal variable se- 

lection procedure HT to the hips data. 

Venable Number 

(a) h scores 

No Variables Exlraaed 

(b) Percentage of IIEII2 explained 

No Variables Extracted 

(c) Percentage of tr(E) explained 



7.3. The Hips Data 213 

norm. It also illustrates that, as with the knees data, the two post-operative time 

points have a similar high-level of performance on the selected variables. whereas 

the pre-operative data (red line) fares slightly worse. A corresponding result is again 

shown in the plot of the percentage trace. 



Chapter 8 

Chain Graphs and Prediction 

Having generated some graphical models for the orthopaedic data in Chapter 5, it 

was discovered that there were a number of limitations that hampered the develop- 

ment of larger models. Therefore the previous two chapters have covered, in detail, 

variable reduction strategies and the results of their application to the data. Hav- 

ing accomplished this, we now return to the issue of constructing viable models for 

these data using graphical modelling techniques. However, rather than continue to 

apply the standard graphical modelling approach, chain graphs [124,52,22] shall be 

used instead. Chain graphs are an extension to the previously discussed graphical 

models and allow for the incorporation of the temporal structure of our data as well 

as providing some computational benefits. 

This chapter is therefore organised as follows. Section 8.1 introduces the concept 

of chain graph modelling. It begins with a review of the theory behind chain graphs 

and their associated graphical models - the majority of the material presented in this 

section is extracted from the texts of Edwards [38] and Whittaker [125]. Following 

on from this, in Section 8.1.2 several applications of chain graph modelling which 

are available in the literature are reviewed. Having established the general basis of 

the methodology, in Section 8.2 the techniques are applied to the orthopaedic data 

to build suitable models for multiple time points. The models are presented, and 

their conditional independence implications and the nature of some of the modelled 

relationships are also discussed. The chapter concludes in Section 8.3 with a more 

detailed investigation into the predictive capabilities of these models, their validation 

214 
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and an assessment of their goodness of fit. 

8.1 Chain Graphs and Other Preliminaries 

8.1.1 Chain Graph Theory 

8.1.1.1 Block Structure 

215 

When constructing a statistical model it is commonplace to partition the variables 

in the model into a number of groups, for example in a simple regression setting 

we split the variables into two groups - the covariates and the responses. These 

two groups represent a partial ordering of our variables with our covariate variables 

all being contemporaneous and prior to our responses. The graphical models con- 

structed in Chapter 5 have an implicit assumption that the constituent variables 

are all concurrent and therefore it is reasonable to introduce symmetric associations 

between them. This is not the case when we have an ordering over the variables with 

some being observed prior to the others, and so those models ignored this structure 

to the data. Nonetheless, having a partial ordering over the variables is particu- 

larly useful when there is this temporal structure to our data. This is particularly 

true with the abstract data model discussed in Section 2.1 where, for example, the 

patient's pre-operative status variables are antecedent to the treatment variables. 

So we could partition the variables within our data into a series of groups each 

representing variables observed at a particular time point; we can then exploit this 

block-recursive structure to our data. 

In general, we assume our set of variables, V, satisfies a particular type of partial 

ordering, ý. This ordering is derived from the condition that the variables can be 

partitioned into subsets Bl U B2 ". "U Bk, called blocks, which are completely ordered 

- and hence the blocks form a chain. This induced partial order on the variables V 

is such that x -< y, whenever xE Br, and yc B9 and r<s; and x ^- y whenever 

. i', i/ E Br. Furthermore, we consider variables within the same block to be concurrent 

and hence assume their association structure to be symmetric. For variables from 

different blocks we introduce a direction to the association allowing only associations 
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from earlier to later blocks. Corresponding to this block-recursive structure for the 

data, it is assumed that the joint density of our data can be factorised as follows: 

f (B,,..., Bn) = f(Bi)f(B2I Bi) 
... 

f (BkI Bl U B2 ... U Bk-l). (8.1) 

This factorisation of the density formalises the notion that the density each block of 

variables depends only on the variables within that block and those variables that 

have preceded it. This is a key concept of this block structure. 

8.1.1.2 Chain Graphs 

To capture this block structure in the form of a graph it is necessary to attach 

direction to some edges since the undirected graph framework is no longer applicable. 

As before, we write a graph as = (V, E) where V is our set of nodes, E is our 

set of edges, and we identify an edge with an ordered pair of vertices. Whenever we 

have both (x, y) EE and (y, x) E E, then we interpret this as an undirected edge 

and draw a line between .c and y. This is written as x y. Whenever (x, y) EE 

and (y, x) ý E, then this is a directed edge and we say x -* y and draw an arrow 

from x to y. If x -p y, y -f x or xHy then we say that x and y are adjacent 

GU, - y) 

These graphs are known as block-recursive or chain graphs and their properties 

are well documented in the literature [83,124,52,22,116,9,82]. The class of 

chain graphs includes both undirected graphs and directed acyclic graphs (DAGs) 

as special cases when all edges are undirected or directed respectively. 

One of the restrictions of this class of graphs is that we prohibit graphs that 

contain directed cycles and graphs which contain cycles with at least one directed 

edge. Such graphs violate the partial ordering assumption of our variables as they 

would allow variables to belong to multiple blocks, and so they cannot be chain 

graphs. 

. '1s with the undirected graphs in Chapter 5, we attach conditional independence 

statements to the chain graph to represent the association structure between the 

variables in the model. Associations between variables within the same block are 

represented by undirected edges which are drawn as lines; and associations between 



8.1. Chain Graphs and Other Preliminaries 

Figure 8.1: A simple chain graph. 
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variables of different blocks are shown via directed edges (arrows) from the earlier 

block to the later. An example of a chain graph is given in Figure 8.1. The two 

blocks of variables, {A, B} and {X, Y, Z}, are emphasised in the graph by being 

enclosed in boxes. 

As with the undirected independence graphs, the statements of conditional in- 

dependence are defined in terms of the absence of specific edges from the graph. So, 

if a line is missing between two variables x and y from the same block Bi, or an 

arrow is missing from xE Bj to yE Bi, for j<i, then this means that: 

: x1LylB1 U B2, **U Big (8.2) 

which is a version of the pairwise i'vIarkov property for chain graphs. In other 

words, the interpretation of a missing edges between a pair of variables is that 

those variables are conditionally independent given all other prior and concurrent 

variables, where we define prior and concurrent relative to the later of the two 

variables. 

The chain graph of variables V= {X1, 
... , 

X�, } has then been defined by Whit- 

taker [125] as the graph 9= (V, E), where b(x) corresponds to the block Bi such 

that xE Bi, V (X) = Ul<b(x) B1 and the edge (x, y) with x -< y, is not in the edge 

set E if and only if y1LxI V (y) \ {x, y}. If this condition fails, and x y, then the 

edge is directed and only (x, y) E E; otherwise it is undirected and both (x, y) EE 

and (y, x) E E. 
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8.1.1.3 Markov Properties 
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As with the undirected graphs there are a series of Markov properties; these have 

been studied in depth by Frydenberg [52] and are useful for interpreting the under- 
lying conditional independence relationships of a chain graph. However, the \Iarkov 

properties for chain graphs are often somewhat less transparent than their equiva- 

lents for undirected graphs. 

In order to discuss the Markov properties, we must first define some particular 

graph theoretic quantities. Define the neighbours of a node r as the set of nodes 

that are joined to x with a line, and let the parents of x be all those nodes which 

are the origin of an arrow pointing to x. Then the boundary of x is the set of nodes 

which are parents or neighbours of x i. e. bd(. r) = {g EV: xy or y -* . r}. The 

descendants of node x, de(r), are the vertices y such that x -> y and not y -> . r. 

The non-descendants are then defined to be nd(r) =V\ (de(. r) U {. r}). 

In formal terms, the pairwise chain Markov property states that for any pair (. r;, y) 

of non-adjacent variables with yE nd(x) that x1LyJnd(r) \ {y}. This expression 

can be simplified to the form given in (8.2) by simply observing that nd(x) = 

B1 U B2 """U Bi \ {x}. Thus the absence of an edge between a pair of variables 

means that those variables are conditionally independent given all other prior and 

concurrent variables, where prior and concurrent are defined relative to the later of 

the two variables. 

The local chain Markov property states that for any variable xEV we have 

that : i, -1Lnd(x)lbd(x). Again, we can simplify this relationship by expressing the 

non-descendants of x in terms of the blocks of the model, giving: 

x1L(BiUB2"""UB2)\{x}Ibd(x), 

which says, in other words, that each variable x is conditionally independent of all 

other concurrent and prior variables given its immediate neighbours and parents. 

For the undirected independence graphs, the global Markov property made a 

conditional independence statement about a two general subsets of variables gil%vicecn 

a third such subset. To make such a similar statement from a chain graph is far less 

clear and such conclusions cannot be read directly from the chain graph. Therefore, 
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the global %I trkov chain property shall not be discussed here - details can be found 

in Section 3.2.3 of Lauritzen [81], Section 7.2.1 of Edwards [3 ] or Section 3.6 of 
Whittaker [125]. 

For an example of the application of the Markov properties, consider the chain 

graph in Figure 8.1 from which we can infer several conditional independence rela- 

tionships. Looking at the second block of the graph we observe that there is no line 

present joining the variables X and Z indicating some form of conditional indepen- 

dence of these variables. We can hence apply the pairwise `larkov property to learn 

that this conditional independence is of the form Z1LX I {A. B, Y"}. If we were inter- 

ested in a single variable alone, Y say, then the local chain Markov property applies 

and we can determine that Y_LAI {B, X, Z}. We can also consider the relationship 

between variables from different blocks, such as variables B and Z which are non- 

adjacent. We can apply the pairwise property to learn that Z_LBJ{A, X. Y}. To 

refine this property into ZJLBJY requires application of the global chain Niarkov 

property, which has not been discussed here. 

8.1.1.4 Modelling 

In order to construct a statistical model that correctly represents the association 

structure represented in a given chain graph, we need a multivariate response model 

for each Bi given BI U"""U Bi_, in which arbitrary sets of conditional independence 

relations like those in (8.2) hold. To do these we use undirected conditional Gaussian 

regression (CG-regression) models. 

We know from Chapter 5 that an undirected graphical model is modelled by 

fitting the joint distribution of all variables in the model using a CG distribution. 

Consider, for example, partitioning the set of variables into two disjoint subsets, a 

(the covariates) and b (the responses). Then the joint CG model Mab induces a 

conditional model . 
Mbla that describes the distribution of the responses given the 

covariates. Since our joint model is of the form of a CG distribution, the conditional 

models (known as CG-regression models) include simple linear regression and logistic 

regression models as special cases and also generalise to incorporate multivariate re- 

sponses and covariates which can be discrete, continuous or a combination of both. 
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It should be noted that, the situation where the conditional models have discrete 

responses and continuous covariates is a more complicated situation as the condi- 
tional model cannot be simply determined directly from the joint model; maximum 
likelihood estimation in these circumstances is computationally more difficult. 

In order to determine a suitable choice of model for each block of variables. 

one can apply a useful simplifying principle: the choice of model for each block 

is independent of the models chosen for the other blocks. Hence we can consider 

modelling each block of the chain graph separately. Furthermore, if we restrict 

ourselves to graphical models, then we can say that the decision to include an arrow 

from xE Bj to yE Bi with j<i depends only on which other arrows pointing to 

variables in Bi are present, and on which lines between variables in Bi are preselit, 

and only on these. Thus the structure of our covariate variables is of no relevance to 

us when considering the relationships between covariates and responses, and within 

the responses themselves. 

Thus to model a chain graph, we must obtain a sequence of undirected graphical 

models Mi representing the distribution of Bi given BI U"""U Bi_1. Since the con- 

ditional model asserts no relationships between the covariates, it is appropriate that 

the associated conditional should contain all interactions between the covariates. 

This has no effect on the final model choice since the nature of the relationships 

amongst the prior variables is of no relevance. 

Thus the simple chain graph in Figure 8.1 is modelled using two separate undi- 

rected graphical models. This is represented in the model formula for a chain graph 

which gives the formula for each of the component models. So for Figure 8.1, we 

have that the chain graph formula is: 

1. AB, 

2. AB/ABX, BY, Z/ABX, BXY, YZ. 

The corresponding independence graphs for these component models of the chain 

graph are given in Figure 8.2. We can see that the first component model is the same 

as the first block in the chain graph. The second undirected model contains the same 

relationships between {X, Y, Z} and the arrows in the chain graph are preserved, 
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(a) Block 1 (b) Block 2 

Figure 8.2: The component blocks of the chain graph in Figure 8.1. 
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though they are replaced by lines. However, the relationships between the covariates 
have changed as all interactions between the covariates are now allowed. 

8.1.2 Chain Graph Applications 

There have been several applications of a graphical modelling strategy to real data 

that have been published in the literature. Several of these consider medical data 

with a view to identifying how certain patient factors or environmental factors im- 

pact on a particular outcome. Neil-Dwyer et al [92] sought to study the associations 

between patient demographics and operative information with the outcome after 

aneurysmal subarachnoid haemorrhage. Using a graphical model they sought to as- 

sess the associations between the variables with a view to discovering any potential 

causal pathways between both the demographics and operative information and the 

patient's outcome. Their study effectively identified that three of these variables 

had a direct impact on the patient's ultimate outcome and thus could potentially 

be the causal pathways that they were seeking. 

Several other medical studies were performed along these lines, for example MIo- 

Named et al [90] utilised a similar methodology to identify the determinants of in- 

fant mortality in Malaysia among a set of demographic, environmental and medical 

variables. They discovered many variables were significantly associated with infant 

mortality including the prematurity of the infant, the quality of available drinking 

water, and the level of maternal education. A further medical example is that of the 

study by Klein et al of the occurrence of heart disease and its potential relationships 

to a range of patient factors including their cholesterol level and blood pressure. 
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Ruggeri et al [110] assessed the short-term outcome of mental health care for 

194 patients. Unlike the previous methods, Ruggeri et al also included information 

on the costs of the care with a view to identifying the key determinants of this 

quantity. They also considered the associations within and between their predictors 

and outcomes. They also extracted the regression coefficients from the graphical 

model and exploited the results by Roverato and Whittaker [1081 to obtain standard 

errors for these quantities. 

Pigeot et al [98] also use this familiar formula of assessing the effects of a number 

of potentially informative factors on a response to attempt to assess the determi- 

nants of that response. The area of their study was the analysis of data on the 

occupational careers of sociology students. Taking basic demographic information, 

and details about the students' performance at university coupled with information 

on the sociologists current occupation, they sought to ascertain the key factors use- 

ful for determining the sociologists' current job satisfaction, job adequacy and level 

of earnings. Rather than fit a graphical model via standard techniques, they instead 

considered each variable in the model as a univariate regression and then linked the 

corresponding node in the graph to any variables that, if included, could improve the 

prognostic power of the regression. They thus built a graphical model on the basis 

of edge inclusion indicating variables having strong predictive relationships for one 

another. However, such a model could not be interpreted in terms of the conditional 

independence statements normally associated with a standard graphical model. 

8.1.3 Bootstrapping 

Bootstrapping is a technique that can be used to combat a deficiency of chain graph 

modelling methodology, i. e. the absence of expressions for the standard errors of 

the model parameters. Bootstrapping has been well documented in the literature 

[11,43,42,30] and can be applied to a wide variety of situations. 

Whilst Efron's original paper discusses the application of the bootstrap in a num- 

ber of contexts, we shall focus on the basic non-parametric version. Suppose that 

we have data yl, ... , yn which are a random sample taken from an unknown distri- 

bution, and an estimator of interest t= t(yl, ... , tn). We now draw R `bootstrap 
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samples' from the data - this consists of taking a random sample with replacement 

of size n from the original data. We then compute the estimator for each of these 

new samples, such that ti = t(Y1 , ... , 
Yn) where Yl 

, ... , 
i' are the values in the 

i-th bootstrap sample. 

The collection of bootstrap estimates ti* can then used to learn about the estimate 

obtained from the original data. For example, from [42] we can obtain an estimate 

of the standard error of t, using the result that as R-x the sample standard 

deviation of ti tends to the standard error of the original estimate t. Furthermore, 

when R is sufficiently large we can deduce approximate confidence intervals for the 

parameter t based on quantiles of the bootstrap estimates [30]. Two methods for 

approximate 95% confidence intervals are: 

" Efron's percentile method: 
l [t0* 

. 025' t0* 
. 975 

. Hall's `basic' method: 

(8.3) 

[2t - tä. 975,2t - tö. 0251 
(8.4) 

where tä is the 100er empirical percentile of the bootstrapped estimates t*. Note 

that both intervals are of the same width and it is only their location that differs. 

Thus we can obtain bootstrap estimates for the standard errors of the chain graph 

model parameters by fitting the chain graph model to each of the bootstrap samples. 

The different parameter values obtained by fitting the model to these different data 

sets will provide us with the bootstrap estimates, ti*. Using the results above we 

can then determine the bootstrap estimate of the standard error and also derive 

approximate confidence intervals for the parameters. 

8.1.4 Regression Evaluation 

Having obtained a suitable chain graph model for the data, we will consequently 

obtain conditional regression models for each of our response variables. We would 

therefore be interested in investigating the adequacy of these conditional models 

, Is they will inform us about suitability of the chain graph model to the prediction 

of the individual responses. Methods for the evaluation of a multiple regression 
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are well documented in many statistics textbooks [104]. Since we obtain many 

regression models for each chain graph model we construct there will be a large 

number of models we may wish to analyse. Therefore the methods use shall focus 

on straightforward techniques such as assessment of goodness of fit via the coefficient 

of determination and residual analysis. 

The coefficient of determination for a regression model (sometimes called the 

`coefficient of multiple determination' for multiple regression) is defined to be the 

proportion of the variation in our response variable that is explained by the regres- 

sion model, i. e. 
R2=1- 2, 

Sy 
(8.5) 

where se is the residual standard deviation and sy is the standard deviation of the 

response variable. The square root of the coefficient of determination, R, is the 

multiple correlation between the responses and the covariates. By its definition, R2 

can be used as an indicator for the performance of a regression model, whereby a 

model with R2 close to 1 would indicate that the information in the response is 

almost totally explained by the covariates, and an R2 close to 0 indicates that the 

response is very poorly explained by the covariates in the model. Thus R2 can be 

used as a summary statistic to indicate the goodness-of-fit of the regression model. 

However, the formulation of R2 as in (8.5) suffers from a key weakness. Each 

additional variable included into the model cannot increase the value of se. Since 

sy is fixed and se can only ever decrease, including additional terms will give higher 

values of R2, even when the new variables cause the equation to become less efficient. 

Theoretically, using an infinite number of covariates to explain the response would 

yield an R2 value of 1. To compensate for this problem, we use the adjusted R2: 

7 -1 R2-(1-R2) nk (8.6) 
n--1 

where ii is the sample size and k is the number of degrees of freedom. By com- 

pensating for the sample size and degrees of freedom, R-2 can decline in value if 

the contribution to the explained variation by an additional variable is less than its 

impact on the degrees of freedom. 

To investigate the assumption of independent Normal errors we can examine the 
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distribution of the model residuals. The Normality of the errors can be assessed 

via inspection of histograms and Normal quantile plots of the residuals - deviation 

from Normality would indicate a violation of the Normal assumption and would 

constitute a potential cause for concern over the model's validity. To assess the 

independence of the errors, a scatterplot of model residuals and the covariate values 

can be used. Under the assumption of independence, the plot should show random 

scatter of points about the origin - evidence of trend in the plot would indicate that 

important information and features of the response were not being captured by the 

model. 

It is also usual in an assessment of a model's adequacy to investigate the impor- 

tance of the individual coefficients in the model. Typically this is assessed using the 

idea that ß/s(, (ß) follows at distribution, where /3 is our parameter estiiiiate. This 

allows for the construction of significance probabilities for each coefficient. However, 

since we neither know the standard errors for the parameters nor their distribution 

we cannot apply this result. Therefore to assess the coefficients we must rely on the 

bootstrapping methods discussed in Section 8.1.3. 

8.2 Construction of Chain Graph Models 

8.2.1 Methodology 

8.2.1.1 Block Structure 

In order to obtain a chain graph model for an orthopaedic data set, we must first 

obtain a partition over the variables in the data set into the sequence of blocks, 

as discussed in Section 8.1.1. Since we have data with a temporal aspect that 

follows the schema of the data abstraction in Section 2.1, it is sensible to order 

our variables based on their temporal sequence, thus reflecting the potential causal 

direction. Using the temporal structure of the data generalisation in Figure 2.3, we 

would obtain a chain graph model with at least five blocks. However, conceptually-, 

it may be better to further sub-divide the variables in these blocks into smaller 

blocks if there still remains an element of temporal ordering to the variables within 
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Figure 8.3: Block structure of the knees data. 
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a single block. For example, patient status measures and patient satisfaction may 

be recorded at one instance, leading one to place all variables within the same block. 

If we consider the quantities being measured, we may expect patient satisfaction to 

be dependent on the patients status and thus to occur after those variables in the 

temporal ordering of the data. In this case, we would split the block in two with the 

patient status variables preceding satisfaction to preserve this covariate/response 

relationship. 

The data sets have now been reduced using the methods of Chapter 6 and so we 

now consider only a subset of the patient status variables at each time point. For 

both data sets we shall use the subsets returned by the HT procedure without using 

utility information. For the knees data, we obtain a partition into seven blocks. This 

framework is presented in Figure 8.3. The first block contains four variables, three 

of which are patient demographics: Age, Sex and Side (i. e. left or right knee). The 

fourth variable here is Diagnosis which is considered to be a known, fixed quantity by 

clinicians as the distinction between the two conditions is stich that the identification 

of the pathology is assumed to be completely accurate. Thus the prediction of the 

diagnosis from the pre-operative variables is not an interesting problem in this case, 

and so is considered to be a pre-determined quantity. 
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The second block of the knees data contains the 7-variable subset of the patient 

status variables that was obtained using the variable selection procedures in Chapter 

7. The variables in block 2 correspond to the pre-operative values. The same 

variables were recorded at later time points and so appear in blocks 4,5, and 6. 

The third block is the treatment variable Operation, denoting whether cement was 

used during the joint replacement procedure. This block is placed after the pre- 

operative patient status variables and before the 1-year post-operative variables. 

The final block in the framework contains a single variable which denotes patient 

satisfaction at the 10-year stage. This variable was placed after the 10-year patient 

status variables rather than in the same block for the reasons discussed above. 

Repeating this procedure on the hips data set, yields the block framework given 

in Figure 8.4. The first block is again composed primarily of demographics (Age 

and Gender) and diagnosis details. This block also includes the variable Private 

indicating whether a patient was private or NHS, and the variable Waiting List 

encoding the length of time spent on a waiting list. Blocks 2,4 and 6 contain the 

reduced subset of the four patient status measurements recorded pre-operatively, at 

3-months and at 12-months post-operatively. Block 3 contains the operation infor- 

mation with two binary variables recording the use of cement during the procedure. 

Block 5 contains 2 variables the first of which (y) denotes whether the patient was 
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readmitted at 3-months, and the second (z) encodes patient satisfaction at this 

stage. Block 7 contains similar variables for the 12-month time point. 

8.2.1.2 Model Selection Procedure 

The approach used to obtain the final chain graph models for the orthopaedic data 

will be similar to that employed with the undirected models. Models will be cho- 

sen using forward stepwise selection from the independence model, using the BIC' 

criterion to test for edges that are worthy of inclusion in the model. As previously. 

models will be chosen via the stepwise command in MINI. Models were fitted using 

the fit or cgf it commands where appropriate. 

It should be noted that now we are working with chain graphs, we must build 

a model for each of the constituent blocks of the model. To achieve this we con- 

sider the variables within a particular block B, to be the responses and the prior 

variables in the blocks Bi, 
... , 

Bz_i to be covariates. As previously discussed, the 

only factors which affect whether to include an arc in block Bi or an arrow point- 

ing to a variable in Bi are those arcs already within and arrows already pointing 

into block Bi, the structure of the covariates is irrelevant to the construction of the 

model. Thus to simplify matters we add all pairwise interactions within the con- 

tinuous covariates and all pairwise interactions within the discrete covariates but 

no discrete/continuous interactions. The reasons for omitting these interactions is 

that to include all of them would render the model unnecessarily over-complex, and 

to include only some such edges would have implications in terms of the models 

decomposability as it could introduce `forbidden paths' into the model (see Section 

5.1.5.2 for details). Having thus fixed a structure for the covariate variables, the 

stepwise selection then considers adding to the model the most eligible arrows from 

covariate to response or arc between responses. This process is applied to each block 

in the model and the combination of these undirected models gives us the final chain 

graph model. 
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As has been previously mentioned, the data sets under investigation have a different 

sample size at each time point. The number of cases decreases over time due a 

number of factors. Chain graph models are typically constructed using the complete 

cases of the data where we have patients with observed data at all time points. To 

restrict ourselves to working with only complete cases of the data would sorely limit 

the amount of data available and would discard large amounts of information about 
the earlier time points. 

To combat this problem, we can exploit the fact that the variables in block Bi 

only depend on themselves and the variables in blocks BI, -, Bi_,. Information 

contained in variables in later blocks is irrelevant at that stage. If we consider 
building the model for the variables in the first block, B1, then the only information 

we need to achieve this is a data set composed of complete observations over the 

variables in Bi. We can therefore use all cases in the data set to achieve this. It may 

then be the case that some cases drop out of the data set by the next time point, 

and so are missing observations for the variables in B2 and onwards. However, this 

does not affect the construction of the model over B1. This method exploits the fact 

that patients only ever disappear from the data set and never re-appear at ýi later 

date. So in order to build the model for B2, we use only those cases where we have 

complete observations for the variables in Bi U B2. We can then continue fitting 

each successive block, B2, using all cases in data that are complete for the variables 

up to and including that block, i. e. Bi U ... U Bi. By using this method we ensure 

that none of the data are wasted and that we exploit all the information that we 

have available in order to build better models in the earlier blocks. 

8.2.1.4 Predictive vs. Explanatory Models 

When performing a standard stepwise forward selection process we consider each 

block in turn, and for each block consider all eligible arcs between variables within 

that block and arrows pointing to a variable in the block. We then include that arc 

or arrow which is the most significant, has the greatest negative value of BIC, or is 

deemed to be the best choice via some other criterion. This approach is sensible when 
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we are equally interested in learning about the structure of our response variables and 

their relationships to the covariates. In these circumstances, it is equally valuable 

to include an arc between two responses as it is to include an arrow from a covariate 

to a response. 

If, however, we seek to predict our responses from the covariates then the struc- 

tnre amongst the responses may be of less interest to us. For example, corºsider the 

simple chain graph in Figure 8.5. Suppose we have arrived at this model through 

forward selection and at the next stage we determine the arcs [X Z] and [YZ] to 

be eligible for inclusion, with [YZ] being favoured over [XZ]. Under a standard 

selection procedure, we would add [YZ] as it is the most valuable to us according 

to our criteria. Having done so, assume now that the significance [XZ] drops and 

so stepwise selection terminates. 

If we were in a situation where the value of Y were missing and we sought to 

predict it using W, X and Z, then having included this edge [YZ] in the model is 

vailuable to us. If however, the situation was that we knew only the covariates, IV 

and X, and we were seeking to predict the responses, Y and Z, then the inclusion 

of [YZ] is of little use to us, since we know neither quantity and we seek knowledge 

of relationships between covariates and responses. In this case, we would have far 

rather preferred to include [XZ] as it helps us to explain the responses in terms 

of the covariates. Having an arc between Y and Z would be useful if one of the 

variables were known and we knew the relationship between these variables. For 
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example, if Y and Z were perfectly correlated we could immediately determine one 

quantity from the other. However, since the data are obtained at different times the 

variables Y and Z will represent future information as yet unobserved. Therefore, 

for the purposes of the prediction of these future quantities, the focus is best placed 

on determining the relationships between the covariates and the responses rather 

than learning of the associations within the responses. 

Indeed, if we were seeking to make predictions for the orthopaedic data then Nve 

will likely be in this case, as typically all variables within a block will either be known 

or missing. Thus to make chain graph models that are useful for such prediction 

scenarios, we can prevent the selection procedure from choosing arcs within the block 

of response variables and include as many significant arrows as possible. Once no 

more covariate/response associations can be added, we could then turn our It tentioýrn 

to the response structure of the model. Chain graphs constructed in this manner 

shall be referred to as predictive chain graphs or predictive models to indicate the 

differences in the manner of their construction and the focus on this particular 

prediction setting. 

To emphasise this fact that we are only interested in the relationships between 

covariates and responses we can illustrate this by collapsing the prior blocks into a 

single line and omitting any undirected edges, and doing the same for the responses. 

Thus we transform a graph such as that in Figure 8.6(a) into the form in Figure 

8.6(b). The top row of variables are the covariates and were split across two blocks, 

however since their internal structure is of no interest at this time we collapse the 

blocks and omit their structure thus giving a two-tiered graph with the covariates in 

the topmost row and the responses beneath. This covariate-response layout for the 

graph greatly improves its interpretability and emphasises the associations between 

these two groups of variables. 

8.2.1.5 Forbidden Edges and Model Selection 

In Chapter 5, it was noted that there were some problems with the model selection 

procedure ignoring edges that represented significant relationships as their inclusion 

into the model would render it non-decomposable. The chain graph situation will 
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also suffer from these problems, but to a lesser extent. The reason for this is the 

structure imposed onto the prior variables of a particular block in the model keeps 

the discrete and continuous variables separate. This will minimise some of the 

problems due to the introduction of `forbidden paths' into the model and may allow 

the introduction of sonic edges that were not previously allowed, though it by no 

rneaiºs resolves the problem. 

8.2.2 Results - Knees Data 

8.2.2.1 Complete 10-year Model 

The methods described above were applied to the knees data in order to construct 

a chain graph model for all of the time points in the data set. As the sample size 

decreased over time, the technique discussed in Section 8.2.1.3 was applied to obtain 

this model. The chain independence graph for this model is presented in Figure 8.7. 

Due to the complexity of this model and its associated graph, undirected edges in 

the model have been coloured green to enable their discrimination from the blue 

arrows. 

Initial impressions of this model are that it is highly complex and that there are a 

great deal of notable relationships present between variables in the data set. Despite 

this formidable complexity we can still learn a great (teal about the structure of the 

data. Firstly let us consider the within-block structure, i. e. the structure of variables 

within the same block as indicated by the green lines. The first block contains 
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demographic variables and has no internal structure at all, suggesting marginal 
independence of these four quantities. This echoes the results from the undirected 

model in Figure 5.6. 

Turning our attention now to the four blocks containing the reduced subset of 
the patient status variables (blocks 2,4,5 and 6), we can see that the amount 

of association structure present in terms of the number of edges between variables 
diminishes over time. The pre-operative variables have a total of 10 arcs representing 
important relationships between the pairs of these variables. This number of arcs 
drops to 7,4 and 0 in the 1-, 5- and 10-year post-operative blocks. Thus as time 

progresses, this subset of the patient status variables appears to grow progressively 

more mutually independent until at the 10-year stage all variables are marginally 

independent of one another. The reasons for this are unclear as the correlations 

between these variables do not drastically change over time. This is likely due to 

the fact that since the sample size is somewhat smaller at these later time points we 

would require larger deviations from the independence hypothesis in order to reject 

it. Thus it may be the case that the sample sizes are too small to detect significant 

relationships here. 

Some of the relationships within the blocks are notably different than what we 

might expect from the results of Figure 5.6. In the undirected model, Pain. Severity 

and Other Knee Fixed Contracture are marginally independent of the main block 

of walking ability scores, however in this reduced model this is no longer the case 

as they are associated to one another and several other variables. Additionally, the 

variable Extension Lag which was conditionally independent of the other walking 

ability variables in the undirected models is, again, conditionally independent pre- 

operatively and also at 5 and 10 years. However, interestingly, at the 1 year point 

Extension Lag appears to be dependent on both Going Up Stairs and Sitting Down. 

This appears to be at odds with the undirected model we obtained in Figure 5.7. 

Despite the changing structure within the blocks, there are still some common 

edges to the pre-operative, 1-year and 5-year blocks. These edges are: (Going Up 

Stairs, Si, ttinng Down), (Going Up Stairs, Painz Severity), and (Going Up Stairs, Other 

iii, p Abduction). The commonality of these relationships suggests that there may 
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be some fundamental relationships between these quantities that remain over time 

and despite the intervention of the operation. 
It may be desirable in these cases to force the blocks of patient status variables 

to have the same internal association structure at each time point. This nay be 

sensible from a clinical perspective or if the data display no evidence of changes 
in their correlation structure over time. In this case we could build a single model 

over the patient status variables at, say the first time point. We could then fix this 

structure into the model and replicate it across the various blocks at the appropriate 

stage in the model building instead of performing a stepwise selection over the 

internal arcs of the block. Applying this methodology to the knees data set resulted 
in a notably different model to that shown above. Aside from the internal block 

structure, the primary distinction was that the number of between-block arcs was 

less than when we do not impose the common within-block model. This could be 

particularly problematic as it is the between-block arcs that are predictively useful 

to us, rather than the within-block arcs. The reduction in the number of these arcs is 

because their possible inclusion into the model graph depends on the arrows feeding 

into and the edges within the response block. Thus fixing a particular structure over 

the responses can cause a reduction in the significance of some covariate/response 

edges as some of the information can be captured within the responses, as well as 

making many such edges forbidden under the constraints of decomposability. For 

these reasons, this common-block approach will not be investigated further. 

The variable Going Up Stairs shown on the diagram as (f, t, F, T) and is a 

focal point of the first three of the patient status variable blocks indicating that it 

is associated with many of the other variables in those blocks. This variable was 

identified in the variable selection process as the most informative about the data, 

and the fact that we have such relationships present in the model graph reinforces 

this. Nonetheless, the level of structure within the blocks is quite low - this is 

not surprising as one of the goals of the variable selection process vas to identify 

a subgroup of variables that explains the structure of the data but has minimal 

overlap of information between the variables. 

Having discussed the relationships within the blocks of the chain graphs, we 
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can now turn our attention to the relationships between blocks. These are more 
interesting as they correspond to relationships that exist between time points and 

so are both informative for prediction of later quantities and could, under the correct 

circumstances, indicate potential causal paths. 
The first block in the chain graph contains the demographic variables, and it 

is clear from Figure 8.7 that these variables have a notable association with the 

data observed at later time points since there are many arrows emanating from that 

block. The variable Age (a) is associated with patient status variables at each time 

point, and is associated with all of the Going Up Stairs variables (f, t, F, T). The 

variable Sex (c) has the most associations with patient status variables of all the 

demographics, this suggests a large number of significant sex differences in terms 

of the patient status. We can also see that the variable Side (d), which was pre- 

viously seen to be marginally independent of all other variables, is now apparently 

associated with Extension Lag (k) pre-operatively and at 1-year. However, this re- 

lationship might be spurious due to the problems previously noticed with Extension 

Lag. This association is quite interesting as it was not detected with the undirected 

models. Finally, the variable Diagnosis (b), which encodes whether the patient has 

rheumatoid or osteoarthritis, has three associations to later patient status variables 

indicating significant differences on these quantities. In the undirected model, we 

observed that the graph was missing a significant arc joining Diagnosis with pre- 

operative Going Up Stairs (f); this arc is now present in this chain graph model. In 

fact, the predicted mean value of pre-operative Going Up Stairs for the osteoarthritis 

group is 2.677, whereas the rheumatoid group has a value of 1.931 indicating that 

patients in the rheumatoid group have a poorer condition pre-operatively. Since 

there are many other patient status variables associated to Going Up Stairs, then 

these differences due to Diagnosis will be evident on these variables via Going Up 

Stairs as an intermediate variable. 

Looking at the temporal associations due to the pre-operative variables, we can 

see that there are many associations between pairs of the same variables separated 

by time, e. g. from Sitting Down pre-operatively (i) to Sitting Down 1-year post- 

operatively (w). This suggests that the post-operative state of these variables is 
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dependent on the patient's prior state, which is quite sensible. However, the variables 
Pain Severity (g) and Extension Lag (k) do not have such associations to their later 

counterparts. The reasons for the lack of associations between the Pain Severity 

variables could be attributable to the intervening operation affecting pain in a way 
that is irrespective of the prior state; an alternative justification could be that Poll? 

Severity is best expressed in terms of the post-operative variables rather than the 

pre-operative quantities and so a pre-to-post arrow is absent. There are also some 

arrows beginning in the pre-operative block that point to variables later than 1-year 

post-operation, such as the arrow from Going Up Stairs (f) to Other Hip 
. 
4bdvetion 

at 10-years (X). 

The third block contains only the Operation (e) variable which is associated 

only with Extension Lag at 10 years post-treatment. In terms of the other patient 

status variables and the other time points, there are no relationships. This sliggests 
that treatment type is not associated to the prior state of the patient (since this 

is a randomised study), and also that the treatment types are indistinguishable in 

terms of patient status at 1,5 and 10 years after the operation (with the exception 

of Extension Lag in the latter case). 

At the 1-year time point, we observe that there are are many arrows feeding into 

Going Up Stairs (t) and Pain Severity (u) indicating that they are the variables 

that are most associated with the patient's pre-operative state. We can obtain the 

regression equations corresponding to these relationships by performing an appro- 

priate marginalisation of the fitted joint density function. In the case of Going Up 

Stairs, for a male patient with osteoarthritis, we obtain : 

t=2.919 - 0.023a + 0.249f + 0.231g + 0.031h + 0.0341 + 0.0091 + 0.0111, 

where the variable letters correspond directly to the labelled nodes in the chain 

graph model. Thus we can see that an increase in age (a) is associated with lower 

levels of Going Up Stairs at 1 year (t). Further, we can see that better levels of, for 

example, pre-operative Going Up Stairs (f) and Pain Severity (g) contribute to an 

improvement in the state of Going Up Stairs at 1 year. We also obtain the estimate 

for the standard deviation oft which is at = 0.733. This standard deviation is rather 

large considering that t was originally measured on a five-point scale. Such aspects 
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of the predictive capabilities of the chain graph, and the adequacy and validity of the 
fitted model are discussed in Section 8.3. In fact there are many of these univariate 

regression models that we might choose to display and examine - such examination 
is best suited to computer interaction with the modelling software. 

Most of the measurements at 1-year are related to those at 5-years in a similar 

way as before with many arrows between pairs of the same quantities separated by 

time. However, we now see that Pain Severity at 1 year is associated with itself at 
5 years - an association that was not evident between the pre-operative and 1-year 

values suggesting that the absence of an association previously was due to either 
high levels of noise or due to the intervention of the operation disrupting such a 

relationship. A similar story is evident when considering the 5-year block, though 

we should observe that as with the internal structure of the block the number of 

arrows feeding into this group of variables has also diminished. We can see that the 

variable Going Up Stairs, F, is still the best predicted by prior values as indicated 

by the relatively large number of arrows feeding into it. We can again consider the 

regression formula for this variable, F, where we restrict ourselves to a niale patient 

with osteoarthritis: 

F=3.900 - 0.010a + 0.120f + 0.0211 + 0.392t - 0.207u - 0.011x. 

Now we observe that the intercept in this equation is approximately 1 point larger 

than the equation for t at 1 year, perhaps suggesting a consistent improvement 

in patient condition over this time. Again, we can see that the patient's age has 

a negative association with more elderly patients having reduced levels of Going 

Up Stairs. We can also observe that F is dependent on its prior values both pre- 

operatively and at 1 year as shown by the presence of terms in f and t. Interestingly, 

we also have a negative coefficient for 1-year Pain Severity (u), which would seem 

to suggest that patients with high levels of u (i. e. less severe pain) have lower values 

of F at 5 years, which seems counter-intuitive 

The temporal relationships are again similar when considering the 10-year block 

with the majority of arrows in the graph linking variables to their prior observations. 

However, the number of associations is again reduced with still fewer arrows pointing 

to variables in the 10-year block, and those few that do typically come from a 
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Figure 8.8: The predictive chain graph model for the reduced 1-year knees data. 

variable's prior observation at 5 years. 

The final block in the graph contains a single variable recording the patient's 

satisfaction at 10 years after their operation. We observe that satisfaction is only 

associated to the patient's Pain Severity at 5 and 10 years after treatment (G and 
U). The fitted relationship obtained via the model is: 

Q=2.937 + 0.216G + 0.212U, 

which indicates patients with better scores for Pain Severity have a higher level of 

satisfaction. This seems to be intuitively reasonable, and suggests that the best 

route to patient satisfaction is via an improvement in their pain severity. 

8.2.2.2 1-year Predictive Model 

As discussed in Section 8.2.1.4, the goal of the obtaining a predictive model is to 

favour the inclusion into the model of predictively important relationships between 

the model covariates and the responses. Application of this version of the selection 

procedure when considering the 1-year post-operative patient status variables as the 

responses yields the model graph as shown in Figure 8.8. 

This model is substantially similar to that obtained in the full joint model as our 

covariates and responses are the same. However, there are some slight differences 

and the re-presentation of the model graph does highlight some of the previously 

discussed features. For example, we can see from the vertical arrows that four of 

the 1-year variables are directly associated to their pre-operative observations. It 

is also clearer to see that the variable Going Up Stairs (t) has the most arrows 

feeding into it from the prior variables, reflecting its strong associations with many 

variables. The relationships between the demographic variables Age (a), Sex (b) 
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and Diagnosis (c) are also easier to read, as is the absence of any relationships to 

or from Operation (e). Notably there is no arrow joining Diagnosis to any of the 

response variables. Whilst we saw an arrow in the joint model relating diagnosis to 

the pre-operative value of Going Up Stairs, it would appear that post-operatively 

there is no difference due to patient pathology. 

There were however some slight differences between this model and that obtained 
in the full joint model. For example, the arc joining pre-op Other Hip Ab(hurtionn 

(j) and 1-year Going Up Stairs (t) has vanished in the prediction model. The 

precise reasons for this absence are unclear, however if we refer back to the regression 

equation obtained for t we observe that the coefficient of j is small (0.009), suggesting 

that it was not as predictively important as expected from the joint model. Similarly. 

we now include an arc from pre-op Going Up Stairs (f) to 1-year Sitting Down (w) 

that was not present in the joint model. In the joint model at 1-year, Sitting Down 

(w) was associated to Going Up Stairs (t) and Pain Severity (u), both of which were 

associated to pre-operative Going Up Stairs. Hence there will have been an indirect 

association between f and w via these intermediaries. However, when we build 

this predictive model we treat our responses as independent and so the association 

between f and w can no longer occur through the intermediate variables and so the 

indirect association becomes a direct one. 

8.2.2.3 5-year Predictive Model 

If we construct another predictive chain graph model as above, though now replacing 

the 1-year post-operative variables with the 5-year variables we obtain the model 

with the graph shown in Figure 8.9. Unlike the 1-year predictive model, this graph 

differs quite substantially from the relationships seen in the joint model. This is due 

to the fact that we do not include the 1-year data into this particular model and so 

any indirect associations passing through the 1-year patient status variables will be 

differently represented. 

As mentioned in the context of the joint model, we can see that the number of 

arrows between the covariates and responses has dropped when compared to the 

1-year model. This is likely due to two possibilities, the first being the effect of the 
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Figure 8.9: The predictive chain graph model for the reduced 5-year knees data. 

intervention of treatment and the second being the passage of time causing a diver- 

gence from the patient's pre-operative state that increases over time. We can again 

see several vertical arrows joining pre-operative variables to their 5-year counter- 

parts, though there are fewer than before. Pain Severity at 5-years is unassociated 

with its pre-operative observation since as we saw with the joint model it is best 

determined by its value at 1 year which is omitted from this model. We also observe 

that the demographics Age and Sex have associations with the 5-year variables, but 

there are no differences due to Diagnosis, Side or Operation. 

The variable Going Up Stairs (F) still has the most arcs and so appears to be the 

best associated to the pre-operative state of the patient. The appropriate regression 

equations for F are: 

Fýza1e = 4.449 - 0.017a + 0.203f + 0.019h + 0-019j, 

FFetnaýe = 3.608 - 0.040a + 0.481f + 0.045h + 0.044j, 

In this way we again observe that more elderly patients will be associated with lower 

scores on Going Up Stairs, but good levels on the patient's pre-operative state are 

associated with similarly good levels of Going Up Stairs. 

8.2.2.4 10-year Predictive Model 

At 10-years, our predictive model has relatively few associations to the patient's 

pre-operative state, as we can see from Figure 8.10. Only four associations are 

detected between the pre-operative variables and those at 10-years. This suggests 

perhaps that since we have performed an intervention and, furthermore, a long 

period of time has elapsed then the pre-operative state of the patient has become 

relatively uninformative for us when determining the patients state at 10 years post- 

\ 
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Figure 8.10: The predictive chain graph model for the reduced 10-year knees data. 

treatment. Whilst we are detecting various differences and associations due to the 

demographic variables, the relationships between patient status variables are fairly 

sparse. Perhaps, we would observe more relationships if we considered the 1-year 

patient status variables instead of the pre-operative values. 

Nonetheless, three out of the four associations between the patient status vari- 

ables are connecting to Going Up Stairs (T) at 10-years, which reassures us that 

this has been a good first choice of variable by the variable selection process. There 

are also apparent associations between Diagnosis and Operation and some of the 

10-year variables. In the case of the Diagnosis associations, caution is advised in 

interpreting these relationships as the number of patients with osteoarthritis at ten 

years is 69, whilst the sample for rheumatoid arthritis is only 8. Thus with such a 

small sample size, these associations could simply be the product of sample varia- 

tion and more data are required to niake firm statements about group differences 

at this time point. A similar degree of caution is advised with the associations due 

to Operation since both groups have less than 50 cases and, in practical terms, the 

differences between them seem to be relatively small. 

8.2.2.5 Model for Variables Selected Using Utility 

During the variable selection process for the knees data we ultimately obtain two 

distinct subsets of variables - the first was the subset obtained by considering the 

data alone, and the second was informed by utility information about each variable. 

The models described above contain those variables identified through the temporal 

variable selection procedure without using the utility information. If, instead, we 

chose to use that information and build our chain graphs around this subset instead 

gu10 okfcl0 ohablO okf 10 
painslO sdlO exlaglO satisf 
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Figure 8.11: The chain graph model for the utility-reduced 1-year knees data. 

then models we obtain would be quite different. The chain graph model for the 

utility-reduced data up to 1-year post-treatment is given in Figure 8.11. 

If we consider the internal block structure for the pre-operative and 1-year patient 

status variables, we observe that there are far fewer associations than are present 

in the model based on the standard subset of variables. The reason for this is that 

there are some strong associations within these utility-reduced variables rendering 

three of the seven conditionally independent of the others at both time points. These 

three variables are Pain Frequency (m), Rising Up (p) and Other Hip Abduction 

(s). 

There are many associations to the demographic variables within this chain graph 

model. Closer inspection reveals that the majority of these associations are to Weight 

(o) and Extension Lag (r) at both time points. This further suggests that the three 

variables above are playing a small role in this model. Furthermore, these three 

potentially redundant variables are of little use when predicting the 1-year patient 

state, since there are no arrows either leaving these variables pre-operatively or 

entering them post-operatively. This suggests that their information is of little use 

to us if we have observed the other four variables in the group. Thus it is clear that 

this subgroup is not the best group to work with in terms of the associations within 

-- __ 
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the data. 

8.2.3 Results - Hips Data 

8.2.3.1 Complete 12-month Model 

The second orthopaedic data set concerns hip replacement. It was found in Section 

7.3 that the patient status measurements could be substantially reduced due to the 

high degree of correlation between the measurements. Therefore the hips models 

include a subset of four of the patient status variables at each time point. The chain 

graph model for these hips data is presented in Figure 8.12. Initial impressions of 

the chain graph would suggest the model is less complex than we saw with the knees 

data, though this is likely only due to the fact we have fewer variables and fewer 

time points. 

Let us first consider the associations present within the individual blocks of vari- 

ables. Firstly, the block of demographic variables shows us that the three discrete 

pathology variables are all co-dependent. We also observe an association between 

Pathology Osteoarthritis (c) and Age (a) such that patients with osteoarthritis ap- 

pear to be older than those without osteoarthritis. The two other demographic 

variables Private (f) and Waiting List (k) are marginally independent of the other 

variables. 

The patient status variables enter the model in blocks 2,4 and 6 corresponding 

to pre-operative and 3-month and 12-month post-operative observations. In the pre- 

operative block all variables are pairwise associated, whereas at three months the 

edge [vx] is missing from the graph, and at 12 months we only have two associations 

between the variables. Thus we appear to have a similar decay in the structure of 

the associations of the patient status variables as we have observed previously with 

the knees data, though with the hips data the time-scale is far shorter. This could 

suggest that these variables are becoming less associated to one another as time 

passes, though the plots of the correlation matrices in Figure 7.8 would contradict 

this. 

The block containing the two treatment variables (1, m) relating to the use of 
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cement shows that both variables are associated to one another, as we saw in the 

undirected model in Figure 5.8. Finally, we consider the Satisfaction (y) and Read- 

mittance (z) variables which we see are associated to one another at 3 months with 

patients who were readmitted having a slightly higher probability of low satisfac- 

tion. Conversely, at 12 months the two variables are conditionally independent in 

the model. 

Considering the relationships between the blocks, we can see that the pathology 

variables have no direct associations to any of the patient status variables suggesting 

that they are conditionally independent. The variables Age (a) and Gender (b) 

display associations to some of the pre-operative patient status variables, but have 

no relationships with any of the later variables. This suggests that whilst these two 

variables may be directly associated with the patient's initial state, after treatment 

there is no direct association so either there are no discernible age or sex differences, 

or the relationship is now indirect and is captured via the pre-operative state of the 

patient. The variable Private (f) is associated to the pre-operative variable Usual 

Work (g), suggesting significant differences between private and NHS patients for 

this measurement. Since Usual Work is associated with all other pre-operative 

status quantities then private status will likely have an indirect association to all 

quantities. The fitted means for all patient status variables are slightly lower for the 

NHS patient group than for the private status group suggesting a poorer initial state 

- this could potentially be a result of the waiting lists for NHS treatment resulting in 

a patient's condition being more developed. Private status displays no association 

with any of the later time points. This reflects patterns observed in the profile plot 

in Figure 4.20. The final demographic Waiting List is associated to patient status 

variables at each time point, thus giving it a direct or indirect relationship with most 

of the patient status quantities in the model. In each case, larger values for Waiting 

List (i. e. longer time spent on the waiting list) results in slightly lower values of the 

patient status variables, however the magnitude of this reduction is very small. 

The pre-operative block of patient status variables is disconnected from any later 

variable in the model. This suggests that later patient condition is independent of 

the patient's initial state, this is likely attributable to a normalising effect of the 
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Figure 8.13: The predictive chain graph model for the reduced 3-month hips data. 

intervention. The operation types also display no associations with later variables 
implying that each of the treatment types appear to be equivalent with little differ- 

ence between patients in any of the treatment groups. 
At three months, we note that there are some arrows from the patient status, 

variables pointing to measurements at 12 month, such as those between the Usual 

Work (u, U) and the Severe Pain (x, X) variables. This suggests that, whilst 

unrelated to the patient's pre-operative state, the post-operative state of the patient 

at three months is associated to their state at 12 months. 

The patient satisfaction variable (z) at 3 months is associated both to Readmit- 

tance (y), and the status variables Usual Work (u) and Severe Pain (x) at three 

months. This seems to be quite sensible that patient satisfaction should depend on 

their current state and whether they have had to be readinitted to hospital. 

At 12 months after treatment, we see relatively few arcs entering or leaving the 

block of variables suggesting few associations. A consequence of this would be that 

it would be difficult to make reasonable predictions on the basis of the variables 

we have available in the current model. The patient satisfaction at twelve months 

is again associated to Usual Work and Severe Pain, which suggests they must he 

key quantities involved in the patient's assessment of their satisfaction with the hip 

replacement. Satisfaction is also dependent on its previous value at three months. 

8.2.3.2 Predictive Models 

The predictive models for the hips data are somewhat less interesting than those 

obtained from the knees data. As we can see from Figures 8.13 and 8.14, there are 

neither any demographic associations nor pre-operative associations to the response 
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Figure 8.14: The predictive chain graph model for the reduced 12-month hips data. 
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Figure 8.15: The predictive chain graph model for the reduced 12-month hips data 

given 3-month data. 

variables. The only associations we observe are due to Waiting List (k), whereby 

longer times spent on the waiting list are associated with very slightly poorer patient 

states. However, the absence of any associations can still inform us about the 

structure of the data. We can see firstly that neither the patient's pathology (c, d, 

e) nor the type of their treatment (1, m) have any effect on the patient's condition 

at 3-months and 12-months after surgery. Thus the different treatments appear 

to be equally effective and all patients respond in a similar way to the treatment 

regardless of their pathology. We can also observe that none of these demographic 

or patient status variables are associated with the patient's satisfaction at 3- or 12- 

months post-treatment. The reason for this is that as we saw in the full joint model, 

patient satisfaction at a particular time depends only on the patient's state at that 

time, not on their prior history. 

This divorcing of the pre-operative and demographic variables from the post- 

operative variables could be attributable to the intervention of the operation. If 

this is the case one may expect to see relationships between the variables at 3- and 

12-months. The corresponding graph for such a model is given in Figure 8.15. 
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We observe that the demographic variables (a- f) again display no effects and 
this is to be expected as such results were seen in the 12-month model. We also see 
that patient Readmittance (Y) and Satisfaction (Z) depend on their predecessors; 
in fact, they also depend on some of the other 12-month variables as we saw in the 

larger model in Figure 8.12. However, Waiting List displays fewer associations to 

the patient status variables and we see some associations between the 3-month and 

the 12-month variables. The presence of associations between the patient status 

variables here suggests that the effect of the operation on the patient's condition 

is such that it is completely independent of the patient's pre-operative state, and 

so we observe no relationships between the pre-operative and 3-month states. Af- 

ter treatment, the patient's state evolves from the post-operative state in a more 

predictable manner thus giving rise to the observed associations in Figure 8.15, but 

remains independent of the patient's initial condition. Whilst being informative in 

itself, this relationship is unfortunate as it makes prediction of the patient's future 

state from their initial state very difficult. 

8.3 Prediction from Chain Graphs 

Ultimately, the goal of modelling the orthopaedic data at each of the various time 

points has been to predict the future patient state given their current, and typically 

pre-operative, state. If we are interested in such prediction of these unobserved 

future quantities on the basis of the past or current data, then to obtain sensible 

and useful chain graph models we should use the predictive chain graphs described 

in Section 8.2.1.4 in order to ensure all important predictive/prognostic edges are 

present in the model. 

When we fit the chain graph model to the data set, we obtain a conditional Gaus- 

Sian distribution representing the joint distribution of all the response and covariate 

variables in the model. To gain any insight into the nature of the relationships 

between these two sets of variables, we must examine the values of the parameter 

estimates obtained through the fitting process. These will typically be in the form of 

the moments parameters of the distribution p(i), µ(i), and E(i). Since we allow the 
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variance to change freely between cells of the contingency table, we therefore obtain 

a cell probability p(i), a (qx 1) mean vector µ(i) and a (qx q) variance matrix E(i) for 

every cell i in the contingency table that is formed over the discrete variables. This 

gives a total of 2 
(q + 1) (q + 2) distinct parameters to estimate for each combination 

of discrete variables. If we have many discrete variables or we have discrete variables 

with many states, then the number of cells in the contingency table becomes large 

and the number of parameter estimates even larger. Therefore to investigate these 

means and variances via mean tables would be a prohibitively complex task, even if 

disaggregating by choices of subgroups of the discrete variables. 
Since the parameter estimates represent the parameters of the joint probability 

distribution of our data, we can take two steps to simplify our interpretation of 

the fitted parameters. The first step is that we can condition on the covariates in 

the model, which will give us the parameter estimates of the distribution of the 

response variables given the covariates. One of the features of the CG distribution 

is that its conditional distribution is also conditionally Gaussian. The formulae for 

obtaining the parameters of the conditional distribution, fAJB, of the set of responses 

A given the covariates B from the moments parameters p(i), µ(i) and E(i) of the 

joint distribution, fAB, are: 

pAI 
B(iA) 

: -- {E(i)BB} 
- yä{E(i)BB}-1yB/2 

-2 
[log I E(i)BBI + µ(2)B{E(i)BB} 

+ logp(i) - #(F U B) log(21r)/2 - log Ic(iB, YB) (8.7) 

P 
AIB(2A) 

= /1(2)A + E(i)AB(>(i)BB)-1(YB - p(i)B), (8.8) 

>AIB(iA) = r-(2)AA - 
E(i)AB(>(i)BB)-1E(i)BA, (8.9) 

where YB are the values of the continuous covariates and ! (iB, iA) is a constant. 

We can see in (8.8) we have an expression for the mean of the response vari- 

ables, pI B(iA), as a linear function of the covariates yB with coefficients given by 

the values of E(i)AB(>(i)BB)-1. We also obtain an estimate for the conditional 

variance matrix, which on closer inspection is simply the partial variance matrix of 

the responses given the covariates obtained from the fitted variance matrix of the 

joint model, E(i). The linear regression equations may often contain some terms 
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with zero coefficients when we include the set of all covariates, these correspond to 

variables that are unassociated with the responses and so in the fitted distribution 

are modelled as being independent. Equally the equations may contain other co- 

variates or responses that are of no interest to us. In both cases we can marginalise 
the conditional distribution of our responses to eliminate these terms. However, 

care must be taken when marginalising over arbitrary sets of variables as, unlike 
the conditional distribution, the marginal distribution of the CG distribution is not 

always Gaussian. This is most obviously true if we are marginalising over discrete 

variables which are associated with variables in the model as this will leave us with 

a complex Gaussian mixture distribution. 

For a subset of variables A with B=V \A, we can use Lauritzen's weak marginal 
[81] f [A] of f which has the properties that it has the same moments as the correct 

moments of the joint distribution and when B contains no discrete variables (or 

when the discrete variables satisfy certain conditions) it corresponds exactly to the 

true marginal distribution. The formulae for the parameters of this weak marginal 

given the parameters p(i), µ(i), E(i) of the joint distribution are: 

p[Aj(iA) = P[IA = iA] _E p(j) (8.10) 
JA=2A 

µ[A](2A) = E[YAIIA = 2A] _ 
p( ZA 

/-I(A)A (8.11) 
j: jA=iA 

P[ A] l) 

E[AI(iA) = Var[YAJIA = iA] 

PUL {µ(ß)A µ[A](iA)}{µ(. 7)A - µ[A)(ZA)}T 
jUA=2A 

p['ýl () 

+ 
p[A] (i) 

E(S)A (8.12) 

. 
7: 7A=zA 

So via appropriate marginalisation and conditioning of the joint distribution we 

can obtain equations such as those given in Section 8.2.2, and we can use them 

as a basis for prediction. If our data were in block-recursive form, i. e. with blocks 

B1, B27 
..., 

Bk, and we seek to predict variables in a later block, Bj, from variables 

in an earlier block, Bi with i<j, then care must be taken when obtaining the 

prediction equations. It is not appropriate to calculate a full joint model involving 
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all blocks and then marginalise out variables which are not in Bi U Bj for two reasons. 
Firstly, any indirect associations between variables in Bi and Bj which pass through 
intermediary blocks will be lost and so potentially important terms in the regression 
equation may not be present. Secondly, the structure over the response variables 

may be inappropriate and preventing the inclusion of some predictive relationships. 
To address this it would be best to construct a two-block predictive chain graph 

model over only Bi and Bj and then condition on Bi and marginalise if necessary. 

8.4 Results and Validation 

Having obtained chain graph models for the data sets, we can now consider evaluat- 
ing the adequacy of the fit of these models. This is a large and complex task as we 
have a linear equation associated with each of our response variables in each of our 

models. If we were to consider only the predictive chain graph models this gives us 

a total of 29 regressions to examine in both data sets. For simplicity we shall focus 

only on a few of the response variables - for the knees data we shall consider the 

regressions of the most important variable Going Up Stairs at 1 and 5 years and the 

10-year Satisfaction score; for the hips data we consider only the relationships of 

the 12-month data to that at 3 months. Similarly, the evaluation of the regression 

will focus on simple methods such as the visual examination of residuals and the 

calculation of the coefficient of determination in order to keep the general analytic 

process manageable. Whilst more advanced techniques, such as calculating dele- 

tion residuals, and performing more rigorous model validation methods will provide 

a more thorough analysis, their computationally intensive nature would preclude 

their application to such a large number of models. 

8.4.1 1-year predictive knees model 

For the 1-year knees data model (see Figure 8.8), we can extract the regression equa- 

tions for Going Up Stairs as described above. Since Going Up Stairs is associated 
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with Sex, we obtain separate equations for male and female patients: 

tMale = 3.447 - 0.025a + 0.267 f+0.233g + 0.028h + 0.0111, 

tF'emale = 2.781 - 0.031a + 0-327f + 0.285g + 0.034h + 0.0131, 

where again the variable letters correspond directly to the labelled nodes in the chain 
graph model. These equations are slightly different from those given in Section 8.2.2 

since they correspond to the predictive models rather than the complete joint model. 
We can see that the association between Age (a) and Going Up Stairs (t) is a 

negative one with more elderly patients being associated with lower scores of for both 

sexes. We can also see that the other variables in the equation, i. e. pre-operative 
Going Up Stairs (f), Pain Severity (g), Other Knee Fixed Contracture (h) and 
Other Knee Flexion (1), all contribute to an improvement in the state of Going Up 

Stairs at 1 year, which suggests that a good pre-operative state over these variables 
is associated with a good state at 1 year. Both of these relationships seem intuitively 

sensible in the context of the data. 

Unfortunately, a major drawback of the graphical modelling approach in this type 

of regression analysis is that the standard errors associated with these regression 

coefficients are unknown. Therefore it is not possible to gauge statistically the 

importance of each of these coefficients in the regression model. For example, at 

first glance the coefficients for Other Knee Flexion (1) seem fairly small in (0.011 

and 0.013), however it is unclear whether this is likely due to the fact that that 

variable is measured on a large scale relative to Going Up Stairs rather than an 

intrinsic insignificance of the coefficient. The unavailability of numerical statements 

of the significance of these coefficients impedes the analysis of these regressions. 

Whilst we would expect that these coefficients are significant as the inclusion of 

their corresponding edges in the graphical model were deemed to be significant 

the relationship between these edge inclusion tests and the significance of these 

regression coefficients is not apparent. 
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Est. SE Std. Est. 1 Efron CI Hall CI 
Intercept 3.447 0.4810 7.1669 [2.919,4.837] [2.057,3.9751 

Age -0.025 0.0055 4.5570 [-0.040, -0.018] [-0.032, -0.010] 
Go Up Stairs 0.267 0.0347 7.6506 [0.227,0.364] [0.1 0.0.307] 

Sev. Pain 0.233 0.0550 4.3240 [0.070,0.284] [0.182,0.396] 

OK F. Cont. 0.028 0.0061 4.5802 [-0.004,0.020] [0.036,0.060] 

OK Flex. 0.011 0.0020 5.3954 [0.007,0.015] [0.007,0.015] 

Sex -0.666 0.1711 3.8920 [-0.952, -0.304] [-1.028, -0.3801 
Sex: Age -0.006 0.0036 1.6853 [-0.014,0.000] [-0.012,0.002] 

Sex: GUStairs 0.060 0.0333 1.8036 [0.005,0.134] [-0.014,0.115] 

Sex: Sev. Pain 0.052 0.0226 2.3026 [0.002,0.090] [0.014,0.102] 

Sex: OKFC 0.006 0.0019 3.2137 [-0.001,0.006] [0.006,0.013] 

Sex: Flex 0.002 0.0014 1.3903 [0.000,0.006] [-0.002,0.004] 

Table 8.1: Parameter estimates for the 1-year knees model with bootstrapped stan- 

dard errors and confidence intervals. 

8.4.1.1 Bootstrapping Standard Errors 

A possible method for resolving the problem of unknown standard errors is to apply 

bootstrapping methods discussed in Section 8.1.3. We can use these bootstrap 

estimates to learn about the distribution of the original coefficients and various 

properties thereof, such as standard errors and confidence intervals. The results of 

bootstrapping the regression coefficients for this model are shown in Table 8.1 where 

we have taken 5000 bootstrap samples. 

The results of the bootstrapping process are presented in Table 8.1. The esti- 

mates from the two equations have been combined by considering main effect and 

interaction terms from Sex. The main effects (rows 1 to 6) thus correspond to values 

when Sex=Male, and remainder correspond to the differences from these parameter 

values when Sex=Female. The columns of the table contain the original parameter 

estimates, the bootstrap standard error, the absolute value of the original estimates 

standardised by the bootstrap error, the value for both Efron and Hall's 95% confi- 

dence intervals as given in (8.3) and (8.4) respectively. 

Examination of the standardised main effects estimates and the confidence inter- 
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vals for those estimates show that the majority appear significant with large absolute 
standardised estimates (> 3) and confidence intervals that do not cover zero. The 

only exception here is perhaps the term for Other Knee Fixed Contracture, which 
despite having a large standardised value one of its confidence intervals contains the 

origin. This casts some doubt over the importance of this term in the regression. In 
terms of the interactions, we can see several of these are perhaps non-significant with 
small standardised coefficients and confidence intervals containing zero. It should 
be noted here that interaction terms are automatically present in the model for a 
given set of main effects in order to retain the models graphical property. These 

terms are not explicitly tested for importance or significance and do not correspond 
to arcs in the model graph. 

In this case the estimates for the standard deviations oft are 0.996 and 1.103 for 

male and female patients respectively. These standard deviations are relatively large 

in size, particularly when the variable Going Up Stairs is measured on a five-point 

scale. This suggests that the data are very noisy or there is still a large degree of 

variability in the residuals that has not been accounted for by the model. 

8.4.1.2 Model Evaluation 

A histogram and quantile plot of the residuals for this model are shown in Figure 

8.16. We can see from the histogram that the residuals are skewed with more 

positive residuals than we would expect under Normality and a long tail to the 

left. The quantile plot corroborates this skewness, though the residuals could be 

assumed to be approximately Normal. Irrespective of this however, it is clear that 

the distribution of the residuals is not ideal and is likely due to the fact that the 

response variable is recorded on a 5-point Likert scale which was approximated as 

continuous. The apparent smoothness of the quantile plot is mainly due to the fact 

that we include continuous covariates such as Age in the regression model. If these 

were not present the departure from Normality would likely be more severe. 

In terms of the goodness of fit of the regression, we can calculate the proportion of 

variance explained by the model. In this case we obtain a value of R2 = 0.2889, which 

informs us that only approximately 30% of the variation of the original response 
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Figure 8.16: Histogram and quantile plot from model of Going Up Stairs at 1-year. 

variable is explained by the predictions from the model. This is quite low and it is not 

directly obvious whether this is clue to the model being poor, or the data being noisy 

and inherently difficult to predict. To determine which of these cases is most likely we 

could try fitting a larger model with all of the pre-operative covariates. This would 

represent the best linear fit we could obtain using the available data. The value 

of R2 for this model could then be used as an approximate baseline against which 

we could compare the performance of the model under consideration. This larger 

regression model has an R2 value of 0.3150 and so represents the best proportion 

of the variation that we could capture in a graphical model for the response and all 

seven covariates. This is close to the value we obtained from the original model, 

so this would suggest that the data are difficult to predict on the basis of a linear 

model over the pre-operative variables and further that adding extra terms provides 

only small improvement. The original R2 value can also be adjusted to compensate 

for the fact that the larger model includes more terms in the regression equation, 

thus allowing for a comparison on a more even footing. In this case the adjusted 

values are R2 = 0.2727 for the original model and R2 = 0.2928 for the larger model. 

This shows that both models have a similar level of performance though the larger 

model still performs slightly better, but the margin of the difference between the 

two is small. 
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8.4.1.3 Baseline models 
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The models above were constructed without any restriction on the model selection 
process or any edges being forced into the model at the outset. Whilst this may 

yield models that more closely represent the data, it can be argued that the a priori 
introduction of certain arcs into the model would be beneficial both statistically 

and in terms of the model's interpretation. An example of this would be to force a 

connection between measurements on the same quantity separated by time, such as 
Pain Severity pre-operatively and at 1 year, i. e. g--+u. This would force the earlier 

observation to act as a baseline for the later quantity and other arcs would then be 

added into the model if they made an additional contribution. 

In practical terms this will result in models that are somewhat different in ap- 

pearance, however application of this technique did not give any appreciable im- 

provement in performance. For the 1-year model discussed above, if we consider the 

variable Pain Severity we obtain a model with connections to pre-operative Other 

Knee Fixed Contracture (h), and Pain Severity (g) which replaces the connection 

to Going Up Stairs (f). The performance of the two models are both very similar 

and equally poor with RZ - 0.01 for both models. This pattern was repeated for 

all of the variables in the 1-year model. Whilst the introduction of arcs to represent 

baseline measurements into the model is on a sound statistical footing, the benefits 

here appear to be negligible for these data. However, this method should not be 

discounted entirely as it likely that introducing baselines will be beneficial for other 

data sets. 

8.4.2 5-year predictive knees model 

For Going Up Stairs at 5 years, the situation is quite similar to that for 1-year. 

Again, due to a sex dependence we obtain separate regression equations for the 

different sexes though this time we have fewer covariates in the equations: 

FMale = 4.559 - 0.018a + 0.209f + 0.006h + 0.020j, 

FFemge = 3.876 - 0.043a + 0.493f + 0.014h + 0.047j. 

Again we observe a negative association with Age (a) suggesting a poorer pa- 
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tient state for more elderly patients. We also retain a positive association to the 

pre-operative values of Going Up Stairs, Other Knee Fixed Contracture and Other 
Hip Abduction suggesting that good patient performance on these variables pre- 
operatively is associated with good patient states at 5 years. In terms of the as- 
sociated standard deviations for Going Up Stairs (F) for the different sexes, we 
find these values to be 0.664 and 1.566. Unlike the values at 1-year, this appears 
to suggest that there is notably less variability in the Male subgroup, leaving the 
Female group harder to predict. 

8.4.2.1 Bootstrapping Standard Errors 

The results from bootstrapping these regressions are presented in Table 8.2. Inspec- 

tion of the estimates and confidence intervals demonstrate that the coefficient for 

Other Knee Fixed Contracture is not a significant term in the regression. This is 

illustrated by the small value of the standardised coefficient and by both confidence 

intervals covering zero. The reason for the inclusion of this term in the model is 

unclear as both Other Knee Fixed Contracture and its interaction with Sex appear 

non-significant and so have little notable contribution to the model. Additionally, 

the main effect terms for Sex itself has a relatively low standardised value and one 

of the associated confidence intervals contains zero suggesting a possible low signif- 

icance here. However, since Sex and all its interactions are essentially considered 

together in the examination of an edge connecting Sex with Going Up Stairs and 

there are a number of highly significant interaction terms then this is likely the 

reason for its inclusion in the model. 

8.4.2.2 Model Evaluation 

An examination of the distribution of the residuals via a histogram and quantile 

plot is presented in Figure 8.17. We can see again a slight skewness to the residual 

distribution and a curvature to the quantile plot which suggests deviation from 

Normality. The situation appears to be, again, quite similar to the 1-year results. 

The proportion of variation explained for this model is R2 = 0.3870 which indi- 

cates that roughly 40% of the variability of the response variable is being explained 
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Est. SE IStd. Est. Efron CI Hall CI 

Intercept 4.559 0.4423 10.3085 [3.686,5.429] [3.689.5.432] 

Age -0.018 0.0061 2.9447 [-0.032. -0.008] [-0.028. -0.004] 
Go Up Stairs 0.209 0.0448 4.6671 [0.125,0.303] [0.115.0.293] 

OK F. Cont. 0.006 0.0071 0.8410 [-0.006,0.022] [-0.010,0.018] 

OK Flex. 0.020 0.0069 2.9146 [0.009,0.035] [0.005,0.031] 

Sex -0.683 0.6000 1.1383 [-1.8161,0.562] [-1.928.0.4501] 

Sex: Age -0.025 0.0082 3.0570 [-0.043, -0.011] [-0.039, -0.007] 
Sex: GUStairs 0.284 0.0559 5.0833 [0.174,0.395] [0.173,0.394] 

Sex: OKFC 0.008 0.0095 0.8417 [-0.009,0.0291 [-0.013,0.025] 

Sex: Flex 0.027 0.0071 3.8010 [0.014,0.041] [0.013,0.040] 
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Table 8.2: Parameter estimates for the 5-year knees model with bootstrapped stan- 

dard errors and confidence intervals. 
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Figure 8.17: Histogram and quantile plot from model of Going Up Stairs at 5-years. 
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by the model. In comparison with the 1-year model, we can see that despite having 

fewer terms in the regression equation we are capturing 10% more of the variability 

of the data suggesting that the 5-year state is better predicted by the pre-operative 
data. For comparison, the R2 value for the prediction model including all seven 

covariates is 0.4065. This larger model only captures slightly more variability and 

again appears to indicate that it remains difficult to accurately predict the response 

using the pre-operative variables as covariates. However, if we consider the adjusted 

R2 values we find that the original model has a value of 0.3587, whilst the parent 

model scores 0.3584 suggesting that, in fact, the two models have a similar level of 

performance. 

Additionally, since we are predicting the patient's 5-year state on the basis of 

their pre-operative state alone we could, no doubt, improve our performance if we 

also knew and included the patient's state at 1-year post-operation. This would re- 

quire the construction of a new chain graph model including both pre-operative and 

1-year values as covariates. However, the accuracy and performance of the predic- 

tions will likely be improved since the post-operative states are more closely related 

to one another than they are to the pre-operative state. However, since our aim is 

typically to predict from pre-operative information performing such predictions may 

not be possible. 

8.4.3 10-year predictive knees model 

For the 10-year predictive model, we sought to investigate the regression of Satis- 

faction instead of Going Up Stairs as this quantity is of great interest to clinicians. 

Being able to improve the long-term satisfaction of the patients is considered to be an 

important goal. In the chain graph in Figure 8.10 we can see that Satisfaction (Q) 

is conditionally independent of the patient's pre-operative state. Indeed, according 

to the model, the only variables associated with Satisfaction are the patient's Pain 

Severity at 5 and 10 years. The corresponding equation underlying this modelled 

relationship is given below: 

Q=2.937 + 0.216G + 0.212U, 



8.4. Results and Validation 261 

Est. SE Std. Est. Efron Cl Hall Cl 
Intercept 2.937 0.7445 3.9448 [1.526,4.251] [1.623,4.348] 
Pain Sev. 5Y 0.216 0.1292 1.6721 [0.010,0.480] [-0.048,0.422] 

Pain Sev. 10Y 0.212 0.0791 2.6812 [0.078,0.392] [0.032,0.346] 

Table 8.3: Parameter estimates for the 10-year knees model with bootstrapped 

standard errors and confidence intervals. 

where G and U are Pain Severity at 5 and 10 years respectively. We can see that 
higher (i. e. better) levels of both quantities result in a better satisfaction score. The 

associated standard deviation here is 0.429, which is a reasonable value suggesting 
95% of our residuals lie in the region +0.858 implying that predictions are usually 

accurate to within 1 point of the satisfaction score. 

8.4.3.1 Bootstrapping Standard Errors 

The results from the bootstrapping of these parameter values in Table 8.3 show that 

two of these terms in the regression appear to be significant, but Pain Severity at 

5-years appears to be more questionable with a relatively low standardised estimate 

value and a confidence interval covering zero. 

8.4.3.2 Model Evaluation 

If we now examine the residual distribution for this variable we observe a somewhat 

different situation to that previously seen. The histogram and quantile plot are 

shown in Figure 8.18. The histogram again appears skewed in a similar way to those 

seen above with a long tail to the left; though since we have less than 40% of the cases 

present at 5 years in the 10-year model the detail of the distribution is more coarse 

and the similarity is not quite as apparent. The quantile plot however is noticeably 

different - the clear step pattern is reminiscent of the quantile plots in Chapter 3. 

This will be due to both covariates and response in this case being originally ordinal 

and approximated by continuous quantities and so were not originally Normally 

distributed. 

The goodness of fit of the model in terms of the proportion of variation explained 
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Figure 8.18: Histogram and quantile plot from model of Satisfaction at 10-years. 

by the model is given by R2 = 0.2968, and the adjusted value is R2 = 0.2682. This 

value is of a similar order as those obtained previously which seems a reasonable 

result given that these data appear inherently difficult to predict. For compari- 

son, the graphical model where all of the pre-operative, 1-year, 5-year and 10-year 

variables were associated to Satisfaction were calculated. The resulting model gave 

a value of R2 = 0.8487, which is relatively large compared to the original model. 

However, the adjusted R2 value for this parent model is only R2 = 0.3867, showing 

that the standard R2 value has artificially inflated the performance by the sheer 

number of parameters in the model, which highlights the importance of making this 

adjustment. Nonetheless, we can see that the addition of an extra 26 parameters 

has only resulted in improving R2 by around 0.12. This suggests that despite being 

less prognostically powerful, the original model given above does appear to be a 

suitable yet parsimonious choice. 

It is clear from the quantile plot in Figure 8.18 that such an analysis of these 

data is not appropriate. The problem here is that the data were originally ordinal, 

but were subsequently treated as continuous quantities due to constraints on the 

analysis. The variables were then analysed as if they were continuous, and the 

regressions and the residual analyses assume this. However this assumption is invalid 

in cases such as this. When considering data which are discrete, the analysis of the 
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residuals from a particular model and the diagnosis of model adequacy are not 
trivial. Various texts have addressed these problems, [1,85], however those results 
are not directly applicable. The reason for this is that the existing methods for 
discrete data rely on us having fitted particular discrete models, such as a logistic 

regression or a proportional odds model. These methods then assess the goodness 

of fit in the context of the discrete model by examining various quantities - e. g. the 

cell probabilities or the associated log odds - quantities which are meaningless in 

the world of continuous data. Therefore, it would be equally inappropriate to try 

to apply the results from assessing discrete regression models to the output of a 

continuous regression, as it would be to perform the standard assessments of a 

continuous regression whose variables were initially discrete. This appears to be a 

problem that cannot be easily circumvented and which hinges on the assumption 

of continuity for the main variables. The best way to resolve this would be to 

leave all variables in their original discrete/ continuous states, however this returns 

us to the problem of the overwhelming consequent dimensionality of the problem. 

The resolution of this recurrent problem is unclear and is a possible area for future 

research. 

8.4.4 Hips model 

As we have seen in Figures 8.13 and 8.14, there are no relationships between the 

pre-operative patient status variables and those observed at later times. The only 

detectable associations in these models are attributable to the effect of waiting time 

on patient state. These associations manifest themselves in the form of a slightly 

poorer patient state. However, for prognostic purposes this separation of the patient 

states is not useful and is most likely attributable to the effect of the operation. 

However, if we consider the relationships between the post-operative patient states, 

as in Figure 8.15, we find evidence of some associations between the patient state 

at three and twelve months. If we consider Usual Work at 12 months (U), we find 

it is associated with Usual Work (u), Walking Without Pain (w), and Severe Pain 

(x) at 3 months. The relationship is of the following form: 

U=1.837 + 0.401u + 0.081w + 0.123x. 
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Figure 8.19: Histogram and quantile plot from model of Usual Work at 12 niontlis 
for the hips data. 

We see, as before, that good levels of Usual Work at 12 niotitlis are associated with 

similarly high scores on the patient's three-month state. The estimated standard 

deviation for U is 0.762, which reflects the noisy nature of the hips variables. The 

histogram and quantile plot for the residuals are given in Figure 8.19 and show 

that the residuals could be considered to be approximately normal. In fact, all the 

variables in this model are ordinal as with the satisfaction model for the knees data 

in 8.4.3. However, whilst there is evidence of a slight step pattern to the quantile 

plot which reflects this granularity of the data we can see a pronounced difference in 

the nature of the residuals of the two models. This could suggest that the problems 

with the residuals observed with the satisfaction model for the knees data due to 

the ordinality of the variables could be attributable to its small sample size with 

only 78 cases. The problems seen with the knees data are not as evident with this 

hips model despite being purely ordinal again, though here we have at total of 1496 

Cases. 

The adequacy of the model fit as assessed by the R2 value is poor with ß2 

0.0086. This is likely due to the noisy nature of the data and suggests that our 

model barely explains any of the variation of the data. Looking at the larger model 

including all the covariates we find the R2 value barely changes and remains of the 
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Est. SE Std. Est. Efron CI Hall Cl 

Intercept 1.837 0.1633 11.2489 [1.5339,2.1570] [1.5170,2.14011 
Usual Work 0.401 0.0265 15.1178 [-0.0550,0.0470] [0.7550,0.8570] 
Walk w/o Pain 0.081 0.0141 5.7566 [-0.0430,0.01201 [0.1500,0.2050] 
Sev Pain 0.123 0.0182 6.7528 [-0.0430,0.0280] [0.2180,0.2890] 

Table 8.4: Parameter estimates for the hips model with bootstrapped standard 
errors and confidence intervals. 

same order of magnitude. This highly noisy nature of the data is a feature of this 
hips data set and poses a significant problem when we are seeking to predict these 
data. 

8.5 Limitations and Discussion 

One of the main limitations of applying this chain graph modelling approach to the 

data is the absence of standard errors for the parameter estimates of the conditional 

Gaussian distribution (p, p and E). Since the coefficients in the regression equa- 

tions of the response variables given the covariates are functions of these parameters, 

the standard errors associated with these coefficients are also unknown. However, 

the associations that are modelled between these variables are known to be impor- 

tant and significant since the corresponding edges were included into the graphical 

model via the selection process. Therefore we could conclude that the significance 

of the coefficients is implicit due to this selection. However, when considering the 

regression equations for the responses there is no direct statement of the value of 

the standard errors and hence the associated t-values and significance probabilities 

cannot be calculated. This lack of standard errors leaves a worrying gap in the 

graphical modelling framework and presents a major limitation when compared to 

other statistical techniques. 

Expressions for the standard errors for the parameters of pure continuous models 

are available in the paper by Roverato and Whittaker [108] and can be expressed 

in terms of the Isserlis matrix of the variance [64]. However, the results are specific 

to the covariance selection models and are not directly extensible to the mixed 
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data situation. Furthermore if the chain graph model under consideration were 
the saturated chain graph model, then the regression equations we obtain would 

correspond directly to the standard least-squares linear regression model and so the 

results from this methodology would be directly applicable. When the model is not 

saturated, the problem becomes far less tractable - even more so if we leave the 

framework of decomposable models. 

An alternative approach to the model selection process was taken by Pigeot et 

al [98] in their study of the careers of sociologists. Instead of applying the model 

selection procedures that were discussed in Chapter 5 and were applied to the or- 

thopoedic data, Pigeot et al constructed their graphical model explicitly in terms of 

the regression equations of variables in later blocks given those other variables in the 

same block and all variables in prior blocks. Each response variable was considered 

in terms of its corresponding univariate regression and edges were present in the 

model if their corresponding terms were included in the regression equation through 

standard forward selection based on an increase in the likelihood of the regression 

equation. This strategy, whilst directly interpretable in the context of regression, 

suffers from the fact that it does not strictly equate to a graphical model with the 

associated Markovian properties. Hence interpretation of the presence or absence of 

arcs are complicated and typically only valid for special cases. 

This absence of standard errors for parameter estimates is slightly problematic 

as it potentially leaves a gap in the final analysis of the regressions obtained via the 

chain graph models. However, the methods of bootstrapping [41,43] can provide 

a mechanism for obtaining estimates of these quantities. It should be noted that 

bootstrapping is a computationally intensive approach and could be infeasible in a 

practical context. Nevertheless, the ability to calculate such values and the associ- 

ated significance probabilities has made the modelling and prediction analyses more 

thorough. Bootstrapping does provide a remedy, though imperfect, for some of the 

limitations of this methodology, and its application here also appears to be novel in 

the context of graphical modelling. This area is a ripe area for future research and 

would complete the analysis of the graphical modelling methodology. 

The problem of the exclusion of significant edges from the model due to the 



8.5. Limitations and Discussion 267 

constraints of decomposability are still present in the chain graph method, though 
to a lesser degree. As explained previously, it is desirable to remain within the 
framework of decomposable models as to venture outside those boundaries would 
result in models that were harder to interpret and fit. As before, backward selection 
would definitively address this issue however the large number of variables and the 

mixture of data types renders this a currently impossible avenue of investigation. 
The construction of the models was performed by forward edge selection from 

the independence model. However, it has been discussed above that it may be 

reasonable to introduce some structure into the model before beginning the selection 

process in order to force certain edges into the model. The main case for this 

would be the introduction of edges between measurements on the same quantity 
that are separated by time in order to use the earlier observation as a baseline value 
for the latter. There is a compelling statistical argument for doing this with the 

types of repeated measures data investigated in this thesis, however application of 

the technique showed a negligible change in model performance. Therefore for the 

purposes of the models in this thesis this baseline method was not used, though it 

should not be discounted for the analysis of future data sets. 

In terms of the adequacy of the fit of the graphical models to the data a number 

of points can be made. First, we can see from the R2 values for the regression 

equations we have considered here that we captured between 20% and 40% of the 

variation of the response variables by the fitted model. When compared with a larger 

model including more of the pre-operative covariates, the performance could only 

be slightly improved suggesting that the data are intrinsically difficult to predict 

on the basis of the pre-operative data and that the original models performed quite 

well relative to these parent models. This low prognostic capacity in the models 

is not unreasonable, as the patient's pre-operative state was commonly seen to be 

somewhat different from their post-operative condition due to the normalising effect 

of the treatment. It may be the case that we would be better able to predict the 

patient's future state on the basis of their immediate post-operative condition since 

the post-operative data seem more closely associated. However, whilst we would 

obtain benefits in terms of the prognostic power of the model it would not be helpful 
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in deciding what treatment to suggest for a patient. 
The effects of outliers on the selection of models can be considerable as mentioned 

earlier in this chapter. The work by Kuhnt et al [77] on the effects of contamination 

of the data by outliers on the model selection process showed that outliers can 

seriously affect the final choice of model. Therefore outlying observations in the data 

will have a notable effect on the final graphical model, so data should be screened 
for outliers before constructing these models. Additionally, this has implications for 

variables which are heavily skewed, such as Extension Lag, since they will display a 
large number of outliers and could have pronounced effects on the model. 

Additionally, the effect of the violation of the normality assumptions of the data 

is evident in the distribution of the residuals from the regressions. This does raise 

some concerns since, ideally, we would expect Normal residuals and this is not 

the case for some response variables. The effect of this on the performance is not 

directly apparent though it may perhaps account for some of the lack of fit to the 

data. However, the goal of this project is to construct, combine and apply methods 

that will enable the analysis and interpretation of general orthopaedic data sets. 

By applying an overarching framework in terms of the structural assumptions as in 

Chapter 2, or distributional assumptions such as the assumption of Normality we 

then enable ourselves to analyse general or arbitrary orthopaedic data. It is almost 

certainly possible that we could construct better models by considering each data 

set individually and applying any of the many varied statistical techniques available 

today. However, the specific results and methods applied to one data set would 

not necessarily translate to other data as yet unseen. Therefore, in order to remain 

within a domain of generality, we must make such assumptions as these and accept 

the fact that performance will likely be slightly less than if we were to apply specific 

individual solutions to every data set encountered. 



Chapter 9 

Discussion, Problems and 

Limitations 

This chapter begins in Section 9.1 with a discussion and evaluation of the illethods 

presented in the previous chapters of this thesis. The applicability of the rout hods 

and techniques to the problem of clinical decision support is also discussed. In 

Section 9.2, the main unresolved problems encountered throughout this thesis an, 

reviewed and discussed with some possible solutions being proposed. Finally the 

chapter ends in Section 9.3 with some suggestions for future development of the 

ideas and techniques presented in this thesis. 

9.1 Discussion and Evaluation 

The focus of this research has been on data resulting from total joint replacement 

surgery, but a further goal is that the results be sufficiently generic to be portable too 

other areas of orthopaedics, or medicine. Working only within a general framework 

has substantially increased the complexity of the project as it required the devel- 

opment or application of methods and techniques not just to the two example data 

sets, but also to any arbitrary unseen data set of a similar nature. Further, as the 

research performs a technology translation between statistics and medicine an addi- 

tional goal has been to ensure that the results and output of the statistical analysis 

are easily interpretable by non-experts. The problem has been further complicated 
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by the highly multivariate nature of the data which has significantly increased the 
size and complexity of the problem. 

The research itself can be broken down into four main strands: 

1. Data generalisation 

2. Visualisation and graphical methods 

3. Variable selection 

4. Modelling and prediction 

First, the purpose of the data generalisation process was to provide and abstract 

structural framework for the data in which they could be analysed. To this end 
the method and the abstraction itself have been most successful as they provide a 

general structural context within which the two example data sets could be investi- 

gated using the various statistical methods presented. This structural skeleton for 

the data is necessary in order to be able to propose and answer questions about 

prospective data sets. If there were no such assumed overarching structure then the 

data could be formless aggregations of disparate variables that would be impossible 

to reason about in generality. The framework identified the group of replicated pa- 

tient status variables as a set of key observations, and this was further corroborated 

by orthopaedic consultants - hence the focus of the subsequent analysis was to inves- 

tigate the relationships within this group of variables and to determine the effects 

of the passage of time, the treatment and other factors. Suggesting such questions 

without the context of the meta-structure for the data would have been difficult, 

and subsequently proposing methods of analysis would have been impossible. Thus 

this stage of generalising the structure of the data set has proven to be an invaluable 

first step. 

The second strand of research was focussed on the exploration of the data sets 

via graphical methods. The goal and purpose of these visualisations was to provide 

the clinician with a simple intuitive overview of the data, especially the differences 

between two or more subgroups of patients, e. g. those who received different treat- 

ments. They also summarised the evolution of the patient status variable over time 
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and provided a summary of the associations between the variables. In attempting 
to achieve these goals, the methods presented in Chapter 4 have been reasonabl%- 
successful. The t-test plots served as a simple summary for the differences between 
two groups of variables, however they were limited by the fact that they can only 
be used to compare two subgroups of the data at a time and their application to 
ordinal data may be questionable. 

The correlation plots (corrgrams) of Friendly [50] are an efficient way to depict 
the association structure between groups of variables, especially the patient status 
variables. They allow for an immediate assessment of possible correlations struc- 
ture to the variables, as with the knees data, and easy identification of variables 

which are tightly correlated to others and those which appear unassociated. The 

interpretations of these behaviours among the variables would be of some interest to 

clinicians. These associations between groups of variables are of particular interest 

as they play a governing role in the variable selection process with the variable with 
the highest average squared correlation being identified as the most important. The 

correlations are also important in terms of the graphical models selected in the later 

stages of the analysis. 

The profile plots display the evolution in the standardised mean of the patient 

status variables over time. They are a simple graphic that is both informative 

and intuitive and presents the viewer with an immediate overview of the data set. 

Orthopaedic consultants have expressed notable interest in these methods. The 

ability to divide the profile plots into groups and present all variables simultaneously 

extends its usefulness significantly. The first limitation of these plots is that the plots 

can become easily swamped when displaying profiles from multiple subgroups. This 

problem could perhaps be addressed via interactive methods on a computer allowing 

the user to view and compare only certain profiles of interest. The second limitation 

of these plots is that points in the profile with small sample sizes and large associated 

uncertainty can appear as extreme values on the plot with substantial deviations 

from the other profiles on the graph. Attempts to display sample sizes by the colour 

intensity on the graph provided a partial solution, alternatively line thickness could 

be used to illustrate the same concept. A preferable method for displaying the 
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level of associated uncertainty would be the addition of error bars to each point, 
however this could be immensely confusing when we are displaying manY profiles 
simultaneously. 

In terms of the applicability to the clinical decision support problem, these visual 
methods are very useful tools. The profile plot and the t-test plots require only a 
small amount of statistical knowledge to read and interpret and both provide com- 

pact and intuitive summaries of the data and have been well received by clinicians. 
The correlation plots require more statistical knowledge to interpret and so may be 

of less interest in a clinical setting, but they remain an informative visualisation 

and are especially useful since notions of correlation and association are intrinsically 

linked to the variable selection and modelling methods. 

The third strand of research addressed the variable selection problem where the 

goal was to identify a subgroup of the most important variables in the data set. 
The variables were chosen in such a way as to attempt to prevent multiple variables 

conveying the same information from being selected in the final set, thus the chosen 

variables all conveyed novel information in terms of the overall variability. The 

motivation for pursuing this avenue of research was to reduce the dimensionality of 

the data and thus, ultimately, reduce the complexity of the modelling problem. 

The variable reduction methodology has been very successful at its goal and the 

final procedure is an efficient method with excellent performance for a stepwise pro- 

cedure. The h statistics prove to be useful indicators for variable importance and 

the combination using partial variance to eliminate the effects of selected variables 

yields an effective technique. The extension of the process to include the repeated 

measures data sets has proven to be extremely valuable in the context of the mod- 

elling problem for the orthopaedic data as it allowed the extraction of a subset that 

was, on average, the best at all time points in the data. This allowed for the simul- 

taneous reduction of the multiple replications of the patient status variables thereby 

rendering the modelling problem significantly more tractable. The extension of the 

process to include variable utilities as weightings to guide the selection process could 

prove a powerful tool allowing the clinician to incorporate their expertise into the 

selection process to yield results that are potentially more practically useful. 
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The variable selection approach has some direct and potentially very useful ap- 

plications to the clinical setting. For example, we have seen strong redundancies 

among the patient status variables in the hips data set and could use only a third 

of the patient status variables and yet retain 65% of the original variability. This 

could have consequences for the Oxford Hip Score [27] which is formed by summing 
these quantities and now can been seen to compound these redundant relationships. 
Furthermore there are notable implications for the future collection of data of such 

measurements which could result in smaller patient questionnaires and cheaper stud- 

ies. 

The final strand of research addresses the problem of constructing an appropriate 

model for the orthopaedic data and obtain predictions from these models. The chain 

graph modelling approach provides an ideal framework for handling the repeated 

measures aspect of the data with its block-recursive formulation. Using this block 

structure we can investigate the associations among the patient status measures 

and associations between these variables at different time points. The framework 

also allows for the inclusion of both discrete and continuous data allowing for the 

inclusion and the assessment of potential effects of other categorical factors. 

The methodologies applied to investigate these problems have been broadly suc- 

cessful, though that success has been slightly limited. The association of a graphical 

model with an independence graph gives a useful visual aid that is easily inter- 

pretable by clinicians. The associations and relationships between the variables can 

be directly read from the independence graph, which has been much appreciated by 

orthopaedic consultants. The regression equations can be easily extracted from the 

chain graph and so the associations and relationships represented in the graph can 

be quantified via regression coefficients. The parsimonious linear models obtained 

from the chain graphs appear to be reasonable, however it does appear that the 

example data sets are complicated by the noisy responses. Furthermore, the analy- 

sis of these fitted regressions is confounded by the unavailability of standard errors 

for the regression coefficients preventing an assessment of their significance. Boot- 

strapping the parameters of the regression provides us with appropriate estimates of 

these values, though whether it is practical or reasonable to rely on bootstrapping 
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as a preferred method in these circumstances is questionable. 
Another limitation of the modelling strategy is the assumption of Normality for 

the patient status variables in the model. The chain graph models require continuous 
variables to be multivariate Normal, however by assuming that the ordinal patient 
status variables were continuous we violate this assumption. This has implications 
for the fitting of the models to the data and their subsequent criticism and analysis. 
A further limitation is the restriction of working with graphical and decomposable 

models. This places restrictions on the model selection process which can prevent 
the inclusion of potentially significant edges into the model as it would result in a 

violation of these properties. 

9.2 Unresolved Problems and Limitations 

9.2.1 Distributional Assumptions 

As mentioned above, at several places in this thesis we have made assumptions on 

the distributions of the variables in the data. Typically this has taken the form 

of assuming that the many ordinal patient status variables can be approximated 

as continuous quantities. The motivation for this was that to retain ordinality of 

the many patient status variables would require working with contingency tables of 

prohibitively high dimension which would consequently be mostly sparse due to the 

sheer number of possible combinations (the `curse of dimensionality'). The retention 

of the ordinal nature of the data would require working with and modelling these 

contingency tables which would heavily complicate the problem and be computa- 

tionally intractable. Therefore, the ordinal variables were assumed to be continuous 

quantities as they could be considered as the discretisations of a latent continuous 

quantities. 

These assumptions have many connections to the methods presented here. For 

example, the standardised profile plots assume continuity of the variables in order to 

plot the (conditional) means of the status variables. The variable selection methods 

require a correlation matrix in order to identify the best subset. If the data were 

treated as ordinal this reduction may not be directly possible -a matrix of ordinal as- 
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sociations could be used instead, but the interpretation of the results in terms of the 

variability of the measurements would be lost. If we considered the ordinal variables 
to be ordinal discretisations of Normal distributions, then the polychoric correlation 
is an estimate of the correlation between these latent continuous quantities[33] and 
could perhaps be used as an alternative here. 

Finally, the modelling and prediction process is probably most affected by these 

assumptions of continuity. Since the distribution of an ordinal variable with only 
5 levels is markedly different from Normal, then the assumptions of Normality are 

not upheld. The direct effects of this are not immediately apparent, though the ef- 
fects of including heavily skewed continuous variables will have a detrimental effect 
due to the increased number of outlying observations affecting the model selection 

process [77]. These assumptions also affect the interpretation of the fit of the re- 

gression models themselves as we have constructed continuous regression models for 

approximated ordinal responses and covariates. This assessment of goodness of fit 

becomes problematic as it is clear that the standard methods from continuous linear 

regression are not appropriate, whereas similar methods for models of discrete data 

are simply not transferable or meaningless in the context of continuous regression. 

In such cases alternative analyses are required. 

As discussed in Chapters 3 and 5, it could be possible to improve the Normality of 

the continuous variables by transformation. This could then have a consequent effect 

of improving the regression models, however this strategy would not be applicable 

to the ordinal data, even when approximated as continuous. However, the main 

limitation, as previously discussed, is that we lose the ability to reason directly 

about the quantities of interest and instead must operate in terms of functions of 

these variables. This sacrifices the interpretability of the final models and was seen 

to reap little reward. 

Initially, we have applied a general structure to the data in terms of the data 

abstraction framework from Chapter 2, which gives the arbitrary unseen orthopaedic 

data sets form and structure that forms the basis for analysis. However in order to 

model these data in generality it is also necessary to make some distributional as- 

sumptions to tackle the problem. Without such assumptions we would further suffer 
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from the dimensionality problems associated with the ordinal variables. Doubtlessly-, 

considering each data set individually and creating specific tailored and, likely, en- 
tirely different solutions to each one would give us better models. However, in doing 

so we lose any notion of generality of the analysis as the methods would not be 

applicable or extensible beyond the scope of that particular data set. Hence, to 

continue working with an eye to the general case or a future unseen data set we 
must make assumptions about the nature and distribution of the data in order to 
be able to envisage methods to analyse the data. Consequently, the model perfor- 

mance may be lower than the specific tailored solutions and there will likely be cases 

where the validity of the underpinning assumptions are in question; however they 

are crucial when working in generality. However in the future, it could be possible 
to incorporate ordinal methods and analyses that could easily accommodate ordinal 

variables. 

9.2.2 Dimensionality 

The problem of the high dimensionality of the data was encountered extensively 

in Chapter 5 where it was seen that the graphical modelling methodology strug- 

gled with large numbers of variables. However, the problems attributable to high 

dimensionality are not confined to the modelling of the data. For example, when 

discussing the profile plots in Section 4.3 it was observed that the graphs become 

overcrowded when viewing profiles for multiple subgroups of the data. This prob- 

lem of dimensionality is due to the large number of potentially informative discrete 

factor variables in the data and their consequently large number of possible inter- 

actions. One possible method of combating this would be to use dynamic computer 

visualisations for such investigations, which would be more flexible than considering 

static graphics and would allow for a sensible exploration of the data. 

In terms of the problems of dimensionality associated with the modelling of the 

data, they were chiefly attributable to the fact that we had many patient status vari- 

ables which were replicated at several time points giving rise to large and complex 

models. Many of the patient status variables were initially ordinal, but these were 

approximated as continuous quantities. This simplifies the problem considerably 
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as the analysis of continuous variables is significantly less sensitive to high dimeni- 

sionality. Furthermore, the development and application of the variable selection 
methods to the patient status measurements at all time points provided a substan- 
tial reduction in the size of the problem which simplifies the model very effectively. 
The combination of these two methods has been successful at preventing dimension 

problems from affecting the modelling process. However, it is conceivable that were 
we to have a large number of time points in the data giving many replications of 
the patient status variables in the model then the original problem may recur. In 

such cases, we could proceed in one of two directions. First, if we were seeking to 

construct a joint model for the entire data set then the variable selection procedure 

would have to be more strict by returning a smaller variable subset, thereby re- 
ducing the number of variables at each time point. Secondly, if we were seeking to 

investigate only two time points such as the covariate/response structure for obtain- 

ing predictions then the models will be substantially smaller than the joint model 

anyway and so will not be as susceptible to problems of dimension. 

9.2.3 Model Selection 

One problem associated with the model selection process was that there were in- 

sufficient data to determine the parameters of the saturated graphical model. This 

was due to the high number of variables in the model and since for every possible 

combination of the discrete variables we must estimate (q + 1)(q + 2)/2 parameters, 

where q is the number of continuous variables, this can rapidly becomes problematic. 

Hence with large data sets we could have many more parameters to estimate than 

we have data available. This had the consequent effect of preventing model selection 

by backwards elimination forcing forward selection to be the method of determining 

the final model. If the saturated model was able to be determined, then it would be 

best to use a backward selection approach as we begin with a model that is consis- 

tent with the data and prune away any unimportant relationships in order to arrive 

at a final model. With forward selection, the initial model is that of independence, 

which will likely be inconsistent with the data and we seek to include edges into the 

model to improve the models representation of the data. 
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Another problem encountered during the selection of the graphical models was 
that certain significant edges were not included in the model since this would result in 
the model no longer being decomposable, or graphical or both. Whilst it is necessary 
to retain the graphical property of the model in order to interpret the model graph 
correctly, sacrificing decomposability to include such relationships is possible. The 
disadvantage of doing so is that the model could no longer be fitted exactly and an 
iterative method would be required such as via the MIPS [53] algorithm. Whilst 

not necessarily a barrier to using non-decomposable methods, with many variables 
in the model this could dramatically slow down the model selection process as for 

potential edge we would have to iteratively fit the prospective model in order to test 
it. This problem of important yet missing edges is averted when we use a backward 

selection strategy. However, this is not possible with these data as the models are too 

large to estimate the huge number of parameters of the saturated model, rendering 
it impossible to fit. 

An alternative solution to this problem is to examine all edges which give a model 

that is graphical and either decomposable or not. If that edge is decomposable then 

we could add that edge to the model as normal. If not, then we could attempt to find 

the minimal parent model that contains the edges in the current model and the non- 

decomposable edge. If the edge is not decomposable because the resulting model is 

no longer triangular, then we could attempt to triangulate the graph by introducing 

additional `fill-in' edges [73]. However, the problem of triangulating a given graph 

is an NP-complete problem and this is not a trivial process and would complicate 

the model selection process. These fill-in edges should be clearly marked as such as 

they will (typically) represent non-significant relationships that are present in the 

model for convenience of retaining decomposability. If the candidate edge were to 

introduce a forbidden path from a discrete node to another discrete node passing 

through continuous nodes, then we would be unable to obtain a decomposable model 

from this and so the edge would have to remain excluded from the selection process. 

A related problem associated with the model selection concerns the effects of hav- 

ing responses and covariates that included discrete variables. With this situation 

where discrete variables constitute some of the covariates and responses, it becomes 
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very easy to introduce a forbidden path into the model via connections with other 
continuous covariates or responses. 

A further alternative is, of course, to consider performing backward selection 
from the saturated model, as the saturated model contains all edges significant 
or otherwise. Backward selection from here would retain all the significant edges 
in the model and so we would not suffer from the problems detailed above which 
apply exclusively to forward selection. However, there is a converse problem in that 
in order to remain decomposable certain non-significant edges will ineligible for 

deletion. These edges will approximately correspond to the fill-in edges introduced 

in the triangulation process mentioned above. 

9.2.4 Regression Analysis 

Having obtained a reasonable graphical model for our orthopaedic data, we can 

investigate the relationships between covariates and responses by considering the 

corresponding conditional distributions. This gives us a linear regression-type for- 

mula for the response variables in terms of the covariates. However, as has been 

established in Chapter 8, the analysis for these regressions is limited by the absence 

of standard errors for the fitted regression coefficients. This absence is a consequence 

of a similar lack of expressions for the direct calculation of the standard errors for the 

fitted moments parameters (p, u and E) of the joint CG distribution. Consequently, 

without statements about the errors associated with our regression parameters it 

is very difficult to assess the importance of the individual coefficients in the lin- 

ear regression. Whilst we could conclude that since the graphical model has added 

an arc between each of the covariates and the response variable in this regression 

then there is an implicit significance attached to the coefficients in the conditional 

distribution. However, without standard errors we are unable to calculate the cor- 

responding t-values and significance probabilities and obtain a numerical statement 

of the coefficient's importance. This leaves a substantial gap in the theoretical basis 

of the graphical modelling framework and is prominently absent when compared to 

many other standard statistical techniques. 

The absence of theoretical results for the expressions of the standard errors posed 
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a problem to the analysis, however application of bootstrapping [41,431 gave an 
alternative route for obtaining estimates of these values. As the bootstrap process is 

computationally intensive, bootstrapping all the parameters of the joint distribution 

would require a phenomenal amount of computation that would be unreasonable 
and impractical. Bootstrapping the smaller conditional distributions for standard 
errors for the regression parameters however was feasible and provided an indication 

of the importance of the regression coefficients that partially resolved one of the 

prime limitations of the methodology. Whether it is reasonable to routinely use 
bootstrapping to obtain such estimates is debatable as the computation may prove 
to be impractical. This area appears to be a novel application of the bootstrap 

paradigm and is a ripe area for future research which would complete the analysis 

of the graphical modelling methodology. 

Finally, many of the variables were actually ordinal in nature rather than the 

continuous form that would typically be required for these analyses. Consequently, 

this raises some potential questions over the validity of the interpretation of the 

resulting regression, and also the analysis of the residuals, for example. Whilst the 

pragmatic application of continuous methods to the ordinal data has substantially 

simplified the complexity of the problem, it does pose these additional problems. 

Furthermore, results from the analysis of discrete or ordinal regressions are of little 

use to us here as it is impossible to use such techniques to interpret a continuous 

regression. The ideal solution would be to leave the variables on their original scales 

and treat them as ordinal or categorical as appropriate, however that is simply not 

possible given the constraints of the current statistical and computer technologies. 

9.2.5 Low Predictability 

An intrinsic feature of both data sets analysed in this thesis has been that the effect of 

the intervention has altered the state of the patient in such a way that the immediate 

post-operative state is relatively unrelated to their prior condition. When combined 

with the fact that the variables that are often considered as responses are noisy, this 

means that generating accurate predictions of the patient's post-operative state is 

difficult. Whilst not a problem with the methodology, if this feature were a common 
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and recurrent pattern among orthopaedic data sets then we may be restricted to 
models with low prognostic power. 

This issue of low predictability is attributable to the data and not the model 
selection. The reason for this conclusion is that in Section 8.4 larger parent models 
including all possible covariates were also fitted for comparison with the smaller 
models chosen via the model selection process. Comparison of the associated R2 

values for these pairs of models showed that there was typically only a small dif- 

ference in the proportion of variation captured by the models. This suggested that 

the selected models were reasonable and parsimonious and the inclusion of further 

terms into those models would have only a negligible effect on model performance. 
Transformation of the variables to improve Normality could improve the predic- 

tive power of these models. However, it would be unreasonable to apply transfor- 

mations such as Box-Cox to the ordinal variables, even though they were approx- 

imated as continuous. As discussed above, this approach was dismissed as little 

improvements to the Normality of the data were attained via transformation and 

the reduction of the interpretability of the model was undesirable. 

9.3 Possible Future Development 

Despite these outstanding problems with and limitations of the work presented 

herein, it is conceivable that these methods could form the basis for a software 

tool providing clinical decision support. The tool would be required to fulfil two 

roles, the first of which being a data entry and storage system. By initially config- 

uring the system, variables could be directly associated to components of the data 

abstraction. This association could simply take the form of specifying a temporal 

partial ordering to the data, or perhaps directly associating each variable to an el- 

ement in the data generalisation. This would then allow the clinician to input the 

data recorded on patients into the system, which could then be stored in a manner 

that would facilitate future analysis. 

With the key groups of variables being identified, the second role of the applica- 

tion becomes simpler. This role is the support of the clinical decision-making via the 



9.3. Possible Future Development 282 

methods and techniques discussed previously. The data could be easily explored by 
intelligent application of the visualisations, especially the profile plots which would 
give the clinician an overview of the data set as a whole. The profile for a single 
patient could then be overlayed onto the graph to inform the clinician where that 

patient lies with respect to the other patients in the data. 

With the patient status variables identified, the variable selection process could 
be applied almost automatically requiring little user intervention. However, the clin- 
ician could specify utilities for the variables which would inform the selection process. 
The system would then be ready to model the data via the graphical modelling or 

chain graph methodologies. Obviously, the type of model generated depends on the 

specific questions being asked of the data. If the clinician were seeking to model the 

entire data set then a full chain graph model of all variables would be appropriate. 

If, however, they were seeking to predict one group of variables from another then 

they could identify the covariates and responses and then a simple 2-block predic- 

tive chain graph could be fitted. The problem of the standard errors for coefficients 

would still remain however, and bootstrapping the estimates is a time-consuming 

approach which could be infeasible within this setting. Nonetheless, these methods 

can provide the basis for such a data analysis package that would be of specific use 

in a clinical setting. 

The methods proposed in this thesis do not explicitly consider the monitoring 

of patients. Instead the focus is directed towards understanding the relationships 

between the various patient status measures and exploiting any prognostic capa- 

bilities to obtain estimates of future patient state. Nonetheless, the monitoring of 

patient state is an area which could be addressed by some of the methods presented. 

For example if a patient were to present in a condition that strongly differed from 

that expected under the model then this may be a cause for further investigation. 

Similarly, methods such as the profile plots could perhaps be modified to present a 

method of process control. 

A further avenue of research for the project would be to consider taking the 

graphical models returned from the fitting process and then using them as a basis 

for the construction of a Bayesian Belief Network (BBN) [21,80]. Whilst this is a 
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complex problem, the graphical models we obtain from our data set could be used 

as a prior distribution for the BBN. This would allow us an entirely different avenue 

of prediction via the network that would not suffer from the problems of the chain 

graph method. This is a ripe area for future research. 



Chapter 10 

Conclusions 

This chapter contains a summary and review of the conclusions drawii from the 

work presented in this thesis. Section 10.1 discusses some of the Specific niedic al 
conclusions and implications made from the analysis of the two available data sets, 

whereas Section 10.2 presents ai brief review of the general conclusions that were 

covered in detail in Chapter 9. 

10.1 Medical Implications 

Whilst the making of domain-specific conclusions of particular relevarnc"e to or- 

thopoedics is best left in the hands of the experts in the field, «v carp make some 

broad statements on the results we have obtained thus far and the methods that 

have been presented here. 

10.1.1 Composite Scores 

First, let us consider the issue of the composite scores. Composite scores are widely 

used in orthopaedics to condense multiple variables which encode aspects of a pa- 

tient's condition into a single quantity. This quantity is then used to assess treat iiient 

performance, compare patients and monitor patient condition. The fundamental 

limitation of this methodology is that it is a gross over-simplification with the large 

amounts of information contained in the individual status variables being lO t when 

they are amalgamated into this single number. The individual variables convey de- 
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tails such as which areas of the patient's status may be changing, i. e. pain levels or 
walking ability - these individual features are lost when the variables are combined. 

Seeking to retain this multivariate patient representation, it «was determined 
that due to the high number of constituent status variables it would be necessary to 

perform some form of dimension reduction. To this end the techniques of Chapter 6 

were developed. Investigation of the original correlation matrices showed (in the case 
of the knees data) that there was strong evidence of structural groupings within the 
data, suggesting that a degree of redundancy was present in the data. For example, 

strong association of the walking ability measures suggested that including all these 

variables into the composite measure was merely replicating the same information 

multiple times and would likely be counter-productive. With the hips data the 

variables exhibited a strong and almost homogeneous correlation which suggested 

that a dimension reduction would be particularly effective in this case as all the 

variables appeared to be closely related. Extensions to the selection process enabled 

the selection to be performed over all time points in the data. 

Performing the variable selection procedure on the variables of the knees data 

(using the Nottingham scoring system [118) enabled a reduction of 63% of the 

number of original variables (from 19 to 7) at a loss of only 31-43% of the information 

in the data (assuming that all the information was actually genuine and noise free. ) 

Variable selection with the hips data was similarly effective, giving a reduction of 

66% of the variables (from 12 to 4) with an associated loss of 36-45%. Whilst these 

losses were deemed to be acceptable here, it is trivial to repeat the analysis and 

extract larger subsets which cover a greater percentage of the variation of the data. 

Despite being substantially different data sets, the variable selection strategy 

managed to reduce the knees and hips data sets to approximately one third of 

their original size whilst retaining approximately two-thirds of the information of 

the data. The ability to perform such a dramatic reduction has significant medical 

implications. First, it raises questions about the validity of operating with these 

composite scores; the ability to perform such reductions is indicative of redundancies 

of the component variables. Introducing groups of similar variables into such a score 

will mean that one particular aspect of the patient's status will be over-represented 
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in the composite score, and may even lead to the score being dominated by a single 
block of variables. This behaviour is undesirable. 

Secondly, it identifies those variables which can be labelled the 'most informative 

about a patient's status. These principal variables are most indicative of the pa- 
tient's status and all other variables are typically associated with this pivotal group. 
Whilst these composite scores are limiting and disadvantageous it could be quite 
feasible to construct a better score using the principal variables extracted via these 

methods. An appropriate linear combination for expressing the patient's status as 

a single summary could be obtained by examining the first principal component 

over these variables. Given a suitable data set this would represent the variance- 

maximising linear combination of the principal variables and would give a measure 

that was most sensitive to the patient's condition. 

Thirdly, by effectively reducing the number of informative variables in the data 

sets there will be consequent implications for other data collection endeavours. Since 

the principal variables represent the most informative set of variables in the data, 

in future studies information could be gathered on these variables alone. This could 

mean a significant reduction in the size of the questionnaires given to patients, mak- 

ing the process less burdensome. Additionally, there would be associated benefits 

in terms of cost and time. Furthermore, if we are using an `Ease of Measurement' 

utility as in Section 7.2.4.3 then we could obtain the most informative subset of 

variables that cause minimal discomfort to the patient. Indeed, a utility could be 

constructed to choose the measurements that were such that the need for a phys- 

ical examination was eliminated and the information could be given remotely via 

telephone or the Internet. Whilst not advocating a replacement for a face-to-face 

consultation, this could prove an efficient data collection mechanism that causes the 

least inconvenience to the patient. 

10.1.2 Plots and Data Exploration 

An exceptionally useful tool for the initial exploration of the orthopaedic data is the 

profile plot. This plot has been well received by clinicians as it presents an immediate 

overview of the changes in a patient's condition over time. Dispensing with the 
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single composite measure, the profile plot allows for the visual representation of all 
the constituent variables of the composite score to be individually examined. 

Examination of the profile plots showed a recurrent pattern across many of the 
variables, and indeed between the two data sets. Initially patients present with a 
poor condition as measured by the available variables. The subsequent treatment 
however appears to provoke a dramatic improvement in the mean of the patient 
states to a level far above their initial position. The hips data looked at a finer 

time-scale and it was seen that the even with the initial post-operative improvement 

being evident at 3-months, the mean state continued to improve up to the 1-year 

point albeit at a slower rate. This suggests that the treatment may have a persistent 

and continual effect over this period. The time points of the knees data were more 

separated with the first post-operative point being at 1-year. However, these data 

also illustrated the dramatic improvement as seen with the hips data, however due to 

the spacing of the observations the continued improvement was not visible. Instead 

we saw a slow decline over the subsequent 9 years, though with the final recorded 

state being, on average, still better than the patient's initial presentation. 

10.1.3 Modelling and its Results 

The graphical modelling methodology has been seen to be most effective in the 

orthopaedic setting; the duality between the model itself and the associated inde- 

pendence graph is especially useful. The ability to display a graphical representation 

of the model substantially improves the interpretability of the relationships it rep- 

resents. Displaying variables as nodes on a graph which are joined if there is a 

significant relationship between them is a highly useful and informative visual aid 

that depicts the model structure. These associations and relationships can be read 

directly from the model graph -a feature which has been much appreciated by 

orthopaedic consultants. 

In the course of the modelling of the temporal sequence of the patient status 

variables, one feature was observed that was common to both data sets. That 

feature was that there was a clear separation of the patients' pre-operative and 

post-operative states. In other words, the patient state after the operation was 
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(relatively) independent of the initial state. This has two implications; the first is 
that prediction of future patient condition on the basis of their initial state becomes 
difficult and suffers from low accuracy. The second is that if we infer that the 
treatment is responsible for this change in patient states, then this treatment is 

affecting patients in a manner that does not depend on the severity of their initial 

condition. Indeed, the treatment appears to act independently - possibly having a 
normalising effect across all patients. 

In both data sets, the interventions investigated concerned the use of cement 
during the joint replacement procedure. In both cases of knee and hip replacement 
it was seen that there were no significant differences between these two types of 
intervention. This factor had no effect at any of the post-operative time points 
for both data sets suggesting that the use of cement during the operation has no 
discernible benefits or shortcomings in terms of the patient status. 

The hips data set recorded the length of time that the patient was on a waiting 

list. Including this variable into the model displayed an association with variables 

at each of the time points. This suggests a possible relationship between the time 

spent on the waiting list and the patient's condition. Investigation of the coefficients 

of the modelled relationships showed that the waiting list was having a significant, 

yet small, negative effect on the patient's condition. 

Again looking at the hips data set, a variable was recorded which indicated 

whether the patient was being treated via the NHS or privately. Including this 

information into the model had some interesting results. First, it was observed that 

this factor was associated with several of the pre-operative variables. These variables 

typically had a poorer state for patients in the NHS group when compared with the 

private group. This could be a potential consequence of the waiting times associated 

with the NHS treatment process resulting in NHS patients presenting in a state that 

was slightly more advanced than the private group. These differences were present 

only pre-operatively there was no significant effect on the post-operative data. 
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The attention of this thesis has been focused on the analysis of clinical outcome data 
from total joint replacement. However, a key purpose of this work «was to tackle 
such data sets in generality. The analysis of an unseen, unstructured and arbitrary 
data set is a prohibitively complex, if not impossible, task. This necessitated the 

construction of a structural framework at an early stage, which was imposed on the 
types of data sets to be considered. This framework gave structure to the possible 
analyses one may seek to perform on these data and enabled subsequent development 

of methodologies. 

The remainder of the work in this thesis fell into three distinct categories. The 

first of which addressed exploratory visualisations of the data such as the t-test 

plots and standardised profile plots. These methods were seen to be both effective 

and intuitive in a clinical setting. The profile plots were especially well received as 

they give an immediate overview of the mean patient's evolution over time on many 

different measurements. The plots also enabled an initial comparison of multiple 

subgroups of patients, which can illustrate future possible research questions. 

The second strand of the thesis dealt with the issue of variable selection. This 

area played a pivotal role due to the high dimensionality of the data and the repli- 

cation of measurements over time. The work in this area forms the main novel 

theoretical contribution of this thesis and has been demonstrated to be highly effi- 

cient and effective in comparison to other methods in the literature. The ability to 

easily extend the selection process also emphasises its flexibility with extensions for 

longitudinal data and utilities attached to variables playing a prominent role in the 

subsequent analyses. 

The final component was that of the modelling of the data. The techniques of 

graphical modelling and chain graph models were used to model the data due to 

their intuitive interpretation in terms of statements of conditional independence and 

the repeated measures structure of the data could be readily accommodated in a 

chain graph. However the use of this methodology was not without its limitations 

such as restrictive distributional assumptions and the unavailability of closed-form 

expressions for standard errors. 
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Overall, the methods presented herein have met with success, enabling the al- 

most routine analysis of a generic orthopaedic data set which conforms to the ab- 

stract structure of Chapter 2. The combination of the various strands of research 

provides tools for exploratory analysis through dimension reduction to modelling 

and prediction. As a future development of this work, all of these methods could 

be combined with a simple data management system to form the basis of a software 

package providing statistical support for clinical decision-making in orthopaedics. 



Appendix A 

Implementation 

In this appendix, an overview of the computer implementations of various ýsEýc c t: 
of this thesis is presented. This is contained in two sections: the former addresses 
the computer package MIM [38] that was used for some of the graphical modelling 
and a re-implementation of that package using C'# [11]; the latter disc lasses tioºne 
of the R [101] functions and their packages that have been created to perform some 
the methods discussed in this thesis. 

A. 1 MIM 

A. 1.1 Original 

The MIM package is a command-driven Windows application designed for perform- 
ing graphical modelling. MIM was written by David Edwards and is thoroughly 

documented in [38]. The software is freely available under the GNU Public Lic enc e 
from www. hypergraph. dk. The package MIM has been used extensively to perform 

the analyses presented in Chapters 5 and 8. 

MIM is operated via issuing commands to a terminal window such as that shown 

in Figure A. 1. MIM allows for the specification of variables and models of mixed 

data types and performs edge deletion tests, model fitting, model selection proce- 

dures, chain graph modelling and a variety of other ancillary functions. It include, 

a mechanism for graphically depicting the independence graph associated with a 
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File Data Options Help 
4IM 3.2 Copyright (C) David Edwards, 2094. Release uIM 3.2 is free software and comes with ABSOLUTELY NO Pou are welcome to redistribute and/or modify it under : onditions: type 'license' for details. 
IIM-4 

0 

Figure A. 1: The MINI interface. 

particular model and allows for an interactive exploration of that 1110 tý1. 

A. 1.2 MIME 
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The source code for MINI version 3.2 is freely available under the GNU Ptiblic 

License, therefore some time was spent investigating the possibilities of extending 

or customising the MIM graphical modelling framework. The original application 

was written using Borland Delphi, an object-oriented programming language similar 

in style to C++. To consider modifying the MIM application, the relatively new 

programming language C# was chosen instead of the original Delphi code. The 

reasons for this are that C# is widely portable in a similar way to Java, is also 

object-oriented and is a new language with growing support and popularity. 

As a part of the research for this thesis, the core of the original MINI application 

was re-implemented in C# in order to provide scope for customisations of the ap- 

plication and to exploit some of the properties of this new programming language. 

This re-implementation will be termed MIM# in order to distinguish it from the 

original application. Whilst only a fraction of the functionality of the original appli- 
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cation was implemented in this alternative version, it was sufficient to perforui basic 

modelling and model selection with both undirected and chain graphical models. 

A. 1.3 Enhancements 

This new implementation of MINI uses the same command syntax as the original 

MINI and features a graphical interface that is closely based on the original, though 

with some minor cosmetic and functional alterations. This should allow users famil- 

iar with the original system to use MINI# with ease. 

The user interface for the new package tiMIM# is shown in Figure A. 2 and differs 

slightly in presentation from that of the original in Figure Al. 
. 

The MIM# ap- 

plication uses a Multiple Document Interface (MIDI) which allows the various child 

windows of the application to be contained inside a single parent window. For exam- 

ple the command terminal and one or more graph windows are all contained within 

the MINI# window. This prevents the multiple component windows from appearing 

independently on the desktop. 
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Several modifications addressed some of the difficulties with the original terminal- 
based interface. Specifically, support was included for copy and paste of commands 
and output in a manner similar to that of the terminal window of R [101]. This 
dramatically increases the usability of the terminal interface and allows for easier 
submission of terminal commands and extraction of output. 

In terms of the graphical capabilities of the application, some modifications were 
made to the independence graph. Firstly, the ability to export all graphical output 
to a variety of different formats was included by radically re-designing the graph 
drawing and rendering subsystems. This has enabled a totally flexible visual output 

mechanism, which can support any additional output format by requiring only the 

creation of a single extra module to support basic drawing capabilities. Consequently 

graphs and plots can now be directly produced on-screen or exported to Postscript 

(PS, EPS), Bitmap (BMP) and Windows MetaFile (WMF). 

Only small modifications have been made to the core functionality of the appli- 

cation since the efforts were to replicate the original application's main capabilities. 

The most significant adjustment in this area would be the inclusion of support for 

models containing more variables. In the original MIM, variables are specified via 

a single letter in the ranges A to Z and a to z thereby restricting models to 52 

variables with simple names. In MIM#, support was included for multi-character 

variable names thus hugely expanding the scope for variable names and the number 

of variables. This has implications for the specification of model formulae for models 

with multiple character variable names. In these cases using the clique specification 

of MIM, i. e. abc to denote the clique over the three variables a, b, c. However, with 

multi-character variable names it could be possible to have a single variable named 

abc which would be confusing. Therefore, where longer variable names are present 

they are separated by `: ' giving a clique specification of the form varl : var2 : var3. 

A small number of novel commands were also implemented in MIM# to support 

functions that were previously not provided. The first command is predictions 

which works in a similar way to the original residuals command, but instead 

calculates the predicted values of a variable under the current graphical model rather 

than the model residuals. 
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> statdisplay fg, ab 

Empirical parameters: 

Parameters of conditional distribution of fg given ab. 
Conditional means and covariances. 

b 

1f 6.347 -0.051 2.104 

g 1.593 0.007 0.083 0.445 

a f g 
2f 2.062 1.915 1.619 

g 2.020 -0.001 -0.046 0.247 

a f 9 

Figure A. 3: Example of output from the statdisplay command. 

A second command is statdisplay, which also mirrors an existing command - 
in this case display. The purpose of display is to display sets of fitted 'statistics 

(typically counts, means and correlations) for a group of variables, often conditional 

on a second group. The purpose of statdisplay is to produce similar tables of 

statistics, but in this case the values are the (conditional) empirical counts, means 

and correlations rather than fitted values. This command allows for the direct 

calculation of these values for the data, and also enables the comparison of the 

empirical values (as input) to the fitted values (as output). Sample output from 

statdisplay is shown in Figure A. 3. 

The command anovaf orm also addresses the area of displaying parameter est i- 

mates. As mentioned above, this is typically achieved via the display command 

which produces tables of counts, means and correlations for each possible group 

of the discrete factors. When there are many factors with several levels this can 

produce reams of tables for scrutiny. The command anovaform represents these 

values as interaction terms as would be associated with an ANOVA analysis. This 

anovaform will calculate the value of the fitted main effects associated with each 
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> anovaform m 

Calculating ANOVA decomposition... 

Overall mean effects and slope: 

m 2.183 -0.024 0.266 0.006 0.028 0.010 0.042 536 
Means afijk p Count 

Main effects for discrete variables: 

CO 

m 0.252 0.000 0.000 0.000 0.000 0.000 0.000 238 
Means afijkp Count 

cl 

m -0.202 0.000 0.000 0.000 0.000 0.000 0.000 298 

Means afijkp Count 

Figure A. 4: Example of output from the anovaf orm command. 
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discrete variable, in addition to the relevant interaction effects. This can be used ; 1s 

a simple method for scrutinising the differences between the levels of a different fac- 

tor and provides a more efficient representation than that of the output of display. 

Example output is given in Figure A. 4 

The final command is particularly applicable to the predictive chain graphs where 

we have a 2-block structure of covariates and responses. In such cases, we may be 

interested in the marginal relationships that exist between a particular response and 

variable the covariates in the model. To do this, the explore command was created 

to present a graphical interface for such an investigation. Calling this command 

opens an explore window which allows for such an interactive examination (see 

Figure A. 5). The covariates are presented in the left column of variables and the 

responses in the right. Arrows between the two columns indicate the relationships 

in the model as usual. Firstly the user selects a response of interest by clicking it 

with the mouse. This populates the covariate list with appropriate variables. The 

user can then select a variable and a plot of the modelled marginal relationship 



A. l. MIM 

e-xiag. p 

Marginal Effects of m (gu_ 1) 
Cov late: 

V 

Marginal effects of gu. 1 given gu. p 

N- 

w 

i 

1 

Figure A. 5: The explore interface for continuous covariate and response 
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is given in the window beneath. In the continuous-continuous case a plot of tlw 

fitted regression equation with an envelope of +2Q is drawn ((Is in Figure A. 5). 

For discrete-continuous situations, error bar plots are drawn; each level of the dis- 

crete covariate is represented by the corresponding plot of µf 20, (see Figure i\. 6). 

Discrete-discrete relationships are indicated by the display of the corresponding con- 

tingency table, with values in the table coloured in a manner similar to Friendly's 

mosaic plots [48] to indicate deviations from independence (see Figure A. G). Finally, 

continuous-discrete plots show the fitted logistic regression function. 

A. 1.4 Potential Future Development 

First, as mentioned above, only a skeleton group of MINI functions were implemented 

in MINI#. Whilst sufficient for basic modelling needs, it in no way provides the 

level of functionality supported by the original MIM package. Therefore a logical 

development of the NIIM# application is to provide these as yet tin-implemented 

capabilities. 

An obvious development of this application would be to combine aa11 Of the fll! I(- 

12345 

gu p 
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exiag. p 

Marginal Effects of A (gu. 10) 
Coväiöte: 

Marginal effects of gu. 10 given diag 

LO 

o_ 

rn 

rv 

O 

(a) Discrete coývariaft, c0tttiiinoýiis response 

ace. cem 

12 

diagl diag2 
diag 

Marginal Effects of C (readmit. 12) 

Covariate: ®v 

12 

readmit. 12 

12 

12 

12 

iZ 

12 

1 0.1853 0.8147 0.9203 

7 

d 

2 02867 0.7133 00797 

0.1934 0.8066 

(b) Discrete covariate and response 

Figure A. 6: The explore interface for discrete-continuous and discrete-discrete co- 

variate and response. 
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tionality provided by MIM into a single freeware library. Aggregating all of \II\I's 

capabilities into a single library file, such as a DLL, would allow future users to 

programmatically access these graphical modelling functions directly. By exposing 

core functions and capabilities would allow for MIIMI's methods to be usable outside 

the confines of the standard user interface. 

If the functionality of MIM could be encapsulated within a suitable library of 

functions, then it could be used as a key component of new expert systems. For 

example, with the orthopaedic data sets studied it was suggested that the methods 

presented in this thesis could be combined with a data management application to 

provide statistical support in a clinical environment. Having graphical modelling 

functions directly available to the application would then allow for the simple repli- 

cation of analyses such as those in Chapter 8 and would provide a suitable framework 

for inference and a critical element of that application. 
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The R functions in this package (provisionally titled varsel) perform the various 

variable selection functions described and investigated in Chapter 6. The functions 

are documented following the format of the standard R function docunienuation. 

A. 2.1.1 Basic selection routines 

Description: 

The variable selection procedures of Beale (Al, A2), de Falguerolles (DF), Jolliffe 

(B1, B2, B4), Krzanowski (KP)and McCabe (M1, M2, M3) are implemented in 

the following functions: 

Usage: 

varsel. beale(data, n, method, retIdx, diagnostic) 

varsel. defalg(R, n, retIdx, diagnostic) 

varsel. jolliffe(R, n, method, retIdx, diagnostic) 

varsel. krzproc(data, n, retldx diagnostic) 

varsel. mccabe(R, n, method, retIdx, diagnostic) 

Arguments: 

data The data matrix. 

RA correlation matrix. 

n The number of variables to select. 

method Some functions provide multiple selection methods which are 

specified via this argument. See below for details. Defaults to 

"All" 

retIdx Whether to return selected variable names or column indices. 

Defaults to FALSE. 

diagnostic Whether to show diagnostic output. Defaults to FALSE. 

Details: 
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The input to the variable selection procedures differs between the selection methods. 
Some functions require the entire data set in order to operate (varsel. beale and 

varsel. krzproc), whereas others operate using the correlation matrix of the data. 

The required input is specified via the argument data for the data matrix, or R for 

the matrix of correlations. This argument and n, the number of variables to select, 

are the only required arguments of the selection procedure. 
The functions varsel. beale, varsel. j ollif fe and varsel. mccabe provide 

support for multiple variable selection methods. The method to be performed is 

specified via the method argument in the form of a character string containing the 

method's abbreviation as given in Table 6.3, e. g. "M1" or "B2". More than one 

method can be performed by setting method to be a vector of such strings or assign- 

ing it the value "All" to perform all available selection methods. 

Where the methods require performing an exhaustive search of all possible vari- 

able subsets of size n, computation can be long and involved. This is particularly 

true when the total number of variables, p is large and n- p/2. If the number of 

subsets requiring evaluation is greater than 1000, the user is prompted to confirm 

that wish to proceed. 

Return value: 

An (b x n) matrix of the selected variable names (or column indices if retIdx is 

TRUE), where b is the number of selection methods performed and n is the size of 

the variable subset specified via the argument of the same name. 

A. 2.1.2 h-based selection function 

Description: 

The variable selection method based on the h values of the variables is implemented 

in varsel. hmethod. This method also allows for the specification of numeric utili- 

ties for each variable to guide the selection process. 

Usage: 
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varsel. hmethod(R, n, utils, retIdx, diagnostic, scree. plot, cor. plot) 

Arguments: 

RA correlation matrix 

n Number of variables to select. 

utils An optional vector of variable utilities. Defaults to NULL. 

retIdx Whether to return selected variable names or column indices. 

Defaults to FALSE. 

diagnostic Whether to show diagnostic output. Defaults to FALSE. 

scree. plot Whether to draw scree plots when finished. Defaults to TRUE 

cor. plot Whether to draw correlation plots of 522.1 at each stage. Defaults 

to FALSE. 

Details: 

At each stage the h values for remaining variables are calculated. The variable that 

is selected is the one with the highest value of h (or uh). The correlation matrix 
(R) is then replaced by the unscaled partial correlation matrix given the variables 

selected so far (522.1), and the process iterates. The method favours variables that 

are uncorrelated with one another, but are correlated to the unselected variables. 

Numeric utilities for the merit of selecting a particular variable can be specified 

via the utils argument to guide the selection process. 

Return value: 

If retIdx=TRUE, then a vector of the indices of the selected variables. Otherwise a 

list with three elements: 
scores The h scores for every variable at each stage of the selection 

process. 

vals Values of h (and possibly uh) for each variable at the point at 

which it is selected. Also contains the squared norm and trace of 

the remaining unscaled partial correlation matrix at each step. 

vars The names of the selected variables. 
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A. 2.1.3 General selection function 

Description: 

All of the above variable selection procedures can be accessed via a single method, 
which calls the relevant selection procedures from those given above and also calcu- 
lates appropriate information about the performance of the returned subsets. 

Usage: 

varsel(data, n, R, method, calc. Var, calc. Time, diagnostic) 

Arguments: 

data A data frame over which to perform the selection. 

n Number of variables to select. 

R If data is omitted, selection is based on this correlation matrix. 

method One or more method codes. See Table 6.3. Defaults to "All". 

calc. Var Whether to calculate the trace and squared norm of the remain- 

ing partial correlation matrix. Defaults to TRUE. 

calc. Time Whether to record the time taken to perform each selection (for 

comparison of relative speeds of the methods). Defaults to TRUE. 

diagnostic Whether to print diagnostic output. Defaults to FALSE. 

Details: 

varsel serves as a wrapper for the other specific variable selection functions. Sup- 

plying varsel with data or R depends on the selection method you wish to use. 

All methods can operate using data, but Beale's and Krzanowski's methods cannot 

perform variable selection using R. 

Return value: 

A data frame whose first n columns contain the selected variables. The rows 

correspond to the selection methods. If calc. Var is TRUE then columns (n + 1) 

to (n + 4) correspond to the values of I 1522.1112, I IRii 112, the percentage trace and 

percentage squared norm. If calc. Time = TRUE, then these values are appended in 
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the final column. 

A. 2.2 Graphics 

A. 2.2.1 Correlation Plot 

Description: 

The corplot produces a correlation mosaic plot for a given correlation matrix. See 

Section 4.2 for details. 

Usage: 

corplot(R, useAbs, main, sort, colDiag) 

Arguments: 

R The correlation matrix to plot. 

useAbs Whether cells in the mosaic show I rte I (TRUE, default) or ri; 
(FALSE). 

main Main label for the plot. Defaults to 

sort Whether to sort the variable based on their angles on the biplot 

of the data. Defaults to FALSE. 

colDiag Whether show the values of diagonal elements of R, for use when 

R is in unsealed correlation form. Defaults to FALSE. 

Details: 

The correlation plot displays a matrix of rectangles corresponding directly to R. 

The rectangles on the diagonal contain the variable labels. Off-diagonal rectangles 

are coloured with intensity equal to the corresponding I ri j j, where a zero correlation 

results in an empty (white) cell, and a correlation of ±1 gives a solid red (or blue if 

useAbs is FALSE) cell. 
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A. 2.2.2 Profile Plot 

Description: 

The function profile . plot produces a profile plot over one or more variables. 

Usage: 

profile. plot (data, time, index, groups, group2, main, colSample) 

Arguments: 

data Data frame of variables to be plotted as profiles. See below for 

details on the form of data. 

time Vector of factors indicating to which time point the cases of data 

belongs. 

index Vector of unique indices indicating to which observation each case 
belongs. 

split1 A factor variable representing sub-groups of data. 

split2 A second factor variable representing sub-groups of data. 

main The main label of the plot. Defaults to "". 

colSample Whether to indicate sample sizes at each point via colour inten- 

sity. Defaults to FALSE. 

Details: 

The idea behind this plot is that we have a number of observational units each 

uniquely identified via a distinct ID number (or similar) in index. Several measure- 

ments are repeatedly made on these units at several points in time, as indicated 

by time. The measurements are recorded in data where each column represents a 

different variable. Thus each observational unit can be represented in several rows 

in data, where each corresponding row in index gives the same identifier value. The 

various entries for this unit will have different values for time, representing a set of 

measurements taken on the same unit at different times. 
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A. 2.2.3 t-Test Plots 

Description: 

306 

Plots the t statistics obtained for comparing the means of one or more variables 
between two groups in the independent or paired-sample cases. 

Usage: 

ttest. plot(data, split, signif, fixed, main, probs) 

paired. ttest. plot(datal, data2, signif, fixed, main, probs) 

Arguments: 

data A data frame containing the variables whose sub-groups are to 
be compared. 

split A factor variable defining two sub-groups of data for the inde- 

pendent sample case. 

datal Data frame containing the first observation of the paired sample. 
data2 Data frame containing the second observation of the paired sam- 

ple. 

signif The significance level for the tests. Significant results are 

coloured red. Defaults to 0.05. 

fixed Whether to fix the vertical limits of the plot to f6 and crop any 

values beyond. Defaults to FALSE. 

main Main label for the plot. Defaults to 11 " 

probs Whether to plot significant probabilities, rather than t statistics. 

Defaults to FALSE. 
Details: 

ttest. plot simply performs an independent sample t-test for each of the variables 

in data, comparing the means of the groups given by split. 

Conversely, paired. ttest. plot performs a paired t-test for each of the vari- 

ables in the data arguments, where the pairs are defined by the matching rows of 

datal and data2. Consequently datal and data2 are expected to be of identical 

dimensions. 



A. 2. R code 

Value: 
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The function draws a t-test plot as per Section 4.1. The function also returns a 

matrix of size (p x 6) where p is the number of variables in data. For ttest . plot the 

first three columns contain the difference in the means of the two groups, the pooled 

variance, and the standard error. The first three columns for paired. ttest. plot 

contain mean difference, the variance of the differences, and the standard error. In 

both cases the final three columns contain t, It( and the corresponding p-value. 



References 

[1] A Agresti. Categorical Data Analysis. Wiley, New York. 1990. 

[2] H Aikake. A new look at the statistical model identification. IEEE 7ranou- 
tions in Automatic Control, 19: 716-23,1974. 

[3] E Anderson. The irises of the Gaspe Peninsula. Bulletin of the . lmericann t, is 

Society, 59: 2-5,1935. 

[4] HP Andrews, RD Snee, and NI H Sarner. Graphical display of rneanti. 7'l, c 
American Statistician, 34(4): 195-199,1980. 

[5] ANSI/HL7, Michigan, USA. HL7 Version 3 Reference Information itfodel, 

2003. 

[6] JH Badsberg. Model search in contingency tables by CoCo. In Y Dodge 

and J Whittaker, editors, Computational Statistics, CompStat 1992 Neuchatel, 

pages 251-256, Heidelberg, 1992. Physica-Verlag. 

[7] EM Beale, MG Kendall, and DW Mann. The discarding of variables in 

multivariate analysis. Biometrika, 54: 357-366,1967. 

[8] CS Berkey, NM Laird, I Valadian, and J Gardner. Modelling adolescent 

blood pressure patterns and their prediction of adult pressures. Biometrics, 

47(3): 1005-1018,1991. 

[9] A Blauth, I Pigeot, and F Bry. Interactive analysis of high-dimensional asso- 

ciation structures with graphical models. Metrika, 51: 53-65,2000. 

308 



References 309 

[10] W Bossert and JA Weymark. Utility in social choice. In S Barbera, PJ Ham- 

mond, and C Seidl, editors, Handbook of Utility Theory, volume 2: Extensions. 

chapter 20, pages 1099-1177. Kluwer Academic Publishers, 2004. 

[11] GEP Box and DR Cox. An analysis of transformations (with discussion). 
Journal of the Royal Statistical Society, Series B, 26: 211-246,1964. 

[12] GEP Box, WG Hunter, and JS Hunter. Statistics For Experimenters: An 

Introduction To Design, Data Analysis And Model Building. Wiley, New York, 

1978. 

[13] J Cadima, J0 Cerdeira, and M Minhoto. Computational aspects of algorithms 
in variable selection in the context of principal components. Computational 

Statistics E4 Data Analsysis, 47: 225-236,2004. 

[14] J Cadima and IT Jolliffe. Loadings and correlations in the interpretation of 

principal components. Journal of Applied Statistics, 22(2), 1995. 

[15] J Cadima and IT Jolliffe. Variable selection and the interpretation of principal 

subspaces. Journal of Agricultural, Biological and Environmental Statistics, 

6(1): 62-79., 2001. 

[16] RB Cattell. The scree test for the number of factors. Multivariate Behavioral 

Research, 1: 245-276,1966. 

[17] CEN/TC251 WG I. ENV129 65: Electronic Healthcare Record Architecture, 

1995. 

[18] JM Chambers, WS Cleveland, B Kleiner, and PA Tukey. Graphical Methods 

For Data Analysis. Wadsworth, 1983. 

[19] WS Cleveland. Visualizing Data. Hobart Press, Summit, New Jersey, 1993. 

[20] J Cohen. Statistical Power Analysis for the Behavioral Sciences. Academic 

Press, New York, revised edition, 1977. 

[21] RG Cowell, AP Dawid, SL Lauritzen, and DJ Spiegelhalter. Probabilistic 

Networks and Expert Systems. Springer-Verlag, New York, 1999. 



References 
310 

[22] DR Cox and N Wermuth. Linear dependencies represented by chain graphs 
(with discussion). Statistical Science, 8: 204-283,1993. 

[23] DR Cox and N Wermuth. Multivariate Dependencies: Models, 
_-lnalysi. s and 

Interpretation. Chapman and Hall, London, 1996. 

[24] MJ Crowder and DJ Hand. Analysis Of Repeated Measures. Monographs on 
Statistics and Applied Probability. Chapman and Hall, London, 1990. 

[25] JN Darroch, SL Lauritzen, and TP Speed. Markov fields and log-linear 
interaction models for contingency tables. The Annals of Statistics, 8: 522- 

539,1980. 

[26] AP Dawid. Conditional independence in statistical theory (with discussion). 

Journal of the Royal Statistical Society, Series B, 41: 1-31,1979. 

[27] J Dawson, R Fitzpatrick, A Carr, and D Murray. Questionnaire on the per- 

ceptions of patients about total hip replacement. Journal of Bone & Joint 

Surgery - British Volume, 78(2): 185-190,1996. 

[28] A de Falguerolles and S Jmel. Un critere de choix de variables en analyse en 

composantes principales fonde sur des modeles graphiques gaussiens partic- 

uliers. Canadian Journal of Statistics, 21(3): 239-256,1993. 

[29] AP Dempster. Covariance selection. Biometrics, 28: 157-75,1972. 

[30] T DiCiccio and B Efron. Bootstrap confidence intervals. Statistical Science, 

11: 189-212,1996. 

[31] PJ Diggle. An approach to the analysis of repeated measures data. Biometrics, 

44: 959-971,1988. 

[32] PJ Diggle, K Liang, and SL Zeger. Analysis Of Longitudinal Data. Oxford 

University Press, Oxford, 1994. 

[33] F Drasgow. Polychoric and polyserial correlations. In L Kotz and NL Johnson, 

editors, Encyclopedia of statistical sciences, volume 7, pages 69-74. Wiley, New 

York, 1988. 



References 
311 

[34] P Drineas, R Kannan, and `I W Mahoney. Fast Monte Carlo algorithms 
for matrices III: Computing a compressed approximate matrix decomposition. 
Technical Report YALEU/DCS/TR-1271, Yale University, 2004. 

[35] M Drton and MD Perlman. Model selection for Gaussian concentration 
graphs. Biometrika, 91(3): 591-602,2004. 

[36] HT Eastment and WJ Krzanowski. Cross-validatory choice of the number of 

components from a principal component analysis. Technornetrics, 24(1): 73 77, 

1982. 

[37] D Edwards. Hierarchical interaction models. Journal of the Royal Statistical 

Society, Series B, 52(1): 3-20,1990. 

[38] D Edwards. Introduction to Graphical Modelling. Springer, New York, 2nd 

edition, 2000. 

[39] D Edwards and T Havränek. A fast model selection procedure for large families 

of models. Journal of the American Statistical Association, 82: 205-213,1987. 

[40] E Eells. Probabilistic Causality. Cambridge University Press, Cambridge, 

1991. 

[41] B Efron. Bootstrap methods: Another look at the jackknife. The Annals of 

Statistics, 7: 1-26,1979. 

[42] B Efron and R Tibshirani. Bootstrap methods for standard errors, confidence 

intervals, and other measures of statistical accuracy. Statistical Science, 1: 54- 

96,1986. 

[43] B Efron and R Tibshirani. An introduction to the bootstrap. Chapman and 

Hall, 1993. 

[44] European Computer Manufacturers Association (ECMA), Geneva, Switzer- 

land. Standard ECMA-334: C# Language Specification, 3rd edition, 2005. 

[45] PM Fayers and D Machin. Quality of Life: Assessment, Analysis and Inter- 

pretation. Wiley, Chichester, 2000. 



References 
312 

[46] KA Fisher. Application of "Student's" distribution. Aletron, pages 90 104. 
1925. 

[47] RA Fisher. The use of multiple measurements in taxonomic problems. . 
4rii a1., ý 

of Eugenics, 7: 179-188,1936. 

[48] M Friendly. Mosaic displays for multi-way contingency tables. Journal of the 
American Statistical Association, 89: 190-200,1994. 

[491 M Friendly. Conceptual and visual models for categorical data. The American 

Statistician, 49: 153-160,1995. 

[50] M Friendly. Corrgrams: Exploratory displays for correlation matrices. The 

American Statistician, 56(4): 316-324,2002. 

[51] S Frontier. Etude de la decroissance des valeurs propers dans une analyze en 

composantes principales: comparison avec le modele de baton brise. Journal 

of Experimental Marine Biology and Ecology, 25: 341-347,1976. 

[52] M Frydenberg. The chain graph Markov property. Scandinavian Journal of 

Statistics, 17: 333-353,1989. 

[53] M Frydenberg and D Edwards. A modified iterative scaling algorithm for 

estimation in regular exponential families. Computational Statistics 4 Data 

Analsysis, 8: 142-153,1989. 

[54] W Gibbs. Elementary Principles of Statistical Mechanics. Yale University 

Press, 1902. 

[55] LA Goodman and WH Kruskal. Measures of association for cross classi- 

fications. Journal of the American Statistical Association, 49(268): 734-764, 

1954. 

[56] TG Gregoire and BL Driver. Analysis of ordinal data to detect population 

differences. Psychological Bulletin, 101(1): 159-165,1987. 

[57] RJ Harris. Primer of Multivariate Statistics. Academic Press, New York, 

1975. 



References 313 

[58] JA Hartigan and B Kleiner. Mosaics for contingency tables. In \l' F Eddy. 

editor, Computer Science and Statistics: Proceedings of the 13th Symposium 

on the Interface, pages 268-273, New York, 1981. Springer-Verlag. 

[59] JA Hartigan and B Kleiner. A mosaic of television ratings. The Anti rican 
Statistician, 38: 32-35,1984. 

[60] JA Hartigan and MA Wong. A k-means clustering algorithm. ; lppliui 

Statistics, 28: 100-108,1979. 

[61] RR Hocking. The analysis and selection of variables in linear regression. 
Biometrics, 32: 1-49,1976. 

[62] H Hofmann. Constructing and reading mosaicplots. Computational Statistics 

Data Analsysis, 43(4): 565-580,2003. 

[63] D Ingram. The good european health record. In MF Laires, NI F Ladeira, 

and JP Christensen, editors, Health in the New Communication Age, pages 

66-74. IOS Press, 1995. 

[64] L Isserlis. On a formula for the product-moment correlation of any order 

of a normal frequency distribution in any number of variables. Biometrika, 

12: 134-139,1918. 

[65] JNR Jeffers. Two case studies in the application of principal component 

analysis. Applied Statistics, 16: 225-236,1967. 

[66] 1T Jolliffe. Discarding variables in principal component analysis. I: Artificial 

data. Applied Statistics, 21(2): 160-173,1972. 

[671 1T Jolliffe. Discarding variables in principal component analysis. II: Real 

data. Applied Statistics, 22(1): 21-31,1973. 

[68] 1T Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 2nd 

edition, 2002. 

[69] HF Kaiser. The application of electronic computers to factor analysis. Edu- 

cational and Psychological Measurement, 20: 141-151,1960. 



References 314 

[70] L Kaufman and PJ Rousseeuw. Finding Groups In Data: An Introduction 
To Cluster Analysis. Wiley, New York, 1990. 

[71] MG Kendall. A Course In Multivariate Analysis. Griffin, London, 1957. 

[72] FM Khaw, LMG Kirk, RW Morris, and PJ Gregg. A randomised, controlled 
trial of cemented versus cementless press-fit condylar total knees replacement. 
Journal of Bone & Joint Surgery - British Volume, 84: 658-666,2002. 

[73] U Kjaerulff. Triangulation of graphs - Algorithms giving small total state 

space. Technical Report R 90-09, Aalborg University, Denmark, March 1990. 

[74] S Kreiner. Computerized exploratory screening of large-dimensional contin- 

gency tables. Compstat, 7: 43-48,1986. 

[75] WJ Krzanowski. Selection of variables to preserve multivariate data structure, 

using principal components. Applied Statistics, 36(1): 22-33,1987. 

[76] WJ Krzanowski and FHC Marriott. Multivariate Analysis I: Distributions, 

ordination and inference, volume I of Kendall's Library of Statistics. Arnold 

Publishers, 1994. 

[77] S Kuhnt and C Becker. Sensitivity of graphical modeling against contamina- 

tion. In M Schader, W Gaul, and M Vichi, editors, Between Data Science and 

Applied Data Analysis, pages 279-287. Springer, New York, 2003. 

[78] R Largo, J Caflisch, F Hug, K Muggli, A Sheehy, T Gasser, and L Moli- 

nari. Neuromotor development from 5 to 18 years, part I: Timed performance. 

Developmental Medicine and Child Neurology, 43: 436-443,2001. 

[79] S Lauer. Interactive modelling of categorical data. In B Marx and H Friedl, ed- 

itors, Proceedings of the 13th International Workshop on Statistical Modeling, 

New Orleans, pages 443-446,1998. 

[80] SL Lauritzen. Propagation of probabilities, means and variances in mixed 

graphical association models. Journal of the American Statistical Association, 

87: 1098-1108,1992. 



References 315 

[81] SL Lauritzen. Graphical Models. Oxford University Press, Oxford, 1996. 

[82] SL Lauritzen and TS Richardson. Chain graph models and their causal 
interpretations. Journal of the Royal Statistical Society, Series B, 64(3): 321 
361,2002. 

[83] SL Lauritzen and N Wermuth. Graphical models for associations between 

variables, some of which are qualitative and some quantitative. The Annals 

of Statistics, 17: 31-57,1989. 

[84] RJA Little. Regression with missing X's: A review. Journal of the America. 

Statistical Association, 87(420): 1227-1237,1992. 

[85] CJ Lloyd. Statistical Analysis of Categorical Data. Wiley, New York, 1999. 

[86] TA Louis. General methods for the analysis of repeated measures. Statistics 

in Medicine, 7: 29-45,1988. 

[87] GP McCabe. Principal variables. Technometrics, 26(2): 137-144,1984. 

[88] AW McCaskie, DJ Deehan, TP Green, KR Lock, JR Thompson, WM 

Harper, and PJ Gregg. Randomised, prospective study comparing cemented 

and cementless total knee replacement: Results of press-fit condylar total knee 

replacement at five years. Journal of Bone @ Joint Surgery - British Volume, 

80(6): 971-975,1998. 

[89] R McGill, JW Tukey, and WA Larsen. Variations of box plots. The American 

Statistician, 32: 12-16,1978. 

[90] WN Mohamend, I Diamond, and PWF Smith. The determinants of infant 

mortality in Malaysia: a graphical chain modelling approach. Journal of the 

Royal Statistical Society, Series A, 161: 349-366,1998. 

[91] DJ Murdoch and ED Chow. A graphical display of large correlation matrices. 

The American Statistician, 50(2): 178-180,1996. 



References 316 

[92] G Neil-Dwyer, D Lang, P Smith, and F lanotti. Outcome after aneurvsmal 
subarachnoid haemorrhage: The use of a graphical model in the a`sessinent 
of risk factors. Acta Neurochirurgica, 140: 1019-1027,1998. 

[93] M Okamoto. Optimality of principal components. In PR Krishnaiah, editor, 
Multivariate Analysis II, pages 673-685. Academic Press, 1969. 

[94] P Gregg P and BC Reeves. National Total Hip Replacement Outcome Study. 

Royal College of Surgeons of England and British Orthopaedic Association, 

London, 2000. 

[95] J Pearl. Causal diagrams for empirical research (with discussion). Bioinetrika, 

82(4): 669-710,1995. 

[96] J Pearl and A Paz. Graphoids: A graph based logic for reasoning about 

relevancy relations. In BD Boulay, D Hogg, and L Steel, editors, Advances in 

Artificial Intelligence II, pages 357-363. North-Holland, Amsterdam, 1987. 

[97] PR Peres-Neto, DA Jackson, and KM Somers. How many principal compo- 

nents? Stopping rules for determining the number of non-trivial axes revisited. 

Computational Statistics 4 Data Analsysis, 49(4): 974-997,2005. 

[98] 1 Pigeot, A Heinicke, A Caputo, and J Brüderl. The professional career of so- 

ciologists: a graphical chain model reflecting early influences and associations. 

Allgemeines Statistiches Archiv, 84(1): 3-21,2000. 

[99] G Pison, A Struyf, and PJ Rousseeuw. Displaying a clustering with CLUS- 

PLOT. Computational Statistics 4 Data Analsysis, 30: 381-392,1999. 

[100] T Prvan and AW Bowman. Nonparametric time dependent principal compo- 

nent analysis. The Australian 4 New Zealand Industrial and Applied Mathe- 

matics Journal, 44: C627-C643,2003. 

[101] R Development Core Team. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria, 2005. 



References 
317 

[102] J0 Ramsay and BW Silverman. Applied Functional Data Analij<i.,: Afthod, 
and Case Studies. Springer-Verlag, New York, 2002. 

[103] JL Rasmussen. Analysis of Likert-scale data: A reinterpretation of Gregoire 

and Driver. Psychological Bulletin, 105(1): 167-170,1989. 

[104] JA Rice. Mathematical Statistics and Data analysis. Duxburv. Belmont, 
California, 2nd edition, 1995. 

[105] R Rosenthal and RL Rosnow. Essentials of behavioral research: Methods and 
data analysis. McGraw Hill, New York, 2nd edition, 1991. 

[106] V Rousson and T Gasser. Simple component analysis. Applied Statistics, 

53(4): 539-555,2004. 

[107] A Roverato and S Paterlini. Technological modelling for graphical models: 
An approach based on genetic algorithms. Computational Statistics & Data 

Analsysis, 47: 323-337,2004. 

[108] A Roverato and J Whittaker. Standard errors for the parameters of graphical 
Gaussian models. Statistics and Computing, 6: 294-302,1996. 

[109] DB Rubin. Estimating causal effects of treatments in randomized and non- 

randomized studies. Journal of Educational Psychology, 66: 688-701,1974. 

[110] M Ruggeri, A Biggeri, P Rucci, and M Tansella. Multivariate analv5is of 

outcome of mental health care using graphical chain models. Psychological 

Medicine, 28: 1421-1431,1998. 

[111] J Rumbaugh, I Jacobson, et al. The Unified Modeling Language Reference 

Manual. Addison-Wesley, Reading, Massachusetts, 1999. 

[112] G Schwartz. Estimating the dimension of a model. Annals of Statistics, 6: 461 

4,1978. 

[113] SC Shapiro. Encyclopedia Of Artifical Intelligence. Wiley, New York, 1990. 



References 318 

[114] LB Sheeber, ED Sorensen, and SR Howe. Data analytic techniques for 
treatment outcome studies with pretest/posttest measurements: An exteiisiye 
primer. Journal of Psychiatric Research, 30(3): 185-199,1996. 

[115] A Stuart, JK Ord, S Arnold, et al. Kendall's Advanced Theory of Statistics: 
Classical Inference and the Linear Model, volume 2A of Kendall's Library of 
Statistics. Arnold Publishers, 6th edition, 1998. 

[116] M Student' and RR Bouckaert. On chain graph models for description of 

conditional independence structures. The Annals of Statistics, 26(4): 1431 

1495,1996. 

[117] BG Tabachnik and LS Fidell. Using Multivariate Statistics. Allyn & Bacon, 

Boston, Massachusetts, 4th edition, 2001. 

[1181 M Tew and W Waugh. Guide to recording information about knee replace- 

ments: a manual for use in outpatient clinics and hospitals. Department of 

Orthopaedic Surgery, University of Nottingham, 1980. 

[119] ERT ifte. The Visual Display Of Quantitative Information. Graphics Press, 

Cheshire, Connecticut, 1983. 

[120] ER Tufte. Envisioning Information. Graphics Press, Cheshire, Connecticut, 

1990. 

[121] JW Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, Mas- 

sachusetts, 1977. 

[122] WF Velicer. Determining the number of components from a matrix of partial 

correlations. Psychometrika, 41: 321-327,1976. 

[123] C Waternaux, NM Laird, and JH Ware. Methods for analysis of longitudinal 

data: blood lead concentrations and cognitive development. Journal of the 

American Statistical Association, 84: 33-41,1989. 



References 319 

[124] N Wermuth and SL Lauritzen. On substantive research hypotheses, con- 

ditional independence graphs and graphical chain models (with discussicýci). 

Journal of the Royal Statistical Society, Series B. 52: 21-72,1990. 

[125] J Whittaker. Graphical Models In Applied Mathematical Muftis ar, atc S't«ti., - 

tics. Wiley, Chichester, 1990. 

[126] L Wilkinson. The Grammar of Graphics. Springer, New York, 2nd edition, 

2005. 

[127] S Wold. Cross-validatory estimation of the number of components in factor 

and principal component analysis. Technometrics, 20: 397-405,1978. 

[1281 S Wright. Correlation and causation. Journal of Agricultural Research, 20: 557-- 

585,1921. 

[129] J Wyatt and D Spiegelhalter. Field trials of medical decision-aids: potential 

problems and solutions. In Proceedings of the 15th Symposium on Computer 

Applications in Medical Care, pages 3-7, Washington DC, 1991. McGraw Hill. 

0 


