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Abstract

Trajectory prediction entails the forecasting of future movement trajectories of traffic agents
derived from their historical observed behaviors. This sophisticated technique is essential for
various real-world applications such as path planning and collision avoidance for autonomous
driving systems, and anomaly detection within video surveillance technologies.

However, trajectory prediction for multi-agent scenarios presents significant challenges due
to the complex interaction dynamics across diverse traffic environments. These environments
can range from homogeneous settings dominated by similar agents (e.g., pedestrians in crowds)
to heterogeneous scenes with mixed agent types (e.g., pedestrians, vehicles, cyclists, etc.). To
tackle these challenges, an integrated understanding of agent behaviors across diverse contexts is
essential. Agents continuously adjust their movements based on surrounding entities, creating
complex interaction patterns that vary between homogeneous pedestrian crowds and heteroge-
neous traffic scenarios. Capturing these nuanced spatial-temporal inter-dependencies demands
sophisticated models that represent both individual and collective dynamics while accommodating
distinct agent behaviors. The primary aim of this research is to develop robust and accurate
trajectory prediction frameworks capable of bridging this gap and operating effectively across
both homogeneous and heterogeneous contexts. To achieve this aim, this dissertation pursues
three core objectives: (1) Analyzing dynamics and spatial-temporal interactions in homogeneous
pedestrian crowds. (2) Understanding interaction patterns for heterogeneous traffic environments
with diverse agent types. (3) Developing a unified framework that integrates insights from both
heterogeneous and homogeneous settings for improved and robust trajectory prediction.

The motivation of this research stems from the limitations of existing trajectory prediction
methods across different settings. In homogeneous pedestrian scenarios, highly interactive and
collective behaviors pose challenges for modeling high-order spatial-temporal dependencies.
In heterogeneous environments, diverse agent types such as pedestrians, cyclists, and vehicles
exhibit asymmetric dynamics that remain difficult to capture with current approaches. Moreover,
most methods treat these contexts in isolation, lacking robustness and generalization in real-world
environments. Addressing these gaps calls for unified graph-based frameworks that can integrate
insights from both domains while advancing spatial-temporal modeling to represent complex
interactions and long-range dependencies more effectively.

This research introduces a series of novel frameworks designed to enhance the robustness and
accuracy of trajectory prediction under different settings. We begin by addressing the challenges of
homogeneous pedestrian trajectory prediction, where the highly interactive nature of pedestrians
and their collective behaviors demand precise modeling of spatial-temporal relationships. To
this end, we propose UniEdge, a dual-graph-inspired unified spatial-temporal edge-enhanced
graph network that effectively captures both high-order cross-time interactions and complex
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influence patterns between pedestrians, providing more accurate and socially aware predictions
in homogeneous settings.

We then extend our investigation to heterogeneous environments featuring multiple interact-
ing agent types. For this purpose, we propose Multiclass-SGCN, a sparse graph-based trajectory
prediction network with agent class embedding that models the unique dynamics among hetero-
geneous agents such as pedestrians, vehicles, and cyclists. By integrating semantic agent-class
information with motion features, Multiclass-SGCN explicitly represents cross-type interaction
dynamics while maintaining computational efficiency.

Building on the insights gained from both homogeneous and heterogeneous contexts, and
recognizing the need for a more broadly applicable solution, we propose a behavioral pseudo-label
informed sparse graph convolution network (BP-SGCN) for trajectory prediction across both
settings. It introduces the novel concept of behavioral pseudo-labels to represent different move-
ment patterns of traffic agents without requiring additional annotations. Through a cascaded
training scheme that optimizes clustering and trajectory prediction in tandem, BP-SGCN effec-
tively captures both inter-class and intra-class behavioral variations, offering a robust, unified
framework for trajectory prediction across diverse environments.

Our extensive experimental evaluations and qualitative analyses across multiple benchmark
datasets consistently demonstrate that the proposed frameworks outperform state-of-the-art
methods in trajectory prediction, validating the effectiveness of our progressive research approach
from homogeneous to heterogeneous to unified prediction systems.

iii



Declaration

The work in this thesis is based on research carried out at the Department of Computer
Science, Durham University, United Kingdom. No part of this thesis has been submitted

elsewhere for any other degree or qualification and it is all my own work unless referenced

to the contrary in the text.

Copyright © 2025 by Ruochen Li.
“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged”.

iv



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Hubert P. H. Shum, for
his unwavering guidance, patience, and support throughout my doctoral journey at Durham. His
ability to identify potential in my early, unpolished ideas and transform them into meaningful
research has been invaluable to my academic growth. Beyond providing direction, he has been a
constant source of encouragement, ensuring that I had the resources and confidence needed to
overcome challenges and stay the course. I am sincerely thankful for his trust, mentorship, and
the many opportunities he has created for me—contributions that have profoundly shaped both
my research and my professional development.

I would also like to extend my sincere gratitude to my co-supervisor, Dr Stamos Katsigiannis,
whose patience, openness, and insightful guidance have greatly enriched my PhD journey. He has
always been willing to engage in thoughtful discussions on a wide range of ideas, encouraging
me to explore different perspectives and refine my research directions. His constructive feedback
and steady encouragement have been instrumental in helping me navigate complex problems
with clarity and confidence, making him an invaluable source of support throughout this work.

I am deeply grateful to my dear friends in our research group — Tangiu Qiao, Shuang Chen,
Li Li, Haozheng Zhang, Manli Zhu, Xiatian Zhang, Ziyi Chang, Xiaotang Zhang, and Ruisheng
Han — for bringing joy, encouragement, and camaraderie into my life. Your friendship has been a
constant source of motivation, providing light-hearted moments and welcome distractions that
have helped me stay balanced amidst the demands of research. I am also grateful to Shuang Chen
and Jiacheng Yao for infusing my life beyond research with joy and camaraderie. From countless
Dota 2 battles to late-night conversations, we have shared over a thousand hours of laughter,
friendly rivalry, and much-needed escapes from the pressures of academic life.

To my partner, Lunette, my constant source of encouragement and unwavering support
throughout this journey. You have been beside me in moments of uncertainty, offering comfort,
patience, and understanding. Your belief in me has been a steady light, guiding me through
challenges and reminding me of the bigger picture beyond deadlines and experiments.

To my parents, the unwavering foundation and guiding compass of my life—you are the roots
that keep me steady and the strength that propels me forward. Your boundless love and steadfast
support have carried me across continents in pursuit of my dreams, giving me the courage to face
uncertainty and the resilience to overcome setbacks. The sacrifices you have made, often quietly
and without recognition, have laid the path for every opportunity I have been given. The wisdom
you have imparted has illuminated my way through challenge and change, and your belief in me
has been the constant light in moments of doubt. I carry your strength, values, and lessons in all
that I do, knowing that every milestone I reach is built upon the foundation you have given me.



Dedication

To my parents.

vi



Contents

Abstract ii
Declaration iv
Acknowledgements v
Dedication vi
List of Figures x
List of Tables xiv
Introduction 1
1.1 Motivations . . . . . . ... 3
1.2 Research Aims . . . . . . . . . . . . 5
1.3 Contributions . . . . . . ... 6
1.4 Publications . . . . . . . ... 7
1.5 Thesis Structure . . . . . . . ... 8
Literature Review 10
2.1 Multi-Agent Trajectory Prediction . . . . . . ... ... ... ... ... ... 11

2.1.1  Trajectory Prediction in Homogeneous Pedestrian Crowds . . . . . . .. 11

2.1.2  Trajectory Prediction in Heterogeneous Environments . . . . . .. ... 15

vii



4

2.2

2.3

2.4

Semantic-Aware Sparse Graph Modeling for Heterogeneous Trajectory Prediction

3.1
3.2

3.3

34

Unified Spatial-Temporal Graph Reasoning in Homogeneous Pedestrian Trajec-

2.13

Literature Surveys on Multi-Agent Trajectory Prediction . . . . . . . ..

Spatial-Temporal Graph Representation Learning . . . . . ... ... ... ...

2.21
2.2.2

2.2.3

Graph-Based Spatial Interaction Modeling . . . . ... ... ... ....
Spatial-Temporal Fusion for Trajectory Prediction. . . . . . .. ... ..

Representation Design for Graph Construction . . ... ... ... ...

Unsupervised Behavior Clustering . . . . ... ... .. ... ... ........

Evaluation and Metric . . . . . . . . . . . ..

241
24.2

243

Average Displacement Error (ADE) . . . . ... ... ... ... ...
Final Displacement Error (FDE) . . . . . .. .. ... ... ... .....

Evaluation of Multimodal Predictions . . . . . . . . . . . .. .. .. ...

Introduction . . . . . . . . . e

Multiclass-SGCN . . . . . .

3.21

3.2.2

Velocity-Label Graph (VLG) Embedding . . . . . ... ... ... ....

Enhanced Sparse Graph Learning . . . . . .. ... ... ... ......

Experimental Results . . . . .. ... ... ... ... o

3.3.1 QuantitativeResults . . . . ... ... ... L
3.3.2  Qualitative Results . . . . . .. ... .. ...
Summary . . . .. e

tory Forecasting

4.1

4.2

4.3

Introduction . . . . . . ...
Methodology . . . . . . . ..
4.2.1 Problem Formulation and Feature Initialization . . . .. ... ... ...
4.2.2  Unified Spatial-temporal Graph . . . . . ... ... ... ... ... ...
4.2.3 E2E-N2N Graph Convolution (E2E-N2N-GCN) . . ... ... ... ...
424 Transformer Encoder Predictor . . . . ... ... ... ... .......
425 Implementation Details . . . ... ... ... .. ... . .........
Experiments . . . . . . . . . .
431 ExperimentalSetup . . . . . ... ... ...
43.2 Baseline Methods . . . . .. ... ... ... ... . ... .. . ...,
43.3 Quantitative Comparison . . .. ... ... ... ... 0.

17
18
19
23
25
25
26
26
27
27

28
29
30
31
33
35
35
37
38

41
42
46
46
48
50
52
54
55
55
56
57



434 Qualitative Comparison . . . . . . .. ... ... 59

43.5 Ablation Study and Model Analysis . . . . .. ... ... ... ... ... 61
43.6 Discussion . . . . ... ... ... ... oo oo 68
44 Summary . . ... ... 70

5 Unsupervised Behavior Structure Learning for Generalizable Trajectory Predic-

tion 72
5.1 Introduction . . .. . .. . .. .. 73
5.2 Behavior Pseudo-Label Informed Sparse Graph Convolution Network . . . . . . 76
5.2.1 The High-Level Network Architecture . . . . ... ... ... ...... 76

5.2.2  Deep Unsupervised Behavior Clustering . . . . ... ... ... ..... 79

5.2.3 Pseudo-label Informed Trajectory Prediction. . . . . .. ... ... ... 83

53 Experiments . . . . . . ... 85
53.1 Datasets . . . . . ... 85

5.3.2 ExperimentalSetup . . . . . . .. ... Lo 85

5.3.3  Quantitative Evaluation . . ... ... ... ... ............. 86

5.3.4  Qualitative Evaluation . . . .. ... ... ... .. ............ 91

5.3.5 Ablation Study and Parameter Analysis . ... ... ... ... ..... 94

5.3.6  Model Complexity and Inference Time Analysis . . . . . ... ... ... 98

53.7 Discussion . . . . . . . ... 100

5.3.8  More Qualitative Visualizations . . . . . ... ... ... ......... 102

54 Summary . . ... 107
6 Conclusion 108
6.1 Review of Contributions . . . . ... ... .. ... ... . .. 109
6.2 Future Research Directions . . . . . . . ... ... ... ... ... ... ... 110
6.2.1 Integration of Multimodal and Contextual Information . . . . . . . . .. 110

6.2.2  Adaptive and Continual Learning . . . . . .. ... ... ... ... ... 110

6.2.3 Closed-Loop Evaluation in High-Fidelity Simulation . . ... ... ... 111

A Hardware Acknowledgements 128

ix



List of Figures

1.1

1.2

3.1

3.2

33

Examples of real-world scenarios that rely on trajectory prediction. (a) Video

surveillance of public area [1]; (b) Delivery robot operating in urban environment [2].

Examples of real-world scenarios that rely on trajectory prediction. (a) Heteroge-

neous traffic scenarios; (b) Homogeneous pedestrian scenarios. . . . . . .. ...

The network structure of Multiclass-SGCN. Given a sequence of 1" frames in-
cluding N agents, we extract the velocity and label features to build spatial and
temporal velocity-label graph (SVLG and TVLG). The embedded VLG features are
passed into enhanced sparse graph learning with the proposed adaptive interac-
tion mask to construct meaningful sparse attention adjacency matrices. Graph
convolution networks (GCN) and TCN are employed to aggregate and make

predictions. . . . . . ...

Comparisons between our method and Semantics-STGCNN. Blue filled circles are
observed trajectories, red hollow circles are ground-truth, purple lines in (a) are
predicted results by [3], green lines in (b) are predicted results by the proposed
Multiclass-SGCN. . . . . . . . . e
Multiclass-SGCN vs. Multiclass-SGCN (w/o AIM) vs. Multiclass-SGCN (w/o SP)
in three different scenes. Blue filled circles are observed trajectories, red hollow
circles are ground-truth, green lines are predicted results. Sample trajectories

with significant differences are highlighted in thebox. . . . . . . ... ... ...

1

32

38



4.1

4.2

4.3

4.4

4.5

4.6

4.7

Motivation Illustration. (a) Real-world pedestrian trajectories over multi-
ple time frames. (b) Existing spatial-temporal approaches separately model
the spatial interactions among pedestrians and temporal dependencies of indi-
viduals. (¢) Our unified spatial-temporal graph integrates spatial-temporal
inter-dependencies and simplifies high-order cross-time interactions into first-

order relationships. . . . . .. ... L

Mlustration of graph learning procedures. (a) Node-to-Node (N2N), (b) Edge-to-
Node (E2N), and (c) Our novel dual-graph introduces the combination of N2N and
Edge-to-Edge (E2E) paradigm. . . . . . ... ... ... .. ...

Overview of the proposed UniEdge. (a) Construction of patch-based unified spatial-
temporal graphs that simplify cross-time interactions into first-order relationships,
(b) Edge-to-Edge-Node-to-Node Graph Convolution (E2E-N2N-GCN) that jointly
processes N2N interactions and E2E influence propagation, and (c) Transformer

Encoder-based trajectory predictor. . . . . . . ... ... ...

Comparison of effective resistance (R;;) between traditional spatial-temporal
approach (left, R;; = 1.50) and our unified spatial-temporal graph (right, ;; =

0.27). Lower R;; indicates better message propagation efficiency. . . . ... ..

Mlustration of edge graph construction from a unified spatial-temporal graph using
the first-order boundary operator ;. Nodes are represented by numbers, and
edges connecting these nodes are labeled with letters. Applying the first-order
boundary operator transforms each edge into a node in the edge graph, with

connections formed based on shared nodes in the original graph. . . . ... ..
Mlustration of the Transformer encoder-based predictor. . . . . . . ... ... ..

Visualization of predicted trajectories on the ETH and UCY datasets. Historical
trajectories are in blue, ground-truth trajectories are in red, and predicted trajec-
tories are in yellow. Scenario (a) shows two pedestrians walking in parallel and
meet; Scenario (b) illustrates a group of pedestrians walking in parallel; (c) shows
pedestrians meeting each other; (d) depicts several groups walking in opposing
directions; and (e) presents a more complex scenario that pedestrian movements

are stochastic. . . . . . . . . . e

xi

43

44

47

48

50

54

59



4.8

4.9

4.10

4.11

4.12

5.1

5.2

5.3

54

Visualization of predicted distributions on the ETH and UCY datasets. Historical
trajectories are in blue, ground-truth trajectories are in red, and predicted trajec-
tories are in yellow. Scenario (a) and (b) show two pedestrians walking in parallel
with convergence; (c) presents two groups of pedestrians walking in opposing

directions; (d) illustrates random walking behaviors. . . . . . ... ... ... ..

Impact analysis of unified spatial-temporal graph through patch size and stride

size parameters on the ETH and UCY datasets. . . . . . ... ... ........

Edge weight visualization of traditional two-stage spatial-temporal approach
EigenTrajectory and our UniEdge. Historical trajectories are in blue and ground-

truth trajectoriesareinred.. . . . . . ... ... L L

Predictor attention weight visualization. Four attention heads are configured in

our experiments to analyze their impacts. . . . . . ... ... .. ... ...

Sample scenario in ETH dataset. Historical trajectories are in blue, ground-truth

trajectoriesareinred. . . . . . ... L.

We propose the behavioral pseudo-labels learned from observed trajectories,
effectively representing inter- and intra-type behavioral differences to improve

pedestrian and heterogeneous trajectory prediction accuracy.. . . . . . ... ..

Trajectory visualization on heterogeneous SSD dataset, where red, green and blue
dots represent pedestrians, bikers and cars, respectively. (a) and (c) represent het-
erogeneous scenarios with all agent types, (b) and (d) represent the homogeneous
pedestrian scenarios commonly used by pedestrian trajectory predictions [4, 5]

by simply removing all non-pedestrian agents. . . . . . ... ... ... .. ...

The overview of BP-SGCN to learn the pseudo-labels for trajectory prediction,
consisting of the deep unsupervised clustering module and the pseudo-label
informed trajectory prediction module. We propose a cascaded optimization
scheme to first learn pseudo-labels in an unsupervised manner, and then fine-tune

them in an end-to-end manner with trajectory prediction supervision. . . . . . .

The t-SNE visualization of pseudo-class clustering on SDD (k=6) during unsuper-
vised deep clustering. (a) 0 epochs (initialized by k-means), (b) 200 epochs, (c) 800

epochs. . . . .

xii

60

65

66

67

69

74

77

78

92



5.5

5.6

5.7

5.8

5.9

5.10

5.11

Visualization of trajectory prediction on SDD of Semantic-STGCNN [6], Multiclass-
SGCN [7], and BP-SGCN (ours). Blue and red represent observed and ground-truth
trajectories respectively, yellow represents the predicted trajectory and light-blue
shade represents the predicted distribution. . . . . .. .. ... ... 0 0oL
Visualization of the trajectory prediction on ETH/UCY in the scenario of pedes-
trian walking behaviors. Past trajectories are shown in blue, and ground-truth
trajectories are in red. (a) shows the pedestrians in a crowded scenario with
complex interactions. (b) shows the scene where four pedestrians are almost
static. (c) and (d) show scenes including multiple pedestrian behaviors, such as
walking, meeting, and standing. . . . . ... ... . L Lo L L L
Visualization of the trajectory prediction of BP-SGCN in different social scenarios
including positive predictions and negative predictions (we highlight erroneous
predictions inside the white boxes). Past trajectories are shown in blue, ground-
truth trajectories are in red, predicted trajectories are shown in yellow, and
distributions are shown in light blue. . . . . ... ... ... ... .. ... ...
The t-SNE Visualization of clustering distribution with different features on homo-
geneous pedestrian SDD (k=3), using (a) acceleration, (b) angle, and (c) acceleration
+angle (OUrS). . . . . . . .o
Predicted trajectory distributions using the proposed BP-SGCN on the SDD dataset.
Past trajectories are shown in blue, ground-truth trajectories in red, and predicted
trajectory distributions inorange. . . . . . ... ... Lo L.
Predicted trajectory distributions using the proposed BP-SGCN on the Argoverse
1 dataset. Past trajectories are shown in blue, ground-truth trajectories in red, and
predicted trajectory distributions in orange. . . . . .. ... ... ... ...
Predicted trajectory distributions using the proposed BP-SGCN on the ETH/UCY
datasets. The complexity level of social interactions among pedestrians increases
from the top row to the bottom row. Past trajectories are shown in blue and
ground-truth trajectories are shown in red. Due to the relatively high pedestrian
density, we use different colors to represent the predicted trajectory distributions

of different pedestrians . . . . . . . .. ... Lo

xiii

93

94

100

102

104

105



List of Tables

2.1

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Design space of node- and edge-level encodings in graph-based trajectory predic-
tion. The table summarizes how geometric and semantic information is distributed
across nodes and edges in existing methods, and highlights distinct relational

modeling paradigms explored in this thesis.. . . . . .. ... ... .. ... ...

Performance comparison with the state-of-the-arts. . . . . . ... ... ... ..
Performance comparison with Semantics-STGCNN. . . . . . ... ... ... ..

Ablation study results. . . . ... ..o Lo

Results on The ETH (ETH, HOTEL) and UCY (UNIV, ZARA1, ZARA?2) Datasets

for Pedestrian Trajectory Prediction . . . . . ... ... ... .. ... ......

Results on The Stanford Drone Dataset (SDD) for Pedestrian Trajectory Prediction

Ablation Analysis of UniEdge on The ETH and UCY Datasets. NN = Node-level
Embedding, EE = Edge-level Embedding, HC = Hodge-Laplacian Laguerre Convo-

lution . . . . . . L
Feature Embedding Analysis on The ETH and UCY Datasets . . . . .. ... ..
Edge Feature Analysis on The ETH and UCY Datasets . . . . .. ... ... ...

Trajectory Predictor Analysis on The ETH and UCY Datasets. PE = Positional

Encoding, Attn. Head = Attention Head, LN = Layer Normalization . . . .. ..

Trajectory Predictor Comparison Analysis on The ETH and UCY Datasets

Xiv

24

36

36

37

56

62

62

63

63

64



4.8

4.9

5.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8
5.9

5.10

5.11

5.12

5.13

5.14

5.15
5.16

Complexity and Inference Time Analysis. All Models Are Evaluated on NVIDIA
RTX3080 GPU . . . . . . e

Dataset Statistics on The ETH and UCY Datasets . . . . . . .. .. ... .. ...

A summary of main symbols and definitions . . . . . ... ... ..o
Results on SDD for heterogeneous prediction. . . . .. ... ... ... .....
Results on Argoverse 1 for heterogeneous prediction. . . . . ... ... .. ...
Results on ETH/UCY on homogeneous pedestrian prediction;

- denotes missing result due to unavailability from original authors. . . . . . ..
Results on the homogeneous pedestrian version of SDD. . . . .. ... .. ...
Cluster number analysis on heterogeneous SDD. . . . . . ... ... ... ....
Cluster number analysis on Argoverse 1. . . . . ... ... ... ... ......
Cluster number analysis on ETH/UCY. . . .. ... .. ... ... ........
Cluster number analysis on homogeneous pedestrian SDD. . . . . . ... .. ..
Network components analysis on heterogeneous SDD (upper) and homogeneous
pedestrian SDD (lower). . . . . . . . . . .. L
Prediction module analysis on ETH/UCY datasets. . . . . .. ... ........
Loss weight analysis between Ly, cdiction and Ly ster on heterogeneous SDD (left)
and homogeneous pedestrian SDD (right). . . ... ... .. ... ... .....
Clustering features analysis on heterogeneous SDD (upper) and homogeneous
pedestrian SDD (lower). . . . . . . . . . ..
COMPARISON OF THE PROPOSED APPROACHES IN TERMS OF NUMBER OF
PARAMETER AND INFERENCETIME. . . . . ... ... .. .. .. .......

68
69

87
88
88

89
89
95
95
96
96

97
97

98

99

99

STABILITY TESTS ON ARGOVERSE 1 AND HETEROGENEOUS VERSION OF SDD 99

RESULTS BY homogeneous pedestrian METHODS ON THE HETEROGENEOUS
VERSION OF SDD. . . . . . . e s

XV



CHAPTER 1

Introduction

Trajectory prediction, which forecasts the future movement paths of traffic agents based
on their historical behaviors, is a critical technology widely applied in modern applications
such as autonomous driving for collision avoidance systems, emergency braking systems
[8-11] and video surveillance technologies for identifying suspicious activities [12-15].
For example, Fig. 1.1(a) shows an overhead surveillance camera capturing pedestrian
flows in a public area, Fig. 1.1(b) depicts a sidewalk robot navigating in a pedestrian-rich
environment. Both scenarios require accurate trajectory prediction to ensure safety and

support reliable decision-making.

(@) . (b)

Figure 1.1: Examples of real-world scenarios that rely on trajectory prediction. (a) Video
surveillance of public area [1]; (b) Delivery robot operating in urban environment [2].



In multi-agent crowd environments, trajectory prediction refers to the task of fore-
casting future trajectories of multiple interacting agents over a specific time horizon,
given their observed past movements. Unlike traditional time-series forecasting tasks,
which typically analyze data with strong periodicity, identifiable trends, and a stable
number of variates [16-18], trajectory prediction presents unique complexities. Agent
movements often lack predictable cycles, the number of interacting entities fluctuates
dynamically, and crucially, future paths are dominated by complex, emergent interactions
between agents rather than simply extrapolating past individual behavior. This complex-
ity manifests in both the spatial domain, where agents navigate shared physical spaces
with varying constraints, and the temporal domain, where movement decisions evolve
dynamically based on changing contexts [19-23]. Notably, the nature and intensity of

these challenges can vary considerably depending on the composition and structure of

o So r\ 2
A & U{i ik A i

(b)

the environment.

Figure 1.2: Examples of real-world scenarios that rely on trajectory prediction. (a)
Heterogeneous traffic scenarios; (b) Homogeneous pedestrian scenarios.

Trajectory prediction tasks are commonly categorized based on the environment’s
composition into two main types: homogeneous pedestrian scenarios and heteroge-
neous scenarios. The former involves interactions exclusively among agents of the same
type—pedestrians—while the latter includes diverse agent types such as pedestrians,
vehicles, and cyclists, etc (Fig. 1.2). In homogeneous pedestrian scenarios, the primary
challenge lies in modeling behaviors that are both highly stochastic and socially driven.
Although pedestrians belong to a single agent class, their motion patterns vary widely

due to latent factors such as intent, personality, and social affiliations [24-26]. These



Chapter 1. Introduction

behaviors unfold in open environments without explicit traffic rules or physical con-
straints, leading to significant freedom of movement and unpredictability [21,27-30].
As a result, effective forecasting requires models capable of inferring subtle social cues,
anticipating complex group dynamics, and capturing implicit high-order interactions [31]
that emerge from indirect and non-obvious dependencies among agents. In contrast, het-
erogeneous scenarios present additional challenges arising from the coexistence of agents
with fundamentally different dynamics and interaction patterns [3,32-35]. For instance,
pedestrians exhibit flexible and reactive behaviors, whereas vehicles and cyclists operate
under stricter kinematic constraints and traffic regulations. These disparities give rise to
asymmetric interactions that are difficult to model using conventional approaches [19,36],
thereby requiring reasoning mechanisms capable of capturing agent-specific behaviors
and cross-type influences [19,34,37].

To address the distinct challenges posed by different environment types, this the-
sis investigates trajectory prediction in both homogeneous pedestrian scenarios and
heterogeneous multi-agent scenarios, each presenting unique modeling difficulties. In
homogeneous settings, we focus on capturing latent social dynamics and high behavioral
stochasticity, while in heterogeneous environments, we emphasize agent-type-specific
reasoning and asymmetric cross-agent interactions. Building on insights from both do-
mains, we further explore a unified modeling framework that integrates the strengths
of each approach—aiming to generalize across diverse scenarios and effectively cap-
ture both implicit social cues and explicit inter-agent heterogeneity. While our goal is
to develop a unified framework that addresses both homogeneous and heterogeneous
challenges, doing so requires confronting several fundamental limitations in existing

modeling approaches.

1.1 Motivations

While earlier approaches to trajectory prediction relied on rule-based models and proba-
bilistic frameworks, recent progress has shifted the focus toward deep learning, owing
to its superior capacity to model complex and non-linear agent interactions. Despite

strong performance on standard benchmarks, accurately forecasting agent trajectories



1.1. Motivations

in real-world, multi-agent environments remains a significant challenge. This difficulty
stems not only from the diversity of agent behaviors and the stochastic nature of human
and vehicular motion, but also from the limitations of current modeling paradigms in cap-
turing the underlying relational and temporal dependencies. Graph-based representation
learning has emerged as a promising direction, offering a natural way to encode agent-to-
agent relationships through structured message passing. However, existing graph-based
methods still face technical limitations in modeling dynamic spatial-temporal interactions,
such as insufficient representation of high-order dependencies, limited generalization
across heterogeneous environments, and the inability to adaptively reason over varying
interaction complexities. Addressing these challenges calls for more expressive, flexible,

and context-aware modeling frameworks.

A key modeling challenge in trajectory prediction lies in accurately capturing complex
agent interactions under varying contextual and structural constraints. In homogeneous
pedestrian scenarios, the difficulty arises not from agent-type diversity but from the
need to model fine-grained social cues, group dynamics, and inherently stochastic be-
haviors. While agent semantics are uniform, many existing methods adopt a decoupled
spatial-temporal modeling strategy—first encoding spatial interactions frame by frame,
then learning temporal dependencies separately [27-31,38,39]. This separation limits
the ability to capture higher-order temporal dependencies and often disrupts the tem-
poral consistency of social interactions in dynamic crowds. Meanwhile, heterogeneous
environments introduce additional complexity due to the coexistence of multiple agent
types. Conventional methods [20, 28, 29, 40, 41] often struggle to handle asymmetric
interactions and semantic distinctions across agent classes, leading to oversimplified or
overly dense graph structures that obscure the relative importance of cross-type relations.
Although recent approaches have attempted to incorporate semantic labels to differ-
entiate agent types [6,34,42], they typically rely on densely connected spatial graphs,
introducing redundant links that dilute informative signals and hinder model efficiency

and interpretability.

Beyond context-specific limitations, a broader challenge lies in the generalizability of
learned interaction representations in multi-agent trajectory prediction. Many existing

models are tightly coupled with particular scene characteristics or training distributions,
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resulting in limited effectiveness when applied to novel or unseen environments. Ad-
dressing this issue requires frameworks that can extract transferable behavioral patterns
without relying heavily on manual annotations or dataset-specific assumptions.

This thesis is motivated by core challenges in trajectory prediction that arise from
both practical complexity and technical limitations. Real-world environments are in-
creasingly dynamic and diverse—ranging from unstructured homogeneous pedestrian
crowds to structured heterogeneous scenarios with multiple agent types—creating de-
mand for models that can capture nuanced social dynamics, reason over heterogeneous
agent semantics, and generalize beyond narrow training distributions. To address these
needs, this thesis develops unified, graph-based frameworks that systematically improve

semantic reasoning, spatiotemporal representation, and generalization.

1.2 Research Aims

The primary aim of this thesis is to advance multi-agent trajectory prediction by devel-
oping novel, robust, and generalizable graph-based frameworks. These frameworks are
designed to enhance semantic expressiveness, spatial-temporal modeling accuracy, and
adaptability in complex interaction scenarios. Traditional methods often face critical
limitations, including poor scalability to heterogeneous agent types, reliance on costly
manual class annotations, limited capacity to capture high-order spatial-temporal de-
pendencies, inefficient information propagation due to multi-step aggregation, and the
neglect of implicit interaction patterns encoded in edge features. This research seeks to

address these challenges through the following objectives:

1. To develop semantic-aware, adaptive graph-based models for heteroge-
neous trajectory prediction: This research aims to design novel graph architec-
tures capable of effectively integrating semantic label information and selectively
modeling interactions between different agent classes. By doing so, it seeks to elim-
inate redundant connections, enhance the representation of asymmetric relational
cues, and ultimately improve the accuracy and efficiency of trajectory prediction

in complex heterogeneous traffic scenarios.
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2. To establish unified spatial-temporal modeling frameworks for homoge-
neous pedestrian environments: This research aims to unify spatial and tem-
poral interactions into coherent modeling frameworks that accurately capture
higher-order interaction patterns and the evolution of social dynamics over time.
Special emphasis is placed on leveraging edge-level relational information to better
represent implicit social influences and temporal dependencies within dynamic

pedestrian crowds.

3. To develop unsupervised and generalizable behavior representation learn-
ing approaches: Recognizing the limitations of annotation-intensive supervised
methods, this research seeks to investigate unsupervised or weakly-supervised
strategies for learning transferable behavioral representations. The ultimate goal
is to enhance model adaptability and robustness, enabling trajectory prediction
frameworks to generalize effectively across both homogeneous pedestrian scenarios
and heterogeneous multi-agent environments, thus reducing reliance on extensive

manual labeling and supporting deployment in diverse real-world settings.

Together, these research objectives directly address key limitations of conventional
deep learning models for trajectory prediction. By incorporating semantic information
and adaptive graph sparsification, the proposed methods improve interaction modeling
in heterogeneous scenarios, while unified spatial-temporal representations deepen un-
derstanding of complex social dynamics in pedestrian crowds. Furthermore, exploring
unsupervised and generalizable behavior representations enhances adaptability to unseen
environments, reducing the need for costly annotations. Collectively, these aims lay
the foundation for robust, interpretable, and transferable trajectory prediction models
applicable to domains such as autonomous navigation, intelligent surveillance, and crowd

management.

1.3 Contributions

This thesis makes several key contributions towards developing more robust, adaptable,
and accurate graph-based spatial-temporal modeling techniques for multi-agent trajectory

prediction, as summarized below:
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» We propose Multiclass-SGCN (Chapter 3), a semantic-aware sparse graph convo-
lutional framework for heterogeneous trajectory prediction. The model embeds
agent-type semantics and motion cues through velocity-label representations and
constructs adaptive sparse interaction graphs via an attention-based masking strat-
egy. This design reduces redundant cross-type connections, captures asymmetric
relational patterns more effectively, and significantly improves prediction accuracy

in heterogeneous traffic scenes with pedestrians, cyclists, and vehicles

« We present UniEdge (Chapter 4), a unified spatial-temporal graph network for
homogeneous pedestrian trajectory prediction. It models high-order cross-time
interactions through a patch-based spatial-temporal formulation and introduces a
dual-graph convolutional module to jointly capture node- and edge-level depen-
dencies. Coupled with a Transformer encoder-based predictor, this framework
achieves strong performance on multiple public pedestrian datasets by modeling

both fine-grained social dynamics and long-range temporal correlations.

« We present BP-SGCN (Chapter 5), an unsupervised framework that learns struc-
tured behavioral representations via pseudo-label-guided deep clustering with
cross-scale structural consistency. This approach enables robust trajectory fore-
casting without manual annotations and generalizes effectively across both hetero-
geneous and homogeneous pedestrian environments, facilitating the discovery of

transferable motion patterns in diverse real-world scenarios.

1.4 Publications

The research related to this thesis has been previously published in the following peer-

reviewed publications:

« Li, R., Katsigiannis, S., & Shum, H. P. H., “Multiclass-SGCN: Sparse Graph-based
Trajectory Prediction with Agent Class Embedding.” In Proceedings of the IEEE
International Conference on Image Processing (ICIP), 2022. ........... (Chapter 3)

« Li, R., Qiao, T., Katsigiannis, S., Zhu, Z., & Shum, H. P. H., “Unified Spatial-Temporal
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Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction.” IEEE Trans-
actions on Circuits and Systems for Video Technology (TCSVT), 2025. . (Chapter 4)

« Li, R., Katsigiannis, S., Kim, T.-K., & Shum, H. P. H., “BP-SGCN: Behavioral Pseudo-
Label Informed Sparse Graph Convolution Network for Pedestrian and Heteroge-
neous Trajectory Prediction.” IEEE Transactions on Neural Networks and Learning

Systems (TNNLS), 2025. .. ..ottt (Chapter 5)

In addition to the listed publications above, there are other peer-reviewed publications

that have not been included in this thesis:

« Li, R, Zhu, Z., Qiao, T., & Shum, H. P. H., “ViTE: Virtual Graph Trajectory Expert

Router for Pedestrian Trajectory Prediction.” under review at AAAI 2026.

« Qiao, T, Li, R., Li, F. W. B., & Shum, H. P. H., “From Category to Scenery: An
End-to-End Framework for Multi-Person Human-Object Interaction Recognition in

Videos.” International Conference on Pattern Recognition (ICPR), pp. 262-277, 2024.

« Qiao, T, Li, R., Li, F. W. B,, Kubotani, Y., Morishima, S., & Shum, H. P. H., “Geometric
Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction
Recognition in Videos” Expert Systems with Applications (ESWA), vol. 290, p.

128344, 2025.

1.5 Thesis Structure

This thesis advances trajectory prediction by leveraging graph-based representation learn-
ing in both heterogeneous and homogeneous multi-agent environments. The chapters
are structured to lead the reader from motivation and theoretical foundations through
methodological innovations to empirical validation, ensuring a coherent and progressive
narrative.

Chapter 1 outlines the importance of trajectory prediction in real-world applications
such as autonomous driving and video surveillance. It highlights the central challenges
of modeling complex spatial-temporal interactions and heterogeneous agent semantics,

and clearly states the research motivation, objectives, and key contributions of the thesis.



Chapter 1. Introduction

Chapter 2 presents a comprehensive literature review covering four key areas: trajec-
tory prediction in both homogeneous pedestrian crowds and heterogeneous multi-agent
environments; advances in spatial-temporal graph representation learning; approaches
to unsupervised behavior clustering; and standard evaluation metrics for trajectory fore-
casting. The chapter systematically identifies the limitations of existing methods and
positions the proposed frameworks within the broader research landscape.

Chapter 3 introduces Multiclass-SGCN, a sparse graph convolutional model for
heterogeneous trajectory prediction. This chapter presents the velocity-label embedding,
adaptive interaction masking, and the model’s ability to selectively capture meaningful
spatial-temporal interactions among diverse agent types.

Chapter 4 presents UniEdge, a unified spatial-temporal graph network for homoge-
neous pedestrian scenarios. It employs a patch-based spatial-temporal formulation and
a dual-graph reasoning mechanism (E2E-N2N-GCN) to jointly model node- and edge-
level interactions, further enhanced with a Transformer-based predictor for long-range
temporal reasoning.

Chapter 5 introduces BP-SGCN, an unsupervised framework for transferable trajec-
tory representation learning. This chapter proposes a pseudo-label-guided clustering
strategy with cross-scale consistency training, enabling generalization across both het-
erogeneous and homogeneous scenes without manual annotations.

Finally, Chapter 6 summarizes the main contributions of the thesis, reflects on the
methodological advances in graph-based trajectory prediction, and outlines future direc-
tions including multimodal and contextual integration, adaptive continual learning, and

closed-loop evaluation in high-fidelity simulation.



CHAPTER 2

Literature Review

Trajectory prediction in multi-agent environments represents a fundamental challenge
in computer vision and robotics, requiring the forecasting of future movement patterns
based on observed historical behaviors while considering complex inter-agent interactions
and environmental constraints. This capability is essential for numerous applications
including autonomous navigation systems [9-11], intelligent surveillance [12-15], and
crowd management [43,44], where understanding and anticipating agent movements

ensures safety and enables proactive decision-making,.

In this chapter, we present a comprehensive review of trajectory prediction research,
systematically examining the evolution from classical approaches to state-of-the-art
graph-based methods. Section 2.1 establishes the foundational concepts by delineating
the distinct challenges posed by homogeneous pedestrian scenarios versus complex het-
erogeneous environments. Section 2.2 delves into the critical aspects of spatial-temporal
modeling, examining how graph-based spatial interactions and temporal dependen-
cies are captured and integrated to enhance prediction accuracy. Section 2.3 reviews
clustering-based approaches for modeling behavioral patterns in trajectory prediction,
highlighting the evolution from traditional distance-based methods to recent deep embed-

ding techniques that enable more expressive and adaptive behavior representation. Finally,

10



Chapter 2. Literature Review

Section 2.4 showcases the evaluation metrics used in trajectory prediction. Throughout
this review, we identify key limitations in existing approaches and highlight research gaps
that motivate our proposed frameworks, demonstrating how our contributions advance
the state-of-the-art in graph-based trajectory prediction across both heterogeneous and

homogeneous settings.

2.1 Multi-Agent Trajectory Prediction

This section provides an overview of multi-agent trajectory prediction across diverse
environmental contexts, organized into two fundamental categories: homogeneous pedes-
trian trajectory prediction (Section 2.1.1) and heterogeneous trajectory prediction (Sec-
tion 2.1.2). The former focuses on predicting future positions of pedestrians in structured,
single-agent-type environments, while the latter addresses more complex scenes involv-

ing diverse agent types such as vehicles, cyclists, and pedestrians.

2.1.1 Trajectory Prediction in Homogeneous Pedestrian Crowds

The field of homogeneous pedestrian trajectory prediction is dedicated to forecasting
the future trajectories of pedestrians. In contrast to heterogeneous scenarios, this setting
presents distinct challenges due to the high stochasticity and intricate social dynamics of
pedestrian behavior. Despite the apparent homogeneity, individual pedestrians exhibit
significant diversity in their underlying behaviors, influenced by latent factors like

personality, intentions, and social affiliations [45,46].

Traditional rule-based approaches

Pedestrian trajectory prediction has long been a topic of interest, well before the advent
of deep learning. Before the rise of data-driven techniques, early pedestrian motion
modeling predominantly relied on physically inspired or rule-based frameworks, which
emphasized interpretability and leveraged handcrafted domain knowledge to describe
agent behaviors. These approaches offer strong interpretability and often reflect intuitive
or domain-specific behaviors. Among them, the Social Force Model (SFM) [47] stands out

as a foundational framework, modeling pedestrians as particles subjected to attractive
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forces toward their goals and repulsive forces from other agents and obstacles. These
typically include an attractive force drawing the pedestrian toward their intended goal,
and repulsive forces generated by nearby agents and static obstacles. According to
Newton’s second law, the net force determines the acceleration of the pedestrian [48],
forming a continuous-time dynamic system. When considering only the attractive
component, the model serves as a basic goal-directed motion generator. This model has
inspired numerous extensions, including the Generalized Centrifugal Force Model (GCFM)
[49], which incorporates anisotropic sensitivity zones and velocity-adaptive forces for
better realism in dense crowds. As reviewed in [50-52], SFM has also been integrated with
heuristic decision layers or game-theoretic components to capture complex interactions

like yielding or negotiation with vehicles.

Another prominent line of rule-based models includes Cellular Automata (CA) ap-
proaches [53,54], which discretize the spatial domain and evolve agent states using local
transition rules. Models such as the Floor Field Model [55] simulate attractive potentials
toward exits and congestion-based repulsive fields, enabling efficient simulation of crowd
flow and evacuation scenarios. Some recent CA-based works extend their applicability
to pedestrian-vehicle interactions in semi-structured zones like drop-off areas [56]. In
addition to force-based models, some early approaches adopted velocity-based heuris-
tics to model motion trends. For example, the Velocity Obstacle (VO) paradigm [57]
predicts collisions based on extrapolated velocities and defines avoidance maneuvers
through geometric rules. Variants like Reciprocal Velocity Obstacles (RVO) [58] account
for mutual adaptation, making them suitable for real-time multi-agent planning. These
models are commonly used in robot navigation and multi-agent systems due to their low

computational cost and real-time applicability.

Despite their conceptual simplicity and computational efficiency, traditional models
are limited by manually crafted assumptions and struggle to generalize to unstructured
environments or capture long-range dependencies. Their deterministic structure and
constrained expressiveness have prompted a shift toward data-driven approaches, which
learn complex interaction patterns from real-world trajectories while retaining the ability

to integrate physical priors.
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Deep learning-based approaches

While traditional models offer interpretable, physics-based frameworks, their limitations
in handling uncertainty and complex human behaviors have driven a shift toward data-
driven deep learning approaches. Early deep learning models for pedestrian trajectory
prediction primarily relied on recurrent neural networks (RNNs) to capture temporal
dependencies. Social-LSTM [28] introduced a social pooling layer to encode interactions
among pedestrians, enabling context-aware forecasting. SS-LSTM [59] further enhanced
this architecture by incorporating occupancy grid—based representations, improving
interaction awareness in dense scenes. However, these deterministic models struggle to
capture the intrinsic uncertainty and multimodality of human motion, prompting a shift
toward generative approaches.

To address the inherently multimodal nature of pedestrian futures, generative models
such as Generative Adversarial Networks (GANs) [60] and conditional VAEs (CVAEs) have
been widely adopted. Social-GAN [21] employs adversarial training to generate socially
plausible, diverse trajectories, using a pooling module to encode interactions. In parallel,
CVAE-based methods offer a probabilistic framework by learning a latent distribution
over future intentions. Representative works include DESIRE [40], which combines
CVAE with inverse reinforcement learning for intent inference; Trajectron++ [61], which
models multiple agents in a dynamic probabilistic graphical model; and Y-Net [5], which
introduces a goal-conditioned decoder to better structure the latent space. Further
enhancements, such as SocialVAE [22], incorporate scene and agent priors to guide
sampling and improve diversity. While CVAE frameworks provide interpretability and
structured uncertainty, they often require careful regularization to avoid mode collapse
or blurred predictions.

Graph-based approaches have gained traction due to their ability to naturally model
spatial interactions among agents. In this paradigm, each pedestrian is represented as
a node, and their interactions are encoded via dynamic edges that evolve over time.
Social-STGCNN [29] introduces a spatial-temporal graph convolution framework that
jointly captures spatial dependencies and temporal evolution. STGAT [38] and Social-
BiGAT [62] apply attention mechanisms on graphs to dynamically weigh neighbors

based on relevance. These methods demonstrate improved generalization in complex
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scenes, especially in crowded or structured environments. Recent works have begun to
explore high-level graph frameworks that combine edge and node features to capture
richer relational information. GroupNet [63] pioneered this direction by introducing
interaction strength and category features to enhance edge significance beyond simple
connections. Following this trend, GC-VRNN [64], HEAT [65], and MFAN [66] further
advance graph modeling by integrating edge features into node embeddings, enhancing

relational reasoning capabilities.

More recent methods adopt Transformer-based architectures to model long-range
dependencies across both spatial and temporal domains. Transformer-based methods [67]
employ attention mechanisms to learn pairwise relationships directly, offering greater
flexibility in multi-agent reasoning. Examples include AgentFormer [68], which encodes
joint trajectories with cross-agent attention, and TUTR [69], which introduces temporal
uncertainty modeling. MultiModalTransformer [70] further extends this by combining

visual and semantic features for scene-aware prediction.

In parallel, diffusion-based methods have emerged as powerful tools for modeling
uncertainty. These models, such as MID [71] and LED [72], formulate trajectory pre-
diction as a denoising process from a Gaussian noise prior. By progressively refining
sampled trajectories, diffusion models achieve high diversity while maintaining physical

plausibility, outperforming traditional GAN/CVAE baselines in recent benchmarks.

Despite these advances, two critical challenges remain in homogeneous pedestrian
settings: (i) effectively capturing high-order, cross-time dependencies and implicit edge-
to-edge influences without disrupting temporal consistency, and (ii) learning transferable
behavioral structures that can generalize to unseen crowd scenarios. This thesis addresses
these gaps through two complementary frameworks: UniEdge (Chapter 4), which uni-
fies spatial-temporal reasoning via a dual-graph, edge-enhanced architecture to model
high-order and edge-centric dependencies, and BP-SGCN (Chapter 5), which integrates
unsupervised behavioral clustering with sparse graph convolution to capture transfer-
able motion patterns without manual annotation, thereby enhancing cross-scenario
adaptability.

For homogeneous pedestrian trajectory prediction, both traditional rule-based ap-

proaches and deep learning-based methods reviewed in this section are evaluated on
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pedestrian-only benchmarks, including ETH/UCY [1,73] and the pedestrian subset of
the Stanford Drone Dataset [74]. These datasets cover a range of crowd scenarios with
varying densities, motion patterns, and interaction complexities. To ensure fair compari-
son between different modeling paradigms, all methods are evaluated using the same
displacement-based metrics. The evaluation protocol is detailed in Section 2.4, while
dataset descriptions and experimental setups are provided in Chapter 4 and Chapter 5.
While substantial progress has been made in modeling pedestrian dynamics, real-
world applications demand extending these approaches to more diverse traffic scenarios
involving heterogeneous agents. This necessitates a deeper examination of models

designed for pedestrian—vehicle or multi-class interactions, as discussed in Section 2.1.2.

2.1.2 Trajectory Prediction in Heterogeneous Environments
Traditional Rule-Based Approaches

In heterogeneous environments involving both pedestrians and vehicles, traditional
rule-based methods have been extended to model the asymmetric and multi-agent nature
of interactions. Rather than focusing solely on pedestrian-pedestrian dynamics, these
methods aim to explicitly encode vehicle influence, often characterized by larger physical
size, higher speed, and non-holonomic constraints. A number of studies extend the SFM
to heterogeneous settings by introducing repulsive forces from vehicles, often shaped
by anisotropic or speed-adaptive distance functions to reflect asymmetric danger zones
[75,76]. To better capture negotiation behaviors in shared spaces, game-theoretic layers
have been added on top of SFM, treating pedestrian-vehicle interactions as sequential
decision games [77,78]. Other works employ heuristic utilities that balance safety and
goal-seeking, with strategies guided by collision risk indicators such as time-to-collision

or projected motion overlap [79].

Deep Learning-Based Approaches

Compared to homogeneous pedestrian settings, heterogeneous trajectory prediction
introduces additional challenges due to the presence of agents with varying dynamics,

such as vehicles, cyclists, and pedestrians. These agents differ in their speed profiles,
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interaction behaviors, and scene constraints, requiring models to reason across types and
capture asymmetric multi-agent interactions [19,34,80]. As discussed in the previous sec-
tion, modeling pedestrian interactions provides valuable insights, but does not generalize

well to real-world traffic scenes that exhibit diverse agent types and behaviors.

Early methods for predicting heterogeneous trajectories frequently employed spatial
reasoning and fusion techniques to model agent dynamics. The Multi-Agent Tensor
Fusion (MATF) framework [81], for example, represents spatial and contextual connec-
tions using a convolutional fusion module, which processed a tensor to maintain spatial
alignment between agents and scene elements. JPKT [82] considers vehicles as rigid
particles, applying kinematics to non-particle entities, and separately models vehicles and
pedestrians using distinct long short-term memory (LSTM) [83] layers. Proposal-based
approaches such as CoverNet [84] generates predefined multimodal trajectory anchors
from observations of both vehicles and pedestrians. DATF [85] models agent-to-agent
and agent-to-scene interactions through the attention mechanism and proposes a new
approach to estimate the trajectory distribution. Furthermore, models based on the Social
Force [47] paradigm have advanced the field of heterogeneous trajectory prediction.
By using physically-inspired forces, they explicitly model the complex interactions and
collision-avoidance behaviors between different classes of agents, such as vehicles and
pedestrians [42,86]. To further refine trajectory realism, methods like the Knowledge Cor-
rection framework [87] fuses domain knowledge with deep networks, balancing predic-
tion accuracy with adherence to traffic semantics. Meanwhile, diffusion-based approaches
such as ParkDiffusion [80] apply stochastic modeling to forecast multimodal outcomes

within structurally constrained parking environments for heterogeneous agents.

Graph representation possesses powerful capabilities for relational reasoning and
representation. Recent studies leverage GNNs to capture intricate spatial and seman-
tic dependencies among diverse traffic agents, as well as their interactions with lanes
and the surrounding environment. For example, Grimm et al. [88] proposed a hetero-
geneous graph structure that integrates both road-bound and non-road-bound agents
via semantic anchor paths, enabling more valid and multimodal trajectory predictions.
The UNIN framework [34] constructs a large-scale, category-aware interaction graph

with hierarchical attention mechanisms to model cross-category interactions within
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an unbounded neighborhood. Building on this direction, HRG+HSG [35] introduces a
risk-aware graph design that incorporates safety constraints to facilitate interpretable
and risk-sensitive forecasting. Other works such as SSS [89] and MVHGN [90] further
address agent heterogeneity by employing adaptive graph structures—using selective
state spaces or multi-view hierarchical message passing—to jointly capture semantic,
spatial, and type-aware relationships. To enhance the expressive power of graph-based
models, a number of approaches [6, 33, 89, 91] explicitly incorporate class labels into
interaction graphs, thereby allowing the model to distinguish agent types and tailor
message passing accordingly.

Despite substantial progress in heterogeneous trajectory prediction, two key chal-
lenges remain: (i) scalability in dense traffic scenes, where complex interaction modeling
can incur prohibitive computational costs, and (ii) reliance on costly, manually anno-
tated class labels to distinguish agent types, which is often impractical in real-world
deployments. This thesis addresses these gaps through two complementary frameworks:
Multiclass-SGCN ( Chapter 3), which incorporates agent-type semantics and motion cues
into a sparse interaction architecture to efficiently capture asymmetric, cross-type depen-
dencies, and BP-SGCN ( Chapter 5), which replaces manual class labels with unsupervised
behavioral pseudo-labels, enabling scalable and label-free modeling of heterogeneous
interactions while maintaining high predictive accuracy.

For heterogeneous trajectory prediction, models are typically evaluated on multi-
agent traffic datasets such as Argoverse [92] and heterogeneous subsets of Stanford Drone
Dataset [74], which include multiple agent types and complex interaction dynamics. In
this thesis, both traditional and deep learning-based heterogeneous approaches are
evaluated under consistent evaluation criteria to enable fair comparison. The evaluation
framework is detailed in Section 2.4, and comprehensive descriptions of the datasets and

experimental settings are provided in Chapter 3 and Chapter 5.

2.1.3 Literature Surveys on Multi-Agent Trajectory Prediction

Several survey and review papers have systematically summarized multi-agent trajec-
tory prediction from complementary perspectives. Existing surveys provide structured

overviews of modeling paradigms, ranging from classical physics-based approaches to
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deep learning and hybrid methods, and analyze how interactions, uncertainty, and mul-
timodality are handled across different model families [46, 93]. These works organize
the literature according to architectural choices, interaction representations, learning

objectives, and commonly used datasets and evaluation protocols.

From the perspective of autonomous driving and mixed traffic scenarios, other surveys
focus specifically on pedestrian—vehicle interactions in heterogeneous environments
[94,95]. They examine interaction modeling strategies for unstructured or shared spaces,
review datasets involving multiple agent types, and discuss challenges related to safety,

scalability, and real-world deployment.

Building on these surveys, this thesis does not replicate their detailed taxonomies.
Instead, it focuses on underexplored aspects of graph-based trajectory prediction, with
particular emphasis on interaction-aware graph representation design, including sparse
graph construction for efficient interaction modeling, semantic abstraction derived with-
out manual labels, and edge-centric relational representations that explicitly model

inter-agent relationships.

2.2 Spatial-Temporal Graph Representation Learning

Understanding and forecasting the motion of multiple agents in dynamic environments
requires capturing both their spatial interactions and temporal evolution. In recent
years, graph-based methods have emerged as a powerful paradigm for trajectory pre-
diction, offering a natural way to represent agent interactions through nodes and edges.
This section reviews spatial-temporal graph representation learning approaches that
model complex multi-agent behaviors. We begin by introducing graph-based interaction
modeling strategies in Section 2.2.1, which focus on how to construct and encode the
relationships between agents using various forms of graphs. Following this, we discuss
spatial-temporal fusion mechanisms in Section 2.2.2, which describe how spatial and
temporal information is integrated within graph-based architectures to allow trajectory

prediction.
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2.2.1 Graph-Based Spatial Interaction Modeling

A primary challenge in trajectory prediction is to effectively model complex spatial
interactions among traffic agents. While early deep learning methods propose to use
spatial pooling mechanisms [21,28] and grid-based mechanisms [59] to aggregate neigh-
borhood information by summarizing nearby agents’ hidden states within predefined
spatial regions or grids, these approaches often assume a fixed interaction range and
struggle to capture more complex, long-range dependencies.

To overcome these limitations, graph architectures have become a dominant paradigm
in the field, as they offer a natural and flexible framework to represent agents as nodes
and their relationships. This allows for explicit modeling of the interaction topology,
which is crucial for understanding social behaviors. This subsection presents an overview
of graph-based spatial interaction modeling techniques, focusing on how inter-agent

relationships are represented and utilized for learning spatial dependencies.

Graph Representation for Homogeneous Pedestrians

In the trajectory prediction field, graph-based spatial interaction modeling has evolved
beyond simple proximity-based topologies, giving rise to diverse designs that capture
complex agent-agent relations. A widely used and foundational approach is the distance-
based graph representation [29,96], in which edges are constructed based on fixed spatial
thresholds or K-nearest neighbors (KNN) computed at each time step. These graphs offer
clear geometric interpretability and computational efficiency. However, they typically
treat all connected neighbors equally, with fixed edge weights that fail to reflect the
varying importance of different interactions. To address this, attention-based graph
representations [38,97-100] have been introduced to assign learnable context-dependent
weights to edges based on the attention mechanism [67,101]. These methods enable the
model to dynamically evaluate the relative importance of neighboring agents, allowing it
to capture asymmetric interactions that are crucial for accurate and interpretable spatial
interaction representations.

Beyond specific architectural choices, sparsity has been increasingly recognized as a
fundamental inductive bias in graph-based interaction modeling. In real-world pedestrian

scenes, interactions are inherently local and asymmetric, and not all nearby agents exert
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meaningful influence at every time step. Constructing densely connected graphs therefore
introduces redundant or noisy interactions, which can dilute salient relational signals
and hinder effective message passing. From a computational perspective, fully connected
interaction graphs incur quadratic complexity with respect to the number of agents,
limiting scalability in crowded scenes. More importantly, recent studies have shown
that selectively sparsifying interaction graphs based on geometric constraints, motion
consistency, or learned relevance can improve both predictive accuracy and robustness
by mitigating over-smoothing and over-squashing effects during graph propagation [102].
Empirical evidence across multiple benchmarks suggests that sparse interaction graphs
can match or outperform dense counterparts while significantly reducing computational

cost, particularly in dynamic or cluttered environments [27,33, 103].

Building on this principle, methods such as SGCN [27] and SDAGCN [103] reduce
superfluous or irrelevant connections by constructing sparse, often directed, graphs.
These models use criteria such as field-of-view constraints, relative motion direction, or
learned attention scores to prune the graph, resulting in more efficient and interpretable
interaction modeling. By focusing only on the most salient agent relationships, these
sparse graphs not only reduce computational overhead but also improve the overall

prediction performance.

In recent years, several studies have also proposed novel graph construction paradigms
to better reflect social structures and behavioral dynamics among agents. Group-based
graphs [63, 104, 105] segment agents into latent groups or clusters based on motion
coherence, social affinity, or spatial proximity, and then model inter-group and intra-group
interactions as separate subgraphs. This hierarchical formulation enables more structured
and scalable representation of multi-agent interactions, reduces noise from irrelevant or
weakly correlated agents, and captures collective behaviors. Besides, HighGraph [31]
proposes a high-order graph convolution operator that goes beyond conventional pairwise
message passing by aggregating information from higher-order node combinations, such
as triplets or cliques. This design allows the model to capture indirect interactions and
complex multi-agent dependencies that are difficult to represent using standard edge-
based graph convolutions. Together, these diverse graph formulations reflect a growing

recognition that spatial interactions in pedestrian dynamics are structured, context-
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dependent, and often asymmetric—properties that naive or uniform graph designs cannot
fully capture.

In Chapter 4, we further extend the concept of high-order graphs by introducing
a unified graph structure that transforms complex high-order cross-time interactions
into simplified first-order relationships, enabling efficient and expressive modeling of
long-range dependencies across both space and time while preserving the underlying
relational dynamics. Furthermore, Chapter 5 complements this in homogeneous pedes-
trian settings where agent semantics are uniform by constructing sparse, semantically
informed interaction graphs guided by unsupervised behavioral pseudo-labels, thereby
enabling the learned graph topology to adapt across varying crowd scenarios without

manual annotation.

Graph Representation for Heterogeneous Environments

Recent advances in trajectory prediction for dense and mixed traffic environments have
increasingly leveraged graph neural networks to model the complex and dynamic in-
teractions among heterogeneous agents such as vehicles, pedestrians, and cyclists. In
such settings, the diversity of agent kinematics, motion constraints, and interaction se-
mantics introduces additional modeling challenges compared to homogeneous scenarios.
To address these complexities, a growing body of research has explored constructing
heterogeneous graphs in which nodes explicitly represent different agent types and edges
encode their interaction patterns. These edges can incorporate various relational cues,
including spatial proximity, relative velocity, and semantic role, enabling the model to
reason about both intra-class behaviors, such as coordinated pedestrian movement, and
inter-class interactions, such as pedestrian-vehicle negotiation in shared spaces. By lever-
aging this structured representation, heterogeneous graph frameworks aim to capture
asymmetric influences between agents, account for type-specific motion dynamics, and
improve prediction robustness in diverse, real-world traffic scenes.

For example, HTFNet [106] and VNAGT [91] employ a heterogeneous graph network
combined with a transformer-based attention mechanism that uses relation-dependent
parameters to distinguish the influence between different types of agents. HEAT [65]

and NLNI [34] introduce a type-specific heterogeneous graph attention encoder net-
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work for capturing both intra- and inter-class interactions, enabling simultaneous and
accurate trajectory prediction for multiple agent types in complex traffic scenarios. To
enhance the computation efficiency of graph message passing, SMGCN [33] proposes a
sparse graph architecture to capture important heterogeneous interactions. MVHGN [90]
further enhances prediction by combining multi-view logical correlations and adaptive
spatial topology networks, allowing the model to mine both micro-level and macro-level
logical-physical features of heterogeneous traffic agents. Additionally, models like TraG-
CAN [107] and HDGT [108] extend the heterogeneous graph paradigm by integrating
spatial attention mechanisms and scene encoding, respectively, to better capture the
diverse semantic relationships and context-dependent interactions among agents of dif-
ferent types. These innovations demonstrate that heterogeneous graph neural networks,
equipped with specialized encoders, attention mechanisms, and context integration, are
highly effective for modeling the nuanced behaviors and interactions of diverse agents,
leading to significant improvements in trajectory prediction accuracy and robustness in
real-world traffic environments. While these approaches have significantly improved
prediction accuracy, challenges remain in designing graph structures that are both com-
putationally efficient and semantically expressive, which motivates the methods proposed

in this thesis.

In heterogeneous trajectory prediction, constructing a graph representation that is
both computationally efficient and semantically expressive enough to capture diverse
inter- and intra-class behaviors remains a significant challenge. In Chapter 3, we address
this by integrating explicit agent-class semantics with an adaptive sparse graph archi-
tecture, enabling efficient modeling of asymmetric dynamics between different agent
types. In Chapter 5, we present a complementary bottom-up framework that leverages
unsupervised deep clustering to derive behavioral pseudo-labels directly from motion
data, uncovering nuanced motion patterns without manual annotation. Together, these
approaches advance semantic and structural graph representation learning, achieving

state-of-the-art performance in heterogeneous trajectory prediction.

22



Chapter 2. Literature Review

2.2.2 Spatial-Temporal Fusion for Trajectory Prediction

While graph-based models are effective at capturing spatial interactions at individual time
steps, trajectory prediction is inherently a sequential task that requires modeling how
these interactions evolve over time. Consequently, a key component of modern trajectory
prediction frameworks is the mechanism for fusing spatial and temporal information.
A widely adopted strategy in the literature is the decoupled spatial-temporal fusion
paradigm, wherein spatial features are first extracted independently at each time step,
and a dedicated temporal modeling module subsequently processes the resulting sequence
of spatial embeddings to learn the underlying sequential dynamics [109].

The choice of the temporal modeling module has evolved. Early works, and many
strong baselines to this day, adopt Recurrent Neural Networks (RNNs), particularly Long
Short-Term Memory (LSTM) [83] and Gated Recurrent Units (GRU) [110], to process
the temporally ordered spatial graph features [111-115]. RNNSs are naturally suited for
capturing temporal dependencies but suffer from limited ability to model long-term
dependencies due to gradient vanishing and their inherently sequential nature, which
restricts parallelization during training. To alleviate these issues, Temporal Convolutional
Networks (TCNs) [116] have been increasingly adopted. TCNs use 1D convolutions
over time to capture fixed-size receptive fields while allowing for parallel processing.
Unlike RNNSs, they can model long-range dependencies via dilation and deeper layers.
Methods such as Social-STGCNN [29] and SGCN [27] are representative of this line of
work, combining spatial GCNs with TCN backbones for more scalable and temporally
expressive modeling. More recently, Transformer-based architectures have emerged as
a powerful alternative for temporal modeling in trajectory prediction. Transformers
leverage global self-attention to model dependencies across all time steps simultaneously
and have shown strong performance in capturing complex temporal patterns, especially
in multimodal or highly dynamic environments [68,69]. They overcome key limitations
of RNNs (sequential computation) and TCNs (limited context windows) by attending to
the entire trajectory history in a data-driven and content-aware manner.

Despite the widespread adoption and success of this decoupled spatial-temporal
paradigm, it has a fundamental limitation: the separation of spatial and temporal pro-

cessing can disrupt the natural inter-dependencies within spatial-temporal representa-
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Encoding information Node-level encoding Edge-level encoding Representative
works
Trajectory geometry Absolute positions or Relative distance / Social-
displacements relative velocity relations LSTM [28];
STGCNN
[29];
STGAT [38];
Trajectron++
[61];
AgentFormer
(68]
Agent semantics / type Explicit class or role Type-aware or UNIN [34];
(supervised) embeddings asymmetric relations HSG [35];
Multiclass-
SGCN
(Chapter 3)
Agent semantics / type Behavioral or Implicit type-dependent ~ BP-SGCN
(label-free) motion-based interactions (Chapter 5)
pseudo-labels
Relational enrichment Implicit edge-to-node Edge-enhanced but GC-
(node-centric) aggregation node-updated relations VRNN [64];
HEAT [65];
MFAN [66]
Relational enrichment Node representations Explicit edge UniEdge
(edge-centric) conditioned on representations with (Chapter 4)

edge-centric modeling independent states

Table 2.1: Design space of node- and edge-level encodings in graph-based trajectory
prediction. The table summarizes how geometric and semantic information is distributed
across nodes and edges in existing methods, and highlights distinct relational modeling
paradigms explored in this thesis.

tions [117,118]. By first encoding interactions frame-by-frame and then learning temporal
dependencies, these models often fail to capture high-order cross-time interactions—for
example, how an agent’s position at time ¢ — 2 directly influences a neighbor’s behavior
at time ¢ This multi-step aggregation process can lead to information dilution and a phe-
nomenon known as "under-reaching” [119] where important long-range spatial-temporal
cues are weakened or lost before they can inform the final prediction. This limitation hin-
ders the model’s ability to reason about complex, evolving social dynamics, particularly

in scenarios that require immediate and nuanced responses to environmental changes.
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2.2.3 Representation Design for Graph Construction

Table 2.1 summarizes the representation design space of graph-based trajectory predic-
tion methods from the perspective of node- and edge-level encodings. Specifically, it
categorizes how geometric information, agent semantics, and relational structures have
been encoded either at nodes or edges in existing literature, together with representative
works adopting each design choice.

As shown in the table, most existing approaches primarily encode trajectory geometry
and agent semantics at the node level, while edge representations are commonly limited to
relative geometric relations or attention-based weights. Supervised semantic information
is typically incorporated via explicit class or role embeddings, whereas label-free semantic
abstractions are far less explored, particularly in heterogeneous trajectory prediction
where such labels are costly or unavailable. This highlights a semantic representation
gap, where existing methods rely heavily on manually annotated agent types, limiting
their scalability and practical applicability. Importantly, Table 2.1 also reveals a clear
gap in relational modeling: although several methods incorporate edge features to assist
node updates, these approaches remain fundamentally node-centric, with edges lacking
independent representations or temporal dynamics. Explicit edge-centric modeling,
where relations are treated as first-class entities with their own states, remains largely

underexplored prior to this thesis.

2.3 Unsupervised Behavior Clustering

The clustering of temporal trajectory patterns allows modeling the behavioral groups
for better trajectory prediction [111, 120]. Early works focus on the raw trajectory
represented as 2D coordinates. Support vector clustering is introduced as a closed-
loop method on motion vectors for motion behavior representations [121]. K-means on
trajectory vectors or sequence key points obtain cluster centers to enhance trajectory
prediction [111,122]. DBSCAN is proposed to avoid manually specifying cluster numbers,
adding more flexibility and interpretability to behavior patterns [120]. GP-Graph directly
uses the absolute distance among pedestrians to determine the division of group [25].

The recent PCCSNet leverages BiLSTM network to encode coordinates prior to K-means
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clustering, identifying behavioral modalities [123]. In addition to modalities, FEND
further applies 1D CNN and LSTM for trajectory encoding and employs the K-means for
long-tail trajectory clustering to distinguish trajectory patterns [124].

However, most existing methods rely on shallow trajectory representations, limiting
their ability to capture nuanced, evolving behaviors. Additionally, distance-based cluster-
ing approaches often struggle with complex motion patterns. To address these issues,
we propose a cascaded optimization scheme featuring an end-to-end Deep Embedded
Clustering (DEC) [125] module, which iteratively refines cluster assignments using a
KL-divergence objective. This dynamic adaptation yields richer latent representations,

enabling a more data-driven and expressive approach to modeling agent behaviors.

2.4 Evaluation and Metric

To quantitatively assess the performance of the trajectory prediction models presented in
this thesis, we employ two of the most widely adopted metrics in the field: the Average
Displacement Error (ADE) and the Final Displacement Error (FDE). These metrics evaluate
the pixel or real-world coordinate distance between the predicted path and the ground-

truth path.

2.4.1 Average Displacement Error (ADE)

The Average Displacement Error measures the average L2 distance between the predicted
trajectory points and the ground-truth points over the entire prediction horizon. It
provides a comprehensive assessment of the overall prediction accuracy across all future

time steps. The ADE is calculated as:

Tp'r‘ed

N
ADE= —— pl— pt 2.1
N x de ; 2 Hpt ptHZ (2.1)

where N is the total number of agents in the scene, 7,4 is the length of the prediction
horizon, p! = (2%, ) represents the predicted 2D coordinates for agent 7 at future time
step t, and p! = (2!, y) are the corresponding ground-truth coordinates. The operator

|| - ||2 denotes the Euclidean (L2) norm.
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2.4.2 Final Displacement Error (FDE)

The Final Displacement Error specifically evaluates the accuracy at the end of the predic-
tion horizon. It is defined as the L2 distance between the predicted final destination and
the ground-truth final destination at time step 7),,.4. This metric is particularly important
for assessing a model’s ability to forecast long-term intentions and final goals. The FDE

is calculated as:

1 al AL 7
FDE = v 2 1570 = Pr,..0ll2 (2.2)

where the variables are defined identically to those in the ADE calculation.

2.4.3 Evaluation of Multimodal Predictions

Since pedestrians’ future movements are inherently multimodal, modern trajectory pre-
diction frameworks, including those developed in this thesis, typically generate multiple
plausible future trajectories to capture this uncertainty [21,27,28]. In line with standard
evaluation practice, our models generate K (e.g., K = 20) trajectory samples for each
agent. To enable fair comparison with other state-of-the-art generative models, evalua-
tion metrics are computed on the single trajectory sample that achieves the minimum
displacement error relative to the ground truth. While this best-of- K evaluation strategy
is widely adopted in the literature, alternative evaluation choices or dataset-specific
conventions may exist across different benchmarks; unless otherwise stated, this thesis

adheres to the standard evaluation protocols associated with each benchmark.
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CHAPTER 3

Semantic-Aware Sparse Graph Modeling for Heterogeneous

Trajectory Prediction

Portions of this chapter have previously been published in the following peer-reviewed

publication [32]:

« Li, R., Katsigiannis, S., & Shum, H. P. H., “Multiclass-SGCN: Sparse Graph-based
Trajectory Prediction with Agent Class Embedding.” In Proceedings of the IEEE

International Conference on Image Processing (ICIP), 2022.

Trajectory prediction of road users in real-world scenarios is challenging because
their movement patterns are stochastic and complex. Previous pedestrian-oriented works
have been successful in modelling the complex interactions among pedestrians, but fail in
predicting trajectories when other types of road users are involved (e.g., cars, cyclists, etc.),
because they ignore user types. Although a few recent works construct densely connected
graphs with user label information, they suffer from superfluous spatial interactions
and temporal dependencies. To address these issues, we propose Multiclass-SGCN, a

sparse graph convolution network based approach for multi-class trajectory prediction
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that takes into consideration velocity and agent label information and uses a novel
interaction mask to adaptively decide the spatial and temporal connections of agents
based on their interaction scores. The proposed approach significantly outperformed
state-of-the-art approaches on the Stanford Drone Dataset, providing more realistic and

plausible trajectory predictions.

3.1 Introduction

Trajectory prediction has drawn considerable attention with the development of au-
tonomous vehicles in recent years. Specifically, models take the observed trajectories
of different agents in real-world scenes to predict their future movement patterns, ben-
efiting self-driving cars for collision avoidance [9], as well as anomalous movement
flow detection [126]. To tackle the challenge of modeling the complex and stochastic
nature of social interaction patterns, methods focusing on spatial interaction model-
ing and temporal dependency capturing are proposed. Social-LSTM [28] uses pooling
windows for interaction modeling and recurrent architecture for temporal capturing,
whereas Social-STGCNN [29] uses relative distance to measure interactions between
agents and temporal convolution networks (TCN) [116] to handle temporal dependencies.
STAR [127] and TF [128] propose transformer-based [67] architectures for both spatial
and temporal aspects, achieving impressive performance. As densely connected graphs
may generate superfluous interactions, leading to impractical computational costs, Sparse
Graph Convolution Network (SGCN) [27] proposes a self-attention based sparse graph
architecture to mitigate these problems.

The main challenge of trajectory prediction is to consider the different movement
behaviors of different classes of agents. The aforementioned research only focuses on
pedestrians and does not consider other classes of agents, such as cars and cyclists, which
have a significant effect on trajectory prediction. Intuitively speaking, even if two agents
have a similar velocity, human instincts would force us to pay more attention to the
movements of the larger agents, such as considering car over bicycle. To address this issue,
Semantics-STGCNN [3,129] considered class labels for multi-class trajectory prediction

by embedding agent-label features into the velocity representations [130], ensuring that
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the upcoming GCN [131] aggregates both features. Nevertheless, Semantics-STGCNN
still suffers from the superfluous interactions problem as it uses a densely connected
graph. It also lacks a separate modeling of temporal dependencies, thus suffering from
long-term predictions.

In this paper, we propose Multiclass Sparse Graph Convolution Network (Multiclass-
SGCN), an attention-based sparse GCN for multi-class trajectory prediction that models
interactions and temporal dependencies among multi-class agents in real scenes. We
introduce a novel method to embed the correlated agent label and velocity features to
build the velocity-label graph (VLG) representation, with particular care to learn the
optimal embedding for each feature separately. In the sparse graph learning module, we
designed a novel adaptive interaction mask to spatially and temporally evaluate attention
patterns and generate plausible sparse adjacency matrices, enabling each agent to focus
only on explicit neighbours and important time steps. Finally, GCN [131] and TCN [116]
layers are employed for the final trajectory prediction.

Performance was evaluated on the Stanford Drone Dataset (SDD) [74] against state-of-
the-art approaches, showing that our proposed model outperforms all existing methods
for all the examined evaluation metrics by a significant margin.

The contributions of this work are: (1) We present Multiclass-SGCN, a GCN for
predicting multi-class agent trajectories, which outperforms state-of-the-art methods. (2)
To effectively model the different patterns of multi-class agent trajectories, we propose a
novel algorithm to separately embed the correlated features of class label and velocity,
resulting in an optimal embedding for different natures of input features. (3) To create
sparse attention of neighbors from different classes, we propose an adaptive interaction

mask that adaptively filters neighbors of lower influence.

3.2 Multiclass-SGCN

Given a series of 7" video frames with IV agents, the corresponding 2-D trajectory coordi-
nates (i, y;), velocity V} = (2! —x!_;,yi —y!_,), and one-hot encoded semantic labels L,
Vte[l,T]and Vi € [1, N], the goal of multi-class trajectory prediction is to predict the

future trajectory coordinates of each agent (¢, y!) V't € [T + 1,T']. An overview of the
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proposed Multiclass-SGCN for trajectory prediction is provided in Figure 3.1. We employ
SGCN [27] as our backbone as it introduces a self-attention mechanism to enhance the
spatial and temporal sparsity of the neighbour graph. The two key components of our
network are the velocity label graph embedding that separately embeds the velocity
and class labels for an optimal representation, and the enhanced sparse graph learning
that adaptively determines the neighbour graph for each agent based on its attention

preferences.

3.2.1 Velocity-Label Graph (VLG) Embedding

We observe that the two important factors that affect the movement of an agent are the
classes and velocity of neighbours. Class labels, Ei, can indicate how different classes
of agents, such as pedestrian, car, cyclist, have different influences [3]. Velocity, VZ,
enhances the ability of a model to capture the geometric features of agents [29]. As
velocity and classes are highly correlated, such as a car would have a higher speed, it
would be advantageous to model them together. At the same time, as they are two

different features, it would be better to embed them separately.

To encode the spatial and temporal features, we construct a spatial VLG (SVLG) and
a temporal VLG (TVLG). SVLG contains the features of all the agents at time step ¢, with
Gsug = (X4, Ay), Xy = {x} | i = 1,..., N}, while TVLG contains the features of each
individual agent over all time steps, such that G;,;, = (X", A"), X' = {x} |t =1,...,T}.
X is the concatenation of V; and L, and A; and A’ are adjacency matrices that represent
the edges of the SVLG and TVLG respectively, indicating whether the nodes are connected
(denoted as 1) or not (denoted as 0). Following [27], A’ is initialised as 1 and A; as an

upper triangular matrix filled with 1.

We propose a velocity-label graph (VLG) embedding that combines the advantages
of velocity and class label, while learning an optimal embedding for each of them. The

graph embedding of VLG is computed by combining the embeddings of velocities and
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one-hot encoded class labels of agents:

EUZ!] Evlg + Evlg

vlg = ¢(leg7 WE%Q) (31)

Ulg = gb(leg? WEflg)

where G, g, and G4 , are subgraphs of VLG corresponding to the velocity and label features

respectively, ¢(-, -) a linear transformation, Wy € R**PEuy and Wpge € REY*PEuy the
vlg vig

weights of the linear transformation, L the length of encoded one-hot labels, and D o

the embedding size.

3.2.2 Enhanced Sparse Graph Learning

We enhance the sparse graph learning module of SGCN [27] to better model the multi-
class nature of the problem. This module is constructed from the numerical interaction
scores calculated by the self-attention module. It then extracts high-level spatial-temporal
interaction features and uses an interaction mask with a fixed threshold of 0.5 to optimise
the sparsity of graph representations by pruning weak connections with lower attention
relevance. We argue that the interaction mask threshold should be adaptively adjusted
through the learning process of each individual agent.

Given the embedded SVLG and TVLG, E,, and Ey,4, a self-attention module [67] is

implemented to calculate the attention scores A between each node pairs:

Qvlg = gb(Evlga WU!Q)a Kvlg = QS(Evlga Wvlg)

wia X KT
Avg = Softmax(Q 9 V19

dvlg

where ¢(-, -) denotes a linear transformation, W(Slg and W[v{lg are learnable weight matri-
ces, \/% is the scaled factor for numerical stability. The output spatial and temporal
attention matrices, A, and Ay, are of size ' x N x N and N x T x T, respectively.
Following [27], we implement a feature enhancement module using a series of asymmetric
convolution layers [132] to extract high-level interaction features, and using one-by-one

convolutions on the spatial attention scores to capture the temporal dependencies, thus
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creating the high-level interaction attention features Fj,;, and Fj,.

To sparsify the high-level interaction attention matrix, we propose an adaptive inter-
action mask (AIM) to extract the set of neighbors in SVLG and TVLG. Manually-set fixed
interaction thresholds, as used by SGCN [27], cannot fully describe the patterns of spatial
interactions and temporal dependencies of each agent. We propose an average operator
to adaptively calculate a threshold and remove the influence of less important neighbors,
allowing the system to adapt according to the interactions of various types of agents, thus
being more suitable for more complex scenes compared to the global threshold approach
of SGCN [27]. In particular, the (7, j)-th element of the adaptive sparse interaction mask
M4 is computed as:

S o (Fugling))

L, o(Fugli, j]) > N

Mygli, j] = (3.3)

0, otherwise

where o indicates the Sigmoid function. Using the adaptive interaction mask, we con-
struct a sparse adjacency matrix for graph convolution, and because of the removal
of superfluous connections, the sparse graph enables the GCN model to learn from

influential neighbors, thus improving both training speed and prediction accuracy.

Similarly to [27], we apply two separate branches of the GCN [131] to fuse the sparse
spatial VLG and sparse temporal VLG. The two GCN branches differ in the order of their
input, as the first is fed the spatial VLG before the temporal VLG, whereas the second is
fed in the reverse order. Then, the last outputs of these two GCN branches are summed
to provide the final trajectory representation H. Finally, temporal convolution networks
(TCN) [116] are used on the temporal dimension, assuming that the coordinates (z%, !)
of agent 7 at frame ¢ follow the bi-variate Gaussian distribution as N (%, o, pt), a cascade
of TCN layers can be used to predict parameters in the bi-variate Gaussian distribution.
To train the proposed network, we minimize the negative log-likelihood loss function to

estimate the trained parameters following [29].
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3.3 Experimental Results

The proposed model was trained and validated on the Stanford Drone Dataset (SDD) [74].
SDD has class labels for six different types of agents, including pedestrian, cyclist, cart,
car, skater, and bus. Data is captured from bird’s-eye view by flying a drone over Stanford
University’s campus. We follow existing works [27], [20] that apply 8 observed frames
(3.2 seconds) to predict the next 12 frames (4.8 seconds), then 20 samples are derived
from the learnt multivariate distribution. The model was evaluated in terms of the
Minimum Average Displacement Error (mnADE) and the Minimum Final Displacement
Error (mFDE) as in [29], as well as in terms of the Average ADE (aADE) and the Average
FDE (aFDE) proposed by [3] who argued that aADE and aFDE evaluate the models more
holistically. The Adam [133] optimizer was used for training, with a 0.0001 learning rate
and a batch size of 256. To compare with Semantics-STGCNN [3], we also normalized
and denormalized the input trajectory data with a scaling factor of 10. Training typically

converged in around 35-45 epochs.

3.3.1 Quantitative Results

The proposed method was compared to 8 models in total, including the baseline Linear
model, energy function based behavioral model (SF [134] ), Social-LSTM [28], Social-
GAN [20], CAR-Net [135], DESIRE [40], Social-STGCNN [29] and Semantics-STGCNN [3],
the existing state-of-the-art model for multi-class trajectory prediction. Notably, the
results of Semantics-STGCNN were evaluated using the published source code, whereas
other results were provided by [3]. Results are presented in Table 3.1 in terms of mADE
and mFDE. It is evident that the proposed model outperformed all other models, including
the latest Semantics-STGCNN [3] with a 3.76 decrease in mADE and 3.71 decrease in
mFDE, indicating the importance of considering label information and velocity in complex
trajectory prediction tasks, as well as of using an adaptive interaction mask. Furthermore,
as discussed in [3], common minimum-based metrics (mADE and mFDE) focus only on
the best sampled sample, which is not comprehensive in real-world scenarios, while
average-based metrics (AADE and aFDE) can be more plausible and high level. To this
end, we compared the proposed Multiclass-SGCN with Semantic-STGCNN using aADE
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Table 3.1: Performance comparison with the state-of-the-arts.

Model mADE mFDE
Linear 37.11 63.51
SF [134] 36.48 58.14
Social-LSTM [28] 31.19  56.97
Social-GAN [20] 27.25  41.44
CAR-Net [135] 25.72 51.80
DESIRE [40] 19.25  34.05

Social-STGCNN [29] 2646 4271
Semantics-STGCNN [3] 18.12  29.70

Multiclass-SGCN (ours) 14.36  25.99

Table 3.2: Performance comparison with Semantics-STGCNN.

Model mADE mFDE aADE aFDE

Semantics-STGCNN [3] 18.12 29.70  33.14 61.14
Multiclass-SGCN (ours) 14.36 25.99 22.87 45.30

and aADE (Table 3.2), demonstrating a significant improvement of more than minus 10

for both metrics.

To further validate the contribution of class labels (CL), separate embedding (SE) of the
VLG, and adaptive interaction mask (AIM), we conducted three ablation experiments by
evaluating three variants of the proposed method: i) Mutliclass-SGCN w/o SE denotes that
the embedding of the input graph was computed from the whole feature matrix, instead
of separately for velocity and labels (Section 3.2.1); ii) To evaluate the effectiveness of our
sparsification design. Mutliclass-SGCN w/o AIM denotes that a manually set interaction
threshold (£ = 0.5) was used for all agents to measure the existence of their neighbors,
as in SGCN [27], instead of our proposed adaptive interaction mask (Section 3.2.2); iii)
Mutliclass-SGCN w/o CL denotes that the embedding of the input graph was computed
only for velocity, instead of both velocity and class labels. Results in Table 3.3 show that
the proposed use of class labels and of the SE and AIM modules is important for boosting
the performance of the model, especially AIM, which led to a 43.3% reduction in aADE
and a 41.2% reduction in aFDE, indicating the importance of adaptively modeling the

interaction patterns of each agent, because agents of different classes may have different
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Table 3.3: Ablation study results.
Model mADE mFDE aADE aFDE

Multiclass-SGCN w/o SE 14.77  25.44 2474 48.42
Multiclass-SGCN w/o CL 15.32 26.39  26.29 50.30
Multiclass-SGCN w/o AIM  22.05 29.53 40.33 76.99
Multiclass-SGCN (ours) 14.36 2599 22.87 45.30

attention preferences.

3.3.2 Qualitative Results

Predicted trajectories by the proposed Multiclass-SGCN and Semantics-STGCNN (3] for
one frame from three scenarios are shown in Figure 3.2, demonstrating that our proposed
model can make more realistic and consistent trajectory predictions. Specifically, in the
complex circular scenario (left-most images in Figure 3.2), which contains too many
agents, both methods failed to converge to the ground-truth, especially when agents
are turning or moving at high speeds, but the prediction results of our Multiclass-SGCN
exhibit less divergence and are better aligned with the ground-truth trajectories. Moreover,
for some static agents, Semantics-STGCNN generates abnormal predictions, while our
model does not. As for the middle images in Figure 3.2, it is clear that Semantics-STGCNN
totally diverges from the ground-truth, whereas our results match the ground-truth
considerably. Furthermore, for the right-most images in Figure 3.2, both methods are
close to the ground-truth, but Multiclass-SGCN presents more stable trajectories with
lower amplitude oscillations.

To summarize, Semantics-STGCNN underperforms because the densely connected
graph inherently introduces superfluous interactions that disrupt normal trajectories, and
the lack of separate modeling of temporal dependencies results in unstable movements,
even when no social interactions occur. In contrast, Multiclss-SGCN overcomes these
issues by modeling both spatial interactions and temporal dependencies with velocity-
label graph embedding and enhanced sparse graph learning modules, leading to better
predictions.

Moreover, we present ablation visualizations in Figure 3.3 to qualitatively assess the
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(b) Muticlass-SGCN (ours)

Figure 3.2: Comparisons between our method and Semantics-STGCNN. Blue filled circles
are observed trajectories, red hollow circles are ground-truth, purple lines in (a) are
predicted results by [3], green lines in (b) are predicted results by the proposed Multiclass-
SGCN.

contribution of each component to the prediction performance. In all three scenes, the
full Multiclass-SGCN produces smoother trajectories that stay closer to the ground truth,
especially around turning points and interaction areas, where deviations are significantly
reduced. In contrast, removing AIM or SP leads to clearly larger prediction errors and
overly linear trajectories in regions with long-term forecasting and dense interactions,
demonstrating that both modules are essential for capturing fine-grained multi-class

interactions and scene constraints.

3.4 Summary

This chapter presented Multiclass-SGCN, a sparse graph-based trajectory prediction
framework tailored for heterogeneous traffic environments involving multiple agent
types. By integrating semantic agent-class information with motion features through a
velocity-label graph and employing an adaptive interaction mask to filter low-relevance

connections, the framework effectively captures asymmetric cross-type interactions while
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Multiclass-SGCN Multiclass-SGCN Multiclass-SGCN
(proposed) (w/o AIM) (w/o SP)

Figure 3.3: Multiclass-SGCN vs. Multiclass-SGCN (w/o AIM) vs. Multiclass-SGCN (w/o
SP) in three different scenes. Blue filled circles are observed trajectories, red hollow circles
are ground-truth, green lines are predicted results. Sample trajectories with significant

differences are highlighted in the box.
maintaining computational efficiency.

While heterogeneous settings pose unique challenges due to agent diversity, homoge-
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neous pedestrian scenarios present a different set of difficulties. In such environments,
the absence of class distinctions shifts the emphasis toward capturing subtle, high-order
dependencies and edge-level relational dynamics that emerge purely from motion and
spatial context. The next chapter addresses these challenges with the UniEdge framework,
which unifies spatial-temporal reasoning into a single high-order graph formulation,

enabling efficient and expressive modeling of pedestrian interactions.
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CHAPTER 4

Unified Spatial-Temporal Graph Reasoning in Homogeneous

Pedestrian Trajectory Forecasting

Portions of this chapter have previously been published in the following peer-reviewed

publication [136]:

. Li, R., Qiao, T, Katsigiannis, S., Zhu, Z., & Shum, H. P. H., “Unified Spatial-Temporal
Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction” IEEE Trans-
actions on Circuits and Systems for Video Technology (TCSVT), 2025.

Pedestrian trajectory prediction aims to forecast future movements based on historical
paths. Spatial-temporal methods often separately model spatial interactions among pedes-
trians and temporal dependencies of individuals. They overlook the direct impacts of
interactions among different pedestrians across various time steps (i.e., high-order cross-
time interactions). This limits their ability to capture spatial-temporal inter-dependencies
and hinders prediction performance. To address these limitations, we propose UniEdge
with three major designs. Firstly, we introduce a unified spatial-temporal graph data

structure that simplifies high-order cross-time interactions into first-order relationships,

41



4.1. Introduction

enabling the learning of spatial-temporal inter-dependencies in a single step. This avoids
the information loss caused by multi-step aggregation. Secondly, traditional GNNs focus
on aggregating pedestrian node features, neglecting the propagation of implicit inter-
action patterns encoded in edge features. We propose the Edge-to-Edge-Node-to-Node
Graph Convolution (E2E-N2N-GCN), a novel dual-graph network that jointly models ex-
plicit N2N social interactions among pedestrians and implicit E2E influence propagation
across these interaction patterns. Finally, to overcome the limited receptive fields and
challenges in capturing long-range dependencies of auto-regressive architectures, we
introduce a transformer encoder-based predictor that enables global modeling of temporal
correlation. UniEdge outperforms state-of-the-arts on multiple datasets, including ETH,

UCY, and SDD.

4.1 Introduction

The aim of pedestrian trajectory prediction is to forecast future paths based on observed
movements (Figure 4.1(a)). High-precision prediction systems are crucial for applications
like self-driving vehicles [8, 137] and video surveillance [138]. Specifically, in intelli-
gent surveillance systems, especially at accident-prone intersections, early detection of
pedestrian crossing intentions within a few seconds enables timely warnings to approach-
ing vehicles through Vehicle-to-Everything (V2X) communication between vehicles,
infrastructure and pedestrians, providing sufficient time for vehicles to react and reduce
accident risks [139].

Predicting pedestrian trajectory is inherently challenging, primarily due to the com-
plexity of interactions in which pedestrians continuously adjust their movements based
on the evolving dynamics of others over multiple time steps. Spatial-temporal graph
architectures (Figure 4.1(b)) are widely used to analyze human motions [140, 141] and
pedestrian trajectories [7,25,27,29,30,38,39, 62], capturing spatial interactions within
each frame and temporal dependencies over time.

This challenge is particularly severe when modeling high-order cross-time interac-
tions, i.e., complex interactions among pedestrians across multiple time steps. Traditional

spatial-temporal graph architectures require multiple steps to capture these interactions,
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(a) Pedestrian trajectories (¢) Our unified approach

Figure 4.1: Motivation Illustration. (a) Real-world pedestrian trajectories over multiple
time frames. (b) Existing spatial-temporal approaches separately model the spatial
interactions among pedestrians and temporal dependencies of individuals. (c) Our
unified spatial-temporal graph integrates spatial-temporal inter-dependencies and
simplifies high-order cross-time interactions into first-order relationships.

where each node first aggregates spatial information at individual time steps and then
addresses temporal dependencies through temporal networks. STGAT [38] combines
graph attention [101] with Long Short-Term Memory (LSTM) [83] for sequential tempo-
ral modeling, while Social-STGCNN [29] and SGCN [27] advance to integrating Graph
Convolutional Network (GCN) [131] with Temporal Convolutional Network (TCN) [116]
for parallel processing. This paradigm has two key disadvantages: (1) when processing
high-order interactions among pedestrians, this multi-step aggregation paradigm leads
to potential under-reaching [119] due to increased effective resistance [102], where im-
portant interaction patterns are diluted and compressed with the increase of aggregation
steps; and (2) the separation of spatial and temporal processing can disrupt the natural
unified spatial-temporal inter-dependencies observed in real-world scenarios [117,118],

particularly in situations requiring immediate response to dynamic changes.

Another challenge lies in modeling the implicit influence propagation through edges
in pedestrian social interactions. While Graph Neural Networks (GNNs) are widely
adopted for modeling pedestrian interactions [25, 29,38], existing approaches primarily
focus on Node-to-Node (N2N) interactions (Figure 4.2(a)) through GNNs, e.g., using
inverse distance [29] or attention-based [27,38] weighting. Recent works like GroupNet
[63] and HEAT [65] advance to Edge-to-Node (E2N) interactions (Figure 4.2(b)) by
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incorporating edge features into node representations, enhancing the relation reasoning
ability of the system. However, both N2N and E2N focus on the training of node features,
while neglecting the crucial Edge-to-Edge (E2E) patterns [142,143]. This fundamental
limitation restricts GNNs’ ability to capture the full spectrum of interaction dynamics
in pedestrian behaviors, particularly in complex spatial-temporal scenarios where one

pedestrian’s behavior can implicitly influence others through cascade effects [142].

deb gt S

j;, Aﬂun OZS. DYD

Node- to node Edge- to node Node Edge
GNN GNN GNN GNN

el fed el

(a) Node-to-node (b) Edge-to-node (c) Ours
| | | Node features 000 Edge features

Figure 4.2: Tllustration of graph learning procedures. (a) Node-to-Node (N2N), (b) Edge-
to-Node (E2N), and (c) Our novel dual-graph introduces the combination of N2N and
Edge-to-Edge (E2E) paradigm.

In this paper, we introduce the Unified Spatial-Temporal Edge-enhanced Graph Net-
work (UniEdge) for pedestrian trajectory prediction. To address the first challenge, our
unified spatial-temporal graph segments input trajectories into patch-based structures
(Figure 4.1 (c)), simplifying high-order cross-time interactions into first-order relation-
ships. This approach reduces effective resistance [102] and mitigates the under-reaching
problem [119], preventing information dilution during propagation. By processing spatial-
temporal information jointly in a single step, each unified patch maintains natural spatial-
temporal inter-dependencies, enabling immediate responses to dynamic changes while
preserving multi-step interaction patterns.

To tackle the second challenge, we introduce Edge-to-Edge-Node-to-Node Graph
Convolution (E2E-N2N-GCN), a dual-graph network that jointly processes both node
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and edge patterns, as depicted in Figure 4.2 (c). Dual-graph design provides a deeper
understanding of graph topology in various domains [143, 144]. Our dual-graph architec-
ture consists of two complementary graphs: a node-level graph that models explicit N2N
social interactions among pedestrians, and an edge-level graph that captures the implicit
E2E influence propagation across these interaction patterns. Specifically, we employ a
first-order boundary operator [145] to construct edge graphs that reveal how interaction
patterns influence each other through connected edges. This approach enables nuanced
analysis of both individual behaviors and collective dynamics, essential for predictive
accuracy in crowded environments.

Finally, we introduce a Transformer encoder-based predictor to overcome the limited
receptive fields and long-range dependency challenges of auto-regressive architectures.
Our predictor leverages attention mechanisms [67] to enable global modeling of tempo-
ral correlations through learnable placeholders, substantially improving the prediction
capability.

Our approach outperforms state-of-the-art methods on commonly used pedestrian
trajectory prediction datasets, including ETH [1], UCY [73] and Stanford Drone Dataset
(SDD) [74]. The source code for UniEge is openly released on https://github.com/
Carrotsniper/UniEdge.

Our contributions can be summarized as follows:

« We propose a unified spatial-temporal graph data structure that simplifies high-
order cross-time interactions into first-order relationships. This enables direct
learning of spatial-temporal inter-dependencies in a single step, avoiding infor-
mation loss caused by multi-step aggregation while preserving critical interaction

patterns.

« We introduce the Edge-to-Edge-Node-to-Node Graph Convolution (E2E-N2N-GCN),
a novel dual-graph architecture that jointly captures both explicit N2N social
interactions among pedestrians and implicit E2E influence propagation across
interaction patterns through first-order boundary operators. This enables more

comprehensive modeling of complex pedestrian behaviors.

« We introduce a transformer-based predictor that overcomes the limited receptive
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4.2. Methodology

fields and challenges associated with capturing long-range dependencies inher-
ent in auto-regressive architectures. This enables global modeling of temporal

correlations, substantially improving prediction performance.

4.2 Methodology

4.2.1 Problem Formulation and Feature Initialization

The goal of pedestrian trajectory prediction is to estimate the possible future trajectories
of a pedestrian based on observed trajectories and nearby neighbors. Mathematically,
consider a multi-pedestrian scenario containing N pedestrians in 7, time steps. The
observed trajectories of each pedestrian i € [1,...,N] can be represented as X; =
{(xi,y)) |t € [~Tops + 1,...,0]} and its ground-truth future trajectories can be defined
as Y; = {(z},v;) | t € [1,..., Tpred|}. For N pedestrians, the observed and ground-truth
future trajectories are X = [X;, Xp,...,Xy] € RVTovsX2and Y = [V, Yo,..., Yy] €
RN *Tpreax2 respectively, where 2 denotes the 2D coordinates. Our proposed UniEdge
aims to learn a prediction function F,,.q(-) that minimizes the differences between the
predicted trajectories Y = F,,.q(X) and the ground-truth future trajectories Y. Instead
of directly predicting absolute coordinates, we follow [25,27,29,30] that predict relative
coordinates of each pedestrian to ensure the robustness and generalization ability of the

system across different scenarios.

For trajectory feature initialization, our model takes inputs consisting of pedestrian

velocities v, velocity norms p = ||v||2, and pedestrian movement angles 6 = angle(v),
where ||- || denotes the vector 2-norm and angle(-) is the function that computes the angle
of the velocity vectors. We follow [146] that subtract each historical v, ¢ € [—Ts, 0] by

the corresponding endpoint vz, _, as the pre-process step. These motion dynamic features

red
are embedded and then concatenated to obtain the final geometric feature representation
as follows:

X = CONCAT(f (v, Wo), f(p, Waorm), f(0, Wangie)),

where X € RYV*TobsXD N and T, represent the total number of pedestrians and time

steps, respectively, and D denotes the embedded feature dimension. Here, f(-,-) rep-
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4.2. Methodology

resents Multi-Layer Perceptron (MLP) for feature embedding, and W represents the

corresponding weights.

4.2.2 Unified Spatial-temporal Graph

Previous trajectory prediction methods often adopt a two-step approach, separately
modeling pedestrian spatial interactions and individual temporal dependencies [27-29].
This approach is limited in capturing high-order cross-time interactions, which require
multi-step aggregation. Such multi-step processing increases the effective resistance -
a measurement of graph connectivity that quantifies the efficiency of information flow
between nodes [102, 147]. High effective resistance impedes graph message-passing,
leading to under-reaching problem [119], where message flows from distant nodes are

diluted and compressed.

»
»

fo—o—¢
E ‘
(5]
o
& Y
o}
E
gl A
Z| 11— —
time -
Traditional ST approach Unified ST graph
Rij = 1.50 RU = 0.28

Figure 4.4: Comparison of effective resistance (R;;) between traditional spatial-temporal
approach (left, R;; = 1.50) and our unified spatial-temporal graph (right, ?;; = 0.27).
Lower R;; indicates better message propagation efficiency.

To address these challenges, we propose a unified spatial-temporal graph to simplify
high-order cross-time interactions among pedestrians into first-order relationships, en-
abling direct learning of spatial-temporal inter-dependencies, and preserving high-order
interactions without information dilution. This design significantly reduces the effective
resistance during message passing, improving information flow efficiency [102,147] and
alleviating the risk of under-reaching [119]. Figure 4.4 illustrates the difference in effective

R between the message-passing paradigms of traditional spatial-temporal approach and
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our unified approach:

Rij = (61' — €j)TL+(€Z' — €j) (41)

where LT denotes the Moore-Penrose pseudoinverse of the graph Laplacian matrix repre-
senting the graph connectivity [148], and e;, e; are standard basis vectors corresponding
tonodes ¢ and j. Lower R;; values indicate better message propagation efficiency between
nodes.

To reduce computational overhead in processing entire sequences and to better
capture fine-grained pedestrian dynamics, we adopt a patch-based strategy akin to the
local receptive fields used in convolution kernel for image processing. [149]. Specifically,
to construct the unified spatial-temporal graph depicted in Figure 4.3 (a), the input
features are segmented into K overlapping patches across the temporal dimension 7.
These patches are defined by a length L and a stride S, yielding K = {%J + 1. For

k

each patch k, ranging from 1 to K, a graph G* ,. = (Z*, A

node ~

k

~ode) 1s constructed. Here,

ZF € RNEXD represents the node features, and A*_, € RNL*NL denotes the node
adjacency matrix, which encapsulates the node connections. This configuration further
benefits subsequent trajectory prediction phases by reducing the number of input tokens
from 7,5 to K, which is crucial when using the transformer encoder model. It leads to a
quadratic reduction in memory usage and computational complexity for the attention
map, by a factor of (%)2

We then apply GAT [38,62,150] to initialize interaction strengths for the kth graph
G* as:

HE = GAT(ZF A ), (4.2)

node node

k

node,i 15 embedded as:

where each node H

HE e =0 ( > a@@Zf) : (4.3)
FEN (i)U{i}
T k k
exp(a'['(®[Z]]| Z;
af = ( ( =il jD) (4.4)

Y Sienwum exp (aTT (O[2) || 24)))
where ©(-) is transformation function, I'(-) and o () denote activation functions, N (-) is

the neighbor set of node i and a' represents learnable parameters. Attention coefficient
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Figure 4.5: Illustration of edge graph construction from a unified spatial-temporal graph
using the first-order boundary operator B;. Nodes are represented by numbers, and
edges connecting these nodes are labeled with letters. Applying the first-order boundary
operator transforms each edge into a node in the edge graph, with connections formed
based on shared nodes in the original graph.

ozfi ; represents the weights between two nodes. During training, these weight coeflicients
are dynamically updated to reflect the importance of each node’s contribution to its

neighbors.

4.2.3 E2E-N2N Graph Convolution (E2E-N2N-GCN)

Previous pedestrian trajectory models typically adopt node-centric approaches, such
as N2N [25,27,29,30,151] and E2N [63, 65] paradigms to understand and capture node
dependencies. However, these methods overlook crucial E2E patterns, limiting their
ability to capture the full spectrum of interaction dynamics. This oversight may result in
a partial understanding of pedestrian behaviors, especially in complex scenarios where
interaction patterns influence each other.

To address this limitation, we propose a novel Edge-to-Edge-Node-to-Node Graph
Convolution (E2E-N2N-GCN) module (Figure 4.3 (b)), a dual-graph architecture that
leverages the first-order boundary operator to construct edge graphs. By jointly modeling
both explicit N2N social interactions among pedestrians and implicit E2E influence
propagation across interaction patterns, our approach enables more comprehensive
modeling of complex pedestrian behaviors. This dual-graph design allows each unified
spatial-temporal graph to capture how interaction patterns evolve and influence each
other through connected edges, leading to more accurate trajectory predictions.

To construct the edge graph, we apply the first-order boundary operator B; to trans-

form it into its corresponding undirected edge graph G¥, . = (€%, AL, ), where £
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represents the node features in the edge graph, and A’gdge indicates the new adjacency
relations. This operator reinterprets the connections between nodes (edges in the original
graph) as nodes in the new graph, creating edges between these new nodes if they share a
common node in the original graph. Figure 4.5 illustrates this process, effectively showing

how relationships are redefined to highlight deeper interaction dynamics.

To analyze and update the feature propagation of each edge graph, we employ the
first-order Hodge Laplacian [142, 143] to analyze and learn the dynamics within these
edge graphs:

L, = BB, + B, By, (4.5)

where L, represents first-order Hodge Laplacian operator, and 3] captures and enhances
edge relationships, focusing on direct interactions. B, is typically relevant for higher-
dimensional structures and not a primary focus here. We perform edge convolution by
adapting the Hodge-Laplacian Laguerre Convolution (HLLConv) [142,143] to obtain the

high-level edge embedding #},,, for each edge graph k:

HE, . = HLLConv(EX, AF, )

edge edge

= hl * (C;k
J—1

=Y 0,T;(Ly)ER,
§=0

where ; is a spectral filter based on £; applied to update edge features £*, with 6;
representing learnable parameters, and I';(-) indicates the Laguerre polynomial functions.

Detailed explanations of spectral filter ~; are shown in Algorithm 1.

k
node

k

Finally, after obtaining the embedded node features H edge

and edge features H
for the kth unified spatial-temporal graph, we leverage a fusion GCN to integrate node
and edge embeddings, enhancing the understanding of graph dynamics. Specifically, we
incorporate normalized edge embedding as weights into the aggregation process of GCN:

HY = GON(HE, .0 HE, AR L), (4.7)

node’ "tedger Y node
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Algorithm 1: Hodge-Laplacian Laguerre Convolution

Input: First-order Hodge Laplacian £, = B B, + B, B>
Output: Spectral filter 2y
Step 1: Perform eigen-decomposition on L;:

£1¢i = >\z1¢11
to obtain the orthonormal bases ¢ fori € [0,1,2,- -, 00].
The spectral filter A of the 1-st order HL can be represented as:

CICOEDHNOHEHOLHO!
i=0
Step 2: Approximate the spectral filter /1 (\;) by Laguerre polynomial functions:

P (A1) = fejl“j()\l)

where 0; is the jth expansion coefficient with jth Laguerre polynomial, and I';(-)
is written in a recurrence format as:

(27 + 1= 2)(A1) = jT-1(A)

i) = T

with base cases defined as:

PO()\I) = 1, Pl()\l) =1- )\1

and each node 7 in the graph is embedded as:
Hf =0 (G(wade,i) + Z CD(HIecdge,ij)@(wade,j)) ) (48)
JEN (i)

where ©(-) and ®(+) are linear transformations for node and edge features [142], with

o(+) as the activation function.

4.2.4 Transformer Encoder Predictor

Temporal dependency modeling in trajectory prediction has evolved through various
architectures. RNNs [21,28] and TCNs [27,29] have been widely adopted, they suffer from
limited receptive fields and struggle to capture long-range dependencies. Although Trans-

former encoder-decoder architectures [67,69,137] address the long-range dependency
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issue, it introduces extra computation costs.

In this work, we design a Transformer encoder-based predictor for trajectory predic-
tion. As shown in Figure 4.3 (c), by encoding future trajectories as learnable parameters
and concatenating them with historical trajectories, our approach enables unified mod-
eling of both past and future information, allowing the model to fully leverage global
temporal dependencies [152] for more accurate predictions. We simply stack the graph
embeddings H* output by E2E-N2N-GCN across all patches to obtain the integrated

feature representations H:
H = STACK(H', H?, - -- ,HF) e REXWNDXD, (4.9)

We perform temporal average pooling across the L channel, and the output H € RN *£xD
is served as the historical input tokens. We then initialize a learnable placeholder to form
the padded future tokens as F € RY*%preaxP  The temporal channel of these tokens,
T

pred> 15 tailored to match our prediction horizon. This setup aligns with the requirements

of the Transformer encoder architecture [67,153], which necessitates uniform sequence
lengths for both inputs and outputs to enable synchronous processing. This design
allows our model to directly produce trajectories of the required length. Throughout the
training process, these placeholders are incrementally refined to represent the predicted
trajectories, thereby enhancing the prediction capabilities.

Finally, the input tokens for the Transformer encoder are formed by concatenating
the learned historical input tokens H and padded future tokens F, resulting in the concate-

red)*D We further enhance these tokens

nated feature representation H;,, € RN*(5+Ty
with a learnable additive position embedding P € RV *(K+Tprea)xD [67] that is applied
to the entire concatenated sequence to preserve the temporal order information. The
Transformer encoder then processes these augmented inputs to produce the predicted
sequence representations Y € RV *(K+Tprea) <D,

Y = Encoder(H;, + P),

H;, = H | F], (4.10)

where [- || -] denotes the concatenation operation along the temporal dimension. Note
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Figure 4.6: Illustration of the Transformer encoder-based predictor.

that Y represents the complete output of the encoder with length K + T},,.4, only the
last 7,4 time steps are used as the predicted trajectory representations, corresponding
to the padded future tokens F. The architecture of the Transformer encoder and the
learning process are shown in Figure 4.6. Similarly to [7,27,29], we employ the bi-variate

Gaussian loss function £, ¢giction to optimize the trajectory prediction:

Tore A A A
£prediction = _Ztﬁl ¢ log P((wta yt) ’/’Lh O¢, pt)a (411)

where /i and 6 are the mean and variance of bi-variate Gaussian distribution, and p

represents the correlation coefficient.

4.2.5 Implementation Details

The UniEdge framework, developed using PyTorch, is trained end-to-end on an NVIDIA
TITAN XP GPU. We use a consistent batch size of 128 across all datasets, with initial
learning rates set at 0.001 for the ETH/UCY datasets and 0.01 for the SDD datasets. The
learning rate is adjusted every 50 epochs by a factor of 0.5. The AdamW optimizer is
employed to train the model. The architecture for learning graph employs single-layer

GAT, HLLConv, and GCN components. Node and edge embedding dimensions are set to
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128. The Transformer encoder-based predictor is configured with a hidden dimension of

256 with 4 attention heads.

4.3 Experiments

4.3.1 Experimental Setup

We evaluate the proposed UniEdge on multiple benchmark datasets, including ETH [1],
UCY [73], and Stanford Drone Dataset (SDD) [74]. The ETH dataset contains two subsets
(ETH and HOTEL) and the UCY dataset contains three subsets (UNIV, ZARA1, ZARA2),
with the total number of pedestrians captured in these 5 subsets being 1,536. SDD is
a benchmark dataset for pedestrian trajectories captured by a drone with a bird’s eye
viewing of university campus scenes and it contains 5,232 pedestrians across 8 different
scenes.

We follow the experimental setup of [27, 28, 154], using 3.2 seconds (8 frames) of
observation trajectories to predict the next 4.8 seconds (12 frames). For ETH and UCY
datasets, we follow existing works [21,25,27,29,30,69] and use the leave-one-out strategy
for training and evaluation. For SDD, we follow the existing train-test split [25,30,39]
to train and test our proposed method. During training, we employ data augmentation
following [154] to diversify and enrich our training datasets. This strategy is pivotal in
enhancing the model’s generalization capabilities.

During testing, we follow the standard protocol [21, 28] and sampling strategy [25]
that generates 20 predictions from the predicted distributions; the best sample is used to
compute the evaluation metrics. Average Displacement Error (ADE) and Final Displace-
ment Error (FDE) [21,27-29] are used as evaluation metrics:

N TpTed

1 ; ; ; ;
ADE = — S5 J(ai — 202 + (vi — §)?
N X Tpred = \/(xt xt) + (yt yt) )

(4.12)

1 N i — - =
FDE = N ; \/(l.lTpred B :L‘%—‘Pred)Q + (y%}""id - y%}”"ed)2’

where (2%, §!) and (%, y!) represent the predicted trajectory coordinates and ground-truth

trajectory coordinate for the ¢-th pedestrian at time step ¢.
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Table 4.1: Results on The ETH (ETH, HOTEL) and UCY (UNIV, ZARA1, ZARA2) Datasets
for Pedestrian Trajectory Prediction

ADE(]) / FDE(})

Method Venue/Year | pryy HOTEL  UNIV ZARA1  ZARAZ  AVG
Social GAN [21] CVPR'18 | 0.87/1.62 0.67/137 076/152 035/0.68 042/0.84 0.61/1.21
Social- STGCNN [29]  CVPR’20 | 0.64/1.11 0.49/0.85 0.44/0.79 0.34/053 0.30/0.48  0.44/0.75
SGCN [27] CVPR'21 | 0.63/1.03 0.32/055 0.37/0.70 0.29/0.53  0.25/0.45  0.37/0.65
GP-Graph [25] ECCV’22 | 043/0.63 0.18/0.30 0.24/0.42 0.17/031 0.15/0.29  0.23/0.39
Social-VAE [22] ECCV’22 | 0.41/058 0.13/0.19 0.21/036 0.17/029 0.13/022 0.21/0.33
MemoNet [155] CVPR'22 | 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24  0.21/0.35
GroupNet [63] CVPR'22 | 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33  0.25/0.44
Graph-TERN [39] AAAT23 | 042/058 0.14/0.23  0.26/0.45 021/0.37 0.17/0.29  0.24/0.38
MSRL [151] AAAT23 | 0.28/0.47 0.14/022 0.24/043 0.17/0.30 0.14/0.23  0.19/0.33
LED [72] CVPR'23 | 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22  0.21/0.33
EqMotion [26] CVPR'23 | 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23  0.21/0.35
EigenTrajectory [30] ~ ICCV’23 | 0.36/0.57 0.13/0.21 0.24/0.43 0.20/035 0.15/0.26  0.22/0.36
TUTR [69] ICCV’23 | 0.40/0.61 0.11/0.18 0.23/0.42 0.18/034 0.13/0.25 0.21/0.36
SMEMO [156] TPAMI'24 | 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32  0.15/0.26  0.22/0.35
MFAN [66] PR'24 | 0.48/0.62 0.17/021 0.26/041 0.23/036 0.21/0.33  0.27/0.39
DDL [146] ICRA24 | 0.26/0.50 0.15/0.35 0.29/0.58 0.16/0.29 0.13/0.22  0.20/0.39
ATP-VAE [157] TCSVT'24 | 0.48/0.76 0.14/0.20 0.26/0.44 0.28/0.48 0.20/035 0.27/0.45
MRGTraj [158] TCSVT'24 | 0.28/0.47 0.21/0.39 033/0.60 0.24/0.44 0.22/0.41  0.26/0.46
SingularTrajectory [159] CVPR'24 | 0.35/0.42 0.13/0.19 0.25/0.44 0.19/032 0.15/0.25 0.21/0.32
HighGraph [31] CVPR'24 | 0.40/0.55 0.13/0.17 0.20/0.33 0.17/0.27 0.11/0.21  0.20/0.30
UniEdge (Ours) - 0.36/0.46 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

4.3.2 Baseline Methods

We compare the proposed UniEdge framework with the following previous state-of-the-
art methods:

Graph-based methods: Social- STGCNN [29]: an approach that models spatial-
temporal pedestrian interactions through graphs; SGCN [28]: an approach that models
spatial-temporal interactions through sparse directed spatial graph and sparse directed
temporal graph; GP-Graph [25]: an approach that considers group-based pedestrian
behaviors; Graph-TERN [39]: an approach that integrates multi-relational graph and
control endpoint for trajectory prediction; EigenTrajectory(+SGCN) [30]: a model that
learns trajectories in eigenspaces and graph representations. MFAN [66]: an approach
that models spatial-temporal interactions for both edges and nodes. HighGraph [31]: a
plug-and-play module that captures high-order dynamics of pedestrians - we use the
HighGraph(+Social-VAE) variant for comparisons.

Generative-based methods: Social GAN [21]: a method that uses pooling window
module with Generative Adversarial Network (GAN) to generate diverse trajectories;

Social-VAE [22]: a method that employs timewise variational autoencoder(VAE) and
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attention mechanism to generate trajectories; GroupNet [63]: a method that introduces
multiscale hypergraph with edge strength, utilizing conditional-VAE (CVAE) to generate
trajectories; MSRL [151]: a method that models multi-stream interactions for trajectory
prediction based on CVAE; MRGTraj [158]: a method based on CVAE and non-auto-
regressive transformer encoder to generate diverse trajectories; ATP-VAE [157]: an
attention-based VAE architecture for trajectory prediction; LED [72]: a multi-modal
framework based on diffusion for prediction; SingularTrajectory [159]: a diffusion frame-
work based on singular projection and adaptive anchor to generate trajectories.

Other methods: MemoNet [155]: an approach based on the retrospective-memory
bank for trajectory representations; EqQMotion [26]: an approach that models trajectories
via equivariant dynamics and invariant interaction; TUTR [69]: a transformer-based
framework; SMEMO [156]: an approach that models trajectories through social memory

modules; DDL [146]: goal-based transformer for trajectory prediction.

4.3.3 Quantitative Comparison

ETH and UCY Datasets

Table 4.1 presents the quantitative comparisons of our UniEdge model against existing
methods under ADE and FDE metrics. Compared to the previous state-of-the-art (SOTA)
generative-based method MSRL, our UniEdge demonstrates improvements of 5.3% in
average ADE and 24.2% in average FDE. Unlike MSRL, which is a two-stage framework
requiring separate training for the CVAE model and the trajectory decoder, UniEdge
operates in an end-to-end manner, improving the overall performance while maintaining
model parameter efficiency. Compared to the best graph-based method HighGraph, our
UniEdge shows significant improvements of 10.0% in average ADE and 16.7% in average
FDE. Although HighGraph introduces high-order interaction modeling, it operates only
on individual time steps, rather than cross-time interactions, which limits its effectiveness
in capturing dynamic changes over time. Contrasted to these graph-based methods, our
UniEdge comprehensively models edge information flow and cross-time interactions,
which can be the key to performance gain. Compared to DDL, which uses similar data

pre-processing techniques, our UniEdge surpasses it by 10.0% in ADE and 35.9% in FDE,
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Table 4.2: Results on The Stanford Drone Dataset (SDD) for Pedestrian Trajectory Predic-
tion

Method Venue/Year ADE(}) / FDE(})
SDD

Social GAN [21] CVPR’18 27.23/41.44
Social-STGCNN [29]  CVPR’20 26.46/42.71
GroupNet [63] CVPR’22 9.31/16.11
MemoNet [155] CVPR’22 8.56/12.66
GP-Graph [25] ECCV’22 9.10/13.80
MSRL [151] AAAT'23 8.22/13.39
Graph-TERN [39] AAAT23 8.43/14.26
LED [72] CVPR’23 8.48/11.66
EigenTrajectory [30] ICCV’23 8.05/13.25
TUTR [69] ICCV’23 7.76/12.69
SMEMO [156] TPAMI'24 8.11/13.06
MEFAN [66] PR’24 9.69/14.51
HighGraph [31] CVPR’24 7.98/11.42
UniEdge (Ours) - 7.51/10.89

demonstrating enhanced prediction performance. While our UniEdge model demonstrates
state-of-the-art (SOTA) performance on four subsets (HOTEL, UNIV, ZARA1, and ZARA?2),
particularly in environments with rich pedestrian interactions such as UNIV, it faces
challenges similar to the graph-based SOTA method HighGraph on the ETH subset. This
limitation of graph-based methods is mainly caused by the sparsity of the ETH subset,
where fewer pedestrians and limited interactions constrain the expressive power of graph

representations.

SDD Dataset

Table 4.2 presents the quantitative comparison results of our model against various
previous methods on SDD dataset. Unlike the ETH and UCY datasets, the SDD is a larger
dataset featuring more complex pedestrian interactions. Compared to generative-based
methods, UniEdge improves 8.6% in ADE compared to MSRL and 6.6% in FDE compared
to LED. As a graph-based approach, our UniEdge outperforms the best graph-based
HighGraph model by 5.9% in ADE and 4.6% in FDE. Compared to SOTA methods, UniEdge
shows an improvement of 3.0% in ADE over TUTR. These results further highlight the

effectiveness of our proposed UniEdge model in handling complex social scenarios.
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GP-Graph [25] Graph-TERN [39]  EigenTrajectory [30] Ours

Figure 4.7: Visualization of predicted trajectories on the ETH and UCY datasets. Historical
trajectories are in blue, ground-truth trajectories are in red, and predicted trajectories are
in yellow. Scenario (a) shows two pedestrians walking in parallel and meet; Scenario (b)
illustrates a group of pedestrians walking in parallel; (c) shows pedestrians meeting each
other; (d) depicts several groups walking in opposing directions; and (e) presents a more
complex scenario that pedestrian movements are stochastic.

4.3.4 Qualitative Comparison
Trajectory Visualization Comparison

In this section, we compare the most likely predictions between our UniEdge and previous
graph-based methods, GP-Graph [25], Graph-TERN [39] and EigenTrajectory [30] on the
ETH and UCY datasets.

As shown in Figure 4.7, our prediction results are significantly closer to the ground-
truth trajectories compared to other methods in all scenarios. Scenario (a) depicts
two pedestrians walking and eventually meeting, where our predictions successfully

capture their gradual convergence even in sparse environments. Scenario (b) shows
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GP-Graph [25] Graph-TERN [39]  EigenTrajectory [30] Ours

=,

Figure 4.8: Visualization of predicted distributions on the ETH and UCY datasets. Histori-
cal trajectories are in blue, ground-truth trajectories are in red, and predicted trajectories
are in yellow. Scenario (a) and (b) show two pedestrians walking in parallel with con-
vergence; (c) presents two groups of pedestrians walking in opposing directions; (d)
illustrates random walking behaviors.

pedestrians moving in parallel, where our approach achieves better alignment with
ground-truth and avoids collisions compared to other methods. Scenario (c) presents
two pedestrians meeting, where GP-Graph and EigenTrajectory fail to capture non-linear
collision avoidance patterns. While Graph-TERN provides plausible predictions, our
method better aligns with ground-truth by effectively modeling cross-time interactions.
Scenario (d) presents a complex scenario in which several groups of pedestrians walk
in opposing directions. In this case, GP-Graph and EigenTrajectory significantly suffer
pedestrian collision issues. Our UniEdge demonstrates superior capability in capturing
nonlinear movements, showcasing enhanced predictive accuracy in dynamically complex
pedestrian interactions compared to previous methods. Finally, scenario (e) features
complex non-linear trajectories with abrupt changes, where our method better captures

overall movement trends despite shared challenges with certain trajectories.
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Distribution Visualization Comparisons

In this section, we further compare the predicted distributions of UniEdge with GP-
Graph [25], Graph-TERN [39] and EigenTrajectory [30] on the ETH and UCY datasets.
As shown in Figure 4.5, our method generates more accurate and plausible distributions.
In scenario (a), while other methods’ distributions cover the ground-truth, they fail
to capture the pedestrian convergence trend that our method successfully predicts. In
scenarios (b) and (c), GP-Graph and Graph-TERN generate either too narrow or broad
distributions, failing to capture non-linear trajectories. EigenTrajectory covers ground-
truth but produces overly broad, overlapping distributions that lead to collision issues. Our
method achieves comprehensive coverage with fewer collision predictions. In scenario
(d) with random walking patterns, our approach better captures both non-linear and

linear trajectories.

4.3.5 Ablation Study and Model Analysis
Model Component Analysis

To verify the influence of each module incorporated in our UniEdge, we conduct ablation
studies on the ETH and UCY datasets, which contain five different social scenarios. The
results of these studies are detailed in Table 4.3. In our experiments, variant (1) corre-
sponds to the model excluding node-level embedding (NN), i.e., the model eliminates
node-level GAT for capturing N2N interactions. Variant (2) represents the model without
edge-level embedding (EE), meaning that edge information is not integrated into the
model’s architecture, neglecting implicit edge feature propagation. Lastly, variant (3)
describes the modeling process without learning edge graphs through Hodge-Laplacian
Laguerre Convolution (HC). Specifically, node-level embedding provides an overall pic-
ture of pedestrians’ interaction intentions to capture initial N2N interactions, the overall
performance dropped 11.1% in ADE and 24.0% in FDE without N2N interactions. Variant
(2) shows that without the modeling of implicit E2E influence propagation, the perfor-
mance dropped 16.7% in ADE and 20.0% in FDE. Variant (3) demonstrate the effectiveness
of the proposed edge-level reasoning, without Hodge-Laplacian Laguerre Convolutions,

the overall performance dropped 16.7% in ADE and 16.0% in FDE, respectively. Notably,
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Table 4.3: Ablation Analysis of UniEdge on The ETH and UCY Datasets. NN = Node-level
Embedding, EE = Edge-level Embedding, HC = Hodge-Laplacian Laguerre Convolution

ADE(]) / FDE(})
ETH HOTEL UNIV ZARA1 ZARA2 AVG

Variant NN EE HC

0.40/0.63 0.13/0.20

o

.22/0.32 0.15/0.23 0.12/0.19 0.20/0.31

v
v’ 10.39/0.54 0.14/0.18 0.23/0.35 0.16/0.24 0.13/0.19 0.21/0.30

X
v

B) v v x |039/0.47 0.12/0.18 0.24/0.38 0.17/0.22 0.14/0.18 0.21/0.29
v

v’ v ]0.36/0.46 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

Table 4.4: Feature Embedding Analysis on The ETH and UCY Datasets
ADE(]) / FDE(!)

ETH HOTEL UNIV  ZARA1 ZARA2 AVG

Method

w/ GCN [131] 0.39/0.57 0.15/0.19 0.22/0.34 0.17/0.25 0.13/0.18 0.21/0.31

w/ GraphSage [161]| 0.38/0.52 0.12/0.19 0.21/0.30 0.14/0.22 0.12/0.17 0.19/0.28

(5]

Ours 0.36/0.44 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.2

It
(=]

the UNIV subset, which contains the most pedestrians and the most complex interac-
tions [160], shows a decrease of 26.3% in ADE and 35.7% in FDE without edge graph
learning, underscoring the importance of Hodge-Laplacian Laguerre convolution in man-
aging the propagation of complex interactions. These findings underscore the importance
of each module to the comprehensive functionality of our UniEdge model in trajectory

prediction.

To investigate the effectiveness of different node embedding approaches in our frame-
work, we evaluate several graph neural networks as alternatives to our GAT-based N2N
module, as shown in Table 4.4. The baseline GCN [131] exhibits limited performance due
to its uniform neighborhood aggregation strategy. GraphSage [161] achieves improved
results through its sampling-based aggregation strategy. Compared to GCN and Graph-
Sage, GAT-based approach demonstrates superior performance through its attention
mechanism, which enables dynamic weighting of pedestrian interactions while providing

better interpretability through attention weights.
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Table 4.5: Edge Feature Analysis on The ETH and UCY Datasets
ADE(]) / FDE({)

Edge Feature
ETH HOTEL UNIV ZARA1 ZARA2 AVG

Reciprocal distance | 0.40/0.55 0.14/0.21 0.21/0.31 0.16/0.23 0.13/0.20 0.21/0.30
Gaussian Kernel |0.38/0.52 0.13/0.19 0.20/0.30 0.16/0.23 0.13/0.19 0.20/0.29
Ours 0.36/0.46 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

Table 4.6: Trajectory Predictor Analysis on The ETH and UCY Datasets. PE = Positional
Encoding, Attn. Head = Attention Head, LN = Layer Normalization

ADE(]) / FDE(})

Trajectory Predictor
ETH HOTEL UNIV ZARA1 ZARA2 AVG

w/o PE 0.45/0.51 0.13/0.19 0.29/0.42 0.20/0.28 0.16/0.22 0.25/0.32

w/o Attn. Head | 0.37/0.4 .12/0.19 0.23/0.35 0.17/0.24 0.13/0.19 0.20/0.29

w/o LN 0.38/0.47 0.13/0.18 0.21/0.31 0.15/0.23 0.13/0.18 0.20/0.27
Ours 0.36/0.44 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25
Edge Feature Analysis

To assess the impact of edge features in our UniEdge model, we conduct experiments

focusing on their incorporation into edge graphs. As detailed in Table 4.5, we examine

three edge feature types: a Gaussian kernel &; ; = exp (— ;’;g), which captures spatial

relationships through the distance d; ; between nodes 7 and j, and the standard deviation

1

o; a reciprocal distance kernel &; ; = P

highlighting inverse distance to represent
pedestrian interactions; and a Euclidean distance kernel &; ; = d; ;, quantifying node
relationships based on direct distance. Results in Table 4.5 show that the Euclidean
distance (ours) kernel outperforms other features on the ETH and UCY datasets. We
think this is because the Euclidean distance kernel directly and accurately measures

distances between pedestrians, providing a more intuitive representation of pedestrian

interactions.

Trajectory Predictor Analysis

To evaluate the effectiveness of the core modules in our Transformer encoder-based

predictor and the corresponding padding approaches, we conduct extensive experiments
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Table 4.7: Trajectory Predictor Comparison Analysis on The ETH and UCY Datasets
ADE(]) / FDE({)

Trajectory Predictor
ETH HOTEL UNIV ZARA1 ZARA2 AVG

RNN-based [83] [0.84/1.18 0.18/0.30 0.40/0.66 0.62/1.13 0.24/0.41 0.46/0.74
TCN-based [116] |0.34/0.48 0.13/0.1

.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

O

0.25/0.35 0.17/0.26 0.14/0.19 0.21/0.29

Ours 0.36/0.44 0.11/0.1

g
(=]

on the predictor design. The results are presented in Table 4.6. We analyze three predictor
variants: one without positional encoding (w/o PE), one without attention heads (w/o
Attn. Head), and one without layer normalization (w/o LN). The experimental results
demonstrate that the absence of any of these modules leads to degraded performance.
Notably, the elimination of positional encoding has the most significant impact, resulting
in performance degradation of 38.9% in ADE and 28.0% in FDE compared to the complete
model. This substantial performance drop demonstrates the crucial role of positional
encoding in preserving temporal ordering information of trajectory sequences, which
is essential for understanding the temporal evolution of pedestrian motion patterns.
Furthermore, the removal of attention heads leads to particularly inferior performance
on the UNIV and ZARA1 subsets, which contain group activities with rich interactions,
highlighting the importance of attention mechanisms in capturing temporal dependencies.

To evaluate the performance on different predictor architectures, we conduct experi-
ments on the ETH and UCY datasets, as shown in Table 4.7. The RNN-based [83] predictor
shows limited performance due to its constrained receptive field and auto-regressive na-
ture. The TCN-based predictor [116] achieves strong performance on the ETH dataset due
to its relatively large receptive field. However, its performance is limited on other datasets
where temporal dependencies are more complex. Our Transformer Encoder-based pre-
dictor achieves superior performance by effectively capturing long-term dependencies

through its non-local attention mechanism [67, 153].

Unified Spatial-temporal Graph Analysis

In this section, we analyze the effectiveness and impact of our proposed unified spatial-

temporal graph data structure while keeping other components fixed. The construction
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Figure 4.9: Impact analysis of unified spatial-temporal graph through patch size and
stride size parameters on the ETH and UCY datasets.

of this data structure is controlled by two key parameters: patch size L and stride size S.
We conduct experiments on the ETH and UCY datasets to thoroughly analyze how these

parameters affect the model’s ability to capture spatial-temporal inter-dependencies.

As shown in Figure 4.9 (left), we evaluate how patch size affects unified spatial-
temporal graph construction. A patch size of 1 reduces our model to traditional two-stage
spatial-temporal approaches [27,29,30,38], where cross-time interactions are not explicitly
modeled. The model achieves optimal performance with a patch size of 3, effectively
capturing local spatial-temporal dependencies. Larger patch sizes, despite capturing more

context information, may introduce redundant connections that degrade performance.

Second, we analyze the impact of stride size as shown in Figure 4.9 (right). The
stride size determines the number of unified spatial-temporal graphs and the overlap
between adjacent patches. A larger stride size reduces the overlap between patches
during graph construction, which in turn decreases the total number of unified spatial-
temporal graphs. A stride size of 1 yields the best performance in both ADE and FDE
metrics, as it enables the capture of more fine-grained cross-time interactions through
increased number of unified spatial-temporal graphs. The increased number of unified
spatial-temporal graphs enables the transformer encoder-based predictor to leverage

more spatial-temporal contexts for enhanced performance.
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Figure 4.10: Edge weight visualization of traditional two-stage spatial-temporal approach
EigenTrajectory and our UniEdge. Historical trajectories are in blue and ground-truth
trajectories are in red.

Edge Weight Visualization

To provide qualitative insights into the differences between our UniEdge model and
conventional spatial-temporal architecture, we visualize the edge weights of our unified
spatial-temporal graph and EigenTrajectory [30]. Figure 4.10 illustrates a representative
scenario where two groups of pedestrians approach each other across consecutive frames.
While EigenTrajectory constructs independent spatial graphs for each frame, limiting its
ability to capture high-order temporal dependencies, our unified spatial-temporal graph
architecture explicitly models cross-temporal interactions across all three frames. The vi-
sualization demonstrates how our model captures extended temporal dynamics, revealing

interaction patterns that conventional spatial-temporal frameworks may overlook.

Predictor Attention Weight Visualization

This section visualizes the attention weights of the Transformer encoder—based predictor
to provide insight into how temporal information and relational cues are utilized during
trajectory forecasting. In particular, we analyze how the model distributes attention
between historical trajectory tokens and the learnable placeholder padding introduced to

support unified spatial-temporal reasoning.
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Figure 4.11: Predictor attention weight visualization. Four attention heads are configured
in our experiments to analyze their impacts.

As shown in Figure 4.11, different attention heads exhibit clear and complementary
specialization patterns. Heads 1 and 2 primarily attend to temporally adjacent historical
states, indicating that they focus on modeling local temporal continuity and motion
dynamics within observed trajectories. In contrast, Heads 3 and 4 assign higher attention
weights to interactions between the learnable padding tokens and selected historical
contexts, suggesting that these heads are responsible for aggregating global or cross-time
relational information into the padding representations.

This behavior is consistent with the design motivation of UniEdge. Instead of uni-
formly mixing temporal and relational information, the model learns specialized attention
pathways, where some heads focus on preserving temporal motion consistency while
others use learnable padding tokens as relational anchors to aggregate salient interac-
tion patterns across time. These attention distributions provide interpretable evidence
that UniEdge effectively decouples and coordinates temporal encoding and relational

reasoning within a unified Transformer framework.

Complexity and Efficiency Analysis

To evaluate the efficiency and computational complexity of UniEdge, Table 4.8 presents
a comprehensive analysis of model complexity and computational efficiency among
mainstream frameworks. We categorize the methods based on their temporal model-
ing paradigm into non-transformer and transformer-based temporal modeling methods.
Compared to non-transformer temporal modeling methods such as EigenTrajectory [30],

although UniEdge contains more parameters, it maintains competitive inference time
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while achieving significant improvements in prediction accuracy (18.2% in ADE and 30.6%
in FDE). For common real-world trajectory prediction scenarios such as traffic collision
avoidance and anomaly detection, we believe this trade-off is justified as prediction accu-
racy takes precedence over computational complexity, especially since higher accuracy
in these applications can significantly reduce the risk of severe outcomes. Compared
to transformer-based temporal modeling methods like TUTR [69] and MRGTraj [158],
UniEdge demonstrates superior efficiency with significantly lower parameters and FLOPs.
Although TUTR achieves the fastest inference time, UniEdge maintains comparable
computational speed while delivering substantially better prediction accuracy. Results
demonstrate the effectiveness of our architecture in balancing computational efficiency

and accuracy.

Table 4.8: Complexity and Inference Time Analysis. All Models Are Evaluated on NVIDIA
RTX3080 GPU

Methods Param FLOPs Infer. Time ADE(])/FDE()
x 106 (M) (ms)
Non-Transformer Temporal Modeling
Social-VAE [22] 2.15 292.95 40.27 0.21/0.33
Graph-TERN [39] 0.05 22.59 40.15 0.24/0.38
EgMotion [26] 3.02 7.75 35.92 0.21/0.35
EigenTrajectory [30]  0.02 1.36 22.26 0.22/0.36
Transformer-based Temporal Modeling
TUTR [69] 0.44  64.54 20.21 0.21/0.36
MRGTraj [158] 4.35 580.38 26.51 0.26/0.46
UniEdge (Ours) 0.34 26.49 27.02 0.18/0.25

4.3.6 Discussion

In this section, we discuss potential reasons for the relatively lower performance of graph-
based trajectory prediction approaches [30,31,39,66] on the ETH subset, as compared to
other scenarios. As indicated in Table 4.9, the test set for the ETH subset averages only
2.59 pedestrians per sample, significantly less than other subsets, particularly the UNIV
subset, which averages 25.70 pedestrians per sample. This stark variation in pedestrian
density impacts the efficacy of graph-based methods, which rely on graph structures

to model social interactions [27, 154]. The relatively sparse graph connectivity in the
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Table 4.9: Dataset Statistics on The ETH and UCY Datasets

Dataset ETH HOTEL UNIV ZARA1 ZARA2
Total Test Samples | 70 301 947 602 921
Avg. Pedestrians | 2.59 3.50 25.70 3.74 6.33

Ped.1 Ped.2
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Figure 4.12: Sample scenario in ETH dataset. Historical trajectories are in blue, ground-
truth trajectories are in red.

ETH scenario may impair message passing, potentially limiting the model’s ability to
effectively propagate and refine contextual information across nodes, which could hinder
accurate representation of complex social interactions of graph-based approaches. In
contrast, UniEdge demonstrates enhanced performance in scenarios with dense social
interactions (HOTEL, UNIV, ZARA1, and ZARA?2) by effectively capturing the more
intricate social dynamics.

To further illustrate these challenges, we visualize a representative case from the ETH
dataset in Figure 4.12. The example shows how UniEdge constructs a unified spatial-
temporal graph between Ped.1 and Ped.2, even though their trajectories are relatively
stable with minimal interaction, potentially introducing unnecessary modeling bias.
Additionally, while the scene contains multiple pedestrians, only a few trajectories are an-
notated, hindering the model’s ability to capture comprehensive interaction patterns. To
address these challenges, one promising direction is to develop dynamic graph optimiza-
tion strategies [162] that adapt connectivity based on scene characteristics. Such adaptive
approaches would reduce redundant connections in sparse scenarios while preserving
rich interaction modeling in dense scenarios, improving the prediction performance.

Additionally, we identify several promising directions to enhance our model’s per-

formance and adaptability. First, we aim to refine the model with an adaptive patch
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segmentation technique that dynamically adjusts patch sizes based on scene complex-
ity metrics such as pedestrian density and interaction frequency [163], addressing the
limitations of our current fixed patch size strategy and potentially improving predic-
tion accuracy in varying crowd scenarios. Second, we plan to incorporate multimodal
data sources, particularly environmental contextual images [138, 164], to enhance our
model’s awareness of physical constraints and scene semantics, enabling more precise
predictions in complex urban environments while reducing prediction errors caused by
environmental factors. Finally, we will explore hardware optimization strategies for
the transformer architecture [165,166] to improve deployment efficiency in real-time

applications, reducing computation latency while maintaining prediction accuracy.

4.4 Summary

This chapter presented UniEdge, a unified spatial-temporal graph framework designed
to address key limitations in homogeneous pedestrian trajectory prediction. To capture
complex, high-order cross-time interactions among agents, we introduced a patch-based
unified spatial-temporal graph structure that transforms high-order dependencies into
simplified first-order relationships. This design improves message propagation efficiency
and alleviates under-reaching by reducing reliance on multi-step aggregation. To jointly
capture individual motion patterns and collective influence dynamics, we proposed a dual-
graph convolutional architecture—Edge-to-Edge and Node-to-Node Graph Convolution
(E2E-N2N-GCN)—that reasons over both node-level social interactions and edge-level
propagation patterns, enriching the representation of implicit behavioral influences.
A Transformer-based trajectory predictor was further incorporated to model global
temporal dependencies, enhancing the ability to forecast long-range behaviors.
Together, these components form a unified and flexible framework for modeling homo-
geneous pedestrian environments with improved accuracy and social awareness. Building
on the insights gained here, the next chapter expands the scope to both homogeneous and
heterogeneous settings. In particular, we introduce BP-SGCN, a behavioral pseudo-label
informed sparse graph convolutional network that discovers latent motion patterns in an

unsupervised manner. By leveraging these learned behavioral representations, BP-SGCN
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enhances spatial-temporal interaction modeling and improves generalization across

diverse traffic scenarios without requiring manual annotations.
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CHAPTER 5

Unsupervised Behavior Structure Learning for Generalizable

Trajectory Prediction

Portions of this chapter have previously been published in the following peer-reviewed

publication [19]:

« Li, R., Katsigiannis, S., Kim, T.-K., & Shum, H. P. H., “BP-SGCN: Behavioral Pseudo-
Label Informed Sparse Graph Convolution Network for Pedestrian and Heteroge-

neous Trajectory Prediction.” IEEE Transactions on Neural Networks and Learning

Systems (TNNLS), 2025.

Trajectory prediction allows better decision-making in applications of autonomous
vehicles or surveillance by predicting the short-term future movement of traffic agents. It
is classified into pedestrian or heterogeneous trajectory prediction. The former exploits
the relatively consistent behavior of pedestrians, but is limited in real-world scenarios
with heterogeneous traffic agents such as cyclists and vehicles. The latter typically relies
on extra class label information to distinguish the heterogeneous agents, but such labels

are costly to annotate and cannot be generalized to represent different behaviors within

72



Chapter 5. Unsupervised Behavior Structure Learning for Generalizable Trajectory
Prediction

the same class of agents. In this chapter, we introduce the behavioral pseudo-labels
that effectively capture the behavior distributions of pedestrians and heterogeneous
agents solely based on their motion features, significantly improving the accuracy of
trajectory prediction. To implement the framework, we propose the Behavioral Pseudo-
Label Informed Sparse Graph Convolution Network (BP-SGCN) that learns pseudo-labels
and informs to a trajectory predictor. For optimization, we propose a cascaded training
scheme, in which we first learn the pseudo-labels in an unsupervised manner, and then
perform end-to-end fine-tuning on the labels in the direction of increasing the trajectory
prediction accuracy. Experiments show that our pseudo-labels effectively model different
behavior clusters and improve trajectory prediction. Our proposed BP-SGCN outperforms
existing methods using both pedestrian (ETH/UCY, homogeneous pedestrian SDD) and

heterogeneous agent datasets (SDD, Argoverse 1).

5.1 Introduction

Predicting the future movement of traffic agents, known as trajectory prediction, is crucial
for safe and efficient decision-making in applications such as autonomous vehicles [10].
Thanks to reliable data-driven [167] object tracking methods [168], accurate geometric
trajectories can be extracted from videos, serving as a more representative feature set
for modeling. Graph Convolutional Networks (GCNs) [131] have shown exceptional
performance across diverse fields due to their adeptness at capturing spatial relationships
[169-173]. This enables them to excel in applications ranging from trajectory agent
interaction modeling [27, 29,38, 154] to human skeleton-based behavior modeling [174-
178], highlighting the superior capabilities in handling graph-based data structures.
Similarly, recognizing distinct movement behavior patterns among agents is pivotal
to model the temporal dependency [123]. These patterns, when integrated with GCN,
further enhance the precision of predictions by accounting for the inherent behavioral
tendencies.

Existing trajectory prediction methods can be broadly classified into two categories.
The first focuses on predicting pedestrian trajectories in datasets that are exclusively com-

posed of pedestrians [1,73] or deliberately omit non-pedestrian traffic agents [4,5,179].
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Figure 5.1: We propose the behavioral pseudo-labels learned from observed trajectories,
effectively representing inter- and intra-type behavioral differences to improve pedestrian
and heterogeneous trajectory prediction accuracy.

These methods primarily employ neural networks to account for pedestrian social interac-
tions, such as the pooling window mechanism [28] and social interaction graphs [27,29,38].
The second category encompasses heterogeneous trajectory prediction, considering a di-
verse range of traffic agents (e.g. cars, cyclists, pedestrians, etc.). Recent methods [6,7,34]
exploit the annotated class labels of traffic agents to better model agent interactions in in-
tricate urban scenarios. These labels facilitate the system’s understanding on multifaceted

interactions among various agent types [7].

A notable research gap can be observed between homogeneous and heterogeneous
trajectory prediction. Methods tailored solely for pedestrian behavior excel due to
its predictable patterns but lack applicability in real-world scenarios like autonomous
driving, since pedestrians behave very differently from heterogeneous agents [6,7]. The
fundamental differences in modeling the motion patterns of different types of agents
stem from their distinct dynamics, speed ranges, spatial needs, interaction behaviors,
decision-making processes, and ways of perceiving the environment, necessitating varied
modeling approaches to accurately predict their trajectories. For heterogeneous trajectory
prediction, ground-truth (GT) labels for agent types have traditionally been used to guide
discriminative learning [6,7,34,42]. However, these labels often fail to capture diverse
within-class behaviors: for example, ‘vans’ and ‘compact cars’ are both labeled simply as
‘cars, while ‘pedestrians’ can range from ordinary walkers to skateboarders [74]. This
granularity issue can lead to mislabeling, especially when visually similar categories
are grouped together. Moreover, obtaining such detailed GT labels is time-consuming
and expensive. We argue that purely relying on manual labels is both insufficient and

cost-ineffective for representing the nuanced motion patterns seen in real-world traffic
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scenarios.

In this paper, we present a unified framework utilizing machine-learned behavioral
pseudo-labels applicable to both heterogeneous and exclusively pedestrian domains.
Our insight is that behavioral pseudo-labels can capture both inter-class and intra-class
behavioral variations among agents, thereby improving the accuracy of our model. For
heterogeneous scenarios, the use of behavioral pseudo-labels eliminates the need for
manual label annotations, streamlining the process and reducing the reliance on extensive
labeled datasets. In homogeneous pedestrian scenarios, these pseudo-labels facilitate the
differentiation and learning of intrinsic motion patterns among pedestrians, offering a
more nuanced understanding of pedestrian behavior. A shared advantage across both
contexts is the significant improvement in overall prediction performance, demonstrating
the versatility and efficacy of behavioral pseudo-labels in diverse trajectory prediction

tasks (Figure 5.1).

We propose the Behavioral Pseudo-Label informed Sparse Graph Convolution Net-
work (BP-SGCN) for pedestrian and heterogeneous trajectory prediction. The network
includes two modules. First, we introduce a deep unsupervised behavior clustering
module that assigns pseudo-labels to agents based on their observed trajectories. This
module marks a novel application of deep embedded clustering [125], utilizing high-level
temporal latent features. It is supported by a Variational Recurrent Neural Network
(VRNN) [180] that processes a set of customized geometric features, crucial for capturing
motion dynamics such as speed, angle, and acceleration. Additionally, a soft dynamic
time warping loss addresses temporal variances in trajectories, uniquely tailoring our
approach for trajectory modeling. The generated behavioral pseudo-labels are specif-
ically designed to enhance trajectory forecasting, highlighting our model’s focus on
the nuanced demands of trajectory prediction in complex environments. Second, we
propose a goal-guided pseudo-label informed trajectory prediction module, which adapts
SGCN [27], a powerful GCN backbone for trajectory prediction that utilizes a sparse
spatial-temporal attention mechanism to effectively model spatial interactions and tem-
poral dependencies of agents. We then employ a Gumbel-Softmax straight-through
estimator to link up the clustering module, allowing the prediction module and clustering

module to be fine-tuned in an end-to-end manner. Finally, we design a cascaded training
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scheme [181] that first trains pseudo-label clustering in an unsupervised manner, and
then fine-tunes both clustering and trajectory prediction together with the prediction
loss to maximize their compatibility.

BP-SGCN surpasses SOTAs in both heterogeneous prediction on the SDD [74] and
Argoverse 1 [92] datasets, and in pedestrian prediction on the ETH/UCY [1,73] dataset
and the homogeneous pedestrian setup of SDD [182]. Our source code is available
at https://github.com/Carrotsniper/BP-SGCN to facilitate further research. Our

contributions are:

« We propose the novel concept of behavioral pseudo-labels to represent clusters of
traffic agents with different movement behaviors, improving trajectory prediction

without the need for any extra annotation.

+ To implement the idea, we propose BP-SGCN, which introduces a cascaded training
scheme to optimize the compatibility of its two core modules: the pseudo-label

clustering module and the trajectory prediction module.

« We propose a deep unsupervised behavior clustering module to obtain behavioral
pseudo-labels, tailoring the geometric feature representation and the loss to best

learn the agents’ behaviors.

« We propose a pseudo-label informed goal-guided trajectory prediction module,
which facilitates end-to-end fine-tuning with its prediction loss for better clustering
and prediction, outperforming existing pedestrian and heterogeneous prediction

methods.

5.2 Behavior Pseudo-Label Informed Sparse Graph Con-

volution Network

5.2.1 The High-Level Network Architecture

We observe a research gap in pedestrian and heterogeneous trajectory prediction. Existing
pedestrian prediction approaches have limited applicability to heterogeneous traffic

agents due to the diverse behaviors of agents. For instance, in Figure 5.2, (a) and (c) depict
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intricate heterogeneous scenarios with bikers and cars exhibiting longer, non-linear
paths, while homogeneous pedestrian scenarios (b) and (d) overlook interactions among

pedestrians, bikers and cars.
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Figure 5.2: Trajectory visualization on heterogeneous SSD dataset, where red, green
and blue dots represent pedestrians, bikers and cars, respectively. (a) and (c) represent
heterogeneous scenarios with all agent types, (b) and (d) represent the homogeneous
pedestrian scenarios commonly used by pedestrian trajectory predictions [4,5] by simply
removing all non-pedestrian agents.

Although introducing annotated class labels for heterogeneous agents leads to better
prediction performance [6,7,34], such labels are only a proxy of movement behaviors,
which cannot represent intra-class behavioral differences and inter-class behavioral
similarity.

To this end, we present the concept of behavioral pseudo-labels, which capture move-
ment behaviors to enhance trajectory prediction. Our pseudo-labels do not require
annotations, mitigating the risk of mislabeling and reducing labor costs. It can be ap-
plied to both homogeneous pedestrian and heterogeneous datasets, resulting in superior
prediction performance.

To realize pseudo-label informed trajectory prediction, we propose the Behavioral
Pseudo-Label Informed Sparse Graph Convolution Network (BP-SGCN). As shown in Fig-
ure 5.3, BP-SGCN includes two modules: deep unsupervised clustering and pseudo-label
informed trajectory prediction. The former learns the pseudo-labels in an unsupervised
manner, while the latter performs end-to-end optimization to improve pseudo-label
clustering while predicting trajectories with such labels.

We propose a cascaded training scheme to obtain the pseudo-labels and thus high-
quality trajectory prediction. First, highlighted with the orange dotted block in Figure 5.3,
the unsupervised behavior representation learning module derives behavior latent repre-

sentations from observed trajectories through a Variational Recurrent Neural Network
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(VRNN) [180] module. Then, in the green dotted block, the behavior latent representa-
tions are fed into simple clustering modules (e.g., K-means, GMM, etc.) for cluster center
initialization. We then perform unsupervised deep clustering to learn the distribution of
pseudo-labels by feeding the VRNN latent representations to the Student’s t-distribution
kernel [183]. This allows fine-tuning the VRNN encoder to create a better latent space
and refine the cluster centers. Finally, indicated by the blue dotted block, we utilize a
Gumbel-Softmax straight-through estimator to sample one-hot pseudo-labels, which are
concatenated to the trajectory features as the input of goal-guided SGCN [27] for trajec-
tory prediction. The whole network is optimized end-to-end, fine-tuning the pseudo-label

clustering module to maximize its compatibility for trajectory prediction.

5.2.2 Deep Unsupervised Behavior Clustering

Here, we explain how we obtain behavior clusters, which serve as powerful features for

effective trajectory prediction.

Geometric Representation of Trajectories

Given a series of observed video frames of N agents over time ¢ € [1,7T,], and the
corresponding 2-D trajectory coordinates (z,y;), i € [1, N], our objective is to predict
the future trajectory coordinates p; = (z%,y!) of each traffic agent ¢ within a time horizon
t € [Topst1, Tpred)-

We introduce relative angle and acceleration magnitude to learn behavior latents.
While global velocity is an effective feature for trajectory prediction [7,27], it is less
representative of behaviors, as it depends on global movement directions, and is less
sensitive to velocity changes. Relative angles provide a representation that is invariant to
the initial facing direction, which is complemented with the magnitude of acceleration
that has been shown to be effective for modeling behaviors [26].

For each traffic agent i, we calculate its velocity vector at time ¢. For simplicity, we

remove the notation i in the following equation:

o T T Y — Y1
o= (P ) o
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where Vt € [1,T,;;], we compute the cosine of the angle, cos (6;) between velocity vectors,
v; and v;_;:
Ut - Vi

cos(fy) = ————— (5.2)

AR

and the magnitude of corresponding acceleration at time t:

(5.3)

The geometric feature is constructed as g; = (cos(6;), |a;|). These motion primitives offer
informative inductive cues that are difficult to reliably disentangle from noise through

latent learning alone, while still leaving higher-order temporal representations.

Behavior Representation Learning

We adapt VRNN to learn latent representations for behavior clustering [125,184]. VRNN
learns the temporal dependencies of a sequence by modeling the distribution over its
hidden states with an encoder-decoder architecture. Compared to LSTM-based autoen-
coders [184], it effectively models the highly nonlinear dynamics and captures the un-
certainties of latent space. Its probabilistic nature of variational inference improves the
learning of implicit sequential data distributions.

In particular, the encoder network @.,.(+, -) receives the embedded geometric data

©9(g:) and recurrent hidden state h;_; to approximate the posterior distribution g(-):

%(zt\ggt, Zet) = /V’(Zt|(/ubz,t, Uf,t)),
(5.4)

[,Uz,t’ Uz,t] = (penc((pg(gt)u htfl)u

where z; is sampled using a reparameterization trick [185]. The decoder network vge.(+, *)

takes the embedded latent ¢*(2;) and h;_; to approximate the reconstruction distribution

ps(*):

pé(gt’2§t79<t> = N(9t|(/ig,ta Ug,t)),
(5.5)

[tg,t> Ogt] = Paec(© (), hi—1).
To enhance the temporal dependencies in sequences, the prior distribution in VRNN
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relies on hy_y with @0 (+):

p5(2t|z<ta g<t) = N(Zt|<lu0,t7 0-(2),15))’
(5.6)

[/’LO,tv UO,t] - @prior(ht—1)~

We employ the Gated Recurrent Unit (GRU) [110] to update the RNN hidden state,

which outperforms LSTM [83] when the sequence length is relatively short:
he = GRU(9(g1), ©*(24), hu—1)- (5.7)
The VRNN is optimized with a customized loss:

Lyran = Lsopi-prw + LELBO, (5.8)

where Lg,p.prw is a differentiable soft Dynamic Time Warping (DTW) loss [186]:

N
) 1
ESoft—DTW = lebm Z DTW’y(,ug,ta gt), (5.9)

9t 7 Lobs

DTW, refers to the original DTW [187] discrepancy that measures and aligns the sim-
ilarity between two time series, 7y is a parameter indicating the acceptable distortion
for aligning two sequences, i, is the decoded mean of the VRNN decoder. The loss
allows capturing non-linear temporal alignment [188], which cannot be achieved with
MSE. Lgipo is the variational evidence lower-bound with the Kullback-Leibler (KL)
divergence [180,185]:

Tobs

Lego = ]Eq¢(z§TObs lg<t,,,) [Z (log Ps (gt|2§ta 9<t)
= (5.10)

_KL(Q¢(Zt|9§t, Z<t) || p5<zt|2<t, 9<t))] .

By optimizing Lygnn, the model aligns predicted and observed sequences while maintain-
ing a theoretically grounded variational framework. This alignment enhances flexibility
in handling non-linear temporal dynamics, and the KL regularization constrains the

latent structure, thus ensuring stable training. Consequently, the VRNN encoder provides
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richer latent representations for subsequent unsupervised deep clustering, effectively

leveraging spatial-temporal structures to capture nuanced agent behaviors.

Deep Embedded Clustering

We present a new application of Deep Embedded Clustering (DEC) [125] to cluster the
agent behaviors latents from the VRNN encoder, thereby generating a distribution of
pseudo-labels. DEC allows jointly optimizing the cluster centers and the VRNN encoder,
enhancing the latent representation via back-propagation. This significantly outperforms
traditional methods like k-means [189] and Gaussian mixture models [190], which lack
the capability to refine input feature representations.

The initial phase of DEC involves setting cluster centers using VRNN behavior latents.
We input all training data into the VRNN encoder to obtain the set of behavior latent
features Z, and then apply k-means to determine initial centers, ¢; € [1, k]. Given the
variance in agent behaviors across datasets, k is an empirically tuned hyperparameter.

We then apply Student’s T-Distribution [183], that is, Q distribution to compute the
soft assignment between each initialized cluster center and latent vector [125]. Its kernel

measures the probability of each encoded vector z; € Z belonging to the cluster j:

1

(1+ %)

«

qij = “agTs (5.11)
d(z;,cr

where d is a similarity metric that refers to the distance between the encoded vector z;
and center ¢;, and « is the number of degrees of freedom of the Q distribution. We denote
d as the Euclidean distance and set « to 1.

Meanwhile, we optimize the clustering network with a KL divergence loss to minimize

the discrepancy between the two distributions:

‘Ccluster = KL(PHQ) = 2123 (pzj log ];Z]> > (512)

v

where P is the auxiliary distribution:

ah/

pij = , (5.13)
’ > ngj//fj/
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and f; = Y, ¢i; are soft cluster frequencies. Here, P is re-weighted from Q distribution
in a way that sharpens high-confidence assignments and de-emphasizes low-confidence
ones [125], thereby systematically increasing the separation between clusters in the latent
space. Finally, we derive soft assignments from the Student’s t-distribution, reflecting
the probability of the latent 2} in each cluster ¢;. This approach not only offers greater
flexibility in representing complex behaviors but also sharpens cluster boundaries by
reinforcing high-confidence assignments and reducing ambiguity in low-confidence ones.
Consequently, it yields more coherent clusters and better captures the inherent diversity

in agent dynamics, ultimately enhancing the overall clustering quality.

5.2.3 Pseudo-label Informed Trajectory Prediction

Here, we introduce the concept of behavioral pseudo-labels for more accurate trajectory

prediction.

Gumbel-Softmax Straight-Through Estimator

While the soft assignment represents good behavior clusters, such clusters are unsuper-
vised and trained only on feature representations, meaning that they are still sub-optimal
for any given task. This explains the sub-optimal prediction accuracy in existing meth-
ods [123,124]. Here, we present a framework to improve the compatibility between the
clusters and the task via fine-tuning the behavior latent.

To enable end-to-end fine-tuning of the behavior latent with a task objective, an
operator is needed to connect the clustering and the prediction modules. We employ
the Gumbel-Softmax straight-through estimator [191], which facilitates the gradient
propagation and computes one-hot vectors representing the pseudo-labels. The estimator
uses a differentiable Softmax, as opposed to the non-differentiable Argmax, allowing
end-to-end optimization. An agent’s class label is [;, where j € 1,...k is the cluster
center.

Apart from performance gains, as one-hot labels fit the human understanding of a
class concept, they allow better interpretability via visualization tools. They are also
immediately compatible with existing network architectures trained with ground-truth

labels [6, 7], allowing effective adaptations.
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Behavioral Pseudo-Label Informed SGCN

We adopt a Sparse Graph Convolution Network (SGCN) [27] as our backbone and in-
troduce the pseudo-labels and a new loss function. SGCN has shown outstanding per-
formance and is computationally efficient on pedestrian trajectory prediction [27]. It
introduces sparsified spatial-temporal attention mechanism [38,67,192], which effectively
models spatial interactions and temporal dependencies among agents. The sparse graph
learning component removes spatial superfluous interactions and temporal motion ten-
dencies, improving both computational speed and accuracy. In reality, our pseudo-label

framework is compatible with a wide range of trajectory prediction networks.

We introduce the usage of semantic-goal features into SGCN, which enhances the
prediction accuracy [5,179]. To this end, we integrate the goal-retrieval operation
[179] into the SGCN, we first subtract each observation step v; in ¢t € [1,T,] by the
corresponding trajectory endpoint v, as vy = vy — vr, ,. We then construct the
spatial graph G, = {(Vs, A,)|Vs € RIevsxNxDs | A - RTobs XNXN }, where V; represents
the spatial interactions among all agents at time step ¢, A, is the spatial adjacency matrix
and D refers to the spatial feature dimension.

To add heterogeneity to the graph, we concatenate the pseudo-labels [ to the trajectory
feature vector for each agent at each time step as V; = concat(v}, "), Vt € [1, T, and
Vi € [1, N]. Similarly, we establish the
temporal graph G, = {(Vt, Ap)|Vy € RVN*TovsxDe | A, ¢ RNXTobSXTobS} to represent the
temporal correlations of each individual agent during 7, steps, where A, is the temporal
adjacency matrix and D is the temporal feature dimension. Finally, these spatial and
temporal goal-guided heterogeneous graphs are passed into SGCN for final trajectory
prediction.

We propose a joint training strategy with a novel loss function to jointly optimize
trajectory prediction and pseudo-label clustering. Thanks to our Gumbel-Softmax esti-
mator, back-propagation is performed from the prediction all the way back to the VRNN
encoder, resulting in better compatibility between the clustering and prediction modules.

We present a combined loss:

‘Cfinal = ‘Ccluster + ‘Cpredictiona (514)
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where L jyster is defined in Eq. 5.12, and Ly, cgiction as:

T e A A A
*Cprediction = - tiijS+1 IOg P(pt|,ua g, p)7 (515)
where /i and 6 are the mean and variance of the bi-variate Gaussian distribution of

trajectory prediction, and j represents the correlation coefficient.

5.3 Experiments

5.3.1 Datasets

We evaluate BP-SGCN on multiple benchmark datasets, including the Stanford Drone
Dataset (SDD) [74], Argoverse 1 [92], ETH [1] and UCY [73], and the homogeneous
pedestrian version of SDD [182]. For pedestrian trajectory prediction, ETH/UCY consists
of five homogeneous pedestrian datasets (ETH, HOTEL, UNIV, ZARA1, ZARA2) with 1,536
pedestrians. homogeneous pedestrian SDD is the simplified version where non-pedestrian
agents are removed. For heterogeneous trajectory prediction, we follow [7,193,194] that
consider all trajectories, consisting of 8 scenes, 60 videos and 6 categories of traffic agents
(i.e., pedestrians, bicyclists, skateboarders, carts, cars, and buses). Argoverse 1 consists
of over 30K urban traffic scenarios that include 3 types of agents (i.e. AVs, agents, and

others).

5.3.2 Experimental Setup

By default, we follow the experimental setup of [27, 154], using 3.2 seconds (8 frames) of
observation trajectories to predict the next 4.8 seconds (12 frames). For homogeneous
pedestrian prediction, we employ the data augmentation approach introduced in [154]
and the official leave-one-out strategy [21] during the training and validation. For
heterogeneous trajectory prediction on Argoverse 1 dataset, our experimental setup
and dataset split strategy follow [34,35]. Specifically, we utilize 2 seconds (20 frames)
of observation trajectories to predict the trajectories of all tracked objects over the
subsequent 3 seconds (30 frames) within each scene. In particular, our experimental setup

on the Argoverse 1 dataset for heterogeneous trajectory prediction predicts trajectories
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for all agents [34, 195], unlike methods focusing on a single agent [196] or two specific
agents [197], our approach captures multi-agent interactions, reflecting real-world traffic
complexity and improving predictive robustness, situational awareness, and adaptability
to diverse urban environments.

During testing, we adhere to the standard protocol by generating 20 predictions
for both heterogeneous [6, 7, 35] and homogeneous pedestrian trajectory predictions
[21,27,198]. This approach ensures our results are comparable to those established
in the field. The sample with the lowest error is then used to compute the evaluation
metrics. We employ the Average Displacement Error (ADE) and Final Displacement Error

(FDE) [21,27-29] as our evaluation metrics:

1 N Tpred . .
ADE = Z Z Hﬁl_le%
(Tpred — Tobs) X N 1=1t=T,ps+1 : t (5 16)

1 a N 7
FDE = NZ ||pt _pt||27t = Tpreda
=1

where p! represents the ground-truth trajectory coordinates. Table 5.1 summarizes the

primary notations and their definitions used throughout the BP-SGCN framework.

5.3.3 Quantitative Evaluation
Heterogeneous Prediction

Table 5.2 compares our BP-SGCN with previous state-of-the-art methods on heteroge-
neous SDD. These methods can be categorized into three groups based on the input
features, including trajectory-only [25, 28, 38, 41, 42], trajectory with ground-truth la-
bels [6,7,33,34,42,91], and trajectory with extra scene features such as scene seman-
tics [40,193,194,199-201]. BP-SGCN outperforms all the methods that utilize ground-truth
agent class labels [6,7,33,34,42,91]. Compared to the best method VNAGT [91], BP-
SGCN demonstrates the superiority by reducing ADE/FDE by 28.23%/44.43%. Crucially,
for SOTA approaches that incorporate scene semantic features such as V?-Net [200]
and TDOR [193], our BP-SGCN improves the performance by reducing ADE/FDE by
2.5%/15.9% compared to V?-Net and 19.3%/31.2% compared to TDOR. The results indi-
cate that without the need for additional inputs, our BP-SGCN can still achieve SOTA
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Table 5.1: A summary of main symbols and definitions
Symbols ‘ Definition
Pl = (2%, 9}) 2D coordinates of agent i at time t.
N Number of pedestrians
Tobs Observed time steps
Tyred Prediction time steps
o Velocity vector
cos (6¢) Cosine of the angle
|| Magnitude of acceleration
gt Agent geometric feature
Pene Encoder network of VRNN
h Recurrent hidden state
46 Posterior distribution
Pdec Decoder network of VRNN
s Reconstruction distribution
Pprior Prior distribution
LvVRNN Loss of VRNN
Lsofi-DTW Loss of soft-DTW
LELBo Loss of ELBO
q Q Distribution for soft assignment
P Auxiliary distribution P
Leuster Loss of deep clustering
f Soft cluster frequency
l Agent class label
Gs Spatial graph
Vs Node of G,
A Adjacency matrix of G
Gt Temporal graph
Vi Node of G;
Ay Adjacency matrix of G;
Lyrediction Loss of bi-variate Gaussian distribution
L finai Combined loss

performance in heterogeneous trajectory prediction.

Table 5.3 compares the BP-SGCN with those state-of-the-art methods in heteroge-
neous trajectory prediction on Argoverse 1, following the setup in [34,35,195]. Results
show that our BP-SGCN outperforms all the methods by a significant margin, especially
in the ADE metric. BP-SGCN surpasses NLNI [34], which integrates ground-truth labels,
by reducing 12.7% in ADE and 8.7% in FDE, further showcasing the effectiveness of our
proposed pseudo-label module. Notably, although NLNI utilizes label-based category
features, its performance is limited by the simplistic nature of the “GT Labels" in the Argo-
verse 1 dataset, which are broadly classified as “1 AV" (1 Autonomous Vehicle), “1 Focal"

(the primary vehicle whose trajectory is predicted), and “N other" (other tracked objects,
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Table 5.2: Results on SDD for heterogeneous prediction.

SDD
ADE({) FDE({)

Social-LSTM [28]  CVPR 2016  No 31.19  56.97

Methods Venue Year GT Labels

DESIRE [40] CVPR 2017 No 19.25  34.05
MATF [81] CVPR 2019  No 2259 3353
STGAT [38] ICCV 2019 No 18.80  31.30
Multiverse [194] CVPR 2020 No 14.78  27.09
SimAug [199] ECCV 2020 No 10.27 19.71
NLNI [34] ICCV 2021 Yes 1590 26.30

STSF-Net [41] TMM 2021  No 14.81  28.03
Semantic-STGCNN [6] SMC 2021 Yes 18.12  29.70

V2-Net [200] ECCV 2022  No 7.12 1139
Multiclass-SGCN [7] ICIP 2022 Yes 1436  25.99
TDOR [193] CVPR 2022  No 8.60  13.90
CAPHA [201] TVT 2023  No 9.13 1434
VNAGT [91] TVT 2023 Yes 9.67 17.22
SFEM-GCN [42] TIV 2024 Yes 1531 25.72
SMGCN [33] [JCAI 2024 Yes 20.89 36.84
BP-SGCN (Ours) No 6.94 9.57

Table 5.3: Results on Argoverse 1 for heterogeneous prediction.

Methods Venue Year GT Labels Argoverse 1
ADE(]) FDE()

Social-LSTM [28] CVPR 2016  No 139 257
DESIRE [40] CVPR 2017  No 0.90 145
R2P2-MA [202]  ECCV 2018  No 111 177
MATFG [81] CVPR 2019  No 126 231
CAM [85] ECCV 2020 No 113 250
MEFP [203] NeurIPs 2020 No 1.40 2.68
Social-STGCNN [29] CVPR 2020 No 1.31 2.34
NLNI [34] ICCV 2021  Yes 079  1.26
DD [204] Inf. Sci. 2022  No 074 1.8
HRG+HSG [35]  TITS 2023 No 085  1.12
BIP-Tree [195] TITS 2023  No 0.78 135
BP-SGCN (Ours) No 0.69 1.15

which can include vehicles, pedestrians, or bicycles). This coarse categorization restricts
the algorithm’s ability to accurately capture and analyze the nuanced interactions among

diverse traffic agents. In contrast, BP-SGCN effectively overcomes these constraints by
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Table 5.4: Results on ETH/UCY on homogeneous pedestrian prediction;
- denotes missing result due to unavailability from original authors.

ETH HOTEL UNLV ZARA1 ZARA2 AVG
Method Venue  Year
ADE(])/FDE(|) ADE(})/FDE(|) ADE(})/FDE({) ADE(})/FDE({) ADE(})/FDE(]) ADE(])/FDE({)

Social LSTM [28] CVPR 2016 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social GAN [21] CVPR 2018 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
Social-STGCNN [29] CVPR 2020 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
PECNet [4] ECCV 2020 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
SGCN [27] CVPR 2021 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
AgentFormer [68] ICCV 2021 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
PCCSNet [123] ICCV 2021 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42
ExpertTraj 1[179] ICCV 2021 0.37/0.65 0.11/0.15 0.20/0.44 0.15/0.31 0.12/0.25 0.19/0.36
STSF-Net [41] TMM 2021 0.63/1.13 0.24/0.43 0.28/0.52 0.23/0.45 0.21/0.41 0.32/0.59
Social-Implicit [154] ECCV 2022 0.66/1.44 0.20/0.36 0.31/0.60 0.25/0.50 0.22/0.43 0.33/0.67
GP-Graph [25] ECCV 2022 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29 0.23/0.39
Social-VAE [22] ECCV 2022 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 0.21/0.33
MemoNet [155] CVPR 2022 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35
GroupNet [63] CVPR 2022 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44
MID [71] CVPR 2022 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38
GTPPO [98] TNNLS 2022 0.63/0.98 0.19/0.30 0.35/0.60 0.20/0.32 0.18/0.31 0.31/0.50
Graph-TERN [39] AAAI 2023 0.42/0.58 0.14/0.23 0.26/0.45 0.21/0.37 0.17/0.29 0.24/0.88
MSRL [151] AAAI 2023 0.28/0.47 0.14/0.22 0.24/0.43 0.17/0.30 0.14/0.23 0.19/0.33
LED [72] CVPR 2023 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33
EqMotion [26] CVPR 2023 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23 0.21/0.35
FEND [124] CVPR 2023 - - - - - 0.17/0.32
EigenTrajectory [30] ICCV 2023 0.36/0.53 0.12/0.19 0.24/0.43 0.19/0.33 0.14/0.24 0.21/0.34
TUTR [69] ICCV 2023 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 0.21/0.36
SICNet [205] ICCV 2023 0.27/0.45 0.11/0.16 0.26/0.46 0.19/0.33 0.13/0.26 0.19/0.33
TP-EGT [206] TITS 2023 0.41/0.68 0.13/0.21 0.29/0.50 0.18/0.30 0.16/0.27 0.23/0.39
DynGroupNet [104] NN 2023 0.42/0.66 0.13/0.20 0.24/0.44 0.19/0.34 0.15/0.28 0.23/0.38
SMEMO [156] TPAMI 2024 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32 0.15/0.26 0.22/0.35
STGlow [23] TNNLS 2024 0.31/0.49 0.09/0.14 0.16/0.33 0.12/0.24 0.09/0.19 0.15/0.28
MRGTraj [158] TCSVT 2024 0.28/0.47 0.21/0.39 0.33/0.60 0.24/0.44 0.22/0.41 0.26/0.46
HighGraph [31] CVPR 2024 0.40/0.55 0.13/0.17 0.20/0.33 0.17/0.27 0.11/0.21 0.20/0.30
PPT [207] ECCV 2024 0.36/0.51 0.11/0.15 0.22/0.40 0.17/0.30 0.12/0.21 0.20/0.31
BP-SGCN (Ours) 0.33/0.47 0.10/0.14 0.17/0.26 0.13/0.19 0.10/0.16 0.17/0.24

! For ExpertTraj [179], the discrepancy from the original paper arises due to an error highlighted by the authors: https://github.com/JoeHEZHAO/
expert_traj

Table 5.5: Results on the homogeneous pedestrian version of SDD.

Methods Venue Year SDD-human
ADE(]) FDE({)
STGAT [38] ICCV 2019] 058  1.11

Social-Ways [208] CVPRW 2019| 0.62  1.16
DAG-Net [198]  ICPR 2020| 053  1.04
Social-implicit [154] ECCV  2022| 0.47  0.89
WTGCN [209]  IMLC 2024| 043  0.72
IGGCN [210] DSP  2024| 044 071
BP-SGCN (Ours) 028 041

conducting a comprehensive analysis of the behavior dynamics of all agents within the
scene. By employing our advanced pseudo-label module, we significantly enhance the

representational capabilities of our system, leading to markedly improved prediction
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accuracy across diverse traffic scenarios. This improvement is achieved without the
need for direct matching with ground-truth labels, demonstrating the robustness and
adaptability of our approach in interpreting complex interactive behaviors. Importantly,
DD [204] and HRG+HSG [35] achieve comparable performance on ADE and FDE mainly
due to the use of scene images that better capture the interactions between traffic agents
and environments, our BP-SGCN still shows the best ADE performance compared to

these methods.

Pedestrian Prediction

For ETH/UCY, we conduct quantitative comparisons with a wide range of methods with
various techniques, as shown in Table 5.4. Following [26,72], we compare with methods
utilizing trajectory data only.

For distribution-based methods, Social-LSTM [28] introduces bi-variate Gaussian
distribution to sample predictions from the trained mean and variance, which is widely
used in recently published methods [25, 27,29, 66,104, 179]. Following this, our BP-SGCN
also uses the bi-variate Gaussian distribution to represent the distribution parameters
of the predicted trajectories. It outperforms almost all methods under this setting by
a significant margin. In addition, both ExpertTraj [179] and our BP-SGCN utilize the
goal-retrieve mechanism but we have a significant improvement of 10.5% in ADE and
33.3% in FDE.

For generative-based methods, Social-GAN [21] is the pioneer method that introduces
GANSs [60] to generate trajectories with special pooling modules. PECNet [4] utilizes
the CVAEs [211] to generate trajectories conditioned on the pre-sampled goal points,
which add an extra constraint to the predicted trajectories for better accuracy. Methods
like [22,30,31,63,68,151] follow the CVAEs basis to train the encoder with ground-truth
trajectories for better latent representations. MID [71] and LED [72] further introduce
the diffusion models [212] to enhance training and reduce mode collapses. Results reveal
that our BP-SGCN outperforms generative-based methods.

For transformer-based methods, TUTR [69] proposes a novel global prediction sys-
tem incorporated with a motion-level transformer encoder and a social-level trans-

former decoder for accurate trajectory representation. MRGTraj [158] introduces a
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non-autoregressive enhanced transformer decoder for trajectory prediction. PPT [207]
proposes multi-stage transformer progressively modeling trajectories. STGlow [23] fur-
ther introduces the flow-based generative framework with dual-graphormer to precisely
model motion distributions. Compared to STGlow, our BP-SGCN achieves comparable
ADE with STGlow, while reducing FDE by 14%.

Besides these categories, LSTM decoder-based methods [41,98,123,206] and [124]
directly predict trajectories using LSTM decoder, which also show comparable results
to the transformer-based methods. Social-implicit [154] introduces the concept of im-
plicit maximum likelihood estimation mechanism. Memonet [155], SICNet [205] and
SMEMO [156] incorporate memory bank/module concepts into the system, demonstrat-
ing considerable performance. Notably, SICNet presents the best results on ETH subset
in both ADE and FDE metrics compared with all other methods. Graph-TERN [39] shows
a novel trajectory refinement module that first samples the endpoint and then linearly
interpolates the predictions. EqQMotion [26] further introduces the concepts of invariance
and equivariance into trajectory prediction to learn motion patterns. Nevertheless, results
in Table 5.4 illustrate that our BP-SGCN outperforms all of these methods.

For homogeneous pedestrian SDD, Table 5.5 highlights the comparative performance
of our BP-SGCN, which secures substantial improvements over all listed models, including
the latest STOA models, WTGCN [209] and IGGCN [210]. Specifically, BP-SGCN achieves
a 35% reduction in ADE compared to WTGCN and a 42% reduction in FDE compared to
IGGCN. The results in both heterogeneous SDD and homogeneous pedestrian SDD show

the superiority of our BP-SGCN in multiple scenarios.

5.3.4 Qualitative Evaluation

Figure 5.4 presents a t-SNE [183] visualization of the latent representations and their
corresponding pseudo-classes during unsupervised deep clustering on SDD (k = 6).
These clusters do not correspond to ground-truth semantic labels, but instead reflect
behavior-driven groupings learned from motion patterns. At epoch 0, cluster centers are
initialized using k-means, and the latent representations are not yet structured, resulting
in overlapping and ambiguous clusters. As training progresses, the VRNN encoder learns

more discriminative behavioral representations, leading to increasingly compact and
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G

(b) ©

Figure 5.4: The t-SNE visualization of pseudo-class clustering on SDD (k=6) during
unsupervised deep clustering. (a) 0 epochs (initialized by k-means), (b) 200 epochs, (c)
800 epochs.

well-separated clusters. This visualization primarily serves to illustrate the improvement
in clustering quality and representation consistency over training, rather than to indicate

predefined or interpretable semantic categories.

Figure 5.5 and Figure 5.6 visualize the trajectory predictions for the SDD and ETH/UCY
datasets, respectively. Blue and red dots represent observed and ground-truth future
trajectories, respectively. For the SDD dataset, we visualize the predictions in Figure 5.5,
where light blue indicates the predicted distributions and yellow dots represent the
predicted single trajectory. The visualizations demonstrate that our BP-SGCN exhibits
superior performance compared to methods integrating ground-truth labels [6,7] in three

challenging scenarios characterized by complex social interactions among agents.

In Figure 5.6, we visualize the predicted distribution in the ETH/UCY datasets across
various scenarios, encompassing both simple and complex interactions, and compare our
method with SGCN [27] and GP-Graph [25]. We visualize the parameterized distribution
of future trajectories, as they are the learning objective of these methods. Qualitative
comparisons reveal that our predicted distributions closely align with the ground truth
and adeptly capture the non-linear trajectories. Specifically, scenario (a) illustrates a
scene with numerous pedestrians on the street engaging in complex interactions, such as
meeting, colliding, and standing still. While all the predicted distributions can accurately
represent linear trajectories, both SGCN and GP-Graph falter in predicting the move-

ments of pedestrians exhibiting non-linear behaviors. In contrast, BP-SGCN consistently
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Semantic-STGCNN  Multiclass-SGCN ~ BP-SGCN (ours)

Figure 5.5: Visualization of trajectory prediction on SDD of Semantic-STGCNN [6],
Multiclass-SGCN [7], and BP-SGCN (ours). Blue and red represent observed and ground-
truth trajectories respectively, yellow represents the predicted trajectory and light-blue
shade represents the predicted distribution.

generates plausible predictions. Scenario (b) displays four stationary pedestrians; how-
ever, both SGCN and GP-Graph yield wrong predictions, whereas BP-SGCN accurately
captures the static behaviors. In scenario (c), the predicted distributions from both SGCN
and GP-Graph demonstrate significant overlaps, leading to a heightened risk of predicted
collisions. On the other hand, BP-SGCN’s predictions show reduced overlaps. In scenario
(d), while GP-Graph continues to display overlap issues, SGCN exhibits overconfidence
in its predictions, resulting in a lack of diversity and a propensity to deviate from the
ground truth. BP-SGCN effectively addresses both of these challenges, striking a balance

between prediction accuracy and diversity.
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SGCN

GP-Graph

BP-SGCN (Our)

Figure 5.6: Visualization of the trajectory prediction on ETH/UCY in the scenario of
pedestrian walking behaviors. Past trajectories are shown in blue, and ground-truth
trajectories are in red. (a) shows the pedestrians in a crowded scenario with complex
interactions. (b) shows the scene where four pedestrians are almost static. (c) and (d)
show scenes including multiple pedestrian behaviors, such as walking, meeting, and
standing.

5.3.5 Ablation Study and Parameter Analysis
Cluster Number Analysis

The effects of cluster number on heterogeneous datasets are shown in Table 5.6 (Het-
erogeneous SDD) and Table 5.7 (Argoverse 1). The results on homogeneous pedestrian
datasets are shown in Table 5.8 (ETH/UCY) and Table 5.9 (homogeneous pedestrian SDD).
In general, the cluster number depends on the diversity of behaviors, which is strongly
correlated with the location. For instance, choosing six clusters for SDD is reasonable
given the presence of six types of agents, and this choice yields good performance. Tuning
the cluster number for a scene provides extra improvements, and this only has to be
done once. These results further reflect that the heterogeneous dataset is more sensitive
to the cluster numbers and the pedestrian dataset results exhibit diminished sensitivity,
attributable to the inherent behavioral homogeneity and comparatively lower variance

observed in human actions. Note that due to its large data size, for Argoverse 1, we run
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Table 5.6: Cluster number analysis on heterogeneous SDD.

Clusters ADE(}) FDE(])

1 7.26 10.03
3 7.11 9.81
6 6.94 9.57
9 7.03 9.74
12 7.58 10.92

Table 5.7: Cluster number analysis on Argoverse 1.

Clusters ADE(]) FDE(])

1 0.86 1.63
3 0.80 1.45
6 0.69 1.15
9 0.79 1.47

ablation studies and parameter analysis using a partial dataset in a simplified setup.
Notably, in our experiments on cluster numbers, a cluster’s number equal to 1 denotes
that there is no pseudo-label applied on each agent because all the agents are considered
to belong to the same class, and consequently the model performance relies solely on the
trajectories themselves. In particular, results in Table 5.8 and Table 5.9 demonstrate that,
within datasets exclusively comprising pedestrian agents, our BP-SGCN model is adept
at discerning the nuanced variances in their movement patterns. Despite the apparent
homogeneity of the agents as pedestrians, our analysis reveals intrinsic behavioral differ-
entiations that our model capitalizes on to significantly improve prediction accuracy. This
not only underscores the importance of individualized learning even among seemingly
similar entities, but also showcases the efficacy of our model in enhancing predictive

outcomes by leveraging these subtle distinctions.

Network Components Analysis

Table 5.10 shows ablation studies to evidence the effectiveness of network components
used in BP-SGCN on heterogeneous and homogeneous pedestrian SDD. The “No Deep
Clustering” setup uses k-means cluster centers directly for trajectory prediction, and

therefore does not implement unsupervised deep learning and end-to-end fine-tuning.
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Table 5.8: Cluster number analysis on ETH/UCY.

ADE(|) / FDE(])
Clusters
ETH HOTEL UNIV ZARA1 ZARA2

1 0.37/0.51 0.14/0.19 0.27/0.37 0.15/0.21 0.24/0.34
2 0.37/0.52 0.15/0.21 0.18/0.27 0.20/0.37 0.25/0.35
3 0.45/0.61 0.10/0.14 0.27/0.36  0.24/0.33  0.17/0.34
4 0.33/0.47 0.12/0.16  0.27/0.37  0.14/0.20 0.10/0.16
5 0.36/0.50 0.17/0.22 0.18/0.27 0.13/0.19 0.12/0.18
6 0.39/0.53 0.15/0.21 0.18/0.27 0.15/0.21 0.11/0.17
7 0.37/0.51 0.11/0.15 0.17/0.26  0.26/0.37 0.13/0.19

Table 5.9: Cluster number analysis on homogeneous pedestrian SDD.

Clusters ADE(}) FDE(])
1 0.33 0.49
3 0.28 0.41
6 0.47 0.72
9 0.31 0.47

The “No Gumbel-Softmax” setup directly concatenates the soft assignment to the tra-

jectory features for trajectory prediction. The “No End-to-End Training” setup uses

only Ly, cdiction to optimize the trajectory prediction module but not the deep clustering

module; here, the Gumbel-Softmax estimator is substituted with the non-differentiable

Argmax function. Results from both the heterogeneous and pedestrian datasets emphasize

the significance of all the proposed components in BP-SGCN.

In addition, our proposed Goal-Guided SGCN module utilizes the spatial attention

and temporal attention mechanism to enhance the final prediction accuracy. We conduct

experiments on ETH/UCY datasets to validate the effectiveness of these two modules.

The results shown in Table 5.11 indicate that both spatial attention and temporal attention

modules are important for the best performance.
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Table 5.10: Network components analysis on heterogeneous SDD (upper) and homoge-
neous pedestrian SDD (lower).

Method ADE(]) FDE()
BP-SGCN (No Deep Clustering) 7.52 10.50
BP-SGCN (No Gumbel-Softmax) 7.65 10.85
BP-SGCN (No End-to-End Training)  10.82 15.32
BP-SGCN (Ours) 6.94 957
Method ADE(}]) FDE()
BP-SGCN (No Deep Clustering) 0.30 0.44
BP-SGCN (No Gumbel-Softmax) 0.40 0.60
BP-SGCN (No End-to-End Training) 0.30 0.46
BP-SGCN (Ours) 0.28 0.41

Table 5.11: Prediction module analysis on ETH/UCY datasets.

Method ADE(]) FDE(/)
BP-SGCN (No Spatial Attention) 0.25 0.30
BP-SGCN (No Temporal Attention)  0.28 0.35
BP-SGCN (Ours) 0.17 0.24

Trajectory Prediction Loss Analysis

As discussed above, we propose a cascaded training strategy with a novel loss function

to jointly optimize trajectory prediction and pseudo-label clustering, defined as:

ﬁfinal = 'Cprediction + Eclustw" (517)

In the proposed loss function, £, ¢cgiction and Leyster contribute equally to the final
loss L finqi. We conduct an ablation study by introducing a weighted sum of losses with
a new hyperparameter \ to explore the effect and contribution of the two losses on

trajectory prediction on both heterogeneous and homogeneous pedestrian SDD datasets:

'Cfinal = )\ﬁprediction + (]- - )\)ﬁcluster- (518)

Here, we analyze the effect of . For the proposed BP-SGCN, the default value of A
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Table 5.12: Loss weight analysis between L, cgiction and L, ster on heterogeneous SDD
(left) and homogeneous pedestrian SDD (right).

Method ADE(]) FDE(}) Method ADE(]) FDE(])
BP-SGCN (A = 0.25)  19.33  24.26 BP-SGCN (A = 0.25)  0.46 0.70
BP-SGCN (A = 0.75)  7.08 9.84 BP-SGCN (A = 0.75)  0.31 0.46
BP-SGCN (Ours) 6.94  9.57 BP-SGCN (Ours) 028 041

can be considered as 0.5, as both losses contribute equally to the final loss. We further
adjust the value of A as 0.25, and 0.75, respectively. The experimental results presented
in Table 5.12 show that the performance of BP-SGCN reaches its peak when the ratio of
Lyrediction and Lejyster is €qual, as presented in the main paper, which further indicates
that the trajectory prediction and pseudo-label clustering modules are equally important

for the overall trajectory prediction performance.

Clustering Features Analysis

Finally, Table 5.13 shows ablation studies on heterogeneous and homogeneous pedestrian
SDD datasets with regard to the geometric features used for behavior clustering. These
features play a pivotal role, enabling our unsupervised deep clustering module to differ-
entiate agent behaviors effectively. The outcomes highlight the outstanding performance

of our proposed features, which integrate relative angle and acceleration magnitude.

5.3.6 Model Complexity and Inference Time Analysis

To verify the efficiency of our proposed method, we conduct experiments on inference
time and model parameters with existing mainstream trajectory prediction frameworks.
As demonstrated in Table 5.14, our method is inferior to EigenTrajectory [30] and better
than all other methods in terms of inference time and model parameters. We leave it as
future work to improve the efficiency of our BP-SGCN with more advanced sequential

modeling methods such as Transformers [67] and State Space Models (SSMs) [213,214].
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Table 5.13: Clustering features analysis on heterogeneous SDD (upper) and homogeneous

pedestrian SDD (lower).

Method ADE(]) FDE(])

BP-SGCN (Relative Angle) 19.52 34.05

BP-SGCN (Acceleration Magnitude) 9.07 13.02

BP-SGCN (Ours) 6.94 957
Method ADE(]) FDE()
BP-SGCN (Relative Angle) 0.45 0.68

BP-SGCN (Acceleration Magnitude) 0.42 0.63
BP-SGCN (Ours) 028 041

Table 5.14: COMPARISON OF THE PROPOSED APPROACHES IN TERMS OF NUMBER
OF PARAMETER AND INFERENCE TIME.

Methods Venue Year |Param x10° Infer. Time/Iter.
ExpertTraj [179] ICCV 2021 0.32 130 ms
Social-VAE [22] ECCV 2022 5.69 1110 ms
GroupNet [63] CVPR 2022 3.14 -

MSRL [151] AAAI 2023 11.32 970 ms
EqMotion [26] CVPR 2023 2.08 800 ms
TUTR [69] ICCV 2023 0.44 360 ms
EigenTrajectory [30] ICCV 2023 0.02 72 ms
BP-SGCN (Ours) 0.13 110 ms

Moreover, we validate the stability and reliability of our BP-SGCN on heterogeneous
trajectory prediction by 10 experiments. Results shown in Table 5.15 showcase the

stability of our method.

Table 5.15: STABILITY TESTS ON ARGOVERSE 1 AND HETEROGENEOUS VERSION
OF SDD

Argoverse 1 SDD
ADE({) FDE({) ADE({) FDE({)

BP-SGCN (ours) ‘ 0.68£0.031 1.16 £0.034 ‘ 6.97 £0.069 9.59 +£0.043

Methods
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Positive Scenarios

Negative Scenarios

Figure 5.7: Visualization of the trajectory prediction of BP-SGCN in different social
scenarios including positive predictions and negative predictions (we highlight erroneous
predictions inside the white boxes). Past trajectories are shown in blue, ground-truth
trajectories are in red, predicted trajectories are shown in yellow, and distributions are
shown in light blue.

5.3.7 Discussion

In our experiments, we observed that methods [22,30,69,151] tailored exclusively for
pedestrians exhibit a sensitivity to the threshold settings that dictate the count of nearby
agents. These methods, while ensuring state-of-the-art performance in homogeneous
pedestrian trajectory prediction, perform sub-optimally in heterogeneous scenarios due
to the challenge of predefining neighbors. The result is shown in Table 5.16. Unlike
these pedestrian-specific approaches, which require manual neighbor selection based on
metrics like relative distances, our BP-SGCN model automatically considers all proximate
agents as initial neighbors, adaptively filtering out the less relevant ones. Thus, our
proposed BP-SGCN is better than these methods in heterogeneous trajectory prediction.

Next, we showcase inaccurate predictions made by our BP-SGCN and delve into the
method’s limitations. As depicted in Figure 5.7, the first row illustrates the BP-SGCN’s
proficiency in accurately predicting trajectories across various social contexts. Nonethe-
less, the second row highlights instances where our BP-SGCN falls short, particularly in
scenarios where: 1) trajectories undergo abrupt changes; 2) paths are highly erratic and
frequently alter; and 3) social dynamics become exceedingly intricate with numerous

agents involved. Looking ahead, our objective is to rectify these inaccuracies by en-
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Table 5.16: RESULTS BY homogeneous pedestrian METHODS ON THE HETEROGE-
NEOUS VERSION OF SDD.

SDD
ADE(]) FDE(])

Social-VAE + FPC [22] ECCV 2022| 9.41  13.49

Methods Venue Year

MSRL [151] AAAI 2023| 1072  16.15
EigenTrajectory [30] ICCV 2023| 8.85 15.15
TUTR [69] ECCV 2023| 8.93 15.66
BP-SGCN (Ours) 6.94 9.57

hancing BP-SGCN’s capabilities through the incorporation of cutting-edge deep learning
methodologies, including Transformers [67] and Diffusion models [72], among others.

The quantity of behavior clusters is an adjustable hyperparameter. We manually
select the number of clusters for the unsupervised deep clustering module. This approach
brings several challenges, including subjectivity and potential bias, scalability issues, and
potential impacts on model performance due to overfitting or underfitting. Moreover,
the optimal number of clusters is sensitive to the datasets, which further complicates
the selection process. Especially in heterogeneous scenarios, the high variance between
different types of agents’ motions makes it challenging to identify the best number of
clusters to represent behavior features accurately than homogeneous pedestrian scenarios.
In the future, we aim to scrutinize the behavior distributions of traffic agents more closely
and dynamically estimate the optimal number of clusters [215,216].

Despite BP-SGCN’s effectiveness in both heterogeneous and homogeneous pedestrian
trajectory prediction, another notable limitation of our model is its current omission of
scene semantic features. Although only using trajectories as inputs brings the benefit of
computation efficiency and emphasizes the importance of behavior motions, the integra-
tion of agent interactions with their surrounding environment can benefit in developing
effective trajectory prediction models for use in real-world scenarios [5,99,193,200]. Rec-
ognizing this, a significant direction for our future is to explore how to effectively combine
trajectory data with scene semantic features to capture the interactions between static
barriers and dynamic agents. We hypothesize that this will not only enhance the model’s
prediction accuracy, but also improve the refinement of pseudo-label identification by

leveraging the rich context provided by environmental cues.
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(a) (b) (©

Figure 5.8: The t-SNE Visualization of clustering distribution with different features on
homogeneous pedestrian SDD (k=3), using (a) acceleration, (b) angle, and (c) acceleration
+ angle (ours).

5.3.8 More Qualitative Visualizations

In this section, we present additional qualitative experiments to further demonstrate the

prediction performance of BP-SGCN in various scenarios.

In Figure 5.8, we assess the quality of the clustering using various geometric features.
Both (a) and (b) indicate that when solely relying on acceleration or angle as input feature
vectors, our unsupervised deep clustering module struggles to differentiate between the
hidden representations of the three pedestrian behavioral groups. However, when com-
bining acceleration and angle (as introduced in BP-SGCN), the distinction between these
three behavioral groups becomes evident and thus leads to better trajectory prediction

accuracy.

Figure 5.9, Figure 5.10 and Figure 5.11 illustrate additional qualitative results on
various scenes of the heterogeneous SDD dataset, heterogeneous Argoverse 1 dataset and
the homogeneous pedestrian ETH/UCY datasets, respectively. Since our model relies on
sampling from a bi-variate Gaussian distribution to compute the predicted trajectory, we
plot the predicted distributions instead of a single trajectory to present a comprehensive
view of the prediction quality in this supplementary document.

Specifically, for the SDD dataset, we visualize the predicted trajectory distributions in
real-world scenarios by overlaying them on the original background images. Figure 5.9
depicts that the proposed BP-SGCN is able to predict realistic trajectory distributions
that fall within valid movement areas in both simple and complex scenarios.

For Argoverse 1 dataset, Figure 5.10 showcases the predictions generated by our
model adhering to the map. In straightforward scenarios, BP-SGCN effectively forecasts

trajectories with varied speed profiles. When faced with intersections, the model offers
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multimodal predictions, capturing the potential intentions of the agents.

For the ETH/UCY datasets, we visualize the trajectory distribution across scenarios,
ranging from simple to complex scenarios (from top row to bottom row). Figure 5.11
demonstrates that BP-SGCN capably produces realistic pedestrian trajectory predictions
across varied social contexts.

Notably, there are some sub-optimal results shown in the visualizations if the number
of agents is large, mainly due to the randomness of agent movements. However, the
proposed BP-SGCN can still provide plausible trajectory distribution predictions in
these cases, as the predicted trajectory distributions can almost cover the ground-truth
trajectories. Overall, the provided trajectory prediction visualizations demonstrate the
effectiveness of the proposed BP-SGCN for heterogeneous and homogeneous pedestrian

trajectory prediction in diverse traffic scenarios.
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Figure 5.9: Predicted trajectory distributions using the proposed BP-SGCN on the SDD
dataset. Past trajectories are shown in blue, ground-truth trajectories in red, and predicted
trajectory distributions in orange.
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Figure 5.10: Predicted trajectory distributions using the proposed BP-SGCN on the

Argoverse 1 dataset. Past trajectories are shown in blue, ground-truth trajectories in red,
and predicted trajectory distributions in orange.
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Figure 5.11: Predicted trajectory distributions using the proposed BP-SGCN on the
ETH/UCY datasets. The complexity level of social interactions among pedestrians in-
creases from the top row to the bottom row. Past trajectories are shown in blue and
ground-truth trajectories are shown in red. Due to the relatively high pedestrian density,

we use different colors to represent the predicted trajectory distributions of different
pedestrians
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5.4 Summary

In this chapter, we introduce BP-SGCN for heterogeneous and pedestrian trajectory pre-
diction, showcasing its superior performance compared to existing models. In particular,
we introduce the concept of behavioral pseudo-labels, which effectively represent the
different behavior clusters of agents and do not require extra ground-truth information.
BP-SGCN includes a deep unsupervised clustering module that learns the pseudo-label,
as well as a pseudo-label informed sparse graph convolution network for trajectory
prediction. It implements a cascaded training scheme that first learns the pseudo-labels
in an unsupervised manner, and then fine-tunes the labels by optimizing the network
end-to-end for better compatibility.

Beyond pedestrian scenarios, BP-SGCN also shows promising potential in broader
domains. In robotic path planning [10,23], BP-SGCN can enhance collision avoidance
systems through behavioral pattern analysis [98,111] of surrounding agents, facilitating
more effective navigation in intricate settings. Additionally, in video monitoring and
surveillance systems as suggested in [23,27], BP-SGCN can enhance anomaly detection
through behavioral pattern analysis of system dynamics, enabling early detection of
potential operational irregularities. These applications demonstrate the applicability of
BP-SGCN in modeling interactive behaviors across different domains, highlighting its

potential for various real-world trajectory prediction tasks.
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CHAPTER 6

Conclusion

In the domain of multi-agent trajectory prediction, the integration of advanced spa-
tial-temporal reasoning mechanisms, semantic interaction modeling, and innovative
graph neural network architectures is essential for achieving robust performance in di-
verse traffic environments. The contributions made during this doctoral research include
three novel graph-based frameworks, each targeting a distinct yet complementary aspect
of multi-agent trajectory prediction. Multiclass-SGCN (Chapter 3) is designed for het-
erogeneous traffic prediction, integrating agent-class semantics with an adaptive sparse
graph architecture to efficiently capture asymmetric cross-type interactions. UniEdge
(Chapter 4) addresses homogeneous pedestrian trajectory forecasting by introducing a
unified spatial-temporal edge-enhanced graph structure that models high-order cross-
time dependencies and implicit edge-to-edge influences within dense crowds. BP-SGCN
(Chapter 5) builds on insights from both settings, leveraging unsupervised behavioral
pseudo-labels and a cascaded clustering—prediction scheme to enhance spatial-temporal
interaction modeling and improve generalization across diverse scenarios. These ad-
vancements collectively enhance the understanding and modeling of complex agent
interactions, addressing challenges such as asymmetric inter-class dynamics, high-order

cross-time dependencies, and cross-scenario generalization in real-world environments.
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6.1 Review of Contributions

This doctoral research set out to develop robust and accurate trajectory prediction frame-
works capable of operating effectively across both heterogeneous and homogeneous
traffic environments. The contributions made in Chapter 3 to Chapter 5 address distinct
aspects of this aim, progressively expanding from specialized solutions for individual

contexts to a unified framework applicable to diverse real-world scenarios.

First, in Chapter 3, we addressed the challenges of heterogeneous traffic environments
with multiple interacting agent types. Multiclass-SGCN integrates agent-class semantics
with motion features via a velocity—label graph and employs an adaptive interaction mask
to sparsify the spatial-temporal graph, improving efficiency without loss of accuracy.
Experiments show it effectively models asymmetric cross-type dynamics and outperforms
state-of-the-art baselines, fulfilling the first objective of understanding interactions in

heterogeneous settings.

Second, in Chapter 4, we addressed homogeneous pedestrian scenarios where dense so-
cial interactions demand unified modeling of individual and collective behaviors. UniEdge
employs a patch-based spatial-temporal graph to convert high-order cross-time depen-
dencies into simplified first-order relationships, improving message propagation and
reducing under-reaching. A dual-graph GCN and Transformer-based decoder jointly
capture spatial influences and long-range temporal dependencies. Experiments show
UniEdge delivers accurate, socially-aware forecasts, fulfilling the second objective of

modeling dependencies in homogeneous crowds.

Finally, in Chapter 5, we proposed BP-SGCN, a unified framework for both hetero-
geneous and homogeneous settings. It uses unsupervised deep clustering to generate
behavioral pseudo-labels, guiding the construction of sparse, semantically informed
interaction graphs that capture both inter- and intra-class variations. A cascaded training
scheme jointly optimizes clustering and prediction, enhancing representation learning and
generalization. Experiments confirm BP-SGCN’s state-of-the-art performance, fulfilling

the third objective of unifying trajectory prediction frameworks for broad applicability.
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6.2 Future Research Directions

Despite our achievements in advancing trajectory prediction across heterogeneous and
homogeneous settings, several open challenges remain that present promising avenues
for further exploration. This section outlines potential future research directions for our

proposed frameworks.

6.2.1 Integration of Multimodal and Contextual Information

While the frameworks proposed in this thesis primarily leverage motion trajectories
to model spatial-temporal dependencies, they do not explicitly incorporate other rich
multimodal cues that are readily available in real-world traffic environments, which
have been shown to significantly improve prediction performance and robustness [5, 35,
159,196]. Such cues include scene semantics (e.g., road layout, crosswalks, sidewalks),
high-definition (HD) maps, dynamic traffic signals, social norms, and even environmental
factors like weather or lighting conditions. The absence of these contextual elements
limits the model’s ability to resolve ambiguous motion patterns, particularly in complex
or unfamiliar environments. Future work will therefore focus on integrating these
multimodal signals into the graph-based prediction pipeline, enriching both node and
edge representations with scene- and context-aware features. This integration is expected
to enhance the interpretability, safety-awareness, and generalization capacity of trajectory

prediction models across a wider range of traffic scenarios.

6.2.2 Adaptive and Continual Learning

In this research, the proposed models are trained in an offline setting using fixed bench-
mark datasets. However, this limits their ability to adapt to evolving real-world traffic
conditions. In practice, the spatial-temporal dynamics of both heterogeneous and ho-
mogeneous environments can change significantly over time due to seasonal variations,
construction works, changes in traffic regulations, or the emergence of novel interaction
patterns. A promising future direction is to equip trajectory prediction frameworks with
adaptive and continual learning capabilities [217-219], allowing them to incrementally

update their knowledge without the need for full retraining. Approaches such as on-
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line graph neural networks [220] and domain adaptation [159,221] could be explored
to mitigate catastrophic forgetting while preserving previously learned behaviors. By
enabling models to adapt in real time to changing environments, this line of research
would enhance both the robustness and long-term deployability of trajectory prediction

systems in safety-critical applications.

6.2.3 Closed-Loop Evaluation in High-Fidelity Simulation

In this research, all proposed models are evaluated in an open-loop setting, generating
predictions from fixed benchmark datasets without interacting with the environment.
While such protocols are common in trajectory prediction research, they may not fully
reflect a model’s real-world performance when deployed in dynamic, safety-critical
applications. In practice, prediction errors can accumulate and propagate over time,
influencing downstream modules such as planning and control. A promising future
direction is to adopt closed-loop evaluation within high-fidelity simulation environments,
where the trajectory predictor interacts continuously with simulated agents and their
surroundings. Recent advances in sensor simulation, behavior modeling, and interactive
traffic simulators (e.g., CARLA [222]) enable realistic, controllable, and reproducible
testing scenarios, bridging the gap between offline evaluation and deployment. Such
closed-loop testing can expose failure modes hidden by open-loop metrics, accelerate
model iteration, and ensure more reliable performance in safety-critical autonomous

systems.
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