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Abstract

Trajectory prediction entails the forecasting of future movement trajectories of traffic agents
derived from their historical observed behaviors. This sophisticated technique is essential for
various real-world applications such as path planning and collision avoidance for autonomous
driving systems, and anomaly detection within video surveillance technologies.

However, trajectory prediction for multi-agent scenarios presents significant challenges due
to the complex interaction dynamics across diverse traffic environments. These environments
can range from homogeneous settings dominated by similar agents (e.g., pedestrians in crowds)
to heterogeneous scenes with mixed agent types (e.g., pedestrians, vehicles, cyclists, etc.). To
tackle these challenges, an integrated understanding of agent behaviors across diverse contexts is
essential. Agents continuously adjust their movements based on surrounding entities, creating
complex interaction patterns that vary between homogeneous pedestrian crowds and heteroge-
neous traffic scenarios. Capturing these nuanced spatial–temporal inter-dependencies demands
sophisticated models that represent both individual and collective dynamics while accommodating
distinct agent behaviors. The primary aim of this research is to develop robust and accurate
trajectory prediction frameworks capable of bridging this gap and operating effectively across
both homogeneous and heterogeneous contexts. To achieve this aim, this dissertation pursues
three core objectives: (1) Analyzing dynamics and spatial–temporal interactions in homogeneous
pedestrian crowds. (2) Understanding interaction patterns for heterogeneous traffic environments
with diverse agent types. (3) Developing a unified framework that integrates insights from both
heterogeneous and homogeneous settings for improved and robust trajectory prediction.

The motivation of this research stems from the limitations of existing trajectory prediction
methods across different settings. In homogeneous pedestrian scenarios, highly interactive and
collective behaviors pose challenges for modeling high-order spatial–temporal dependencies.
In heterogeneous environments, diverse agent types such as pedestrians, cyclists, and vehicles
exhibit asymmetric dynamics that remain difficult to capture with current approaches. Moreover,
most methods treat these contexts in isolation, lacking robustness and generalization in real-world
environments. Addressing these gaps calls for unified graph-based frameworks that can integrate
insights from both domains while advancing spatial–temporal modeling to represent complex
interactions and long-range dependencies more effectively.

This research introduces a series of novel frameworks designed to enhance the robustness and
accuracy of trajectory prediction under different settings. We begin by addressing the challenges of
homogeneous pedestrian trajectory prediction, where the highly interactive nature of pedestrians
and their collective behaviors demand precise modeling of spatial–temporal relationships. To
this end, we propose UniEdge, a dual-graph–inspired unified spatial–temporal edge-enhanced
graph network that effectively captures both high-order cross-time interactions and complex
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influence patterns between pedestrians, providing more accurate and socially aware predictions
in homogeneous settings.

We then extend our investigation to heterogeneous environments featuring multiple interact-
ing agent types. For this purpose, we proposeMulticlass-SGCN, a sparse graph-based trajectory
prediction network with agent class embedding that models the unique dynamics among hetero-
geneous agents such as pedestrians, vehicles, and cyclists. By integrating semantic agent-class
information with motion features, Multiclass-SGCN explicitly represents cross-type interaction
dynamics while maintaining computational efficiency.

Building on the insights gained from both homogeneous and heterogeneous contexts, and
recognizing the need for a more broadly applicable solution, we propose a behavioral pseudo-label
informed sparse graph convolution network (BP-SGCN) for trajectory prediction across both
settings. It introduces the novel concept of behavioral pseudo-labels to represent different move-
ment patterns of traffic agents without requiring additional annotations. Through a cascaded
training scheme that optimizes clustering and trajectory prediction in tandem, BP-SGCN effec-
tively captures both inter-class and intra-class behavioral variations, offering a robust, unified
framework for trajectory prediction across diverse environments.

Our extensive experimental evaluations and qualitative analyses across multiple benchmark
datasets consistently demonstrate that the proposed frameworks outperform state-of-the-art
methods in trajectory prediction, validating the effectiveness of our progressive research approach
from homogeneous to heterogeneous to unified prediction systems.
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CHAPTER 1

Introduction

Trajectory prediction, which forecasts the future movement paths of traffic agents based

on their historical behaviors, is a critical technologywidely applied inmodern applications

such as autonomous driving for collision avoidance systems, emergency braking systems

[8–11] and video surveillance technologies for identifying suspicious activities [12–15].

For example, Fig. 1.1(a) shows an overhead surveillance camera capturing pedestrian

flows in a public area, Fig. 1.1(b) depicts a sidewalk robot navigating in a pedestrian-rich

environment. Both scenarios require accurate trajectory prediction to ensure safety and

support reliable decision-making.

(a) (b)

Figure 1.1: Examples of real-world scenarios that rely on trajectory prediction. (a) Video
surveillance of public area [1]; (b) Delivery robot operating in urban environment [2].
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In multi-agent crowd environments, trajectory prediction refers to the task of fore-

casting future trajectories of multiple interacting agents over a specific time horizon,

given their observed past movements. Unlike traditional time-series forecasting tasks,

which typically analyze data with strong periodicity, identifiable trends, and a stable

number of variates [16–18], trajectory prediction presents unique complexities. Agent

movements often lack predictable cycles, the number of interacting entities fluctuates

dynamically, and crucially, future paths are dominated by complex, emergent interactions

between agents rather than simply extrapolating past individual behavior. This complex-

ity manifests in both the spatial domain, where agents navigate shared physical spaces

with varying constraints, and the temporal domain, where movement decisions evolve

dynamically based on changing contexts [19–23]. Notably, the nature and intensity of

these challenges can vary considerably depending on the composition and structure of

the environment.

(a) (b)

Figure 1.2: Examples of real-world scenarios that rely on trajectory prediction. (a)
Heterogeneous traffic scenarios; (b) Homogeneous pedestrian scenarios.

Trajectory prediction tasks are commonly categorized based on the environment’s

composition into two main types: homogeneous pedestrian scenarios and heteroge-

neous scenarios. The former involves interactions exclusively among agents of the same

type—pedestrians—while the latter includes diverse agent types such as pedestrians,

vehicles, and cyclists, etc (Fig. 1.2). In homogeneous pedestrian scenarios, the primary

challenge lies in modeling behaviors that are both highly stochastic and socially driven.

Although pedestrians belong to a single agent class, their motion patterns vary widely

due to latent factors such as intent, personality, and social affiliations [24–26]. These
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Chapter 1. Introduction

behaviors unfold in open environments without explicit traffic rules or physical con-

straints, leading to significant freedom of movement and unpredictability [21, 27–30].

As a result, effective forecasting requires models capable of inferring subtle social cues,

anticipating complex group dynamics, and capturing implicit high-order interactions [31]

that emerge from indirect and non-obvious dependencies among agents. In contrast, het-

erogeneous scenarios present additional challenges arising from the coexistence of agents

with fundamentally different dynamics and interaction patterns [3, 32–35]. For instance,

pedestrians exhibit flexible and reactive behaviors, whereas vehicles and cyclists operate

under stricter kinematic constraints and traffic regulations. These disparities give rise to

asymmetric interactions that are difficult to model using conventional approaches [19,36],

thereby requiring reasoning mechanisms capable of capturing agent-specific behaviors

and cross-type influences [19, 34, 37].

To address the distinct challenges posed by different environment types, this the-

sis investigates trajectory prediction in both homogeneous pedestrian scenarios and

heterogeneous multi-agent scenarios, each presenting unique modeling difficulties. In

homogeneous settings, we focus on capturing latent social dynamics and high behavioral

stochasticity, while in heterogeneous environments, we emphasize agent-type-specific

reasoning and asymmetric cross-agent interactions. Building on insights from both do-

mains, we further explore a unified modeling framework that integrates the strengths

of each approach—aiming to generalize across diverse scenarios and effectively cap-

ture both implicit social cues and explicit inter-agent heterogeneity. While our goal is

to develop a unified framework that addresses both homogeneous and heterogeneous

challenges, doing so requires confronting several fundamental limitations in existing

modeling approaches.

1.1 Motivations

While earlier approaches to trajectory prediction relied on rule-based models and proba-

bilistic frameworks, recent progress has shifted the focus toward deep learning, owing

to its superior capacity to model complex and non-linear agent interactions. Despite

strong performance on standard benchmarks, accurately forecasting agent trajectories
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in real-world, multi-agent environments remains a significant challenge. This difficulty

stems not only from the diversity of agent behaviors and the stochastic nature of human

and vehicular motion, but also from the limitations of current modeling paradigms in cap-

turing the underlying relational and temporal dependencies. Graph-based representation

learning has emerged as a promising direction, offering a natural way to encode agent-to-

agent relationships through structured message passing. However, existing graph-based

methods still face technical limitations in modeling dynamic spatial-temporal interactions,

such as insufficient representation of high-order dependencies, limited generalization

across heterogeneous environments, and the inability to adaptively reason over varying

interaction complexities. Addressing these challenges calls for more expressive, flexible,

and context-aware modeling frameworks.

A key modeling challenge in trajectory prediction lies in accurately capturing complex

agent interactions under varying contextual and structural constraints. In homogeneous

pedestrian scenarios, the difficulty arises not from agent-type diversity but from the

need to model fine-grained social cues, group dynamics, and inherently stochastic be-

haviors. While agent semantics are uniform, many existing methods adopt a decoupled

spatial-temporal modeling strategy—first encoding spatial interactions frame by frame,

then learning temporal dependencies separately [27–31, 38, 39]. This separation limits

the ability to capture higher-order temporal dependencies and often disrupts the tem-

poral consistency of social interactions in dynamic crowds. Meanwhile, heterogeneous

environments introduce additional complexity due to the coexistence of multiple agent

types. Conventional methods [20, 28, 29, 40, 41] often struggle to handle asymmetric

interactions and semantic distinctions across agent classes, leading to oversimplified or

overly dense graph structures that obscure the relative importance of cross-type relations.

Although recent approaches have attempted to incorporate semantic labels to differ-

entiate agent types [6, 34, 42], they typically rely on densely connected spatial graphs,

introducing redundant links that dilute informative signals and hinder model efficiency

and interpretability.

Beyond context-specific limitations, a broader challenge lies in the generalizability of

learned interaction representations in multi-agent trajectory prediction. Many existing

models are tightly coupled with particular scene characteristics or training distributions,
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resulting in limited effectiveness when applied to novel or unseen environments. Ad-

dressing this issue requires frameworks that can extract transferable behavioral patterns

without relying heavily on manual annotations or dataset-specific assumptions.

This thesis is motivated by core challenges in trajectory prediction that arise from

both practical complexity and technical limitations. Real-world environments are in-

creasingly dynamic and diverse—ranging from unstructured homogeneous pedestrian

crowds to structured heterogeneous scenarios with multiple agent types—creating de-

mand for models that can capture nuanced social dynamics, reason over heterogeneous

agent semantics, and generalize beyond narrow training distributions. To address these

needs, this thesis develops unified, graph-based frameworks that systematically improve

semantic reasoning, spatiotemporal representation, and generalization.

1.2 Research Aims

The primary aim of this thesis is to advance multi-agent trajectory prediction by devel-

oping novel, robust, and generalizable graph-based frameworks. These frameworks are

designed to enhance semantic expressiveness, spatial-temporal modeling accuracy, and

adaptability in complex interaction scenarios. Traditional methods often face critical

limitations, including poor scalability to heterogeneous agent types, reliance on costly

manual class annotations, limited capacity to capture high-order spatial-temporal de-

pendencies, inefficient information propagation due to multi-step aggregation, and the

neglect of implicit interaction patterns encoded in edge features. This research seeks to

address these challenges through the following objectives:

1. To develop semantic-aware, adaptive graph-based models for heteroge-

neous trajectory prediction: This research aims to design novel graph architec-

tures capable of effectively integrating semantic label information and selectively

modeling interactions between different agent classes. By doing so, it seeks to elim-

inate redundant connections, enhance the representation of asymmetric relational

cues, and ultimately improve the accuracy and efficiency of trajectory prediction

in complex heterogeneous traffic scenarios.
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2. To establish unified spatial-temporal modeling frameworks for homoge-

neous pedestrian environments: This research aims to unify spatial and tem-

poral interactions into coherent modeling frameworks that accurately capture

higher-order interaction patterns and the evolution of social dynamics over time.

Special emphasis is placed on leveraging edge-level relational information to better

represent implicit social influences and temporal dependencies within dynamic

pedestrian crowds.

3. To develop unsupervised and generalizable behavior representation learn-

ing approaches: Recognizing the limitations of annotation-intensive supervised

methods, this research seeks to investigate unsupervised or weakly-supervised

strategies for learning transferable behavioral representations. The ultimate goal

is to enhance model adaptability and robustness, enabling trajectory prediction

frameworks to generalize effectively across both homogeneous pedestrian scenarios

and heterogeneous multi-agent environments, thus reducing reliance on extensive

manual labeling and supporting deployment in diverse real-world settings.

Together, these research objectives directly address key limitations of conventional

deep learning models for trajectory prediction. By incorporating semantic information

and adaptive graph sparsification, the proposed methods improve interaction modeling

in heterogeneous scenarios, while unified spatial-temporal representations deepen un-

derstanding of complex social dynamics in pedestrian crowds. Furthermore, exploring

unsupervised and generalizable behavior representations enhances adaptability to unseen

environments, reducing the need for costly annotations. Collectively, these aims lay

the foundation for robust, interpretable, and transferable trajectory prediction models

applicable to domains such as autonomous navigation, intelligent surveillance, and crowd

management.

1.3 Contributions

This thesis makes several key contributions towards developing more robust, adaptable,

and accurate graph-based spatial-temporal modeling techniques formulti-agent trajectory

prediction, as summarized below:
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• We propose Multiclass-SGCN (Chapter 3), a semantic-aware sparse graph convo-

lutional framework for heterogeneous trajectory prediction. The model embeds

agent-type semantics and motion cues through velocity–label representations and

constructs adaptive sparse interaction graphs via an attention-based masking strat-

egy. This design reduces redundant cross-type connections, captures asymmetric

relational patterns more effectively, and significantly improves prediction accuracy

in heterogeneous traffic scenes with pedestrians, cyclists, and vehicles

• We present UniEdge (Chapter 4), a unified spatial-temporal graph network for

homogeneous pedestrian trajectory prediction. It models high-order cross-time

interactions through a patch-based spatial-temporal formulation and introduces a

dual-graph convolutional module to jointly capture node- and edge-level depen-

dencies. Coupled with a Transformer encoder-based predictor, this framework

achieves strong performance on multiple public pedestrian datasets by modeling

both fine-grained social dynamics and long-range temporal correlations.

• We present BP-SGCN (Chapter 5), an unsupervised framework that learns struc-

tured behavioral representations via pseudo-label–guided deep clustering with

cross-scale structural consistency. This approach enables robust trajectory fore-

casting without manual annotations and generalizes effectively across both hetero-

geneous and homogeneous pedestrian environments, facilitating the discovery of

transferable motion patterns in diverse real-world scenarios.

1.4 Publications

The research related to this thesis has been previously published in the following peer-

reviewed publications:

• Li, R., Katsigiannis, S., & Shum, H. P. H., “Multiclass-SGCN: Sparse Graph-based

Trajectory Prediction with Agent Class Embedding.” In Proceedings of the IEEE

International Conference on Image Processing (ICIP), 2022. . . . . . . . . . . . (Chapter 3)

• Li, R., Qiao, T., Katsigiannis, S., Zhu, Z., & Shum, H. P. H., “Unified Spatial-Temporal
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Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction.” IEEE Trans-

actions on Circuits and Systems for Video Technology (TCSVT), 2025. . (Chapter 4)

• Li, R., Katsigiannis, S., Kim, T.-K., & Shum, H. P. H., “BP-SGCN: Behavioral Pseudo-

Label Informed Sparse Graph Convolution Network for Pedestrian and Heteroge-

neous Trajectory Prediction.” IEEE Transactions on Neural Networks and Learning

Systems (TNNLS), 2025. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Chapter 5)

In addition to the listed publications above, there are other peer-reviewed publications

that have not been included in this thesis:

• Li, R., Zhu, Z., Qiao, T., & Shum, H. P. H., “ViTE: Virtual Graph Trajectory Expert

Router for Pedestrian Trajectory Prediction.” under review at AAAI, 2026.

• Qiao, T., Li, R., Li, F. W. B., & Shum, H. P. H., “From Category to Scenery: An

End-to-End Framework for Multi-Person Human-Object Interaction Recognition in

Videos.” International Conference on Pattern Recognition (ICPR), pp. 262–277, 2024.

• Qiao, T., Li, R., Li, F.W. B., Kubotani, Y., Morishima, S., & Shum, H. P. H., “Geometric

Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction

Recognition in Videos.” Expert Systems with Applications (ESWA), vol. 290, p.

128344, 2025.

1.5 Thesis Structure

This thesis advances trajectory prediction by leveraging graph-based representation learn-

ing in both heterogeneous and homogeneous multi-agent environments. The chapters

are structured to lead the reader from motivation and theoretical foundations through

methodological innovations to empirical validation, ensuring a coherent and progressive

narrative.

Chapter 1 outlines the importance of trajectory prediction in real-world applications

such as autonomous driving and video surveillance. It highlights the central challenges

of modeling complex spatial-temporal interactions and heterogeneous agent semantics,

and clearly states the research motivation, objectives, and key contributions of the thesis.
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Chapter 2 presents a comprehensive literature review covering four key areas: trajec-

tory prediction in both homogeneous pedestrian crowds and heterogeneous multi-agent

environments; advances in spatial-temporal graph representation learning; approaches

to unsupervised behavior clustering; and standard evaluation metrics for trajectory fore-

casting. The chapter systematically identifies the limitations of existing methods and

positions the proposed frameworks within the broader research landscape.

Chapter 3 introduces Multiclass-SGCN, a sparse graph convolutional model for

heterogeneous trajectory prediction. This chapter presents the velocity–label embedding,

adaptive interaction masking, and the model’s ability to selectively capture meaningful

spatial-temporal interactions among diverse agent types.

Chapter 4 presents UniEdge, a unified spatial-temporal graph network for homoge-

neous pedestrian scenarios. It employs a patch-based spatial-temporal formulation and

a dual-graph reasoning mechanism (E2E-N2N-GCN) to jointly model node- and edge-

level interactions, further enhanced with a Transformer-based predictor for long-range

temporal reasoning.

Chapter 5 introduces BP-SGCN, an unsupervised framework for transferable trajec-

tory representation learning. This chapter proposes a pseudo-label–guided clustering

strategy with cross-scale consistency training, enabling generalization across both het-

erogeneous and homogeneous scenes without manual annotations.

Finally, Chapter 6 summarizes the main contributions of the thesis, reflects on the

methodological advances in graph-based trajectory prediction, and outlines future direc-

tions including multimodal and contextual integration, adaptive continual learning, and

closed-loop evaluation in high-fidelity simulation.
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CHAPTER 2

Literature Review

Trajectory prediction in multi-agent environments represents a fundamental challenge

in computer vision and robotics, requiring the forecasting of future movement patterns

based on observed historical behaviors while considering complex inter-agent interactions

and environmental constraints. This capability is essential for numerous applications

including autonomous navigation systems [9–11], intelligent surveillance [12–15], and

crowd management [43, 44], where understanding and anticipating agent movements

ensures safety and enables proactive decision-making.

In this chapter, we present a comprehensive review of trajectory prediction research,

systematically examining the evolution from classical approaches to state-of-the-art

graph-based methods. Section 2.1 establishes the foundational concepts by delineating

the distinct challenges posed by homogeneous pedestrian scenarios versus complex het-

erogeneous environments. Section 2.2 delves into the critical aspects of spatial-temporal

modeling, examining how graph-based spatial interactions and temporal dependen-

cies are captured and integrated to enhance prediction accuracy. Section 2.3 reviews

clustering-based approaches for modeling behavioral patterns in trajectory prediction,

highlighting the evolution from traditional distance-based methods to recent deep embed-

ding techniques that enablemore expressive and adaptive behavior representation. Finally,
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Section 2.4 showcases the evaluation metrics used in trajectory prediction. Throughout

this review, we identify key limitations in existing approaches and highlight research gaps

that motivate our proposed frameworks, demonstrating how our contributions advance

the state-of-the-art in graph-based trajectory prediction across both heterogeneous and

homogeneous settings.

2.1 Multi-Agent Trajectory Prediction

This section provides an overview of multi-agent trajectory prediction across diverse

environmental contexts, organized into two fundamental categories: homogeneous pedes-

trian trajectory prediction (Section 2.1.1) and heterogeneous trajectory prediction (Sec-

tion 2.1.2). The former focuses on predicting future positions of pedestrians in structured,

single-agent-type environments, while the latter addresses more complex scenes involv-

ing diverse agent types such as vehicles, cyclists, and pedestrians.

2.1.1 Trajectory Prediction in Homogeneous Pedestrian Crowds

The field of homogeneous pedestrian trajectory prediction is dedicated to forecasting

the future trajectories of pedestrians. In contrast to heterogeneous scenarios, this setting

presents distinct challenges due to the high stochasticity and intricate social dynamics of

pedestrian behavior. Despite the apparent homogeneity, individual pedestrians exhibit

significant diversity in their underlying behaviors, influenced by latent factors like

personality, intentions, and social affiliations [45, 46].

Traditional rule-based approaches

Pedestrian trajectory prediction has long been a topic of interest, well before the advent

of deep learning. Before the rise of data-driven techniques, early pedestrian motion

modeling predominantly relied on physically inspired or rule-based frameworks, which

emphasized interpretability and leveraged handcrafted domain knowledge to describe

agent behaviors. These approaches offer strong interpretability and often reflect intuitive

or domain-specific behaviors. Among them, the Social Force Model (SFM) [47] stands out

as a foundational framework, modeling pedestrians as particles subjected to attractive
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forces toward their goals and repulsive forces from other agents and obstacles. These

typically include an attractive force drawing the pedestrian toward their intended goal,

and repulsive forces generated by nearby agents and static obstacles. According to

Newton’s second law, the net force determines the acceleration of the pedestrian [48],

forming a continuous-time dynamic system. When considering only the attractive

component, the model serves as a basic goal-directed motion generator. This model has

inspired numerous extensions, including the Generalized Centrifugal ForceModel (GCFM)

[49], which incorporates anisotropic sensitivity zones and velocity-adaptive forces for

better realism in dense crowds. As reviewed in [50–52], SFM has also been integrated with

heuristic decision layers or game-theoretic components to capture complex interactions

like yielding or negotiation with vehicles.

Another prominent line of rule-based models includes Cellular Automata (CA) ap-

proaches [53, 54], which discretize the spatial domain and evolve agent states using local

transition rules. Models such as the Floor Field Model [55] simulate attractive potentials

toward exits and congestion-based repulsive fields, enabling efficient simulation of crowd

flow and evacuation scenarios. Some recent CA-based works extend their applicability

to pedestrian-vehicle interactions in semi-structured zones like drop-off areas [56]. In

addition to force-based models, some early approaches adopted velocity-based heuris-

tics to model motion trends. For example, the Velocity Obstacle (VO) paradigm [57]

predicts collisions based on extrapolated velocities and defines avoidance maneuvers

through geometric rules. Variants like Reciprocal Velocity Obstacles (RVO) [58] account

for mutual adaptation, making them suitable for real-time multi-agent planning. These

models are commonly used in robot navigation and multi-agent systems due to their low

computational cost and real-time applicability.

Despite their conceptual simplicity and computational efficiency, traditional models

are limited by manually crafted assumptions and struggle to generalize to unstructured

environments or capture long-range dependencies. Their deterministic structure and

constrained expressiveness have prompted a shift toward data-driven approaches, which

learn complex interaction patterns from real-world trajectories while retaining the ability

to integrate physical priors.

12



Chapter 2. Literature Review

Deep learning–based approaches

While traditional models offer interpretable, physics-based frameworks, their limitations

in handling uncertainty and complex human behaviors have driven a shift toward data-

driven deep learning approaches. Early deep learning models for pedestrian trajectory

prediction primarily relied on recurrent neural networks (RNNs) to capture temporal

dependencies. Social-LSTM [28] introduced a social pooling layer to encode interactions

among pedestrians, enabling context-aware forecasting. SS-LSTM [59] further enhanced

this architecture by incorporating occupancy grid–based representations, improving

interaction awareness in dense scenes. However, these deterministic models struggle to

capture the intrinsic uncertainty and multimodality of human motion, prompting a shift

toward generative approaches.

To address the inherently multimodal nature of pedestrian futures, generative models

such as Generative Adversarial Networks (GANs) [60] and conditional VAEs (CVAEs) have

been widely adopted. Social-GAN [21] employs adversarial training to generate socially

plausible, diverse trajectories, using a pooling module to encode interactions. In parallel,

CVAE-based methods offer a probabilistic framework by learning a latent distribution

over future intentions. Representative works include DESIRE [40], which combines

CVAE with inverse reinforcement learning for intent inference; Trajectron++ [61], which

models multiple agents in a dynamic probabilistic graphical model; and Y-Net [5], which

introduces a goal-conditioned decoder to better structure the latent space. Further

enhancements, such as SocialVAE [22], incorporate scene and agent priors to guide

sampling and improve diversity. While CVAE frameworks provide interpretability and

structured uncertainty, they often require careful regularization to avoid mode collapse

or blurred predictions.

Graph-based approaches have gained traction due to their ability to naturally model

spatial interactions among agents. In this paradigm, each pedestrian is represented as

a node, and their interactions are encoded via dynamic edges that evolve over time.

Social-STGCNN [29] introduces a spatial-temporal graph convolution framework that

jointly captures spatial dependencies and temporal evolution. STGAT [38] and Social-

BiGAT [62] apply attention mechanisms on graphs to dynamically weigh neighbors

based on relevance. These methods demonstrate improved generalization in complex
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scenes, especially in crowded or structured environments. Recent works have begun to

explore high-level graph frameworks that combine edge and node features to capture

richer relational information. GroupNet [63] pioneered this direction by introducing

interaction strength and category features to enhance edge significance beyond simple

connections. Following this trend, GC-VRNN [64], HEAT [65], and MFAN [66] further

advance graph modeling by integrating edge features into node embeddings, enhancing

relational reasoning capabilities.

More recent methods adopt Transformer-based architectures to model long-range

dependencies across both spatial and temporal domains. Transformer-based methods [67]

employ attention mechanisms to learn pairwise relationships directly, offering greater

flexibility in multi-agent reasoning. Examples include AgentFormer [68], which encodes

joint trajectories with cross-agent attention, and TUTR [69], which introduces temporal

uncertainty modeling. MultiModalTransformer [70] further extends this by combining

visual and semantic features for scene-aware prediction.

In parallel, diffusion-based methods have emerged as powerful tools for modeling

uncertainty. These models, such as MID [71] and LED [72], formulate trajectory pre-

diction as a denoising process from a Gaussian noise prior. By progressively refining

sampled trajectories, diffusion models achieve high diversity while maintaining physical

plausibility, outperforming traditional GAN/CVAE baselines in recent benchmarks.

Despite these advances, two critical challenges remain in homogeneous pedestrian

settings: (i) effectively capturing high-order, cross-time dependencies and implicit edge-

to-edge influences without disrupting temporal consistency, and (ii) learning transferable

behavioral structures that can generalize to unseen crowd scenarios. This thesis addresses

these gaps through two complementary frameworks: UniEdge (Chapter 4), which uni-

fies spatial–temporal reasoning via a dual-graph, edge-enhanced architecture to model

high-order and edge-centric dependencies, and BP-SGCN (Chapter 5), which integrates

unsupervised behavioral clustering with sparse graph convolution to capture transfer-

able motion patterns without manual annotation, thereby enhancing cross-scenario

adaptability.

For homogeneous pedestrian trajectory prediction, both traditional rule-based ap-

proaches and deep learning–based methods reviewed in this section are evaluated on
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pedestrian-only benchmarks, including ETH/UCY [1, 73] and the pedestrian subset of

the Stanford Drone Dataset [74]. These datasets cover a range of crowd scenarios with

varying densities, motion patterns, and interaction complexities. To ensure fair compari-

son between different modeling paradigms, all methods are evaluated using the same

displacement-based metrics. The evaluation protocol is detailed in Section 2.4, while

dataset descriptions and experimental setups are provided in Chapter 4 and Chapter 5.

While substantial progress has been made in modeling pedestrian dynamics, real-

world applications demand extending these approaches to more diverse traffic scenarios

involving heterogeneous agents. This necessitates a deeper examination of models

designed for pedestrian–vehicle or multi-class interactions, as discussed in Section 2.1.2.

2.1.2 Trajectory Prediction in Heterogeneous Environments

Traditional Rule-Based Approaches

In heterogeneous environments involving both pedestrians and vehicles, traditional

rule-based methods have been extended to model the asymmetric and multi-agent nature

of interactions. Rather than focusing solely on pedestrian-pedestrian dynamics, these

methods aim to explicitly encode vehicle influence, often characterized by larger physical

size, higher speed, and non-holonomic constraints. A number of studies extend the SFM

to heterogeneous settings by introducing repulsive forces from vehicles, often shaped

by anisotropic or speed-adaptive distance functions to reflect asymmetric danger zones

[75, 76]. To better capture negotiation behaviors in shared spaces, game-theoretic layers

have been added on top of SFM, treating pedestrian-vehicle interactions as sequential

decision games [77, 78]. Other works employ heuristic utilities that balance safety and

goal-seeking, with strategies guided by collision risk indicators such as time-to-collision

or projected motion overlap [79].

Deep Learning-Based Approaches

Compared to homogeneous pedestrian settings, heterogeneous trajectory prediction

introduces additional challenges due to the presence of agents with varying dynamics,

such as vehicles, cyclists, and pedestrians. These agents differ in their speed profiles,
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interaction behaviors, and scene constraints, requiring models to reason across types and

capture asymmetric multi-agent interactions [19,34,80]. As discussed in the previous sec-

tion, modeling pedestrian interactions provides valuable insights, but does not generalize

well to real-world traffic scenes that exhibit diverse agent types and behaviors.

Early methods for predicting heterogeneous trajectories frequently employed spatial

reasoning and fusion techniques to model agent dynamics. The Multi-Agent Tensor

Fusion (MATF) framework [81], for example, represents spatial and contextual connec-

tions using a convolutional fusion module, which processed a tensor to maintain spatial

alignment between agents and scene elements. JPKT [82] considers vehicles as rigid

particles, applying kinematics to non-particle entities, and separately models vehicles and

pedestrians using distinct long short-term memory (LSTM) [83] layers. Proposal-based

approaches such as CoverNet [84] generates predefined multimodal trajectory anchors

from observations of both vehicles and pedestrians. DATF [85] models agent-to-agent

and agent-to-scene interactions through the attention mechanism and proposes a new

approach to estimate the trajectory distribution. Furthermore, models based on the Social

Force [47] paradigm have advanced the field of heterogeneous trajectory prediction.

By using physically-inspired forces, they explicitly model the complex interactions and

collision-avoidance behaviors between different classes of agents, such as vehicles and

pedestrians [42,86]. To further refine trajectory realism, methods like the Knowledge Cor-

rection framework [87] fuses domain knowledge with deep networks, balancing predic-

tion accuracy with adherence to traffic semantics. Meanwhile, diffusion-based approaches

such as ParkDiffusion [80] apply stochastic modeling to forecast multimodal outcomes

within structurally constrained parking environments for heterogeneous agents.

Graph representation possesses powerful capabilities for relational reasoning and

representation. Recent studies leverage GNNs to capture intricate spatial and seman-

tic dependencies among diverse traffic agents, as well as their interactions with lanes

and the surrounding environment. For example, Grimm et al. [88] proposed a hetero-

geneous graph structure that integrates both road-bound and non-road-bound agents

via semantic anchor paths, enabling more valid and multimodal trajectory predictions.

The UNIN framework [34] constructs a large-scale, category-aware interaction graph

with hierarchical attention mechanisms to model cross-category interactions within
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an unbounded neighborhood. Building on this direction, HRG+HSG [35] introduces a

risk-aware graph design that incorporates safety constraints to facilitate interpretable

and risk-sensitive forecasting. Other works such as SSS [89] and MVHGN [90] further

address agent heterogeneity by employing adaptive graph structures—using selective

state spaces or multi-view hierarchical message passing—to jointly capture semantic,

spatial, and type-aware relationships. To enhance the expressive power of graph-based

models, a number of approaches [6, 33, 89, 91] explicitly incorporate class labels into

interaction graphs, thereby allowing the model to distinguish agent types and tailor

message passing accordingly.

Despite substantial progress in heterogeneous trajectory prediction, two key chal-

lenges remain: (i) scalability in dense traffic scenes, where complex interaction modeling

can incur prohibitive computational costs, and (ii) reliance on costly, manually anno-

tated class labels to distinguish agent types, which is often impractical in real-world

deployments. This thesis addresses these gaps through two complementary frameworks:

Multiclass-SGCN ( Chapter 3), which incorporates agent-type semantics and motion cues

into a sparse interaction architecture to efficiently capture asymmetric, cross-type depen-

dencies, and BP-SGCN ( Chapter 5), which replaces manual class labels with unsupervised

behavioral pseudo-labels, enabling scalable and label-free modeling of heterogeneous

interactions while maintaining high predictive accuracy.

For heterogeneous trajectory prediction, models are typically evaluated on multi-

agent traffic datasets such as Argoverse [92] and heterogeneous subsets of Stanford Drone

Dataset [74], which include multiple agent types and complex interaction dynamics. In

this thesis, both traditional and deep learning–based heterogeneous approaches are

evaluated under consistent evaluation criteria to enable fair comparison. The evaluation

framework is detailed in Section 2.4, and comprehensive descriptions of the datasets and

experimental settings are provided in Chapter 3 and Chapter 5.

2.1.3 Literature Surveys on Multi-Agent Trajectory Prediction

Several survey and review papers have systematically summarized multi-agent trajec-

tory prediction from complementary perspectives. Existing surveys provide structured

overviews of modeling paradigms, ranging from classical physics-based approaches to
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deep learning and hybrid methods, and analyze how interactions, uncertainty, and mul-

timodality are handled across different model families [46, 93]. These works organize

the literature according to architectural choices, interaction representations, learning

objectives, and commonly used datasets and evaluation protocols.

From the perspective of autonomous driving andmixed traffic scenarios, other surveys

focus specifically on pedestrian–vehicle interactions in heterogeneous environments

[94, 95]. They examine interaction modeling strategies for unstructured or shared spaces,

review datasets involving multiple agent types, and discuss challenges related to safety,

scalability, and real-world deployment.

Building on these surveys, this thesis does not replicate their detailed taxonomies.

Instead, it focuses on underexplored aspects of graph-based trajectory prediction, with

particular emphasis on interaction-aware graph representation design, including sparse

graph construction for efficient interaction modeling, semantic abstraction derived with-

out manual labels, and edge-centric relational representations that explicitly model

inter-agent relationships.

2.2 Spatial-Temporal Graph Representation Learning

Understanding and forecasting the motion of multiple agents in dynamic environments

requires capturing both their spatial interactions and temporal evolution. In recent

years, graph-based methods have emerged as a powerful paradigm for trajectory pre-

diction, offering a natural way to represent agent interactions through nodes and edges.

This section reviews spatial-temporal graph representation learning approaches that

model complex multi-agent behaviors. We begin by introducing graph-based interaction

modeling strategies in Section 2.2.1, which focus on how to construct and encode the

relationships between agents using various forms of graphs. Following this, we discuss

spatial-temporal fusion mechanisms in Section 2.2.2, which describe how spatial and

temporal information is integrated within graph-based architectures to allow trajectory

prediction.
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2.2.1 Graph-Based Spatial Interaction Modeling

A primary challenge in trajectory prediction is to effectively model complex spatial

interactions among traffic agents. While early deep learning methods propose to use

spatial pooling mechanisms [21, 28] and grid-based mechanisms [59] to aggregate neigh-

borhood information by summarizing nearby agents’ hidden states within predefined

spatial regions or grids, these approaches often assume a fixed interaction range and

struggle to capture more complex, long-range dependencies.

To overcome these limitations, graph architectures have become a dominant paradigm

in the field, as they offer a natural and flexible framework to represent agents as nodes

and their relationships. This allows for explicit modeling of the interaction topology,

which is crucial for understanding social behaviors. This subsection presents an overview

of graph-based spatial interaction modeling techniques, focusing on how inter-agent

relationships are represented and utilized for learning spatial dependencies.

Graph Representation for Homogeneous Pedestrians

In the trajectory prediction field, graph-based spatial interaction modeling has evolved

beyond simple proximity-based topologies, giving rise to diverse designs that capture

complex agent-agent relations. A widely used and foundational approach is the distance-

based graph representation [29,96], in which edges are constructed based on fixed spatial

thresholds or K-nearest neighbors (KNN) computed at each time step. These graphs offer

clear geometric interpretability and computational efficiency. However, they typically

treat all connected neighbors equally, with fixed edge weights that fail to reflect the

varying importance of different interactions. To address this, attention-based graph

representations [38, 97–100] have been introduced to assign learnable context-dependent

weights to edges based on the attention mechanism [67, 101]. These methods enable the

model to dynamically evaluate the relative importance of neighboring agents, allowing it

to capture asymmetric interactions that are crucial for accurate and interpretable spatial

interaction representations.

Beyond specific architectural choices, sparsity has been increasingly recognized as a

fundamental inductive bias in graph-based interaction modeling. In real-world pedestrian

scenes, interactions are inherently local and asymmetric, and not all nearby agents exert
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meaningful influence at every time step. Constructing densely connected graphs therefore

introduces redundant or noisy interactions, which can dilute salient relational signals

and hinder effective message passing. From a computational perspective, fully connected

interaction graphs incur quadratic complexity with respect to the number of agents,

limiting scalability in crowded scenes. More importantly, recent studies have shown

that selectively sparsifying interaction graphs based on geometric constraints, motion

consistency, or learned relevance can improve both predictive accuracy and robustness

by mitigating over-smoothing and over-squashing effects during graph propagation [102].

Empirical evidence across multiple benchmarks suggests that sparse interaction graphs

can match or outperform dense counterparts while significantly reducing computational

cost, particularly in dynamic or cluttered environments [27, 33, 103].

Building on this principle, methods such as SGCN [27] and SDAGCN [103] reduce

superfluous or irrelevant connections by constructing sparse, often directed, graphs.

These models use criteria such as field-of-view constraints, relative motion direction, or

learned attention scores to prune the graph, resulting in more efficient and interpretable

interaction modeling. By focusing only on the most salient agent relationships, these

sparse graphs not only reduce computational overhead but also improve the overall

prediction performance.

In recent years, several studies have also proposed novel graph construction paradigms

to better reflect social structures and behavioral dynamics among agents. Group-based

graphs [63, 104, 105] segment agents into latent groups or clusters based on motion

coherence, social affinity, or spatial proximity, and thenmodel inter-group and intra-group

interactions as separate subgraphs. This hierarchical formulation enables more structured

and scalable representation of multi-agent interactions, reduces noise from irrelevant or

weakly correlated agents, and captures collective behaviors. Besides, HighGraph [31]

proposes a high-order graph convolution operator that goes beyond conventional pairwise

message passing by aggregating information from higher-order node combinations, such

as triplets or cliques. This design allows the model to capture indirect interactions and

complex multi-agent dependencies that are difficult to represent using standard edge-

based graph convolutions. Together, these diverse graph formulations reflect a growing

recognition that spatial interactions in pedestrian dynamics are structured, context-
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dependent, and often asymmetric—properties that naïve or uniform graph designs cannot

fully capture.

In Chapter 4, we further extend the concept of high-order graphs by introducing

a unified graph structure that transforms complex high-order cross-time interactions

into simplified first-order relationships, enabling efficient and expressive modeling of

long-range dependencies across both space and time while preserving the underlying

relational dynamics. Furthermore, Chapter 5 complements this in homogeneous pedes-

trian settings where agent semantics are uniform by constructing sparse, semantically

informed interaction graphs guided by unsupervised behavioral pseudo-labels, thereby

enabling the learned graph topology to adapt across varying crowd scenarios without

manual annotation.

Graph Representation for Heterogeneous Environments

Recent advances in trajectory prediction for dense and mixed traffic environments have

increasingly leveraged graph neural networks to model the complex and dynamic in-

teractions among heterogeneous agents such as vehicles, pedestrians, and cyclists. In

such settings, the diversity of agent kinematics, motion constraints, and interaction se-

mantics introduces additional modeling challenges compared to homogeneous scenarios.

To address these complexities, a growing body of research has explored constructing

heterogeneous graphs in which nodes explicitly represent different agent types and edges

encode their interaction patterns. These edges can incorporate various relational cues,

including spatial proximity, relative velocity, and semantic role, enabling the model to

reason about both intra-class behaviors, such as coordinated pedestrian movement, and

inter-class interactions, such as pedestrian–vehicle negotiation in shared spaces. By lever-

aging this structured representation, heterogeneous graph frameworks aim to capture

asymmetric influences between agents, account for type-specific motion dynamics, and

improve prediction robustness in diverse, real-world traffic scenes.

For example, HTFNet [106] and VNAGT [91] employ a heterogeneous graph network

combined with a transformer-based attention mechanism that uses relation-dependent

parameters to distinguish the influence between different types of agents. HEAT [65]

and NLNI [34] introduce a type-specific heterogeneous graph attention encoder net-

21



2.2. Spatial-Temporal Graph Representation Learning

work for capturing both intra- and inter-class interactions, enabling simultaneous and

accurate trajectory prediction for multiple agent types in complex traffic scenarios. To

enhance the computation efficiency of graph message passing, SMGCN [33] proposes a

sparse graph architecture to capture important heterogeneous interactions. MVHGN [90]

further enhances prediction by combining multi-view logical correlations and adaptive

spatial topology networks, allowing the model to mine both micro-level and macro-level

logical-physical features of heterogeneous traffic agents. Additionally, models like TraG-

CAN [107] and HDGT [108] extend the heterogeneous graph paradigm by integrating

spatial attention mechanisms and scene encoding, respectively, to better capture the

diverse semantic relationships and context-dependent interactions among agents of dif-

ferent types. These innovations demonstrate that heterogeneous graph neural networks,

equipped with specialized encoders, attention mechanisms, and context integration, are

highly effective for modeling the nuanced behaviors and interactions of diverse agents,

leading to significant improvements in trajectory prediction accuracy and robustness in

real-world traffic environments. While these approaches have significantly improved

prediction accuracy, challenges remain in designing graph structures that are both com-

putationally efficient and semantically expressive, which motivates the methods proposed

in this thesis.

In heterogeneous trajectory prediction, constructing a graph representation that is

both computationally efficient and semantically expressive enough to capture diverse

inter- and intra-class behaviors remains a significant challenge. In Chapter 3, we address

this by integrating explicit agent-class semantics with an adaptive sparse graph archi-

tecture, enabling efficient modeling of asymmetric dynamics between different agent

types. In Chapter 5, we present a complementary bottom-up framework that leverages

unsupervised deep clustering to derive behavioral pseudo-labels directly from motion

data, uncovering nuanced motion patterns without manual annotation. Together, these

approaches advance semantic and structural graph representation learning, achieving

state-of-the-art performance in heterogeneous trajectory prediction.
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2.2.2 Spatial-Temporal Fusion for Trajectory Prediction

While graph-based models are effective at capturing spatial interactions at individual time

steps, trajectory prediction is inherently a sequential task that requires modeling how

these interactions evolve over time. Consequently, a key component of modern trajectory

prediction frameworks is the mechanism for fusing spatial and temporal information.

A widely adopted strategy in the literature is the decoupled spatial–temporal fusion

paradigm, wherein spatial features are first extracted independently at each time step,

and a dedicated temporal modeling module subsequently processes the resulting sequence

of spatial embeddings to learn the underlying sequential dynamics [109].

The choice of the temporal modeling module has evolved. Early works, and many

strong baselines to this day, adopt Recurrent Neural Networks (RNNs), particularly Long

Short-Term Memory (LSTM) [83] and Gated Recurrent Units (GRU) [110], to process

the temporally ordered spatial graph features [111–115]. RNNs are naturally suited for

capturing temporal dependencies but suffer from limited ability to model long-term

dependencies due to gradient vanishing and their inherently sequential nature, which

restricts parallelization during training. To alleviate these issues, Temporal Convolutional

Networks (TCNs) [116] have been increasingly adopted. TCNs use 1D convolutions

over time to capture fixed-size receptive fields while allowing for parallel processing.

Unlike RNNs, they can model long-range dependencies via dilation and deeper layers.

Methods such as Social-STGCNN [29] and SGCN [27] are representative of this line of

work, combining spatial GCNs with TCN backbones for more scalable and temporally

expressive modeling. More recently, Transformer-based architectures have emerged as

a powerful alternative for temporal modeling in trajectory prediction. Transformers

leverage global self-attention to model dependencies across all time steps simultaneously

and have shown strong performance in capturing complex temporal patterns, especially

in multimodal or highly dynamic environments [68, 69]. They overcome key limitations

of RNNs (sequential computation) and TCNs (limited context windows) by attending to

the entire trajectory history in a data-driven and content-aware manner.

Despite the widespread adoption and success of this decoupled spatial-temporal

paradigm, it has a fundamental limitation: the separation of spatial and temporal pro-

cessing can disrupt the natural inter-dependencies within spatial-temporal representa-
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Encoding information Node-level encoding Edge-level encoding Representative
works

Trajectory geometry Absolute positions or
displacements

Relative distance /
relative velocity relations

Social-
LSTM [28];
STGCNN
[29];
STGAT [38];
Trajectron++
[61];
AgentFormer
[68]

Agent semantics / type
(supervised)

Explicit class or role
embeddings

Type-aware or
asymmetric relations

UNIN [34];
HSG [35];
Multiclass-
SGCN
(Chapter 3)

Agent semantics / type
(label-free)

Behavioral or
motion-based
pseudo-labels

Implicit type-dependent
interactions

BP-SGCN
(Chapter 5)

Relational enrichment
(node-centric)

Implicit edge-to-node
aggregation

Edge-enhanced but
node-updated relations

GC-
VRNN [64];
HEAT [65];
MFAN [66]

Relational enrichment
(edge-centric)

Node representations
conditioned on
edge-centric modeling

Explicit edge
representations with
independent states

UniEdge
(Chapter 4)

Table 2.1: Design space of node- and edge-level encodings in graph-based trajectory
prediction. The table summarizes how geometric and semantic information is distributed
across nodes and edges in existing methods, and highlights distinct relational modeling
paradigms explored in this thesis.

tions [117,118]. By first encoding interactions frame-by-frame and then learning temporal

dependencies, these models often fail to capture high-order cross-time interactions—for

example, how an agent’s position at time t − 2 directly influences a neighbor’s behavior

at time t This multi-step aggregation process can lead to information dilution and a phe-

nomenon known as "under-reaching" [119] where important long-range spatial-temporal

cues are weakened or lost before they can inform the final prediction. This limitation hin-

ders the model’s ability to reason about complex, evolving social dynamics, particularly

in scenarios that require immediate and nuanced responses to environmental changes.
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2.2.3 Representation Design for Graph Construction

Table 2.1 summarizes the representation design space of graph-based trajectory predic-

tion methods from the perspective of node- and edge-level encodings. Specifically, it

categorizes how geometric information, agent semantics, and relational structures have

been encoded either at nodes or edges in existing literature, together with representative

works adopting each design choice.

As shown in the table, most existing approaches primarily encode trajectory geometry

and agent semantics at the node level, while edge representations are commonly limited to

relative geometric relations or attention-based weights. Supervised semantic information

is typically incorporated via explicit class or role embeddings, whereas label-free semantic

abstractions are far less explored, particularly in heterogeneous trajectory prediction

where such labels are costly or unavailable. This highlights a semantic representation

gap, where existing methods rely heavily on manually annotated agent types, limiting

their scalability and practical applicability. Importantly, Table 2.1 also reveals a clear

gap in relational modeling: although several methods incorporate edge features to assist

node updates, these approaches remain fundamentally node-centric, with edges lacking

independent representations or temporal dynamics. Explicit edge-centric modeling,

where relations are treated as first-class entities with their own states, remains largely

underexplored prior to this thesis.

2.3 Unsupervised Behavior Clustering

The clustering of temporal trajectory patterns allows modeling the behavioral groups

for better trajectory prediction [111, 120]. Early works focus on the raw trajectory

represented as 2D coordinates. Support vector clustering is introduced as a closed-

loop method on motion vectors for motion behavior representations [121]. K-means on

trajectory vectors or sequence key points obtain cluster centers to enhance trajectory

prediction [111,122]. DBSCAN is proposed to avoid manually specifying cluster numbers,

adding more flexibility and interpretability to behavior patterns [120]. GP-Graph directly

uses the absolute distance among pedestrians to determine the division of group [25].

The recent PCCSNet leverages BiLSTM network to encode coordinates prior to K-means
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clustering, identifying behavioral modalities [123]. In addition to modalities, FEND

further applies 1D CNN and LSTM for trajectory encoding and employs the K-means for

long-tail trajectory clustering to distinguish trajectory patterns [124].

However, most existing methods rely on shallow trajectory representations, limiting

their ability to capture nuanced, evolving behaviors. Additionally, distance-based cluster-

ing approaches often struggle with complex motion patterns. To address these issues,

we propose a cascaded optimization scheme featuring an end-to-end Deep Embedded

Clustering (DEC) [125] module, which iteratively refines cluster assignments using a

KL-divergence objective. This dynamic adaptation yields richer latent representations,

enabling a more data-driven and expressive approach to modeling agent behaviors.

2.4 Evaluation and Metric

To quantitatively assess the performance of the trajectory prediction models presented in

this thesis, we employ two of the most widely adopted metrics in the field: the Average

Displacement Error (ADE) and the Final Displacement Error (FDE). These metrics evaluate

the pixel or real-world coordinate distance between the predicted path and the ground-

truth path.

2.4.1 Average Displacement Error (ADE)

The Average Displacement Error measures the average L2 distance between the predicted

trajectory points and the ground-truth points over the entire prediction horizon. It

provides a comprehensive assessment of the overall prediction accuracy across all future

time steps. The ADE is calculated as:

ADE = 1
N × Tpred

N∑
i=1

Tpred∑
t=1

∥p̂i
t − pi

t∥2 (2.1)

where N is the total number of agents in the scene, Tpred is the length of the prediction

horizon, p̂i
t = (x̂i

t, ŷi
t) represents the predicted 2D coordinates for agent i at future time

step t, and pi
t = (xi

t, yi
t) are the corresponding ground-truth coordinates. The operator

∥ · ∥2 denotes the Euclidean (L2) norm.
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2.4.2 Final Displacement Error (FDE)

The Final Displacement Error specifically evaluates the accuracy at the end of the predic-

tion horizon. It is defined as the L2 distance between the predicted final destination and

the ground-truth final destination at time step Tpred. This metric is particularly important

for assessing a model’s ability to forecast long-term intentions and final goals. The FDE

is calculated as:

FDE = 1
N

N∑
i=1

∥p̂i
Tpred

− pi
Tpred

∥2 (2.2)

where the variables are defined identically to those in the ADE calculation.

2.4.3 Evaluation of Multimodal Predictions

Since pedestrians’ future movements are inherently multimodal, modern trajectory pre-

diction frameworks, including those developed in this thesis, typically generate multiple

plausible future trajectories to capture this uncertainty [21, 27, 28]. In line with standard

evaluation practice, our models generate K (e.g., K = 20) trajectory samples for each

agent. To enable fair comparison with other state-of-the-art generative models, evalua-

tion metrics are computed on the single trajectory sample that achieves the minimum

displacement error relative to the ground truth. While this best-of-K evaluation strategy

is widely adopted in the literature, alternative evaluation choices or dataset-specific

conventions may exist across different benchmarks; unless otherwise stated, this thesis

adheres to the standard evaluation protocols associated with each benchmark.
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CHAPTER 3

Semantic-Aware Sparse Graph Modeling for Heterogeneous

Trajectory Prediction

Portions of this chapter have previously been published in the following peer-reviewed

publication [32]:

• Li, R., Katsigiannis, S., & Shum, H. P. H., “Multiclass-SGCN: Sparse Graph-based

Trajectory Prediction with Agent Class Embedding.” In Proceedings of the IEEE

International Conference on Image Processing (ICIP), 2022.

Trajectory prediction of road users in real-world scenarios is challenging because

their movement patterns are stochastic and complex. Previous pedestrian-oriented works

have been successful in modelling the complex interactions among pedestrians, but fail in

predicting trajectories when other types of road users are involved (e.g., cars, cyclists, etc.),

because they ignore user types. Although a few recent works construct densely connected

graphs with user label information, they suffer from superfluous spatial interactions

and temporal dependencies. To address these issues, we propose Multiclass-SGCN, a

sparse graph convolution network based approach for multi-class trajectory prediction
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that takes into consideration velocity and agent label information and uses a novel

interaction mask to adaptively decide the spatial and temporal connections of agents

based on their interaction scores. The proposed approach significantly outperformed

state-of-the-art approaches on the Stanford Drone Dataset, providing more realistic and

plausible trajectory predictions.

3.1 Introduction

Trajectory prediction has drawn considerable attention with the development of au-

tonomous vehicles in recent years. Specifically, models take the observed trajectories

of different agents in real-world scenes to predict their future movement patterns, ben-

efiting self-driving cars for collision avoidance [9], as well as anomalous movement

flow detection [126]. To tackle the challenge of modeling the complex and stochastic

nature of social interaction patterns, methods focusing on spatial interaction model-

ing and temporal dependency capturing are proposed. Social-LSTM [28] uses pooling

windows for interaction modeling and recurrent architecture for temporal capturing,

whereas Social-STGCNN [29] uses relative distance to measure interactions between

agents and temporal convolution networks (TCN) [116] to handle temporal dependencies.

STAR [127] and TF [128] propose transformer-based [67] architectures for both spatial

and temporal aspects, achieving impressive performance. As densely connected graphs

may generate superfluous interactions, leading to impractical computational costs, Sparse

Graph Convolution Network (SGCN) [27] proposes a self-attention based sparse graph

architecture to mitigate these problems.

The main challenge of trajectory prediction is to consider the different movement

behaviors of different classes of agents. The aforementioned research only focuses on

pedestrians and does not consider other classes of agents, such as cars and cyclists, which

have a significant effect on trajectory prediction. Intuitively speaking, even if two agents

have a similar velocity, human instincts would force us to pay more attention to the

movements of the larger agents, such as considering car over bicycle. To address this issue,

Semantics-STGCNN [3, 129] considered class labels for multi-class trajectory prediction

by embedding agent-label features into the velocity representations [130], ensuring that
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the upcoming GCN [131] aggregates both features. Nevertheless, Semantics-STGCNN

still suffers from the superfluous interactions problem as it uses a densely connected

graph. It also lacks a separate modeling of temporal dependencies, thus suffering from

long-term predictions.

In this paper, we propose Multiclass Sparse Graph Convolution Network (Multiclass-

SGCN ), an attention-based sparse GCN for multi-class trajectory prediction that models

interactions and temporal dependencies among multi-class agents in real scenes. We

introduce a novel method to embed the correlated agent label and velocity features to

build the velocity-label graph (VLG) representation, with particular care to learn the

optimal embedding for each feature separately. In the sparse graph learning module, we

designed a novel adaptive interaction mask to spatially and temporally evaluate attention

patterns and generate plausible sparse adjacency matrices, enabling each agent to focus

only on explicit neighbours and important time steps. Finally, GCN [131] and TCN [116]

layers are employed for the final trajectory prediction.

Performance was evaluated on the Stanford Drone Dataset (SDD) [74] against state-of-

the-art approaches, showing that our proposed model outperforms all existing methods

for all the examined evaluation metrics by a significant margin.

The contributions of this work are: (1) We present Multiclass-SGCN, a GCN for

predicting multi-class agent trajectories, which outperforms state-of-the-art methods. (2)

To effectively model the different patterns of multi-class agent trajectories, we propose a

novel algorithm to separately embed the correlated features of class label and velocity,

resulting in an optimal embedding for different natures of input features. (3) To create

sparse attention of neighbors from different classes, we propose an adaptive interaction

mask that adaptively filters neighbors of lower influence.

3.2 Multiclass-SGCN

Given a series of T video frames with N agents, the corresponding 2-D trajectory coordi-

nates (xi
t, yi

t), velocity V i
t = (xi

t−xi
t−1, yi

t −yi
t−1), and one-hot encoded semantic labelsLi

t,

∀ t ∈ [1, T ] and ∀ i ∈ [1, N ], the goal of multi-class trajectory prediction is to predict the

future trajectory coordinates of each agent (xi
t, yi

t) ∀ t ∈ [T + 1, T ′]. An overview of the
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proposed Multiclass-SGCN for trajectory prediction is provided in Figure 3.1. We employ

SGCN [27] as our backbone as it introduces a self-attention mechanism to enhance the

spatial and temporal sparsity of the neighbour graph. The two key components of our

network are the velocity label graph embedding that separately embeds the velocity

and class labels for an optimal representation, and the enhanced sparse graph learning

that adaptively determines the neighbour graph for each agent based on its attention

preferences.

3.2.1 Velocity-Label Graph (VLG) Embedding

We observe that the two important factors that affect the movement of an agent are the

classes and velocity of neighbours. Class labels, Li
t, can indicate how different classes

of agents, such as pedestrian, car, cyclist, have different influences [3]. Velocity, V i
t ,

enhances the ability of a model to capture the geometric features of agents [29]. As

velocity and classes are highly correlated, such as a car would have a higher speed, it

would be advantageous to model them together. At the same time, as they are two

different features, it would be better to embed them separately.

To encode the spatial and temporal features, we construct a spatial VLG (SVLG) and

a temporal VLG (TVLG). SVLG contains the features of all the agents at time step t, with

Gsvlg = (Xt, At), Xt = {xi
t | i = 1, ..., N}, while TVLG contains the features of each

individual agent over all time steps, such that Gtvlg = (X i, Ai), X i = {xi
t | t = 1, ..., T}.

X is the concatenation of V i
t and Li

t, and At and Ai are adjacency matrices that represent

the edges of the SVLG and TVLG respectively, indicating whether the nodes are connected

(denoted as 1) or not (denoted as 0). Following [27], Ai is initialised as 1 and At as an

upper triangular matrix filled with 1.

We propose a velocity-label graph (VLG) embedding that combines the advantages

of velocity and class label, while learning an optimal embedding for each of them. The

graph embedding of VLG is computed by combining the embeddings of velocities and
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Chapter 3. Semantic-Aware Sparse Graph Modeling for Heterogeneous Trajectory
Prediction

one-hot encoded class labels of agents:

Evlg = EV
vlg + EL

vlg

EV
vlg = ϕ(GV

vlg, WEV
vlg

)

EL
vlg = ϕ(GL

vlg, WEL
vlg

)

(3.1)

whereGV
vlg andGL

vlg are subgraphs of VLG corresponding to the velocity and label features

respectively, ϕ(·, ·) a linear transformation, WEV
vlg

∈ R2×DEvlg and WEL
vlg

∈ RL×DEvlg the

weights of the linear transformation, L the length of encoded one-hot labels, and DEvlg

the embedding size.

3.2.2 Enhanced Sparse Graph Learning

We enhance the sparse graph learning module of SGCN [27] to better model the multi-

class nature of the problem. This module is constructed from the numerical interaction

scores calculated by the self-attention module. It then extracts high-level spatial-temporal

interaction features and uses an interaction mask with a fixed threshold of 0.5 to optimise

the sparsity of graph representations by pruning weak connections with lower attention

relevance. We argue that the interaction mask threshold should be adaptively adjusted

through the learning process of each individual agent.

Given the embedded SVLG and TVLG, Esvlg and Etvlg , a self-attention module [67] is

implemented to calculate the attention scores A between each node pairs:

Qvlg = ϕ(Evlg, W vlg
Q ), Kvlg = ϕ(Evlg, W vlg

K )

Avlg = Softmax(
Qvlg × KT

vlg√
dvlg

)
(3.2)

where ϕ(·, ·) denotes a linear transformation, W vlg
Q and W vlg

K are learnable weight matri-

ces,
√

dvlg is the scaled factor for numerical stability. The output spatial and temporal

attention matrices, Asvlg and Atvlg , are of size T × N × N and N × T × T , respectively.

Following [27], we implement a feature enhancement module using a series of asymmetric

convolution layers [132] to extract high-level interaction features, and using one-by-one

convolutions on the spatial attention scores to capture the temporal dependencies, thus
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3.2. Multiclass-SGCN

creating the high-level interaction attention features Fsvlg and Ftvlg.

To sparsify the high-level interaction attention matrix, we propose an adaptive inter-

action mask (AIM) to extract the set of neighbors in SVLG and TVLG. Manually-set fixed

interaction thresholds, as used by SGCN [27], cannot fully describe the patterns of spatial

interactions and temporal dependencies of each agent. We propose an average operator

to adaptively calculate a threshold and remove the influence of less important neighbors,

allowing the system to adapt according to the interactions of various types of agents, thus

being more suitable for more complex scenes compared to the global threshold approach

of SGCN [27]. In particular, the (i, j)-th element of the adaptive sparse interaction mask

Mvlg is computed as:

Mvlg[i, j] =


1, σ(Fvlg[i, j]) >

∑N

j=1 σ(Fvlg [i,j])
N

0, otherwise
(3.3)

where σ indicates the Sigmoid function. Using the adaptive interaction mask, we con-

struct a sparse adjacency matrix for graph convolution, and because of the removal

of superfluous connections, the sparse graph enables the GCN model to learn from

influential neighbors, thus improving both training speed and prediction accuracy.

Similarly to [27], we apply two separate branches of the GCN [131] to fuse the sparse

spatial VLG and sparse temporal VLG. The two GCN branches differ in the order of their

input, as the first is fed the spatial VLG before the temporal VLG, whereas the second is

fed in the reverse order. Then, the last outputs of these two GCN branches are summed

to provide the final trajectory representation H . Finally, temporal convolution networks

(TCN) [116] are used on the temporal dimension, assuming that the coordinates (xi
t, yi

t)

of agent i at frame t follow the bi-variate Gaussian distribution as N(µi
t, σi

t, ρi
t), a cascade

of TCN layers can be used to predict parameters in the bi-variate Gaussian distribution.

To train the proposed network, we minimize the negative log-likelihood loss function to

estimate the trained parameters following [29].
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3.3 Experimental Results

The proposed model was trained and validated on the Stanford Drone Dataset (SDD) [74].

SDD has class labels for six different types of agents, including pedestrian, cyclist, cart,

car, skater, and bus. Data is captured from bird’s-eye view by flying a drone over Stanford

University’s campus. We follow existing works [27], [20] that apply 8 observed frames

(3.2 seconds) to predict the next 12 frames (4.8 seconds), then 20 samples are derived

from the learnt multivariate distribution. The model was evaluated in terms of the

Minimum Average Displacement Error (mADE) and the Minimum Final Displacement

Error (mFDE) as in [29], as well as in terms of the Average ADE (aADE) and the Average

FDE (aFDE) proposed by [3] who argued that aADE and aFDE evaluate the models more

holistically. The Adam [133] optimizer was used for training, with a 0.0001 learning rate

and a batch size of 256. To compare with Semantics-STGCNN [3], we also normalized

and denormalized the input trajectory data with a scaling factor of 10. Training typically

converged in around 35-45 epochs.

3.3.1 Quantitative Results

The proposed method was compared to 8 models in total, including the baseline Linear

model, energy function based behavioral model (SF [134] ), Social-LSTM [28], Social-

GAN [20], CAR-Net [135], DESIRE [40], Social-STGCNN [29] and Semantics-STGCNN [3],

the existing state-of-the-art model for multi-class trajectory prediction. Notably, the

results of Semantics-STGCNN were evaluated using the published source code, whereas

other results were provided by [3]. Results are presented in Table 3.1 in terms of mADE

and mFDE. It is evident that the proposed model outperformed all other models, including

the latest Semantics-STGCNN [3] with a 3.76 decrease in mADE and 3.71 decrease in

mFDE, indicating the importance of considering label information and velocity in complex

trajectory prediction tasks, as well as of using an adaptive interaction mask. Furthermore,

as discussed in [3], common minimum-based metrics (mADE and mFDE) focus only on

the best sampled sample, which is not comprehensive in real-world scenarios, while

average-based metrics (aADE and aFDE) can be more plausible and high level. To this

end, we compared the proposed Multiclass-SGCN with Semantic-STGCNN using aADE
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Table 3.1: Performance comparison with the state-of-the-arts.

Model mADE mFDE

Linear 37.11 63.51
SF [134] 36.48 58.14
Social-LSTM [28] 31.19 56.97
Social-GAN [20] 27.25 41.44
CAR-Net [135] 25.72 51.80
DESIRE [40] 19.25 34.05
Social-STGCNN [29] 26.46 42.71
Semantics-STGCNN [3] 18.12 29.70

Multiclass-SGCN (ours) 14.36 25.99

Table 3.2: Performance comparison with Semantics-STGCNN.
Model mADE mFDE aADE aFDE

Semantics-STGCNN [3] 18.12 29.70 33.14 61.14
Multiclass-SGCN (ours) 14.36 25.99 22.87 45.30

and aADE (Table 3.2), demonstrating a significant improvement of more than minus 10

for both metrics.

To further validate the contribution of class labels (CL), separate embedding (SE) of the

VLG, and adaptive interaction mask (AIM), we conducted three ablation experiments by

evaluating three variants of the proposed method: i) Mutliclass-SGCNw/o SE denotes that

the embedding of the input graph was computed from the whole feature matrix, instead

of separately for velocity and labels (Section 3.2.1); ii) To evaluate the effectiveness of our

sparsification design. Mutliclass-SGCN w/o AIM denotes that a manually set interaction

threshold (ξ = 0.5) was used for all agents to measure the existence of their neighbors,

as in SGCN [27], instead of our proposed adaptive interaction mask (Section 3.2.2); iii)

Mutliclass-SGCN w/o CL denotes that the embedding of the input graph was computed

only for velocity, instead of both velocity and class labels. Results in Table 3.3 show that

the proposed use of class labels and of the SE and AIM modules is important for boosting

the performance of the model, especially AIM, which led to a 43.3% reduction in aADE

and a 41.2% reduction in aFDE, indicating the importance of adaptively modeling the

interaction patterns of each agent, because agents of different classes may have different
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Table 3.3: Ablation study results.
Model mADE mFDE aADE aFDE

Multiclass-SGCN w/o SE 14.77 25.44 24.74 48.42
Multiclass-SGCN w/o CL 15.32 26.39 26.29 50.30
Multiclass-SGCN w/o AIM 22.05 29.53 40.33 76.99
Multiclass-SGCN (ours) 14.36 25.99 22.87 45.30

attention preferences.

3.3.2 Qualitative Results

Predicted trajectories by the proposed Multiclass-SGCN and Semantics-STGCNN [3] for

one frame from three scenarios are shown in Figure 3.2, demonstrating that our proposed

model can make more realistic and consistent trajectory predictions. Specifically, in the

complex circular scenario (left-most images in Figure 3.2), which contains too many

agents, both methods failed to converge to the ground-truth, especially when agents

are turning or moving at high speeds, but the prediction results of our Multiclass-SGCN

exhibit less divergence and are better alignedwith the ground-truth trajectories. Moreover,

for some static agents, Semantics-STGCNN generates abnormal predictions, while our

model does not. As for the middle images in Figure 3.2, it is clear that Semantics-STGCNN

totally diverges from the ground-truth, whereas our results match the ground-truth

considerably. Furthermore, for the right-most images in Figure 3.2, both methods are

close to the ground-truth, but Multiclass-SGCN presents more stable trajectories with

lower amplitude oscillations.

To summarize, Semantics-STGCNN underperforms because the densely connected

graph inherently introduces superfluous interactions that disrupt normal trajectories, and

the lack of separate modeling of temporal dependencies results in unstable movements,

even when no social interactions occur. In contrast, Multiclss-SGCN overcomes these

issues by modeling both spatial interactions and temporal dependencies with velocity-

label graph embedding and enhanced sparse graph learning modules, leading to better

predictions.

Moreover, we present ablation visualizations in Figure 3.3 to qualitatively assess the

37



3.4. Summary

(a) Semantics-STGCNN [3]

(b) Muticlass-SGCN (ours)

Figure 3.2: Comparisons between our method and Semantics-STGCNN. Blue filled circles
are observed trajectories, red hollow circles are ground-truth, purple lines in (a) are
predicted results by [3], green lines in (b) are predicted results by the proposed Multiclass-
SGCN.

contribution of each component to the prediction performance. In all three scenes, the

full Multiclass-SGCN produces smoother trajectories that stay closer to the ground truth,

especially around turning points and interaction areas, where deviations are significantly

reduced. In contrast, removing AIM or SP leads to clearly larger prediction errors and

overly linear trajectories in regions with long-term forecasting and dense interactions,

demonstrating that both modules are essential for capturing fine-grained multi-class

interactions and scene constraints.

3.4 Summary

This chapter presentedMulticlass-SGCN, a sparse graph-based trajectory prediction

framework tailored for heterogeneous traffic environments involving multiple agent

types. By integrating semantic agent-class information with motion features through a

velocity–label graph and employing an adaptive interaction mask to filter low-relevance

connections, the framework effectively captures asymmetric cross-type interactions while
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Figure 3.3: Multiclass-SGCN vs. Multiclass-SGCN (w/o AIM) vs. Multiclass-SGCN (w/o
SP) in three different scenes. Blue filled circles are observed trajectories, red hollow circles
are ground-truth, green lines are predicted results. Sample trajectories with significant
differences are highlighted in the box.

maintaining computational efficiency.

While heterogeneous settings pose unique challenges due to agent diversity, homoge-
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neous pedestrian scenarios present a different set of difficulties. In such environments,

the absence of class distinctions shifts the emphasis toward capturing subtle, high-order

dependencies and edge-level relational dynamics that emerge purely from motion and

spatial context. The next chapter addresses these challenges with the UniEdge framework,

which unifies spatial–temporal reasoning into a single high-order graph formulation,

enabling efficient and expressive modeling of pedestrian interactions.

40



CHAPTER 4

Unified Spatial-Temporal Graph Reasoning in Homogeneous

Pedestrian Trajectory Forecasting

Portions of this chapter have previously been published in the following peer-reviewed

publication [136]:

• Li, R., Qiao, T., Katsigiannis, S., Zhu, Z., & Shum, H. P. H., “Unified Spatial-Temporal

Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction.” IEEE Trans-

actions on Circuits and Systems for Video Technology (TCSVT), 2025.

Pedestrian trajectory prediction aims to forecast future movements based on historical

paths. Spatial-temporal methods often separately model spatial interactions among pedes-

trians and temporal dependencies of individuals. They overlook the direct impacts of

interactions among different pedestrians across various time steps (i.e., high-order cross-

time interactions). This limits their ability to capture spatial-temporal inter-dependencies

and hinders prediction performance. To address these limitations, we propose UniEdge

with three major designs. Firstly, we introduce a unified spatial-temporal graph data

structure that simplifies high-order cross-time interactions into first-order relationships,
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enabling the learning of spatial-temporal inter-dependencies in a single step. This avoids

the information loss caused by multi-step aggregation. Secondly, traditional GNNs focus

on aggregating pedestrian node features, neglecting the propagation of implicit inter-

action patterns encoded in edge features. We propose the Edge-to-Edge-Node-to-Node

Graph Convolution (E2E-N2N-GCN), a novel dual-graph network that jointly models ex-

plicit N2N social interactions among pedestrians and implicit E2E influence propagation

across these interaction patterns. Finally, to overcome the limited receptive fields and

challenges in capturing long-range dependencies of auto-regressive architectures, we

introduce a transformer encoder-based predictor that enables global modeling of temporal

correlation. UniEdge outperforms state-of-the-arts on multiple datasets, including ETH,

UCY, and SDD.

4.1 Introduction

The aim of pedestrian trajectory prediction is to forecast future paths based on observed

movements (Figure 4.1(a)). High-precision prediction systems are crucial for applications

like self-driving vehicles [8, 137] and video surveillance [138]. Specifically, in intelli-

gent surveillance systems, especially at accident-prone intersections, early detection of

pedestrian crossing intentions within a few seconds enables timely warnings to approach-

ing vehicles through Vehicle-to-Everything (V2X) communication between vehicles,

infrastructure and pedestrians, providing sufficient time for vehicles to react and reduce

accident risks [139].

Predicting pedestrian trajectory is inherently challenging, primarily due to the com-

plexity of interactions in which pedestrians continuously adjust their movements based

on the evolving dynamics of others over multiple time steps. Spatial-temporal graph

architectures (Figure 4.1(b)) are widely used to analyze human motions [140, 141] and

pedestrian trajectories [7, 25, 27, 29, 30, 38, 39, 62], capturing spatial interactions within

each frame and temporal dependencies over time.

This challenge is particularly severe when modeling high-order cross-time interac-

tions, i.e., complex interactions among pedestrians across multiple time steps. Traditional

spatial-temporal graph architectures require multiple steps to capture these interactions,
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(b) Existing approach

Input
Spatial 
Graph

Temporal 
Graph

…
…

(a) Pedestrian trajectories

Past trajectory
Future trajectory A B C

Pedestrians

Unified Graph

kth patch 

Input

…

…

(c) Our unified approach

… tt-2 t-1

Figure 4.1: Motivation Illustration. (a) Real-world pedestrian trajectories overmultiple
time frames. (b) Existing spatial-temporal approaches separately model the spatial
interactions among pedestrians and temporal dependencies of individuals. (c) Our
unified spatial-temporal graph integrates spatial-temporal inter-dependencies and
simplifies high-order cross-time interactions into first-order relationships.

where each node first aggregates spatial information at individual time steps and then

addresses temporal dependencies through temporal networks. STGAT [38] combines

graph attention [101] with Long Short-Term Memory (LSTM) [83] for sequential tempo-

ral modeling, while Social-STGCNN [29] and SGCN [27] advance to integrating Graph

Convolutional Network (GCN) [131] with Temporal Convolutional Network (TCN) [116]

for parallel processing. This paradigm has two key disadvantages: (1) when processing

high-order interactions among pedestrians, this multi-step aggregation paradigm leads

to potential under-reaching [119] due to increased effective resistance [102], where im-

portant interaction patterns are diluted and compressed with the increase of aggregation

steps; and (2) the separation of spatial and temporal processing can disrupt the natural

unified spatial-temporal inter-dependencies observed in real-world scenarios [117, 118],

particularly in situations requiring immediate response to dynamic changes.

Another challenge lies in modeling the implicit influence propagation through edges

in pedestrian social interactions. While Graph Neural Networks (GNNs) are widely

adopted for modeling pedestrian interactions [25, 29, 38], existing approaches primarily

focus on Node-to-Node (N2N) interactions (Figure 4.2(a)) through GNNs, e.g., using

inverse distance [29] or attention-based [27, 38] weighting. Recent works like GroupNet

[63] and HEAT [65] advance to Edge-to-Node (E2N) interactions (Figure 4.2(b)) by
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incorporating edge features into node representations, enhancing the relation reasoning

ability of the system. However, both N2N and E2N focus on the training of node features,

while neglecting the crucial Edge-to-Edge (E2E) patterns [142, 143]. This fundamental

limitation restricts GNNs’ ability to capture the full spectrum of interaction dynamics

in pedestrian behaviors, particularly in complex spatial-temporal scenarios where one

pedestrian’s behavior can implicitly influence others through cascade effects [142].

Node features

Edge-to-node 
GNN

Node-to-node 
GNN

(a) Node-to-node (b) Edge-to-node 
Edge features

(c) Ours

Node 
GNN

Edge 
GNN

Figure 4.2: Illustration of graph learning procedures. (a) Node-to-Node (N2N), (b) Edge-
to-Node (E2N), and (c) Our novel dual-graph introduces the combination of N2N and
Edge-to-Edge (E2E) paradigm.

In this paper, we introduce the Unified Spatial-Temporal Edge-enhanced Graph Net-

work (UniEdge) for pedestrian trajectory prediction. To address the first challenge, our

unified spatial-temporal graph segments input trajectories into patch-based structures

(Figure 4.1 (c)), simplifying high-order cross-time interactions into first-order relation-

ships. This approach reduces effective resistance [102] and mitigates the under-reaching

problem [119], preventing information dilution during propagation. By processing spatial-

temporal information jointly in a single step, each unified patch maintains natural spatial-

temporal inter-dependencies, enabling immediate responses to dynamic changes while

preserving multi-step interaction patterns.

To tackle the second challenge, we introduce Edge-to-Edge-Node-to-Node Graph

Convolution (E2E-N2N-GCN), a dual-graph network that jointly processes both node
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and edge patterns, as depicted in Figure 4.2 (c). Dual-graph design provides a deeper

understanding of graph topology in various domains [143, 144]. Our dual-graph architec-

ture consists of two complementary graphs: a node-level graph that models explicit N2N

social interactions among pedestrians, and an edge-level graph that captures the implicit

E2E influence propagation across these interaction patterns. Specifically, we employ a

first-order boundary operator [145] to construct edge graphs that reveal how interaction

patterns influence each other through connected edges. This approach enables nuanced

analysis of both individual behaviors and collective dynamics, essential for predictive

accuracy in crowded environments.

Finally, we introduce a Transformer encoder-based predictor to overcome the limited

receptive fields and long-range dependency challenges of auto-regressive architectures.

Our predictor leverages attention mechanisms [67] to enable global modeling of tempo-

ral correlations through learnable placeholders, substantially improving the prediction

capability.

Our approach outperforms state-of-the-art methods on commonly used pedestrian

trajectory prediction datasets, including ETH [1], UCY [73] and Stanford Drone Dataset

(SDD) [74]. The source code for UniEge is openly released on https://github.com/

Carrotsniper/UniEdge.

Our contributions can be summarized as follows:

• We propose a unified spatial-temporal graph data structure that simplifies high-

order cross-time interactions into first-order relationships. This enables direct

learning of spatial-temporal inter-dependencies in a single step, avoiding infor-

mation loss caused by multi-step aggregation while preserving critical interaction

patterns.

• We introduce the Edge-to-Edge-Node-to-Node Graph Convolution (E2E-N2N-GCN),

a novel dual-graph architecture that jointly captures both explicit N2N social

interactions among pedestrians and implicit E2E influence propagation across

interaction patterns through first-order boundary operators. This enables more

comprehensive modeling of complex pedestrian behaviors.

• We introduce a transformer-based predictor that overcomes the limited receptive
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4.2. Methodology

fields and challenges associated with capturing long-range dependencies inher-

ent in auto-regressive architectures. This enables global modeling of temporal

correlations, substantially improving prediction performance.

4.2 Methodology

4.2.1 Problem Formulation and Feature Initialization

The goal of pedestrian trajectory prediction is to estimate the possible future trajectories

of a pedestrian based on observed trajectories and nearby neighbors. Mathematically,

consider a multi-pedestrian scenario containing N pedestrians in Tobs time steps. The

observed trajectories of each pedestrian i ∈ [1, . . . , N ] can be represented as Xi =

{(xi
t, yi

t) | t ∈ [−Tobs + 1, . . . , 0]} and its ground-truth future trajectories can be defined

as Yi = {(xi
t, yi

t) | t ∈ [1, . . . , Tpred]}. For N pedestrians, the observed and ground-truth

future trajectories are X = [X1,X2, . . . ,XN ] ∈ RN×Tobs×2 and Y = [Y1, Y2, . . . , YN ] ∈

RN×Tpred×2 respectively, where 2 denotes the 2D coordinates. Our proposed UniEdge

aims to learn a prediction function Fpred(·) that minimizes the differences between the

predicted trajectories Ŷ = Fpred(X) and the ground-truth future trajectories Y. Instead

of directly predicting absolute coordinates, we follow [25, 27, 29, 30] that predict relative

coordinates of each pedestrian to ensure the robustness and generalization ability of the

system across different scenarios.

For trajectory feature initialization, our model takes inputs consisting of pedestrian

velocities v, velocity norms ρ = ∥v∥2, and pedestrian movement angles θ = angle(v),

where ∥·∥2 denotes the vector 2-norm and angle(·) is the function that computes the angle

of the velocity vectors. We follow [146] that subtract each historical vt, t ∈ [−Tobs, 0] by

the corresponding endpoint vTpred
as the pre-process step. These motion dynamic features

are embedded and then concatenated to obtain the final geometric feature representation

as follows:

X = CONCAT(f(v, Wv), f(ρ, Wnorm), f(θ, Wangle)),

where X ∈ RN×Tobs×D, N and Tobs represent the total number of pedestrians and time

steps, respectively, and D denotes the embedded feature dimension. Here, f(·, ·) rep-
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4.2. Methodology

resents Multi-Layer Perceptron (MLP) for feature embedding, and W represents the

corresponding weights.

4.2.2 Unified Spatial-temporal Graph

Previous trajectory prediction methods often adopt a two-step approach, separately

modeling pedestrian spatial interactions and individual temporal dependencies [27–29].

This approach is limited in capturing high-order cross-time interactions, which require

multi-step aggregation. Such multi-step processing increases the effective resistance -

a measurement of graph connectivity that quantifies the efficiency of information flow

between nodes [102, 147]. High effective resistance impedes graph message-passing,

leading to under-reaching problem [119], where message flows from distant nodes are

diluted and compressed.

Traditional ST approach Unified ST graph

j

i

j

𝑅!" = 1.50 𝑅!" = 0.28

i
time

N
um

be
r o

f P
ed

es
tri

an
s

Figure 4.4: Comparison of effective resistance (Rij) between traditional spatial-temporal
approach (left, Rij = 1.50) and our unified spatial-temporal graph (right, Rij = 0.27).
Lower Rij indicates better message propagation efficiency.

To address these challenges, we propose a unified spatial-temporal graph to simplify

high-order cross-time interactions among pedestrians into first-order relationships, en-

abling direct learning of spatial-temporal inter-dependencies, and preserving high-order

interactions without information dilution. This design significantly reduces the effective

resistance during message passing, improving information flow efficiency [102, 147] and

alleviating the risk of under-reaching [119]. Figure 4.4 illustrates the difference in effective

R between the message-passing paradigms of traditional spatial-temporal approach and
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our unified approach:

Rij = (ei − ej)T L+(ei − ej) (4.1)

where L+ denotes the Moore-Penrose pseudoinverse of the graph Laplacian matrix repre-

senting the graph connectivity [148], and ei, ej are standard basis vectors corresponding

to nodes i and j. LowerRij values indicate better message propagation efficiency between

nodes.

To reduce computational overhead in processing entire sequences and to better

capture fine-grained pedestrian dynamics, we adopt a patch-based strategy akin to the

local receptive fields used in convolution kernel for image processing. [149]. Specifically,

to construct the unified spatial-temporal graph depicted in Figure 4.3 (a), the input

features are segmented into K overlapping patches across the temporal dimension Tobs.

These patches are defined by a length L and a stride S , yielding K =
⌊

Tobs−L
S

⌋
+ 1. For

each patch k, ranging from 1 to K , a graph Gk
node = (Zk, Ak

node) is constructed. Here,

Zk ∈ RNL×D represents the node features, and Ak
node ∈ RNL×NL denotes the node

adjacency matrix, which encapsulates the node connections. This configuration further

benefits subsequent trajectory prediction phases by reducing the number of input tokens

from Tobs to K , which is crucial when using the transformer encoder model. It leads to a

quadratic reduction in memory usage and computational complexity for the attention

map, by a factor of
(

Tobs

K

)2
.

We then apply GAT [38, 62, 150] to initialize interaction strengths for the kth graph

Gk as:

Hk
node = GAT(Zk, Ak

node), (4.2)

where each node Hk
node,i is embedded as:

Hk
node,i = σ

 ∑
j∈N (i)∪{i}

αk
i,jΘZk

j

 , (4.3)

αk
i,j =

exp
(
a⊤Γ

(
Θ[Zk

i ∥ Zk
j ]
))

∑
j∈N (i)∪{i} exp

(
a⊤Γ

(
Θ[Zk

i ∥ Zk
j ]
)) , (4.4)

where Θ(·) is transformation function, Γ(·) and σ(·) denote activation functions, N (·) is

the neighbor set of node i and a⊤ represents learnable parameters. Attention coefficient
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Figure 4.5: Illustration of edge graph construction from a unified spatial-temporal graph
using the first-order boundary operator B1. Nodes are represented by numbers, and
edges connecting these nodes are labeled with letters. Applying the first-order boundary
operator transforms each edge into a node in the edge graph, with connections formed
based on shared nodes in the original graph.

αk
i,j represents the weights between two nodes. During training, these weight coefficients

are dynamically updated to reflect the importance of each node’s contribution to its

neighbors.

4.2.3 E2E-N2N Graph Convolution (E2E-N2N-GCN)

Previous pedestrian trajectory models typically adopt node-centric approaches, such

as N2N [25, 27, 29, 30, 151] and E2N [63, 65] paradigms to understand and capture node

dependencies. However, these methods overlook crucial E2E patterns, limiting their

ability to capture the full spectrum of interaction dynamics. This oversight may result in

a partial understanding of pedestrian behaviors, especially in complex scenarios where

interaction patterns influence each other.

To address this limitation, we propose a novel Edge-to-Edge-Node-to-Node Graph

Convolution (E2E-N2N-GCN) module (Figure 4.3 (b)), a dual-graph architecture that

leverages the first-order boundary operator to construct edge graphs. By jointly modeling

both explicit N2N social interactions among pedestrians and implicit E2E influence

propagation across interaction patterns, our approach enables more comprehensive

modeling of complex pedestrian behaviors. This dual-graph design allows each unified

spatial-temporal graph to capture how interaction patterns evolve and influence each

other through connected edges, leading to more accurate trajectory predictions.

To construct the edge graph, we apply the first-order boundary operator B1 to trans-

form it into its corresponding undirected edge graph Gk
edge = (Ek, Ak

edge), where Ek
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represents the node features in the edge graph, and Ak
edge indicates the new adjacency

relations. This operator reinterprets the connections between nodes (edges in the original

graph) as nodes in the new graph, creating edges between these new nodes if they share a

common node in the original graph. Figure 4.5 illustrates this process, effectively showing

how relationships are redefined to highlight deeper interaction dynamics.

To analyze and update the feature propagation of each edge graph, we employ the

first-order Hodge Laplacian [142, 143] to analyze and learn the dynamics within these

edge graphs:

L1 = B⊤
1 B1 + B⊤

2 B2, (4.5)

where L1 represents first-order Hodge Laplacian operator, and B⊤
1 captures and enhances

edge relationships, focusing on direct interactions. B2 is typically relevant for higher-

dimensional structures and not a primary focus here. We perform edge convolution by

adapting the Hodge-Laplacian Laguerre Convolution (HLLConv) [142, 143] to obtain the

high-level edge embedding Hk
edge for each edge graph k:

Hk
edge = HLLConv(Ek, Ak

edge)

= ℏ1 ∗ Ek

=
J−1∑
j=0

θjΓj(L1)Ek,

(4.6)

where ℏ1 is a spectral filter based on L1 applied to update edge features Ek, with θj

representing learnable parameters, and Γj(·) indicates the Laguerre polynomial functions.

Detailed explanations of spectral filter ℏ1 are shown in Algorithm 1.

Finally, after obtaining the embedded node features Hk
node and edge features Hk

edge

for the kth unified spatial-temporal graph, we leverage a fusion GCN to integrate node

and edge embeddings, enhancing the understanding of graph dynamics. Specifically, we

incorporate normalized edge embedding as weights into the aggregation process of GCN:

Hk = GCN(Hk
node, Hk

edge, Ak
node), (4.7)

51



4.2. Methodology

Algorithm 1: Hodge-Laplacian Laguerre Convolution
Input: First-order Hodge Laplacian L1 = B⊤

1 B1 + B⊤
2 B2

Output: Spectral filter ℏ1
Step 1: Perform eigen-decomposition on L1:

L1ϕ
i
1 = λi

1ϕ
i
1

to obtain the orthonormal bases ϕi
1 for i ∈ [0, 1, 2, · · · , ∞].

The spectral filter ℏ of the 1-st order HL can be represented as:

ℏ1(·, ·) =
∞∑

i=0
ℏ1(λi

1)ϕi
1(·)ϕi

1(·)

Step 2: Approximate the spectral filter ℏ1(λ1) by Laguerre polynomial functions:

ℏ1(λ1) =
J−1∑
j=0

θjΓj(λ1)

where θj is the jth expansion coefficient with jth Laguerre polynomial, and Γj(·)
is written in a recurrence format as:

Γj+1(λ1) = (2j + 1 − λ1)Γj(λ1) − jΓj−1(λ1)
j + 1

with base cases defined as:

Γ0(λ1) = 1, Γ1(λ1) = 1 − λ1

and each node i in the graph is embedded as:

Hk
i = σ

Θ(Hk
node,i) +

∑
j∈N (i)

Φ(Hk
edge,ij)Θ(Hk

node,j)
 , (4.8)

where Θ(·) and Φ(·) are linear transformations for node and edge features [142], with

σ(·) as the activation function.

4.2.4 Transformer Encoder Predictor

Temporal dependency modeling in trajectory prediction has evolved through various

architectures. RNNs [21,28] and TCNs [27,29] have been widely adopted, they suffer from

limited receptive fields and struggle to capture long-range dependencies. Although Trans-

former encoder-decoder architectures [67, 69, 137] address the long-range dependency
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issue, it introduces extra computation costs.

In this work, we design a Transformer encoder-based predictor for trajectory predic-

tion. As shown in Figure 4.3 (c), by encoding future trajectories as learnable parameters

and concatenating them with historical trajectories, our approach enables unified mod-

eling of both past and future information, allowing the model to fully leverage global

temporal dependencies [152] for more accurate predictions. We simply stack the graph

embeddings Hk output by E2E-N2N-GCN across all patches to obtain the integrated

feature representations H:

H = STACK(H1, H2, · · · , HK) ∈ RK×(NL)×D. (4.9)

We perform temporal average pooling across theL channel, and the outputH ∈ RN×K×D

is served as the historical input tokens. We then initialize a learnable placeholder to form

the padded future tokens as F ∈ RN×Tpred×D. The temporal channel of these tokens,

Tpred, is tailored to match our prediction horizon. This setup aligns with the requirements

of the Transformer encoder architecture [67, 153], which necessitates uniform sequence

lengths for both inputs and outputs to enable synchronous processing. This design

allows our model to directly produce trajectories of the required length. Throughout the

training process, these placeholders are incrementally refined to represent the predicted

trajectories, thereby enhancing the prediction capabilities.

Finally, the input tokens for the Transformer encoder are formed by concatenating

the learned historical input tokensH and padded future tokens F, resulting in the concate-

nated feature representation Ĥin ∈ RN×(K+Tpred)×D. We further enhance these tokens

with a learnable additive position embedding P ∈ RN×(K+Tpred)×D [67] that is applied

to the entire concatenated sequence to preserve the temporal order information. The

Transformer encoder then processes these augmented inputs to produce the predicted

sequence representations Ŷ ∈ RN×(K+Tpred)×D:

Ŷ = Encoder(Ĥin + P),

Ĥin = [H ∥ F], (4.10)

where [· ∥ ·] denotes the concatenation operation along the temporal dimension. Note
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Figure 4.6: Illustration of the Transformer encoder-based predictor.

that Ŷ represents the complete output of the encoder with length K + Tpred, only the

last Tpred time steps are used as the predicted trajectory representations, corresponding

to the padded future tokens F. The architecture of the Transformer encoder and the

learning process are shown in Figure 4.6. Similarly to [7,27,29], we employ the bi-variate

Gaussian loss function Lprediction to optimize the trajectory prediction:

Lprediction = −∑Tpred

t=1 log P((xt, yt)|µ̂t, σ̂t, ρ̂t), (4.11)

where µ̂ and σ̂ are the mean and variance of bi-variate Gaussian distribution, and ρ̂

represents the correlation coefficient.

4.2.5 Implementation Details

The UniEdge framework, developed using PyTorch, is trained end-to-end on an NVIDIA

TITAN XP GPU. We use a consistent batch size of 128 across all datasets, with initial

learning rates set at 0.001 for the ETH/UCY datasets and 0.01 for the SDD datasets. The

learning rate is adjusted every 50 epochs by a factor of 0.5. The AdamW optimizer is

employed to train the model. The architecture for learning graph employs single-layer

GAT, HLLConv, and GCN components. Node and edge embedding dimensions are set to
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128. The Transformer encoder-based predictor is configured with a hidden dimension of

256 with 4 attention heads.

4.3 Experiments

4.3.1 Experimental Setup

We evaluate the proposed UniEdge on multiple benchmark datasets, including ETH [1],

UCY [73], and Stanford Drone Dataset (SDD) [74]. The ETH dataset contains two subsets

(ETH and HOTEL) and the UCY dataset contains three subsets (UNIV, ZARA1, ZARA2),

with the total number of pedestrians captured in these 5 subsets being 1,536. SDD is

a benchmark dataset for pedestrian trajectories captured by a drone with a bird’s eye

viewing of university campus scenes and it contains 5,232 pedestrians across 8 different

scenes.

We follow the experimental setup of [27, 28, 154], using 3.2 seconds (8 frames) of

observation trajectories to predict the next 4.8 seconds (12 frames). For ETH and UCY

datasets, we follow existing works [21,25,27,29,30,69] and use the leave-one-out strategy

for training and evaluation. For SDD, we follow the existing train-test split [25, 30, 39]

to train and test our proposed method. During training, we employ data augmentation

following [154] to diversify and enrich our training datasets. This strategy is pivotal in

enhancing the model’s generalization capabilities.

During testing, we follow the standard protocol [21, 28] and sampling strategy [25]

that generates 20 predictions from the predicted distributions; the best sample is used to

compute the evaluation metrics. Average Displacement Error (ADE) and Final Displace-

ment Error (FDE) [21, 27–29] are used as evaluation metrics:

ADE = 1
N × Tpred

N∑
i=1

Tpred∑
t=1

√
(xi

t − x̂i
t)2 + (yi

t − ŷi
t)2,

FDE = 1
N

N∑
i=1

√
(xi

Tpred
− x̂i

Tpred
)2 + (yi

Tpred
− ŷi

Tpred
)2,

(4.12)

where (x̂i
t, ŷi

t) and (xi
t, yi

t) represent the predicted trajectory coordinates and ground-truth

trajectory coordinate for the i-th pedestrian at time step t.
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Table 4.1: Results on The ETH (ETH, HOTEL) and UCY (UNIV, ZARA1, ZARA2) Datasets
for Pedestrian Trajectory Prediction

Method Venue/Year ADE(↓) / FDE(↓)
ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social GAN [21] CVPR’18 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
Social-STGCNN [29] CVPR’20 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75

SGCN [27] CVPR’21 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
GP-Graph [25] ECCV’22 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29 0.23/0.39
Social-VAE [22] ECCV’22 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 0.21/0.33
MemoNet [155] CVPR’22 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35
GroupNet [63] CVPR’22 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44

Graph-TERN [39] AAAI’23 0.42/0.58 0.14/0.23 0.26/0.45 0.21/0.37 0.17/0.29 0.24/0.38
MSRL [151] AAAI’23 0.28/0.47 0.14/0.22 0.24/0.43 0.17/0.30 0.14/0.23 0.19/0.33
LED [72] CVPR’23 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33

EqMotion [26] CVPR’23 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23 0.21/0.35
EigenTrajectory [30] ICCV’23 0.36/0.57 0.13/0.21 0.24/0.43 0.20/0.35 0.15/0.26 0.22/0.36

TUTR [69] ICCV’23 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 0.21/0.36
SMEMO [156] TPAMI’24 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32 0.15/0.26 0.22/0.35
MFAN [66] PR’24 0.48/0.62 0.17/0.21 0.26/0.41 0.23/0.36 0.21/0.33 0.27/0.39
DDL [146] ICRA’24 0.26/0.50 0.15/0.35 0.29/0.58 0.16/0.29 0.13/0.22 0.20/0.39

ATP-VAE [157] TCSVT’24 0.48/0.76 0.14/0.20 0.26/0.44 0.28/0.48 0.20/0.35 0.27/0.45
MRGTraj [158] TCSVT’24 0.28/0.47 0.21/0.39 0.33/0.60 0.24/0.44 0.22/0.41 0.26/0.46

SingularTrajectory [159] CVPR’24 0.35/0.42 0.13/0.19 0.25/0.44 0.19/0.32 0.15/0.25 0.21/0.32
HighGraph [31] CVPR’24 0.40/0.55 0.13/0.17 0.20/0.33 0.17/0.27 0.11/0.21 0.20/0.30
UniEdge (Ours) - 0.36/0.46 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

4.3.2 Baseline Methods

We compare the proposed UniEdge framework with the following previous state-of-the-

art methods:

Graph-based methods: Social-STGCNN [29]: an approach that models spatial-

temporal pedestrian interactions through graphs; SGCN [28]: an approach that models

spatial-temporal interactions through sparse directed spatial graph and sparse directed

temporal graph; GP-Graph [25]: an approach that considers group-based pedestrian

behaviors; Graph-TERN [39]: an approach that integrates multi-relational graph and

control endpoint for trajectory prediction; EigenTrajectory(+SGCN) [30]: a model that

learns trajectories in eigenspaces and graph representations. MFAN [66]: an approach

that models spatial-temporal interactions for both edges and nodes. HighGraph [31]: a

plug-and-play module that captures high-order dynamics of pedestrians - we use the

HighGraph(+Social-VAE) variant for comparisons.

Generative-based methods: Social GAN [21]: a method that uses pooling window

module with Generative Adversarial Network (GAN) to generate diverse trajectories;

Social-VAE [22]: a method that employs timewise variational autoencoder(VAE) and
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attention mechanism to generate trajectories; GroupNet [63]: a method that introduces

multiscale hypergraph with edge strength, utilizing conditional-VAE (CVAE) to generate

trajectories; MSRL [151]: a method that models multi-stream interactions for trajectory

prediction based on CVAE; MRGTraj [158]: a method based on CVAE and non-auto-

regressive transformer encoder to generate diverse trajectories; ATP-VAE [157]: an

attention-based VAE architecture for trajectory prediction; LED [72]: a multi-modal

framework based on diffusion for prediction; SingularTrajectory [159]: a diffusion frame-

work based on singular projection and adaptive anchor to generate trajectories.

Other methods: MemoNet [155]: an approach based on the retrospective-memory

bank for trajectory representations; EqMotion [26]: an approach that models trajectories

via equivariant dynamics and invariant interaction; TUTR [69]: a transformer-based

framework; SMEMO [156]: an approach that models trajectories through social memory

modules; DDL [146]: goal-based transformer for trajectory prediction.

4.3.3 Quantitative Comparison

ETH and UCY Datasets

Table 4.1 presents the quantitative comparisons of our UniEdge model against existing

methods under ADE and FDE metrics. Compared to the previous state-of-the-art (SOTA)

generative-based method MSRL, our UniEdge demonstrates improvements of 5.3% in

average ADE and 24.2% in average FDE. Unlike MSRL, which is a two-stage framework

requiring separate training for the CVAE model and the trajectory decoder, UniEdge

operates in an end-to-end manner, improving the overall performance while maintaining

model parameter efficiency. Compared to the best graph-based method HighGraph, our

UniEdge shows significant improvements of 10.0% in average ADE and 16.7% in average

FDE. Although HighGraph introduces high-order interaction modeling, it operates only

on individual time steps, rather than cross-time interactions, which limits its effectiveness

in capturing dynamic changes over time. Contrasted to these graph-based methods, our

UniEdge comprehensively models edge information flow and cross-time interactions,

which can be the key to performance gain. Compared to DDL, which uses similar data

pre-processing techniques, our UniEdge surpasses it by 10.0% in ADE and 35.9% in FDE,
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Table 4.2: Results on The Stanford Drone Dataset (SDD) for Pedestrian Trajectory Predic-
tion

Method Venue/Year ADE(↓) / FDE(↓)
SDD

Social GAN [21] CVPR’18 27.23/41.44
Social-STGCNN [29] CVPR’20 26.46/42.71

GroupNet [63] CVPR’22 9.31/16.11
MemoNet [155] CVPR’22 8.56/12.66
GP-Graph [25] ECCV’22 9.10/13.80
MSRL [151] AAAI’23 8.22/13.39

Graph-TERN [39] AAAI’23 8.43/14.26
LED [72] CVPR’23 8.48/11.66

EigenTrajectory [30] ICCV’23 8.05/13.25
TUTR [69] ICCV’23 7.76/12.69

SMEMO [156] TPAMI’24 8.11/13.06
MFAN [66] PR’24 9.69/14.51

HighGraph [31] CVPR’24 7.98/11.42
UniEdge (Ours) - 7.51/10.89

demonstrating enhanced prediction performance. While our UniEdgemodel demonstrates

state-of-the-art (SOTA) performance on four subsets (HOTEL, UNIV, ZARA1, and ZARA2),

particularly in environments with rich pedestrian interactions such as UNIV, it faces

challenges similar to the graph-based SOTA method HighGraph on the ETH subset. This

limitation of graph-based methods is mainly caused by the sparsity of the ETH subset,

where fewer pedestrians and limited interactions constrain the expressive power of graph

representations.

SDD Dataset

Table 4.2 presents the quantitative comparison results of our model against various

previous methods on SDD dataset. Unlike the ETH and UCY datasets, the SDD is a larger

dataset featuring more complex pedestrian interactions. Compared to generative-based

methods, UniEdge improves 8.6% in ADE compared to MSRL and 6.6% in FDE compared

to LED. As a graph-based approach, our UniEdge outperforms the best graph-based

HighGraph model by 5.9% in ADE and 4.6% in FDE. Compared to SOTAmethods, UniEdge

shows an improvement of 3.0% in ADE over TUTR. These results further highlight the

effectiveness of our proposed UniEdge model in handling complex social scenarios.
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GP-Graph [25] Graph-TERN [39] EigenTrajectory [30] Ours

Figure 4.7: Visualization of predicted trajectories on the ETH and UCY datasets. Historical
trajectories are in blue, ground-truth trajectories are in red, and predicted trajectories are
in yellow. Scenario (a) shows two pedestrians walking in parallel and meet; Scenario (b)
illustrates a group of pedestrians walking in parallel; (c) shows pedestrians meeting each
other; (d) depicts several groups walking in opposing directions; and (e) presents a more
complex scenario that pedestrian movements are stochastic.

4.3.4 Qualitative Comparison

Trajectory Visualization Comparison

In this section, we compare the most likely predictions between our UniEdge and previous

graph-based methods, GP-Graph [25], Graph-TERN [39] and EigenTrajectory [30] on the

ETH and UCY datasets.

As shown in Figure 4.7, our prediction results are significantly closer to the ground-

truth trajectories compared to other methods in all scenarios. Scenario (a) depicts

two pedestrians walking and eventually meeting, where our predictions successfully

capture their gradual convergence even in sparse environments. Scenario (b) shows
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GP-Graph [25] Graph-TERN [39] EigenTrajectory [30] Ours

Figure 4.8: Visualization of predicted distributions on the ETH and UCY datasets. Histori-
cal trajectories are in blue, ground-truth trajectories are in red, and predicted trajectories
are in yellow. Scenario (a) and (b) show two pedestrians walking in parallel with con-
vergence; (c) presents two groups of pedestrians walking in opposing directions; (d)
illustrates random walking behaviors.

pedestrians moving in parallel, where our approach achieves better alignment with

ground-truth and avoids collisions compared to other methods. Scenario (c) presents

two pedestrians meeting, where GP-Graph and EigenTrajectory fail to capture non-linear

collision avoidance patterns. While Graph-TERN provides plausible predictions, our

method better aligns with ground-truth by effectively modeling cross-time interactions.

Scenario (d) presents a complex scenario in which several groups of pedestrians walk

in opposing directions. In this case, GP-Graph and EigenTrajectory significantly suffer

pedestrian collision issues. Our UniEdge demonstrates superior capability in capturing

nonlinear movements, showcasing enhanced predictive accuracy in dynamically complex

pedestrian interactions compared to previous methods. Finally, scenario (e) features

complex non-linear trajectories with abrupt changes, where our method better captures

overall movement trends despite shared challenges with certain trajectories.
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Distribution Visualization Comparisons

In this section, we further compare the predicted distributions of UniEdge with GP-

Graph [25], Graph-TERN [39] and EigenTrajectory [30] on the ETH and UCY datasets.

As shown in Figure 4.5, our method generates more accurate and plausible distributions.

In scenario (a), while other methods’ distributions cover the ground-truth, they fail

to capture the pedestrian convergence trend that our method successfully predicts. In

scenarios (b) and (c), GP-Graph and Graph-TERN generate either too narrow or broad

distributions, failing to capture non-linear trajectories. EigenTrajectory covers ground-

truth but produces overly broad, overlapping distributions that lead to collision issues. Our

method achieves comprehensive coverage with fewer collision predictions. In scenario

(d) with random walking patterns, our approach better captures both non-linear and

linear trajectories.

4.3.5 Ablation Study and Model Analysis

Model Component Analysis

To verify the influence of each module incorporated in our UniEdge, we conduct ablation

studies on the ETH and UCY datasets, which contain five different social scenarios. The

results of these studies are detailed in Table 4.3. In our experiments, variant (1) corre-

sponds to the model excluding node-level embedding (NN), i.e., the model eliminates

node-level GAT for capturing N2N interactions. Variant (2) represents the model without

edge-level embedding (EE), meaning that edge information is not integrated into the

model’s architecture, neglecting implicit edge feature propagation. Lastly, variant (3)

describes the modeling process without learning edge graphs through Hodge-Laplacian

Laguerre Convolution (HC). Specifically, node-level embedding provides an overall pic-

ture of pedestrians’ interaction intentions to capture initial N2N interactions, the overall

performance dropped 11.1% in ADE and 24.0% in FDE without N2N interactions. Variant

(2) shows that without the modeling of implicit E2E influence propagation, the perfor-

mance dropped 16.7% in ADE and 20.0% in FDE. Variant (3) demonstrate the effectiveness

of the proposed edge-level reasoning, without Hodge-Laplacian Laguerre Convolutions,

the overall performance dropped 16.7% in ADE and 16.0% in FDE, respectively. Notably,
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Table 4.3: Ablation Analysis of UniEdge on The ETH and UCY Datasets. NN = Node-level
Embedding, EE = Edge-level Embedding, HC = Hodge-Laplacian Laguerre Convolution

Variant NN EE HC ADE(↓) / FDE(↓)

ETH HOTEL UNIV ZARA1 ZARA2 AVG

(1) × ✓ ✓ 0.40/0.63 0.13/0.20 0.22/0.32 0.15/0.23 0.12/0.19 0.20/0.31

(2) ✓ × ✓ 0.39/0.54 0.14/0.18 0.23/0.35 0.16/0.24 0.13/0.19 0.21/0.30

(3) ✓ ✓ × 0.39/0.47 0.12/0.18 0.24/0.38 0.17/0.22 0.14/0.18 0.21/0.29

Ours ✓ ✓ ✓ 0.36/0.46 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

Table 4.4: Feature Embedding Analysis on The ETH and UCY Datasets

Method ADE(↓) / FDE(↓)

ETH HOTEL UNIV ZARA1 ZARA2 AVG

w/ GCN [131] 0.39/0.57 0.15/0.19 0.22/0.34 0.17/0.25 0.13/0.18 0.21/0.31

w/ GraphSage [161] 0.38/0.52 0.12/0.19 0.21/0.30 0.14/0.22 0.12/0.17 0.19/0.28

Ours 0.36/0.44 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

the UNIV subset, which contains the most pedestrians and the most complex interac-

tions [160], shows a decrease of 26.3% in ADE and 35.7% in FDE without edge graph

learning, underscoring the importance of Hodge-Laplacian Laguerre convolution in man-

aging the propagation of complex interactions. These findings underscore the importance

of each module to the comprehensive functionality of our UniEdge model in trajectory

prediction.

To investigate the effectiveness of different node embedding approaches in our frame-

work, we evaluate several graph neural networks as alternatives to our GAT-based N2N

module, as shown in Table 4.4. The baseline GCN [131] exhibits limited performance due

to its uniform neighborhood aggregation strategy. GraphSage [161] achieves improved

results through its sampling-based aggregation strategy. Compared to GCN and Graph-

Sage, GAT-based approach demonstrates superior performance through its attention

mechanism, which enables dynamic weighting of pedestrian interactions while providing

better interpretability through attention weights.
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Table 4.5: Edge Feature Analysis on The ETH and UCY Datasets

Edge Feature ADE(↓) / FDE(↓)

ETH HOTEL UNIV ZARA1 ZARA2 AVG

Reciprocal distance 0.40/0.55 0.14/0.21 0.21/0.31 0.16/0.23 0.13/0.20 0.21/0.30

Gaussian Kernel 0.38/0.52 0.13/0.19 0.20/0.30 0.16/0.23 0.13/0.19 0.20/0.29

Ours 0.36/0.46 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

Table 4.6: Trajectory Predictor Analysis on The ETH and UCY Datasets. PE = Positional
Encoding, Attn. Head = Attention Head, LN = Layer Normalization

Trajectory Predictor ADE(↓) / FDE(↓)

ETH HOTEL UNIV ZARA1 ZARA2 AVG

w/o PE 0.45/0.51 0.13/0.19 0.29/0.42 0.20/0.28 0.16/0.22 0.25/0.32

w/o Attn. Head 0.37/0.47 0.12/0.19 0.23/0.35 0.17/0.24 0.13/0.19 0.20/0.29

w/o LN 0.38/0.47 0.13/0.18 0.21/0.31 0.15/0.23 0.13/0.18 0.20/0.27

Ours 0.36/0.44 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

Edge Feature Analysis

To assess the impact of edge features in our UniEdge model, we conduct experiments

focusing on their incorporation into edge graphs. As detailed in Table 4.5, we examine

three edge feature types: a Gaussian kernel Ei,j = exp
(
− di,j

2σ2

)
, which captures spatial

relationships through the distance di,j between nodes i and j, and the standard deviation

σ; a reciprocal distance kernel Ei,j = 1
di,j+ϵ

, highlighting inverse distance to represent

pedestrian interactions; and a Euclidean distance kernel Ei,j = di,j , quantifying node

relationships based on direct distance. Results in Table 4.5 show that the Euclidean

distance (ours) kernel outperforms other features on the ETH and UCY datasets. We

think this is because the Euclidean distance kernel directly and accurately measures

distances between pedestrians, providing a more intuitive representation of pedestrian

interactions.

Trajectory Predictor Analysis

To evaluate the effectiveness of the core modules in our Transformer encoder-based

predictor and the corresponding padding approaches, we conduct extensive experiments
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Table 4.7: Trajectory Predictor Comparison Analysis on The ETH and UCY Datasets

Trajectory Predictor ADE(↓) / FDE(↓)

ETH HOTEL UNIV ZARA1 ZARA2 AVG

RNN-based [83] 0.84/1.18 0.18/0.30 0.40/0.66 0.62/1.13 0.24/0.41 0.46/0.74

TCN-based [116] 0.34/0.48 0.13/0.19 0.25/0.35 0.17/0.26 0.14/0.19 0.21/0.29

Ours 0.36/0.44 0.11/0.17 0.19/0.28 0.14/0.20 0.11/0.16 0.18/0.25

on the predictor design. The results are presented in Table 4.6. We analyze three predictor

variants: one without positional encoding (w/o PE), one without attention heads (w/o

Attn. Head), and one without layer normalization (w/o LN). The experimental results

demonstrate that the absence of any of these modules leads to degraded performance.

Notably, the elimination of positional encoding has the most significant impact, resulting

in performance degradation of 38.9% in ADE and 28.0% in FDE compared to the complete

model. This substantial performance drop demonstrates the crucial role of positional

encoding in preserving temporal ordering information of trajectory sequences, which

is essential for understanding the temporal evolution of pedestrian motion patterns.

Furthermore, the removal of attention heads leads to particularly inferior performance

on the UNIV and ZARA1 subsets, which contain group activities with rich interactions,

highlighting the importance of attention mechanisms in capturing temporal dependencies.

To evaluate the performance on different predictor architectures, we conduct experi-

ments on the ETH and UCY datasets, as shown in Table 4.7. The RNN-based [83] predictor

shows limited performance due to its constrained receptive field and auto-regressive na-

ture. The TCN-based predictor [116] achieves strong performance on the ETH dataset due

to its relatively large receptive field. However, its performance is limited on other datasets

where temporal dependencies are more complex. Our Transformer Encoder-based pre-

dictor achieves superior performance by effectively capturing long-term dependencies

through its non-local attention mechanism [67, 153].

Unified Spatial-temporal Graph Analysis

In this section, we analyze the effectiveness and impact of our proposed unified spatial-

temporal graph data structure while keeping other components fixed. The construction
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Figure 4.9: Impact analysis of unified spatial-temporal graph through patch size and
stride size parameters on the ETH and UCY datasets.

of this data structure is controlled by two key parameters: patch size L and stride size S .

We conduct experiments on the ETH and UCY datasets to thoroughly analyze how these

parameters affect the model’s ability to capture spatial-temporal inter-dependencies.

As shown in Figure 4.9 (left), we evaluate how patch size affects unified spatial-

temporal graph construction. A patch size of 1 reduces our model to traditional two-stage

spatial-temporal approaches [27,29,30,38], where cross-time interactions are not explicitly

modeled. The model achieves optimal performance with a patch size of 3, effectively

capturing local spatial-temporal dependencies. Larger patch sizes, despite capturing more

context information, may introduce redundant connections that degrade performance.

Second, we analyze the impact of stride size as shown in Figure 4.9 (right). The

stride size determines the number of unified spatial-temporal graphs and the overlap

between adjacent patches. A larger stride size reduces the overlap between patches

during graph construction, which in turn decreases the total number of unified spatial-

temporal graphs. A stride size of 1 yields the best performance in both ADE and FDE

metrics, as it enables the capture of more fine-grained cross-time interactions through

increased number of unified spatial-temporal graphs. The increased number of unified

spatial-temporal graphs enables the transformer encoder-based predictor to leverage

more spatial-temporal contexts for enhanced performance.
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EigenTrajectory [30]

Ours
Figure 4.10: Edge weight visualization of traditional two-stage spatial-temporal approach
EigenTrajectory and our UniEdge. Historical trajectories are in blue and ground-truth
trajectories are in red.

Edge Weight Visualization

To provide qualitative insights into the differences between our UniEdge model and

conventional spatial-temporal architecture, we visualize the edge weights of our unified

spatial-temporal graph and EigenTrajectory [30]. Figure 4.10 illustrates a representative

scenario where two groups of pedestrians approach each other across consecutive frames.

While EigenTrajectory constructs independent spatial graphs for each frame, limiting its

ability to capture high-order temporal dependencies, our unified spatial-temporal graph

architecture explicitly models cross-temporal interactions across all three frames. The vi-

sualization demonstrates how our model captures extended temporal dynamics, revealing

interaction patterns that conventional spatial-temporal frameworks may overlook.

Predictor Attention Weight Visualization

This section visualizes the attention weights of the Transformer encoder–based predictor

to provide insight into how temporal information and relational cues are utilized during

trajectory forecasting. In particular, we analyze how the model distributes attention

between historical trajectory tokens and the learnable placeholder padding introduced to

support unified spatial–temporal reasoning.
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Figure 4.11: Predictor attention weight visualization. Four attention heads are configured
in our experiments to analyze their impacts.

As shown in Figure 4.11, different attention heads exhibit clear and complementary

specialization patterns. Heads 1 and 2 primarily attend to temporally adjacent historical

states, indicating that they focus on modeling local temporal continuity and motion

dynamics within observed trajectories. In contrast, Heads 3 and 4 assign higher attention

weights to interactions between the learnable padding tokens and selected historical

contexts, suggesting that these heads are responsible for aggregating global or cross-time

relational information into the padding representations.

This behavior is consistent with the design motivation of UniEdge. Instead of uni-

formly mixing temporal and relational information, the model learns specialized attention

pathways, where some heads focus on preserving temporal motion consistency while

others use learnable padding tokens as relational anchors to aggregate salient interac-

tion patterns across time. These attention distributions provide interpretable evidence

that UniEdge effectively decouples and coordinates temporal encoding and relational

reasoning within a unified Transformer framework.

Complexity and Efficiency Analysis

To evaluate the efficiency and computational complexity of UniEdge, Table 4.8 presents

a comprehensive analysis of model complexity and computational efficiency among

mainstream frameworks. We categorize the methods based on their temporal model-

ing paradigm into non-transformer and transformer-based temporal modeling methods.

Compared to non-transformer temporal modeling methods such as EigenTrajectory [30],

although UniEdge contains more parameters, it maintains competitive inference time
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while achieving significant improvements in prediction accuracy (18.2% in ADE and 30.6%

in FDE). For common real-world trajectory prediction scenarios such as traffic collision

avoidance and anomaly detection, we believe this trade-off is justified as prediction accu-

racy takes precedence over computational complexity, especially since higher accuracy

in these applications can significantly reduce the risk of severe outcomes. Compared

to transformer-based temporal modeling methods like TUTR [69] and MRGTraj [158],

UniEdge demonstrates superior efficiency with significantly lower parameters and FLOPs.

Although TUTR achieves the fastest inference time, UniEdge maintains comparable

computational speed while delivering substantially better prediction accuracy. Results

demonstrate the effectiveness of our architecture in balancing computational efficiency

and accuracy.

Table 4.8: Complexity and Inference Time Analysis. All Models Are Evaluated on NVIDIA
RTX3080 GPU

Methods Param FLOPs Infer. Time ADE(↓)/FDE(↓)
×106 (M) (ms)

Non-Transformer Temporal Modeling
Social-VAE [22] 2.15 292.95 40.27 0.21/0.33
Graph-TERN [39] 0.05 22.59 40.15 0.24/0.38
EqMotion [26] 3.02 7.75 35.92 0.21/0.35
EigenTrajectory [30] 0.02 1.36 22.26 0.22/0.36

Transformer-based Temporal Modeling
TUTR [69] 0.44 64.54 20.21 0.21/0.36
MRGTraj [158] 4.35 580.38 26.51 0.26/0.46
UniEdge (Ours) 0.34 26.49 27.02 0.18/0.25

4.3.6 Discussion

In this section, we discuss potential reasons for the relatively lower performance of graph-

based trajectory prediction approaches [30, 31, 39, 66] on the ETH subset, as compared to

other scenarios. As indicated in Table 4.9, the test set for the ETH subset averages only

2.59 pedestrians per sample, significantly less than other subsets, particularly the UNIV

subset, which averages 25.70 pedestrians per sample. This stark variation in pedestrian

density impacts the efficacy of graph-based methods, which rely on graph structures

to model social interactions [27, 154]. The relatively sparse graph connectivity in the
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Table 4.9: Dataset Statistics on The ETH and UCY Datasets
Dataset ETH HOTEL UNIV ZARA1 ZARA2

Total Test Samples 70 301 947 602 921
Avg. Pedestrians 2.59 3.50 25.70 3.74 6.33

Figure 4.12: Sample scenario in ETH dataset. Historical trajectories are in blue, ground-
truth trajectories are in red.

ETH scenario may impair message passing, potentially limiting the model’s ability to

effectively propagate and refine contextual information across nodes, which could hinder

accurate representation of complex social interactions of graph-based approaches. In

contrast, UniEdge demonstrates enhanced performance in scenarios with dense social

interactions (HOTEL, UNIV, ZARA1, and ZARA2) by effectively capturing the more

intricate social dynamics.

To further illustrate these challenges, we visualize a representative case from the ETH

dataset in Figure 4.12. The example shows how UniEdge constructs a unified spatial-

temporal graph between Ped.1 and Ped.2, even though their trajectories are relatively

stable with minimal interaction, potentially introducing unnecessary modeling bias.

Additionally, while the scene contains multiple pedestrians, only a few trajectories are an-

notated, hindering the model’s ability to capture comprehensive interaction patterns. To

address these challenges, one promising direction is to develop dynamic graph optimiza-

tion strategies [162] that adapt connectivity based on scene characteristics. Such adaptive

approaches would reduce redundant connections in sparse scenarios while preserving

rich interaction modeling in dense scenarios, improving the prediction performance.

Additionally, we identify several promising directions to enhance our model’s per-

formance and adaptability. First, we aim to refine the model with an adaptive patch
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segmentation technique that dynamically adjusts patch sizes based on scene complex-

ity metrics such as pedestrian density and interaction frequency [163], addressing the

limitations of our current fixed patch size strategy and potentially improving predic-

tion accuracy in varying crowd scenarios. Second, we plan to incorporate multimodal

data sources, particularly environmental contextual images [138, 164], to enhance our

model’s awareness of physical constraints and scene semantics, enabling more precise

predictions in complex urban environments while reducing prediction errors caused by

environmental factors. Finally, we will explore hardware optimization strategies for

the transformer architecture [165, 166] to improve deployment efficiency in real-time

applications, reducing computation latency while maintaining prediction accuracy.

4.4 Summary

This chapter presented UniEdge, a unified spatial–temporal graph framework designed

to address key limitations in homogeneous pedestrian trajectory prediction. To capture

complex, high-order cross-time interactions among agents, we introduced a patch-based

unified spatial–temporal graph structure that transforms high-order dependencies into

simplified first-order relationships. This design improves message propagation efficiency

and alleviates under-reaching by reducing reliance on multi-step aggregation. To jointly

capture individual motion patterns and collective influence dynamics, we proposed a dual-

graph convolutional architecture—Edge-to-Edge and Node-to-Node Graph Convolution

(E2E–N2N–GCN)—that reasons over both node-level social interactions and edge-level

propagation patterns, enriching the representation of implicit behavioral influences.

A Transformer-based trajectory predictor was further incorporated to model global

temporal dependencies, enhancing the ability to forecast long-range behaviors.

Together, these components form a unified and flexible framework for modeling homo-

geneous pedestrian environments with improved accuracy and social awareness. Building

on the insights gained here, the next chapter expands the scope to both homogeneous and

heterogeneous settings. In particular, we introduce BP-SGCN, a behavioral pseudo-label

informed sparse graph convolutional network that discovers latent motion patterns in an

unsupervised manner. By leveraging these learned behavioral representations, BP-SGCN
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enhances spatial–temporal interaction modeling and improves generalization across

diverse traffic scenarios without requiring manual annotations.
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CHAPTER 5

Unsupervised Behavior Structure Learning for Generalizable

Trajectory Prediction

Portions of this chapter have previously been published in the following peer-reviewed

publication [19]:

• Li, R., Katsigiannis, S., Kim, T.-K., & Shum, H. P. H., “BP-SGCN: Behavioral Pseudo-

Label Informed Sparse Graph Convolution Network for Pedestrian and Heteroge-

neous Trajectory Prediction.” IEEE Transactions on Neural Networks and Learning

Systems (TNNLS), 2025.

Trajectory prediction allows better decision-making in applications of autonomous

vehicles or surveillance by predicting the short-term future movement of traffic agents. It

is classified into pedestrian or heterogeneous trajectory prediction. The former exploits

the relatively consistent behavior of pedestrians, but is limited in real-world scenarios

with heterogeneous traffic agents such as cyclists and vehicles. The latter typically relies

on extra class label information to distinguish the heterogeneous agents, but such labels

are costly to annotate and cannot be generalized to represent different behaviors within
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the same class of agents. In this chapter, we introduce the behavioral pseudo-labels

that effectively capture the behavior distributions of pedestrians and heterogeneous

agents solely based on their motion features, significantly improving the accuracy of

trajectory prediction. To implement the framework, we propose the Behavioral Pseudo-

Label Informed Sparse Graph Convolution Network (BP-SGCN) that learns pseudo-labels

and informs to a trajectory predictor. For optimization, we propose a cascaded training

scheme, in which we first learn the pseudo-labels in an unsupervised manner, and then

perform end-to-end fine-tuning on the labels in the direction of increasing the trajectory

prediction accuracy. Experiments show that our pseudo-labels effectively model different

behavior clusters and improve trajectory prediction. Our proposed BP-SGCN outperforms

existing methods using both pedestrian (ETH/UCY, homogeneous pedestrian SDD) and

heterogeneous agent datasets (SDD, Argoverse 1).

5.1 Introduction

Predicting the future movement of traffic agents, known as trajectory prediction, is crucial

for safe and efficient decision-making in applications such as autonomous vehicles [10].

Thanks to reliable data-driven [167] object tracking methods [168], accurate geometric

trajectories can be extracted from videos, serving as a more representative feature set

for modeling. Graph Convolutional Networks (GCNs) [131] have shown exceptional

performance across diverse fields due to their adeptness at capturing spatial relationships

[169–173]. This enables them to excel in applications ranging from trajectory agent

interaction modeling [27, 29, 38, 154] to human skeleton-based behavior modeling [174–

178], highlighting the superior capabilities in handling graph-based data structures.

Similarly, recognizing distinct movement behavior patterns among agents is pivotal

to model the temporal dependency [123]. These patterns, when integrated with GCN,

further enhance the precision of predictions by accounting for the inherent behavioral

tendencies.

Existing trajectory prediction methods can be broadly classified into two categories.

The first focuses on predicting pedestrian trajectories in datasets that are exclusively com-

posed of pedestrians [1, 73] or deliberately omit non-pedestrian traffic agents [4, 5, 179].
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Behavioral
Pseudo-labels

PredictionTrajectory

Graph

Figure 5.1: We propose the behavioral pseudo-labels learned from observed trajectories,
effectively representing inter- and intra-type behavioral differences to improve pedestrian
and heterogeneous trajectory prediction accuracy.

These methods primarily employ neural networks to account for pedestrian social interac-

tions, such as the poolingwindowmechanism [28] and social interaction graphs [27,29,38].

The second category encompasses heterogeneous trajectory prediction, considering a di-

verse range of traffic agents (e.g. cars, cyclists, pedestrians, etc.). Recent methods [6,7,34]

exploit the annotated class labels of traffic agents to better model agent interactions in in-

tricate urban scenarios. These labels facilitate the system’s understanding on multifaceted

interactions among various agent types [7].

A notable research gap can be observed between homogeneous and heterogeneous

trajectory prediction. Methods tailored solely for pedestrian behavior excel due to

its predictable patterns but lack applicability in real-world scenarios like autonomous

driving, since pedestrians behave very differently from heterogeneous agents [6, 7]. The

fundamental differences in modeling the motion patterns of different types of agents

stem from their distinct dynamics, speed ranges, spatial needs, interaction behaviors,

decision-making processes, and ways of perceiving the environment, necessitating varied

modeling approaches to accurately predict their trajectories. For heterogeneous trajectory

prediction, ground-truth (GT) labels for agent types have traditionally been used to guide

discriminative learning [6, 7, 34, 42]. However, these labels often fail to capture diverse

within-class behaviors: for example, ‘vans’ and ‘compact cars’ are both labeled simply as

‘cars,’ while ‘pedestrians’ can range from ordinary walkers to skateboarders [74]. This

granularity issue can lead to mislabeling, especially when visually similar categories

are grouped together. Moreover, obtaining such detailed GT labels is time-consuming

and expensive. We argue that purely relying on manual labels is both insufficient and

cost-ineffective for representing the nuanced motion patterns seen in real-world traffic
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scenarios.

In this paper, we present a unified framework utilizing machine-learned behavioral

pseudo-labels applicable to both heterogeneous and exclusively pedestrian domains.

Our insight is that behavioral pseudo-labels can capture both inter-class and intra-class

behavioral variations among agents, thereby improving the accuracy of our model. For

heterogeneous scenarios, the use of behavioral pseudo-labels eliminates the need for

manual label annotations, streamlining the process and reducing the reliance on extensive

labeled datasets. In homogeneous pedestrian scenarios, these pseudo-labels facilitate the

differentiation and learning of intrinsic motion patterns among pedestrians, offering a

more nuanced understanding of pedestrian behavior. A shared advantage across both

contexts is the significant improvement in overall prediction performance, demonstrating

the versatility and efficacy of behavioral pseudo-labels in diverse trajectory prediction

tasks (Figure 5.1).

We propose the Behavioral Pseudo-Label informed Sparse Graph Convolution Net-

work (BP-SGCN) for pedestrian and heterogeneous trajectory prediction. The network

includes two modules. First, we introduce a deep unsupervised behavior clustering

module that assigns pseudo-labels to agents based on their observed trajectories. This

module marks a novel application of deep embedded clustering [125], utilizing high-level

temporal latent features. It is supported by a Variational Recurrent Neural Network

(VRNN) [180] that processes a set of customized geometric features, crucial for capturing

motion dynamics such as speed, angle, and acceleration. Additionally, a soft dynamic

time warping loss addresses temporal variances in trajectories, uniquely tailoring our

approach for trajectory modeling. The generated behavioral pseudo-labels are specif-

ically designed to enhance trajectory forecasting, highlighting our model’s focus on

the nuanced demands of trajectory prediction in complex environments. Second, we

propose a goal-guided pseudo-label informed trajectory prediction module, which adapts

SGCN [27], a powerful GCN backbone for trajectory prediction that utilizes a sparse

spatial-temporal attention mechanism to effectively model spatial interactions and tem-

poral dependencies of agents. We then employ a Gumbel-Softmax straight-through

estimator to link up the clustering module, allowing the prediction module and clustering

module to be fine-tuned in an end-to-end manner. Finally, we design a cascaded training
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scheme [181] that first trains pseudo-label clustering in an unsupervised manner, and

then fine-tunes both clustering and trajectory prediction together with the prediction

loss to maximize their compatibility.

BP-SGCN surpasses SOTAs in both heterogeneous prediction on the SDD [74] and

Argoverse 1 [92] datasets, and in pedestrian prediction on the ETH/UCY [1, 73] dataset

and the homogeneous pedestrian setup of SDD [182]. Our source code is available

at https://github.com/Carrotsniper/BP-SGCN to facilitate further research. Our

contributions are:

• We propose the novel concept of behavioral pseudo-labels to represent clusters of

traffic agents with different movement behaviors, improving trajectory prediction

without the need for any extra annotation.

• To implement the idea, we propose BP-SGCN, which introduces a cascaded training

scheme to optimize the compatibility of its two core modules: the pseudo-label

clustering module and the trajectory prediction module.

• We propose a deep unsupervised behavior clustering module to obtain behavioral

pseudo-labels, tailoring the geometric feature representation and the loss to best

learn the agents’ behaviors.

• We propose a pseudo-label informed goal-guided trajectory prediction module,

which facilitates end-to-end fine-tuning with its prediction loss for better clustering

and prediction, outperforming existing pedestrian and heterogeneous prediction

methods.

5.2 Behavior Pseudo-Label Informed SparseGraphCon-

volution Network

5.2.1 The High-Level Network Architecture

We observe a research gap in pedestrian and heterogeneous trajectory prediction. Existing

pedestrian prediction approaches have limited applicability to heterogeneous traffic

agents due to the diverse behaviors of agents. For instance, in Figure 5.2, (a) and (c) depict
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intricate heterogeneous scenarios with bikers and cars exhibiting longer, non-linear

paths, while homogeneous pedestrian scenarios (b) and (d) overlook interactions among

pedestrians, bikers and cars.

(a) (c)(b) (d)

Figure 5.2: Trajectory visualization on heterogeneous SSD dataset, where red, green
and blue dots represent pedestrians, bikers and cars, respectively. (a) and (c) represent
heterogeneous scenarios with all agent types, (b) and (d) represent the homogeneous
pedestrian scenarios commonly used by pedestrian trajectory predictions [4,5] by simply
removing all non-pedestrian agents.

Although introducing annotated class labels for heterogeneous agents leads to better

prediction performance [6, 7, 34], such labels are only a proxy of movement behaviors,

which cannot represent intra-class behavioral differences and inter-class behavioral

similarity.

To this end, we present the concept of behavioral pseudo-labels, which capture move-

ment behaviors to enhance trajectory prediction. Our pseudo-labels do not require

annotations, mitigating the risk of mislabeling and reducing labor costs. It can be ap-

plied to both homogeneous pedestrian and heterogeneous datasets, resulting in superior

prediction performance.

To realize pseudo-label informed trajectory prediction, we propose the Behavioral

Pseudo-Label Informed Sparse Graph Convolution Network (BP-SGCN). As shown in Fig-

ure 5.3, BP-SGCN includes two modules: deep unsupervised clustering and pseudo-label

informed trajectory prediction. The former learns the pseudo-labels in an unsupervised

manner, while the latter performs end-to-end optimization to improve pseudo-label

clustering while predicting trajectories with such labels.

We propose a cascaded training scheme to obtain the pseudo-labels and thus high-

quality trajectory prediction. First, highlighted with the orange dotted block in Figure 5.3,

the unsupervised behavior representation learning module derives behavior latent repre-

sentations from observed trajectories through a Variational Recurrent Neural Network

77



5.2. Behavior Pseudo-Label Informed Sparse Graph Convolution Network

𝒗 𝒕
"
𝟐

𝟏 𝒗 𝒕
"
𝟐

𝟐

…

𝒗 𝒕
"
𝟐

𝑵𝒗 𝒕
"
𝟐

𝟑
𝒗 𝒕
"
𝟏

𝟏 𝒗 𝒕
"
𝟏

𝟐

…

𝒗 𝒕
"
𝟏

𝑵𝒗 𝒕
"
𝟏

𝟑

D
ee

p 
U

ns
up

er
vi

se
d 

B
eh

av
io

r 
C

lu
st

er
in

g

(𝜽
𝒕𝒊 	,
𝒂 𝒕𝒊
)

V
R

N
N

 E
nc

od
er

B
eh

av
io

r L
at

en
t 

Fe
at

ur
es

V
R

N
N

 D
ec

od
er

(𝜭)
𝒕𝒊 ,
𝒂* 𝒕𝒊
)

𝓛 𝑽
𝑹
𝑵
𝑵

𝓛 𝒄
𝒍𝒖
𝒔𝒕
𝒆𝒓

G
um

be
l-S

of
tm

ax
St

ra
ig

ht
-T

hr
ou

gh
 

Es
tim

at
or

O
ne

-h
ot

 
ps

eu
do

-la
be

ls
1 

0 
0

0 
1 

0
0 

0 
1

𝒗 𝒕𝟏 𝒗 𝒕𝟐 𝒗 𝒕𝟑

Fo
r 

ea
ch

 
sc

en
e

𝓛 𝒑
𝒓𝒆
𝒅𝒊
𝒄𝒕
𝒊𝒐
𝒏

C
on

ca
te

na
te

So
ft 

as
si

gn
m

en
t

Ps
eu

do
-la

be
l i

nf
or

m
ed

 T
ra

je
ct

or
y 

Pr
ed

ic
tio

n 

1.
 U

ns
up

er
vi

se
d 

B
eh

av
io

r L
ea

rn
in

g
2.

 U
ns

up
er

vi
se

d 
D

ee
p 

C
lu

st
er

in
g

3.
 E

nd
-to

-e
nd

 S
up

er
vi

se
d 

Fi
ne

-tu
ni

ng

…

…

C
lu

st
er

in
g 

In
iti

al
iz

at
io

n

St
ud

en
t’s

 
t-d

is
tri

bu
tio

n

𝒗 𝒕𝟏 𝒗 𝒕𝟐

…

𝒗 𝒕𝑵𝒗 𝒕𝟑

…
Sp

at
ia

l-t
em

po
ra

l 
G

ra
ph

G
oa

l-g
ui

de
d 

SG
C

N

Sp
ar

se
 G

ra
ph

 
Le

ar
ni

ng

G
C

N
G

C
N

TC
N

Fi
gu

re
5.
3:
Th

e
ov
er
vi
ew

of
BP

-S
G
CN

to
le
ar
n
th
e
ps
eu
do

-la
be
ls
fo
rt
ra
je
ct
or
y
pr
ed
ic
tio

n,
co
ns
ist
in
g
of

th
e
de
ep

un
su
pe
rv
ise

d
cl
us
te
rin

g
m
od

ul
ea

nd
th
ep

se
ud

o-
la
be
li
nf
or
m
ed

tra
je
ct
or
y
pr
ed
ict

io
n
m
od

ul
e.
W
ep

ro
po

se
a
ca
sc
ad
ed

op
tim

iza
tio

n
sc
he
m
et

o
fir
st
le
ar
n
ps
eu
do

-la
be
ls

in
an

un
su
pe
rv
ise

d
m
an
ne
r,
an
d
th
en

fin
e-
tu
ne

th
em

in
an

en
d-
to
-e
nd

m
an
ne
rw

ith
tra

je
ct
or
y
pr
ed
ic
tio

n
su
pe
rv
isi
on

.

78



Chapter 5. Unsupervised Behavior Structure Learning for Generalizable Trajectory
Prediction

(VRNN) [180] module. Then, in the green dotted block, the behavior latent representa-

tions are fed into simple clustering modules (e.g., K-means, GMM, etc.) for cluster center

initialization. We then perform unsupervised deep clustering to learn the distribution of

pseudo-labels by feeding the VRNN latent representations to the Student’s t-distribution

kernel [183]. This allows fine-tuning the VRNN encoder to create a better latent space

and refine the cluster centers. Finally, indicated by the blue dotted block, we utilize a

Gumbel-Softmax straight-through estimator to sample one-hot pseudo-labels, which are

concatenated to the trajectory features as the input of goal-guided SGCN [27] for trajec-

tory prediction. The whole network is optimized end-to-end, fine-tuning the pseudo-label

clustering module to maximize its compatibility for trajectory prediction.

5.2.2 Deep Unsupervised Behavior Clustering

Here, we explain how we obtain behavior clusters, which serve as powerful features for

effective trajectory prediction.

Geometric Representation of Trajectories

Given a series of observed video frames of N agents over time t ∈ [1, Tobs], and the

corresponding 2-D trajectory coordinates (xi
t, yi

t), i ∈ [1, N ], our objective is to predict

the future trajectory coordinates pi
t = (xi

t, yi
t) of each traffic agent i within a time horizon

t ∈ [Tobs+1, Tpred].

We introduce relative angle and acceleration magnitude to learn behavior latents.

While global velocity is an effective feature for trajectory prediction [7, 27], it is less

representative of behaviors, as it depends on global movement directions, and is less

sensitive to velocity changes. Relative angles provide a representation that is invariant to

the initial facing direction, which is complemented with the magnitude of acceleration

that has been shown to be effective for modeling behaviors [26].

For each traffic agent i, we calculate its velocity vector at time t. For simplicity, we

remove the notation i in the following equation:

vt =
(

xt − xt−1

t − (t − 1) ,
yt − yt−1

t − (t − 1)

)
, (5.1)
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where ∀t ∈ [1, Tobs], we compute the cosine of the angle, cos (θt) between velocity vectors,

vt and vt−1:

cos(θt) = vt · vt−1

|vt| · |vt−1|
, (5.2)

and the magnitude of corresponding acceleration at time t:

|at| =
∣∣∣∣∣ vt − vt−1

t − (t − 1)

∣∣∣∣∣ (5.3)

The geometric feature is constructed as gt = (cos(θt), |at|). These motion primitives offer

informative inductive cues that are difficult to reliably disentangle from noise through

latent learning alone, while still leaving higher-order temporal representations.

Behavior Representation Learning

We adapt VRNN to learn latent representations for behavior clustering [125, 184]. VRNN

learns the temporal dependencies of a sequence by modeling the distribution over its

hidden states with an encoder-decoder architecture. Compared to LSTM-based autoen-

coders [184], it effectively models the highly nonlinear dynamics and captures the un-

certainties of latent space. Its probabilistic nature of variational inference improves the

learning of implicit sequential data distributions.

In particular, the encoder network φenc(·, ·) receives the embedded geometric data

φg(gt) and recurrent hidden state ht−1 to approximate the posterior distribution qϕ(·):

qϕ(zt|g≤t, z<t) = N (zt|(µz,t, σ2
z,t)),

[µz,t, σz,t] = φenc(φg(gt), ht−1),
(5.4)

where zt is sampled using a reparameterization trick [185]. The decoder network φdec(·, ·)

takes the embedded latent φz(zt) and ht−1 to approximate the reconstruction distribution

pδ(·):

pδ(gt|z≤t, g<t) = N (gt|(µg,t, σ2
g,t)),

[µg,t, σg,t] = φdec(φz(zt), ht−1).
(5.5)

To enhance the temporal dependencies in sequences, the prior distribution in VRNN
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relies on ht−1 with φprior(·):

pδ(zt|z<t, g<t) = N (zt|(µ0,t, σ2
0,t)),

[µ0,t, σ0,t] = φprior(ht−1).
(5.6)

We employ the Gated Recurrent Unit (GRU) [110] to update the RNN hidden state,

which outperforms LSTM [83] when the sequence length is relatively short:

ht = GRU(φg(gt), φz(zt), ht−1). (5.7)

The VRNN is optimized with a customized loss:

LVRNN = LSoft-DTW + LELBO, (5.8)

where LSoft-DTW is a differentiable soft Dynamic Time Warping (DTW) loss [186]:

LSoft-DTW = min
µg,t

N∑
i=1

1
Tobs

DTWγ(µg,t, gt), (5.9)

DTWγ refers to the original DTW [187] discrepancy that measures and aligns the sim-

ilarity between two time series, γ is a parameter indicating the acceptable distortion

for aligning two sequences, µg,t is the decoded mean of the VRNN decoder. The loss

allows capturing non-linear temporal alignment [188], which cannot be achieved with

MSE. LELBO is the variational evidence lower-bound with the Kullback–Leibler (KL)

divergence [180, 185]:

LELBO = Eqϕ(z≤Tobs
|g≤Tobs

)

Tobs∑
t=1

(log pδ(gt|z≤t, g<t)

−KL(qϕ(zt|g≤t, z<t) || pδ(zt|z<t, g<t))
.

(5.10)

By optimizing LVRNN, the model aligns predicted and observed sequences while maintain-

ing a theoretically grounded variational framework. This alignment enhances flexibility

in handling non-linear temporal dynamics, and the KL regularization constrains the

latent structure, thus ensuring stable training. Consequently, the VRNN encoder provides
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richer latent representations for subsequent unsupervised deep clustering, effectively

leveraging spatial-temporal structures to capture nuanced agent behaviors.

Deep Embedded Clustering

We present a new application of Deep Embedded Clustering (DEC) [125] to cluster the

agent behaviors latents from the VRNN encoder, thereby generating a distribution of

pseudo-labels. DEC allows jointly optimizing the cluster centers and the VRNN encoder,

enhancing the latent representation via back-propagation. This significantly outperforms

traditional methods like k-means [189] and Gaussian mixture models [190], which lack

the capability to refine input feature representations.

The initial phase of DEC involves setting cluster centers using VRNN behavior latents.

We input all training data into the VRNN encoder to obtain the set of behavior latent

features Z, and then apply k-means to determine initial centers, cj ∈ [1, k]. Given the

variance in agent behaviors across datasets, k is an empirically tuned hyperparameter.

We then apply Student’s T-Distribution [183], that is, Q distribution to compute the

soft assignment between each initialized cluster center and latent vector [125]. Its kernel

measures the probability of each encoded vector zi ∈ Z belonging to the cluster j:

qij =

(
1 + d(zi,cj)

α

)− α+1
2

∑
j′

(
1 + d(zi,cj′ )

α

)− α+1
2

, (5.11)

where d is a similarity metric that refers to the distance between the encoded vector zi

and center cj , and α is the number of degrees of freedom of the Q distribution. We denote

d as the Euclidean distance and set α to 1.

Meanwhile, we optimize the clustering network with a KL divergence loss to minimize

the discrepancy between the two distributions:

Lcluster = KL(P ||Q) = ∑
i

∑
j

(
pij log pij

qij

)
, (5.12)

where P is the auxiliary distribution:

pij =
q2

ij/fj∑
j′ q2

ij′/fj′
, (5.13)
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and fj = ∑
i qij are soft cluster frequencies. Here, P is re-weighted from Q distribution

in a way that sharpens high-confidence assignments and de-emphasizes low-confidence

ones [125], thereby systematically increasing the separation between clusters in the latent

space. Finally, we derive soft assignments from the Student’s t-distribution, reflecting

the probability of the latent zi
t in each cluster cj . This approach not only offers greater

flexibility in representing complex behaviors but also sharpens cluster boundaries by

reinforcing high-confidence assignments and reducing ambiguity in low-confidence ones.

Consequently, it yields more coherent clusters and better captures the inherent diversity

in agent dynamics, ultimately enhancing the overall clustering quality.

5.2.3 Pseudo-label Informed Trajectory Prediction

Here, we introduce the concept of behavioral pseudo-labels for more accurate trajectory

prediction.

Gumbel-Softmax Straight-Through Estimator

While the soft assignment represents good behavior clusters, such clusters are unsuper-

vised and trained only on feature representations, meaning that they are still sub-optimal

for any given task. This explains the sub-optimal prediction accuracy in existing meth-

ods [123, 124]. Here, we present a framework to improve the compatibility between the

clusters and the task via fine-tuning the behavior latent.

To enable end-to-end fine-tuning of the behavior latent with a task objective, an

operator is needed to connect the clustering and the prediction modules. We employ

the Gumbel-Softmax straight-through estimator [191], which facilitates the gradient

propagation and computes one-hot vectors representing the pseudo-labels. The estimator

uses a differentiable Softmax, as opposed to the non-differentiable Argmax, allowing

end-to-end optimization. An agent’s class label is lj , where j ∈ 1, . . . k is the cluster

center.

Apart from performance gains, as one-hot labels fit the human understanding of a

class concept, they allow better interpretability via visualization tools. They are also

immediately compatible with existing network architectures trained with ground-truth

labels [6, 7], allowing effective adaptations.
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Behavioral Pseudo-Label Informed SGCN

We adopt a Sparse Graph Convolution Network (SGCN) [27] as our backbone and in-

troduce the pseudo-labels and a new loss function. SGCN has shown outstanding per-

formance and is computationally efficient on pedestrian trajectory prediction [27]. It

introduces sparsified spatial-temporal attention mechanism [38,67,192], which effectively

models spatial interactions and temporal dependencies among agents. The sparse graph

learning component removes spatial superfluous interactions and temporal motion ten-

dencies, improving both computational speed and accuracy. In reality, our pseudo-label

framework is compatible with a wide range of trajectory prediction networks.

We introduce the usage of semantic-goal features into SGCN, which enhances the

prediction accuracy [5, 179]. To this end, we integrate the goal-retrieval operation

[179] into the SGCN, we first subtract each observation step vt in t ∈ [1, Tobs] by the

corresponding trajectory endpoint vTpred
as vt = vt − vTpred

. We then construct the

spatial graph Gs =
{
(Vs, As)|Vs ∈ RTobs×N×Ds , As ∈ RTobs×N×N

}
, where Vs represents

the spatial interactions among all agents at time step t, As is the spatial adjacency matrix

and Ds refers to the spatial feature dimension.

To add heterogeneity to the graph, we concatenate the pseudo-labels l to the trajectory

feature vector for each agent at each time step as V i
t = concat(vi

t, li), ∀t ∈ [1, Tobs] and

∀i ∈ [1, N ]. Similarly, we establish the

temporal graph Gt =
{
(Vt, At)|Vt ∈ RN×Tobs×Dt , At ∈ RN×Tobs×Tobs

}
to represent the

temporal correlations of each individual agent during Tobs steps, where At is the temporal

adjacency matrix and Dt is the temporal feature dimension. Finally, these spatial and

temporal goal-guided heterogeneous graphs are passed into SGCN for final trajectory

prediction.

We propose a joint training strategy with a novel loss function to jointly optimize

trajectory prediction and pseudo-label clustering. Thanks to our Gumbel-Softmax esti-

mator, back-propagation is performed from the prediction all the way back to the VRNN

encoder, resulting in better compatibility between the clustering and prediction modules.

We present a combined loss:

Lfinal = Lcluster + Lprediction, (5.14)
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where Lcluster is defined in Eq. 5.12, and Lprediction as:

Lprediction = −∑Tpred

t=Tobs+1 log P (pt|µ̂, σ̂, ρ̂), (5.15)

where µ̂ and σ̂ are the mean and variance of the bi-variate Gaussian distribution of

trajectory prediction, and ρ̂ represents the correlation coefficient.

5.3 Experiments

5.3.1 Datasets

We evaluate BP-SGCN on multiple benchmark datasets, including the Stanford Drone

Dataset (SDD) [74], Argoverse 1 [92], ETH [1] and UCY [73], and the homogeneous

pedestrian version of SDD [182]. For pedestrian trajectory prediction, ETH/UCY consists

of five homogeneous pedestrian datasets (ETH, HOTEL, UNIV, ZARA1, ZARA2) with 1,536

pedestrians. homogeneous pedestrian SDD is the simplified version where non-pedestrian

agents are removed. For heterogeneous trajectory prediction, we follow [7, 193, 194] that

consider all trajectories, consisting of 8 scenes, 60 videos and 6 categories of traffic agents

(i.e., pedestrians, bicyclists, skateboarders, carts, cars, and buses). Argoverse 1 consists

of over 30K urban traffic scenarios that include 3 types of agents (i.e. AVs, agents, and

others).

5.3.2 Experimental Setup

By default, we follow the experimental setup of [27, 154], using 3.2 seconds (8 frames) of

observation trajectories to predict the next 4.8 seconds (12 frames). For homogeneous

pedestrian prediction, we employ the data augmentation approach introduced in [154]

and the official leave-one-out strategy [21] during the training and validation. For

heterogeneous trajectory prediction on Argoverse 1 dataset, our experimental setup

and dataset split strategy follow [34, 35]. Specifically, we utilize 2 seconds (20 frames)

of observation trajectories to predict the trajectories of all tracked objects over the

subsequent 3 seconds (30 frames) within each scene. In particular, our experimental setup

on the Argoverse 1 dataset for heterogeneous trajectory prediction predicts trajectories
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for all agents [34, 195], unlike methods focusing on a single agent [196] or two specific

agents [197], our approach captures multi-agent interactions, reflecting real-world traffic

complexity and improving predictive robustness, situational awareness, and adaptability

to diverse urban environments.

During testing, we adhere to the standard protocol by generating 20 predictions

for both heterogeneous [6, 7, 35] and homogeneous pedestrian trajectory predictions

[21, 27, 198]. This approach ensures our results are comparable to those established

in the field. The sample with the lowest error is then used to compute the evaluation

metrics. We employ the Average Displacement Error (ADE) and Final Displacement Error

(FDE) [21, 27–29] as our evaluation metrics:

ADE = 1
(Tpred − Tobs) × N

N∑
i=1

Tpred∑
t=Tobs+1

||p̂i
t − pi

t||2,

FDE = 1
N

N∑
i=1

||p̂i
t − pi

t||2, t = Tpred,

(5.16)

where p̂i
t represents the ground-truth trajectory coordinates. Table 5.1 summarizes the

primary notations and their definitions used throughout the BP-SGCN framework.

5.3.3 Quantitative Evaluation

Heterogeneous Prediction

Table 5.2 compares our BP-SGCN with previous state-of-the-art methods on heteroge-

neous SDD. These methods can be categorized into three groups based on the input

features, including trajectory-only [25, 28, 38, 41, 42], trajectory with ground-truth la-

bels [6, 7, 33, 34, 42, 91], and trajectory with extra scene features such as scene seman-

tics [40,193,194,199–201]. BP-SGCN outperforms all themethods that utilize ground-truth

agent class labels [6, 7, 33, 34, 42, 91]. Compared to the best method VNAGT [91], BP-

SGCN demonstrates the superiority by reducing ADE/FDE by 28.23%/44.43%. Crucially,

for SOTA approaches that incorporate scene semantic features such as V 2-Net [200]

and TDOR [193], our BP-SGCN improves the performance by reducing ADE/FDE by

2.5%/15.9% compared to V 2-Net and 19.3%/31.2% compared to TDOR. The results indi-

cate that without the need for additional inputs, our BP-SGCN can still achieve SOTA
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Table 5.1: A summary of main symbols and definitions
Symbols Definition

pi
t = (xi

t, yi
t) 2D coordinates of agent i at time t.

N Number of pedestrians
Tobs Observed time steps
Tpred Prediction time steps

vt Velocity vector
cos (θt) Cosine of the angle

|at| Magnitude of acceleration
gt Agent geometric feature

φenc Encoder network of VRNN
h Recurrent hidden state
qϕ Posterior distribution

φdec Decoder network of VRNN
pδ Reconstruction distribution

φprior Prior distribution
LVRNN Loss of VRNN

LSoft-DTW Loss of soft-DTW
LELBO Loss of ELBO

q Q Distribution for soft assignment
p Auxiliary distribution P

Lcluster Loss of deep clustering
f Soft cluster frequency
l Agent class label

Gs Spatial graph
Vs Node of Gs

As Adjacency matrix of Gs

Gt Temporal graph
Vt Node of Gt

At Adjacency matrix of Gt

Lprediction Loss of bi-variate Gaussian distribution
Lfinal Combined loss

performance in heterogeneous trajectory prediction.

Table 5.3 compares the BP-SGCN with those state-of-the-art methods in heteroge-

neous trajectory prediction on Argoverse 1, following the setup in [34, 35, 195]. Results

show that our BP-SGCN outperforms all the methods by a significant margin, especially

in the ADE metric. BP-SGCN surpasses NLNI [34], which integrates ground-truth labels,

by reducing 12.7% in ADE and 8.7% in FDE, further showcasing the effectiveness of our

proposed pseudo-label module. Notably, although NLNI utilizes label-based category

features, its performance is limited by the simplistic nature of the “GT Labels" in the Argo-

verse 1 dataset, which are broadly classified as “1 AV" (1 Autonomous Vehicle), “1 Focal"

(the primary vehicle whose trajectory is predicted), and “N other" (other tracked objects,
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Table 5.2: Results on SDD for heterogeneous prediction.

Methods Venue Year GT Labels SDD
ADE(↓) FDE(↓)

Social-LSTM [28] CVPR 2016 No 31.19 56.97
DESIRE [40] CVPR 2017 No 19.25 34.05
MATF [81] CVPR 2019 No 22.59 33.53
STGAT [38] ICCV 2019 No 18.80 31.30

Multiverse [194] CVPR 2020 No 14.78 27.09
SimAug [199] ECCV 2020 No 10.27 19.71
NLNI [34] ICCV 2021 Yes 15.90 26.30

STSF-Net [41] TMM 2021 No 14.81 28.03
Semantic-STGCNN [6] SMC 2021 Yes 18.12 29.70

V 2-Net [200] ECCV 2022 No 7.12 11.39
Multiclass-SGCN [7] ICIP 2022 Yes 14.36 25.99

TDOR [193] CVPR 2022 No 8.60 13.90
CAPHA [201] TVT 2023 No 9.13 14.34
VNAGT [91] TVT 2023 Yes 9.67 17.22

SFEM-GCN [42] TIV 2024 Yes 15.31 25.72
SMGCN [33] IJCAI 2024 Yes 20.89 36.84

BP-SGCN (Ours) No 6.94 9.57

Table 5.3: Results on Argoverse 1 for heterogeneous prediction.

Methods Venue Year GT Labels Argoverse 1
ADE(↓) FDE(↓)

Social-LSTM [28] CVPR 2016 No 1.39 2.57
DESIRE [40] CVPR 2017 No 0.90 1.45

R2P2-MA [202] ECCV 2018 No 1.11 1.77
MATFG [81] CVPR 2019 No 1.26 2.31
CAM [85] ECCV 2020 No 1.13 2.50
MFP [203] NeurIPs 2020 No 1.40 2.68

Social-STGCNN [29] CVPR 2020 No 1.31 2.34
NLNI [34] ICCV 2021 Yes 0.79 1.26
DD [204] Inf. Sci. 2022 No 0.74 1.28

HRG+HSG [35] TITS 2023 No 0.85 1.12
BIP-Tree [195] TITS 2023 No 0.78 1.35
BP-SGCN (Ours) No 0.69 1.15

which can include vehicles, pedestrians, or bicycles). This coarse categorization restricts

the algorithm’s ability to accurately capture and analyze the nuanced interactions among

diverse traffic agents. In contrast, BP-SGCN effectively overcomes these constraints by
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Table 5.4: Results on ETH/UCY on homogeneous pedestrian prediction;
- denotes missing result due to unavailability from original authors.

Method Venue Year ETH HOTEL UNIV ZARA1 ZARA2 AVG
ADE(↓)/FDE(↓) ADE(↓)/FDE(↓) ADE(↓)/FDE(↓) ADE(↓)/FDE(↓) ADE(↓)/FDE(↓) ADE(↓)/FDE(↓)

Social LSTM [28] CVPR 2016 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social GAN [21] CVPR 2018 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21

Social-STGCNN [29] CVPR 2020 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
PECNet [4] ECCV 2020 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
SGCN [27] CVPR 2021 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

AgentFormer [68] ICCV 2021 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
PCCSNet [123] ICCV 2021 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42
ExpertTraj 1[179] ICCV 2021 0.37/0.65 0.11/0.15 0.20/0.44 0.15/0.31 0.12/0.25 0.19/0.36
STSF-Net [41] TMM 2021 0.63/1.13 0.24/0.43 0.28/0.52 0.23/0.45 0.21/0.41 0.32/0.59

Social-Implicit [154] ECCV 2022 0.66/1.44 0.20/0.36 0.31/0.60 0.25/0.50 0.22/0.43 0.33/0.67
GP-Graph [25] ECCV 2022 0.43/0.63 0.18/0.30 0.24/0.42 0.17/0.31 0.15/0.29 0.23/0.39
Social-VAE [22] ECCV 2022 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 0.21/0.33
MemoNet [155] CVPR 2022 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35
GroupNet [63] CVPR 2022 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44

MID [71] CVPR 2022 0.39/0.66 0.13/0.22 0.22/0.45 0.17/0.30 0.13/0.27 0.21/0.38
GTPPO [98] TNNLS 2022 0.63/0.98 0.19/0.30 0.35/0.60 0.20/0.32 0.18/0.31 0.31/0.50

Graph-TERN [39] AAAI 2023 0.42/0.58 0.14/0.23 0.26/0.45 0.21/0.37 0.17/0.29 0.24/0.88
MSRL [151] AAAI 2023 0.28/0.47 0.14/0.22 0.24/0.43 0.17/0.30 0.14/0.23 0.19/0.33
LED [72] CVPR 2023 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33

EqMotion [26] CVPR 2023 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23 0.21/0.35
FEND [124] CVPR 2023 - - - - - 0.17/0.32

EigenTrajectory [30] ICCV 2023 0.36/0.53 0.12/0.19 0.24/0.43 0.19/0.33 0.14/0.24 0.21/0.34
TUTR [69] ICCV 2023 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 0.21/0.36
SICNet [205] ICCV 2023 0.27/0.45 0.11/0.16 0.26/0.46 0.19/0.33 0.13/0.26 0.19/0.33
TP-EGT [206] TITS 2023 0.41/0.68 0.13/0.21 0.29/0.50 0.18/0.30 0.16/0.27 0.23/0.39

DynGroupNet [104] NN 2023 0.42/0.66 0.13/0.20 0.24/0.44 0.19/0.34 0.15/0.28 0.23/0.38
SMEMO [156] TPAMI 2024 0.39/0.59 0.14/0.20 0.23/0.41 0.19/0.32 0.15/0.26 0.22/0.35
STGlow [23] TNNLS 2024 0.31/0.49 0.09/0.14 0.16/0.33 0.12/0.24 0.09/0.19 0.15/0.28
MRGTraj [158] TCSVT 2024 0.28/0.47 0.21/0.39 0.33/0.60 0.24/0.44 0.22/0.41 0.26/0.46
HighGraph [31] CVPR 2024 0.40/0.55 0.13/0.17 0.20/0.33 0.17/0.27 0.11/0.21 0.20/0.30

PPT [207] ECCV 2024 0.36/0.51 0.11/0.15 0.22/0.40 0.17/0.30 0.12/0.21 0.20/0.31
BP-SGCN (Ours) 0.33/0.47 0.10/0.14 0.17/0.26 0.13/0.19 0.10/0.16 0.17/0.24

1 For ExpertTraj [179], the discrepancy from the original paper arises due to an error highlighted by the authors: https://github.com/JoeHEZHAO/
expert_traj

Table 5.5: Results on the homogeneous pedestrian version of SDD.

Methods Venue Year SDD-human
ADE(↓) FDE(↓)

STGAT [38] ICCV 2019 0.58 1.11
Social-Ways [208] CVPRW 2019 0.62 1.16
DAG-Net [198] ICPR 2020 0.53 1.04

Social-implicit [154] ECCV 2022 0.47 0.89
WTGCN [209] IJMLC 2024 0.43 0.72
IGGCN [210] DSP 2024 0.44 0.71

BP-SGCN (Ours) 0.28 0.41

conducting a comprehensive analysis of the behavior dynamics of all agents within the

scene. By employing our advanced pseudo-label module, we significantly enhance the

representational capabilities of our system, leading to markedly improved prediction
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accuracy across diverse traffic scenarios. This improvement is achieved without the

need for direct matching with ground-truth labels, demonstrating the robustness and

adaptability of our approach in interpreting complex interactive behaviors. Importantly,

DD [204] and HRG+HSG [35] achieve comparable performance on ADE and FDE mainly

due to the use of scene images that better capture the interactions between traffic agents

and environments, our BP-SGCN still shows the best ADE performance compared to

these methods.

Pedestrian Prediction

For ETH/UCY, we conduct quantitative comparisons with a wide range of methods with

various techniques, as shown in Table 5.4. Following [26, 72], we compare with methods

utilizing trajectory data only.

For distribution-based methods, Social-LSTM [28] introduces bi-variate Gaussian

distribution to sample predictions from the trained mean and variance, which is widely

used in recently published methods [25, 27, 29, 66, 104, 179]. Following this, our BP-SGCN

also uses the bi-variate Gaussian distribution to represent the distribution parameters

of the predicted trajectories. It outperforms almost all methods under this setting by

a significant margin. In addition, both ExpertTraj [179] and our BP-SGCN utilize the

goal-retrieve mechanism but we have a significant improvement of 10.5% in ADE and

33.3% in FDE.

For generative-based methods, Social-GAN [21] is the pioneer method that introduces

GANs [60] to generate trajectories with special pooling modules. PECNet [4] utilizes

the CVAEs [211] to generate trajectories conditioned on the pre-sampled goal points,

which add an extra constraint to the predicted trajectories for better accuracy. Methods

like [22, 30, 31, 63, 68, 151] follow the CVAEs basis to train the encoder with ground-truth

trajectories for better latent representations. MID [71] and LED [72] further introduce

the diffusion models [212] to enhance training and reduce mode collapses. Results reveal

that our BP-SGCN outperforms generative-based methods.

For transformer-based methods, TUTR [69] proposes a novel global prediction sys-

tem incorporated with a motion-level transformer encoder and a social-level trans-

former decoder for accurate trajectory representation. MRGTraj [158] introduces a
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non-autoregressive enhanced transformer decoder for trajectory prediction. PPT [207]

proposes multi-stage transformer progressively modeling trajectories. STGlow [23] fur-

ther introduces the flow-based generative framework with dual-graphormer to precisely

model motion distributions. Compared to STGlow, our BP-SGCN achieves comparable

ADE with STGlow, while reducing FDE by 14%.

Besides these categories, LSTM decoder-based methods [41, 98, 123, 206] and [124]

directly predict trajectories using LSTM decoder, which also show comparable results

to the transformer-based methods. Social-implicit [154] introduces the concept of im-

plicit maximum likelihood estimation mechanism. Memonet [155], SICNet [205] and

SMEMO [156] incorporate memory bank/module concepts into the system, demonstrat-

ing considerable performance. Notably, SICNet presents the best results on ETH subset

in both ADE and FDE metrics compared with all other methods. Graph-TERN [39] shows

a novel trajectory refinement module that first samples the endpoint and then linearly

interpolates the predictions. EqMotion [26] further introduces the concepts of invariance

and equivariance into trajectory prediction to learn motion patterns. Nevertheless, results

in Table 5.4 illustrate that our BP-SGCN outperforms all of these methods.

For homogeneous pedestrian SDD, Table 5.5 highlights the comparative performance

of our BP-SGCN, which secures substantial improvements over all listed models, including

the latest STOAmodels, WTGCN [209] and IGGCN [210]. Specifically, BP-SGCN achieves

a 35% reduction in ADE compared to WTGCN and a 42% reduction in FDE compared to

IGGCN. The results in both heterogeneous SDD and homogeneous pedestrian SDD show

the superiority of our BP-SGCN in multiple scenarios.

5.3.4 Qualitative Evaluation

Figure 5.4 presents a t-SNE [183] visualization of the latent representations and their

corresponding pseudo-classes during unsupervised deep clustering on SDD (k = 6).

These clusters do not correspond to ground-truth semantic labels, but instead reflect

behavior-driven groupings learned from motion patterns. At epoch 0, cluster centers are

initialized using k-means, and the latent representations are not yet structured, resulting

in overlapping and ambiguous clusters. As training progresses, the VRNN encoder learns

more discriminative behavioral representations, leading to increasingly compact and
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Figure 5.4: The t-SNE visualization of pseudo-class clustering on SDD (k=6) during
unsupervised deep clustering. (a) 0 epochs (initialized by k-means), (b) 200 epochs, (c)
800 epochs.

well-separated clusters. This visualization primarily serves to illustrate the improvement

in clustering quality and representation consistency over training, rather than to indicate

predefined or interpretable semantic categories.

Figure 5.5 and Figure 5.6 visualize the trajectory predictions for the SDD and ETH/UCY

datasets, respectively. Blue and red dots represent observed and ground-truth future

trajectories, respectively. For the SDD dataset, we visualize the predictions in Figure 5.5,

where light blue indicates the predicted distributions and yellow dots represent the

predicted single trajectory. The visualizations demonstrate that our BP-SGCN exhibits

superior performance compared to methods integrating ground-truth labels [6,7] in three

challenging scenarios characterized by complex social interactions among agents.

In Figure 5.6, we visualize the predicted distribution in the ETH/UCY datasets across

various scenarios, encompassing both simple and complex interactions, and compare our

method with SGCN [27] and GP-Graph [25]. We visualize the parameterized distribution

of future trajectories, as they are the learning objective of these methods. Qualitative

comparisons reveal that our predicted distributions closely align with the ground truth

and adeptly capture the non-linear trajectories. Specifically, scenario (a) illustrates a

scene with numerous pedestrians on the street engaging in complex interactions, such as

meeting, colliding, and standing still. While all the predicted distributions can accurately

represent linear trajectories, both SGCN and GP-Graph falter in predicting the move-

ments of pedestrians exhibiting non-linear behaviors. In contrast, BP-SGCN consistently
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Figure 5.5: Visualization of trajectory prediction on SDD of Semantic-STGCNN [6],
Multiclass-SGCN [7], and BP-SGCN (ours). Blue and red represent observed and ground-
truth trajectories respectively, yellow represents the predicted trajectory and light-blue
shade represents the predicted distribution.

generates plausible predictions. Scenario (b) displays four stationary pedestrians; how-

ever, both SGCN and GP-Graph yield wrong predictions, whereas BP-SGCN accurately

captures the static behaviors. In scenario (c), the predicted distributions from both SGCN

and GP-Graph demonstrate significant overlaps, leading to a heightened risk of predicted

collisions. On the other hand, BP-SGCN’s predictions show reduced overlaps. In scenario

(d), while GP-Graph continues to display overlap issues, SGCN exhibits overconfidence

in its predictions, resulting in a lack of diversity and a propensity to deviate from the

ground truth. BP-SGCN effectively addresses both of these challenges, striking a balance

between prediction accuracy and diversity.
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Figure 5.6: Visualization of the trajectory prediction on ETH/UCY in the scenario of
pedestrian walking behaviors. Past trajectories are shown in blue, and ground-truth
trajectories are in red. (a) shows the pedestrians in a crowded scenario with complex
interactions. (b) shows the scene where four pedestrians are almost static. (c) and (d)
show scenes including multiple pedestrian behaviors, such as walking, meeting, and
standing.

5.3.5 Ablation Study and Parameter Analysis

Cluster Number Analysis

The effects of cluster number on heterogeneous datasets are shown in Table 5.6 (Het-

erogeneous SDD) and Table 5.7 (Argoverse 1). The results on homogeneous pedestrian

datasets are shown in Table 5.8 (ETH/UCY) and Table 5.9 (homogeneous pedestrian SDD).

In general, the cluster number depends on the diversity of behaviors, which is strongly

correlated with the location. For instance, choosing six clusters for SDD is reasonable

given the presence of six types of agents, and this choice yields good performance. Tuning

the cluster number for a scene provides extra improvements, and this only has to be

done once. These results further reflect that the heterogeneous dataset is more sensitive

to the cluster numbers and the pedestrian dataset results exhibit diminished sensitivity,

attributable to the inherent behavioral homogeneity and comparatively lower variance

observed in human actions. Note that due to its large data size, for Argoverse 1, we run
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Table 5.6: Cluster number analysis on heterogeneous SDD.

Clusters ADE(↓) FDE(↓)
1 7.26 10.03
3 7.11 9.81
6 6.94 9.57
9 7.03 9.74
12 7.58 10.92

Table 5.7: Cluster number analysis on Argoverse 1.

Clusters ADE(↓) FDE(↓)
1 0.86 1.63
3 0.80 1.45
6 0.69 1.15
9 0.79 1.47

ablation studies and parameter analysis using a partial dataset in a simplified setup.

Notably, in our experiments on cluster numbers, a cluster’s number equal to 1 denotes

that there is no pseudo-label applied on each agent because all the agents are considered

to belong to the same class, and consequently the model performance relies solely on the

trajectories themselves. In particular, results in Table 5.8 and Table 5.9 demonstrate that,

within datasets exclusively comprising pedestrian agents, our BP-SGCN model is adept

at discerning the nuanced variances in their movement patterns. Despite the apparent

homogeneity of the agents as pedestrians, our analysis reveals intrinsic behavioral differ-

entiations that our model capitalizes on to significantly improve prediction accuracy. This

not only underscores the importance of individualized learning even among seemingly

similar entities, but also showcases the efficacy of our model in enhancing predictive

outcomes by leveraging these subtle distinctions.

Network Components Analysis

Table 5.10 shows ablation studies to evidence the effectiveness of network components

used in BP-SGCN on heterogeneous and homogeneous pedestrian SDD. The “No Deep

Clustering” setup uses k-means cluster centers directly for trajectory prediction, and

therefore does not implement unsupervised deep learning and end-to-end fine-tuning.
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Table 5.8: Cluster number analysis on ETH/UCY.

Clusters ADE(↓) / FDE(↓)
ETH HOTEL UNIV ZARA1 ZARA2

1 0.37/0.51 0.14/0.19 0.27/0.37 0.15/0.21 0.24/0.34
2 0.37/0.52 0.15/0.21 0.18/0.27 0.20/0.37 0.25/0.35
3 0.45/0.61 0.10/0.14 0.27/0.36 0.24/0.33 0.17/0.34
4 0.33/0.47 0.12/0.16 0.27/0.37 0.14/0.20 0.10/0.16
5 0.36/0.50 0.17/0.22 0.18/0.27 0.13/0.19 0.12/0.18
6 0.39/0.53 0.15/0.21 0.18/0.27 0.15/0.21 0.11/0.17
7 0.37/0.51 0.11/0.15 0.17/0.26 0.26/0.37 0.13/0.19

Table 5.9: Cluster number analysis on homogeneous pedestrian SDD.

Clusters ADE(↓) FDE(↓)
1 0.33 0.49
3 0.28 0.41
6 0.47 0.72
9 0.31 0.47

The “No Gumbel-Softmax” setup directly concatenates the soft assignment to the tra-

jectory features for trajectory prediction. The “No End-to-End Training” setup uses

only Lprediction to optimize the trajectory prediction module but not the deep clustering

module; here, the Gumbel-Softmax estimator is substituted with the non-differentiable

Argmax function. Results from both the heterogeneous and pedestrian datasets emphasize

the significance of all the proposed components in BP-SGCN.

In addition, our proposed Goal-Guided SGCN module utilizes the spatial attention

and temporal attention mechanism to enhance the final prediction accuracy. We conduct

experiments on ETH/UCY datasets to validate the effectiveness of these two modules.

The results shown in Table 5.11 indicate that both spatial attention and temporal attention

modules are important for the best performance.
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Table 5.10: Network components analysis on heterogeneous SDD (upper) and homoge-
neous pedestrian SDD (lower).

Method ADE(↓) FDE(↓)
BP-SGCN (No Deep Clustering) 7.52 10.50
BP-SGCN (No Gumbel-Softmax) 7.65 10.85
BP-SGCN (No End-to-End Training) 10.82 15.32
BP-SGCN (Ours) 6.94 9.57

Method ADE(↓) FDE(↓)
BP-SGCN (No Deep Clustering) 0.30 0.44
BP-SGCN (No Gumbel-Softmax) 0.40 0.60
BP-SGCN (No End-to-End Training) 0.30 0.46
BP-SGCN (Ours) 0.28 0.41

Table 5.11: Prediction module analysis on ETH/UCY datasets.

Method ADE(↓) FDE(↓)
BP-SGCN (No Spatial Attention) 0.25 0.30
BP-SGCN (No Temporal Attention) 0.28 0.35
BP-SGCN (Ours) 0.17 0.24

Trajectory Prediction Loss Analysis

As discussed above, we propose a cascaded training strategy with a novel loss function

to jointly optimize trajectory prediction and pseudo-label clustering, defined as:

Lfinal = Lprediction + Lcluster. (5.17)

In the proposed loss function, Lprediction and Lcluster contribute equally to the final

loss Lfinal. We conduct an ablation study by introducing a weighted sum of losses with

a new hyperparameter λ to explore the effect and contribution of the two losses on

trajectory prediction on both heterogeneous and homogeneous pedestrian SDD datasets:

Lfinal = λLprediction + (1 − λ)Lcluster. (5.18)

Here, we analyze the effect of λ. For the proposed BP-SGCN, the default value of λ
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Table 5.12: Loss weight analysis between Lprediction and Lcluster on heterogeneous SDD
(left) and homogeneous pedestrian SDD (right).

Method ADE(↓) FDE(↓)
BP-SGCN (λ = 0.25) 19.33 24.26
BP-SGCN (λ = 0.75) 7.08 9.84
BP-SGCN (Ours) 6.94 9.57

Method ADE(↓) FDE(↓)
BP-SGCN (λ = 0.25) 0.46 0.70
BP-SGCN (λ = 0.75) 0.31 0.46
BP-SGCN (Ours) 0.28 0.41

can be considered as 0.5, as both losses contribute equally to the final loss. We further

adjust the value of λ as 0.25, and 0.75, respectively. The experimental results presented

in Table 5.12 show that the performance of BP-SGCN reaches its peak when the ratio of

Lprediction and Lcluster is equal, as presented in the main paper, which further indicates

that the trajectory prediction and pseudo-label clustering modules are equally important

for the overall trajectory prediction performance.

Clustering Features Analysis

Finally, Table 5.13 shows ablation studies on heterogeneous and homogeneous pedestrian

SDD datasets with regard to the geometric features used for behavior clustering. These

features play a pivotal role, enabling our unsupervised deep clustering module to differ-

entiate agent behaviors effectively. The outcomes highlight the outstanding performance

of our proposed features, which integrate relative angle and acceleration magnitude.

5.3.6 Model Complexity and Inference Time Analysis

To verify the efficiency of our proposed method, we conduct experiments on inference

time and model parameters with existing mainstream trajectory prediction frameworks.

As demonstrated in Table 5.14, our method is inferior to EigenTrajectory [30] and better

than all other methods in terms of inference time and model parameters. We leave it as

future work to improve the efficiency of our BP-SGCN with more advanced sequential

modeling methods such as Transformers [67] and State Space Models (SSMs) [213, 214].
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Table 5.13: Clustering features analysis on heterogeneous SDD (upper) and homogeneous

pedestrian SDD (lower).

Method ADE(↓) FDE(↓)

BP-SGCN (Relative Angle) 19.52 34.05

BP-SGCN (Acceleration Magnitude) 9.07 13.02

BP-SGCN (Ours) 6.94 9.57

Method ADE(↓) FDE(↓)

BP-SGCN (Relative Angle) 0.45 0.68

BP-SGCN (Acceleration Magnitude) 0.42 0.63

BP-SGCN (Ours) 0.28 0.41

Table 5.14: COMPARISON OF THE PROPOSED APPROACHES IN TERMS OF NUMBER
OF PARAMETER AND INFERENCE TIME.

Methods Venue Year Param ×106 Infer. Time/Iter.
ExpertTraj [179] ICCV 2021 0.32 130 ms
Social-VAE [22] ECCV 2022 5.69 1110 ms
GroupNet [63] CVPR 2022 3.14 -
MSRL [151] AAAI 2023 11.32 970 ms

EqMotion [26] CVPR 2023 2.08 800 ms
TUTR [69] ICCV 2023 0.44 360 ms

EigenTrajectory [30] ICCV 2023 0.02 72 ms
BP-SGCN (Ours) 0.13 110 ms

Moreover, we validate the stability and reliability of our BP-SGCN on heterogeneous

trajectory prediction by 10 experiments. Results shown in Table 5.15 showcase the

stability of our method.

Table 5.15: STABILITY TESTS ON ARGOVERSE 1 AND HETEROGENEOUS VERSION
OF SDD

Methods Argoverse 1 SDD
ADE(↓) FDE(↓) ADE(↓) FDE(↓)

BP-SGCN (ours) 0.68 ± 0.031 1.16 ± 0.034 6.97 ± 0.069 9.59 ± 0.043
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Figure 5.7: Visualization of the trajectory prediction of BP-SGCN in different social
scenarios including positive predictions and negative predictions (we highlight erroneous
predictions inside the white boxes). Past trajectories are shown in blue, ground-truth
trajectories are in red, predicted trajectories are shown in yellow, and distributions are
shown in light blue.

.

5.3.7 Discussion

In our experiments, we observed that methods [22, 30, 69, 151] tailored exclusively for

pedestrians exhibit a sensitivity to the threshold settings that dictate the count of nearby

agents. These methods, while ensuring state-of-the-art performance in homogeneous

pedestrian trajectory prediction, perform sub-optimally in heterogeneous scenarios due

to the challenge of predefining neighbors. The result is shown in Table 5.16. Unlike

these pedestrian-specific approaches, which require manual neighbor selection based on

metrics like relative distances, our BP-SGCN model automatically considers all proximate

agents as initial neighbors, adaptively filtering out the less relevant ones. Thus, our

proposed BP-SGCN is better than these methods in heterogeneous trajectory prediction.

Next, we showcase inaccurate predictions made by our BP-SGCN and delve into the

method’s limitations. As depicted in Figure 5.7, the first row illustrates the BP-SGCN’s

proficiency in accurately predicting trajectories across various social contexts. Nonethe-

less, the second row highlights instances where our BP-SGCN falls short, particularly in

scenarios where: 1) trajectories undergo abrupt changes; 2) paths are highly erratic and

frequently alter; and 3) social dynamics become exceedingly intricate with numerous

agents involved. Looking ahead, our objective is to rectify these inaccuracies by en-
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Table 5.16: RESULTS BY homogeneous pedestrian METHODS ON THE HETEROGE-
NEOUS VERSION OF SDD.

Methods Venue Year SDD
ADE(↓) FDE(↓)

Social-VAE + FPC [22] ECCV 2022 9.41 13.49
MSRL [151] AAAI 2023 10.72 16.15

EigenTrajectory [30] ICCV 2023 8.85 15.15
TUTR [69] ECCV 2023 8.93 15.66

BP-SGCN (Ours) 6.94 9.57

hancing BP-SGCN’s capabilities through the incorporation of cutting-edge deep learning

methodologies, including Transformers [67] and Diffusion models [72], among others.

The quantity of behavior clusters is an adjustable hyperparameter. We manually

select the number of clusters for the unsupervised deep clustering module. This approach

brings several challenges, including subjectivity and potential bias, scalability issues, and

potential impacts on model performance due to overfitting or underfitting. Moreover,

the optimal number of clusters is sensitive to the datasets, which further complicates

the selection process. Especially in heterogeneous scenarios, the high variance between

different types of agents’ motions makes it challenging to identify the best number of

clusters to represent behavior features accurately than homogeneous pedestrian scenarios.

In the future, we aim to scrutinize the behavior distributions of traffic agents more closely

and dynamically estimate the optimal number of clusters [215, 216].

Despite BP-SGCN’s effectiveness in both heterogeneous and homogeneous pedestrian

trajectory prediction, another notable limitation of our model is its current omission of

scene semantic features. Although only using trajectories as inputs brings the benefit of

computation efficiency and emphasizes the importance of behavior motions, the integra-

tion of agent interactions with their surrounding environment can benefit in developing

effective trajectory prediction models for use in real-world scenarios [5, 99, 193, 200]. Rec-

ognizing this, a significant direction for our future is to explore how to effectively combine

trajectory data with scene semantic features to capture the interactions between static

barriers and dynamic agents. We hypothesize that this will not only enhance the model’s

prediction accuracy, but also improve the refinement of pseudo-label identification by

leveraging the rich context provided by environmental cues.
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Figure 5.8: The t-SNE Visualization of clustering distribution with different features on
homogeneous pedestrian SDD (k=3), using (a) acceleration, (b) angle, and (c) acceleration
+ angle (ours).

5.3.8 More Qualitative Visualizations

In this section, we present additional qualitative experiments to further demonstrate the

prediction performance of BP-SGCN in various scenarios.

In Figure 5.8, we assess the quality of the clustering using various geometric features.

Both (a) and (b) indicate that when solely relying on acceleration or angle as input feature

vectors, our unsupervised deep clustering module struggles to differentiate between the

hidden representations of the three pedestrian behavioral groups. However, when com-

bining acceleration and angle (as introduced in BP-SGCN), the distinction between these

three behavioral groups becomes evident and thus leads to better trajectory prediction

accuracy.

Figure 5.9, Figure 5.10 and Figure 5.11 illustrate additional qualitative results on

various scenes of the heterogeneous SDD dataset, heterogeneous Argoverse 1 dataset and

the homogeneous pedestrian ETH/UCY datasets, respectively. Since our model relies on

sampling from a bi-variate Gaussian distribution to compute the predicted trajectory, we

plot the predicted distributions instead of a single trajectory to present a comprehensive

view of the prediction quality in this supplementary document.

Specifically, for the SDD dataset, we visualize the predicted trajectory distributions in

real-world scenarios by overlaying them on the original background images. Figure 5.9

depicts that the proposed BP-SGCN is able to predict realistic trajectory distributions

that fall within valid movement areas in both simple and complex scenarios.

For Argoverse 1 dataset, Figure 5.10 showcases the predictions generated by our

model adhering to the map. In straightforward scenarios, BP-SGCN effectively forecasts

trajectories with varied speed profiles. When faced with intersections, the model offers
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multimodal predictions, capturing the potential intentions of the agents.

For the ETH/UCY datasets, we visualize the trajectory distribution across scenarios,

ranging from simple to complex scenarios (from top row to bottom row). Figure 5.11

demonstrates that BP-SGCN capably produces realistic pedestrian trajectory predictions

across varied social contexts.

Notably, there are some sub-optimal results shown in the visualizations if the number

of agents is large, mainly due to the randomness of agent movements. However, the

proposed BP-SGCN can still provide plausible trajectory distribution predictions in

these cases, as the predicted trajectory distributions can almost cover the ground-truth

trajectories. Overall, the provided trajectory prediction visualizations demonstrate the

effectiveness of the proposed BP-SGCN for heterogeneous and homogeneous pedestrian

trajectory prediction in diverse traffic scenarios.
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Figure 5.9: Predicted trajectory distributions using the proposed BP-SGCN on the SDD
dataset. Past trajectories are shown in blue, ground-truth trajectories in red, and predicted
trajectory distributions in orange.
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Figure 5.10: Predicted trajectory distributions using the proposed BP-SGCN on the
Argoverse 1 dataset. Past trajectories are shown in blue, ground-truth trajectories in red,
and predicted trajectory distributions in orange.

105



5.3. Experiments

Figure 5.11: Predicted trajectory distributions using the proposed BP-SGCN on the
ETH/UCY datasets. The complexity level of social interactions among pedestrians in-
creases from the top row to the bottom row. Past trajectories are shown in blue and
ground-truth trajectories are shown in red. Due to the relatively high pedestrian density,
we use different colors to represent the predicted trajectory distributions of different
pedestrians
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5.4 Summary

In this chapter, we introduce BP-SGCN for heterogeneous and pedestrian trajectory pre-

diction, showcasing its superior performance compared to existing models. In particular,

we introduce the concept of behavioral pseudo-labels, which effectively represent the

different behavior clusters of agents and do not require extra ground-truth information.

BP-SGCN includes a deep unsupervised clustering module that learns the pseudo-label,

as well as a pseudo-label informed sparse graph convolution network for trajectory

prediction. It implements a cascaded training scheme that first learns the pseudo-labels

in an unsupervised manner, and then fine-tunes the labels by optimizing the network

end-to-end for better compatibility.

Beyond pedestrian scenarios, BP-SGCN also shows promising potential in broader

domains. In robotic path planning [10, 23], BP-SGCN can enhance collision avoidance

systems through behavioral pattern analysis [98, 111] of surrounding agents, facilitating

more effective navigation in intricate settings. Additionally, in video monitoring and

surveillance systems as suggested in [23, 27], BP-SGCN can enhance anomaly detection

through behavioral pattern analysis of system dynamics, enabling early detection of

potential operational irregularities. These applications demonstrate the applicability of

BP-SGCN in modeling interactive behaviors across different domains, highlighting its

potential for various real-world trajectory prediction tasks.
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CHAPTER 6

Conclusion

In the domain of multi-agent trajectory prediction, the integration of advanced spa-

tial–temporal reasoning mechanisms, semantic interaction modeling, and innovative

graph neural network architectures is essential for achieving robust performance in di-

verse traffic environments. The contributions made during this doctoral research include

three novel graph-based frameworks, each targeting a distinct yet complementary aspect

of multi-agent trajectory prediction. Multiclass-SGCN (Chapter 3) is designed for het-

erogeneous traffic prediction, integrating agent-class semantics with an adaptive sparse

graph architecture to efficiently capture asymmetric cross-type interactions. UniEdge

(Chapter 4) addresses homogeneous pedestrian trajectory forecasting by introducing a

unified spatial–temporal edge-enhanced graph structure that models high-order cross-

time dependencies and implicit edge-to-edge influences within dense crowds. BP-SGCN

(Chapter 5) builds on insights from both settings, leveraging unsupervised behavioral

pseudo-labels and a cascaded clustering–prediction scheme to enhance spatial–temporal

interaction modeling and improve generalization across diverse scenarios. These ad-

vancements collectively enhance the understanding and modeling of complex agent

interactions, addressing challenges such as asymmetric inter-class dynamics, high-order

cross-time dependencies, and cross-scenario generalization in real-world environments.
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6.1 Review of Contributions

This doctoral research set out to develop robust and accurate trajectory prediction frame-

works capable of operating effectively across both heterogeneous and homogeneous

traffic environments. The contributions made in Chapter 3 to Chapter 5 address distinct

aspects of this aim, progressively expanding from specialized solutions for individual

contexts to a unified framework applicable to diverse real-world scenarios.

First, in Chapter 3, we addressed the challenges of heterogeneous traffic environments

with multiple interacting agent types. Multiclass-SGCN integrates agent-class semantics

with motion features via a velocity–label graph and employs an adaptive interaction mask

to sparsify the spatial–temporal graph, improving efficiency without loss of accuracy.

Experiments show it effectively models asymmetric cross-type dynamics and outperforms

state-of-the-art baselines, fulfilling the first objective of understanding interactions in

heterogeneous settings.

Second, in Chapter 4, we addressed homogeneous pedestrian scenarioswhere dense so-

cial interactions demand unified modeling of individual and collective behaviors. UniEdge

employs a patch-based spatial–temporal graph to convert high-order cross-time depen-

dencies into simplified first-order relationships, improving message propagation and

reducing under-reaching. A dual-graph GCN and Transformer-based decoder jointly

capture spatial influences and long-range temporal dependencies. Experiments show

UniEdge delivers accurate, socially-aware forecasts, fulfilling the second objective of

modeling dependencies in homogeneous crowds.

Finally, in Chapter 5, we proposed BP-SGCN, a unified framework for both hetero-

geneous and homogeneous settings. It uses unsupervised deep clustering to generate

behavioral pseudo-labels, guiding the construction of sparse, semantically informed

interaction graphs that capture both inter- and intra-class variations. A cascaded training

scheme jointly optimizes clustering and prediction, enhancing representation learning and

generalization. Experiments confirm BP-SGCN’s state-of-the-art performance, fulfilling

the third objective of unifying trajectory prediction frameworks for broad applicability.
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6.2 Future Research Directions

Despite our achievements in advancing trajectory prediction across heterogeneous and

homogeneous settings, several open challenges remain that present promising avenues

for further exploration. This section outlines potential future research directions for our

proposed frameworks.

6.2.1 Integration of Multimodal and Contextual Information

While the frameworks proposed in this thesis primarily leverage motion trajectories

to model spatial–temporal dependencies, they do not explicitly incorporate other rich

multimodal cues that are readily available in real-world traffic environments, which

have been shown to significantly improve prediction performance and robustness [5, 35,

159, 196]. Such cues include scene semantics (e.g., road layout, crosswalks, sidewalks),

high-definition (HD) maps, dynamic traffic signals, social norms, and even environmental

factors like weather or lighting conditions. The absence of these contextual elements

limits the model’s ability to resolve ambiguous motion patterns, particularly in complex

or unfamiliar environments. Future work will therefore focus on integrating these

multimodal signals into the graph-based prediction pipeline, enriching both node and

edge representations with scene- and context-aware features. This integration is expected

to enhance the interpretability, safety-awareness, and generalization capacity of trajectory

prediction models across a wider range of traffic scenarios.

6.2.2 Adaptive and Continual Learning

In this research, the proposed models are trained in an offline setting using fixed bench-

mark datasets. However, this limits their ability to adapt to evolving real-world traffic

conditions. In practice, the spatial–temporal dynamics of both heterogeneous and ho-

mogeneous environments can change significantly over time due to seasonal variations,

construction works, changes in traffic regulations, or the emergence of novel interaction

patterns. A promising future direction is to equip trajectory prediction frameworks with

adaptive and continual learning capabilities [217–219], allowing them to incrementally

update their knowledge without the need for full retraining. Approaches such as on-
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line graph neural networks [220] and domain adaptation [159, 221] could be explored

to mitigate catastrophic forgetting while preserving previously learned behaviors. By

enabling models to adapt in real time to changing environments, this line of research

would enhance both the robustness and long-term deployability of trajectory prediction

systems in safety-critical applications.

6.2.3 Closed-Loop Evaluation in High-Fidelity Simulation

In this research, all proposed models are evaluated in an open-loop setting, generating

predictions from fixed benchmark datasets without interacting with the environment.

While such protocols are common in trajectory prediction research, they may not fully

reflect a model’s real-world performance when deployed in dynamic, safety-critical

applications. In practice, prediction errors can accumulate and propagate over time,

influencing downstream modules such as planning and control. A promising future

direction is to adopt closed-loop evaluation within high-fidelity simulation environments,

where the trajectory predictor interacts continuously with simulated agents and their

surroundings. Recent advances in sensor simulation, behavior modeling, and interactive

traffic simulators (e.g., CARLA [222]) enable realistic, controllable, and reproducible

testing scenarios, bridging the gap between offline evaluation and deployment. Such

closed-loop testing can expose failure modes hidden by open-loop metrics, accelerate

model iteration, and ensure more reliable performance in safety-critical autonomous

systems.

111



Bibliography

[1] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk alone: Modeling social
behavior for multi-target tracking,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 261–268,
IEEE, 2009. x, 1, 15, 45, 55, 73, 76, 85

[2] B. Stoler, “T2fpv: Dataset and method for correcting first-person view errors in pedestrian
trajectory prediction.” https://www.cs.cmu.edu/~csd-phd-blog/2024/t2fpv/, 2024.
Accessed May 11, 2025. x, 1

[3] B. A. Rainbow, Q. Men, and H. P. Shum, “Semantics-stgcnn: A semantics-guided spatial-
temporal graph convolutional network for multi-class trajectory prediction,” in IEEE Int.
Conf. Syst. Man Cybern., pp. 2959–2966, IEEE, 2021. x, 3, 29, 31, 35, 36, 37, 38

[4] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and A. Gaidon, “It is not
the journey but the destination: Endpoint conditioned trajectory prediction,” in Proc. Eur.
Conf. Comput. Vis., pp. 759–776, 2020. xii, 73, 77, 89, 90

[5] K. Mangalam, Y. An, H. Girase, and J. Malik, “From goals, waypoints & paths to long term
human trajectory forecasting,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 15233–15242,
2021. xii, 13, 73, 77, 84, 101, 110

[6] B. A. Rainbow, Q. Men, and H. P. Shum, “Semantics-stgcnn: A semantics-guided spatial-
temporal graph convolutional network for multi-class trajectory prediction,” in IEEE Int.
Conf. Syst. Man Cybern., pp. 2959–2966, IEEE, 2021. xiii, 4, 17, 74, 77, 83, 86, 88, 92, 93

[7] R. Li, S. Katsigiannis, and H. P. Shum, “Multiclass-sgcn: Sparse graph-based trajectory
prediction with agent class embedding,” in IEEE Int. Conf. Image Process., pp. 2346–2350,
IEEE, 2022. xiii, 42, 54, 74, 77, 79, 83, 85, 86, 88, 92, 93

[8] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online pomdp planning for
autonomous driving in a crowd,” in IEEE Int. Conf. Robot. Autom., pp. 454–460, IEEE, 2015.
1, 42

[9] J. Liu, X. Mao, Y. Fang, D. Zhu, and M. Q.-H. Meng, “A survey on deep-learning approaches
for vehicle trajectory prediction in autonomous driving,” in IEEE Int. Conf. Robot. Biomimet-
ics, pp. 978–985, IEEE, 2021. 1, 10, 29

112

https://www.cs.cmu.edu/~csd-phd-blog/2024/t2fpv/


Bibliography

[10] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha, “Porca: Modeling and planning
for autonomous driving among many pedestrians,” IEEE Robot. Autom. Lett., vol. 3, no. 4,
pp. 3418–3425, 2018. 1, 10, 73, 107

[11] P. Raksincharoensak, T. Hasegawa, and M. Nagai, “Motion planning and control of au-
tonomous driving intelligence system based on risk potential optimization framework,” Int.
J. Automot. Eng., vol. 7, no. AVEC14, pp. 53–60, 2016. 1, 10

[12] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People tracking with human motion
predictions from social forces,” in IEEE Int. Conf. Robot. Autom., pp. 464–469, IEEE, 2010. 1,
10

[13] M. Yasuno, N. Yasuda, and M. Aoki, “Pedestrian detection and tracking in far infrared
images,” in Conf. Comput. Vis. Pattern Recognit. Workshop, pp. 125–125, IEEE, 2004. 1, 10

[14] A. M. Kanu-Asiegbu, R. Vasudevan, and X. Du, “Leveraging trajectory prediction for
pedestrian video anomaly detection,” in IEEE Symp. Ser. Comput. Intell., pp. 11–08, IEEE,
2021. 1, 10

[15] B. Musleh, F. García, J. Otamendi, J. M. Armingol, and A. De la Escalera, “Identifying and
tracking pedestrians based on sensor fusion and motion stability predictions,” Sensors,
vol. 10, no. 9, pp. 8028–8053, 2010. 1, 10

[16] S. Lin, W. Lin, X. Hu, W. Wu, R. Mo, and H. Zhong, “Cyclenet: enhancing time series
forecasting through modeling periodic patterns,” Adv. Neural Inf. Process. Syst., vol. 37,
pp. 106315–106345, 2024. 2

[17] K. Yi, J. Fei, Q. Zhang, H. He, S. Hao, D. Lian, and W. Fan, “Filternet: Harnessing frequency
filters for time series forecasting,” Adv. Neural Inf. Process. Syst., vol. 37, pp. 55115–55140,
2024. 2

[18] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting,” Adv. Neural Inf. Process. Syst., vol. 34,
pp. 22419–22430, 2021. 2

[19] R. Li, S. Katsigiannis, T.-K. Kim, andH. P. Shum, “Bp-sgcn: Behavioral pseudo-label informed
sparse graph convolution network for pedestrian and heterogeneous trajectory prediction,”
IEEE Trans. Neural Netw. Learn. Syst., 2025. 2, 3, 16, 72

[20] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable
trajectories with generative adversarial networks,” in IEEE/CVF CVPR, pp. 2255–2264, 2018.
2, 4, 35, 36

[21] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable
trajectories with generative adversarial networks,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 2255–2264, 2018. 2, 3, 13, 19, 27, 52, 55, 56, 58, 85, 86, 89, 90

[22] P. Xu, J.-B. Hayet, and I. Karamouzas, “Socialvae: Human trajectory prediction using
timewise latents,” in Proc. Eur. Conf. Comput. Vis., pp. 511–528, 2022. 2, 13, 56, 68, 89, 90, 99,
100, 101

[23] R. Liang, Y. Li, J. Zhou, and X. Li, “Stglow: A flow-based generative framework with dual-
graphormer for pedestrian trajectory prediction,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 35, no. 11, pp. 16504–16517, 2024. 2, 89, 91, 107

113



Bibliography

[24] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E,
vol. 51, no. 5, p. 4282, 1995. 2

[25] I. Bae, J.-H. Park, and H.-G. Jeon, “Learning pedestrian group representations for multi-
modal trajectory prediction,” in Proc. Eur. Conf. Comput. Vis., pp. 270–289, 2022. 2, 25, 42,
43, 46, 50, 55, 56, 58, 59, 60, 61, 86, 89, 90, 92

[26] C. Xu, R. T. Tan, Y. Tan, S. Chen, Y. G. Wang, X. Wang, and Y. Wang, “Eqmotion: Equivariant
multi-agent motion prediction with invariant interaction reasoning,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., pp. 1410–1420, 2023. 2, 56, 57, 68, 79, 89, 90, 91, 99

[27] L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “Sgcn: Sparse graph
convolution network for pedestrian trajectory prediction,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., pp. 8994–9003, 2021. 3, 4, 20, 23, 27, 29, 31, 33, 34, 35, 36, 42, 43, 46,
48, 50, 52, 54, 55, 56, 65, 68, 73, 74, 75, 79, 84, 85, 86, 89, 90, 92, 107

[28] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm:
Human trajectory prediction in crowded spaces,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 961–971, 2016. 3, 4, 13, 19, 24, 27, 29, 35, 36, 48, 52, 55, 56, 74, 86, 88,
89, 90

[29] A.Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory prediction,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., pp. 14424–14432, 2020. 3, 4, 13, 19, 23, 24, 29, 31, 34, 35,
36, 42, 43, 46, 48, 50, 52, 54, 55, 56, 58, 65, 73, 74, 86, 88, 89, 90

[30] I. Bae, J. Oh, and H.-G. Jeon, “Eigentrajectory: Low-rank descriptors for multi-modal
trajectory forecasting,” arXiv preprint arXiv:2307.09306, 2023. 3, 4, 42, 46, 50, 55, 56, 58, 59,
60, 61, 65, 66, 67, 68, 89, 90, 98, 99, 100, 101

[31] S. Kim, H.-g. Chi, H. Lim, K. Ramani, J. Kim, and S. Kim, “Higher-order relational reasoning
for pedestrian trajectory prediction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pp. 15251–15260, 2024. 3, 4, 20, 56, 58, 68, 89, 90

[32] R. Li, S. Katsigiannis, and H. P. Shum, “Multiclass-sgcn: Sparse graph-based trajectory
prediction with agent class embedding,” in IEEE Int. Conf. Image Process., pp. 2346–2350,
IEEE, 2022. 3, 28

[33] J. Zhang, J. Yao, L. Yan, Y. Xu, and Z. Wang, “Sparse multi-relational graph convolutional
network for multi-type object trajectory prediction,” in Int. Joint Conf. Artif. Intell., pp. 1697–
1705, 2024. 3, 17, 20, 22, 86, 88

[34] F. Zheng, L.Wang, S. Zhou,W. Tang, Z. Niu, N. Zheng, andG. Hua, “Unlimited neighborhood
interaction for heterogeneous trajectory prediction,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis., pp. 13168–13177, 2021. 3, 4, 16, 21, 24, 74, 77, 85, 86, 87, 88

[35] J. Fang, C. Zhu, P. Zhang, H. Yu, and J. Xue, “Heterogeneous trajectory forecasting via risk
and scene graph learning,” IEEE Trans. Intell. Transp. Syst., 2023. 3, 17, 24, 85, 86, 87, 88, 90,
110

[36] Q. Du, X.Wang, S. Yin, L. Li, andH. Ning, “Social force embeddedmixed graph convolutional
network for multi-class trajectory prediction,” IEEE Trans. Intell. Veh., 2024. 3

114



Bibliography

[37] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha, “Trafficpredict: Trajectory
prediction for heterogeneous traffic-agents,” in Proc. AAAI Conf. Art. Intel., vol. 33, pp. 6120–
6127, 2019. 3

[38] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling spatial-temporal interactions
for human trajectory prediction,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 6272–6281,
2019. 4, 13, 19, 24, 42, 43, 49, 65, 73, 74, 84, 86, 88, 89

[39] I. Bae and H.-G. Jeon, “A set of control points conditioned pedestrian trajectory prediction,”
in Proc. AAAI Conf. Art. Intel., vol. 37, pp. 6155–6165, 2023. 4, 42, 55, 56, 58, 59, 60, 61, 68,
89, 91

[40] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker, “Desire: Distant
future prediction in dynamic scenes with interacting agents,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., pp. 336–345, 2017. 4, 13, 35, 36, 86, 88

[41] Y. Wang and S. Chen, “Multi-agent trajectory prediction with spatio-temporal sequence
fusion,” IEEE Trans. Multimedia, 2021. 4, 86, 88, 89, 91

[42] Q. Du, X.Wang, S. Yin, L. Li, andH. Ning, “Social force embeddedmixed graph convolutional
network for multi-class trajectory prediction,” IEEE Trans. Intell. Veh., pp. 1–11, 2024. 4, 16,
74, 86, 88

[43] R. Tamaru, P. Li, and B. Ran, “Enhancing pedestrian trajectory prediction with crowd trip
information,” arXiv preprint arXiv:2409.15224, 2024. 10

[44] M. Zong, Y. Chang, Y. Dang, and K. Wang, “Pedestrian trajectory prediction in crowded
environments using social attention graph neural networks,” Applied Sciences, vol. 14, no. 20,
p. 9349, 2024. 10

[45] J. Jiang, K. Yan, X. Xia, and B. Yang, “A survey of deep learning-based pedestrian trajectory
prediction: Challenges and solutions,” Sensors, vol. 25, no. 3, p. 957, 2025. 11

[46] R. Korbmacher and A. Tordeux, “Review of pedestrian trajectory prediction methods:
Comparing deep learning and knowledge-based approaches,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 12, pp. 24126–24144, 2022. 11, 18

[47] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physical Review E,
vol. 51, pp. 4282–4286, may 1995. 11, 16

[48] N. Rinke, C. Schiermeyer, F. Pascucci, V. Berkhahn, and B. Friedrich, “A multi-layer social
force approach to model interactions in shared spaces using collision prediction,” Transp.
Res. Procedia, vol. 25, pp. 1249–1267, 2017. 12

[49] M. Chraibi, A. Seyfried, and A. Schadschneider, “Generalized centrifugal-force model for
pedestrian dynamics,” Phys. Rev. E, vol. 82, no. 4, p. 046111, 2010. 12

[50] B. Anvari, M. G. Bell, A. Sivakumar, and W. Y. Ochieng, “Modelling shared space users via
rule-based social force model,” Transp. Res. Part C Emerg. Technol., vol. 51, pp. 83–103, 2015.
12

[51] F. T. Johora and J. P. Müller, “Modeling interactions of multimodal road users in shared
spaces,” in IEEE Int. Conf. Intell. Transp. Syst., pp. 3568–3574, 2018. 12

115



Bibliography

[52] F. T. Johora and J. P. Müller, “On transferability and calibration of pedestrian and car motion
models in shared spaces,” Transp. Lett., vol. 13, no. 3, pp. 172–182, 2021.

[53] J. Felcman and P. Kubera, “A cellular automaton model for a pedestrian flow problem,”
Math. Model. Nat. Phenom., vol. 16, p. 11, 2021. 12

[54] M. Zong, Y. Chang, Y. Dang, and K. Wang, “Pedestrian trajectory prediction in crowded
environments using social attention graph neural networks,” Applied Sciences, vol. 14, no. 20,
p. 9349, 2024. 12

[55] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, “Simulation of pedestrian
dynamics using a two-dimensional cellular automaton,” Physica A, vol. 295, no. 3-4, pp. 507–
525, 2001. 12

[56] X. Li and J.-Q. Sun, “Studies of vehicle lane-changing to avoid pedestrians with cellular
automata,” Phys. A, Stat. Mech. Appl., vol. 438, pp. 251–271, 2015. 12

[57] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,”
Int. J. Robot. Res., vol. 17, no. 7, pp. 760–772, 1998. 12

[58] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time
multi-agent navigation,” in IEEE Int. Conf. Robot. Autom., pp. 1928–1935, 2008. 12

[59] H. Xue, D. Q. Huynh, and M. Reynolds, “Ss-lstm: A hierarchical lstm model for pedestrian
trajectory prediction,” in 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 1186–1194, IEEE, 2018. 13, 19

[60] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” Proc. Adv. Neu. Inf. Process. Syst., vol. 27, 2014.
13, 90

[61] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-
feasible trajectory forecasting with heterogeneous data,” in Proc. Eur. Conf. Comput. Vis.,
pp. 683–700, 2020. 13, 24

[62] V. Kosaraju, A. Sadeghian, R. Martín-Martín, I. Reid, H. Rezatofighi, and S. Savarese, “Social-
bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks,”
Proc. Adv. Neu. Inf. Process. Syst., vol. 32, 2019. 13, 42, 49

[63] C. Xu, M. Li, Z. Ni, Y. Zhang, and S. Chen, “Groupnet: Multiscale hypergraph neural
networks for trajectory prediction with relational reasoning,” Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., pp. 6488–6497, 2022. 14, 20, 43, 50, 56, 57, 58, 89, 90, 99

[64] Y. Xu, A. Bazarjani, H.-g. Chi, C. Choi, and Y. Fu, “Uncovering the missing pattern: Unified
framework towards trajectory imputation and prediction,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., pp. 9632–9643, 2023. 14, 24

[65] X. Mo, Z. Huang, Y. Xing, and C. Lv, “Multi-agent trajectory prediction with heterogeneous
edge-enhanced graph attention network,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7,
pp. 9554–9567, 2022. 14, 21, 24, 43, 50

[66] J. Li, L. Yang, Y. Chen, and Y. Jin, “Mfan: Mixing feature attention network for trajectory
prediction,” Pattern Recognition, vol. 146, p. 109997, 2024. 14, 24, 56, 58, 68, 90

116



Bibliography

[67] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Proc. Adv. Neu. Inf. Process. Syst., vol. 30, 2017. 14,
19, 29, 33, 45, 52, 53, 64, 84, 98, 101

[68] Y. Yuan, X. Weng, Y. Ou, and K. M. Kitani, “Agentformer: Agent-aware transformers for
socio-temporal multi-agent forecasting,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 9813–
9823, 2021. 14, 23, 24, 89, 90

[69] L. Shi, L. Wang, S. Zhou, and G. Hua, “Trajectory unified transformer for pedestrian
trajectory prediction,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 9675–9684, 2023. 14, 23,
52, 55, 56, 57, 58, 68, 89, 90, 99, 100, 101

[70] Z. Yin, R. Liu, Z. Xiong, and Z. Yuan, “Multimodal transformer networks for pedestrian
trajectory prediction.,” in Int. Joint Conf. Artif. Intell., pp. 1259–1265, 2021. 14

[71] T. Gu, G. Chen, J. Li, C. Lin, Y. Rao, J. Zhou, and J. Lu, “Stochastic trajectory prediction via
motion indeterminacy diffusion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
pp. 17113–17122, 2022. 14, 89, 90

[72] W. Mao, C. Xu, Q. Zhu, S. Chen, and Y. Wang, “Leapfrog diffusion model for stochastic
trajectory prediction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 5517–5526,
2023. 14, 56, 57, 58, 89, 90, 101

[73] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” in Computer graphics
forum, vol. 26, pp. 655–664, Wiley Online Library, 2007. 15, 45, 55, 73, 76, 85

[74] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social etiquette: Human
trajectory understanding in crowded scenes,” in Proc. Eur. Conf. Comput. Vis., pp. 549–565,
2016. 15, 17, 30, 35, 45, 55, 74, 76, 85

[75] D. Yang, Ü. Özgüner, and K. Redmill, “Social force based microscopic modeling of vehicle-
crowd interaction,” in IEEE Intell. Vehicles Symp., pp. 1537–1542, 2018. 15

[76] D. Yang, Ü. Özgüner, and K. Redmill, “A social force based pedestrian motion model
considering multi-pedestrian interaction with a vehicle,” ACM Trans. Spatial Algorithms
Syst., vol. 6, no. 2, pp. 1–27, 2020. 15

[77] F. T. Johora and J. P. Müller, “Modeling interactions of multimodal road users in shared
spaces,” in Int. Conf. Intell. Transp. Syst., pp. 3568–3574, 2018. 15

[78] F. T. Johora and J. P. Müller, “On transferability and calibration of pedestrian and car motion
models in shared spaces,” Transp. Lett., vol. 13, no. 3, pp. 172–182, 2021. 15

[79] B. Anvari, M. G. Bell, A. Sivakumar, and W. Y. Ochieng, “Modelling shared space users via
rule-based social force model,” Transp. Res. C, Emerg. Technol., vol. 51, pp. 83–103, 2015. 15

[80] J. Wei, N. Vödisch, A. Rehr, C. Feist, and A. Valada, “Parkdiffusion: Heterogeneous multi-
agent multi-modal trajectory prediction for automated parking using diffusion models,”
arXiv preprint arXiv:2505.00586, 2025. 16

[81] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang, and Y. N. Wu, “Multi-agent
tensor fusion for contextual trajectory prediction,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 12126–12134, 2019. 16, 88

117



Bibliography

[82] H. Bi, Z. Fang, T. Mao, Z. Wang, and Z. Deng, “Joint prediction for kinematic trajectories in
vehicle-pedestrian-mixed scenes,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 10383–10392,
2019. 16

[83] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997. 16, 23, 43, 64, 81

[84] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff, “Covernet: Mul-
timodal behavior prediction using trajectory sets,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., pp. 14074–14083, 2020. 16

[85] S. H. Park, G. Lee, J. Seo, M. Bhat, M. Kang, J. Francis, A. Jadhav, P. P. Liang, and L.-
P. Morency, “Diverse and admissible trajectory forecasting through multimodal context
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 282–298, 2020. 16, 88

[86] A. Jafari and Y.-C. Liu, “A heterogeneous social force model for personal mobility vehicles
on futuristic sidewalks,” Simul. Model. Pract. Theory, vol. 131, p. 102879, 2024. 16

[87] X. Xu, W. Liu, and L. Yu, “Trajectory prediction for heterogeneous traffic-agents using
knowledge correction data-driven model,” Information Sciences, vol. 608, pp. 375–391, 2022.
16

[88] D. Grimm, M. Zipfl, F. Hertlein, A. Naumann, J. Luettin, S. Thoma, S. Schmid, L. Halilaj,
A. Rettinger, and J. M. Zöllner, “Heterogeneous graph-based trajectory prediction using
local map context and social interactions,” in Int. Conf. Intell. Transp. Syst., pp. 2901–2907,
2023. 16

[89] J. Fan, Z. Liu, Y. Fang, Z. Huang, Y. Liu, and S. Lin, “Multi-class agent trajectory predic-
tion with selective state spaces for autonomous driving,” Eng. Appl. Artif. Intell., vol. 156,
p. 111027, 2025. 17

[90] D. Xu, X. Shang, H. Peng, and H. Li, “Mvhgn: Multi-view adaptive hierarchical spatial
graph convolution network based trajectory prediction for heterogeneous traffic-agents,”
IEEE Trans. Intell. Transp. Syst., vol. 24, no. 6, pp. 6217–6226, 2023. 17, 22

[91] X. Chen, H. Zhang, Y. Hu, J. Liang, and H. Wang, “Vnagt: Variational non-autoregressive
graph transformer network for multi-agent trajectory prediction,” IEEE Trans. Veh. Technol,
vol. 72, no. 10, pp. 12540–12552, 2023. 17, 21, 86, 88

[92] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, et al., “Argoverse: 3d tracking and forecasting with rich maps,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 8748–8757, 2019. 17, 76, 85

[93] C. Finet, S. D. S. Martins, J.-B. Hayet, I. Karamouzas, J. Amirian, S. L. Hégarat-Mascle,
J. Pettré, and E. Aldea, “Recent advances in multi-agent human trajectory prediction: A
comprehensive review,” arXiv preprint arXiv:2506.14831, 2025. 18

[94] M. Golchoubian, M. Ghafurian, K. Dautenhahn, and N. L. Azad, “Pedestrian trajectory
prediction in pedestrian-vehicle mixed environments: A systematic review,” IEEE Trans.
Intell. Transp. Syst., vol. 24, no. 11, pp. 11544–11567, 2023. 18

[95] Z. Fu, K. Jiang, C. Xie, Y. Xu, J. Huang, and D. Yang, “Summary and reflections on pedestrian
trajectory prediction in the field of autonomous driving,” IEEE Trans. Intell. Veh., 2024. 18

118



Bibliography

[96] H. Zhou, X. Yang, M. Fan, H. Huang, D. Ren, and H. Xia, “Static-dynamic global graph
representation for pedestrian trajectory prediction,” Knowl.-Based Syst., vol. 277, p. 110775,
2023. 19

[97] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph transformer networks for
pedestrian trajectory prediction,” in Proc. Eur. Conf. Comput. Vis., pp. 507–523, 2020. 19

[98] B. Yang, G. Yan, P. Wang, C.-Y. Chan, X. Song, and Y. Chen, “A novel graph-based trajectory
predictor with pseudo-oracle,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 7064–
7078, 2021. 19, 89, 91, 107

[99] P. Lv, W. Wang, Y. Wang, Y. Zhang, M. Xu, and C. Xu, “Ssagcn: Social soft attention graph
convolution network for pedestrian trajectory prediction,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 35, no. 9, pp. 11989–12003, 2024. 19, 101

[100] Y. Liu, H. Guo, Q. Meng, and J. Li, “Spatial-temporal graph attention network for pedestrian
trajectory prediction,” in CAA Int. Conf. Veh. Control Intell., pp. 1–6, 2022. 19

[101] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, et al., “Graph attention
networks,” stat, vol. 1050, no. 20, pp. 10–48550, 2017. 19, 43

[102] M. Black, Z. Wan, A. Nayyeri, and Y. Wang, “Understanding oversquashing in gnns through
the lens of effective resistance,” in Proc. Int. Conf. Mach. Learn., pp. 2528–2547, PMLR, 2023.
20, 43, 44, 48

[103] C. Sun, B. Wang, J. Leng, X. Zhang, and B. Wang, “Sdagcn: Sparse directed attention graph
convolutional network for spatial interaction in pedestrian trajectory prediction,” IEEE
Internet Things J., vol. 11, no. 24, pp. 39225–39235, 2024. 20

[104] C. Xu, Y. Wei, B. Tang, S. Yin, Y. Zhang, S. Chen, and Y. Wang, “Dynamic-group-aware
networks for multi-agent trajectory prediction with relational reasoning,” Neural Networks,
vol. 170, pp. 564–577, 2024. 20, 89, 90

[105] S. Lee, J. Lee, Y. Yu, T. Kim, and K. Lee, “Mart: Multiscale relational transformer networks
for multi-agent trajectory prediction,” in Proc. Eur. Conf. Comput. Vis., pp. 89–107, 2024. 20

[106] G. Li, G. Luo, Q. Yuan, and J. Li, “Trajectory prediction with heterogeneous graph neural
network,” in Pac. Rim Int. Conf. Artif. Intell., pp. 375–387, 2022. 21

[107] J. Li, H. Shi, Y. Guo, G. Han, R. Yu, and X. Wang, “Tragcan: Trajectory prediction of
heterogeneous traffic agents in iov systems,” IEEE Internet Things J., vol. 10, pp. 7100–7113,
2023. 22

[108] X. Jia, P. Wu, L. Chen, H. Li, Y. Liu, and J. Yan, “Hdgt: Heterogeneous driving graph
transformer for multi-agent trajectory prediction via scene encoding,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 45, pp. 13860–13875, 2022. 22

[109] V. Capone, A. Casolaro, and F. Camastra, “Spatio-temporal prediction using graph neural
networks: A survey,” Neurocomputing, p. 130400, 2025. 23

[110] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014. 23, 81

[111] H. Xue, D. Q. Huynh, and M. Reynolds, “Poppl: Pedestrian trajectory prediction by lstm
with automatic route class clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 1,
pp. 77–90, 2020. 23, 25, 107

119



Bibliography

[112] J. Wang, K. Liu, H. Li, Q. Gao, and X. Wang, “Vehicle trajectory prediction using hierarchical
lstm and graph attention network,” IEEE Internet Things J., vol. 12, no. 6, pp. 7010–7025,
2025. 23

[113] Y. Zhou, H. Wu, H. Cheng, K. Qi, K. Hu, C. Kang, and J. Zheng, “Social graph convolutional
lstm for pedestrian trajectory prediction,” IET Intell. Transp. Syst., vol. 15, no. 3, pp. 396–405,
2021. 23

[114] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng, “Sr-lstm: State refinement for lstm
towards pedestrian trajectory prediction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pp. 12085–12094, 2019. 23

[115] J. Mi, X. Zhang, H. Zeng, and L. Wang, “Dergcn: Dynamic-evolving graph convolutional
networks for human trajectory prediction,” Neurocomputing, vol. 569, p. 127117, 2024. 23

[116] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling,” CoRR, vol. abs/1803.01271, 2018. 23, 29, 30, 34,
43, 64

[117] K. Yi, Q. Zhang, W. Fan, H. He, L. Hu, P. Wang, N. An, L. Cao, and Z. Niu, “FourierGNN:
Rethinking multivariate time series forecasting from a pure graph perspective,” in Proc.
Adv. Neu. Inf. Process. Syst., 2023. 24, 43

[118] Y. Wang, Y. Xu, J. Yang, M. Wu, X. Li, L. Xie, and Z. Chen, “Fully-connected spatial-temporal
graph for multivariate time-series data,” in Proc. AAAI Conf. Artif. Intell., vol. 38, pp. 15715–
15724, 2024. 24, 43

[119] W. Lu, Z. Guan, W. Zhao, Y. Yang, and L. Jin, “Nodemixup: Tackling under-reaching for
graph neural networks,” in Proc. AAAI Conf. Artif. Intell., vol. 38, pp. 14175–14183, 2024. 24,
43, 44, 48

[120] T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Soft+ hardwired attention: An lstm
framework for human trajectory prediction and abnormal event detection,” Neural networks,
vol. 108, pp. 466–478, 2018. 25

[121] I. A. Lawal, F. Poiesi, D. Anguita, and A. Cavallaro, “Support vector motion clustering,”
IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 11, pp. 2395–2408, 2016. 25

[122] A. K.-F. Lui, Y.-H. Chan, and M.-F. Leung, “Modelling of destinations for data-driven
pedestrian trajectory prediction in public buildings,” in IEEE Int. Conf. Big Data, pp. 1709–
1717, IEEE, 2021. 25

[123] J. Sun, Y. Li, H.-S. Fang, and C. Lu, “Three steps to multimodal trajectory prediction:
Modality clustering, classification and synthesis,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
pp. 13250–13259, 2021. 26, 73, 83, 89, 91

[124] Y. Wang, P. Zhang, L. Bai, and J. Xue, “Fend: A future enhanced distribution-aware con-
trastive learning framework for long-tail trajectory prediction,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., pp. 1400–1409, 2023. 26, 83, 89, 91

[125] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering analysis,”
in Proc. Int. Conf. Mach. Learn., pp. 478–487, 2016. 26, 75, 80, 82, 83

120



Bibliography

[126] B. Zhou, X. Tang, and X. Wang, “Learning collective crowd behaviors with dynamic
pedestrian-agents,” International Journal of Computer Vision, vol. 111, no. 1, pp. 50–68, 2015.
29

[127] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph transformer networks for
pedestrian trajectory prediction,” in ECCV, August 2020. 29

[128] I. Giuliari, F.and Hasan, M. Cristani, and F. Galasso, “Transformer networks for trajectory
forecasting,” in ICPR, pp. 10335–10342, 2021. 29

[129] Q. Men and H. P. H. Shum, “Pytorch-based implementation of label-aware graph repre-
sentation for multi-class trajectory prediction,” Software Impacts, vol. 11, p. 100201, 2021.
29

[130] P. Zhang, C. Lan, W. Zeng, J. Xing, J. Xue, and N. Zheng, “Semantics-guided neural networks
for efficient skeleton-based human action recognition,” in IEEE/CVF CVPR, pp. 1109–1118,
2020. 29

[131] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works,” in Proc. Int. Conf. Learn. Represent., 2017. 30, 34, 43, 62, 73

[132] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in IEEE CVPR, pp. 2818–2826, 2016. 33

[133] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015. 35

[134] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg, “Who are you with and where are you
going?,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1345–1352, IEEE, 2011. 35, 36

[135] A. Sadeghian, F. Legros, M. Voisin, R. Vesel, A. Alahi, and S. Savarese, “Car-net: Clairvoyant
attentive recurrent network,” in ECCV, pp. 162–180, 2018. 35, 36

[136] R. Li, T. Qiao, S. Katsigiannis, Z. Zhu, and H. P. Shum, “Unified spatial-temporal edge-
enhanced graph networks for pedestrian trajectory prediction,” IEEE Trans. Circuits Syst.
Video Technol., 2025. 41

[137] W. Chen, Z. Yang, L. Xue, J. Duan, H. Sun, and N. Zheng, “Multimodal pedestrian trajectory
prediction using probabilistic proposal network,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 33, no. 6, pp. 2877–2891, 2023. 42, 52

[138] H. Sun, Z. Zhao, Z. Yin, and Z. He, “Reciprocal twin networks for pedestrian motion
learning and future path prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 3,
pp. 1483–1497, 2021. 42, 70

[139] X. Zhou, H. Ren, T. Zhang, X. Mou, Y. He, and C.-Y. Chan, “Prediction of pedestrian crossing
behavior based on surveillance video,” Sensors, 2022. 42

[140] X. Liu, J. Yin, J. Liu, P. Ding, J. Liu, and H. Liu, “Trajectorycnn: a new spatio-temporal
feature learning network for human motion prediction,” IEEE Trans. Circuits Syst. Video
Technol., vol. 31, no. 6, pp. 2133–2146, 2020. 42

[141] N. Wang, G. Zhu, H. Li, M. Feng, X. Zhao, L. Ni, P. Shen, L. Mei, and L. Zhang, “Exploring
spatio–temporal graph convolution for video-based human–object interaction recognition,”
IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 10, pp. 5814–5827, 2023. 42

121



Bibliography

[142] Y. Xia, Y. Liang, H. Wen, X. Liu, K. Wang, Z. Zhou, and R. Zimmermann, “Deciphering
spatio-temporal graph forecasting: A causal lens and treatment,” in Proc. Adv. Neu. Inf.
Process. Syst., 2023. 44, 51, 52

[143] J. Huang, M. K. Chung, and A. Qiu, “Heterogeneous graph convolutional neural network
via hodge-laplacian for brain functional data,” in Int. Conf. Inf. Process. Med. Imaging,
pp. 278–290, Springer, 2023. 44, 45, 51

[144] X. Wu, W. Lu, Y. Quan, Q. Miao, and P. G. Sun, “Deep dual graph attention auto-encoder
for community detection,” Expert Syst. Appl., vol. 238, p. 122182, 2024. 45

[145] O. Post, “First-order operators and boundary triples,” Russian Journal of Mathematical
Physics, vol. 14, no. 4, pp. 482–492, 2007. 45

[146] H. Wang, W. Zhi, G. Batista, and R. Chandra, “Pedestrian trajectory prediction using
dynamics-based deep learning,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 15068–15075, IEEE, 2024. 46, 56, 57

[147] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of a graph,” SIAM review,
vol. 50, no. 1, pp. 37–66, 2008. 48

[148] E. Bozzo, “The moore–penrose inverse of the normalized graph laplacian,” Linear Algebra
Appl., vol. 439, no. 10, pp. 3038–3043, 2013. 49

[149] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” Adv. Neural Inf. Process. Syst., vol. 25, 2012. 49

[150] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?,” arXiv
preprint arXiv:2105.14491, 2021. 49

[151] Y. Wu, L. Wang, S. Zhou, J. Duan, G. Hua, and W. Tang, “Multi-stream representation
learning for pedestrian trajectory prediction,” in Proc. AAAI Conf. Art. Intel., vol. 37, pp. 2875–
2882, 2023. 50, 56, 57, 58, 89, 90, 99, 100, 101

[152] T. Li, Y. Tian, H. Li, M. Deng, and K. He, “Autoregressive image generation without vector
quantization,” arXiv preprint arXiv:2406.11838, 2024. 53

[153] Y. Liu, T. Hu, H. Zhang, H. Wu, S. Wang, L. Ma, and M. Long, “itransformer: Inverted
transformers are effective for time series forecasting,” arXiv preprint arXiv:2310.06625, 2023.
53, 64

[154] A. Mohamed, D. Zhu, W. Vu, M. Elhoseiny, and C. Claudel, “Social-implicit: Rethinking
trajectory prediction evaluation and the effectiveness of implicit maximum likelihood
estimation,” in Proc. Eur. Conf. Comput. Vis., pp. 463–479, 2022. 55, 68, 73, 85, 89, 91

[155] C. Xu,W.Mao,W. Zhang, and S. Chen, “Remember intentions: Retrospective-memory-based
trajectory prediction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 6488–6497,
2022. 56, 57, 58, 89, 91

[156] F. Marchetti, F. Becattini, L. Seidenari, and A. Del Bimbo, “Smemo: social memory for
trajectory forecasting,” IEEE Trans. Pattern Anal. Mach. Intell., 2024. 56, 57, 58, 89, 91

[157] Z. Pei, J. Zhang, W. Zhang, M. Wang, J. Wang, and Y.-H. Yang, “Autofocusing for synthetic
aperture imaging based on pedestrian trajectory prediction,” IEEE Trans. Circuits Syst. Video
Technol., vol. 34, no. 5, pp. 3551–3562, 2024. 56, 57

122



Bibliography

[158] Y. Peng, G. Zhang, J. Shi, X. Li, and L. Zheng, “Mrgtraj: A novel non-autoregressive approach
for human trajectory prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 4,
pp. 2318–2331, 2024. 56, 57, 68, 89, 90

[159] I. Bae, Y.-J. Park, and H.-G. Jeon, “Singulartrajectory: Universal trajectory predictor using
diffusion model,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 17890–17901, 2024.
56, 57, 110, 111

[160] Y. Xu, L. Wang, Y. Wang, and Y. Fu, “Adaptive trajectory prediction via transferable gnn,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 6520–6531, 2022. 62

[161] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”
Adv. Neural Inf. Process. Syst., vol. 30, 2017. 62

[162] T. Ahmad, L. Jin, L. Lin, and G. Tang, “Skeleton-based action recognition using sparse
spatio-temporal gcn with edge effective resistance,” Neurocomputing, vol. 423, pp. 389–398,
2021. 69

[163] Q. Huang, L. Shen, R. Zhang, J. Cheng, S. Ding, Z. Zhou, and Y. Wang, “Hdmixer: Hierar-
chical dependency with extendable patch for multivariate time series forecasting,” in Proc.
AAAI Conf. Artif. Intell., vol. 38, pp. 12608–12616, 2024. 70

[164] A. Díaz Berenguer, M. Alioscha-Perez, M. C. Oveneke, and H. Sahli, “Context-aware human
trajectories prediction via latent variational model,” IEEE Trans. Circuits Syst. Video Technol,
vol. 31, no. 5, pp. 1876–1889, 2021. 70

[165] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and memory-efficient
exact attention with io-awareness,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 16344–16359,
2022. 70

[166] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers: A survey,” ACM
Comput. Surv., vol. 55, no. 6, 2022. 70

[167] W. Yang, S. Li, and X. Luo, “Data driven vibration control: A review,” IEEE/CAA J. Autom.
Sin., vol. 11, no. 9, pp. 1898–1917, 2024. 73

[168] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 779–788, 2016.
73

[169] M. Li, A. Micheli, Y. G. Wang, S. Pan, P. Lió, G. S. Gnecco, and M. Sanguineti, “Guest
editorial: Deep neural networks for graphs: Theory, models, algorithms, and applications,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4, pp. 4367–4372, 2024. 73

[170] Y. Zheng, M. Jin, S. Pan, Y.-F. Li, H. Peng, M. Li, and Z. Li, “Toward graph self-supervised
learning with contrastive adjusted zooming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35,
no. 7, pp. 8882–8896, 2024. 73

[171] J. Li, R. Zheng, H. Feng, M. Li, and X. Zhuang, “Permutation equivariant graph framelets
for heterophilous graph learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 9,
pp. 11634–11648, 2024. 73

[172] D. Wu, Y. He, and X. Luo, “A graph-incorporated latent factor analysis model for high-
dimensional and sparse data,” IEEE Trans. Emerg. Top. Comput., vol. 11, no. 4, pp. 907–917,
2023. 73

123



Bibliography

[173] X. Luo, H.Wu, Z.Wang, J. Wang, and D.Meng, “A novel approach to large-scale dynamically
weighted directed network representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 12, pp. 9756–9773, 2022. 73

[174] B. Xu, X. Shu, J. Zhang, G. Dai, and Y. Song, “Spatiotemporal decouple-and-squeeze con-
trastive learning for semisupervised skeleton-based action recognition,” IEEE Trans. Neural
Netw. Learn. Syst., 2023. 73

[175] X. Shu, B. Xu, L. Zhang, and J. Tang, “Multi-granularity anchor-contrastive representation
learning for semi-supervised skeleton-based action recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., 2022. 73

[176] B. Xu, X. Shu, and Y. Song, “X-invariant contrastive augmentation and representation
learning for semi-supervised skeleton-based action recognition,” IEEE Trans. Image Process.,
vol. 31, pp. 3852–3867, 2022. 73

[177] B. Xu and X. Shu, “Pyramid self-attention polymerization learning for semi-supervised
skeleton-based action recognition,” arXiv preprint arXiv:2302.02327, 2023. 73

[178] T. Qiao, Q. Men, F. W. B. Li, Y. Kubotani, S. Morishima, and H. P. H. Shum, “Geometric
features informed multi-person human-object interaction recognition in videos,” in Proc.
Eur. Conf. Comput. Vis., 2022. 73

[179] H. Zhao and R. P. Wildes, “Where are you heading? dynamic trajectory prediction with
expert goal examples,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 7629–7638, 2021. 73,
84, 89, 90, 99

[180] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, “A recurrent latent
variable model for sequential data,” Proc. Adv. Neu. Inf. Process. Syst., vol. 28, 2015. 75, 79, 81

[181] W. Yang, S. Li, Z. Li, and X. Luo, “Highly accurate manipulator calibration via extended
kalman filter-incorporated residual neural network,” IEEE Trans. Ind. Inform., vol. 19, no. 11,
pp. 10831–10841, 2023. 76

[182] S. Becker, R. Hug, W. Hübner, and M. Arens, “An evaluation of trajectory prediction
approaches and notes on the trajnet benchmark,” arXiv preprint arXiv:1805.07663, 2018. 76,
85

[183] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” J. Mach. Learn. Res., vol. 9,
no. 11, 2008. 79, 82, 91

[184] N. Sai Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi, “Deep temporal clustering: Fully
unsupervised learning of time-domain features,” arXiv e-prints, pp. arXiv–1802, 2018. 80

[185] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013. 80, 81

[186] M. Cuturi and M. Blondel, “Soft-dtw: a differentiable loss function for time-series,” in Proc.
Int. Conf. Mach. Learn., pp. 894–903, 2017. 81

[187] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word
recognition,” IEEE transactions on acoustics, speech, and signal processing, vol. 26, no. 1,
pp. 43–49, 1978. 81

124



Bibliography

[188] J. Zhao and L. Itti, “shapedtw: Shape dynamic time warping,” Pattern Recognition, vol. 74,
pp. 171–184, 2018. 81

[189] J. MacQueen et al., “Some methods for classification and analysis of multivariate observa-
tions,” in Proc. Fifth Berkeley Symp. Math. Statist. Probab., vol. 1, pp. 281–297, 1967. 82

[190] D. A. Reynolds et al., “Gaussian mixture models.,” Encyclopedia of biometrics, vol. 741,
no. 659-663, 2009. 82

[191] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” arXiv
preprint arXiv:1611.01144, 2016. 83

[192] Y. Li, R. Liang, W. Wei, W. Wang, J. Zhou, and X. Li, “Temporal pyramid network with
spatial-temporal attention for pedestrian trajectory prediction,” IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 3, pp. 1006–1019, 2021. 84

[193] K. Guo, W. Liu, and J. Pan, “End-to-end trajectory distribution prediction based on occu-
pancy grid maps,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 2242–2251,
2022. 85, 86, 88, 101

[194] J. Liang, L. Jiang, K. Murphy, T. Yu, and A. Hauptmann, “The garden of forking paths:
Towards multi-future trajectory prediction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pp. 10508–10518, 2020. 85, 86, 88

[195] Y. Zhang, W. Guo, J. Su, P. Lv, and M. Xu, “Bip-tree: Tree variant with behavioral intention
perception for heterogeneous trajectory prediction,” IEEE Trans. Intell. Transp. Syst., 2023.
86, 87, 88

[196] Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu, “Hivt: Hierarchical vector transformer for
multi-agent motion prediction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
pp. 8813–8823, 2022. 86, 110

[197] D. Li, Q. Zhang, S. Lu, Y. Pan, and D. Zhao, “Conditional goal-oriented trajectory prediction
for interacting vehicles,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 12, pp. 18758–
18770, 2024. 86

[198] A. Monti, A. Bertugli, S. Calderara, and R. Cucchiara, “Dag-net: Double attentive graph
neural network for trajectory forecasting,” in Int. Conf. Pattern Recognit., pp. 2551–2558,
IEEE, 2021. 86, 89

[199] J. Liang, L. Jiang, and A. Hauptmann, “Simaug: Learning robust representations from
simulation for trajectory prediction,” in Proc. Eur. Conf. Comput. Vis., pp. 275–292, 2020. 86,
88

[200] C. Wong, B. Xia, Z. Hong, Q. Peng, W. Yuan, Q. Cao, Y. Yang, and X. You, “View vertically:
A hierarchical network for trajectory prediction via fourier spectrums,” in Proc. Eur. Conf.
Comput. Vis., pp. 682–700, 2022. 86, 88, 101

[201] M. N. Azadani and A. Boukerche, “Capha: A novel context-aware behavior prediction
system of heterogeneous agents for autonomous vehicles,” IEEE Trans. Veh. Technol, 2023.
86, 88

[202] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2p2: A reparameterized pushforward policy
for diverse, precise generative path forecasting,” in Proc. Eur. Conf. Comput. Vis., pp. 772–788,
2018. 88

125



Bibliography

[203] C. Tang and R. R. Salakhutdinov, “Multiple futures prediction,” Proc. Adv. Neu. Inf. Process.
Syst., vol. 32, 2019. 88

[204] X. Xu, W. Liu, and L. Yu, “Trajectory prediction for heterogeneous traffic-agents using
knowledge correction data-driven model,” Information Sciences, vol. 608, pp. 375–391, 2022.
88, 90

[205] Y. Dong, L. Wang, S. Zhou, and G. Hua, “Sparse instance conditioned multimodal trajectory
prediction,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 9763–9772, 2023. 89, 91

[206] B. Yang, F. Fan, R. Ni, H. Wang, A. Jafaripournimchahi, and H. Hu, “A multi-task learning
network with a collision-aware graph transformer for traffic-agents trajectory prediction,”
IEEE Trans. Intell. Transp. Syst., 2024. 89, 91

[207] X. Lin, T. Liang, J. Lai, and J.-F. Hu, “Progressive pretext task learning for human trajectory
prediction,” in Proc. Eur. Conf. Comput. Vis., pp. 197–214, 2024. 89, 91

[208] J. Amirian, J.-B. Hayet, and J. Pettré, “Social ways: Learning multi-modal distributions of
pedestrian trajectories with gans,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, pp. 0–0, 2019. 89

[209] W. Chen, H. Sang, J. Wang, and Z. Zhao, “Wtgcn: wavelet transform graph convolution
network for pedestrian trajectory prediction,” Int. J. Mach. Learn. Cybern., pp. 1–18, 2024.
89, 91

[210] W. Chen, H. Sang, J. Wang, and Z. Zhao, “Iggcn: Individual-guided graph convolution
network for pedestrian trajectory prediction,” Digital Signal Processing, vol. 156, p. 104862,
2025. 89, 91

[211] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep condi-
tional generative models,” Proc. Adv. Neu. Inf. Process. Syst., vol. 28, 2015. 90

[212] Z. Chang, G. A. Koulieris, and H. P. H. Shum, “On the design fundamentals of diffusion
models: A survey,” arXiv, 2023. 90

[213] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with structured state spaces,”
arXiv preprint arXiv:2111.00396, 2021. 98

[214] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state spaces,”
arXiv preprint arXiv:2312.00752, 2023. 98

[215] M. Ronen, S. E. Finder, and O. Freifeld, “Deepdpm: Deep clustering with an unknown
number of clusters,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 9861–9870,
2022. 101

[216] A. Xiao, H. Chen, T. Guo, Q. Zhang, and Y. Wang, “Deep plug-and-play clustering with
unknown number of clusters,” Trans. Mach. Learn. Res., 2022. 101

[217] D. Kang, D. Kum, and S. Kim, “Continual learning for motion prediction model via meta-
representation learning and optimal memory buffer retention strategy,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pp. 15438–15448, 2024. 110

[218] B. Yang, F. Fan, R. Ni, J. Li, L. Kiong, and X. Liu, “Continual learning-based trajectory
prediction with memory augmented networks,” Knowl.-Based Syst., vol. 258, p. 110022, 2022.
110

126



Bibliography

[219] N. Song, B. Zhang, X. Zhu, and L. Zhang, “Motion forecasting in continuous driving,” Proc.
Adv. Neu. Inf. Process. Syst., vol. 37, pp. 78147–78168, 2024. 110

[220] X. Zhang, D. Song, and D. Tao, “Hierarchical prototype networks for continual graph
representation learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 4622–4636,
2023. 111

[221] Y. Xu, L. Wang, Y. Wang, and Y. Fu, “Adaptive trajectory prediction via transferable gnn,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 6520–6531, 2022. 111

[222] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban
driving simulator,” in Proc. 1st Annu. Conf. Robot Learn., pp. 1–16, 2017. 111

127



APPENDIXA

Hardware Acknowledgements

In addition to the individuals acknowledged for their contributions to this thesis, we also

recognize the essential hardware support that made this research possible.

We extend our sincere gratitude to Durham University’s NVIDIA CUDA Center (NCC)

GPU system (https://nccadmin.webspace.durham.ac.uk), whose computational resources

were instrumental in conducting the experiments presented in this work. The NCC cluster,

established through Durham University’s strategic investment funds and managed by the

Department of Computer Science, provided a high-performance computing environment

that enabled the efficient processing of large-scale datasets and the execution of complex

deep learningmodels. This infrastructure was vital for the rigorous testing and refinement

of the methodologies developed in this thesis, and we are grateful for the access to such

advanced resources, which have been critical to the success of this research.

128


	Abstract
	Declaration
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivations
	Research Aims
	Contributions
	Publications
	Thesis Structure

	Literature Review
	Multi-Agent Trajectory Prediction
	Trajectory Prediction in Homogeneous Pedestrian Crowds
	Trajectory Prediction in Heterogeneous Environments
	Literature Surveys on Multi-Agent Trajectory Prediction

	Spatial-Temporal Graph Representation Learning
	Graph-Based Spatial Interaction Modeling
	Spatial-Temporal Fusion for Trajectory Prediction
	Representation Design for Graph Construction

	Unsupervised Behavior Clustering
	Evaluation and Metric
	Average Displacement Error (ADE)
	Final Displacement Error (FDE)
	Evaluation of Multimodal Predictions


	Semantic-Aware Sparse Graph Modeling for Heterogeneous Trajectory Prediction
	Introduction
	Multiclass-SGCN
	Velocity-Label Graph (VLG) Embedding
	Enhanced Sparse Graph Learning

	Experimental Results
	Quantitative Results
	Qualitative Results

	Summary

	Unified Spatial-Temporal Graph Reasoning in Homogeneous Pedestrian Trajectory Forecasting
	Introduction
	Methodology
	Problem Formulation and Feature Initialization
	Unified Spatial-temporal Graph
	E2E-N2N Graph Convolution (E2E-N2N-GCN)
	Transformer Encoder Predictor
	Implementation Details

	Experiments
	Experimental Setup
	Baseline Methods
	Quantitative Comparison
	Qualitative Comparison
	Ablation Study and Model Analysis
	Discussion

	Summary

	Unsupervised Behavior Structure Learning for Generalizable Trajectory Prediction
	Introduction
	Behavior Pseudo-Label Informed Sparse Graph Convolution Network
	The High-Level Network Architecture
	Deep Unsupervised Behavior Clustering
	Pseudo-label Informed Trajectory Prediction

	Experiments
	Datasets
	Experimental Setup
	Quantitative Evaluation
	Qualitative Evaluation
	Ablation Study and Parameter Analysis
	Model Complexity and Inference Time Analysis
	Discussion
	More Qualitative Visualizations

	Summary

	Conclusion
	Review of Contributions
	Future Research Directions
	Integration of Multimodal and Contextual Information
	Adaptive and Continual Learning
	Closed-Loop Evaluation in High-Fidelity Simulation


	Hardware Acknowledgements

