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Abstract: This thesis is concerned with the study of analytic and arithmetic
properties of Dirichlet series involving Fourier-Jacobi coefficients of Hermitian and

orthogonal modular forms. It is naturally divided into two main parts.

In the first part, motivated by a work of B. Heim, we consider a Dirichlet series
associated with three Hermitian cuspidal eigenforms of degrees 2,2 and 1 over Q(7)
and study its p-factor for every rational prime p. Using factorisation methods in
parabolic Hecke rings, we show that for inert primes, this factor can be identified
with the GLy-twist of the degree 6 Euler factor attached to a Hermitian modular
form of degree 2 by Gritsenko. For split primes, we obtain a rational expression for
the local factor, allowing us to show that the Dirichlet series has an Euler product.
Moreover, we show that this Dirichlet series arises as part of a Rankin-Selberg

integral representation.

In the second part, we consider, in the spirit of Kohnen and Skoruppa, a Dirichlet
series involving the Fourier-Jacobi coefficients of a pair of orthogonal modular forms
of real signature (2,n + 2), n > 1. First, we obtain an integral representation of
Rankin-Selberg type and use theta correspondence to deduce its analytic properties
for certain orthogonal groups. Next, using results of Sugano and Shimura, we obtain,
for certain orthogonal groups, an Euler product for the Dirichlet series and relate it
to the standard L-function for SO(2,n + 2).
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Chapter 1

Introduction

1.1 Background and Motivation

L-functions have been a subject of extensive study in the literature. In order to define
what exactly we mean by the term L-function, we need the notion of a Dirichlet

series.

Definition 1.1.1. A Dirichlet series is a series of the form

Z apn*,

n>1

where s € C and a,, is a series of complex numbers, which grow at most polynomially
as n — oo. This growth condition is there so that there is some ¢ > 0, so that this
series converges absolutely and uniformly on compact subsets and thus defines a
holomorphic function in the right half plane {s € C | Re(s) > c}.

When dealing with such series, we are interested in two main properties:

o The possibility of the series having a meromorphic continuation to the
complex plane and admitting a functional equation.
o The possibility of the series having an Euler product expansion, i.e., if it can

be written as an infinite product of some factors over (some) primes.

In the case when a Dirichlet series has the above two properties, it is usually referred

to as an L-function (see, for example [Bum97, p. 1]).

The most common example of an L-function is the Riemann zeta function:

((s) := iln_s.
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This converges absolutely and uniformly on compact subsets of C for Re(s) > 1. It
is a well-known result that ((s) admits a meromorphic continuation to the whole
complex plane with a simple pole at s = 1. Moreover, if £(s) := 77%/2I'(s/2)((s),
then

£(s) = €(1—s).

Finally, from the Fundamental Theorem of Arithmetic, ((s) has an Euler product

expansion of the form

¢s)=I[ —=p)7"

p prime
Another important class of L-functions is the L-functions attached to classical
modular forms, which are also Hecke eigenforms. Let f be a cusp form of integer

weight k£ > 0 and level SLy(Z) and consider its Fourier expansion

f(Z) — Z ane27rinz'
n=1
We then define its L-function as
L(f,s):=> an". (1.1.1)
n=1

This converges absolutely and uniformly on compact subsets of the usual upper half
plane H := {z € C | Im(z) > 0} for Re(s) > 1+ k/2 (cf. [DS06, Proposition 5.9.1]).
The following Theorem is classical (e.g., see [DS06, Theorems 5.9.2, 5.10.2]).

Theorem 1.1.2. Assume f is a normalised (i.e. a; = 1) Hecke eigenform of weight

k> 0. Then L(f,s) admits a meromorphic continuation to the complezx plane and
if A(f,s) := (2m)~°T'(s)L(f,s), we have

A(f,s) =i"A(f, k — s).

Moreover, L(f,s) has an Euler product expansion of the form

L(fs)= T (1= ap*+pt )L

P prime

The analytic properties of L(f, s) are therefore established due to the above Theorem.

Another key aspect of studying L-functions is their values at critical points, called
special values. In particular, assume we complete some L-function L(s) by some
Gamma factors, so that the completed L-function satisfies a functional equation
s —> k — s. The critical points are the set of integers m for which both the
gamma factors of L(s) and L(k — s) do not have a pole at s = m. Deligne in
[Del79] conjectured that these special values are algebraic up to certain prescribed

transcendental periods. For the case of classical modular forms, results on the
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algebraicity of the special values of their L-functions have been established by the
work of Shimura in [Shi76] and [Shi77].

Nevertheless, the subject matter of this thesis is modular forms of higher rank.
The most natural (both from an analytic and an arithmetic point of view) such
objects are the so-called Siegel modular forms. As a rough description, Siegel
modular forms of degree n > 1 are holomorphic functions from a generalised upper
half plane, consisting of n x n complex matrices, to the complex numbers, that
satisfy a modularity condition under the action of the symplectic group Sp,,(Z).
Siegel discovered these, motivated by his classical investigations on the problem of
integral representations of quadratic forms (e.g. [Sie35]), and they have numerous

links with arithmetic.

Analogous to classical modular forms but with key differences, one can also attach L-
functions to Siegel modular forms of any degree n > 1, which are Hecke eigenforms
for specific Hecke algebras. There are two main L-functions associated with a
cuspidal Siegel eigenform: the standard and the spin L-function. The standard
is well-understood due to the so-called doubling method (see Section 3.1 for a
discussion). The spin L-function, however, has been much more difficult to study.
This perhaps comes as a surprise, as this is the formal analogue of (1.1.1) for Siegel
modular forms. Remarkably, for n > 4, its meromorphic continuation and functional
equation are still open conjectures. For n = 3, they were only proven recently
by A. Pollack in [Poll7], subject to a certain non-vanishing condition on a Fourier
coefficient. This was established by S. Bocherer and S. Das in [BD22].

The degree 2 case, however, is much more approachable. The following classical

result can be used to establish the analytic properties of the spin L-function.

Result 1. (Kohnen and Skoruppa, [KS89]) Given two degree 2 Siegel cusp forms
F,G of integral weight k, with Fourier-Jacobi coefficients {¢m }2_1, {tm}oo_y, let

Dr(s) == ((2s — 2k +4) i (Dm, Um)m ™%, Re(s) >0, (1.1.2)

m=1

where { , ) denotes an inner product on the space of Fourier-Jacobi forms of weight

k and index m. The authors prove two main theorems:

Theorem 1.1.3. The function
Fa(s) = (2m) 2T (s)T'(s — k + 2)Dpc(s)

has a meromorphic continuation to C and is invariant under s — 2k — 2 — s.

Theorem 1.1.4. If F' is a Hecke eigenform and G s in the Maass space, then

Dra(s) = (o1, 1) Zr(s),
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where Zp(s) is the spin L-function attached to F'.

The analytic properties of Zg(s) therefore follow from the above two theorems,
subject to the condition ¢; # 0. This condition is always satisfied, as Manickam
in [Man21] has recently shown. This result, however, cannot be used to obtain
algebraicity properties of Zp(s), mainly because Dp(s) admits an integral repres-
entation of Rankin-Selberg type with an Eisenstein series of zero weight, and hence
non-holomorphic (see [KS89, Theorem 1]).

There are other integral representations of the spin L-function attached to a degree 2
Siegel cuspidal eigenform. In fact, Andrianov in [And74] was the first one to give such
a representation, using factorisation methods in parabolic Hecke rings. However, his
result cannot be used (or at least it is not known how) to obtain algebraicity results
either. The difficulty in this case seems to be related to the fact that the integral
representation involves Eisenstein series defined over symmetric spaces which do not

have the structure of a Shimura variety.
The closest algebraic result is the following, due to B. Heim.
Result 2. (Heim, [Hei99]) Let F,G be two degree 2 Siegel cuspidal eigenforms and

h a classical normalised Hecke eigenform, all having the same even weight k > 0.
Assume F' is the Maass lift of a classical modular form f of weight 2k — 2, and let

(6, )
Here, {¢m},{tm} are the Fourier-Jacobi coefficients of F,G respectively, {a,} the

Fourier coefficients of h, and Uy, is an indez-raising operator acting on Fourier-Jacobi

forms. Heim proved the following two Theorems.

Theorem 1.1.5.
DF7G,h(S) = <¢1a 77Z)1><:(23 + k— 2)_1L(f7 2s + 2k — 3)_IZG®h(S>a

where Zggn(s) is the twist of the spin L-function attached to G by the Satake
parameters of h, and L(f,s) the classical L-function attached to f.

Theorem 1.1.6. Let Ef((Z,s) denote the weight k and degree 5 Eisenstein series
of Siegel type. Then
(((Eé“’o(diag[zl, 22, 23]), F(21)), G(22)), h(z23)) = b(2, 8, k)L(F,25 + k — 2) Drc.n(s),

where b(2, s, k) is a product of zeta and gamma factors, L(F,s) is the standard
L-function attached to F and { , ) denotes the inner product on the space of Siegel

modular forms of certain weight and degree.
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Note that in contrast to Result 1, here we take F instead of G to be in the Maass
space. We decided to use this notation throughout the thesis as this is compatible
with the way the results in [KS89] and [Hei99] are formulated.

To prove Theorem 1.1.5, Heim’s approach was to use factorisation methods in para-
bolic Hecke rings, in the same spirit as Andrianov. By combining Theorems 1.1.5
and 1.1.6, he managed to connect a seemingly more complicated object, Zggn, with
E%, (again subject to ¢y # 0). The presence of the Eisenstein series Ef, which
is holomorphic at s = 0, allows one to study algebraicity properties of the special
values of Zggn. B. Heim and S. Bocherer exploited this integral representation to
lift various restrictions on the weights of the modular forms considered ([BH00]) and

prove parts of Deligne’s conjectures ([BH06]).

We should note here that Furusawa in [Fur93] also gave an integral representation
for the twisted spinor L-function, using an Eisenstein series over a unitary group and
its restriction to the symplectic group of degree two. There is a series of works based

on this idea, most notably by Saha in [Sah09], generalising the work of Furusawa.
In this thesis, our aim is twofold:

1) To generalise Result 2 to the case of Hermitian modular forms of degree
2 over Q(z). Shortly after the work of Andrianov on the spinor L-function in
[And74], Gritsenko, in a series of papers, extended Andrianov’s approach of the use
of parabolic Hecke algebras to the study of a degree 6 L-function attached to a
cuspidal Hermitian eigenform of degree 2, where the underlying imaginary quadratic
field is taken to be the field of Gaussian numbers K := Q(7). Indeed, in [Gri88b],
Gritsenko first defined such an L-function, and in the later work of [Gri92a], he
obtained the analogue construction of Kohnen and Skoruppa using the factorisation
approach. Both integral representations allowed him to obtain a functional equation
and study the analytic properties. However, as in the case of the symplectic group,
neither of the above integral representations could be used to derive algebraicity
properties, due to the Eisenstein series involved (only of real analytic nature). In
Chapter 3, we consider the exact Hermitian analogue of the Dirichlet series (1.1.3)
and study its arithmetic and analytic properties. Our aim is to demonstrate a
connection with the twisted Gritsenko’s L-function. The possibility of obtaining

algebraicity results for this L-function has been the main motivation for this work.

2) To extend Result 1 to the case of orthogonal modular forms of real signature
(2,m+2), n > 1. In particular, in Chapter 5, we investigate the analytic properties
of the Dirichlet series, and in Chapter 6, we consider the question of obtaining Euler
products. Our aim is to show that the Dirichlet series has good analytic properties

and demonstrate a connection with the standard L-function for the orthogonal group.
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This work is motivated by the existence of accidental isogenies between orthogonal
groups of low rank and classical groups, e.g., SO(2,3) and Sp, and SO(2,4) and
U(2,2). Such isogenies make it possible to relate modular forms for classical groups
with orthogonal modular forms, and also obtain a correspondence between their
L-functions (see, for example, [Shi04, p. 241] for a discussion in the case of Siegel
modular forms of degree 2). Therefore, the results of Kohnen and Skoruppa in [KS89]

and Gritsenko in [Gri92a] make this question natural to consider.

1.2 Statement of Main Results

Naturally, this thesis is divided into two main parts, namely the one addressing the
Hermitian case and the one addressing the orthogonal case. We will now state our

main results.

1.2.1 Hermitian Case

The setting is as follows. Assume F,G,h are Hermitian cuspidal eigenforms over
Q(7) of degrees 2,2, 1 respectively, all having weight £ = 0 (mod 4) and real Fourier

coefficients. We consider the exact Hermitian analogue of (1.1.3), namely:

Dran(s) =35 {ém | Up, V) amng N (p)~FF I N (g) = ks =Dy~ @Ghs=),

P.a m=1

(1.2.1)

where p,q € Z[i| coprime, {¢}, {t)m} are the Fourier-Jacobi coefficients of F, G,
{an,} the Fourier coefficients of h, U, is a certain operator acting on Fourier-Jacobi
forms, and N(z) := zz. By assuming now that F' is the Maass lift of a classical
modular form f of weight £ — 1 and of a certain character (see Proposition 2.5.5),

we obtain the following Theorem.

Theorem 1.2.1. If p is an inert prime, we have for the p-factor (i.e. taking all

summations over the rational prime p, see (3.3.4))

(1, 1) aLy(f, ke + 5 —2)L, (f, k+s—2, (*?4)) (1 — ph-25+2)
Qe (X1)Qya(X2)

DY, (s) =

Y

where X; depend on the Satake parameters of h and Q;(f)G are the Fuler factors of
Za(s), Gritsenko’s L-function (see also Definition 2.5.2). Also, L,(f,s) denotes the
p-factor of the L-function attached to f (see Definition 2.5.4), and { , )4 denotes
the inner product of Definition 2.2.10.
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Moreover, we make considerable progress in connecting Dg)c:,h@) with the p-factor
of Zaen(s), the twisted Gritsenko’s L-function, for the case of the split primes p.
Our progress is summarised in Theorem 3.4.21. Along the way, we prove several
important results. In particular, in Theorem 3.4.3, we give the factorisation of the p-
Euler factor of the standard L-function in the parabolic Hecke ring H)"' (see Section
2.4), deduce the rationality Proposition 3.4.8, and also obtain important relations

between Hecke operators in the parabolic Hecke ring H;’l (see Table 3.1).

In fact, it is those results that allow us to prove in Theorem 3.5.1 that the Dirichlet

series Dy p(s) possesses an Euler product.
Theorem 1.2.2. Dp¢ p(s) possesses an Euler product of its p-factors (see (3.4.6)

for a definition in the case of split primes).

Finally, in Section 3.6, we aim to obtain an integral representation for Dp g 5 (s).
In Theorem 3.6.5, we show that Dp ¢, (s) originates as part of a Rankin-Selberg

integral with an Eisenstein series of Klingen type (see Definition 2.1.6).

Theorem 1.2.3. For k + 2Re(s) > 10, we have

<<E§2 ((I/(I)/ ;) s S) ,G(Z)>,h(W)> = (477)~C@h+s=) 5

" F2k+s—4)I'(k+s—3)Ik+s—1)
['(2k +2s —4)

Drn(s) + Rran(s),
where Rpap(s) is an additional residue term (see Theorem 3.6.5).

In particular, by using the doubling method for the unitary group (see (3.6.1)), we
can obtain a Theorem analogous to Theorem 1.1.6, involving, of course, Rp ¢ x(s).
This additional term is very interesting and is special to our setting. It is related to
the fact that not every vector is isotropic with respect to a Hermitian bilinear form.
In particular, it does not appear in Heim’s work. However, we do not study it in

this thesis, and we hope it will be the subject matter of an upcoming work.

1.2.2 Orthogonal Case

For the second part of the thesis, the setting is as follows. Let S denote an even
symmetric positive definite matrix of rank n > 1. Even here means S[z| € 2Z, Vx €
Z". We then set

S(] = —-S s Sl = So
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of real signature (1,n + 1) and (2, n + 2) respectively. If now K is a field containing

Q, we define the corresponding special orthogonal groups of K-rational points via
G = {9 € SLu2(K) | 9'Sog = So}, Gr = {g € SLyta(K) | g'S19 = Si}.

Let G% denote the connected component of the identity in Gg. There is a well-
defined action of G% on a suitable tube domain, which we will call Hg C C"™2. Let
also T's := G N Mat,,14(Z).

Consider now two orthogonal cusp forms F,G : Hg — C with respect to I's with
Fourier-Jacobi coefficients {¢,, }, {1m } respectively. The object of interest is then

Dra(s) ==Y (dm, Ym)ym™°, Re(s) > 0,
m2>1
where (, ) is a suitable inner product defined on the space of Fourier-Jacobi forms

of certain weight and (lattice) index.

In Chapter 5, our aim is to obtain the analytic properties of Dr¢(s), i.e. its mero-
morphic continuation to C and a functional equation. Through an orthogonal Eisen-
stein series of Klingen-type F(W,s) (see Definition 5.1.3), we obtain the following

integral representation.

Proposition 1.2.4. For W € Hg and s € C with Re(s) > n + 2, we have

(FOW)E(W,s), G(W)) (47) TR =D (s 4 k—n—1)Dpg(s+k—n—1),

1
~ #S0(S;2)
where (, ) denotes the inner product of Definition 4.2.3 and SO(S;Z) is the finite
integral orthogonal group of S.

Therefore, the analytic properties of Dp(s) reduce to the ones of the Eisenstein
series. Our aim is to produce an explicit theta-correspondence between E(W, s)
and an Eisenstein series of Siegel type for Sp,. The first step towards that is to write
E(W,s) in the form of an Epstein zeta function. We are able to do this when the

underlying lattice has one 1-dimensional cusp (see Definition 5.2.1).

Proposition 1.2.5. Let S be such that I's has only one 1-dimensional cusp. Then,
for each W € Hg, there is a Ry in the space of majorants (see Definition 5.2.2)
such that

EW,s)= Y (det(Rwl[(])"*?,
(eX/GLy(Z)

where

X:={( m)|l,mez™" (I m) primitive, S [(I m)| =0}
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Here, a matrixz being primitive means that its elementary divisors are all 1.

We now consider the real-analytic theta series ©(Z, W), as defined in Definition 5.3.3
(Z € H,, Siegel’s upper half-space). This transforms with weight & = —n/2 and

some character x under the action of (a congruence subgroup) of Sp, (see Proposition
5.3.5).

Assume now 4 | n and r = n/4. After applying the so-called Maass-Shimura
operator 0, (see Definition 5.4.1) and the operator R of Proposition 5.4.2, in order

to compensate for divergent terms, we arrive at the main Theorem.

Theorem 1.2.6. Let E(Z, X, s) denote the degree 2 symplectic Siegel-type Eisenstein
series (see (5.5.1)). Assume 4 | n and that there is only one 1-dimensional cusp. Let
also k = —n/2 and r = n/4. We then have for Re(s) >n+1

(B(Z,x.(s+1)/2=7), R[0"O)(Z,W)) = (s)&(s — Vs (s) E(W, 5),

where vs(s) is an explicit gamma factor and £(s) is the completed zeta function.

The meromorphic continuation of E(W,s) and hence D (s) to C then follows as
a corollary. We note that, although the general Langlands’ philosophy predicts the
analytic properties of E(W,s), here we obtain an explicit connection with a well-
studied object: the symplectic Eisenstein series of degree two. This connection can
be used to obtain further results on E(W, s), including information on its poles and
zeroes (see Corollary 5.5.3). Moreover, in the case of the Ey lattice (see Section 5.6),

we have the following Theorem.

Theorem 1.2.7. Let S correspond to the Eg lattice. Then, we can complete Dy (S)
to Df.(s), so that the last one has a meromorphic continuation to C and is invariant

under s — 2k — 9 — s.

In Chapter 6, we address the other direction of the problem, i.e., how the method of
Kohnen and Skoruppa in [KS89] can be extended in order to obtain an Euler product
for Dp(s) in this case too. Assume F' is a Hecke eigenform for the corresponding
Hecke algebra. Assume also that k > n/2 4 2 is even. Take G to be of the form

G(r',2,7) = > (VNPip,)(1,2)e(NT'),
N>1
where Py p, is a Poincaré series depending on (D, r), which is in the support of the
lattice Z™ with respect to S, and Vj is an index-raising operator acting on Fourier-

Jacobi forms. Let Vj := Q"*? and ¢, the bilinear form on V; x V; corresponding
to Sp/2. Let also Ly := Z"2 and L} := Sy 'Ly. Pick now any ¢ € Vj such that
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®0(§,€) = —D/q and 2¢y(&, Ly) = Z, where ¢ denotes the level of S (see Definition
4.1.4). Consider then the algebraic subgroup of G¢, defined by

H(&)g = {9 € Gyl g€ =&}

This is a negative definite orthogonal group of rank n 4+ 1. It is one of the main
results by Shimura in [Shi04] that the congruence subgroup of G which fixes the

lattice Ly acts on the set
{r € Vo | ¢o(x,2) = —D/q and 2¢¢(x, Lo) = Z},

and there are finitely many equivalence classes under this action. Let {&}, be
representatives for this action. These representatives correspond to elements of the

finite set

H(&)o\H (§)a/(H(£)a N C), (1.2.2)

where C' = {z € G} | Ly = Lo}. This is the analogue of the classical theorem for

binary quadratic forms of fixed discriminant. Assume {u;}? , are these elements.

Let also {f; ?:1 denote an orthonormal basis of simultaneous eigenforms on the set
(1.2.2). Denote by L(—, s) the standard L-function attached to either F' or any of

the fis. We then formulate our main Theorem.

Theorem 1.2.8. Outside a finite set of primes P, Dra(s) can be written as

Lp (F:is—k+ (n+2)/2)§thijp (Fiss—k+ (n+3)/2)’1 x

j=1
if n odd

h
X Y Cap(s —k+n+1)f(u) x
i=1 (p(2s —2k+n+2)"" if n even

Here, (¢, (s) denote certain zeta functions counting number of congruences, Ay, are
expressions depending on f; and the Fourier coefficients of F' and for any zeta
function, the subscript P means that we do not take into account the terms sharing

factors with elements of P.

A connection with L-functions therefore exists, but it is not clear how one can
obtain an Euler product. Nevertheless, when we choose D = —¢, £ = (1,0,1)" and
S such that A = 1, we can obtain a clear-cut result. We find all the cases when
this happens in the n = 1 case (with these specific choices of D, ) and some cases
when n € {2,4,6,8}. We give the Euler product expression of Dr¢(s) in Theorems
6.6.3 and 6.6.9. In particular, up to finitely many primes, we recover Theorem 1.1.5

of Kohnen and Skoruppa (see Remark 6.6.4).
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1.3 Outline of the Thesis

In this introductory Chapter, we gave an overview of the thesis. We discussed how
the classical results of Heim in [Hei99] and Kohnen and Skoruppa in [KS89] serve
as the main motivation for this dissertation and naturally divide it into two main
parts. We next described the ways we have generalised their results and presented
our main theorems. Finally, we provided an outline of the thesis, which serves as a

roadmap for the reader.

In Chapter 2, we develop the theory of Hermitian modular forms. After giving
the main definitions and considering their Fourier—Jacobi expansions, we introduce
Hecke operators and describe the associated Hecke rings. We then define the relevant

L-functions and prepare the groundwork for the next Chapter.

In Chapter 3, we present the main results regarding the first part of the thesis.
We begin the chapter by providing an overview of the so-called doubling method
and Heim’s results. We then consider a certain Dirichlet series attached to three
Hermitian cuspidal eigenforms of weight £ = 0 (mod 4) and degrees 2,2, and 1 over
Q(i). In the case when F' is in the Maass space, we obtain an Euler product for
the Dirichlet series. Moreover, for an inert prime p, we identify its p-factor with the
p-factor of the L-function attached to G by Gritsenko in [Gri88b], twisted by the
Satake parameters of h. The question of whether the same holds for primes that split
remains unanswered; however, a big part of this chapter is concerned with making
progress towards that end. Most notably, the results we obtained on the parabolic
Hecke rings are of independent interest. Finally, we show that this Dirichlet series
originates as part of a Rankin-Selberg integral representation. This representation
also produces an additional residue term that we do not study in this thesis. The

material for this chapter is taken from our joint paper with T. Bouganis in [BP25].

The fourth chapter marks the beginning of the second part of the thesis. We aim
to extend the paper [KS89] by Kohnen and Skoruppa in the orthogonal setting. We
start by giving definitions of quadratic spaces and modular forms for orthogonal
groups of real signature (2,n 4+ 2), n > 1. We then discuss their Fourier—Jacobi
coefficients, the corresponding Maass spaces, and finally define a Fourier—Jacobi

Dirichlet series Dp(s) associated with a pair of orthogonal modular forms.

In Chapter 5, we consider the problem of obtaining the analytic properties of the
Dirichlet series. Using an orthogonal Eisenstein series of Klingen type, we obtain
an integral representation for this Dirichlet series. In the case when the underlying
lattice has only one 1-dimensional cusp, we rewrite this Eisenstein series in the form
of an Epstein zeta function. If additionally 4 | n, we deduce a theta correspondence

between this Eisenstein series and a Siegel-type Eisenstein series for the symplectic
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group of degree 2. As a consequence, we obtain the meromorphic continuation of the
Dirichlet series to C. In the case of the Eg lattice, we can further deduce a precise
functional equation for the Dirichlet series. The material for this chapter is taken

from my paper [Psy24].

Chapter 6 is devoted to the investigation of the connection of this Dirichlet series
with the standard L-function for the orthogonal group. In the case when F is a Hecke
eigenform and G is a Maass lift of a specific Poincaré series, we establish a connection
with the standard L-function attached to F. What is more, we find explicit choices
of orthogonal groups, for which we obtain a clear-cut Euler product expression for
this Dirichlet series. Through our considerations, we recover the classical result
of Kohnen and Skoruppa, but also provide a range of new examples, which can
be related to other kinds of modular forms, such as paramodular, Hermitian, and

quaternionic. The material for this chapter is taken from my paper [Psy25].

Finally, in Chapter 7, we give the consequences of the main results in the previous
Chapters. We discuss their importance and highlight points of interest, which provide

directions for future work.

1.4 Notation

Below, we provide some standard notation that will be used throughout the Thesis.

o e(z):=¢e"* z€eC.

« A[B] := B'AB for suitably sized complex matrices A, B.

o A > B for matrices A, B: Denotes that the matrix A — B is positive definite.

e 0,, 1, denote the n X n zero and identity matrices repsectively.

o det(M), tr(M) denote the determinant and trace of a matrix M, respectively.

o M, ,(R): Denotes the space of m x n matrices with coefficients in a ring R.

e M, (R): Denotes the space of n x n matrices with coefficients in a ring R.

e GL,(R), SL,(R): Denote the matrices in M, (R) with non-zero determinant
and determinant 1, respectively.

o [Ay, Ay, -+ A, or diag(Ay, -+, Ay): Denotes the block diagonal matrix with
the matrices Aq, Ay, .-+, A, in the diagonal blocks.

e ((s): Denotes the usual Riemann zeta function.

e N(q): Denotes the norm of a complex number ¢, i.e. N(q) := qq.

o C*: Denotes the class of functions which are infinitely differentiable.



Chapter 2
Hermitian Modular Forms

In this Chapter, we collect background material for the theory of Hermitian modular
forms. We state the main definitions, discuss the Fourier and Fourier-Jacobi expan-
sions, define Eisenstein series, and develop the necessary Hecke theory. Throughout
this Hermitian part of the thesis, we assume that K = Q(i), the field of Gaussian

numbers, and Ok = Z[i| its ring of integers.

2.1 Preliminaries

Everything below is standard and can be found in [Kri85].

Definition 2.1.1. Let R be either K, Ok or C and fix an embedding R — C. We
write U(n,n)(R) for the R-points of the unitary group of degree n > 1. That is,

U(n,n)(R) :={g € GL2w(R) | Julg] = Ju},

0, —1,

L, On

where J,, := ( ) The notation J,,[g] means g'J,g (see Notation).

A B
Hence, for an element o D) € U(n,n)(R) with n x n matrices A, B, C, D, these

satisfy the relations
A'Cc=C'A, D'B=B'D, AD'—B'C =1,.
Definition 2.1.2. The Hermitian upper half-plane of degree n is defined by
H, = {Z € M,(C)| —i(Z—Z") > 0}.

For n = 1 we obtain the usual upper half plane, which we will just denote by H.
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A B
We fix an embedding K — C. Then, an element g = (C D) e U(n,n)(K) —

U(n,n)(C) of the unitary group acts on the above upper half plane via the action
7+ g{Z) = (AZ + B)(CZ + D).

The usual factor of automorphy is defined by j(g, Z) := det(CZ + D).

Let now I',, denote the Hermitian modular group, that is I, := U(n,n)(Ok).
Note that
I't =SLe(Z) - {a- 13 | a € Of}. (2.1.1)

We now define the slash operator.

Definition 2.1.3. Let n > 1 and k be any integer. Then, for any function F' on H,
and a matrix g € U(n,n)(K), we define

(F Ik 9)(Z) = j(g9. 2) " F(9{Z)).

We then have the following definition of a Hermitian modular form.

Definition 2.1.4. A function F': H,, — C is called a Hermitian modular form
of degree n and integer weight k > 0 if

e F'is holomorphic,
o [ satisfies

(F |k 9)(2) = F(Z),
forall g € '), and Z € H,,.

If n = 1, we further require that F'is holomorphic at infinity.

It is well-known ([Kri85, Chapter I11.2]) that the set of all such forms constitutes a
finite-dimensional complex vector space, which we denote by M*. Because of our
assumption if n = 1 and of K&6cher’s principle ([Kri85, Lemma II1.1.5]) for n > 2,

each such F' admits a Fourier expansion

F(Z) =) a(N)e(tr(NZ)), (2.1.2)
N
where a(N) € C and N runs through all the semi-integral non-negative Hermitian
matrices 1
N € {(nij)zjzl >0 | N;i € Z,nij =N, € 20]{} .

F' is called a cusp form if a(N) # 0 only for N positive definite. We denote the

space of cusp forms by S¥. We also have a notion of an inner product.
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Definition 2.1.5. The Petersson inner product for two Hermitian modular forms
F. G, is given by
uum:/ F(Z)G(Z)(det Y)*d* Z,

Fn\Hn
whenever this converges. Here, Z = X + 7Y and d*Z = (detY) 2"dXdY is the
U(n,n)(C)-invariant measure ([Kri85, Theorem I1.1.10]).

Finally, we want to define the so-called Eisenstein series. To this end, we first

need to define some parabolic subgroups of the unitary group.

For R as in Definition 2.1.1 and 0 < r < n, we consider the following parabolic

subgroups of U(n,n)(R):

aﬁmz{@_f+z)ewmmm%

Crur(R) = {(O :‘ ) :) S U(nm(R)}

When R = Ok, we will just write P, , and C,,.

(2.1.3)

Definition 2.1.6. Let 0 <r <n and F € S* with k=0 (mod 4). The Klingen-
type Eisenstein series with respect to the parabolic subgroup C,, , attached to F'is
given by

k Cg) — . [ detTm~y(Z) \°
PR = X FaZie (o) e

where Z € H,, and * denotes the lower right r» x r part of the matrix.

When r = 0, we omit F' = 1 and we call E! (Z;s) an Eisenstein series of Siegel
type. When r = n, we have E} (Z;s) = F(Z).

Lemma 2.1.7. This series is well-defined and converges absolutely and uniformly
on compact subsets of C for k + 2Re(s) > 2(n+1r). If s =0 and k > 2(n + 1),
E} (Z,F;0) € M} for all F € S

Proof. Let 0 € C,,,. We write

Al AQ Bl BQ

|0 A B B
0 0 D 0]’
0 C, D; D,

Ay B
with A4, By, Cy, Dy € M, (Ok) and set J, := LT
Cy Dy
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We then have §(Z). = 0,(Z.) (cf. [Kri85, Proposition V.2.1]). Also
det(Im g(Z)) = |1(g, Z)| > det(ImZ), Yg € U(n,n)(C), Z € H,. (2.1.5)

Now, j(6, Z) = det(D1)j(d«, Z.) and det(D;) is a unit in Ok. Using the above, the
transformation condition for F € S* and the fact that kK = 0 (mod 4), we obtain
that the series is well-defined (under v — §7).

For the convergence, we use the fact that the function (det Im~(Z).)*2F(v(Z).)
is bounded on H,,, say by a constant C' (see [Kri85, Lemma II1.2.4]) and that
det(Im~y(Z)) = |j (7, Z)|"2det(ImZ). Hence, the series is bounded by

C(detmZ)® > (detTm(Z),) 2429 j(v, )|~ (*+29),
’Yecn,r\rn

and the last series converges absolutely and uniformly on compact subsets of C,
whenever k 4+ 2Re(s) > 2(n + r), from [Kri85, Theorem V.2.8].

Finally, the last assertion is in [Kri85, Theorem V.2.9]. We remark that for any
s is the region of convergence, Eﬁjr(Z,F ;s) satisfies the modularity property of

Definition 2.1.4, but is holomorphic in Z only when s = 0. O]

2.2 Hermitian Fourier-Jacobi Forms

In this Section, we introduce the notion of Hermitian Fourier-Jacobi forms. This is
very similar to the classical case of Fourier-Jacobi forms, as developed by Eichler
and Zagier in [EZ85]. The Hermitian case was first studied by Haverkamp in his
thesis [Hav95]. His work has recently been generalised to Hermitian Jacobi forms of
higher degree by Haight in [Hai24]. In this thesis, we follow Haverkamp’s paper in
[Hav96]. We should note here that in that paper, the case of K = Q(i) is excluded,
in order to make the exposition simpler, due to the existence of non-trivial units.

The results, however, are naturally transferred to the Gaussian case as well.

Definition 2.2.1. The Hermitian Jacobi group is defined by I'/ (O ) := T'; x 0%,
with the multiplication of elements defined by

[e1 My, (A1, pa)] - [€a My, (Ag, pi2)] := [exeaMyMa, (Ar, pa)ea My + (Aa, p12)],

where A1, Ao, i1, 2 € Ok, My, My € SLiy(Z) and €1, €5 € OF. We remind the reader
here that I'; is given in (2.1.1).

We now define some more slash operators:
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Definition 2.2.2. Let ¢ be a complex-valued function on H x C2. Let also k,m € Z
and (7, 21, 29) € H x C?. Then:

b
o Foree O and M = (a d) € SLy(Z), we have

c

(¢ |km €M)(T, 21, 20) == € *(cT+d) e (

—mczle) at+b exn €29
ct+d ctr+d er+d et +d

o For A\, € Ok, we have
(& |l [N 1)) (7, 21, 22) i= e(M(N(A)T + X2y + A20))O(T, 20 + AT+, 20 + AT+ ).

We have the definition of a Hermitian Fourier-Jacobi form.

Definition 2.2.3. A holomorphic function ¢ : H x C* —» C is called a (Hermitian)
Fourier-Jacobi form of weight k£ and index m, where k,m € Zsq, if Y(7,21,22) €
H x C2?, we have

o (¢ im €M)(T, 21, 22) = G(T, 21, 22), Ve € O, YM € SLy(Z).
° (Qb |m [>\7/“L:|)(T7 Z17Z2) = ¢(7—7 21,2’2), VA,M € OK'

e ¢ admits a Fourier expansion of the form

(T, 21, 22) = Z Z co(n,r)e(nt + 1z +T2a),
n=0 TGO}%
mn>N(r)

where ¢4(n,7) € C and OF := %(’)K.

We denote the complex vector space of Hermitian Fourier-Jacobi forms by J .. It
is a known fact that Jy ,, is finite dimensional ([Hav96, Theorem 3]). A Hermitian

Fourier-Jacobi form is called a cusp form if c4(n,r) = 0 for nm = N(r).

In the following, we will drop the word Hermitian and just write Fourier-Jacobi
forms. The main reason we are interested in the theory of Fourier-Jacobi forms is

that they appear naturally in the context of Hermitian modular forms of degree two.

21

Indeed, let ' € S5. For Z € H,, we can partition Z = , with 7,w € H and

Z9 W
21,29 € C. From (2.1.2), we can then write the Fourier expansion of F' with respect

to the variable w as -
F(Z) = Z Om (T, 21, 22)e(Mw).
m=1

The functions ¢, : H x C?> — C are then Fourier-Jacobi cusp forms in the sense of

Definition 2.2.2 and are called the Fourier-Jacobi coefficients of F.
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There is, however, an equivalent characterisation of Fourier-Jacobi forms, used by
Gritsenko in [Gri92a]. In the following, it will be important for us to consider the
Fourier-Jacobi forms as a special kind of modular forms under the action of some

parabolic subgroups, as these are defined in (2.1.3).

Let T'1 := Poi1.0(Ok), the group of integral points of the parabolic P, 1, (K). We
then have the following definition (|Gri92a, p. 2887)):

Definition 2.2.4. Let n > 1. A holomorphic function F' on H,,,; is a modular form
of weight k with respect to the parabolic subgroup I, ; if the following conditions
hold:

e FlyM=Fforall M el,;,
o The function F(Z) is bounded in the domain Im(Z) > cls, for all ¢ > 0.

We note here that we can omit the second condition if n > 2. This again follows
by Kocher’s principle. The space of all such forms will be denoted by M,’f’l. Again,
each such F' has a Fourier expansion as in equation (2.1.2) and we call F' a cusp

form if a(NN) # 0 only for positive definite matrices N.

We can now give the definition of Fourier-Jacobi forms, as in [Gri92a, p. 2887].

Definition 2.2.5. A complex-valued, holomorphic function ¢ on H,, x C* x C" is

said to be a Fourier-Jacobi form of degree n, weight k£ and index m if the function

gzNS ((; 3)) = (T, 21, 22)e(mw),

T z
where w € H is chosen so that ( !

) € H,,,1, is a modular form with respect
2w
to the group I';, ;. The space of such forms is denoted by J;',, and we will call &5 a

P-form, as in [Hei99, Section 3.4].

Remark 2.2.6. For n = 1, this coincides with the space considered by Haverkamp

above (cf. [Hav96, Remark 1]) and we will just write Ji ,, in this case.

Remark 2.2.7. We remark here that the approach taken by Gritsenko deals more
naturally with the arbitrary degree n > 1 case. On the other hand, the formulas
appearing in [Hai24] are sufficiently complicated for our purposes. Nevertheless, in
this thesis, we are mainly interested in Hermitian modular forms of degree two and

therefore both considerations mentioned above can be used (and are equivalent).

We will now indeed focus on Hermitian modular forms of degree two. We have the

following notion of an inner product on Jj ,, ([Gri92a, (1.10)]):
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Definition 2.2.8. The Petersson inner product of two Fourier-Jacobi forms
¢, € Jpm is defined as

<¢’ w> = /]__J ¢(7-7 21, ZQ)W’UkeiﬂmkliE'z/vdlu,

where dp = v~*dudvdz;dy;daedys with 7 = w + iv, z; = x; + 4y; for j = 1,2 and

F7 is a fundamental domain for the action of P, on H x C2.

The reader should note that we are using the same symbol to denote the inner
product for two Fourier-Jacobi forms as the one we use to denote the inner product
for two Hermitian modular forms (see Definition 2.1.5). However, we will always use
a Greek letter (¢ or ¥) to denote a Fourier-Jacobi form and a Latin letter to denote

a Hermitian modular form. This should help eliminate any possibility of confusion.
In the following, for Z € H as above, we write
Re(Z) = (er le) , Im(2) = (yT y“) , (2.2.1)
‘rZQ Ty yz2 yw

for its real and imaginary parts, respectively. We now define an inner product on

the space of P-forms, as this will be useful later.

Definition 2.2.9. Let ¢,,,, ¥y, € Ji» and denote by (Em, @m the P-forms obtained
as in Definition 2.2.5. We then define

<$mﬂzm>«4 = /Q11 ggm(Z)Jm(Z)(det Y)kd*Z,

where d*Z = (det Y)™*dXdY is the invariant element for the action of the unitary
group U(2,2) on Hy and

W

Q1= {Z = (ZT Zl) € Hy | (1,21,2) € F/ and |z,| < 1/2}.
2

There is a relation between the two inner products above, given in the following

Lemma.

Lemma 2.2.10. Let ¢y, Y € Jim and denote by Gm, U the corresponding P-

forms. Then

<¢ma 77ZJm> = 5kmk_3<§gma &m)Aa
where B = (47)* 3T (k — 3)7%.

Proof. We have

(gzNSm, @Em)A = / (T, 21, 22)62”’”%/1(7', 21, Zg)e_%imw(det Y)k_4dXdY.
Q1,1
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Let now 9, := vy, — |21 — %2|*/4y,. Then detY = y,7,. Hence, the above integral

can be written as

—drm(y,+|21—22|2 )~ o o\ ~ _
/~>0 /F]/ (mod 1) gbm(T, ZI,ZQ)B 4 (y +|z1—22|* /4y >¢m(7', 2172’2)(3/7%)’“ 4y

x drdzydzydy,dx,

= (G ) [ e IGEAG, = (4mm) T (K = 3) (G ),

Yw >0

so the result follows with 3, = (47)* 3T (k — 3)~L. O

2.3 Unitary Hecke Rings

In this Section, we give an account of the Hecke theory for Hermitian modular forms.
We follow Gritsenko in [Gri92a]. We start with the Definition of Hecke pairs and

Hecke rings.

Definition 2.3.1. A pair (I', G), where I' < @ is called a Hecke pair if for all
g € G, the double coset I'gl" is a union of a finite number of left or, equivalently,
right T'-cosets. Let V(I',G) denote the Q-vector space of all formal finite linear

combinations of left I'-cosets with rational coefficients:
V(T,G) = {X = Zaifgi |a; €Q, g; € G}.
The group I' acts on V' via right multiplication:
X— X -v:i= 3 al(g:).
The T-invariant subspace H(I',G) of V is called the Hecke ring of (I, G). If now

X => alg, Y => blhjarein H(T,G), we define their product by
i J

XY = Zazbjf(gzhj)

i,
This is independent of the choice of the representatives g;, h;, and H(I',G) is an

associative ring.

Let n > 1. We define the groups of similitude:
S" = {g € My, (K) | Julg] = p(g)Jn, for some u(g) > 0},

Sy = {g € §" N M, (Ok[p~]) | () = p°,6 € Z},
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where p is a rational prime. It is then well-known that the pairs (I'y, S"), (', S})

are Hecke pairs and we can define the corresponding Hecke rings, which we will
also denote by H"™ and H) respectively. We start with the following Lemma on

elementary divisors.
Lemma 2.3.2. If g € SN Ms,(Ok), we can write
anFn - Fndia‘g(ala T, Ap, dlv T 7dn)rn7

where the principal ideals, generated by the elements a;, d; € Ok, satisfy the relations
(a1) 2 -+ D (an) 2 (dy) 2 -+ 2 (dy) and a;d; = pu(g) for alli=1,--- n.

Proof. See [Gri92a, p. 2889]. Note the typo in Gritsenko’s statement (we must have
a;d; = p(g) because of the unitary setting). O

Assume now F € Mk, For any g € S", we define

(F |k 9)(2) = p(g)™* " (g, Z2) " F(9(Z)).

Then, if T',gI", € H", we write I',g', = > T',g;, with g; € S”. We then define

i=1
i=1

We can now modify the Petersson inner product of Definition 2.1.5 so that it applies
to congruence subgroups of I';, (see, for example, [Klol5, p. 808-809]). We have the

following Lemma.
Lemma 2.3.3. For any g € S" N Ma,(Ok) and F,G € S*, we have

with the appropriate inner product on each side.

Proof. Let g € SN My, (Of). From the general setting of [Shi97, Lemma 11.4], we

have that we can find representatives g; € S™ such that

¢ ¢
gl = |_| g = |_| gil'n, (2.3.2)
i=1

i=1

for some ¢. Moreover, by using standard arguments (see for example [And87, The-
orem 2.5.3]), we have that for any M € S™ and F,G € SF,

(F |k MG |, M) = p(M)"™"(F,G).
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Hence,

4

Y/
(F |y TogTs G) — <ZF ! g@-,G> S g G) =
=1

i=1

¢ ¢
=" wlg) FEUE [k gi 1k 97 G kg7 = D F,G e (1(g:)g; )
=1

i=1

¢
But from the second equality of (2.3.2), we have that I',u(g)g™'T,, = | ] Cou(g)g".
i=1

1 are the complex

Moreover, from Lemma 2.3.2; the elementary divisors of p(g)g~

conjugates of those of g. The Lemma follows. m

Remark 2.3.4. From [Gri92a, Proposition 2.1] we get that H™ is commutative.
Moreover, since g € S" = g € S™, each I',,gI',, € H™ acts as a normal operator

on Sk,

From [Gri92a, Corollary 2.2], we can decompose the global Hecke ring into the tensor

product of p-rings as follows:

H(,,S") = ®H(Fn,Sg).
P
Now, each p-ring is isomorphic to the Hecke ring over the corresponding local field,
and the structure of these rings depends on the decomposition of the prime p in O
(see [Gri92a, p. 2889]). In order to work locally, we give the following definitions:

On _1n
K, =K®Q, 0, =0k®%Z, ®,:=(2)"" (1 . ) , (2.3.3)

which denote the algebra over QQ,,, the maximal lattice, and a Hermitian form on the
vector space K, respectively. We also define the unitary group G} and a maximal

compact subgroup U, by
Gy = {g € GLan(K}) | 9"Ppg = p(g)®y, for some p(g) € Q; }, (2.3.4)

Uy :={g €GN Mu(O,p) | ulg) € Z)}, (2.3.5)

where ¢* := (g;:)?, with o is the canonical involution of the algebra K, determined
by the behaviour of the prime p in K (split, inert or ramified). We now have the

following Proposition:

Proposition 2.3.5. For every prime p, the local Hecke ring H(U;‘, GZ) is tsomorphic
to the p-ring H(L',,, S7).

ns P
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Proof. See [Gri92a, Proposition 2.3]. O

The reason we would like to work with local Hecke rings is that these have been

investigated by Satake in his paper [Sat63].

To that end, let us now recall the definition of the so-called spherical or Satake
mapping. We again follow [Gri92a]. We need to distinguish between the cases: (i) p
is inert or p = 2 and (ii) p splits.

In the first case, we know that given g € G}, we have the double coset decomposition

UpgUy = > UpM™N;,

where N; is a unipotent matrix, m; = (m;,, - ,m;, ;m;,) an integer tuple, and
==t
Mio (D -1 0
M™ = pre (D) , D = diag(n7™i, ... qMin),
0 D

with m = p if p is inert or m = (1 +4) if p = 2. We then define

(DH(U;LvGZ) QW"[% y " 7xi1]7

n

via

(U, gU,)) = Zazo "0 H xiq )™, (2.3.6)
7=1

where the ring Q"= [z5!, .-+, 2*!] denotes the ring of polynomials invariant with

respect to the permutation of the variables zg,--- ,x, under the transformations
w®, i=1,--- n, defined by

To — plwoxt, x; — pPlea; z;— x5 (7 #0,19),

I3 Y
with ¢ denoting the number of elements in the residue field K ® @, and e is the
ramification index of the prime p.

For the case of decomposable p, the definition of the spherical mapping is different.

In particular, from [Gri92a, Proposition 2.4], there is an isomorphism
H(U),Gp) — H(GLan(Zp), GL2n(Qp)) [2*1].

We can then define the Satake mapping 2 for H(GLy,(Z,), GL2,(Q,)) in an analog-
ous way as for the case p inert or p = 2, as in [Gri92b, p. 2873].

For the reader’s convenience, let us describe it here: Given an element X €
H(GL,(Z,), GL2,(Q,)), we know that we can write it as

X = Z aiGL2n<Zp)gi7
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pd“ * * *
0 phz o« *

where ¢g; = and a; € Q. Then, the mapping €2 given by
*

QX) = Y [T (0 )™,

i j=1

defines an isomorphism between H(GL2,(Z,), GL2,(Q,)) and the ring of symmetric
polynomials Q¥™[zF!,---  z3!]. We then define the Satake mapping ® in this case
as the composition

b :=Qop. (2.3.7)

2.4 Parabolic Hecke Rings

In this Section, we define Hecke rings corresponding to parabolic subgroups of the
unitary group, as these were defined in (2.1.3). These are necessary in order to
develop a Hecke theory for Fourier-Jacobi forms, as these are defined as modular

objects under the action of integral parabolic subgroups of the Hermitian modular
group.

We start with a very general Lemma regarding embeddings of Hecke rings.

Lemma 2.4.1. Let (I, Sp) and (I, S) be two Hecke pairs. We assume that
[y, TSy =5, I'NSyS," CTy.

Then, given an arbitrary element X € H(T',S), according to the second condition,

we can write it as
X = Z CLl(Fgl),
i

with g; € So. Then, if we set

€(X) = Z ai(Logi),

(2

then € does not depend on the selection of the elements g; € Sy and is an embedding
(as a ring homomorphism) of the Hecke ring H(I',S) to H(Iy, So).

Proof. See [Gri92a, page 2890]. O

Let us now define the parabolic Hecke rings we will need. Let S™!, S! T',,

denote the intersection of the groups S, SSH’ I',41 with the parabolic subgroup
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Poy1,n(K), respectively. Again, the pairs (I'y1, S™') and (I, 1, S;') are Hecke pairs
(cf. [Gri92a, Section 3]) and we can then define the Hecke rings

H™ = H(T,p1, ™), H = H(T,1, 5™,

for any rational prime p. Since I‘ngal = S]’}“ and after writing an element
X e H" as

X = Z a;l'ny19i,

with g; € Spt!, we can define an embedding

X — E(X) = Zaifnylgi,

using Lemma 2.4.1. In this way, we obtain an embedding of H;”’l into Hg’l.
Moreover, we can embed H (T, S") < H(T,1,S™!) in two ways, as follows:
If X =T,9T, with g = [A, D] € S™, we define

J(X) = T [A p(9), D Ty G4(X) o= Tt [A LD ()] T (2401)
These are related by an anti-homomorphism * : H}»! — H"!, given by

> aln i MLy — > @l (M) M;'Ty 1, (2.4.2)

as in [Gri92a, Lemma 3.1]. In particular, we have j_(X)* = j, (Yt).

We now again restrict our discussion to the degree two case. We note that H! is

not commutative and also does not split into the tensor product of the H;’l rings.

The structure of the parabolic Hecke rings H;’l again depends on the decomposition

of the prime p in Ok.

If p is inert or p = 2, then the structure of the parabolic Hecke ring is constructed
in a similar way as the corresponding ring for the symplectic group of degree 2, see
[Hei99, Section 3] or [Gri84, Section 2] for example.

In the case of a decomposable p, however, the situation is quite different. This
follows from the fact that

H(U,, Gy) = H(GLi(Z,), GLy(Q,)) [2*].

From this, the corresponding p-ring of the parabolic Hecke algebra is isomorphic to

the ring of polynomials of one variable with coefficients from the Hecke ring of the
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parabolic subgroup

g1 * *
P1’2’1<Zp) = 0 g x € GL4(Zp) ‘ g1, 92 € Z;, g € GLQ(ZP)
0 0 g2

Properties of this ring have been investigated in [Gri92b], and this is the ring where
our calculations involving elements of the Hecke rings are going to occur. Finally,

let us describe the action of elements of H''! on Fourier-Jacobi forms.

Let F' denote any modular form of weight k& with respect to the parabolic subgroup
I'11, as in Definition 2.2.4. If

¥ 0 *x =%
* % %

X =TI, E)L ', = ZFngi € HY,
00 0 b

for some g; € S™!, we define F |, X as in (2.3.1). Gritsenko gave the following very

convenient definition of the signature.
Definition 2.4.2. The signature of X is defined as s(X) := b/a.

Lemma 2.4.3. The signature is well-defined.

Proof. We write X = I'; 19I'1 1 for the above expression of X. We then want to
show that if 41,72 € I'1; and ¢ := 1972, then g},/¢5, = b/a. But, by the form of
the elements 71,72, we have g, = bbby and g5, = ajaay, where we write ay, by for
(71)22, (71)44 respectively and similarly for as, by. But now bya; = 1 and by, a; € Ok.
By going through the units in O, we deduce a; = by in any case. Similarly, as = by

and from this the Lemma follows. O

Using the signature s := s(X) of X, we can now define its action on Fourier-Jacobi

forms.

Proposition 2.4.4. Let ¢ € Ji,, denote a Fourier-Jacobi form of weight k and

index m. Then, for Z = (T Zl) € Hy, we define the action of X on ¢ via
Zo W

(61 X) (7. 21.22) = (61 X) (2)e (=)

with ¢(Z) 1= ¢(7, 21, za)e(mw). Then ¢ |, X belongs to Jyms if m/s is an integer

and is 0 otherwise.
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Proof. See [Gri92a, Lemma 4.1]. ]
Note: Throughout this part of the thesis, we will often write | instead of |, for the

weight k-action on Fourier-Jacobi forms, as the weight is always fixed.

Now, if F' € S¥ is a Hermitian cusp form, we can write

F ((; :)) = i:lgbm(T,zl,zQ)e(mw).

For X € H"%! as above, we have that F | X is a modular form with respect to I'; ;
([Gri92a, p. 2903]) and so we can write

T Z s

(F | X) (( 1)) =" (7, 21, 20) ().
<2 W m=1

Therefore, there is an action of Hecke operators from H'!' on the Fourier-Jacobi

forms coming from a Hermitian modular form F' via
o) || X = {0, (2.4.3)

Finally, we note here that this action is extended to P-forms in the obvious way.

2.5 L-functions and the Maass space

In this Chapter, we define the two main L-functions that we attach to a Hermitian

cuspidal eigenform of degree two, the standard and Gritsenko’s L-function.

Assume that G € S5 is a Hecke eigenform for H?, i.e., it is an eigenfunction for all
Hecke operators in H?. For a polynomial U[X] € H?*[X] and G a Hecke eigenform,
we denote by Ug the polynomial obtained by substituting the operators with their

corresponding eigenvalues.

Definition 2.5.1. The standard L-function attached to G (see also [Shi00, Para-
graph 20.6]) is defined as

ZD) = I 2807 [ 28028 m) Y,

p inert or p=2 p=nT

where for each inert prime p or p = 2, ZI(JQ) (t) == ! (21(02) (t)) and for 2 # p = 7T,

ZA(t) == ¢! (zﬁrz) (t)) and Z(t) := &1 (2;2) (t)), where

T

2
H(1 — pPaipt) (1 — p4$;;t) if p inert

11 = pait)(1 — p°z; ') ifp=2

i=1
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4 4

27(3)(75) = H(l —p_lxivpt), zg)(t) = H(l —p4:1€i_’;t),
i=1 i=1

and @ is the Satake mapping of equations (2.3.6) and (2.3.7).

Definition 2.5.2. The L-function attached to G by Gritsenko in [Gri88b, p. 2545]
(for the case of p inert and p = 2) and in the proof of [Gri88b, Lemma 2.1] (for the

case of split prime p) is defined as

QP (s):= [ @+ 2)2Q% )" I Qe ™)™

p inert p splits or p=2

where QP (t) := &~ (qz(f) (t)) with

2
L=z ) [ I Q=1 "2iyp- -z pTopt) if p is inert
=1

r=11<41<i2<2

2
ng2) () == (1- xO,pt) H H (1— p_r(xihp o 'xir,p)Zprt) if p=2 )

r=11<i1 <i2<2

H (1- p73$i,pxj,p$t) if p splits

1<i<j<4

and ® the Satake mapping of equations (2.3.6) and (2.3.7).

Let us now define the so-called Maass space for the case of Hermitian cusp forms.
We mainly follow [Gri90] and for the Definition we will use [Gri90, Lemma 2.4].

Definition 2.5.3. The Maass space is the space

{F ((T Zl)) f: (67, 21, 20) & T_(m)) 2™ mom3F | ¢ ¢ Jm},

zZ9 W m=1

where T_(m) := j_(T(m)) € H"', with

T(m):= Z gl
geSINM4(Z)
wlg)=m

and j_ is the embedding of equation (2.4.1). In particular, this is the standard Hecke

element of SLy(Z), viewed as an element of H*.

If now F' € S§ is a Hecke eigenform in the Maass space, we can relate its Gritsenko
L-function with the so-called symmetric square function of a classical modular form.

Let us make this precise. First of all, for any N > 1, let

To(N) = {(a 3) €SLy(Z) |¢c=0 (mod N)}.

Cc
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For any Dirichlet character x : (Z/NZ)* — C, let Sp(I'¢(IN), x) denote the space
of cusp forms of weight k& and level T'o(N) (see [DS06, p. 119] for a definition).

Moreover, we associate to x, the Dirichlet L-function
L(s,x) =Y _x(m)n=*=]J(1 - x()p~ )7L, Re(s) > 1. (2.5.1)
n=1 p

This can be extended meromorphically to the whole complex plane. For Chapters
2 and 3, we fix once and for all the Dirichlet character x : (Z/4Z)* — C, with
X(3) = —1. We then have the following Definition.

Definition 2.5.4. Let f € Sp_1(I'g(4), x) be a normalised Hecke eigenform with

Fourier expansion f(7) = ) _ a(n)e(nt). For each prime p # 2, we write
n>1

1—a(p)t + x(p)p* % = (1 — at) (1 = Bpx(p)t) , (2.5.2)

where «,, 8, € C. The L-function attached to f and its twist by x are given by:

L(fs) == (1= a(2)27) " [T —app™)~" (1 - Bpx(p)p’s)fl =1 Lo(f,9)7",

pF#2

L(f,s,x) = (1—a(2)'227) T = apx(p)p™) ' (1- 5pp_s)_l =
p#2

= H LP(f7 S, X)il'

We also define the symmetric square function attached to f as follows:

R(f,s) = (1—a(2)?27%)71(1 —a(2)227°) 'x

x l;[ (1—azp™) (1= x(P)apBp™) (1 - ip’s)]_l :

These converge in some right half plane and can be meromorphically continued to

C. The main property of the Maass space can then be stated as follows.

Proposition 2.5.5. Let F' € S5 belong in the Maass space (Definition 2.5.3) and
assume F is an eigenfunction for the Hecke algebra H?. Then, there exists a Hecke
eigenform f € Sp_1 (I'o(4), x), such that

QP (s) =C(s —k+1)L (s —k+2,x)C(s — k + 3)R(f, s),

We call F' the Maass lift of f.

Proof. See [Gri90, Theorem, p. 69] or the Appendix in [Gri92a]. O
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We end this Section by giving a Lemma regarding the correspondence of elliptic
cusp forms and Hermitian cusp forms of degree 1, both as analytic objects as well

as Hecke eigenforms.

Lemma 2.5.6. A Hermitian cusp form of degree 1 and weight k with k =0 (mod 4)
can be considered as a classical cusp form of the same weight (i.e., for the group
SLy(Z)) and vice versa. Also, a classical cusp form which is a normalised eigen-
form for the Hecke algebra H(GLy(Z), GL2(Q)) is also a normalised eigenform for

H(Ty,SY), when considered as a Hermitian cusp form and vice versa.

Proof. We have that 'y = SLy(Z) - {ar- 15 | @« € O} and the corresponding upper

half planes are the same. So, holomorphicity is equivalent (including infinity).

For the invariance condition, the one direction is trivial, as SLy(Z) C I';. For the

b
other one, let v € I'y and write v = ad with 6 = ¢ J € Sly(Z) and a € OF.
¢

Then
(F |k 1)(2) = (acz + ad) " F(Z) = (F | 6)(2),

as k =0 (mod 4) and Oj = {£1, +i}. Cuspidality is also clear from the definitions.

Assume now that we start with a normalised (i.e., a(1) = 1 in the Fourier expansion)
Hermitian cusp form A of degree 1, which we further take to be an eigenform for
H*. The canonical embedding of GL3 (Q) into S, the group of similitudes of degree
1, induced from the embedding Q — K, allows us to see h as a normalised Hecke
eigenform with respect to H(GLy(Z), GL,(Q)), as we can always choose g € GL3 (Q)
as a representative for GLy(Z)gGLy(Z), and GLy(Z) C T';.

But the converse is also true, that is, if we start with h a classical normalised Hecke
eigenform, then it is also a normalised Hermitian eigenform of degree 1. Indeed,
since the Hecke operators of the Hermitian Hecke algebra are normal (see Remark
2.3.4), we know that the space of Hermitian cusp forms is diagonalizable with a
finite basis {h;} of normalised eigenforms for H'. But from the above, each h; is
a Hecke eigenform for the classical Hecke algebra as well. Hence, this basis has to
coincide with the basis derived by diagonalising the action of the classical Hecke
algebra, thanks to the multiplicity one theorem. Now, because of the normalisation,

h = h; for some 4, which shows that h is indeed a Hecke eigenform for H!. O

Remark 2.5.7. From now on, we will use the terms “classical (or elliptic) cusp

form” and “Hermitian cusp form of degree 1”7 interchangeably.



Chapter 3

A Dirichlet Series Associated With

Three Hermitian Modular Forms

In this Chapter, we consider a Dirichlet series Dp¢p(s), analogous to the one
considered by Heim in [Hei99, Section 2.4, (29)], attached to three Hermitian cuspidal
eigenforms F, G, h, of degrees 2,2 and 1, respectively, all having weight £ = 0
(mod 4). We take F' in the Maass space, and we study the p-factor Dg)(;ﬁ(s) of the
Dirichlet series for each rational prime p. We show that in the case when p remains
prime in O = Z[i], Dg)gyh(s) is identified with the p-factor of Zggh(s), the twist by
h of Gritsenko’s L-function attached to GG. Moreover, for the case of a split prime p,
we obtain a rational expression for ng)G,h(S)? showing a relation with Zggp(s). By

combining these results, we show that Dg¢ p(s) has an Euler product.

Moreover, we show that this Dirichlet series arises as part of a Rankin-Selberg inner
product of a Hermitian Eisenstein series of Siegel type (see Definition 2.1.6) on
the unitary group U(5,5)(K), diagonally-restricted on U(2,2)(K) x U(2,2)(K) x
U(1,1)(K), against F,G and h. This representation also produces an additional

residue term, which is not studied in this thesis.

3.1 Overview of Heim’s Results

The so-called doubling method has been a very powerful tool in the study of the

standard L-function attached to Siegel and Hermitian modular forms.

The main idea, going back to Garrett in [Gar84] and Bocherer in [B6c85], is as follows:
Let 1 < n < m. Then, the Petersson inner product of a diagonally restricted Siegel-
type Eisenstein series of degree n + m against a Siegel cusp form F of degree n

is proportional to the product of the standard L-function attached to F with a
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Klingen-type Eisenstein series of degree m, attached to F. Therefore, analytic (and
algebraic) properties for the standard L-function can be studied using the Eisenstein

series.

The powerful consequences of this method make the question of whether this gener-
alises to more copies of the group natural to consider. Garrett in [Gar87] considered
the inner product of a Siegel-type symplectic Eisenstein series of degree 3, diagonally
restricted to H x H x H, against three classical cusp eigenforms. He managed to
relate this to the triple product L-function attached to them ([Gar87, Theorem
1.3]). Analytic and arithmetic properties of this L-function then follow from the

ones of the Eisenstein series.

It seems, therefore, natural to investigate the following idea: Consider an Eisenstein
series of Siegel-type of degree n > 1 and restrict it diagonally in k blocks of sizes
ni,no, -+ ,nk. We could then ask if the inner product of the Eisenstein series against
k cusp forms of degrees ny, no, - - -, ny affords an Euler product, which can be related

to some known L-function.

The only known instance when that happens is the case of the symplectic group with
n =25 and ny = ny = 2,n3 = 1. In particular, let F, G, h be Siegel modular forms of
even weight & > 0 and degrees 2,2 and 1, respectively. Heim, in [Hei99, Theorem
2.7], by considering such an inner product, obtained an integral representation of

the Dirichlet series

0o
DFG h Z ¢m | Uﬁa wmzz>am626—2(k+s—1)€—2(k+5—2)m—(2k’+s—3)‘ (311)

€

(e

Here, {¢m}, {tm} are the Fourier-Jacobi coefficients of F, G respectively, {a,,} the
Fourier coefficients of h, and Uy is an index-raising operator acting on Fourier-Jacobi
forms (see [Hei99, p. 214, (24)]).

In the case when F, G, h are all Hecke eigenforms and F is in the Maass space (hence
plays the role of an auxiliary function), Heim considered a Hecke-Jacobi theory
in the context of parabolic Hecke rings in order to obtain an Euler product. In
particular, he used factorisation methods, as introduced by Andrianov in [And74]

and then developed by Gritsenko in a series of papers (e.g. [Gri84], [Gri95]).

It is then Heim’s result in [Hei99, Theorem 5.1] that gives the relation of this inner
product with the L-function for GSp, x GLs. This integral expression was later
exploited systematically by Bocherer and Heim in [BHO0] and [BHO06], in order to
establish various algebraicity properties and lift restrictions on the weights of the

Siegel and elliptic modular forms by the use of differential operators.

In our case, we consider the exact analogue of the Dirichlet series in (3.1.1) for the case
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of three Hermitian cuspidal eigenforms. Our motivation is the similarities between
the symplectic and the unitary group of degree 2, as well as analogous factorisation
methods that exist for Hermitian modular forms as well (see, for example, [Gri92al).
We investigate the arithmetic properties of Dp g (s) and relate it to the twist of
Gritsenko’s L-function by a classical L-function. Moreover, we also consider the
analogous integral considered by Heim and show that it produces Dp ¢ 5 (s), together
with an additional residue term. This is a fascinating phenomenon, special to
the unitary setting. However, it is not investigated in this thesis, and we hope it will

be the subject matter of a future work.

3.2 Hermitian Dirichlet Series

In this Section, we will define the Dirichlet series, which will be the main object of
study for this Chapter.

Assume k = 0 (mod 4). Let F,G € S5 and h € S} with real Fourier coefficients.

21

This is a technical assumption that could be lifted. Write Z = eH, We

Zo W
H; and consider the Fourier-Jacobi expansions of F, G and the Fourier expansion of

h as follows:

F(Z)= Z G (T, zl’ZQ)eQWimw’ G(Z) = Z U (T, 21, 22)627rimw7
m=1 m=1

N (3.2.1)
h(W) — Z an627rinW.
n=1

Now, for any p € Ok, we define the operator U, acting on Fourier-Jacobi forms:

Up : J]ﬁm — Jk,mN(p) (3 5 2)

(bm(Ta 21, 22) — ¢m(T7 PprZZ)-
This is well-defined by [Das10, p. 427]. We now define the Dirichlet series of interest

as follows:

o0

Dran(s) =33 ¢m | Up, hmnp))tmnigN (p)~FT I N (q)~ sy Chbs=t),
p,9 m=1
(3.2.3)
Here, p,q € Z[i]\{0} with ged(p,q) =1, ¢ = u+ v, u > 0, v > 0. The reason we

sum like this will become clear when we consider the integral representation (see
Corollary 3.6.3).

Lemma 3.2.1. The Dirichlet series Dpcn(s) converges absolutely for Re(s) > 4

and represents a holomorphic function in this domain.
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Proof. We observe that

T p 2mimN (p)w
F ((pZQ N(p)w)) Z:: Om | Up)(T, 21, 22)€ .

In particular, as in the proof of [KS89, Lemma 1}, we have (¢n, | Up, ¥mn(p)) =
O ((mN(p))’“) for each m > 1 (see also [Gri92a, (5.6)]). Moreover, a,, = O(m*/?),

since h is a cuspidal Hecke eigenform. Hence, the Lemma follows. O

34

3.3 Inert primes

Our aim in this Section is to relate the p-factor of the Dirichlet series of (3.2.3) with
L-functions, when F, G, h are Hecke eigenforms. This case is closer to the situation
considered by Heim in [Hei99]. We first start by proving several results related to
the Hecke theory.

3.3.1 Hecke operators and weak rationality theorems

Throughout this section, p is assumed to be a rational prime which remains prime
in Og. Let us make a list of Hecke operators in H(I'y,S;) and H(I';1, S;") and
relations between them. We use the notation of Chapter 2. In particular, I's is the

Hermitian modular group and I'y ; the relevant parabolic subgroup.

o T, :=Tsdiag(1,1,p,p)ls.

Ty, := Dadiag(1, p, p?, p)ls.

A, = Dydiag(p, p, p, p)I's = Todiag(p, p, p, p).-
TJ(P) = Fl,ldiag(17p7p2ap)rl,l-

p 00 O
0 0
. Z Fl,l b “ = Z Va.
a€Z/pT. 00pO a€Z/pT.
000 p

® Ap‘s = Fl,ldiag(p67p67p67p6)rl,1 - Fl,ldiag<p57p67p57p6)7 ) Z 1.

It is known that H (T, Sg) is generated by T),, T} ,, A, and their inverses as a Q-
algebra (see for example [Klo15, Section 4.1.2]).

Also, for any operator X (p), we write X" (p) to denote A" X (p). Note here that we
use the same notation for A, as an element of H? and as an element of H»'. Finally,

we define

To(p’) i= jo(T(")), Ax(p’) := ju (Tading(p’,p)T1), 6 > 1, (3.3.1)
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where j. are the embeddings of equation (2.4.1) and T'(p°) as in Definition 2.5.3.
Therefore

p) = Tiadiag(p, p?, p, 1)I'11 = T adiag(p, p*, p, 1).
e Ay(p) = Fl,ldlag(p 2)F1 1-

T_(p) (Lp,p, DI
e Ty (p) =Ty 1dlag(1 Lp,p)la.

As A_(p) has only one right coset and (A_(p))* = A, (p), where * is the anti-
homomorphism of equation (2.4.2) (see [Gri92a, p. 2894]), we have

Ar(P’) = AP HAs(p), V6 > 1. (3.3.2)
This also implies Ax(p?) = A (p)® for all § > 1.

Proposition 3.3.1. Let ® denote the Satake mapping of Section 2.3 for the inert
prime p. We have

o O(T),) = xo+ p twoxy + ptwows + p2ror1my = 2o(1 4+ p oy (1 + plag).
o O(Thp) = p*agar+pagre+p etz +p afzias +p O (PP +1) (p— 1) agr1zs.
o« O(A,) =pSair T,

Proof. From Definition 2.5.2, we have
qz(f) (t) = (1 — 2ot)(1 — ptaowit) (1 — ptawowat) (1 — p 22021 201).
Also, from [Gri92a, Lemma 3.6], we have
‘I’_l(q](f) (1) =1 =Tyt + (pT1p + p(p® + p° — p+ 1)A,)12 — p* ATt + pP A2t

By comparing these two expressions, the Proposition follows. O

Let now DP(X) := ZP) (p~2X), with Z{?) as in Definition 2.5.1.
Proposition 3.3.2. We have

DP(X)=1-BiX + B X* — B X*+ X*,
where

By =p A (T, — (0P + D(p—1)4,),
By =p AT = 2pT1y, — 2p(p° — p+1)A,).
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Proof. This follows by direct verification, after applying the Satake isomorphism and
using Proposition 3.3.1. We remind the reader here that ZISZ)(X) = @*1(2782)(X)),

where )

ZISZ)(X) H(l—px 'X)(1 = pP X)),

=1

This also gives the ®-image of D{?). O

We now have the following Proposition regarding the factorisation of Dz(f).
Proposition 3.3.3. We have the following factorisation in H)'[X]:

DP(X) = (1—p*AJTA_(p)X)SP(X) (1 — p AT AL (p)X),

p

where

SA(X) =8y — S X + 5 X? — S5 X3,

with

So = 1.

Sy =p* (T (p) + V, —p(p*> —p +1)).

Sy = p AT (p)T-(p) — p3T7" (p) — 2p~3V} — p2(p — 2).
S3 = p’3(V; —p).

Proof. This can be verified directly by using the following relations, which can be
found in the proof [Gri92a, Proposition 3.2], or can be proved directly.

o «(Thy) =T (p) +A_(p) + A (p) + o Tf(p)/\+(p) PPATL ().
A

-e(Tp)ZT()+T+() « AT
o T_(p)Ty(p) = pT7 (p)+ (P> +p")Ap. o VAL (p) IPAQ( ).
A_(p)Ty(p) = p*A,T-(p).

Here, € denotes the embedding of H (T, S?) to H(T';1,S"?), as described in Lemma
2.4.1. O

Now, if F € S§ has a Fourier-Jacobi expansion as in equation (3.2.1) and QI(JQ)
denotes the p-factor of Gritsenko’s L-function, as in Definition 2.5.2, we have the

following weak rationality Propositions.

Proposition 3.3.4. Let F' € S¥ be a Hecke eigenform for H(T'y,S?) and m > 1.
Then
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QEHX) S b | Te(0)) X = (6 — bunsp | T-(0)X + Py | A_(p)X?) |

0>0

| (1 +p(vp - pAp)X2)>

Om if p|m

where ¢, | (14 p(V, — pA,) X?) = .
(1 —p?*6X2)¢,, otherwise

Proof. We follow the same proof as in [Gri95, Corollary 1]. Then, the result follows
from [Gri92a, Proposition 3.2]. We will just show the computations for the last claim

of our Proposition. We have
(F | 2)(2) = () (0*) " F(2) = p™°F(2),

and so ¢, | A, = p**78¢,,. Also,

(F | Va)(2) = (°* () F (( e /p)) -

00
_ o, )
ka 8 § : §b (7_7 21, 22)627rzm7 627rzma/p7

m=1
SO
—1 : _
Om | V, = p2k78pz p2mima/p b = 0 if (m,p) =1
mlvp — " 2%—7 : ’
a=0 P "¢, otherwise
from which the result follows. O

Proposition 3.3.5. Let F € S% be a Hecke eigenform for H(T'y, S?) and m > 1.
Then

DELX)S Gges | (AFAL(P° ) (p*X)° = ¢ | SP(X)—

5>0

— Gy | (8, A (p)SP(X))p X

Proof. This follows from Proposition 3.3.3, using the same techniques as in [Gri95,
Corollary 1]. O

In a similar fashion to Heim in [Hei99, page 227] now, we have that the action of
the operators T (p), Ay (p), V,(p) on Fourier-Jacobi forms of index coprime to p is

identical to zero. This leads to the definition of the following polynomials:

5(2) (X)factor =1 — <p73TJ,r<p) _ p72 _i_pfl)X +p72x2’

SH(X)Pim =1~ (p* T (p) —p2(p* —p + 1) X+
(—=p*T""(p) —p*(p — 2))X* + p°X°
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Hence, ¢ | S?(X) = ¢ | S@(X)P™ if ¢ € Jp,,, with ged(m,p) = 1. We now have

the following Lemma.

Lemma 3.3.6. Let ¢ € Jip. Then ¢ | S®(X)T4(p) = ¢ | T+ (p) S (X)Feter.
Proof. The proof follows by the following results:

« 9|V, =po.
e ¢|Ty(p)V;, =0, because ¢ | T (p) will have index 1.

« 0 1[T7 (), To(p)] = & | BPT(p) = VT (p) = (9* — p)& | T4 (p), by the first
point.

Here [T‘]’T(p), T, (p)] =T (p)T, (p) — Ty (p)T?"(p) denotes the commutator. We
will now give the proof of the third point. As in the proof of Proposition 3.3.3, we

have

o €(Tip) =T7(p) +A_(p) + As(p) + V, — A,
o €(T,) =T (p) + T (p).

Now, Hz is a commutative Hecke algebra and as € is a ring homomorphism, we have
e(Thp)e(Tp) = e(T},)e(Thp).

By then considering the elements whose product has signature p (see Definition 2.4.2
and [Hei99, Section 3.3]), we obtain

T ()T (p) + As (P)T-(p) + (V= 8) T (p) = T ()T (p) + T-(p) A (p)+
+ T (p)(Vp = 4y),

from which the result follows, as ¢ | Ay(p) = 0 for ¢ € Ji, and T_(p)A(p) =
p3ApT+(p). [

3.3.2 Calculation of the Dirichlet Series

Let now F,G, h have Fourier expansions as in equation (3.2.1) with real Fourier
coefficients. In what follows, we will assume that F, G, h are all Hecke eigenforms
for their corresponding Hecke rings (h is assumed to be normalised) and F' is in the

Maass space, as we have defined in Definition 2.5.3. We can rewrite Dp g i(s) of
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equation (3.2.3) as (we have ¢,, = m3 %@, | T_(m) for all m > 1 from Definition
2.5.3)

Dean(s) =43 (m**¢1 | T-(m)Us, mn@y) @mn o N (1) ETIN ()71

l,e,m
g~ (2k+s—4)
=46, S {1 | T_(m)Us, Pran)) atmn (e N (1) 75N (€)= sV = (Ghts=d),
l,e,m

(3.3.3)

with [,e € Z[i] coprime with their real parts positive and imaginary parts non-
negative and m € N. Also, f3; is the constant of Lemma 2.2.10. Now, if ¢ € Jj,,,
we have from Proposition 2.4.4 and the fact that A_(p) has a single right coset

representative, that

e~ T Pz —ormp2r! _ _
o | A_(p) = p* 3¢ ((pz p%’)) e~ 2P — B8 po pag) = P86 | U,
2

with U, the operator of (3.2.2). We now define the p-part of the Dirichlet series

Dl(g?,)G,h<S) — Z <<$1 | T (pm)Upz, ”szm-rzl >Aapm+2€p72slp72(k:+sf1)6p7(2k+574)m

Le,m>0
_ Z <(51 | T (pm)A_ (pl>’ {/;pmﬂl>Aapm”ep7(3k+2578)lp72(k+571)e >
l,e,m>0
% p—(2k+s—4)m7
(3.3.4)

together with the condition that min(l,e) = 0. The last line is obtained using the
relation between U, and A_(p) (and hence of A_(p') and U,:). This series converges
absolutely for Re(s) > 4, by comparison with Dp g ,(s) (see Lemma 3.2.1).

Now, with respect to the inner product of Fourier-Jacobi forms, we have by [Gri92a,
Proposition 5.1] that A*¥(p!) = p@=0IA_ (p!) and T*Y(p!) = p*=3T, (p!) for any
[ > 1. This then gives that the adjoint of A_(p') is A, (p') for the inner product of
P-forms and similarly the P-form adjoint for T (p') is T (p').

Let now X := p~®*+s=1) and N := pF~!.  Consider the Satake parameters
aq, g of the modular form h such that oy + e = a, and a0 = pF~1. Let also
X; = ayp~ s j = 1.2 We write

D a(s) = Do (s) + Day(s) = Die(s). (3.3.5)

where the corresponding index means that this variable (or both) is 0. Using the
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fact that . )
"t — ol
a n = —
P Q1 — Q2 ’

and properties for the adjoint operators we mentioned above, we obtain:

D(e)(S)(Oél - 042) =0 Z <<51,1zpm+2l ‘ T+(pm)A+(pl»Ap_(gst_g)l(Oélp_(2k+s_4))m

I,m=0

—ay > (G, Py | Ty (p™) A (p')) ap™ 27 (agp™ PFHe 4y,

1,m=0

(3.3.6)

D(l)(S)(CYl - OZQ) = i <g51’ '(me | T+(pm>>A(a1p—(1€+s—1))Ze(alp—(2k+s—4))m

e,m=0

— s 3 (1, Gy | Ty (™) alop™FH50) 2 (ppCrre=ym,

e,m=0

(3.3.7)

D(e,l)($)<061 —a3) = Z <é1, &pm | T+(pm)>A<alp—(2k+sf4))m
mOO:O - (3.3.8)
—y S {1, Py | Ty (™)) a(yp~ FEFs=D)ym,

m=0

Remark 3.3.7. In the following, we want to show a relation of D)(FI‘j)G,h<S) with some
other holomorphic function on an open subset of C, namely for Re(s) large enough.
By the Identity Theorem, it suffices to show equality when s is large enough and
real. This is true because that part of the real line has accumulation points (in fact,
every point is an accumulation point). Therefore, we will show the equalities below

for s € R large enough.

Proposition 3.3.8. We have

Dy(s) = Diey(s) = po—— -

<gz31,zz1>A( a3 X? a3X? )
QPL(X)  QUL(Xy)

Proof. This follows from equations (3.3.7), (3.3.8) and Proposition 3.3.4 with m = 1.
We have (because we have a Hermitian inner product, we need to conjugate in the

second argument)

S (01, | Ty (0™) aXT" = 3 (1, U | T (p™) X5
m=0 m=0

= (61, QL(Xo) M1 — p*OX2)1)a

)
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- (1 - p2k_6X12)Q;?%¥(X1)_1<9517 QLI>.A7
because X7, X5 are complex conjugates. Also,
> 1

—(k+s—1)\2e __
;}(04117 ) T a%p—2(k+s—1)'

So, the first part of the difference we are interested in is

<¢~517¢1>A (2) —1 2k—6 2 1 <¢~>17¢1>A 041)(2
o Q1 — Qg Qp’G( ) 1-p v 1 — ajp=2(kts=D) Q) — Qo Qz(mé(Xl),

and similarly for the second part. [

Proposition 3.3.9. Let Y := p? NX? and | > 0. Then, for i = 1,2, we have

S Gy | Te ™AL )X OCN ) = QLX) (G — s | T () Xit
m=0
+ plys | A(p)XD) | (14 p(V, = pA) XA AL (1) (7Y )')

Proof. The proof follows from Proposition 3.3.4, together with the fact that G |
Ay = (p2k_8)lG. O

p

In order to compute D.(s) of equation (3.3.6), we will compute each of the summands
above. We note that we need to interchange the X;’s when we take them in/out of

the inner products.

Proposition 3.3.10. We have

QLX) ™Y (6, By |1 (14 p(Vy — pA) XD AL AL () (p Y)Y 4
=0

NE

— QU (X)) Y (G e [k (1+p(V, = pA)XDA AL (B (p7*Y) ) a =

l

I
o

<¢~51,@51 |I~c 5(2)(Y)>A
@) T
Dp,G’(Y)

Oé%XQ _ afliXQ o
+ (Q;%(Xg) Q;(fé(Xl)) (P1,91) -

- (QIQS)G(Xl)_I - Oéfo(j)G(Xz)_l)

Proof. We first observe

(1 —p*0X2), ifl=0

7/~)le |k (1 "’p(vp - pAp)Xg) = )
ifl>1

pQZ
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by using the result of Proposition 3.3.4. Hence, by Proposition 3.3.5 we obtain

Mg

[k (L4 p(Vy = pA)X3) A AL (0 (p7°Y ) = (1= p™*°X3) b+

3ty [k A ALY TPY)

=1

=3 Dy [k AG AP (7PY) = X3y = 4y [, SO (YV)DEL(Y) T — a2X .

=0

After taking the inner product with ¢; and keeping in mind the conjugation hap-
pening, we get the expression for the first term. Similarly for the other term and

from this, the result follows. O

Proposition 3.3.11. We have

a1 Qp(X1)” ZP O Uy [k A= (p) X3 (L+p(Vy = pAy) XA AL (0) (p7°Y ) ) a—

—s QX)) Zp Otz [ A (p) X7 (1+p(Vy=pAy) XD A AL () (p7°Y) ) =

NP4X4 ayNp*X* <<131,121 ‘kS(Q)(Y»A
QLX) QE(Xy) DEL(Y)

D,
Proof. We use the identities A_(p)(V, —pA,) = 0 and A_(p)A+(p) = p®(A,)?, from
the proof of Proposition 3.3.3. We have, for ¢ = 1, 2:

> iy [k A (0) X (14 p(V, — pA) XA AL (0 (p7%Y) =
=0
—pZ%m 2 [ Ao (p) XA AL (P)(p°Y) =
Z -2 [k PP (A2 A AL (P (p7?Y )XY =

=Y e | AL AL (P TPY) A XY = pP DI (V) Ty | SP(Y) XY
=1

from which the result then follows. The last equality follows from Proposition 3.3.5.
We also used equation (3.3.2) as well as the facts that Al = Ay and that A, and

Ay (p) commute, because of the fact that A, has a single right coset representative,

which is pl,. O

Now, from the proof of Proposition 3.3.3, we have €(7},) = T_(p) + T (p). Since G

is a Hecke eigenform, we can write G | T, = A, G for some A, € C. Hence,

U || Ty =ty | Tulp) + by | T-(p) = by | T4 (p), (3.3.9)
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and so @p | T (p) = )\pizl. Moreover, from Lemma 2.3.3 and the fact that 7, has

real elementary divisors, we have that it is in fact self-adjoint. Hence A\, € R.

Proposition 3.3.12. Let \, denote the eigenvalue given by sz | T (p) = )\pzzl. We

then have

nQSH(X1) T Y P [k T-(p) Xa(1+ p(V, — pA)XHA AL (p) (p72Y) ) a—
=0

— Q5 (X2) TS (S e [k T-(p) X1 (14 (V= pA) XA AL (0 (p Y)Y =
=0

aip'X°N, _ azp' X3, <¢~51,@/~)1 | SE Y 4
QB +Y) QE(X)1+Y) DEL(Y) '

Proof. The proof is exactly the same as the proof in [Hei99, Proposition 4.5 (using
also the fact that ¢ [, SP(X)T,(p) = ¢ |, Ty(p)SP(X)Btr if ¢ € Jp, as in
Lemma 3.3.6.) 0

Now, Proposition 3.3.8 gives us a way to compute D(s) — D (s). Propositions
3.3.9, 3.3.10, 3.3.11, 3.3.12 can be used to compute D(;(s). Moreover, the coefficients
of S@(X)Prim are self-adjoint (see [Gri92a, Lemma 4.3]) and ¢, is an eigenform for
these operators. Indeed, this can be seen from [Gri92a, Theorem, p. 2911], as F'is an
eigenform in the Maass space and the element T (p) has signature 1 (see Definition
2.4.2). Hence

(1,91 | SPY))a = (b1, | SPY)PT™) 4 = (d1 | SP(Y)PM™ 4hy)a =
= SI('?) (Y)Prim<(51’ 'l/;l>_,4,

where we write S}?)(Y)Prim for the polynomial obtained when we substitute the

eigenvalue of ¢y with respect to the action of 77" (p). Hence, from equation (3.3.5),

we obtain
IS (2) Y prim
ng)Gﬁ(S) _ <¢17¢1>A5F ((2) ) % ( (2)041 (2)042 4
(041 - Oéz)ng(Y) Qp,G(Xl) Q ( )

afNp'X*  adNp'X* a1p4X3)\p aspt X3\, )
2 2 2 2 :
QPL(X)  QPL(X)  QULX)(1+Y)  QPL(Xy)(1+Y)

Let us now look at the expression in the big bracket. The numerator equals

(a1 + NP XN (L +Y) — a2p*X3N,) QL (X))~
— (a2 + 3NP XN (1 +Y) — a2p* X3N,) QL (X1).
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Here
Ql(,%(t) -1 _ )\pt + <p/\TLp +p(p3 +p2 —p+ 1)p2k—8>t2 B p4p2k_8/\pt3 +p4k—8t47
where Ar, , is the eigenvalue corresponding to the operator 77 ,. Let then
Ay = pAr, +p(p* +p> —p+1)p* s

By then performing the very lengthy calculation, and grouping in powers of Y, we

obtain that the above numerator equals
(a1 —a)(1 = Y)(1 =Y (Ap’ N2 = 2) + Y?(p° N 72\) — 2A5p° N2 + 2)—
—Y3(Agp® N2 —2) + Y
= (01— a2) (1 = Y)D(Y),
using Proposition 3.3.2. Hence, we obtain

(01, 1) 4SF (V) (1 V)
Qs (X1)QNu(Xa)

D¥ () = (3.3.10)

factor

Let us now explore the connection of Sg) (Y) with known L-functions. We recall

that y is the character we have fixed right before Definition 2.5.4.
Proposition 3.3.13. We have
SE (V)P = Ly(f,k + s = 2)Ly (f k45— 2.%)

where f € Sk_1 (Fo(4), x) is the modular form whose Maass lift is F', as in Proposition
2.5.5. Here, L, denotes the p-factor of the L-functions appearing in Definition 2.5.4.

Proof. Assume f has a Fourier expansion as in Definition 2.5.4. Let T'(a,b) :=
Io(4)diag(a, b)I'(4) for a,b > 1 such that a | b. Then, write

[ le—1 T(p) = a(p)f,

for the standard operator T'(p) := I'g(4)diag(1, p)['o(4), with a(p) € C. This is the
same operator as T'(1,p). Here, the |;_; action is the usual GLy-action. By standard

relations between Hecke operators, we then have
T(p*) = T(p)* = x(p)p* 2,
where T'(p?) := T(1, p?) + x(p)p*~3. This then implies

[l T(1,p%) = (a(p)® +p* 2+ p"72) f.
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Using now [Gri90, Lemma 3.3], we obtain that

o1 [k T (p) = p"(a(p)® + "% +p"*) 1.

Hence
Sg)(y)factor -1 pl—k(a(p)Q + 2pk—2)y +p—2y2.

But, Y = p’NX?% N =pt~tand X = p=*+s=_If a,, 3, are as in Definition 2.5.4,

we obtain:

S}?)(y)factor —1_ p4_2k(o‘z2> + 5;)29_25 4 p2ka=2s
(1- p4—2k—25a22))(1 _ p4—2k—25B£)
(1= app® %) (1= Box()p* ) (1= apx(p)p* ) x
x (1= Bp2~Fe)

=L,(f,k+s—2)L,(f,k+s—2,%). O]

From equation (3.3.10) and Proposition 3.3.13, we obtain the following Theorem.

Theorem 3.3.14. Let F,G € S5 and h € S¥ be Hecke eigenforms, all having
real Fourier coefficients, h normalised, and F' belonging in the Maass space, with
corresponding f € Si_1 (I'o(4), x). Let also ¢y, denote the first Fourier-Jacobi coef-
ficients of F,G, X; = ayp~ =4 { = 1,2, where o; denote the Satake parameters
of h and Y = p=F=2572_ We then have, for Re(s) large enough

<éla¢l>ALp(f>k+$_Q)Lp(f>k+3_27X)(1_Y>'

Difea(s) =
e QUL(X1)QVL(Xz)

Here, Dg)G’h denotes the p-part of the Dirichlet series, as in equation (3.3.4) and
Qfg; denotes the p-factor of Gritsenko’s L-function, as in Definition 2.5.2.

3.4 Split Primes

We will now consider the case where the odd rational prime p splits. That is, we have
that p = 77 for some prime element 7 € Og. Our aim in this Section is to prove
weak rationality theorems analogous to Propositions 3.3.4 and 3.3.5. In order to do
that, we will first have to factorise the polynomials which serve as the p-factors of
the standard and Gritsenko’s L-function in the parabolic Hecke ring H;’l, as defined
in Definitions 2.5.1 and 2.5.2. The factorisation of the latter polynomial has been
done by Gritsenko in [Gri92a, Proposition 3.2]. Our aim, therefore, is to factorise

the standard Hecke polynomial. As we mentioned in Section 2.3, H " is isomorphic
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to the ring of polynomials of one variable with coefficients from the Hecke ring of

the parabolic subgroup

91 * S
Pis1(Zy,) = 0 g | €GLyZ)]|g1,92 €Z);, g € Glo(Zy,)
O 0 go

Hence, we will first investigate Hecke rings of the general linear group and then use

this isomorphism to translate the relations back to HI}J.

3.4.1 Hecke rings in GL, and factorisation

Let p be a prime that splits in Ok and let

91 * *
Pi21(Qp) = 0 g x| €GLi(Q)]| 91,9 € @;, g € GL2(Q,)
0 0 g

be a parabolic subgroup of GL4(Q,). Denote by I'1 21 1= P121(Q,) N M4(Z,), the
group of Z,-points in P;21(Q,). Let also Hy := H(GL4(Z,), GL4(Q,)) be the full
Hecke ring in this case and Hy o1 := H(I'1 21, P121(Q,)) denote the corresponding

parabolic Hecke ring.

Let us now explicitly describe the isomorphism H} = H(GL4(Zp), GL4(Qp))[z™],
which will yield H}' = Hyz,[2*], as Gritsenko does in [Gri92a, Proposition 2.4]

(H? and H)'' are the corresponding unitary rings).

We are in the setting of (2.3.3), where p is a prime that splits in K. We fix an
identification K, := K ® Q, = Q, x Q, and denote by (u, —pu) the image of the
element (2¢)~!. Let also e := (1,0), €° := (0,1) € K,,. We perform the change of
variables g — C'~1gC', where

Iy —pe’l I, 0 Oy —pl
O = €l He” 1o _ 2 2 : 2 Hi2 c GL4(QP) % GL4(QP)
,ue”lg 612 02 12 ,ulg 02
(3.4.1)
' 01 - :
with Iy 1= (1 O)' We then have that GZ()Q) (see (2.3.4)) is identified by

G = {(X.Y) € CLy(Q,) x CLi(Q,) | Y- X =cly, c€ Q).

p

and U (see (2.3.5)) by

UP ={(v.a(y"")") | v € GL(Z,), o € Z)},

p
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(see [Gri92a, p. 2890, 2891]). Define then pr : GL4(K,) — GL4(Q,) by pr(z,y) = =,
induced by K, = Q, x Q,. Then (pr, ¢) gives an isomorphism CNJZ()Q) = GL4(Qp) x Q-
The double coset of (M, c(M~1)) € é](f) with respect to ﬁf) is determined by the
double coset of M with respect to GL4(Z,) and by the order ¢ of the ideal cZ,.
We will denote such a coset by (M, (5)[79. Note that here there is a choice, namely
whether we have m —— (pu,v) with u,v € Z or T —— (pu/,v') with «/,v" € ZX. In

the following, we always choose the first identification.

We remark that

a, 0 by by as az by by
L 0\ as a bs bi| (B 0\ |0 a b b
(0 12> e 0 dy dy (o 12)_ 0 o d d
0 0 0 dy 0 0 0 dy

Therefore, via the map pr, we also obtain the isomorphism H)"' & Hy 5 [z¥].

We now note that the conditions of Lemma 2.4.1 hold for the Hecke rings Hy, H 21,
as explained in [Gri92b, page 2870]. The above identification makes the following
diagram commutative:

H2 ——— H,a*]

[k

H;J E— H1,271[Ii],
where €, € are the corresponding embeddings of Lemma 2.4.1.

We will now give a Lemma regarding the decomposition of an element in Hj s,
into right cosets. Let n > 1. For a given square matrix R € M,(Z,), we define
I'?.=T,NRT,R. Also, if A, D are square matrices of sizes n, n, respectively,
we define

V(A,D):={AY | Y € M,, »,(Z,) (mod D*)},

where AY; = AY; (mod D*) if and only if AY;D~! — AY>,D ™ € M, ,(Z,).
A straightforward generalisation of [Gri88a, Lemma 2] gives the following Lemma.

Lemma 3.4.1. Let a,b € Q) and A € GLy(Q,). We then have

a * % a B D)\ (1 0 0
F172,1 0 A x F1’271 = ZFLQJ 0 A C 0 N O 5
0 0 0 0 0 b 0 0 1

where N € T{\T'y and B € V(a, A), D € V(a,b), C € V(A,b).

We now denote by T'(a, b, c,d) the element of the Hecke ring H(GL4(Q,), GL4(Z,))
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defined by
T(a,b,c,d) = GLy(Z,)diag(a, b, c, d)GL4(Z,).

We then have the standard elements of Hy:

Tl = T(la 17 17p)7 T2 = T(L 17p7p)7 T3 = T(lvpapvp)a A= T(p7p7p7p> (342)

The decomposition of these elements into right cosets can be found in [And87, Lemma
3.2.18]. Our aim is to now compute the images of the standard Hecke operators of
equation (3.4.2) under the embedding of Lemma 2.4.1. In a similar fashion to Hy,
we write

To(a,b,c,d) :=T'191diag(a, b, c,d)'1 21,

for an element of H; ;. Let us now introduce some useful elements of H; o ;.
® A}l—’3 = TO 17p7p7p . ® T—(p) = TO(p7 17p7 1)

)

1,1,1,p). « Ti(p) ="To(1,1,p,p).
) o A= TO(pvpapvp)'
)

L]
-
+ &
—
I
3
Y~ I~~~

The right coset decompositions of these elements can now be computed by Lemma
3.4.1. We again note that we use the same symbol A in both H4 and H; ;. We can

do that, as the embedding of Lemma 2.4.1 does not change this specific element.

Proposition 3.4.2. Let € denote the embedding of the Hecke ring Hy into Hiy 91, as

described in Lemma 2.4.1. We then have the following images of the elements T;:

o €T)) =AY +Ty(1,1,p,1) + A3
° 6(T2) = T—(p) + T—‘r(p) + TO(]-ap)p7 1) + T(](]), ]-7 ]-7p)
o €(T3) = A>' + Ty(p, 1,p,p) + A},

Proof. These follow directly by the right coset decompositions and the definition of
the embedding e. We note here a typo in Gritsenko’s paper [Gri92b, page 2879] in

the A, component (it appears we need to swap A_lgg and Ail). n

We are now in a position to give the factorisation of the standard Hecke polynomial
()4, as this is defined in [Gri92b, Example 2].

Theorem 3.4.3. Let Qu(t) := 1 — Tit + pTut® — p3Tst3 + pSAtt € H[t]. Then, in

Hi51[t], we have the factorisation
Qu(t) = (1 — AM*1)(1 — Ayt + pAst®)(1 — A3'e),

where Ay :=To(1,1,p,1) and As :=To(1, p,p, 1).
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Proof. The factorisation follows by the images of the elements in Proposition 3.4.2

as well as the following relations:

o AY3A =T (p). o A4, =pPAPt

o ANY = pT (p). o APANY = pPTo(p, 1,p, p).
o ADPAS = pTy(p,1,1,p). o ADPALNYT = pPA.

o AAT = p?AY

These can be obtained by using the right coset decompositions of Lemma 3.4.1. [

3.4.2 Hecke Operators and weak rationality theorems

We will now translate the results above back to the Hecke rings Hg and H;’l of the
unitary group. We have the following correspondence between the standard elements
of Hy (see equation (3.4.2)) and of H}:

o T +—— 1% = nglag(l ™ p,T )FQ
o Th+— Tp := Iadiag(1, 1, p, p)Ts.
o T3 +— T, :=Tydiag(l, 7, p,m)ls.

Also, for the correspondence between the Hecke operators of H;’l and H; o1, we

have:

) I 1d1ag(7r, 1, Wap)rl,l-
) F 1d1ag(ﬂ-7 1777P)F1,1~
) F 1d1ag( )Fl,l-
) =TI 1d1ag(7r D, T, 1)F11

T, p, 7,1

o To(1,1,p,1) «— T(7) :=I'y 1diag(1, 7, p, 7)1 1.
o To(p,1,p,p) «— T(m) := Ty diag(l, m,p, )T 1.
o To(1,p,p,1) ¢— T'(m,7) :=I'yydiag(m, 7, 7, 7)1 1.
e To(p,1,1,p) «— T(7,n) := 'y diag(w, m, 7, ) 1.

) Iy 1d1ag(1 b, D, 1)F1,1-
p) Iy 1d1ag( p7p>F1,1-

We denote by A, :=TI'y jdiag(m, 7, 7, 7)1 ; and similarly for Az and A,. We again
use the same notation for these as elements of Hz as well. Finally, we also have the
operator V,, as in Subsection 3.3.1. From [Klo15, Section 4.1.1], Hg is generated by
T, Tx, Tx, Ay, Az and their inveres as a Q-algebra.
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In order to make clear how the isomorphism described at the beginning of Subsection
3.4.1 works, let us describe it in the case of A (7). We remark that

—1
L 0 ) I, 0 .
(02 12) diag(aq, ag, as, ay) (02 12) = diag(as, a1, as, ay).

We then have by sending m — p
[y diag(m, 1,7, p)l'yy > Tigadiag(p, 1,p, p)lio1 — Tigadiag(l, p,p,p)lia,

where the second arrow is simply the swap of the first two diagonal elements induced
by the matrix C, as described in (3.4.1). Also, since p(diag(m, 1,7,p)) = p, Ay (7)
gets mapped to (A}r’?’, 1)01@, but in general we will not keep account of the second
coordinate. The only case in which this plays a difference is in the identification of
A, and A,, which both get mapped to diag(p, p, p, p), but their factors of similitude
are 1,2 respectively. The reason why factors of A= appear in the relations below is

to compensate for the second coordinate, as diag(w, 7,7, 7) — diag(1,1,1,1).

The table below shows some relations between the above Hecke operators. These can
be obtained by translating back to H; 5, and using the right coset decompositions.
The way to read the table is that we first read an operator X in the first row, then
an operator Y in the first column, and the result is XY. We write “comm” to mean

that the operators commute.

LolL@] Am | A@ | 7@ | Tm | Tmm | Tmn | Te) | Tw)
Ay () comm | pA;T (7, 7) piA, comm | pA; Ty (p) comm P?ALAL(7) | PPALT(R) | comm
AL (%) | comm p*A, pALT (7, ) | pAZT(p) | comm | p? A=A, (7) comm p?A:T () | comm
A_(m)
A_(7)
T(T) comm pAFT_(p) comm
T(m) pAT_(p) comm comm
T(m,T) comm P?A=A_(7)
T(7, ™) P?ALA_(TT) comm
T_(p)
7. (p) P’AT(7) | p*AsT(m)

Table 3.1: Relations of Hecke Operators for split primes.

Proposition 3.4.4. Let

DP(t) =1 — Tt + pA=T > — PP AZTH? + pPAEAtY € H Y],

™

and
DE(t) =1 — Tnt + pATpt* — pPPA2TH? + pSAS At € H2[1].
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Let also
Se(t) =1 =T (T)t + pA#T (m, 7)1 € H)'[t],

and
S#(t) :=1—T(m)t + pA;T(7, m)t> € H)'[t].

We then have the following factorisations

DR (t) = (1= A_(M)1)S(t)(1 = Ay (T)t),

™

DP(t) = (1= A_(m)t)S=(t)(1 — Ay (m)t).

T

Proof. This follows from Theorem 3.4.3 after pulling back to the parabolic Hecke
ring H;’l of the unitary group. O

Remark 3.4.5. We remark here that Z(?(t) = D@ (AZ't) and Z& (1) = D& (A-1t),
where Z(%), Zg) are the standard polynomials defined in Section 2.3. This can be
seen by computing the images under the Satake mapping of the above coefficients,

as can be found in [Gri92a, Lemma 3.7].

We will need a Lemma regarding the decomposition of a Hecke operator in H;’I into

right cosets. Let ¢ : I'y — I'; 1 denote the embedding

A0 B O

A B 01 0 O
—

C D cC 0D O

0 0 0 1

Also, for a set of representatives of O /m* with m € O and k € Z, we understand

that we only take 0 as the only representative if £ < 0. We then have:

Lemma 3.4.6. Let
M = diag(ﬂalfbl, otz rasgbs, 7r“4ﬁb4) € Sﬁ,

with a;, b; nonnegative integers. Then

1 00 [
g1 1 r—13g
Iy oMy, = Z M °(7),
lLq,r 0 01 q
ey 000 1

where 1, q,r run over elements in Ok that satisfy r € Z and they give representatives

of

I € O /nmmhih g e O fxosmhits e 7,/pn0,
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Finally, v runs over a set V' such that

[idiag(n@ @, 7@7)0 = > Tidiag(r™ 7™, 77" )y
yeVv

is a decomposition into distinct right cosets relative to I'y.

Proof. We write

GF1,1 ‘ luere OK

o O© = O
O~~~ O
_

for the (integral) Heisenberg part of the Klingen parabolic. We then claim that

1 00 [
-g 1 1 r—Ig
HiaMHyy =Y HiaM , (3.4.3)
l,q,r 0 01 q
0 00 1

where [, ¢, r are as in the statement of the Lemma.

1 0 0 1
' -7 1 1 '
To see this, we first set h(l,q,r) := 0 01 and M = diag(ay, oz, a3, ay)
q
0 0 01
and calculate
1 0 0 arls + Loy
—q10n — g lo+1
h(117Q1,7’1)Mh(l2,q27r2) = q10n — QaQy O Qaly + 1103 *
0 0 a3 03q2 + q10y
0 0 0 "

where x = —q,a1ly + aory + Liasqy + riay. We first look at the upper right entry.
We have

aily + Loy = TOT L + [T,
If a; > a4 and by > by, we may write
arly + Loy = (Wal’“‘*ﬁbl’b‘*lg + l1> T,
and so we do not need right cosets in this case. In the other cases, we write

_ a4—a1-—=bs—b1
lo =2+ ym T ,
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with the understanding that we set 7° = 1 and 7@/ = 1 if 4,5 < 0. We then have
ayly + Loy = 7T + (1) + y)w™ 7,
For example, when a4y > a; and b, > by, we write [y = x + y7*~% and obtain

anly + Loy = TT g 4y 4 [Tt = gty 4 (Yo 4 1)) moeTs,

Similarly, looking at the entry

oly + Ly = w2721y + [ 7t
with Iy = x + yr®~47%~% as above, we obtain,
oly + liog = 272 4 groegtepiagbibe ] psghs — po2gheg 4 (5 4 1) 7wt
where we have used the fact that as + by = by + a3 and a4 + by = a7 + bs, since
MeS:.

In particular, for these entries it is enough to consider the entry Iy modulo 794 ~17ba—b
(with our convention). Similarly, by looking at the entries —g,c; — 2@, and azgs +

q104, we obtain the corresponding result for gs.

We are now left with the * entry. Using the fact that we can write , = ] — ;g
and ro = 15 — log, for some 7} € Z, we have that the only part of the % entry which

. . . . , ,
is not determined by our choices of q1, ¢, l1, 12 is aery +1rjay. But
aor + s = 7T, 4 rimtenh,

Arguing as above and using the fact that ay — as = by — by, we see that the element

7y needs to be selected from integers modulo 7% ~a27bi=b2 = pai—az,

This establishes our claim of equation (3.4.3). The rest of the proof is identical to

the symplectic case, as done by Gritsenko in [Gri84, Lemma 3.1]. O

We now define the elements
Ti(p‘s) = j4 (T (p5>) , Ai(w(s) = jt (Fldiag (7r5,7r5> 1"1) ,0>1,

as in the case of an inert prime (see equations (2.4.1), (3.3.1)) and similarly for
A+ (7). In particular, using Lemma 3.4.6, or translating back to the Hecke algebra
of GL4, we obtain

As(7®) = Ac(m® M As(m), 6 > 1. (3.4.4)

This implies Ay (7%) = Ay (), § > 1. The same holds for AL (7).
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We are now finally ready to obtain the rationality Theorems, as in the case of an
inert prime. Assume F € S§ has a Fourier-Jacobi expansion as in equation (3.2.1)

and Qf) denotes the p-factor of Gritsenko’s L-function, as in Definition 2.5.2.

Proposition 3.4.7. Let F € S5 be a Hecke eigenform for H(T'y,S%) and m > 1.
Then

Q)Y by | Tep)X° = (D — Duagy | T-(0)X + paspe | A_(p)X?) | BX),

5>0

where we define B to be the middle polynomial of degree 4 in the factorisation of
QP (t) given in [Gri92a, Proposition 3.2, (3)]. In particular, we have

B(t) =1 - Blt + th2 — Bgts + B4t4 S H;’l[tL

where

By =T(7,7) + T(m,7), By =p (A (m)A(T) + A (MA_(7)) = pV, + (p° — ')A,
By = p* (A AL (T)A_(7) + AzAy (m)A_ (7)) — p* A, By, By =p°A,V, — p° A

(3.4.5)
Moreover, from [Gri92a, Proposition 4.2/, we have
Om | B(X) = (1= p*X)?(1 = p™* ' X?) by,
if (m,p) =
Proof. The proof follows by [Gri92a, Proposition 4.1] and the fact that
WL(t) = 1= T_(p)t + pA_(p)t?,
as is defined in [Gri92a, Proposition 3.2, (1)]. O

Proposition 3.4.8. Let ' € S¥ be a Hecke eigenform for H(I'y, S?) and m > 1.
Then,

DEL(X) Y Gt | A (T)XP = (00 — by | A_(@)X) | So(X).

>0

Similarly,

D1 (X)Y G | A (7)) X0 = (6 — Gsp | A_(T)X) | S2(X),

6>0

with notation obtained by exchanging © and 7. Here, Sy, S% are the polynomials

appearing in Proposition 3.4.4.
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Proof. We have, in the same way as in [Gri84, Corollary, p. 264], the proof of which
can be found in [Gri84, Proposition 5.2], that

Om ||k A (T) = dmp |k Ay (T)-

Then, inductively, using equation (3.4.4), we obtain

Om [k Ap(T°) = G & Ay (7°), VO > 1.

Now, since F' is an eigenfunction for H(T'y, S?), we have Dg%(t)(bm = ¢m || DD(1).

Then, we can write

DEL(X)Y by | Ar(@)X° = DEL(X) Y (¢ || A (7)) X

620 §>0
= (6 || DP(X)) || ;A+(w5)X5
= (¢m || DP(X)) || ;M(WX‘S

= &m || (1 = A(7)X)5(X)
= (bm = Gmp | A(T)X) | 5(X),

as claimed. In the equalities above, we used that A (7°) = A, (7)° from equation
(3.4.4) and also Proposition 3.4.4. O

To end this Section, we will prove a couple of Lemmas, which will be useful later,

when we are dealing with the Dirichlet series of interest.

Lemma 3.4.9. Denote by A_(7)2Y the adjoint of the operator A_ () with respect
to the inner product of Fourier-Jacobi forms (see Definition 2.2.8). Then

A () = P ().

Proof. Let ¢, 1y, be two Fourier-Jacobi forms of weight & and of index [, Ip respect-
ively. We observe from Lemma 3.4.6 that A_(7) = I'y diag(m, p, 7, 1). We also note
that the Jacobi form ¢; | diag(m, p, 7, 1) is of index Ip for the group

a 0 b k

I Dy x O x O =4 |* 1 * * erny(“ b)en, kA€ Ok
c 0 d A ’ c d
00 01

In particular, if HY := H; x C x C, we may write



Chapter 3.
A Dirichlet Series Associated With Three Hermitian Modular

56
Forms

24—k
(& |k A_(7),pp) = []19“11:7}]/1“_\11411 &i(T, 21, T20) iy (T, 21, 22) X

|2
21— Z
X exp (—Wlp|12|> v*dy,
v

12, and

as in Definition 2.2.8. We now perform the change of variables z; —— 7~
2y — T 'zy. This is equivalent to the action of the matrix diag(w, 1,7, p) on Hy.
Now

(Vip | diag(7, 1,7, p)) (1, 21, 20) = p" 47 by (1, w221, T 1 22)

is a Jacobi form of weight k and index [ with respect to the group

a 0 b k
* 1 %  x a b
'y =T x 710k x 710 = el el
T 1 K K 0 d ) 1,1|(C d) 1
0 01

K,AA=0 (mod )}

This group is obtained by considering the group diag(, 1,7, p) 'T'_diag(7, 1,7, p).
We therefore have

2k—6ﬂ,—k

p

(D1l A=(m), ¥p) =

/ QSZ(T? 21722)¢lp(7—7 W_lzlaﬁ_l,ZQ)X
Ly \H{

=2
X exp (—Wl|zlz2|> v*dp.
v

On the other hand, we have by Lemma 3.4.6, that

™ 000
0100
A+ (ﬁ) = Z F171 . h(CL, b, C),

a,beOk /, 0070

CEZ/p 0 O 0 p
1 00 a

b 1 @ c—ab
where h(a,b,c) = 0 0 Cll ¢ ba . By now using the fact that

0 00 1

<¢l |/€ h<a7bv C)_lvl/}lp> = <¢l7¢lp |/€ h(a’ bv C)>7

we obtain

k—4,._—k
T 122))(

<¢l>¢lp |k A+(7)> _pg[lljllﬂ/l“ Y ¢z(7'7 21722)1/”]7(7—777-_1217?7
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Jp—)
X exp <—7rl’2122|> "y,
v

as h(a,b,c)™" € Ty and hence they act trivially on ¢;. Therefore,

(0 e A= (). = 5 L oy | A () = {0 e A7),

as the ratio of indices is p?. The result now follows. O]

Finally, knowing the action of the operators T'(w,7) and T'(7, 7) on Jg, will prove

helpful in the following, so we give the following Lemma:

Lemma 3.4.10. Let ¢ € Ji1. We then have
¢ |x T(m,m) = p* 0.

Proof. Using the decomposition in Lemma 3.4.6, we can write

T 0 0 7B
_ -y m wf 7P
T(?T, 7T> = Z Fl,l 7 . K
YEOK /7, BEOK [T 0 0 7 v
0 0 0 T
The result now follows from [Gri90, Lemma 3.2]. O

Remark 3.4.11. The same is true for the operator T'(w,7) = I'y ydiag(m, 7, 7, 7)1 1.

3.4.3 Calculation of the Dirichlet series - First Part

Assume F, G, h satisfy the same assumptions as in the beginning of Subsection 3.3.2.
We recall from equation (3.3.3) that

Dran(s) =48 3~ (&1 | T-(m)Us, Ymn) atmn(o N (1) 7*N (€)==t
l,e,m
with [,e € Z[i] coprime with their real parts positive and imaginary parts non-
negative and m € N. In the case of a split prime p = 77, we define the p-part of the

Dirichlet series by

Dg,é,h(‘s) = Z <$1 | T (pm)Uwzl Uﬁlg , @meﬂﬁb >Aapm+q+52p_s(l1+l2) X

l1,l2,61,62,m>0

x p~(kts=D(erte) ,=Chts—m (3 4 g)

together with the conditions min(ey, ;) = 0 and min(ey, o) = 0. This series converges

absolutely by comparison with Dl(f’)qh(s) (see Lemma 3.2.1).
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Consider now the Hecke operator
A (7T> = Fl,ldiag(ﬂ-7p7 T, 1>F1,1 - Fl,ldiag<7rup) T, 1)7

by Lemma 3.4.6. Then, if ¢ is a Fourier-Jacobi form of any index m, we get

¢ e A-(m) = p* 7S ( ( i ”)) T = i, m, ) =

Tzy pT’

=R |y Us. (3.4.7)

Hence, we can rewrite the series as:

DL ()= S (d | T- (™A (TN A (T2), st o0 ) Alpmses ves X

li,la,
€1,€2,m>0
min(l;,€;)=0

(4—2]{3)11 (4_2k)127rl1kﬁl2k —S(ll-‘rlg) —(k+s—1)(61+62) —(2k+s—4)m

Xp D D p p

By then using an inclusion-exclusion argument, we have that the above series can

be written as
DE% 1 (5) = Diey ) (8) + Dty ) (8) + Diey 1z (8) + Diey) (5) —

- D(€1,62711)<5) - D(Ez,ll,b)(s) - D(€1,117l2)<8) - D(€17€2,l2)(5) + D(61,62,l1,l2)<8)7

where we use the same notation as in Subsection 3.3.2, meaning that the correspond-
ing index means the variables are 0. We can then deal with the “easy” parts first,
i.e., when the operators A_ do not appear. We again consider s € R big enough, as
in Remark 3.3.7.

Proposition 3.4.12. We have

D(lhlz)(S) - D(l1,l2,61)(5) - D(l1,l2762)(8) + D(l17l2761,62)(8) =

(D100 [ad(1— X)X ad(1 - PP *X3)X?
a1 — a QU(X1) Qpe(X2)

where X = p~*+t5=D and X; = a;p~ @59 as in Subsection 3.3.2.

Proof. We have

D(l1,12)<5) _ Z <(51 ’ T (pm)7 Zzpm>Aapm+€1+€2p7(k+371)(61+eg)p7m(2k+sf4)7

€1,62,m=>0

D(ll,lz,el)(3> _ Z <Q~51 | T (pm)7 zzpm>Aapm+62p—(k+s—1)ezp—m(2k+s—4),

€2,m>0
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D(ll,lg,eg)(s) _ Z <&1 | T <pm)’ &pm>Aapm+51p—(k+s—l)e1p—m(2k+s—4)7

€1,m>0

D(l1,l2,61762)(5) = Z <Q~51 ‘ T (pm>7&pm>Aap"Lpim(2k+874)'

m>0
Using now the fact that aym = ("™ — a5"™!)/(a; — az) and the fact that the
adjoint of T_(p™) is T’y (p™), when they are acting on P-forms (see also in [Gri92a,
Proposition 5.1] and Subsection 3.3.2), we get

Dy iy(s)(on —a) =1 <¢~517@me | T (p™)) a(cap™ FFemtyertee (g p=@hrs—a)ym

€1,62,m>0

— Qg Z <(51, J}p’”

€1,62,m=>0

Q2P

Y

(k+sfl)>61+62( 7(2k+sf4))m

Ty (p™)) alaap™

and similarly for the others. Now, by Proposition 3.4.7, we obtain, as in Proposition
3.3.8:

i (D1, G | T (™) AXT" = (1= PP X0)2(1 = p™ 7 X7) (1, 1) aQpr(X1) ™

m=0
> 1
Al —(kts—lyer — nd similarly for €;, and
S0, E;O(alp ) 1 — &1p7(k+571) a y €1
—(k+s—1)\(e1+e€2) _ )
El;o(alp ) (1 o alp(kJrsl))

Hence, we obtain

D(ll7l2)<8) - D(l1,12,€1)<8) - D(ll,lz,éz)(s) + D(l17l2,517€2)(s> =

(A [0d(1 - PPN ad(1 - xRN -
ar — a Q(X1) Qe (X2)

3.4.4 Calculation of the Dirichlet Series - Second Part

In the following, we define
}/1 = 7_{_kp—(2l€—|-s—4), )/2 — fkp_(2k+5_4)7 X = p—(k—&-s—l)7 )(Z — aip_(2k+s_4),
for i = 1,2. Let us now consider the series

D(617€2,l2) (3) = Z <Q~51 | T— (pm)UTrll 9 @Ep'"”fll >.Aa’pmp_8l1p_(2k+s_4)m‘

l1,m>0
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Using the fact that a,m = (o' —

and A_(m) of equation (3.4.7), we obtain that

o) /(a; — ay) and the relation between U,

(1 = @2) D, ea.1)(5) = 151(s) — a255(s), (3.4.8)
where

Si(s) == > (1 | T-(p™)A ("), Ppmsr) ap™ CF oDl (qp=Bhts=ym.
1,m>0
Using now the fact that the adjoint (with respect to the inner product of P-forms)
of T_(p) is T-(p) and of A_(7) is AL (7) (Lemma 3.4.9) and that T_(p) and A_(m)

commute, we get

Si(s) = > (b1, thymrt | Te(P™) AL (7)) 4 XY =

1,m>0
- Z <¢17¢pm+l |T+(pm)A+(ﬁl)Y21>Ale7
1,m>0
because we have a Hermitian inner product (and therefore we have to conjugate in
the second component of the inner product). We remind the reader that we work

with s € R big enough.

Lemma 3.4.13. Fori = 1,2, we have

- 1 - -
> et | T (0™MAL(F)X]YS = ———= > [t — G [T () X +
1,m>0 Qp,G( z) >0

+ pUy-2|A_(p)X7| | B(X:)A((7)Y3,

with B the polynomial of Proposition 3.4.7.
Proof. The proof follows immediately from Proposition 3.4.7. [

Let us now compute each of the sums occurring above.

Proposition 3.4.14. Fori = 1,2, we have

1 -
T 2 U | BX)AL(T)Y; =

g >0

il S(Y2) o[ = Y1 | A-(MYe] | SH(1)AMATX:

p
DEL(Yz) DEL(Yz)

U

+ (1= X)(1 = p*1X7) — 1] .
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Proof. Using the commutativity relations from Table 3.1, we obtain (using also
equation (3.4.5))

BoA (T) = p*AxA ()T (7, 7), BsA (%) = B4A(T) =0 (3.4.9)

Hence, from the rationality theorem given in Proposition 3.4.8, we obtain

- _ 1 | Sx(Ya)
VAL (FYYE = T2
g;wp | A (7)Y DT(:)G(YZ)

Z&pl | T'(7, 7)A+<ﬁl)YQI = Z@Epl ’ A+(ﬁl)T(ﬁ, 71')Y21 = Y| SW(Q})/?)T(Wa 7T)'
>0 1>0 DmG(YQ)

>y | T ATy = | T, m) + 07 3 by | Axh (m)Ay (7)Y
120 >1
. Gy — 1 [ A(T)Ya] | S-(Y)A(m)AsYs
= T(7,7) + p* { :
it D7)

S0 | By (Y] = 0 | By + 7 Yyt | Ae (@A ()T (7, 7) ArY

>0 >1
. Gy = [ A()Ya] | S-(Ya) Ay (1) AT (7, m)Ys
Byl |
wl | 2 _'_p Dﬂ_27) (Yz)
> by | BsAy (7)Y) =11 | B,
>0
> Uy | Babhy (T)Y5 = ¢ | By,
>0

By putting all these together and then using Lemma 3.4.10, together with the fact
that @, X = p*3X,, we obtain the result. O

Let us now consider the third sum.

Proposition 3.4.15. Fori = 1,2, we have
1 _
S | AL ()X | BX)AL(R)Y] =
1-— OéiX 1>0 P
_ U | Se(M)UR(X)XPYS  p* (02 — p X ) | Sr(Ya) ArYF X7
D(Ya) DY)

)

where we define Ur(t) == p* A=A, (T (7, m) — p*Apt) € H)'[t].

Proof. We will first simplify A_(p)B(X;). But A_(p) = A_(m)A_(7) = A_(7)A_(7),

so from the relations of Table 3.1 and equation (3.4.5), we have:
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« A(p)B1 = A_(p)(T (7, 7) + T(7, 7)) = p* (ArA_(7)* + Az A_(T)?).

e A(pAL(7T) =A_(T)A_(m)AL(T)A, (7) = p* A, AT (7, 7).
Now, T'(7, 7) and A, commute with A, (7) and so for [ > 2, we can write

A_(p)B(X)A () = A (772 [p" A AT (7, ) —
— (P ARAT (T, ) + PP A=A X; + PP A2AZT (7, m) X7] =
= A (@1 - TF,7)X)Ur(X5).

Hence,

Y e | (A-(p)XP) | B(X)AL(7)YS =

1>0

= Py | A (@)Y (1= T(T, m) X)) Un (X)) XY5 =

1>2
Uy | Sy (Ya)Ur (X)) X2YZ
DEL(Yz)

)

by Proposition 3.4.8 and Lemma 3.4.10. Hence, the result follows. O

Finally, for the middle term, we have:

Proposition 3.4.16. We have, fori=1,2

1 . _ 1 | Se(Yo)T () A= XY,
- - | T_(p)X; | B(X)AL (7)Y} = —p? +
1-@(22% | T-(p)Xi | B(X))A(T)Yy = —p D7L(v))
by — 1 | A_(T)Ya| | Sx(Y2) A AZT, (p)Y2X? 5
p5 [77Z)P le | ( ) 2j| | ( 2) P +(p) 2 —f—p2k_4w1 | T(f)}/QXZQ

DEL(Y2)

Proof. Firstly, we have no terms for [ = 0, so we consider [ > 1. The idea is to pass
A (7T™) to the left for some m, so that it acts on the Fourier-Jacobi coefficients, and
then we will be able to apply the rationality Proposition 3.4.8. From equation (3.4.9),
we have B3A,(7) = B4A,(7) = 0. Now, using Table 3.1, we have T_(p)A,(T) =

p?*A=T(7) and that T'(w) commutes with A, (7). Therefore, we can compute:
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S Gy | o)X | AL @Y = 07 Y0y | A (@Y () ArX,Ys =

>0 >1

_ pg% | S (Y2)T(7)AzY2 X,
DE(Y2)

U

Let us now deal with T_(p) B;A, (7). We remind the reader that B; = T(m,7) +
T(7, 7). We will deal with each part separately. By Table 3.1, we have (I > 1)

T_(p)T (7, m)A (') = T_(p)A+ (7T (7, 7) = p* Az (7 )T ()T (7, ).
For the other part, if [ > 2,

T (p)T(r, m)AL (1) = PPAST_(p) A (A4 (7171) = pIA,T(m)A L (77) =
= P A=A AL (7T (p).

For [ =1, we have
T ()T (m, F)AL(7) = pT ()M (7) = p A, T (7).

Finally, we will deal with the term T_(p)ByA, (7). Using equation (3.4.9) and
relations of Table 3.1, we have for [ > 2,

T_(0)Bo. () = AT (A, (m)T (7, M)A (1) = p AT ()T, m) =
= P A=A N (7T (p)T (7, 7).

Finally, for [ = 1, we get
T_(p)BoAy(7) = p*A,T(M)T (7, ).

Applying now Proposition 3.4.8 and using Lemma 3.4.10 as well, we obtain the
stated result. O

3.4.5 Calculation of the Dirichlet Series - Third Part

We will now deal with the Dirichlet series

Die, e)(5) = Z <(51 ] T,(pm)A,(TIQ)A,(fh),'Lﬁpm+ll+12>Aapmp(472k)l2p(472k)l1 X

l1,l2,m>0

X 7Tl2kﬁl1kp_s(ll+l2)p_(2k+5_4)m =

= (a1 Vi(s) — aaVa(s)) /(a1 — ag), (3.4.10)
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where

Vi(s) = 3 (dr, s | Tr(p™) A (n)AL(T2)) aXYY2, i = 1,2,

l1,l2,m>0

Here, we remind that X; = a;p~F+5=4 Y, = ghp=Ckts=4) Y, = 7hp~Ckts=4) and
we keep in mind that the operators T (p), Ay (7), A, (7) all commute with each other.
This follows from the fact that j, of equation (2.4.1) is a ring homomorphism and

H(I'y, S}) is commutative.

Lemma 3.4.17. Fori = 1,2, we have

> 2[’pm“l”z | T (p™) Ay (7" A (72) XY Y52 =

l1,l2,m>0

= Qgg;(XZ)*l Z [&pzlJrlQ — izpllﬂzfl ‘ T,(p)X@ —|—p2;p11+1272 ‘ A,(p>Xl2} ‘

l1,l2>0

| B(X) Ay (T2) AL ()Y Y52,
Proof. The proof follows immediately from Proposition 3.4.7. O

We will now deal with each sum occurring above.

Proposition 3.4.18. Fori = 1,2, we have

> s | BXG)AL ()AL (7YY =
11,12>0
1 | S=(Y1)Sx(Y2)

= (1= p* 5 VY5) (1 — p*Ya Y A= X)) (1 — V1Y, ' X))
DEL(v1) DEL(Ys)

- [(p’“*?) — Y, A X, + pQ’“*”‘X?} ¥ | 52(04)

YDEL(v)
_ _ _ by | Sx(Y3)
— (" = VoY AR X, + p? XD E et
| o

o [0 — U1 | AL(@)Y2] | Sa(Y2)As (m) A=T (T, mYeX? |

+p
DEL(Y2)

LG — U [ A_(mY1] | Se(V)AMAT (m ANXE

+p
DEL(YY)

+ (1= X)?(1 = p* I XD) + 20, X — (1= p™ XD | 4,

where A, A= are the eigenvalues of A, A= respectively.
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Proof. Firstly, using Proposition 3.4.8 and commutativity relations of Table 3.1, we

have

> Gpre | AL (T2 ()YYS =

11,1220
¥ G = U1 | A-(@)Y2] | S (Vo)A (x)Y]"
i DE(Ys) -
_ (= VYa)ehn | SR(Y1) S (Ya)
D (V1) D (Ya) |

Now, from equation (3.4.5), By = T(w,7) + T(7, 7). Hence, from Proposition 3.4.8
and Table 3.1:

> Wpustn | T(m, MAL(T)AL (7)Y =

l1,l2>0

= 3 Gy | AT, WAL (7YY =

l1,l2>0
= > Ay [ AL (@ T (DY 497 D0 s | A (n AT ARYY,? =
11>0 1120,l12>1

b1 | Sx - G| S.(Ya)Ax
4 Y,y (<1 _pzk—5yly2>¢1 | LSYW(Yl)SZr(Yz)A7T | SR(Ya) W) |

DELM)DEL(Y:) DY)
and we get an analogous result for

> Gy | T AL FE)AL (7YY

l1,122>0

Next, using Table 3.1, we observe that for [;,lo > 1 we have

ByA i (72) Ay (1) = pAy (m)A- (M)A (T2) AL () =
= pA (M)A (M)A (DA, (1A (71) =
= AL (M)A (T )AL (712) = piA (r)AL (7)A,. (3.4.11)

Hence,

S s | By (n)AL (7)Y Y =

l1,12>0

>y | BaAr (AY + 37 s | BaAy (n2) Y32+

11>0 12>0
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+ 3 e | BoA (@A (FYYSE — iy | By =

l1,l2>1
Up — U1 | A (F)] | Sx(Ya) Ay (m) AT (7, 7)Ya
DEL(Ys)
|0 — O [ A ()] | Sz()AMAT(r, mY:
DEL(y)

ors [(1=PFVIY)y | Se(Y1)Se(Ya) | S(Ya) 4y | S=(Y1) -~
+p @ @ ) - t ),
Dz (V1) D, o(Ya) D, (Ys) Dz (V1)

:@Zl|32+p2{

+

+p

as the sum

> Gy | Ay AL (7 A, Y]V

l1,l2>1

can be computed to be

e ((1 — PRI i | Se(Y1)S,(Ya)

| 9:(Y2) [ S=(V1) | -
©) ©) 0 ) MR
Dz ¢(Y1) Dz 6(Y2) Dia(Y2)  Dzg(h)
Finally,
> Wy | BeAL (T A (n) Y152 = gy | Bs,
l1,l2>0
and
S Py | Bahy (72) AL (7)Y]Y? = ¢y | By,
11,12>0
as BsA (7)) = ByA () = BsA(m) = ByA(7) = 0 from equation (3.4.9). O

Proposition 3.4.19. Fori = 1,2, we have

> Gprner | AL(p)BX)AL (T AL (7)Y YL XE =

l1,12>0

U1 | Sx(Yo)Un(X)XPY? | iy | S2(Y1)Us
DEL(Ya) D%?é(m)

= (1 — aX)

+p4k—10}/1}/2(1_p2k—5}/1§/2>(1_ 2Y'2Y 1)\ X)(l— 2}/1}/ lA X)X2
1 | S5(Y1)Sx(Ya)
DE6(V1) D (Y2)

(Y1)

4k—10 3 k—3 2 —1 |
— pOXBY Y, (pF R — pP Yy ) e
il o )D;m

by | Sq(Y:
_ p4k_10X§Y1Y2(pk_3 o p2Y2Y1_1)\ﬁ) wl (’2) ( 2)7
Dﬂ',G(Yé)
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where again U (t) = p* Az, (T(7, w) — p*Ayt) € H)'[t], as in Proposition 3.4.15.

Proof. For the proof, we rewrite the sum as follows:

DI D SRR O

l1,12>0 11=0, 1222  12=0,11>2 I1,l2>1

We know how to compute the first two sums by Proposition 3.4.15, so will now deal

with the last one. We rewrite this as

> Gz | A () BOX) AL (p) Ay (7" AL (7Y VXY,
l1,l2>1
But
A_(p)B(X;)AL(p) = p6A§(1 — B X, + p4ApXi2)7

as we can obtain by Table 3.1 or the relations written in [Gri92b, p. 2881-2882].

Now, using Proposition 3.4.8, we get

S e | A (x AL (FYVPYEXE =

l1,l2>1

=V1Ys Y Oy | A (r)AL(TR)YYEXT =

l1,12>0

DEL(YV1)DEL(Ys)

Also, By = T'(w,7) + T(7, ) and we have

> ez | T(m AL (T DAL (T Y2 =

li,l2>1

= 3 Bpure | A (@ )T, ALYV =

l1,l2>1

=ViYs Y G | A ()T (r WAL ()Y VR =

11,1220

=Y1Ys Y Py | Ay (7T (m, 7)Y+

11>0
+p2YlYQ Z '@Epl1+12 | A+(7Tl1+1)A+(ﬁl2_1)A?Y1l1Y2lz
11>0,l2>1
—(Y)T
iy B S0UT

7 (Y1)

b ) T 1+1 o 11+1
+p2Y22 Z [wpll“ - ¢pll | A—(W)YQ} | Sx(Yo)Ay (m"' ™) AZY]

1,50 DEL(Y2)
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| S=(Y)T (7,7
Dz (M)
b | Sz(Y1)S:(Ya)Az by | Se(Ya)Ax
b2 (1= oy L SODS 0000 1 [ 5,058
Dz c(Y1)Dr(Y2) Dro(Y2)
We obtain a similar expression for 7'(7, 7) and then the result follows. O

Proposition 3.4.20. Fori = 1,2, we have

> st | T-(p) BIX)A L (7)Ay (72) Y]V, =

l1,122>0

(1—X) x

21 | S (V)T (m)AzXYs s[zﬁp—@?}l | A_(ﬁ)Yz} | Sx(Y2) A AT, (p)Y5 X7
D, (v2) g DZ(Y))
—p™ Ty | T(7)Ya X7 +

Q%W(>ﬁwﬂm_5%—%MJ)IfmmAﬂUWH
DEL(V)) g DC(vy)
—p? Ty | T() Y X7 +

1
+§p2k75<1 +p2k74X12)X1 %

[0 = 91 | A= (V] | $:(1)S: ()T, (p)Y1Ye

% (1 _ka—5}/1}/2)

U1 | A_(T) SR (Ya) T4 (p)Y: Yy
- ®) +
DW,G(§/2>

Yi| | Se(Y1)Sx(Ya) ArA, T (p) Y
LﬁaYﬂﬁWY>

_p5d~]p | Sw(}/?)T-Q-(p)AFAp}/Q 2k 4Y ( )
7rG' }/1

- 7)) +
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s Up | S7(Y1) T4 (p) ArApYy okays (V1] S(V)T(m) >
N 7 R W -3 A R |

Proof. 1f Iy =0 or Iy = 0, then we know how to compute this by Proposition 3.4.16.

So, assume [1,l, > 1. Now,
T ()AL (F2)A4 (74) = p*AL (72 )AL (F)T, (),

using that T (p)Ay(p) = p*A, T (p). Hence, we have

> Gprar | T () Ay ()AL (T2)Y]1 Y52 =

I1,lo>1
=P D e | A (@A (TR T (p)AY Y5 =
l1,l12>1
Y (G = Gy [ A(@Y2] | S (V)AL (F DT (p)AYYS
h>1 DEL(Ys)
L0 = 01 [ A_(mYA] | S2(V1)S2(Y2) T (p) AV Y
o p J—
DEY(1) DY) (Ya)
_ 0 A @S (T PAYYS
DE(Y2)
s [0y — O | A (V1] | S=(V1)Se (Vo) T (D)AZYEYE
DEL(Y)DEL(Ys)

Jp = U1 | A(MY] | S2(Y1)SH(Ya) T (D) A VY2

= p3(1 — p*5ViYe) {

=)

(V)
e
=
-

(V)
v QY
5

) Uy | A(T) S (Y2) T (p) A, Y1 Y5
DEL(Y)

We note here that the last expression is not (visibly) symmetric when we interchange
m <— 7. In order to make it symmetric, we compute it by calculating the series

involving the operator A_(m) first and hence we can write

S Gt | T-(p) A ()AL (T2)VYS? =

1;>1
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1 e oo [T = O | AL(TYA] | S=(Y1) S (Ya) T4 (p)Y2 Y
BEL e DL (V) D (1) )
G [ A @S ()T (pNYF |

DEL(Ys)
e o B U | AL(M)Y] | S (V) SH(Y) T (p)Y1Ye

FUmrn (v, D2 (V)

U | A (1) S=(Y) T (p) VoY

D (V1)

Moreover, as in equation (3.4.11), we have that
Byh (T)A (1) = pA, A (n) A (7).

and so
T (p) BaAy (F2) A () = pT A (72~ )A (7)) (p) AZ

P

Finally, for the last one, we note By = T'(w,7) + T(7, 7). Now

> Gy | T ()T (m, WAL (7F2) Ay (7)Y Y2 =

l1,l2>1

=p* Y Yy | T-(p)As (" THAL (R ARYY? =

l1,10>1
=p° D P X

l1>21,l2=1 11>21,12>2

For the first sum, we have

P> 1/~Jp11 | T_(p) A (7" THAZY Y, = p'Ys Y ipll | A ()T (T) ALY =

Li>1 hi>1

= p4Y2 Z i)pll | A-&-(Wh)T(ﬁ)Alell _p4Y21;1 | T(W)AP =
11>0
iy | S=(Y1)T (%)

2k—4
= Y.
S RSP Y

— U | T(7)| .

For the second

PY G | T AT )AL F DAY Y =

hi>1,12>2

=p° Z w ntia-1 | Ay (T )12 A +(m h)AFAPTJr(p)Ythle =

11>1,12>2

Z {d} it ipll | A—(W)YQ} | Sr(Ya) Ay (7)) Az, T (p) Y Y
. '
DE(Y2)
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But
> G | Se(YVa)Ay (1) Az Ty (p)YF Y] =
Ihi>1
7; - 121 | A_(m)Y1| | S#(Y1)S:(Y2)AzA T+(p)Y22 ~
- [ . }D(Q) (le) a - wi’ ’ Sﬂ(}/é)TJr(p)A?Angv
=G
and

> U | A_(T)VaSr (V) A (1) ArA, T (p) Y2V =

Lh>1

=p* > &pll | A+(7Tllil)}/1llSﬂ(}/Q)T+(p)AFA;2)}/23 =
1>1

L0 — G | AL ()] | S2(V1) SR (Ya) Ar AT (p) Y31

=P

—~

L)

)

D

2l

Hence, in total

> Gy | T (p)T(m, M)A (72) A (7)Y Y2 =

l1,l2>1

G = U [ A_(mYA] | S2(Y1)Sa(Y2) ArA, T (p) VY Ly Uy | S (Va) T () ArA, Y2

DE.(v1) DL (Ys) DEL(Y>)

[ = 00 | A V] | S0 00) A AT )3T
(

-Pp
DY) DY)
Ly [ ST () s
+ p?Fty; — T(m)|,
S PR
and the corresponding expression for T'(7, ). ]

3.4.6 Final expression for the Dirichlet series

We recall that
D% 1 (5) = Diey ) (8) + Dty 1) (5) + Diey i (8) + Diey ) (5)—

_D(61,62711)<8) - D(62,ll,12)(5) - D(61,11,l2)(3) - D(61,62,12)(5) + D(El,€27ll,l2)(s)‘

Now, from (3.4.8), we have

(a1 — @2) Dy ea0) () = 151(s) — aa5a(s).

Hence,
aq

:1—061X

%)

(al - QQ)D(€1,12)(8) - m

Sl<8) SQ(S),



Chapter 3.
A Dirichlet Series Associated With Three Hermitian Modular

72
Forms

SO
a3 X asX

1—0(1XS() 1—0[2X

We also recall from equation (3.4.10) that we have

(al - aQ)[D(elh)(S) - D(617€2712)(S)] S ( )

(1 — @2) D(ey ) (8) = a1 Vi(s) — aaVa(s).

We can now state:

Theorem 3.4.21. Let 2 # p = 7% be a split prime in Ok. Let F,G € S¥ and
h € S¥ be Hecke eigenforms, all having real Fourier coefficients, h normalised, and
F belonging in the Maass space. Let also ¢, be the first Fourier-Jacobi coefficients
of F,G respectively and X; = a;p~CFts=0) Y, = ghp=@kts=4) 1y, — hp=(hts—4)
We then have for Re(s) large enough

1

Q(2) (Xl) <¢1,P(O[1,§; G)>.A7

(a1 — an) DEL () = (61, P(as,5; G))a —

1
2
Qps(Xa)
where (keeping in mind the conjugation because of the inner product)

1| Sx(Ya)

P(ai,s; G) = i Xpp" (1 = p" 2 X0) | (L4 p* P XY 1Ye) — 5
D7r G(Yé)

L01) | ST

m ik
+(1 +p3’“—8XiY1Y2>i >
DZ, (Y1) DEL(11)

—;aiXin’“—‘f’mifz(l X)X
— 1 | A (Y] | S=(Y1)S- (Vo) T4 (p)
DEL(Y)DEL(Yz)

GilA <*> AL
®.(%2)

— 41 | A(7 )Yﬂ IS (¥2)S7(Y1) T (p)
<

x |(1— p2k75Y1Y2) {%

201 | S7(¥1)Sn(Ya)
DEL(Y) DY)
with — Sp, S  the polynomials  defined in  Proposition  3.4.4  and
A_(m), A_(7), T(n), T(7), T (p) the operators defined in Subsection 3.4.2.
Also, Qf) and D@,Dg) denote the p-factors of Gritsenko’s and standard’s

+az(1 o p2k‘—5}/1}/2)(1 —|—p4k_9}/1}/2X12)(1 k 2X)
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L-function respectively, as in Definitions 2.5.2 and 2.5.1 and Dgg’h(s) is the
p-factor of the Dirichlet series, as in equation (3.4.6).

Proof. We observe that both the left and right hand side of the claimed equation
in the Theorem are holomorphic functions in s for Re(s) large enough. Hence,
it is enough to prove the equality for s € R (see also the Remark 3.3.7 before
Proposition 3.3.8). But then this follows by putting together the results of the last

three Subsections. O]

We finally have the following Proposition about the relation of S#(Y1)Sx(Y2) with

known L-functions.
Proposition 3.4.22. Assume 2 # p = w7 is a split prime in Og. We have
SF,F(}/I)SW,F(YVZ) = LP<S + k— 2a f)Lp (S + k— 27 f7 X) 5

where f € Si_1 (To(4), x) is the modular form whose Maass lift is F', as in Proposition
2.5.5. We recall here that x is the quadratic character we fixed right before Definition
2.5.4.

Proof. Assume f has a Fourier expansion as in Definition 2.5.4. Let us first consider
Sxr(Y2). We have (here, |;_; is the usual GLy-action)

[ 1 T(p) = a(p)f,

for the standard Hecke element T'(p) := I'g(4)diag(1,p)I'¢(4). Using now [Gri90,

Lemma 3.3], we obtain that

o1 |k T(7) = p*2(7) *a(p)or.
Using now the fact that Y, = 7%p~(%+5=%) and that
S (Ys) =1 —T(7)Ys + pA:T (7, 7)Yy,

we get
Srp(Yo) = 1—p " Fap) + p " = L(s + k-2, f),

and similarly for Sz r(Y7). Given that x(p) = 1 in this case, the result follows. [

3.5 Euler Product

We can now use the above calculations in order to deduce the following Theorem:
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Theorem 3.5.1. Assume F, G, h satisfy the same assumptions as in the beginning
of Subsection 3.3.2, with 11 #Z 0, i.e. not identically equal to zero. We then have
that the series Dpc.n(s) of Theorem (3.2.3) has an Euler product of the form
- Difts(s)
Dpan(s) =4Bk(o1,v1)a [ =5,
p prime <¢17 w1>A
where D;f?)qh(s) has been defined in equations (3.3.4) and (3.4.6) for p # 2 and for
p = 2, we define

DR (s) = 30 (b1 | T (2™)Upt, rgmsr) aigm 25127 (s Deg=(hts=tim,
Le;m>0
with m:= (1 + 1), together with the condition min(l,e) = 0. Also, By is the quanitity
defined in Lemma 2.2.10.

The proof of this Theorem is the subject matter of this Section. We first need to
define some elements of the global Hecke ring H'!. Let m > 1 and | € Og. We
then define

T (m) == j_(T(m)), A_(1) == j_ (Tadiag(l, )T).

where j_ is the embedding of equation (2.4.1). Here, T'(m) is the standard Hecke
element in H', as in Definition 2.5.3. We then observe that

T_(mimg) =T_(m1)T_(m2), A_(lils) = A_(l1)A_(ls) (3.5.1)

when my, mo € N and [, [, € O are co-prime. This follows from the corresponding
statements for H' and the fact that the j_ embedding is a ring homomorphism. We
also claim that these elements commute with our known Hecke elements when we

allow co-prime arguments.

Lemma 3.5.2. Let p # 2 be any rational prime. Assume that m € N and | € Ok are
co-prime to p. Then, the elements T_(m) and A_(I) commute with all the elements
listed in Subsection 3.5.1 (if p is inert) and all the elements listed in Subsection 3.4.2

(if p splits).

Proof. The proof is done case by case. By the multiplicative property of equation
(3.5.1), it suffices to consider m, ! prime powers, co-prime to p. Assume first p is
inert. Let then X be either 7_ or A_ with the corresponding argument being prime

co-prime to p. By [Gri92a, Lemma 3.8], we have

€(Thp)X = Xe(Th ), e(T,)X = Xe(T),). (3.5.2)
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The first equation now gives (from the proof of Proposition 3.3.3)
(T7(p) + A (p) + Ay () + V= 8,) X = X (T7(p) + A_(p) + A (p) + V, — 4,).

By then looking at the different signatures of the elements (see Definition 2.4.2) and
using [Gri92a, Proposition 3.3] or [Hei99, Section 3.3], we obtain the relations

A_(p)X = XA_(p).
Ai(p)X = XAy (p).
(T7(p) + (V= ) X = X (T (p) + (V, — 4,)) .

Now, X commutes with A,, and we can show commutativity with V, using coset
decompositions. Then, commutativity with T (p) follows from the third equation
above. Finally, commutativity with 7', (p),T_(p) follows from the second equation
in 3.5.2, as €(7,,) = T+ (p) + T—(p).

For the split case, we proceed similarly, using the embeddings of the stand-
ard elements T, 7% and T, (which follow from Proposition 3.4.2). The only relation
we do not obtain immediately is the commutativity with each of T'(7,7) and T'(7, 7).
Instead, we get the commutativity with their sum (from the e-embedding of T},).
But, from Table 3.1, we have A_(7)A (7)) = pA,T(7,7) and then commutativity
follows from the commutativity of X with the AL(7) elements and the fact that A,

is a unit in H!. OJ

Let us now focus on the proof of Theorem 3.5.1. We need to distinguish cases when
p is inert or splits in Z[i]. We have the following two Propositions, the proof of which

is essentially the same.

Proposition 3.5.3. Let p be an inert prime. Let m' € N and l', €' € Z[i] all relative

prime to p. Then, we claim

Z <§Z§1 | T (m/pm)A—(l/pl)a&m’N(l’)p"ﬁm>Aam’N(e’)pm+26p_(3k+28_8)lp_2(k+5_1)6X

l,e,;m>0
min(l,e)=0

7 ~ 2
= (&1 | T-(m")A_(I'), Yo v (1)) A v ) (W) .

Proposition 3.5.4. Let 2 # p = 77 be a prime that splits in Z[i]. Let m' € N and

U',e € Z[i] all relative prime to p (or equivalently coprime to both w,7). Then, we
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Z <&]_ | T_ (m,pm)/\_ (l/'f(_llﬁb ) > sz’N(l’)pm"'llJ"l? >Aam/N(€/)pm+el+52 X
1,12,
61,512,7?120

min(l;,e;)=0

(472k)l1 (472]6)[2 lik=Ilsk 7S(l1+l2) 7(k+sfl)(61+62)p7(2k‘+874)m

X p p TR p
. B Dw (s)
- T, /A, l, s Wiy / m/ e M .
0 [ )80 vy G <<¢1,@/}1>A>

Proof. The proof is analogous to the proof of the results in Sections 3.3 and 3.4. By
the multiplicative property of equation (3.5.1), we rewrite the sum in the inert case

as

am/N(E/) Z <§51 ‘ T_ (m')A_ (l/), Qz}m’N(l’)pm+2l | T+ (pm)A+ (pl>>ACme+2ep_(3k+28_8)l X

l,e,;m>0
—2(k+s—1)e, —(2k+s—4)m

xXp p )
using the multiplicativity property of the Fourier coefficients of h as well. Similarly,

we rewrite the sum for the split case in an analogous way.

We can now apply the rationality Propositions, as in Sections 3.3 and 3.4. The
difference is that every time we previously had the term 1y, we will instead now
have ), (). This follows from fact that m’N(l') is co-prime to p (so terms of the
form )y, N@)/p Vanish). Similarly, we now have terms of the form %m/ vy | T (p)
instead of the terms gZ,, | T (p).

By the calculations leading to Theorems 3.3.14 and 3.4.21, we claim that the
expressions involving the Fourier-Jacobi coefficients of G (i.e., before taking the
inner product with ¢; | T_(m/)A_(I")), can be written in the form @m/N(l/) |
R(Y,Y1,Ys, X1, X5), where R is a polynomial with coefficients involving the operators
T/ (p), T(x), T(7), T(r,7), T(7, ) and is independent of m/, I'.

Let us first deal with the inert case. The only expressions that are not in the form
claimed above are these of the form gzpm/N(l/) | Ty (p) (see Proposition 3.3.12). But
we can write

T/me'N(z') | T+(P) = )\pwm’N(l’)a
where ), is the eigenvalue of the operator T}, € Hg, when it acts on G, ie. G | T, =

ApG. This is true because of the embedding

e(T,) = Ty (p) + T-(p),
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as in the proof of Proposition 3.3.3. So, we get

vy || Ty = Mtbwr vy

and

Dorny || Tp = Ypmevary | T (0) + Coonrysp | T () = Ypmonry | T (p)-

The same can be said for the split case as well. From Theorem 3.4.21, we will have

terms of the form

Gpmn ey | S2(Y1) S (Y2) Ty (p), ey | A () S2(Y1) S (Y2) T (p),
Gy | A= (7)S7(Y2) T4 (p),
(and the corresponding expressions for 7). But, from Table 3.1, we have the relations:
S=(Y1)S(Ya) Ty (p) = T (p) [1 = T(m)Y1 + p*AV1Y3| [1 = T(7)Ya] +
+ Ay (7) [T(7,m)Y) — p*AxYs] [1 = T(7)Ya] -
— PANVIALT) [1 = T(m)Yy + pP*A Y] [1 = T(7)Ya] +
+ AL (7)5=(11)Ya.
A (m)Sz(V)Sx(Ya) Ty (p) = pP*AT(F) [1 = T(m)Ys + p* A Y1Ya | [1 = T(7)Ya] +
+pAT (m,7) [T(7, m)V1 — p*AxYa) [1 = T(7)Ya] -
— DAY [1 = T(m)Yy + pP* AN Y| [1 = T(7)Ya] +
+p* A, 87(Y1)Ys.
A_()Sx(Ya) Ty (p) = P A=T() — [p° Az, — pAZT (7, 7)T (7, )+
P*AT(7)T(7)| Yy + PP Az, T(7)YZ.

Now, from Proposition 3.4.2, we have
e(Tp) = T-(p) + T4 (p) + T(m, T) + T'(7, 7),
and so we get

Downay || Ty = Vv || (T (0) + T-(p) + T(7, 7) + T(7, 7))
= Ypmv@y | Te(p) + 0+ Gponary | (T(, 7) + T (7, )
= Ypmny | T (0) + bowny | (T(7,7) + T (7, 7).

But vy |l Tp = )\p@Zm/ N@), where ), is the eigenvalue of G corresponding to 7,

and so we obtain

Upmen@y | T (p) = Mpuony — Yweny | (T, ) + T(T, 7).
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Moreover, again from Proposition 3.4.2, we have
e(Tx) = A_(T) + T'(7) + AL (7).
Hence, by a similar argument as above, we get

Gpey | A (7) = Aoy = ey | T(T),

and similarly for A, (7).

In particular, our claim now follows for both the inert and split case and therefore,
the expression involving the Fourier-Jacobi coefficients of G can be written in the
form {ﬁvm/N(l/) | R, where R = R(Y,Y1,Y5, X, X3) is a polynomial with coefficients
involving the operators T7(p), T(r), T(7), T(m,7), T(7, 7). These are all self-
adjoint operators (see [Gri92a, Lemma 4.3]). Moreover, since F' is in the Maass
space, from [Gri92a, Theorem, p. 2911], gz~51 is an eigenform for these operators, as
these all have signature 1. By now writing Ry for the polynomial obtained when we
substitute the eigenvalues of ¢; with respect to the above operators and using the

commutativity of Lemma 3.5.2, we can write
(&1 | T-(m A1), Yooy | R)a = (1 | RT-(m")A_(I'), hyvry)a =

= R7F<§gl \ T_(m’)A_(l’), QZm’N(l’)>A =
1 ~ ~ o~ o~
= (o1 | T-(m)A_(I'), Yrw@y) AR (d1, 1) 4 =
<¢17 77D1>
1 - - .
= (o1 [ T-(m")A-(I"), Yn(ry) aldr, Y1 | R)a,
<¢17 ¢1>
where Ry is the polynomial obtained by taking the complex conjugate. The result
now follows by comparing with the initial expression for Dg)(;vh(s), as the rightmost

term is what we have originally (i.e., for m’ =1’ = 1). O

The proof of Theorem 3.5.1 now follows from the above two Propositions by working
prime by prime and factoring from the initial Dirichlet series the corresponding

expression for each prime.

3.6 Integral Representation

In this Section, we will show how Dg ¢ p(s) originates as part of a Rankin-Selberg

integral and how this compares to the integral representation given by Heim in
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[Hei99, Theorem 2.6]. We consider the triple inner product

B(F,C.hs) = <<<E o s ,F<zg>> ,G<z2>> ,h<z1>>.

Z3

The main reason we consider this is the following algebraic result.

Proposition 3.6.1. Assume that F, G and h have algebraic Fourier coefficients. For

k > 10 we have
O(F,G,h;0) —

F G O &<

Proof. This can be shown exactly as [Hei99, Theorem 1.9]. In the proof there, a
result of Bocherer is used on the algebraic decomposition of the space of modular
forms as an orthogonal product of the space of cusp forms and of the Eisenstein
series, i.e.

M} (Q) = S5 (Q) @ Eisk (Q).

Such a result is also available for unitary groups in [Shi00, Theorem 27.14]. O

Actually, one can give an even stronger statement of the proposition above, namely,
establish even a reciprocity law on the action of the absolute Galois group. The
statement is similar to [Hei99, Theorem 1.9]. The main point here is that we can
establish an algebraicity result for special values of L-functions if we can relate the

expression above to an Euler product expression. This is our main motivation.

By now using the doubling method for unitary groups, as for example is studied
in [Shi00, Equation 24.29 (a)], we know that the first inner product is related to a
Klingen-type Eisenstein series attached to F' (recall F' has real Fourier coefficients),
as in Definition 2.1.6. That is,

21

Z3 (s + k/2)
Bk : F = = J
< 5 Z ps | (23)> v(s) 3 oL(2s+k—1i,xY)

Z3

0
x B, ((21 . ) P 3) . (36.1)
2

where Zl(;z) is the standard L-function attached to F' (see Definition 2.5.1), x is
the non-trivial quadratic character attached to the extension K/Q and v(s) is an

expression involving Gamma factors (the explicit expression can be computed by
[Shi00, Equation 24.29 (a)]).



Chapter 3.
A Dirichlet Series Associated With Three Hermitian Modular

80
Forms

So, our focus shifts to computing

<<E§;Q ((201 202) F: s) ,G(z2)> ,h(z1)> (3.6.2)

Given the Definition 2.1.6 of the Eisenstein series, we will start by finding represent-
atives for C35\I's. We begin by first finding representatives for C5 (K )\U (3, 3)(K).
Surprisingly, this decomposition differs in a significant way from the one obtained
by Heim in [Hei99, Proposition 2.1]. For now, let us write U, (K) for U(n,n)(K).

Before we proceed, let us briefly introduce the notion of isotropic vectors and
isotropic spaces in U,(K). We say a vector z € K?" is isotropic if Z!J,z = 0. A

subspace U of K?" will be called isotropic if zt.J,,y = 0 for all z,y € U.

For any m,n > 1, there is an embedding U,,(K) X U,(K) < Up1n(K) given by

A 0 By 0

Al B1 A2 BQ 0 A2 O B2
X —

Cl D1 CQ D2 Cl 0 D1 0

0 Cy 0 Dy

For each r € Q*, we consider the following subgroups of U;(K) and Us(K), respect-

ively:

Hy, (K) = {(—Zﬂ 2) c Ul(K)},

H,,(K) =

ai Q2 by by

irb by b
Mo G M LK) YL (3.6.3)

—r2by iras ay irby

Z'T‘dg Cyq dg d4

We then have the following Proposition.

Proposition 3.6.2. The right coset space Cs2(K)\Us(K) has representatives
Sl = Cl’o(K)\Ul(K) X 14,
SQ =T-" (12 X ngl(K)\U2<K))7
Sz =& (CrolK)\UL(K) x (T x 13) - Coa (K)\U2(K))) ,

Wy =& - (D Hip (K)\UL(K) X Hyp(K)\Us(K)), 7€ Q" [Nigjg(K™),

where
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T:{<O 0) raew},

0
1 1 0 0 d 0
&= X 1y, D := |de K, N(d)=1,.
ir w1 —1 0 d
0

—ir 0

Proof. Let ey, ea, €3, fi, fo, f3 denote the standard basis for K¢, viewed as row vectors.
The map g — fi1g induces a bijection between Cjo(K)\Us(K) and the set X of
one-dimensional isotropic subspaces in K° (this is a standard fact, consequence of
Witt’s Theorem, as in [Shi97, Lemma 2.1] for example). Let V' be such a subspace.
We decompose K¢ = K?@ K* according to the embedding U, (K) x Uy (K) < Us(K)
(i.e., K? = Ke; @ K f1). There are three possibilities: V is contained in K?, V is

contained in K* or V is not contained in either.

In the first two cases, V is an isotropic subspace of K2 or K*, respectively, and hence

we obtain the same set of representatives Sy, Sy as in [Hei99, Proposition 2.1].

For the last case, assume V is spanned by the isotropic vector v. We decompose
v = v1 @ vy and we have two possibilities: v; is isotropic or vy is not isotropic. In

the first case, in analogy with [Hei99, Proposition 2.1], we obtain the set Ss.

Assume now vy is not isotropic. Then v, will not be isotropic either (since v is
isotropic). Let us write v1" Jivy = 2ir = —03" Joug, with r € Q*. By Witt’s Theorem
([Shi97, Theorem 1.2]), we have that an isotropic vector w = w; & wy € K°® will
be in the same orbit as in v under the action of U;(K) x Uy(K) if and only if
witJyw, = 2ir = —wy'Jows. This shows that the isotropic vectors v = v, @ s,
with the same norm on the first component (hence the second too), form a single
orbit under the action of U;(K) x Uy(K). Since we are free to scale v by some

A € K*, (because we work with the subspace spanned by v), we must consider
r € Q*/Ngg(K*). Here, Ni/g(a + ib) := a* + b* for a,b € Q.

Now, for each such r, we consider v, := (2'7“ 01 —1 O) as a representat-
ive of its orbit. We then observe that the matrix &, defined in the statement of

the Proposition satisfies fi&, = v,. Hence, we deduce that the double quotient
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Cs2(K)\Us(K) /(U (K) x Uy(K)) has the following irredundant representatives:

Lo, 7, &, {&, 7 € Q°/Ngjo(K™)}.

We now have that for g1 € Ui(K), go € Uy(K) and r as above, Cs2(K)& (g1 X
g2) = Cs2(K)&, if and only if (g1 X g2)&, ' € C35(K). This then implies that

T

g1 € Hi,(K), g2 € Hy,(K), and a + irb = a; — irby, where we write g1, g» as in
(3.6.3).

For i = 1,2, if g; € U;(K), we write g = hje and ¢go = hof, where h; € H;,(K)
and e, f belong to a set of proper representatives for H, (K )\U;(K), respectively.
By writing h; as in (3.6.3), we let d := (a; — irby)(a + irb)~!. This is well-defined
as N(a + irb) = N(ay —irb;) = 1 by unitarity, so in particular a + irb, a; + irc
are non-zero. Moreover, N(d) = 1 and if D := diag(d,d) € U,(K), we have that
Dhy x hy € §1C55(K)E,. Hence,

Cs2(K)& (g1 % g2) = Ca2(K)& (e x haf) = C2(K)&(Dhy x ha) (D! x 1) (e x f)
= Cs9(K)¢ (D e x f).

This gives us the set of representatives W,.. Hence, the Proposition follows. O

We now want to pull these representatives back to representatives for Cs\I's.

Corollary 3.6.3. The right coset space C55\I's has representatives
Ty = Cip\I'1 x 14,

T2 =T - (12 X CQJ\FQ),
T3 = Ll(fp’q x 1) - (Cl,O\Fl X 02,1\F2),

P
Ve, 7€ Q°/Nijo(K™)

Here, p,q € Z[i]\{0} with gcd(p,q) =1, ¢=u+iv, u>0, v >0, and

* x 0 0
fpyq_quO

00p —q|

0 0 * =«

with £P9 x 19 € T'3. The sets V,. correspond to the representatives obtained by pulling
W, of Proposition 3.6.2 back to O.

Proof. We first observe that there is a one-to-one correspondence between
Corr(K\U,(K) and C,,,\I',, for any n,r with 0 < r < n. Indeed, since K has
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class number one, that is Z[i] is a principal ideal domain, we have from [Shi97,
Proposition 7.2 (2), p. 48], that U, (K) = C,,.(K)I',,, and hence

Coo (KU (K) = (T N Croy (K)\Lsy = Croy\T.

Now, each V, is obtained by pulling W, of Proposition 3.6.2 back to O, thanks
to this correspondence. Moreover, 77 and Ty are obtained by the sets S, S5 of
Proposition 3.6.2. In order to obtain the set T3, it suffices to pull S5 back to O.
We therefore need to find a matrix M, in C34(K) such that

M, -¢- (12 X (“ E ) x 12> €T, (3.6.4)
0 at

with £ the matrix of Proposition 3.6.2. We parametrize K as

{Z | p.q € Z[1], ged(p,q) =1, g =u+iv, u>0, vzo}.

All these elements are different as p, ¢ are in Z[i] with the above conditions and their

union is K. For a = p/q as above, we define

pty 0 0
M, = 0 ¢ 0 0 1,
b Op
0 ! gt

with [, ¢ chosen so that [g =1 (mod p) and y = —ql/p. Then M, , € C35(K) and we
can then see that the product of equation (3.6.4) belongs to I's and has the claimed

form. O

Given the above decomposition, we can now appropriately split the Eisenstein series
in order to compute the integral of equation (3.6.2). Foranyn > 1,if M € I',,, Z €

H,,, we define the following quantities:
(M, 2) = (M, Z) MM, 2)] %, §(Z) := det (Im 7).
From [Kri85, Theorem I1.1.7, (c)], we have 6 (M{(Z)) = |j(M, Z)|726(Z).

Proposition 3.6.4. Let k = 0 (mod 4) and k + 2Re(s) > 10. Let also F € S¥,
z1 € Hy and zo € Hy. We then have

E§, ([21, 2], F; 8) = EY (213 8)F(22) + E5 1 (22, Fuy58) +
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+5(21>S5(Z2)SZ Z Xk’s(%,Zl)Xk’s(%,Zz)X

p,q 7160170\1—‘1
v2€C21\I'2

N(gm{z) 0 » 0
r (M) e (7))
N(g)n(z) 0 0
a(( ; O)+<%<22>>[(0 1)

84

) +5k([21722]aF33)7

= > > Pz, 220)0i (7, [21, 22]) 7 ( det Im ({21, 22) )S.

TE@X/NK/@(KX)’YEVr det Im7<[21722]>*

Here, for T € Hy, F,, (1) := F ([z1,7]) € S¥ and p,q are summed as in Corollary
3.6.3. We also remind the reader here that N(q) denotes the norm of q and [a, b)

the block diagonal matriz with diagonal blocks a,b as in Notation.

Proof. As we have shown after Definition 2.1.6, for k£ + 2Re(s) > 10, the Eisenstein
series E:’,f,2 (Z, F; s) is absolutely and uniformly convergent on compact subsets of C.
We split the Eisenstein series according to the representatives of Corollary 3.6.3. We

can write

B3y ([21, 2], Fi8) = 6(21)° Z: Z M, [z1, 22]) F (M ([21, 22])+ ) X
X 8 (M{[21, 22))5)"° + EF ([21, 22), F; 5) .

For the representatives of 71,75 in Corollary 3.6.3, the proof is exactly the same as
in [Hei99, Theorem 2.3].

For a representative M of T, write M = (£P7 X 15)(71 X 72) with 1 € C1o\I'; and

72 € Coq\I'y. We write y2(20) = (xl

xQ) and we then have
T3 T4
(M([21, 22]))s = (€77 x 12)[7121, Y222] )«

x % 0\ [m(z) 0 O *

o T

qg p O 0 T, o 0
0 01 0 T3 T4 0
_ (N(@m(z) + Np)n pxz)

DT3 Ty
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Also,

F(EPT x 12) (71 X 72), [21, 22]) = J(EP9 X 1g, [121, 7222)) (1 X 72, [21, 22)),

. A 0
and j(&P7 X 1y, [y121, Y222]) = det(D), where we denote P9 := 0 pl

By unitarity, we have DA’ = 15 so det(D) - det(A) = 1, so N(det(D)) = 1 and
det(D) is in Z[i], which shows that det(D) € {£1,+i}. As k =0 (mod 4), we get

X ((€ x 1) (1 X 72), [21, 22]) = X" (1, 20)X "™ (72, 22),
and so the Proposition follows. O

We can now use this decomposition in order to show how Dp ¢ p(s) originates as

part of a Rankin-Selberg integral.

Theorem 3.6.5. Let k = 0 (mod 4). Let F,G € S5 and h € S¥. Then, for
k + 2Re(s) > 10, we have

<<E§2 ((I/(I)/ ;)  F s) ,G(Z)>,h(W)> = (4g) (ks 5

" F2k+s—4)I'k+s—3)I'k+s—1)
T(2k + 25 — 4)

Dran(s)+ Rean(s),

where Rpapn(s) == (EX (W, Z], F;5),G(Z)), h(W)).

Proof. From Proposition 3.6.4, we can rewrite the Eisenstein series as a sum involving

four summands. Clearly, Rpg.(s) corresponds to the summand E¥([Z, W], F'; s).

We will now deal with the third one. This can be written as (the summations are as
in Corollary 3.6.3):

Iyi= [ [ )z o (g T ., Z
s T \H, FQ\HQ( ) (Z) ZZX (71, W)X (72, Z) X

P9 71,72
) X

N(g)n(W) 0 0
F(( 0 O)+<72<z>>[(0 )
) G2 h(W)dI*Wd*Z.

o)
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Now, using the automorphy condition for G and h, we have
G(Z) = (Glia)(Z2) = j(h, 2) "G (n(Z)),

W(W) = (hlxn) (W) = j(y, W)™ h(12(W)).
Also 6(12(2)) = (12, 2)|720(Z), 6(n(W)) = lj(y, W)[726(W), so

GZ(2) X (2, 2) = (2, 2] GOn(ZD)0 (12 Z)) (3, 2) P04
< (2, Z) K [j(v2, Z)| 7% = G(12(2))8(72(2))"*,

and similarly for h. Hence, by the usual “unfolding” trick, we obtain:

- N(@W 0 70
IS B /01,0\]1']11 ~/02,1\H2 %F (( 0 0) 2 (0 1)]) %

(M9 D) <20 ) s

1 1
We now consider the matrix M := Ik where [ := (1 ) . We then check that

M € T'y and from Definition 2.1.4, we have

F(z (0 1)]):F<Z>VZEH2,
10

as k is even and M (Z) = Z[I]. The same also holds for G. In particular, this shows

(R o)) B e A

What is more, we can directly compute
10
0p)|)

(09" 8= AGE ) =26 ) -2

By now setting Z —— M (Z) and using the fact that M~'Cy1 M = Py, we can

rewrite I3 as (Cy o = P as well):
1
R D oY1 | O E AT S L
Pro\H1 JP21\Hz 5o 0 N(q)W 0 D
) G(Z2)h(W)S(Z)Fss(W)krsd* Zd*W.

5((8 N<q0>W)+Z ((1) )

e}

3
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Now, a fundamental domain for the action of P,y on H is
F={zeH |z=x+iy, 0 <z <1},

while a fundamental domain for the action of P,; on Hy is (cf. [Gri92a, p. 2907])

T ya
{( 1) | (1,21, 20) € F7, yo > |21 — 3@|*/4ys, Oﬁxwil},

Z9 W

using the notation of equation (2.2.1) for the real and imaginary parts. Hence, we

have

1 1
Iy=> [ drdzdz | u. [ da, [ dox
3 % - TAZ1AZ9 R Y, 0 ZT 0 Tw

% / dyw(s(z)k+s—4 Z Cbm (7_’ P21, pz2)€27rim(N(q)W+N(p)w) %
0

m=1

() > o 0 0 10 -
% a—ne—%rmW T, 21,2 e—27rzlw6 +7 ]
Dl (R (]

We first perform the integration over x, and zy . For x,, we have

/1 2mimN (P —2milze g 1 if l=mN(p) |
0

0 otherwise

Similarly for xy,, we have

/1 e27rimN(q)zW727rin:1:‘/vdxvv _ 1 iftn= mN(Q) .
0

0 otherwise

These are the only terms we need to integrate as the real parts of w and W do not
appear as arguments of § by definition. We now substitute t = y,, — |21 — %|* /4y,

and compute

5(7) = det (211 (z - Zt)) — oyt

0 0 10
(6 ) 2l ) s

So, the integral I3 becomes

Z/]__J Z ¢m<7_7 23217p22)¢mN(p)(7_7 21 ZQ)GmN(q)qu—:_4e_7rm(|21_E‘Q/yT)dezld'@X
b,q m=1

X /0 dt /0 dywt* (N (Q)yw + N(p)t) e N @uw N EH k=2 —
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= dtd B
- Z Z ¢m|Up7me AmN q)/ / yW k—i—s 3yI€I}Fk I(N(Q)yW+N(p)t> X

¢ m=1 75 Yyw

88

w e~ 4mm(N(@yw+N(p)t)

F(2k+s—4)F(k+s—3)F(k+s—l)x
['(2k+2s —4)

(
VN (p)” (k+s—3)N<q)7(k+571)m*(2k+5*4)’ (3.6.5)

_ (47T)—(2k+s—4)

X Z Z <¢m’Upame p)

p,q m=1

by using the fact that (cf. [Hei99, Theorem 2.6])

/ / dxdy i 6(:cy)76_(%3/):F(a+ﬁ+’7)r(a+7)r(5+7>
x4y Lla+ B+ 27)

Y

and substituting © = 4mmN (p)t, y = demN(Q)yw, « = k=3, =k — 1,7 = s.
This formula follows after setting u = = + y and then ¢ = z/u and using the Euler
integral of the first kind

1 r r
tzlfl(l - t)ZQ*ldt — (Zl) (

—— =Y e C.
t=0 (2 + 22)’ 1 E2

Let us now consider the second summand in the decomposition of Proposition 3.6.4.

We want to compute

/F1\H1 »/FQ\HQ

i 2) " F (12).) (WZ”) GIZIRI5(2) x

v€C2,1\I'2

x O(W)FA* Zd*W.

Using again the automorphy condition for G, we obtain, by unfolding the integral,
that

I = / / Fu(Z)G(ZVR(W)S(2)F+5(Z2,) " d* Zd" W.
I \H; JC2,1\Ha2

Using the same reasoning for the interchange of the parabolic subgroups Cs1, Ps1

as in the case of I3, we rewrite the inner integral as

T 0 —_—
Jy = F G(2)6(Z)tsy—*d* 7
2= ((0 W)) (Z)0(2)y;d'2,

and by using the Fourier-Jacobi expansions and the fundamental domains mentioned

before, we have

1 o0 o0
J:/ddd/ /dw (7.0,0)e27 W SY U ) x
2= [, drdzadz o o T mZ:1¢ (7,0,0)e ;@D (T, 21, 22)

x 6—27rin§5(z)k’+s—4yﬁr—s‘
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We can then see that this is zero by calculating the integral over z,,, i.e.,
1 )
/ e 2Tt g = ().
0

Therefore, I = 0. Finally, we will show that the integral involving the first summand

of Proposition 3.6.4 is zero. We have, after a direct computation
and we will show that the second inner product is zero. But

(Buo(W:s) h(OW)) = [ 30 W)W RV a1

v€C1,0\I't

By the usual unfolding trick, the above integral equals

1 oo X
S(W k+8Wd*W :/ / @, —2min(z—iy) k—Zd dy = 0’
L, SOV RO L e y*2dady

by looking at the integral
1 )
/ e—Qﬂznxdx — 07
0

for all n > 1. Hence, I3 is the only integral that has a non-zero contribution and the

Theorem now follows from equation (3.6.5). O

It is therefore clear that Theorem 3.6.5 has an important difference to the Theorem
obtained by Heim in [Hei99, Theorem 2.6], namely the term Rp ¢ x(s). To calculate
this, one needs to obtain a better understanding of the representatives V,. of Corollary
3.6.3, which in turn requires understanding the groups Hy ,.(K) and Hs,.(K) of (3.6.3).
We conclude this Chapter with the following Proposition, regarding the relation of

these groups with the respective unitary groups.
Proposition 3.6.6. Fori=1,2 and r € Q*/Ngo(K*), we have
U(i,i)(K) = Hi»(K)Cj0(K),
where C;o(K) denote the Siegel parabolics (recall Definition 2.1.3).
Proof. We will first show U(1,1)(K) = Hy,(K)C1o(K). Let ¢ :== 2/r and consider
the unitary group with respect to ¢, i.e., G := {a € K* | aga = ¢}. Moreover,

we set w = diag(¢, —¢) and consider the unitary group with respect to w, i.e.
GY = {a € GLy(K) | awa = w}.

Consider now the w-isotropic subspace of K2 given by U := {(v,v) | v € K} and let
Py be the parabolic subgroup of G defined by Py := {a € G¥ | Ua = U}. From
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[Shi97, Proposition 2.4, we then have that

90

GY = PR (G? x G%) = (G? x G°)Pg.

The second equality follows from taking inverses. Now, if we let

S, - ( 1 —i/?") ’
-1 —i/r

we have from [Shi97, (21.1.8)], that S;'G*S; = U(1,1)(K) and S;'P%S; = C;o(K).

Hence
U(L,1)(K) = SflG“Sl = Sfl(Gd’ X G¢)P§Sl = Sfl(G¢ X Gd’)SlC’Lo(K).

But, for a,b € K*, we can compute

S-ding(a, b)S; = (.(a +0)/2 —i(a—1b) /m«).
ila—br/2 (a+1Db)/2
Now, if x = (a 4+ b)/2, y = —i(a — b)/2r, we get a = z + iry, b = x — iry and
therefore, N(a) = N(b) = 1 is equivalent to Ty = gz and N(x)+r*N(y) = 1. Hence,
S™HG? x G?)S = Hy,(K). Therefore, U(1,1)(K) = Hy,(K)Cy0(K), as claimed.
1
For the second group, we consider ¢ := 2/r and ¢ := 2/r and set w =
1

diag(y), —¢). We then consider the w-isotropic subspace U := {(0,v,i,v) | v,i € K}
and the respective parabolic subgroup Py of G*. Again, from [Shi97, Proposition
2.4], we have

GY = PE(GY x G?) = (GY x G*)Pg.

Similarly to before, if we let

1 0 0 0

S, - 0 1 O- —i/r |
0 0 —2 0
0 -1 0 —ifr

we have from [Shi97, (21.1.8)], that S5 'G¥ Sy = U(2,2)(K) and S; ' P%Sy = Coo(K).

Now, as before, by computing Sy 'diag(A,a)S,, with A € G¥, a € G?, we have
0 1

Sy GY x G9)Sy = MH,, (K)M~', where M = diag(I, 1), with [ = (1 0).

But since MU (2,2)(K)M = U(2,2)(K) and M~'Cyo(K)M = Coo(K), we get
U(2,2)(K) = Hy ,(K)Cy0(K), as claimed. O



Chapter 4

A Dirichlet series for Orthogonal

Modular Forms

This Section marks the beginning of the second part of the thesis. As we said in the
introduction, for this part, we work with orthogonal modular forms of real signature
(2,n+2), n > 1. We aim to extend the work of Kohnen and Skoruppa in [KS89] for

this case.

4.1 Quadratic Spaces

In this Section, we will prepare the ground for the theory of orthogonal modular

forms. Our main reference is [Shi04].

Let I be a field. Let V denote a finite dimensional vector space over F, with
dim(V') = m. Define also an F-bilinear symmetric form ¢ : V' x V — F| which is
non-degenerate, i.e., there is no 0 # x € V such that p(z,V) =0. For all z € V,
we put p[z] := ¢(x,z). We call ¢ isotropic on V if ¢[z] = 0 for some 0 # =z € V
and anisotropic on V' if p[z] = 0 only for x = 0. We call a subspace U of V totally
isotropic if p(z,y) = 0 for all z,y € U. We define

O?(V) :={g € GL(V) | plgz] = ¢la], Vo € V},

SO?(V) := 0?(V) N SL(V),

for the orthogonal group and special orthogonal group of ¢. We call (V,¢) a

quadratic space.

Let now X be a subspace of V' and 9 the restriction of ¢ on X. If ¢ is non-degenerate
on X, then the symbols O%(X) and SO¥(X) are meaningful. By abuse of notation,
we will just refer to those spaces by O¥(X) and SO?(X).



92 Chapter 4. A Dirichlet series for Orthogonal Modular Forms

Now, from [Shi04, Lemma 1.4, (i)], we can find elements {e;}_,,{f;}/_, of V and a
subspace Z of V' such that

i=1
pleiej) = p(fi, f;) = 0 and 2¢(e;, f;) = di; for every i, j,
Z ={v eV |pe,v)=o(fi,v) =0, for every i},

and the restriction of ¢ on Z to be anisotropic. We call the decomposition (4.1.1) a
Witt decomposition. We also call Z the core subspace of (V, ) and t = dim(Z

the core dimension of (V,p).

In this thesis, we will be interested in the cases F' = R, Q or Q,, with p a rational
prime. If ' = Q or Q,, we denote by g the maximal order of F', i.e. g =Z or g = Z,
respectively. We then have the following definition of a g-lattice.

Definition 4.1.1. A g-lattice A in (V) is a free, finitely generated g-module,

which spans V' over F.

We also have the following notion of integral and maximal lattices.

Definition 4.1.2. A g-lattice A in (V, ¢) is called g-integral if p[z] € g for all z € A.

It is called maximal if it is maximal among all g-integral lattices.

Moreover, we define the dual lattice and the level.

Definition 4.1.3. The dual lattice of a g-lattice A in (V, ) is defined by
AN ={z eV |20(x,y) € gVy e A}

Definition 4.1.4. The level of the lattice A is the least positive integer ¢ such that
qpx] € g for every z € A*.

We also define the integral orthogonal groups via
O%(A) := {a € SO?(V) | aA = A}. (4.1.2)

SO?(A) := {a € SO*(V) | aA = A}. (4.1.3)

Assume now we work over the local field Q, and assume L is a maximal Z,-lattice
in V. From [Shi04, Lemma 6.5], we have a Witt decomposition as in (4.1.1), such
that additionally

L= M—l—zr:(Zpei—i-pri), M={z€Z]|ylz] €Z,}.

i=1
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From [Shi04, Theorem 7.6], we have that over Q,, t = dim(Z) < 4.

In general, if (V, ¢) is a quadratic space over Q, we can define its localisation (V}, ¢,)
for all primes p, by setting V), := V ®q Q, and extending ¢ to a Q,-valued bilinear

form ¢, on V), in a natural way.

Finally, we will express things by matrices. Assume we choose the standard basis
for V over F' and write V' = F™. We then have that ¢ is given by ¢(z,y) =
ooy, Yo,y € V, for some ol = ¢o € GL,(F). In that case, we have

O?(V) = {g € GLu(F) | g'¢og = @0},
and similarly for SO?(V).

Finally, we denote by &(¢) the coset of F*/(F*)? represented by
(_1>m(m—1)/2 det(¢0)7 where (FX)Q — {a2 ‘ ac Fx}_

4.2 Orthogonal Modular Forms

In this Section, we will give the basic definitions for orthogonal modular forms of

signature (2,17 4 2), n > 1. Our main reference is [Sch22].

In the following, let V := Q™ and L := Z" with n > 1. Assume S is an even integral
positive definite symmetric matrix of rank n. Here, even means S[x] € 27Z for all
x € L. We define

S() = —S s Sl = So
1 1

of real signatures (1,n + 1) and (2,n + 2) respectively. Let also V := Q"2 and
Vi := Q" and consider the quadratic spaces (Vo, ¢o), (Vi, 1), where

i Vix Vi—Q

1
(2,) — 54",

for i = 0,1. We then have that ¢ := ¢g |vxv is just (z,y) — —2'Sy/2, and we

make the assumption that L = Z" is a maximal Z-lattice with respect to ¢.

From [Shi04, Lemma 6.3], we then obtain that Ly := Z""? is a Z-maximal lattice in
Vo. If now K D Q is a field, we define the corresponding special orthogonal groups

of K-rational points via

Gr =19 € SLp12(K) | ¢"Sog = So}, (4.2.1)
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Gr :={g € SL,44(K) | ¢"S1g = S1}. (4.2.2)

We view G as a subgroup of G via the embedding

1
gr— g . (4.2.3)
1

Let now Hg denote one of the connected components of {Z € Vy®qC | ¢o[ImZ] > 0}.

In particular, let

Ps = {y' = (1,4, 92) € R™ | y1 > 0, ¢oly'] > 0}. (4.2.4)

We then choose
Hs={z=u+ive VyorC|vePs} (4.2.5)

For a matrix g € M,,14(R), we write it as

a a B
g=1b A c]|,
v odb b

with A € M,,12(R), a, 5,7, € R and a, b, ¢, d real column vectors. Now the map

—1S85[Zb+ AZ + ¢

Z—g(Z) =
9(2) 1S Zy+dZ+6

(4.2.6)

gives a well-defined transitive action of G% on Hs, where G% denotes the iden-
tity component of Gr. The denominator of the above expression is the factor of

automorphy
1
j(g, 2) = —§SO[Z]7 +d'Z + 4.

Let now L; := Z"™ and define the groups
['(Lo) :={g9 € G | gLo = Lo},
['(L1) :={g € Gg | gLr = L1}.
Let also [T (Lg) := I'(Ly) N G&°. Moreover, let
Ig:=GyNT(Ly),

and
Tg:={MeTg|MEel,y+M,4(2)5}, (4.2.7)

the discriminant kernel.
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Definition 4.2.1. Let k € Zand I's < I < I'g a subgroup of finite index. A
holomorphic function F' : Hg — C is called a modular form of weight k& with

respect to I' if it satisfies the equation

(Fley)(Z) = j(7, Z)*F(1(2)) = F(Z)

for all vy € I' and Z € Hg. We will denote the set of such forms by M(T").

Now, if g < T < I'y, F € M(') admits a Fourier expansion of the form (see
[Sug9s, (5.10)])
F(Z)= Y A(r)e(r'SoZ), (4.2.8)

reLg
where Z € Hg. It is then Koecher’s principle that gives us that A(r) = 0 unless
r € Ly N Ps (Ps denotes the closure of Ps, see [Sch22, Theorem 1.5.2]). By [Sch22,
Theorem 1.6.23], and because L is maximal, we have the following definition for cusp

forms.

Definition 4.2.2. f g < T <Tg, F € My (T") is called a cusp form if it admits a

Fourier expansion of the form

F(Z)y= > Ar)e(r'Sz),

reL{NPs

We denote the space of cusp forms by Si(I).

We finally define a Petersson inner product, as in [Sch22, Remark 1.6.25].

Definition 4.2.3. If f‘s < I' <Tyg, let Or denote a fundamental domain for the
action of I' on Hg. Assume F,G € M;(I"), with at least one belonging in Si(I"). We

define their Petersson inner product as

1 Ty k
F.G ::7/ F(2)G(Z) (Qo[ImZ])* 4 2,
(F.G)r = gy [, F2GTZ) @ilim2)
where d*Z = (Qo[ImZ]) "™ dZ denotes the G%-invariant volume element on .
Here, Qg := Sp/2. This is independent of the choice of the fundamental domain, or

in fact, of the subgroup I', so in the following, we drop the subscript.

4.3 Fourier-Jacobi Forms of Lattice Index

In this Section, we will define Fourier-Jacobi forms of lattice index. We follow
Mocanu’s thesis [Moc19], and Krieg in [Kri96].
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For now, assume that V is a vector space of dimension n < oo over QQ, together
with a positive definite symmetric bilinear form ¢ and an even lattice A in V, i.e.
(A A) € 2Z for all A € A. We start with the following definitions:

Definition 4.3.1. We define the Heisenberg group to be:
H*(R) = {(z,y,¢) |7,y e A®R, ¢ € 5},
where S := {z € C | |z| = 1}, equipped with the following composition law:

(21,91, C) (@2, Y2, C2) := (w1 + T2, Y1 + Y2, C1Gee(0 (71, 112))).

The integral Heisenberg group is defined to be HA)(Z) := {(x,y,1) | z,y € A}

and in the following we drop the last coordinate for convenience.

Proposition 4.3.2. The group SLy(R) acts on H™)(R) from the right, via

(9.0 4) > (23,0 = (. 9)A e (o1, 9)4] - Jota.m)) ).

where (z,y)A denotes the formal multiplication of the vector (x,y) with A, i.e. if

b
A= d)’ we have (z,y)A := (ax + cy, bz + dy).
c

Definition 4.3.3. The real Jacobi group associated with (A, o), denoted by
JW9)(R), is defined to be the semi-direct product of SLy(R) and H™)(R). The

composition law is then
(A, h) - (A" B) == (AA", B H).

We also define the integral Jacobi group to be the semi-direct product of SLy(Z)
and H*9)(Z) and we will denote it by JA7),

We are now going to define some slash operators, acting on holomorphic, complex-
valued functions on H x (A ® C).

Definition 4.3.4. Let k be a positive integer and f : H x (A® C) — C a

b
holomorphic function. For M = (a 4 € SLy(R) , we define:

C

' b
(f’k,(A,g) [M]) (7’7 z) = (CT + d)*kefmca(z,z)/(cq-+d)f (CLT + z > '

ctr+d et +d

In the case when M € GLj(R), we use det(M)~Y2M instead of M. For h =
(z,y,¢) € HM(R):

(f ’lﬁ(/\,d) h) (1,2) = (- eﬂ'iTO'(x,CE)JFQW’L'O'(I,Z)f(T, 24T +7y).
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Finally, for the action of J)(R) on complex-valued, holomorphic functions on
H x (L ® C), we have:

(fv (A7 h)) — (f ‘k,(A,U) <A7 h)) (7-7 Z) = ((f ‘k,(A:U) A) ’lﬁh(/\ﬂ) h) (T7 Z)'

We now have the following Definition ([Moc19, Definition 1.23]):

Definition 4.3.5. Let V¢ := V ® C and extend o to V¢ by C-linearity. For k a
positive integer, a holomorphic function f : H x Vg — C (where H denotes the usual
upper half plane) is called a Jacobi form of weight k with respect to (A, o) if the
following hold:

e For all vy € J®9) and (7,2) € H x V¢, we have

(f |k,(A,0) 7) (7-’ Z) = f(Tv Z)

o f has a Fourier expansion of the form

f(r,2) = ) cg(m,r)e(mt + o(r, z)).
meZ,reAN* 2n>o|r]
We denote the space of such forms by Ji(A, o). We say f is a Jacobi cusp form if

cg(m,r) =0, when 2m = o[r]. We denote the space of Fourier-Jacobi cusp forms by

Sk(A, o).

We now have a notion of a scalar product for elements of Si(A, o), see [Mocl9,

Definition 1.33].

Definition 4.3.6. Let ¢, € Sp(A, o). If U < JA™9 of finite index, we define the

Petersson inner product via:

1

(9. )v == [JA: U] /U\HX(A®C)

1

o7, 2)(r, z)uke—%o(y,y)v— v,

where 7 = u + iv, z = x + iy and dV := v ™" 2dudvdzdy. This inner product does

not depend on the choice of U, so in what follows, we drop the subscript.

We now specify to our case by taking A = L = Z" and o(x,y) = 2'Sy for all
x,y € V. We also write Jg for the integral Jacobi group in this case, i.e. Jg :=
SLo(Z) x (Z™ x 7).

Let us discuss the Fourier-Jacobi expansion of orthogonal cusp forms of weight k

with respect to I's. If we write Z = (w, 2,7) € Hg with w,7 € C,z € C", we have
that for any m € Z ([Gri91, page 244]):

Flw+m,z1)=F(w,z2,7).
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Hence, we can write

F(Z) =Y om(r,2)e*™m, (4.3.1)

m>1
and we call the functions ¢,, (7, z) the Fourier-Jacobi coefficients of F'. We note that
then ¢, € Si(Z™, mo) (see [Sch22, Theorem 1.7.16]).

4.4 Maass Space

In this Section, we will give an account of the analogue of the Maass space in the
orthogonal setting. This has been defined by Krieg in [Kri96], Gritsenko in [Gri9l],
and Sugano in [Sug95]. We have the following definition, due to Krieg in [Kri96].

Definition 4.4.1. Let fs < I' < T'g be a subgroup of finite index. The Maass
space M} (") consists of all F' € M(I"), so that if their Fourier expansion is

F(Z)= "> A(r)e(r'Sy2),

relj
we have
Im/d?
Alry= > d" A | =stad]| |,
dlged(p) 1

m
where r = Sy 'p, with p = | A
l

There is an important connection between the Maass space and the space of Fourier-
Jacobi forms. In order to make this specific, we first need to define various subgroups

of I'g. Consider the following elements of I'g:

0 0 —I 01 1 —M'Sy; —1S0[A]
J=10 1, 0|, :(1 0)’ Tn:=10 1,4 A . ez
-1 0 0 0 0 1
1 00 1 00
Rk=|0 K 0|, KeT*(Ly), Ky:=|0 U 0]|,UeSO(L).
0 0 1 0 0 1

We have the following Theorem.

Theorem 4.4.2. ([Kri16, Theorem 1]) I's is generated by the matrices

J, (Th, A€ Z™?), (Rg, K € (L))
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We now recall that we have defined the so-called discriminant kernel in equation
(4.2.7). Tt is easy to show that it is a normal subgroup of I's and from [Sch22, p.
24], it is generated by the matrices J, (T, A € Z"2), (Rg, K € I'*(Ly)). Here

TH(Ly) :={M €T"(Lo) | M € 1,10 + M,12(Z)Sy}.
Finally, we define the groups
T% = (J, (Ty, A € Z"?)), (4.4.1)
and
I'y .= (I's, (Ri, : U € SO(L))). (4.4.2)
The connection between the Maass space and Fourier-Jacobi forms is now given in

the following Theorem.

Theorem 4.4.3. ([Kri96, Theorem 3]) The mapping F' —— ¢, gives an isomorphism
between the Maass space M;(T'%) and Jy(L,0), as vector spaces. Here Jy(L, o) is
the space defined in Definition 4.3.5 with L = Z", o(x,y) = 'Sy for all z,y € V
and ¢y is the first Fourier-Jacobi coefficient of F' (see (4.3.1)).

The above mapping restricted to cusp forms also gives an isomorphism of S;(f“;)

and S(L, o). Here S;(T'%) is the subspace of M;(T'%), consisting of cusp forms.

The inverse of the above mapping is sometimes referred to as Gritsenko lift (cf.

[Gri91, Proposition 5]) and in the case of cusp forms is given as follows:

N
> comyr)e(mr +o(r,2) — > S d ey (mQ’ T) e(\'SyZ),
mGZ,rE[[]/*, AEL{NPs d|ged (SoX) d d
2n>o|r

(4.4.3)
where A = (m,r, N)! € L.

Gritsenko in [Gri91] has defined the above via the action of a T operator on Fourier-
Jacobi forms, in analogy with the Hermitian Maass space of Definition 2.5.3. The

action on the Fourier coefficients turns out to be the same as the one in (4.4.3).

Finally, Sugano in [Sug95] has defined the same mapping via an operator Vi, which
corresponds to T_ of Gritsenko (see [Sug95, Section 6]). We will discuss this in
detail in Section 6.3. It should be noted that Sugano proves in [Sug95, Corollary 6.7]
that his mapping gives an isomorphism between Si(L, o) and S,’;(fg) (see equation
(4.2.7)). Tt turns out that this is no different to Krieg, because if F' € S#(T'%), then
F € Si(I's) because of the special relations between the Fourier coefficients of F.

Also, clearly S;(T's) C S,(I'%) as T'y C I's and so the two spaces are the same.
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4.5 Dirichlet Series

In this short Section, we will define the Dirichlet series of interest, in analogy with
Kohnen and Skoruppa, in their seminal paper [KS89]. We will also show that it is
well-defined.

Let f‘g < I' < T's be a subgroup of finite index. We then have T\ € T' for all
A € Z"2. Therefore, if F,G € Si(T'), they admit a Fourier-Jacobi expansion of
the form (4.3.1). Assume their Fourier-Jacobi coefficients are {¢., o1, {tm }oo_4
respectively. We then define the following Dirichlet series:

Drc(s) = 3 (brms thm)m ™. (45.1)
m=1

Here, (, ) denotes the inner product of Definition 4.3.6.

Lemma 4.5.1. Dp(s) converges absolutely for Re(s) > k + 1 and represents a

holomorphic function on this domain.
Proof. The proof is similar to [KS89, Lemma 1]. We will show for N > 1 that

<¢N7¢N> = O(Nk)7

with the constant depending only on F G. Indeed, fix (7,z) € H x C" and write

T=u+i, z =z+iy. If F(q Z¢NTZ)Q , with ¢ = €™ we have by
N=1
Cauchy’s integral formula that

F(q)

T, Z) = dg,
o (T.2) fiqlﬂ g+t !

for any 0 < r < =™/, The bounds follow from the fact that Sy[ImZ] > 0 (here
Z = (1',2,7) € Hg). lf now 7" = v/ + 40/, the integral can be written as
1

On(T, 2) :/ F(Z)e‘QWiNT’du’,
0

for any v > S[y]/2v. But now |F(Z)|(So[ImZ]/2)** is bounded on Hg from
[Hau21, II, Lemma 3.28], say by a constant C' > 0. Therefore, after choosing
v' = S[y]/2v+ 1/N, we have

1 —k/2
on(r.2)| < O [ (Soltmz] /)™ eNSilay — ot (1) e
0

Similarly for ¥y and then the claim follows from the definition of the inner product
in Definition 4.3.6. [



Chapter 5

Analytic Properties of the

Dirichlet series

In this Chapter, we will discuss the analytic properties, i.e., meromorphic continu-
ation to C and functional equation of the Dirichlet series defined in (4.5.1). This is
the first consideration of Kohnen and Skoruppa in their paper [KS89] (see Theorem
1.1.3).

Let us analyse their result in greater detail. Their method of proof can be summarised
in two steps: The first (and easier one) is to obtain an integral representation for
Dp ¢, using a non-holomorphic Eisenstein series of Klingen type. The second is
to prove the meromorphic continuation and functional equation for this Eisenstein
series. The proof of that involves writing the Eisenstein series in the form of an
Epstein zeta function and then proving that it is a Mellin transform of a specific

theta series.

This general method of proof has been successful in a number of other cases as well.
For example, Raghavan and Sengupta in [RS91] and Gritsenko in [Gri92a] considered
the same problem, but in the case when F, G are Hermitian cusp forms of degree 2
over Q(7). In both papers, the authors managed to deduce the analytic properties of
Dr ¢ by applying a very similar idea; however, there are two key differences regarding
the second step above. The first one is that the Eisenstein series of Klingen type
arises as the inner product of a theta series and a classical Eisenstein series for
SLs. The second and more important one is that it is now necessary to apply some
differential operators to the theta series first. The reason for this is that there are
terms that cause the inner-product integral to diverge, so we need to eliminate them

with the use of differential operators.

It should be noted here that the degree of the modular objects considered is not

important. Yamazaki in [Yam90] generalised the (analytic) result of Kohnen and
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Skoruppa for Siegel cusp forms of arbitrary degree n > 1. However, his method of
deducing the analytic properties of the Eisenstein series of Klingen type is derived
from the general Langlands’ theory. Krieg, on the other hand, in [Kri91], used theta
correspondence in the arbitrary degree n case for Siegel, Hermitian (over Q(i)) and
quaternionic (over the Hamiltonian quaternions) cusp forms. The use of differential
operators was again essential for the last two cases. Even more remarkably, Deitmar
and Krieg in [DK91, Section 4] managed to prove theta correspondence between
Eisenstein series of Klingen and Siegel type for the groups Sp,,(Z) and O(m,m), for
arbitrary m,n > 1. Their proof is based on proving the existence of an invariant
differential operator R, which, when applied to the suitable theta series, eliminates
the terms that cause the divergence of the inner-product integral. This was a
significant advance because up until then, all the operators had to be found explicitly,
and this could only be done in a handful of cases. Moreover, using such an explicit
correspondence, the authors deduce finer information regarding the poles and zeros

of the Eisenstein series considered.

In our case, we essentially combine all the techniques we mentioned above. We
first obtain an integral representation for the Dirichlet series, and then demonstrate,
under certain restrictions, an explicit theta correspondence between an Eisenstein
series of Klingen type for the orthogonal group and a Siegel-type Eisenstein series

for the symplectic group of degree 2.

5.1 Integral Representation

In this Section, we will give a Rankin-Selberg integral for the Dirichlet series (4.5.1).
We need several preparations. We will first view Fourier-Jacobi forms as modular
forms under the action of a parabolic subgroup, very much in the same way as we
have done for the Hermitian case in Section 2.2. We begin by defining a special

parabolic subgroup of I's.

Definition 5.1.1. The parabolic subgroup of I'y fixing the two-dimensional

isotropic subspace spanned by eq, e5 (standard basis vectors) is defined by

Tgy = { (; ;) €Ts| D e MQ(Z)} . (5.1.1)

We will now embed the (integral) Jacobi group Js (defined just after Definition 4.3.6)
into I's ;. Consider the embedding

Lijs—)FSJ
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where
10 yS 0 1Sy
0 1 'S 3$S[z] 2'Sy D* 0 0

Hyy=|00 1, = y |, Mp:= L, 0],
00 O 1 0 0O 0 D
00 O 0
. -1 0
with D* := D 1)] [Sch22, page 44]). We denote by I'g ; := «(Js). By

[Ajolb, Proposmon 2.2.7], we have that the action of Jg on H x C" is given by

(D, [2.9]), (. 2)) — (DT, M) |

where j' denotes the usual factor of automorphy for the action of SLy(Z) on H.

Now, if we take an element M = «((D, [z,y])) € I'§ ;, we can see that its action on
an element (w, z,7) € Hg (see (4.2.6))

Ml ) = (w2 r)
is the same as the action of Jg on H x C".

We have the following Proposition regarding the fundamental domain of the action

of I'y ; on Hg, which will be useful later.

Proposition 5.1.2. For Z = (w,z,7) € Hg, we write w = x1 + 1y, 2 = u +iv, 7 =

Ty + iy A walid choice for the fundamental domain of the action of 'y ; on Hs is

1 1 1
fJ = {Z: (W,Z,T) EHS | (277—) 6-7:73111/2—55[7’] >07—§ = I < 2}’

A

where F is a fundamental domain of the action of Jg on H x C™.

Proof. Let Z = (w, z,7) € Hg. We can then pick g € T' ; such that 1= (g) € Jg and
that Z' := g(Z) = (W', 2z, 7) with (2,7) € F and w’ € H arbitrary. This follows from
the fact that the actions are the same, as we have shown above. Now, if A € Z"*2,
we have Th(Z') = Z' + X (see Section 4.4 for the definition of 7)) and so we can act
with a suitable T}, so that —1/2 < z; < 1/2. Finally, the condition y,y, — S[v]/2 > 0
follows from the definition of Pg in 4.2.4. O

Let now F,G € Sg(I's). In order to give an integral representation for Dr¢(s), we

need to define an appropriate Eisenstein series of Klingen type, in an analogous way
to [Sch22, Chapter 3.
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Definition 5.1.3. Let Z € Hg and s € C with Re(s) > n+ 1. We define the real

analytic Eisenstein series of Klingen type to be

E(Zs) = 3 (CMHWZH)

v€Ts,/\T's IIH((VZ?)Q)

where for Z = (w, 2z,7) € Hg, we write Zy := 7. Also, Qy = Sp/2.

Proposition 5.1.4. E(Z,s) is well defined, is invariant under the action of I's and
converges absolutely and uniformly whenever Z belongs to a compact subset of Hg
and s satisfies Re(s) > n + 1.

Proof. Let v € I's ;. We write

— (" T, DesL@)
Y= O D7 2 )

because 7 is in the connected component of the identity. Now, for Z = (w, z,7) € Hg,
we have v(Z)y = D(7), where the action on the right denotes the usual action of
SLy(Z) on H (see also [Sch22, page 115]). By [Bru97, Lemma 3.20], we have

Qollm(v2)] = [j(v, Z2)|*Qo[ImZ], (5.1.2)

and so Qo[tm(+2)] 1 QollmZ]  |j(D, ) Qo[lmZ]

m((vZ2)2) 157, 2)]? Im(D7) — [i(7, Z)]* Im(Zz)
where again j’ denotes the usual factor of automorphy for the action of SLy(Z) on

H. But we have j(v, Z) = j/(D,7) and hence F(Z,s) is well-defined.

The invariance under I'g follows from the fact that for fixed 6 € I'g, the map v — 70

induces a bijection between I's j\I's to itself.

For the convergence, we can write from (5.1.2)

E(Z,s)= Y. (Qo[ImZ])*(Im(v2)2)"* (v, Z)[*.

~v€ls, s\I's

But by the proof of [Sch22, Theorem 3.1.1], the sum

S (Im(v2)2) " iy, 2) 7

~v€ls, s\I's

converges locally uniformly whenever k > 2n + 2. From this, the claim follows. [

We are now ready to give the main Proposition of this Section.
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Proposition 5.1.5. Let F,G € Si(I's). For Z € Hg and s € C with Re(s) > n+2,

we have

(F(Z)E(Z,s),G(Z)) (47)~ DD (s 4 k—n—1)Dpa(s+k—n—1),

1
~ #S50(S;7)
where ( , ) denotes the inner product of Definition 4.2.3,
SO(S;Z) := {g € SL.(Z) | g'Sg = S},

which is finite and D (s) is the Dirichlet series of (4.5.1).

Proof. Let 1(s) .= (F(Z)E(Z,s), G(Z)). If we denote by Q a fundamental domain
for the action of I'g on Hg, by using the standard unfolding argument, we have for
Re(s) >n+1

1) = 257 Y (W} (Qulmz))* a2

v€ls,s\I's
N [rsle*M /fj F(2)6(2) (%g) (Qo[Y])* " 2 dXay,

where 77 is a fundamental domain for the action of I' ; = «(Js) on Hg and
Z = (w,2,7) = X +1Y. We note here

U5,y : T ;] = #S0(5;Z) < oo,

because S is positive definite (cf. [Sch22, Section 1.7]). Hence, from Proposition

5.1.2, with the same notation as there, we get

1 —s
I(S) B #SO(sz) /]:/ywzés[vb()/ <z < F(Z)G(Z)y2 .

1
2

[NIES

1 k—n—2+s
X <y1y2 — 25[1}]) dXdy,
where F is a fundamental domain of the action of Jg on H x C". We now write
F(Z) = Z (7, 2)e2T G(7) = Z U (7, 2)e2mme
m=1 me1

Using the fact that for integers my, ms, we have

/1/2 627ri(m1—m2)a:1dx1 _ 1 lf mi = My ’
—1/2 0 otherwise
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we get
I(s) = 1/ / Z (T, 2) 0 (T, 2) 1Ty 78
#SO(S, Z) F Jyrya—3S[]>0
1 k—n—2+s
< (y1y2 - 2S[v]> dXdY.
Sl _ 1
We now set t :=y; — 50 " equivalently yot = y1yo — 55’[1}}. We then get
Y2

S[v]

I(s) = Z G (T, Z)¢m<7—7 z)e _4Wmt€72ﬂmy71/ X
#SO o

X (tyg)k_"_2+8 dtdudvdzodys.
But
/oo e dmmith=n=2tsqt = (s 4+ k —n — 1)(47r)_(S+k_”_1)m_(s+k_"_1).
=0
Moreover, in this case, the inner product of Definition 4.3.6 reads as:

<¢ma¢m> = /F¢m(7’ Z)qu)m(Ta Z) v 26 ]dUddeQdy2

Putting all the above together, we obtain

](S) = (47T)_(8+k—n—1)r(8 +k—n-— 1)DF7g(S +k—n— 1)7

1
#50(5;Z)

or equivalently

(F(Z)E(Z,5),G(Z)) = (4m)~ =D (s 4 k—n—1)Dpg(s+k—n—1),

1
#S0(S;7Z)

as claimed. O

5.2 Eisenstein Series as an Epstein Zeta Function

It is now clear from the above that the analytic properties of the Dirichlet series of
interest reduce to the ones of the Klingen Eisenstein series, as given in Definition
2.1.6. This Section is devoted to writing this Eisenstein series in the form of an
Epstein zeta function, similar to [Kri91, equation (7)]. In our case, because of the
form of the Eisenstein series, we cannot use the method of Krieg in [Kri91] with the
minors of the determinant. It turns out we can write the Eisenstein series in such a

form, provided that the number of one-dimensional cusps is 1.
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Definition 5.2.1. The set of I'g-orbits of one-dimensional cusps of Hg is defined by
C'(I'g) := {TsW | W is isotropic in V;}. (5.2.1)

A two-dimensional isotropic plane, or isotropic plane in V;, is defined by two
linearly independent vectors g, h € V;. We normalise g, h such that g,h € L] and
such that ged (S1g) = ged (S1h) = 1. The isotropy condition means S {(g h)} = 0.

We also have the following Definition of the majorants for 5.

Definition 5.2.2. The space of majorants for 5 is defined by

§:={R€ MyR)|R=R >0, RS{'R=5,}.

The main Proposition of the Section is the following:

Proposition 5.2.3. Let S be such that #C*(I's) = 1. Then, for each Z € Hys, there
is a Ry € $ such that

) = Im(vZ), 78_ o —5/2
E(Zv ) - Z (QO[Im(VZ)]) - Z (d t(RZ[g])) 3

v€ls,s\I's LeX/GLa(Z)
where
X = {(l m) | 1,m € 7", (l m) primitive, S [(l m)} = O}.

Here, a matriz being primitive means that its elementary divisors are all 1 (see

[Shi97, Section 3]).

The rest of the Section is devoted to proving this Proposition. We start with two

lemmas regarding the elements of G, i.e., the special orthogonal group attached to
Si.

Lemma 5.2.4. Let v € Gr and write v = <>|< l m)t with [,m € R"™. Then

= (Srtm S «).

Proof. The proof follows from the fact that if

a a B
Y= b A c| € GR,
v odb o
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then from the relation S;[y] = S, we have

b} 'Sy 3
v t=1Sy1d S;tALS, Sylal. O
v b'Sy o

k k k k k k
Lemma 5.2.5. Lety € Ggr and writey= | I! | =11 b o' luys  luysa
m! my My Y Mpgs Mg
Then, if
Mn+t4 lnta
Mp+3 lnys
(=St (m l) =-S5ty -S1z],
Mo Iy
my l

we have Si[¢] = 0.

Proof. Let M = <el 62), where e, e; are the two standard basis vectors of R,

From Lemma 5.2.4, we have { = v~ 'M. But
Sily™'M] = SilyTH[M] = Si[M] =0,

because 7! € Gr and the subspace generated by M is totally isotropic. Hence, the

result follows. O

Now, for any Z € Hg, we want to choose a specific majorant for Sy, so that the
terms of the Eisenstein series take the form in Proposition 5.2.3. We start with

defining the majorant for the element I := (¢,0---,0,4)" € Hsg.

Lemma 5.2.6. Let I := (4,0,---,0,4)" and R; = diag(1,1,S,1,1). Then, if v € Gk,
with v = (* [ m)t, we have

lm((v1)2) \* _
(@) = e

where { = Sy (m l), as in Lemma 5.2.5.

Proof. We have Sy[I| = —2 and therefore

t((o1)2) =t (Ot et osalib e )

my + (Mo + Myy3)i + Miga
(l2 + lnya) (M1 + miga) — (L + Loga) (M2 + My ys)
(m1 -+ mn+4)2 + (m2 + mn+3)2 ’
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Also,
. s B 1
Qo[Im(y1)] = |j(v,1)|*Qo[ImI] = T
Hence,
m = (lo + lugs)(ma 4+ Mmpia) — (l1 + lnga) (Mo + Myys).

Now, from Lemma 5.2.5, with ¢ written as there, we have

S
S

(7]
Y]

xtS_ly = lpgamy + lpp3mo + lomy 3 + limp 4.

(Ingaly + Lnysly).

-1 —9
-1 = 2(mn+4m1 + mn+3m2).

By then computing R;[¢] and taking the determinant, the result follows. O

After defining the majorant for I, we can use the transitivity of the action in (4.2.6),

in order to define a majorant for every Z in Hg.

Proposition 5.2.7. Let Z € Hg. Then, ARy € § such that for all v € G,

m((,2)) \*_
(Qoumwzn) det(Rzlt).

where £ is the matriz formed by the first two columns of vy~ 1.

Proof. We start the proof by constructing such an Rz;. We denote by I =
(4,0,---,0,4)". By transitivity, 3§ € G% such that 6(I) = Z. We then define
Rz := R;[67'] and we claim this is well-defined. We prove this in Lemma 5.2.8.
Then

( Im((vZ)z)]>2

< Im((v91)s)
Qo[lm(vZ)

Qo[lmwaf)]) = det (Frlf)

where if v0 = (* [ m)t, we have £ = S;! (m l), by Lemma 5.2.6. Now,
R, = R[[(Sil] — R; = Rz[é]

Hence
Im((v2)2) \* _ 4
(Qo[lm(’yZ)]> det(Rz[d4]).

t
Now, if v = <>x< I m’) , we want to show that the above quotient equals
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det (Rz[Si* (m 1)]). But

* * * *
V=1 = y=[1|s"=]Ut5t | =] ((HD |,
mt mt mtafl ((571)tm)t

(m' )= ((0")m (671)1).

Suffices to then show that (we remind here that ¢ = S;* (m l))
Sy =057 = 65716 =57 = (7186 =85 = S[671] = 9,

which is true.

The only thing remaining to show is that Ry € $. But as R; is symmetric and
positive definite, the same holds for Rz = R;[§!]. Finally, it is easy to show that
R;ST'R; = S; and then

RzS7'Rz = (07" ) Ry6 'Sy (07 R0~ = (071 Ry Sy Ry6 ™! =
— (5_1)t816_1 — 81[5_1] — Sl-

Hence, Rz € §, as required. O

We now give the final Lemma, showing that Rz is well-defined.

Lemma 5.2.8. For each Z € Hg, Rz, as defined in the proof of Proposition 5.2.7,
s well-defined.

Proof. We want to show that for 7,0, € Gy,
01(I) = 62(I) = Ry[67'] = Ri[d;].

For that, it suffices to show that if g € G, such that g(I) = I, then R;[¢"'| = R;.

Let us now write

« ay x! Unio I6;
by A1,1 E* Al,n+2 C1
g= Yy F K G z |,
H
w'

An+2,n+2 Cn+2
dn+2 d

bn+2 An+2,1

Y dy

with a, 8,7,0, A1 1, Atns2, Anto1, Anvone ER, E,F,G H z,y, 2,w € R and K €
R™". By the definition of the action and the fact that g(/) = I, we obtain (cf.
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[Sug85, (1.3)]):
1

1
g1 =49, )| 1
1 1

But we have j(g,1) = v+ + (di + dp42)i. Hence, we obtain the following relations:

a+B+i(ar + aps2) =7+ 0+ i(dy + dpyo). ( )
bt er+i(As + Apnge) = (7 +0) — (dy + dso). (5.2.3)
y+z+i(F+G)=0. (5.2.4)
bnta + Coya +i(Any21 + Anjanta) = i(y +6) — (di + dnya). (5.2.5)

Now, g(I) = I implies g~ *(I) = I as well. But, as in Lemma 5.2.4, we have

) Cni2 —z'S 1 B
dn2 An+2,n+2 -G'S Al,n+2 An42
g'=|-S"w -S1'H ST'K'S -ST'E —-S7'z|,
dy Apion —F'S Avq ay
v b2 —y'S by o

and therefore, we also obtain the relations

S+ 0 +i(chre+c) =7+ a+i(by + byia). ( )
A2 + dpyo + i1 (Apionte + Ainge)) = i(y + ) — (b1 + bpi2). (5.2.7)
STlw4 ST e +i(STTH + STIE) = 0. (5.2.8)
a1 +di + i(Apya1 + Ar1) = i(7 + @) — (b1 + bpta). (5.2.9)

Using now equations (5.2.3), (5.2.5), (5.2.7), (5.2.9), we obtain
A1,1 = An+2,n+2> Al,n+2 = An+2,1 and a = 0.

Using (5.2.2) we also get a+ =7+ = [ =~ as well. From (5.2.4), (5.2.8) we
get
y=—2 w=—x, F=—-Gand H=—FE.

Finally, from (5.2.2), (5.2.7), (5.2.9), we have the equations
ay +dy = —(bnyo +01), anyo +dugo = —(by + bnya), a1+ anyo = di + dygo.
These give ay + d; = ap19 + dyi0, which together with ay + a,,10 = dy + d, 2 gives

a; = dn+2 and Apy2 = dl.
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Similarly, b; = ¢,42 and ¢; = b,42 and these relations are enough to check ¢'R; =

R;g~!, i.e. what we wanted to prove. O

We are now ready to give the proof of the main Proposition 5.2.3. For convenience,

we restate it here.

Proposition 5.2.9. Let S be such that #C*(I's) = 1. Then, for each Z € Hg, there
isa Ry € $ such that

) — Im(vZ), \ . —s/2
E(Z7 ) - Z (lem(vZ)]) o Z (d t(RZM)) )

7v€ls,u\I's L€X/GLa(Z)

where
X = {(l m) | I,m € Z"**, (l m) primitive, S; [(l m)} = O}.

Here, a matriz being primitive means that its elementary divisors are all 1 (see

[Shi97, Section 3]).
Proof. Let M = (61 62). We claim that the map

F5—>X

Yy IM

induces a bijection I's j\I's = X/GLy(Z).

o Well-Defined: Firstly, v"'M € X as the first two columns of y~! are integer
vectors and as 7~ € I'g C GL,14(Z), we get that y~1 M is primitive. Moreover,

Si[y~'M] = 0, as we have already shown in Lemma 5.2.5.

c
Now, if § = py for some p € I's s, then we can write p~'M = [ | with

b
(& d) € SLo(Z) (because of the form of the parabolic). Hence

C

b
0IM = fy’lpflM = fy’lM (a ) ,
c d

which gives the map is well-defined.
o Injective: If y"'M = §"*MN for some N € GLy(Z), then

v 'M = MN!,
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which shows that vd~! € T's s (the first two columns of v6~! belong in the
Z-span of the vectors ey, es and v, € I's C SL,,14(Z)).
« Surjective: Consider now (l m) € X/GLy(Z). The plane generated by the

vectors [, m can be checked to be isotropic. Indeed,

span{l,m} = spa l m
DAL Ty = SPARA ed (S11) ged (Svm)

in Vi. These vectors both belong in L (can be checked directly) and also

Sil

ged — = ) =1and similarly for the other vector. The isotropy condition
ged (S1)

still holds for the two new vectors (as we only change them by a scalar), and

therefore the claim follows.

Now, because #C!(I's) = 1 by assumption, if U is the plane generated by the

basis vectors e, es (U is an isotropic plane too), there is an element K € I'g

such that K maps U to W. Hence, there exist x,y, z, w € Q such that

Q@1K@=@7@(z;)

But as (l m) is assumed to be primitive, we have by [Shi97, Lemma 3.3] that
JA € Maty ,4+4(Z) such that A (l m) = 15. Hence, we obtain

AQ@lK@:(mzy

Yy w

and so x,y,z,w € Z. Now (K61 KeZ) is also primitive by [Shi97, Lemma
3.3], as it can be completed to an element of GL,4(Z), namely K. Hence,
1B € Matsy ;,+4(Z) such that B (Kq Keg) = 1,. Hence,

-1
T oz
( ) =B(1 m) € Maty(Z).
Yy w
Hence, as the inverse of that matrix also has integer entries, we must have
that its determinant is &1, i.e., 2w — yz = £1. Therefore, K~! gets mapped
to (l m) GLy(Z), as wanted.

The rest of the proof now follows from Proposition 5.2.7. O

Remark 5.2.10. We would like to make a few comments here regarding the condition
#C'(T's) = 1. This condition is discussed in [Sch22, Section 1.6.5]. However, the
whole discussion there and the examples given (basically the Euclidean lattices in
the sense of [Sch22; Definition 1.6.13], a complete list of the 70 that exist is known,
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see [Neb03]) is about when I'g is the integral connected component of the identity
of O(2,n + 2) and not of SO(2,n + 2), as in our case. However, in the case when
O(L) (see (4.1.2)) contains an element K of determinant —1, we can show that there
is a single orbit under the action of the SO-group too. Indeed, assume there is a
single orbit under the action of the O-group. This means, that given an isotropic
plane W in V;, 3y € O*(L,;) (i.e. in the connected component of O(L;)) such that

YW = (el €2>. If now v € I'g, we are done. If not, consider the element
§ = diag(1,1,K,1,1) € O (Ly)

of determinant —1. Then dyW = ¢ (61 62) = (61 €2> and 60y € I'.

However, the question of whether such a K exists is non-trivial, at least when n is
even (if n is odd, —1,, always works). A condition we can impose so that we ensure
the existence of such an element can be found in [Shi04, Lemma 9.23, (iii)]. That is,
the existence of some = € Z™ so that S[z] = 2. In our examples in practice, this is

usually satisfied.

Finally, we have the following Lemma, where we replace the condition of primitivity
of the elements of X in Proposition 5.2.9 with the condition that the elements have

maximal rank.

Lemma 5.2.11. With the notation as above, we have

((s)C(s = 1)E(Z,5) = 3 (det(Rz[())) .
feMatn+4’2(Z)/GL2(Z)
rank ¢=2,51[¢]=0
Proof. The proof is analogous to [DK91, Lemma 3.1]. In particular, every matrix
¢ € Mat,,142(Z) with rank ¢ = 2 and S;[¢] = 0 can be written as ¢ = N - M with
N being primitive and S1[N] = 0 and M € GLy(Q) N Matyo(Z). The proof then
follows from the fact that

> | det (M) = ((s)¢(s — 1).

ME(GLQ (Q)ﬁMatzyg (Z))/GLQ (Z)

This can be found in [DK91] or its local version in [Shi97, Lemma 3.13]. O

5.3 Theta Series and Transformation Properties

In order now to prove the analytic properties of the Klingen Eisenstein series E(Z, s),
we want to prove a theta correspondence between SO(2,n + 2) and Sp,. That is, to

integrate a Siegel Eisenstein series for Sp, against an appropriately defined theta
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series and end up with E(Z,s). However, as in most cases, the inner-product
integrals will diverge, so we need to apply an appropriate differential operator first.
In this Section, we recall the action of the symplectic group on Siegel’s upper half
plane, define the appropriate theta series, and prove some important transformation

properties.

The (real) symplectic group of degree m > 1 is defined by

0, —1 0, —1
S R) := € GLs,,, (R L m =" m )
P, (R) {g 2()|9<1m Om)g (1m Om)}

The Siegel’s upper half plane is defined by

Hy = {Z =X +iY € Mu(C) | X = X', Y =Y' > 0}.

A B
Now g = (C’ D) € Sp,,(R) acts on H,, via

(9,2) — g(Z) == (AZ + B)(CZ + D).

This defines a transitive action of Sp,,(R) on H,,. We also define the factor of
automorphy j(g,2) := det(CZ + D). We call Sp,,(Z) := Sp,,(R) N GLy,,(Z) the
full modular group. For any integer N > 0, we define the following congruence

subgroup of Sp,,(Z):

T{™(N) = { (g g) €Sp,,(Z)|C=0 (mod N)} . (5.3.1)

We then have the following Definition (cf. [CP91, Section 2.4.1]):

Definition 5.3.1. Let £ € Z and m > 2. A function F : H,, — C, with
F € C*(H,,) (see Notation), is called a C**-modular form of weight & on the group
Fém)(N ) with a Dirichlet character ¢ (mod N), if for all

( l’)
—_— ( F N 9

we have

F(v(Z)) = ¢(det D) det(CZ + D)*F(Z),

for all Z € H,,,. We denote the space of such functions by Mk(N ).

Finally, in some cases, we can define a suitable inner product on the above space.

Definition 5.3.2. The Petersson inner product of a pair of modular functions
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F,G € My(N, ) is

1

(F.G) = [Spm(Z) : F(()m)(N)} /I‘ém)(N)\Hm

F(2)G(Z)(det Y)*d*Z,

whenever the integral converges. Here, d*Z is the Sp,,(R)-invariant measure
(det Y)~(m+DdXxqdY.

We are now ready to give the definition of the theta series of interest, which is related

to Spy. Such theta series were first studied by Siegel.

Definition 5.3.3. Let Z = X +17Y € H,; and W € Hg. We then define the theta
series

0(Z, W) = > 0,(Z, W),

EEMatn+472(Z)
where for any ¢ € Mat,,;42(Z), we define
0g<Z, W) — 67rz'tr(51[@X)—7rtr(RW[@Y)'
Let also ©(Z, W) = det(Y)"2 0(Z, W). Because Ry is positive definite, it follows
that © converges absolutely and uniformly in any region of the form Hy(e) = {Z =
X 4+1Y | Y > €ely} with € > 0 and therefore defines a real analytic function of the
matrices X, Y with X +4Y € Hy (cf. [And89, page 291]).

We start with the following Lemma regarding the invariance of © under I's.
Lemma 5.3.4. Let W € Hg. We then have
O(Z, M(W)) = ©(2,W)

forall M € I'g.

Proof. Let M € I'g. Then

@(Z, M<W>) _ det(Y)nTH Z eﬂitr(Sl[é]X)—Trtr(RNuW) [4Y)
ZEMatn+472(Z)

= det(Y)"+" D G i G
¢eMaty,y4,2(Z)

=0(Z,W),

because Ry = Ry [M~1] (this follows by the way Ry is defined in the proof of
Proposition 5.2.7) and S;[M '] = S;. These relations, together with the fact that
M €Ts C GL4(Z) = M~ € GL,,4(Z), gives the invariance under I's. O
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The situation, however, is quite different when it comes to the transformation of ©
with respect to Spy(Z). In particular, it is necessary to consider a specific congruence
subgroup of Spy(Z) and even then © transforms as a modular form of a non-trivial

weight and character.

Proposition 5.3.5. Let q denote the level of S, equivalently Sy (see Definition

4.1.4). Then, for all v = (é IB;) € F(()Q)(q) (see (5.3.1)), we have

O(Z,W) = xs(1)j(v. Z)"*0(Z,W),

where xs(y) is an eighth root of unity which does not depend on Z and W. In the
case when the rank n of S is even, we have xs(v) = s(det D), with s a Dirichlet

character modulo q such that

Vs(p) = <<_1)n/2 det S)

p

for all odd primes p (Legendre symbol) and 1s(—1) = (—1)"/2. In particular, this
implies © € My (q,v%s) with k = —n/2.

Proof. From [And89, Theorem 1], we obtain that if v € T’ (¢), then
072, W) = xs(1)i (v, 2)j (v, Z)"+226(2,W)

for some character as described in the statement of the Proposition. Multiplying
by (det Y)("*2)/2 gives the first part of the Proposition. The second part follows
immediately from [And89, Theorem 2. O

5.4 Differential Operators

In this Section, we prepare the ground for the theta-correspondence. In the same
fashion as Krieg in [Kri91], Gritsenko in [Gri92a], and Raghavan and Sengupta
in [RS91], we need to apply some differential operators to the theta series first,
so that the integral converges. Our first step is to make © invariant under the
action of Sp,(Z), up to the character xg. This is essential because the differential
operators that will eliminate the terms of the theta series that cause divergence are

Sp,(R)-invariant.

Assumption: From now on, we assume that 4 | n.
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Form > 1,let Z = X +iY € H,,. We denote by 0 the matrix

1+ 0

(0z2)ij = —, 07

where ¢;; denotes the Kronecker’s delta, for 1 < 4,5 < m. Here 0/0Z;; :=
(0/0X;; —10/0Y;) /2. Due to Maass in [Maa71], we have the operator (k € Z)

5 = det(V) M2 det(0y) det(YV)F~ "7, (5.4.1)

which sends functions from M (N, vs) to Myyo(N, bs) ([CP91, Section 3.3.1]).

For any integer » > 1, one then defines the Shimura differential operator as the
composition

0\ = Gpsara - - Opsaly
This sends functions from M(N,1s) to Mo (N, ¥g) ([CP91, Section 3.3.1]).
Therefore, in the case m = 2, 5,?)@ € Mo(q,vs) with k = —n/2 and r = —k/2 = n/4,

because of Proposition 5.3.5.

However, we still need to apply an invariant differential operator R, so that we
remove the singular terms that cause the integrals to diverge. The existence of a
suitable such operator is guaranteed by a result of Deitmar and Krieg in [DK91].

Let us now describe it here.

For any dimension m > 1, we consider the algebras D(H,,,) and D(P,,) of invariant
differential operators with respect to Sp,,(R) and GL,,(R). Here, P,, denotes the
symmetric space GL,,,(R)/O,,(R) and can be identified with the set

P ={Y € Mu(R) | Y =Y"' >0},
by means of the action of GL,,(R) on P, given by
M.Y =Y[MY] = MY M.

Here, O,,(R) = {M € GL,,(R) | M - M* = 1,,}. Next, if we consider the injective
map

¢ : C>*(Pp) — C(H,,)

defined by
(f) (X +1Y) = f(Y),

we may associate to ¢ a well-defined map
¢* : D(H,,) — D(P,),

which sends D —— ¢! o D o ¢. Then, from [DK91, Theorem 1.1], we obtain that
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@* is an injective algebra homomorphism.

Now, for any [ € R, we define the operator D, = D, ,,, € D (P,,) by
Dy (Y) := (det Y) det(dy) det(Y)* .

From [DK91, Theorem 1.2], we have that Dy, o1, D, belongs in the image of ¢*.
Define then
R(m, 1) == (¢") " (Dpso—imDim) € D(H,y,). (5.4.2)

In the case m = 2, we write for Z = X +iY € Ho,

7 _ 21 Z3 X = Ty T3 Y = Y1 Y3 .
23 29 T3 X2 Ys Y2

We first have the following Lemma regarding the behaviour of © under the action

of the Maass-Shimura operator.
Lemma 5.4.1. Let k = —n/2 and r = n/4. For any { € Mat,42(Z), we have

o) [(det V)" 0,(2, W) = (det V) *"p(det((Sh + Rw)[AY), tr((S1 + Rw)[Y)) %
X 0,(2,W), (5.4.3)

where p = p(U, V) € R[U, V] is a polynomial in two variables, and its coefficients
do not depend on (. In particular, if ¢ € Mat,42(Z) is such that Si[f] = 0, this

becomes

5}(;) {(det Y)nTHQK(Z, W)} = (det Y)1+rp (det(RW my)7 tr (RW [E]Y)) o mtr(Bw[dY)

(5.4.4)
Proof. For any ¢ € Mat,,42(Z), we have by [Sat86, Lemma 1.1]
00 [(Aet Y) 5 0,(Z,W)] = (det V)5 6{"0,(2, W).
Define now the operator o € D(Hsy) by
2.0
=1 i—. 0.4.5
o zj;l Yj 2z ( )

By [Sat86, Proposition 1.2, (a)], 5§T)05(Z, W) is a Z[1/2]-linear combination of func-
tions of the form

det(Y) ™00 (det(85))" 0,(Z, W), (5.4.6)

where b, ¢, d are integers with 0 < b < c<r, 0 <d<r and b+ d = r. Note that

the additional requirements stated in [Sat86, Proposition 1.2] are not needed for the
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proof of this part. We compute

i6’4(2, W) = Alb(Z, W), iGg(Z, W) = Beb(Z, W),

8z1 822
i9K(Z, W) = 2C,0,(2, W), (5.4.7)
823

where for ¢ = (l m), with [,m € Z"* we have

Av = gmi (S)[1]+ Rowl), Be = gmi (Silm] + Rulm]), Co = i (I'Sym + U Bum).

t t3/2

1
We now set T, = —mi(S1 + Rw)[{] and write T, =
2 t2)2  t

), with t1 = Ag,tg =
Bg and t3 = 2Cg

We first compute det(0z)0, = det(1)0,. Moreover, if B := tr(T,Y), we claim that
for any 0 < ¢ < r, 00, = f.(B)#, for some polynomial f of degree c. We show this
by induction. Note that for j = 1,2,3, we have 0B/0z; = —it;/2.

If ¢ =0, then the claim is clear with fo(B) = 1. If now ¢, = f.(B)0,, we have

> —it; 1
0= i Yy |JUB) (—52) O+ S B = B (311B) +ifuB)) o
j=1
1
from which the claim follows with f..;(B) = B <2fé(B) + ifc(B)> of degree ¢+ 1.

Now, each term in (5.4.6) can be written as

(det V)P0 det (D7), = (det Y)Po° det(T})0, = (det Y) "[det(T,Y )00, =
= (det V) "[det(T:Y)" fo(tx(T0Y )6,

because r — b = d. Equation (5.4.3) now follows after absorbing the 7i/2 factor of
Ty and observing (by induction) that f.(B) has purely imaginary coefficients in the
odd powers of B and real coefficients in the even powers. Hence p will have real

coefficients. Equation (5.4.4) now follows immediately from (5.4.3). O

We are now ready to give the main Proposition of this Section, regarding the elim-

ination of the terms that will cause the divergence of the integral.

Proposition 5.4.2. Let k = —n/2 and r = —k/2 =n/4. Let also R :== R (2,2 + ).
We then have

R [513)@} (Z,W)=R Z 5’(;) [(det Y)”Tﬁem‘tr(sl[quRW[e]y)}

leMatyn 4,2 (z)
rank (=2
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Proof. Due to Maass in [Maa71] and Shimura in [Shi90], R can be written in the
form

where Hy, Hy are some “generalised” Laplacians and u € C[X, Y] a polynomial (see
also [Yanl5, Example 3.2] and [BC06, Proposition 6] for an explicit description of
Hy, Hy). Therefore, because O is absolutely and uniformly convergent on compact
subsets of Hs, we can apply the differential operators term by term. Hence, it suffices
to show that for any ¢ € Mat,, 14 2(Z) with rank ¢ < 2, we have

R {51(:) [(det Y)"T”ewitr(Sl[E]XJriRW[é}Y)]} 0.

Fix now ¢ € Mat,,142(Z) such that rank ¢ < 2. We may assume that

for some x,y € R. This is true because we can find U € SLy(R) such that (U =
(a O) for some a € R™™. But then

~ U 0
U:= (O (Ut)_l) € Spy(R)

and the action of this matrix on Hy is Z — UZU". Since R is Spy-invariant and
J(U,Z) =1, g(det U) =1 (so the action Z — U(Z) does not change 5,@@), we
can change variables Z — UZU". But det(UYU") = det(Y") and

tr(SAUXUY) = tr(U'Si{AUX) = tr(S,[eU]X),

so we can replace ¢ with U, which will then give the form of S;[¢] wanted. Similarly
for Ry [¢]. By [Sat86, Lemma 1.1], we have (we remind here that k = —n/2)

o0 [(det Y)*50,(2, W) = (det Y)*5°0” [0,(Z, W)]

and by [Sat86, Proposition 1.2, (a)], we have that the quantity 56,(Z, W) will be

a Z[1/2]-linear combination of functions of the form
det(Y)P0(det(0z))0,(Z, W),

where b, ¢, d are integers with 0 < b < ¢ <r, 0 <d <r and b+ d=r (the operator
o here is as in (5.4.5)). Now, in the case rank ¢ < 2, we have that B, = C;, = 0 in
(5.4.7) because of the form of S;[¢] and Ry, [¢]. Hence,

det(az) [QZ(Z, W)} =0.
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So, we only need to consider the case b = ¢ = r, d = 0. But from the proof of
Lemma 5.4.1, we have 0"6,(Z, W) = f.(B)8,(Z,W), with B = tr(1;Y) and T} as in
Lemma 5.4.1. But, since B, = Cy, = 0, we have that B, hence ¢"6, depends only on

y1 and #,. Consider now the map

T COO(Hl X Hl) — COO(H2>,

A 1 b
sy [ — h(Zy, Zs) Ya,b € R.
a Zg 0 1
Now, if we write
Z 1
z-— |7 ¢ VI = x +iv.
a ZQ 0 1
Y,
R Yib |
bY1 bV +Y,

where Z; = X; +1iY;, j =1,2. Hence, det(Y) = Y1Y5 and 070,(Z, W) depends only
on 6,(Z, W) and Y;. But

defined by

we observe that

0,(Z, W) =e @ (X + z‘le)) :

where S[(] = (i 8) and Ry [(] = (i 8) Therefore,

o) [(det Y)*50,] (2, W)

is independent of a, b and so belongs in the image of 7. But by [DK91, Proposition
1.1], 771 o Ro 7 is a simple tensor in D(H; x H;), so the problem is reduced in the

one-dimensional case and S;[(] = Rw[{] = 0, i.e., suffices to show

n+2

R(1,2+n/4)[6) )y ] =0,
k

0
where now we have 9, = 270 + EP in the one-dimensional case. But we have
1y z

6(7")

"% = (const) x y™/*+1,

Also, from [BCO8, page 807], we have that in the one-dimensional case

0 0 n/n
4,290 0 n(in
R(1,2+n/4) = 4y — 4(4+1)

(note that R(m, k) = RBN(m, k — 1), where R is the operator defined in [BCOS,
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Theorem 2.1]). Therefore, the result follows. O

Finally, combining the two above results, we obtain the following Lemma.

Lemma 5.4.3. Let k = —n/2 and r = n/4, as before. Given | € R, € > 0, and a
compact subset C of Hg, there exists a constant C' > 0 such that

[R[670] (2,W)| < C(det V)

holds for all W € C and Z = X +1iY € Hy, with Y > €l,.

Proof. We can write

R[570] (2. W) = (detY) 5 3 g(Sill), Rwl0),Y)0(Z,W),  (5.4.9)

eEMatn+4,2 (Z)
rank /=2

for some polynomial g in the entries of the matrices S;[¢], Rw[¢] and Y. This follows
from Proposition 5.4.2, the fact that R is well-behaved (see (5.4.8)), (5.4.6) and the
relations we have obtained in the proof of Lemma 5.4.1. The rest of the proof now

follows in the same way as in [DK91, Proposition 2.1, (b)]. O

5.5 Theta Correspondence

In this Section, we finally give the theta correspondence between the Klingen-type
Eisenstein series of SO(2,n + 2) and the Siegel-type Eisenstein series for Sp,. We
start with the following definition.

Definition 5.5.1. Let y = xs denote the character of Proposition 5.3.5. Let also

Py = {(g ﬁ) € Spy(2) | € = o}

denote the Siegel parabolic subgroup of Sp,. Notice that Po N F(()2)(q) = P5. For
s € C with Re(s) > 3/2, we then define the Siegel Eisenstein series with respect to

P, and with character x as

E(Z,x,s):= Y x(9)(det(Im(y2)))". (5.5.1)
'YEPQ,U\FEE)(Q)

A B
If§ = 0 D € Py, we have det D = £1, so x(d) = ¢(det D) = 1 by Proposition

5.3.5. Therefore, the Eisenstein series is well-defined. This Eisenstein series has a
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meromorphic continuation to C (see [Kal77, Theorem 1, (3)]). Finally, using the

fact that x is a character, we have

E(727 X S) = X(’}/)E(Z, X5 5)7
for all v € Féz) (¢). The main Theorem of the paper can now be stated as follows:

Theorem 5.5.2. Let S have rank n, with 4 | n and be such that #C*(T's) = 1. Let
also k = —n/2 and r = n/4, as before. Define

1

) L €(s) = 2T (s/2)C(s),

Go(s) == s (s o

for s € C. We then have for Re(s) >n+ 1

(E(Z,x, (s +1)/2=1), R0)ONZ,W)) o = E(s)E(s = D)ys(s)E(W, 5),

ré (@
where s) = L —4) "o (8/2 — 2r)ha(s T2w
here 25(5) = s (=) " alo/2 = 2ente/2 [ o (=5
Proof. Let
1= [8p5(2) : T @] (B(Z,x, (5 +1)/2 = 1), REVONZ W) )

First of all, this integral is well-defined because of Lemma 5.4.3. We then have

I:/rg?wz > X()(det(Im(y2))) D2 R[5V 6](Z, W)

_vePz,o\F§)2> (9)

d*Z

= /Fém)\m > x()(det(Im(y2))) 2T x (1) RIEO) (12, W) | d°Z

[veP2,0\T{P (q)

= (det Y)5HD/2r RIsT Q) (2, W)d* Z

Py o\H2

= /C(2 ®) /73(2 ® (det Y)(S-i—l)/?—rR[(sl(:)@](Z’ W)d*Z,

where in the second equation we used the invariance up to x of R[é,(:) ©] and in
the third equation we used the usual unfolding trick. Here, C(2,R) + iR(2,R)
is a fundamental domain for the action of P, on Hy, where C(2,R) denotes a
fundamental parralepiped of Sym(2,7Z) in Sym(2,R) and R(2,R) the Minkowski
reduced matrices, as in [Kri85, p. 29]. In the following, we write Sym,(R/Z) for
C(2,R).

Now, from Proposition 5.4.2, Lemma 5.4.1 and the proof of Lemma 5.4.3, we have
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RisMez, W)dX =
/SymgoR/Z) 902, W)

= > Ry [p (det(Rw[(Y), tr (R [(]Y)) e ™ (BwldV)]
@GMatn+4’2 (Z)
rank ¢=2,51[¢]=0

where R = (det Y)?" det(dy)(det V)2 det(dy). The fact that only terms with
S1[¢] = 0 remain follows from (5.4.9). The rest of the expression of this integral
follows from (5.4.4) and from the fact that R = (¢*)~* (Ré(det Y)_(Hr)) (note that
from Lemma 5.4.1, the polynomial p has real coefficients). Hence, from [Kri85,

Proposition 1.4.4, 1.4.5], the integral I becomes

3 / (det Y)*/2Ry [p (det(Rw[Y), tr (Ry [Y) e~ ™ Fwl90)] @7y,
0eMaty 1 4.2(Z)/CLa(Z) 7 P2

rankf=2,5; [(]=0
where now Ry = (det )"0 R% and d*Y = (det Y)~2dY is the invariant measure
for the action of GLg on Py. Now, for every ¢ in our sum, we have that Ry, [¢], hence
(Rw/[l])!, is positive definite. So, we can write (Ry[(])™! = AA' with A lower
triangular and change variables Y —— Y[A']. Then det(Ry [(]Y) and tr (R [(]Y)
become det Y and tr Y respectively and the measure remains invariant. Now, from
[BCO8, equation (2.4)], Ry is GLo-invariant (n = 2 and m = 2 + 2r in the notation

there). Hence, the integral becomes
I= 3 (det Ry [£])~*/2 / (det V)2 Ro[p(det Y, trY )e ™Y |d*Y.

¢€Matp+4.2(Z)/GLa(Z) P2
rank (=2, S1[(]=0

Let now M = det Y det dy. For any t € R, we have for its adjoint operator M (see
[MaaT71, page 57] for a definition) that

M{(det Y)'] = ¢a(t)(det V),
where ¢o(t) =t (t - ;) (see [BCOS, (3.3)]). Therefore, we have

I= 3 (det Ry [0])~*/*x

ZEMat7l+472 (Z)/GLQ (Z)
rank ¢=2,51[¢]=0

x / (det Y)*/* 2" M [(det Y+ det(dy) [p(det Y, trY)e ™ ]| dY
P2
= > (det Ry [€])~*/*¢o(5/2 — 2r) %
{eMaty, 44,2 (Z)/GL2(Z)

rank ¢=2,51[¢]=0

x / (det Y)*/2M[p(det Y, trY)e~ ™ ]|d*Y
P2
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- Z (det Rw[é])_s/quz(S/Q — 2r)pa(s) x

{eMaty+4,2(Z)/GL2(Z)
rank ¢=2,51[¢]=0
x / (det Y)*/2p(det Y, trY )e ™Y d*Y
P
— C(5)C(s — 1)E(W, 8)da(5/2 — 2r)da(s/2) / (det Y)*/2p(det Y, trY )e~™Y d*Y,
P2

where the second and third equality follow after transferring M to its adjoint. The
last equality follows from Proposition 5.2.9 and Lemma 5.2.11. We now just need
to compute the last integral. It is true that (cf. [MaaT71, page 80, 81])

/ (det Y)*e "IV q*Y = 71/2Dy(s)(det T) >,
P2

for any s € C with Re(s) > 1/2 and T' € P,. Here I'y(s) :=I['(s)I" (s — 1/2). Setting
now 7' —— T and then applying the operator 6§T)(S ,T), where S is symmetric, so
that U := S 4T € Hy, we obtain from Lemma 5.4.1 and (5.4.4)

/P (det Y)*/2(det T)"p(det(Y'T), tr(YT))e ™Dy =
:
= 71/275Ty(5/2)6\7[(det T) /2.
But for any o € Z and w € C, we have from (5.4.1)
O [(det T)*] = (det T)?* det(dy) (det T)2~1/2+w

_ —jl(det )2 det(Dp) (det T)>1/2+0

_ —i(det TY2% (0 — 12 4+ w)(a + w)(det T)>=3/2+e

= —i@(w + a)(det T)“ 1,

because det(0y)B(T') = —det(dr)B(T')/4 for a function B = B(T') depending only
on 7" and the third equality follows from a well-known formula (see [CSS13, Theorem
2.2] for example). Hence, by successively applying the above and using the fact that
®2(s) = ¢2(1/2 — s) for any s € C, we get

e R e Y e e I e

By evaluating at T' = 15, the proof is complete. O

Corollary 5.5.3. Assume S satisfies the assumptions of Theorem 5.5.2. Then,

E(W,s) admits a meromorphic continuation to the complex plane and

r (S —|2' L r) I'(s—2r)Ly(s+1—2r,x)( (25 — 4r)&(s)E(s — 1)ys(s)E(W, s)
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has only possible simple poles at s € {(n+2)/2, (n+4)/2} if ¢ # 1 and at
s€{(n—2)/2, n/2, (n+2)/2, (n+4)/2} if ¢ = 1. Here, the subscript , means

that we omit the Euler factors sharing prime factors with q.

Proof. From [Shi97, Theorem 19.3|, we have that

D(s)T(25 — 1)Ly (25, X)¢y(4s — 2)E(Z, X, 5)
has a meromorphic continuation to the complex plane with possible simple poles
only at s € {1,3/2} if ¢ # 1 and at s € {0,1/2,1,3/2} (see [Shi97, (19.3.1), (19.3.2)]
because our character has order two). Hence, the corollary follows from Theorem
5.5.2. 0

The main point here is that our method not only gives the meromorphic continuation
to the complex plane for E(W,s) (something that is expected to be true from the
general Langlands’ philosophy) but can also be used to extract finer information on

the poles and zeroes of the Eisenstein series. Moreover, we get:

Corollary 5.5.4. From Proposition 5.1.5 and Corollary 5.5.3, we obtain the mero-
morphic continuation of Dp(s) to C, due to the one of E(Z,X,s), as we noted in

the beginning of Section 5.5.

Remark 5.5.5. The conditions of Theorem 5.5.2 are satisfied when S corresponds
to at least the Ay, Dy and Eg lattices (see [Sch22; Section 1.6.2] for a description).
These are Euclidean in the sense of [Sch22, Section 1.6.4] (see [Sch22, Example
1.6.14]). By looking at their Grammian matrix (see [Sch22, Section 1.6.2]), we can
take x to be the first standard basis vector and then S[x] = 2. Hence, from Remark
5.2.10, the condition #C(I's) = 1 is true in our setting.

5.6 The FEx lattice

As an application, we obtain a precise result regarding the functional equation of

Dr(s) in the case when

2 -1 0 0 0 O
-1 2 -1 0 0 0 O
o -1 2 -1 0 0 0 O
g_ o o0 -1 2 -1 0 0 O
o o0 o0 -1 2 -1 0 -1
o o0 o0 o0 -1 2 -1 0
o o0 o o0 0 -1 2
o o o o0 -1 0 0 2
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This is a positive definite, even matrix with det S = 1 and the lattice it corresponds
to is the so-called Eg lattice (cf. [Sch22, Example 1.2.10]). This is the unique
unimodular lattice with only one-dimensional cusp (and no other higher-dimensional
cusps) ([Sch22, Example 1.6.20]). As this is unimodular, the level ¢ is 1 and so the
character yg of Proposition 5.3.5 is trivial. Therefore, in this case, FSQ)(q) is the

whole Spy(Z) and the symplectic Eisenstein series (5.5.1) is

E(Z,s)= > (detIm(v2))".

YEP2,0\Sp2(Z)

Now, if £(s) = 77*/2'(s/2)((s), it is well-known (see for example [Kal77, Theorem
2]), that the modified Eisenstein series £(Z, s) := £(2s)€(4s — 2)E(Z, 5) has a mero-
morphic continuation to C with a simple pole at s = 3/2 and satisfies the functional
equation € (Z,3/2 — s) = E(Z, s). Now, for W € Hg, let

L (W, s) = &(s — 3)€(2s — 8)§(s)€(s — L)vs(s) E(W, s).
From our main Theorem 5.5.2, we have in this case
(E(Z,(s = 3)/2), R84 O)(Z,W)) = £()5(s — 1)7s(s) E(W, 5).

Hence, we obtain that E*(W, s) has a meromorphic continuation to C and is invariant

under s — 9 — s.

Remark 5.6.1. We note here that we can rewrite E*(W, s) to have the form of a
completed Eisenstein series using just gamma and zeta factors, using the relations
[(s+ 1) =sl(s) and T'(s)T'(s + 1/2) = 2!725/7T'(25), valid for Re(s) large enough.

Now, from Proposition 5.1.5, we have
(4m) T (s)Dra(s) = #S0(S: Z) - (F(W) - E(W,s — k +9), G(W)).

Hence, if we define

Drg(s) == (4m)°T'(5)6(s—k+6)(25—2k+10)(s—k+9)(s—k+8)vs(s —k+9) X
X Dra(s), (5.6.1)
we have
Dra(s) = #50(S,Z) - (F(W) - E*(W, s — k +9), G(W)).
Therefore, we arrive at the following Theorem.

Theorem 5.6.2. Let S be as above, corresponding to the Eg lattice. With the
notation as above, D.5(s) has a meromorphic continuation to C and is invariant

under s — 2k — 9 — s.



Chapter 6
Relation to L-functions

In this Chapter, we will investigate the other direction of the problem, i.e., how the
method of Kohnen and Skoruppa can be extended in order to establish a connection

of the Dirichlet series of Section 4.5 to the standard L-function of the orthogonal
group.

Kohnen and Skoruppa prove their main result using a fundamental identity by
Andrianov in [And74], which gives an Euler product expression for a Dirichlet series
involving the Fourier coefficients of a Siegel cuspidal eigenform of degree 2, twisted by
ideal class characters. Gritsenko, in [Gri87], initiated the study of a Dirichlet series
involving the Fourier coefficients of an orthogonal modular form and its connection
to the standard L-function attached to it, following factorisation methods similar to
[Gri92a]. Sugano in [Sug85] extended Gritsenko’s result by proving an Euler product
relation for a Dirichlet series involving twists of the Fourier coefficients by modular
forms on a definite orthogonal group of lower rank. His work can be seen as an
extension of Andrianov’s work in [And74] in the orthogonal setting. As we mentioned,
our methods here can be considered as an extension of the methods employed by
Kohnen and Skoruppa in [KS89], and therefore, Sugano’s result is pivotal. Finally,
results proved by Shimura in [Shi04] on the sets of solutions ¢(z, x) = ¢, where ¢ is

a bilinear form and ¢ € Q*, turn out to be crucial.

Below, we generalise all the main ingredients of the proof of Kohnen and Skoruppa

and establish a relation to the standard L-function for certain orthogonal groups.

6.1 An operator on Fourier-Jacobi forms

To establish such a connection, we take, in a similar fashion to [KS89], G a specific

element of the Maass space (cf. 4.4.1). To define G, we need some preparations. We
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use the notation of Chapter 4. We have o(z,y) = 2'Sy for z,y € V. Let N > 1 and

b
define My(Z)n == {g € Ms(Z)|detg = N}. For any M = (a d) € My(Z)n and
c
7 € H (usual upper half plane), we define
at +b
M(T) = :
(m) ct+d

Given a Jacobi cusp form ¢ € Si(Z"™, o), we define the operator
VN : Sk(Zn,0> — Sk(Zn, NO'),

given by

— —k _—mic z|/(cT NZ
(Veo)(r2) = N1 S (er ) e NS (4 (), )
MESLy(Z)\M2(Z) 5 cT +

This is well-defined by [Sug95, Lemma 6.1] or [Moc19, Definition 4.25].

Our aim is to compute its adjoint with respect to the scalar product of Fourier-Jacobi

forms (Definition 4.3.6). This is the analogue of the main Proposition in [KS89].

Now, if ¢ € Sp(Z", No), we will write its Fourier expansion in a form similar to
Kohnen and Skoruppa in [KS89, Section 2].

By Definition 4.3.5, we can write

(1, 2) = > cly(m, r)e(mt + r'z),

meZ,reZ™
2Nm>rtS—1r

for some c;(m,r) € C. Now, from the condition 2Nm > r*S~!r and the definition

of the level (see Definition 4.1.4), we can write

1 1¢S7r] - D
N = —1 — —_D — 2
ma— 5457 = =D — m = 2E_E-2
for some integer D < 0. Therefore, we can write
5057 '[r] =D
o(r,2) = > co(D,r)e (MT + th> . (6.1.1)
DEZ_o,reZn qN

DE%qS‘l [r] mod ¢N

Remark 6.1.1. By adjusting [Moc19, Proposition 1.25] to the notation above, we
have that

D=D"and S7'r =S5 (mod NZ") = c4(D,r) = c4(D',7").

We are now ready to give the result concerning the adjoint of Viy. We use the
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notation that s = s’ (mod NSZ") <= s — s = NSu for some u € Z".

Proposition 6.1.2. The action of VY, defined as the adjoint of VN with respect
to the scalar product of Fourier-Jacobi forms defined in 4.5.6, is given by (for ¢ €
Sk (Zn, NO'))

2¢S7r] =D
> o (D,r)e <2q q[;\nf] T+ rtz> —

DEZ<o,reZ™
DE%qS*1 [r] mod ¢N

N\> =N
— > de—(n—i-l) > Co (() D,3> X
D<0,rez” dIN s d d
DE%(]S_I[T] mod ¢ DE%qsfl[s] mod qd

Remark 6.1.3. The (D, r) coefficient of V3¢ is independent of 7.

Proof. We start by writing

Vg = N*/?*1 > ¢ x|k 2z No) <A> ;

A€SLa(Z)\M2(Z) N

-

where we define ¢ (7, 2) 1= ¢ (T, \/Nz)

b
We remind here that if A = | d) € GL (R), we use (det A)~*/2A in the |, —action
c

defined in Definition 4.3.4.
We can then follow the proof in [KS89, pages 554-556] line by line and arrive at the
result that the adjoint Vy : Sp(Z", No) — Sk(Z",0) is given by
1
b —> NE/2-2n-1 Z Z ¢\/N’1|k’(z"7") <\/_A> |,z o) X
X (mod NZ2") A€eSLo(Z)\M2(Z) § N
Let us now compute the action on the Fourier coefficients. We choose a set of
b
representatives for SLy(Z)\ Ms(Z)y of the form (g d) with ad = N and 0 < b < d.
We then obtain that the above expression can be written as

&
NE/2-20-1 3 3 d é at+b 2+ AT+ i SIN+2miA Sz
VN d ’ d

MUEZ™ /NZ™ ad=N
beZ,/dz
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By then substituting the Fourier expansion

1, a1

=qS - D

o(r,2) = Z ¢y (D,r)e <2q ] T+ rtz> ,

DEZ—oreZn qN
D=1¢S7[r] mod gN

for ¢, the above can be written as

Ny y <jw>_k§%<mx

A UEL™ /NZ™ bad:N

€7./dZ
1 —1 t t
20571 =D a SN, A LI
xe(( N d+ 5 + 7 T+ d—i—/\Sz +
1 —1 t
295 =D b r'u
L Rl

Now, the term

beZ/dZ
HEZN /NZ"

is zero unless . H
1 505 r] —
qgN

meaning it divides all of its components. In that case, the sum equals dN™. The

and d | r,

conditions then imply that we can replace r — dr and D — Dd?. The last one
follows from the fact that N = ad and so d | N as well. Hence, we obtain that the

expression equals

D S > co(d*D, dr)x
AEZPNZP d|N D<0 rezn
1[r] mod qN)

( 2qS[ | +qtA—D
q

/—\ H\

>T+rtz+)\t52> =

= NIy Tt Y > co(d*D, d(r — SN\))x
d|N AEZ"™/NZ™ D<0,rez™
D=1¢S~1[r—SX] (mod <)

5457 '[r]—= D
x e (ﬂ[qr]T + th> , (6.1.2)

after setting r — r — SA. Now, as in [KS89, p. 557], we set

N
A=t+ Etl (mod NZ"), (6.1.3)
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N
with ¢ (mod EZ”) and t' (mod dZ™). We then have
S~Hd(r — S\) = S~ (d(r — St)) mod NZ",

and

1 N
= iqS’l[r — St mod %

The first property can be seen easily and the second follows from the fact that we

1 N
already have D = §q5 “!r — S\l mod % and also we can check

;qS_l[r st - ;qS_l[r _ 8N = ;q[Qrt()\ _#)+ St — ST

So, it suffices to show that

1 1 N
But this follows after we write A = ¢ + Na/d with o € Z", from (6.1.3).

Hence, because of Remark 6.1.1, expression (6.1.2) becomes (after replacing d with
N/d)

N\? . N

d> D, E(T — St)) X

1,0-10,] _
XG(WT+Tt2>.
q

EEEEDS > af(

dIN tezn jdzn D<0,rez™
DE%qSil [r—=St] mod q¢d

What is left to prove now (after fixing D, r with the appropriate conditions) is

N\?> N
secen 2 a(F) o) -
d|N tez™ /dz™

DE%qS‘l[rfSt] mod gd

N\? N

=Yt > Co (() D,t).

d|N t mod dSZ" d d
DE%qSil[t} mod qd

1
This follows by setting u = r — St and then observing that D = iqS_l[u] mod qd,
r—St=r—St' moddSZ" < t=t" mod dZ"

and by using the fact that c,(D,s) = c4(D,s') if s = s’ mod NSZ" (see Remark
6.1.1). So we can consider the entries r — St (mod NSZ") and all of these are
different (mod dSZ™). O



134 Chapter 6. Relation to L-functions

6.2 Poincaré Series

In this Section, we define a very special class of Fourier-Jacobi forms, called Poincaré
series, which reproduce the Fourier coefficients of Jacobi forms under the Petersson
scalar product. What is more, they generate the space of cusp forms and, in turn,

the Maass space Si(I's), as we will show in the next Section.

Definition 6.2.1. We define the support of the lattice L := Z™ with respect to
the bilinear form o(z,y) = 2'Sy for x,y € V to be

supp(L,0) = {(D,r) | D € Qco,r € L*,D = ;S[T] (mod Z)}

Now, if we write r — S™1r with r € L, we get

gD = ;qSl[r] (mod ¢Z),

1
which then implies D € —Z. Hence, by writing D — D/q, we get that equivalently
q

supp(L, o) = {(D/q, S™'r)| D € Zey,r € L,D = ;qsl[r] (mod q)} :
Let then
supp(L, o) == {(D,r) € Z<o x L | (D/q, S'r) € supp(L, 0)},
and in the following, this is the set we will use.

Definition 6.2.2. Let (D,r) € supp(L, o). We then define the following complex
valued function on H x (L ® C):

5457 '[r] =D
q

sm e (B0, )
where ¢ is the level of L (see Definition 4.1.4).

Definition 6.2.3. Let (D,r) € supp(L, o) and set

J&o) :{(((1) T),(O,u)) ]nEZ,uEL}.

The Poincaré series of weight £ for the lattice (L, o) is defined by

Pk,D,r(Ta Z) = Z gD, |k,(L,a) 7(7-7 Z).

yeI& NI W)

If k > n/242, then Py p, is absolutely and uniformly convergent on compact subsets
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of H x (L ® C) and defines an element of S(L, o) (see [Mocl9, Theorem 2.3, (i)]).

Moreover, from the same Theorem, it only depends on S~!r (mod L).

We now have the following very important property, which again can be found in
[Moc19, Theorem 2.3, (i)].

Proposition 6.2.4. Let (D,r) € supp(L, o). Then for any f € Sp(L, o) with

1 S—l r'l— D

frd= ¥ e (H
D'€Z<o,r'eL

%qS’l[r’}ED’ (mod q)

we have

<f7 Pk:,D,T) - )\k,Dcf(-Da T)J

for some constant A\ p € C depending on k and D.

6.3 Relation of the Dirichlet series to the Fourier

coeflicients

For k > n/2+ 2 an even integer, let F' € S(I's) and write ¢y for its Fourier-Jacobi
coefficients. For (D,r) € supp(L, o), let

Peps (T, 2,7) =Y (VNPepy) (T, 2)e(NT'). (6.3.1)
N>1
By [Sug95, Corollary 6.7], we have that Py p, € Si(I's) (see Definition 4.4.1). Here,

by abusing notation, we write Py p . to actually denote the Poincaré series Py p /. p,

with the quantities defined in Proposition 6.2.4.

Remark 6.3.1. Even though F' and Py p, are taken invariant with respect to
different modular groups, we note here that the proof of Lemma 4.5.1 is still valid,
because F' € Si(I's) C Sk(f5>.

Remark 6.3.2. A corollary of [Moc19, Theorem 2.3 (i)] is that Si(L, o) is generated

by {PR,DJ | (D,r) € supp(L, o), S~'r (mod L)} (cf. [Moc19, Corollary 2.4]). This
observation, together with the fact that the map

) — Z Vo) (T, 2)e(NT")
N=1

is an isomorphism between Sp(A,0) and S;(Ts) (see [Sug95, Co-
rollary 6.7]) gives us that the Maass space Si(Is) is generated by
{PM),T | (D,r) € supp(L, o), S~'r (mod L)} It is therefore enough to con-

sider G to be a Poincaré series in (4.5.1).



136 Chapter 6. Relation to L-functions

Remark 6.3.3. In the case when the lattice is Euclidean ([Sch22, Definition 1.6.13])
and r € L, we have that actually Py p, € S;(I's). This follows from the fact that
the Poincaré series depends only on r (mod L) (see [Mocl9, Theorem 2.3]) and
therefore we can take r = 0. Then Py p, is invariant under z — Uz for U € SO(L)
by comparison with [Mocl9, (2.8)]. By [Sch22, Theorem 1.9.2], we then have that
Prpr € SE(L'Y) (see (4.4.2)). Because S is Euclidean, I'y = I'g, by [Kril6, Theorem
2].

Now, for the Nth term of the Dirichlet series (see (4.5.1)), we can write

(N, VNPepr) = (VNoON, Pepr)-
We will relate this with the Fourier coefficients of F'.

Proposition 6.3.4. With the notation as above and N > 1, we have:

N (1g57's] - D
<VK/¢N, Pk,D,r) _ de—(n—H) Z A < <M,S_ls, d)) .
dIN s (mod dSZ™) d qd

DE%qS*l[s} (mod qd)

Proof. F admits a Fourier expansion of the form (see equation (4.2.8))

F(Z) = Z A(F)e(7'SyZ) = i On (T, 2)e(NT'),

where Z = (7',2,7) € Hg and 7 = (m,r, N) with r € L*. We can then write

on(T,2) = > Am,r,N)e(mr —r'Sz)= > A(m, S 'r,N)e(mr —r'z).

meZ,reL* meZ,reL™

1,
But now 1, € I's and therefore if Z = (7/,2,7) € Hg, we have
1,

F((Tla _277-)) = (_1>kF((7Jasz)) = F((T’,Z,T)),

which then implies A(m,r, N) = A(m,—r, N) for all m, N € Z, r € L*. Therefore,

after setting r — —r, we can re-write the above as

on(T2) = > A(m,S7'r,N)e(mr +r'z). (6.3.2)

mEZL,reZm

Now, a priori, we can write

1 o—
on(T,2) = %;C@\, (D,r)e <2qNT + rtz> , (6.3.3)
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with (D, r) as in equation (6.1.1). Hence, from Proposition 6.1.2 and Proposition
6.2.4, we have

‘ _n N\? =N
Wiow Po) =Xa e 52 g () 0.5
d|N s (mod dSZ™)
DE%qS‘l[s] (mod ¢d)

N (1¢S7's] - D
= de*(nﬂ) Z A (d (26][2]7 S 1s, d)) ’
d|N s (mod dSZ™) q

DE%qS’l[s] (mod ¢d)

because after setting r — Ns/d, D — N?D/d? in (6.3.3), we obtain from (6.3.2)
NZ N N (3¢S7's|-D __,
Con <d2D7d8> :A<d <2qd,S S,d . ]

6.4 Relation to the class number

In this Section, our goal is to bring Drp, ,, . (s) into a form similar to the one in
[KS89, page 553]. We will need to exclude some terms. We first need some definitions

of the adelized groups and of the genus and class of a lattice.

Let V denote any finite-dimensional vector space over Q of dimension n > 1. For
each prime p (including infinity), we define V, := V ®¢ Q,. For a Z-lattice L in V'
(see Definition 4.1.1), we denote by L, := L ®z Z,. This coincides with the Z,-linear
span of L in V.

Proposition 6.4.1. Let L be a fixed Z-lattice in V. Then, the following are true:
o If M is another Z-lattice, then L, = M, for almost all p. Moreover, L C M if
L, C M, for all p and L = M if L, = M, for all p.
e Forallp < oo, let N, € V,, denote a Z,-lattice such that N, = L,, for almost all
p < oo. Then, there is a Z-lattice M in V' such that M, = N, for all p < oc.
Proof. See [Shi04, Lemma 9.2]. O

Definition 6.4.2. We define the adelizations V' and GL(V), as follows:

VA:{UG HVplvpeLpforalmostallp<oo},

p<oo
GL(V)y = {a € [] GL(V,) | L, = L, for almost all p < oo} :
p<oo

Here L is an arbitrary Z-lattice, and the above definitions do not depend on the

choice of it, by virtue of Proposition 6.4.1.
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Remark 6.4.3. When we identify V' with Q", we identify GL(V') with GL,(Q).
Then, we identify GL,(Q), with GL,(Q,), where Q, is the usual ring of adeles.

Remark 6.4.4. Given x € GL(V),, we have that z,L, = L, for almost all p < co.
By Proposition 6.4.1, there is a Z-lattice M such that M, = x,L,, for all p. We denote
this lattice by L. Hence, xL is the lattice which has the property (zL), = x,L, for
all p < o0.

Definition 6.4.5. Let G C GL,(Q) any algebraic linear group. For any field K
containing QQ, we denote by Gk the group of K-rational points in G. Now, for any
prime number p, we abbreviate by G, the group Gg,. Let also G, denote Gr. We
then define

p<oo

Gy = {x € H Gp | zp,L, = L, for almost all p} )

Moreover, we use the notation G ¢ to denote the finite part of Gj.

Definition 6.4.6. Let L denote a Z-lattice in V and G C GL,(Q) any algebraic
group. Then, for any x € G, xL is also a Z-lattice in V. We define the class of L
to be {zL | x € G}. Similarly, for any = € Gy, zL is again a Z-lattice in V. The set
{zL | x € G,} is called the genus of L.

Now, the genus of L can be decomposed into a disjoint union of classes. If
C :={x € Gy | L = L}, the map xC —— zL gives a bijection between G, /C
and the genus of L, so gives a bijection between G\G,/C and the set of classes
contained in the genus of L. In general, if U is an open subgroup of G4, we call the
number #(G\G,/U) the class number of G with respect to U.

Now, with all the main definitions out of the way, we want to deal with the
vectors appearing in Proposition 6.3.4. We use the notation of Chapter 4. For a
Z-lattice A in Vj, b a fractional ideal of Q and g € Q*, we define

Alg, b] :={z € Vo | ¢o[z] = g and ¢o(z,A) = b}.

We then have the following Lemma.

Lemma 6.4.7. Let d > 1, D € Z-y and define the set

DO | —

14S~'[s] - D '
Ha = {5 = (W,S%,d) | s (mod dSZ"), D =

¢S~ '[s] (mod qd)} :

We then have

D1
=q¢ C Ly [—, Z]
q 2

for all d > 1 coprime to D.
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Proof. Firstly, for any vector £ € Z4, we can directly compute ¢o[¢] = —D/q. It now

remains to show that the Z-ideal
{€'Soz | x € 72}

equals Z (because the bilinear form is ¢y = Sp/2). But for any basis vector e; of the

lattice Z"*2, we have

d ifi=1
gtS(]ez‘ =< =81 if 2 <y S?’L"—l,
1gS71s] - D
22 BT [ds] if i =n+2
q

so the above ideal is contained in Z by the conditions that define the set =;. Now,

if it were equal to kZ for some k£ > 1, then we would have

| 3¢S~ 's] - D

kEld, k dk
d, k|5, an -

This would then imply &k | D, and so k = 1, as d, D are assumed to be coprime. [

We now have the following very important Lemma.

Lemma 6.4.8. The class number of Gy (see (4.2.1)), defined as #(Gy\G3/C),
where

s 1.

Proof. This is shown in [Shi06b, Remark 2.4, (5)], which is an improvement of [Shi04,

Theorem 9.26], as the technical assumptions are weakened. O

Fix now an element & € Ly

D 1
-, ZZ] and consider the algebraic subgroup of Gg
q

H($)o={geGylot=¢}.

We note that H(&)g = SO¥(W), where W := {z € Vj | ¢o(z,€) = 0} and 1) := ¢ |w.

We now have the following Proposition, which is a special case of [ShiO6b,
Theorem 2.2].

Proposition 6.4.9. There is a bijection

L | -2, 32| /1t e @@ N ),
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which is given as follows:

D 1
If ke L [—,QZ], then by Witt’s Theorem ([Shi04, Lemma 1.5 (ii)]) there
q

18 some o € G?@ such that
k= ak.

We then assign the H(£)g-class of a™ 'Ly to k. In particular, this then gives

D1
# (1o |-2. 2] ri)) = #© @4 (O O,

D 1
Proof. First of all, I'(Lg) acts on Ly [—,24. This can be seen because if
q
D 1
YT, € Lo| -2, 24, then do[ya] = gofa] = —D/q and

60(7, Lo) = do(vz, 7 Lo) = o(x, Lo) = ;z.

The remaining assertions follow from [Shi06b, Theorem 2.2, (iv)], because G¢, has
class number one (Lemma 6.4.8) and G N C = I'(Ly). O

Let us now write
D1 h
i=1

with some &; € Ly

D 1
-, 22} . This in particular implies that & € L for all 1.
q

We now assert we can take

& E€Ps={y =Wy y) € R"™ |y >0,¢[y] > 0}

of Section 4.1, for all i = 1,--- ,h. The second condition is clear, as Sy[&] =
—2D/q > 0, because we take D < 0. For the first one, we can always mutliply with
diag(—1,1,,—1) € I'(Ly) and the assertion follows.

Now, if §£ € Z; of Lemma 6.4.7, we can write { = v&; for some 1 < 7 < h and
v € T'(Ly). But, & € Py as well, so we must have v € T'(Lo) N G’ = T (Ly).
Indeed, if v € GE\Gy’, then 5 := diag(1,v,1) € Gg\G%. But then 7(i¢;) = i€ and
i€, i€; € Hg. This is a contradiction, because 4 sends Hg to —Hg = {z =z — iy €
Vo®@r C |y € Ps} (see [Sch22, p. 18]).

Therefore, from [Sch22, p. 26], we have A(¢) = A(v&;) = A(&;). Define now

n(&;d) = # {s € Z"/dS7" | D = ;qS_l[s] (mod ¢gd) and
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<§q5‘1[8] -D

t
qd 7518,d> =&,7 € F*(Lo)} :

From the above considerations, Proposition 6.3.4 and Lemma 6.4.7, we may write,
for (N, D) =1

h
(Viow, Puos) =Y. 3 a0 n(gidA (6.

i=1 0<d|N

In particular, we arrive at the following Proposition.

Proposition 6.4.10. Let (D,r) € supp(L, o). Let P be a finite set of primes, which
includes the prime factors of D. Let

e}

DF,Pk,D,mP(S) = Z <V]§¢N7 PkJ,D,r>N_57
(N.p)C19peP

which converges absolutely for Re(s) > k + 1 by comparison with Drp, , (s) (see
Lemma 4.5.1). Let also

Ceip(s) == i n(&; N)N~°.

(Np)=:37p€7’
We then have that
h
Drpyp.p(8) =D Cap(s =k +n+1)Dpg p(s), (6.4.3)
i=1
where Dpg, p(s):== > AN&)N".
(N ) 1vpeP

6.5 Relation to Sugano’s Theorem

In order to now obtain an Euler product, we will make use of the main Theorem of

Sugano in his paper [Sug85|. We first need some setup.

For each prime number p < oo, we define K, := G, N SL,+4(Z,) = G(Z,) and let

Kf = H Kp.

We remind ourselves here that G2 acts transitively on Hg (cf. Section 4.1). Let Z
denote any point of Hg with real part 0 and denote by K, its stabiliser in GY..
Then, we have that G°_ /K, = Hs.
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Definition 6.5.1. Let k£ > 0. A function F' : G, — C is called a holomorphic
cusp form of weight k& with respect to Ky if the following conditions hold:

1. F(ygu) = F(g) Vy € Gg,u € Ky.

2. For any g = g9y with go, € G2 and g; € Ga s, F(9o9s)J(9oo, Z20)* depends
only on gy and Z = g (Zy) and is holomorphic on Hg as a function of Z.

3. F is bounded on Gj.

Denote the above space by &y (K).

For each g; € Gy y and Z € Hg, we define

F(gs: Z) = F(9097)J (9o0: Z0)", (6.5.1)

where g, € Ggo is chosen so that Z = g.(Zy). Let now

T(g) = GoN (G2 % 9rK g7,

which is a discrete subgroup of G2.. We then have

F(gr;7(2)) = j(v, 2)"F(g5; 2)
for all v € I'(gf) and Z € Hg. Now, if X € 1}, define the element vy € G by

1 —X'Sy —150[X]
Yx =0 I, X
0 0 1

Now, the holomorphic function F(gs; Z) is invariant under Z —— Z + X for X in
the lattice

L(gs) ={X € Vo |vx € T(gp)}-

Hence, every such function then admits a Fourier expansion of the form

Fgr;2) = > algr;r)el2bo(r, 2)],

reﬁ(gf)
ireHs

where
Lgs) = {X € Vi | 2¢0(X,Y) € Z for all Y € L(gs)}
is the dual lattice of L(gy).

Finally, let us introduce adelic Fourier coefficients. Let xy = H Xp be a character of
p=<o0

Q4 such that xjp = 1 and xoo(z) = e(z) for all z € R. For n € Vj and g € G, we
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define
F\(g9:m) 12/ F (7, 9)x (—2¢0(n, X)) dX.

Vo\Va

Now, for go € GY and gy € Gy we have

F(9o0gr3m) = a(g7;0)7(goo; Z0) e (200(n, goo(Z0))) - (6.5.2)

We then have from the above definitions (see [Sug85, (1.14)])

(i) Fy(yxgu;n) = x(2¢0(n, X)) Fy(g;n) for all X € Vy,u € Kj.

o
(ii) F, B g;n | = Fy(g; 87 'na), for all a € Q*, B € G,

(iii) F(vxg) = Y. Fy(g;n)x(2¢0(n, X)) for all X € Vya.

neVo

We now want to show that there is a bijection between the spaces G(Ky) and Sk (I's).

This is true because of the following Lemma:

Lemma 6.5.2. We have Gy = GoG° K.

Proof. From the proof of [Sug85, Lemma 1|, we have G = G@G;&ngoKf, where
we view G* as a subgroup of G via (4.2.3). But, from Lemma 6.4.8, we have

G = GoGL K}, where we now define

K; =[] G*(Z,).

p<oo

From this, we obtain G} ; = G4 K;. Therefore, because elements of K} and GJ

commute, we obtain
Ga = GoGHGL KKy = GoGY Ky,
as required. O

The bijection is now given by F +—— F(Z) := F(gs0)j (oo, 20)*, where g, € GY_ is
chosen so that g (Zy) = Z.

Let now gy = (id, id, - - - ), which we denote by just id. It then follows that F'(Z) =
F(id, 2), VZ € Hg. In that case, we have L(g;) = Lo = Z"*%. Now, a(id,r) = A(r)
for all r € L§. Hence

aid, &) = A(&),

D1
for all 4, where &;’s are the representatives for Ly l—, QZ] /T'(Lyp), as in (6.4.2).
q
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Fix now a complete system of representatives {u;}* ; for H(&)g\H (&)a/(H(£)aNO),
corresponding to the £!s of (6.4.2), in the sense of Proposition 6.4.9. Assume also

that u; o =1 forall e =1,---  h. We then prove the following Lemma.

D 1
Lemma 6.5.3. Let & € Ly l—, QZ] be the element we have fixed right after Lemma
q

6.4.8. We have
CL('LLZ'7 5) = Cl(?:d, 52)7
foralli=1,--- h. Therefore, a(u;, &) = A(&) for alli=1,---  h.

Proof. By the definition of the §;’s and Witt’s theorem ([Shi04, Lemma 1.5 (ii)]),
there is a € Gg such that & = af. By the correspondence given by Shimura in
Proposition 6.4.9, we get oLy = u;Lo. This then implies au; Ly = Ly, so au; € C
(we remind ourselves that C' = {x € G} | *Ly = Lo}). By definition, we then get

au; € Ky. Hence, we obtain
Fx(uw é) = FX(uH ailgi) = FX (dla’g(lv «, 1)“17 éz) = FX ((dlag<17 «, 1)7 Zd) 75@) )

where (diag(1, «,1),id) denotes the element of G, with infinity part diag(1,«,1).
The second equality above follows from the second bullet point and the third equality
from the first bullet point, just before Lemma 6.5.2. By the property of F, in (6.5.2),

we obtain

a(ui; €)e (200(€, Z0)) = alid, &)j (diag(1, o, 1), Z0) ™" e (260 (&, diag(1, a, 1)(Zo))) -

But j (diag(1, o, 1), Zp) = 1 and diag(1, o, 1)(Zy) = a2y which then gives that the
right hand side above equals

a(id; €)e (2¢0(&i, o)) = a(id; €)e (2¢0(af, aZp)) = a(id; §)e (200(&, 20))

because & = a&. This then gives the result. O]

For each prime p and gy € Gy, let

M(gs;€)p = H(E)p NgrKrgy' and M(gs; )5 = [1 M(g5: )y

Define then e(§); := #{H({)o N M (wigs;€) s} for 1 < i < h and p(§) :

I

a
—~
I
Nart
L

Let also V(gy; &) the space of functions on H (&), which are left H({)g and right
H(&)oM(gy; €) s invariant. We now have the following Theorem, which follows from
[Sug85, Theorem 1].
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Theorem 6.5.4. Assume F' € Si(I's) corresponds to F € & (Ky), as above. As-
sume F is a simultaneous eigenfunction of the Hecke pairs H, = (G,, K,) for
all p.  We also assume A(§) # 0. Then, there is a finite set of primes P,
such that if f € V(gs; &) is a simultaneous eigenfunction of the Hecke algebras

Hy, = (H(E)p, Mgg5€),) for all p & P, we have

—1 i 4 ?(Uz) —(s+k—2£2) _ -1 i 7(%) %
> ey awe Dy <u(£) ;A@z)e@i)

x Lp(F;s)Lp (F;s+1/2) x (seta) \(s),

where (zeta)(s) :=

1 if n odd
(p(2s) ifn even

The definitions of the Hecke algebras can be found in [Sug85, Section 2].
L(—,s) denotes the standard L-function attached to orthogonal modular forms, as
this is defined in [Sug85, Paragraph 4-1, (4.4), (4.7)]. Also, for any L-function, we

write Lp for the Euler product not containing the primes in P.

Proof. This follows from Sugano’s main Theorem in [Sug85, Theorem 1]. In our
setting, we take g; = (id, id, - - -) and then substitute a(u;; N§) with A(N§;) in the
original form of [Sug85, Theorem 1], due to Lemma 6.5.3. We also note that in this
case H()ooM (g7;&)r = H(E)a NC, where C' is defined in (6.4.1). The set of primes
P contains all the primes contained in the set Py of [Sug85, Theorem 1] and the
finite set of primes p for which 9, # 0 or J;, # 0, where 9,, 0, are defined in [Sug85,
Theorem 1]. We note that in our case, L, is maximal for all p, so P; in [Sug85,

Theorem 1] is empty. O

From now on, we fix gy = id. Now, for any f € V(gs;§), we set

TN . ?(Uz)
flu) = e(§)i

The formula in Theorem 6.5.4 then becomes

w(E)™i=1,--- h and A := zf(ui)A(@). (6.5.3)

(zeta)(s) x Lp (7, s+ 1/2) Zf(UZ)DF&p (s+k—(n+2)/2)=A;Lp(F;s),

where Dy, p(s) is the Dirichlet series appearing in Proposition 6.4.10. This is true
for any simultaneous eigenfunction f of the Hecke algebras H), = (H(£),, M(gy;§)p)

for all p ¢ P. Our aim is to invert it so that we solve for Dpg, p(s).
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From the definition of the us just before Lemma 6.5.3, we have that

h

H(§)a = || H(§)qu:D,

i=1

where D := H(§)ooM (gf;€)s. We note D is an open subgroup of H (), and DNH (§)

is compact. By [Shi04, Lemma 17.6], there is a correspondence
fé ){f(Z)|Z:17ah}a

with each f@ € C, because H(€)s = SO(n + 1) is compact. We also note here that
flu;) = f@9 for alli = 1,--- , h, as we can see by the way these f) are defined in
the proof of [Shi97, Lemma 10.8].

Now, for any two simultaneous eigenfunctions f;, f; of the Hecke algebras defined by
the pairs H), = (H({),, M(gy;€)p) for all p ¢ P, their inner product is defined via

the formula

sy = {30 ()]

k=1

-1

zh: v (I‘k> f(k =
k=1
-1

:{éy(w)} 3 (1) a0

where T* := H(¢)g NuxDu " and v (T%) = #(I%) 7", as in [Shi0d, (17.23)] (here we
again use the fact that H (). is compact).

As e(§); = #{H(§)o N M (u;gs; §) s}, we have that e(§); = v (I') ™", which also gives
h
= Z v (Fk) .
k=1

It is now possible to choose a basis of orthonormal Hecke eigenforms { f1, fo, -, fn}
for V(gy; &) with respect to the above inner product. This is true because the Hecke
algebra defined by H,, is commutative and consists of self-adjoint operators for all
p & P (see proof of [Shi04, Proposition 17.14]). Also, by [Shi04, Lemma 17.6, (1)],
there is an isomorphism between V(gy; ) and C". Therefore, this basis must consist

of h eigenforms. Hence, we get the expression

Drip (o= (12)/2) = W) Gotn) () o () i)

LP (fj;8+1/2) Afj?

which, after the simplifications, becomes
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Drep(s) = (zeta) ' (s —k+ (n+2)/2) Lp (F;s — k + (n+2)/2) x

Y Sy Lp (Fis =k + (n+ 3)/2) " Ap. (6.5.4)

Hence, we arrive at the following Theorem.

Theorem 6.5.5. Let (D,r) € supp(L, o). Let P be a finite set of primes, containing
the primes described in Theorem 6.5.4 and all the prime divisors of D. Let F €
Si(Ls) corresponding to F € &(Ky) with A(§) # 0. Assume F' is a simultaneous
eigenfunction for the Hecke algebra H,, defined by the pair (G, K,) for all p and let
Pr.p. denote the Poincaré series of (6.3.1). Let also {f;})}_, denote an orthonormal
basis of simultaneous eigenfunctions for the pairs H, = (H(&),, M (gs;€)p) for all
p &P, Ayg, asin (6.5.3), and denote with Lp(—, s) the standard L-function attached
to either F' or any f;, by ignoring the p-factors for p € P. We then have

h
Drpyp,p(s) = Lp (Fis —k+ (n+2)/2) > Ay Lp (fj;s — k+ (n+ 3)/2)_1 x

j=1
if n odd

h 1
X Zc§i7p(3_k+n+1)fj(ui) X 5
i=1 (p(2s =2k +n+2)"" if neven

where (¢, p(s) are as in Proposition 6.4.10.

Proof. By substituting the expression we deduced in (6.5.4) into (6.4.3), we obtain
(here we denote by “zeta” the function of Theorem 6.5.4 after s — s—k+(n+2)/2)

NE

h
(Vion, Peps )N =D Cep(s —k+n+1)Dpg p(s) =
:épGP =

(N,p)

h
2
= (zeta) ' x 3 Cep(s —k+n+1)Lp (FES_kJrngr )X
i=1

h _ n+4+3\7!
X Zf](UZ)L'p (f], s—k + B > Afj =
j=1

n+ 2

n—|—3>_1
X

h
:(zeta)_lep<F;s—k+ >ZAijp<fj;s—k+ 5
j=1

h
ngghp(s—k+n+1)fj(ul) U
=1

h
Hence, we would like to explore the connection between » (¢, »(s — k 4+ n + 1) fj(u;)
i=1

and L(fj-;s—k—l— (n—|—3)/2).
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It turns out we can now obtain a clear-cut Euler product expression in the
case h = 1 and when D is a specifically chosen number. The question is how we can

pick S, so that we can get h = 1. This is the theme of the next Section.

6.6 Explicit Examples

We will now focus our attention on some specific examples of matrices S and cor-
responding Poincaré series. In particular, we set D = —qg and choose matrices .S,
so that the number of representatives for Ly [1, ;Z} JT'(Lp) is 1. We therefore take
G to be the Poincaré series Py ., with r € L such that (—q,r) € supp(L,0). In

particular, those choices imply that we can take
52 (1707 7071)t

1
as an element of L [1, QZ} Therefore, (¢ p(s) of Proposition 6.4.10 can be written

as
0

Cp(s)= D nEGN)NT,
(N,pgizlé’pep

where this time
1
n(&;d) = # {s €Z"/dS7" | D = §qS_1[s] (mod qd)} .

In these cases, we are able to deduce an exact Euler product expression, connecting

the Dirichlet series of interest and the standard L-function of the orthogonal group.

6.6.1 Examples with rank 1

We consider the case where S = 2t for some t > 1 with ¢ square-free. This condition
is needed so that the lattice L = Z (and therefore Ly and L;) is maximal (cf. [Sch22,
Example 1.6.6(ii)]). Now Vy = Q* and the quadratic form of interest is then

1
Cbo(x» y) = iftso%

1
for x,y € Vy, where Sy = —2t . Hence, ¢y is represented by Sp/2 with

1
respect to the standard basis eq, eg, e3 of V.

By [Shi04, Paragraph 7.3] we have that there exists a quaternion algebra B
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over Q such that we can put Vy = B°C, ¢ola(] = daa*, 2¢0(2x(, y¢) = dTrpq(xy"),
where B° = {z € B | 2* = —x} with ¢ the main involution of B and ¢ € A(V}) such
that ¢? = —d. Here, by A(Vj) we mean the Clifford algebra of (Vj, ¢g) (see [Shi04,
Chapter 2]). Also, in general, we define Trp/g(x) := x + 2* for x € B.

Now, from [Shi04, Paragraph 7.3], we have a way to compute ¢ and d. We
first need a basis hy, hg, hg of Vi such that ¢g(hs, hj) = ¢;0;; for all 1 <4,5 < 3. In

our case, we can make a choice
hy =ey +e3,hy = ez, h3 =€ —e3.

Then, we get that the condition above is satisfied with ¢; = 1,¢0 = —t,c3 = —1
and therefore d = cicoc3 = t. Also, even though it is not needed in what follows,

C: h1h2h3-

We now remind ourselves that € = (1,0,1)" and W = (Q&)*. This then implies that
®ol¢] = 1. From [Shi06b, Paragraph 5.2], we get that 3k € B° such that & = k(.
Then, if K := Q + Qk, we get that K = Q(1/—t) because —t, which is —d¢g[h] in

the notation there, cannot be a square in Q*.

Using [Shi06b, Theorem 5.7] and the formula (5.11) given there, tailored to our

situation, we have the following Theorem.

Theorem 6.6.1. We define the following quantities:

e cgi denotes the class number of K.

o ¢ denotes the ideal of 7, determined by the local conditions

& Ni/aOr/a)p = dpdol€ldo(€, Lo), (6.6.1)

for all primes p, where a = tZ and 0k q is the different ideal.

o For a prime p dividing ¢, we define [K/Q, p|] to be —1,0 or 1, according to
whether p remains prime, ramifies or splits in K.

o Let p be a rational prime. Pick €, € 0(¢o,) (see Section 4), which is either

a unit or a prime element of Q, and choose an element 3, € Q, such that
¢0(&, Lop) = Bply. Define then 1,(§) == €, $o[€]8, . Define also

¢, = {u* + 4w | u,w € Z,}. (6.6.2)

o a* is the product of the prime factors p of t such that r,(¢) € p~'Z, and
rp(§) ¢ €.

i is the number of prime ideals dividing a* and ramified in K.
e U:=0g andU' :={x € Og |z —1€ ¢,(dx/q)p VP {a*}.
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We then have

_ _ 1
Hs: HEQ(HON N O) = U s U NOTT {1 - 11K/, 1 663
ple
Proof. This follows from [Shi06b, Theorem 5.7]. In our case, we have, in the notation
of the Theorem:

e The base field F'is Q, which has class number 1.

e The product of all the prime ideals in Q for which B ramifies, e, equals Z.
This is true because for each prime p, ¢y, viewed as a bilinear form over Q,,
is isotropic (the Witt index has to be 1 for all primes p). Therefore by [Shi04,
Paragraph 7.3|, B over Q, is not a division algebra, hence is isomorphic to
M>(Q,), i.e. B splits or is unramified over p. Hence, ¢ = Z.

o Because t is square-free, a = tZ.

+ Because K is imaginary quadratic, oo ramifies, so v = 1 and Ng/o(Ok) = {1},
s0 [Z% : Nijg(OF)] = 2. 0

1
The above Theorem gives us the number # (LO {1, ZZ] / F(L0)> from Proposition
6.4.9 and the fact that now H () is commutative (see proof of [Shi06b, Theorem

5.10]). We are interested in the cases when this number is 1.

For the different 9 /g, we have

2¢/—tOg if —t#1 (mod 4)
Ox/Q = .
V—tOr if —t=1 (mod 4)

We now want to determine the ideal ¢. But, by the above

MZ if —t#1 (mod 4)
Nio@k/q) = , ,
tZ if —t=1 (mod 4)

1
and ¢olé] = 1, ¢o(§, Lo) = §Z. So, from (6.6.1), we get the equation

a7, if —t#1 (mod4
) 1 modd)
tz, if —t=1 (mod 4)

2
Cp'

Therefore,
Z if —t#1 (mod 4)

c= . (6.6.4)
27 if —t=1 (mod 4)

We will now consider specific cases in order to determine when the index in (6.6.3)

is 1.
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e t=1. Then, a =¢=a* =Z and from (6.6.4) ¢ = Z as well. Now
U'={xe0f|x—1€20k, Vp}.

Clearly +1 € U’ but +i ¢ U’ because 20k = (1+1)? = (1—4)?. So, [U : U'] = 2.

Finally, 1 = 0 because a*¢ = Z and therefore, we get
[H(€)a: HE)(HE)aNC) =120 271 =1,

« ¢t =3. Here a = 3Z and a* = 3Z because r3(§) = —3 € 5Z; but r3(§) ¢ Cs,
as €3 = Zs (see (6.6.2)). By (6.6.4), we get ¢ = 2Z. In this case, O =
{+1, tw, +w?}, where w = (1 + +/=3). Then,

U={xecOf|x—1¢€2vV-30k, Yp # 3}.

But for p # 3, v/—3 is a unit in Ok,. So, the condition becomes z — 1 €
20k, Vp # 3. We can then check that this is true only for +1 € U. Therefore,
[U : U'] = 3. Also, = 1 in this case, because 3 ramifies in K. Also, as —3 =5

(mod 8), we have that 2 remains prime in K, hence
[H(&)a: HE)H(EaNC) =1-271-37-2-(1+1/2) = 1.

e t=2o0rt >3 with =t # 1 (mod 4). We write ¢t = p; - - pg, where p; are
distinct prime factors. In this case, ¢ = ¢ = Z and a = tZ. Let us now
compute the quantities 7,,(£). Let p be one of the pis. We have that (¢ )
can be represented by —t. Pick ¢, such that €,(Q;)* = —t(Qy)? such that
€p is either unit or a prime element. Write ¢, = —tug, with u, € Q). By
considering valuations, we must have that u € Z, because €, has valuation 0

or 1. Moreover, we pick 3, = 1/2. Now

_ _ 4 _
(&) = & %l€]B, 2 = ——5 €p L.
Moreover, if p # 2, €, = Z,, so 1,(§) ¢ €,. If p =2, then assume

4
_tuj = a2 + 4b2,
2

where a,b € Z,. We can write —4/tul = 2w,, with wy € Z3. By taking
valuations, we must have that the valuation of a is at least one. But then we
get a contradiction, because the valuation on the right is at least 2, but on the

left exactly 1. Therefore a* = tZ. We have u = k as each p; is ramified in K.
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Now U = O = {£1} and
U={xecOg|x—-1€2vV—tO0k, Vp#pi,i =1,---  k}.

But for all p # p;, v/—t is a unit in Ok, and therefore £1 € U’,ie. [U : U'] = 1.
We then obtain:

[H(&)s : H(&)o(H(§)aNC)] = cx - 27"

Therefore, this is 1 if cx = 2*~!. Hence, the answer in this case is the number
fields K = Q(v/—t) that satisfy cx = 2871, where k is the number of prime
factors of ¢t and —t # 1 (mod 4). For example, when cx = 2, t must have 2
prime factors, and examples would be t = 6, 10, etc.

t >3 with —t =1 (mod 4). We write t = p; - - - pg, where p; are distinct prime
factors. In these cases, similarly to the case t = 3, we have a = tZ, ¢ = 27Z and

a* =tZ, as above. Also, i = k because each prime p; is ramified in K. Now,
U= 0Ok = {£1} and then

U={2e0f|x—-1€2V—tOk, Vp#pi,i =1,---  k}.

But for p # p;, v/—t is a unit in Ok, and therefore £1 € U’, which means
U :U’) =1. Now, if =t =5 (mod 8), we get that 2 is inert in K and if —t =1
(mod 8), 2 splits in K. Therefore

[H(&)a: H(E)o(H(E)aNC)] =
cr 2V 2 (14+1/2) =3¢k - 217 if —t=5 (mod 8)

e 287 2. (1-1/2) =cx 2% if —t=1 (mod38)

In the first case, the index cannot be 1, while in the second case, we must have
cx = 271, Therefore, the answer in this case is t such that —t = 1 (mod 8)
so that if K = Q(y/—t) we have cx = 2¥~! where k is the number of distinct

prime factors of t. For example, the only example for k£ = 2 is ¢t = 15.

Hence, we arrive at the following Proposition:

Proposition 6.6.2. Let t be one of the following:

.« t=1,3.
o t#3 (mod 4) and ift = py - pi, K := Q(v/—t), we have cx = 2F71.
o t=7 (mod 8) and ift = p1---pi, K 1= Q(v/—t), we have cx = 2F71.

Then, with the notation as above, we have [H(§)a : H(§)o(H(§)a NC)] = 1.
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Let now t be one of the above. The set of primes P is as described in Theorem
6.5.5 and we include the prime 2. We aim to give an Euler product expression for
Drp, _,..p(s). In particular, from Theorem 6.5.5, we need to give an Euler product

expression for

Gpls):= > nEGNNT,
(Np)Tvpep
where now n(&; N) = #{s € Z/2tNZ | s> = —4t (mod 4tN)}, as we have explained

in the beginning of Section 6.6.

Now, as ¢ is square-free, we obtain from s> = —4t (mod 4tN), that 2t | s, so it

suffices to look for the number of solutions of the congruence
ts?=—1 (mod N),

with s (mod N). The last number of solutions is multiplicative in N, so we can

write

Grls) =11 (i n(f;f?’“)}?’“) .

pé¢P \k=0

Now, for all p ¢ P, we have (p,t) = 1, so by [Tét14, Proposition 14] (as we assume

2 € P), we get that
—1
n(&ph) =1+ ()
p

for all £ > 1, where () denotes the Legendre symbol. Therefore, if we define
p

—1
xt(p) = (p) for p ¢ P, we deduce that (bear in mind that x? = 1)

Cep(s) = Cp(s)Cp(28) ' ¢p(s, xu), (6.6.5)

where (p(s, x:) == [[ (1 — x¢(p)p~®)". Therefore, we have the following Theorem.
pgP

Theorem 6.6.3. Let S = 2t, with t being chosen as in Proposition 6.6.2. Assume P
s a finite set of primes, containing the primes described in Theorem 6.5.5, the prime
2, and the primes so that the conditions of [Shi99, Proposition 5.13] are satisfied for
all p € P. Moreover, for all p & P, we define

If F and Py._q, are as in Theorem 6.5.5 and & = (1,0,1)" (in particular A(E) #0),

we have

71<79(8 —k+ 2>Xt)
(73(8 - k+27¢) .

Drp,_,..p(s) = A§)Lp (F;5s — k+3/2) (p(25 — 2k + 4)
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Proof. The proof follows from Theorem 6.5.5 after choosing f to be the constant 1
on H(&)a. We have computed (¢ p(s) in (6.6.5) and

Lp(1,s —k+2)=(p(s —k+2,9)0p(s — k+2),

as this can be computed by [Shi99, Proposition 5.15], because P is chosen so that
conditions of [Shi99, Proposition 5.13] are satisfied. O

Remark 6.6.4. In the case t = 1, we recover (partly) the result of Kohnen and
Skoruppa in [KS89]. In particular, it is clear that with the above approach, some
Euler factors might be missing. However, the benefit is that we also obtain results

for ¢ > 1. These could be interpreted as results on modular forms for a paramodular

group (cf. [Kril6, Corollary 6], [GK18]).

6.6.2 The rank n > 2 case

In the rank n > 2 case, a Theorem like [Shi06b, Theorem 5.7] is not available. For

this reason, we seek examples of matrices S so that the following conditions hold:

1. The lattice L = Z" is Z-maximal.

2. With the notation as in Section 6.4, Lo N W is a Z-maximal lattice in W and
fD={ac H¢)a| a(LoNW)=LoNW}, we have D = H({)a N C.

3. The number of classes in the genus of maximal lattices (this is independent
of the choice of the maximal lattice, see [Shi04, Paragraph 9.7]) in H(§)q =
SO¥(W) is 1. Here, 1 := ¢y |w-

We will show that for rank n = 2,4, 6, 8, there is at least one positive definite even
symmetric matrix S of rank n, so that the above conditions are satisfied. We start

with the following Lemma:

Lemma 6.6.5. We have H(¢)g = SOY(W) and ¢ can be represented by the matriz

1 (-2
T:2( ﬁJ. (6.6.6)

Proof. We have W = {z € Vj | ¢o(x,&) = 0}. Now & € U := Qe; + Qe,yo and
W= (WnU)®U*. But on UL, ¢ is represented by —S. Moreover, W N U has
dimension 1 and if we write x = \ey + pe,2 € WNU, we have ¢g(x, &) = (A +p)/2
and so W NU is spanned by e; — e,42. By evaluating ¢g[e; —e,12] = —1, the Lemma
follows. O

We claim the following choices for the matrix S satisfy the conditions (1)-(3) above.
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-1 2

2 -1 2 -1
e n=2 5= ( ) , ( L s ) with determinants 3, 15 respectively.

2 -1 -1 -1 2 -1

en =4 § = bz 1o , -1 with determinants
-1 1 2 0 o o0 2 -1
-1 0 0 2 0o 0 -1 2
5,9 respectively.
2 1 -1 1 -—-11
1 2 1 -1 1
e n=06 5= -1 0 Lo with determinant 3.
1 1 -1 2 —-10
-1 -1 1 -1 2 0
1 1 0 0 2
2 -1 1 1 -1 -1 1 -1
-1 2 0 -1 0 1 -1 1
1 0o 2 1 -1 0 0 0
e n=2_8 S= -t t 2 == 1 - with determinant 1.
-1 0 -1 -1 2 -1 1
-1 o -1 1 2 -1 1
i1 -1 0 1 -1 -1 2 -1
-1 1 0 -1 1 1 -1 2

Remark 6.6.6. The matrices S of rank 2 correspond to the unitary groups of the
imaginary quadratic fields Q(v/—3), Q(v/—15) respectively (cf. [Sch22, Example

1.6.6, (v)]).

Let us first check the conditions (1) and (3), right before Lemma 6.6.5. Condition (1)
follows by [Sch22, Proposition 1.6.12] for the matrices with square-free determinant
and [Sch22, Lemma 1.6.5, (ii)] for the matrix of determinant 9.

Condition (3) follows by [Hanll, Section 8], because for the above choices of S, the

matrix 7" of (6.6.6) corresponds to the following quadratic forms:

o n = 2: Examples 4, 26 in matrices of 3 variables in [Hanl11, Section §].

n = 4: Examples 3,5 in matrices of 5 variables in [Han11, Section 8§|.

n = 6: Example 3 in matrices of 7 variables in [Hanll, Section 8.

n = 8 Example 1 in matrices of 9 variables in [Hanl1, Section §].

All these examples correspond to one class in the genus of the standard lattice Z"+!,

in the cases when it is maximal. This can also be seen by a simple computation
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in MAGMA, for example. As we mentioned above, this shows that every maximal

lattice has one class in its genus.

Finally, we need to check condition (2). We will use [Shi04, Proposition 11.12]. We

have the following local result:

Proposition 6.6.7. Let S denote any of the matrices above. Let D, = {a € H(E), |
a(Lo, N W,) = Lo, N W,} for each prime p. We then have that Lo, N W, is a

ZL,-mazximal lattice in W, and also
D, :=H(£),NC,,
where C, = {x € G | xLoy = Loy}

Proof. Our proof is based on [Shi04, Proposition 11.12]. We will first establish the

following claim:
L, # Lop <= p|det(S).

This follows from the fact that L, = S5 ' Lo, and that

Syt = —5t , ST = - adj(.9).

We remind ourselves that ¢o[¢] = 1 and ¢o(&, Lo,p) = 372, for all primes p. Therefore,
¢0(§, Lop)* = ¢o[€]Z,, for all p # 2. Moreover, L, = Loz for every choice of S, as
2 1 det(S) for any S. This means [Shi04, Proposition 11.12] is applicable in every

case.

Let now ¢, denote the dimension of the maximal anisotropic subspace of (QZ”, ®0)
(see Section 4.1). For p { det(S), we have Lj, = Loy, t, # 1 as n is even and
40[€] (€, Lop)? = Z,. So, by [Shi04, Proposition 11.12, (iii), (2)], Lo, N W, is

Z,-maximal.

If now p | det(S), we claim ¢, > 1 and therefore [Shi04, Proposition 11.12, (iii), (1)]
will be applicable. We show this on a case-by-case basis. Define K, := @p(\/g),
where § 1= (—1)"*+2"+D/2 det(¢y). We note that from the proof of [Shi06a, Lemma
3.3], we have t, = 2 if and only if K, # Q,.

—1
e S= ( 5 ) Then, we claim that t3 = 2. Now, det(¢g) = —3/2* and then

et(% Qs(v/=3) # Q3.
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2 -1
S = ( . ) In this case, det(¢g) = —15/2* and we claim t3 = t; = 2.

But again, if p € {3,5}, we have Ky = Q,(v/det ¢g) = Q,(v/—15) # Q, by
taking valuations (for example, if v/—15 € Q3, then —15 = u? for some u € Q3

and so 2v3(u) = 1, contradiction).

2 -1 -1 -1

-1 2 1 0

S = . In this case, det(¢g) = —5/2% and so Ky =
-1 1 2 0
-1 0 0 2

Qs(V5) # Qs, so t5 = 2.

2 -1
1 ‘

S = 0 Ll In this case, Ky = Q3 and we can compute t3 =4
0 -1 2

in SAGE
2 1 -1 1 -11
1 2 1 -1 1
-1 0 2 -1 1 0

S = . In this case, det = —3/28% and so again
1 1 -1 2 —10 (¢0) / g
-1 -1 1 -1 2 0
1 1 0 0 0 2

Koy = Q3(v/—3) # Q3. Therefore, t3 = 2.

In the n = 8 case, we have that det(S) = 1, so there are no primes to check

(L, = Lo, for all primes p).

Finally, the fact that D, = H (&), N C, follows from [Shi04, Proposition 11.12, (iv)],

as t, # 1 always, because n is even. O

We are now ready to give the global statement.

Proposition 6.6.8. With S be any of the matrices above, we have that LoNW is Z-
mazimal in W and if D :=={a € H(&)a | a(LoNW) = LoNW}, then D = H()aNC.

Proof. The first claim follows by [Sch22, Proposition 1.6.9], as all the localisations

are maximal by Proposition 6.6.7. For the second one, we have

H(E)sNC = {z e H(E)u | 2Ly = Lo}
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But the lattice xLy is the lattice which is defined by (xLy), = x,Lo, for all primes
p. Now, if x € H(&) with xLy = Lg, we have (Lo N W) = Ly N W (see [Shi04,
page 104]), so H({)aNC C D.

On the other hand, for all primes p, let D, := DN H({),. Then, if x € D,
then x, € D,, so z, € H(£), N C, by Proposition 6.6.7. Therefore, x,Lg, = Lo, for
all primes p. This means that z € H(£), N C, as wanted. O

6.6.3 FEuler product expression for the Dirichlet series

The question of this Section is to obtain an Euler product expression for the Dirichlet
series of interest in each of the above cases and relate it to the standard L-function
attached to F'. Again, let P be as in Theorem 6.5.5, containing also the prime 2.
In particular, P contains the prime factors of ¢, which are also the prime factors of
det S. By Theorem 6.5.5, the first step is to determine (¢ p(s). Hence, we need to
compute the quantity

n(d) = #{s € 2/asz" | 3457's) = g (mod qd)}

with £ = (1,0, 1), as we have explained in the beginning of Section 6.6. The steps

we follow are:

1. Find unimodular integer matrices P, ) such that PSQ = diag(ay,--- ,a,), for
some positive integers a;.
2. We then substitute t = Ps = s = P~'t. Then, we have

s—s €dSZ" < t—t €dPSZ" < t—t € dPSQZ",

because @ is unimodular. Hence, if t = (t1,--- ,t,)", we consider each ¢;
(mod da;).

3. We then solve the congruence

1
§qS_1[P_1t] = —q (mod qd).

Let us now deal with the specific examples we have. In the following, let for p & P

(—1)"/2 det S)
)

xs(p) = <

2 -1 11
1. § = ( - ) Here, we have PSQ = diag(1,3), with P = (1 2). We
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U — ¢
plp= |t 7
b+t

and after substituting, the congruence of interest becomes (¢ = 3 here)

then have

3t2 — 3ty +t2 = -3 (mod 3d)

with ¢; (mod d) and t2 (mod 3d). Now, by the form of the equation, we get

3 | ta, so the congruence becomes
t1 —3tity + 3t = —1  (mod d)

with #1,t9 (mod d). Now, we have n(&;d) = N(T;d), where N(T';d) is defined

as the number of solutions to the congruence T[t] = —1 (mod d), with

T:( 1 —3/2).
~3/2 3

But N(T'; d) is multiplicative in d. Let now p ¢ P, so that 2 has a multiplicative
inverse (mod p) and p t detT" (P contains the prime factors of det.S by
assumption). Then, by [Hakll, Corollary 1], we know that for each k > 1,
there is a non-singular (mod p) matrix U, such that T[U;] = R (mod p*)
with some diagonal matrix R. By then setting ¢t — Ujt, we can still consider
t; (mod p*) for all i (as the determinant of U}, is non-zero (mod p)). We then
have N(T;p*) = N(R;p"), with R diagonal. We can now count the number of
solutions N (R; p*) by [Tét14, Proposition 4]. In particular, if R = diag(as, as),

we have
N(R;p*) = p" [1 1 (ﬂmﬂ .
p p

But det R = ajas, and det R = (det Uy)? det T' (mod p), so

(5)-(5)-(2)- () o

where 2u =1 (mod p). Therefore, we obtain

n(&p*) = N(R;p*) = p* ll _ XS(p)] |

p

2 -1 11
2. 8= . ) In this case, we have PSQ = diag(1,15) with P = (1 2).

By following the above steps, the congruence becomes

15t — 15t1ty + 4t3 = —15  (mod 15d)
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with ¢; (mod d) and t5 (mod 15d). But now 15 | to and so after ¢ty — 15t,,
we get

t% - 15t1t2 + 6015% =-1 (mod d)
with ¢1,t2 (mod d) and with exact same reasoning as before, we get
Xs\p
n(&p*) = p* [1 - x0) )] :
p
for all p ¢ P with n(§; d) multiplicative in d.
2 -1 -1 -1
-1 2 1 0 ) . .
3. 5= L1 o2 ol In this case, we have PSQ = diag(1,1,1,5) with
-1 0 0 2
3113
1101
P=
1011
311 4
By then substituting s = P~!t the congruence becomes
512 + 5t5 + 5ta + 2t — 5tyty — Stitz — Stity + Stots = —5  (mod 5d),
with ¢,t5,t3 (mod d) and ¢4, (mod 5d). But, again, 5 | #4, so after setting
ty — bty, we have
t1+ 15 + 15+ 10t — titg — titz — Stity + tat3 = —1  (mod d),
with ¢; (mod d) for all i. As before, this then gives
: Xs\p
n(&p*) = p* [1 — (2 >] ,
p
for all p ¢ P with n(; d) multiplicative in d.
2 -1 0 0
-1 2 0 0 ) . .
4. § = 0 0 2 Ll In this case, using the same method, we obtain
o 0 -1 2

33+ 12t5 + 15 + 1] — tyty + 3tyts — Gtots + 3taty = =3 (mod 3d),

with ¢;,t5 (mod d) and t3,¢4 (mod 3d). This then implies 3 | t3 + {3 and so
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3| t3,t4. Therefore, as previously, we obtain
xs(p)
n(§§pk> =p* [1 - 2 ] 5

for all p ¢ P with n(§; d) multiplicative in d.

5. In the last two cases, we omit the calculations, but by applying the exact same

reasoning as above, we will again get

n(&pk) = pHrY [1 - éi(/];)] ,

for all p € P and with n(&; d) multiplicative in d. Here n = 6, 8.

In all of the above cases, we therefore obtain (here P can be possibly enlarged but
still finite)

Cr(s) = I Cpls = (n=1))Cp(s —n/2+1,xs)7", (6.6.7)
p¢P
where (p(s, xs) = [] (1 — xs(p)p~*)~". We therefore arrive at the following The-
pEP

oreml.

Theorem 6.6.9. Let S denote any of the matrices of Section 6.6.2 with even rank n
and P a finite set of primes, containing the primes described in the proof of Theorem
6.5.5, the prime 2, and the primes so that the conditions of [Shi99, Proposition 5.13]
are satisfied for all p & P. For allp € P, we define

1)/ de
Xs(p) = <( 2 dts)-

p
If F and Py.—_q, are as in Theorem 6.5.5 and § = (1,0,1)" (in particular A(E) #0),

we have

DFJDk’_q,T"p(S) =A)(p(25s —2k+n+2) p (s —k+ (n+4)/2, XS)_l X
n—1

X Lp(Fis—k+n+2)/2) [[Gls—k+(n+2)—i)". (66.8)
i=1
Proof. The proof follows from Theorem 6.5.5 after we choose f to be the constant 1
on H(§)s. From [Shi99, Proposition 5.15], we have that (since P is chosen so that
conditions of [Shi99, Proposition 5.13] are satisfied for p ¢ P):

Lp(l,s—k+(n+3)/2):ﬁgp(s—k+(n+2)—i),

as in general Lg,, (1;s — (n —1)/2) = Lgni(s). Here, the notation means the L-

function we encounter in [Sug85] and [Shi99] respectively, as these are normalised
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differently. We can see this relation by comparing the expressions [Sug85, (2.22)]
and [Shi99, (5.13.2)] (we remind the reader here that 1 is a function on a definite
orthogonal group of rank n + 1). Finally, the computation of (¢p(s) has been
performed in (6.6.7). O



Chapter 7
Conclusions

In this final Chapter, we will briefly recap our results and highlight points of partic-

ular interest, which provide directions for future work.

7.1 Hermitian Case

In the first part of the thesis, our main goal was to obtain a relation between the
twisted Gritsenko’s L-function and a certain Dirichlet series, analogous to Heim
in [Hei99], for the case of Hermitian modular forms. To that end, we studied this

Dirichlet series, both arithmetically and analytically.

In the arithmetic part, we showed that for inert primes p, the p-factor of the Dirichlet
series is identified with the desired factor of the twisted Gritsenko’s L-function. For
split primes p, it is still uncertain whether the p-factor is related to the L-function
of GU(2,2) x GLy. We essentially obtained all the necessary tools in the context
of parabolic Hecke rings in order to show this; however, the last few computations
turned out to be quite complicated, meaning we could not identify this factor with
the twisted Gritsenko’s Euler factor, or any other known factor for that matter. It
should be noted that the only ramified prime, 2, is not considered here; however, our

work for inert primes contains all the necessary ideas to deal with this case as well.

In the analytic part, we showed that this Dirichlet series arises as part of a triple
Rankin-Selberg inner product; however, this integral produces an additional residue
term, which we have not yet investigated. This is something that does not appear
in Heim’s work and is special to our situation. In particular, with the notation
of Section 3.6, the double quotient Cs (K )\Us(K)/(Ui(K) x Us(K)) has infinitely
many representatives. The reason for this is that not every vector is isotropic in the

unitary setting, contrary to the symplectic setting, in which Heim works. We believe
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that this additional term might be responsible for the complicated expression we
obtain in the case of split primes. It is our hope to revisit this problem in future

work.

Our main motivation for considering this problem is to obtain algebraicity results on
the special values of the twisted Gritsenko’s L-function. Such results are not available
even for Gritsenko’s L-function (i.e., not twisted). The integral representation
considered here will allow us to obtain algebraicity results, due to the presence of

the Eisenstein series, which is holomorphic at s = 0 (see Proposition 3.6.1).

On another note, an important restriction in order to obtain such results is that
the first Fourier-Jacobi coefficient of the Hermitian eigenform of degree 2 is not
identically zero (see Theorem 3.5.1 for example). Such a restriction exists for Siegel
modular forms too; for example, in [KS89], [Hei99], and other papers working on
characteristic twists of similar Fourier-Jacobi Dirichlet series (e.g. [KSK95]). As
we mentioned in the introduction, Manickam in [Man21] recently showed that the
first Fourier-Jacobi coefficient of a Siegel cuspidal eigenform of degree 2 is indeed
not identically zero. It is an interesting question to investigate this in the case of

Hermitian modular forms of degree 2 as well.

Finally, we note here that as long as the underlying number field has class number
1, the results of this part of the thesis should transfer without much difficulty. The
case of number fields with class number larger than 1 is of quite a different nature.
The main reason is that the Hecke algebra can no longer be written as the tensor
product of its p-components (see, for example, [HK20]). One would have to work

adelically to deal with this issue.

7.2 Orthogonal Case

In the second part of the thesis, we focused on generalising the method of Kohnen
and Skoruppa in [KS89] to the case of orthogonal modular forms of real signature
(2,n+2),n>1.

In Chapter 5, we obtained a Rankin-Selberg integral representation of the Dirichlet
series through an orthogonal Eisenstein series of Klingen-type. Note that orthogonal
Eisenstein series associated with zero-dimensional cusps are well-studied ([Sch22,
Chapter 2], [Kie23]), but it seems that little explicit work has been done for 1-

dimensional cusps.

Our goal was then to obtain an explicit theta correspondence with a Siegel-type
Eisenstein series for the symplectic group of degree 2, the analytic properties of

which are well-known. We used the classical method of rewriting the Eisenstein
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series as an Epstein zeta function, as has been done in a series of papers dealing
with such Dirichlet series (e.g. [KS89], [Gri92a] and [Kri91]). In our case, we were
able to do this only when the underlying lattice has one 1-dimensional cusp. The
main difficulty seems to arise from the general form of the symmetric space in the
orthogonal setting. In particular, with the notation of Chapter 4, elements of Hg
are vectors in C"*2, contrary to the symplectic and Hermitian cases, where the
symmetric space consists of square matrices. Krieg in [Kri91, p. 248] exploits this
fact and, by using a method involving minors of determinants, manages to write this
Dirichlet series as an Epstein zeta function uniformly for the symplectic, Hermitian

and quaternionic case.

Nevertheless, under this restriction and through the use of differential operators, we
managed to make the theta series of zero weight and remove the terms that cause
the inner-product integrals to diverge, thus obtaining our result. An interesting
question that might be worth exploring is whether we can remove the condition 4 | n
that appears in Theorem 5.5.2. This amounts to asking the question of whether
an analogue of the differential operator R of (5.4.2) that transforms with non-zero

weight exists.

In Chapter 6, we considered the problem of obtaining Euler products for the
Dirichlet series. By taking G in the Maass space and F' a Hecke eigenform, we
managed to prove Euler products for some specific orthogonal groups and connect
the Dirichlet series with the standard L-function attached to F'.

In particular, our strategy was to generalise the method of Kohnen and Skoruppa
to the orthogonal setting. First, we obtained an explicit form of the adjoint of
the operator Vi (see Section 6.1) and its action on the Fourier coefficients of a
Fourier-Jacobi form, in the style of the main Proposition in [KS89, p. 549]. To our
knowledge, this is the first time such a formula appears in the orthogonal case, even

though the operator Vi is well-known (see, for example, [Moc19], [Sug85], [Gri92a).

As a next step, Kohnen and Skoruppa compute the Nth term of their Dirichlet series
and obtain an expression involving the Fourier coefficients of F'. Crucially for them,
the determinant of each matrix appearing in the Fourier coefficients of this expression
is fixed. Hence, they can group terms together using the well-known theorem on
binary quadratic forms of fixed discriminant. We can also obtain a similar grouping
of terms, thanks to the main theorem of Shimura in [Shi06b, Theorem 2.2]. Note,
however, that it is necessary to omit a finite set of primes in order to apply this

Theorem. In this way, we obtain our Proposition 6.4.10.

To then obtain a relation to L-functions, Kohnen and Skoruppa use the well-known

formula of Andrianov in [And74, Theorem 2.4.1], which gives a relation between
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a Dirichlet series involving the Fourier coefficients of a degree two Siegel cuspidal
eigenform, twisted by ideal class characters, with the spin L-function attached to F.
In our case, we use the formula of Sugano in [Sug85], which serves as a generalisation
of Andrianov’s formula to the orthogonal setting. In particular, Sugano’s formula
involves twists by definite orthogonal forms of rank n + 1 (here, we work with a

quadratic space of real signature (2,n + 2)).

To finally obtain clear-cut Euler products, the main difficulty arises from the fact

that, in general, there does not seem to exist an easy connection between

h
S Cels—k+n+1)fi(u) and L(fj;s—k+(n+3)/2), (7.2.1)
i=1

as we mentioned before Section 6.6. Kohnen and Skoruppa can establish such a

connection in the n = 1 case by using the correspondence between equivalence classes

of binary quadratic forms with fixed discriminant and ideal classes in the class group
of a quadratic extension. This is because the functions f; correspond to ideal class

characters in their setting.

This has led us to restrict our attention to the case where h = 1. In order to find
explicit examples, we need to pick & such that the size of H(§)o\H(&)a/(H({)aNC)
is 1. The reason we choose £ = (1,0,1)" is that then ¢o[¢] = 1, which does not
have prime factors, hence makes it possible to use the results of Shimura in order to
compute the size of this quotient (see for example (6.6.1) and the proof of Proposition
6.6.7). In the rank 1 case, Shimura in [Shi06b] has given an explicit formula for the
index [H(&)a : H(E)o(H(&)a N C)], which we use to find all the cases for which this
index is 1 (see Section 6.6.1). In the rank n > 2, such a formula is not available, so we
need an explicit description of H(§)q as a definite orthogonal group. It is well-known
that there is a finite number of definite orthogonal groups with class number 1 and
their rank is at most 10 (cf. [Wat63]). Using, therefore, the enumeration of definite
orthogonal groups with class number 1 in [Hanl1], as well as [Shi04, Proposition

11.12], we arrive at the specific examples of Section 6.6 for rank n > 2.

A fascinating question that clearly arises is how one can remove the condition h = 1.
This is especially interesting when we consider the so-called “accidental” isogenies
of low rank orthogonal groups with classical groups. Examples are SO(2, 3) and Sp,,
SO(2,4) and U(2,2), SO(2,6) and Sp(2, H), where H is a quaternion algebra over R.
It may be possible to use these isogenies in order to obtain results without the h =1
restriction, at least for these cases. In a joint work with T. Bouganis in preparation,
we are able to actually remove this condition for the SO(2,4) case. Crucially, we used
the isogenies of orthogonal groups of signature (2,4) with unitary groups of degree

2 and also the correspondence of Hermitian binary quadratic forms with ideals in
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a quaternion algebra. Answering question (7.2.1) is interesting in its own right; it
means that we can relate the L-function of a definite orthogonal modular form to
some concrete zeta functions counting numbers of solutions of equations. This can

potentially have computational applications to these L-functions.

7.3 The case of the Ej lattice

In this final Section, we would like to give a few remarks on how one could combine
the results of Chapters 5 and 6 for the case of the Ejy lattice and obtain analytic
properties for the standard L-function in this case. The two matrices in Sections
5.6 and 6.6.2 both correspond to the Fg lattice as these are even, unimodular, and
positive definite. It is well-known that there is a unique such lattice up to isometry
([Sch22, Example 1.2.10]).

Assume now F € Si(T'g) is a Hecke eigenform. Let also & = (1,0,1)" and assume
A(§) # 0. Because of Remark 6.3.3, we have that if we take » = 0, we have
that Prp, € Si(I's) C Sk(I's). Therefore, from Theorem 5.6.2, we obtain that
Dip, ., (s) has a meromorphic continuation to C and is invariant under s —
2k — 9 — s, where Df;p, | (s) denotes the completed Dirichlet series of (5.6.1).

Moreover, in the case of the FEjy lattice, we have a partial Euler product for
Drpy.p..p(s), where P is a finite set of primes. In this case, and because the
matrix S is unimodular, we have ¢ = 1 and D = —q, so by checking the primes in
Theorem 6.6.9, we can see P = {2}.

We will describe a couple of ways one could try in order to compensate for the

missing Euler factors. Unfortunately, none of these is fully developed yet.

7.3.1 Characteristic Twists

Let N := H p (we know in this case N = 2, but this method could work for other
pEP
lattices too). Let x denote a Dirichlet character (mod N) such that y(m) =1 for

all (m, N) = 1. We then define

FUZ) = 3 x(m)gm(r, 2)eme.

m=1

where Z = (w, z,7) € Hg. We consider the congruence subgroup of I's given by

A X
[g(N,N*1):={M=|Y L €clg|Y =W =0, (modN),
O %

O N &
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C=0, (mod N*), A=D=1, (modN)}.

In analogy to [KSK95, Proposition 1], we have the following Lemma.

Lemma 7.3.1. We have
1 —2miv,
F(Z) = N Z Z x(v)e™? “/N(F ke Tu/n,0,0))(Z),
v(N) p(N)

where Ty is defined in Section 4.4 and v(N) means that N runs through a set of
representatives (mod N). We then have that F\ is an orthogonal cusp form of
weight k with respect to T's(N, N2, 1).

Proof. The proof of this is analogous to the proof of [KSK95, Proposition 1] after
we check that T, N0y - M - T(;}N,o,o) € I's for all M € T'g(N, N?1). O

Now, for Z € Hg and s € C with Re(s) > n + 1, we define

- Qo[Im(v2)]\°
Exnei(Z,s) = > ) (hn((ﬂb)) ’

~v€lg, 7 (N,N2,1)\I'g(N,N2,1

where for Z = (w,2,7) € Hg, we write Zy := 7. Also, s j(N,N? 1) =
IssNTs(N,N% 1) and Qo = Sp/2. In analogy with Proposition 5.1.4, Ex y21(Z, s)
converges absolutely and uniformly in compact subsets of Hg and is invariant under

the action of I's ;(N, N2, 1).

By performing an integral analogous to Proposition 5.1.5, we can obtain an integral
representation of Drp, ,, p(s) via (Enn2,1(Z,5)F\(Z),G(Z)).

One can now study Ey n2:(Z,s) in order to obtain the analytic properties of
Drp, p.,,p(s). This could be done in a similar way as in Chapter 5 (see also [KSK95,
Proposition 2]). Alternatively, in an analogous way to [Shi00, (23.13a)], we have the

relation

[T :Tss(N,N* 1)|E(Z,s) = > Enn21(0(2),s).
5€F5(N,N2,1)\FS

Hence, one could attempt to deduce properties of Ey y21(Z, s) from those of E(Z, s).

7.3.2 Euler Product

This approach is based on the following unproven assumption. Assume F' € Si(I's),

Assumption: Dgp, , (s) admits an Euler product, i.e. it can be written as the

product of its p-factors (i.e. summing over p).
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Remark 7.3.2. We write {1, }2°_, for the Fourier-Jacobi coeflicients of Py p . It
suffices to show that m —— (¢, ¥m)/(é1,11) is multiplicative. But by definition,
Um = Vb1, Moreover, from [Mocl9, Corollary 4.35], V,,, hence its adjoint V* is

multiplicative. Hence, for (m,n) = 1, we can write

<¢mn7¢mn> - <¢mn7 an¢1> — <Vn>;n¢mnu @/J1>

Now, V,, is the same as the operator T (m) defined by Gritsenko in [Gri9l] in a
parabolic Hecke algebra. We hope that 7" (m) is actually in the image of a “global”
Hecke operator through an embedding of the same type as the one in Lemma 2.4.1,
as is the case for the symplectic and Hermitian case. Then, the multiplicativity of

the Hecke operators in the global Hecke algebra would give us the required result.

Given this assumption, one could proceed as follows. We write G for Py p,. We

then have
DF7g(8) = DF,G,P(S)ZSF,G,P(S)’ (731)
where Dr.c p(s) := [[ Dra,(s) with
peEP
Drcp(s) = Y (Gpm, pm)p ™.
m=1

Then, Dj.(s) of (5.6.1) also admits an Euler product expansion and hence a de-
composition of the form of (7.3.1). Now, by using the expression of (6.6.8), we

have

D pls) = 47T ()T (S_];Jw) ['(s—k+5)T (3_2"+Q> X

—k+38 !

XF(SQ_I_>’75(8—k+9)H<p(8—k+10—i)_1X
i=3

XLP<F,S—]€+5)

= 45 HIT(s)T (3_§+6> ['(s—k+5)T (W) X

—k
><F<52+8> vs(s —k +9)x

X f[ lr (5_]““> Ep(s—k+ z‘)—ll Lp(F;s—k+5)

=3 2
=475~ D ()T (“’;HS) [(s—k+57T (“g”) X

T s—k+10 r s—k+9 T s—k+38 "
2 2 2
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XF<3—k+7>F(s—k+4>r<s—k+3>¢2(s—k—i—l)x
2 2 2 2

_ 7
1=3

where in the first equality, a(s) = —(7s—5k+33)/2. Also, to obtain the last equality,

we used the relation I'(s + 1) = sI'(s). Now, we observe that the expression

o o 7
— (5 o 1) b (S o 9) Tl ér(s — ki + )"
=3

is invariant under s — 2k — 9 — s. Therefore, we arrive at the following Theorem.

Theorem 7.3.3. Let the assumptions be as in the beginning of the Section. We
define the completed L-function attached to F', via

Ap(F;s) = (4m) T 90(s)0 (s + k — 5)T (S ; 2) r (S ; 1) r (8 ;L 1) X

<0 () (57) (5 r () s

Then, Ap(F';s) admits a meromorphic continuation to C and satisfies

D
Ap(zk —9— S) _ AP(S) — F,G,P(S> )
Diap(2k—9—5)
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