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Abstract: This thesis is concerned with the study of analytic and arithmetic
properties of Dirichlet series involving Fourier-Jacobi coefficients of Hermitian and
orthogonal modular forms. It is naturally divided into two main parts.

In the first part, motivated by a work of B. Heim, we consider a Dirichlet series
associated with three Hermitian cuspidal eigenforms of degrees 2, 2 and 1 over Q(i)
and study its p-factor for every rational prime p. Using factorisation methods in
parabolic Hecke rings, we show that for inert primes, this factor can be identified
with the GL2-twist of the degree 6 Euler factor attached to a Hermitian modular
form of degree 2 by Gritsenko. For split primes, we obtain a rational expression for
the local factor, allowing us to show that the Dirichlet series has an Euler product.
Moreover, we show that this Dirichlet series arises as part of a Rankin-Selberg
integral representation.

In the second part, we consider, in the spirit of Kohnen and Skoruppa, a Dirichlet
series involving the Fourier-Jacobi coefficients of a pair of orthogonal modular forms
of real signature (2, n + 2), n ≥ 1. First, we obtain an integral representation of
Rankin-Selberg type and use theta correspondence to deduce its analytic properties
for certain orthogonal groups. Next, using results of Sugano and Shimura, we obtain,
for certain orthogonal groups, an Euler product for the Dirichlet series and relate it
to the standard L-function for SO(2, n+ 2).
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Chapter 1

Introduction

1.1 Background and Motivation

L-functions have been a subject of extensive study in the literature. In order to define
what exactly we mean by the term L-function, we need the notion of a Dirichlet
series.

Definition 1.1.1. A Dirichlet series is a series of the form
∑
n≥1

ann
−s,

where s ∈ C and an is a series of complex numbers, which grow at most polynomially
as n→∞. This growth condition is there so that there is some c > 0, so that this
series converges absolutely and uniformly on compact subsets and thus defines a
holomorphic function in the right half plane {s ∈ C | Re(s) > c}.

When dealing with such series, we are interested in two main properties:

• The possibility of the series having a meromorphic continuation to the
complex plane and admitting a functional equation.

• The possibility of the series having an Euler product expansion, i.e., if it can
be written as an infinite product of some factors over (some) primes.

In the case when a Dirichlet series has the above two properties, it is usually referred
to as an L-function (see, for example [Bum97, p. 1]).

The most common example of an L-function is the Riemann zeta function:

ζ(s) :=
∞∑
n=1

n−s.
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This converges absolutely and uniformly on compact subsets of C for Re(s) > 1. It
is a well-known result that ζ(s) admits a meromorphic continuation to the whole
complex plane with a simple pole at s = 1. Moreover, if ξ(s) := π−s/2Γ(s/2)ζ(s),
then

ξ(s) = ξ(1− s).

Finally, from the Fundamental Theorem of Arithmetic, ζ(s) has an Euler product
expansion of the form

ζ(s) =
∏

p prime
(1− p−s)−1.

Another important class of L-functions is the L-functions attached to classical
modular forms, which are also Hecke eigenforms. Let f be a cusp form of integer
weight k ≥ 0 and level SL2(Z) and consider its Fourier expansion

f(z) =
∞∑
n=1

ane
2πinz.

We then define its L-function as

L(f, s) :=
∞∑
n=1

ann
−s. (1.1.1)

This converges absolutely and uniformly on compact subsets of the usual upper half
plane H := {z ∈ C | Im(z) > 0} for Re(s) > 1 + k/2 (cf. [DS06, Proposition 5.9.1]).
The following Theorem is classical (e.g., see [DS06, Theorems 5.9.2, 5.10.2]).

Theorem 1.1.2. Assume f is a normalised (i.e. a1 = 1) Hecke eigenform of weight
k ≥ 0. Then L(f, s) admits a meromorphic continuation to the complex plane and
if Λ(f, s) := (2π)−sΓ(s)L(f, s), we have

Λ(f, s) = ikΛ(f, k − s).

Moreover, L(f, s) has an Euler product expansion of the form

L(f, s) =
∏

p prime
(1− app−s + pk−1−2s)−1.

The analytic properties of L(f, s) are therefore established due to the above Theorem.

Another key aspect of studying L-functions is their values at critical points, called
special values. In particular, assume we complete some L-function L(s) by some
Gamma factors, so that the completed L-function satisfies a functional equation
s 7−→ k − s. The critical points are the set of integers m for which both the
gamma factors of L(s) and L(k − s) do not have a pole at s = m. Deligne in
[Del79] conjectured that these special values are algebraic up to certain prescribed
transcendental periods. For the case of classical modular forms, results on the
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algebraicity of the special values of their L-functions have been established by the
work of Shimura in [Shi76] and [Shi77].
Nevertheless, the subject matter of this thesis is modular forms of higher rank.
The most natural (both from an analytic and an arithmetic point of view) such
objects are the so-called Siegel modular forms. As a rough description, Siegel
modular forms of degree n ≥ 1 are holomorphic functions from a generalised upper
half plane, consisting of n × n complex matrices, to the complex numbers, that
satisfy a modularity condition under the action of the symplectic group Spn(Z).
Siegel discovered these, motivated by his classical investigations on the problem of
integral representations of quadratic forms (e.g. [Sie35]), and they have numerous
links with arithmetic.
Analogous to classical modular forms but with key differences, one can also attach L-
functions to Siegel modular forms of any degree n ≥ 1, which are Hecke eigenforms
for specific Hecke algebras. There are two main L-functions associated with a
cuspidal Siegel eigenform: the standard and the spin L-function. The standard
is well-understood due to the so-called doubling method (see Section 3.1 for a
discussion). The spin L-function, however, has been much more difficult to study.
This perhaps comes as a surprise, as this is the formal analogue of (1.1.1) for Siegel
modular forms. Remarkably, for n ≥ 4, its meromorphic continuation and functional
equation are still open conjectures. For n = 3, they were only proven recently
by A. Pollack in [Pol17], subject to a certain non-vanishing condition on a Fourier
coefficient. This was established by S. Böcherer and S. Das in [BD22].
The degree 2 case, however, is much more approachable. The following classical
result can be used to establish the analytic properties of the spin L-function.

Result 1. (Kohnen and Skoruppa, [KS89]) Given two degree 2 Siegel cusp forms
F,G of integral weight k, with Fourier-Jacobi coefficients {ϕm}∞

m=1, {ψm}∞
m=1, let

DF,G(s) := ζ(2s− 2k + 4)
∞∑
m=1
⟨ϕm, ψm⟩m−s, Re(s)≫ 0, (1.1.2)

where ⟨ , ⟩ denotes an inner product on the space of Fourier-Jacobi forms of weight
k and index m. The authors prove two main theorems:

Theorem 1.1.3. The function

D∗
F,G(s) := (2π)−2sΓ(s)Γ(s− k + 2)DF,G(s)

has a meromorphic continuation to C and is invariant under s 7−→ 2k − 2− s.

Theorem 1.1.4. If F is a Hecke eigenform and G is in the Maass space, then

DF,G(s) = ⟨ϕ1, ψ1⟩ZF (s),
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where ZF (s) is the spin L-function attached to F .

The analytic properties of ZF (s) therefore follow from the above two theorems,
subject to the condition ϕ1 ̸≡ 0. This condition is always satisfied, as Manickam
in [Man21] has recently shown. This result, however, cannot be used to obtain
algebraicity properties of ZF (s), mainly because DF,G(s) admits an integral repres-
entation of Rankin-Selberg type with an Eisenstein series of zero weight, and hence
non-holomorphic (see [KS89, Theorem 1]).

There are other integral representations of the spin L-function attached to a degree 2
Siegel cuspidal eigenform. In fact, Andrianov in [And74] was the first one to give such
a representation, using factorisation methods in parabolic Hecke rings. However, his
result cannot be used (or at least it is not known how) to obtain algebraicity results
either. The difficulty in this case seems to be related to the fact that the integral
representation involves Eisenstein series defined over symmetric spaces which do not
have the structure of a Shimura variety.

The closest algebraic result is the following, due to B. Heim.

Result 2. (Heim, [Hei99]) Let F,G be two degree 2 Siegel cuspidal eigenforms and
h a classical normalised Hecke eigenform, all having the same even weight k ≥ 0.
Assume F is the Maass lift of a classical modular form f of weight 2k − 2, and let

DF,G,h(s) :=
∞∑

m,ϵ,ℓ=1
(ϵ,ℓ)=1

⟨ϕm | Uℓ, ψmℓ2⟩amϵ2ϵ−2(k+s−1)ℓ−2(k+s−2)m−(2k+s−3). (1.1.3)

Here, {ϕm}, {ψm} are the Fourier-Jacobi coefficients of F,G respectively, {am} the
Fourier coefficients of h, and Uℓ is an index-raising operator acting on Fourier-Jacobi
forms. Heim proved the following two Theorems.

Theorem 1.1.5.

DF,G,h(s) = ⟨ϕ1, ψ1⟩ζ(2s+ k − 2)−1L(f, 2s+ 2k − 3)−1ZG⊗h(s),

where ZG⊗h(s) is the twist of the spin L-function attached to G by the Satake
parameters of h, and L(f, s) the classical L-function attached to f .

Theorem 1.1.6. Let Ek
5,0(Z, s) denote the weight k and degree 5 Eisenstein series

of Siegel type. Then

⟨⟨⟨Ek
5,0(diag[z1, z2, z3]), F (z1)⟩, G(z2)⟩, h(z3)⟩ = b(2, s, k)L(F, 2s+ k − 2)DF,G,h(s),

where b(2, s, k) is a product of zeta and gamma factors, L(F, s) is the standard
L-function attached to F and ⟨ , ⟩ denotes the inner product on the space of Siegel
modular forms of certain weight and degree.
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Note that in contrast to Result 1, here we take F instead of G to be in the Maass
space. We decided to use this notation throughout the thesis as this is compatible
with the way the results in [KS89] and [Hei99] are formulated.

To prove Theorem 1.1.5, Heim’s approach was to use factorisation methods in para-
bolic Hecke rings, in the same spirit as Andrianov. By combining Theorems 1.1.5
and 1.1.6, he managed to connect a seemingly more complicated object, ZG⊗h, with
Ek

5,0 (again subject to ψ1 ̸≡ 0). The presence of the Eisenstein series Ek
5,0, which

is holomorphic at s = 0, allows one to study algebraicity properties of the special
values of ZG⊗h. B. Heim and S. Böcherer exploited this integral representation to
lift various restrictions on the weights of the modular forms considered ([BH00]) and
prove parts of Deligne’s conjectures ([BH06]).

We should note here that Furusawa in [Fur93] also gave an integral representation
for the twisted spinor L-function, using an Eisenstein series over a unitary group and
its restriction to the symplectic group of degree two. There is a series of works based
on this idea, most notably by Saha in [Sah09], generalising the work of Furusawa.

In this thesis, our aim is twofold:

1) To generalise Result 2 to the case of Hermitian modular forms of degree
2 over Q(i). Shortly after the work of Andrianov on the spinor L-function in
[And74], Gritsenko, in a series of papers, extended Andrianov’s approach of the use
of parabolic Hecke algebras to the study of a degree 6 L-function attached to a
cuspidal Hermitian eigenform of degree 2, where the underlying imaginary quadratic
field is taken to be the field of Gaussian numbers K := Q(i). Indeed, in [Gri88b],
Gritsenko first defined such an L-function, and in the later work of [Gri92a], he
obtained the analogue construction of Kohnen and Skoruppa using the factorisation
approach. Both integral representations allowed him to obtain a functional equation
and study the analytic properties. However, as in the case of the symplectic group,
neither of the above integral representations could be used to derive algebraicity
properties, due to the Eisenstein series involved (only of real analytic nature). In
Chapter 3, we consider the exact Hermitian analogue of the Dirichlet series (1.1.3)
and study its arithmetic and analytic properties. Our aim is to demonstrate a
connection with the twisted Gritsenko’s L-function. The possibility of obtaining
algebraicity results for this L-function has been the main motivation for this work.

2) To extend Result 1 to the case of orthogonal modular forms of real signature
(2, n+ 2), n ≥ 1. In particular, in Chapter 5, we investigate the analytic properties
of the Dirichlet series, and in Chapter 6, we consider the question of obtaining Euler
products. Our aim is to show that the Dirichlet series has good analytic properties
and demonstrate a connection with the standard L-function for the orthogonal group.
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This work is motivated by the existence of accidental isogenies between orthogonal
groups of low rank and classical groups, e.g., SO(2, 3) and Sp2 and SO(2, 4) and
U(2, 2). Such isogenies make it possible to relate modular forms for classical groups
with orthogonal modular forms, and also obtain a correspondence between their
L-functions (see, for example, [Shi04, p. 241] for a discussion in the case of Siegel
modular forms of degree 2). Therefore, the results of Kohnen and Skoruppa in [KS89]
and Gritsenko in [Gri92a] make this question natural to consider.

1.2 Statement of Main Results

Naturally, this thesis is divided into two main parts, namely the one addressing the
Hermitian case and the one addressing the orthogonal case. We will now state our
main results.

1.2.1 Hermitian Case

The setting is as follows. Assume F,G, h are Hermitian cuspidal eigenforms over
Q(i) of degrees 2, 2, 1 respectively, all having weight k ≡ 0 (mod 4) and real Fourier
coefficients. We consider the exact Hermitian analogue of (1.1.3), namely:

DF,G,h(s) :=
∑
p,q

∞∑
m=1
⟨ϕm | Up, ψmN(p)⟩amN(q)N(p)−(k+s−3)N(q)−(k+s−1)m−(2k+s−4),

(1.2.1)
where p, q ∈ Z[i] coprime, {ϕm}, {ψm} are the Fourier-Jacobi coefficients of F,G,
{am} the Fourier coefficients of h, Up is a certain operator acting on Fourier-Jacobi
forms, and N(z) := zz. By assuming now that F is the Maass lift of a classical
modular form f of weight k − 1 and of a certain character (see Proposition 2.5.5),
we obtain the following Theorem.

Theorem 1.2.1. If p is an inert prime, we have for the p-factor (i.e. taking all
summations over the rational prime p, see (3.3.4))

D
(p)
F,G,h(s) =

⟨ϕ̃1, ψ̃1⟩ALp(f, k + s− 2)Lp
(
f, k + s− 2,

(
−4
p

))
(1− p−k−2s+2)

Q
(2)
p,G(X1)Q(2)

p,G(X2)
,

where Xi depend on the Satake parameters of h and Q
(2)
p,G are the Euler factors of

ZG(s), Gritsenko’s L-function (see also Definition 2.5.2). Also, Lp(f, s) denotes the
p-factor of the L-function attached to f (see Definition 2.5.4), and ⟨ , ⟩A denotes
the inner product of Definition 2.2.10.
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Moreover, we make considerable progress in connecting D(p)
F,G,h(s) with the p-factor

of ZG⊗h(s), the twisted Gritsenko’s L-function, for the case of the split primes p.
Our progress is summarised in Theorem 3.4.21. Along the way, we prove several
important results. In particular, in Theorem 3.4.3, we give the factorisation of the p-
Euler factor of the standard L-function in the parabolic Hecke ring H1,1

p (see Section
2.4), deduce the rationality Proposition 3.4.8, and also obtain important relations
between Hecke operators in the parabolic Hecke ring H1,1

p (see Table 3.1).

In fact, it is those results that allow us to prove in Theorem 3.5.1 that the Dirichlet
series DF,G,h(s) possesses an Euler product.

Theorem 1.2.2. DF,G,h(s) possesses an Euler product of its p-factors (see (3.4.6)
for a definition in the case of split primes).

Finally, in Section 3.6, we aim to obtain an integral representation for DF,G,h(s).
In Theorem 3.6.5, we show that DF,G,h(s) originates as part of a Rankin-Selberg
integral with an Eisenstein series of Klingen type (see Definition 2.1.6).

Theorem 1.2.3. For k + 2Re(s) > 10, we have

〈〈
Ek

3,2

W 0
0 Z

 , F ; s
 , G(Z)

〉
, h(W )

〉
= (4π)−(2k+s−4)×

× Γ(2k + s− 4)Γ(k + s− 3)Γ(k + s− 1)
Γ(2k + 2s− 4) DF,G,h(s) +RF,G,h(s),

where RF,G,h(s) is an additional residue term (see Theorem 3.6.5).

In particular, by using the doubling method for the unitary group (see (3.6.1)), we
can obtain a Theorem analogous to Theorem 1.1.6, involving, of course, RF,G,h(s).
This additional term is very interesting and is special to our setting. It is related to
the fact that not every vector is isotropic with respect to a Hermitian bilinear form.
In particular, it does not appear in Heim’s work. However, we do not study it in
this thesis, and we hope it will be the subject matter of an upcoming work.

1.2.2 Orthogonal Case

For the second part of the thesis, the setting is as follows. Let S denote an even
symmetric positive definite matrix of rank n ≥ 1. Even here means S[x] ∈ 2Z, ∀x ∈
Zn. We then set

S0 :=


1

−S
1

 , S1 :=


1

S0

1


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of real signature (1, n+ 1) and (2, n+ 2) respectively. If now K is a field containing
Q, we define the corresponding special orthogonal groups of K-rational points via

G∗
K := {g ∈ SLn+2(K) | gtS0g = S0}, GK := {g ∈ SLn+4(K) | gtS1g = S1}.

Let G0
R denote the connected component of the identity in GR. There is a well-

defined action of G0
R on a suitable tube domain, which we will call HS ⊂ Cn+2. Let

also ΓS := G0
R ∩Matn+4(Z).

Consider now two orthogonal cusp forms F,G : HS −→ C with respect to ΓS with
Fourier-Jacobi coefficients {ϕm}, {ψm} respectively. The object of interest is then

DF,G(s) :=
∑
m≥1
⟨ϕm, ψm⟩m−s, Re(s)≫ 0,

where ⟨ , ⟩ is a suitable inner product defined on the space of Fourier-Jacobi forms
of certain weight and (lattice) index.

In Chapter 5, our aim is to obtain the analytic properties of DF,G(s), i.e. its mero-
morphic continuation to C and a functional equation. Through an orthogonal Eisen-
stein series of Klingen-type E(W, s) (see Definition 5.1.3), we obtain the following
integral representation.

Proposition 1.2.4. For W ∈ HS and s ∈ C with Re(s) > n+ 2, we have

⟨F (W )E(W, s), G(W )⟩ = 1
#SO(S;Z)(4π)−(s+k−n−1)Γ(s+k−n−1)DF,G(s+k−n−1),

where ⟨ , ⟩ denotes the inner product of Definition 4.2.3 and SO(S;Z) is the finite
integral orthogonal group of S.

Therefore, the analytic properties of DF,G(s) reduce to the ones of the Eisenstein
series. Our aim is to produce an explicit theta-correspondence between E(W, s)
and an Eisenstein series of Siegel type for Sp2. The first step towards that is to write
E(W, s) in the form of an Epstein zeta function. We are able to do this when the
underlying lattice has one 1-dimensional cusp (see Definition 5.2.1).

Proposition 1.2.5. Let S be such that ΓS has only one 1-dimensional cusp. Then,
for each W ∈ HS, there is a RW in the space of majorants (see Definition 5.2.2)
such that

E(W, s) =
∑

ℓ∈X/GL2(Z)
(det(RW [ℓ]))−s/2 ,

where

X :=
{(
l m

)
| l,m ∈ Zn+4,

(
l m

)
primitive, S1

[(
l m

)]
= 0

}
.
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Here, a matrix being primitive means that its elementary divisors are all 1.

We now consider the real-analytic theta series Θ(Z,W ), as defined in Definition 5.3.3
(Z ∈ H2, Siegel’s upper half-space). This transforms with weight k = −n/2 and
some character χ under the action of (a congruence subgroup) of Sp2 (see Proposition
5.3.5).

Assume now 4 | n and r = n/4. After applying the so-called Maass-Shimura
operator δrk (see Definition 5.4.1) and the operator R of Proposition 5.4.2, in order
to compensate for divergent terms, we arrive at the main Theorem.

Theorem 1.2.6. Let Ẽ(Z, χ, s) denote the degree 2 symplectic Siegel-type Eisenstein
series (see (5.5.1)). Assume 4 | n and that there is only one 1-dimensional cusp. Let
also k = −n/2 and r = n/4. We then have for Re(s) > n+ 1〈

Ẽ(Z, χ, (s+ 1)/2− r), R[δ(r)
k Θ](Z,W )

〉
= ξ(s)ξ(s− 1)γS(s)E(W, s),

where γS(s) is an explicit gamma factor and ξ(s) is the completed zeta function.

The meromorphic continuation of E(W, s) and hence DF,G(s) to C then follows as
a corollary. We note that, although the general Langlands’ philosophy predicts the
analytic properties of E(W, s), here we obtain an explicit connection with a well-
studied object: the symplectic Eisenstein series of degree two. This connection can
be used to obtain further results on E(W, s), including information on its poles and
zeroes (see Corollary 5.5.3). Moreover, in the case of the E8 lattice (see Section 5.6),
we have the following Theorem.

Theorem 1.2.7. Let S correspond to the E8 lattice. Then, we can complete DF,G(s)
to D∗

F,G(s), so that the last one has a meromorphic continuation to C and is invariant
under s 7−→ 2k − 9− s.

In Chapter 6, we address the other direction of the problem, i.e., how the method of
Kohnen and Skoruppa in [KS89] can be extended in order to obtain an Euler product
for DF,G(s) in this case too. Assume F is a Hecke eigenform for the corresponding
Hecke algebra. Assume also that k > n/2 + 2 is even. Take G to be of the form

G(τ ′, z, τ) :=
∑
N≥1

(VNPk,D,r)(τ, z)e(Nτ ′),

where Pk,D,r is a Poincaré series depending on (D, r), which is in the support of the
lattice Zn with respect to S, and VN is an index-raising operator acting on Fourier-
Jacobi forms. Let V0 := Qn+2 and ϕ0 the bilinear form on V0 × V0 corresponding
to S0/2. Let also L0 := Zn+2 and L∗

0 := S−1
0 L0. Pick now any ξ ∈ V0 such that
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ϕ0(ξ, ξ) = −D/q and 2ϕ0(ξ, L0) = Z, where q denotes the level of S (see Definition
4.1.4). Consider then the algebraic subgroup of G∗

Q, defined by

H(ξ)Q := {g ∈ G∗
Q | gξ = ξ}.

This is a negative definite orthogonal group of rank n + 1. It is one of the main
results by Shimura in [Shi04] that the congruence subgroup of G∗

Q which fixes the
lattice L0 acts on the set

{x ∈ V0 | ϕ0(x, x) = −D/q and 2ϕ0(x, L0) = Z} ,

and there are finitely many equivalence classes under this action. Let {ξi}hi=1 be
representatives for this action. These representatives correspond to elements of the
finite set

H(ξ)Q\H(ξ)A/(H(ξ)A ∩ C), (1.2.2)

where C = {x ∈ G∗
A | xL0 = L0}. This is the analogue of the classical theorem for

binary quadratic forms of fixed discriminant. Assume {ui}hi=1 are these elements.

Let also {fj}hj=1 denote an orthonormal basis of simultaneous eigenforms on the set
(1.2.2). Denote by L(−, s) the standard L-function attached to either F or any of
the f ′

js. We then formulate our main Theorem.

Theorem 1.2.8. Outside a finite set of primes P, DF,G(s) can be written as

LP (F ; s− k + (n+ 2)/2)
h∑
j=1

Afj
LP

(
fj; s− k + (n+ 3)/2

)−1
×

×
h∑
i=1

ζξi,P(s− k + n+ 1)fj(ui)×

1 if n odd

ζP(2s− 2k + n+ 2)−1 if n even
.

Here, ζξi
(s) denote certain zeta functions counting number of congruences, Afj

are
expressions depending on fj and the Fourier coefficients of F and for any zeta
function, the subscript P means that we do not take into account the terms sharing
factors with elements of P.

A connection with L-functions therefore exists, but it is not clear how one can
obtain an Euler product. Nevertheless, when we choose D = −q, ξ = (1,0, 1)t and
S such that h = 1, we can obtain a clear-cut result. We find all the cases when
this happens in the n = 1 case (with these specific choices of D, ξ) and some cases
when n ∈ {2, 4, 6, 8}. We give the Euler product expression of DF,G(s) in Theorems
6.6.3 and 6.6.9. In particular, up to finitely many primes, we recover Theorem 1.1.5
of Kohnen and Skoruppa (see Remark 6.6.4).
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1.3 Outline of the Thesis

In this introductory Chapter, we gave an overview of the thesis. We discussed how
the classical results of Heim in [Hei99] and Kohnen and Skoruppa in [KS89] serve
as the main motivation for this dissertation and naturally divide it into two main
parts. We next described the ways we have generalised their results and presented
our main theorems. Finally, we provided an outline of the thesis, which serves as a
roadmap for the reader.

In Chapter 2, we develop the theory of Hermitian modular forms. After giving
the main definitions and considering their Fourier–Jacobi expansions, we introduce
Hecke operators and describe the associated Hecke rings. We then define the relevant
L-functions and prepare the groundwork for the next Chapter.

In Chapter 3, we present the main results regarding the first part of the thesis.
We begin the chapter by providing an overview of the so-called doubling method
and Heim’s results. We then consider a certain Dirichlet series attached to three
Hermitian cuspidal eigenforms of weight k ≡ 0 (mod 4) and degrees 2, 2, and 1 over
Q(i). In the case when F is in the Maass space, we obtain an Euler product for
the Dirichlet series. Moreover, for an inert prime p, we identify its p-factor with the
p-factor of the L-function attached to G by Gritsenko in [Gri88b], twisted by the
Satake parameters of h. The question of whether the same holds for primes that split
remains unanswered; however, a big part of this chapter is concerned with making
progress towards that end. Most notably, the results we obtained on the parabolic
Hecke rings are of independent interest. Finally, we show that this Dirichlet series
originates as part of a Rankin-Selberg integral representation. This representation
also produces an additional residue term that we do not study in this thesis. The
material for this chapter is taken from our joint paper with T. Bouganis in [BP25].

The fourth chapter marks the beginning of the second part of the thesis. We aim
to extend the paper [KS89] by Kohnen and Skoruppa in the orthogonal setting. We
start by giving definitions of quadratic spaces and modular forms for orthogonal
groups of real signature (2, n + 2), n ≥ 1. We then discuss their Fourier–Jacobi
coefficients, the corresponding Maass spaces, and finally define a Fourier–Jacobi
Dirichlet series DF,G(s) associated with a pair of orthogonal modular forms.

In Chapter 5, we consider the problem of obtaining the analytic properties of the
Dirichlet series. Using an orthogonal Eisenstein series of Klingen type, we obtain
an integral representation for this Dirichlet series. In the case when the underlying
lattice has only one 1-dimensional cusp, we rewrite this Eisenstein series in the form
of an Epstein zeta function. If additionally 4 | n, we deduce a theta correspondence
between this Eisenstein series and a Siegel-type Eisenstein series for the symplectic
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group of degree 2. As a consequence, we obtain the meromorphic continuation of the
Dirichlet series to C. In the case of the E8 lattice, we can further deduce a precise
functional equation for the Dirichlet series. The material for this chapter is taken
from my paper [Psy24].

Chapter 6 is devoted to the investigation of the connection of this Dirichlet series
with the standard L-function for the orthogonal group. In the case when F is a Hecke
eigenform and G is a Maass lift of a specific Poincaré series, we establish a connection
with the standard L-function attached to F . What is more, we find explicit choices
of orthogonal groups, for which we obtain a clear-cut Euler product expression for
this Dirichlet series. Through our considerations, we recover the classical result
of Kohnen and Skoruppa, but also provide a range of new examples, which can
be related to other kinds of modular forms, such as paramodular, Hermitian, and
quaternionic. The material for this chapter is taken from my paper [Psy25].

Finally, in Chapter 7, we give the consequences of the main results in the previous
Chapters. We discuss their importance and highlight points of interest, which provide
directions for future work.

1.4 Notation

Below, we provide some standard notation that will be used throughout the Thesis.

• e(z) := e2πiz, z ∈ C.
• A[B] := B

t
AB for suitably sized complex matrices A,B.

• A > B for matrices A,B: Denotes that the matrix A−B is positive definite.
• 0n, 1n denote the n× n zero and identity matrices repsectively.
• det(M), tr(M) denote the determinant and trace of a matrix M , respectively.
• Mm,n(R): Denotes the space of m× n matrices with coefficients in a ring R.
• Mn(R): Denotes the space of n× n matrices with coefficients in a ring R.
• GLn(R), SLn(R): Denote the matrices in Mn(R) with non-zero determinant

and determinant 1, respectively.
• [A1, A2, · · · , An] or diag(A1, · · · , An): Denotes the block diagonal matrix with

the matrices A1, A2, · · · , An in the diagonal blocks.
• ζ(s): Denotes the usual Riemann zeta function.
• N(q): Denotes the norm of a complex number q, i.e. N(q) := qq.
• C∞: Denotes the class of functions which are infinitely differentiable.



Chapter 2

Hermitian Modular Forms

In this Chapter, we collect background material for the theory of Hermitian modular
forms. We state the main definitions, discuss the Fourier and Fourier-Jacobi expan-
sions, define Eisenstein series, and develop the necessary Hecke theory. Throughout
this Hermitian part of the thesis, we assume that K = Q(i), the field of Gaussian
numbers, and OK = Z[i] its ring of integers.

2.1 Preliminaries

Everything below is standard and can be found in [Kri85].

Definition 2.1.1. Let R be either K, OK or C and fix an embedding R ↪→ C. We
write U(n, n)(R) for the R-points of the unitary group of degree n ≥ 1. That is,

U(n, n)(R) := {g ∈ GL2n(R) | Jn[g] = Jn} ,

where Jn :=
0n −1n

1n 0n

. The notation Jn[g] means gtJng (see Notation).

Hence, for an element
A B

C D

 ∈ U(n, n)(R) with n× n matrices A,B,C,D, these

satisfy the relations

A
t
C = C

t
A, D

t
B = B

t
D, AD

t −Bt
C = 1n.

Definition 2.1.2. The Hermitian upper half-plane of degree n is defined by

Hn := {Z ∈ Mn(C)| − i(Z − Zt) > 0}.

For n = 1 we obtain the usual upper half plane, which we will just denote by H.
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We fix an embedding K ↪→ C. Then, an element g =
A B

C D

 ∈ U(n, n)(K) ↪→

U(n, n)(C) of the unitary group acts on the above upper half plane via the action

Z 7−→ g⟨Z⟩ := (AZ +B)(CZ +D)−1.

The usual factor of automorphy is defined by j(g, Z) := det(CZ +D).

Let now Γn denote the Hermitian modular group, that is Γn := U(n, n)(OK).
Note that

Γ1 = SL2(Z) · {α · 12 | α ∈ O×
K}. (2.1.1)

We now define the slash operator.

Definition 2.1.3. Let n ≥ 1 and k be any integer. Then, for any function F on Hn

and a matrix g ∈ U(n, n)(K), we define

(F |k g)(Z) := j(g, Z)−kF (g⟨Z⟩).

We then have the following definition of a Hermitian modular form.

Definition 2.1.4. A function F : Hn −→ C is called a Hermitian modular form
of degree n and integer weight k ≥ 0 if

• F is holomorphic,
• F satisfies

(F |k g)(Z) = F (Z),

for all g ∈ Γn and Z ∈ Hn.

If n = 1, we further require that F is holomorphic at infinity.

It is well-known ([Kri85, Chapter III.2]) that the set of all such forms constitutes a
finite-dimensional complex vector space, which we denote by Mk

n . Because of our
assumption if n = 1 and of Köcher’s principle ([Kri85, Lemma III.1.5]) for n ≥ 2,
each such F admits a Fourier expansion

F (Z) =
∑
N

a(N)e(tr(NZ)), (2.1.2)

where a(N) ∈ C and N runs through all the semi-integral non-negative Hermitian
matrices

N ∈
{

(nij)ni,j=1 ≥ 0 | nii ∈ Z, nij = nji ∈
1
2OK

}
.

F is called a cusp form if a(N) ̸= 0 only for N positive definite. We denote the
space of cusp forms by Skn. We also have a notion of an inner product.
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Definition 2.1.5. The Petersson inner product for two Hermitian modular forms
F,G, is given by

⟨F,G⟩ :=
∫

Γn\Hn

F (Z)G(Z)(detY )kd∗Z,

whenever this converges. Here, Z = X + iY and d∗Z = (detY )−2ndXdY is the
U(n, n)(C)-invariant measure ([Kri85, Theorem II.1.10]).

Finally, we want to define the so-called Eisenstein series. To this end, we first
need to define some parabolic subgroups of the unitary group.

For R as in Definition 2.1.1 and 0 ≤ r ≤ n, we consider the following parabolic
subgroups of U(n, n)(R):

Pn,r(R) =

 ∗ ∗

0n−r,n+r ∗

 ∈ U(n, n)(R)


Cn,r(R) =

 ∗ ∗

0n+r,n−r ∗

 ∈ U(n, n)(R)

. (2.1.3)

When R = OK , we will just write Pn,r and Cn,r.

Definition 2.1.6. Let 0 ≤ r ≤ n and F ∈ Skr , with k ≡ 0 (mod 4). The Klingen-
type Eisenstein series with respect to the parabolic subgroup Cn,r attached to F is
given by

Ek
n,r(Z, F ; s) =

∑
γ∈Cn,r\Γn

F (γ⟨Z⟩∗)j(γ, Z)−k
(

det Im γ⟨Z⟩
det Im γ⟨Z⟩∗

)s
, (2.1.4)

where Z ∈ Hn and ∗ denotes the lower right r × r part of the matrix.

When r = 0, we omit F ≡ 1 and we call Ek
n,0(Z; s) an Eisenstein series of Siegel

type. When r = n, we have Ek
n,n(Z; s) = F (Z).

Lemma 2.1.7. This series is well-defined and converges absolutely and uniformly
on compact subsets of C for k + 2Re(s) > 2(n + r). If s = 0 and k > 2(n + r),
Ek
n,r(Z, F ; 0) ∈Mk

n for all F ∈ Skr .

Proof. Let δ ∈ Cn,r. We write

δ =


A1 A2 B1 B2

0 A4 B3 B4

0 0 D1 0
0 C4 D3 D4

 ,

with A4, B4, C4, D4 ∈Mr(OK) and set δ∗ :=
A4 B4

C4 D4

.
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We then have δ⟨Z⟩∗ = δ∗⟨Z∗⟩ (cf. [Kri85, Proposition V.2.1]). Also

det(Im g⟨Z⟩) = |j(g, Z)|−2 det(ImZ), ∀g ∈ U(n, n)(C), Z ∈ Hn. (2.1.5)

Now, j(δ, Z) = det(D1)j(δ∗, Z∗) and det(D1) is a unit in OK . Using the above, the
transformation condition for F ∈ Skr and the fact that k ≡ 0 (mod 4), we obtain
that the series is well-defined (under γ 7−→ δγ).

For the convergence, we use the fact that the function (det Im γ⟨Z⟩∗)k/2F (γ⟨Z⟩∗)
is bounded on Hn, say by a constant C (see [Kri85, Lemma III.2.4]) and that
det(Im γ⟨Z⟩) = |j(γ, Z)|−2 det(ImZ). Hence, the series is bounded by

C(det ImZ)s
∑

γ∈Cn,r\Γn

(det Im γ⟨Z⟩∗)− 1
2 (k+2s)|j(γ, Z)|−(k+2s),

and the last series converges absolutely and uniformly on compact subsets of C,
whenever k + 2Re(s) > 2(n+ r), from [Kri85, Theorem V.2.8].

Finally, the last assertion is in [Kri85, Theorem V.2.9]. We remark that for any
s is the region of convergence, Ek

n,r(Z, F ; s) satisfies the modularity property of
Definition 2.1.4, but is holomorphic in Z only when s = 0.

2.2 Hermitian Fourier-Jacobi Forms

In this Section, we introduce the notion of Hermitian Fourier-Jacobi forms. This is
very similar to the classical case of Fourier-Jacobi forms, as developed by Eichler
and Zagier in [EZ85]. The Hermitian case was first studied by Haverkamp in his
thesis [Hav95]. His work has recently been generalised to Hermitian Jacobi forms of
higher degree by Haight in [Hai24]. In this thesis, we follow Haverkamp’s paper in
[Hav96]. We should note here that in that paper, the case of K = Q(i) is excluded,
in order to make the exposition simpler, due to the existence of non-trivial units.
The results, however, are naturally transferred to the Gaussian case as well.

Definition 2.2.1. The Hermitian Jacobi group is defined by ΓJ(OK) := Γ1⋊O2
K ,

with the multiplication of elements defined by

[ϵ1M1, (λ1, µ1)] · [ϵ2M2, (λ2, µ2)] := [ϵ1ϵ2M1M2, (λ1, µ1)ϵ2M2 + (λ2, µ2)],

where λ1, λ2, µ1, µ2 ∈ OK , M1,M2 ∈ SL2(Z) and ϵ1, ϵ2 ∈ O×
K . We remind the reader

here that Γ1 is given in (2.1.1).

We now define some more slash operators:
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Definition 2.2.2. Let ϕ be a complex-valued function on H×C2. Let also k,m ∈ Z
and (τ, z1, z2) ∈ H× C2. Then:

• For ϵ ∈ O×
K and M =

a b

c d

 ∈ SL2(Z), we have

(ϕ |k,m ϵM)(τ, z1, z2) := ϵ−k(cτ+d)−ke
(−mcz1z2

cτ + d

)
ϕ

(
aτ + b

cτ + d
,
ϵz1

cτ + d
,
ϵz2

cτ + d

)
.

• For λ, µ ∈ OK , we have

(ϕ |m [λ, µ])(τ, z1, z2) := e(m(N(λ)τ +λz1 +λz2))ϕ(τ, z1 +λτ +µ, z2 +λτ +µ).

We have the definition of a Hermitian Fourier-Jacobi form.

Definition 2.2.3. A holomorphic function ϕ : H×C2 −→ C is called a (Hermitian)
Fourier-Jacobi form of weight k and index m, where k,m ∈ Z≥0, if ∀(τ, z1, z2) ∈
H× C2, we have

• (ϕ |k,m ϵM)(τ, z1, z2) = ϕ(τ, z1, z2), ∀ϵ ∈ O×
K , ∀M ∈ SL2(Z).

• (ϕ |m [λ, µ])(τ, z1, z2) = ϕ(τ, z1, z2), ∀λ, µ ∈ OK .
• ϕ admits a Fourier expansion of the form

ϕ(τ, z1, z2) =
∞∑
n=0

∑
r∈O#

K
mn≥N(r)

cϕ(n, r)e(nτ + rz1 + rz2),

where cϕ(n, r) ∈ C and O#
K := i

2OK .

We denote the complex vector space of Hermitian Fourier-Jacobi forms by Jk,m. It
is a known fact that Jk,m is finite dimensional ([Hav96, Theorem 3]). A Hermitian
Fourier-Jacobi form is called a cusp form if cϕ(n, r) = 0 for nm = N(r).

In the following, we will drop the word Hermitian and just write Fourier-Jacobi
forms. The main reason we are interested in the theory of Fourier-Jacobi forms is
that they appear naturally in the context of Hermitian modular forms of degree two.

Indeed, let F ∈ Sk2 . For Z ∈ H2, we can partition Z =
 τ z1

z2 ω

, with τ, ω ∈ H and

z1, z2 ∈ C. From (2.1.2), we can then write the Fourier expansion of F with respect
to the variable ω as

F (Z) =
∞∑
m=1

ϕm(τ, z1, z2)e(mω).

The functions ϕm : H×C2 −→ C are then Fourier-Jacobi cusp forms in the sense of
Definition 2.2.2 and are called the Fourier-Jacobi coefficients of F .
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There is, however, an equivalent characterisation of Fourier-Jacobi forms, used by
Gritsenko in [Gri92a]. In the following, it will be important for us to consider the
Fourier-Jacobi forms as a special kind of modular forms under the action of some
parabolic subgroups, as these are defined in (2.1.3).

Let Γn,1 := Pn+1,n(OK), the group of integral points of the parabolic Pn+1,n(K). We
then have the following definition ([Gri92a, p. 2887]):

Definition 2.2.4. Let n ≥ 1. A holomorphic function F on Hn+1 is a modular form
of weight k with respect to the parabolic subgroup Γn,1 if the following conditions
hold:

• F |k M = F for all M ∈ Γn,1,
• The function F (Z) is bounded in the domain Im(Z) ≥ c12, for all c > 0.

We note here that we can omit the second condition if n ≥ 2. This again follows
by Köcher’s principle. The space of all such forms will be denoted by Mk

n,1. Again,
each such F has a Fourier expansion as in equation (2.1.2) and we call F a cusp
form if a(N) ̸= 0 only for positive definite matrices N .

We can now give the definition of Fourier-Jacobi forms, as in [Gri92a, p. 2887].

Definition 2.2.5. A complex-valued, holomorphic function ϕ on Hn × Cn × Cn is
said to be a Fourier-Jacobi form of degree n, weight k and index m if the function

ϕ̃

 τ z1

zt2 ω

 := ϕ(τ, z1, z2)e(mω),

where ω ∈ H is chosen so that
 τ z1

zt2 ω

 ∈ Hn+1, is a modular form with respect

to the group Γn,1. The space of such forms is denoted by Jnk,m and we will call ϕ̃ a
P -form, as in [Hei99, Section 3.4].

Remark 2.2.6. For n = 1, this coincides with the space considered by Haverkamp
above (cf. [Hav96, Remark 1]) and we will just write Jk,m in this case.

Remark 2.2.7. We remark here that the approach taken by Gritsenko deals more
naturally with the arbitrary degree n ≥ 1 case. On the other hand, the formulas
appearing in [Hai24] are sufficiently complicated for our purposes. Nevertheless, in
this thesis, we are mainly interested in Hermitian modular forms of degree two and
therefore both considerations mentioned above can be used (and are equivalent).

We will now indeed focus on Hermitian modular forms of degree two. We have the
following notion of an inner product on Jk,m ([Gri92a, (1.10)]):
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Definition 2.2.8. The Petersson inner product of two Fourier-Jacobi forms
ϕ, ψ ∈ Jk,m is defined as

⟨ϕ, ψ⟩ :=
∫

FJ
ϕ(τ, z1, z2)ψ(τ, z1, z2)vke−πm|z1−z2|2/vdµ,

where dµ = v−4dudvdx1dy1dx2dy2 with τ = u + iv, zj = xj + iyj for j = 1, 2 and
FJ is a fundamental domain for the action of P2,1 on H× C2.

The reader should note that we are using the same symbol to denote the inner
product for two Fourier-Jacobi forms as the one we use to denote the inner product
for two Hermitian modular forms (see Definition 2.1.5). However, we will always use
a Greek letter (ϕ or ψ) to denote a Fourier-Jacobi form and a Latin letter to denote
a Hermitian modular form. This should help eliminate any possibility of confusion.

In the following, for Z ∈ H2 as above, we write

Re(Z) =
xτ xz1

xz2 xω

 , Im(Z) =
yτ yz1

yz2 yω

 , (2.2.1)

for its real and imaginary parts, respectively. We now define an inner product on
the space of P -forms, as this will be useful later.

Definition 2.2.9. Let ϕm, ψm ∈ Jk,m and denote by ϕ̃m, ψ̃m the P -forms obtained
as in Definition 2.2.5. We then define

⟨ϕ̃m, ψ̃m⟩A :=
∫

Q1,1
ϕ̃m(Z)ψ̃m(Z)(detY )kd∗Z,

where d∗Z = (detY )−4dXdY is the invariant element for the action of the unitary
group U(2, 2) on H2 and

Q1,1 :=
Z =

 τ z1

z2 ω

 ∈ H2 | (τ, z1, z2) ∈ FJ and |xω| ≤ 1/2
 .

There is a relation between the two inner products above, given in the following
Lemma.

Lemma 2.2.10. Let ϕm, ψm ∈ Jk,m and denote by ϕ̃m, ψ̃m the corresponding P -
forms. Then

⟨ϕm, ψm⟩ = βkm
k−3⟨ϕ̃m, ψ̃m⟩A,

where βk = (4π)k−3Γ(k − 3)−1.

Proof. We have

⟨ϕ̃m, ψ̃m⟩A =
∫
Q1,1

ϕ(τ, z1, z2)e2πimωψ(τ, z1, z2)e−2πimω(detY )k−4dXdY.



20 Chapter 2. Hermitian Modular Forms

Let now ỹω := yω − |z1 − z2|2/4yτ . Then detY = yτ ỹω. Hence, the above integral
can be written as
∫
ỹω>0

∫
FJ

∫
xω (mod 1)

ϕm(τ, z1, z2)e−4πm(ỹω+|z1−z2|2/4yτ)ψm(τ, z1, z2)(yτ ỹω)k−4×

× dτdz1dz2dỹωdxω

= ⟨ϕm, ψm⟩
∫
ỹω>0

e−4πmỹω ỹk−4
ω dỹω = (4πm)3−kΓ(k − 3)⟨ϕm, ψm⟩,

so the result follows with βk = (4π)k−3Γ(k − 3)−1.

2.3 Unitary Hecke Rings

In this Section, we give an account of the Hecke theory for Hermitian modular forms.
We follow Gritsenko in [Gri92a]. We start with the Definition of Hecke pairs and
Hecke rings.

Definition 2.3.1. A pair (Γ, G), where Γ ≤ G is called a Hecke pair if for all
g ∈ G, the double coset ΓgΓ is a union of a finite number of left or, equivalently,
right Γ-cosets. Let V (Γ, G) denote the Q-vector space of all formal finite linear
combinations of left Γ-cosets with rational coefficients:

V (Γ, G) :=
{
X =

∑
i

aiΓgi | ai ∈ Q, gi ∈ G
}
.

The group Γ acts on V via right multiplication:

X 7−→ X · γ :=
∑
i

aiΓ(giγ).

The Γ-invariant subspace H(Γ, G) of V is called the Hecke ring of (Γ, G). If now
X =

∑
i

aiΓgi, Y =
∑
j

bjΓhj are in H(Γ, G), we define their product by

X · Y :=
∑
i,j

aibjΓ(gihj).

This is independent of the choice of the representatives gi, hj, and H(Γ, G) is an
associative ring.

Let n ≥ 1. We define the groups of similitude:

Sn := {g ∈M2n(K) | Jn[g] = µ(g)Jn, for some µ(g) > 0},

Snp := {g ∈ Sn ∩M2n(OK [p−1]) | µ(g) = pδ, δ ∈ Z},
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where p is a rational prime. It is then well-known that the pairs (Γn, Sn), (Γn, Snp )
are Hecke pairs and we can define the corresponding Hecke rings, which we will
also denote by Hn and Hn

p respectively. We start with the following Lemma on
elementary divisors.

Lemma 2.3.2. If g ∈ Sn ∩M2n(OK), we can write

ΓngΓn = Γndiag(a1, · · · , an, d1, · · · , dn)Γn,

where the principal ideals, generated by the elements ai, di ∈ OK, satisfy the relations
(a1) ⊇ · · · ⊇ (an) ⊇ (d1) ⊇ · · · ⊇ (dn) and aidi = µ(g) for all i = 1, · · · , n.

Proof. See [Gri92a, p. 2889]. Note the typo in Gritsenko’s statement (we must have
aidi = µ(g) because of the unitary setting).

Assume now F ∈Mk
n . For any g ∈ Sn, we define

(F |k g)(Z) := µ(g)nk−n2
j(g, Z)−kF (g⟨Z⟩).

Then, if ΓngΓn ∈ Hn, we write ΓngΓn =
m∑
i=1

Γngi, with gi ∈ Sn. We then define

F |k ΓngΓn :=
m∑
i=1

F |k gi. (2.3.1)

We can now modify the Petersson inner product of Definition 2.1.5 so that it applies
to congruence subgroups of Γn (see, for example, [Klo15, p. 808-809]). We have the
following Lemma.

Lemma 2.3.3. For any g ∈ Sn ∩M2n(OK) and F,G ∈ Skn, we have

⟨F |k ΓngΓn, G⟩ = ⟨F,G |k ΓngΓn⟩,

with the appropriate inner product on each side.

Proof. Let g ∈ Sn ∩M2n(OK). From the general setting of [Shi97, Lemma 11.4], we
have that we can find representatives gi ∈ Sn such that

ΓngΓn =
ℓ⊔
i=1

Γngi =
ℓ⊔
i=1

giΓn, (2.3.2)

for some ℓ. Moreover, by using standard arguments (see for example [And87, The-
orem 2.5.3]), we have that for any M ∈ Sn and F,G ∈ Skn,

⟨F |k M,G |k M⟩ = µ(M)nk−2n2⟨F,G⟩.
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Hence,

⟨F |k ΓngΓn, G⟩ =
〈

ℓ∑
i=1

F |k gi, G
〉

=
ℓ∑
i=1
⟨F |k gi, G⟩ =

=
ℓ∑
i=1

µ(gi)−nk+2n2⟨F |k gi |k g−1
i , G |k g−1

i ⟩ =
ℓ∑
i=1
⟨F,G |k (µ(gi)g−1

i )⟩.

But from the second equality of (2.3.2), we have that Γnµ(g)g−1Γn =
ℓ⊔
i=1

Γnµ(g)g−1.

Moreover, from Lemma 2.3.2, the elementary divisors of µ(g)g−1 are the complex
conjugates of those of g. The Lemma follows.

Remark 2.3.4. From [Gri92a, Proposition 2.1] we get that Hn is commutative.
Moreover, since g ∈ Sn =⇒ g ∈ Sn, each ΓngΓn ∈ Hn acts as a normal operator
on Skn.

From [Gri92a, Corollary 2.2], we can decompose the global Hecke ring into the tensor
product of p-rings as follows:

H(Γn, Sn) =
⊗
p

H(Γn, Snp ).

Now, each p-ring is isomorphic to the Hecke ring over the corresponding local field,
and the structure of these rings depends on the decomposition of the prime p in OK
(see [Gri92a, p. 2889]). In order to work locally, we give the following definitions:

Kp := K ⊗Qp, Op := OK ⊗ Zp, Φp := (2i)−1

0n −1n
1n 0n

 , (2.3.3)

which denote the algebra over Qp, the maximal lattice, and a Hermitian form on the
vector space Kp respectively. We also define the unitary group Gn

p and a maximal
compact subgroup Un

p by

Gn
p := {g ∈ GL2n(Kp) | g∗Φpg = µ(g)Φp, for some µ(g) ∈ Q×

p }, (2.3.4)

Un
p := {g ∈ Gn

p ∩M2n(Op) | µ(g) ∈ Z×
p }, (2.3.5)

where g∗ := (gji)σ, with σ is the canonical involution of the algebra Kp, determined
by the behaviour of the prime p in K (split, inert or ramified). We now have the
following Proposition:

Proposition 2.3.5. For every prime p, the local Hecke ring H(Un
p , G

n
p ) is isomorphic

to the p-ring H(Γn, Snp ).
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Proof. See [Gri92a, Proposition 2.3].

The reason we would like to work with local Hecke rings is that these have been
investigated by Satake in his paper [Sat63].

To that end, let us now recall the definition of the so-called spherical or Satake
mapping. We again follow [Gri92a]. We need to distinguish between the cases: (i) p
is inert or p = 2 and (ii) p splits.

In the first case, we know that given g ∈ Gn
p , we have the double coset decomposition

Un
p gU

n
p =

∑
i

Un
pM

miNi,

where Ni is a unipotent matrix, mi = (mi1 , · · · ,min ;mi0) an integer tuple, and

Mmi =
pmi0 (Dt)−1 0

0 D

 , D = diag(πmi1 , · · · , πmin ),

with π = p if p is inert or π = (1 + i) if p = 2. We then define

Φ : H(Un
p , G

n
p ) −→ QWn [x±1

0 , · · · , x±1
n ],

via
Φ(Un

p gU
n
p ) =

∑
i

x
mi0
0

n∏
j=1

(xjq−j)mij , (2.3.6)

where the ring QWn [x±1
0 , · · · , x±1

n ] denotes the ring of polynomials invariant with
respect to the permutation of the variables x0, · · · , xn under the transformations
w(i), i = 1, · · · , n, defined by

x0 7−→ p−1x0x
e
i , xi 7−→ p2/ex−1

i , xj 7−→ xj (j ̸= 0, i),

with q denoting the number of elements in the residue field K ⊗ Qp and e is the
ramification index of the prime p.

For the case of decomposable p, the definition of the spherical mapping is different.
In particular, from [Gri92a, Proposition 2.4], there is an isomorphism

ρ : H(Un
p , G

n
p ) −→ H(GL2n(Zp),GL2n(Qp))[x±1].

We can then define the Satake mapping Ω for H(GL2n(Zp),GL2n(Qp)) in an analog-
ous way as for the case p inert or p = 2, as in [Gri92b, p. 2873].

For the reader’s convenience, let us describe it here: Given an element X ∈
H(GL2n(Zp),GL2n(Qp)), we know that we can write it as

X =
∑
i

aiGL2n(Zp)gi,
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where gi =


pdi1 ∗ ∗ ∗
0 pdi2 ∗ ∗

0 0 . . . ∗
0 0 0 pdi2n

 and ai ∈ Q. Then, the mapping Ω given by

Ω(X) :=
∑
i

2n∏
j=1

(xjp−j)dij ,

defines an isomorphism between H(GL2n(Zp),GL2n(Qp)) and the ring of symmetric
polynomials Qsym[x±1

1 , · · · , x±1
2n ]. We then define the Satake mapping Φ in this case

as the composition
Φ := Ω ◦ ρ. (2.3.7)

2.4 Parabolic Hecke Rings

In this Section, we define Hecke rings corresponding to parabolic subgroups of the
unitary group, as these were defined in (2.1.3). These are necessary in order to
develop a Hecke theory for Fourier-Jacobi forms, as these are defined as modular
objects under the action of integral parabolic subgroups of the Hermitian modular
group.

We start with a very general Lemma regarding embeddings of Hecke rings.

Lemma 2.4.1. Let (Γ0, S0) and (Γ, S) be two Hecke pairs. We assume that

Γ0 ⊂ Γ, ΓS0 = S, Γ ∩ S0S
−1
0 ⊂ Γ0.

Then, given an arbitrary element X ∈ H(Γ, S), according to the second condition,
we can write it as

X =
∑
i

ai(Γgi),

with gi ∈ S0. Then, if we set

ϵ(X) :=
∑
i

ai(Γ0gi),

then ϵ does not depend on the selection of the elements gi ∈ S0 and is an embedding
(as a ring homomorphism) of the Hecke ring H(Γ, S) to H(Γ0, S0).

Proof. See [Gri92a, page 2890].

Let us now define the parabolic Hecke rings we will need. Let Sn,1, Sn,1p , Γn,1
denote the intersection of the groups Sn+1, Sn+1

p , Γn+1 with the parabolic subgroup
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Pn+1,n(K), respectively. Again, the pairs (Γn,1, Sn,1) and (Γn,1, Sn,1p ) are Hecke pairs
(cf. [Gri92a, Section 3]) and we can then define the Hecke rings

Hn,1 := H(Γn,1, Sn,1), Hn,1
p := H(Γn,1, Sn,1p ),

for any rational prime p. Since Γn+1S
n,1
p = Sn+1

p and after writing an element
X ∈ Hn+1

p as
X =

∑
i

aiΓn+1gi,

with gi ∈ Sn+1
p , we can define an embedding

X 7−→ ϵ(X) =
∑
i

aiΓn,1gi,

using Lemma 2.4.1. In this way, we obtain an embedding of Hn+1
p into Hn,1

p .

Moreover, we can embed H(Γn, Sn) ↪−→ H(Γn,1, Sn,1) in two ways, as follows:

If X = ΓngΓn with g = [A,D] ∈ Sn, we define

j−(X) := Γn,1 [A, µ(g), D, 1] Γn,1, j+(X) := Γn,1 [A, 1, D, µ(g)] Γn,1. (2.4.1)

These are related by an anti-homomorphism ∗ : Hn,1
p −→ Hn,1

p , given by
∑
i

aiΓn,1MiΓn,1 7−→
∑
i

aiΓn,1µ(Mi)M−1
i Γn,1, (2.4.2)

as in [Gri92a, Lemma 3.1]. In particular, we have j−(X)∗ = j+
(
X
t
)
.

We now again restrict our discussion to the degree two case. We note that H1,1 is
not commutative and also does not split into the tensor product of the H1,1

p rings.

The structure of the parabolic Hecke rings H1,1
p again depends on the decomposition

of the prime p in OK .

If p is inert or p = 2, then the structure of the parabolic Hecke ring is constructed
in a similar way as the corresponding ring for the symplectic group of degree 2, see
[Hei99, Section 3] or [Gri84, Section 2] for example.

In the case of a decomposable p, however, the situation is quite different. This
follows from the fact that

H(U2
p , G

2
p) ∼= H(GL4(Zp),GL4(Qp))[x±1].

From this, the corresponding p-ring of the parabolic Hecke algebra is isomorphic to
the ring of polynomials of one variable with coefficients from the Hecke ring of the
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parabolic subgroup

P1,2,1(Zp) :=



g1 ∗ ∗
0 g ∗
0 0 g2

 ∈ GL4(Zp) | g1, g2 ∈ Z×
p , g ∈ GL2(Zp)

 .
Properties of this ring have been investigated in [Gri92b], and this is the ring where
our calculations involving elements of the Hecke rings are going to occur. Finally,
let us describe the action of elements of H1,1 on Fourier-Jacobi forms.

Let F denote any modular form of weight k with respect to the parabolic subgroup
Γ1,1, as in Definition 2.2.4. If

X = Γ1,1


∗ 0 ∗ ∗
∗ a ∗ ∗
∗ 0 ∗ ∗
0 0 0 b

Γ1,1 =
∑
i

Γ1,1gi ∈ H1,1,

for some gi ∈ S1,1, we define F |k X as in (2.3.1). Gritsenko gave the following very
convenient definition of the signature.

Definition 2.4.2. The signature of X is defined as s(X) := b/a.

Lemma 2.4.3. The signature is well-defined.

Proof. We write X = Γ1,1gΓ1,1 for the above expression of X. We then want to
show that if γ1, γ2 ∈ Γ1,1 and g′ := γ1gγ2, then g′

44/g
′
22 = b/a. But, by the form of

the elements γ1, γ2, we have g′
44 = b1bb2 and g′

22 = a1aa2, where we write a1, b1 for
(γ1)22, (γ1)44 respectively and similarly for a2, b2. But now b1a1 = 1 and b1, a1 ∈ OK .
By going through the units in OK , we deduce a1 = b1 in any case. Similarly, a2 = b2

and from this the Lemma follows.

Using the signature s := s(X) of X, we can now define its action on Fourier-Jacobi
forms.

Proposition 2.4.4. Let ϕ ∈ Jk,m denote a Fourier-Jacobi form of weight k and

index m. Then, for Z =
 τ z1

z2 ω

 ∈ H2, we define the action of X on ϕ via

(ϕ |k X) (τ, z1, z2) :=
(
ϕ̃ |k X

)
(Z)e

(
−m
s
ω
)
,

with ϕ̃(Z) := ϕ(τ, z1, z2)e(mω). Then ϕ |k X belongs to Jk,m/s if m/s is an integer
and is 0 otherwise.
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Proof. See [Gri92a, Lemma 4.1].
Note: Throughout this part of the thesis, we will often write | instead of |k for the
weight k-action on Fourier-Jacobi forms, as the weight is always fixed.

Now, if F ∈ Sk2 is a Hermitian cusp form, we can write

F

 τ z1

z2 ω

 =
∞∑
m=1

ϕm(τ, z1, z2)e(mω).

For X ∈ H1,1 as above, we have that F |k X is a modular form with respect to Γ1,1

([Gri92a, p. 2903]) and so we can write

(F |k X)
 τ z1

z2 ω

 =
∞∑
m=1

ψm(τ, z1, z2)e(mω).

Therefore, there is an action of Hecke operators from H1,1 on the Fourier-Jacobi
forms coming from a Hermitian modular form F via

ϕ(F )
m || X := ψ(F |kX)

m . (2.4.3)

Finally, we note here that this action is extended to P -forms in the obvious way.

2.5 L-functions and the Maass space

In this Chapter, we define the two main L-functions that we attach to a Hermitian
cuspidal eigenform of degree two, the standard and Gritsenko’s L-function.

Assume that G ∈ Sk2 is a Hecke eigenform for H2, i.e., it is an eigenfunction for all
Hecke operators in H2. For a polynomial U [X] ∈ H2[X] and G a Hecke eigenform,
we denote by UG the polynomial obtained by substituting the operators with their
corresponding eigenvalues.

Definition 2.5.1. The standard L-function attached to G (see also [Shi00, Para-
graph 20.6]) is defined as

Z
(2)
G (s) :=

∏
p inert or p=2

Z
(2)
p,G(p−2s)−1 ∏

p=ππ
Z

(2)
π,G(p−s)−1Z

(2)
π,G(p−s)−1,

where for each inert prime p or p = 2, Z(2)
p (t) := Φ−1

(
z(2)
p (t)

)
and for 2 ̸= p = ππ,

Z(2)
π (t) := Φ−1

(
z(2)
π (t)

)
and Z

(2)
π (t) := Φ−1

(
z

(2)
π (t)

)
, where

z(2)
p (t) :=



2∏
i=1

(1− p2xi,pt)(1− p4x−1
i,p t) if p inert

2∏
i=1

(1− pxit)(1− p2x−1
i t) if p = 2

,
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z(2)
π (t) :=

4∏
i=1

(1− p−1xi,pt), z(2)
π (t) :=

4∏
i=1

(1− p4x−1
i,p t),

and Φ is the Satake mapping of equations (2.3.6) and (2.3.7).

Definition 2.5.2. The L-function attached to G by Gritsenko in [Gri88b, p. 2545]
(for the case of p inert and p = 2) and in the proof of [Gri88b, Lemma 2.1] (for the
case of split prime p) is defined as

Q
(2)
G (s) :=

∏
p inert

(1 + pk−2−s)−2Q
(2)
p,G(p−s)−1 ∏

p splits or p=2
Q

(2)
p,G(p−s)−1,

where Q(2)
p (t) := Φ−1

(
q(2)
p (t)

)
with

q(2)
p (t) :=



(1− x0,pt)
2∏
r=1

∏
1≤i1<i2≤2

(1− p−rxi1,p · · · xir,px0,pt) if p is inert

(1− x0,pt)
2∏
r=1

∏
1≤i1<i2≤2

(1− p−r(xi1,p · · · xir,p)2x0,pt) if p = 2
∏

1≤i<j≤4
(1− p−3xi,pxj,pxt) if p splits

,

and Φ the Satake mapping of equations (2.3.6) and (2.3.7).

Let us now define the so-called Maass space for the case of Hermitian cusp forms.
We mainly follow [Gri90] and for the Definition we will use [Gri90, Lemma 2.4].

Definition 2.5.3. The Maass space is the spaceF
 τ z1

z2 ω

 =
∞∑
m=1

(ϕ(τ, z1, z2) |k T−(m)) e2πimωm3−k | ϕ ∈ Jk,1

 ,
where T−(m) := j−(T (m)) ∈ H1,1, with

T (m) :=
∑

g∈S1∩M2(Z)
µ(g)=m

Γ1gΓ1,

and j− is the embedding of equation (2.4.1). In particular, this is the standard Hecke
element of SL2(Z), viewed as an element of H1.

If now F ∈ Sk2 is a Hecke eigenform in the Maass space, we can relate its Gritsenko
L-function with the so-called symmetric square function of a classical modular form.
Let us make this precise. First of all, for any N ≥ 1, let

Γ0(N) :=

a b

c d

 ∈ SL2(Z) | c ≡ 0 (mod N)
 .
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For any Dirichlet character χ : (Z/NZ)× −→ C, let Sk(Γ0(N), χ) denote the space
of cusp forms of weight k and level Γ0(N) (see [DS06, p. 119] for a definition).
Moreover, we associate to χ, the Dirichlet L-function

L(s, χ) :=
∞∑
n=1

χ(n)n−s =
∏
p

(1− χ(p)p−s)−1, Re(s) > 1. (2.5.1)

This can be extended meromorphically to the whole complex plane. For Chapters
2 and 3, we fix once and for all the Dirichlet character χ : (Z/4Z)× −→ C, with
χ(3) = −1. We then have the following Definition.

Definition 2.5.4. Let f ∈ Sk−1 (Γ0(4), χ) be a normalised Hecke eigenform with
Fourier expansion f(τ) =

∑
n≥1

a(n)e(nτ). For each prime p ̸= 2, we write

1− a(p)t+ χ(p)pk−2t2 = (1− αpt) (1− βpχ(p)t) , (2.5.2)

where αp, βp ∈ C. The L-function attached to f and its twist by χ are given by:

L(f, s) := (1− a(2)2−s)−1 ∏
p̸=2

(1− αpp−s)−1
(
1− βpχ(p)p−s

)−1
=
∏
p

Lp(f, s)−1,

L (f, s, χ) := (1− a(2)−12k−2−s)−1 ∏
p̸=2

(1− αpχ(p)p−s)−1
(
1− βpp−s

)−1
=

=
∏
p

Lp(f, s, χ)−1.

We also define the symmetric square function attached to f as follows:

R(f, s) := (1− a(2)22−s)−1(1− a(2)22−s)−1×

×
∏
p̸=2

[
(1− α2

pp
−s)

(
1− χ(p)αpβpp−s

)
(1− β2

pp
−s)
]−1

.

These converge in some right half plane and can be meromorphically continued to
C. The main property of the Maass space can then be stated as follows.

Proposition 2.5.5. Let F ∈ Sk2 belong in the Maass space (Definition 2.5.3) and
assume F is an eigenfunction for the Hecke algebra H2. Then, there exists a Hecke
eigenform f ∈ Sk−1 (Γ0(4), χ), such that

Q
(2)
F (s) = ζ(s− k + 1)L (s− k + 2, χ) ζ(s− k + 3)R(f, s),

We call F the Maass lift of f .

Proof. See [Gri90, Theorem, p. 69] or the Appendix in [Gri92a].
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We end this Section by giving a Lemma regarding the correspondence of elliptic
cusp forms and Hermitian cusp forms of degree 1, both as analytic objects as well
as Hecke eigenforms.

Lemma 2.5.6. A Hermitian cusp form of degree 1 and weight k with k ≡ 0 (mod 4)
can be considered as a classical cusp form of the same weight (i.e., for the group
SL2(Z)) and vice versa. Also, a classical cusp form which is a normalised eigen-
form for the Hecke algebra H(GL2(Z),GL2(Q)) is also a normalised eigenform for
H(Γ1, S

1), when considered as a Hermitian cusp form and vice versa.

Proof. We have that Γ1 = SL2(Z) · {α · 12 | α ∈ O×
K} and the corresponding upper

half planes are the same. So, holomorphicity is equivalent (including infinity).

For the invariance condition, the one direction is trivial, as SL2(Z) ⊆ Γ1. For the

other one, let γ ∈ Γ1 and write γ = αδ with δ =
a b

c d

 ∈ SL2(Z) and α ∈ O×
K .

Then
(F |k γ)(Z) = (αcz + αd)−kF (Z) = (F |k δ)(Z),

as k ≡ 0 (mod 4) and O×
K = {±1,±i}. Cuspidality is also clear from the definitions.

Assume now that we start with a normalised (i.e., a(1) = 1 in the Fourier expansion)
Hermitian cusp form h of degree 1, which we further take to be an eigenform for
H1. The canonical embedding of GL+

2 (Q) into S1, the group of similitudes of degree
1, induced from the embedding Q ↪→ K, allows us to see h as a normalised Hecke
eigenform with respect to H(GL2(Z),GL2(Q)), as we can always choose g ∈ GL+

2 (Q)
as a representative for GL2(Z)gGL2(Z), and GL2(Z) ⊂ Γ1.

But the converse is also true, that is, if we start with h a classical normalised Hecke
eigenform, then it is also a normalised Hermitian eigenform of degree 1. Indeed,
since the Hecke operators of the Hermitian Hecke algebra are normal (see Remark
2.3.4), we know that the space of Hermitian cusp forms is diagonalizable with a
finite basis {hi} of normalised eigenforms for H1. But from the above, each hi is
a Hecke eigenform for the classical Hecke algebra as well. Hence, this basis has to
coincide with the basis derived by diagonalising the action of the classical Hecke
algebra, thanks to the multiplicity one theorem. Now, because of the normalisation,
h = hi for some i, which shows that h is indeed a Hecke eigenform for H1.

Remark 2.5.7. From now on, we will use the terms “classical (or elliptic) cusp
form” and “Hermitian cusp form of degree 1” interchangeably.



Chapter 3

A Dirichlet Series Associated With
Three Hermitian Modular Forms

In this Chapter, we consider a Dirichlet series DF,G,h(s), analogous to the one
considered by Heim in [Hei99, Section 2.4, (29)], attached to three Hermitian cuspidal
eigenforms F,G, h, of degrees 2, 2 and 1, respectively, all having weight k ≡ 0
(mod 4). We take F in the Maass space, and we study the p-factor D(p)

F,G,h(s) of the
Dirichlet series for each rational prime p. We show that in the case when p remains
prime in OK = Z[i], D(p)

F,G,h(s) is identified with the p-factor of ZG⊗h(s), the twist by
h of Gritsenko’s L-function attached to G. Moreover, for the case of a split prime p,
we obtain a rational expression for D(p)

F,G,h(s), showing a relation with ZG⊗h(s). By
combining these results, we show that DF,G,h(s) has an Euler product.

Moreover, we show that this Dirichlet series arises as part of a Rankin-Selberg inner
product of a Hermitian Eisenstein series of Siegel type (see Definition 2.1.6) on
the unitary group U(5, 5)(K), diagonally-restricted on U(2, 2)(K) × U(2, 2)(K) ×
U(1, 1)(K), against F,G and h. This representation also produces an additional
residue term, which is not studied in this thesis.

3.1 Overview of Heim’s Results

The so-called doubling method has been a very powerful tool in the study of the
standard L-function attached to Siegel and Hermitian modular forms.

The main idea, going back to Garrett in [Gar84] and Böcherer in [Böc85], is as follows:
Let 1 ≤ n ≤ m. Then, the Petersson inner product of a diagonally restricted Siegel-
type Eisenstein series of degree n + m against a Siegel cusp form F of degree n
is proportional to the product of the standard L-function attached to F with a
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Klingen-type Eisenstein series of degree m, attached to F . Therefore, analytic (and
algebraic) properties for the standard L-function can be studied using the Eisenstein
series.

The powerful consequences of this method make the question of whether this gener-
alises to more copies of the group natural to consider. Garrett in [Gar87] considered
the inner product of a Siegel-type symplectic Eisenstein series of degree 3, diagonally
restricted to H × H × H, against three classical cusp eigenforms. He managed to
relate this to the triple product L-function attached to them ([Gar87, Theorem
1.3]). Analytic and arithmetic properties of this L-function then follow from the
ones of the Eisenstein series.

It seems, therefore, natural to investigate the following idea: Consider an Eisenstein
series of Siegel-type of degree n ≥ 1 and restrict it diagonally in k blocks of sizes
n1, n2, · · · , nk. We could then ask if the inner product of the Eisenstein series against
k cusp forms of degrees n1, n2, · · · , nk affords an Euler product, which can be related
to some known L-function.

The only known instance when that happens is the case of the symplectic group with
n = 5 and n1 = n2 = 2, n3 = 1. In particular, let F,G, h be Siegel modular forms of
even weight k ≥ 0 and degrees 2, 2 and 1, respectively. Heim, in [Hei99, Theorem
2.7], by considering such an inner product, obtained an integral representation of
the Dirichlet series

DF,G,h(s) :=
∞∑

m,ϵ,ℓ=1
(ϵ,ℓ)=1

⟨ϕm | Uℓ, ψmℓ2⟩amϵ2ϵ−2(k+s−1)ℓ−2(k+s−2)m−(2k+s−3). (3.1.1)

Here, {ϕm}, {ψm} are the Fourier-Jacobi coefficients of F,G respectively, {am} the
Fourier coefficients of h, and Uℓ is an index-raising operator acting on Fourier-Jacobi
forms (see [Hei99, p. 214, (24)]).

In the case when F,G, h are all Hecke eigenforms and F is in the Maass space (hence
plays the role of an auxiliary function), Heim considered a Hecke-Jacobi theory
in the context of parabolic Hecke rings in order to obtain an Euler product. In
particular, he used factorisation methods, as introduced by Andrianov in [And74]
and then developed by Gritsenko in a series of papers (e.g. [Gri84], [Gri95]).

It is then Heim’s result in [Hei99, Theorem 5.1] that gives the relation of this inner
product with the L-function for GSp4 × GL2. This integral expression was later
exploited systematically by Böcherer and Heim in [BH00] and [BH06], in order to
establish various algebraicity properties and lift restrictions on the weights of the
Siegel and elliptic modular forms by the use of differential operators.

In our case, we consider the exact analogue of the Dirichlet series in (3.1.1) for the case
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of three Hermitian cuspidal eigenforms. Our motivation is the similarities between
the symplectic and the unitary group of degree 2, as well as analogous factorisation
methods that exist for Hermitian modular forms as well (see, for example, [Gri92a]).
We investigate the arithmetic properties of DF,G,h(s) and relate it to the twist of
Gritsenko’s L-function by a classical L-function. Moreover, we also consider the
analogous integral considered by Heim and show that it produces DF,G,h(s), together
with an additional residue term. This is a fascinating phenomenon, special to
the unitary setting. However, it is not investigated in this thesis, and we hope it will
be the subject matter of a future work.

3.2 Hermitian Dirichlet Series

In this Section, we will define the Dirichlet series, which will be the main object of
study for this Chapter.

Assume k ≡ 0 (mod 4). Let F,G ∈ Sk2 and h ∈ Sk1 with real Fourier coefficients.

This is a technical assumption that could be lifted. Write Z =
 τ z1

z2 ω

 ∈ H2, W ∈

H1 and consider the Fourier-Jacobi expansions of F,G and the Fourier expansion of
h as follows:

F (Z) =
∞∑
m=1

ϕm(τ, z1, z2)e2πimω, G(Z) =
∞∑
m=1

ψm(τ, z1, z2)e2πimω,

h(W ) =
∞∑
n=1

ane
2πinW .

(3.2.1)

Now, for any p ∈ OK , we define the operator Up acting on Fourier-Jacobi forms:

Up : Jk,m −→ Jk,mN(p)

ϕm(τ, z1, z2) 7−→ ϕm(τ, pz1, pz2).
(3.2.2)

This is well-defined by [Das10, p. 427]. We now define the Dirichlet series of interest
as follows:

DF,G,h(s) :=
∑
p,q

∞∑
m=1
⟨ϕm | Up, ψmN(p)⟩amN(q)N(p)−(k+s−3)N(q)−(k+s−1)m−(2k+s−4).

(3.2.3)
Here, p, q ∈ Z[i]\{0} with gcd(p, q) = 1, q = u + iv, u > 0, v ≥ 0. The reason we
sum like this will become clear when we consider the integral representation (see
Corollary 3.6.3).

Lemma 3.2.1. The Dirichlet series DF,G,h(s) converges absolutely for Re(s) > 4
and represents a holomorphic function in this domain.
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Proof. We observe that

F

 τ pz1

pz2 N(p)ω

 =
∞∑
m=1

(ϕm | Up)(τ, z1, z2)e2πimN(p)ω.

In particular, as in the proof of [KS89, Lemma 1], we have ⟨ϕm | Up, ψmN(p)⟩ =
O
(
(mN(p))k

)
for each m ≥ 1 (see also [Gri92a, (5.6)]). Moreover, am = O(mk/2),

since h is a cuspidal Hecke eigenform. Hence, the Lemma follows.

3.3 Inert primes

Our aim in this Section is to relate the p-factor of the Dirichlet series of (3.2.3) with
L-functions, when F,G, h are Hecke eigenforms. This case is closer to the situation
considered by Heim in [Hei99]. We first start by proving several results related to
the Hecke theory.

3.3.1 Hecke operators and weak rationality theorems

Throughout this section, p is assumed to be a rational prime which remains prime
in OK . Let us make a list of Hecke operators in H(Γ2, S

2
p) and H(Γ1,1, S

1,1
p ) and

relations between them. We use the notation of Chapter 2. In particular, Γ2 is the
Hermitian modular group and Γ1,1 the relevant parabolic subgroup.

• Tp := Γ2diag(1, 1, p, p)Γ2.
• T1,p := Γ2diag(1, p, p2, p)Γ2.
• ∆p := Γ2diag(p, p, p, p)Γ2 = Γ2diag(p, p, p, p).
• T J(p) := Γ1,1diag(1, p, p2, p)Γ1,1.

• ∇p :=
∑

a∈Z/pZ
Γ1,1


p 0 0 0
0 p 0 a

0 0 p 0
0 0 0 p

 =
∑

a∈Z/pZ
∇a.

• ∆pδ := Γ1,1diag(pδ, pδ, pδ, pδ)Γ1,1 = Γ1,1diag(pδ, pδ, pδ, pδ), δ ≥ 1.

It is known that H(Γ2, S
2
p) is generated by Tp, T1,p,∆p and their inverses as a Q-

algebra (see for example [Klo15, Section 4.1.2]).

Also, for any operator X(p), we write Xr(p) to denote ∆−1
p X(p). Note here that we

use the same notation for ∆p as an element of H2
p and as an element of H1,1

p . Finally,
we define

T±(pδ) := j±(T (pδ)), Λ±(pδ) := j±
(
Γ1diag(pδ, pδ)Γ1

)
, δ ≥ 1, (3.3.1)
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where j± are the embeddings of equation (2.4.1) and T (pδ) as in Definition 2.5.3.
Therefore

• Λ−(p) = Γ1,1diag(p, p2, p, 1)Γ1,1 = Γ1,1diag(p, p2, p, 1).
• Λ+(p) = Γ1,1diag(p, 1, p, p2)Γ1,1.
• T−(p) = Γ1,1diag(1, p, p, 1)Γ1,1.
• T+(p) = Γ1,1diag(1, 1, p, p)Γ1,1.

As Λ−(p) has only one right coset and (Λ−(p))∗ = Λ+(p), where ∗ is the anti-
homomorphism of equation (2.4.2) (see [Gri92a, p. 2894]), we have

Λ±(pδ) = Λ±(pδ−1)Λ±(p), ∀δ ≥ 1. (3.3.2)

This also implies Λ±(pδ) = Λ±(p)δ for all δ ≥ 1.

Proposition 3.3.1. Let Φ denote the Satake mapping of Section 2.3 for the inert
prime p. We have

• Φ(Tp) = x0 + p−1x0x1 + p−1x0x2 + p−2x0x1x2 = x0(1 + p−1x1)(1 + p−1x2).
• Φ(T1,p) = p−2x2

0x1+p−2x2
0x2+p−4x2

0x
2
1x2+p−4x2

0x1x
2
2+p−6(p2+1)(p−1)x2

0x1x2.
• Φ(∆p) = p−6x2

0x1x2.

Proof. From Definition 2.5.2, we have

q(2)
p (t) = (1− x0t)(1− p−1x0x1t)(1− p−1x0x2t)(1− p−2x0x1x2t).

Also, from [Gri92a, Lemma 3.6], we have

Φ−1(q(2)
p (t)) = 1− Tpt+ (pT1,p + p(p3 + p2 − p+ 1)∆p)t2 − p4∆pTpt

3 + p8∆2
pt

4.

By comparing these two expressions, the Proposition follows.

Let now D(2)
p (X) := Z(2)

p (p−3X), with Z(2)
p as in Definition 2.5.1.

Proposition 3.3.2. We have

D(2)
p (X) = 1−B1X +B2X

2 −B1X
3 +X4,

where

B1 = p−3∆−1
p (T1,p − (p2 + 1)(p− 1)∆p),

B2 = p−4∆−1
p (T 2

p − 2pT1,p − 2p(p2 − p+ 1)∆p).



36
Chapter 3.

A Dirichlet Series Associated With Three Hermitian Modular
Forms

Proof. This follows by direct verification, after applying the Satake isomorphism and
using Proposition 3.3.1. We remind the reader here that Z(2)

p (X) = Φ−1(z(2)
p (X)),

where
z(2)
p (X) =

2∏
i=1

(1− p4x−1
i,pX)(1− p2xi,pX).

This also gives the Φ-image of D(2)
p .

We now have the following Proposition regarding the factorisation of D(2)
p .

Proposition 3.3.3. We have the following factorisation in H1,1
p [X]:

D(2)
p (X) = (1− p−3∆−1

p Λ−(p)X)S(2)(X)(1− p−3∆−1
p Λ+(p)X),

where
S(2)(X) = S0 − S1X + S2X

2 − S3X
3,

with

• S0 = 1.
• S1 = p−3(T J,r(p) +∇r

p − p(p2 − p+ 1)).
• S2 = p−4∆−1

p T+(p)T−(p)− p−3T J,r(p)− 2p−3∇r
p − p−2(p− 2).

• S3 = p−3(∇r
p − p).

Proof. This can be verified directly by using the following relations, which can be
found in the proof [Gri92a, Proposition 3.2], or can be proved directly.

• ϵ(T1,p) = T J(p) + Λ−(p) + Λ+(p) +
∇p −∆p.

• ϵ(Tp) = T−(p) + T+(p).
• T−(p)T+(p) = pT J(p)+(p3 +p4)∆p.
• Λ−(p)T+(p) = p3∆pT−(p).

• T−(p)Λ+(p) = p3∆pT+(p).
• Λ−(p)Λ+(p) = p6∆2

p.
• Λr

−(p)∇r
p = pΛr

−(p).
• ∇r

pΛr
+(p) = pΛr

+(p).

Here, ϵ denotes the embedding of H(Γ2, S
2) to H(Γ1,1, S

1,1), as described in Lemma
2.4.1.

Now, if F ∈ Sk2 has a Fourier-Jacobi expansion as in equation (3.2.1) and Q(2)
p

denotes the p-factor of Gritsenko’s L-function, as in Definition 2.5.2, we have the
following weak rationality Propositions.

Proposition 3.3.4. Let F ∈ Sk2 be a Hecke eigenform for H(Γ2, S
2) and m ≥ 1.

Then



3.3. Inert primes 37

Q
(2)
p,F (X)

∑
δ≥0

ϕmpδ | T+(pδ)Xδ =
(
ϕm − ϕm/p | T−(p)X + pϕm/p2 | Λ−(p)X2

)
|

| (1 + p(∇p − p∆p)X2),

where ϕm | (1 + p(∇p − p∆p)X2) =

ϕm if p | m

(1− p2k−6X2)ϕm otherwise
.

Proof. We follow the same proof as in [Gri95, Corollary 1]. Then, the result follows
from [Gri92a, Proposition 3.2]. We will just show the computations for the last claim
of our Proposition. We have

(F | ∆p)(Z) = (p2)2k−4(p2)−kF (Z) = p2k−8F (Z),

and so ϕm | ∆p = p2k−8ϕm. Also,

(F | ∇a)(Z) = (p2)2k−4(p2)−kF

 τ z1

z2 τ ′ + a/p

 =

= p2k−8
∞∑
m=1

ϕm(τ, z1, z2)e2πimτ ′
e2πima/p,

so

ϕm | ∇p =
p2k−8

p−1∑
a=0

e2πima/p

ϕm =

0 if (m, p) = 1

p2k−7ϕm otherwise
,

from which the result follows.

Proposition 3.3.5. Let F ∈ Sk2 be a Hecke eigenform for H(Γ2, S
2) and m ≥ 1.

Then

D
(2)
p,F (X)

∑
δ≥0

ϕmp2δ | (∆−1
pδ Λ+(pδ))(p−3X)δ = ϕm | S(2)(X)−

− ϕm/p2 | (∆−1
p Λ−(p)S(2)(X))p−3X.

Proof. This follows from Proposition 3.3.3, using the same techniques as in [Gri95,
Corollary 1].

In a similar fashion to Heim in [Hei99, page 227] now, we have that the action of
the operators T+(p),Λ+(p),∇r

p(p) on Fourier-Jacobi forms of index coprime to p is
identical to zero. This leads to the definition of the following polynomials:

S(2)(X)factor := 1− (p−3T J,r(p)− p−2 + p−1)X + p−2X2,

S(2)(X)prim : = 1− (p−3T J,r(p)− p−2(p2 − p+ 1))X+
(−p−3T J,r(p)− p−2(p− 2))X2 + p−2X3
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= S(2)(X)factor(1 +X).

Hence, ϕ | S(2)(X) = ϕ | S(2)(X)prim if ϕ ∈ Jk,m with gcd(m, p) = 1. We now have
the following Lemma.

Lemma 3.3.6. Let ϕ ∈ Jk,p. Then ϕ | S(2)(X)T+(p) = ϕ | T+(p)S(2)(X)factor.

Proof. The proof follows by the following results:

• ϕ | ∇r
p = pϕ.

• ϕ | T+(p)∇r
p = 0, because ϕ | T+(p) will have index 1.

• ϕ |
[
T J,r(p), T+(p)

]
= ϕ | (p3T+(p)−∇r

pT+(p) = (p3− p)ϕ | T+(p), by the first
point.

Here
[
T J,r(p), T+(p)

]
:= T J,r(p)T+(p)− T+(p)T J,r(p) denotes the commutator. We

will now give the proof of the third point. As in the proof of Proposition 3.3.3, we
have

• ϵ(T1,p) = T J(p) + Λ−(p) + Λ+(p) +∇p −∆p,
• ϵ(Tp) = T−(p) + T+(p).

Now, H2
p is a commutative Hecke algebra and as ϵ is a ring homomorphism, we have

ϵ(T1,p)ϵ(Tp) = ϵ(Tp)ϵ(T1,p).

By then considering the elements whose product has signature p (see Definition 2.4.2
and [Hei99, Section 3.3]), we obtain

T J(p)T+(p) + Λ+(p)T−(p) + (∇p −∆p)T+(p) = T+(p)T J(p) + T−(p)Λ+(p)+
+ T+(p)(∇p −∆p),

from which the result follows, as ϕ | Λ+(p) = 0 for ϕ ∈ Jk,p and T−(p)Λ+(p) =
p3∆pT+(p).

3.3.2 Calculation of the Dirichlet Series

Let now F,G, h have Fourier expansions as in equation (3.2.1) with real Fourier
coefficients. In what follows, we will assume that F,G, h are all Hecke eigenforms
for their corresponding Hecke rings (h is assumed to be normalised) and F is in the
Maass space, as we have defined in Definition 2.5.3. We can rewrite DF,G,h(s) of
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equation (3.2.3) as (we have ϕm = m3−kϕ1 | T−(m) for all m ≥ 1 from Definition
2.5.3)

DF,G,h(s) = 4
∑
l,ϵ,m

⟨m3−kϕ1 | T−(m)Ul, ψmN(l)⟩amN(ϵ)N(l)−(k+s−3)N(ϵ)−(k+s−1)×

×m−(2k+s−4)

= 4βk
∑
l,ϵ,m

⟨ϕ̃1 | T−(m)Ul, ψ̃mN(l)⟩AamN(ϵ)N(l)−sN(ϵ)−(k+s−1)m−(2k+s−4),

(3.3.3)

with l, ϵ ∈ Z[i] coprime with their real parts positive and imaginary parts non-
negative and m ∈ N. Also, βk is the constant of Lemma 2.2.10. Now, if ϕ ∈ Jk,m,
we have from Proposition 2.4.4 and the fact that Λ−(p) has a single right coset
representative, that

ϕ | Λ−(p) = p3k−8ϕ̃

 τ pz1

pz2 p2τ ′

 e−2πmp2τ ′ = p3k−8ϕ(τ, pz1, pz2) = p3k−8ϕ | Up,

with Up the operator of (3.2.2). We now define the p-part of the Dirichlet series

D
(p)
F,G,h(s) :=

∑
l,ϵ,m≥0

⟨ϕ̃1 | T−(pm)Upl , ψ̃pm+2l⟩Aapm+2ϵp−2slp−2(k+s−1)ϵp−(2k+s−4)m

=
∑

l,ϵ,m≥0
⟨ϕ̃1 | T−(pm)Λ−(pl), ψ̃pm+2l⟩Aapm+2ϵp−(3k+2s−8)lp−2(k+s−1)ϵ×

× p−(2k+s−4)m,

(3.3.4)

together with the condition that min(l, ϵ) = 0. The last line is obtained using the
relation between Up and Λ−(p) (and hence of Λ−(pl) and Upl). This series converges
absolutely for Re(s) > 4, by comparison with DF,G,h(s) (see Lemma 3.2.1).

Now, with respect to the inner product of Fourier-Jacobi forms, we have by [Gri92a,
Proposition 5.1] that Λadj

− (pl) = p(2k−6)lΛ+(pl) and T adj
− (pl) = p(k−3)lT+(pl) for any

l ≥ 1. This then gives that the adjoint of Λ−(pl) is Λ+(pl) for the inner product of
P -forms and similarly the P -form adjoint for T−(pl) is T+(pl).

Let now X := p−(k+s−1) and N := pk−1. Consider the Satake parameters
α1, α2 of the modular form h such that α1 + α2 = ap and α1α2 = pk−1. Let also
Xi := αip

−(2k+s−4), i = 1, 2. We write

D
(p)
F,G,h(s) = D(ϵ)(s) +D(l)(s)−D(ϵ,l)(s), (3.3.5)

where the corresponding index means that this variable (or both) is 0. Using the
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fact that
apm = αm+1

1 − αm+1
2

α1 − α2
,

and properties for the adjoint operators we mentioned above, we obtain:

D(ϵ)(s)(α1 − α2) = α1

∞∑
l,m=0
⟨ϕ̃1, ψ̃pm+2l | T+(pm)Λ+(pl)⟩Ap−(3k+2s−8)l(α1p

−(2k+s−4))m

− α2

∞∑
l,m=0
⟨ϕ̃1, ψ̃pm+2l | T+(pm)Λ+(pl)⟩Ap−(3k+2s−8)l(α2p

−(2k+s−4))m.

(3.3.6)

D(l)(s)(α1 − α2) = α1

∞∑
ϵ,m=0

⟨ϕ̃1, ψ̃pm | T+(pm)⟩A(α1p
−(k+s−1))2ϵ(α1p

−(2k+s−4))m

− α2

∞∑
ϵ,m=0

⟨ϕ̃1, ψ̃pm | T+(pm)⟩A(α2p
−(k+s−1))2ϵ(α2p

−(2k+s−4))m.

(3.3.7)

D(ϵ,l)(s)(α1 − α2) = α1

∞∑
m=0
⟨ϕ̃1, ψ̃pm | T+(pm)⟩A(α1p

−(2k+s−4))m

− α2

∞∑
m=0
⟨ϕ̃1, ψ̃pm | T+(pm)⟩A(α1p

−(2k+s−4))m.
(3.3.8)

Remark 3.3.7. In the following, we want to show a relation of D(p)
F,G,h(s) with some

other holomorphic function on an open subset of C, namely for Re(s) large enough.
By the Identity Theorem, it suffices to show equality when s is large enough and
real. This is true because that part of the real line has accumulation points (in fact,
every point is an accumulation point). Therefore, we will show the equalities below
for s ∈ R large enough.

Proposition 3.3.8. We have

D(l)(s)−D(ϵ,l)(s) = ⟨ϕ̃1, ψ̃1⟩A
α1 − α2

 α3
1X

2

Q
(2)
p,G(X1)

− α3
2X

2

Q
(2)
p,G(X2)

 .
Proof. This follows from equations (3.3.7), (3.3.8) and Proposition 3.3.4 with m = 1.
We have (because we have a Hermitian inner product, we need to conjugate in the
second argument)

∞∑
m=0
⟨ϕ̃1, ψ̃pm | T+(pm)⟩AXm

1 =
∞∑
m=0
⟨ϕ̃1, ψ̃pm | T+(pm)Xm

2 ⟩A

= ⟨ϕ̃1, Q
(2)
p,G(X2)−1(1− p2k−6X2

2 )ψ̃1⟩A
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= (1− p2k−6X2
1 )Q(2)

p,G(X1)−1⟨ϕ̃1, ψ̃1⟩A,

because X1, X2 are complex conjugates. Also,
∞∑
ϵ=0

(α1p
−(k+s−1))2ϵ = 1

1− α2
1p

−2(k+s−1) .

So, the first part of the difference we are interested in is

α1
⟨ϕ̃1, ψ̃1⟩A
α1 − α2

Q
(2)
p,G(X1)−1(1−p2k−6X2

1 )
(

1
1− α2

1p
−2(k+s−1) − 1

)
= ⟨ϕ̃1, ψ̃1⟩A

α1 − α2

α3
1X

2

Q
(2)
p,G(X1)

,

and similarly for the second part.

Proposition 3.3.9. Let Y := p2NX2 and l ≥ 0. Then, for i = 1, 2, we have

∞∑
m=0

ψ̃pm+2l | T+(pm)Λ+(pl)Xm
i (X2N−1p5)l = Q

(2)
p,G(Xi)−1(ψ̃p2l − ψ̃p2l−1 | T−(p)Xi+

+ pψ̃p2l−2 | Λ−(p)X2
i ) |

(
(1 + p(∇p − p∆p)X2

i )∆−1
pl Λ+(pl)(p−3Y )l

)
.

Proof. The proof follows from Proposition 3.3.4, together with the fact that G |
∆pl = (p2k−8)lG.

In order to compute Dϵ(s) of equation (3.3.6), we will compute each of the summands
above. We note that we need to interchange the Xi’s when we take them in/out of
the inner products.

Proposition 3.3.10. We have

α1Q
(2)
p,G(X1)−1

∞∑
l=0
⟨ϕ̃1, ψ̃p2l |k (1 + p(∇p − p∆p)X2

2 )∆−1
pl Λ+(pl)(p−3Y )l⟩A−

−α2Q
(2)
p,G(X2)−1

∞∑
l=0
⟨ϕ̃1, ψ̃p2l |k (1 + p(∇p − p∆p)X2

1 )∆−1
pl Λ+(pl)(p−3Y )l⟩A =

=
(
α1Q

(2)
p,G(X1)−1 − α2Q

(2)
p,G(X2)−1

) ⟨ϕ̃1, ψ̃1 |k S(2)(Y )⟩A
D

(2)
p,G(Y )

+

+
 α3

2X
2

Q
(2)
p,G(X2)

− α3
1X

2

Q
(2)
p,G(X1)

 ⟨ϕ̃1, ψ̃1⟩A.

Proof. We first observe

ψ̃p2l |k (1 + p(∇p − p∆p)X2
2 ) =

(1− p2k−6X2
2 )ψ̃1 if l = 0

ψ̃p2l if l ≥ 1
,
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by using the result of Proposition 3.3.4. Hence, by Proposition 3.3.5 we obtain

∞∑
l=0

ψ̃p2l |k (1 + p(∇p − p∆p)X2
2 )∆−1

pl Λ+(pl)(p−3Y )l = (1− p2k−6X2
2 )ψ̃1+

+
∞∑
l=1

ψ̃p2l |k ∆−1
pl Λ+(pl)(p−3Y )l

=
∞∑
l=0

ψ̃p2l |k ∆−1
pl Λ+(pl)(p−3Y )l−p2k−6X2

2 ψ̃1 = ψ̃1 |k S(2)(Y )D(2)
p,G(Y )−1−α2

2X
2ψ̃1.

After taking the inner product with ϕ̃1 and keeping in mind the conjugation hap-
pening, we get the expression for the first term. Similarly for the other term and
from this, the result follows.

Proposition 3.3.11. We have

α1Q
(2)
p,G(X1)−1

∞∑
l=0

p⟨ϕ̃1, ψ̃p2l−2 |k Λ−(p)X2
2 (1 + p(∇p− p∆p)X2

2 )∆−1
pl Λ+(pl)(p−3Y )l⟩A−

−α2Q
(2)
p,G(X2)−1

∞∑
l=0

p⟨ϕ̃1, ψ̃p2l−2 |k Λ−(p)X2
1 (1+p(∇p−p∆p)X2

1 )∆−1
pl Λ+(pl)(p−3Y )l⟩A =

=
α3

1Np
4X4

Q
(2)
p,G(X1)

− α3
2Np

4X4

Q
(2)
p,G(X2)

 ⟨ϕ̃1, ψ̃1 |k S(2)(Y )⟩A
D

(2)
p,G(Y )

.

Proof. We use the identities Λ−(p)(∇p− p∆p) = 0 and Λ−(p)Λ+(p) = p6(∆p)2, from
the proof of Proposition 3.3.3. We have, for i = 1, 2:

∞∑
l=0

pψ̃p2l−2 |k Λ−(p)X2
i (1 + p(∇p − p∆p)X2

i )∆−1
pl Λ+(pl)(p−3Y )l =

= p
∞∑
l=1

ψ̃p2l−2 |k Λ−(p)X2
i ∆−1

pl Λ+(pl)(p−3Y )l =

= p
∞∑
l=1

ψ̃p2l−2 |k p6(∆p)2∆−1
pl Λ+(pl−1)(p−3Y )lX2

i =

= p4
∞∑
l=1

ψ̃p2l−2 | ∆−1
pl−1Λ+(pl−1)(p−3Y )l−1∆pX

2
i Y = p2k−4D

(2)
p,G(Y )−1ψ̃1 | S(2)(Y )X2

i Y,

from which the result then follows. The last equality follows from Proposition 3.3.5.
We also used equation (3.3.2) as well as the facts that ∆l

p = ∆pl and that ∆p and
Λ+(p) commute, because of the fact that ∆p has a single right coset representative,
which is p14.

Now, from the proof of Proposition 3.3.3, we have ϵ(Tp) = T−(p) + T+(p). Since G
is a Hecke eigenform, we can write G | Tp = λpG for some λp ∈ C. Hence,

ψ̃1 || Tp = ψ̃p | T+(p) + ψ̃1/p | T−(p) = ψ̃p | T+(p), (3.3.9)
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and so ψ̃p | T+(p) = λpψ̃1. Moreover, from Lemma 2.3.3 and the fact that Tp has
real elementary divisors, we have that it is in fact self-adjoint. Hence λp ∈ R.

Proposition 3.3.12. Let λp denote the eigenvalue given by ψ̃p | T+(p) = λpψ̃1. We
then have

α1Q
(2)
p,G(X1)−1

∞∑
l=0
⟨ϕ̃1, ψ̃p2l−1 |k T−(p)X2(1 + p(∇p − p∆p)X2

2 )∆−1
pl Λ+(pl)(p−3Y )l⟩A−

−α2Q
(2)
p,G(X2)−1

∞∑
l=0
⟨ϕ̃1, ψ̃p2l−1 |k T−(p)X1(1+p(∇p−p∆p)X2

1 )∆−1
pl Λ+(pl)(p−3Y )l⟩A =

=
 α2

1p
4X3λp

Q
(2)
p,G(X1)(1 + Y )

− α2
2p

4X3λp

Q
(2)
p,G(X2)(1 + Y )

 ⟨ϕ̃1, ψ̃1 | S(2)(Y )prim⟩A
D

(2)
p,G(Y )

.

Proof. The proof is exactly the same as the proof in [Hei99, Proposition 4.5] (using
also the fact that ϕ |k S(2)(X)T+(p) = ϕ |k T+(p)S(2)(X)factor, if ϕ ∈ Jk,p as in
Lemma 3.3.6.)

Now, Proposition 3.3.8 gives us a way to compute D(l)(s)−D(ϵ,l)(s). Propositions
3.3.9, 3.3.10, 3.3.11, 3.3.12 can be used to compute D(l)(s). Moreover, the coefficients
of S(2)(X)prim are self-adjoint (see [Gri92a, Lemma 4.3]) and ϕ̃1 is an eigenform for
these operators. Indeed, this can be seen from [Gri92a, Theorem, p. 2911], as F is an
eigenform in the Maass space and the element T J(p) has signature 1 (see Definition
2.4.2). Hence

⟨ϕ̃1, ψ̃1 | S(2)(Y )⟩A = ⟨ϕ̃1, ψ̃1 | S(2)(Y )prim⟩A = ⟨ϕ̃1 | S(2)(Y )prim, ψ̃1⟩A =
= S

(2)
F (Y )prim⟨ϕ̃1, ψ̃1⟩A,

where we write S
(2)
F (Y )prim for the polynomial obtained when we substitute the

eigenvalue of ϕ̃1 with respect to the action of T J,r(p). Hence, from equation (3.3.5),
we obtain

D
(p)
F,G,h(s) = ⟨ϕ̃1, ψ̃1⟩AS(2)

F (Y )prim

(α1 − α2)D(2)
p,G(Y )

×

 α1

Q
(2)
p,G(X1)

− α2

Q
(2)
p,G(X2)

+

+α
3
1Np

4X4

Q
(2)
p,G(X1)

− α3
2Np

4X4

Q
(2)
p,G(X2)

− α2
1p

4X3λp

Q
(2)
p,G(X1)(1 + Y )

+ α2
2p

4X3λp

Q
(2)
p,G(X2)(1 + Y )

 .
Let us now look at the expression in the big bracket. The numerator equals

((α1 + α3
1Np

4X4)(1 + Y )− α2
1p

4X3λp)Q(2)
p,G(X2)−

− ((α2 + α3
2Np

4X4)(1 + Y )− α2
2p

4X3λp)Q(2)
p,G(X1).
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Here

Q
(2)
p,G(t) = 1− λpt+ (pλT1,p + p(p3 + p2 − p+ 1)p2k−8)t2 − p4p2k−8λpt

3 + p4k−8t4,

where λT1,p is the eigenvalue corresponding to the operator T1,p. Let then

A2 := pλT1,p + p(p3 + p2 − p+ 1)p2k−8.

By then performing the very lengthy calculation, and grouping in powers of Y , we
obtain that the above numerator equals

(α1 − α2)(1− Y )(1− Y (A2p
2N−2 − 2) + Y 2(p2N−2λ2

p − 2A2p
2N−2 + 2)−

− Y 3(A2p
2N−2 − 2) + Y 4)

= (α1 − α2)(1− Y )D(2)
p,G(Y ),

using Proposition 3.3.2. Hence, we obtain

D
(p)
F,G,h(s) = ⟨ϕ̃1, ψ̃1⟩AS(2)

F (Y )factor(1− Y )
Q

(2)
p,G(X1)Q(2)

p,G(X2)
. (3.3.10)

Let us now explore the connection of S(2)
F (Y )factor with known L-functions. We recall

that χ is the character we have fixed right before Definition 2.5.4.

Proposition 3.3.13. We have

S
(2)
F (Y )factor = Lp(f, k + s− 2)Lp (f, k + s− 2, χ) ,

where f ∈ Sk−1 (Γ0(4), χ) is the modular form whose Maass lift is F , as in Proposition
2.5.5. Here, Lp denotes the p-factor of the L-functions appearing in Definition 2.5.4.

Proof. Assume f has a Fourier expansion as in Definition 2.5.4. Let T (a, b) :=
Γ0(4)diag(a, b)Γ0(4) for a, b ≥ 1 such that a | b. Then, write

f |k−1 T (p) = a(p)f,

for the standard operator T (p) := Γ0(4)diag(1, p)Γ0(4), with a(p) ∈ C. This is the
same operator as T (1, p). Here, the |k−1 action is the usual GL2-action. By standard
relations between Hecke operators, we then have

T (p2) = T (p)2 − χ(p)pk−2,

where T (p2) := T (1, p2) + χ(p)pk−3. This then implies

f |k−1 T (1, p2) = (a(p)2 + pk−2 + pk−3)f.
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Using now [Gri90, Lemma 3.3], we obtain that

ϕ̃1 |k T J(p) = pk−4(a(p)2 + pk−2 + pk−3)ϕ̃1.

Hence
S

(2)
F (Y )factor = 1− p1−k(a(p)2 + 2pk−2)Y + p−2Y 2.

But, Y = p2NX2, N = pk−1 and X = p−(k+s−1). If αp, βp are as in Definition 2.5.4,
we obtain:

S
(2)
F (Y )factor = 1− p4−2k(α2

p + β2
p)p−2s + p−2k+4−2s

= (1− p4−2k−2sα2
p)(1− p4−2k−2sβ2

p)
= (1− αpp2−k−s)

(
1− βpχ(p)p2−k−s

) (
1− αpχ(p)p2−k−s

)
×

× (1− βpp2−k−s)

= Lp(f, k + s− 2)Lp (f, k + s− 2, χ) .

From equation (3.3.10) and Proposition 3.3.13, we obtain the following Theorem.

Theorem 3.3.14. Let F,G ∈ Sk2 and h ∈ Sk1 be Hecke eigenforms, all having
real Fourier coefficients, h normalised, and F belonging in the Maass space, with
corresponding f ∈ Sk−1 (Γ0(4), χ). Let also ϕ1, ψ1 denote the first Fourier-Jacobi coef-
ficients of F,G, Xi = αip

−(2k+s−4), i = 1, 2, where αi denote the Satake parameters
of h and Y = p−k−2s+2. We then have, for Re(s) large enough

D
(p)
F,G,h(s) = ⟨ϕ̃1, ψ̃1⟩ALp(f, k + s− 2)Lp (f, k + s− 2, χ) (1− Y )

Q
(2)
p,G(X1)Q(2)

p,G(X2)
.

Here, D(p)
F,G,h denotes the p-part of the Dirichlet series, as in equation (3.3.4) and

Q
(2)
p,G denotes the p-factor of Gritsenko’s L-function, as in Definition 2.5.2.

3.4 Split Primes

We will now consider the case where the odd rational prime p splits. That is, we have
that p = ππ for some prime element π ∈ OK . Our aim in this Section is to prove
weak rationality theorems analogous to Propositions 3.3.4 and 3.3.5. In order to do
that, we will first have to factorise the polynomials which serve as the p-factors of
the standard and Gritsenko’s L-function in the parabolic Hecke ring H1,1

p , as defined
in Definitions 2.5.1 and 2.5.2. The factorisation of the latter polynomial has been
done by Gritsenko in [Gri92a, Proposition 3.2]. Our aim, therefore, is to factorise
the standard Hecke polynomial. As we mentioned in Section 2.3, H1,1

p is isomorphic
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to the ring of polynomials of one variable with coefficients from the Hecke ring of
the parabolic subgroup

P1,2,1(Zp) =



g1 ∗ ∗
0 g ∗
0 0 g2

 ∈ GL4(Zp) | g1, g2 ∈ Z×
p , g ∈ GL2(Zp)

 .
Hence, we will first investigate Hecke rings of the general linear group and then use
this isomorphism to translate the relations back to H1,1

p .

3.4.1 Hecke rings in GL4 and factorisation

Let p be a prime that splits in OK and let

P1,2,1(Qp) =



g1 ∗ ∗
0 g ∗
0 0 g2

 ∈ GL4(Qp) | g1, g2 ∈ Q×
p , g ∈ GL2(Qp)

 .
be a parabolic subgroup of GL4(Qp). Denote by Γ1,2,1 := P1,2,1(Qp) ∩M4(Zp), the
group of Zp-points in P1,2,1(Qp). Let also H4 := H(GL4(Zp),GL4(Qp)) be the full
Hecke ring in this case and H1,2,1 := H(Γ1,2,1, P1,2,1(Qp)) denote the corresponding
parabolic Hecke ring.

Let us now explicitly describe the isomorphism H2
p
∼= H(GL4(Zp), GL4(Qp))[x±],

which will yield H1,1
p
∼= H1,2,1[x±], as Gritsenko does in [Gri92a, Proposition 2.4]

(H2
p and H1,1

p are the corresponding unitary rings).

We are in the setting of (2.3.3), where p is a prime that splits in K. We fix an
identification Kp := K ⊗ Qp

∼= Qp × Qp and denote by (µ,−µ) the image of the
element (2i)−1. Let also e := (1, 0), eσ := (0, 1) ∈ Kp. We perform the change of
variables g 7−→ C−1gC, where

C :=
 eI2 −µeσI2

µeσ12 e12

 =
I2 02

02 12

 ,
 02 −µI2

µ12 02

 ∈ GL4(Qp)×GL4(Qp)

(3.4.1)

with I2 :=
0 1

1 0

. We then have that G(2)
p (see (2.3.4)) is identified by

G̃(2)
p = {(X, Y ) ∈ GL4(Qp)×GL4(Qp) | Y t ·X = c14, c ∈ Q×

p },

and U (2)
p (see (2.3.5)) by

Ũ (2)
p = {(γ, α(γ−1)t) | γ ∈ GL4(Zp), α ∈ Z×

p },
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(see [Gri92a, p. 2890, 2891]). Define then pr : GL4(Kp) −→ GL4(Qp) by pr(x, y) = x,
induced by Kp

∼= Qp×Qp. Then (pr, c) gives an isomorphism G̃(2)
p
∼= GL4(Qp)×Q×

p .

The double coset of (M, c(M−1)t) ∈ G̃(2)
p with respect to Ũ (2)

p is determined by the
double coset of M with respect to GL4(Zp) and by the order δ of the ideal cZp.
We will denote such a coset by (M, δ)

Ũ
(2)
p

. Note that here there is a choice, namely
whether we have π 7−→ (pu, v) with u, v ∈ Z×

p or π 7−→ (pu′, v′) with u′, v′ ∈ Z×
p . In

the following, we always choose the first identification.

We remark that

I2 0
0 12

−1


a1 0 b1 b2

a3 a4 b3 b4

c1 0 d1 d2

0 0 0 d4


I2 0

0 12

 =


a4 a3 b3 b4

0 a1 b1 b2

0 c1 d1 d2

0 0 0 d4

 .

Therefore, via the map pr, we also obtain the isomorphism H1,1
p
∼= H1,2,1[x±].

We now note that the conditions of Lemma 2.4.1 hold for the Hecke rings H4, H1,2,1,
as explained in [Gri92b, page 2870]. The above identification makes the following
diagram commutative:

H2
p H4[x±]

H1,1
p H1,2,1[x±],

ϵ ϵ′

where ϵ, ϵ′ are the corresponding embeddings of Lemma 2.4.1.

We will now give a Lemma regarding the decomposition of an element in H1,2,1

into right cosets. Let n ≥ 1. For a given square matrix R ∈ Mn(Zp), we define
ΓRn := Γn ∩ R−1ΓnR. Also, if A,D are square matrices of sizes n1, n2 respectively,
we define

V (A,D) := {AY | Y ∈Mn1,n2(Zp) (mod D×)},

where AY1 ≡ AY2 (mod D×) if and only if AY1D
−1 − AY2D

−1 ∈Mn1,n2(Zp).

A straightforward generalisation of [Gri88a, Lemma 2] gives the following Lemma.

Lemma 3.4.1. Let a, b ∈ Q×
p and A ∈ GL2(Qp). We then have

Γ1,2,1


a ∗ ∗
0 A ∗
0 0 b

Γ1,2,1 =
∑

Γ1,2,1


a B D

0 A C

0 0 b




1 0 0
0 N 0
0 0 1

 ,

where N ∈ ΓA2 \Γ2 and B ∈ V (a,A), D ∈ V (a, b), C ∈ V (A, b).

We now denote by T (a, b, c, d) the element of the Hecke ring H(GL4(Qp),GL4(Zp))
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defined by
T (a, b, c, d) := GL4(Zp)diag(a, b, c, d)GL4(Zp).

We then have the standard elements of H4:

T1 := T (1, 1, 1, p), T2 := T (1, 1, p, p), T3 := T (1, p, p, p), ∆ := T (p, p, p, p). (3.4.2)

The decomposition of these elements into right cosets can be found in [And87, Lemma
3.2.18]. Our aim is to now compute the images of the standard Hecke operators of
equation (3.4.2) under the embedding of Lemma 2.4.1. In a similar fashion to H4,
we write

T0(a, b, c, d) := Γ1,2,1diag(a, b, c, d)Γ1,2,1,

for an element of H1,2,1. Let us now introduce some useful elements of H1,2,1.

• Λ1,3
+ := T0(1, p, p, p).

• Λ3,1
+ := T0(1, 1, 1, p).

• Λ1,3
− := T0(p, 1, 1, 1).

• Λ3,1
− := T0(p, p, p, 1).

• T−(p) := T0(p, 1, p, 1).
• T+(p) := T0(1, 1, p, p).
• ∆ := T0(p, p, p, p).

The right coset decompositions of these elements can now be computed by Lemma
3.4.1. We again note that we use the same symbol ∆ in both H4 and H1,2,1. We can
do that, as the embedding of Lemma 2.4.1 does not change this specific element.

Proposition 3.4.2. Let ϵ denote the embedding of the Hecke ring H4 into H1,2,1, as
described in Lemma 2.4.1. We then have the following images of the elements Ti:

• ϵ(T1) = Λ1,3
− + T0(1, 1, p, 1) + Λ3,1

+ .
• ϵ(T2) = T−(p) + T+(p) + T0(1, p, p, 1) + T0(p, 1, 1, p).
• ϵ(T3) = Λ3,1

− + T0(p, 1, p, p) + Λ1,3
+ .

Proof. These follow directly by the right coset decompositions and the definition of
the embedding ϵ. We note here a typo in Gritsenko’s paper [Gri92b, page 2879] in
the Λ+ component (it appears we need to swap Λ1,3

+ and Λ3,1
+ ).

We are now in a position to give the factorisation of the standard Hecke polynomial
Q4, as this is defined in [Gri92b, Example 2].

Theorem 3.4.3. Let Q4(t) := 1− T1t + pT2t
2 − p3T3t

3 + p6∆t4 ∈ H4[t]. Then, in
H1,2,1[t], we have the factorisation

Q4(t) = (1− Λ1,3
− t)(1− A1t+ pA2t

2)(1− Λ3,1
+ t),

where A1 := T0(1, 1, p, 1) and A2 := T0(1, p, p, 1).
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Proof. The factorisation follows by the images of the elements in Proposition 3.4.2
as well as the following relations:

• Λ1,3
− A1 = pT−(p).

• A1Λ3,1
+ = pT+(p).

• Λ1,3
− Λ3,1

+ = pT0(p, 1, 1, p).
• A2Λ3,1

+ = p2Λ1,3
+ .

• Λ1,3
− A2 = p2Λ3,1

− .
• Λ1,3

− A1Λ3,1
+ = p3T0(p, 1, p, p).

• Λ1,3
− A2Λ3,1

+ = p5∆.

These can be obtained by using the right coset decompositions of Lemma 3.4.1.

3.4.2 Hecke Operators and weak rationality theorems

We will now translate the results above back to the Hecke rings H2
p and H1,1

p of the
unitary group. We have the following correspondence between the standard elements
of H4 (see equation (3.4.2)) and of H2

p :

• T1 ←→ Tπ := Γ2diag(1, π, p, π)Γ2.
• T2 ←→ Tp := Γ2diag(1, 1, p, p)Γ2.
• T3 ←→ Tπ := Γ2diag(1, π, p, π)Γ2.

Also, for the correspondence between the Hecke operators of H1,1
p and H1,2,1, we

have:

• Λ1,3
+ ←→ Λ+(π) := Γ1,1diag(π, 1, π, p)Γ1,1.

• Λ3,1
+ ←→ Λ+(π) := Γ1,1diag(π, 1, π, p)Γ1,1.

• Λ3,1
− ←→ Λ−(π) := Γ1,1diag(π, p, π, 1)Γ1,1.

• Λ1,3
− ←→ Λ−(π) := Γ1,1diag(π, p, π, 1)Γ1,1.

• T0(1, 1, p, 1)←→ T (π) := Γ1,1diag(1, π, p, π)Γ1,1.
• T0(p, 1, p, p)←→ T (π) := Γ1,1diag(1, π, p, π)Γ1,1.
• T0(1, p, p, 1)←→ T (π, π) := Γ1,1diag(π, π, π, π)Γ1,1.
• T0(p, 1, 1, p)←→ T (π, π) := Γ1,1diag(π, π, π, π)Γ1,1.
• T−(p)←→ T−(p) := Γ1,1diag(1, p, p, 1)Γ1,1.
• T+(p)←→ T+(p) := Γ1,1diag(1, 1, p, p)Γ1,1.

We denote by ∆π := Γ1,1diag(π, π, π, π)Γ1,1 and similarly for ∆π and ∆p. We again
use the same notation for these as elements of H2

p as well. Finally, we also have the
operator ∇p as in Subsection 3.3.1. From [Klo15, Section 4.1.1], H2

p is generated by
Tp, Tπ, Tπ,∆π,∆π and their inveres as a Q-algebra.
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In order to make clear how the isomorphism described at the beginning of Subsection
3.4.1 works, let us describe it in the case of Λ+(π). We remark thatI2 0

0 12

 diag(a1, a2, a3, a4)
I2 0

0 12

−1

= diag(a2, a1, a3, a4).

We then have by sending π 7−→ p

Γ1,1diag(π, 1, π, p)Γ1,1 7−→ Γ1,2,1diag(p, 1, p, p)Γ1,2,1 7−→ Γ1,2,1diag(1, p, p, p)Γ1,2,1,

where the second arrow is simply the swap of the first two diagonal elements induced
by the matrix C, as described in (3.4.1). Also, since µ(diag(π, 1, π, p)) = p, Λ+(π)
gets mapped to (Λ1,3

+ , 1)
Ũ

(2)
p

, but in general we will not keep account of the second
coordinate. The only case in which this plays a difference is in the identification of
∆π and ∆p, which both get mapped to diag(p, p, p, p), but their factors of similitude
are 1, 2 respectively. The reason why factors of ∆π appear in the relations below is
to compensate for the second coordinate, as diag(π, π, π, π) 7−→ diag(1, 1, 1, 1).

The table below shows some relations between the above Hecke operators. These can
be obtained by translating back to H1,2,1 and using the right coset decompositions.
The way to read the table is that we first read an operator X in the first row, then
an operator Y in the first column, and the result is XY . We write “comm” to mean
that the operators commute.

Λ+(π) Λ+(π) Λ−(π) Λ−(π) T (π) T (π) T (π, π) T (π, π) T−(p) T+(p)
Λ+(π) comm p∆πT (π, π) p3∆p comm p∆πT+(p) comm p2∆πΛ+(π) p2∆πT (π) comm
Λ+(π) comm p3∆p p∆πT (π, π) p∆πT+(p) comm p2∆πΛ+(π) comm p2∆πT (π) comm
Λ−(π)
Λ−(π)
T (π) comm p∆πT−(p) comm
T (π) p∆πT−(p) comm comm
T (π, π) comm p2∆πΛ−(π)
T (π, π) p2∆πΛ−(π) comm
T−(p)
T+(p) p2∆πT (π) p2∆πT (π)

Table 3.1: Relations of Hecke Operators for split primes.

Proposition 3.4.4. Let

D(2)
π (t) := 1− Tπt+ p∆πTpt

2 − p3∆2
πTπt

3 + p6∆3
π∆πt

4 ∈ H2
p [t],

and
D

(2)
π (t) := 1− Tπt+ p∆πTpt

2 − p3∆2
πTπt

3 + p6∆3
π∆πt

4 ∈ H2
p [t].
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Let also
Sπ(t) := 1− T (π)t+ p∆πT (π, π)t2 ∈ H1,1

p [t],

and
Sπ(t) := 1− T (π)t+ p∆πT (π, π)t2 ∈ H1,1

p [t].

We then have the following factorisations

D(2)
π (t) = (1− Λ−(π)t)Sπ(t)(1− Λ+(π)t),

D
(2)
π (t) = (1− Λ−(π)t)Sπ(t)(1− Λ+(π)t).

Proof. This follows from Theorem 3.4.3 after pulling back to the parabolic Hecke
ring H1,1

p of the unitary group.

Remark 3.4.5. We remark here that Z(2)
π (t) = D(2)

π (∆−1
π t) and Z(2)

π (t) = D
(2)
π (∆−1

π t),
where Z(2)

π , Z
(2)
π are the standard polynomials defined in Section 2.3. This can be

seen by computing the images under the Satake mapping of the above coefficients,
as can be found in [Gri92a, Lemma 3.7].

We will need a Lemma regarding the decomposition of a Hecke operator in H1,1
p into

right cosets. Let ι : Γ1 −→ Γ1,1 denote the embedding

A B

C D

 7−→

A 0 B 0
0 1 0 0
C 0 D 0
0 0 0 1

 .

Also, for a set of representatives of OK/mk with m ∈ OK and k ∈ Z, we understand
that we only take 0 as the only representative if k ≤ 0. We then have:

Lemma 3.4.6. Let

M = diag(πa1πb1 , πa2πb2 , πa3πb3 , πa4πb4) ∈ S2
p ,

with ai, bi nonnegative integers. Then

Γ1,1MΓ1,1 =
∑
l,q,r
γ∈V

Γ1,1M


1 0 0 l

−q 1 l r − lq
0 0 1 q

0 0 0 1

 ı(γ),

where l, q, r run over elements in OK that satisfy r ∈ Z and they give representatives
of

l ∈ OK/πa4−a1πb4−b1 , q ∈ OK/πa4−a3πb4−b3 , r ∈ Z/pa4−a2 .
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Finally, γ runs over a set V such that

Γ1diag(πa1πb1 , πa3πb3)Γ1 =
∑
γ∈V

Γ1diag(πa1πb1 , πa3πb3)γ

is a decomposition into distinct right cosets relative to Γ1.

Proof. We write

H1,1 :=




1 0 0 l

−q 1 l r

0 0 1 q

0 0 0 1

 ∈ Γ1,1 | l, q, r ∈ OK


for the (integral) Heisenberg part of the Klingen parabolic. We then claim that

H1,1MH1,1 =
∑
l,q,r

H1,1M


1 0 0 l

−q 1 l r − lq
0 0 1 q

0 0 0 1

 , (3.4.3)

where l, q, r are as in the statement of the Lemma.

To see this, we first set h(l, q, r) :=


1 0 0 l

−q 1 l r

0 0 1 q

0 0 0 1

 and M = diag(α1, α2, α3, α4)

and calculate

h(l1, q1, r1)Mh(l2, q2, r2) =


α1 0 0 α1l2 + l1α4

−q1α1 − α2q2 α2 α2l2 + l1α3 ∗
0 0 α3 α3q2 + q1α4

0 0 0 α4

 ,

where ∗ = −q1α1l2 + α2r2 + l1α3q2 + r1α4. We first look at the upper right entry.
We have

α1l2 + l1α4 = πa1πb1l2 + l1π
a4πb4 .

If a1 ≥ a4 and b1 ≥ b4, we may write

α1l2 + l1α4 =
(
πa1−a4πb1−b4l2 + l1

)
πa4πb4 ,

and so we do not need right cosets in this case. In the other cases, we write

l2 = x+ yπa4−a1πb4−b1 ,
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with the understanding that we set πi = 1 and πj = 1 if i, j ≤ 0. We then have

α1l2 + l1α4 = πa1πb1x+ (l1 + y)πa4πb4 .

For example, when a4 > a1 and b1 ≥ b4, we write l2 = x+ yπa4−a1 and obtain

α1l2 + l1α4 = πa1πb1x+ yπa4πb1 + l1π
a4πb4 = πa1πb1x+ (yπb1−b4 + l1)πa4πb4 .

Similarly, looking at the entry

α2l2 + l1α3 = πa2πb2l2 + l1π
a3πb3

with l2 = x+ yπa4−a1πb4−b1 as above, we obtain,

α2l2 + l1α3 = πa2πb2x+ yπa2πb2πa4−a1πb4−b1 + l1π
a3πb3 = πa2πb2x+ (y + l1)πa3πb3 ,

where we have used the fact that a2 + b4 = b1 + a3 and a4 + b2 = a1 + b3, since
M ∈ S2

p .

In particular, for these entries it is enough to consider the entry l2 modulo πa4−a1πb4−b1

(with our convention). Similarly, by looking at the entries −q1α1 − α2q2 and α3q2 +
q1α4, we obtain the corresponding result for q2.

We are now left with the ∗ entry. Using the fact that we can write r1 = r′
1 − l1q1

and r2 = r′
2 − l2q2 for some r′

i ∈ Z, we have that the only part of the ∗ entry which
is not determined by our choices of q1, q2, l1, l2 is α2r

′
2 + r′

1α4. But

α2r
′
2 + r′

1α4 = πa2πb2r′
2 + r′

1π
a4πb4 .

Arguing as above and using the fact that a4 − a2 = b4 − b2, we see that the element
r′

2 needs to be selected from integers modulo πa4−a2πb4−b2 = pa4−a2 .

This establishes our claim of equation (3.4.3). The rest of the proof is identical to
the symplectic case, as done by Gritsenko in [Gri84, Lemma 3.1].

We now define the elements

T±(pδ) := j±
(
T
(
pδ
))
, Λ±(πδ) := j±

(
Γ1diag

(
πδ, πδ

)
Γ1
)
, δ ≥ 1,

as in the case of an inert prime (see equations (2.4.1), (3.3.1)) and similarly for
Λ±(πδ). In particular, using Lemma 3.4.6, or translating back to the Hecke algebra
of GL4, we obtain

Λ±(πδ) = Λ±(πδ−1)Λ±(π), δ ≥ 1. (3.4.4)

This implies Λ±(πδ) = Λ±(π)δ, δ ≥ 1. The same holds for Λ±(π).



54
Chapter 3.

A Dirichlet Series Associated With Three Hermitian Modular
Forms

We are now finally ready to obtain the rationality Theorems, as in the case of an
inert prime. Assume F ∈ Sk2 has a Fourier-Jacobi expansion as in equation (3.2.1)
and Q(2)

p denotes the p-factor of Gritsenko’s L-function, as in Definition 2.5.2.

Proposition 3.4.7. Let F ∈ Sk2 be a Hecke eigenform for H(Γ2, S
2) and m ≥ 1.

Then

Q
(2)
p,F (X)

∑
δ≥0

ϕmpδ | T+(pδ)Xδ =
(
ϕm − ϕm/p | T−(p)X + pϕm/p2 | Λ−(p)X2

)
| B(X),

where we define B to be the middle polynomial of degree 4 in the factorisation of
Q(2)
p (t) given in [Gri92a, Proposition 3.2, (3)]. In particular, we have

B(t) = 1−B1t+B2t
2 −B3t

3 +B4t
4 ∈ H1,1

p [t],

where

B1 = T (π, π) + T (π, π), B2 = p (Λ+(π)Λ−(π) + Λ+(π)Λ−(π))− p∇p + (p2 − p4)∆p,

B3 = p3 (∆πΛ+(π)Λ−(π) + ∆πΛ+(π)Λ−(π))− p4∆pB1, B4 = p5∆p∇p − p6∆2
p.

(3.4.5)

Moreover, from [Gri92a, Proposition 4.2], we have

ϕm | B(X) = (1− pk−3X)2(1− p2k−4X2)ϕm,

if (m, p) = 1.

Proof. The proof follows by [Gri92a, Proposition 4.1] and the fact that

Q
(1)
p,−(t) = 1− T−(p)t+ pΛ−(p)t2,

as is defined in [Gri92a, Proposition 3.2, (1)].

Proposition 3.4.8. Let F ∈ Sk2 be a Hecke eigenform for H(Γ2, S
2) and m ≥ 1.

Then,

D
(2)
π,F (X)

∑
δ≥0

ϕmpδ | Λ+(πδ)Xδ =
(
ϕm − ϕm/p | Λ−(π)X

)
| Sπ(X).

Similarly,

D
(2)
π,F (X)

∑
δ≥0

ϕmpδ | Λ+(πδ)Xδ =
(
ϕm − ϕm/p | Λ−(π)X

)
| Sπ(X),

with notation obtained by exchanging π and π. Here, Sπ, Sπ are the polynomials
appearing in Proposition 3.4.4.
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Proof. We have, in the same way as in [Gri84, Corollary, p. 264], the proof of which
can be found in [Gri84, Proposition 5.2], that

ϕm ||k Λ+(π) = ϕmp |k Λ+(π).

Then, inductively, using equation (3.4.4), we obtain

ϕm ||k Λ+(πδ) = ϕmpδ |k Λ+(πδ), ∀δ ≥ 1.

Now, since F is an eigenfunction for H(Γ2, S
2), we have D(2)

π,F (t)ϕm = ϕm || D(2)
π (t).

Then, we can write

D
(2)
π,F (X)

∑
δ≥0

ϕmpδ | Λ+(πδ)Xδ = D
(2)
π,F (X)

∑
δ≥0

(ϕm || Λ+(πδ))Xδ

= (ϕm || D(2)
π (X)) ||

∑
δ≥0

Λ+(πδ)Xδ

= (ϕm || D(2)
π (X)) ||

∑
δ≥0

Λ+(π)δXδ

= ϕm || (1− Λ−(π)X)Sπ(X)
= (ϕm − ϕm/p | Λ−(π)X) | Sπ(X),

as claimed. In the equalities above, we used that Λ+(πδ) = Λ+(π)δ from equation
(3.4.4) and also Proposition 3.4.4.

To end this Section, we will prove a couple of Lemmas, which will be useful later,
when we are dealing with the Dirichlet series of interest.

Lemma 3.4.9. Denote by Λ−(π)adj the adjoint of the operator Λ−(π) with respect
to the inner product of Fourier-Jacobi forms (see Definition 2.2.8). Then

Λ−(π)adj = pk−3Λ+(π).

Proof. Let ϕl, ψlp be two Fourier-Jacobi forms of weight k and of index l, lp respect-
ively. We observe from Lemma 3.4.6 that Λ−(π) = Γ1,1diag(π, p, π, 1). We also note
that the Jacobi form ϕl |k diag(π, p, π, 1) is of index lp for the group

Γ− := Γ1 ×OK ×OK =




a 0 b κ

∗ 1 ∗ ∗
c 0 d λ

0 0 0 1

 ∈ Γ1,1 |

a b

c d

 ∈ Γ1, κ, λ ∈ OK


.

In particular, if HJ
1 := H1 × C× C, we may write
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⟨ϕl |k Λ−(π), ψlp⟩ = p2k−4π−k

[Γ1,1 : Γ−]

∫
Γ−\HJ

1

ϕl(τ, πz1, πz2)ψlp(τ, z1, z2)×

× exp
(
−πlp |z1 − z2|2

v

)
vk−4dµ,

as in Definition 2.2.8. We now perform the change of variables z1 7−→ π−1z1 and
z2 7−→ π−1z2. This is equivalent to the action of the matrix diag(π, 1, π, p) on HJ

1 .
Now

(ψlp |k diag(π, 1, π, p)) (τ, z1, z2) = pk−4π−kψlp(τ, π−1z1, π
−1z2)

is a Jacobi form of weight k and index l with respect to the group

Γ+ := Γ1 × πOK × πOK =




a 0 b κ

∗ 1 ∗ ∗
c 0 d λ

0 0 0 1

 ∈ Γ1,1 |

a b

c d

 ∈ Γ1,

κ, λ ≡ 0 (mod π)} .

This group is obtained by considering the group diag(π, 1, π, p)−1Γ−diag(π, 1, π, p).
We therefore have

⟨ϕl |k Λ−(π), ψlp⟩ = p2k−6π−k

[Γ1,1 : Γ−]

∫
Γ+\HJ

1

ϕl(τ, z1, z2)ψlp(τ, π−1z1, π−1z2)×

× exp
(
−πl |z1 − z2|2

v

)
vk−4dµ.

On the other hand, we have by Lemma 3.4.6, that

Λ+(π) =
∑

a,b∈OK/π,
c∈Z/p

Γ1,1


π 0 0 0
0 1 0 0
0 0 π 0
0 0 0 p

h(a, b, c),

where h(a, b, c) :=


1 0 0 a

−b 1 a c− ab
0 0 1 b

0 0 0 1

. By now using the fact that

⟨ϕl |k h(a, b, c)−1, ψlp⟩ = ⟨ϕl, ψlp |k h(a, b, c)⟩,

we obtain

⟨ϕl, ψlp |k Λ+(π)⟩ = p3 pk−4π−k

[Γ1,1 : Γ+]

∫
Γ+\HJ

1

ϕl(τ, z1, z2)ψlp(τ, π−1z1, π−1z2)×
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× exp
(
−πl |z1 − z2|2

v

)
vk−4dµ,

as h(a, b, c)−1 ∈ Γ1,1 and hence they act trivially on ϕl. Therefore,

⟨ϕl |k Λ−(π), ψlp⟩ = pk−5 [Γ1,1 : Γ+]
[Γ1,1 : Γ−]⟨ϕl, ψlp | Λ+(π)⟩ = pk−3⟨ϕl, ψlp |k Λ+(π)⟩,

as the ratio of indices is p2. The result now follows.

Finally, knowing the action of the operators T (π, π) and T (π, π) on Jk,1 will prove
helpful in the following, so we give the following Lemma:

Lemma 3.4.10. Let ϕ ∈ Jk,1. We then have

ϕ |k T (π, π) = pk−3ϕ.

Proof. Using the decomposition in Lemma 3.4.6, we can write

T (π, π) =
∑

γ∈OK/π, β∈OK/π

Γ1,1


π 0 0 πβ

−γ π πβ −γβ
0 0 π γ

0 0 0 π

 .

The result now follows from [Gri90, Lemma 3.2].

Remark 3.4.11. The same is true for the operator T (π, π) = Γ1,1diag(π, π, π, π)Γ1,1.

3.4.3 Calculation of the Dirichlet series - First Part

Assume F,G, h satisfy the same assumptions as in the beginning of Subsection 3.3.2.
We recall from equation (3.3.3) that

DF,G,h(s) = 4βk
∑
l,ϵ,m

⟨ϕ̃1 | T−(m)Ul, ψ̃mN(l)⟩AamN(ϵ)N(l)−sN(ϵ)−(k+s−1)m−(2k+s−4),

with l, ϵ ∈ Z[i] coprime with their real parts positive and imaginary parts non-
negative and m ∈ N. In the case of a split prime p = ππ, we define the p-part of the
Dirichlet series by

D
(p)
F,G,h(s) :=

∑
l1,l2,ϵ1,ϵ2,m≥0

⟨ϕ̃1 | T−(pm)Uπl1Uπl2 , ψ̃pm+l1+l2 ⟩Aapm+ϵ1+ϵ2p
−s(l1+l2)×

× p−(k+s−1)(ϵ1+ϵ2)p−(2k+s−4)m, (3.4.6)

together with the conditions min(ϵ1, l1) = 0 and min(ϵ2, l2) = 0. This series converges
absolutely by comparison with D

(p)
F,G,h(s) (see Lemma 3.2.1).
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Consider now the Hecke operator

Λ−(π) = Γ1,1diag(π, p, π, 1)Γ1,1 = Γ1,1diag(π, p, π, 1),

by Lemma 3.4.6. Then, if ϕ is a Fourier-Jacobi form of any index m, we get

ϕ |k Λ−(π) = p2k−4π−kϕ̃

 τ πz1

πz2 pτ ′

 e−2πm
p
τ ′ = p2k−4π−kϕ(τ, πz1, πz2) =

= p2k−4π−kϕ |k Uπ. (3.4.7)

Hence, we can rewrite the series as:

D
(p)
F,G,h(s) =

∑
l1,l2,

ϵ1,ϵ2,m≥0
min(li,ϵi)=0

⟨ϕ̃1 | T−(pm)Λ−(πl1)Λ−(πl2), ψ̃pm+l1+l2 ⟩Aapm+ϵ1+ϵ2×

× p(4−2k)l1p(4−2k)l2πl1kπl2kp−s(l1+l2)p−(k+s−1)(ϵ1+ϵ2)p−(2k+s−4)m.

By then using an inclusion-exclusion argument, we have that the above series can
be written as

D
(p)
F,G,h(s) = D(ϵ1,ϵ2)(s) +D(l1,l2)(s) +D(ϵ1,l2)(s) +D(ϵ2,l1)(s) −

− D(ϵ1,ϵ2,l1)(s)−D(ϵ2,l1,l2)(s)−D(ϵ1,l1,l2)(s)−D(ϵ1,ϵ2,l2)(s) +D(ϵ1,ϵ2,l1,l2)(s),

where we use the same notation as in Subsection 3.3.2, meaning that the correspond-
ing index means the variables are 0. We can then deal with the “easy” parts first,
i.e., when the operators Λ− do not appear. We again consider s ∈ R big enough, as
in Remark 3.3.7.

Proposition 3.4.12. We have

D(l1,l2)(s)−D(l1,l2,ϵ1)(s)−D(l1,l2,ϵ2)(s) +D(l1,l2,ϵ1,ϵ2)(s) =

= ⟨ϕ̃1, ψ̃1⟩A
α1 − α2

α3
1(1− p2k−4X2

1 )X2

Q
(2)
p,G(X1)

− α3
2(1− p2k−4X2

2 )X2

Q
(2)
p,G(X2)

 ,
where X = p−(k+s−1) and Xi = αip

−(2k+s−4), as in Subsection 3.3.2.

Proof. We have

D(l1,l2)(s) =
∑

ϵ1,ϵ2,m≥0
⟨ϕ̃1 | T−(pm), ψ̃pm⟩Aapm+ϵ1+ϵ2p

−(k+s−1)(ϵ1+ϵ2)p−m(2k+s−4),

D(l1,l2,ϵ1)(s) =
∑

ϵ2,m≥0
⟨ϕ̃1 | T−(pm), ψ̃pm⟩Aapm+ϵ2p

−(k+s−1)ϵ2p−m(2k+s−4),
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D(l1,l2,ϵ2)(s) =
∑

ϵ1,m≥0
⟨ϕ̃1 | T−(pm), ψ̃pm⟩Aapm+ϵ1p

−(k+s−1)ϵ1p−m(2k+s−4),

D(l1,l2,ϵ1,ϵ2)(s) =
∑
m≥0
⟨ϕ̃1 | T−(pm), ψ̃pm⟩Aapmp−m(2k+s−4).

Using now the fact that apm = (αm+1
1 − αm+1

2 )/(α1 − α2) and the fact that the
adjoint of T−(pm) is T+(pm), when they are acting on P -forms (see also in [Gri92a,
Proposition 5.1] and Subsection 3.3.2), we get

D(l1,l2)(s)(α1 − α2) = α1
∑

ϵ1,ϵ2,m≥0
⟨ϕ̃1, ψ̃pm | T+(pm)⟩A(α1p

−(k+s−1))ϵ1+ϵ2(α1p
−(2k+s−4))m

− α2
∑

ϵ1,ϵ2,m≥0
⟨ϕ̃1, ψ̃pm | T+(pm)⟩A(α2p

−(k+s−1))ϵ1+ϵ2(α2p
−(2k+s−4))m,

and similarly for the others. Now, by Proposition 3.4.7, we obtain, as in Proposition
3.3.8:

∞∑
m=0
⟨ϕ̃1, ψ̃pm | T+(pm)⟩AXm

1 = (1− pk−3X1)2(1− p2k−4X2
1 )⟨ϕ̃1, ψ̃1⟩AQ(2)

p,G(X1)−1.

Also,
∞∑
ϵ2=0

(α1p
−(k+s−1))ϵ2 = 1

1− α1p−(k+s−1) and similarly for ϵ1, and

∞∑
ϵ1,ϵ2=0

(α1p
−(k+s−1))(ϵ1+ϵ2) =

(
1

1− α1p−(k+s−1)

)2

.

Hence, we obtain

D(l1,l2)(s)−D(l1,l2,ϵ1)(s)−D(l1,l2,ϵ2)(s) +D(l1,l2,ϵ1,ϵ2)(s) =

= ⟨ϕ̃1, ψ̃1⟩A
α1 − α2

α3
1(1− p2k−4X2

1 )X2

Q
(2)
p,G(X1)

− α3
2(1− p2k−4X2

2 )X2

Q
(2)
p,G(X2)

 .

3.4.4 Calculation of the Dirichlet Series - Second Part

In the following, we define

Y1 := πkp−(2k+s−4), Y2 := πkp−(2k+s−4), X := p−(k+s−1), Xi := αip
−(2k+s−4),

for i = 1, 2. Let us now consider the series

D(ϵ1,ϵ2,l2)(s) =
∑

l1,m≥0
⟨ϕ̃1 | T−(pm)Uπl1 , ψ̃pm+l1 ⟩Aapmp−sl1p−(2k+s−4)m.
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Using the fact that apm = (αm+1
1 − αm+1

2 )/(α1 − α2) and the relation between Uπ

and Λ−(π) of equation (3.4.7), we obtain that

(α1 − α2)D(ϵ1,ϵ2,l2)(s) = α1S1(s)− α2S2(s), (3.4.8)

where

Si(s) :=
∑
l,m≥0
⟨ϕ̃1 | T−(pm)Λ−(πl), ψ̃pm+l⟩Ap−(2k+s−4)lπlk(αip−(2k+s−4)))m.

Using now the fact that the adjoint (with respect to the inner product of P -forms)
of T−(p) is T+(p) and of Λ−(π) is Λ+(π) (Lemma 3.4.9) and that T−(p) and Λ−(π)
commute, we get

Si(s) =
∑
l,m≥0
⟨ϕ̃1, ψ̃pm+l | T+(pm)Λ+(πl)⟩AXm

i Y
l

1 =

=
∑
l,m≥0
⟨ϕ̃1, ψ̃pm+l | T+(pm)Λ+(πl)Y l

2 ⟩AXm
i ,

because we have a Hermitian inner product (and therefore we have to conjugate in
the second component of the inner product). We remind the reader that we work
with s ∈ R big enough.

Lemma 3.4.13. For i = 1, 2, we have

∑
l,m≥0

ψ̃pm+l | T+(pm)Λ+(πl)Xm
i Y

l
2 = 1

Q
(2)
p,G(Xi)

∑
l≥0

[
ψ̃pl − ψ̃pl−1|T−(p)Xi +

+ pψ̃pl−2 |Λ−(p)X2
i

]
| B(Xi)Λ+(πl)Y l

2 ,

with B the polynomial of Proposition 3.4.7.

Proof. The proof follows immediately from Proposition 3.4.7.

Let us now compute each of the sums occurring above.

Proposition 3.4.14. For i = 1, 2, we have

1
1− αiX

∑
l≥0

ψ̃pl | B(Xi)Λ+(πl)Y l
2 =

ψ̃1 | Sπ(Y2)
D

(2)
π,G(Y2)

− p2

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)Λ+(π)∆πY2Xi

D
(2)
π,G(Y2)

+

+
[
(1− αiX)(1− p2k−4X2

i )− 1
]
ψ̃1.
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Proof. Using the commutativity relations from Table 3.1, we obtain (using also
equation (3.4.5))

B2Λ+(π) = p2∆πΛ+(π)T (π, π), B3Λ+(π) = B4Λ+(π) = 0 (3.4.9)

Hence, from the rationality theorem given in Proposition 3.4.8, we obtain

∑
l≥0

ψ̃pl | Λ+(πl)Y l
2 = ψ̃1 | Sπ(Y2)

D
(2)
π,G(Y2)

.

∑
l≥0

ψ̃pl | T (π, π)Λ+(πl)Y l
2 =

∑
l≥0

ψ̃pl | Λ+(πl)T (π, π)Y l
2 = ψ̃1 | Sπ(Y2)T (π, π)

D
(2)
π,G(Y2)

.

∑
l≥0

ψ̃pl | T (π, π)Λ+(πl)Y l
2 = ψ̃1 | T (π, π) + p2∑

l≥1
ψ̃pl | ∆πΛ+(π)Λ+(πl−1)Y l

2

= ψ̃1 | T (π, π) + p2

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y )Λ+(π)∆πY2

D
(2)
π,G(Y2)

.

∑
l≥0

ψ̃pl | B2Λ+(πl)Y l
2 = ψ̃1 | B2 + p2∑

l≥1
ψ̃pl | Λ+(πl−1)Λ+(π)T (π, π)∆πY

l
2

= ψ̃1 | B2 + p2

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)Λ+(π)∆πT (π, π)Y2

D
(2)
π,G(Y2)

.

∑
l≥0

ψ̃pl | B3Λ+(πl)Y l
2 = ψ̃1 | B3.

∑
l≥0

ψ̃pl | B4Λ+(πl)Y l
2 = ψ̃1 | B4.

By putting all these together and then using Lemma 3.4.10, together with the fact
that aiX = pk−3Xi, we obtain the result.

Let us now consider the third sum.

Proposition 3.4.15. For i = 1, 2, we have

1
1− αiX

∑
l≥0

ψ̃pl−2 | Λ−(p)X2
i | B(Xi)Λ+(πl)Y l

2 =

= ψ̃1 | Sπ(Y2)Uπ(Xi)X2
i Y

2
2

D
(2)
π,G(Y2)

= p2k−4(pk−3 − p2k−4Xi)ψ̃1 | Sπ(Y2)∆πY
2

2 X
2
i

D
(2)
π,G(Y2)

,

where we define Uπ(t) := p4∆π∆p(T (π, π)− p4∆pt) ∈ H1,1
p [t].

Proof. We will first simplify Λ−(p)B(Xi). But Λ−(p) = Λ−(π)Λ−(π) = Λ−(π)Λ−(π),
so from the relations of Table 3.1 and equation (3.4.5), we have:
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• Λ−(p)B1 = Λ−(p)(T (π, π) + T (π, π)) = p2 (∆πΛ−(π)2 + ∆πΛ−(π)2).
• Λ−(p)B2 = p4∆pΛ−(p).
• Λ−(p)B3 = Λ−(p)B4 = 0.

Also, again from Table 3.1, we have that

• Λ−(π)Λ+(π) = p3∆p.
• Λ−(π)Λ+(π) = p∆πT (π, π).
• Λ−(p)Λ+(π2) = Λ−(π)Λ−(π)Λ+(π)Λ+(π) = p4∆p∆πT (π, π).

Now, T (π, π) and ∆p commute with Λ+(π) and so for l ≥ 2, we can write

Λ−(p)B(Xi)Λ+(πl) = Λ+(πl−2)[p4∆p∆πT (π, π)−
− (p4∆π∆pT (π, π)2 + p8∆π∆2

p)Xi + p8∆2
p∆πT (π, π)X2

i ] =
= Λ+(πl−2)(1− T (π, π)Xi)Uπ(Xi).

Hence,

∑
l≥0

ψ̃pl−2 | (Λ−(p)X2
i ) | B(Xi)Λ+(πl)Y l

2 =

=
∑
l≥2

ψ̃pl−2 | Λ+(πl−2)Y l−2
2 (1− T (π, π)Xi)Uπ(Xi)X2

i Y
2

2 =

= (1− αiX) ψ̃1 | Sπ(Y2)Uπ(Xi)X2
i Y

2
2

D
(2)
π,G(Y2)

,

by Proposition 3.4.8 and Lemma 3.4.10. Hence, the result follows.

Finally, for the middle term, we have:

Proposition 3.4.16. We have, for i = 1, 2

− 1
1− αiX

∑
l≥0

ψ̃pl−1 | T−(p)Xi | B(Xi)Λ+(πl)Y l
2 = −p2 ψ̃1 | Sπ(Y2)T (π)∆πXiY2

D
(2)
π,G(Y2)

+

+ p5

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)∆p∆πT+(p)Y 2

2 X
2
i

D
(2)
π,G(Y2)

+ p2k−4ψ̃1 | T (π)Y2X
2
i .

Proof. Firstly, we have no terms for l = 0, so we consider l ≥ 1. The idea is to pass
Λ+(πm) to the left for some m, so that it acts on the Fourier-Jacobi coefficients, and
then we will be able to apply the rationality Proposition 3.4.8. From equation (3.4.9),
we have B3Λ+(π) = B4Λ+(π) = 0. Now, using Table 3.1, we have T−(p)Λ+(π) =
p2∆πT (π) and that T (π) commutes with Λ+(π). Therefore, we can compute:
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∑
l≥0

ψ̃pl−1 | T−(p)Xi | Λ+(πl)Y l
2 = p2∑

l≥1
ψ̃pl−1 | Λ+(πl−1)Y l−1

2 T (π)∆πXiY2 =

= p2 ψ̃1 | Sπ(Y2)T (π)∆πY2Xi

D
(2)
π,G(Y2)

.

Let us now deal with T−(p)B1Λ+(πl). We remind the reader that B1 = T (π, π) +
T (π, π). We will deal with each part separately. By Table 3.1, we have (l ≥ 1)

T−(p)T (π, π)Λ+(πl) = T−(p)Λ+(πl)T (π, π) = p2∆πΛ+(πl−1)T (π)T (π, π).

For the other part, if l ≥ 2,

T−(p)T (π, π)Λ+(πl) = p2∆πT−(p)Λ+(π)Λ+(πl−1) = p4∆pT (π)Λ+(πl−1) =
= p5∆π∆pΛ+(πl−2)T+(p).

For l = 1, we have

T−(p)T (π, π)Λ+(π) = p2T−(p)Λ+(π) = p4∆pT (π).

Finally, we will deal with the term T−(p)B2Λ+(πl). Using equation (3.4.9) and
relations of Table 3.1, we have for l ≥ 2,

T−(p)B2Λ+(πl) = p2∆πT−(p)Λ+(π)T (π, π)Λ+(πl−1) = p4∆pT (π)Λ+(πl−1)T (π, π) =
= p5∆π∆pΛ+(πl−2)T+(p)T (π, π).

Finally, for l = 1, we get

T−(p)B2Λ+(π) = p4∆pT (π)T (π, π).

Applying now Proposition 3.4.8 and using Lemma 3.4.10 as well, we obtain the
stated result.

3.4.5 Calculation of the Dirichlet Series - Third Part

We will now deal with the Dirichlet series

D(ϵ1,ϵ2)(s) =
∑

l1,l2,m≥0
⟨ϕ̃1 | T−(pm)Λ−(πl2)Λ−(πl1), ψ̃pm+l1+l2 ⟩Aapmp(4−2k)l2p(4−2k)l1×

× πl2kπl1kp−s(l1+l2)p−(2k+s−4)m :=

:= (α1V1(s)− α2V2(s))/(α1 − α2), (3.4.10)



64
Chapter 3.

A Dirichlet Series Associated With Three Hermitian Modular
Forms

where

Vi(s) :=
∑

l1,l2,m≥0
⟨ϕ̃1, ψ̃pm+l1+l2 | T+(pm)Λ+(πl1)Λ+(πl2)⟩AXm

i Y
l1

2 Y
l2

1 , i = 1, 2.

Here, we remind that Xi = αip
−(2k+s−4), Y1 = πkp−(2k+s−4), Y2 = πkp−(2k+s−4) and

we keep in mind that the operators T+(p),Λ+(π),Λ+(π) all commute with each other.
This follows from the fact that j+ of equation (2.4.1) is a ring homomorphism and
H(Γ1, S

1
p) is commutative.

Lemma 3.4.17. For i = 1, 2, we have
∑

l1,l2,m≥0
ψ̃pm+l1+l2 | T+(pm)Λ+(πl1)Λ+(πl2)Xm

i Y
l1

1 Y
l2

2 =

= Q
(2)
p,G(Xi)−1 ∑

l1,l2≥0

[
ψ̃pl1+l2 − ψ̃pl1+l2−1 | T−(p)Xi + pψ̃pl1+l2−2 | Λ−(p)X2

i

]
|

| B(Xi)Λ+(πl2)Λ+(πl1)Y l1
1 Y

l2
2 .

Proof. The proof follows immediately from Proposition 3.4.7.

We will now deal with each sum occurring above.

Proposition 3.4.18. For i = 1, 2, we have
∑

l1,l2≥0
ψ̃pl1+l2 | B(Xi)Λ+(πl2)Λ+(πl1)Y l1

1 Y
l2

2 =

= (1− p2k−5Y1Y2)(1− p2Y2Y
−1

1 λπXi)(1− p2Y1Y
−1

2 λπXi)
ψ̃1 | Sπ(Y1)Sπ(Y2)
D

(2)
π,G(Y1)D(2)

π,G(Y2)

−
[
(pk−3 − p2Y1Y

−1
2 λπ)Xi + p2k−4X2

i

] ψ̃1 | Sπ(Y1)
D

(2)
π,G(Y1)

−

−
[
(pk−3 − p2Y2Y

−1
1 λπ)Xi + p2k−4X2

i

] ψ̃1 | Sπ(Y2)
D

(2)
π,G(Y2)

+

+p2

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)Λ+(π)∆πT (π, π)Y2X

2
i

D
(2)
π,G(Y2)

+

+p2

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Λ+(π)∆πT (π, π)Y1X

2
i

D
(2)
π,G(Y1)

+

+
[
(1− αiX)2(1− p2k−4X2

i ) + 2αiX − (1− p2k−4X2
i )
]
ψ̃1,

where λπ, λπ are the eigenvalues of ∆π,∆π respectively.
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Proof. Firstly, using Proposition 3.4.8 and commutativity relations of Table 3.1, we
have

∑
l1,l2≥0

ψ̃pl1+l2 | Λ+(πl2)Λ+(πl1)Y l1
1 Y

l2
2 =

=
∑
l1≥0

[
ψ̃pl1 − ψ̃pl1−1 | Λ−(π)Y2

]
| Sπ(Y2)Λ+(πl1)Y l1

1

D
(2)
π,G(Y2)

=

= (1− p2k−5Y1Y2)ψ̃1 | Sπ(Y1)Sπ(Y2)
D

(2)
π,G(Y1)D(2)

π,G(Y2)
.

Now, from equation (3.4.5), B1 = T (π, π) + T (π, π). Hence, from Proposition 3.4.8
and Table 3.1:

∑
l1,l2≥0

ψ̃pl1+l2 | T (π, π)Λ+(πl2)Λ+(πl1)Y l2
2 Y

l1
1 =

=
∑

l1,l2≥0
ψ̃pl1+l2 | Λ+(πl1)T (π, π)Λ+(πl2)Y l2

2 Y
l1

1 =

=
∑
l1≥0

ψ̃pl1 | Λ+(πl1)T (π, π)Y l1
1 + p2 ∑

l1≥0,l2≥1
ψ̃pl1+l2 | Λ+(πl1+1)Λ+(πl2−1)∆πY

l1
1 Y

l2
2 =

= ψ̃1 | Sπ(Y1)T (π, π)
D

(2)
π,G(Y1)

+

+ p2Y2Y
−1

1

(1− p2k−5Y1Y2)
ψ̃1 | Sπ(Y1)Sπ(Y2)∆π

D
(2)
π,G(Y1)D(2)

π,G(Y2)
− ψ̃1 | Sπ(Y2)∆π

D
(2)
π,G(Y2)

 ,
and we get an analogous result for

∑
l1,l2≥0

ψ̃pl1+l2 | T (π, π)Λ+(πl2)Λ+(πl1)Y l2
2 Y

l1
1 .

Next, using Table 3.1, we observe that for l1, l2 ≥ 1 we have

B2Λ+(πl2)Λ+(πl1) = pΛ+(π)Λ−(π)Λ+(πl2)Λ+(πl1) =
= pΛ+(π)Λ−(π)Λ+(π)Λ+(πl1−1)Λ+(πl2) =

= p4Λ+(π)∆pΛ+(πl1−1)Λ+(πl2) = p4Λ+(πl1)Λ+(πl2)∆p. (3.4.11)

Hence, ∑
l1,l2≥0

ψ̃pl1+l2 | B2Λ+(πl1)Λ+(πl2)Y l1
1 Y

l2
2 =

∑
l1≥0

ψ̃pl1 | B2Λ+(πl1)Y l1
1 +

∑
l2≥0

ψ̃pl2 | B2Λ+(πl2)Y l2
2 +



66
Chapter 3.

A Dirichlet Series Associated With Three Hermitian Modular
Forms

+
∑

l1,l2≥1
ψ̃pl1+l2 | B2Λ+(πl2)Λ+(πl1)Y l1

1 Y
l2

2 − ψ̃1 | B2 =

= ψ̃1 | B2 + p2

[
ψ̃p − ψ̃1 | Λ−(π)

]
| Sπ(Y2)Λ+(π)∆πT (π, π)Y2

D
(2)
π,G(Y2)

+

+p2

[
ψ̃p − ψ̃1 | Λ−(π)

]
| Sπ(Y1)Λ+(π)∆πT (π, π)Y1

D
(2)
π,G(Y1)

+

+p2k−4

(1− p2k−5Y1Y2)ψ̃1 | Sπ(Y1)Sπ(Y2)
D

(2)
π,G(Y1)D(2)

π,G(Y2)
− ψ̃1 | Sπ(Y2)

D
(2)
π,G(Y2)

− ψ̃1 | Sπ(Y1)
D

(2)
π,G(Y1)

+ ψ̃1

 ,
as the sum ∑

l1,l2≥1
ψ̃pl1+l2 | Λ+(πl1)Λ+(πl2)p4∆pY

l1
1 Y

l2
2

can be computed to be

p2k−4

(1− p2k−5Y1Y2)ψ̃1 | Sπ(Y1)Sπ(Y2)
D

(2)
π,G(Y1)D(2)

π,G(Y2)
− ψ̃1 | Sπ(Y2)

D
(2)
π,G(Y2)

− ψ̃1 | Sπ(Y1)
D

(2)
π,G(Y1)

+ ψ̃1

 .
Finally, ∑

l1,l2≥0
ψ̃pl1+l2 | B3Λ+(πl2)Λ+(πl1)Y l1

1 Y
l2

2 = ψ̃1 | B3,

and ∑
l1,l2≥0

ψ̃pl1+l2 | B4Λ+(πl2)Λ+(πl1)Y l1
1 Y

l2
2 = ψ̃1 | B4,

as B3Λ+(π) = B4Λ+(π) = B3Λ+(π) = B4Λ+(π) = 0 from equation (3.4.9).

Proposition 3.4.19. For i = 1, 2, we have
∑

l1,l2≥0
ψ̃pl1+l2−2 | Λ−(p)B(Xi)Λ+(πl1)Λ+(πl2)Y l1

1 Y
l2

2 X
2
i =

= (1− αiX)
 ψ̃1 | Sπ(Y2)Uπ(Xi)X2

i Y
2

2

D
(2)
π,G(Y2)

+ ψ̃1 | Sπ(Y1)Uπ(Xi)X2
i Y

2
1

D
(2)
π,G(Y1)

+

+ p4k−10Y1Y2(1− p2k−5Y1Y2)(1− p2Y2Y
−1

1 λπXi)(1− p2Y1Y
−1

2 λπXi)X2
i ×

× ψ̃1 | Sπ(Y1)Sπ(Y2)
D

(2)
π,G(Y1)D(2)

π,G(Y2)

− p4k−10X3
i Y1Y2(pk−3 − p2Y1Y

−1
2 λπ) ψ̃1 | Sπ(Y1)

D
(2)
π,G(Y1)

−

− p4k−10X3
i Y1Y2(pk−3 − p2Y2Y

−1
1 λπ) ψ̃1 | Sπ(Y2)

D
(2)
π,G(Y2)

,
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where again Uπ(t) := p4∆π∆p(T (π, π)− p4∆pt) ∈ H1,1
p [t], as in Proposition 3.4.15.

Proof. For the proof, we rewrite the sum as follows:
∑

l1,l2≥0
=

∑
l1=0, l2≥2

+
∑

l2=0, l1≥2
+

∑
l1,l2≥1

.

We know how to compute the first two sums by Proposition 3.4.15, so will now deal
with the last one. We rewrite this as

∑
l1,l2≥1

ψ̃pl1+l2−2 | Λ−(p)B(Xi)Λ+(p)Λ+(πl1−1)Λ+(πl2−1)Y l1
1 Y

l2
2 X

2
i .

But
Λ−(p)B(Xi)Λ+(p) = p6∆2

p(1−B1Xi + p4∆pX
2
i ),

as we can obtain by Table 3.1 or the relations written in [Gri92b, p. 2881-2882].
Now, using Proposition 3.4.8, we get

∑
l1,l2≥1

ψ̃pl1+l2−2 | Λ+(πl1−1)Λ+(πl2−1)Y l1
1 Y

l2
2 X

2
i =

= Y1Y2
∑

l1,l2≥0
ψ̃pl1+l2 | Λ+(πl1)Λ+(πl2)Y l1

1 Y
l2

2 X
2
i =

= (1− p2k−5Y1Y2)Y1Y2X
2
i

ψ̃1 | Sπ(Y1)Sπ(Y2)
D

(2)
π,G(Y1)D(2)

π,G(Y2)
.

Also, B1 = T (π, π) + T (π, π) and we have

∑
l1,l2≥1

ψ̃pl1+l2−2 | T (π, π)Λ+(πl1−1)Λ+(πl2−1)Y l1
1 Y

l2
2 =

=
∑

l1,l2≥1
ψ̃pl1+l2−2 | Λ+(πl1−1)T (π, π)Λ+(πl2−1)Y l1

1 Y
l2

2 =

= Y1Y2
∑

l1,l2≥0
ψ̃pl1+l2 | Λ+(πl1)T (π, π)Λ+(πl2)Y l1

1 Y
l2

2 =

= Y1Y2
∑
l1≥0

ψ̃pl1 | Λ+(πl1)T (π, π)Y l1
1 +

+ p2Y1Y2
∑

l1≥0,l2≥1
ψ̃pl1+l2 | Λ+(πl1+1)Λ+(πl2−1)∆πY

l1
1 Y

l2
2

= Y1Y2
ψ̃1 | Sπ(Y1)T (π, π)

D
(2)
π,G(Y1)

+

+ p2Y 2
2
∑
l1≥0

[
ψ̃pl1+1 − ψ̃pl1 | Λ−(π)Y2

]
| Sπ(Y2)Λ+(πl1+1)∆πY

l1+1
1

D
(2)
π,G(Y2)
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= Y1Y2
ψ̃1 | Sπ(Y1)T (π, π)

D
(2)
π,G(Y1)

+

+ p2Y 2
2

(1− p2k−5Y1Y2)
ψ̃1 | Sπ(Y1)Sπ(Y2)∆π

D
(2)
π,G(Y1)D(2)

π,G(Y2)
− ψ̃1 | Sπ(Y2)∆π

D
(2)
π,G(Y2)

 ,
We obtain a similar expression for T (π, π) and then the result follows.

Proposition 3.4.20. For i = 1, 2, we have
∑

l1,l2≥0
ψ̃pl1+l2−1 | T−(p)B(Xi)Λ+(πl1)Λ+(πl2)Y l1

1 Y
l2

2 =

(1− αiX) ×

×

p2 ψ̃1 | Sπ(Y2)T (π)∆πXiY2

D
(2)
π,G(Y2)

− p5

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)∆p∆πT+(p)Y 2

2 X
2
i

D
(2)
π,G(Y2)

−

−p2k−4ψ̃1 | T (π)Y2X
2
i +

+p2 ψ̃1 | Sπ(Y1)T (π)∆πXiY1

D
(2)
π,G(Y1)

− p5

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)∆p∆πT+(p)Y 2

1 X
2
i

D
(2)
π,G(Y1)

−

−p2k−4ψ̃1 | T (π)Y1X
2
i

]
+

+1
2p

2k−5(1 + p2k−4X2
i )Xi ×

×

(1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)T+(p)Y1Y2

D
(2)
π,G(Y1)D(2)

π,G(Y2)
−

− ψ̃1 | Λ−(π)Sπ(Y2)T+(p)Y1Y
2

2

D
(2)
π,G(Y2)

+

+ (1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)Sπ(Y1)T+(p)Y1Y2

D
(2)
π,G(Y2)D(2)

π,G(Y1)
−

− ψ̃1 | Λ−(π)Sπ(Y1)T+(p)Y2Y
2

1

D
(2)
π,G(Y1)

−

−X2
i

p5(1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)∆π∆pT+(p)Y 2

2

D
(2)
π,G(Y1)D(2)

π,G(Y2)
−

−p5 ψ̃p | Sπ(Y2)T+(p)∆π∆pY
2

2

D
(2)
π,G(Y2)

+ p2k−4Y2

(
ψ̃1 | Sπ(Y1)T (π)

D2
π,G(Y1)

− ψ̃1 | T (π)
)

+
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+p5(1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)Sπ(Y1)∆π∆pT+(p)Y 2

1

D
(2)
π,G(Y2)D(2)

π,G(Y1)
−

−p5 ψ̃p | Sπ(Y1)T+(p)∆π∆pY
2

1

D
(2)
π,G(Y1)

+ p2k−4Y1

(
ψ̃1 | Sπ(Y2)T (π)

D2
π,G(Y2)

− ψ̃1 | T (π)
) .

Proof. If l1 = 0 or l2 = 0, then we know how to compute this by Proposition 3.4.16.
So, assume l1, l2 ≥ 1. Now,

T−(p)Λ+(πl2)Λ+(πl1) = p3Λ+(πl2−1)Λ+(πl1−1)T+(p)∆p,

using that T−(p)Λ+(p) = p3∆pT+(p). Hence, we have

∑
l1,l2≥1

ψ̃pl1+l2−1 | T−(p)Λ+(πl1)Λ+(πl2)Y l1
1 Y

l2
2 =

= p3 ∑
l1,l2≥1

ψ̃pl1+l2−1 | Λ+(πl1−1)Λ+(πl2−1)T+(p)∆pY
l1

1 Y
l2

2 =

= p3 ∑
l1≥1

[
ψ̃pl1 − ψ̃pl1−1 | Λ−(π)Y2

]
| Sπ(Y2)Λ+(πl1−1)T+(p)∆pY

l1
1 Y2

D
(2)
π,G(Y2)

=

= p3

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)T+(p)∆pY1Y2

D
(2)
π,G(Y1)D(2)

π,G(Y2)
−

− p3 ψ̃1 | Λ−(π)Sπ(Y2)T+(p)∆pY1Y
2

2

D
(2)
π,G(Y2)

−

−p6

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)T+(p)∆2

pY
2

1 Y
2

2

D
(2)
π,G(Y1)D(2)

π,G(Y2)
=

= p3(1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)T+(p)∆pY1Y2

D
(2)
π,G(Y1)D(2)

π,G(Y2)
−

− p3 ψ̃1 | Λ−(π)Sπ(Y2)T+(p)∆pY1Y
2

2

D
(2)
π,G(Y2)

.

We note here that the last expression is not (visibly) symmetric when we interchange
π ←→ π. In order to make it symmetric, we compute it by calculating the series
involving the operator Λ−(π) first and hence we can write

∑
li≥1

ψ̃pl1+l2−1 | T−(p)Λ+(πl1)Λ+(πl2)Y l1
1 Y

l2
2 =
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= 1
2p

2k−5

(1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)T+(p)Y1Y2

D
(2)
π,G(Y1)D(2)

π,G(Y2)
−

− ψ̃1 | Λ−(π)Sπ(Y2)T+(p)Y1Y
2

2

D
(2)
π,G(Y2)

+

+ (1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)Sπ(Y1)T+(p)Y1Y2

D
(2)
π,G(Y2)D(2)

π,G(Y1)
−

− ψ̃1 | Λ−(π)Sπ(Y1)T+(p)Y2Y
2

1

D
(2)
π,G(Y1)

 .
Moreover, as in equation (3.4.11), we have that

B2Λ+(πl2)Λ+(πl1) = p4∆pΛ+(πl1)Λ+(πl2),

and so
T−(p)B2Λ+(πl2)Λ+(πl1) = p7Λ+(πl2−1)Λ+(πl1−1)T+(p)∆2

p.

Finally, for the last one, we note B1 = T (π, π) + T (π, π). Now
∑

l1,l2≥1
ψ̃pl1+l2−1 | T−(p)T (π, π)Λ+(πl2)Λ+(πl1)Y l1

1 Y
l2

2 =

= p2 ∑
l1,l2≥1

ψ̃pl1+l2−1 | T−(p)Λ+(πl1+1)Λ+(πl2−1)∆πY
l1

1 Y
l2

2 =

= p2 ∑
l1≥1,l2=1

+ p2 ∑
l1≥1,l2≥2

.

For the first sum, we have

p2 ∑
l1≥1

ψ̃pl1 | T−(p)Λ+(πl1+1)∆πY
l1

1 Y2 = p4Y2
∑
l1≥1

ψ̃pl1 | Λ+(πl1)T (π)∆pY
l1

1 =

= p4Y2
∑
l1≥0

ψ̃pl1 | Λ+(πl1)T (π)∆pY
l1

1 − p4Y2ψ̃1 | T (π)∆p =

= p2k−4Y2

[
ψ̃1 | Sπ(Y1)T (π)

D2
π,G(Y1)

− ψ̃1 | T (π)
]
.

For the second

p2 ∑
l1≥1,l2≥2

ψ̃pl1+l2−1 | T−(p)Λ+(πl1+1)Λ+(πl2−1)∆πY
l1

1 Y
l2

2 =

= p5 ∑
l1≥1,l2≥2

ψ̃pl1+l2−1 | Λ+(π)l2−2Λ+(πl1)∆π∆pT+(p)Y l1
1 Y

l2
2 =

= p5 ∑
l1≥1

[
ψ̃pl1+1 − ψ̃pl1 | Λ−(π)Y2

]
| Sπ(Y2)Λ+(πl1)∆π∆pT+(p)Y 2

2 Y
l1

1

D
(2)
π,G(Y2)

.
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But ∑
l1≥1

ψ̃pl1+1 | Sπ(Y2)Λ+(πl1)∆π∆pT+(p)Y 2
2 Y

l1
1 =

=

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)∆π∆pT+(p)Y 2

2

D
(2)
π,G(Y1)

− ψ̃p | Sπ(Y2)T+(p)∆π∆pY
2

2 ,

and ∑
l1≥1

ψ̃pl1 | Λ−(π)Y2Sπ(Y2)Λ+(πl1)∆π∆pT+(p)Y 2
2 Y

l1
1 =

= p3 ∑
l1≥1

ψ̃pl1 | Λ+(πl1−1)Y l1
1 Sπ(Y2)T+(p)∆π∆2

pY
3

2 =

= p3

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)∆π∆2

pT+(p)Y 3
2 Y1

D
(2)
π,G(Y1)

.

Hence, in total
∑

l1,l2≥1
ψ̃pl1+l2−1 | T−(p)T (π, π)Λ+(πl2)Λ+(πl1)Y l1

1 Y
l2

2 =

= p5

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)∆π∆pT+(p)Y 2

2

D
(2)
π,G(Y1)D(2)

π,G(Y2)
−p5 ψ̃p | Sπ(Y2)T+(p)∆π∆pY

2
2

D
(2)
π,G(Y2)

− p8

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)∆π∆2

pT+(p)Y 3
2 Y1

D
(2)
π,G(Y1)D(2)

π,G(Y2)
+

+ p2k−4Y2

[
ψ̃1 | Sπ(Y1)T (π)

D2
π,G(Y1)

− ψ̃1 | T (π)
]
,

and the corresponding expression for T (π, π).

3.4.6 Final expression for the Dirichlet series

We recall that

D
(p)
F,G,h(s) = D(ϵ1,ϵ2)(s) +D(l1,l2)(s) +D(ϵ1,l2)(s) +D(ϵ2,l1)(s)−

−D(ϵ1,ϵ2,l1)(s)−D(ϵ2,l1,l2)(s)−D(ϵ1,l1,l2)(s)−D(ϵ1,ϵ2,l2)(s) +D(ϵ1,ϵ2,l1,l2)(s).

Now, from (3.4.8), we have

(α1 − α2)D(ϵ1,ϵ2,l2)(s) = α1S1(s)− α2S2(s).

Hence,
(α1 − α2)D(ϵ1,l2)(s) = α1

1− α1X
S1(s)−

α2

1− α2X
S2(s),
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so
(α1 − α2)[D(ϵ1,l2)(s)−D(ϵ1,ϵ2,l2)(s)] = α2

1X

1− α1X
S1(s)−

α2
2X

1− α2X
S2(s).

We also recall from equation (3.4.10) that we have

(α1 − α2)D(ϵ1,ϵ2)(s) = α1V1(s)− α2V2(s).

We can now state:

Theorem 3.4.21. Let 2 ̸= p = ππ be a split prime in OK. Let F,G ∈ Sk2 and
h ∈ Sk1 be Hecke eigenforms, all having real Fourier coefficients, h normalised, and
F belonging in the Maass space. Let also ϕ1, ψ1 be the first Fourier-Jacobi coefficients
of F,G respectively and Xi = αip

−(2k+s−4), Y1 = πkp−(2k+s−4), Y2 = πkp−(2k+s−4).
We then have for Re(s) large enough

(α1 − α2)D(p)
F,G,h(s) = 1

Q
(2)
p,G(X1)

⟨ϕ̃1, P (α2, s; G)⟩A −
1

Q
(2)
p,G(X2)

⟨ϕ̃1, P (α1, s; G)⟩A,

where (keeping in mind the conjugation because of the inner product)

P (αi, s; G) := αiXip
k−2(1− pk−2Xi)

(1 + p3k−8XiY1Y2)
ψ̃1 | Sπ(Y2)
D

(2)
π,G(Y2)

−

−Y1
ψ̃1 | Sπ(Y2)T (π)

D
(2)
π,G(Y2)

+ (1 + p3k−8XiY1Y2)
ψ̃1 | Sπ(Y1)
D

(2)
π,G(Y1)

− Y2
ψ̃1 | Sπ(Y1)T (π)

D
(2)
π,G(Y1)

−
−1

2αiXip
2k−5Y1Y2(1− pk−2Xi)2×

×

(1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y1

]
| Sπ(Y1)Sπ(Y2)T+(p)

D
(2)
π,G(Y1)D(2)

π,G(Y2)
−

− ψ̃1 | Λ−(π)Sπ(Y2)T+(p)Y2

D
(2)
π,G(Y2)

+

+(1− p2k−5Y1Y2)

[
ψ̃p − ψ̃1 | Λ−(π)Y2

]
| Sπ(Y2)Sπ(Y1)T+(p)

D
(2)
π,G(Y2)D(2)

π,G(Y1)
−

− ψ̃1 | Λ−(π)Sπ(Y1)T+(p)Y1

D
(2)
π,G(Y1)

+

+αi(1− p2k−5Y1Y2)(1 + p4k−9Y1Y2X
2
i )(1− pk−2Xi)2 ψ̃1 | Sπ(Y1)Sπ(Y2)

D
(2)
π,G(Y1)D(2)

π,G(Y2)
,

with Sπ, Sπ the polynomials defined in Proposition 3.4.4 and
Λ−(π), Λ−(π), T (π), T (π), T+(p) the operators defined in Subsection 3.4.2.
Also, Q(2)

p and D(2)
π , D

(2)
π denote the p-factors of Gritsenko’s and standard’s
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L-function respectively, as in Definitions 2.5.2 and 2.5.1 and D
(p)
F,G,h(s) is the

p-factor of the Dirichlet series, as in equation (3.4.6).

Proof. We observe that both the left and right hand side of the claimed equation
in the Theorem are holomorphic functions in s for Re(s) large enough. Hence,
it is enough to prove the equality for s ∈ R (see also the Remark 3.3.7 before
Proposition 3.3.8). But then this follows by putting together the results of the last
three Subsections.

We finally have the following Proposition about the relation of Sπ(Y1)Sπ(Y2) with
known L-functions.

Proposition 3.4.22. Assume 2 ̸= p = ππ is a split prime in OK. We have

Sπ,F (Y1)Sπ,F (Y2) = Lp(s+ k − 2, f)Lp (s+ k − 2, f, χ) ,

where f ∈ Sk−1 (Γ0(4), χ) is the modular form whose Maass lift is F , as in Proposition
2.5.5. We recall here that χ is the quadratic character we fixed right before Definition
2.5.4.

Proof. Assume f has a Fourier expansion as in Definition 2.5.4. Let us first consider
Sπ,F (Y2). We have (here, |k−1 is the usual GL2-action)

f |k−1 T (p) = a(p)f,

for the standard Hecke element T (p) := Γ0(4)diag(1, p)Γ0(4). Using now [Gri90,
Lemma 3.3], we obtain that

ϕ̃1 |k T (π) = pk−2(π)−ka(p)ϕ̃1.

Using now the fact that Y2 = πkp−(2k+s−4) and that

Sπ(Y2) = 1− T (π)Y2 + p∆πT (π, π)Y 2
2 ,

we get
Sπ,F (Y2) = 1− p−k−s+2a(p) + p−k−2s+2 = Lp(s+ k − 2, f),

and similarly for Sπ,F (Y1). Given that χ(p) = 1 in this case, the result follows.

3.5 Euler Product

We can now use the above calculations in order to deduce the following Theorem:
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Theorem 3.5.1. Assume F,G, h satisfy the same assumptions as in the beginning
of Subsection 3.3.2, with ψ1 ̸≡ 0, i.e. not identically equal to zero. We then have
that the series DF,G,h(s) of Theorem (3.2.3) has an Euler product of the form

DF,G,h(s) = 4βk⟨ϕ̃1, ψ̃1⟩A
∏

p prime

D
(p)
F,G,h(s)
⟨ϕ̃1, ψ̃1⟩A

,

where D(p)
F,G,h(s) has been defined in equations (3.3.4) and (3.4.6) for p ̸= 2 and for

p = 2, we define

D
(2)
F,G,h(s) :=

∑
l,ϵ,m≥0

⟨ϕ̃1 | T−(2m)Uπl , ψ̃2m+l⟩Aa2m+ϵ2−sl2−(k+s−1)ϵ2−(2k+s−4)m,

with π := (1 + i), together with the condition min(l, ϵ) = 0. Also, βk is the quanitity
defined in Lemma 2.2.10.

The proof of this Theorem is the subject matter of this Section. We first need to
define some elements of the global Hecke ring H1,1. Let m ≥ 1 and l ∈ OK . We
then define

T−(m) := j−(T (m)), Λ−(l) := j− (Γ1diag(l, l)Γ1) ,

where j− is the embedding of equation (2.4.1). Here, T (m) is the standard Hecke
element in H1, as in Definition 2.5.3. We then observe that

T−(m1m2) = T−(m1)T−(m2), Λ−(l1l2) = Λ−(l1)Λ−(l2) (3.5.1)

when m1,m2 ∈ N and l1, l2 ∈ OK are co-prime. This follows from the corresponding
statements for H1 and the fact that the j− embedding is a ring homomorphism. We
also claim that these elements commute with our known Hecke elements when we
allow co-prime arguments.

Lemma 3.5.2. Let p ≠ 2 be any rational prime. Assume that m ∈ N and l ∈ OK are
co-prime to p. Then, the elements T−(m) and Λ−(l) commute with all the elements
listed in Subsection 3.3.1 (if p is inert) and all the elements listed in Subsection 3.4.2
(if p splits).

Proof. The proof is done case by case. By the multiplicative property of equation
(3.5.1), it suffices to consider m, l prime powers, co-prime to p. Assume first p is
inert. Let then X be either T− or Λ− with the corresponding argument being prime
co-prime to p. By [Gri92a, Lemma 3.8], we have

ϵ(T1,p)X = Xϵ(T1,p), ϵ(Tp)X = Xϵ(Tp). (3.5.2)
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The first equation now gives (from the proof of Proposition 3.3.3)(
T J(p) + Λ−(p) + Λ+(p) +∇p −∆p

)
X = X

(
T J(p) + Λ−(p) + Λ+(p) +∇p −∆p

)
.

By then looking at the different signatures of the elements (see Definition 2.4.2) and
using [Gri92a, Proposition 3.3] or [Hei99, Section 3.3], we obtain the relations

Λ−(p)X = XΛ−(p).
Λ+(p)X = XΛ+(p).(

T J(p) + (∇p −∆p)
)
X = X

(
T J(p) + (∇p −∆p)

)
.

Now, X commutes with ∆p, and we can show commutativity with ∇p using coset
decompositions. Then, commutativity with T J(p) follows from the third equation
above. Finally, commutativity with T+(p), T−(p) follows from the second equation
in 3.5.2, as ϵ(Tp) = T+(p) + T−(p).

For the split case, we proceed similarly, using the embeddings of the stand-
ard elements Tπ, Tπ and Tp (which follow from Proposition 3.4.2). The only relation
we do not obtain immediately is the commutativity with each of T (π, π) and T (π, π).
Instead, we get the commutativity with their sum (from the ϵ-embedding of Tp).
But, from Table 3.1, we have Λ−(π)Λ+(π) = p∆πT (π, π) and then commutativity
follows from the commutativity of X with the Λ±(π) elements and the fact that ∆π

is a unit in H1,1.

Let us now focus on the proof of Theorem 3.5.1. We need to distinguish cases when
p is inert or splits in Z[i]. We have the following two Propositions, the proof of which
is essentially the same.

Proposition 3.5.3. Let p be an inert prime. Let m′ ∈ N and l′, ϵ′ ∈ Z[i] all relative
prime to p. Then, we claim

∑
l,ϵ,m≥0

min(l,ϵ)=0

⟨ϕ̃1 | T−(m′pm)Λ−(l′pl), ψ̃m′N(l′)pm+2l⟩Aam′N(ϵ′)pm+2ϵp−(3k+2s−8)lp−2(k+s−1)ϵ×

× p−(2k+s−4)m =

= ⟨ϕ̃1 | T−(m′)Λ−(l′), ψ̃m′N(l′)⟩Aam′N(ϵ′)

D(p)
F,G,h(s)
⟨ϕ̃1, ψ̃1⟩A

 .

Proposition 3.5.4. Let 2 ̸= p = ππ be a prime that splits in Z[i]. Let m′ ∈ N and
l′, ϵ′ ∈ Z[i] all relative prime to p (or equivalently coprime to both π, π). Then, we



76
Chapter 3.

A Dirichlet Series Associated With Three Hermitian Modular
Forms

claim

∑
l1,l2,

ϵ1,ϵ2,m≥0
min(li,ϵi)=0

⟨ϕ̃1 | T−(m′pm)Λ−(l′πl1πl2), ψ̃m′N(l′)pm+l1+l2 ⟩Aam′N(ϵ′)pm+ϵ1+ϵ2×

× p(4−2k)l1p(4−2k)l2πl1kπl2kp−s(l1+l2)p−(k+s−1)(ϵ1+ϵ2)p−(2k+s−4)m

= ⟨ϕ̃1 | T−(m′)Λ−(l′), ψ̃m′N(l′)⟩Aam′N(ϵ′)

D(p)
F,G,h(s)
⟨ϕ̃1, ψ̃1⟩A

 .

Proof. The proof is analogous to the proof of the results in Sections 3.3 and 3.4. By
the multiplicative property of equation (3.5.1), we rewrite the sum in the inert case
as

am′N(ϵ′)
∑

l,ϵ,m≥0
⟨ϕ̃1 | T−(m′)Λ−(l′), ψ̃m′N(l′)pm+2l | T+(pm)Λ+(pl)⟩Aapm+2ϵp−(3k+2s−8)l×

× p−2(k+s−1)ϵp−(2k+s−4)m,

using the multiplicativity property of the Fourier coefficients of h as well. Similarly,
we rewrite the sum for the split case in an analogous way.

We can now apply the rationality Propositions, as in Sections 3.3 and 3.4. The
difference is that every time we previously had the term ψ̃1, we will instead now
have ψ̃m′N(l′). This follows from fact that m′N(l′) is co-prime to p (so terms of the
form ψ̃m′N(l′)/p vanish). Similarly, we now have terms of the form ψ̃pm′N(l′) | T+(p)
instead of the terms ψ̃p | T+(p).

By the calculations leading to Theorems 3.3.14 and 3.4.21, we claim that the
expressions involving the Fourier-Jacobi coefficients of G (i.e., before taking the
inner product with ϕ̃1 | T−(m′)Λ−(l′)), can be written in the form ψ̃m′N(l′) |
R(Y, Y1, Y2, X1, X2), where R is a polynomial with coefficients involving the operators
T J(p), T (π), T (π), T (π, π), T (π, π) and is independent of m′, l′.

Let us first deal with the inert case. The only expressions that are not in the form
claimed above are these of the form ψ̃pm′N(l′) | T+(p) (see Proposition 3.3.12). But
we can write

ψ̃pm′N(l′) | T+(p) = λpψ̃m′N(l′),

where λp is the eigenvalue of the operator Tp ∈ H2
p , when it acts on G, i.e. G |k Tp =

λpG. This is true because of the embedding

ϵ(Tp) = T+(p) + T−(p),
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as in the proof of Proposition 3.3.3. So, we get

ψ̃m′N(l′) || Tp = λpψ̃m′N(l′),

and

ψ̃m′N(l′) || Tp = ψ̃pm′N(l′) | T+(p) + ψ̃m′N(l′)/p | T−(p) = ψ̃pm′N(l′) | T+(p).

The same can be said for the split case as well. From Theorem 3.4.21, we will have
terms of the form

ψ̃pm′N(l′) | Sπ(Y1)Sπ(Y2)T+(p), ψ̃m′N(l′) | Λ−(π)Sπ(Y1)Sπ(Y2)T+(p),
ψ̃m′N(l′) | Λ−(π)Sπ(Y2)T+(p),

(and the corresponding expressions for π). But, from Table 3.1, we have the relations:

Sπ(Y1)Sπ(Y2)T+(p) = T+(p)
[
1− T (π)Y1 + p3∆pY1Y2

]
[1− T (π)Y2] +

+ Λ+(π)
[
T (π, π)Y1 − p2∆πY2

]
[1− T (π)Y2]−

− p2∆πY1Λ+(π)
[
1− T (π)Y1 + p3∆pY1Y2

]
[1− T (π)Y2] +

+ Λ+(π)Sπ(Y1)Y2.

Λ−(π)Sπ(Y1)Sπ(Y2)T+(p) = p2∆πT (π)
[
1− T (π)Y1 + p3∆pY1Y2

]
[1− T (π)Y2] +

+ p∆πT (π, π)
[
T (π, π)Y1 − p2∆πY2

]
[1− T (π)Y2]−

− p5∆π∆pY1
[
1− T (π)Y1 + p3∆pY1Y2

]
[1− T (π)Y2] +

+ p3∆pSπ(Y1)Y2.

Λ−(π)Sπ(Y2)T+(p) = p2∆πT (π)−
[
p5∆π∆p − p∆πT (π, π)T (π, π)+

p2∆πT (π)T (π)
]
Y2 + p5∆π∆pT (π)Y 2

2 .

Now, from Proposition 3.4.2, we have

ϵ(Tp) = T−(p) + T+(p) + T (π, π) + T (π, π),

and so we get

ψ̃m′N(l′) || Tp = ψ̃m′N(l′) || (T+(p) + T−(p) + T (π, π) + T (π, π))
= ψ̃pm′N(l′) | T+(p) + 0 + ψ̃m′N(l′) | (T (π, π) + T (π, π))
= ψ̃pm′N(l′) | T+(p) + ψ̃m′N(l′) | (T (π, π) + T (π, π)).

But ψ̃m′N(l′) || Tp = λpψ̃m′N(l′), where λp is the eigenvalue of G corresponding to Tp,
and so we obtain

ψ̃pm′N(l′) | T+(p) = λpψ̃m′N(l′) − ψ̃m′N(l′) | (T (π, π) + T (π, π)).
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Moreover, again from Proposition 3.4.2, we have

ϵ(Tπ) = Λ−(π) + T (π) + Λ+(π).

Hence, by a similar argument as above, we get

ψ̃pm′N(l′) | Λ+(π) = λTπ
ψ̃m′N(l′) − ψ̃m′N(l′) | T (π),

and similarly for Λ+(π).

In particular, our claim now follows for both the inert and split case and therefore,
the expression involving the Fourier-Jacobi coefficients of G can be written in the
form ψ̃m′N(l′) | R, where R = R(Y, Y1, Y2, X1, X2) is a polynomial with coefficients
involving the operators T J(p), T (π), T (π), T (π, π), T (π, π). These are all self-
adjoint operators (see [Gri92a, Lemma 4.3]). Moreover, since F is in the Maass
space, from [Gri92a, Theorem, p. 2911], ϕ̃1 is an eigenform for these operators, as
these all have signature 1. By now writing RF for the polynomial obtained when we
substitute the eigenvalues of ϕ̃1 with respect to the above operators and using the
commutativity of Lemma 3.5.2, we can write

⟨ϕ̃1 | T−(m′)Λ−(l′), ψ̃m′N(l′) | R⟩A = ⟨ϕ̃1 | RT−(m′)Λ−(l′), ψ̃m′N(l′)⟩A =

= RF ⟨ϕ̃1 | T−(m′)Λ−(l′), ψ̃m′N(l′)⟩A =

= 1
⟨ϕ̃1, ψ̃1⟩

⟨ϕ̃1 | T−(m′)Λ−(l′), ψ̃m′N(l′)⟩ARF ⟨ϕ̃1, ψ̃1⟩A =

= 1
⟨ϕ̃1, ψ̃1⟩

⟨ϕ̃1 | T−(m′)Λ−(l′), ψ̃m′N(l′)⟩A⟨ϕ̃1, ψ̃1 | R⟩A,

where RF is the polynomial obtained by taking the complex conjugate. The result
now follows by comparing with the initial expression for D(p)

F,G,h(s), as the rightmost
term is what we have originally (i.e., for m′ = l′ = 1).

The proof of Theorem 3.5.1 now follows from the above two Propositions by working
prime by prime and factoring from the initial Dirichlet series the corresponding
expression for each prime.

3.6 Integral Representation

In this Section, we will show how DF,G,h(s) originates as part of a Rankin-Selberg
integral and how this compares to the integral representation given by Heim in
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[Hei99, Theorem 2.6]. We consider the triple inner product

Φ(F,G, h; s) :=
〈〈〈

Ek
5,0



z1

z2

z3

 ; s

 , F (z3)
〉
, G(z2)

〉
, h(z1)

〉
.

The main reason we consider this is the following algebraic result.

Proposition 3.6.1. Assume that F,G and h have algebraic Fourier coefficients. For
k > 10 we have

Φ(F,G, h; 0)
⟨F, F ⟩⟨G,G⟩⟨h, h⟩

∈ Q.

Proof. This can be shown exactly as [Hei99, Theorem 1.9]. In the proof there, a
result of Böcherer is used on the algebraic decomposition of the space of modular
forms as an orthogonal product of the space of cusp forms and of the Eisenstein
series, i.e.

Mk
2

(
Q
)

= Sk2
(
Q
)
⊕ Eisk2

(
Q
)
.

Such a result is also available for unitary groups in [Shi00, Theorem 27.14].

Actually, one can give an even stronger statement of the proposition above, namely,
establish even a reciprocity law on the action of the absolute Galois group. The
statement is similar to [Hei99, Theorem 1.9]. The main point here is that we can
establish an algebraicity result for special values of L-functions if we can relate the
expression above to an Euler product expression. This is our main motivation.

By now using the doubling method for unitary groups, as for example is studied
in [Shi00, Equation 24.29 (a)], we know that the first inner product is related to a
Klingen-type Eisenstein series attached to F (recall F has real Fourier coefficients),
as in Definition 2.1.6. That is,

〈
Ek

5,0



z1

z2

z3

 ; s

 , F (z3)
〉

= ν(s) Z
(2)
F (s+ k/2)∏3

i=0 L(2s+ k − i, χi)×

× Ek
3,2

z1 0
0 z2

 , F ; s
 , (3.6.1)

where Z
(2)
F is the standard L-function attached to F (see Definition 2.5.1), χ is

the non-trivial quadratic character attached to the extension K/Q and ν(s) is an
expression involving Gamma factors (the explicit expression can be computed by
[Shi00, Equation 24.29 (a)]).
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So, our focus shifts to computing
〈〈

Ek
3,2

z1 0
0 z2

 , F ; s
 , G(z2)

〉
, h(z1)

〉
(3.6.2)

Given the Definition 2.1.6 of the Eisenstein series, we will start by finding represent-
atives for C3,2\Γ3. We begin by first finding representatives for C3,2(K)\U(3, 3)(K).
Surprisingly, this decomposition differs in a significant way from the one obtained
by Heim in [Hei99, Proposition 2.1]. For now, let us write Un(K) for U(n, n)(K).

Before we proceed, let us briefly introduce the notion of isotropic vectors and
isotropic spaces in Un(K). We say a vector x ∈ K2n is isotropic if xtJnx = 0. A
subspace U of K2n will be called isotropic if xtJny = 0 for all x, y ∈ U .

For any m,n ≥ 1, there is an embedding Um(K)× Un(K) ↪−→ Um+n(K) given by

A1 B1

C1 D1

×
A2 B2

C2 D2

 ↪−→


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 .

For each r ∈ Q×, we consider the following subgroups of U1(K) and U2(K), respect-
ively:

H1,r(K) :=

 a b

−br2 a

 ∈ U1(K)
 ,

H2,r(K) :=




a1 a2 b1 b2

irb3 a4 b3 b4

−r2b1 ira2 a1 irb2

ird3 c4 d3 d4

 ∈ U2(K)


. (3.6.3)

We then have the following Proposition.

Proposition 3.6.2. The right coset space C3,2(K)\U3(K) has representatives

S1 = C1,0(K)\U1(K)× 14,

S2 = π · (12 × C2,1(K)\U2(K)),

S3 = ξ · (C1,0(K)\U1(K)× ((T × 12) · C2,1(K)\U2(K))) ,

Wr = ξr · (D ·H1,r(K)\U1(K)×H2,r(K)\U2(K)), r ∈ Q×/NK/Q(K×),

where
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π :=



0 1
1 0

1
0 1
1 0

1


, ξ :=



1 0
1 1

1
1 −1
0 1

1


,

T :=

a 0

0 a−1

 | a ∈ K×

 ,

ξr :=


1 0 0 0
1 1 0 0
ir ir 1 −1
−ir 0 0 1

× 12, D :=

d 0

0 d

 | d ∈ K, N(d) = 1
 .

Proof. Let e1, e2, e3, f1, f2, f3 denote the standard basis for K6, viewed as row vectors.
The map g 7−→ f1g induces a bijection between C3,2(K)\U3(K) and the set X of
one-dimensional isotropic subspaces in K6 (this is a standard fact, consequence of
Witt’s Theorem, as in [Shi97, Lemma 2.1] for example). Let V be such a subspace.
We decompose K6 = K2⊕K4 according to the embedding U1(K)×U2(K) ↪−→ U3(K)
(i.e., K2 = Ke1 ⊕ Kf1). There are three possibilities: V is contained in K2, V is
contained in K4 or V is not contained in either.

In the first two cases, V is an isotropic subspace of K2 or K4, respectively, and hence
we obtain the same set of representatives S1, S2 as in [Hei99, Proposition 2.1].

For the last case, assume V is spanned by the isotropic vector v. We decompose
v = v1 ⊕ v2 and we have two possibilities: v1 is isotropic or v1 is not isotropic. In
the first case, in analogy with [Hei99, Proposition 2.1], we obtain the set S3.

Assume now v1 is not isotropic. Then v2 will not be isotropic either (since v is
isotropic). Let us write v1

tJ1v1 = 2ir = −v2
tJ2v2, with r ∈ Q×. By Witt’s Theorem

([Shi97, Theorem 1.2]), we have that an isotropic vector w = w1 ⊕ w2 ∈ K6 will
be in the same orbit as in v under the action of U1(K) × U2(K) if and only if
w1

tJ1w1 = 2ir = −w2
tJ2w2. This shows that the isotropic vectors v = v1 ⊕ v2,

with the same norm on the first component (hence the second too), form a single
orbit under the action of U1(K) × U2(K). Since we are free to scale v by some
λ ∈ K×, (because we work with the subspace spanned by v), we must consider
r ∈ Q×/NK/Q(K×). Here, NK/Q(a+ ib) := a2 + b2 for a, b ∈ Q.

Now, for each such r, we consider vr :=
(
ir ir 0 1 −1 0

)
as a representat-

ive of its orbit. We then observe that the matrix ξr defined in the statement of
the Proposition satisfies f1ξr = vr. Hence, we deduce that the double quotient
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C3,2(K)\U3(K)/(U1(K)× U2(K)) has the following irredundant representatives:

16, π, ξ, {ξr, r ∈ Q×/NK/Q(K×)}.

We now have that for g1 ∈ U1(K), g2 ∈ U2(K) and r as above, C3,2(K)ξr(g1 ×
g2) = C3,2(K)ξr if and only if ξr(g1 × g2)ξ−1

r ∈ C3,2(K). This then implies that
g1 ∈ H1,r(K), g2 ∈ H2,r(K), and a + irb = a1 − irb1, where we write g1, g2 as in
(3.6.3).

For i = 1, 2, if gi ∈ Ui(K), we write g1 = h1e and g2 = h2f , where hi ∈ Hi,r(K)
and e, f belong to a set of proper representatives for Hi,r(K)\Ui(K), respectively.
By writing hi as in (3.6.3), we let d := (a1 − irb1)(a + irb)−1. This is well-defined
as N(a + irb) = N(a1 − irb1) = 1 by unitarity, so in particular a + irb, a1 + irc1

are non-zero. Moreover, N(d) = 1 and if D := diag(d, d) ∈ U1(K), we have that
Dh1 × h2 ∈ ξ−1

r C3,2(K)ξr. Hence,

C3,2(K)ξr(g1×g2) = C3,2(K)ξr(h1e×h2f) = C3,2(K)ξr(Dh1×h2)(D−1×1)(e×f)
= C3,2(K)ξr(D−1e× f).

This gives us the set of representatives Wr. Hence, the Proposition follows.

We now want to pull these representatives back to representatives for C3,2\Γ3.

Corollary 3.6.3. The right coset space C3,2\Γ3 has representatives

T1 = C1,0\Γ1 × 14,

T2 = π · (12 × C2,1\Γ2),

T3 =
⊔
p,q

(ξp,q × 12) · (C1,0\Γ1 × C2,1\Γ2),

Vr, r ∈ Q×/NK/Q(K×)

Here, p, q ∈ Z[i]\{0} with gcd(p, q) = 1, q = u+ iv, u > 0, v ≥ 0, and

ξp,q :=


∗ ∗ 0 0
q p 0 0
0 0 p −q
0 0 ∗ ∗

 ,

with ξp,q × 12 ∈ Γ3. The sets Vr correspond to the representatives obtained by pulling
Wr of Proposition 3.6.2 back to OK.

Proof. We first observe that there is a one-to-one correspondence between
Cn,r(K)\Un(K) and Cn,r\Γn, for any n, r with 0 ≤ r ≤ n. Indeed, since K has
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class number one, that is Z[i] is a principal ideal domain, we have from [Shi97,
Proposition 7.2 (2), p. 48], that Un(K) = Cn,r(K)Γn, and hence

Cn,r(K)\Un(K) ∼= (Γn ∩ Cn,r(K))\Γn = Cn,r\Γn.

Now, each Vr is obtained by pulling Wr of Proposition 3.6.2 back to OK , thanks
to this correspondence. Moreover, T1 and T2 are obtained by the sets S1, S2 of
Proposition 3.6.2. In order to obtain the set T3, it suffices to pull S3 back to OK .
We therefore need to find a matrix Ma in C3,2(K) such that

Ma · ξ ·

12 ×

a 0
0 a−1

× 12

 ∈ Γ3, (3.6.4)

with ξ the matrix of Proposition 3.6.2. We parametrize K as{
p

q
| p, q ∈ Z[i], gcd(p, q) = 1, q = u+ iv, u > 0, v ≥ 0

}
.

All these elements are different as p, q are in Z[i] with the above conditions and their
union is K. For a = p/q as above, we define

Mp,q :=


p−1 y 0 0
0 q 0 0
0 0 p 0
0 0 l q−1

× 12,

with l, q chosen so that lq ≡ 1 (mod p) and y = −ql/p. Then Mp,q ∈ C3,2(K) and we
can then see that the product of equation (3.6.4) belongs to Γ3 and has the claimed
form.

Given the above decomposition, we can now appropriately split the Eisenstein series
in order to compute the integral of equation (3.6.2). For any n ≥ 1, if M ∈ Γn, Z ∈
Hn, we define the following quantities:

χk,s(M,Z) := j(M,Z)−k|j(M,Z)|−2s, δ(Z) := det (ImZ) .

From [Kri85, Theorem II.1.7, (c)], we have δ (M⟨Z⟩) = |j(M,Z)|−2δ(Z).

Proposition 3.6.4. Let k ≡ 0 (mod 4) and k + 2Re(s) > 10. Let also F ∈ Sk2 ,
z1 ∈ H1 and z2 ∈ H2. We then have

Ek
3,2 ([z1, z2], F ; s) = Ek

1,0(z1; s)F (z2) + Ek
2,1(z2, Fz1 ; s) +



84
Chapter 3.

A Dirichlet Series Associated With Three Hermitian Modular
Forms

+ δ(z1)sδ(z2)s
∑
p,q

∑
γ1∈C1,0\Γ1
γ2∈C2,1\Γ2

χk,s(γ1, z1)χk,s(γ2, z2)×

× F

N(q)γ1⟨z1⟩ 0
0 0

+ (γ2⟨z2⟩)
p 0

0 1

×

× δ

N(q)γ1⟨z1⟩ 0
0 0

+ (γ2⟨z2⟩)
p 0

0 1

−s

+ Ek ([z1, z2], F ; s) ,

where

Ek ([z1, z2], F ; s) :=

=
∑

r∈Q×/NK/Q(K×)

∑
γ∈Vr

F (γ⟨[z1, z2]⟩∗)j(γ, [z1, z2])−k
(

det Im γ⟨[z1, z2]⟩
det Im γ⟨[z1, z2]⟩∗

)s
.

Here, for τ ∈ H1, Fz1(τ) := F ([z1, τ ]) ∈ Sk1 and p, q are summed as in Corollary
3.6.3. We also remind the reader here that N(q) denotes the norm of q and [a, b]
the block diagonal matrix with diagonal blocks a, b as in Notation.

Proof. As we have shown after Definition 2.1.6, for k + 2Re(s) > 10, the Eisenstein
series Ek

3,2 (Z, F ; s) is absolutely and uniformly convergent on compact subsets of C.
We split the Eisenstein series according to the representatives of Corollary 3.6.3. We
can write

Ek
3,2 ([z1, z2], F ; s) = δ(z1)sδ(z2)s

3∑
i=1

∑
M∈Ti

χk,s(M, [z1, z2])F (M⟨[z1, z2]⟩∗)×

× δ (M⟨[z1, z2]⟩∗)−s + Ek ([z1, z2], F ; s) .

For the representatives of T1, T2 in Corollary 3.6.3, the proof is exactly the same as
in [Hei99, Theorem 2.3].

For a representative M of T3, write M = (ξp,q × 12)(γ1 × γ2) with γ1 ∈ C1,0\Γ1 and

γ2 ∈ C2,1\Γ2. We write γ2⟨z2⟩ =
x1 x2

x3 x4

 and we then have

(M⟨[z1, z2]⟩)∗ = ((ξp,q × 12)[γ1z1, γ2z2])∗

=



∗ ∗ 0
q p 0
0 0 1



γ1⟨z1⟩ 0 0

0 x1 x2

0 x3 x4



∗ q 0
0 p 0
0 0 1




∗

=
N(q)γ1⟨z1⟩+N(p)x1 px2

px3 x4


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=
N(q)γ1⟨z1⟩ 0

0 0

+ (γ2⟨z2⟩)
p 0

0 1

 .
Also,

j((ξp,q × 12)(γ1 × γ2), [z1, z2]) = j(ξp,q × 12, [γ1z1, γ2z2])j(γ1 × γ2, [z1, z2]),

and j(ξp,q × 12, [γ1z1, γ2z2]) = det(D), where we denote ξp,q :=
A 0

0 D

.

By unitarity, we have DAt = 12 so det(D) · det(A) = 12, so N(det(D)) = 1 and
det(D) is in Z[i], which shows that det(D) ∈ {±1,±i}. As k ≡ 0 (mod 4), we get

χk,s((ξ × 12)(γ1 × γ2), [z1, z2]) = χk,s(γ1, z1)χk,s(γ2, z2),

and so the Proposition follows.

We can now use this decomposition in order to show how DF,G,h(s) originates as
part of a Rankin-Selberg integral.

Theorem 3.6.5. Let k ≡ 0 (mod 4). Let F,G ∈ Sk2 and h ∈ Sk1 . Then, for
k + 2Re(s) > 10, we have

〈〈
Ek

3,2

W 0
0 Z

 , F ; s
 , G(Z)

〉
, h(W )

〉
= (4π)−(2k+s−4)×

× Γ(2k + s− 4)Γ(k + s− 3)Γ(k + s− 1)
Γ(2k + 2s− 4) DF,G,h(s) +RF,G,h(s),

where RF,G,h(s) := ⟨⟨Ek ([W,Z], F ; s) , G(Z)⟩, h(W )⟩.

Proof. From Proposition 3.6.4, we can rewrite the Eisenstein series as a sum involving
four summands. Clearly, RF,G,h(s) corresponds to the summand Ek([Z,W ], F ; s).

We will now deal with the third one. This can be written as (the summations are as
in Corollary 3.6.3):

I3 :=
∫

Γ1\H1

∫
Γ2\H2

δ(W )k+sδ(Z)k+s∑
p,q

∑
γ1,γ2

χk,s(γ1,W )χk,s(γ2, Z)×

× F

N(q)γ1⟨W ⟩ 0
0 0

+ (γ2⟨Z⟩)
p 0

0 1

×
× δ

N(q)γ1⟨W ⟩ 0
0 0

+ (γ2⟨Z⟩)
p 0

0 1

−s

G(Z)h(W )d∗Wd∗Z.
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Now, using the automorphy condition for G and h, we have

G(Z) = (G|kγ2)(Z) = j(γ2, Z)−kG(γ2⟨Z⟩),

h(W ) = (h|kγ1)(W ) = j(γ1,W )−kh(γ1⟨W ⟩).

Also δ(γ2⟨Z⟩) = |j(γ2, Z)|−2δ(Z), δ(γ1⟨W ⟩) = |j(γ1,W )|−2δ(W ), so

G(Z)δ(Z)k+sχk,s(γ2, Z) = j(γ2, Z)−k
G(γ2⟨Z⟩)δ(γ2⟨Z⟩)k+s|j(γ2, Z)|2(k+s)×

× j(γ2, Z)−k|j(γ2, Z)|−2s = G(γ2⟨Z⟩)δ(γ2⟨Z⟩)k+s,

and similarly for h. Hence, by the usual “unfolding” trick, we obtain:

I3 =
∫
C1,0\H1

∫
C2,1\H2

∑
p,q

F

N(q)W 0
0 0

+ Z

p 0
0 1

×
× δ

N(q)W 0
0 0

+ Z

p 0
0 1

−s

G(Z)h(W )δ(Z)k+sδ(W )k+sd∗Zd∗W.

We now consider the matrix M :=
I

I

, where I :=
 1

1

. We then check that

M ∈ Γ2 and from Definition 2.1.4, we have

F

Z
0 1

1 0

 = F (Z) ∀Z ∈ H2,

as k is even and M⟨Z⟩ = Z[I]. The same also holds for G. In particular, this shows

F

N(q)W 0
0 0

+ Z

p 0
0 1

 = F

0 0
0 N(q)W

+ Z

1 0
0 p

 .
What is more, we can directly compute

δ

N(q)W 0
0 0

+ Z

0 1
1 0

p 0
0 1

 = δ

0 0
0 N(q)W

+ Z

1 0
0 p

 .
By now setting Z 7−→ M⟨Z⟩ and using the fact that M−1C2,1M = P2,1, we can
rewrite I3 as (C1,0 = P1,0 as well):

I3 =
∫
P1,0\H1

∫
P2,1\H2

∑
p,q

F

0 0
0 N(q)W

+ Z

1 0
0 p

×
× δ

0 0
0 N(q)W

+ Z

1 0
0 p

−s

G(Z)h(W )δ(Z)k+sδ(W )k+sd∗Zd∗W.
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Now, a fundamental domain for the action of P1,0 on H1 is

F = {z ∈ H1 | z = x+ iy, 0 ≤ x ≤ 1},

while a fundamental domain for the action of P2,1 on H2 is (cf. [Gri92a, p. 2907])
 τ z1

z2 ω

 | (τ, z1, z2) ∈ FJ , yω > |z1 − z2|2/4yτ , 0 ≤ xω ≤ 1
 ,

using the notation of equation (2.2.1) for the real and imaginary parts. Hence, we
have

I3 =
∑
p,q

∫
FJ

dτdz1dz2

∫
yω>|z1−z2|2/4yτ

dyω
∫ 1

0
dxω

∫ 1

0
dxW×

×
∫ ∞

0
dyW δ(Z)k+s−4

∞∑
m=1

ϕm(τ, pz1, pz2)e2πim(N(q)W+N(p)ω)×

×
∞∑
n=1

ane
−2πinW

∞∑
l=1

ψl(τ, z1, z2)e−2πilωδ

0 0
0 N(q)W

+ Z

1 0
0 p

−s

.

We first perform the integration over xω and xW . For xω, we have

∫ 1

0
e2πimN(p)xω−2πilxωdxω =

1 if l = mN(p)

0 otherwise
.

Similarly for xW , we have∫ 1

0
e2πimN(q)xW −2πinxW dxW =

1 if n = mN(q)

0 otherwise
.

These are the only terms we need to integrate as the real parts of ω and W do not
appear as arguments of δ by definition. We now substitute t = yω − |z1 − z2|2/4yτ
and compute

δ(Z) = det
( 1

2i
(
Z − Zt

))
= yτ t,

and

δ

0 0
0 N(q)W

+ Z

1 0
0 p

 = yτ (N(q)yW +N(p)t).

So, the integral I3 becomes

∑
p,q

∫
FJ

∞∑
m=1

ϕm(τ, pz1, pz2)ψmN(p)(τ, z1, z2)amN(q)y
k−4
τ e−πm(|z1−z2|2/yτ )dτdz1dz2×

×
∫ ∞

0
dt
∫ ∞

0
dyW tk+s−4(N(q)yW +N(p)t)−se−4πm(N(q)yW +N(p)t)ys+k−2

W =
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=
∑
p,q

∞∑
m=1
⟨ϕm|Up, ψmN(p)⟩amN(q)

∫ ∞

0

∫ ∞

0

dt
t

dyW
yW

tk+s−3ys+k−1
W (N(q)yW+N(p)t)−s×

× e−4πm(N(q)yW +N(p)t) =

= (4π)−(2k+s−4) Γ(2k + s− 4)Γ(k + s− 3)Γ(k + s− 1)
Γ(2k + 2s− 4) ×

×
∑
p,q

∞∑
m=1
⟨ϕm|Up, ψmN(p)⟩amN(q)N(p)−(k+s−3)N(q)−(k+s−1)m−(2k+s−4), (3.6.5)

by using the fact that (cf. [Hei99, Theorem 2.6])
∫ ∞

0

∫ ∞

0

dx
x

dy
y
xαyβ

(
xy

x+ y

)γ
e−(x+y) = Γ(α + β + γ)Γ(α+ γ)Γ(β + γ)

Γ(α + β + 2γ) ,

and substituting x = 4πmN(p)t, y = 4πmN(q)yW , α = k − 3, β = k − 1, γ = s.
This formula follows after setting u = x+ y and then t = x/u and using the Euler
integral of the first kind∫ 1

t=0
tz1−1(1− t)z2−1dt = Γ(z1)Γ(z2)

Γ(z1 + z2)
, ∀z1, z2 ∈ C.

Let us now consider the second summand in the decomposition of Proposition 3.6.4.
We want to compute

I2 :=
∫

Γ1\H1

∫
Γ2\H2

∑
γ∈C2,1\Γ2

j(γ, Z)−kFW (γ⟨Z⟩∗)
(
δ(γ⟨Z⟩)
δ(γ⟨Z⟩∗)

)s
G(Z)h(W )δ(Z)k×

× δ(W )kd∗Zd∗W.

Using again the automorphy condition for G, we obtain, by unfolding the integral,
that

I2 =
∫

Γ1\H1

∫
C2,1\H2

FW (Z∗)G(Z)h(W )δ(Z)k+sδ(Z∗)−sd∗Zd∗W.

Using the same reasoning for the interchange of the parabolic subgroups C2,1, P2,1

as in the case of I3, we rewrite the inner integral as

J2 :=
∫
P2,1\H2

F

τ 0
0 W

G(Z)δ(Z)k+sy−s
τ d∗Z,

and by using the Fourier-Jacobi expansions and the fundamental domains mentioned
before, we have

J2 =
∫

FJ
dτdz1dz2

∫
yω>|z1−z2|2/4yτ

∫ 1

0
dxω

∞∑
m=1

ϕm(τ, 0, 0)e2πimW
∞∑
n=1

ψn(τ, z1, z2)×

× e−2πinωδ(Z)k+s−4y−s
τ .
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We can then see that this is zero by calculating the integral over xω, i.e.,∫ 1

0
e−2πinxωdxω = 0.

Therefore, I2 = 0. Finally, we will show that the integral involving the first summand
of Proposition 3.6.4 is zero. We have, after a direct computation

⟨⟨E1,0(W ; s)F (Z), G(Z)⟩, h(W )⟩ = ⟨F (Z), G(Z)⟩⟨E1(W ; s), h(W )⟩,

and we will show that the second inner product is zero. But

⟨E1,0(W ; s), h(W )⟩ =
∫

Γ1\H1

∑
γ∈C1,0\Γ1

j(γ,W )−kδ(γW )sh(W )δ(W )kd∗W.

By the usual unfolding trick, the above integral equals
∫
C1,0\H1

δ(W )k+sh(W )d∗W =
∫ 1

x=0

∫ ∞

y=0

∞∑
n=1

ane
−2πin(x−iy)yk−2dxdy = 0,

by looking at the integral ∫ 1

0
e−2πinxdx = 0,

for all n ≥ 1. Hence, I3 is the only integral that has a non-zero contribution and the
Theorem now follows from equation (3.6.5).

It is therefore clear that Theorem 3.6.5 has an important difference to the Theorem
obtained by Heim in [Hei99, Theorem 2.6], namely the term RF,G,h(s). To calculate
this, one needs to obtain a better understanding of the representatives Vr of Corollary
3.6.3, which in turn requires understanding the groupsH1,r(K) andH2,r(K) of (3.6.3).
We conclude this Chapter with the following Proposition, regarding the relation of
these groups with the respective unitary groups.

Proposition 3.6.6. For i = 1, 2 and r ∈ Q×/NK/Q(K×), we have

U(i, i)(K) = Hi,r(K)Ci,0(K),

where Ci,0(K) denote the Siegel parabolics (recall Definition 2.1.3).

Proof. We will first show U(1, 1)(K) = H1,r(K)C1,0(K). Let ϕ := 2/r and consider
the unitary group with respect to ϕ, i.e., Gϕ := {a ∈ K× | aϕa = ϕ}. Moreover,
we set ω := diag(ϕ,−ϕ) and consider the unitary group with respect to ω, i.e.
Gω := {a ∈ GL2(K) | aωa = ω}.

Consider now the ω-isotropic subspace of K2 given by U := {(v, v) | v ∈ K} and let
P ω
U be the parabolic subgroup of Gω defined by P ω

U := {a ∈ Gω | Ua = U}. From
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[Shi97, Proposition 2.4], we then have that

Gω = P ω
U (Gϕ ×Gϕ) = (Gϕ ×Gϕ)P ω

U .

The second equality follows from taking inverses. Now, if we let

S1 :=
 1 −i/r
−1 −i/r

 ,
we have from [Shi97, (21.1.8)], that S−1

1 GωS1 = U(1, 1)(K) and S−1
1 P ω

US1 = C1,0(K).
Hence

U(1, 1)(K) = S−1
1 GωS1 = S−1

1 (Gϕ ×Gϕ)P ω
US1 = S−1

1 (Gϕ ×Gϕ)S1C1,0(K).

But, for a, b ∈ K×, we can compute

S−1
1 diag(a, b)S1 =

 (a+ b)/2 −i(a− b)/2r
i(a− b)r/2 (a+ b)/2

.
Now, if x = (a + b)/2, y = −i(a − b)/2r, we get a = x + iry, b = x − iry and
therefore, N(a) = N(b) = 1 is equivalent to xy = yx and N(x)+ r2N(y) = 1. Hence,
S−1(Gϕ ×Gϕ)S = H1,r(K). Therefore, U(1, 1)(K) = H1,r(K)C1,0(K), as claimed.

For the second group, we consider ϕ := 2/r and ψ :=


1

2/r
1

 and set ω :=

diag(ψ,−ϕ). We then consider the ω-isotropic subspace U := {(0, v, i, v) | v, i ∈ K}
and the respective parabolic subgroup P ω

U of Gω. Again, from [Shi97, Proposition
2.4], we have

Gω = P ω
U (Gψ ×Gϕ) = (Gψ ×Gϕ)P ω

U .

Similarly to before, if we let

S2 :=


1 0 0 0
0 1 0 −i/r
0 0 −i 0
0 −1 0 −i/r

 ,

we have from [Shi97, (21.1.8)], that S−1
2 GωS2 = U(2, 2)(K) and S−1

2 P ω
US2 = C2,0(K).

Now, as before, by computing S−1
2 diag(A, a)S2, with A ∈ Gψ, a ∈ Gϕ, we have

S−1
2 (Gψ × Gϕ)S2 = MH2,r(K)M−1, where M = diag(I, I), with I =

0 1
1 0

.

But since M−1U(2, 2)(K)M = U(2, 2)(K) and M−1C2,0(K)M = C2,0(K), we get
U(2, 2)(K) = H1,r(K)C2,0(K), as claimed.



Chapter 4

A Dirichlet series for Orthogonal
Modular Forms

This Section marks the beginning of the second part of the thesis. As we said in the
introduction, for this part, we work with orthogonal modular forms of real signature
(2, n+ 2), n ≥ 1. We aim to extend the work of Kohnen and Skoruppa in [KS89] for
this case.

4.1 Quadratic Spaces

In this Section, we will prepare the ground for the theory of orthogonal modular
forms. Our main reference is [Shi04].

Let F be a field. Let V denote a finite dimensional vector space over F , with
dim(V ) = m. Define also an F -bilinear symmetric form φ : V × V −→ F , which is
non-degenerate, i.e., there is no 0 ̸= x ∈ V such that φ(x, V ) = 0. For all x ∈ V ,
we put φ[x] := φ(x, x). We call φ isotropic on V if ϕ[x] = 0 for some 0 ̸= x ∈ V
and anisotropic on V if φ[x] = 0 only for x = 0. We call a subspace U of V totally
isotropic if φ(x, y) = 0 for all x, y ∈ U . We define

Oφ(V ) := {g ∈ GL(V ) | φ[gx] = φ[x], ∀x ∈ V },

SOφ(V ) := Oφ(V ) ∩ SL(V ),

for the orthogonal group and special orthogonal group of φ. We call (V, φ) a
quadratic space.

Let now X be a subspace of V and ψ the restriction of φ on X. If ψ is non-degenerate
on X, then the symbols Oψ(X) and SOψ(X) are meaningful. By abuse of notation,
we will just refer to those spaces by Oφ(X) and SOφ(X).
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Now, from [Shi04, Lemma 1.4, (i)], we can find elements {ei}ri=1, {fi}ri=1 of V and a
subspace Z of V such that

V = Z +
r∑
i=1

(Fei + Ffi), (4.1.1)

φ(ei, ej) = φ(fi, fj) = 0 and 2φ(ei, fj) = δij for every i, j,

Z := {v ∈ V | φ(ei, v) = φ(fi, v) = 0, for every i},

and the restriction of φ on Z to be anisotropic. We call the decomposition (4.1.1) a
Witt decomposition. We also call Z the core subspace of (V, φ) and t = dim(Z)
the core dimension of (V, φ).

In this thesis, we will be interested in the cases F = R,Q or Qp, with p a rational
prime. If F = Q or Qp, we denote by g the maximal order of F , i.e. g = Z or g = Zp
respectively. We then have the following definition of a g-lattice.

Definition 4.1.1. A g-lattice Λ in (V, φ) is a free, finitely generated g-module,
which spans V over F .

We also have the following notion of integral and maximal lattices.

Definition 4.1.2. A g-lattice Λ in (V, φ) is called g-integral if φ[x] ∈ g for all x ∈ Λ.
It is called maximal if it is maximal among all g-integral lattices.

Moreover, we define the dual lattice and the level.

Definition 4.1.3. The dual lattice of a g-lattice Λ in (V, φ) is defined by

Λ∗ := {x ∈ V | 2φ(x, y) ∈ g ∀y ∈ Λ}.

Definition 4.1.4. The level of the lattice Λ is the least positive integer q such that
qφ[x] ∈ g for every x ∈ Λ∗.

We also define the integral orthogonal groups via

Oϕ(Λ) := {α ∈ SOϕ(V ) | αΛ = Λ}. (4.1.2)

SOϕ(Λ) := {α ∈ SOϕ(V ) | αΛ = Λ}. (4.1.3)

Assume now we work over the local field Qp and assume L is a maximal Zp-lattice
in V . From [Shi04, Lemma 6.5], we have a Witt decomposition as in (4.1.1), such
that additionally

L = M +
r∑
i=1

(Zpei + Zpfi), M = {z ∈ Z | φ[z] ∈ Zp}.
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From [Shi04, Theorem 7.6], we have that over Qp, t = dim(Z) ≤ 4.

In general, if (V, φ) is a quadratic space over Q, we can define its localisation (Vp, φp)
for all primes p, by setting Vp := V ⊗Q Qp and extending φ to a Qp-valued bilinear
form φp on Vp in a natural way.

Finally, we will express things by matrices. Assume we choose the standard basis
for V over F and write V = Fm. We then have that φ is given by φ(x, y) =
xtφ0y, ∀x, y ∈ V , for some φt0 = φ0 ∈ GLn(F ). In that case, we have

Oφ(V ) = {g ∈ GLn(F ) | gtφ0g = φ0},

and similarly for SOφ(V ).

Finally, we denote by δ(φ) the coset of F×/(F×)2, represented by
(−1)m(m−1)/2 det(φ0), where (F×)2 := {a2 | a ∈ F×}.

4.2 Orthogonal Modular Forms

In this Section, we will give the basic definitions for orthogonal modular forms of
signature (2, n+ 2), n ≥ 1. Our main reference is [Sch22].

In the following, let V := Qn and L := Zn with n ≥ 1. Assume S is an even integral
positive definite symmetric matrix of rank n. Here, even means S[x] ∈ 2Z for all
x ∈ L. We define

S0 :=


1

−S
1

 , S1 :=


1

S0

1


of real signatures (1, n + 1) and (2, n + 2) respectively. Let also V0 := Qn+2 and
V1 := Qn+4 and consider the quadratic spaces (V0, ϕ0), (V1, ϕ1), where

ϕi : Vi × Vi 7−→ Q

(x, y) 7−→ 1
2x

tSiy,

for i = 0, 1. We then have that ϕ := ϕ0 |V×V is just (x, y) 7−→ −xtSy/2, and we
make the assumption that L = Zn is a maximal Z-lattice with respect to ϕ.

From [Shi04, Lemma 6.3], we then obtain that L0 := Zn+2 is a Z-maximal lattice in
V0. If now K ⊃ Q is a field, we define the corresponding special orthogonal groups
of K-rational points via

G∗
K := {g ∈ SLn+2(K) | gtS0g = S0}, (4.2.1)
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GK := {g ∈ SLn+4(K) | gtS1g = S1}. (4.2.2)

We view G∗
K as a subgroup of GK via the embedding

g 7−→


1

g

1

 . (4.2.3)

Let nowHS denote one of the connected components of {Z ∈ V0⊗QC | ϕ0[ImZ] > 0}.
In particular, let

PS := {y′ = (y1, y, y2) ∈ Rn+2 | y1 > 0, ϕ0[y′] > 0}. (4.2.4)

We then choose
HS := {z = u+ iv ∈ V0 ⊗R C | v ∈ PS}. (4.2.5)

For a matrix g ∈ Mn+4(R), we write it as

g =


α at β

b A c

γ dt δ

 ,
with A ∈ Mn+2(R), α, β, γ, δ ∈ R and a, b, c, d real column vectors. Now the map

Z 7−→ g⟨Z⟩ =
−1

2S0[Z]b+ AZ + c

−1
2S0[Z]γ + dtZ + δ

(4.2.6)

gives a well-defined transitive action of G0
R on HS , where G0

R denotes the iden-
tity component of GR. The denominator of the above expression is the factor of
automorphy

j(g, Z) := −1
2S0[Z]γ + dtZ + δ.

Let now L1 := Zn+4 and define the groups

Γ(L0) := {g ∈ G∗
Q | gL0 = L0},

Γ(L1) := {g ∈ GQ | gL1 = L1}.

Let also Γ+(L0) := Γ(L0) ∩G∗,0
R . Moreover, let

ΓS := G0
R ∩ Γ(L1),

and
Γ̃S := {M ∈ ΓS |M ∈ 1n+4 + Mn+4(Z)S1}, (4.2.7)

the discriminant kernel.
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Definition 4.2.1. Let k ∈ Z and Γ̃S ≤ Γ ≤ ΓS a subgroup of finite index. A
holomorphic function F : HS −→ C is called a modular form of weight k with
respect to Γ if it satisfies the equation

(F |kγ)(Z) := j(γ, Z)−kF (γ⟨Z⟩) = F (Z)

for all γ ∈ Γ and Z ∈ HS. We will denote the set of such forms by Mk(Γ).

Now, if Γ̃S ≤ Γ ≤ ΓS, F ∈ Mk(Γ) admits a Fourier expansion of the form (see
[Sug95, (5.10)])

F (Z) =
∑
r∈L∗

0

A(r)e(rtS0Z), (4.2.8)

where Z ∈ HS. It is then Koecher’s principle that gives us that A(r) = 0 unless
r ∈ L∗

0 ∩ PS (PS denotes the closure of PS , see [Sch22, Theorem 1.5.2]). By [Sch22,
Theorem 1.6.23], and because L is maximal, we have the following definition for cusp
forms.

Definition 4.2.2. If Γ̃S ≤ Γ ≤ ΓS, F ∈Mk(Γ) is called a cusp form if it admits a
Fourier expansion of the form

F (Z) =
∑

r∈L∗
0∩PS

A(r)e(rtS0Z),

We denote the space of cusp forms by Sk(Γ).

We finally define a Petersson inner product, as in [Sch22, Remark 1.6.25].

Definition 4.2.3. If Γ̃S ≤ Γ ≤ ΓS, let QΓ denote a fundamental domain for the
action of Γ on HS. Assume F,G ∈Mk(Γ), with at least one belonging in Sk(Γ). We
define their Petersson inner product as

⟨F,G⟩Γ := 1
[ΓS : Γ]

∫
QΓ
F (Z)G(Z) (Q0[ImZ])k d∗Z,

where d∗Z = (Q0[ImZ])−(n+2) dZ denotes the G0
R-invariant volume element on HS.

Here, Q0 := S0/2. This is independent of the choice of the fundamental domain, or
in fact, of the subgroup Γ, so in the following, we drop the subscript.

4.3 Fourier-Jacobi Forms of Lattice Index

In this Section, we will define Fourier-Jacobi forms of lattice index. We follow
Mocanu’s thesis [Moc19], and Krieg in [Kri96].
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For now, assume that V is a vector space of dimension n < ∞ over Q, together
with a positive definite symmetric bilinear form σ and an even lattice Λ in V , i.e.
σ(λ, λ) ∈ 2Z for all λ ∈ Λ. We start with the following definitions:

Definition 4.3.1. We define the Heisenberg group to be:

H(Λ,σ)(R) = {(x, y, ζ) | x, y ∈ Λ⊗ R, ζ ∈ S1},

where S1 := {z ∈ C | |z| = 1}, equipped with the following composition law:

(x1, y1, ζ1)(x2, y2, ζ2) := (x1 + x2, y1 + y2, ζ1ζ2e(σ(x1, y2))).

The integral Heisenberg group is defined to be H(Λ,σ)(Z) := {(x, y, 1) | x, y ∈ Λ}
and in the following we drop the last coordinate for convenience.

Proposition 4.3.2. The group SL2(R) acts on H(Λ,σ)(R) from the right, via

((x, y, ζ), A) 7−→ (x, y, ζ)A :=
(

(x, y)A, ζe
(
σ[(x, y)A]− 1

2σ(x, y)
))

.

where (x, y)A denotes the formal multiplication of the vector (x, y) with A, i.e. if

A =
a b

c d

, we have (x, y)A := (ax+ cy, bx+ dy).

Definition 4.3.3. The real Jacobi group associated with (Λ, σ), denoted by
J (Λ,σ)(R), is defined to be the semi-direct product of SL2(R) and H(Λ,σ)(R). The
composition law is then

(A, h) · (A′, h′) := (AA′, hA
′
h′).

We also define the integral Jacobi group to be the semi-direct product of SL2(Z)
and H(Λ,σ)(Z) and we will denote it by J (Λ,σ).

We are now going to define some slash operators, acting on holomorphic, complex-
valued functions on H× (Λ⊗ C).

Definition 4.3.4. Let k be a positive integer and f : H × (Λ ⊗ C) −→ C a

holomorphic function. For M =
a b

c d

 ∈ SL2(R) , we define:

(
f |k,(Λ,σ)[M ]

)
(τ, z) := (cτ + d)−ke−πicσ(z,z)/(cτ+d)f

(
aτ + b

cτ + d
,

z

cτ + d

)
.

In the case when M ∈ GL+
2 (R), we use det(M)−1/2M instead of M . For h =

(x, y, ζ) ∈ H(Λ,σ)(R):(
f |k,(Λ,σ) h

)
(τ, z) := ζ · eπiτσ(x,x)+2πiσ(x,z)f(τ, z + xτ + y).



4.3. Fourier-Jacobi Forms of Lattice Index 97

Finally, for the action of J (Λ,σ)(R) on complex-valued, holomorphic functions on
H× (L⊗ C), we have:

(f, (A, h)) 7−→
(
f |k,(Λ,σ) (A, h)

)
(τ, z) :=

(
(f |k,(Λ,σ) A) |k,(Λ,σ) h

)
(τ, z).

We now have the following Definition ([Moc19, Definition 1.23]):

Definition 4.3.5. Let VC := V ⊗ C and extend σ to VC by C-linearity. For k a
positive integer, a holomorphic function f : H×VC → C (where H denotes the usual
upper half plane) is called a Jacobi form of weight k with respect to (Λ, σ) if the
following hold:

• For all γ ∈ J (Λ,σ) and (τ, z) ∈ H× VC, we have(
f |k,(Λ,σ) γ

)
(τ, z) = f(τ, z).

• f has a Fourier expansion of the form

f(τ, z) =
∑

m∈Z,r∈Λ∗,2n≥σ[r]
cf (m, r)e(mτ + σ(r, z)).

We denote the space of such forms by Jk(Λ, σ). We say f is a Jacobi cusp form if
cf (m, r) = 0, when 2m = σ[r]. We denote the space of Fourier-Jacobi cusp forms by
Sk(Λ, σ).

We now have a notion of a scalar product for elements of Sk(Λ, σ), see [Moc19,
Definition 1.33].

Definition 4.3.6. Let ϕ, ψ ∈ Sk(Λ, σ). If U ≤ J (Λ,σ) of finite index, we define the
Petersson inner product via:

⟨ϕ, ψ⟩U := 1
[JΛ : U ]

∫
U\H×(Λ⊗C)

ϕ(τ, z)ψ(τ, z)vke−2πσ(y,y)v−1dV,

where τ = u+ iv, z = x+ iy and dV := v−n−2dudvdxdy. This inner product does
not depend on the choice of U , so in what follows, we drop the subscript.

We now specify to our case by taking Λ = L = Zn and σ(x, y) = xtSy for all
x, y ∈ V . We also write JS for the integral Jacobi group in this case, i.e. JS :=
SL2(Z) ⋊ (Zn × Zn).

Let us discuss the Fourier-Jacobi expansion of orthogonal cusp forms of weight k
with respect to ΓS. If we write Z = (ω, z, τ) ∈ HS with ω, τ ∈ C, z ∈ Cn, we have
that for any m ∈ Z ([Gri91, page 244]):

F (ω +m, z, τ) = F (ω, z, τ).
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Hence, we can write
F (Z) =

∑
m≥1

ϕm(τ, z)e2πimω, (4.3.1)

and we call the functions ϕm(τ, z) the Fourier-Jacobi coefficients of F . We note that
then ϕm ∈ Sk(Zn,mσ) (see [Sch22, Theorem 1.7.16]).

4.4 Maass Space

In this Section, we will give an account of the analogue of the Maass space in the
orthogonal setting. This has been defined by Krieg in [Kri96], Gritsenko in [Gri91],
and Sugano in [Sug95]. We have the following definition, due to Krieg in [Kri96].

Definition 4.4.1. Let Γ̃S ≤ Γ ≤ ΓS be a subgroup of finite index. The Maass
space M∗

k (Γ) consists of all F ∈Mk(Γ), so that if their Fourier expansion is

F (Z) =
∑
r∈L∗

0

A(r)e(rtS0Z),

we have

A(r) =
∑

d|gcd(ρ)
dk−1A




lm/d2

−S−1λ/d

1


 ,

where r = S−1
0 ρ, with ρ =


m

λ

l

.

There is an important connection between the Maass space and the space of Fourier-
Jacobi forms. In order to make this specific, we first need to define various subgroups
of ΓS. Consider the following elements of ΓS:

J :=


0 0 −I
0 1n 0
−I 0 0

 , I =
0 1

1 0

 , Tλ :=


1 −λtS0 −1

2S0[λ]
0 1n+2 λ

0 0 1

 , λ ∈ Zn+2,

RK :=


1 0 0
0 K 0
0 0 1

 , K ∈ Γ+(L0), KU :=


1 0 0
0 U 0
0 0 1

 , U ∈ SO(L).

We have the following Theorem.

Theorem 4.4.2. ([Kri16, Theorem 1]) ΓS is generated by the matrices

J, (Tλ, λ ∈ Zn+2), (RK , K ∈ Γ+(L0)).
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We now recall that we have defined the so-called discriminant kernel in equation
(4.2.7). It is easy to show that it is a normal subgroup of ΓS and from [Sch22, p.
24], it is generated by the matrices J, (Tλ, λ ∈ Zn+2), (RK , K ∈ Γ̃+(L0)). Here

Γ̃+(L0) := {M ∈ Γ+(L0) |M ∈ 1n+2 + Mn+2(Z)S0}.

Finally, we define the groups

Γ̃•
S := ⟨J, (Tλ, λ ∈ Zn+2)⟩, (4.4.1)

and
Γ•
S := ⟨Γ̃•

S, (RKU
: U ∈ SO(L))⟩. (4.4.2)

The connection between the Maass space and Fourier-Jacobi forms is now given in
the following Theorem.

Theorem 4.4.3. ([Kri96, Theorem 3]) The mapping F 7−→ ϕ1 gives an isomorphism
between the Maass space M∗

k (Γ̃•
S) and Jk(L, σ), as vector spaces. Here Jk(L, σ) is

the space defined in Definition 4.3.5 with L = Zn, σ(x, y) = xtSy for all x, y ∈ V
and ϕ1 is the first Fourier-Jacobi coefficient of F (see (4.3.1)).

The above mapping restricted to cusp forms also gives an isomorphism of S∗
k(Γ̃•

S)
and Sk(L, σ). Here S∗

k(Γ̃•
S) is the subspace of M∗

k (Γ̃•
S), consisting of cusp forms.

The inverse of the above mapping is sometimes referred to as Gritsenko lift (cf.
[Gri91, Proposition 5]) and in the case of cusp forms is given as follows:

∑
m∈Z,r∈L∗,

2n>σ[r]

cϕ(m, r)e(mτ + σ(r, z)) 7−→
∑

λ∈L∗
0∩PS

∑
d|gcd (S0λ)

dk−1cϕ

(
mN

d2 ,
r

d

)
e(λtS0Z),

(4.4.3)
where λ = (m, r,N)t ∈ L∗

0.

Gritsenko in [Gri91] has defined the above via the action of a T− operator on Fourier-
Jacobi forms, in analogy with the Hermitian Maass space of Definition 2.5.3. The
action on the Fourier coefficients turns out to be the same as the one in (4.4.3).

Finally, Sugano in [Sug95] has defined the same mapping via an operator VN , which
corresponds to T− of Gritsenko (see [Sug95, Section 6]). We will discuss this in
detail in Section 6.3. It should be noted that Sugano proves in [Sug95, Corollary 6.7]
that his mapping gives an isomorphism between Sk(L, σ) and S∗

k(Γ̃S) (see equation
(4.2.7)). It turns out that this is no different to Krieg, because if F ∈ S∗

k(Γ̃•
S), then

F ∈ S∗
k(Γ̃S) because of the special relations between the Fourier coefficients of F .

Also, clearly S∗
k(Γ̃S) ⊆ Sk(Γ̃•

S) as Γ̃•
S ⊆ Γ̃S and so the two spaces are the same.
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4.5 Dirichlet Series

In this short Section, we will define the Dirichlet series of interest, in analogy with
Kohnen and Skoruppa, in their seminal paper [KS89]. We will also show that it is
well-defined.

Let Γ̃S ≤ Γ ≤ ΓS be a subgroup of finite index. We then have Tλ ∈ Γ for all
λ ∈ Zn+2. Therefore, if F,G ∈ Sk(Γ), they admit a Fourier-Jacobi expansion of
the form (4.3.1). Assume their Fourier-Jacobi coefficients are {ϕm}∞

m=1, {ψm}∞
m=1

respectively. We then define the following Dirichlet series:

DF,G(s) :=
∞∑
m=1
⟨ϕm, ψm⟩m−s. (4.5.1)

Here, ⟨ , ⟩ denotes the inner product of Definition 4.3.6.

Lemma 4.5.1. DF,G(s) converges absolutely for Re(s) > k + 1 and represents a
holomorphic function on this domain.

Proof. The proof is similar to [KS89, Lemma 1]. We will show for N ≥ 1 that

⟨ϕN , ψN⟩ = O(Nk),

with the constant depending only on F,G. Indeed, fix (τ, z) ∈ H × Cn and write

τ = u + iv, z = x + iy. If F (q) =
∞∑
N=1

ϕN(τ, z)qN , with q = e2πiτ ′ , we have by

Cauchy’s integral formula that

ϕN(τ, z) =
∮

|q|=r

F (q)
qN+1 dq,

for any 0 < r < e−πS[y]/v. The bounds follow from the fact that S0[ImZ] > 0 (here
Z = (τ ′, z, τ) ∈ HS). If now τ ′ = u′ + iv′, the integral can be written as

ϕN(τ, z) =
∫ 1

0
F (Z)e−2πiNτ ′du′,

for any v′ > S[y]/2v. But now |F (Z)| (S0[ImZ]/2)k/2 is bounded on HS from
[Hau21, II, Lemma 3.28], say by a constant C > 0. Therefore, after choosing
v′ = S[y]/2v + 1/N , we have

|ϕN(τ, z)| ≤ Ce2π
∫ 1

0
(S0[ImZ]/2)−k/2 eπNS[y]/vdu′ = Ce2π

(
v

N

)−k/2
eπNS[y]/v.

Similarly for ψN and then the claim follows from the definition of the inner product
in Definition 4.3.6.



Chapter 5

Analytic Properties of the
Dirichlet series

In this Chapter, we will discuss the analytic properties, i.e., meromorphic continu-
ation to C and functional equation of the Dirichlet series defined in (4.5.1). This is
the first consideration of Kohnen and Skoruppa in their paper [KS89] (see Theorem
1.1.3).

Let us analyse their result in greater detail. Their method of proof can be summarised
in two steps: The first (and easier one) is to obtain an integral representation for
DF,G, using a non-holomorphic Eisenstein series of Klingen type. The second is
to prove the meromorphic continuation and functional equation for this Eisenstein
series. The proof of that involves writing the Eisenstein series in the form of an
Epstein zeta function and then proving that it is a Mellin transform of a specific
theta series.

This general method of proof has been successful in a number of other cases as well.
For example, Raghavan and Sengupta in [RS91] and Gritsenko in [Gri92a] considered
the same problem, but in the case when F,G are Hermitian cusp forms of degree 2
over Q(i). In both papers, the authors managed to deduce the analytic properties of
DF,G by applying a very similar idea; however, there are two key differences regarding
the second step above. The first one is that the Eisenstein series of Klingen type
arises as the inner product of a theta series and a classical Eisenstein series for
SL2. The second and more important one is that it is now necessary to apply some
differential operators to the theta series first. The reason for this is that there are
terms that cause the inner-product integral to diverge, so we need to eliminate them
with the use of differential operators.

It should be noted here that the degree of the modular objects considered is not
important. Yamazaki in [Yam90] generalised the (analytic) result of Kohnen and
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Skoruppa for Siegel cusp forms of arbitrary degree n ≥ 1. However, his method of
deducing the analytic properties of the Eisenstein series of Klingen type is derived
from the general Langlands’ theory. Krieg, on the other hand, in [Kri91], used theta
correspondence in the arbitrary degree n case for Siegel, Hermitian (over Q(i)) and
quaternionic (over the Hamiltonian quaternions) cusp forms. The use of differential
operators was again essential for the last two cases. Even more remarkably, Deitmar
and Krieg in [DK91, Section 4] managed to prove theta correspondence between
Eisenstein series of Klingen and Siegel type for the groups Spn(Z) and O(m,m), for
arbitrary m,n ≥ 1. Their proof is based on proving the existence of an invariant
differential operator R, which, when applied to the suitable theta series, eliminates
the terms that cause the divergence of the inner-product integral. This was a
significant advance because up until then, all the operators had to be found explicitly,
and this could only be done in a handful of cases. Moreover, using such an explicit
correspondence, the authors deduce finer information regarding the poles and zeros
of the Eisenstein series considered.

In our case, we essentially combine all the techniques we mentioned above. We
first obtain an integral representation for the Dirichlet series, and then demonstrate,
under certain restrictions, an explicit theta correspondence between an Eisenstein
series of Klingen type for the orthogonal group and a Siegel-type Eisenstein series
for the symplectic group of degree 2.

5.1 Integral Representation

In this Section, we will give a Rankin-Selberg integral for the Dirichlet series (4.5.1).
We need several preparations. We will first view Fourier-Jacobi forms as modular
forms under the action of a parabolic subgroup, very much in the same way as we
have done for the Hermitian case in Section 2.2. We begin by defining a special
parabolic subgroup of ΓS.

Definition 5.1.1. The parabolic subgroup of ΓS fixing the two-dimensional
isotropic subspace spanned by e1, e2 (standard basis vectors) is defined by

ΓS,J :=

∗ ∗

0 D

 ∈ ΓS | D ∈M2(Z)
 . (5.1.1)

We will now embed the (integral) Jacobi group JS (defined just after Definition 4.3.6)
into ΓS,J . Consider the embedding

ι : JS −→ ΓS,J
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(D, [x, y]) 7−→MD ·Hx,y,

where

Hx,y :=



1 0 ytS 0 1
2S[y]

0 1 xtS 1
2S[x] xtSy

0 0 1n x y

0 0 0 1 0
0 0 0 0 1


, MD :=


D∗ 0 0
0 1n 0
0 0 D

 ,

with D∗ := D

−1 0
0 1

 (cf. [Sch22, page 44]). We denote by Γ•
S,J := ι(JS). By

[Ajo15, Proposition 2.2.7], we have that the action of JS on H× Cn is given by

((D, [x, y]), (τ, z)) 7−→
(
Dτ,

z + xτ + y

j′(D, τ)

)
,

where j′ denotes the usual factor of automorphy for the action of SL2(Z) on H.

Now, if we take an element M = ι((D, [x, y])) ∈ Γ•
S,J , we can see that its action on

an element (ω, z, τ) ∈ HS (see (4.2.6))

M⟨(ω, z, τ)⟩ =
(
∗, z + xτ + y

j(D, τ) , Dτ

)

is the same as the action of JS on H× Cn.

We have the following Proposition regarding the fundamental domain of the action
of Γ•

S,J on HS, which will be useful later.

Proposition 5.1.2. For Z = (ω, z, τ) ∈ HS, we write ω = x1 + iy1, z = u+ iv, τ =
x2 + iy2. A valid choice for the fundamental domain of the action of Γ•

S,J on HS is

FJ :=
{
Z = (ω, z, τ) ∈ HS | (z, τ) ∈ F , y1y2 −

1
2S[v] > 0,−1

2 ≤ x1 ≤
1
2

}
,

where F is a fundamental domain of the action of JS on H× Cn.

Proof. Let Z = (ω, z, τ) ∈ HS. We can then pick g ∈ Γ•
S,J such that ι−1(g) ∈ JS and

that Z ′ := g⟨Z⟩ = (ω′, z, τ) with (z, τ) ∈ F and ω′ ∈ H arbitrary. This follows from
the fact that the actions are the same, as we have shown above. Now, if λ ∈ Zn+2,
we have Tλ⟨Z ′⟩ = Z ′ + λ (see Section 4.4 for the definition of Tλ) and so we can act
with a suitable Tλ, so that −1/2 ≤ x1 ≤ 1/2. Finally, the condition y1y2−S[v]/2 > 0
follows from the definition of PS in 4.2.4.

Let now F,G ∈ Sk(ΓS). In order to give an integral representation for DF,G(s), we
need to define an appropriate Eisenstein series of Klingen type, in an analogous way
to [Sch22, Chapter 3].
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Definition 5.1.3. Let Z ∈ HS and s ∈ C with Re(s) > n + 1. We define the real
analytic Eisenstein series of Klingen type to be

E(Z, s) :=
∑

γ∈ΓS,J \ΓS

(
Q0[Im(γZ)]
Im((γZ)2)

)s
,

where for Z = (ω, z, τ) ∈ HS, we write Z2 := τ . Also, Q0 = S0/2.

Proposition 5.1.4. E(Z, s) is well defined, is invariant under the action of ΓS and
converges absolutely and uniformly whenever Z belongs to a compact subset of HS

and s satisfies Re(s) > n+ 1.

Proof. Let γ ∈ ΓS,J . We write

γ =
∗ ∗

0 D

 , D ∈ SL2(Z),

because γ is in the connected component of the identity. Now, for Z = (ω, z, τ) ∈ HS,
we have γ⟨Z⟩2 = D⟨τ⟩, where the action on the right denotes the usual action of
SL2(Z) on H (see also [Sch22, page 115]). By [Bru97, Lemma 3.20], we have

Q0[Im(γZ)] = |j(γ, Z)|−2Q0[ImZ], (5.1.2)

and so
Q0[Im(γZ)]
Im((γZ)2)

= 1
|j(γ, Z)|2

Q0[ImZ]
Im(Dτ) = |j

′(D, τ)|2
|j(γ, Z)|2

Q0[ImZ]
Im(Z2)

,

where again j′ denotes the usual factor of automorphy for the action of SL2(Z) on
H. But we have j(γ, Z) = j′(D, τ) and hence E(Z, s) is well-defined.

The invariance under ΓS follows from the fact that for fixed δ ∈ ΓS, the map γ 7−→ γδ

induces a bijection between ΓS,J\ΓS to itself.

For the convergence, we can write from (5.1.2)

E(Z, s) =
∑

γ∈ΓS,J \ΓS

(Q0[ImZ])s (Im(γZ)2)−s |j(γ, Z)|−2s .

But by the proof of [Sch22, Theorem 3.1.1], the sum
∑

γ∈ΓS,J \ΓS

(Im(γZ)2)−k/2 |j(γ, Z)|−k

converges locally uniformly whenever k > 2n+ 2. From this, the claim follows.

We are now ready to give the main Proposition of this Section.
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Proposition 5.1.5. Let F,G ∈ Sk(ΓS). For Z ∈ HS and s ∈ C with Re(s) > n+ 2,
we have

⟨F (Z)E(Z, s), G(Z)⟩ = 1
#SO(S;Z)(4π)−(s+k−n−1)Γ(s+k−n−1)DF,G(s+k−n−1),

where ⟨ , ⟩ denotes the inner product of Definition 4.2.3,

SO(S;Z) := {g ∈ SLn(Z) | gtSg = S},

which is finite and DF,G(s) is the Dirichlet series of (4.5.1).

Proof. Let I(s) := ⟨F (Z)E(Z, s), G(Z)⟩. If we denote by Q a fundamental domain
for the action of ΓS on HS , by using the standard unfolding argument, we have for
Re(s) > n+ 1

I(s) =
∫

Q
F (Z)G(Z)

∑
γ∈ΓS,J \ΓS

(
Q0[Im(γZ)]
Im((γZ)2)

)s
(Q0[ImZ])k d∗Z

= 1
[ΓS,J : Γ•

S,J ]

∫
FJ
F (Z)G(Z)

(
Q0[Y ]
Im(τ)

)s
(Q0[Y ])k−n−2 dXdY,

where FJ is a fundamental domain for the action of Γ•
S,J = ι(JS) on HS and

Z = (ω, z, τ) = X + iY . We note here

[ΓS,J : Γ•
S,J ] = #SO(S;Z) <∞,

because S is positive definite (cf. [Sch22, Section 1.7]). Hence, from Proposition
5.1.2, with the same notation as there, we get

I(s) = 1
#SO(S;Z)

∫
F

∫
y1y2− 1

2S[v]>0

∫
− 1

2 ≤x1≤ 1
2

F (Z)G(Z)y−s
2 ×

×
(
y1y2 −

1
2S[v]

)k−n−2+s
dXdY,

where F is a fundamental domain of the action of JS on H× Cn. We now write

F (Z) =
∞∑
m=1

ϕm(τ, z)e2πimω, G(Z) =
∞∑
m=1

ψm(τ, z)e2πimω.

Using the fact that for integers m1,m2, we have

∫ 1/2

−1/2
e2πi(m1−m2)x1dx1 =

1 if m1 = m2

0 otherwise
,
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we get

I(s) = 1
#SO(S;Z)

∫
F

∫
y1y2− 1

2S[v]>0

∞∑
m=1

ϕm(τ, z)ψm(τ, z)e−4πmy1y−s
2 ×

×
(
y1y2 −

1
2S[v]

)k−n−2+s
dXdY.

We now set t := y1 −
S[v]
2y2

, or equivalently y2t = y1y2 −
1
2S[v]. We then get

I(s) = 1
#SO(S;Z)

∫
F

∫ ∞

t=0

∞∑
m=1

ϕm(τ, z)ψm(τ, z)e−4πmte
−2πmS[v]

y2 y−s
2 ×

× (ty2)k−n−2+s dtdudvdx2dy2.

But ∫ ∞

t=0
e−4πmttk−n−2+sdt = Γ(s+ k − n− 1)(4π)−(s+k−n−1)m−(s+k−n−1).

Moreover, in this case, the inner product of Definition 4.3.6 reads as:

⟨ϕm, ψm⟩ =
∫

F
ϕm(τ, z)ψm(τ, z)yk−n−2

2 e
− 2πm

y2
S[v]dudvdx2dy2.

Putting all the above together, we obtain

I(s) = 1
#SO(S;Z)(4π)−(s+k−n−1)Γ(s+ k − n− 1)DF,G(s+ k − n− 1),

or equivalently

⟨F (Z)E(Z, s), G(Z)⟩ = 1
#SO(S;Z)(4π)−(s+k−n−1)Γ(s+k−n−1)DF,G(s+k−n−1),

as claimed.

5.2 Eisenstein Series as an Epstein Zeta Function

It is now clear from the above that the analytic properties of the Dirichlet series of
interest reduce to the ones of the Klingen Eisenstein series, as given in Definition
2.1.6. This Section is devoted to writing this Eisenstein series in the form of an
Epstein zeta function, similar to [Kri91, equation (7)]. In our case, because of the
form of the Eisenstein series, we cannot use the method of Krieg in [Kri91] with the
minors of the determinant. It turns out we can write the Eisenstein series in such a
form, provided that the number of one-dimensional cusps is 1.
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Definition 5.2.1. The set of ΓS-orbits of one-dimensional cusps of HS is defined by

C1(ΓS) := {ΓSW | W is isotropic in V1}. (5.2.1)

A two-dimensional isotropic plane, or isotropic plane in V1, is defined by two
linearly independent vectors g, h ∈ V1. We normalise g, h such that g, h ∈ L∗

1 and
such that gcd (S1g) = gcd (S1h) = 1. The isotropy condition means S1

[(
g h

)]
= 0.

We also have the following Definition of the majorants for S1.

Definition 5.2.2. The space of majorants for S1 is defined by

H := {R ∈Mn+4(R) | R = Rt > 0, RS−1
1 R = S1}.

The main Proposition of the Section is the following:

Proposition 5.2.3. Let S be such that #C1(ΓS) = 1. Then, for each Z ∈ HS, there
is a RZ ∈ H such that

E(Z, s) =
∑

γ∈ΓS,J \ΓS

(
Im(γZ)2

Q0[Im(γZ)]

)−s

=
∑

ℓ∈X/GL2(Z)
(det(RZ [ℓ]))−s/2 ,

where

X :=
{(
l m

)
| l,m ∈ Zn+4,

(
l m

)
primitive, S1

[(
l m

)]
= 0

}
.

Here, a matrix being primitive means that its elementary divisors are all 1 (see
[Shi97, Section 3]).

The rest of the Section is devoted to proving this Proposition. We start with two
lemmas regarding the elements of GR, i.e., the special orthogonal group attached to
S1.

Lemma 5.2.4. Let γ ∈ GR and write γ =
(
∗ l m

)t
with l,m ∈ Rn+4. Then

γ−1 =
(
S−1

1 m S−1
1 l ∗

)
.

Proof. The proof follows from the fact that if

γ =


α at β

b A c

γ dt δ

 ∈ GR,
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then from the relation S1[γ] = S1, we have

γ−1 =


δ ctS0 β

S−1
0 d S−1

0 AtS0 S−1
0 a

γ btS0 α

 .

Lemma 5.2.5. Let γ ∈ GR and write γ =


∗
lt

mt

 =


∗ ∗ ∗ ∗ ∗
l1 l2 xt ln+3 ln+4

m1 m2 yt mn+3 mn+4

.

Then, if

ℓ := S−1
1

(
m l

)
=



mn+4 ln+4

mn+3 ln+3

−S−1y −S−1x

m2 l2

m1 l1


,

we have S1[ℓ] = 0.

Proof. Let M =
(
e1 e2

)
, where e1, e2 are the two standard basis vectors of Rn+4.

From Lemma 5.2.4, we have ℓ = γ−1M . But

S1[γ−1M ] = S1[γ−1][M ] = S1[M ] = 0,

because γ−1 ∈ GR and the subspace generated by M is totally isotropic. Hence, the
result follows.

Now, for any Z ∈ HS, we want to choose a specific majorant for S1, so that the
terms of the Eisenstein series take the form in Proposition 5.2.3. We start with
defining the majorant for the element I := (i, 0 · · · , 0, i)t ∈ HS.

Lemma 5.2.6. Let I := (i, 0, · · · , 0, i)t and RI = diag(1, 1, S, 1, 1). Then, if γ ∈ GR,
with γ =

(
∗ l m

)t
, we have

(
Im((γI)2)
Q0[Im(γI)]

)2

= det (RI [ℓ]),

where ℓ = S−1
1

(
m l

)
, as in Lemma 5.2.5.

Proof. We have S0[I] = −2 and therefore

Im((γI)2) = Im
(

l1 + (l2 + ln+3)i+ ln+4

m1 + (m2 +mn+3)i+mn+4

)
=

= (l2 + ln+3)(m1 +mn+4)− (l1 + ln+4)(m2 +mn+3)
(m1 +mn+4)2 + (m2 +mn+3)2 .
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Also,

Q0[Im(γI)] = |j(γ, I)|−2Q0[ImI] = 1
(m1 +mn+4)2 + (m2 +mn+3)2 .

Hence,

Im((γI)2)
Q0[Im(γI)] = (l2 + ln+3)(m1 +mn+4)− (l1 + ln+4)(m2 +mn+3).

Now, from Lemma 5.2.5, with ℓ written as there, we have
S−1[x] = 2(ln+4l1 + ln+3l2).

S−1[y] = 2(mn+4m1 +mn+3m2).

xtS−1y = ln+4m1 + ln+3m2 + l2mn+3 + l1mn+4.

By then computing RI [ℓ] and taking the determinant, the result follows.

After defining the majorant for I, we can use the transitivity of the action in (4.2.6),
in order to define a majorant for every Z in HS.

Proposition 5.2.7. Let Z ∈ HS. Then, ∃RZ ∈ H such that for all γ ∈ GR,(
Im((γZ)2)
Q0[Im(γZ)]

)2

= det(RZ [ℓ]),

where ℓ is the matrix formed by the first two columns of γ−1.

Proof. We start the proof by constructing such an RZ . We denote by I =
(i, 0, · · · , 0, i)t. By transitivity, ∃δ ∈ G0

R such that δ⟨I⟩ = Z. We then define
RZ := RI [δ−1] and we claim this is well-defined. We prove this in Lemma 5.2.8.
Then (

Im((γZ)2)
Q0[Im(γZ)]

)2

=
(

Im((γδI)2)
Q0[Im(γδI)]

)2

= det (RI [ℓ]) ,

where if γδ =
(
∗ l m

)t
, we have ℓ = S−1

1

(
m l

)
, by Lemma 5.2.6. Now,

RZ = RI [δ−1] =⇒ RI = RZ [δ].

Hence (
Im((γZ)2)
Q0[Im(γZ)]

)2

= det(RZ [δℓ]).

Now, if γ =
(
∗ l′ m′

)t
, we want to show that the above quotient equals
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det
(
RZ [S−1

1

(
m′ l′

)
]
)
. But

γδ =


∗
lt

mt

 =⇒ γ =


∗
lt

mt

 δ−1 =


∗

ltδ−1

mtδ−1

 =


∗

((δ−1)tl)t

((δ−1)tm)t

 ,
so (

m′ l′
)

=
(
(δ−1)tm (δ−1)tl

)
.

Suffices to then show that (we remind here that ℓ = S−1
1

(
m l

)
)

S−1
1 (δ−1)t = δS−1

1 ⇐⇒ δS−1
1 δt = S−1

1 ⇐⇒ (δ−1)tS1δ
−1 = S1 ⇐⇒ S1[δ−1] = S1,

which is true.

The only thing remaining to show is that RZ ∈ H. But as RI is symmetric and
positive definite, the same holds for RZ = RI [δ−1]. Finally, it is easy to show that
RIS

−1
1 RI = S1 and then

RZS
−1
1 RZ = (δ−1)tRIδ

−1S−1
1 (δ−1)tRIδ

−1 = (δ−1)tRIS
−1
1 RIδ

−1 =
= (δ−1)tS1δ

−1 = S1[δ−1] = S1.

Hence, RZ ∈ H, as required.

We now give the final Lemma, showing that RZ is well-defined.

Lemma 5.2.8. For each Z ∈ HS, RZ, as defined in the proof of Proposition 5.2.7,
is well-defined.

Proof. We want to show that for δ1, δ2 ∈ GR,

δ1⟨I⟩ = δ2⟨I⟩ =⇒ RI [δ−1
1 ] = RI [δ−1

2 ].

For that, it suffices to show that if g ∈ GR, such that g⟨I⟩ = I, then RI [g−1] = RI .
Let us now write

g =



α a1 xt an+2 β

b1 A1,1 Et A1,n+2 c1

y F K G z

bn+2 An+2,1 H t An+2,n+2 cn+2

γ d1 wt dn+2 δ


,

with α, β, γ, δ, A1,1, A1,n+2, An+2,1, An+2,n+2 ∈ R, E,F,G,H, x, y, z, w ∈ Rn and K ∈
Rn,n. By the definition of the action and the fact that g⟨I⟩ = I, we obtain (cf.
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[Sug85, (1.3)]):

g


1
I

1

 = j(g, I)


1
I

1

 .
But we have j(g, I) = γ + δ+ (d1 + dn+2)i. Hence, we obtain the following relations:



α + β + i(a1 + an+2) = γ + δ + i(d1 + dn+2).
b1 + c1 + i(A1,1 + A1,n+2) = i(γ + δ)− (d1 + dn+2).
y + z + i(F +G) = 0.
bn+2 + cn+2 + i(An+2,1 + An+2,n+2) = i(γ + δ)− (d1 + dn+2).

(5.2.2)
(5.2.3)
(5.2.4)
(5.2.5)

Now, g⟨I⟩ = I implies g−1⟨I⟩ = I as well. But, as in Lemma 5.2.4, we have

g−1 =



δ cn+2 −ztS c1 β

dn+2 An+2,n+2 −GtS A1,n+2 an+2

−S−1w −S−1H S−1KtS −S−1E −S−1x

d1 An+2,1 −F tS A1,1 a1

γ bn+2 −ytS b1 α


,

and therefore, we also obtain the relations



δ + β + i(cn+2 + c1) = γ + α + i(b1 + bn+2).
an+2 + dn+2 + i(An+2,n+2 + A1,n+2)) = i(γ + α)− (b1 + bn+2).
S−1w + S−1x+ i(S−1H + S−1E) = 0.
a1 + d1 + i(An+2,1 + A1,1) = i(γ + α)− (b1 + bn+2).

(5.2.6)
(5.2.7)
(5.2.8)
(5.2.9)

Using now equations (5.2.3), (5.2.5), (5.2.7), (5.2.9), we obtain

A1,1 = An+2,n+2, A1,n+2 = An+2,1 and α = δ.

Using (5.2.2) we also get α+ β = γ + δ =⇒ β = γ as well. From (5.2.4), (5.2.8) we
get

y = −z, w = −x, F = −G and H = −E.

Finally, from (5.2.2), (5.2.7), (5.2.9), we have the equations

a1 + d1 = −(bn+2 + b1), an+2 + dn+2 = −(b1 + bn+2), a1 + an+2 = d1 + dn+2.

These give a1 + d1 = an+2 + dn+2, which together with a1 + an+2 = d1 + dn+2 gives

a1 = dn+2 and an+2 = d1.
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Similarly, b1 = cn+2 and c1 = bn+2 and these relations are enough to check gtRI =
RIg

−1, i.e. what we wanted to prove.

We are now ready to give the proof of the main Proposition 5.2.3. For convenience,
we restate it here.

Proposition 5.2.9. Let S be such that #C1(ΓS) = 1. Then, for each Z ∈ HS, there
is a RZ ∈ H such that

E(Z, s) =
∑

γ∈ΓS,J \ΓS

(
Im(γZ)2

Q0[Im(γZ)]

)−s

=
∑

ℓ∈X/GL2(Z)
(det(RZ [ℓ]))−s/2 ,

where

X :=
{(
l m

)
| l,m ∈ Zn+4,

(
l m

)
primitive, S1

[(
l m

)]
= 0

}
.

Here, a matrix being primitive means that its elementary divisors are all 1 (see
[Shi97, Section 3]).

Proof. Let M =
(
e1 e2

)
. We claim that the map

ΓS −→ X

γ 7−→ γ−1M

induces a bijection ΓS,J\ΓS ∼−→ X/GL2(Z).

• Well-Defined: Firstly, γ−1M ∈ X as the first two columns of γ−1 are integer
vectors and as γ−1 ∈ ΓS ⊂ GLn+4(Z), we get that γ−1M is primitive. Moreover,
S1[γ−1M ] = 0, as we have already shown in Lemma 5.2.5.

Now, if δ = pγ for some p ∈ ΓS,J , then we can write p−1M =


a b

c d
... ...
0 0

 with

a b

c d

 ∈ SL2(Z) (because of the form of the parabolic). Hence

δ−1M = γ−1p−1M = γ−1M

a b

c d

 ,
which gives the map is well-defined.

• Injective: If γ−1M = δ−1MN for some N ∈ GL2(Z), then

γδ−1M = MN−1,
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which shows that γδ−1 ∈ ΓS,J (the first two columns of γδ−1 belong in the
Z-span of the vectors e1, e2 and γ, δ ∈ ΓS ⊂ SLn+4(Z)).

• Surjective: Consider now
(
l m

)
∈ X/GL2(Z). The plane generated by the

vectors l,m can be checked to be isotropic. Indeed,

span{l,m} = span
{

l

gcd (S1l)
,

m

gcd (S1m)

}

in V1. These vectors both belong in L∗
1 (can be checked directly) and also

gcd
(

S1l

gcd (S1l)

)
= 1 and similarly for the other vector. The isotropy condition

still holds for the two new vectors (as we only change them by a scalar), and
therefore the claim follows.
Now, because #C1(ΓS) = 1 by assumption, if U is the plane generated by the
basis vectors e1, e2 (U is an isotropic plane too), there is an element K ∈ ΓS
such that K maps U to W . Hence, there exist x, y, z, w ∈ Q such that

(
Ke1 Ke2

)
=
(
l m

)x z

y w

 .
But as

(
l m

)
is assumed to be primitive, we have by [Shi97, Lemma 3.3] that

∃A ∈ Mat2,n+4(Z) such that A
(
l m

)
= 12. Hence, we obtain

A
(
Ke1 Ke2

)
=
x z

y w

 ,
and so x, y, z, w ∈ Z. Now

(
Ke1 Ke2

)
is also primitive by [Shi97, Lemma

3.3], as it can be completed to an element of GLn+4(Z), namely K. Hence,
∃B ∈ Mat2,n+4(Z) such that B

(
Ke1 Ke2

)
= 12. Hence,

x z

y w

−1

= B
(
l m

)
∈ Mat2(Z).

Hence, as the inverse of that matrix also has integer entries, we must have
that its determinant is ±1, i.e., xw − yz = ±1. Therefore, K−1 gets mapped
to
(
l m

)
GL2(Z), as wanted.

The rest of the proof now follows from Proposition 5.2.7.

Remark 5.2.10. We would like to make a few comments here regarding the condition
#C1(ΓS) = 1. This condition is discussed in [Sch22, Section 1.6.5]. However, the
whole discussion there and the examples given (basically the Euclidean lattices in
the sense of [Sch22, Definition 1.6.13], a complete list of the 70 that exist is known,
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see [Neb03]) is about when ΓS is the integral connected component of the identity
of O(2, n + 2) and not of SO(2, n + 2), as in our case. However, in the case when
O(L) (see (4.1.2)) contains an element K of determinant −1, we can show that there
is a single orbit under the action of the SO-group too. Indeed, assume there is a
single orbit under the action of the O-group. This means, that given an isotropic
plane W in V1, ∃γ ∈ O+(L1) (i.e. in the connected component of O(L1)) such that
γW =

(
e1 e2

)
. If now γ ∈ ΓS, we are done. If not, consider the element

δ := diag(1, 1, K, 1, 1) ∈ O+(L1)

of determinant −1. Then δγW = δ
(
e1 e2

)
=
(
e1 e2

)
and δγ ∈ ΓS.

However, the question of whether such a K exists is non-trivial, at least when n is
even (if n is odd, −1n always works). A condition we can impose so that we ensure
the existence of such an element can be found in [Shi04, Lemma 9.23, (iii)]. That is,
the existence of some x ∈ Zn so that S[x] = 2. In our examples in practice, this is
usually satisfied.

Finally, we have the following Lemma, where we replace the condition of primitivity
of the elements of X in Proposition 5.2.9 with the condition that the elements have
maximal rank.

Lemma 5.2.11. With the notation as above, we have

ζ(s)ζ(s− 1)E(Z, s) =
∑

ℓ∈Matn+4,2(Z)/GL2(Z)
rank ℓ=2,S1[ℓ]=0

(det(RZ [ℓ]))−s/2 .

Proof. The proof is analogous to [DK91, Lemma 3.1]. In particular, every matrix
ℓ ∈ Matn+4,2(Z) with rank ℓ = 2 and S1[ℓ] = 0 can be written as ℓ = N ·M with
N being primitive and S1[N ] = 0 and M ∈ GL2(Q) ∩Mat2,2(Z). The proof then
follows from the fact that

∑
M∈(GL2(Q)∩Mat2,2(Z))/GL2(Z)

| det(M)|−s = ζ(s)ζ(s− 1).

This can be found in [DK91] or its local version in [Shi97, Lemma 3.13].

5.3 Theta Series and Transformation Properties

In order now to prove the analytic properties of the Klingen Eisenstein series E(Z, s),
we want to prove a theta correspondence between SO(2, n+ 2) and Sp2. That is, to
integrate a Siegel Eisenstein series for Sp2 against an appropriately defined theta
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series and end up with E(Z, s). However, as in most cases, the inner-product
integrals will diverge, so we need to apply an appropriate differential operator first.
In this Section, we recall the action of the symplectic group on Siegel’s upper half
plane, define the appropriate theta series, and prove some important transformation
properties.

The (real) symplectic group of degree m ≥ 1 is defined by

Spm(R) :=
g ∈ GL2m(R) | gt

0m −1m
1m 0m

 g =
0m −1m

1m 0m

 .
The Siegel’s upper half plane is defined by

Hm :=
{
Z = X + iY ∈Mm(C) | X = X t, Y = Y t > 0

}
.

Now g =
A B

C D

 ∈ Spm(R) acts on Hm via

(g, Z) 7−→ g⟨Z⟩ := (AZ +B)(CZ +D)−1.

This defines a transitive action of Spm(R) on Hm. We also define the factor of
automorphy j(g, Z) := det(CZ + D). We call Spm(Z) := Spm(R) ∩ GL2m(Z) the
full modular group. For any integer N > 0, we define the following congruence
subgroup of Spm(Z):

Γ(m)
0 (N) :=


A B

C D

 ∈ Spm(Z) | C ≡ 0 (mod N)
 . (5.3.1)

We then have the following Definition (cf. [CP91, Section 2.4.1]):

Definition 5.3.1. Let k ∈ Z and m ≥ 2. A function F : Hm −→ C, with
F ∈ C∞(Hm) (see Notation), is called a C∞-modular form of weight k on the group
Γ(m)

0 (N) with a Dirichlet character ψ (mod N), if for all

γ =
A B

C D

 ∈ Γ(m)
0 (N),

we have
F (γ⟨Z⟩) = ψ(detD) det(CZ +D)kF (Z),

for all Z ∈ Hm. We denote the space of such functions by M̃k(N,ψ).

Finally, in some cases, we can define a suitable inner product on the above space.

Definition 5.3.2. The Petersson inner product of a pair of modular functions
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F,G ∈ M̃k(N,ψ) is

⟨F,G⟩ := 1[
Spm(Z) : Γ(m)

0 (N)
] ∫

Γ(m)
0 (N)\Hm

F (Z)G(Z)(detY )kd∗Z,

whenever the integral converges. Here, d∗Z is the Spm(R)-invariant measure
(detY )−(m+1)dXdY .

We are now ready to give the definition of the theta series of interest, which is related
to Sp2. Such theta series were first studied by Siegel.

Definition 5.3.3. Let Z = X + iY ∈ H2 and W ∈ HS. We then define the theta
series

θ(Z,W ) :=
∑

ℓ∈Matn+4,2(Z)
θℓ(Z,W ),

where for any ℓ ∈ Matn+4,2(Z), we define

θℓ(Z,W ) := eπitr(S1[ℓ]X)−πtr(RW [ℓ]Y ).

Let also Θ(Z,W ) := det(Y )n+2
2 θ(Z,W ). Because RW is positive definite, it follows

that Θ converges absolutely and uniformly in any region of the form H2(ϵ) = {Z =
X + iY | Y ≥ ϵ12} with ϵ > 0 and therefore defines a real analytic function of the
matrices X,Y with X + iY ∈ H2 (cf. [And89, page 291]).

We start with the following Lemma regarding the invariance of Θ under ΓS.

Lemma 5.3.4. Let W ∈ HS. We then have

Θ(Z,M⟨W ⟩) = Θ(Z,W )

for all M ∈ ΓS.

Proof. Let M ∈ ΓS. Then

Θ(Z,M⟨W ⟩) = det(Y )n+2
2

∑
ℓ∈Matn+4,2(Z)

eπitr(S1[ℓ]X)−πtr(RM⟨W ⟩[ℓ]Y )

= det(Y )n+2
2

∑
ℓ∈Matn+4,2(Z)

eπitr(S1[M−1ℓ]X)−πtr(RW [M−1ℓ]Y )

= Θ(Z,W ),

because RM⟨W ⟩ = RW [M−1] (this follows by the way RW is defined in the proof of
Proposition 5.2.7) and S1[M−1] = S1. These relations, together with the fact that
M ∈ ΓS ⊂ GLn+4(Z) =⇒ M−1 ∈ GLn+4(Z), gives the invariance under ΓS.
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The situation, however, is quite different when it comes to the transformation of Θ
with respect to Sp2(Z). In particular, it is necessary to consider a specific congruence
subgroup of Sp2(Z) and even then Θ transforms as a modular form of a non-trivial
weight and character.

Proposition 5.3.5. Let q denote the level of S, equivalently S1 (see Definition

4.1.4). Then, for all γ =
A B

C D

 ∈ Γ(2)
0 (q) (see (5.3.1)), we have

Θ(γZ,W ) = χS(γ)j(γ, Z)−n/2Θ(Z,W ),

where χS(γ) is an eighth root of unity which does not depend on Z and W . In the
case when the rank n of S is even, we have χS(γ) = ψS(detD), with ψS a Dirichlet
character modulo q such that

ψS(p) =
(

(−1)n/2 detS
p

)

for all odd primes p (Legendre symbol) and ψS(−1) = (−1)n/2. In particular, this
implies Θ ∈ M̃k (q, ψS) with k = −n/2.

Proof. From [And89, Theorem 1], we obtain that if γ ∈ Γ(2)
0 (q), then

θ(γZ,W ) = χS(γ)j(γ, Z)j(γ, Z)(n+2)/2θ(Z,W )

for some character as described in the statement of the Proposition. Multiplying
by (detY )(n+2)/2 gives the first part of the Proposition. The second part follows
immediately from [And89, Theorem 2].

5.4 Differential Operators

In this Section, we prepare the ground for the theta-correspondence. In the same
fashion as Krieg in [Kri91], Gritsenko in [Gri92a], and Raghavan and Sengupta
in [RS91], we need to apply some differential operators to the theta series first,
so that the integral converges. Our first step is to make Θ invariant under the
action of Sp2(Z), up to the character χS. This is essential because the differential
operators that will eliminate the terms of the theta series that cause divergence are
Sp2(R)-invariant.

Assumption: From now on, we assume that 4 | n.
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For m ≥ 1, let Z = X + iY ∈ Hm. We denote by ∂Z the matrix

(∂Z)ij := 1 + δij
2

∂

∂Zij
,

where δij denotes the Kronecker’s delta, for 1 ≤ i, j ≤ m. Here ∂/∂Zij :=
(∂/∂Xij − i∂/∂Yij) /2. Due to Maass in [Maa71], we have the operator (k ∈ Z)

δk := det(Y )−k+ m−1
2 det(∂Z) det(Y )k− m−1

2 , (5.4.1)

which sends functions from M̃k(N,ψS) to M̃k+2(N,ψS) ([CP91, Section 3.3.1]).

For any integer r ≥ 1, one then defines the Shimura differential operator as the
composition

δ
(r)
k := δk+2r−2 · · · δk+2δk.

This sends functions from M̃k(N,ψS) to M̃k+2r(N,ψS) ([CP91, Section 3.3.1]).

Therefore, in the case m = 2, δ(r)
k Θ ∈ M̃0(q, ψS) with k = −n/2 and r = −k/2 = n/4,

because of Proposition 5.3.5.

However, we still need to apply an invariant differential operator R, so that we
remove the singular terms that cause the integrals to diverge. The existence of a
suitable such operator is guaranteed by a result of Deitmar and Krieg in [DK91].
Let us now describe it here.

For any dimension m ≥ 1, we consider the algebras D(Hm) and D(Pm) of invariant
differential operators with respect to Spm(R) and GLm(R). Here, Pm denotes the
symmetric space GLm(R)/Om(R) and can be identified with the set

Pm =
{
Y ∈Mm(R) | Y = Y t > 0

}
,

by means of the action of GLm(R) on Pm given by

M · Y = Y [M t] = MYM t.

Here, Om(R) = {M ∈ GLm(R) | M ·M t = 1m}. Next, if we consider the injective
map

ϕ : C∞(Pm) −→ C∞(Hm)

defined by
ϕ(f)(X + iY ) := f(Y ),

we may associate to ϕ a well-defined map

ϕ∗ : D(Hm) −→ D(Pm),

which sends D 7−→ ϕ−1 ◦D ◦ ϕ. Then, from [DK91, Theorem 1.1], we obtain that
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ϕ∗ is an injective algebra homomorphism.

Now, for any l ∈ R, we define the operator Dl = Dl,m ∈ D (Pm) by

Dl,m(Y ) := (detY )l det(∂Y ) det(Y )1−l.

From [DK91, Theorem 1.2], we have that Dm+2−l,mDl,m belongs in the image of ϕ∗.
Define then

R(m, l) := (ϕ∗)−1 (Dm+2−l,mDl,m) ∈ D(Hm). (5.4.2)

In the case m = 2, we write for Z = X + iY ∈ H2,

Z =
z1 z3

z3 z2

 , X =
x1 x3

x3 x2

 , Y =
y1 y3

y3 y2

 .
We first have the following Lemma regarding the behaviour of Θ under the action
of the Maass-Shimura operator.

Lemma 5.4.1. Let k = −n/2 and r = n/4. For any ℓ ∈ Matn+4,2(Z), we have

δ
(r)
k

[
(detY )n+2

2 θℓ(Z,W )
]

= (detY )1+rp(det((S1 +RW )[ℓ]Y ), tr((S1 +RW )[ℓ]Y ))×

× θℓ(Z,W ), (5.4.3)

where p = p(U, V ) ∈ R[U, V ] is a polynomial in two variables, and its coefficients
do not depend on ℓ. In particular, if ℓ ∈ Matn+4,2(Z) is such that S1[ℓ] = 0, this
becomes

δ
(r)
k

[
(detY )n+2

2 θℓ(Z,W )
]

= (detY )1+rp (det(RW [ℓ]Y ), tr (RW [ℓ]Y )) e−πtr(RW [ℓ]Y ).

(5.4.4)

Proof. For any ℓ ∈ Matn+4,2(Z), we have by [Sat86, Lemma 1.1]

δ
(r)
k

[
(detY )n+2

2 θℓ(Z,W )
]

= (detY )n+2
2 δ

(r)
1 θℓ(Z,W ).

Define now the operator σ ∈ D(H2) by

σ := i
3∑
j=1

yj
∂

∂zj
. (5.4.5)

By [Sat86, Proposition 1.2, (a)], δ(r)
1 θℓ(Z,W ) is a Z[1/2]-linear combination of func-

tions of the form
det(Y )−bσc (det(∂Z))d θℓ(Z,W ), (5.4.6)

where b, c, d are integers with 0 ≤ b ≤ c ≤ r, 0 ≤ d ≤ r and b + d = r. Note that
the additional requirements stated in [Sat86, Proposition 1.2] are not needed for the
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proof of this part. We compute

∂

∂z1
θℓ(Z,W ) = Aℓθℓ(Z,W ), ∂

∂z2
θℓ(Z,W ) = Bℓθℓ(Z,W ),

∂

∂z3
θℓ(Z,W ) = 2Cℓθℓ(Z,W ), (5.4.7)

where for ℓ =
(
l m

)
, with l,m ∈ Zn+4 we have

Aℓ = 1
2πi (S1[l] +RW [l]), Bℓ = 1

2πi (S1[m] +RW [m]), Cℓ = 1
2πi

(
ltS1m+ ltRWm

)
.

We now set Tℓ = 1
2πi(S1 +RW )[ℓ] and write Tℓ =

 t1 t3/2
t3/2 t2

, with t1 = Aℓ, t2 =

Bℓ and t3 = 2Cℓ.

We first compute det(∂Z)θℓ = det(Tℓ)θℓ. Moreover, if B := tr(TℓY ), we claim that
for any 0 ≤ c ≤ r, σcθℓ = fc(B)θℓ for some polynomial f of degree c. We show this
by induction. Note that for j = 1, 2, 3, we have ∂B/∂zj = −itj/2.

If c = 0, then the claim is clear with f0(B) = 1. If now σcθℓ = fc(B)θℓ, we have

σc+1θℓ = i
3∑
j=1

yj

[
f ′
c(B)

(−itj
2

)
θℓ + fc(B)tjθℓ

]
= B

(1
2f

′
c(B) + ifc(B)

)
θℓ,

from which the claim follows with fc+1(B) = B
(1

2f
′
c(B) + ifc(B)

)
of degree c+ 1.

Now, each term in (5.4.6) can be written as

(detY )−bσc det(∂Z)dθℓ = (detY )−bσc det(Tℓ)dθℓ = (detY )−r[det(TℓY )dσcθℓ] =
= (detY )−r[det(TℓY )dfc(tr(TℓY ))θℓ],

because r − b = d. Equation (5.4.3) now follows after absorbing the πi/2 factor of
Tℓ and observing (by induction) that fc(B) has purely imaginary coefficients in the
odd powers of B and real coefficients in the even powers. Hence p will have real
coefficients. Equation (5.4.4) now follows immediately from (5.4.3).

We are now ready to give the main Proposition of this Section, regarding the elim-
ination of the terms that will cause the divergence of the integral.

Proposition 5.4.2. Let k = −n/2 and r = −k/2 = n/4. Let also R := R (2, 2 + r).
We then have

R
[
δ

(r)
k Θ

]
(Z,W ) = R

 ∑
ℓ∈Matn+4,2(Z)

rank ℓ=2

δ
(r)
k

[
(detY )n+2

2 eπitr(S1[ℓ]X+iRW [ℓ]Y )
] .
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Proof. Due to Maass in [Maa71] and Shimura in [Shi90], R can be written in the
form

R = u(H1, H2) (5.4.8)

where H1, H2 are some “generalised” Laplacians and u ∈ C[X, Y ] a polynomial (see
also [Yan15, Example 3.2] and [BC06, Proposition 6] for an explicit description of
H1, H2). Therefore, because Θ is absolutely and uniformly convergent on compact
subsets of H2, we can apply the differential operators term by term. Hence, it suffices
to show that for any ℓ ∈ Matn+4,2(Z) with rank ℓ < 2, we have

R
[
δ

(r)
k

[
(detY )n+2

2 eπitr(S1[ℓ]X+iRW [ℓ]Y )
]]

= 0.

Fix now ℓ ∈ Matn+4,2(Z) such that rank ℓ < 2. We may assume that

S1[ℓ] =
x 0

0 0

 and RW [ℓ] =
y 0

0 0

 ,
for some x, y ∈ R. This is true because we can find U ∈ SL2(R) such that ℓU =(
a 0

)
for some a ∈ Rn+4. But then

Ũ :=
U 0

0 (U t)−1

 ∈ Sp2(R)

and the action of this matrix on H2 is Z 7−→ UZU t. Since R is Sp2-invariant and
j(Ũ , Z) = 1, ψS(detU) = 1 (so the action Z 7−→ Ũ⟨Z⟩ does not change δ(r)

k Θ), we
can change variables Z 7−→ UZU t. But det(UY U t) = det(Y ) and

tr(S1[ℓ]UXU t) = tr(U tS1[ℓ]UX) = tr(S1[ℓU ]X),

so we can replace ℓ with ℓU , which will then give the form of S1[ℓ] wanted. Similarly
for RW [ℓ]. By [Sat86, Lemma 1.1], we have (we remind here that k = −n/2)

δ
(r)
k

[
(detY )n+2

2 θℓ(Z,W )
]

= (detY )n+2
2 δ

(r)
1 [θℓ(Z,W )]

and by [Sat86, Proposition 1.2, (a)], we have that the quantity δ(r)
1 θℓ(Z,W ) will be

a Z[1/2]-linear combination of functions of the form

det(Y )−bσc(det(∂Z))dθℓ(Z,W ),

where b, c, d are integers with 0 ≤ b ≤ c ≤ r, 0 ≤ d ≤ r and b+ d = r (the operator
σ here is as in (5.4.5)). Now, in the case rank ℓ < 2, we have that Bℓ = Cℓ = 0 in
(5.4.7) because of the form of S1[ℓ] and RW [ℓ]. Hence,

det(∂Z) [θℓ(Z,W )] = 0.
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So, we only need to consider the case b = c = r, d = 0. But from the proof of
Lemma 5.4.1, we have σrθℓ(Z,W ) = fr(B)θℓ(Z,W ), with B = tr(TℓY ) and Tℓ as in
Lemma 5.4.1. But, since Bℓ = Cℓ = 0, we have that B, hence σrθℓ depends only on
y1 and θℓ. Consider now the map

τ : C∞(H1 ×H1) −→ C∞(H2),

defined by

τ(h)
Z1 a

a Z2

1 b

0 1

 = h(Z1, Z2) ∀a, b ∈ R.

Now, if we write

Z =
Z1 a

a Z2

1 b

0 1

 = X + iY,

we observe that

Y =
 Y1 Y1b

bY1 b2Y1 + Y2

 ,
where Zj = Xj + iYj, j = 1, 2. Hence, det(Y ) = Y1Y2 and σrθℓ(Z,W ) depends only
on θℓ(Z,W ) and Y1. But

θℓ(Z,W ) = e
(1

2 (xX1 + iyY1)
)
,

where S1[ℓ] =
x 0

0 0

 and RW [ℓ] =
y 0

0 0

. Therefore,

δ
(r)
k

[
(detY )n+2

2 θℓ
]

(Z,W )

is independent of a, b and so belongs in the image of τ . But by [DK91, Proposition
1.1], τ−1 ◦R ◦ τ is a simple tensor in D(H1 ×H1), so the problem is reduced in the
one-dimensional case and S1[ℓ] = RW [ℓ] = 0, i.e., suffices to show

R(1, 2 + n/4)[δ(r)
k y

n+2
2 ] = 0,

where now we have δk = k

2iy + ∂

∂z
in the one-dimensional case. But we have

δ
(r)
k y

n+2
2 = (const)× yn/4+1.

Also, from [BC08, page 807], we have that in the one-dimensional case

R(1, 2 + n/4) = 4y2 ∂

∂z

∂

∂z
− n

4

(
n

4 + 1
)

(note that R(m, k) = RBöch(m, k − 1), where RBöch is the operator defined in [BC08,



5.5. Theta Correspondence 123

Theorem 2.1]). Therefore, the result follows.

Finally, combining the two above results, we obtain the following Lemma.

Lemma 5.4.3. Let k = −n/2 and r = n/4, as before. Given l ∈ R, ϵ > 0, and a
compact subset C of HS, there exists a constant C > 0 such that∣∣∣R [δ(r)

k Θ
]

(Z,W )
∣∣∣ ≤ C(detY )l

holds for all W ∈ C and Z = X + iY ∈ H2, with Y ≥ ϵ12.

Proof. We can write

R
[
δ

(r)
k Θ

]
(Z,W ) = (detY )n+2

2
∑

ℓ∈Matn+4,2(Z)
rank ℓ=2

g(S1[ℓ], RW [ℓ], Y )θℓ(Z,W ), (5.4.9)

for some polynomial g in the entries of the matrices S1[ℓ], RW [ℓ] and Y . This follows
from Proposition 5.4.2, the fact that R is well-behaved (see (5.4.8)), (5.4.6) and the
relations we have obtained in the proof of Lemma 5.4.1. The rest of the proof now
follows in the same way as in [DK91, Proposition 2.1, (b)].

5.5 Theta Correspondence

In this Section, we finally give the theta correspondence between the Klingen-type
Eisenstein series of SO(2, n + 2) and the Siegel-type Eisenstein series for Sp2. We
start with the following definition.

Definition 5.5.1. Let χ = χS denote the character of Proposition 5.3.5. Let also

P2,0 :=

A B

C D

 ∈ Sp2(Z) | C = 0


denote the Siegel parabolic subgroup of Sp2. Notice that P2,0 ∩ Γ(2)
0 (q) = P2,0. For

s ∈ C with Re(s) > 3/2, we then define the Siegel Eisenstein series with respect to
P2,0 and with character χ as

Ẽ(Z, χ, s) :=
∑

γ∈P2,0\Γ(2)
0 (q)

χ(γ)(det(Im(γZ)))s. (5.5.1)

If δ =
A B

0 D

 ∈ P2,0, we have detD = ±1, so χ(δ) = ψ(detD) = 1 by Proposition

5.3.5. Therefore, the Eisenstein series is well-defined. This Eisenstein series has a
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meromorphic continuation to C (see [Kal77, Theorem 1, (3)]). Finally, using the
fact that χ is a character, we have

Ẽ(γZ, χ, s) = χ(γ)Ẽ(Z, χ, s),

for all γ ∈ Γ(2)
0 (q). The main Theorem of the paper can now be stated as follows:

Theorem 5.5.2. Let S have rank n, with 4 | n and be such that #C1(ΓS) = 1. Let
also k = −n/2 and r = n/4, as before. Define

ϕ2(s) := s
(
s− 1

2

)
, ξ(s) := π−s/2Γ(s/2)ζ(s),

for s ∈ C. We then have for Re(s) > n+ 1〈
Ẽ(Z, χ, (s+ 1)/2− r), R[δ(r)

k Θ](Z,W )
〉

Γ(2)
0 (q)

= ξ(s)ξ(s− 1)γS(s)E(W, s),

where γS(s) := 1
[Sp2(Z) : Γ(2)

0 (q)]
(−4)−rϕ2(s/2− 2r)ϕ2(s/2)

r∏
j=1

ϕ2

(
s− (2j − 1)

2

)
.

Proof. Let

I := [Sp2(Z) : Γ(2)
0 (q)]

〈
Ẽ(Z, χ, (s+ 1)/2− r), R[δ(r)

k Θ](Z,W )
〉

Γ(2)
0 (q)

.

First of all, this integral is well-defined because of Lemma 5.4.3. We then have

I =
∫

Γ(2)
0 (q)\H2

 ∑
γ∈P2,0\Γ(2)

0 (q)

χ(γ)(det(Im(γZ)))(s+1)/2−rR[δ(r)
k Θ](Z,W )

 d∗Z

=
∫

Γ(2)
0 (q)\H2

 ∑
γ∈P2,0\Γ(2)

0 (q)

χ(γ)(det(Im(γZ)))(s+1)/2−rχ(γ)R[δ(r)
k Θ](γZ,W )

 d∗Z

=
∫
P2,0\H2

(detY )(s+1)/2−rR[δ(r)
k Θ](Z,W )d∗Z

=
∫

C(2,R)

∫
R(2,R)

(detY )(s+1)/2−rR[δ(r)
k Θ](Z,W )d∗Z,

where in the second equation we used the invariance up to χ of R[δ(r)
k Θ] and in

the third equation we used the usual unfolding trick. Here, C(2,R) + iR(2,R)
is a fundamental domain for the action of P2,0 on H2, where C(2,R) denotes a
fundamental parralepiped of Sym(2,Z) in Sym(2,R) and R(2,R) the Minkowski
reduced matrices, as in [Kri85, p. 29]. In the following, we write Sym2(R/Z) for
C(2,R).

Now, from Proposition 5.4.2, Lemma 5.4.1 and the proof of Lemma 5.4.3, we have
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∫
Sym2(R/Z)

R[δ(r)
k Θ](Z,W )dX =

=
∑

ℓ∈Matn+4,2(Z)
rank ℓ=2,S1[ℓ]=0

R∗
0

[
p (det(RW [ℓ]Y ), tr (RW [ℓ]Y )) e−πtr(RW [ℓ]Y )

]
,

where R∗
0 = (detY )2−r det(∂Y )(detY )1+2r det(∂Y ). The fact that only terms with

S1[ℓ] = 0 remain follows from (5.4.9). The rest of the expression of this integral
follows from (5.4.4) and from the fact that R = (ϕ∗)−1

(
R∗

0(detY )−(1+r)
)

(note that
from Lemma 5.4.1, the polynomial p has real coefficients). Hence, from [Kri85,
Proposition I.4.4, I.4.5], the integral I becomes

∑
ℓ∈Matn+4,2(Z)/GL2(Z)

rankℓ=2,S1[ℓ]=0

∫
P2

(detY )s/2R0
[
p (det(RW [ℓ]Y ), tr (RW [ℓ]Y )) e−πtr(RW [ℓ]Y )

]
d∗Y,

where now R0 = (detY )−(1+r)R∗
0 and d∗Y = (detY )− 3

2 dY is the invariant measure
for the action of GL2 on P2. Now, for every ℓ in our sum, we have that RW [ℓ], hence
(RW [ℓ])−1, is positive definite. So, we can write (RW [ℓ])−1 = AAt with A lower
triangular and change variables Y 7−→ Y [At]. Then det(RW [ℓ]Y ) and tr (RW [ℓ]Y )
become detY and tr Y respectively and the measure remains invariant. Now, from
[BC08, equation (2.4)], R0 is GL2-invariant (n = 2 and m = 2 + 2r in the notation
there). Hence, the integral becomes

I =
∑

ℓ∈Matn+4,2(Z)/GL2(Z)
rank ℓ=2, S1[ℓ]=0

(detRW [ℓ])−s/2
∫

P2
(detY )s/2R0[p(detY, trY )e−πtrY ]d∗Y.

Let now M = detY det ∂Y . For any t ∈ R, we have for its adjoint operator M̂ (see
[Maa71, page 57] for a definition) that

M̂ [(detY )t] = ϕ2(t)(detY )t,

where ϕ2(t) = t
(
t− 1

2

)
(see [BC08, (3.3)]). Therefore, we have

I =
∑

ℓ∈Matn+4,2(Z)/GL2(Z)
rank ℓ=2,S1[ℓ]=0

(detRW [ℓ])−s/2×

×
∫

P2
(detY )s/2−2rM

[
(detY )1+2r det(∂Y )

[
p(detY, trY )e−πtrY

]]
d∗Y

=
∑

ℓ∈Matn+4,2(Z)/GL2(Z)
rank ℓ=2,S1[ℓ]=0

(detRW [ℓ])−s/2ϕ2(s/2− 2r)×

×
∫

P2
(detY )s/2M [p(detY, trY )e−πtrY ]d∗Y
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=
∑

ℓ∈Matn+4,2(Z)/GL2(Z)
rank ℓ=2,S1[ℓ]=0

(detRW [ℓ])−s/2ϕ2(s/2− 2r)ϕ2(s)×

×
∫

P2
(detY )s/2p(detY, trY )e−πtrY d∗Y

= ζ(s)ζ(s− 1)E(W, s)ϕ2(s/2− 2r)ϕ2(s/2)
∫

P2
(detY )s/2p(detY, trY )e−πtrY d∗Y,

where the second and third equality follow after transferring M to its adjoint. The
last equality follows from Proposition 5.2.9 and Lemma 5.2.11. We now just need
to compute the last integral. It is true that (cf. [Maa71, page 80, 81])∫

P2
(detY )se−tr(TY )d∗Y = π1/2Γ2(s)(detT )−s,

for any s ∈ C with Re(s) > 1/2 and T ∈ P2. Here Γ2(s) := Γ(s)Γ (s− 1/2). Setting
now T 7−→ πT and then applying the operator δ(r)

1 (S, T ), where S is symmetric, so
that U := S + iT ∈ H2, we obtain from Lemma 5.4.1 and (5.4.4)
∫

P2
(detY )s/2(detT )−rp(det(Y T ), tr(Y T ))e−πtr(Y T )d∗Y =

= π1/2−sΓ2(s/2)δ(r)
1 [(detT )−s/2].

But for any α ∈ Z and w ∈ C, we have from (5.4.1)

δα [(detT )w] = (detT )1/2−α det(∂U)(detT )α−1/2+w

= −1
4(detT )1/2−α det(∂T )(detT )α−1/2+w

= −1
4(detT )1/2−α(α− 1/2 + w)(α + w)(detT )α−3/2+w

= −1
4ϕ2(w + α)(detT )w−1,

because det(∂U)B(T ) = − det(∂T )B(T )/4 for a function B = B(T ) depending only
on T and the third equality follows from a well-known formula (see [CSS13, Theorem
2.2] for example). Hence, by successively applying the above and using the fact that
ϕ2(s) = ϕ2(1/2− s) for any s ∈ C, we get

δ
(r)
1

[
(detT )−s/2

]
= (−4)−r

r∏
j=1

ϕ2

(
s− (2j − 1)

2

)
(detT )−s/2−r.

By evaluating at T = 12, the proof is complete.

Corollary 5.5.3. Assume S satisfies the assumptions of Theorem 5.5.2. Then,
E(W, s) admits a meromorphic continuation to the complex plane and

Γ
(
s+ 1

2 − r
)

Γ(s− 2r)Lq(s+ 1− 2r, χ)ζq(2s− 4r)ξ(s)ξ(s− 1)γS(s)E(W, s)
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has only possible simple poles at s ∈ {(n + 2)/2, (n + 4)/2} if q ≠ 1 and at
s ∈ {(n − 2)/2, n/2, (n + 2)/2, (n + 4)/2} if q = 1. Here, the subscript q means
that we omit the Euler factors sharing prime factors with q.

Proof. From [Shi97, Theorem 19.3], we have that

Γ(s)Γ(2s− 1)Lq(2s, χ)ζq(4s− 2)Ẽ(Z, χ, s)

has a meromorphic continuation to the complex plane with possible simple poles
only at s ∈ {1, 3/2} if q ≠ 1 and at s ∈ {0, 1/2, 1, 3/2} (see [Shi97, (19.3.1), (19.3.2)]
because our character has order two). Hence, the corollary follows from Theorem
5.5.2.

The main point here is that our method not only gives the meromorphic continuation
to the complex plane for E(W, s) (something that is expected to be true from the
general Langlands’ philosophy) but can also be used to extract finer information on
the poles and zeroes of the Eisenstein series. Moreover, we get:

Corollary 5.5.4. From Proposition 5.1.5 and Corollary 5.5.3, we obtain the mero-
morphic continuation of DF,G(s) to C, due to the one of Ẽ(Z, χ, s), as we noted in
the beginning of Section 5.5.

Remark 5.5.5. The conditions of Theorem 5.5.2 are satisfied when S corresponds
to at least the A4, D4 and E8 lattices (see [Sch22, Section 1.6.2] for a description).
These are Euclidean in the sense of [Sch22, Section 1.6.4] (see [Sch22, Example
1.6.14]). By looking at their Grammian matrix (see [Sch22, Section 1.6.2]), we can
take x to be the first standard basis vector and then S[x] = 2. Hence, from Remark
5.2.10, the condition #C1(ΓS) = 1 is true in our setting.

5.6 The E8 lattice

As an application, we obtain a precise result regarding the functional equation of
DF,G(s) in the case when

S =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2



.
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This is a positive definite, even matrix with detS = 1 and the lattice it corresponds
to is the so-called E8 lattice (cf. [Sch22, Example 1.2.10]). This is the unique
unimodular lattice with only one-dimensional cusp (and no other higher-dimensional
cusps) ([Sch22, Example 1.6.20]). As this is unimodular, the level q is 1 and so the
character χS of Proposition 5.3.5 is trivial. Therefore, in this case, Γ(2)

0 (q) is the
whole Sp2(Z) and the symplectic Eisenstein series (5.5.1) is

Ẽ(Z, s) =
∑

γ∈P2,0\Sp2(Z)
(det Im(γZ))s.

Now, if ξ(s) = π−s/2Γ(s/2)ζ(s), it is well-known (see for example [Kal77, Theorem
2]), that the modified Eisenstein series Ẽ(Z, s) := ξ(2s)ξ(4s− 2)Ẽ(Z, s) has a mero-
morphic continuation to C with a simple pole at s = 3/2 and satisfies the functional
equation Ẽ (Z, 3/2− s) = Ẽ(Z, s). Now, for W ∈ HS, let

E∗(W, s) := ξ(s− 3)ξ(2s− 8)ξ(s)ξ(s− 1)γS(s)E(W, s).

From our main Theorem 5.5.2, we have in this case〈
Ẽ(Z, (s− 3)/2), R[δ(2)

−4Θ](Z,W )
〉

= ξ(s)ξ(s− 1)γS(s)E(W, s).

Hence, we obtain that E∗(W, s) has a meromorphic continuation to C and is invariant
under s 7−→ 9− s.

Remark 5.6.1. We note here that we can rewrite E∗(W, s) to have the form of a
completed Eisenstein series using just gamma and zeta factors, using the relations
Γ(s+ 1) = sΓ(s) and Γ(s)Γ(s+ 1/2) = 21−2s√πΓ(2s), valid for Re(s) large enough.

Now, from Proposition 5.1.5, we have

(4π)−sΓ(s)DF,G(s) = #SO(S;Z) · ⟨F (W ) · E(W, s− k + 9), G(W )⟩.

Hence, if we define

D∗
F,G(s) := (4π)−sΓ(s)ξ(s−k+6)ξ(2s−2k+10)ξ(s−k+9)ξ(s−k+8)γS(s−k+9)×

×DF,G(s), (5.6.1)

we have
D∗
F,G(s) = #SO(S;Z) · ⟨F (W ) · E∗(W, s− k + 9), G(W )⟩.

Therefore, we arrive at the following Theorem.

Theorem 5.6.2. Let S be as above, corresponding to the E8 lattice. With the
notation as above, D∗

F,G(s) has a meromorphic continuation to C and is invariant
under s 7−→ 2k − 9− s.



Chapter 6

Relation to L-functions

In this Chapter, we will investigate the other direction of the problem, i.e., how the
method of Kohnen and Skoruppa can be extended in order to establish a connection
of the Dirichlet series of Section 4.5 to the standard L-function of the orthogonal
group.

Kohnen and Skoruppa prove their main result using a fundamental identity by
Andrianov in [And74], which gives an Euler product expression for a Dirichlet series
involving the Fourier coefficients of a Siegel cuspidal eigenform of degree 2, twisted by
ideal class characters. Gritsenko, in [Gri87], initiated the study of a Dirichlet series
involving the Fourier coefficients of an orthogonal modular form and its connection
to the standard L-function attached to it, following factorisation methods similar to
[Gri92a]. Sugano in [Sug85] extended Gritsenko’s result by proving an Euler product
relation for a Dirichlet series involving twists of the Fourier coefficients by modular
forms on a definite orthogonal group of lower rank. His work can be seen as an
extension of Andrianov’s work in [And74] in the orthogonal setting. As we mentioned,
our methods here can be considered as an extension of the methods employed by
Kohnen and Skoruppa in [KS89], and therefore, Sugano’s result is pivotal. Finally,
results proved by Shimura in [Shi04] on the sets of solutions ϕ(x, x) = q, where ϕ is
a bilinear form and q ∈ Q×, turn out to be crucial.

Below, we generalise all the main ingredients of the proof of Kohnen and Skoruppa
and establish a relation to the standard L-function for certain orthogonal groups.

6.1 An operator on Fourier-Jacobi forms

To establish such a connection, we take, in a similar fashion to [KS89], G a specific
element of the Maass space (cf. 4.4.1). To define G, we need some preparations. We



130 Chapter 6. Relation to L-functions

use the notation of Chapter 4. We have σ(x, y) = xtSy for x, y ∈ V . Let N ≥ 1 and

define M2(Z)N := {g ∈ M2(Z)| det g = N}. For any M =
a b

c d

 ∈ M2(Z)N and

τ ∈ H (usual upper half plane), we define

M⟨τ⟩ := aτ + b

cτ + d
.

Given a Jacobi cusp form ϕ ∈ Sk(Zn, σ), we define the operator

VN : Sk(Zn, σ) −→ Sk(Zn, Nσ),

given by

(VNϕ)(τ, z) = Nk−1 ∑
M∈SL2(Z)\M2(Z)N

(cτ + d)−ke−πicNS[z]/(cτ+d)ϕ
(
M⟨τ⟩, Nz

cτ + d

)
,

This is well-defined by [Sug95, Lemma 6.1] or [Moc19, Definition 4.25].

Our aim is to compute its adjoint with respect to the scalar product of Fourier-Jacobi
forms (Definition 4.3.6). This is the analogue of the main Proposition in [KS89].

Now, if ϕ ∈ Sk(Zn, Nσ), we will write its Fourier expansion in a form similar to
Kohnen and Skoruppa in [KS89, Section 2].

By Definition 4.3.5, we can write

ϕ(τ, z) =
∑

m∈Z,r∈Zn

2Nm>rtS−1r

c′
ϕ(m, r)e(mτ + rtz),

for some c′
ϕ(m, r) ∈ C. Now, from the condition 2Nm > rtS−1r and the definition

of the level (see Definition 4.1.4), we can write

Nmq − 1
2qS

−1[r] = −D =⇒ m =
1
2qS

−1[r]−D
qN

,

for some integer D < 0. Therefore, we can write

ϕ(τ, z) =
∑

D∈Z<0,r∈Zn

D≡ 1
2 qS

−1[r] mod qN

cϕ (D, r) e
( 1

2qS
−1[r]−D
qN

τ + rtz

)
. (6.1.1)

Remark 6.1.1. By adjusting [Moc19, Proposition 1.25] to the notation above, we
have that

D = D′ and S−1r ≡ S−1r′ (mod NZn) =⇒ cϕ(D, r) = cϕ(D′, r′).

We are now ready to give the result concerning the adjoint of VN . We use the
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notation that s ≡ s′ (mod NSZn) ⇐⇒ s− s′ = NSu for some u ∈ Zn.

Proposition 6.1.2. The action of V ∗
N , defined as the adjoint of VN with respect

to the scalar product of Fourier-Jacobi forms defined in 4.3.6, is given by (for ϕ ∈
Sk(Zn, Nσ))

∑
D∈Z<0,r∈Zn

D≡ 1
2 qS

−1[r] mod qN

cϕ (D, r) e
( 1

2qS
−1[r]−D
qN

τ + rtz

)
7−→

7−→
∑

D<0,r∈Zn

D≡ 1
2 qS

−1[r] mod q

∑
d|N

dk−(n+1) ∑
s mod dSZn

D≡ 1
2 qS

−1[s] mod qd

cϕ

((
N

d

)2
D,

N

d
s

)×

× e
( 1

2qS
−1[r]−D
q

τ + rtz

)
.

Remark 6.1.3. The (D, r) coefficient of V ∗
Nϕ is independent of r.

Proof. We start by writing

VNϕ = Nk/2−1 ∑
A∈SL2(Z)\M2(Z)N

ϕ√
N |k,(Zn,Nσ)

(
1√
N
A

)
,

where we define ϕ√
N(τ, z) := ϕ

(
τ,
√
Nz

)
.

We remind here that if A =
a b

c d

 ∈ GL+
2 (R), we use (detA)−1/2A in the |k −action

defined in Definition 4.3.4.

We can then follow the proof in [KS89, pages 554-556] line by line and arrive at the
result that the adjoint V ∗

N : Sk(Zn, Nσ) −→ Sk(Zn, σ) is given by

ϕ 7−→ Nk/2−2n−1 ∑
X (mod NZ2n)

∑
A∈SL2(Z)\M2(Z)N

ϕ√
N

−1|k,(Zn,σ)

(
1√
N
A

)
|k,(Zn,σ)X.

Let us now compute the action on the Fourier coefficients. We choose a set of

representatives for SL2(Z)\M2(Z)N of the form
a b

0 d

 with ad = N and 0 ≤ b < d.

We then obtain that the above expression can be written as

Nk/2−2n−1 ∑
λ,µ∈Zn/NZn

∑
ad=N
b∈Z/dZ

(
d√
N

)−k

ϕ

(
aτ + b

d
,
z + λτ + µ

d

)
eπiτS[λ]+2πiλtSz.
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By then substituting the Fourier expansion

ϕ(τ, z) =
∑

D∈Z<0,r∈Zn

D≡ 1
2 qS

−1[r] mod qN

cϕ (D, r) e
( 1

2qS
−1[r]−D
qN

τ + rtz

)
,

for ϕ, the above can be written as

Nk/2−2n−1 ∑
λ,µ∈Zn/NZn

∑
ad=N
b∈Z/dZ

(
d√
N

)−k∑
D,r

cϕ(D, r)×

× e
(( 1

2qS
−1[r]−D
qN

· a
d

+ S[λ]
2 + rtλ

d

)
τ +

(
rtz

d
+ λtSz

)
+

+
1
2qS

−1[r]−D
qN

· b
d

+ rtµ

d

)
.

Now, the term ∑
b∈Z/dZ

µ∈Zn/NZn

e

( 1
2qS

−1[r]−D
qN

· b
d

+ rtµ

d

)

is zero unless
d |

1
2qS

−1[r]−D
qN

and d | r,

meaning it divides all of its components. In that case, the sum equals dNn. The
conditions then imply that we can replace r 7−→ dr and D 7−→ Dd2. The last one
follows from the fact that N = ad and so d | N as well. Hence, we obtain that the
expression equals

Nk−n−1 ∑
λ∈Zn/NZn

∑
d|N

d1−k ∑
D<0,r∈Zn

D≡ 1
2 qS

−1[r] (mod qN
d

)

cϕ(d2D, dr)×

× e
(( 1

2qS
−1[r] + 1

2qS[λ] + qrtλ−D
q

)
τ + rtz + λtSz

)
=

= Nk−n−1∑
d|N

d1−k ∑
λ∈Zn/NZn

∑
D<0,r∈Zn

D≡ 1
2 qS

−1[r−Sλ] (mod qN
d

)

cϕ(d2D, d(r − Sλ))×

× e
( 1

2qS
−1[r]−D
q

τ + rtz

)
, (6.1.2)

after setting r 7−→ r − Sλ. Now, as in [KS89, p. 557], we set

λ ≡ t+ N

d
t′ (mod NZn), (6.1.3)
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with t (mod N

d
Zn) and t′ (mod dZn). We then have

S−1(d(r − Sλ)) ≡ S−1(d(r − St)) mod NZn,

and
D ≡ 1

2qS
−1[r − St] mod qN

d
.

The first property can be seen easily and the second follows from the fact that we
already have D ≡ 1

2qS
−1[r − Sλ] mod qN

d
and also we can check

1
2qS

−1[r − St]− 1
2qS

−1[r − Sλ] = 1
2q[2r

t(λ− t) + S[t]− S[λ]].

So, it suffices to show that

1
2S[t] ≡ 1

2S[λ] mod N

d
.

But this follows after we write λ = t+Nα/d with α ∈ Zn, from (6.1.3).

Hence, because of Remark 6.1.1, expression (6.1.2) becomes (after replacing d with
N/d)

∑
d|N

dk−(n+1) ∑
t∈Zn/dZn

∑
D<0,r∈Zn

D≡ 1
2 qS

−1[r−St] mod qd

cϕ

((
N

d

)2
D,

N

d
(r − St)

)
×

× e
( 1

2qS
−1[r]−D
q

τ + rtz

)
.

What is left to prove now (after fixing D, r with the appropriate conditions) is

∑
d|N

dk−(n+1) ∑
t∈Zn/dZn

D≡ 1
2 qS

−1[r−St] mod qd

cϕ

((
N

d

)2
D,

N

d
(r − St)

)
=

=
∑
d|N

dk−(n+1) ∑
t mod dSZn

D≡ 1
2 qS

−1[t] mod qd

cϕ

((
N

d

)2
D,

N

d
t

)
.

This follows by setting u = r − St and then observing that D ≡ 1
2qS

−1[u] mod qd,

r − St ≡ r − St′ mod dSZn ⇐⇒ t ≡ t′ mod dZn

and by using the fact that cϕ(D, s) = cϕ(D, s′) if s ≡ s′ mod NSZn (see Remark
6.1.1). So we can consider the entries r − St (mod NSZn) and all of these are
different (mod dSZn).
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6.2 Poincaré Series

In this Section, we define a very special class of Fourier-Jacobi forms, called Poincaré
series, which reproduce the Fourier coefficients of Jacobi forms under the Petersson
scalar product. What is more, they generate the space of cusp forms and, in turn,
the Maass space S∗

k(Γ̃S), as we will show in the next Section.

Definition 6.2.1. We define the support of the lattice L := Zn with respect to
the bilinear form σ(x, y) = xtSy for x, y ∈ V to be

supp(L, σ) :=
{

(D, r) | D ∈ Q≤0, r ∈ L∗, D ≡ 1
2S[r] (mod Z)

}
.

Now, if we write r 7−→ S−1r with r ∈ L, we get

qD ≡ 1
2qS

−1[r] (mod qZ),

which then implies D ∈ 1
q
Z. Hence, by writing D 7−→ D/q, we get that equivalently

supp(L, σ) =
{

(D/q, S−1r) | D ∈ Z≤0, r ∈ L,D ≡
1
2qS

−1[r] (mod q)
}
.

Let then

s̃upp(L, σ) := {(D, r) ∈ Z≤0 × L | (D/q, S−1r) ∈ supp(L, σ)},

and in the following, this is the set we will use.

Definition 6.2.2. Let (D, r) ∈ s̃upp(L, σ). We then define the following complex
valued function on H× (L⊗ C):

gD,r(τ, z) := e

( 1
2qS

−1[r]−D
q

τ + rtz

)
,

where q is the level of L (see Definition 4.1.4).

Definition 6.2.3. Let (D, r) ∈ s̃upp(L, σ) and set

J (L,σ)
∞ :=


1 n

0 1

 , (0, µ)
 | n ∈ Z, µ ∈ L

 .
The Poincaré series of weight k for the lattice (L, σ) is defined by

Pk,D,r(τ, z) :=
∑

γ∈J(L,σ)
∞ \J(L,σ)

gD,r |k,(L,σ) γ(τ, z).

If k > n/2+2, then Pk,D,r is absolutely and uniformly convergent on compact subsets
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of H× (L⊗ C) and defines an element of Sk(L, σ) (see [Moc19, Theorem 2.3, (i)]).
Moreover, from the same Theorem, it only depends on S−1r (mod L).

We now have the following very important property, which again can be found in
[Moc19, Theorem 2.3, (i)].

Proposition 6.2.4. Let (D, r) ∈ s̃upp(L, σ). Then for any f ∈ Sk(L, σ) with

f(τ, z) =
∑

D′∈Z<0,r′∈L
1
2 qS

−1[r′]≡D′ (mod q)

cf (D′, r′) e
( 1

2qS
−1[r′]−D′

q
τ + (r′)tz

)
,

we have
⟨f, Pk,D,r⟩ = λk,Dcf (D, r),

for some constant λk,D ∈ C depending on k and D.

6.3 Relation of the Dirichlet series to the Fourier
coefficients

For k > n/2 + 2 an even integer, let F ∈ Sk(ΓS) and write ϕN for its Fourier-Jacobi
coefficients. For (D, r) ∈ s̃upp(L, σ), let

Pk,D,r(τ ′, z, τ) :=
∑
N≥1

(VNPk,D,r)(τ, z)e(Nτ ′). (6.3.1)

By [Sug95, Corollary 6.7], we have that Pk,D,r ∈ S∗
k(Γ̃S) (see Definition 4.4.1). Here,

by abusing notation, we write Pk,D,r to actually denote the Poincaré series Pk,D,r/λk,D,
with the quantities defined in Proposition 6.2.4.

Remark 6.3.1. Even though F and Pk,D,r are taken invariant with respect to
different modular groups, we note here that the proof of Lemma 4.5.1 is still valid,
because F ∈ Sk(ΓS) ⊂ Sk(Γ̃S).

Remark 6.3.2. A corollary of [Moc19, Theorem 2.3 (i)] is that Sk(L, σ) is generated
by

{
Pk,D,r | (D, r) ∈ s̃upp(L, σ), S−1r (mod L)

}
(cf. [Moc19, Corollary 2.4]). This

observation, together with the fact that the map

ϕ(τ, z) 7−→
∞∑
N=1

(VNϕ)(τ, z)e(Nτ ′)

is an isomorphism between Sk(Λ, σ) and S∗
k(Γ̃S) (see [Sug95, Co-

rollary 6.7]) gives us that the Maass space S∗
k(Γ̃S) is generated by{

Pk,D,r | (D, r) ∈ s̃upp(L, σ), S−1r (mod L)
}
. It is therefore enough to con-

sider G to be a Poincaré series in (4.5.1).
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Remark 6.3.3. In the case when the lattice is Euclidean ([Sch22, Definition 1.6.13])
and r ∈ L, we have that actually Pk,D,r ∈ S∗

k(ΓS). This follows from the fact that
the Poincaré series depends only on r (mod L) (see [Moc19, Theorem 2.3]) and
therefore we can take r = 0. Then Pk,D,r is invariant under z 7−→ Uz for U ∈ SO(L)
by comparison with [Moc19, (2.8)]. By [Sch22, Theorem 1.9.2], we then have that
Pk,D,r ∈ S∗

k(Γ•
S) (see (4.4.2)). Because S is Euclidean, Γ•

S = ΓS, by [Kri16, Theorem
2].

Now, for the Nth term of the Dirichlet series (see (4.5.1)), we can write

⟨ϕN , VNPk,D,r⟩ = ⟨V ∗
NϕN , Pk,D,r⟩.

We will relate this with the Fourier coefficients of F .

Proposition 6.3.4. With the notation as above and N ≥ 1, we have:

⟨V ∗
NϕN , Pk,D,r⟩ =

∑
d|N

dk−(n+1) ∑
s (mod dSZn)

D≡ 1
2 qS

−1[s] (mod qd)

A

(
N

d

( 1
2qS

−1[s]−D
qd

, S−1s, d

))
.

Proof. F admits a Fourier expansion of the form (see equation (4.2.8))

F (Z) =
∑
r̃∈L∗

0

A(r̃)e(r̃tS0Z) =
∞∑
N=1

ϕN(τ, z)e(Nτ ′),

where Z = (τ ′, z, τ) ∈ HS and r̃ = (m, r,N) with r ∈ L∗. We can then write

ϕN(τ, z) =
∑

m∈Z,r∈L∗
A(m, r,N)e(mτ − rtSz) =

∑
m∈Z,r∈Zn

A(m,S−1r,N)e(mτ − rtz).

But now


−12

1n
−12

 ∈ ΓS and therefore if Z = (τ ′, z, τ) ∈ HS, we have

F ((τ ′,−z, τ)) = (−1)kF ((τ ′, z, τ)) = F ((τ ′, z, τ)),

which then implies A(m, r,N) = A(m,−r,N) for all m,N ∈ Z, r ∈ L∗. Therefore,
after setting r 7−→ −r, we can re-write the above as

ϕN(τ, z) =
∑

m∈Z,r∈Zn

A(m,S−1r,N)e(mτ + rtz). (6.3.2)

Now, a priori, we can write

ϕN(τ, z) =
∑
D,r

cϕN
(D, r) e

( 1
2qS

−1[r]−D
qN

τ + rtz

)
, (6.3.3)
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with (D, r) as in equation (6.1.1). Hence, from Proposition 6.1.2 and Proposition
6.2.4, we have

⟨V ∗
NϕN , Pk,D,r⟩ =

∑
d|N

dk−(n+1) ∑
s (mod dSZn)

D≡ 1
2 qS

−1[s] (mod qd)

cϕN

((
N

d

)2
D,

N

d
s

)

=
∑
d|N

dk−(n+1) ∑
s (mod dSZn)

D≡ 1
2 qS

−1[s] (mod qd)

A

(
N

d

( 1
2qS

−1[s]−D
qd

, S−1s, d

))
,

because after setting r 7−→ Ns/d,D 7−→ N2D/d2 in (6.3.3), we obtain from (6.3.2)

cϕN

(
N2

d2 D,
N

d
s

)
= A

(
N

d

( 1
2qS

−1[s]−D
qd

, S−1s, d

))
.

6.4 Relation to the class number

In this Section, our goal is to bring DF,Pk,D,r
(s) into a form similar to the one in

[KS89, page 553]. We will need to exclude some terms. We first need some definitions
of the adelized groups and of the genus and class of a lattice.

Let V denote any finite-dimensional vector space over Q of dimension n ≥ 1. For
each prime p (including infinity), we define Vp := V ⊗Q Qp. For a Z-lattice L in V

(see Definition 4.1.1), we denote by Lp := L⊗Z Zp. This coincides with the Zp-linear
span of L in Vp.

Proposition 6.4.1. Let L be a fixed Z-lattice in V . Then, the following are true:

• If M is another Z-lattice, then Lp = Mp for almost all p. Moreover, L ⊂M if
Lp ⊂Mp for all p and L = M if Lp = Mp for all p.

• For all p <∞, let Np ∈ Vp denote a Zp-lattice such that Np = Lp for almost all
p <∞. Then, there is a Z-lattice M in V such that Mp = Np for all p <∞.

Proof. See [Shi04, Lemma 9.2].

Definition 6.4.2. We define the adelizations V and GL(V ), as follows:

VA =
v ∈ ∏

p≤∞
Vp | vp ∈ Lp for almost all p <∞

 ,

GL(V )A =
α ∈ ∏

p≤∞
GL(Vp) | αpLp = Lp for almost all p <∞

 .
Here L is an arbitrary Z-lattice, and the above definitions do not depend on the
choice of it, by virtue of Proposition 6.4.1.
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Remark 6.4.3. When we identify V with Qn, we identify GL(V ) with GLn(Q).
Then, we identify GLn(Q)A with GLn(QA), where QA is the usual ring of adeles.

Remark 6.4.4. Given x ∈ GL(V )A, we have that xpLp = Lp for almost all p <∞.
By Proposition 6.4.1, there is a Z-lattice M such that Mp = xpLp for all p. We denote
this lattice by xL. Hence, xL is the lattice which has the property (xL)p = xpLp for
all p <∞.

Definition 6.4.5. Let G ⊂ GLn(Q) any algebraic linear group. For any field K

containing Q, we denote by GK the group of K-rational points in G. Now, for any
prime number p, we abbreviate by Gp the group GQp . Let also G∞ denote GR. We
then define

GA :=
x ∈ ∏

p≤∞
Gp | xpLp = Lp for almost all p

 .
Moreover, we use the notation GA,f to denote the finite part of GA.

Definition 6.4.6. Let L denote a Z-lattice in V and G ⊂ GLn(Q) any algebraic
group. Then, for any x ∈ G, xL is also a Z-lattice in V . We define the class of L
to be {xL | x ∈ G}. Similarly, for any x ∈ GA, xL is again a Z-lattice in V . The set
{xL | x ∈ GA} is called the genus of L.

Now, the genus of L can be decomposed into a disjoint union of classes. If
C := {x ∈ GA | xL = L}, the map xC 7−→ xL gives a bijection between GA/C

and the genus of L, so gives a bijection between G\GA/C and the set of classes
contained in the genus of L. In general, if U is an open subgroup of GA, we call the
number #(G\GA/U) the class number of G with respect to U .

Now, with all the main definitions out of the way, we want to deal with the
vectors appearing in Proposition 6.3.4. We use the notation of Chapter 4. For a
Z-lattice Λ in V0, b a fractional ideal of Q and q ∈ Q×, we define

Λ[q, b] := {x ∈ V0 | ϕ0[x] = q and ϕ0(x,Λ) = b} .

We then have the following Lemma.

Lemma 6.4.7. Let d ≥ 1, D ∈ Z<0 and define the set

Ξd :=
ξ =

( 1
2qS

−1[s]−D
qd

, S−1s, d

)t
| s (mod dSZn), D ≡ 1

2qS
−1[s] (mod qd)

 .
We then have

Ξd ⊂ L0

[
−D
q
,
1
2Z
]

for all d ≥ 1 coprime to D.
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Proof. Firstly, for any vector ξ ∈ Ξd, we can directly compute ϕ0[ξ] = −D/q. It now
remains to show that the Z-ideal

{ξtS0x | x ∈ Zn+2}

equals Z (because the bilinear form is ϕ0 = S0/2). But for any basis vector ei of the
lattice Zn+2, we have

ξtS0ei =



d if i = 1

−si−1 if 2 ≤ i ≤ n+ 1
1
2qS

−1[s]−D
qd

if i = n+ 2

,

so the above ideal is contained in Z by the conditions that define the set Ξd. Now,
if it were equal to kZ for some k ≥ 1, then we would have

k | d, k | s, and k |
1
2qS

−1[s]−D
qd

.

This would then imply k | D, and so k = 1, as d, D are assumed to be coprime.

We now have the following very important Lemma.

Lemma 6.4.8. The class number of G∗
Q (see (4.2.1)), defined as #(G∗

Q\G∗
A/C),

where
C := {x ∈ G∗

A | xL0 = L0}, (6.4.1)

is 1.

Proof. This is shown in [Shi06b, Remark 2.4, (5)], which is an improvement of [Shi04,
Theorem 9.26], as the technical assumptions are weakened.

Fix now an element ξ ∈ L0

[
−D
q
,
1
2Z
]

and consider the algebraic subgroup of G∗
Q

H(ξ)Q =
{
g ∈ G∗

Q | gξ = ξ
}
.

We note that H(ξ)Q = SOψ(W ), where W := {x ∈ V0 | ϕ0(x, ξ) = 0} and ψ := ϕ0 |W .

We now have the following Proposition, which is a special case of [Shi06b,
Theorem 2.2].

Proposition 6.4.9. There is a bijection

L0

[
−D
q
,
1
2Z
]
/Γ(L0)←→ H(ξ)Q\H(ξ)A/(H(ξ)A ∩ C),
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which is given as follows:

If k ∈ L0

[
−D
q
,
1
2Z
]
, then by Witt’s Theorem ([Shi04, Lemma 1.5 (ii)]) there

is some α ∈ G∗
Q such that

k = αξ.

We then assign the H(ξ)Q-class of α−1L0 to k. In particular, this then gives

#
(
L0

[
−D
q
,
1
2Z
]
/Γ(L0)

)
= #(H(ξ)Q\H(ξ)A/(H(ξ)A ∩ C)).

Proof. First of all, Γ(L0) acts on L0

[
−D
q
,
1
2Z
]
. This can be seen because if

γ ∈ Γ(L0), x ∈ L0

[
−D
q
,
1
2Z
]
, then ϕ0[γx] = ϕ0[x] = −D/q and

ϕ0(γx, L0) = ϕ0(γx, γL0) = ϕ0(x, L0) = 1
2Z.

The remaining assertions follow from [Shi06b, Theorem 2.2, (iv)], because G∗
Q has

class number one (Lemma 6.4.8) and G∗
Q ∩ C = Γ(L0).

Let us now write
L0

[
−D
q
,
1
2Z
]

=
h⊔
i=1

Γ(L0)ξi. (6.4.2)

with some ξi ∈ L0

[
−D
q
,
1
2Z
]
. This in particular implies that ξi ∈ L∗

0 for all i.

We now assert we can take

ξi ∈ PS = {y′ = (y1, y, y2) ∈ Rn+2 | y1 > 0, ϕ0[y′] > 0}

of Section 4.1, for all i = 1, · · · , h. The second condition is clear, as S0[ξi] =
−2D/q > 0, because we take D < 0. For the first one, we can always mutliply with
diag(−1, 1n,−1) ∈ Γ(L0) and the assertion follows.

Now, if ξ ∈ Ξd of Lemma 6.4.7, we can write ξ = γξj for some 1 ≤ j ≤ h and
γ ∈ Γ(L0). But, ξ ∈ PS as well, so we must have γ ∈ Γ(L0) ∩ G∗,0

R = Γ+(L0).
Indeed, if γ ∈ G∗

R\G
∗,0
R , then γ̃ := diag(1, γ, 1) ∈ GR\G0

R. But then γ̃⟨iξj⟩ = iξ and
iξ, iξj ∈ HS. This is a contradiction, because γ̃ sends HS to −HS := {z = x− iy ∈
V0 ⊗R C | y ∈ PS} (see [Sch22, p. 18]).

Therefore, from [Sch22, p. 26], we have A(ξ) = A(γξi) = A(ξi). Define now

n(ξi; d) := #
{
s ∈ Zn/dSZn | D ≡ 1

2qS
−1[s] (mod qd) and
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( 1
2qS

−1[s]−D
qd

, S−1s, d

)t
= γξi, γ ∈ Γ+(L0)

 .
From the above considerations, Proposition 6.3.4 and Lemma 6.4.7, we may write,
for (N,D) = 1

⟨V ∗
NϕN , Pk,D,r⟩ =

h∑
i=1

∑
0<d|N

dk−(n+1)n(ξi; d)A
(
N

d
ξi

)
.

In particular, we arrive at the following Proposition.

Proposition 6.4.10. Let (D, r) ∈ s̃upp(L, σ). Let P be a finite set of primes, which
includes the prime factors of D. Let

DF,Pk,D,r,P(s) :=
∞∑
N=1

(N,p)=1∀p∈P

⟨V ∗
NϕN , Pk,D,r⟩N−s,

which converges absolutely for Re(s) > k + 1 by comparison with DF,Pk,D,r
(s) (see

Lemma 4.5.1). Let also

ζξi,P(s) :=
∞∑
N=1

(N,p)=1∀p∈P

n(ξi;N)N−s.

We then have that

DF,Pk,D,r,P(s) =
h∑
i=1

ζξi,P(s− k + n+ 1)DF,ξi,P(s), (6.4.3)

where DF,ξi,P(s) :=
∞∑
N=1

(N,p)=1∀p∈P

A(Nξi)N−s.

6.5 Relation to Sugano’s Theorem

In order to now obtain an Euler product, we will make use of the main Theorem of
Sugano in his paper [Sug85]. We first need some setup.

For each prime number p <∞, we define Kp := Gp ∩ SLn+4(Zp) = G(Zp) and let

Kf :=
∏
p<∞

Kp.

We remind ourselves here that G0
∞ acts transitively on HS (cf. Section 4.1). Let Z0

denote any point of HS with real part 0 and denote by K∞ its stabiliser in G0
∞.

Then, we have that G0
∞/K∞ ∼= HS.



142 Chapter 6. Relation to L-functions

Definition 6.5.1. Let k ≥ 0. A function F : GA −→ C is called a holomorphic
cusp form of weight k with respect to Kf if the following conditions hold:

1. F (γgu) = F (g) ∀γ ∈ GQ, u ∈ Kf .
2. For any g = g∞gf with g∞ ∈ G0

∞ and gf ∈ GA,f , F (g∞gf)j(g∞,Z0)k depends
only on gf and Z = g∞⟨Z0⟩ and is holomorphic on HS as a function of Z.

3. F is bounded on GA.

Denote the above space by Sk(Kf ).

For each gf ∈ GA,f and Z ∈ HS, we define

F (gf ;Z) := F (g∞gf )j(g∞,Z0)k, (6.5.1)

where g∞ ∈ G0
∞ is chosen so that Z = g∞⟨Z0⟩. Let now

Γ(gf ) = GQ ∩ (G0
∞ × gfKfg

−1
f ),

which is a discrete subgroup of G0
∞. We then have

F (gf ; γ⟨Z⟩) = j(γ,Z)kF (gf ;Z)

for all γ ∈ Γ(gf ) and Z ∈ HS. Now, if X ∈ V0, define the element γX ∈ G by

γX :=


1 −X tS0 −1

2S0[X]
0 1n+2 X

0 0 1

 .
Now, the holomorphic function F (gf ;Z) is invariant under Z 7−→ Z +X for X in
the lattice

L(gf ) := {X ∈ V0 | γX ∈ Γ(gf )}.

Hence, every such function then admits a Fourier expansion of the form

F (gf ;Z) =
∑

r∈L̂(gf )
ir∈HS

a(gf ; r)e[2ϕ0(r, Z)],

where
L̂(gf ) := {X ∈ V0 | 2ϕ0(X, Y ) ∈ Z for all Y ∈ L(gf )}

is the dual lattice of L(gf ).

Finally, let us introduce adelic Fourier coefficients. Let χ =
∏
p≤∞

χp be a character of

QA such that χ|Q = 1 and χ∞(x) = e(x) for all x ∈ R. For η ∈ V0 and g ∈ GA, we
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define
Fχ(g; η) :=

∫
V0\VA

F (γχg)χ (−2ϕ0(η,X)) dX.

Now, for g∞ ∈ G0
∞ and gf ∈ GA,f we have

Fχ(g∞gf ; η) = a(gf ; η)j(g∞;Z0)−ke (2ϕ0(η, g∞⟨Z0⟩)) . (6.5.2)

We then have from the above definitions (see [Sug85, (1.14)])

(i) Fχ(γXgu; η) = χ(2ϕ0(η,X))Fχ(g; η) for all X ∈ VA, u ∈ Kf .

(ii) Fχ



α

β

α−1

 g; η
 = Fχ(g; β−1ηα), for all α ∈ Q×, β ∈ G∗

Q.

(iii) F (γXg) =
∑
η∈V0

Fχ(g; η)χ(2ϕ0(η,X)) for all X ∈ V0,A.

We now want to show that there is a bijection between the spaces S(Kf ) and Sk(ΓS).
This is true because of the following Lemma:

Lemma 6.5.2. We have GA = GQG
0
∞Kf .

Proof. From the proof of [Sug85, Lemma 1], we have GA = GQG
∗
A,fG

0
∞Kf , where

we view G∗ as a subgroup of G via (4.2.3). But, from Lemma 6.4.8, we have
G∗

A = G∗
QG

∗
∞K

∗
f , where we now define

K∗
f :=

∏
p<∞

G∗(Zp).

From this, we obtain G∗
A,f = G∗

QK
∗
f . Therefore, because elements of K∗

f and G0
∞

commute, we obtain

GA = GQG
∗
QG

0
∞K

∗
fKf = GQG

0
∞Kf ,

as required.

The bijection is now given by F 7−→ F (Z) := F (g∞)j(g∞,Z0)k, where g∞ ∈ G0
∞ is

chosen so that g∞⟨Z0⟩ = Z.

Let now gf = (id, id, · · · ), which we denote by just id. It then follows that F (Z) =
F (id,Z), ∀Z ∈ HS. In that case, we have L(gf ) = L0 = Zn+2. Now, a(id, r) = A(r)
for all r ∈ L∗

0. Hence
a(id, ξi) = A(ξi),

for all i, where ξi’s are the representatives for L0

[
−D
q
,
1
2Z
]
/Γ(L0), as in (6.4.2).
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Fix now a complete system of representatives {ui}hi=1 for H(ξ)Q\H(ξ)A/(H(ξ)A∩C),
corresponding to the ξ′

is of (6.4.2), in the sense of Proposition 6.4.9. Assume also
that ui,∞ = 1 for all i = 1, · · · , h. We then prove the following Lemma.

Lemma 6.5.3. Let ξ ∈ L0

[
−D
q
,
1
2Z
]

be the element we have fixed right after Lemma

6.4.8. We have
a(ui, ξ) = a(id, ξi),

for all i = 1, · · · , h. Therefore, a(ui, ξ) = A(ξi) for all i = 1, · · · , h.

Proof. By the definition of the ξi’s and Witt’s theorem ([Shi04, Lemma 1.5 (ii)]),
there is α ∈ G∗

Q such that ξi = αξ. By the correspondence given by Shimura in
Proposition 6.4.9, we get α−1L0 = uiL0. This then implies αuiL0 = L0, so αui ∈ C
(we remind ourselves that C = {x ∈ G∗

A | xL0 = L0}). By definition, we then get
αui ∈ Kf . Hence, we obtain

Fχ(ui; ξ) = Fχ(ui;α−1ξi) = Fχ (diag(1, α, 1)ui; ξi) = Fχ ((diag(1, α, 1), id) ; ξi) ,

where (diag(1, α, 1), id) denotes the element of GA with infinity part diag(1, α, 1).
The second equality above follows from the second bullet point and the third equality
from the first bullet point, just before Lemma 6.5.2. By the property of Fχ in (6.5.2),
we obtain

a(ui; ξ)e (2ϕ0(ξ,Z0)) = a(id, ξi)j (diag(1, α, 1),Z0)−k e (2ϕ0 (ξi, diag(1, α, 1)⟨Z0⟩)) .

But j (diag(1, α, 1),Z0) = 1 and diag(1, α, 1)⟨Z0⟩ = αZ0 which then gives that the
right hand side above equals

a(id; ξ)e (2ϕ0(ξi, αZ0)) = a(id; ξ)e (2ϕ0(αξ, αZ0)) = a(id; ξ)e (2ϕ0(ξ,Z0)) ,

because ξi = αξ. This then gives the result.

For each prime p and gf ∈ GA,f , let

M(gf ; ξ)p := H(ξ)p ∩ gfKfg
−1
f and M(gf ; ξ)f :=

∏
p

M(gf ; ξ)p.

Define then e(ξ)i := #{H(ξ)Q ∩M(uigf ; ξ)f} for 1 ≤ i ≤ h and µ(ξ) :=
h∑
i=1

e(ξ)−1
i .

Let also V (gf ; ξ) the space of functions on H(ξ)A, which are left H(ξ)Q and right
H(ξ)∞M(gf ; ξ)f invariant. We now have the following Theorem, which follows from
[Sug85, Theorem 1].
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Theorem 6.5.4. Assume F ∈ Sk(ΓS) corresponds to F ∈ Sk(Kf), as above. As-
sume F is a simultaneous eigenfunction of the Hecke pairs Hp = (Gp, Kp) for
all p. We also assume A(ξ) ̸= 0. Then, there is a finite set of primes P,
such that if f ∈ V (gf ; ξ) is a simultaneous eigenfunction of the Hecke algebras
H′
p := (H(ξ)p,M(gf ; ξ)p) for all p /∈ P, we have

∞∑
N=1

(N,p)=1∀p∈P

µ(ξ)−1
h∑
i=1

A(Nξi)
f(ui)
e(ξ)i

N−(s+k− n+2
2 ) =

(
µ(ξ)−1

h∑
i=1

A(ξi)
f(ui)
e(ξ)i

)
×

× LP(F ; s)LP
(
f ; s+ 1/2

)−1
× (zeta)−1(s),

where (zeta)(s) :=

1 if n odd

ζP(2s) if n even
.

The definitions of the Hecke algebras can be found in [Sug85, Section 2].
L(−, s) denotes the standard L-function attached to orthogonal modular forms, as
this is defined in [Sug85, Paragraph 4-1, (4.4), (4.7)]. Also, for any L-function, we
write LP for the Euler product not containing the primes in P.

Proof. This follows from Sugano’s main Theorem in [Sug85, Theorem 1]. In our
setting, we take gf = (id, id, · · · ) and then substitute a(ui;Nξ) with A(Nξi) in the
original form of [Sug85, Theorem 1], due to Lemma 6.5.3. We also note that in this
case H(ξ)∞M(gf ; ξ)f = H(ξ)A ∩C, where C is defined in (6.4.1). The set of primes
P contains all the primes contained in the set P2 of [Sug85, Theorem 1] and the
finite set of primes p for which ∂p ̸= 0 or ∂′

p ̸= 0, where ∂p, ∂′
p are defined in [Sug85,

Theorem 1]. We note that in our case, Lp is maximal for all p, so P1 in [Sug85,
Theorem 1] is empty.

From now on, we fix gf = id. Now, for any f ∈ V (gf ; ξ), we set

f̃(ui) := f(ui)
e(ξ)i

µ(ξ)−1, i = 1, · · · , h and Af :=
h∑
i=1

f̃(ui)A(ξi). (6.5.3)

The formula in Theorem 6.5.4 then becomes

(zeta)(s)× LP
(
f ; s+ 1/2

) h∑
i=1

f̃(ui)DF,ξi,P (s+ k − (n+ 2)/2) = AfLP(F ; s),

where DF,ξi,P(s) is the Dirichlet series appearing in Proposition 6.4.10. This is true
for any simultaneous eigenfunction f of the Hecke algebras H ′

p = (H(ξ)p,M(gf ; ξ)p)
for all p /∈ P . Our aim is to invert it so that we solve for DF,ξi,P(s).
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From the definition of the u′
is just before Lemma 6.5.3, we have that

H(ξ)A =
h⊔
i=1

H(ξ)QuiD,

whereD := H(ξ)∞M(gf ; ξ)f . We noteD is an open subgroup ofH(ξ)A andD∩H(ξ)f
is compact. By [Shi04, Lemma 17.6], there is a correspondence

f ←→ {f (i) | i = 1, · · · , h},

with each f (i) ∈ C, because H(ξ)∞ ∼= SO(n+ 1) is compact. We also note here that
f(ui) = f (i) for all i = 1, · · · , h, as we can see by the way these f (i) are defined in
the proof of [Shi97, Lemma 10.8].

Now, for any two simultaneous eigenfunctions fi, fj of the Hecke algebras defined by
the pairs H′

p = (H(ξ)p, M(gf ; ξ)p) for all p /∈ P, their inner product is defined via
the formula

⟨fi, fj⟩ :=
{

h∑
k=1

ν
(
Γk
)}−1 h∑

k=1
ν
(
Γk
)
f

(k)
i f

(k)
j =

=
{

h∑
k=1

ν
(
Γk
)}−1 h∑

k=1
ν
(
Γk
)
fi(uk)fj(uk),

where Γk := H(ξ)Q ∩ ukDu−1
k and ν

(
Γk
)

= #(Γk)−1, as in [Shi04, (17.23)] (here we
again use the fact that H(ξ)∞ is compact).

As e(ξ)i = #{H(ξ)Q ∩M(uigf ; ξ)f}, we have that e(ξ)i = ν (Γi)−1, which also gives

µ(ξ) =
h∑
k=1

ν
(
Γk
)
.

It is now possible to choose a basis of orthonormal Hecke eigenforms {f1, f2, · · · , fh}
for V (gf ; ξ) with respect to the above inner product. This is true because the Hecke
algebra defined by H′

p is commutative and consists of self-adjoint operators for all
p /∈ P (see proof of [Shi04, Proposition 17.14]). Also, by [Shi04, Lemma 17.6, (1)],
there is an isomorphism between V (gf ; ξ) and Ch. Therefore, this basis must consist
of h eigenforms. Hence, we get the expression

DF,ξi,P (s+ k − (n+ 2)/2) = µ(ξ)−1(zeta)−1(s)LP(F ; s)
h∑
j=1

ν
(
Γi
) µ(ξ)
e(ξ)−1

i

fj(ui)×

× LP
(
fj; s+ 1/2

)−1
Afj

,

which, after the simplifications, becomes
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DF,ξi,P(s) = (zeta)−1 (s− k + (n+ 2)/2)LP (F ; s− k + (n+ 2)/2)×

×
h∑
j=1

fj(ui)LP
(
fj; s− k + (n+ 3)/2

)−1
Afj

. (6.5.4)

Hence, we arrive at the following Theorem.

Theorem 6.5.5. Let (D, r) ∈ s̃upp(L, σ). Let P be a finite set of primes, containing
the primes described in Theorem 6.5.4 and all the prime divisors of D. Let F ∈
Sk(ΓS) corresponding to F ∈ S(Kf) with A(ξ) ̸= 0. Assume F is a simultaneous
eigenfunction for the Hecke algebra Hp, defined by the pair (Gp, Kp) for all p and let
Pk,D,r denote the Poincaré series of (6.3.1). Let also {fj}hj=1 denote an orthonormal
basis of simultaneous eigenfunctions for the pairs H′

p = (H(ξ)p,M(gf ; ξ)p) for all
p /∈ P, Afj

as in (6.5.3), and denote with LP(−, s) the standard L-function attached
to either F or any fj, by ignoring the p-factors for p ∈ P. We then have

DF,Pk,D,r,P(s) = LP (F ; s− k + (n+ 2)/2)
h∑
j=1

Afj
LP

(
fj; s− k + (n+ 3)/2

)−1
×

×
h∑
i=1

ζξi,P(s− k + n+ 1)fj(ui)×

1 if n odd

ζP(2s− 2k + n+ 2)−1 if n even
,

where ζξi,P(s) are as in Proposition 6.4.10.

Proof. By substituting the expression we deduced in (6.5.4) into (6.4.3), we obtain
(here we denote by “zeta” the function of Theorem 6.5.4 after s 7−→ s−k+(n+2)/2)

∞∑
N=1

(N,p)=1∀p∈P

⟨V ∗
NϕN , Pk,D,r⟩N−s =

h∑
i=1

ζξi,P(s− k + n+ 1)DF,ξi,P(s) =

= (zeta)−1 ×
h∑
i=1

ζξi,P(s− k + n+ 1)LP

(
F ; s− k + n+ 2

2

)
×

×
h∑
j=1

fj(ui)LP

(
fj; s− k + n+ 3

2

)−1
Afj

=

= (zeta)−1 × LP

(
F ; s− k + n+ 2

2

) h∑
j=1

Afj
LP

(
fj; s− k + n+ 3

2

)−1
×

×
h∑
i=1

ζξi,P(s− k + n+ 1)fj(ui).

Hence, we would like to explore the connection between
h∑
i=1

ζξi,P(s− k + n+ 1)fj(ui)

and L
(
fj; s− k + (n+ 3)/2

)
.
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It turns out we can now obtain a clear-cut Euler product expression in the
case h = 1 and when D is a specifically chosen number. The question is how we can
pick S, so that we can get h = 1. This is the theme of the next Section.

6.6 Explicit Examples

We will now focus our attention on some specific examples of matrices S and cor-
responding Poincaré series. In particular, we set D = −q and choose matrices S,
so that the number of representatives for L0

[
1, 1

2Z
]
/Γ(L0) is 1. We therefore take

G to be the Poincaré series Pk,−q,r, with r ∈ L such that (−q, r) ∈ s̃upp(L, σ). In
particular, those choices imply that we can take

ξ = (1, 0, · · · , 0, 1)t

as an element of L0

[
1, 1

2Z
]
. Therefore, ζξ,P(s) of Proposition 6.4.10 can be written

as
ζξ,P(s) =

∞∑
N=1

(N,p)=1∀p∈P

n(ξ;N)N−s,

where this time

n(ξ; d) = #
{
s ∈ Zn/dSZn | D ≡ 1

2qS
−1[s] (mod qd)

}
.

In these cases, we are able to deduce an exact Euler product expression, connecting
the Dirichlet series of interest and the standard L-function of the orthogonal group.

6.6.1 Examples with rank 1

We consider the case where S = 2t for some t ≥ 1 with t square-free. This condition
is needed so that the lattice L = Z (and therefore L0 and L1) is maximal (cf. [Sch22,
Example 1.6.6(ii)]). Now V0 = Q3 and the quadratic form of interest is then

ϕ0(x, y) = 1
2x

tS0y,

for x, y ∈ V0, where S0 =


1

−2t
1

. Hence, ϕ0 is represented by S0/2 with

respect to the standard basis e1, e2, e3 of V0.

By [Shi04, Paragraph 7.3] we have that there exists a quaternion algebra B
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over Q such that we can put V0 = B◦ζ, ϕ0[xζ] = dxxι, 2ϕ0(xζ, yζ) = dTrB/Q(xyι),
where B◦ = {x ∈ B | xι = −x} with ι the main involution of B and ζ ∈ A(V0) such
that ζ2 = −d. Here, by A(V0) we mean the Clifford algebra of (V0, ϕ0) (see [Shi04,
Chapter 2]). Also, in general, we define TrB/Q(x) := x+ xι for x ∈ B.

Now, from [Shi04, Paragraph 7.3], we have a way to compute ζ and d. We
first need a basis h1, h2, h3 of V0 such that ϕ0(hi, hj) = ciδij for all 1 ≤ i, j ≤ 3. In
our case, we can make a choice

h1 = e1 + e3, h2 = e2, h3 = e1 − e3.

Then, we get that the condition above is satisfied with c1 = 1, c2 = −t, c3 = −1
and therefore d = c1c2c3 = t. Also, even though it is not needed in what follows,
ζ = h1h2h3.

We now remind ourselves that ξ = (1, 0, 1)t and W = (Qξ)⊥. This then implies that
ϕ0[ξ] = 1. From [Shi06b, Paragraph 5.2], we get that ∃k ∈ B◦ such that ξ = kζ.
Then, if K := Q + Qk, we get that K = Q(

√
−t) because −t, which is −dϕ0[h] in

the notation there, cannot be a square in Q×.

Using [Shi06b, Theorem 5.7] and the formula (5.11) given there, tailored to our
situation, we have the following Theorem.

Theorem 6.6.1. We define the following quantities:

• cK denotes the class number of K.
• c denotes the ideal of Z, determined by the local conditions

c2
pNK/Q(dK/Q)p = apϕ0[ξ]ϕ0(ξ, L0)−2

p , (6.6.1)

for all primes p, where a = tZ and dK/Q is the different ideal.
• For a prime p dividing c, we define [K/Q, p] to be −1, 0 or 1, according to

whether p remains prime, ramifies or splits in K.
• Let p be a rational prime. Pick ϵp ∈ δ(ϕ0,p) (see Section 4), which is either

a unit or a prime element of Qp and choose an element βp ∈ Qp such that
ϕ0(ξ, L0,p) = βpZp. Define then rp(ξ) := ϵ−1

p ϕ0[ξ]β−2
p . Define also

Cp := {u2 + 4w | u,w ∈ Zp}. (6.6.2)

• a∗ is the product of the prime factors p of t such that rp(ξ) ∈ p−1Zp and
rp(ξ) /∈ Cp.

• µ is the number of prime ideals dividing a∗ and ramified in K.
• U := O×

K and U ′ := {x ∈ O×
K | x− 1 ∈ cp(dK/Q)p ∀p ∤ a∗}.
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We then have

[H(ξ)A : H(ξ)Q(H(ξ)A ∩ C)] = cK21−µ[U : U ′]−1N(c)
∏
p|c

{
1− 1

p
[K/Q, p]

}
, (6.6.3)

Proof. This follows from [Shi06b, Theorem 5.7]. In our case, we have, in the notation
of the Theorem:

• The base field F is Q, which has class number 1.
• The product of all the prime ideals in Q for which B ramifies, e, equals Z.

This is true because for each prime p, ϕ0, viewed as a bilinear form over Qp,
is isotropic (the Witt index has to be 1 for all primes p). Therefore by [Shi04,
Paragraph 7.3], B over Qp is not a division algebra, hence is isomorphic to
M2(Qp), i.e. B splits or is unramified over p. Hence, e = Z.

• Because t is square-free, a = tZ.
• Because K is imaginary quadratic,∞ ramifies, so ν = 1 and NK/Q(O×

K) = {1},
so
[
Z× : NK/Q(O×

K)
]

= 2.

The above Theorem gives us the number #
(
L0

[
1, 1

2Z
]
/Γ(L0)

)
from Proposition

6.4.9 and the fact that now H(ξ) is commutative (see proof of [Shi06b, Theorem
5.10]). We are interested in the cases when this number is 1.

For the different dK/Q, we have

dK/Q =

2
√
−tOK if − t ̸≡ 1 (mod 4)

√
−tOK if − t ≡ 1 (mod 4)

.

We now want to determine the ideal c. But, by the above

NK/Q(dK/Q) =

4tZ if − t ̸≡ 1 (mod 4)

tZ if − t ≡ 1 (mod 4)
,

and ϕ0[ξ] = 1, ϕ0(ξ, L0) = 1
2Z. So, from (6.6.1), we get the equation

c2
p ·

4tZp if − t ̸≡ 1 (mod 4)

tZp if − t ≡ 1 (mod 4)
= 4tZp.

Therefore,

c =

Z if − t ̸≡ 1 (mod 4)

2Z if − t ≡ 1 (mod 4)
. (6.6.4)

We will now consider specific cases in order to determine when the index in (6.6.3)
is 1.
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• t = 1. Then, a = e = a∗ = Z and from (6.6.4) c = Z as well. Now

U ′ = {x ∈ O×
K | x− 1 ∈ 2OK,p ∀p}.

Clearly±1 ∈ U ′ but±i /∈ U ′ because 2OK = (1+i)2 = (1−i)2. So, [U : U ′] = 2.
Finally, µ = 0 because a∗e = Z and therefore, we get

[H(ξ)A : H(ξ)Q(H(ξ)A ∩ C)] = 1 · 21−0 · 2−1 = 1.

• t = 3. Here a = 3Z and a∗ = 3Z because r3(ξ) = −4
3 ∈

1
3Z3 but r3(ξ) /∈ C3,

as C3 = Z3 (see (6.6.2)). By (6.6.4), we get c = 2Z. In this case, O×
K =

{±1,±ω,±ω2}, where ω = 1
2(1 +

√
−3). Then,

U ′ = {x ∈ O×
K | x− 1 ∈ 2

√
−3OK,p ∀p ̸= 3}.

But for p ≠ 3,
√
−3 is a unit in OK,p. So, the condition becomes x − 1 ∈

2OK,p ∀p ≠ 3. We can then check that this is true only for ±1 ∈ U . Therefore,
[U : U ′] = 3. Also, µ = 1 in this case, because 3 ramifies in K. Also, as −3 ≡ 5
(mod 8), we have that 2 remains prime in K, hence

[H(ξ)A : H(ξ)Q(H(ξ)A ∩ C)] = 1 · 21−1 · 3−1 · 2 · (1 + 1/2) = 1.

• t = 2 or t > 3 with −t ̸≡ 1 (mod 4). We write t = p1 · · · pk, where pi are
distinct prime factors. In this case, e = c = Z and a = tZ. Let us now
compute the quantities rpi

(ξ). Let p be one of the p′
is. We have that δ(ϕ0,p)

can be represented by −t. Pick ϵp such that ϵp(Q×
p )2 = −t(Q×

p )2 such that
ϵp is either unit or a prime element. Write ϵp = −tu2

p, with up ∈ Q×
p . By

considering valuations, we must have that u ∈ Z×
p , because ϵp has valuation 0

or 1. Moreover, we pick βp = 1/2. Now

rp(ξ) = ϵ−1
p ϕ0[ξ]β−2

p = − 4
tu2
p

∈ p−1Zp.

Moreover, if p ̸= 2, Cp = Zp, so rp(ξ) /∈ Cp. If p = 2, then assume

− 4
tu2

2
= a2 + 4b2,

where a, b ∈ Z2. We can write −4/tu2
2 = 2w2, with w2 ∈ Z×

2 . By taking
valuations, we must have that the valuation of a is at least one. But then we
get a contradiction, because the valuation on the right is at least 2, but on the
left exactly 1. Therefore a∗ = tZ. We have µ = k as each pi is ramified in K.



152 Chapter 6. Relation to L-functions

Now U = O×
K = {±1} and

U ′ = {x ∈ O×
K | x− 1 ∈ 2

√
−tOK,p ∀p ̸= pi, i = 1, · · · , k}.

But for all p ≠ pi,
√
−t is a unit inOK,p and therefore ±1 ∈ U ′, i.e. [U : U ′] = 1.

We then obtain:

[H(ξ)A : H(ξ)Q(H(ξ)A ∩ C)] = cK · 21−k.

Therefore, this is 1 if cK = 2k−1. Hence, the answer in this case is the number
fields K = Q(

√
−t) that satisfy cK = 2k−1, where k is the number of prime

factors of t and −t ̸≡ 1 (mod 4). For example, when cK = 2, t must have 2
prime factors, and examples would be t = 6, 10, etc.

• t > 3 with −t ≡ 1 (mod 4). We write t = p1 · · · pk, where pi are distinct prime
factors. In these cases, similarly to the case t = 3, we have a = tZ, c = 2Z and
a∗ = tZ, as above. Also, µ = k because each prime pi is ramified in K. Now,
U = O×

K = {±1} and then

U ′ = {x ∈ O×
K | x− 1 ∈ 2

√
−tOK,p ∀p ̸= pi, i = 1, · · · , k}.

But for p ≠ pi,
√
−t is a unit in OK,p and therefore ±1 ∈ U ′, which means

[U : U ′] = 1. Now, if −t ≡ 5 (mod 8), we get that 2 is inert in K and if −t ≡ 1
(mod 8), 2 splits in K. Therefore

[H(ξ)A : H(ξ)Q(H(ξ)A ∩ C)] =

=

cK · 2
1−k · 2 · (1 + 1/2) = 3cK · 21−k if − t ≡ 5 (mod 8)

cK · 21−k · 2 · (1− 1/2) = cK · 21−k if − t ≡ 1 (mod 8)
.

In the first case, the index cannot be 1, while in the second case, we must have
cK = 2k−1. Therefore, the answer in this case is t such that −t ≡ 1 (mod 8)
so that if K = Q(

√
−t) we have cK = 2k−1, where k is the number of distinct

prime factors of t. For example, the only example for k = 2 is t = 15.

Hence, we arrive at the following Proposition:

Proposition 6.6.2. Let t be one of the following:

• t = 1, 3.
• t ̸≡ 3 (mod 4) and if t = p1 · · · pk, K := Q(

√
−t), we have cK = 2k−1.

• t ≡ 7 (mod 8) and if t = p1 · · · pk, K := Q(
√
−t), we have cK = 2k−1.

Then, with the notation as above, we have [H(ξ)A : H(ξ)Q(H(ξ)A ∩ C)] = 1.
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Let now t be one of the above. The set of primes P is as described in Theorem
6.5.5 and we include the prime 2. We aim to give an Euler product expression for
DF,Pk,−q,r,P(s). In particular, from Theorem 6.5.5, we need to give an Euler product
expression for

ζξ,P(s) :=
∞∑
N=1

(N,p)=1∀p∈P

n(ξ;N)N−s,

where now n(ξ;N) = #{s ∈ Z/2tNZ | s2 ≡ −4t (mod 4tN)}, as we have explained
in the beginning of Section 6.6.

Now, as t is square-free, we obtain from s2 ≡ −4t (mod 4tN), that 2t | s, so it
suffices to look for the number of solutions of the congruence

ts2 ≡ −1 (mod N),

with s (mod N). The last number of solutions is multiplicative in N , so we can
write

ζξ,P(s) =
∏
p/∈P

( ∞∑
k=0

n(ξ; pk)p−ks
)
.

Now, for all p /∈ P , we have (p, t) = 1, so by [Tót14, Proposition 14] (as we assume
2 ∈ P), we get that

n(ξ; pk) = 1 +
(
−t
p

)
,

for all k ≥ 1, where
(
·
p

)
denotes the Legendre symbol. Therefore, if we define

χt(p) :=
(
−t
p

)
for p ̸∈ P , we deduce that (bear in mind that χ2

t = 1)

ζξ,P(s) = ζP(s)ζP(2s)−1ζP(s, χt), (6.6.5)

where ζP(s, χt) :=
∏
p̸∈P

(1− χt(p)p−s)−1. Therefore, we have the following Theorem.

Theorem 6.6.3. Let S = 2t, with t being chosen as in Proposition 6.6.2. Assume P
is a finite set of primes, containing the primes described in Theorem 6.5.5, the prime
2, and the primes so that the conditions of [Shi99, Proposition 5.13] are satisfied for
all p ̸∈ P. Moreover, for all p ̸∈ P, we define

χt(p) :=
(
−t
p

)
, ψ(p) :=

(
−1
p

)
.

If F and Pk,−q,r are as in Theorem 6.5.5 and ξ = (1, 0, 1)t (in particular A(ξ) ̸= 0),
we have

DF,Pk,−q,r,P(s) = A(ξ)LP (F ; s− k + 3/2) ζP(2s− 2k + 4)−1 ζP(s− k + 2, χt)
ζP(s− k + 2, ψ) .
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Proof. The proof follows from Theorem 6.5.5 after choosing f to be the constant 1
on H(ξ)A. We have computed ζξ,P(s) in (6.6.5) and

LP(1, s− k + 2) = ζP(s− k + 2, ψ)ζP(s− k + 2),

as this can be computed by [Shi99, Proposition 5.15], because P is chosen so that
conditions of [Shi99, Proposition 5.13] are satisfied.

Remark 6.6.4. In the case t = 1, we recover (partly) the result of Kohnen and
Skoruppa in [KS89]. In particular, it is clear that with the above approach, some
Euler factors might be missing. However, the benefit is that we also obtain results
for t > 1. These could be interpreted as results on modular forms for a paramodular
group (cf. [Kri16, Corollary 6], [GK18]).

6.6.2 The rank n ≥ 2 case

In the rank n ≥ 2 case, a Theorem like [Shi06b, Theorem 5.7] is not available. For
this reason, we seek examples of matrices S so that the following conditions hold:

1. The lattice L = Zn is Z-maximal.
2. With the notation as in Section 6.4, L0 ∩W is a Z-maximal lattice in W and

if D = {α ∈ H(ξ)A | α(L0 ∩W ) = L0 ∩W}, we have D = H(ξ)A ∩ C.
3. The number of classes in the genus of maximal lattices (this is independent

of the choice of the maximal lattice, see [Shi04, Paragraph 9.7]) in H(ξ)Q =
SOψ(W ) is 1. Here, ψ := ϕ0 |W .

We will show that for rank n = 2, 4, 6, 8, there is at least one positive definite even
symmetric matrix S of rank n, so that the above conditions are satisfied. We start
with the following Lemma:

Lemma 6.6.5. We have H(ξ)Q = SOψ(W ) and ψ can be represented by the matrix

T = 1
2

−2
−S

 . (6.6.6)

Proof. We have W = {x ∈ V0 | ϕ0(x, ξ) = 0}. Now ξ ∈ U := Qe1 + Qen+2 and
W = (W ∩ U) ⊕ U⊥. But on U⊥, ϕ is represented by −S. Moreover, W ∩ U has
dimension 1 and if we write x = λe1 + µen+2 ∈ W ∩U , we have ϕ0(x, ξ) = (λ+ µ)/2
and so W ∩U is spanned by e1−en+2. By evaluating ϕ0[e1−en+2] = −1, the Lemma
follows.

We claim the following choices for the matrix S satisfy the conditions (1)-(3) above.
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• n = 2: S =
 2 −1
−1 2

 ,
 2 −1
−1 8

 with determinants 3, 15 respectively.

• n = 4: S =


2 −1 −1 −1
−1 2 1 0
−1 1 2 0
−1 0 0 2

 ,


2 −1 0 0
−1 2 0 0
0 0 2 −1
0 0 −1 2

 with determinants

5, 9 respectively.

• n = 6: S =



2 1 −1 1 −1 1
1 2 0 1 −1 1
−1 0 2 −1 1 0
1 1 −1 2 −1 0
−1 −1 1 −1 2 0
1 1 0 0 0 2


with determinant 3.

• n = 8: S =



2 −1 1 1 −1 −1 1 −1
−1 2 0 −1 0 1 −1 1
1 0 2 1 −1 0 0 0
1 −1 1 2 −1 −1 1 −1
−1 0 −1 −1 2 1 −1 1
−1 1 0 −1 1 2 −1 1
1 −1 0 1 −1 −1 2 −1
−1 1 0 −1 1 1 −1 2



with determinant 1.

Remark 6.6.6. The matrices S of rank 2 correspond to the unitary groups of the
imaginary quadratic fields Q(

√
−3),Q(

√
−15) respectively (cf. [Sch22, Example

1.6.6, (v)]).

Let us first check the conditions (1) and (3), right before Lemma 6.6.5. Condition (1)
follows by [Sch22, Proposition 1.6.12] for the matrices with square-free determinant
and [Sch22, Lemma 1.6.5, (ii)] for the matrix of determinant 9.

Condition (3) follows by [Han11, Section 8], because for the above choices of S, the
matrix T of (6.6.6) corresponds to the following quadratic forms:

• n = 2: Examples 4, 26 in matrices of 3 variables in [Han11, Section 8].
• n = 4: Examples 3, 5 in matrices of 5 variables in [Han11, Section 8].
• n = 6: Example 3 in matrices of 7 variables in [Han11, Section 8].
• n = 8: Example 1 in matrices of 9 variables in [Han11, Section 8].

All these examples correspond to one class in the genus of the standard lattice Zn+1,
in the cases when it is maximal. This can also be seen by a simple computation
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in MAGMA, for example. As we mentioned above, this shows that every maximal
lattice has one class in its genus.

Finally, we need to check condition (2). We will use [Shi04, Proposition 11.12]. We
have the following local result:

Proposition 6.6.7. Let S denote any of the matrices above. Let Dp = {α ∈ H(ξ)p |
α(L0,p ∩ Wp) = L0,p ∩ Wp} for each prime p. We then have that L0,p ∩ Wp is a
Zp-maximal lattice in Wp and also

Dp := H(ξ)p ∩ Cp,

where Cp = {x ∈ G∗
p | xL0,p = L0,p}.

Proof. Our proof is based on [Shi04, Proposition 11.12]. We will first establish the
following claim:

L∗
0,p ̸= L0,p ⇐⇒ p | det(S).

This follows from the fact that L∗
0,p = S−1

0 L0,p and that

S−1
0 =


1

−S−1

1

 , S−1 = 1
det(S)adj(S).

We remind ourselves that ϕ0[ξ] = 1 and ϕ0(ξ, L0,p) = 1
2Zp for all primes p. Therefore,

ϕ0(ξ, L0,p)2 = ϕ0[ξ]Zp for all p ̸= 2. Moreover, L∗
0,2 = L0,2 for every choice of S, as

2 ∤ det(S) for any S. This means [Shi04, Proposition 11.12] is applicable in every
case.

Let now tp denote the dimension of the maximal anisotropic subspace of (Qn+2
p , ϕ0)

(see Section 4.1). For p ∤ det(S), we have L∗
0,p = L0,p, tp ̸= 1 as n is even and

4ϕ0[ξ]−1ϕ0(ξ, L0,p)2 = Zp. So, by [Shi04, Proposition 11.12, (iii), (2)], L0,p ∩Wp is
Zp-maximal.

If now p | det(S), we claim tp > 1 and therefore [Shi04, Proposition 11.12, (iii), (1)]
will be applicable. We show this on a case-by-case basis. Define K0 := Qp(

√
δ),

where δ := (−1)(n+2)(n+1)/2 det(ϕ0). We note that from the proof of [Shi06a, Lemma
3.3], we have tp = 2 if and only if K0 ̸= Qp.

• S =
 2 −1
−1 2

. Then, we claim that t3 = 2. Now, det(ϕ0) = −3/24 and then

K0 = Q3(
√

det(ϕ0)) = Q3(
√
−3) ̸= Q3.
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• S =
 2 −1
−1 8

. In this case, det(ϕ0) = −15/24 and we claim t3 = t5 = 2.

But again, if p ∈ {3, 5}, we have K0 = Qp(
√

detϕ0) = Qp(
√
−15) ̸= Qp by

taking valuations (for example, if
√
−15 ∈ Q3, then −15 = u2 for some u ∈ Q3

and so 2v3(u) = 1, contradiction).

• S =


2 −1 −1 −1
−1 2 1 0
−1 1 2 0
−1 0 0 2

. In this case, det(ϕ0) = −5/26 and so K0 =

Q5(
√

5) ̸= Q5, so t5 = 2.

• S =


2 −1 0 0
−1 2 0 0
0 0 2 −1
0 0 −1 2

. In this case, K0 = Q3 and we can compute t3 = 4

in SAGE.

• S =



2 1 −1 1 −1 1
1 2 0 1 −1 1
−1 0 2 −1 1 0
1 1 −1 2 −1 0
−1 −1 1 −1 2 0
1 1 0 0 0 2


. In this case, det(ϕ0) = −3/28 and so again

K0 = Q3(
√
−3) ̸= Q3. Therefore, t3 = 2.

• In the n = 8 case, we have that det(S) = 1, so there are no primes to check
(L∗

0,p = L0,p for all primes p).

Finally, the fact that Dp = H(ξ)p ∩ Cp follows from [Shi04, Proposition 11.12, (iv)],
as tp ̸= 1 always, because n is even.

We are now ready to give the global statement.

Proposition 6.6.8. With S be any of the matrices above, we have that L0∩W is Z-
maximal in W and if D := {α ∈ H(ξ)A | α(L0∩W ) = L0∩W}, then D = H(ξ)A∩C.

Proof. The first claim follows by [Sch22, Proposition 1.6.9], as all the localisations
are maximal by Proposition 6.6.7. For the second one, we have

H(ξ)A ∩ C = {x ∈ H(ξ)A | xL0 = L0}.
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But the lattice xL0 is the lattice which is defined by (xL0)p = xpL0,p for all primes
p. Now, if x ∈ H(ξ)A with xL0 = L0, we have x(L0 ∩W ) = L0 ∩W (see [Shi04,
page 104]), so H(ξ)A ∩ C ⊂ D.

On the other hand, for all primes p, let Dp := D ∩ H(ξ)p. Then, if x ∈ D,
then xp ∈ Dp, so xp ∈ H(ξ)p ∩ Cp by Proposition 6.6.7. Therefore, xpL0,p = L0,p for
all primes p. This means that x ∈ H(ξ)A ∩ C, as wanted.

6.6.3 Euler product expression for the Dirichlet series

The question of this Section is to obtain an Euler product expression for the Dirichlet
series of interest in each of the above cases and relate it to the standard L-function
attached to F . Again, let P be as in Theorem 6.5.5, containing also the prime 2.
In particular, P contains the prime factors of q, which are also the prime factors of
detS. By Theorem 6.5.5, the first step is to determine ζξ,P(s). Hence, we need to
compute the quantity

n(ξ; d) = #
{
s ∈ Zn/dSZn | 1

2qS
−1[s] ≡ −q (mod qd)

}
,

with ξ = (1,0, 1)t, as we have explained in the beginning of Section 6.6. The steps
we follow are:

1. Find unimodular integer matrices P,Q such that PSQ = diag(a1, · · · , an), for
some positive integers ai.

2. We then substitute t = Ps =⇒ s = P−1t. Then, we have

s− s′ ∈ dSZn ⇐⇒ t− t′ ∈ dPSZn ⇐⇒ t− t′ ∈ dPSQZn,

because Q is unimodular. Hence, if t = (t1, · · · , tn)t, we consider each ti

(mod dai).
3. We then solve the congruence

1
2qS

−1[P−1t] ≡ −q (mod qd).

Let us now deal with the specific examples we have. In the following, let for p ̸∈ P

χS(p) :=
(

(−1)n/2 detS
p

)
.

1. S =
 2 −1
−1 2

. Here, we have PSQ = diag(1, 3), with P =
1 1

1 2

. We
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then have

P−1t =
2t1 − t2
−t1 + t2


and after substituting, the congruence of interest becomes (q = 3 here)

3t21 − 3t1t2 + t22 ≡ −3 (mod 3d)

with t1 (mod d) and t2 (mod 3d). Now, by the form of the equation, we get
3 | t2, so the congruence becomes

t21 − 3t1t2 + 3t22 ≡ −1 (mod d)

with t1, t2 (mod d). Now, we have n(ξ; d) = N(T ; d), where N(T ; d) is defined
as the number of solutions to the congruence T [t] ≡ −1 (mod d), with

T =
 1 −3/2
−3/2 3

 .
But N(T ; d) is multiplicative in d. Let now p /∈ P , so that 2 has a multiplicative
inverse (mod p) and p ∤ detT (P contains the prime factors of detS by
assumption). Then, by [Hak11, Corollary 1], we know that for each k ≥ 1,
there is a non-singular (mod p) matrix Uk such that T [Uk] ≡ R (mod pk)
with some diagonal matrix R. By then setting t 7−→ Ukt, we can still consider
ti (mod pk) for all i (as the determinant of Uk is non-zero (mod p)). We then
have N(T ; pk) = N(R; pk), with R diagonal. We can now count the number of
solutions N(R; pk) by [Tót14, Proposition 4]. In particular, if R = diag(a1, a2),
we have

N(R; pk) = pk
[
1− 1

p

(
−a1a2

p

)]
.

But detR = a1a2, and detR ≡ (detUk)2 detT (mod p), so(
−a1a2

p

)
=
(
− detT

p

)
=
(
−3u2

p

)
=
(
−3
p

)
= χS(p),

where 2u ≡ 1 (mod p). Therefore, we obtain

n(ξ; pk) = N(R; pk) = pk
[
1− χS(p)

p

]
.

2. S =
 2 −1
−1 8

. In this case, we have PSQ = diag(1, 15) with P =
1 1

1 2

.

By following the above steps, the congruence becomes

15t21 − 15t1t2 + 4t22 ≡ −15 (mod 15d)
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with t1 (mod d) and t2 (mod 15d). But now 15 | t2 and so after t2 7−→ 15t2,
we get

t21 − 15t1t2 + 60t22 ≡ −1 (mod d)

with t1, t2 (mod d) and with exact same reasoning as before, we get

n(ξ; pk) = pk
[
1− χS(p)

p

]
.

for all p /∈ P with n(ξ; d) multiplicative in d.

3. S =


2 −1 −1 −1
−1 2 1 0
−1 1 2 0
−1 0 0 2

. In this case, we have PSQ = diag(1, 1, 1, 5) with

P =


3 1 1 3
1 1 0 1
1 0 1 1
3 1 1 4

 .

By then substituting s = P−1t the congruence becomes

5t21 + 5t22 + 5t23 + 2t24 − 5t1t2 − 5t1t3 − 5t1t4 + 5t2t3 ≡ −5 (mod 5d),

with t1, t2, t3 (mod d) and t4 (mod 5d). But, again, 5 | t4, so after setting
t4 7−→ 5t4, we have

t21 + t22 + t23 + 10t24 − t1t2 − t1t3 − 5t1t4 + t2t3 ≡ −1 (mod d),

with ti (mod d) for all i. As before, this then gives

n(ξ; pk) = p3k
[
1− χS(p)

p2

]
,

for all p /∈ P with n(ξ; d) multiplicative in d.

4. S =


2 −1 0 0
−1 2 0 0
0 0 2 −1
0 0 −1 2

. In this case, using the same method, we obtain

3t21 + 12t22 + t23 + t24 − 9t1t2 + 3t1t3 − 6t2t3 + 3t2t4 ≡ −3 (mod 3d),

with t1, t2 (mod d) and t3, t4 (mod 3d). This then implies 3 | t23 + t24 and so
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3 | t3, t4. Therefore, as previously, we obtain

n(ξ; pk) = p3k
[
1− χS(p)

p2

]
,

for all p /∈ P with n(ξ; d) multiplicative in d.
5. In the last two cases, we omit the calculations, but by applying the exact same

reasoning as above, we will again get

n(ξ; pk) = pk(n−1)
[
1− χS(p)

pn/2

]
,

for all p ̸∈ P and with n(ξ; d) multiplicative in d. Here n = 6, 8.

In all of the above cases, we therefore obtain (here P can be possibly enlarged but
still finite)

ζξ,P(s) =
∏
p/∈P

ζP(s− (n− 1))ζP(s− n/2 + 1, χS)−1, (6.6.7)

where ζP(s, χS) :=
∏
p̸∈P

(1− χS(p)p−s)−1. We therefore arrive at the following The-
orem.

Theorem 6.6.9. Let S denote any of the matrices of Section 6.6.2 with even rank n
and P a finite set of primes, containing the primes described in the proof of Theorem
6.5.5, the prime 2, and the primes so that the conditions of [Shi99, Proposition 5.13]
are satisfied for all p ̸∈ P. For all p ̸∈ P, we define

χS(p) :=
(

(−1)n/2 detS
p

)
.

If F and Pk,−q,r are as in Theorem 6.5.5 and ξ = (1,0, 1)t (in particular A(ξ) ̸= 0),
we have

DF,Pk,−q,r,P(s) = A(ξ)ζP(2s− 2k + n+ 2)−1ζP (s− k + (n+ 4)/2, χS)−1×

× LP (F ; s− k + (n+ 2)/2)
n−1∏
i=1

ζP(s− k + (n+ 2)− i)−1. (6.6.8)

Proof. The proof follows from Theorem 6.5.5 after we choose f to be the constant 1
on H(ξ)A. From [Shi99, Proposition 5.15], we have that (since P is chosen so that
conditions of [Shi99, Proposition 5.13] are satisfied for p /∈ P):

LP (1, s− k + (n+ 3)/2) =
n∏
i=1

ζP(s− k + (n+ 2)− i),

as in general LSug (1; s− (n− 1)/2) = LShi(s). Here, the notation means the L-
function we encounter in [Sug85] and [Shi99] respectively, as these are normalised
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differently. We can see this relation by comparing the expressions [Sug85, (2.22)]
and [Shi99, (5.13.2)] (we remind the reader here that 1 is a function on a definite
orthogonal group of rank n + 1). Finally, the computation of ζξ,P(s) has been
performed in (6.6.7).



Chapter 7

Conclusions

In this final Chapter, we will briefly recap our results and highlight points of partic-
ular interest, which provide directions for future work.

7.1 Hermitian Case

In the first part of the thesis, our main goal was to obtain a relation between the
twisted Gritsenko’s L-function and a certain Dirichlet series, analogous to Heim
in [Hei99], for the case of Hermitian modular forms. To that end, we studied this
Dirichlet series, both arithmetically and analytically.

In the arithmetic part, we showed that for inert primes p, the p-factor of the Dirichlet
series is identified with the desired factor of the twisted Gritsenko’s L-function. For
split primes p, it is still uncertain whether the p-factor is related to the L-function
of GU(2, 2) × GL2. We essentially obtained all the necessary tools in the context
of parabolic Hecke rings in order to show this; however, the last few computations
turned out to be quite complicated, meaning we could not identify this factor with
the twisted Gritsenko’s Euler factor, or any other known factor for that matter. It
should be noted that the only ramified prime, 2, is not considered here; however, our
work for inert primes contains all the necessary ideas to deal with this case as well.

In the analytic part, we showed that this Dirichlet series arises as part of a triple
Rankin-Selberg inner product; however, this integral produces an additional residue
term, which we have not yet investigated. This is something that does not appear
in Heim’s work and is special to our situation. In particular, with the notation
of Section 3.6, the double quotient C3,2(K)\U3(K)/(U1(K)× U2(K)) has infinitely
many representatives. The reason for this is that not every vector is isotropic in the
unitary setting, contrary to the symplectic setting, in which Heim works. We believe
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that this additional term might be responsible for the complicated expression we
obtain in the case of split primes. It is our hope to revisit this problem in future
work.

Our main motivation for considering this problem is to obtain algebraicity results on
the special values of the twisted Gritsenko’s L-function. Such results are not available
even for Gritsenko’s L-function (i.e., not twisted). The integral representation
considered here will allow us to obtain algebraicity results, due to the presence of
the Eisenstein series, which is holomorphic at s = 0 (see Proposition 3.6.1).

On another note, an important restriction in order to obtain such results is that
the first Fourier-Jacobi coefficient of the Hermitian eigenform of degree 2 is not
identically zero (see Theorem 3.5.1 for example). Such a restriction exists for Siegel
modular forms too; for example, in [KS89], [Hei99], and other papers working on
characteristic twists of similar Fourier-Jacobi Dirichlet series (e.g. [KSK95]). As
we mentioned in the introduction, Manickam in [Man21] recently showed that the
first Fourier-Jacobi coefficient of a Siegel cuspidal eigenform of degree 2 is indeed
not identically zero. It is an interesting question to investigate this in the case of
Hermitian modular forms of degree 2 as well.

Finally, we note here that as long as the underlying number field has class number
1, the results of this part of the thesis should transfer without much difficulty. The
case of number fields with class number larger than 1 is of quite a different nature.
The main reason is that the Hecke algebra can no longer be written as the tensor
product of its p-components (see, for example, [HK20]). One would have to work
adelically to deal with this issue.

7.2 Orthogonal Case

In the second part of the thesis, we focused on generalising the method of Kohnen
and Skoruppa in [KS89] to the case of orthogonal modular forms of real signature
(2, n+ 2), n ≥ 1.

In Chapter 5, we obtained a Rankin-Selberg integral representation of the Dirichlet
series through an orthogonal Eisenstein series of Klingen-type. Note that orthogonal
Eisenstein series associated with zero-dimensional cusps are well-studied ([Sch22,
Chapter 2], [Kie23]), but it seems that little explicit work has been done for 1-
dimensional cusps.

Our goal was then to obtain an explicit theta correspondence with a Siegel-type
Eisenstein series for the symplectic group of degree 2, the analytic properties of
which are well-known. We used the classical method of rewriting the Eisenstein
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series as an Epstein zeta function, as has been done in a series of papers dealing
with such Dirichlet series (e.g. [KS89], [Gri92a] and [Kri91]). In our case, we were
able to do this only when the underlying lattice has one 1-dimensional cusp. The
main difficulty seems to arise from the general form of the symmetric space in the
orthogonal setting. In particular, with the notation of Chapter 4, elements of HS

are vectors in Cn+2, contrary to the symplectic and Hermitian cases, where the
symmetric space consists of square matrices. Krieg in [Kri91, p. 248] exploits this
fact and, by using a method involving minors of determinants, manages to write this
Dirichlet series as an Epstein zeta function uniformly for the symplectic, Hermitian
and quaternionic case.

Nevertheless, under this restriction and through the use of differential operators, we
managed to make the theta series of zero weight and remove the terms that cause
the inner-product integrals to diverge, thus obtaining our result. An interesting
question that might be worth exploring is whether we can remove the condition 4 | n
that appears in Theorem 5.5.2. This amounts to asking the question of whether
an analogue of the differential operator R of (5.4.2) that transforms with non-zero
weight exists.

In Chapter 6, we considered the problem of obtaining Euler products for the
Dirichlet series. By taking G in the Maass space and F a Hecke eigenform, we
managed to prove Euler products for some specific orthogonal groups and connect
the Dirichlet series with the standard L-function attached to F .

In particular, our strategy was to generalise the method of Kohnen and Skoruppa
to the orthogonal setting. First, we obtained an explicit form of the adjoint of
the operator VN (see Section 6.1) and its action on the Fourier coefficients of a
Fourier-Jacobi form, in the style of the main Proposition in [KS89, p. 549]. To our
knowledge, this is the first time such a formula appears in the orthogonal case, even
though the operator VN is well-known (see, for example, [Moc19], [Sug85], [Gri92a]).

As a next step, Kohnen and Skoruppa compute the Nth term of their Dirichlet series
and obtain an expression involving the Fourier coefficients of F . Crucially for them,
the determinant of each matrix appearing in the Fourier coefficients of this expression
is fixed. Hence, they can group terms together using the well-known theorem on
binary quadratic forms of fixed discriminant. We can also obtain a similar grouping
of terms, thanks to the main theorem of Shimura in [Shi06b, Theorem 2.2]. Note,
however, that it is necessary to omit a finite set of primes in order to apply this
Theorem. In this way, we obtain our Proposition 6.4.10.

To then obtain a relation to L-functions, Kohnen and Skoruppa use the well-known
formula of Andrianov in [And74, Theorem 2.4.1], which gives a relation between
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a Dirichlet series involving the Fourier coefficients of a degree two Siegel cuspidal
eigenform, twisted by ideal class characters, with the spin L-function attached to F .
In our case, we use the formula of Sugano in [Sug85], which serves as a generalisation
of Andrianov’s formula to the orthogonal setting. In particular, Sugano’s formula
involves twists by definite orthogonal forms of rank n + 1 (here, we work with a
quadratic space of real signature (2, n+ 2)).

To finally obtain clear-cut Euler products, the main difficulty arises from the fact
that, in general, there does not seem to exist an easy connection between

h∑
i=1

ζξi
(s− k + n+ 1)fj(ui) and L

(
fj; s− k + (n+ 3)/2

)
, (7.2.1)

as we mentioned before Section 6.6. Kohnen and Skoruppa can establish such a
connection in the n = 1 case by using the correspondence between equivalence classes
of binary quadratic forms with fixed discriminant and ideal classes in the class group
of a quadratic extension. This is because the functions fj correspond to ideal class
characters in their setting.

This has led us to restrict our attention to the case where h = 1. In order to find
explicit examples, we need to pick ξ such that the size of H(ξ)Q\H(ξ)A/(H(ξ)A ∩C)
is 1. The reason we choose ξ = (1,0, 1)t is that then ϕ0[ξ] = 1, which does not
have prime factors, hence makes it possible to use the results of Shimura in order to
compute the size of this quotient (see for example (6.6.1) and the proof of Proposition
6.6.7). In the rank 1 case, Shimura in [Shi06b] has given an explicit formula for the
index [H(ξ)A : H(ξ)Q(H(ξ)A ∩ C)], which we use to find all the cases for which this
index is 1 (see Section 6.6.1). In the rank n ≥ 2, such a formula is not available, so we
need an explicit description of H(ξ)Q as a definite orthogonal group. It is well-known
that there is a finite number of definite orthogonal groups with class number 1 and
their rank is at most 10 (cf. [Wat63]). Using, therefore, the enumeration of definite
orthogonal groups with class number 1 in [Han11], as well as [Shi04, Proposition
11.12], we arrive at the specific examples of Section 6.6 for rank n ≥ 2.

A fascinating question that clearly arises is how one can remove the condition h = 1.
This is especially interesting when we consider the so-called “accidental” isogenies
of low rank orthogonal groups with classical groups. Examples are SO(2, 3) and Sp2,
SO(2, 4) and U(2, 2), SO(2, 6) and Sp(2,H), where H is a quaternion algebra over R.
It may be possible to use these isogenies in order to obtain results without the h = 1
restriction, at least for these cases. In a joint work with T. Bouganis in preparation,
we are able to actually remove this condition for the SO(2, 4) case. Crucially, we used
the isogenies of orthogonal groups of signature (2, 4) with unitary groups of degree
2 and also the correspondence of Hermitian binary quadratic forms with ideals in
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a quaternion algebra. Answering question (7.2.1) is interesting in its own right; it
means that we can relate the L-function of a definite orthogonal modular form to
some concrete zeta functions counting numbers of solutions of equations. This can
potentially have computational applications to these L-functions.

7.3 The case of the E8 lattice

In this final Section, we would like to give a few remarks on how one could combine
the results of Chapters 5 and 6 for the case of the E8 lattice and obtain analytic
properties for the standard L-function in this case. The two matrices in Sections
5.6 and 6.6.2 both correspond to the E8 lattice as these are even, unimodular, and
positive definite. It is well-known that there is a unique such lattice up to isometry
([Sch22, Example 1.2.10]).

Assume now F ∈ Sk(ΓS) is a Hecke eigenform. Let also ξ = (1,0, 1)t and assume
A(ξ) ̸= 0. Because of Remark 6.3.3, we have that if we take r = 0, we have
that Pk,D,r ∈ S∗

k(ΓS) ⊂ Sk(ΓS). Therefore, from Theorem 5.6.2, we obtain that
D∗
F,Pk,D,r

(s) has a meromorphic continuation to C and is invariant under s 7−→
2k − 9− s, where D∗

F,Pk,D,r
(s) denotes the completed Dirichlet series of (5.6.1).

Moreover, in the case of the E8 lattice, we have a partial Euler product for
DF,Pk,D,r,P(s), where P is a finite set of primes. In this case, and because the
matrix S is unimodular, we have q = 1 and D = −q, so by checking the primes in
Theorem 6.6.9, we can see P = {2}.

We will describe a couple of ways one could try in order to compensate for the
missing Euler factors. Unfortunately, none of these is fully developed yet.

7.3.1 Characteristic Twists

Let N :=
∏
p∈P

p (we know in this case N = 2, but this method could work for other

lattices too). Let χ denote a Dirichlet character (mod N) such that χ(m) = 1 for
all (m,N) = 1. We then define

Fχ(Z) :=
∞∑
m=1

χ(m)ϕm(τ, z)e2πimω,

where Z = (ω, z, τ) ∈ HS. We consider the congruence subgroup of ΓS given by

ΓS(N,N2, 1) :=

M =


A X B

Y L Z

C W D

 ∈ ΓS | Y ≡ W ≡ 02 (mod N),
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C ≡ 02 (mod N2), A ≡ D ≡ 12 (mod N)
}
.

In analogy to [KSK95, Proposition 1], we have the following Lemma.

Lemma 7.3.1. We have

Fχ(Z) = 1
N

∑
ν(N)

∑
µ(N)

χ(ν)e−2πiνµ/N(F |k T(µ/N,0,0))(Z),

where Tλ is defined in Section 4.4 and ν(N) means that N runs through a set of
representatives (mod N). We then have that Fχ is an orthogonal cusp form of
weight k with respect to ΓS(N,N2, 1).

Proof. The proof of this is analogous to the proof of [KSK95, Proposition 1] after
we check that T(µ/N,0,0) ·M · T−1

(µ/N,0,0) ∈ ΓS for all M ∈ ΓS(N,N2, 1).

Now, for Z ∈ HS and s ∈ C with Re(s) > n+ 1, we define

EN,N2,1(Z, s) :=
∑

γ∈ΓS,J (N,N2,1)\ΓS(N,N2,1)

(
Q0[Im(γZ)]
Im((γZ)2)

)s
,

where for Z = (ω, z, τ) ∈ HS, we write Z2 := τ . Also, ΓS,J(N,N2, 1) :=
ΓS,J ∩ ΓS(N,N2, 1) and Q0 = S0/2. In analogy with Proposition 5.1.4, EN,N2,1(Z, s)
converges absolutely and uniformly in compact subsets of HS and is invariant under
the action of ΓS,J(N,N2, 1).

By performing an integral analogous to Proposition 5.1.5, we can obtain an integral
representation of DF,Pk,D,r,P(s) via ⟨EN,N2,1(Z, s)Fχ(Z), G(Z)⟩.

One can now study EN,N2,1(Z, s) in order to obtain the analytic properties of
DF,Pk,D,r,P(s). This could be done in a similar way as in Chapter 5 (see also [KSK95,
Proposition 2]). Alternatively, in an analogous way to [Shi00, (23.13a)], we have the
relation

[ΓS,J : ΓS,J(N,N2, 1)]E(Z, s) =
∑

δ∈ΓS(N,N2,1)\ΓS

EN,N2,1(δ⟨Z⟩, s).

Hence, one could attempt to deduce properties of EN,N2,1(Z, s) from those of E(Z, s).

7.3.2 Euler Product

This approach is based on the following unproven assumption. Assume F ∈ Sk(ΓS),
with ϕ1 ̸≡ 0.

Assumption: DF,Pk,D,r
(s) admits an Euler product, i.e. it can be written as the

product of its p-factors (i.e. summing over p).
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Remark 7.3.2. We write {ψm}∞
m=1 for the Fourier-Jacobi coefficients of Pk,D,r. It

suffices to show that m 7−→ ⟨ϕm, ψm⟩/⟨ϕ1, ψ1⟩ is multiplicative. But by definition,
ψm = Vmψ1. Moreover, from [Moc19, Corollary 4.35], Vm, hence its adjoint V ∗

m is
multiplicative. Hence, for (m,n) = 1, we can write

⟨ϕmn, ψmn⟩ = ⟨ϕmn, Vmnψ1⟩ = ⟨V ∗
mnϕmn, ψ1⟩.

Now, Vm is the same as the operator T−(m) defined by Gritsenko in [Gri91] in a
parabolic Hecke algebra. We hope that T−(m) is actually in the image of a “global”
Hecke operator through an embedding of the same type as the one in Lemma 2.4.1,
as is the case for the symplectic and Hermitian case. Then, the multiplicativity of
the Hecke operators in the global Hecke algebra would give us the required result.

Given this assumption, one could proceed as follows. We write G for Pk,D,r. We
then have

DF,G(s) = DF,G,P(s)D̃F,G,P(s), (7.3.1)

where D̃F,G,P(s) :=
∏
p∈P
D̃F,G,p(s) with

D̃F,G,p(s) =
∞∑
m=1
⟨ϕpm , ψpm⟩p−ms.

Then, D∗
F,G(s) of (5.6.1) also admits an Euler product expansion and hence a de-

composition of the form of (7.3.1). Now, by using the expression of (6.6.8), we
have

D∗
F,G,P(s) = 4−sπα(s)Γ(s)Γ

(
s− k + 6

2

)
Γ (s− k + 5) Γ

(
s− k + 9

2

)
×

× Γ
(
s− k + 8

2

)
γS(s− k + 9)

7∏
i=3

ζP(s− k + 10− i)−1×

× LP(F ; s− k + 5)

= 4−sπ−(s+4)Γ(s)Γ
(
s− k + 6

2

)
Γ (s− k + 5) Γ

(
s− k + 9

2

)
×

× Γ
(
s− k + 8

2

)
γS(s− k + 9)×

×
7∏
i=3

[
Γ
(
s− k + i

2

)
ξP(s− k + i)−1

]
LP(F ; s− k + 5)

= 4−sπ−(s+4)Γ(s)Γ
(
s− k + 6

2

)
Γ (s− k + 5) Γ

(
s− k + 9

2

)
×

× Γ
(
s− k + 10

2

)
Γ
(
s− k + 9

2

)
Γ
(
s− k + 8

2

)
×
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×Γ
(
s− k + 7

2

)
Γ
(
s− k + 4

2

)
Γ
(
s− k + 3

2

)
ϕ2

(
s− k + 1

2

)
×

×ϕ2

(
s− k + 9

2

)
LP(F ; s− k + 5)

7∏
i=3

ξP(s− k + i)−1,

where in the first equality, α(s) = −(7s−5k+33)/2. Also, to obtain the last equality,
we used the relation Γ(s+ 1) = sΓ(s). Now, we observe that the expression

π−4ϕ2

(
s− k + 1

2

)
ϕ2

(
s− k + 9

2

) 7∏
i=3

ξP(s− k + i)−1

is invariant under s 7−→ 2k− 9− s. Therefore, we arrive at the following Theorem.

Theorem 7.3.3. Let the assumptions be as in the beginning of the Section. We
define the completed L-function attached to F , via

ΛP(F ; s) := (4π)−(s+k−5)Γ(s)Γ(s+ k − 5)Γ
(
s− 2

2

)
Γ
(
s− 1

2

)
Γ
(
s+ 1

2

)
×

× Γ
(
s+ 2

2

)
Γ
(
s+ 3

2

)
Γ2
(
s+ 4

2

)
Γ
(
s+ 5

2

)
LP(F ; s)

Then, ΛP(F ; s) admits a meromorphic continuation to C and satisfies

ΛP(2k − 9− s) = ΛP(s)
D̃∗
F,G,P(s)

D̃∗
F,G,P(2k − 9− s)

.
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