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Abstract

Visual working memory (VWM) is a system responsible for temporarily storing visual
information, yet its precise nature and capacity limits remain unclear. This thesis presents
three studies examining whether vWM capacity is stable across perceptual conditions, can
be increased through learned regularities and how it constrains the allocation of attention
during search. Study 1 (Chapter 2) comprised five behavioural experiments manipulating
perceptual parameters: stimulus density (Experiment 1), stimulus eccentricity (Experiment
2), stimulus organisation (Experiment 3), stimulus type (Experiment 4), and spatial variability
of stimuli (Experiment 5). Absolute capacity estimates (K values) differed significantly across
conditions but showed consistent individual differences. Study 2 (Chapter 3) comprised two
electrophysiological experiments investigating the effects of implicit learning on VWM.
Experiment 1 employed a change detection task with low vs. high memory load conditions.
Results showed that repeated configurations led to higher K values and reduced
contralateral delay activity (CDA) amplitudes. Experiment 2 compared visuospatial (colour-
location) and non-spatial (colour-only) conditions, revealing that both K increases and CDA
reductions were specific only to the visuospatial condition. Study 3 (Chapter 4) was a single
electrophysiological experiment examining the relationship between vWM capacity and
visual search performance. Results from change detection and search tasks revealed that
individuals with higher vWM capacity exhibited greater search accuracy, stronger attentional
selection, and reduced performance costs under higher search loads. Together, these studies
demonstrate that VWM capacity is not fixed in absolute terms but is a reliable relative
measure across individuals. This work advances our understanding of how vWM capacity

interacts with perceptual context, implicit learning, and attentional control.
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Chapter 1: General Introduction




1.1 Introduction to working memory

The ability to temporarily maintain information actively in mind and manipulate that
information is a central function of human cognition (Baddeley, 1986, 1996). This cognitive
system, known as working memory (WM), allows us to maintain relevant information in an
active state to support complex behaviours such as planning, problem solving, learning and
goal-directed behaviour (Baddeley 1996). Unlike long-term memory (LTM), which holds vast
amounts of information over long periods of time, WM is limited in both capacity and
duration (Cowan, 2001, 2008). Despite this, WM plays a fundamental role in everyday life.
Whether locating a friend in a crowd or mentally rehearsing a list of shopping items, we
depend on the ability to keep information temporarily accessible and actively maintained.
Over the past few decades, the study of WM has occupied a prominent position in cognitive
psychology (Baddeley, 2012). Research through models and concepts has demonstrated that
WM is not merely a passive storage system, but rather an active and flexible component that
supports a wide range of high-level processes (Baddeley, 2003; Cowan, 2017). While | return
to these models in greater detail later in the thesis, here | focus on the functional role of

WM and more specifically visual working memory (VWM) as the basis for my research.

Within WM, researchers have identified domain-specific subsystems: verbal and
visual working memory, which retain different types of information (Engle et al., 1999;
Repovs & Baddeley, 2006). My research focuses on VWM, which is responsible for
temporarily storing visual features such as colour, shape and spatial location. It plays a
crucial role in everyday tasks such as remembering locations and it also operates closely with
attention to prioritise goal-relevant features (Awh et al., 2006). Despite its flexibility, VWM

has a limited capacity, with most individuals typically able to hold around three to four visual



items at once (Cowan, 2001; Luck & Vogel, 1997). This has prompted an extensive
investigation in the literature into how the capacity of VWM is defined, measured and

essentially employed.

The present thesis focuses on K (Cowan, 2001), a behavioural estimate of v WM
capacity that quantifies how many items an individual can store, as a central construct.
Across three empirical studies, | examine how K varies across individuals and perceptual
conditions, how it is influenced by learning and spatial regularities and how it shapes the
guidance of attention during visual search. | aim to clarify the nature of VWM capacity as
both a trait-like individual difference and a state-like, context sensitive system that is

adaptable depending on environmental needs.

1.2 Working memory models

Several competing WM models have been proposed over decades to explain its
structure, function and capacity. Each of these models all differ in how they conceptualise
the relationship between short-term memory and LTM, but each has significantly
contributed to our understanding of how visual information is maintained and used in goal-
related behaviours. In this section | provide three complementary models on WM function:
the modal model (Atkinson & Shiffrin, 1968; Broadbent, 1958), the multi-component model
(Baddeley & Hitch, 1974; Baddeley, 2000) and the embedded-processes model (Cowan,

1988, 1999).



A) The Modal model (Broadbent, 1958; Atkinson & Shiffrin, 1968)
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B) The Multi-component model (Baddeley & Hitch, 1974; 2000)
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C) The Embedded-processes model (Cowan, 1988; 1999)
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Figure 1 Schematic overview of theoretical working memory models



The first system postulated regarding general memory was the modal model
(Atkinson & Shiffrin, 1968; Broadbent, 1958). This first attempt model assumed that there
was a short-term store system that mediated incoming sensory information from the
external environment with information in long-term storage. Although this model
introduced the idea of a temporary memory buffer, it treated short-term storage as a
relatively passive system. This model, as seen in Figure 1, panel A, was proposed by
Broadbent (1958) and later expanded by Atkinson and Shiffrin (1968). The modal model
provided a basic understanding of how WM adapts to the environment laying the
foundations for subsequent models that redefined this short-term store as more active than

passive, now recognised as WM.

In contrast to the modal model, and perhaps the most influential, the multi-
component model proposed by Baddeley and Hitch (1974), suggests WM is an active system.
Shown in Figure 1, panel B, it includes a central executive that coordinates the phonological
loop, which deals with speech-based information and the visuospatial sketchpad,
responsible for visual and spatial information. Later revisions of their model also
incorporated an episodic buffer (Baddeley, 2000), which integrates multimodal information
and provides an interface with LTM. Of particular interest to the current research is the
visuospatial sketchpad which aligns with vWM. Specifically, the model allows for
investigation of capacity limitations within vWM by separating components (i.e.

phonological loop & visuospatial sketchpad) based on the type of information they store.

A different perspective is that of the embedded-processes model, proposed by
Cowan (1988, 1999). Rather than there being separate memory stores like in the previous

models, they see WM as a state of activated LTM. This model, depicted in panel C of Figure



1, conceptualises the limited amount of information that is readily available as being the
focus of attention. Simply, LTM representations become temporarily activated and a smaller
amount enters the focus of attention, posited as a capacity limited component. This model
places attention at the centre of WM, emphasising its role in deciding which representations
are actively maintained. Although this model suggests a change in the central executive’s
role in the memory process, it complements the multi-component model by offering a more
attention-driven explanation for why capacity varies and directly underpins K as a measure

used throughout this thesis.

Together, these models present important insight into the dynamic structure of WM.
While the modal model introduced the concept of temporary storage, both the multi-
component and embedded-processes model has helped conceptualise WM as a limited but
adaptable system, highlighting the importance of attention. In this thesis, | provide a view
that draws on both the domain and attention elements of the multi-component and
embedded-processes model respectively. The following sections explore how VWM capacity

is conceptualised and measured, with K serving as the main measure across all three studies.

1.3 Working memory capacity

The most well-known contribution into how much information WM can hold at once
came from Miller (1956). Using tasks involving digit span and verbal sequences, they
established that verbal working memory consisted of ‘chunks’ limited to 7 £ 2 items. This
view sparked a surge of research focusing on quantifying the constraints of WM storage
(Cowan, 2001; Luck & Vogel, 1997). One of the main reasons for this focus is because
individual differences in WM are often correlated with differences in reading

comprehension, fluid intelligence and academic achievement (Alloway & Alloway, 2010;



Fukuda et al., 2010b). Hence, there has been strong motivation to better understand these
limits as it could provide insight into cognitive function more generally. Subsequent
research, especially in the visual domain, has revised this estimate considerably, suggesting
that capacity is typically limited to around three to four items for v WM (Cowan, 2010). This
view remains the most prominent in the literature to date. In this section, | outline the main
theoretical approaches to vWM capacity, focusing on the discrete-slot model, the fixed
resource model, hybrid accounts and relevant neural correlates. These views will help to

interpret the methods and findings of my three studies to follow.

The discrete-slot model suggests that VWM capacity is limited by a discrete number
of ‘slots’, meaning any stored item must be assigned to one of a limited number of slots
(Cowan, 2001; Fukuda et al., 2010a). Once this limit is exceeded, additional items are not
stored. Evidence supporting this model has come from behavioural studies using change
detection tasks showing that when set size increases beyond capacity, performance declines
(Awh et al., 2007; Balaban et al., 2019; Luck & Vogel, 1997; Rouder et al., 2008; Vogel et al.,
2001). For example, Luck and Vogel (1997) found that participants could reliably detect
changes with three to four items, but performance declined beyond that. Crucially, they also
explored whether this capacity depends on the number of features or the number of
objects. Accuracy was measured across set sizes, 4, 8 or 12 under three conditions: colour-
only changes, orientation-only changes and a conjunction condition, where either colour or
orientation could change. Using a set size of four, results showed that performance in the
single feature conditions (colour-only & orientation-only) was almost identical to
performance in the conjunction condition, concluding that capacity is determined by the

number of objects and not the number of features, consistent with the discrete-slot model



of VWM capacity. Despite the discrete-slot model being the most prevailing model used in
terms of VWM capacity (Cowan, 2001; Luck & Vogel, 2013) and its support from empirical
work, it has been argued that it’s all or nothing nature may oversimplify the mechanisms

underlying encoding, maintenance and retrieval in vWM.

In contrast, the alternative flexible-resource model suggests VWM capacity is limited
by a pool of resources that can be distributed across an unlimited number of items,
prioritising some over others (Bays & Husain, 2008; Wilken & Ma, 2004). Thus, all items can
be stored, but with declining precision as set size increases. Evidence to support this model
shows that response errors increase gradually with load (Wilken & Ma, 2004), as opposed to
stopping at a certain set size, like in the discrete-slot model. Not only has the flexible-
resource model gained evidence from studies assessing how many items are stored, but also
how similar, complex or salient items are (Alvarez & Cavanagh, 2004). For example, using five
stimuli classes and set sizes of 4, 8 and 12 in the change detection task, Alvarez and
Cavanagh (2004) found that both information load and number of objects affect capacity

limits on VWM.

While discrete-slot and flexible-resource models offer contrasting accounts of how
vWM capacity is constrained, an emerging body of research has argued for hybrid models
that incorporate aspects of both. One prominent hybrid account which blurred the
distinction between discrete slots and flexible resources was developed by Zhang and Luck
(2008). They suggest that when fewer items are presented than the number of available
slots (e.g., 2 items, 4 slots), multiple slots can be assigned to a single item simultaneously to
enhance its representational precision. In other words, when the memory load is low, the

‘extra’ unused slots are not wasted. Similarly, Chong and Treisman (2005a, 2005b) argue that



capacity limitations may not just apply to individual items, but to abstract representations of
the entire visual field. From this perspective, the nature of what is stored (e.g. contexts,
features, objects), and how it is represented can vary depending on task demands and
attentional priorities. Overall, it seems there is a bridge between discrete-slot and flexible-

resource models showing characteristics of both types of models.

Further hybrid accounts of capacity arise from interference-based models, which
challenge the need for fixed capacity systems altogether. For example, Oberauer and Kliegl
(2001, 2006) proposed that capacity limitations arise from the mutual interference between
stored items, rather than from a fixed number of available slots or resources. They
administered an updating paradigm whereby participants maintained digits in spatially
specific locations while executing arithmetic updates. Performance decreased with
increasing load and ceiling accuracy was shown up to around four items, like results from
change detection tasks (Luck & Vogel, 1997). However, the critical observation here was that
they attributed this limit to item interference rather than a strict capacity ceiling, where
interference results from overlapping feature representations, making it harder to separate

items as more are stored.

Further support for interference models comes from Davelaar et al. (2005) who
developed the general-plus-specific interference model. They suggested that all newly
encoded items introduce competition within WM regardless of similarity. When related
stimuli are present, this interference is more pronounced, but even unrelated stimuli can
present interference. This account offers a mechanism by which both capacity limits and
representational similarity limit performance, consistent with both discrete slot and flexible

resource restrictions.
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Lastly, the dual-store model (Unsworth & Engle, 2007) offers a complementary
account. This model appoints individual differences in WM performance to both primary
memory (capacity-limited and attentionally sustained) and secondary memory (longer-term
storage that requires controlled retrieval). This view suggests capacity limits are observable
when task demands separate primary memory, i.e., in change detection paradigms,
providing a framework in which capacity limitations (such as those estimated by K) are

separated from retrieval variance.

In addition to behavioural models of VWM capacity, neural markers have also been
identified to reflect the number of items actively maintained in memory. One of the most
widely studied electrophysiological correlates is the contralateral delay activity (CDA), a
sustained negative wave observed over posterior PO7/P0O8 scalp regions, contralateral to the
hemifield where the memory items are presented (lkkai et al., 2010; McCollough et al.,
2007; Vogel & Machizawa, 2004). In line with slot-based predictions, the CDA increases with
set size, often levelling off at around three to four items (Vogel et al., 2005). However,
interpretations of the CDA are not restricted to discrete-slot models and thus not entirely
capacity driven. Some researchers have argued that the CDA may reflect attentional
allocation, resource distribution or encoding strength, making it relevant to flexible-resource
and hybrid models too (Luria et al., 2016). For example, if items vary in complexity, the CDA
can represent the overall demand of these items, not just how many there is (Roy & Faubert,
2023). This interpretation stresses the importance of using both behavioural and neural
measures when assessing capacity. Here, | use the CDA to complement behavioural
measures of capacity (K) to explore how vWM capacity is modulated by stimulus context

(Study 2) and linked to attentional control (Study 3).
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The range of capacity models presents three key features: VWM capacity is limited,
variable across individuals and sensitive to task demands. The diversity of the models
reflects the complexity of VWM, thus my aim in this thesis is not to test these models
directly against each other, but rather to explore how vWM capacity is expressed under
different cognitive and environmental conditions. | examine how K varies with perceptual
structure (Study 1), how it is enhanced through implicit learning (Study 2) and how it

correlates with attentional control efficiency (Study 3).

1.4 Visual working memory capacity measurements

The models outlined previously form the foundation for how capacity is
conceptualised. In this section, | provide a description of the tasks and tools used to
measure capacity in experimental research, focusing on the task | use in all three of my
studies: the change detection task. | also introduce the rationale for Study 1 which directly
addresses the issue of VWM capacity measurements, in that capacity estimates are sensitive

to the design and contexts of task displays.

WM capacity can be tested in a variety of tasks. A commonly used measure are
complex span tasks which combine a memory span with a concurrent processing task.
Daneman and Carpenter (1980) invented the first version of this task, named the ‘reading
span’, where individuals read several sentences and tried to remember the last word of each
sentence. While they believed that the combination of storage and processing was needed
to measure WM capacity, we now know that WM capacity can be measured with WM tasks
that have no additional processing involved (Colom et al., 2008; Unsworth & Engle, 2007).
However, the question of what features a task must have to qualify as a measure of WM

capacity remains an open question.
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Used in the present three studies and one of the most widely used paradigms for
estimating VWM capacity is the change detection task (Phillips, 1974), which has been well
established by researchers (Luck & Vogel, 1997; Vogel et al., 2001). In a typical change
detection task, participants briefly view a memory display of visual items e.g. coloured
squares and remember these across a short delay. Participants are then presented with a
test display where either one of the items has changed (change trial) or stayed the same
(no-change trial). By manipulating the set size in the memory arrays, researchers can infer
individual memory capacity from accuracy rates, also known as K (Cowan, 2001). There are
two formulae used to measure K in the literature which are both dependant on whether the
task is a whole (Pashler, 1988) or single probe display (Cowan, 2001). Since all three studies
presented here all have whole displays and following the suggestions of Rouder et al. (2011),
K was calculated according to Pashler’s equation (Pashler, 1988) in all three of my studies.

The formula to calculate K is:

=)

where N is the number of memory items (set size), and h and f are the measured hit and

false alarm rates, respectively. Hit rates are calculated as

hits
" hits + misses

and false alarm rates are calculated as

false alarms

f

false alarms + correct rejections
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Although alternative approaches to measure vVWM capacity have been developed (Bays &
Husain, 2008), given the structure of my studies, particularly the use of electrophysiological

measures in Study 2 and 3, here | adopt a change detection task paired with K.

Although K is widely used to estimate VWM capacity, the reliability of this measure is
influenced by parameters of the experimental design (Vogel et al., 2001). Thus, despite their
efficiency, K values are not always constant across tasks or contexts. Manipulations such as
item complexity, spatial organisation, or attentional demands can significantly affect K values
(Alvarez & Cavanagh, 2004; Oberauer & Eichenberger, 2013). For example, items grouped
visually may be remembered with higher accuracy, even when the number of items remains
the same (Woodman et al., 2003). This raises a fundamental question: does K reflect a stable
trait-like memory limit, or does it fluctuate based on how the task supports encoding and
prioritisation? Thus, capacity might not only represent how much an individual can
remember, but also how efficiently they can extract, coordinate, and maintain visual input

under different environmental settings.

To address this, Study 1 was designed to investigate whether K is stable across
perceptual conditions. While K is treated as a robust measure in many studies, | specifically
wanted to challenge this assumption by seeing if it is consistent across systematic variations
in the visual structure of a task. | had two goals for Study 1: firstly, to determine whether
absolute K values change across these contexts and secondly, to assess whether individual
stability is preserved, i.e., do individuals maintain their relative vWM capacity even when

perceptual task parameters change.
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1.5 Visual working memory and contextual learning

Following the discussion of how K can vary with changes in perceptual parameters, a
related question now arises: can capacity also be shaped by learning? Can learned
regularities in the environment enhance the efficiency of visual information encoding and
maintenance? While Study 1 focuses on how perceptual task structure can affect K, Study 2
and the present section focus on the role of contextual learning: how repeated exposure to
visual displays may lead to improved memory performance. | begin by introducing the
contextual cueing phenomena. | then discuss how implicit learning may influence vWM,

leading to the rationale of Study 2.

In our everyday life, we use contextual regularities to guide our attention, for
example, knowing where to look for milk in the kitchen relies on learned spatial associations.
One concept that has been utilised to explain this phenomenon is the contextual cueing
effect (Chun & Jiang, 1998), where repeated spatial configurations improve visual search
efficiency over time (Chua & Chun, 2003; Jiang & Chun, 2001; Olson & Chun, 2002). Chun
and Jiang (1998) first demonstrated this using a visual search task. This requires participants
to search for a target letter ‘T’ amongst a configuration of distractors ‘L's. Unknown to the
participants, half of the displays are repeated distractor configurations that consistently
predict a target location while the other half of displays are novel configurations. Results
show significantly faster response times for repeated configurations than randomly
generated novel configurations, despite individuals being unaware of the repetition. This
effect has since been replicated across many different visual search tasks (Chun, 2000; Geyer
et al., 2010; Pollmann, 2019; Yang et al., 2021) with a consistent finding: repeated global

contexts support faster and more accurate search.
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Chun and Jiang (1998, 1999) proposed that repeated exposure to a specific search
array leads to the formation of an implicit memory which reflects learned associations
between the targets location and the surrounding visual context. Once these associations
are formed, they are automatically retrieved and used to guide attention when the same
configuration appears. Crucially, contextual cueing occurs without explicit awareness of the
repetition, reinforcing its implicit nature. Evidence from neuroimaging studies support this
view by showing that contextual cueing engages medial temporal lobe structures, such as

the hippocampus, which are typically involved in associative learning (Greene et al., 2007).

While contextual cueing is typically displayed in visual search, very few studies have
explored whether this implicit learning can enhance vWM directly. The idea is that repeated
configurations in the environment may support more efficient organisation of visual
information, leading to an increase in K. This idea challenges the view that contextual cueing
operates solely through attentional mechanisms and suggests the possibility that this could
occur at the level of memory encoding and maintenance. Thus, Study 2 was designed to
investigate whether contextual learning can directly influence vWM capacity, as indexed by
K. While contextual cueing is often attributed to attention, | aimed to test whether repeated
spatial configurations could also enhance vWM directly. | had two main goals for Study 2:
first, to determine whether repeated spatial configurations improve behavioural estimates of
capacity (K) and second, to assess whether these improvements are reflected at the neural

level, through modulations of the CDA.

1.6 Visual working memory and attentional templates

While | have previously discussed how perceptual and contextual factors may alter

the efficiency of VWM capacity, it is important to recognise how capacity limitations may
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shape the way VWM is used in real time operations. Representations stored in VWM can act
as attentional templates, guiding the selection of relevant information in the visual
environment, thus understanding this relationship is crucial for the confines of capacity. In
this section, | focus on the role of VWM in attentional guidance, specifically, how stored

representations function as attentional templates, setting out the rationale for Study 3.

vWM not only enables the short-term storage of visual information, but it also plays
a role in attentional control. One way in which this occurs is through attentional templates,
which are internal representations of target features that are maintained in vWM (Desimone
& Duncan, 1995; Duncan & Humphreys, 1989; Olivers et al., 2011). These templates act as
filters that enhance sensitivity to stimuli that match goal-relevant features. For example,
when looking for your blue suitcase at the airport baggage carousel you hold a mental image
of its colour and shape in mind. This template allows your visual system to prioritise blue
square objects and effectively ignore irrelevant items i.e., yellow backpacks. Research at the
behavioural level shows that search is more efficient when a single template is maintained,
shown by faster reaction times and greater accuracy rates (Carlisle et al., 2011; Olivers et al.,
2011). However, when multiple potential target templates must be maintained at the same
time, i.e., search for one of three colours, performance typically declines (Beck et al., 2012).
These costs may be reflected by the limited capacity of VWM, which varies across

individuals.

Neural mechanisms underlying attentional template use have been studied
extensively using EEG, particularly the N2-posterior-contralateral (N2pc) component. The
N2pc component of the event-related potential (ERP) is a negative going deflection observed

approximately 200-300ms after stimulus onset at posterior scalp electrodes contralateral to
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the attended visual field. It serves as an electrophysiological marker of attentional selection
(Eimer, 1996; Luck & Hillyard, 1994). The N2pc has been widely used to track the time course
of attentional deployment during visual search tasks. Typically, when a search display
contains a lateralised target that matches a maintained template, an N2pc is observed
during search. To more precisely track attentional processes prior to and during search,
Grubert and Eimer (2018) developed the rapid serial probe presentation (RSPP) paradigm in
combination with a visual search task. In this design, not only are N2pcs measured in
response to the target in the search display, but also time-locked to lateralised probes
presented during the preparatory phase, before target onset. The idea is that when a probe
matches an item stored in vWM, and that template is active, it captures attention thus
eliciting an N2pc, allowing monitoring of the activation state of VWM representations over
time. Critically, this then raises the question as to whether both search- and probe-evoked
N2pcs are sensitive to individual differences in capacity. That is, does an individual’s capacity,
as measured behaviourally by K and neurally via CDA, predict how many templates they can

maintain and activate in parallel?

To address this, Study 3 was designed to investigate whether individual differences in
K predict the efficiency of attentional selection under conditions of increasing load. While it
is widely assumed that vWM supports the maintenance of attentional templates (Olivers et
al., 2011), | specifically aimed to test whether these templates are constrained by an

individual’s vVWM capacity (K).

1.7 Overall thesis aims and overview

This thesis aims to advance our understanding of VWM capacity through the lens of

K, a widely used behavioural estimate of the number of items an individual can store in WM.
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While traditional accounts have conceptualised K as a fixed, trait-like marker of capacity, the
work presented in this thesis suggests K may be sensitive to perceptual, contextual and
strategic elements. In this thesis, | measure K alongside electrophysiological markers to

explore the dynamic interplay between trait and state aspects of VWM capacity.

The three studies presented in this thesis are organised into three empirical chapters
designed to examine different, but interconnected, aspects of vWM capacity. Chapter 2
presents Study 1 which investigates the stability of K across perceptual task conditions.
Chapter 3 presents Study 2 which examines whether K can be improved through implicit
contextual learning. Chapter 4 presents Study 3 which explores whether individual
differences in K predict how many attentional templates can be used simultaneously during

visual search.

In Chapter 2 (Study 1), | challenge the assumption that K represents a stable, trait-like
capacity limit. While K is often used to capture individual vWM ability, it’s not clear whether
these estimates are consistent across variations in perceptual structure. To investigate this, |
conducted five behavioural experiments using a change detection task. A different
perceptual stimulus property was manipulated in each of the five experiments: stimulus
density (Experiment 1), stimulus eccentricity (Experiment 2), stimulus organisation
(Experiment 3), stimulus type (Experiment 4), and spatial variability of stimuli (Experiment
5). By systematically varying perceptual characteristics of the memory displays, | aimed to
determine whether K remains consistent across conditions or whether it is restricted to
perceptual features. Study 1 was motivated by the idea that capacity may not be fixed and

challenges the interpretation of K as a purely intrinsic measure.
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In Chapter 3 (Study 2), | investigate whether K can be enhanced through contextual
learning. By incorporating repeated visual configurations into a change detection task, |
tested whether contextual cueing effects, typically found in visual search, can be observed
directly at the level of WM. Experiment 1 examined whether repeated spatial
configurations improve VWM capacity under different memory loads (two and four) using a
change detection task. In Experiment 2, | tested whether contextual learning enhances
capacity specifically when spatial information is relevant. Using only a set size of three, |
used a similar change detection task with two conditions: visuospatial (context was defined
by colour and location) and non-spatial (context was defined by colour only). This allowed

me to detach the spatial element of contextual cueing.

Finally, in Chapter 4 (Study 3), | examine individual differences in K and whether they
predict the number of templates that can be maintained simultaneously in visual search.
Here | test whether capacity limits constrain the number of templates that can be
maintained during visual search. To address this, | incorporate two tasks (change detection
task and visual search task), each with three levels of load (1, 2 or 3), to systematically
manipulate the number of items to be remembered or the number of templates to be
activated in parallel. The change detection task was used to measure individual vWM
capacity behaviourally (K) and neurally (CDA). The visual search task combined with the RSPP
paradigm was used to measure accuracy rates, and target- and probe-evoked N2pcs. The
overall aim here was to determine whether individuals with higher capacity are better able

to maintain and employ multiple attentional templates.

Taken together, the work in this thesis seeks to support a functional and flexible view

of VWM capacity. Rather than viewing K as a fixed trait, | propose that capacity emerges
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through the dynamic interplay of perceptual limitations, contextual learning, and individual
attentional mechanisms. By integrating behavioural and neural measures across varying
paradigmes, this research builds a comprehensive picture of how vWM capacity functions,

adapts, and varies, advancing our understanding of not just what K is, but how it works.



Chapter 2: Individual working memory capacity measures
depend on visuo-perceptual stimulus parameters

21
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2.1 Introduction

vWM refers to the cognitive system responsible for the temporary storage and
manipulation of visual information that is no longer physically available in the visual
environment (Baddeley, 2000; Baddeley & Hitch, 1974). It plays a crucial role in guiding
attention, perception, and goal-directed behaviour by holding a limited amount of visual
information available for short periods. Acommon method for measuring the capacity of
vWM is the change detection task (Luck & Vogel, 1997; Phillips, 1974), in which participants
are briefly shown a display of visual items, followed by a short blank delay, and then a
second stimulus display. Participants’ task is to indicate whether a change has occurred
between the two stimulus displays, or whether they are identical. Accuracy rates are then
used to calculate a working memory (WM) capacity coefficient K (Cowan, 2001; Pashler,
1988; Rouder et al., 2011), which estimates the number of items an individual can maintain

in VWM (Luck & Vogel, 1997).

A core concept of VWM is that its capacity is limited and that these capacity
limitations are individually different. On average, participants can maintain three to four
objects in VWM (Cowan, 2001), but individual differences have been observed (Vogel & Awh,
2008) and linked to individual visual search (Anderson et al., 2011; Luria & Vogel, 2011) and
multiple object tracking performance (Drew et al., 2011). A study also revealed that
individuals with higher vWM capacity are more efficient at excluding unnecessary items
during task performance (Vogel et al., 2005). Understanding these capacity limits is
particularly important because they are thought to be stable within individuals and are
predictive of a broad range of other cognitive functions. For example, prior research has

demonstrated that VWM capacity is correlated with syllogistic and spatial reasoning (Capon
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et al., 2003), mathematical skills (Kyttala & Lehto, 2008), creativity (Maor et al., 2023),
academic achievement (Aspanani et al., 2023; Tsubomi & Watanabe, 2017), and fluid
intelligence (Engel de Abreu et al., 2010; Fukuda et al., 2010b). Since researchers use an
estimation of individual VWM capacity to account for individual differences in other
cognitive functions, it is essential to evaluate the reliability and validity of vWM capacity
estimation based on the change detection task (Dai et al., 2019). If VWM capacity is indeed a
stable trait, an individual’s capacity measure should remain consistent across different
implementations of the change detection task, regardless of specific task parameters. In
other words, the overall ability of a person to store more or fewer items in vVWM should be a
generalisable and task-invariant property, reinforcing the utility of VWM capacity as a robust

measure in cognitive and psychological research.

Several empirical studies have provided positive evidence supporting this hypothesis.
For instance, Fukuda et al. (2015) found that individuals K estimates did not systematically
change over the time course of an experiment, suggesting that K is a stable and reliable
metric of individual differences in information processing within a single test session. In a
dedicated learning study, Xu et al. (2018) measured individual VWM capacity across multiple
test sessions and observed that individual K values increased over the sessions, reflecting
improvement in overall change detection performance. However, even though they found
that K was not stable across test session, the reliability of K measures was not compromised,
not even with extensive practice, i.e., participants with higher K values always had higher K
values, regardless of the test session. Along similar lines, Dai et al. (2019) measured VWM
capacity with a change detection task in two groups with a three-day or 16-day delay,

respectively, and found reasonably high test-retest correlations of K values in both groups.
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These converging findings suggest that K is a reliable measure of VWM capacity within a
given task and across time. The empirical literature thus provides strong foundational
support for the assumption that vWM capacity, as captured by K, reflects a stable and
meaningful cognitive trait which can serve as a predictive index for higher-order cognition,

such as reasoning, problem-solving, academic performance, and fluid intelligence.

However, a factor that has not been systematically accounted for in the
measurement of VWM capacity is the influence of the visual properties of the stimuli to be
remembered. Although the change detection task is widely used to estimate K, the
assumption that WM capacity measures are purely cognitive and independent of perceptual
input is problematic. In reality, the formation of a memory trace is preceded by and
dependent on visual perception, and if perceptual quality varies, so too might the fidelity of
the resulting memory representation. Consequently, variations in perceptual conditions
within the same task may influence K values, thereby challenging the assumption that they
reflect a stable, task-invariant trait. Indeed, prior research has demonstrated that visual
perception is not uniform across the visual field. For example, visual processing is enhanced
at the fovea compared to peripheral vision (Larson & Loschky, 2009), in sparse versus
crowded visual scenes (Whitney & Levi, 2011), and for bilaterally presented objects
compared to those confined to a single visual hemifield (Cavanagh & Alvarez, 2005). These
findings suggest that the quality of the memory encoding, which depends on perceptual
acuity and unambiguity, might vary significantly depending on stimulus location, density, and
spatial configuration. Since every VWM representation is formed based on an initial visual
percept, it follows that a clearer perceptual input may support more accurate memory
encoding, just as for example visual acuity and appropriate letter spacing have been shown

to enhance reading performance (Chung, 2004).
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One conceptual framework that directly links perceptual quality to vWM
performance is the sensory recruitment hypothesis, which proposes that VWM storage relies
on the same sensory neural systems that initially process the stimulus (Emrich et al., 2013;
Pasternak & Greenlee, 2005; Serences, 2016; Sreenivasan et al., 2014). Evidence from
neuroimaging showed that memorised visual items can be decoded from activation patterns
in primary visual cortex (V1), even in the absence of any sustained activity during the
retention period (Harrison & Tong, 2009; Serences et al., 2009). This suggests that the
fidelity of WM representations is constrained by the resolution and precision of the
underlying sensory codes, making perceptual conditions a direct determinant of memory
capacity. Given this interplay between perception and memory, the validity of K as a stable
measure of VWM capacity may depend, at least in part, on the perceptual characteristics of
the stimuli used in the task. Yet, surprisingly few studies have systematically investigated
whether and how perceptual variations affect the stability of K estimates across conditions.
In the following five experiments, we set out to close this gap in the literature: are individual
differences in vWM capacity robust to changes in visual perception, or are K values

modulated by the perceptual quality of the to-be-memorised information?

To address this research question, the present study systematically manipulated five
perceptual factors across five experiments: stimulus density, stimulus eccentricity, stimulus
organisation, stimulus type, and spatial variability of stimuli. In each experiment, we
measured K values to assess whether estimated vWM capacity remained stable across
differing perceptual conditions. Additionally, we examined correlations of K values across
task conditions to evaluate whether relative memory ability within the sample (i.e., the rank

ordering of individuals by K) was preserved, even when perceptual input changed. This
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approach allows us to test the assumption that K reflects a perceptual-invariant trait, and to

clarify the degree to which VWM capacity estimates depend on early visual processing.

2.2 General Methods

2.2.1 Participants

In all five experiments of this study the same fifteen participants were tested, but
each experiment was tested in a separate test session with a minimum of three days and a
maximum of seven days between test sessions. Participants were paid at an hourly rate of
£10. The experiments were approved by the Ethics Committee of the Psychology
Department at Durham University and were conducted in accordance with the Declaration
of Helsinki. Participants gave informed written consent prior to testing. Participants were
between 18 and 22 years of age (Mage = 20.5, SDage = 1.1). Nine participants were female and
six were male. One participant was left-handed; the others were right-handed. All
participants had normal or corrected-to-normal vision and normal colour vision (as verified
with the Ishihara colour vision test; Ishihara, 1972). G*Power 3.1 (Faul et al., 2007) indicated
that given our sample size, an alpha of .05 and power of .80, we could detect differences in

F-tests with partial n?as small as 0.1 (effect size f=.33) with a minimal F(2,28)=3.3.

2.2.2 Stimuli and procedures

Participants were sat in a dimly illuminated chamber with an approximately 90cm
viewing distance from the monitor. Stimuli were presented on a 22-inch MSI Optix G272 LCD
monitor with a 100-Hz refresh rate and a resolution of 1920x1080 pixels. MATLAB and the
Cogent 2000 toolbox were used on an LG Pentium PC running under Windows 10 to control
stimulus presentation, timing, and response collection. Stimuli were presented on a black

background. A central grey fixation point (CIE x, y colour coordinates: .305/.314; 0.2°x 0.2° of
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visual angle) was presented throughout each experimental block. All five experiments
employed the same change detection task (see Figure 2). Each trial started with the
presentation of a memory display for 200ms, which was followed by an 800ms blank display
(resulting in a 1000ms retention time), and a test display which was presented until a
manual response was recorded. During the inter-trial interval (between the offset of the test
display in trial n-1 and the onset of the memory display in trial n), a blank display was
presented for 300ms plus a random temporal jitter between 0-200ms. The memory and test
displays in each trial contained a certain number of coloured squares which were presented
at the same locations in both displays (see Experiments 1-5 and Figures 3-7 for stimulus
details). In 50% of all trials, the stimulus colours were identical in the memory and test
displays (no-change trial). In the other 50% of the trials, one of the squares in the test
display randomly changed colour (change trial). Change and no-change trials were
equiprobable but were presented randomly in an intermixed fashion within each block.
Participants were instructed to press the ‘C’ key on a standard keyboard when they detected
a colour change, and the ‘N’ key when they felt that the colours in the test display were the
same as in the memory display. The order of the five experiments was randomised for each
participant, ensuring that no fixed sequence was imposed. A different perceptual stimulus
property was manipulated in each of the five experiments of this study: stimulus density
(Experiment 1), stimulus eccentricity (Experiment 2), stimulus organisation (Experiment 3),
stimulus type (Experiment 4), and spatial variability of stimuli (Experiment 5). Each of these
perceptual variables had three equiprobable levels (e.g., 3, 5, and 7 memory items in
Experiment 1; see methods of the respective experiments for details) which were randomly
presented in an intermixed fashion in each block. All experiments were tested in 15 blocks of

36 trials, resulting in a total of 540 trials per experiment. Before each experiment,
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participants practised the respective task for one full block of 36 trials. These practice data

were not recorded or analysed.
2.2.3 Data analysis

Individual WM capacity K was calculated for each participant separately for each task
condition. Following the suggestions of Rouder et al. (2011), K was calculated according to

Pashler’s equation (Pashler, 1988):

)

K=N(1_f

where N is the number of memory items (set size), and h and f are the measured hit and
false alarm rates, respectively. Hit rates were calculated as

hits
" hits + misses

and false alarm rates were calculated as

false alarms

f

false alarms + correct rejections

To test whether mean K values changed between perceptual task conditions, K values
were submitted to repeated-measures ANOVAs. Effect sizes are reported as Cohen’s d
(Cohen, 1988) with a Cl of 95% for t-tests, and as partial eta squared (1p?) for F-tests. When
necessary, Greenhouse-Geisser corrections were applied to F-tests, and Bonferroni
corrections to t-tests. All t-tests were two-tailed. In Experiments 2-5, K values were first
calculated separately for different set sizes (3,4, and 5) but were then averaged into a more
reliable Kimean) value for each participant (see Dai et al., 2019, for similar procedures). To test

whether individual WM capacity was correlated between task conditions, individual K or
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K(mean) Values, respectively, were furthermore analysed by means of Pearson’s correlations

(r). All statistical analyses were conducted with JASP statistical software (version 0.95.0.0).

Test display
Change trial

Retention
period

300ms (0-200ms
random jitter)

Memory
display

200ms No-change trial
Until response

Figure 2 Schematic illustration of the time course of events and example stimuli used in the
change detection tasks of Experiments 1 to 5. Each trial contained a memory display
followed by a blank retention period and a test display in which the memory items were
either identical (no-change trial) or one of them was changed (change trial).
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2.3 Experiment 1: Stimulus density

Human perception of the visual world is constrained by the ability to distinguish its
individual elements, and spatial resolution is one of the fundamental limitations in object
recognition. Object recognition is hampered in dense as compared to sparse stimulus
displays and this effect is known as visual crowding. Visual crowding is essentially the
inability to isolate individual objects from a cluttered visual scene, i.e., crowded objects are
perceived as fuzzy and tangled together. Even though crowding is assumed to be an
impairment of object identification, not of object detection (Levi et al., 2002), it nonetheless
imposes a fundamental constraint on conscious visual perception (see Whitney & Levi, 2011,
for a comprehensive review). Although certain cognitive mechanisms, such as attention
(Gong et al., 2023; Scolari et al., 2007) and perceptual learning (Zhu et al., 2016), can
override crowding effects, crowding remains a strong and reliable effect. It has been
consistently demonstrated in a variety of experiments, including those using artificial stimuli
such as Gabor patches (Poder & Wagemans, 2007), Vernier stimuli (Chicherov et al., 2014),
basic shapes such as alphanumerical characters (Strasburger et al., 1991), and naturalistic
objects and scenes (Ringer et al., 2021). Accordingly, crowding effects have been found
between basic features, such as colour and orientation (e.g., Greenwood & Parsons, 2020),
between different parts of the same object (e.g., Martelli et al., 2005), between whole
different objects (e.g., Wallace & Tjan, 2011), and within global configurations across all
elements in the entire visual field (e.g., Herzog & Manassi, 2015). Taken together, the
occurrence of crowding under the variety of occasions suggests that there is no single
bottleneck of crowding, but that crowding can occur at multiple levels of the visual analysis.
With this respect, it would not be surprising if crowding, in the sense of more densely

populated memory and test displays, would affect WM performance in change detection
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tasks. Two recent studies provided evidence for this assumption (Tamber-Rosenau et al.,
2015; Yoruk et al., 2020). Both studies used a standard crowding paradigm and measured
memory accuracy as a function of crowding, i.e., the distance between memory items. In
both studies, VWM performance decreased with decreasing distance between the memory

items, suggesting that visual perception and vWM share the same spatial resolution.

In our Experiments 1a and 1b, we took the reversed approach and manipulated
crowding, i.e., the number of items presented in a given visual space, in a standard change
detection task allowing us to calculate and correlate K as a measure of vWM capacity. In
Experiment 1a we tested the stimulus density hypothesis by presenting observers with set
sizes of 3, 5, and 7 items. Our initial findings in Experiment 1a revealed that K values were
significantly lower at set size 7 than set size 3, suggesting that increased stimulus density
hampered stimulus identification and therefore affected VWM performance negatively.
However, because stimulus density was confounded with memory load in Experiment 1a, we
tested Experiment 1b to isolate the effect of density. Memory load was kept constant at 3
items but task irrelevant distractors were added to increase stimulus density in the memory

and test displays.

2.3.1 Methods

Memory and test displays in both versions of Experiment 1 contained either three,
five, or seven squares (0.5° x 0.5°). Set size 3, 5, and 7 trials were equiprobable but
presented in an intermixed fashion in each block. There were 12 possible stimulus locations,
which were arranged on two imaginary rings. The inner ring, presented at an eccentricity of
0.7° from central fixation, contained four possible stimulus locations at the 12, 3,6, and 9

o’clock positions of an imaginary clock face. The outer ring, presented at an eccentricity of
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1.5° from central fixation, contained eight equally spaced possible stimulus locations, two in
each quadrant. In each trial, the three, five, or seven stimulus locations, respectively, were
randomly chosen from the 12 possible stimulus locations with the restrictions that each ring
contained at least one item and that there was at least one item in each hemifield. In
Experiment 1a (Figure 3A), each memory item had a different colour which was randomly
chosen (without replacement) from a set of nine possible stimulus colours: red (.583/.304),
pink (.396/.254), orange (.396/.346), green (.282/.628), lime (.310/.499), yellow (.400/.422),
blue (.153/.081), cyan (.188/.152), and purple (.260/.136). In Experiment 1b (Figure 3B), all
set size conditions contained three coloured squares, chosen randomly from the above
colour set. The additional two and four items in the set size 5 and set size 7 conditions were
uniformly grey (.305/.314). All colours were equiluminant (~9.3cd/m2). In both experiments,
participants were instructed to memorise the colours of the squares in the memory display
and compare them with the colours shown in the test display. In no-change trials (50%), the
colours in the test display were identical to the colours used in the memory display. In
change trials (50%), one of the colours changed in the test display. This replacement colour
was randomly chosen from the remaining colours that were not used for any of the memory
items. In each block, Experiment 1a and 1b each contained six trials for each combination of
set size (3, 5, and 7 memory items) and trial type (change, and no-change trial), resulting in

36 trials per block.

2.3.2 Results

K values were submitted to a 2 (Experiment: 1a, 1b) x 3 (Set size: 3, 5, 7) repeated-
measures ANOVA. There was no main effect of experiment, F(1,14)=2.3, p=.151, n,°=.14.

However, there was a significant main effect of set size, F(2,28)=11.5, p<.001, n,?=.45. In
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Experiment 1a, K values were 2.3 (set size 3), 2.5 (set size 5), and 2.0 (set size 7). In
Experiment 1b, K values were 2.2, 2.2, and 2.0 for set sizes 3, 5, and 7, respectively. The
Experiment x Set size interaction was not significant, F(2,28)=2.1, p=.144, n,?=.13. Follow-up
t-tests showed that K values were similar at set sizes 3 and 5 (collapsed means: Mz=2.3;
Ms=2.4), t(14)=.9, p=1.000, d=.16. In contrast to this, K values were significantly smaller in
the set size 7 (M,=2.0), as compared to the set size 3, t(14)=3.8, p=.006, d=.37, and set size 5
conditions, t(14)=4.7, p<.001, d=.48 (see Figure 3C). Pearson’s correlations revealed that
individual K values were strongly positively correlated across the three set size conditions for
both Experiment 1a: all r(13)>.69, p<.004 (Figure 3, panels D-F) and Experiment 1b: all

r(13)>.90, p<.001 (Figure 3, panels G-I).
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Figure 3 Method stimuli and results of Experiment 1. A-B) Example memory displays of the
set size 3, 5 and 7 conditions of Experiment 1a and 1b, respectively; outline circles illustrate
the possible stimulus locations in the experiment, but were not visible during the task. C)
Mean K values as a function of set size (collapsed across Experiments 1a and 1b). Error bars
represent standard error of the mean and significant differences are marked by asterisks. D-
F) Scatterplots showing the relationship between K values across the three set size
conditions in Experiment 1a. Panels D-F show correlations between K values for the three
stimulus pairs: 3vs 5 (D), 3 vs 7 (E), and 5 vs 7 (F). G-I) Scatterplots showing the relationship
between K values across the three set size conditions in Experiment 1b. Panels G-I show
correlations between K values for the three stimulus pairs: 3vs 5(G),3vs 7 (H), and 5vs 7
(). Pearson correlation coefficients (r) are displayed in each plot, with red asterisks indicating
significant correlations (p<.05).
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2.3.3 Discussion of Experiment 1

Experiment 1a demonstrated clear crowding effects at the largest set size. When
given the opportunity to memorise five rather than three items, participants produced
slightly higher K values at set size 5 than at set size 3. However, their overall memory
performance did not increase substantially (given the average K of 2.5 which is not yet at
ceiling). Importantly, Experiment 1b also revealed a crowding related decline in
performance, specifically from increased item density, rather than increased memory load.
Across all conditions, participants always memorised three items, but at set sizes 5 and 7,
two and four additional task-irrelevant distractors were added to the displays, respectively.
As in Experiment 1a, K values were statistically comparable between set sizes 3 and 5,
suggesting that participants could perceptually handle five items within the available space.
However, at set size 7, the presence of four additional distractors impaired perceptual
resolution, reducing VWM performance relative to set sizes 3 and 5. These findings suggest

that perception and vVWM share common spatial limitations.

Previous work has frequently employed change detection tasks with varying set sizes
to assess VWM capacity at the group level. Typically, accuracy remains stable, and K values
increase as more items must be retained, but once VWM capacity is reached (around three
to four items), accuracy declines and K values plateau or decrease (Luck & Vogel, 1997). Our
mean findings from Experiments 1a and 1b align with this pattern. However, individual-level
comparisons of K across set sizes have yielded mixed results in the past. For example, Pailian
and Halberda (2015) measured individual K values at set sizes below, at, and above VWM
capacity (2, 4, and 8 items, respectively) and found no reliable correlations, i.e., an

individual’s capacity estimate at one set size did not predict their capacity at another. In
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contrast, Balaban et al. (2019), analysing change detection data from over 3800 participants,
reported reliable correlations between capacity estimates at set sizes 4 and 8, even though
capacity estimates varied between set sizes. Notably, Balaban et al. presented items within a
constant spatial region, whereas Pailian and Halberda used randomly distributed arrays,
spreading out memory items across space. It is therefore possible that they did not observe
any systematic changes in K across set sizes because participants used different spatial
strategies at the different set sizes to memorise the available items. Our results from
Experiments 1a and 1b mirror Balaban et al.’s findings. Even though absolute capacity
estimates varied across set sizes, individual differences in K were preserved. This supports
the view that individual capacity estimates are not fixed across different set sizes but

nonetheless reflect stable individual differences in vWM.

2.4 Experiment 2: Stimulus eccentricity

In Experiment 1, set size was manipulated to introduce crowding effects. In
Experiments 2-5, we used set sizes of three, four, and five items (corresponding to just
below, at, and just above typical VWM capacity; Cowan, 2001) to avoid ceiling effects and to
accommodate individual differences in capacity. K values for the different set sizes in
Experiments 2-5 were pooled before statistical data analysis (K(mean)). The key manipulation
in Experiment 2 concerned the eccentricity at which stimuli were presented in the memory
and test displays. Because photoreceptor density and distribution vary across the retina,
perceptual acuity declines with increasing distance from fixation (Duncan & Boynton, 2003;
Green, 1970). Visual acuity is highest in the fovea, where cone density is approximately 40
times greater than in the periphery, and foveal cones are oversampled by ganglion cells at

about four times the rate of peripheral cones (Curcio et al., 1987; Curcio & Allen, 1990). This
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foveal advantage is further amplified in later processing stages. In the lateral geniculate
nucleus (LGN), there are four times as many cells per ganglion input from the fovea
compared to the periphery, and in primary visual cortex, there are roughly ten times more

cells per foveal LGN projection (Connolly & Van Essen, 1984).

Despite these well-established perceptual asymmetries, relatively few studies have
investigated vWM performance as a function of eccentricity. One exception is a multiple
object tracking study showing reduced accuracy and slower responses with increasing
eccentricity (Vater et al., 2017). To test the role of eccentricity in a change detection
paradigm, we presented memory items at three eccentricities. In Experiment 2a, K values
decreased with increasing eccentricity, but because stimulus size was held constant, retinal
eccentricity was confounded with the size of the cortical representation of the stimuli.
Experiment 2b addressed this limitation by scaling stimuli according to cortical

magnification, thus equating cortical representation across eccentricities.

2.4.1 Methods

Stimuli and procedures were as described in the General Methods and as in
Experiment 1a with the following exceptions. In Experiment 2, memory and test items were
either presented on an imaginary ring with a near (0.7°), intermediate (1.5°), or far (3.0°)
eccentricity from fixation. There were eight possible equidistant stimulus locations on each
ring: four at the 12, 3, 6, and 9 o’clock positions and four more in between these positions
(one in each quadrant of the visual field). Three set size conditions (3, 4, and 5 memory
items) were tested in each of these eccentricity conditions. The three, four, or five stimulus
locations, respectively, were determined randomly in each trial with the limitation that each

hemifield contained at least one item. Near, intermediate, and far eccentricity trials with set
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sizes of 3, 4, and 5 memory items were equiprobable but presented randomly in an
intermixed fashion in each block. In Experiment 2a (Figure 4A), all coloured squares,
irrespective of their eccentricity from fixation, were identical in size (0.5° x 0.5°). In
Experiment 2b (Figure 4B), the stimulus sizes were adjusted in line with the cortical
magnification equation by Rovamo and Virsu (1979). Precisely, stimulus sizes were scaled
based on the averaged magnification factor M of the nasal (n) and temporal (1) visual field

(see Beck & Lavie, 2005, for similar procedures) which were calculated as:

My =1+ 033 xE + 0.00007 = E3

My=1+ 029+E + 0.000012 * E3

where E refers to the eccentricity in degrees of visual angle. This resulted in stimulus sizes of
0.6°x0.6°,0.7°x 0.7° and 1.0° x 1.0° in the near, intermediate, and far eccentricity
conditions, respectively. Experiment 2a and 2b each contained two trials for each
combination of stimulus eccentricity (near, intermediate, and far eccentricity), set size (3, 4,
and 5 memory items) and trial type (change, and no-change trial), resulting in 36 trials per

block.

2.4.2 Results

K(mean) values were submitted to a 2 (Experiment: 2a, 2b) x 3 (Eccentricity: near,
intermediate, far) repeated-measures ANOVA. There was no main effect of experiment,
F(1,14)=.01, p=.941, n,%°=.00. However, there was a significant main effect of eccentricity,
F(2,28)=7.9, p=.002, 11,%=.36. K(mean) values showed the same pattern across both sessions. In
Experiment 2a, K(mean) values were 2.4 (near), 2.3 (intermediate), and 2.2 (far). In Experiment
2b, K(mean) values were 2.4 (near), 2.4 (intermediate), and 2.2 (far). Thus, K decreased

systematically with increasing eccentricity in both experiments. The Experiment x



39

Eccentricity interaction was not significant, F(2,28)=.08, p=.922, n,?=.01. Follow-up t-tests
showed that Kmean) values were similar at the near and intermediate eccentricities (collapsed
means: Mnear=2.4; Mintermediate=2.4), t(14)=.1.5, p=.452, d=.11. In contrast to this, Kmean)
values at the far eccentricity (Mrar=2.2), were significantly lower than both the near,
t(14)=3.5, p=.010, d=.27, and intermediate eccentricities, t(14)=3.0, p=.031, d=.16 (Figure
4C). Pearson’s correlations revealed that individual K(mean) values were strongly positively
correlated across the three set size conditions for both Experiment 2a: all (13)>.91, p<.001

(see Figure 4, panels D-F) and Experiment 2b: all r(13)>.92, p<.001 (see Figure 4, panels G-l).
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Figure 4 Method stimuli and results of Experiment 2. A-B) Example memory displays of the
set size 4 trials with eccentricity near, intermediate and far conditions of Experiment 2a and
2b, respectively; outline circles illustrate the possible stimulus locations in the experiment,
but were not visible during the task. C) Mean K values as a function of eccentricity (collapsed
across Experiments 2a and 2b). Error bars represent standard error of the mean and
significant differences are marked by asterisks. D-F) Scatterplots showing the relationship
between K values across the three eccentricity conditions in Experiment 2a. Panels D-F show
correlations between K values for the three stimulus pairs: near vs intermediate (D), near vs
far (E), and intermediate vs far (F). G-I) Scatterplots showing the relationship between K
values across the three eccentricity conditions in Experiment 2b. Panels G-I show
correlations between K values for the three stimulus pairs: near vs intermediate (G), near vs
far (H), and intermediate vs far (). Pearson correlation coefficients (r) are displayed in each
plot, with red asterisks indicating significant correlations (p<.05).
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2.4.3 Discussion of Experiment 2

The combined results of Experiment 2a and 2b support the hypothesis that vWM
performance is modulated by the eccentricity at which memory items are presented.
Capacity estimates (K values) declined systematically across eccentricity conditions, being
highest at near and lowest at far eccentricity. Crucially, there was no main effect of
experiment or interaction, indicating that performance was similar in both 2a and 2b. Thus,
the eccentricity effect persisted even when stimuli were size scaled. This pattern suggests
that perceptual limitations, such as reduced peripheral colour vision, directly constrained

vWM performance.

Only a handful of previous studies have examined eccentricity effects on vWM, and,
to our knowledge, none have used a change detection task. Nevertheless, our findings align
with related work. For example, Vater et al. (2017) showed in a multiple object tracking task
that detection rates and response times varied with eccentricity, with superior performance
at near compared to far locations. Interestingly, these effects were more pronounced for
form than for motion changes, which the authors attributed to reduced spatial acuity in the
periphery and the relatively preserved motion sensitivity of peripheral vision. Similarly,
Metha et al. (1994) reported that detection sensitivity for colour changes declined steeply

with eccentricity beyond focal points.

A further relevant study was conducted by Velisavljevi¢ and Elder (2008), who tested
short-term memory for coherent versus scrambled natural scenes. They found that for
coherent scenes, memory performance declined steadily with target eccentricity, whereas
for scrambled scenes, performance remained above chance but showed no eccentricity

effects. The authors argued that low-level factors (e.g., acuity) can therefore not fully
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account for memory performance across the visual field, and that high-level factors, such as
scene context, also play an important role. However, it remains unclear whether such high-
level factors are themselves constrained by reduced peripheral resolution. In our study,
where no global scene configurations were present, the evidence points more clearly to low-
level factors, particularly visual resolution, as direct contributors to vWM performance,

yielding different capacity estimates across eccentricity conditions.

Together, Experiments 2a and 2b provide converging evidence that the eccentricity of
stimuli imposes a reliable constraint on vVWM capacity. Even when perceptual inputs were
scaled to compensate for cortical magnification, performance continued to decline with

eccentricity.

2.5 Experiment 3: Stimulus organisation

There is ample evidence that participants can increase their vWM performance by
pooling information across memory items, a process referred to as chunking (see Nassar et
al., 2018, for a review). One possibility to facilitate chunking might be the pooling of memory
items based on their perceptual organisation. Gestalt psychologists have long argued that
specific organisational patterns of visual input facilitate perceptual grouping and
segmentation, enabling the visual system to combine elements into coherent objects and to
divide scenes into distinct regions (Wagemans et al., 2012a, 2012b). Evidence from change
detection experiments demonstrated improved vVWM performance when memory items
could be grouped by Gestalt principles such as closure (illusory contours; Li et al., 2018),
proximity and connectedness (Peterson et al., 2015; Woodman et al., 2003), similarity
(Morey, 2019; Peterson & Berryhill, 2013; Prieto et al., 2022), common fate (Balaban & Luria,

2016; Luria & Vogel, 2014; Luck & Vogel, 1997), and Figure-Ground organisation (Kalamala et
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al., 2017; Xu & Chun, 2007), even when the tested feature was grouping irrelevant. In fact, in
the original study of the change detection paradigm, checkerboard patterns (grids with black
and white squares) were used with varying levels of complexity (Phillips, 1974). The results
proposed that when stimuli are structured or follow a pattern, they are easier to encode and
recall as compared to when the stimuli are less structured or random. Building on this work,
in Experiment 3 we compared VWM performance across conditions in which memory items
were either presented at random locations or arranged to allow grouping by continuation

(items aligned in consecutive lines) or closure (items forming geometric shapes).

2.5.1 Methods

The stimuli and procedures were as described in the General Methods and as in
Experiment 1a, only that the stimulus locations in Experiment 3 were no longer chosen from
circular arrays, but from a five-by-five cell matrix that was centred at the fixation point (3.0°
x 3.0°; with each cell subtending 0.6° x 0.6°). Three, four, and five memory items were used
as set sizes, as described in Experiment 2a. There were three stimulus organisation
conditions in Experiment 3. In the random (control) condition (Figure 5A, top panel), the
three, four, or five stimulus locations in each trial were randomly chosen from the 24
possible stimulus locations of the search matrix (the central position was always occupied by
the fixation cross), with the limitation that a maximum of two stimuli were allowed in
adjacent cells (horizontally, vertically, or diagonally). In the continuation condition (Figure
5A, middle panel), the three, four, or five stimuli in each trial were always presented in
horizontal, vertical, or diagonal adjacent cells of the search matrix. The three continuation
directions were equiprobably within each block but were randomly used across the three set

sizes. In the closed figure condition (Figure 5A, lower panel), the stimuli were presented in
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adjacent cells to form a triangle (set size 3), a square (set size 4), or a cross (set size 5). The

locations of the continuous stimulus strings and the closed figures within the search matrix
were picked randomly in each trial. Experiment 3 contained two trials for each combination
of stimulus organisation (random, continuation, and closed figure), set size (3, 4, and 5

memory items) and trial type (change, and no-change trial), resulting in 36 trials per block.

2.5.2 Results

The one-way repeated-measures ANOVA on K(mean) values in Experiment 3 (Figure 5B)
failed to produce a main effect of stimulus organisation, F(2,28)<1, p=.613, 1p?=.03. K(mean)
values in the random (Kmean)=2.1), continuation (K(mean)=2.1), and closed figure (Kmean)=2.2)
conditions were statistically identical. In line with the previous Experiments 1 and 2,
Pearson’s correlations produced strong positive correlations between the individual K(mean)
values across the three stimulus organisation conditions, r(13)>.94, p<.001 (see Figure 5,

panels C-E).
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Figure 5 Method stimuli and results of Experiment 3. A) Example memory displays of the set
size 3, 4 and 5 trials in the random, continuation and closed figure conditions of Experiment
3; outline grid squares illustrate the possible stimulus locations in the experiment, but were
not visible during the task. B) Mean K values as a function of stimulus organisation. Error
bars represent standard error of the mean and significant differences are marked by
asterisks. C-E) Scatterplots showing the relationship between K values across the three
conditions in Experiment 3. Panels C-E show correlations between K values for the three
stimulus pairs: random vs continuity (C), random vs closed figure (D), and continuity vs
closed figure (E). Pearson correlation coefficients (r) are displayed in each plot, with red
asterisks indicating significant correlations (p<.05).

2.5.3 Discussion of Experiment 3

Contrary to our predictions, and somewhat surprisingly, given the ample evidence for
beneficial effects of stimulus grouping in VWM, Experiment 3 did not reveal differences in

capacity estimates across stimulus organisation conditions. Based on prior findings, we



46

expected larger K values in the continuation and closed figure conditions compared to
randomly organised displays, reflecting enhanced memory performance for grouped stimuli.
An important consideration is that the task-relevant feature in our study was colour, whereas
the grouping manipulation was based on spatial organisation. This mismatch between
grouping and task-relevant dimensions could have attenuated potential effects. However,
several previous studies employing similar feature dissociations nonetheless reported
grouping benefits in change detection tasks (e.g., Kalamala et al., 2017; Morey, 2019;
Woodman et al., 2003; Xu & Chun, 2007). Thus, the absence of effects in our study cannot

be fully attributed to this factor alone.

It is also worth noting that not all grouping principles appear to facilitate VWM
equally. A recent meta-analysis (Li et al., 2018) demonstrated that grouping based on
common fate, common region, or symmetry, often failed to yield reliable improvements in
memory performance. Considering this, one possibility is that one of the specific principles
we examined, i.e., continuity, represents a relatively weak or less prevalent grouping cue in
vWM. To our knowledge, no prior studies have systematically tested continuity as a grouping
mechanism in this context, making our findings potentially indicative of principle-specific
limits. Furthermore, boundaries between grouping principles are often conceptually blurred.
For instance, one might argue that stimulus configurations in our closed figure condition
were more consistent with symmetry rather than with the closed figure principle. While the
latter has previously been shown to enhance vWM performance, the former has not (Li et
al., 2018). If participants predominantly perceived our displays as instances of symmetry
rather than closure, this could account for the absence of measurable grouping effects. So, it
is possible that the participants in our Experiment 3 simply did not group the stimuli and

therefore produced null effects.
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Taken together, our null results highlight an important point and show that grouping
benefits in vWM are not universal but may depend critically on the specific principle
employed. Some principles, i.e., continuity and symmetry in this case, may not be robust
cues for improving memory capacity in change detection tasks. Future research will have to
disentangle the relative strength of different Gestalt principles in vVWM capacity
improvement by systematically comparing them within the same paradigm and participant

sample.

2.6 Experiment 4: Stimulus type

Not all stimulus features are processed with equal speed. For instance, behavioural
evidence (Moutoussis & Zeki, 1997) and electrophysiological findings (Lee et al., 2018)
indicate that colour-based attentional guidance often takes precedence over shape-based
guidance. This interpretation is consistent with early anatomical research (e.g., Barlow,
1972) and more recent fMRI results demonstrating a clear neural segregation between
colour and shape processing (e.g., Lafer-Sousa et al., 2016). Wolfe and Horowitz (2004)
argued that colour is an undoubtable attribute to guide attention, shape is a probable
attribute, but alphanumerical category is only a doubtful case. But it must be noted that
there is evidence suggesting that processing speed differences across feature dimensions
can be minimised with appropriate tuning. For example, Grubert et al. (in press) and Jimenez
et al. (2024) demonstrated that attentional guidance by colour and shape, or colour and
location, respectively, can operate at comparable speeds under specific conditions. In the
absence of such dedicated manipulations, however, the question arises whether yWM
capacity depends on the feature dimension of the stimuli to be retained. If colour benefits

from faster anatomical processing and hence from more efficient attentional engagement, it
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may lead to enhanced VWM performance compared to shape or alphanumerical stimuli. We

directly tested this hypothesis in Experiment 4.

Previous research has shown that vWM capacity decreases with increasing stimulus
complexity. Alvarez and Cavanagh (2004) reported higher capacity for simple colours
compared to Chinese characters or shaded cubes. However, Awh et al. (2007) argued that
this effect might reflect high sample-test similarity rather than complexity per se, as the
changed test items may not have been sufficiently distinct from the original memory items.
Supporting this interpretation, Jackson et al. (2015) used polygons in a change detection task
to disentangle stimulus complexity from similarity and found that similarity, not complexity,
determined VWM performance. Building on this, Experiment 4 employed basic colours,
shapes, and alphanumerical stimuli with sufficient sample-test dissimilarity to avoid such

confounds.

2.6.1 Methods

The stimuli and procedures were as described in the General Methods and as in
Experiment 1a, but there were three different stimulus types in Experiment 4 (Figure 6A, top
panel). Participants were therefore instructed to memorise the objects (as opposed to the
colours) presented in the memory display and compare them with the objects shown in the
test display. The colour condition was identical to the colour task of Experiment 1a, only that
set sizes were three, four, and five memory items as described for Experiment 2a. In the
shape and letter conditions, memory and test items were grey shapes (square, circle,
triangle, pentagon, star, heart, cross, diamond, gate; Figure 6A, bottom panel) or letters (G,
H, K, L, N, P S, X,Y), respectively. The three, four, or five memory items in each trial were

chosen randomly (without replacement) from the sets of nine colours, nine shapes, or nine
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letters, respectively. The replacement colour, shape, or letter in change trials was randomly

chosen from the set of colours, shapes, or letters, respectively, that were not used for any of
the memory items. Experiment 4 contained two trials for each combination of stimulus type
(colours, shapes, and letters), set size (3, 4, and 5 memory items) and trial type (change, and

no-change trial), resulting in 36 trials per block.

2.6.2 Results

K(mean) values, as shown in Figure 6B, were submitted to a one-way repeated-
measures ANOVA, which produced a main effect of stimulus type, F(2,28)=62.9, p<.001,
Np®=.82. Follow-up t-tests uncovered that K(mean) values were comparable for colour
(Kimean)=2.7) and letter stimuli (K(mean)=3.0), t(14)=1.7, p=.116, d=.29, but in comparison to
these, they were substantially smaller for shape stimuli (K(mean)=1.6), both t(14)>9.3, p<.001,
d=1.71. Pearson’s correlations produced strong positive correlations between the individual
K(mean) Values across the three stimulus type conditions, r(13)>.77, p<.001 (see Figure 6,

panels C-E).
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Figure 6 Method stimuli and results of Experiment 4. A) Example memory displays of the set
size 4 trials in the colour, shape and letter conditions of Experiment 4; outline circles
illustrate the possible stimulus locations in the experiment, but were not visible during the
task. Underneath illustrates the nine possible shapes of the shape condition. B) Mean K
values as a function of stimulus type. Error bars represent standard error of the mean and
significant differences are marked by asterisks. C-E) Scatterplots showing the relationship
between K values across the three conditions in Experiment 4. Panels C-E show correlations
between K values for the three stimulus pairs: colour vs shape (C), colour vs letter (D), and
shape vs letter (E). Pearson correlation coefficients (r) are displayed in each plot, with red
asterisks indicating significant correlations (p<.05).

2.6.3 Discussion of Experiment 4

Experiment 4 partly confirmed our hypothesis: VWM capacity was higher for colour
than for shape, consistent with the notion of superior colour processing relative to shape
processing (Lee et al., 2018; Moutoussis & Zeki, 1997) and with evidence for the neural

segregation of colour and shape pathways (Barlow, 1972; Lafer-Sousa et al., 2016). However,
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contrary to predictions based on Wolfe and Horowitz (2004), capacity estimates were in fact

largest in the letter condition, even exceeding colour memory.

Contemporary theories of visual attention typically posit that early visual analysis is
feature-based (Bundesen, 1990; Huang & Pashler, 2007; Itti & Koch, 2001; Mueller &
Krummenacher, 2006; Wolfe, 2021). For instance, Guided Search 6.0 (Wolfe, 2021) proposes
that attentional deployment is controlled by a feature-driven priority map that dynamically
signals the most likely target location. Once a candidate location is selected, features are
bound together and compared against stored object representations in long-term memory
(see also Cunningham & Wolfe, 2014). Assuming that attention is required to select items for
encoding into VWM, one would expect letters to be processed at the object level rather than
the feature level, incurring an additional processing step and potentially reducing VWM

performance relative to simpler features such as colour.

Yet the opposite was observed. One possible explanation lies in the debate over
whether vWM is fundamentally feature-based or object-based. Classic change detection
studies have shown that VWM capacity remains constant whether participants retain simple
features or feature conjunctions, suggesting successful integration into coherent object
representations (e.g., Luck & Vogel, 1997; Vogel et al., 2001). By contrast,
electrophysiological studies have provided more nuanced evidence, indicating that
conjunctive stimuli may still be represented as separate features (Eimer & Grubert, 2014;
Grubert et al., in press), or that binding in VWM is contingent on stimulus parameters and
task demands (Balaban & Luria, 2016; Berggren & Eimer, 2018). Letters may constitute a
special case since they are highly familiar and nameable, which could facilitate both

perceptual encoding and mnemonic retention. Supporting this view, Alvarez and Cavanagh
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(2004) found in a multiple object tracking paradigm that while colours yielded the best

detection performance, letters followed closely behind.

Taken together, Experiment 4 indicates that perceptual differences between stimulus
categories lead to substantial differences in VWM capacity, with some categories (i.e.,
colours, letters) being more efficiently memorised than others (i.e., shapes). It is worth
noting that prior work suggests that these differences cannot be attributed solely to
perceptual encoding speed. Eng et al. (2005), who compared several stimulus types in
change detection while manipulating encoding time (1000-3000ms), found that longer
exposure reduced, but did not eliminate capacity differences. Even after 3000ms (15 times
longer than in our paradigm), the differences in K values persisted. This suggests that,
beyond perceptual factors, higher-level influences that may benefit rehearsal during longer
exposure times, such as nameability, familiarity, or the degree of stimulus abstractness, also

play a critical role in shaping VWM performance.

2.7 Experiment 5: Spatial variability of stimuli

Stimulus identity (e.g., colour or shape) and stimulus location are separable
attributes that can be selectively encoded and maintained in memory (e.g., Jimenez et al.,
2024). At the same time, every feature necessarily occupies a position in space, and several
theories propose that spatial location is automatically encoded alongside an object’s featural
identity (Logie et al., 2011). Feature Integration Theory (Treisman & Gelade, 1980; see also
Treisman & Zhang, 2006, for binding specifically in vWM), for example, assumes that spatial
location provides the common reference frame through which features are bound into
coherent objects. Without this spatial scaffold, features remain unbound, giving rise to

illusory conjunctions (e.g., perceiving a red X when a red O and a green X are presented). In
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this sense, location may also serve as a retrieval cue in change detection tasks, particularly
when items in memory and test displays are presented at identical positions, as is typically

the case.

However, the existing literature on the role of spatial location in VWM is inconsistent.
Some studies have shown that task-irrelevant changes in stimulus positions between
memory and test displays reduce vVWM accuracy compared to fixed-location conditions (e.g.,
Jiang et al., 2000; Logie et al., 2011). These results suggest not only that spatial information
contributes to object identification but also that it may be encoded obligatorily, even when
detrimental to performance. By contrast, other findings indicate that change detection
accuracy is largely unaffected when objects shift locations between sample and test displays
(Woodman et al., 2012). In Experiment 5, we addressed these discrepant results by
systematically comparing conditions in which both stimulus colours and locations remained
constant, colours were randomised while locations were fixed, and locations (and therefore

colour-location pairings) were randomised between memory and test displays.

2.7.1 Methods

Stimuli and procedures were as described in the General Methods and as in
Experiment 1a with the following exceptions. There were three spatial variability conditions
in Experiment 5. The colour/location repetition condition was identical to the colour task of
Experiment 1a (Figure 7A, left panel), only that set sizes were three, four, and five memory
items as described for Experiment 2a. In this condition, the colours and locations of the
squares were identical in the memory and test displays (apart from the colour of the square
that changed colour in change trials). In the randomised colour condition (Figure 7A, middle

panel), the locations of the squares were identical in the memory and test displays, but all
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memory colours were randomly shuffled to a new square (no colour repetitions were
allowed). In the randomised location condition (Figure 7A, right panel), the coloured squares
of the memory display were all presented at a new location in the test display (no location
repetitions were allowed). Experiment 5 contained two trials for each combination of spatial
variability condition (colour/location repetition, randomised colours, and randomised
locations), set size (3, 4, and 5 memory items) and trial type (change, and no-change trial),

resulting in 36 trials per block.

2.7.2 Results

The one-way repeated-measures ANOVA on K(mean) values in Experiment 5 revealed a
main effect of spatial variability, F(2,28)=5.7, p=.009, 1p?=.29. K(mean) values were virtually
identical in the colour/location repetition and randomised colours conditions (both
K(mean)=2.5), t(14)=1.0, p=.325, d=.13. However, Kmean) values were substantially smaller in
the randomised locations condition (K(mean)=2.2) as compared to both the colour/location
repetition, t(14)=3.1, p=.008, d=.49, and the randomised colours condition, t(14)=2.3,
p=.037, d=.31 (Figure 7B). Pearson’s correlations produced strong positive correlations
between individual K(mean) Values across the three spatial variability conditions, r(13)>.82,

p<.001 (see Figure 7, panels C-E).
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Figure 7 Method stimuli and results of Experiment 5. A) Example memory and test displays
of set size 4 trials in the colour/location repetition, randomised colours, and randomised
locations conditions; outline circles illustrate the possible stimulus locations in the
experiment, but were not visible during the task. B) Mean K values as a function of stimulus
spatial variability. Error bars represent standard error of the mean and significant differences
are marked by asterisks. C-E) Scatterplots showing the relationship between K values across
the three conditions in Experiment 5. Panels C-E show correlations between K values for the
three stimulus pairs: colour/location repetition vs randomised colours (C), colour/location
repetition vs randomised locations (D), and randomised colours vs randomised locations (E).
Pearson correlation coefficients (r) are displayed in each plot, with red asterisks indicating
significant correlations (p<.05).

2.7.3 Discussion of Experiment 5

Experiment 5 revealed improved vWM performance in change detection tasks when
stimulus locations remained fixed between memory and test arrays. Crucially, the specific
pairing of colours with locations did not matter, i.e., K values were comparable between the
colour/location repetition condition and the randomised colours condition. What mattered

was spatial predictability, i.e., when spatial consistency was removed entirely (randomised
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locations condition), capacity estimates dropped significantly. These findings are fully
consistent with theories proposing that spatial location is automatically encoded alongside
featural identity (e.g., Logie et al., 2011; Treisman & Zhang, 2006). These theories extend
previous observations of automatic feature binding in VWM into integrated object
representations (Luck & Vogel, 1997; Vogel et al., 2001). If location is simply another feature
dimension (Jimenez et al., 2024), then colour and location should be bound automatically.
Experiment 5 clearly highlights the role of spatial consistency as a powerful retrieval cue for
vWM. vWM performance was reliably better when spatial predictability was preserved, even
though location was never task-relevant (participants judged only colour changes). However,
if colour-location binding were fully automatic, K values should have been equally low in the
randomised colours and randomised locations conditions, since in both cases the colour-to-
location mapping was disrupted. Yet this was not the case. K values in the randomised
colours condition were comparable to the colour/location repetition condition, suggesting
that as long as overall locations and colours were preserved across displays (regardless of

their pairing), VWM performance remained equally efficient.

This asymmetry between feature and location binding has also been reported
previously. Li and Saiki (2015), using a colour change detection task with a single test
stimulus (same or different than the respective memory stimulus), found that colour pre-
cues had greater effects on vVWM performance than retro-cues, while location pre- and
retro-cues were equally effective. These findings can be interpreted as evidence that
location encoding, and maintenance share a common mechanism, whereas colour is
encoded strongly but may decay more rapidly during retention. In line with our findings,
Jiang et al. (2000) also found that random location changes between memory and test

displays in change detection resulted in severe impairments of colour retrieval, while
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random colour changes did not comparably affect WM performance. They argued that
disruption of the global spatial configuration, rather than the mapping of specific items to

locations, was the critical factor for successful retrieval.

Together, these findings suggest that spatial consistency acts as a structural scaffold
for WM. Maintaining stable configurations supports retrieval, while disruption of spatial
predictability undermines performance, even when location itself is irrelevant. Future work
should aim to disentangle the contributions of global spatial structure versus local item-

location bindings to better understand how space constrains VWM.
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2.8 General Discussion

The present study set out to evaluate the extent to which estimates of VWM capacity
(K values) reflect a stable, perceptually invariant cognitive trait, or whether they are
influenced by perceptual characteristics of the to-be-remembered stimuli. Across five
experiments, we systematically manipulated perceptual factors known to affect visual
processing, i.e., stimulus density, stimulus eccentricity, stimulus organisation, stimulus type,
and spatial variability of stimuli, and examined both absolute capacity estimates and

correlations of K values across conditions.

Taken together, the results provide converging evidence that perceptual properties
significantly modulate vWM capacity estimates. In four of our five experiments, absolute K
values varied systematically with changes in perceptual input. vWM capacity was reduced
under crowded conditions (Experiment 1), at far eccentricities (Experiment 2), for more
complex stimulus types (Experiment 4), and when spatial predictability was disrupted
(Experiment 5). These findings challenge the assumption that K is a fixed estimation of VWM
capacity which is independent of perception. Instead, they highlight that the fidelity of v WM
capacity is constrained at least in part by the quality of the initial perceptual encoding,
consistent with the sensory recruitment hypothesis (Emrich et al., 2013; Pasternak &

Greenlee, 2005; Serences, 2016; Sreenivasan et al., 2014).

At the same time, our results also revealed that relative individual differences were
preserved across many perceptual manipulations. That is, participants with higher K values
in one condition generally produced higher K values in all other conditions, even when
absolute performance shifted. This aligns with previous test-retest reliability studies (Dai et

al., 2019; Xu et al., 2018) and suggests that K remains to be a reliable estimate of (trait-like)
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individual VWM capacity, thus it can be said that perception shapes the level of performance
achievable in a given change detection task but does not eliminate stable individual

differences.

The present findings have several implications for theories of VWM. First, our findings
support claims that capacity does not simply reflect the size of a passive storage space
(Balaban et al., 2019; Fukuda et al., 2015; Mance & Vogel, 2013), but instead highlight
accounts that view VWM as inherently active, placing perception and attention at the core of
WM capacity (Emrich et al., 2013; Pasternak & Greenlee, 2005; Serences, 2016; Sreenivasan
et al., 2014). Variability in perceptual input directly translated into differences in memory
estimates, demonstrating that what appears as a capacity limit may partly reflect perceptual

bottlenecks rather than storage constraints alone.

Second, our results support claims that VWM capacity is highly stable at the
individual level (Balaban et al., 2019; Xu et al., 2018), and that correlations with other
cognitive abilities such as fluid intelligence are valid. Even though absolute capacity
estimates varied across conditions, individual differences in K were preserved in all

experiments.

Third, our results add further evidence to the debate over whether vWM
representations are feature-based or object-based (Luck & Vogel, 1997; Vogel et al., 2001).
The asymmetry between colour and location manipulations (Experiment 5) suggests that
some features provide stronger scaffolds for retention than others, highlighting the need to
specify how, and to what extent, different feature dimensions are integrated and

maintained. Moreover, the superior retention of letters relative to colours (Experiment 4)
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indicates that long-term familiarity, categorical structure, and nameability can substantially

strengthen object-based representations in VWM, thereby enhancing overall performance.

Fourth, our findings paint an ambivalent picture with respect to accounts proposing
that change detection performance relies on the spatially global structure of memory
displays (Jiang et al., 2000). On the one hand, vWM capacity was preserved when the overall
spatial layout of memory items was retained across memory and test arrays, even when
colour-location pairings were disrupted (Experiment 5). On the other hand, VWM
performance did not benefit when displays were perceptually organised according to Gestalt
principles, relative to randomly distributed items (Experiment 3). Thus, while stable global
configurations appear to provide a critical scaffold for retention, not all forms of perceptual

organisation translate into measurable memory advantages.

Our findings also carry methodological implications for the use of change detection
as a diagnostic tool. If perceptual conditions can systematically modulate K values,
researchers must be cautious in interpreting differences in vWM capacity across studies or
populations. Apparent capacity deficits might in some cases reflect perceptual limitations
rather than core memory constraints. At the same time, the preservation of relative rank-
order stability supports the continued use of K as a reliable index of individual differences, if
task parameters are carefully considered and reported. Future research could extend this
approach by directly comparing perceptual influences across populations with known
perceptual or attentional differences (e.g., ageing, developmental disorders, or visual

impairments).

In summary, the present study demonstrates that vWM capacity estimates are

shaped by perceptual properties of the stimuli, but that individual differences remain robust
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across these variations. These results suggest that K reflects both a stable cognitive trait and
a measure sensitive to perceptual constraints. Recognising this dual nature is essential for
interpreting VWM performance and for situating VWM capacity within broader theories of
cognition. Overall, our findings highlight that vWM is influenced by low-level perceptual
factors such as stimulus density and eccentricity as well as by higher-level representational
factors such as familiarity and spatially global layouts, suggesting that memory performance
reflects an interplay of perceptual resolution, attentional abilities, and categorical coding.
This hybrid view implies that capacity is best understood not as a single fixed number, but as
an emergent property arising from the interaction between stable individual differences and

the situational constraints of encoding and retrieval.



Chapter 3: Contextual cueing: implicit learning improves
visual working memory capacity
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3.1 Introduction

Directing attention in visual search is often supported by statistical regularities in the
environment, thus search rarely starts from scratch (Oliva & Torralba, 2007). The ability to
extract such regularities is a crucial function of our cognitive system, and extensive research
has shown that individuals learn to make use of these repetitions to process visual scenes
more efficiently (Chun & Turk-Browne, 2008). Learning to associate repeated spatial
configurations with target positions is a phenomenon that has been demonstrated widely in
the literature. One concept that has been utilised to explain this phenomenon is the
contextual cueing effect (Chun & Jiang, 1998), which demonstrates a reduced search time in
repeatedly shown displays compared with novel non-repeated displays (Chua & Chun, 2003;
Jiang & Chun, 2001; Olson & Chun, 2002). In a typical experiment, participants search for a
target letter ‘T’ amongst a configuration of distractors ‘L's and indicate the orientation of the
target (left vs right). Unknown to the participants, half of the displays are repeated distractor
configurations that consistently predict a target location while the other half of displays are
novel configurations. Results show significantly faster response times for repeated
configurations than randomly generated novel configurations. Chun and Jiang (1998, 1999)
propose that repeated exposure to a specific search array leads to the formation of an
implicit memory which reflects learned associations between the targets location and the
surrounding visual context. When an incoming image matches one of these representations,
the retrieved memory guides attention to the target. What is interesting though, is that this
effect occurs without participants awareness of repeated displays or explicit memory of
target positions, thus it is said to be implicit. In fact, studies have shown that even when

participants are presented with a recognition test at the end of the experiment, they are
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unable to recognise repeated displays, even though they have seen them many times during

the experiment (Colagiuri & Livesey, 2016; Vadillo et al., 2020).

Though not entirely clear, it is assumed that contextual cueing involves at least two
different mechanisms (Chun & Jiang, 1998, 1999). Firstly, a relationship between the
contextual information in the environment (distractor arrangement) and the task-relevant
object (target position) must be learned (‘learning’). Secondly, this information needs to be
retrieved from memory and applied to the present environment (‘expression of learning’).
The latter suggests that LTM plays an important role in contextual learning. One way that
information from LTM can interact with present experience is via VWM (Baddeley & Hitch,
1974; Baddeley 2012). VWM is thought to enable attention to prioritise task-relevant
information for future actions (Soto et al., 2014) and has been shown to play a role in
implicit learning (Janacsek & Nemeth, 2013; Martini et al., 2013). Therefore, for repeated
contexts, despite occurring without awareness, VWM may support the implicit encoding and
retrieval of target-distractor configuration information from LTM, suggesting that contextual

learning relies on VWM resources (Manginelli et al., 2013).

Researchers have attempted to disentangle whether visual search in repeated
contexts depends on VWM resources (Pollmann, 2019), often using dual-task approaches
that typically combine a visual search and change detection task. These approaches are
commonly used to investigate the potential overlap between vWM and contextual learning.
If these processes share the same resources, VWM engagement should interfere with
contextual learning. Several studies have explored this relationship by varying vWM load,
task type (spatial vs non-spatial) and task timing (simultaneously vs sequentially) within

dual-task paradigms (Annac et al., 2013; Manginelli et al., 2012; Pollmann, 2019; Travis et al.,
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2013; Vickery et al., 2010). The first study of this type was conducted by Vickery et al. (2010).
Across three experiments, participants performed visual search tasks in which some of the
display configurations were repeated while simultaneously performing VWM change
detection tasks that varied in load (Experiment 1), spatial locations (Experiment 2) and the
sequence of stimuli (Experiment 3). Despite these added demands, the contextual cueing
effect (faster search in repeated displays) remained robust, indicating that it is unaffected by
interference from either spatial or non-spatial WM loads. Despite this, several studies have
shown that WM tasks do interfere with contextual learning, with spatial WM load being
more detrimental to visual search performance than vWM load (Travis et al., 2013;
Woodman & Luck, 2004). Manginelli et al. (2013) examined performance on a visual search
task with engagement in either a non-spatial or spatial VWM task. In the non-spatial VWM
task, participants memorised the identity of colours, whereas in the spatial YWM task,
participants memorised the location of several squares. The vWM task was introduced
either during the initial learning phase or during the later testing phase, while the visual
search task was performed in both phases. They found that a simultaneous spatial vWM task
reduced the contextual cueing effect only when it was performed simultaneously with visual
search during the test phase, suggesting that spatial vWM affects the expression of
contextual learning, rather than with the learning itself. Annac et al. (2013) also found a
reduction of the contextual cueing effect when using a spatial VWM task. Contradictory
findings emerged in a similar dual-task approach (Travis et al., 2013), examining presentation
style. Contrary to Vickery et al. (2010), Travis et al. (2013) presented both the study and test
items sequentially, requiring participants to compare the temporal pattern of the learned

stimuli and the test stimuli, creating an additional memory load. They found that
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recruitment of these VWM resources during visual search attenuated the contextual cueing

effect.

Taken together, the behavioural literature shows mixed evidence for the role of VWM
in contextual cueing, with some studies reporting diminished contextual cueing (Travis et al.,
2013) while others find intact contextual cueing (Vickery et al., 2010) or mixed results
(Annac et al., 2013; Manginelli et al., 2013). In these studies, VWM demands were either
applied throughout the entire testing session or restricted to a learning phase, leaving
unclear exactly when during contextual learning, the engagement of vWM resources is most
critical. To address this, studies have used event-related potentials (ERPs) to investigate the
timing of contextual cueing in visual search (Johnson et al., 2007; Zinchenko et al., 2020).
ERP studies have focused on components such as the N2pc, P3, stimulus-locked lateralised
readiness potential (sLRP), and response-locked lateralised readiness potential (rLRP). Across
the literature, it is suggested that attention shifts more efficiently to a target location when it
is presented in a repeated display (Johnson et al., 2007; Olson et al., 2001). For instance,
Olson et al. (2001) found a significantly larger N210 in a repeated as opposed to novel
condition and Johnson et al. (2007) observed a significantly larger N2pc for repeated than
novel displays. Similarly, Zinchenko et al. (2020) found an enhanced N2pc for repeated than
novel displays, alongside an earlier N1pc reflecting an orienting response to salient stimuli,
influencing the N2pc. However, contradictory to the above findings, Schankin and Schubo
(2009) found no significant differences between novel and repeated displays for the N2pc,
rLRP or sLRP. Additionally, Kojouharova et al. (2023) have reported mixed ERP results,
concluding that contextual cueing mechanisms depend on age. In younger adults, an early
and intermediate locus was detected, symbolising effective attentional selection and

stimulus categorisation, whereas in older adults, a late locus was identified, suggesting more
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efficient response organisation led to faster reactions. Given the extensive literature on ERP
components related to attentional processes, one would expect substantial ERP research
highlighting VWM processes (e.g., the contralateral delay activity (CDA) component),
especially since VWM is thought to play a role in contextual cueing. However, this is not the
case. In fact, ERPs have explicitly been measured during visual search tasks and not vWM

tasks.

The consensus in the literature is that contextual learning is task specific, occurring
primarily in visual search tasks where participants are required to locate the target but are
not explicitly asked to retain all locations in memory for later recall. In contrast, a change
detection task requires participants to actively hold the memory items in mind for
subsequent comparison. Since no items are specifically marked as distractors, all items in the
display must be maintained in VWM. This distinction raises the question: can we generalise
contextual cueing beyond visual search to VWM tasks? Behavioural research has directly
investigated contextual cueing directly in vVWM by means of a change detection task (Jiang &
Song, 2005; Olson et al., 2005). In Olson et al. (2005) study, participants were presented with
two spatial arrays containing 6, 9 or 12 items one after the other which were identical except
for one location. Participants task was to detect the difference between the arrays, by
clicking on the missing location using a mouse. They found that spatial WM significantly
increased when the same location changed across repetitions but showed no improvement
when different locations changed. They concluded that learning in vWM primarily helps
determine which information is retained, rather than directly increasing vWM capacity.
Similarly, Jiang and Song (2005) used a set of black filled circles against a white background.
After a brief delay, participants were shown the test display and asked if any object had

moved or changed its position. They found higher accuracy and response times when the
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spatial context was repeated compared to when it was novel. Both studies conclude that
contextual learning can occur within vWM. However, spatial change detection tasks may
introduce potential confounds. Firstly, participants may become more attentive to spatial
cues, simply due to having to detect a location change, therefore relying on spatial memory.
Secondly, whilst location-based change detection tasks do incorporate specific loads in the
arrays, these are usually a high number of items, needed to ‘fill’ the arrays. Whilst these
approaches can detect surface-level changes, they fall short when it comes to capturing the
‘true capacity’ of VWM, which usually lies between 3-4 items (Cowan, 2001). A colour-based
change detection task, that avoids explicit spatial demands and uses moderate vVWM loads
may better isolate contextual cueing effects. Importantly, incorporating neural measures,
such as the CDA may offer further insight into these contexts. The CDA is sensitive to the
number of items maintained in WM (Vogel & Machizawa, 2004) so it could help track
whether learning facilitates more efficient memory retention. For instance, the CDA might
show a reduced neural response for repeated locations compared to locations that change

unpredictably, indicating less cognitive load when maintaining learned information.

The goal of the present study was to explore how contextual cueing (repeated vs
novel contexts) influence both behavioural performance and neural processing during a
change detection task, with an emphasis on task load (two vs four items) and task type
(colour-location vs colour-only). In Experiment 1, we investigate how varying task loads (two-
colour vs four-colour) and repeated versus novel contexts affect participants vVWM capacity
(K) and accuracy. We also examine how these factors influence neural activity, specifically
focusing on the CDA, a well-established ERP marker of WM maintenance (Luria et al., 2016).
In Experiment 2, we will compare the same behavioural and neural responses across two

different tasks, a colour-location task and a colour-only task. If contextual cueing directly
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relies on the location of VWM, inhibiting location in the colour-only task should reduce the
effect of context repetition. Behaviourally, for repeated displays, vWM can not only access
the previous perception, but also the LTM trace. However, for novel displays, VWM relies on
perception alone. Therefore, one can assume that vWM would be enhanced for repeated
displays, as reflected in higher K estimates and improved accuracy. At the neural level, if CDA
amplitude varies depending on whether the context is novel or repeated, this may indicate
that contextual cues are actively shaping memory processes. When the context is repeated,
these cues may make it easier to maintain relevant information, thereby reducing the

mental effort required and thus resulting in a smaller CDA.

3.2 Experiment 1

3.2.1 Methods

3.2.1.1 Participants

Thirty participants took part in Experiment 1 and either received £10/hour or course
credits as a compensation for their time. All experimental procedures were approved by the
Ethics Committee of the Psychology Department at Durham University. Participants gave
informed written consent prior to testing. Four participants were excluded from analysis due
to excessive eye movement artifacts (>40% of trials lost during artifact rejection; a priori
criterion). The remaining 26 participants were between 18 and 43 years of age (Mage = 23.8,
SDqge = 5.7). Eighteen participants were female and eight were male. Twenty-one
participants were right-handed and five were left-handed. All participants had normal or
corrected-to-normal vision and no known colour deficiency (tested with the Ishihara colour
vision test; Ishihara, 1972). The sample size of 26 was calculated by means of an a priori

power analysis (G*Power 3; Faul et al., 2007) used to detect an interaction in a 2x2x2
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factorial repeated-measures ANOVA (within subjects factors; laterality, load and context)

with an assumed alpha of .05, power of .95, and a medium effect size of .30.

3.2.1.2 Stimuli and procedures

Participants were sat in a dimly lit sound attenuated Faraday cage with an
approximately 90cm viewing distance from the monitor. Stimuli were presented on a 22-inch
MSI Optix G272 LCD monitor with a 100-Hz refresh rate and a resolution of 19201080
pixels. MATLAB (Psychophysics Toolbox) was used on an LG Pentium PC running under
Windows 10 to control stimulus presentation, timing, and response collection. Stimuli were
presented on a black background. A constant central grey fixation cross was shown
throughout each experimental block (CIE x, y colour coordinates: .328/.349; 0.2°x 0.2° of

visual angle).

Each trial started with the presentation of a memory display for 200ms, which was
followed by a blank 800ms retention period and a test display for 200ms (Figure 8, top
panels). The inter-trial interval (between the offset of the test display in trial n-1 and the
onset of the memory display in trial n) showed a blank screen and was temporally jittered
between 2000-2300ms. There were two equiprobable memory load conditions which were
presented in a blocked fashion. In the two-colour task, the memory and test displays each
contained two differently coloured squares in each hemifield (Figure 8, top left panel). In the
four-colour task, they contained four differently coloured squares in each hemifield (Figure
8, top right panel). Squares subtended 0.3 x 0.3 degrees of visual angle. The stimulus areas
in each hemifield measured 1.8 x 1.8 degrees of visual angle and they were located at +/-
0.1° to +/-1.9° to the right/left of the y-axis, respectively, and 0.9° to -0.9° above and below

the x-axis. The locations of the two or four squares in each hemifield were determined
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independently and randomly in each trial. They could be located anywhere within the
stimulus areas (there were no pre-defined stimulus locations), with the exception that they

were not allowed to overlap and that there was always at least a 0.1° gap between them.

Participants task was to memorise the colours of the squares on the left or right side
of the memory display and compare them to the colour set shown on the same side of the
test display. The relevant memory side alternated between blocks and participants were
reminded about the upcoming relevant memory side at the beginning of each block. In no-
change trials, the colours of the test display were identical to the colours in the memory
display. In change trials, one of the squares in the test display had a new colour which was
not previously present in the memory display. Participants were instructed to press the up or
down arrow key on a standard keyboard if they detected a colour change or felt that the
colours in the test display were the same as in the memory display, respectively. The
response-to-key mapping (change/no-change response on arrow up/down key) and the
hand-to-key mapping (left/right hand on arrow up/down key) was counterbalanced across
participants but was kept constant for each participant for the duration of the whole
experiment. The different colours for the two or four squares on the relevant memory side
were randomly chosen from a set of six possible memory colours (without replacement): red
(.616/.320), green (.267/.638), blue (.169/.166), yellow (.438/.490), pink (.474/.244) and
cyan (.210/.276). The different colours for the squares on the irrelevant memory side were
then determined from the remaining set of memory colours plus brown (.522/.399) and grey
(.328/.349), which only ever served as colours for the squares on the irrelevant side of the

memory display. All colours were equiluminant (~10.2 cd/m2).
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There were two equiprobable and intermixed task conditions that were concerned
with the configuration of the squares on the relevant memory side. In novel configuration
trials, the colours and locations of the two or four relevant memory squares were chosen
randomly from the set of memory colours and available locations in the relevant stimulus
area as described above. In repeated configuration trials, the colours and locations of the
two or four relevant memory squares were kept constant across all trials of one block. A new
repeated configuration was randomly generated at the start of each block. In both novel and
repeated configuration trials, the colours and locations of the squares on the irrelevant side
of the memory displays were always determined randomly following the rules described

above.

Each experimental block condition contained 48 trials, i.e., six trials for each
combination of stimulus configuration (novel, and repeated configuration), trial type
(change, and no-change trial), and relevant memory side (left, and right side). Ten blocks
were tested for each memory load condition (two-colour, and four-colour task), for a total of
960 trials in Experiment 1. Thirteen participants completed the two-colour task first and
then the four-colour task, and vice versa for the other 13 participants. Before each load
condition, participants practised the two- and four-colour tasks, respectively, until they felt
comfortable with them (usually after one or two blocks). These practice data were not

recorded.
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Figure 8 Top panel: Schematic illustration of the stimuli and time course of events in the two-
colour (left) and four-colour (right) tasks of Experiments 1. Each trial started with a memory
display, followed by a blank retention period, and a test display in which the colours of the
memory squares were either identical (no-change trial) or one of them changed (change
trial). The relevant memory side alternated between blocks (right in this figure). The stimuli
and time course were identical in Experiment 2, only that memory set size was three.
Bottom panel: Example sequences of memory displays with novel versus repeated stimulus
configurations in Experiment 2. Rows illustrate example configurations only and do not
represent the actual sequence of trials. In the colour-location task both the colours and
locations of the relevant memory squares were repeated across trials. In the colour-only
task, only the colours of the relevant memory squares were repeated, their locations were
randomised.
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3.2.1.3 Data analyses and EEG recordings

Error rates were used to calculate K values separately for trials with novel and
repeated stimulus configurations in both the two- and four-colour tasks. Following the
suggestions of Rouder et al. (2011), K was calculated according to Pashler’s equation

(Pashler, 1988):

en(i=)

where N is the number of memory items (set size), and h and f are the measured hit and

false alarm rates, respectively. Hit rates were calculated as

hits
" hits + misses

and false alarm rates were calculated as

false alarms

f

false alarms + correct rejections

EEG was DC-recorded from 23 scalp electrodes (EasyCap, Brain Products) at standard
positions of the extended 10/20 system, and two HEOG electrodes placed at the outer
canthi of the eyes. EEG data were recorded using the Brain Vision Recorder (BrainAmp DC
amplifier, Brain Products GmbH, Gilching, Germany) at a sampling rate of 500Hz with a 40Hz
low-pass filter. No other filters were applied after data acquisition. Impedances were kept
below 5kQ. The left earlobe served as online reference during data acquisition, but all
channels were re-referenced offline to linked earlobes. The EEG was segmented into 1100ms
time windows including a 100ms pre-stimulus baseline and a 1000ms ERP time window
following the onset of the memory displays. Data from incorrect responses were excluded

from ERP analyses. Segments that contained eye movements (exceeding +25uV in the
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bipolar HEOG channel), blinks (exceeding +60uV at Fpz), and muscular movements
(exceeding +80uV in all channels) were also excluded. Artefact rejection resulted in an
exclusion of 21.1% of all trials in the two-colour task (SD=10.5%; ranging between 3.1% and
36.9% across participants) and 19.5% of all trials in the four-colour task (SD=8.7%; ranging
between 4.2% and 35.2% across participants). The remaining segments were averaged
separately for left- and right-side memory squares in trials with novel and repeated stimulus
configurations of the two- and four-colour tasks. CDA components were quantified based on
ERP mean amplitudes obtained at lateral posterior electrodes PO7 and PO8, contralateral
and ipsilateral to the relevant memory side, in the 400-800ms interval after memory display
onset. Effect sizes are reported as Cohen’s d (Cohen, 1988) with a Cl of 95% for t-tests, and
as partial eta squared (1,%) for F-tests. When necessary, Greenhouse-Geisser corrections

were applied to F-tests, and Bonferroni corrections to t-tests. All t-tests were two-tailed.

3.2.2 Results

3.2.2.1 Behavioural results

Error rates were fed into an omnibus repeated-measures ANOVA with the factors
memory load (two-colour vs four-colour) and stimulus configuration (novel vs repeated). The
ANOVA produced main effects of memory load, F(1,25)=172.6, p<.001, np?=.87, and stimulus
configuration, F(1,25)=67.6, p<.001, ny?=.73, since error rates were lower in the two- as
compared to the four-colour task, and in trials with repeated versus novel stimulus
configurations. There was also a significant interaction, F(1,25)=7.6, p=.011, n,>=.23, but
follow-up t-tests confirmed reliable learning effects (i.e., lower error rates for repeated than
novel stimulus configurations) both in the two-colour (7.3% vs 8.7%) and four-colour tasks

(16.9% vs 21.1%), both t(25)>2.7, p<.012, d>.53 (Figure 9A). K values were subjected to the
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same ANOVA, which also produced main effects of memory load, F(1,25)=118.2, p<.001,
np>=.83, and stimulus configuration, F(1,25)=50.8, p<.001, ny?=.67, as well as a significant
interaction, F(1,25)=19.4, p<.001, np?=.45. Follow-up t-tests demonstrated that the increase
in VWM capacity (K) measured in trials with repeated as compared to novel stimulus
configurations was small but substantial both in the two-colour (1.8 vs 1.7) and four-colour

tasks (2.8 vs 2.5), both t(25)>2.4, p<.025, d>.47 (Figure 9B).
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Figure 9 Behavioural performance as a function of task (two-colour, four-colour) and
stimulus configuration (repeated, novel). A) Mean error rates (%) for the two-colour and
four-colour task for repeated and novel configurations. B) Mean K values for the two-colour
and four-colour task for repeated and novel configurations. Error bars represent the
standard error of the mean and significant differences are marked by asterisks.

3.2.2.2 ERP results

Figure 10 shows grand-averaged ERPs measured at lateral posterior electrodes PO7/8
contralateral and ipsilateral to the relevant side of the memory display, separately for novel
(top panels) and repeated stimulus configurations (middle panels) in the two-colour (left
panels) and four-colour tasks (right panels). CDA components were elicited in all task

conditions, but they seemed to be attenuated in repeated as compared to novel stimulus



77

configurations. This is further illustrated in the bottom panels of Figure 10, which shows the
difference waveforms obtained by subtracting ERPs at ipsilateral electrodes from
contralateral ERPs. Statistically, this observation was confirmed by means of an omnibus
repeated-measures ANOVA with the factors memory load (two-colour vs four-colour),
stimulus configuration (novel vs repeated), and laterality (electrode left vs right of the
relevant memory side). The ANOVA produced a main effect of laterality, F(1,25)=5.8, p=.024,
np?= .19, which confirmed the presence of reliable CDA components. Most importantly,
laterality interacted with stimulus configuration, demonstrating that CDA amplitudes were
significantly smaller in trials with repeated (-0.4uV) as compared to novel stimulus
configurations (-0.9uV), F(1,25)=12.5, p=.002, ny?=.33. There were no interactions involving
the factor memory load, all F(1,25)<1, p>.450, n,?<.02, suggesting that the learning effects
(i.e., smaller CDA amplitudes for repeated than novel stimulus configurations) were
statistically comparable in the two- and four-colour task. This was confirmed by two follow-
up ANOVAs with the factors stimulus configuration and laterality, conducted separately for
the two-colour and four-colour task. Both ANOVAs produced significant interactions,
demonstrating that CDA amplitudes were smaller for repeated than novel stimulus
configurations both in the two-colour (-0.4uV vs -0.8uV), F(1,25)=4.3, p=.049, n,%=.14, and

the four-colour tasks (-0.4uV vs -1.1uV), F(1,25)=6.4, p=.018, np>=.20.
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Figure 10 Grand-averaged ERPs measured at lateral posterior electrodes PO7/8 contralateral
and ipsilateral to the relevant side of the memory display, separately for novel (top panels)
and repeated stimulus configurations (middle panels) in the two-colour (left panels) and
four-colour tasks (right panels) of Experiment 1. The corresponding CDA difference
waveforms (contralateral minus ipsilateral ERPs) are shown in the bottom panels. Shaded
areas mark the CDA time window (400-800ms after memory display onset).

3.2.3 Discussion of Experiment 1

Experiment 1 firstly confirmed our central hypothesis that contextual cueing can

occur directly at the level of vWM. Accuracy and vWM capacity (K) was higher for repeated
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displays than it was for novel displays for both the two-colour and four-colour tasks,
suggesting that repeated exposure to consistent specific configurations facilitates more
efficient encoding and retrieval from vWM. Simply, repeating displays, made it possible for
participants to recognise them implicitly, suggesting that long-term memories of these
displays were established (Chun & Jiang, 1998; Vickery et al., 2005). Importantly, this
contextual cueing effect emerged across both memory loads, suggesting contextual learning
is not constrained by the number of items held in VWM. In fact, the contextual cueing effect
was comparable across different memory loads, even though the difficulty of the task
increased. Maintaining information in vWM did not impair contextual learning, even at a
load of four items, considered to be the upper limit of vWM capacity (Cowan, 2001, 2010;
Luck & Vogel, 1997), suggesting that contextual learning seems to operate independently of
the storage demands of VWM, irrespective of load. This finding was consistent with that of
Vickery et al. (2010) who used varying memory loads and found no effect of VWM load on
the contextual cueing effect. However, unlike the dual task approach in Vickery et al. (2010)
study, the change detection paradigm used here offered a more direct measure of vWM

performance.

At the neural level, as measured by the CDA, no significant difference was observed
based on WM load: no difference between two vs four items. However, the CDA amplitude
was clearly influenced by context repetition: repeated configurations elicited reduced CDA
amplitudes compared to novel configurations. This indicates that contextual cues actively
shape memory processes, potentially easing the maintenance of relevant information and
reducing mental effort when the context is familiar. One explanation is that in repeated
contexts, participants may rely less on active VWM maintenance because the familiar

context ‘does the work’ for them. Consequently, even under higher load conditions (e.g.,
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four items), the CDA may not increase as expected. Since the CDA reflects the number of
items actively maintained in WM rather than the total number presented (Carlisle et al.,
2011), repeated contexts might enable participants to offload some memory demands onto
LTM representations. These findings emphasise the role of context consistency in facilitating
more efficient WM maintenance, as evidenced by the modulation of CDA by context

repetition rather than load.

One limitation of this experiment is that while the CDA provided evidence for
reduced memory maintenance on repeated trials, it does not specify which aspects of the
context contributed to this benefit. Therefore, perhaps the most crucial explanation, and
one which we attempt to address in Experiment 2, is that repeated displays are likely
guiding attention to relevant items locations and allowing participants to anticipate what is
important. Indeed, the visual system is sensitive to spatial layout and contextual cueing
relies on a highly discriminable instance-based memory for spatial configurations (Chun &
Jiang, 1998). This implies that individuals automatically encode both identity and location
information when processing visual stimuli. Consequently, repeated spatial layouts may
serve as a contextual scaffold, allowing participants to anticipate where items will appear,
potentially explaining the observed reduction in CDA amplitudes. In contrast, novel displays

lack these spatial cues, likely requiring more holistic processing (Jiang & Wagner, 2004).

Experiment 2 was designed to test this by manipulating the spatial stability of
repeated displays, specifically, by randomising the positions of repeated items while keeping
their identities constant. If the reduction in CDA relies specifically on the repetition of spatial
information, then disrupting this location element should eliminate the contextual benefit.

Therefore, because both types of trials would now lack spatial predictability, the CDA may be
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similar for repeated and novel displays. This would help isolate the contribution of spatial
context in driving WM efficiency and clarify whether identity repetition alone is sufficient to

support the observed neural effects (Brady & Alvarez, 2011).

3.3 Experiment 2

3.3.1 Introduction

Although individuals can obtain perceptual familiarity with repeated spatial
configurations (Beesley et al., 2015; Geyer et al., 2010), the effectiveness of these layouts
lies predominantly in their predictability of target locations (Olson & Jiang, 2004; Olson et
al., 2005). When the spatial layout of distractors is repeated but not paired with a consistent
target location, it does not facilitate search (Chun & Jiang, 1998), suggesting there needs to
be a consistent association between a target and its layout. Given this, contextual learning
can occasionally incur a ‘contextual cost’ whereby disrupting an association between a
repeated context and its target location inhibits search. Indeed, individuals may struggle to
find the target in a repeated display if it appears in a location that previously contained a

distractor (Makovski & Jiang, 2010).

While changes in object identities do not seem to affect spatial contextual cueing
(Chun & Jiang, 1998), altering locations within a repeated context typically results in a
pronounced reduction of the contextual cueing effect (Annac et al., 2017; Conci et al., 2011;
Conci & Miiller, 2012; Makovski & Jiang, 2010; Manginelli & Pollmann, 2009; Zellin et al.,
2013). In the context of these findings, Experiment 2 was designed to investigate the role of
non-spatial VWM. In Experiment 1, both colour and spatial location were maintained
between memory and test displays in repeated configurations. Experiment 2 replicated this

procedure in a visuospatial condition, where both colour and spatial location remained
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constant between memory and test displays, but introduced a new manipulation in a non-

spatial condition. In the non-spatial condition, repeated configurations contained the same
colours across trials, but the spatial locations of these colours changed. If contextual cueing
relies specifically on spatial information, we would not expect any contextual cueing effects

in the non-spatial condition.

A critical feature of contextual cueing is that it is driven by implicit memory
representations that are acquired incidentally. In typical recognition tests of contextual
cueing, repeated displays are presented amongst novel displays and participants are
instructed to distinguish between them. However, these recognition tests fail to find
evidence of explicit recognition of repeated displays (Goujon et al., 2015). Therefore, while
explicit recognition may not always be demonstrated, implicit memory representations of
repeated displays support contextual cueing (Vadillo et al., 2020). Based on these findings,
an awareness test was added in Experiment 2, in which participants were asked a yes/no
guestion if they were aware of the repeated contexts. This was added to help provide
further insights into whether implicit memory (as reflected in the contextual cueing effect)
for repeated displays drives the observed effects. Overall, this experiment will allow us to
isolate the role of spatial context in contextual cueing, adding clarity to the role of spatial

and non-spatial VWM in this process.

3.3.2 Methods

3.3.2.1 Participants

Thirty-one new participants took part in Experiment 2. Participant procedures were

identical to Experiment 1. Five participants were excluded due to excessive eye movement

activity (>40% trials lost during artifact rejection, a priori criterion). The remaining 26
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participants were aged between 18 and 59 years (Mgge = 25.6, SDgge = 10.0). Of those,
twenty-one were female and five were male, twenty-five were right-handed, and one was
left-handed. All participants had normal or corrected to-normal vision and normal colour

vision (as tested with Ishihara, 1972).

3.3.2.2 Stimuli and procedures

Experiment 2 followed the same general procedures as Experiment 1, with the
following exceptions. There were two new blocked task conditions in Experiment 2 (Figure 8,
bottom panels). In the colour-location task, both the colours and locations of the relevant
memory squares were kept constant in repeated stimulus configuration trials (as in
Experiment 1). In the colour-only task, only the colours of the relevant memory squares
were kept constant in repeated stimulus configuration trials, the locations of these squares
were determined independently and randomly in each trial (following the rules described in
Experiment 1). The colours and locations of the relevant memory squares in novel stimulus
configuration trials were determined randomly as described in Experiment 1. To be able to
test Experiment 2 in a single session, we only tested one memory load condition and settled
for a set size of three as the happy medium between the two- and four-colour tasks of
Experiment 1. Experimental blocks contained 48 trials, i.e., six trials for each combination of
stimulus configuration (novel, and repeated configuration), trial type (change, and no-
change trial), and relevant memory side (left, and right side). Ten blocks were tested for each
task (colour-location, and colour-only), for a total of 960 trials in Experiment 2. Thirteen
participants completed the colour-location task first and then the colour-only task, and vice
versa for the other 13 participants. Participants practised each task before the experiment

proper, and these data were not recorded. After the experiment, we recorded participants’
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awareness of the repeated stimulus configurations, i.e., they answered yes or no to the
following question: “Did you notice that some of the memory displays repeated between

trials?”.

3.3.2.3 Data analysis and EEG recordings

All data analyses and EEG procedures were identical to Experiment 1. Artefact
rejection resulted in an exclusion of 21.0% of all trials in the colour-location task (SD=8.9%;
ranging between 2.7% and 36.3% across participants) and 20.4% of all trials in the colour-
only task (SD=6.6%; ranging between 5.2% and 32.7% across participants). The remaining
segments were averaged separately for left- and right-side memory squares in trials with

novel and repeated stimulus configurations of the colour-location and colour-only tasks.

3.3.3 Results

3.3.3.1 Behavioural results

Error rates were subjected to an omnibus repeated-measures ANOVA with the
factors task (colour-location vs- colour-only) and stimulus configuration (novel vs repeated).
There was no main effect of task, F(1,25)=1.8, p=.188, n,?=.07, but there was a main effect of
stimulus configuration, F(1,25)=48.1, p<.001, 1,%=.66, which interacted with task, F(1,
25)=16.2, p<.001, 1x2=.39. Mirroring the results from Experiment 1, follow-up t-tests
demonstrated that there were reliable learning effects (i.e., lower error rates in repeated
than novel stimulus configuration trials) in the colour-location task (11.5% vs 15.3%),
t(25)=8.2, p<.001, d=1.62. However, in the colour-only task, error rates were statistically
comparable in trials with repeated and novel stimulus configurations (13.7% vs 14.7%),
t(25)=1.9, p=.060, d=.39 (Figure 11A). The same statistical pattern was observed for K values,

indexing VWM capacity. The ANOVA produced no main effect of task, F(1,25)=2.2, p=.149,
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np>=.08, but there was a main effect of stimulus configuration, F(1,25)=51.3, p<.001, ny?=.67,
and a significant interaction, F(1,25)=16.2, p<.001, n,?=.39. K values were substantially larger
in repeated than novel stimulus configuration trials in the colour-location task (2.4 vs 2.2),
t(25)=7.6, p<.001, d=1.50, but there was no difference in the colour-only task (2.3 vs 2.2),

t(25)=1.9, p=.067, d=.38 (Figure 11B).
Awareness test

Twenty-two participants (85%) reported that they were aware of the repeated
memory displays in the colour-location task. However, significantly fewer participants (16;
62%) also noticed the repeated colour memory displays in the colour-only condition,

t(21)=2.8, p=.011, d=.46.
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Figure 11 Behavioural performance as a function of task (colour-location, colour-only) and
stimulus configuration (repeated, novel). A) Mean error rates (%) for the colour-location and
colour-only task for repeated and novel configurations. B) Mean K values for the colour-
location and colour-only task for repeated and novel configurations. Error bars represent the
standard error of the mean and significant differences are marked by asterisks.
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3.3.3.2 ERP results

Figure 12 shows grand-averaged ERPs measured at lateral posterior electrodes PO7/8
contralateral and ipsilateral to the squares on the relevant memory display side, separately
in trials with novel (top panels) and repeated stimulus configurations (middle panels) in the
colour-location (left panels) and the colour-only task (right panels). CDA components were
triggered in all task conditions. From the CDA difference waveforms (Figure 12, bottom
panels), CDA components were attenuated in trials with repeated as compared to novel
stimulus configurations, but only in the colour-location task. In the colour-only task, CDA
components appeared to be identical between repeated and novel stimulus configuration
trials. An omnibus repeated-measures ANOVA with the factors task (colour-location vs
colour-only), stimulus configuration (novel vs repeated), and laterality (electrode left vs right
of the relevant memory side), confirmed these observations. As in Experiment 1, there was a
main effect of laterality, F(1,25)=12.8, p=.001, ny?=.34, which interacted with stimulus
configuration, F(1,25)=9.2, p=.005, np?= .27, confirming that there were reliable CDAs that
differed between trials with novel versus repeated stimulus configurations. The interaction
between task and laterality failed to reach significance, F(1,25)=.3, p=.574, n,%=.01, but there
was a reliable three-way interaction, F(1,25)=8.0, p=.009, 1y2=.24, suggesting that the
learning effects differed between the two tasks. Follow-up ANOVAs with the factors stimulus
configuration and laterality, conducted separately for the colour-location and colour-only
task, confirmed the presence of learning effects (i.e., smaller CDA amplitudes for repeated
than novel stimulus configurations) in the colour-location task (-0.4pV vs -0.9uV),
F(1,25)=13.4, p=.001, np?=.35, mirroring the findings from Experiment 1. However, the CDAs
triggered in response to repeated and novel stimulus configurations in the colour-only task

were virtually identical (-0.7uV), F(1,25)<1, p=.723, np?=.01.
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Figure 12 Grand-averaged ERPs measured at lateral posterior electrodes PO7/8 contralateral
and ipsilateral to the relevant side of the memory display, separately for novel (top panels)
and repeated stimulus configurations (middle panels) in the colour-location (left panels) and
colour-only tasks (right panels) of Experiment 2. The corresponding CDA difference
waveforms (contralateral minus ipsilateral ERPs) are shown in the bottom panels. Shaded
areas mark the CDA time window (400-800ms after memory display onset).
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3.3.4 Discussion of Experiment 2

Experiment 2 was designed to isolate the role of spatial information in contextual
cueing by comparing a standard visuospatial condition, where both colour and location were
repeated (as in Experiment 1), with a non-spatial condition, where only colour information
was repeated and locations randomised. The results provide convincing evidence that spatial
configuration is a critical component in driving contextual cueing effects within VWM.
Performance in the visuospatial condition replicated the findings from Experiment 1 in that
repeated displays led to enhanced accuracy and vWM capacity, suggesting participants
benefitted from prior exposure to consistent spatial layouts. In contrast, the new condition
(non-spatial), where only the colours were repeated, failed to show a contextual cueing
effect. These differences suggest that a repeated surface feature like colour, is insufficient to
drive contextual cueing in the absence of spatial information. These results are in line with
previous findings that altering target locations within repeated displays disrupts contextual
learning (Manginelli & Pollmann, 2009; Zellin et al., 2013) and support the view that spatial

regularities play a critical role in contextual memory.

At the neural level, like Experiment 1, the reduction in CDA amplitude was observed
for repeated displays in the visuospatial condition, indicating that participants were able to
offload active VWM storage when spatial information was present. In contrast, no reduction
was found in the non-spatial condition, suggesting the repetition of colour alone was
insufficient to support contextual cueing at the level of the CDA. Removing spatial
consistency eliminated the advantage in repeated displays, resulting in a comparable neural
load to that of novel trials. This supports the notion that contextual cueing is primarily

driven by spatial information.
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The awareness test introduced in this experiment offered insight into the implicit
nature of contextual cueing. Participants were more likely to respond “yes” to recognising
repeated displays in the visuospatial condition compared to the non-spatial condition,
suggesting a greater subjective awareness of repetition when both colour and spatial
information were present. However, as the test relied on a simple yes or no response, it
remains unclear whether these responses reflect explicit recognition or more general
familiarity. Previous research has shown that contextual cueing typically arises from implicit
memory, even when participants cannot distinguish repeated from novel displays (Goujon et
al., 2015; Vadillo et al., 2020). Thus, while participants responses here do suggest some
awareness, it is unclear whether this awareness was explicitly accessible or driven by implicit
learning mechanisms. Overall, the results from Experiment 2 clarify the importance of
spatial context in contextual cueing within VWM. While repeated exposure to non-spatial
features like colour does not appear to produce facilitative effects, a stable spatial layout
allows participants to form robust implicit memory traces that can guide attention and

reduce cognitive load.

3.4 General discussion

The goal of the present study was to test whether contextual cueing can operate
directly within vWM and whether spatial consistency is critical for this effect. Can individuals
implicitly use repeated spatial and/or featural stimulus configurations to enhance memory
encoding during a change detection task? To answer this question, we conducted two
experiments measuring behavioural performance (accuracy and K values) and CDA
amplitudes, in a change detection task involving repeated and novel configurations. In

Experiment 1, repeated and novel configurations were shown across trials under both low
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and high memory load. This enabled us to test whether context-related benefits to memory
performance can be observed even when many (vs few) items must be maintained (four
items in the high load condition). In Experiment 2, we tested whether this effect depends on
spatial consistency by comparing a visuospatial condition (context was defined by colour and

location) with a non-spatial condition (context was defined by colour only).

Indeed, our data provided evidence for a contextual cueing effect operating directly
within vVWM, particularly when spatial consistency was maintained. Accuracy, K values and
the reduction in CDA amplitude, associated with contextual cueing, was specifically
dependant on the repetition of configurations in VWM. These findings contribute to growing
evidence that vWM and LTM operate in close interaction rather than in isolation. One
possible mechanism is contextual cueing, whereby LTM representations guide attention,
thus facilitating more efficient encoding into WM (Cowan, 2001; Oberauer, 2009). In
Experiment 1, repeated configurations led to significantly higher accuracy and K values and
lower CDA amplitudes compared to novel configurations across both low and high memory
load conditions. This suggests that familiar spatial layouts reduce the need for active
maintenance within vWM, thus allowing participants to offload onto LTM (Carlisle et al.,
2011; Vickery et al., 2010). However, in Experiment 2, this effect was only observed in the
visuospatial condition, where both identity and spatial position were repeated. In contrast,
when a consistent spatial layout was disrupted in the non-spatial condition, accuracy, K
values and CDA amplitudes for repeated displays remained comparable to those of novel
displays. This pattern suggests that without a consistent spatial context, repetition does not
reduce VWM load. If the identity of the items alone was enough to drive contextual cueing, a
CDA should have emerged in both conditions. The absence of such a finding in the non-

spatial condition aligns with previous work showing that when spatial layout is disrupted,
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contextual learning is depleted (Makovski & Jiang, 2010; Manginelli & Pollmann, 2009; Zellin
et al., 2013). Moreover, this also suggests that spatial regularities are particularly important
for the neural efficiency of repeated contexts. Taken together, both experiments support the
notion that contextual cueing effects, specifically in vWM, are not driven by identity
repetition alone and that a consistent spatial structure is needed to guide attention to

locations during encoding and maintenance (Chun & Jiang, 1998; Jiang & Wagner, 2004).

Despite the clear patterns observed in both experiments, several caveats should be
considered when interpreting these findings. Firstly, although the task was designed to
investigate implicit learning, the use of repeated configurations across trials may have
accidentally introduced conscious awareness of repetition in some participants. Whilst a
higher percentage of participants answered “yes” in the visuospatial condition of
Experiment 2, which supports the idea that spatial regularities have played a role in
contextual cueing, the measure of awareness was vague. It failed to capture how
participants recognised the repetition (e.g., visual similarity, prediction, familiarity) or
whether they could identify which displays were repeated. A more sensitive recognition test
might have provided better insight into the explicit/implicit nature of context learning. For
instance, some studies have employed explicit awareness tests by presenting participants
with the original repeated configurations from the experiment to assess recognition directly

(Wang, 2020).

Secondly, whilst the CDA is a well-established index of vWM load, it traditionally
reflects the number of items actively maintained in VWM. However, in the present study,
CDA modulation was observed as a function of contextual repetition rather than load.

Similar effects showing a decline in CDA with increasing repetition of the same items across
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trials has also been found in previous studies assessing learning and the transfer to LTM
(Carlisle et al., 2011; Grubert et al., 2016; Gunseli et al., 2014a, 2014b; Reinhart &
Woodman, 2014). The departure from typical CDA findings here raises the possibility that
the amplitude reductions observed here may not just reflect storage but also other
mechanisms e.g. increased familiarity or other encoding strategies. Additionally, it is possible
that participants may have reached their VWM capacity at 2-3 items, thus increasing the
load to 4 would not necessarily elicit further increase in CDA amplitude, consistent with the
well-known CDA plateau effect (Vogel & Machizawa, 2004). Finally, the analysis approach
used here did not account for how learning developed over time. Segmenting trials into
epochs would have allowed us to examine when learning occurred and thus the emerging of
contextual cueing effects (Zellin et al., 2011, 2013, 2014, Zinchenko et al., 2018), particularly

in the CDA.

As predicted, the results found here are similar to repetition effects observed in
visual search. In their studies of contextual cueing, Chun and Jiang (1998) showed that
consistent pairing of display configurations and target locations led to significant
improvements in search. However, when target locations varied across repetitions, learning
was diminished. Similarly, Wolfe et al. (2000) found that repeating the same search displays,
even up to 300 times, did not lead to more efficient search if the target location was
inconsistent. While these studies tap into attentional guidance during search, the current
study examines the influence of contextual learning directly on vWM. In fact, to our
knowledge, this is the first study to investigate contextual cueing effects using a change
detection paradigm while simultaneously measuring CDA activity. By directly demonstrating
that repeated contextual information can modulate the neural correlates of memory load,

our approach offers an extension of previous behavioural contextual cueing findings into the
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electrophysiological domain. Importantly, understanding how contextual regularities support
memory encoding has potential applications in educational settings and even cognitive
rehabilitation. For example, environments or tasks designed with consistent spatial

structures might enhance memory performance in populations with VWM deficits.

By repeatedly presenting the same visual displays in a change detection task, we
have clarified the role of learning in enhancing VWM. We suggest that although it is very
difficult to increase the overall capacity of VWM through learning, learning can shift
attentional priorities, thereby improving vWM performance. Importantly, this study
demonstrated that contextual learning is not limited to specific tasks like visual search, it
also emerges in change detection tasks, despite this task relying on different spatial
attention demands (Rensink, 2002; Wolfe, 1998). The presence of contextual cueing in this
task suggests that the visual system supports a spatial context learning mechanism that
generalises across tasks with differing attentional requirements. In sum, contextual cueing
demonstrates the powerful ability of humans to extract meaningful regularities from
complex, noisy environments and to utilise this knowledge to influence fundamental
cognitive processes. The present findings provide strong evidence that there is no learning of

‘what’ without ‘where’, and, at least for contextual cueing, both are required.



Chapter 4: Individual working memory capacity predicts
search performance in multiple colour search
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4.1 Introduction

Visual search, the process of locating a target among distractors, is a fundamental
component of human cognition. Central to efficient search performance is the use of
attentional templates, which are internal representations of target features actively
maintained in VWM (Duncan & Humphreys, 1992; Olivers et al., 2011). These templates
serve as top-down signals that bias visual processing, enabling prioritisation of stimuli that
match goal-relevant features. They are therefore activated in a preparatory fashion, prior to
the appearance of a search display (Chelazzi et al., 1998; Grubert & Eimer, 2018). When
activated, these attentional templates enhance the salience of matching items and guide
attention towards them in an automatic and spatially global manner (Berggren et al., 2017;
Desimone & Duncan, 1995; Eimer, 2014; Grubert & Eimer, 2016a, 2016b; Martinez-Trujillo &

Treue, 2004; Wolfe, 2021).

A central question in the attentional literature concerns the number of templates
that can be maintained simultaneously during visual search. While early models assume that
only a single attentional template can be active at one time (Houtkamp & Roelfsema, 2009;
Olivers et al., 2011), more recent evidence suggests that multiple attentional templates can
be held and used in parallel allowing individuals to search for more than one target feature
simultaneously (Barrett & Zobay, 2014; Berggren & Eimer, 2019, 2020; Christie et al., 2015;
Grubert & Eimer, 2016a, 2016b; Irons et al., 2012; Kerzel & Grubert, 2022; Moore &
Weissman, 2010; Ort et al., 2019). For example, Irons et al. (2012) showed that when
individuals searched for one of two equally likely target colours, spatially uninformative cues

matching either target colour, but not distractor colours, captured attention and facilitated
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faster responses when targets appeared at the cued location. This suggests that search

templates for both target colours were activated in parallel.

This ability to engage multiple templates in parallel is thought to be constrained by
the capacity of VWM, which is typically limited to around 3-4 items (Cowan, 2001). However,
vWM capacity varies across individuals (Awh et al., 2007; Cowan et al., 2005; Fukuda et al.,
2010b; Luck & Vogel, 2013) and individuals with higher VWM capacity are generally better at
maintaining multiple items, filtering out distractions and flexibly updating representations.
For instance, Fukuda and Vogel (2009) demonstrated that although low- and high-capacity
individuals could attend to a target equally well, low-capacity individuals were more
susceptible to involuntary attentional capture by irrelevant distractors. In a later study,
Fukuda and Vogel (2011) found that high-capacity individuals could recover attentional
control quicker after capture than low-capacity individuals. Similarly, Vogel et al. (2005)
showed that low-capacity individuals store more distractors in VWM resulting in reduced
efficiency. Together, these findings indicate that vWM capacity may not only reflect storage
guantity, but also the efficiency of attentional selection, particularly during the maintenance
of multiple templates. In support of this, Grubert et al. (2016) demonstrated that both
working memory (WM), and long-term memory (LTM) can support template based visual
search, though their study did not directly examine how these mechanisms vary across

individuals.

Given these observations, the critical question is whether individual differences in
vWM capacity predict the efficiency of visual search, particularly when multiple target
templates must be maintained simultaneously. While vWM capacity has been linked to goal

maintenance (Kane & Engle, 2003) and attentional control, including suppression of
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irrelevant and prioritisation of relevant items (Fukuda & Vogel, 2011; Vogel et al., 2005), few
studies have directly examined how individual capacity limitations affect the ability to deploy
multiple attentional templates in parallel. The question is critical because real world search
often involves searching for several possible targets at once, i.e. looking for multiple
ingredients down one aisle in the supermarket. Behavioural evidence suggests that
increasing the number of templates leads to a decline in search accuracy and reaction times
(Beck et al., 2012; Grubert & Eimer, 2016a, 2016b), but little is known about if and how

these performance costs vary across individuals as a function of their VWM capacity.

Some studies have reported inconsistent links between vWM capacity and visual
search performance, particularly in the light of individual differences. Kane et al. (2006)
found that while high-span individuals were more accurate overall, WM capacity did not
influence search slopes or speed. Similarly, Poole and Kane (2009) observed benefits for
high-span individuals only under specific conditions, such as when sufficient preparation
time was provided and distractors were present. These findings suggest that the link
between vVWM and search may only emerge when tasks involve the simultaneous
maintenance and selection of multiple templates, thus placing heavier demands on vWM

and attentional control.

Specifically, it remains unclear whether the capacity to store items in VWM is directly
correlated with the capacity to activate and use multiple attentional templates and whether
this is reflected in visual search performance. To assess these relationships more precisely,
neurophysiological markers, particularly event-related potentials (ERPs), offer valuable
insight into the deployment of attention in real time. Two ERPs are particularly relevant in

this context: the contralateral delay activity (CDA) and the N2pc. The CDA, a sustained



98

negativity over posterior electrodes contralateral to remembered items, refers to the
number of items actively maintained in vWM (Vogel & Machizawa, 2004). The CDA
amplitude increases with memory load and plateaus at an individual’s capacity limit, making

it a useful index of storage.

Feldmann-Wistefeld (2021) demonstrated that CDA amplitudes correlate with
individual differences in VWM capacity as measured by K. They showed that larger CDA
amplitudes were associated with higher behavioural capacity estimates, confirming the CDA
as a reliable neural index of VWM load. Extending this work to attention, Luria and Vogel
(2011) examined correlations between CDA amplitudes and individual differences in search
performance. They found that as search difficulty increased, CDA amplitudes also increased.
Importantly, they reported that individual differences in vWM capacity correlated with
search efficiency across all difficulty levels, suggesting that higher-capacity individuals
performed better overall, but relied less on active memory storage (as shown by reduced
CDA amplitudes). Further support comes from Carlisle et al. (2011), who found that CDA
amplitude was significantly correlated with search accuracy and response times. As
participants gained experience with the same target over repeated trials, both CDA
amplitude and its correlation with performance declined, suggesting a shift from WM to
LTM. These studies highlight that both task demands, and individual capacity independently

modulate the engagement of vWM during search.

In the domain of visual search, the N2pc component, a lateralised ERP associated
with the deployment of visual attention, reflects the selection of target-matching items
based on active attentional templates (Eimer, 1996; Luck & Hillyard, 1994). Importantly,

individual differences in N2pc amplitudes have been linked to search efficiency and vWM
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capacity (Gaspar et al., 2016), suggesting that the strength and precision of attentional
selection are directly related to internal VWM resources and again may reflect how many

templates can be concurrently activated and deployed during visual search.

To directly assess these preparatory template activation processes, Grubert and
Eimer (2018) developed the rapid serial probe presentation (RSPP) paradigm, a method that
tracks the real-time activation of attentional templates during search preparation using EEG.
In this method, participants search for colour defined targets while irrelevant probe displays
are presented rapidly (every 200ms) during the intervals between search displays. Each
probe contains a lateralised colour singleton that either matches a currently relevant target
or a distractor colour. If a target colour matching probe elicits an N2pc component, this
indicates that the corresponding attentional template was active and attracting attention at

that time, even though the probe display was irrelevant to the task.

Using the RSPP paradigm, Grubert and Eimer (2018) found that in single template
search, probe displays matching the target colour elicited N2pc components, while distractor
matching probes did not, providing clear evidence that target templates were transiently
activated during the preparation phase between search trials. In a follow up study, the RSPP
method was used to examine multiple template activation. In a two-colour search where the
relevant target colour alternated between trials, probes matching the upcoming and
previous target colours elicited reliable N2pc components (Grubert & Eimer, 2020),
suggesting that both colour templates were active, supporting a parallel template activation

account.

In a further study, Grubert and Eimer (2023) used the RSPP paradigm in a three-

template search task, where participants searched for one of three colour defined targets.
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Probes matching all three target colours elicited reliable N2pc components, suggesting all
three templates were active in parallel during search preparation. Interestingly, these probe-
evoked N2pcs did not decline in amplitude with increasing template load, suggesting that
increased template load did not necessarily weaken template activation at the group level.
This raises the question of whether the capacity to activate multiple templates is uniform or
varies across individuals. Grubert and Eimer speculated that maintaining three templates
may approach or exceed VWM for some individuals. However, because their study did not
include direct measures of individual vWM capacity, it remains unclear whether the ability
to activate multiple attentional templates varies systematically across individuals.
Furthermore, previous studies examining correlations between vWM and attention have
typically done so within a single task context, limiting the ability to assess how capacity
generalises across different domains. Consequently, the degree to which template activation

scales with VWM capacity, either behaviourally or neurally, remains an open question.

The current study aimed to address this gap in the literature by investigating whether
individual vWM capacity predicts search performance in a visual search task, particularly
when multiple attentional templates are required. To do this, we used two separate
paradigms, combining behavioural and electrophysiological measures of both VWM capacity
(K; CDA) measured during a change detection task, and search efficiency (reaction times,
error rates; N2pc) measured during a search task. In the change detection task, participants
were presented with one, two, or three colours, which determined the set size to be
remembered. In the visual search task, participants were also shown up to three colours and
were required to retain all of them, as the target colour could be any of those presented. To
capture the real time activation of target templates during search preparation, the RSPP

paradigm was embedded into the search task, allowing for direct measurement of whether
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and when specific templates are active. If VWM capacity constrains the number of
attentional templates that can be simultaneously activated during search, then we would
expect individuals with lower vVWM capacity to show reduced efficiency and weaker probe
N2pcs as the number of templates increases. In contrast, individuals with higher vWM
capacity may maintain efficiency up to two templates but show costs between two- and
three-colour conditions, reflecting the upper limit of their template capacity. Alternatively,

those with a VWM capacity exceeding three items may show no such cost.

4.2 Methods

4.2.1 Participants

Forty-two participants took part and either received £10/hour or course credits as
compensation for their time. The experiment was approved by the Ethics Committee of the
Psychology Department at Durham University and was conducted in accordance with the
Declaration of Helsinki. Participants gave informed written consent prior to testing. Seven
participants were excluded from analysis due to excessive eye movement artifacts (>40% of
trials lost during artifact rejection; a priori criterion). The remaining 35 participants were
between 18 and 30 years of age (Mage = 22.3, SDoge = 2.7). Thirty participants were female
and five were male. Three participants were ambidextrous, and the remaining participants
were all right-handed. All participants had normal or corrected-to-normal vision and no
colour deficiency (as tested with the Ishihara colour vision test; Ishihara, 1972). The sample
size of 35 was calculated by means of an a priori power analysis using MorePower 6.0.1
(Campbell & Thompson, 2012). To detect a significant correlation with an assumed alpha of
.05, power of .90, and the effect sizes reported by Zhong et al. (2024; r = .51, between the

N2pc amplitudes and K value), it was suggested that a minimum of 34 participants were
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required. We therefore consider this sample size (N=35) to be sufficient to reliably detect the

planned correlations.

4.2.2 Stimuli and procedures

Participants were sat in a dimly lit sound attenuated Faraday cage with an
approximately 90cm viewing distance from the monitor. Stimuli were presented on a 22-inch
MSI Optix G272 LCD monitor with a 100-Hz refresh rate and a resolution of 19201080
pixels. Stimulus presentation, timing, and response collection were controlled by PsychoPy
(psychophysics software in Python; Peirce et al., 2019) on an LG Pentium PC running under
Windows 10. All stimuli were presented on a black background. A central grey fixation point
was presented throughout the experimental blocks (CIE x, y colour coordinates: .327/.350;

luminance™~21.2 cd/m?, 0.2° x 0.2° of visual angle).

The experiment was tested in two sessions on non-consecutive days: the first session
was always the change detection task, and the second session was the visual search task.
Before each session, participants practised the respective task until they reached 75%

accuracy in the low-load condition. The practice data were not recorded.

4.2.2.1 Change detection task

Each trial started with the presentation of an indicator display for 200ms, which was
followed by a 200ms memory display. After a jittered retention interval of 800-900ms, the
test display was presented for 200ms (Figure 13A). The inter-trial interval (between the
offset of the test display in trial n-1 and the onset of the indicator display in trial n) was
2000ms. Indicator displays contained two grey arrowheads presented at 0.6° under and

above the central fixation on the vertical meridian, pointing towards the hemifield to be
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memorised. There were three equiprobable load conditions presented in an intermixed
fashion. Both memory and test displays showed coloured squares in both hemifields at 1°
eccentricity (Figure 13B). The locations depended on load but were determined randomly in
each trial. For the one-colour condition, each hemifield contained a single square on the
horizontal meridian. In the two-colour condition, each hemifield contained two differently
coloured squares at the 2, 4, 8, and 10 o’clock positions, and for the three-colour condition,
each hemifield contained three differently coloured squares atthe 1, 3,5, 7,9, and 11

o’clock positions. Squares subtended 0.5 x 0.5 degrees of visual angle.

Participants task was to memorise the colours of the squares on the left or right side
(as shown by the indicator) of the memory display and compare them to the colour set
shown on the same side of the test display. The relevant memory side was completely
randomised between trials. In no-change trials, the colours of the test display were identical
to the colours in the memory display. In change trials, one of the squares in the test display
had a new colour which was not previously present in the memory display. Participants were
instructed to press the up or down arrow key on a standard keyboard if they detected a
colour change or felt that the colours in the test display were the same as in the memory
display, respectively. The response-to-key mapping (change/no-change response on arrow
up/down key) and the hand-to-key mapping (left/right hand on arrow up/down key) was
counterbalanced across participants but was kept constant for each participant for the
duration of the whole experiment. The colours for the one, two or three squares on the
relevant memory side were randomly chosen from a set of six possible memory colours: red
(.670/.318), green (.268/.652), blue (.166/.153), yellow (.414/.506), pink (.362/.212) and
cyan (.205/.297). The colours for the squares on the irrelevant memory side were then

determined from the remaining memory colours plus brown (.494/.378) and grey
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(.328/.346), which only ever served as colours for squares on the irrelevant side of the

memory display. All colours were equiluminant (~9.0 cd/m?).

Each experimental block condition contained 36 trials, i.e., six trials for each
combination of load (1, 2 and 3 colours) and trial type (change, and no-change trial). Twenty

blocks were tested for a total of 720 trials in the change detection task.

Test display

A el
Retention
period
'\‘\f‘-f,—"'

No-change trial Change trial
200ms

/ Memory display

ITI: 1800ms

800ms with
(0,100ms) jitter

Indicator

B Other load conditions

One-colour Two-colour

200ms

Figure 13 Schematic illustration of the stimuli and temporal trial sequence in the change
detection task. Panel A: Each trial began with an indicator display containing two
arrowheads pointing either left or right, indicating the hemifield that was task-relevant for
that trial. This was followed by a memory display, a retention period, and then a test display.
Participants were instructed to remember the colours of the squares presented in the
relevant hemifield (left or right) during the memory display, and to report whether any
square in the same hemifield changed colour in the test display. Panel B: Example memory
displays for one-colour and two-colour load conditions.

4.2.2.2 Visual search task

Each trial started with the presentation of a stimulus display for 50ms, followed by a

150ms blank interval (200ms stimulus onset asynchrony). The first seven stimulus displays in
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each trial contained a probe display (probes 1 to 7 in Figure 14A), the eighth display

contained both a probe and search display, which was only presented for visual consistency.

Search displays were presented at an eccentricity of 1.4° from central fixation and
contained six vertically (0.2° x 0.6°) or horizontally (0.6° x 0.2°) oriented bars atthe 1, 3, 5, 7,
9, and 11 o’clock positions of an imaginary clock face. The orientations of the six bars were
selected independently and randomly for each search display. Each display contained six
bars in different colours (selected from the same colours used in the change detection task),
exactly one of which matched the target colour; the remaining five were non-target colours.
Target colours (either one, two or three colours) were chosen from one of two possible sets:
primary colours (red, green, blue) or mixed colours (pink, yellow, cyan). Non-target colours
were drawn from the colour set that did not contain the target colours as well as grey and
brown (never targets). In each trial, only one of the three target colours was response
relevant. The assignment of the six colours to the six bars was completely random as well as
the target bar location, with the exception that it appeared equiprobably on either side of

the display.

Participants task was to report the orientation (vertical/horizontal) of the target
colour bar in each trial by pressing the up/down arrow keys on a standard keyboard.
Participants were presented with a display indicating the one, two or three target colours for
the upcoming block. The response-to-key mapping (vertical/horizontal response on arrow
up/down key) and the hand-to-key mapping (left/right hand on arrow up/down key) was
counterbalanced across participants but was kept constant for each participant for the

duration of the whole experiment.
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Probe displays contained six items composed of four closely aligned dots, two on the
vertical, and two on the horizontal axis (0.1° x 0.1° for each dot, 0.25° x 0.25° for each four-
dot probe item). The probe items were presented at the same positions as the search bars
(1,3,5,7,9,and 11 o'clock) but closer to fixation (at an eccentricity of 0.5°). Five of the six
probe items were uniformly grey; the sixth item was either one of the target colours or a
random non-target colour. In the two- and three-colour conditions, target-colour probes
were equally likely to match any of that blocks assigned target colours. The probe singleton
locations were selected randomly and independently in each probe display, with the
following two restrictions: successive singleton probes were equally likely to appear on the
same or opposite display sides, but immediate repetitions of the exact probe location (on
the imaginary clock face) were not allowed. As a result, each probe display was equally likely
to be preceded and followed by probe displays that contained a colour singleton on the
same or the opposite side. This was done to ensure that lateralised responses to any
particular probe singleton would remain unaffected by any lateralised response triggered by
singletons in temporally adjacent probe displays. Participants were informed that probe

displays were task-irrelevant and could be ignored.

There were 120 blocks of 12 trials. Each trial consisted of eight stimulus displays
presented in a rapid serial presentation, shown in Figure 14A. The search load (one, two or
three colours) was determined randomly but equiprobably at the start of each block (40
blocks for each search load). Blocks were kept as short as possible and participants were
instructed not to blink during the blocks, if possible. The twelfth search display in each block
was followed by seven additional probe displays to keep stimulus conditions during the

post-target response interval identical across all 12 trials in a block. Thus, each block
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contained 12 search displays and 91 probe displays (7 probes preceding each of the 12

searches, plus 7 additional probes following the final search).

Search array E
with Probe S

50 ms

Probe 5

150 ms Two-colour

Probe 3

Three-colour

50 ms 150 ms

Probe 1
50 ms

Blank
150 ms

Figure 14 Schematic illustration of the stimuli and presentation times in the visual search
task (Panel A). Search displays contained six differently oriented (horizontal or vertical) bars.
One bar matched the target colour (e.g., red); the other five were non-target colours. Probe
displays were presented every 200ms in the intervals between search displays (probes 1-7)
and simultaneously with each search display. Each probe display contained a colour
singleton that either matched the target or a non-target colour. Panel B shows the trial
sequence for the two and three colour search conditions. The target colour for each trial was
randomly selected from the two or three cued colours indicated at the beginning of each
block.

4.2.3 Data analyses and EEG recordings

EEG was DC-recorded from 23 scalp electrodes (EasyCap, Brain Products) at standard

positions of the extended 10/20 system, and two HEOG electrodes placed at the outer
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canthi of the eyes. EEG data were recorded using the Brain Vision Recorder (BrainAmp DC
amplifier, Brain Products GmbH, Gilching, Germany) at a sampling rate of 500Hz with a 40Hz
low-pass filter. No other filters were applied after data acquisition. Impedances were kept
below 5kQ. The left earlobe served as online reference during data acquisition, but all
channels were re-referenced offline to linked earlobes. All EEG preprocessing was
conducted with the BrainVision Analyzer software (Brain Products GmbH, Gilching,
Germany). Data from trials with anticipatory (<200ms) or slow responses (>1500ms), were
excluded from the analysis. Trials with eye movements (exceeding £30uV in the bipolar
HEOG channel), blinks (exceeding +60uV at Fpz), and muscular movements (exceeding

+80uV in all other channels) were also excluded.

4.2.3.1 Change detection task
For the change detection task, error rates were used to calculate K values separately
for one, two and three colour conditions. Following the suggestions of Rouder et al. (2011),

K was calculated according to Pashler’s equation (Pashler, 1988):

=

where N is the number of memory items (set size), and h and f are the measured hit and

false alarm rates, respectively. Hit rates were calculated as

hits
" hits + misses

and false alarm rates were calculated as

false alarms

f_

false alarms + correct rejections
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The EEG was segmented into 1100ms time windows including a 100ms pre-stimulus
baseline and a 1000ms ERP time window following the onset of the memory displays. Data
from incorrect responses were excluded from ERP analyses. Artifact rejection resulted in an
exclusion of 16.2% of all trials (SD=12.2%, ranging between 1.5% and 33.8% across
participants). The remaining segments were averaged separately for left- and right-
hemifield memory squares in trials with one, two and three colours. CDA mean amplitudes
were quantified at lateral posterior electrodes PO7 and POS8, contralateral and ipsilateral to

the memory side, in the 350-950ms interval after memory display onset.

4.2.3.2 Visual search task

For the visual search task, EEG epochs (500ms) were locked to the onsets of the
probes (probes 1 to 7) and the search displays and included a 100ms pre-stimulus baseline
and a 400ms post-stimulus ERP time window. Data from the first and last seven probe
displays in each block were excluded from analysis as well as incorrect or missing responses.
Artifact rejection resulted in an exclusion of 10.2% of all epochs (SD=8.6%, ranging between
0.7% and 29.3% across participants). The remaining epochs were averaged separately for
each probe number (probes 1-7), search conditions (one, two and three colours) and probe
hemifield (left vs right). Separate averages were also computed for search displays with a
target in the left or right hemifield for each of the search conditions. Only correct trials were
included in the target N2pc analysis. N2pc components to probes were quantified based on
ERP mean amplitudes obtained at lateral posterior electrodes PO7 and POS8, contralateral
and ipsilateral to the side of a probe, in the 210-290ms interval after each respective probe
display onset. Target N2pcs in the search displays were computed with a 230-330ms interval

after each search display onset. The time windows were determined objectively by the
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collapsed-localiser method (Luck & Gaspelin, 2017), with £40ms around the peak amplitude
within a 150-350ms time window in a localiser waveform averaged using difference
waveforms over PO7/8 across all conditions and all participants.

Effect sizes are reported as Cohen’s d (Cohen, 1988) with a Cl of 95% for t-tests, and as
partial eta squared (np?) for F-tests. When necessary, Greenhouse-Geisser corrections were
applied to F-tests, and Bonferroni corrections to t-tests. All t-tests were two-tailed.
Correlations were assessed using Pearson’s r; when the assumption of normality was
violated (Shapiro-Wilk test, p<.05), a non-parametric approach (Kendall’s tau) was applied.

All statistical analyses were conducted with JASP statistical software (version 0.95.0.0).



4.3 Results

4.3.1 Working memory — Change detection task

4.3.1.1 Behavioural results

4.3.1.1.1 Mean K values

vWM capacity (K) values were entered into a repeated-measures ANOVA with the
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within-subjects factor load (1, 2 and 3 colours). There was a significant main effect of load,

F(2,68)=387.0, p<.001, n,?=.92, reflecting an increase in capacity across levels of load.

Follow-up t-tests showed a significant increase in capacity (K) from load 1 to load 2 (.95 vs

1.8), t(34)=40.1, p<.001, d=6.78, and from load 2 to load 3 (1.8 vs 2.3), t(34)=10.0, p<.001,

d=1.68. See Figure 15 for means.
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Figure 15 Mean vWM capacity (K) as a function of load (1, 2 and 3 colours). Error bars

K(mean)
2.3
1.8
.95
[ I |
1 2 3

Memory load

represent + 1 SEM.



112

4.3.1.1.2 Mean K values in High- and Low-K groups

Participants were divided via a median split at K=1.7 into High-K (N=20) and Low-K
(N=15) groups. A 2 (K group: High vs Low) x 3 (Load: 1, 2 and 3 colours) mixed-design ANOVA
was conducted on behavioural K values. Significant main effects of load, F(2,66)=910.3,
p<.001, 1,%=.97 and K group, F(1,33)=53.0, p<.001, n,?=.62 were found. As well as a load x K
group interaction, F(2,66)=53.9, p<.001, 1,?=.62. In both groups, K values increased with
load. Performance was highest at load 3 (High-K: M=2.6, SD=.18; Low-K: M=1.9, SD=.33),
followed by load 2 (High-K: M=1.9, SD=.07; Low-K: M=1.7, SD=.16) and lowest at load 1
(High-K: M=1.0; Low-K: M=.9). For both K groups, paired samples t-tests confirmed
significant K increases from load 1 to load 2 (all t>21.7, all p<.001) and load 2 to load 3 (all
t>3.9, all p<.002). The High-K group showed significantly higher K values at load 1, 2 and 3
(M=1.0, 1.9, 2.6) than the Low-K group (M=.9, 1.7, 1.9); all t>3.1, all p<.004. See Figure 16A

for mean K values and 16B and 16C for the distribution of K by group.
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Figure 16 Mean vWM capacity (K) as a function of load (1, 2, and 3 colours), shown
separately for High-K (filled circles) and Low-K (open circles) groups. Panel A displays group
means with red asterisks indicating significant differences between groups at each load level.
Error bars represent +1 SEM. Panel B shows individual participant data for the High-K group,
and panel C shows individual data for the Low-K group. Lines connect individual K values
across loads, demonstrating the within-subject increase in K.

4.3.1.2 ERP Results

4.3.1.2.1 Mean CDA amplitudes

CDA amplitudes were submitted to a repeated-measures ANOVA with load (1, 2 and
3 colours) as a within-subjects factor. There was a significant main effect of load,
F(2,68)=30.7, p<.001, n,?=.48. Descriptive statistics showed that mean CDA amplitudes
(CDA(mean)) became larger with increasing load: load 1 (M=-.01, SD=.70), load 2 (M=-.68,

SD=.73), and load 3 (M=-.98, SD=.75). Paired samples t-tests confirmed significant increases
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in CDA negativity from load 1 to load 2, t=5.6, p<.001, and from load 2 to load 3, t=2.9,
p=.006. Paired-samples t-tests were conducted comparing activity at PO7 and PO8
electrodes for each load. No significant difference was found at load 1, p=.912, but
significant lateralisation emerged at load 2, t=5.5, p<.001, and load 3, t=7.7, p<.001. See

Figure 17A for difference waves and 17B for means.
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Figure 17 Contralateral delay activity (CDA) as a function of load. Panel A shows CDA
difference waveforms at PO7/8 for loads of 1, 2, and 3 colours, with increased negativity
corresponding to higher loads. The shaded region indicates the CDA time window (350—-
950ms post-stimulus). Red asterisks denote significant CDA’s. Panel B shows mean CDA
amplitudes as a function of load, with values shown above each point and red asterisks
indicating statistically significant differences between adjacent loads. Error bars represent +1
SEM.

4.3.1.2.2 Correlations between mean behavioural K and mean CDA amplitudes

To examine the relationship between behavioural performance (K values) and neural
activity (CDA amplitudes), Pearson correlations were calculated at each load level. There was
no significant correlation found between the mean value of K (K(mean)) and the mean CDA

(CDA(mean)) across three loads, r(33)=—.24, p=.166 (Figure 18A). There was also no significant
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correlation found between K(oad1) and CDA(ioad1), r(33)=.27, p=.121. The scatterplot (Figure
18B) suggests a ceiling effect as many participants clustered near the maximum possible K
value of 1. A significant negative Pearson correlation was found between Kjoad2) and
CDA(i0ad2), r(33)=—.37, p=.029 (Figure 18C). A significant negative Pearson correlation also

emerged between K(ioads) and CDA(0ad3), 1(33)=—.35, p=.037 (Figure 18D).
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Figure 18 Scatterplots showing the relationship between contralateral delay activity (CDA)
and VWM capacity (K values) across mean values (Panel A) and individual loads (Panels B, C,
D). Each dot represents one participant. Panel A shows the correlation between mean CDA
amplitude and mean K across all loads. Bottom panels show correlations for load 1 (B), load
2 (C), and load 3 (D), with red dashed lines denoting ceiling values for K at each load level.
Pearson correlation coefficients (r) are displayed in each plot. Asterisks indicate significant
correlations (p<.05).
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4.3.1.2.3 Mean CDA amplitudes in High- and Low-K groups

A 2 (K group: High vs Low) x 3 (Load: 1, 2 and 3 colours) mixed-design ANOVA was
conducted on CDA amplitudes. Significant main effects of load, F(2,66)=32.8, p<.001,
np?=.50, and a significant load x K group interaction, F(2,66)=9.0, p<.001, n,?=.22, were
observed. The main effect of K group was not significant, F(1,33)=1.9, p=.179, 1,%=.05. In
both groups CDA amplitudes became more negative with increasing load. CDA amplitude
was largest at load 3 (High-K: M=-1.17, SD=.81; Low-K: M=-.72, SD=.59), followed by load 2
(High-K: M=—.95, SD=.60; Low-K: M=-.31, SD=.73) and weakest at load 1 (High-K: M=.11;
Low-K: M=—.17). In the High-K group, paired samples t-tests confirmed significant CDA
amplitude increases from load 1 to load 2, t(19)=9.5, p<.001, indicating a strong neural
response to increased VWM demand. However, the change from load 2 to load 3 was not
statistically significant, t(19)=1.6, p=.129. In contrast, Low-K individuals did not show a
significant change in CDA amplitude from load 1 to load 2, t(14)=.9, p=.371, but did exhibit a
significant increase from load 2 to load 3, t(14)=2.6, p=.021, suggesting a delayed neural
response to increasing memory demands with CDA enhancement emerging only at the
highest load. See Figure 19B for CDA differences/load costs. Significant lateralisation
emerged at all loads for the Low-K group (all t>2.2, all p<.042). However, significant
lateralisation was only observed at load 2 and load 3 for the High-K group (all t>.6, all
p<.001) and not at load 1 (p=.508). The High-K group showed significantly larger CDA
amplitudes than the Low-K group at load 2, t(33)=2.8, p=.008, and load 3 (marginal
significance), t(33)=1.8, p=.076. No significant group difference was found at load 1 (p=.247).

See Figure 19A for CDA mean amplitudes and 19C for difference waves for each group.
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Figure 19 Contralateral delay activity (CDA) as a function of load and vWM capacity (K)
group. A: mean CDA amplitudes at PO7/8 from 350-950ms post-stimulus, plotted against
load (1-3 colours), separately for High- (filled circles) and Low-K (open circles) groups. Red
asterisks indicate significant differences between groups and green asterisks represent
significant differences within groups. B: CDA load costs, calculated as difference scores
between successive loads (e.g., load 2 — load 1; load 3 — load 2), based on CDA difference
waveforms. Error bars represent +1 SEM. Panel C displays CDA difference waveforms at
PO7/8 for each load condition, shown separately for High-K (left) and Low-K (right) groups.
The shaded region indicates the CDA measurement window (350—950ms). The bottom
waveforms in each panel reflect CDA load costs. Red asterisks indicate significant differences

(p<.05).
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4.3.2 Attention — Visual search task

4.3.2.1 Behavioural results

4.3.2.1.1 Mean error rates and reaction times

Error rates (ERs) were entered into a repeated-measures ANOVA with the within-
subjects factor load (1, 2 and 3 colours). There was a significant main effect of load,
F(2,68)=280.4, p<.001, n,?=.90. Descriptive statistics showed a substantial rise in errors
across loads: load 1 (M=7.8%, SD=4.20), load 2 (M=19.0%, SD=6.64), and load 3 (M=25.8%,
SD=7.30). Paired-samples t-tests confirmed that each increase was significant: load 1 vs load
2, t(34)=14.2, p<.001 and load 2 vs load 3, t(34)=11.1, p<.001. Cohen’s d values indicated

small to moderate effect sizes (d=.25 and .15, respectively). See Figure 20A for mean ERs.

Reaction times (RTs) were submitted to a repeated-measures ANOVA with load (1, 2 and 3
colours) as a within-subjects factor. There was a significant main effect of load on RTs,
F(2,68)=219.8, p<.001, n,?=.87. RTs increased across loads: load 1 (M=616ms, SD=55.56),
load 2 (M=707ms, SD=66.74), and load 3 (M=752ms, SD=76.44). Paired-samples t-tests
confirmed these differences were significant: load 1 vs load 2, t(34)=6.0, p<.001, and load 2
vs load 3, t(34)=9.6, p<.001. As with error rates, Cohen’s d values were small (d=.19 and .10).

See Figure 20B for mean RTs.
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Figure 20 Search performance as a function of load. Panel A shows mean error rates (ER, %)
and Panel B shows mean reaction times (RT, ms) across three levels of load (1, 2, and 3
colours). Error bars represent +1 SEM. Red asterisks denote statistically significant
differences between adjacent loads (p<.05).

4.3.2.2 ERP Results

4.3.2.2.1 Mean target N2pc amplitudes

N2pc amplitudes were submitted to a repeated-measures ANOVA with load (1, 2,
and 3 colours) as a within-subjects factor. A significant main effect of load was found,
F(2,68)=47.6, p<.001, n,?=.58. Descriptive statistics showed that N2pc amplitudes became
smaller with increasing load: load 1 (M=-1.30, SD=.67), load 2 (M=—.74, SD=.53), and load 3
(M=—-.44, SD=.40). Paired-samples t-tests confirmed significant reductions in N2pc amplitude
between load 1 and load 2, t(34)=7.3, p<.001, and between load 2 and load 3, t(34)=3.8,
p<.001. Paired-samples t-tests were conducted comparing activity at PO7 and POS8
electrodes for each load. Significant lateralisation was observed at all load levels, all t>6.6,

all p<.001. See Figure 21A for difference waves and 21B for means.
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Figure 21 Target N2pc as a function of load. Panel A shows target N2pc difference waveforms
at PO7/8 for loads of 1, 2, and 3 colours, with increased negativity corresponding to lower
loads. The shaded region indicates the target N2pc time window (230—-330ms post-stimulus).
Red asterisks denote significant target N2pcs. Panel B shows mean target N2pc amplitudes
as a function of load, with values shown above each point and red asterisks indicating
statistically significant differences between adjacent loads. Error bars represent £1 SEM.

4.3.2.2.2 Correlations between mean behavioural K and mean target N2pc amplitudes

To examine the relationship between behavioural performance (K values) and neural
activity (N2pc amplitudes), Pearson correlations were calculated at each load level. No
significant correlation was found between K(joad1) and N2pc(ioad1), r(33)=—.05, p=.783 (Figure
22B). At load 2, the correlation approached significance, r(33)=—32, p=.058 (Figure 22C). At
load 3, the correlation was significant, (t=—24, p=.046; Figure 22D). Finally, a significant
negative correlation was found between Kimean)and N2pc(mean), r(33)=—35, p=.048 (Figure
22A). These findings indicate that individuals with greater K values tend to exhibit stronger

(i.e., more negative) N2pc amplitudes, particularly under higher load.



121

MV 17 szc(mean)
(o]
0
° (]
S ogg®
] *
O\%Q% r=-35
1= e 08
8
o
2 .
3
[ I i I \ |
0.5 1 15 2 25 3
K(mean)
B C D
uv 17 NZp‘I:uoadl) N2PC(aq2) N2PCl0aa3) .
0 00 ° o Doo © E
o I
4 6’%] * - OoDo ol
3 r=-32" ° r=-.24 B0 e
14 \Eé? ooo%
% r=_050 ..
-2 - CS 1
&
,3_
[ I I T T
5 1 15 2 25 3 05 1 15 2 25 3 05 1 15 2 25 3
I<(Ioadl) K(Ioadz) I<(Ioad3)

Figure 22 Scatterplots showing the relationship between target N2pc and vWM capacity (K
values) across mean values (A) and individual loads (B, C, D). Each dot represents one
participant. Panel A shows the correlation between mean N2pc amplitude and mean K
across all loads. Bottom panels show correlations for load 1 (B), load 2 (C), and load 3 (D),
with red dashed lines denoting approximate ceiling values for K at each load level. Pearson
correlation coefficients (r) are displayed in each plot. Red asterisks indicate significant
correlations (p<.05).

4.3.2.2.3 Mean target N2pc amplitudes in High- and Low-K groups

A 2 (K group: High vs Low) x 3 (Load: 1, 2 and 3 colours) mixed-design ANOVA was
conducted on N2pc amplitudes. A significant main effect of load was found, F(2,66)=46.8,
p<.001, 1,%=.59, indicating that N2pc amplitude varied systematically across load levels.

However, the main effect of K group was not significant (p=.174), nor was the load x K group
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interaction (p=.384). These results suggest that group-level N2pc differences were less
pronounced than for CDA. Despite the lack of interaction, follow-up comparisons were
conducted to explore trends between High-K and Low-K individuals. In both groups N2pc
amplitudes were attenuated with increasing load. N2pc amplitudes were largest at load 1
(High-K: M=-1.36, SD=.69; Low-K: M=-1.22, SD=.65), followed by load 2 (High-K: M=-.89,
SD=.49; Low-K: M=-.53, SD=.54), and weakest at load 3 (High-K: M=-.50, SD=.40; Low-K:
M=-.37, SD=.40). In the High-K group, paired samples t-tests confirmed significant N2pc
amplitude decreases from load 1 to load 2, t(19)=4.6, p<.001, and from load 2 to load 3,
t(19)=3.6, p=.002. For participants in the Low-K group, N2pc amplitudes also decreased
significantly from load 1 to load 2, t(14)=6.1, p<.001. However, the change from load 2 to
load 3 was not significant (p=.137). This suggests that while attentional selection sharply
declined with the initial increase in memory demands, it plateaued thereafter, indicating a
possible upper limit in flexible resource allocation within this group. See Figure 23B for N2pc
differences/load costs. Significant lateralisation emerged at all loads for both groups (High-
K: all t>5.6, all p<.001; Low-K: all t>3.6, all p<.003). At each load, the High-K group showed
larger N2pc amplitudes than the Low-K group. However, no significant differences were
found at load 1, t(33)=.6, p=.530, or load 3, t(33)=1.0, p=.327. At Load 2, group differences
approached significance, t(33)=2.0, p=.052. See Figure 23A for N2pc mean amplitudes and

23C for difference waves for each group.
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Figure 23 Target N2pc activity as a function of load and vWM capacity (K) group. A: Mean
target N2pc amplitudes at PO7/8 from 230-330ms post-stimulus, plotted against load (1-3
colours), separately for High- (filled circles) and Low-K (open circles) groups. Red asterisks
indicate significant differences between groups and green asterisks represent significant
differences within groups. B: Target N2pc load costs, calculated as difference scores between
successive loads (e.g., load 2 —load 1; load 3 — load 2), based on target N2pc difference
waveforms. Error bars represent +1 SEM. Panel C displays target N2pc difference waves at
PO7/8 for each load condition, shown separately for High-K (left) and Low-K (right) groups.
The shaded region indicates the target N2pc measurement window (230-330ms). The
bottom waveforms in each panel reflect target N2pc load costs. Red asterisks indicate
significant differences (p<.05).

4.3.3 Cross task correlations (change detection and visual search task)

4.3.3.1 K vs N2pc load costs between load 1 and load 2
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To explore the relationship between behavioural K improvement and N2pc
efficiency, a Pearson correlation was conducted between K(;-1) (change in K value from load
1 to load 2) and N2pc(-2) (change in N2pc amplitude from load 1 to load 2). A significant
correlation was observed, r(33)=.34, p=.048, suggesting larger differences in K were
associated with smaller N2pc load costs. However, the assumption of bivariate normality
was violated (Shapiro—Wilk, W=.854, p<.001) and Kendall’s tau did not reach significance

(t=.148, p=.211), indicating the result should be interpreted cautiously (Figure 24A).

4.3.3.2 K vs N2pc load costs between load 2 and load 3

Pearson correlations were computed between Kz-2) (change in K value from load 2 to
load 3) and N2pc(2-3) (change in N2pc amplitude from load 2 to load 3). A significant
correlation was observed, r(33)=—43, p=.009, indicating that individuals who showed larger

differences in K between load 2 and load 3 exhibited larger N2pc load costs (Figure 24B).

4.3.3.3 CDA vs N2pc load costs between load 1 and load 2

To examine whether changes in neural activity associated with attentional selection
(N2pc) were related to changes in VWM maintenance (CDA), a Pearson correlation was
conducted between N2pc-2) (change in N2pc amplitude from load 1 to load 2) and CDA2-1)
(change in CDA amplitude from load 1 to load 2). A significant correlation was observed,
r(33)=—33, p=.050, indicating that smaller differences in CDA amplitude were associated

with larger N2pc load costs (Figure 24C).

4.3.3.4 CDA vs N2pc load costs between load 2 and load 3

A Pearson correlation was conducted between N2pc(2-3) (change in N2pc amplitude

from load 2 to load 3) and CDAz-2) (change in CDA amplitude from load 2 to load 3). A



125

significant correlation was found, r(33)=.34, p=.047, indicating that individuals who
exhibited larger differences in CDA amplitude from load 2 to load 3 also showed larger

N2pc load costs (Figure 24D).
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Figure 24 Scatterplots illustrating the relationships between changes in N2pc amplitude and
changes in behavioural VWM capacity (K) and CDA amplitude across loads. A: Correlation
between N2pc amplitude difference from load 1 to load 2 (N2pc(:-2)) and K difference (K(2-1)).
B: Correlation between N2pc(2-3) and K(3-2). C: Correlation between N2pc(1-2) and CDA
difference (CDA(2-1)). D: Correlation between N2pc(;-3) and CDAs-2). Red asterisks indicate
significant correlations (p<.05).

4.3.4 Rapid serial probe presentation (RSPP)

To determine the time course of template activation in preparation for search, N2pc

components triggered in each of the seven successive probes (probes 1-7) were measured
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by computing ERPs at posterior sites PO7/8, contralateral and ipsilateral to the side of a
probe, separately for probes that matched the upcoming target-colour (target-colour
probes) and probes that did not match the upcoming target-colour (distractor-colour
probes). Probe N2pc difference waves, obtained by subtracting ipsi from contralateral ERPs
at PO7/8 for each individual probe, are shown in Figures 25-28. Figure 25-27 displays target-
colour probe N2pcs and Figure 28 displays distractor-colour probe N2pcs. All figures show
probes 1-7 in a temporally continuous fashion, separately for High-K (top panel of the
figures) and Low-K (bottom panel of the figures) groups. Note that N2pc components were
extracted individually for each probe (probes 1-7) and that Figures 25-28 simply illustrate
these probe N2pcs in a successive format. As probes appeared every 200ms, each individual
probe was therefore presented within the N2pc time interval of its immediately preceding
probe. The visualisations begin with probe 1, which was the first probe presented after a
preceding search display and is shown from 100ms before onset to 350ms post-onset. For
probes 2—7, each is shown in a 200ms window from 150 to 350ms post-onset, with
temporally interpolated data points between adjacent intervals. The onset of each probe is
marked by a vertical line, and the N2pc measurement window (210-290ms post-stimulus) is

shaded in grey in all panels.

4.3.4.1 N2pc target-colour probes

To assess modulation of the N2pc across the preparation interval, ERP mean
amplitudes (210-290ms post-probe onset) at PO7/8 were entered into repeated-measures
omnibus ANOVA. For target-colour probes, separate analyses were conducted for High- and
Low-K groups. Each analysis included the within-subject factors of load (1, 2 and 3 colours),

probe number (probes 1-7), and laterality (contralateral vs ipsilateral). For the High-K group,
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there was a significant main effect of laterality, F(1,19)=22.0, p<.001, 1,%=.54, confirming the
presence of an N2pc. This effect was qualified by a significant laterality x probe number
interaction, F(6,114)=13.1, p<.001, n,?=.41. There was no interaction with load. Follow-up
ANOVAs with the factors probe number (probes 1-7) and laterality (contralateral vs
ipsilateral) revealed significant N2pcs at probe 5, F(1,19)=16.0, p<.001, probe 6,
F(1,19)=23.1, p<.001, and probe 7, F(1,19)=39.8, p<.001. Paired-samples t-tests were
conducted to compare ERP amplitudes at contralateral (PO8) and ipsilateral (PO7) electrodes
for each probe and load condition. At load 1, the earliest probe to produce a reliable N2pc
was probe 5 (t(19)=3.7, p=.005), continuing at probe 6 (t=3.4, p=.003) and probe 7 (t=5.0,
p<.001; Figure 25). At load 2, lateralised activity was significant at probe 6 (t=2.1, p=.048)
and again at probe 7 (t=4.5, p<.001; Figure 26). At load 3, significant N2pcs emerged at
probe 5 (t=3.0, p=.008) probe 6 (t=2.2, p=.039) and probe 7 (t=4.5, p<.001; Figure 27). These

results confirm robust N2pc components in the later stages of the preparation period.

For the Low-K group, there was no significant main effect of laterality, F(1,14)=1.4,
p=.260, 11,%°=.09. Notably, there was a significant laterality x probe number, F(6,84)=6.7,
p<.001, 1,%=.32 and laterality x load interaction, F(2,28)=3.8, p=.035, n,?=.21. To investigate
load-specific lateralisation, paired samples t-tests were conducted separately for each load.
At load 1, significant lateralised effects were observed at probe 6 (t=3.7, p=.005) and probe 7
(t=3.4, p=.003; Figure 25). At load 2, probe 7 also elicited a significant N2pc (t(19)=2.1,
p=.048; Figure 26). However, load 3 probes did not elicit any significant N2pcs (Figure 27). At
probe 7, a significant effect of laterality was found, F(1,14)=14.3, p=.002, as well as a
significant laterality x load interaction (F(2,28)=3.7, p=.038), indicating that the presence of

an N2pc at this later time point depended on the level of load.



128

4.3.4.2 N2pc distractor-colour probes

No reliable N2pcs were observed for distractor-colour probes, in either the High-K or
Low-K group. For the High-K group, there was no main effect of laterality, F(1,19)=.68,
p=.420, 1,%=.04, but there was a significant interaction between laterality and load,
F(2,38)=7.7, p=.002 and laterality and probe number, F(6,114)=2.5, p=.048. For the Low-K
group, the omnibus ANOVA yielded no significant main effects but there was a significant
interaction between laterality and probe number, F(6,84)=2.5, p=.029. Only isolated t-tests
reached marginal significance (e.g., probe 6, t=2.1, p=.050), but these were not consistent
across the preparation window and did not reflect reliable N2pc components (Figure 28).
Overall, the pattern confirms that only target-colour probes elicited reliable N2pcs, and
these emerged most robustly for the High-K group in later stages of the preparation period.
Distractor colour probes failed to produce reliable N2pc components, suggesting that they

were not selected during search preparation.
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Figure 25 N2pc difference waveforms obtained by subtracting ipsilateral from contralateral
ERPs triggered by the target-colour probes in the one-colour search, High-K group (top
panel) and Low-K group (bottom panel). Here, difference waves for the seven probes (probes
1-7) are illustrated in a temporally continuous fashion, but the seven individual probe N2pc
were extracted independently of each other from the raw signal. Probe onsets are indicated
by vertical lines, and probe N2pc time windows by shaded areas (210—290ms after the onset
of each individual probe). Statistically reliable probe N2pcs are marked by asterisks.
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Figure 26 N2pc difference waveforms obtained by subtracting ipsilateral from contralateral
ERPs triggered by the target-colour probes in the two-colour search, High-K group (top
panel) and Low-K group (bottom panel). Difference waves triggered by individual probes are
shown in the same continuous fashion as in Figure 14. Probe onsets are indicated by vertical
lines, and probe N2pc time windows by shaded areas (210-290ms after the onset of each
individual probe). Statistically reliable probe N2pcs are marked by asterisks.
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Three-colour search
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Figure 27 N2pc difference waveforms obtained by subtracting ipsilateral from contralateral
ERPs triggered by the target-colour probes in the three-colour search, High-K group (top
panel) and Low-K group (bottom panel). Difference waves triggered by individual probes are
shown in the same continuous fashion as in Figure 14. Probe onsets are indicated by vertical
lines, and probe N2pc time windows by shaded areas (210-290ms after the onset of each
individual probe). Statistically reliable probe N2pcs are marked by asterisks.
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Figure 28 N2pc difference waveforms obtained by subtracting ipsilateral from contralateral
ERPs triggered by the distractor-colour probes in top panel: One-colour search, middle
panel: Two-colour search, and bottom panel: Three-colour search. Waveforms are plotted
separately for High- and Low-K groups. Difference waves triggered by individual probes are
shown in the same continuous fashion as in Figure 14. Probe onsets are indicated by vertical
lines, and probe N2pc time windows by shaded areas (210-290ms after the onset of each
individual probe.

4.4 Discussion

The goal of the present study was to examine whether individual differences in vWM
capacity predict the ability to activate and use multiple attentional templates during visual
search. To our knowledge, no prior work has examined this relationship across multiple task
contexts; here we tested it using two distinct paradigms: a change detection task to index
vWM capacity via K and CDA and an RSPP search task that assessed search capacity and real
time template activation through error rates, reaction times and target- and probe-evoked

N2pc components, respectively.

The results from the change detection task confirmed the effectiveness of both
behavioural (K) and electrophysiological (CDA) measures in indexing VWM capacity. Both K
values and CDA amplitudes increased with load, and this pattern was observed across both
high- and low-K groups. Importantly, K and CDA amplitudes were significantly correlated:
participants with higher K values showed larger CDAs, whereas those with lower K values
showed smaller CDAs, supporting the validity of the CDA as a marker of vWM capacity. More
detailed analyses of CDA load effects revealed a capacity dependent pattern. High-K
individuals showed no reliable CDA at load 1, but significant amplitude differences between
load 1 and load 2, suggesting they only began to recruit sustained maintenance at load 2.
The additional increase from load 2 to load 3 was smaller, consistent with a capacity near 2-3

items (Mean K=2.6 at load 3 in this group). In contrast, for low-K individuals, the opposite



134

pattern emerged. They already showed a substantial CDA at load 1, leaving less room for
further loads. The load 1 to load 2 increase was small, with minimal further change from
load 2 to load 3, consistent with an average capacity below 2 items (Mean K=1.9 at load 3 in
this group). Thus, this ‘double difference’ arises because high-K individuals begin to express
CDA at higher loads, plateauing higher, whereas low-K individuals show CDA from load 1 and
thus plateau at a lower level. These findings suggest that individuals not only differ in overall

capacity, but also in how they distribute memory resources across increasing loads.

In the visual search task, behavioural performance declined as the number of
potential target templates increased: with both error rates and reaction times increasing
across one, two and three search loads. While these load-related costs are consistent with
prior work (Ort et al., 2019), they likely reflect post-selection processes rather than
limitations in template activation itself. At the neural level, across all participants, N2pc
amplitudes decreased with increasing search load. This reduction most likely reflects a
greater proportion of trials in the load 2 and load 3 colour search in which the target was not
selected, minimising the averaged N2pc relative to the load 1 condition. Follow up analyses
showed that this attenuation was driven primarily by a subset of low-K participants.
Importantly, VWM capacity (K) predicted these N2pc responses. High-K participants tended
to produce larger N2pc components overall. One plausible interpretation is that this reflects
a higher likelihood of successful target selection across trials, rather than a stronger single
trial neural response, although this cannot be determined definitively from the present data.
They also showed significant reductions from load 1 to 2 and again from load 2 to 3,
reflecting sensitivity to increasing template competition. This pattern aligns with accounts of
mutual inhibition between simultaneously activated templates (Kerzel & Grubert, 2022; Ort

& Olivers, 2020) and suggests high-K individuals can engage in more flexible template
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prioritisation. In contrast, low-K participants also showed reduced N2pc amplitudes at higher
search loads, but significant load costs were only observed between load 1 and 2, not from
2-3. By load 2 the N2pc was already very small, leaving little room for further reduction at
load 3, potentially indicating their inability to activate more than two (often fewer than two)
templates (Olivers et al., 2011). Relevantly, as ERPs are averages, amplitude differences are
also influenced by the number of target selected trials. Low-K participants contributed more

late selection trials at higher loads, which attenuated their N2pc.

The correlational analyses between tasks provided key insights into how vWM
capacity, measured behaviourally (K) and neurally (CDA) in the change detection task, relates
to the efficiency of attentional template activation in visual search. Participants with higher K
values and larger CDA amplitudes showed increased N2pc responses across increasing
search load, suggesting that individuals with greater vWM capacity were better able to
activate and maintain multiple attentional templates. Importantly, these correlation patterns
varied for the different load conditions. For example, smaller differences in K and CDA
amplitudes between load 1 to 2, as produced by low-K individuals, were associated with
larger N2pc reductions from load 1 to 2. This suggests that low-K individuals experienced
more attentional costs when required to activate more than one template. In contrast, larger
K and CDA differences between load 2 and 3, as produced by high-K individuals, were
associated with larger N2pc reductions from load 2 to 3. This suggests that high-K individuals
maintained attentional efficiency even when managing three potential templates. Overall,
these findings reinforce the fact that VWM varies across individuals (Awh et al., 2007; Cowan
et al., 2005; Fukuda et al., 2010a; Luck & Vogel, 2013), and so does the capacity to activate

and use multiple attentional templates. Low-K individuals showed larger costs between one
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and two-colour search, while high-K individuals showed larger costs between two- and

three-colour search, consistent with a capacity threshold that differs across individuals.

To track target template activation in real time, N2pc components were recorded in
response to brief probe displays containing a colour singleton that either matched the
upcoming target or a random distractor colour. These displays appeared in rapid succession
between search displays. Similar to previous studies that employed analogous RSPP
procedures (Grubert & Eimer, 2018, 2020, 2023), probes that matched the fully predictable
upcoming target-colour in the one-colour task triggered N2pc components when they
appeared during the 800ms interval prior to the arrival of the next search display. This shows
that these probes attracted attention, and that a corresponding colour-specific target
template was active at the moment when they were presented. However, in the current
study, participants were required to maintain up to three potential target colours, each of
which was likely to appear on any given trial. Thus, template activation could not be driven
by certainty about the upcoming target colour but instead reflect the ability to maintain
multiple target templates in parallel. Importantly, these effects varied as a function of
individual vWM capacity. High-K participants demonstrated robust N2pc components to
target-colour probes, particularly during the later stages of the preparation interval (probes
5-7), across all load conditions. This suggests that individuals with higher vWM capacity were
able to activate multiple target templates simultaneously, allowing them to selectively
respond to matching probes even for up to three colours. In contrast, low-K participants
showed delayed and attenuated N2pc probe responses. While some activity emerged for the
one- and two-colour conditions at probes 6 and 7, no reliable N2pc was observed in the
three-colour condition, suggesting individuals were unable to activate three templates

simultaneously. These differences suggest that low-K individuals may rely on sequential
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rather than parallel template activation, which is in line with accounts that propose

limitations in simultaneous template use (Olivers et al., 2011).

While the presence of reliable probe-evoked N2pcs in the three-colour condition,
particularly for the high-K group, suggests parallel template activation, this finding seems to
contradict the behavioural and target-evoked N2pc costs observed under the same three-
colour condition. This disassociation mirrors findings observed in Grubert et al. (2025), who
found that probe-evoked N2pcs remained robust during three-colour search, even as search
performance declined. This suggests that while templates may be activated in parallel,
increasing the number of active templates reduces the efficiency of attentional guidance

during the actual search task.

One possible explanation, derived from Grubert et al. (2025), is that probe-evoked
N2pcs reflect not the absolute strength of template activation, but rather the interactive
effect between a visual probe and an activated template. Specifically, when a probe matches
one of the currently held target colours, it may transiently boost the activation of that
template, thus eliciting a reliable N2pc even if the overall activation is reduced under high-
load conditions. This may account for the presence of similar probe N2pc amplitudes across
all load conditions despite increased behavioural costs in the higher load searches. Indeed,
the present findings are consistent with this interpretation. High-K individuals showed
sustained probe-evoked N2pcs across all loads and low-K individuals exhibited delayed and

weaker N2pc responses, especially in the three-colour condition.

These results show that the RSPP method provides a unique window into template
dynamics during search preparation. However, probe-evoked N2pc components should be

interpreted not as direct measures of template strength, but as reflections of attention being



138

captured by stimuli that match active templates. The combination of probe-evoked N2pc
amplitudes, target-evoked N2pc amplitudes, and behavioural performance suggests that
while individuals can activate multiple templates in advance, the efficiency of using these

templates for attentional selection declines as capacity limits are approached.

While the current study provides strong evidence that individual differences in vWM
capacity limit the ability to activate and use multiple attentional templates during visual
search, several caveats should be acknowledged. Firstly, although both K and CDA
amplitudes provided converging indices of VWM capacity, it cannot definitively be
determined whether observed search limitations reflect a hard storage limit or simply the
difficulty to allocate or prioritise templates under competitive load. Factors such as strategic
control, motivation, or long-term memory contributions (Grubert et al., 2016) may also
modulate template activation. Secondly, although stronger N2pc responses were linked to
higher capacity individuals, it remains unclear whether this reflects more efficient selection,
stronger template activation, or both. Finally, while the current design isolated capacity
using separate tasks for VWM and visual search, real-world contexts often integrate memory,
attention, and learning over time. Thus, this may introduce context effects that are not

present in natural search environments.

Taken together, the present findings provide direct support for the hypothesis that
vWM capacity constrains the number of attentional templates that can be concurrently
activated during visual search. Consistent with parallel template accounts (Beck et al., 2012;
Berggren & Eimer, 2019; Christie et al., 2015; Grubert et al., 2016; Grubert & Eimer, 2016a,
2016b, 2023; Irons et al., 2012; Kerzel & Grubert, 2022, Kristjdnsson & Kristjansson, 2018;

Moore & Weissman, 2010; Ort et al., 2019), the current results show that multiple templates
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can be activated at once. However, critically, the extent to which this is possible varies across
individuals. High-capacity individuals can flexibly maintain and prioritise multiple active
templates, while low-capacity individuals show inability to simultaneously activate more
than one or two templates. These findings help to explain previous group level results
showing stable template activation across increasing load (Grubert & Eimer, 2023) with the
possibility that such effects are not the same across individuals. More broadly, they show
that vWM not only stores visual information but can be employed to guide top-down

attentional selection.

In summary, the current study provided evidence that individual differences in vWM
measured via CDA and K in a change detection task, predict the efficiency of attentional
guidance during visual search involving multiple target templates. By employing two distinct
paradigms and tracking real-time template activation using the RSPP method, we were able
to assess how capacity-related neural markers generalise across cognitive domains. The
findings suggest that VWM capacity constrains not only how much information can be
maintained, but also how flexibly that information can be used to guide attention when
multiple templates are active. This cross-task relationship highlights the functional
integration of memory and attention systems and underscores the importance of

considering individual capacity limits when examining variability in search performance.
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Chapter 5: General Discussion
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5.1 Summary of key findings across studies

This thesis set out to examine VWM capacity through a detailed investigation of K.
Specifically, the overall aim of this thesis was to move beyond a fixed conception of VWM
capacity (K) and examine a more functional, flexible and context-dependant approach.
Across three chapters, | examined how K is shaped by perceptual parameters (Chapter 2)
and learned context (Chapter 3) and how it relates to individual differences in attention
(Chapter 4). This work not only contributes to the bigger picture that VWM capacity is not
merely a fixed limit but also offers new insights into the functional nature of VWM,
expressing K as a dynamic construct shaped by both internal and external demands. In this
final chapter (Chapter 5), | firstly go over the key findings across the three studies, then
discuss their broader theoretical and methodological implications, consider limitations and
future directions and conclude with the contribution this thesis makes to our understand of

vWM capacity.

While K is often interpreted as a fixed indicator of how many items an individual can
store, the studies presented here challenged this view by suggesting that K reflects both
individual differences and flexible aspects of cognitive functioning, shaped by task demands

and environmental regularities.

Study 1 (Chapter 2) examined whether K remains stable when perceptual parameters
of the memory display are systematically varied. Across five behavioural experiments,
various perceptual manipulations (stimulus density, stimulus eccentricity, stimulus
organisation, stimulus type and spatial variability of stimuli) were altered in a change
detection task. Results demonstrated that while individual K values were reliable across

conditions (i.e. participants with a high K in one condition tended to score high in another),
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absolute K values varied significantly depending on the perceptual structure of the display.
All experiments, apart from Experiment 3, showed significant differences across conditions,
suggesting that K is not robust against low level visual properties. Nevertheless, the
consistency within participants demonstrates that K still shows meaningful trait-like

differences.

Study 2 (Chapter 3) extended this by asking whether vWM capacity can be enhanced
through contextual learning. The study embedded repeated spatial configurations into a
change detection task to see if environmental regularities could support VWM performance
and enhance capacity. Two experiments explored this under different conditions.
Experiment 1 tested whether repeated configurations improve vWM performance across
two memory loads (two and four). Participants showed significantly higher K values in
repeated configurations as opposed to novel ones. These behavioural gains were also shown
by changes in the CDA. These findings suggest that learned contexts not only improve
performance but also modulate the neural efficiency of memory maintenance. Experiment 2
investigated more specifically whether this effect depends on the spatial relevance of the
display. Participants performed the change detection task under two conditions: visuospatial
(context was defined by colour and location) and non-spatial (context was defined by colour
only). The benefits of the repeated configurations were only found in the visuospatial
condition, suggesting spatial regularities are key for contextual learning effects in vWM. This
study provided strong evidence that contextual learning can directly support vVWM capacity,

but only when the learned context is spatially relevant.

Study 3 (Chapter 4) investigated whether individual differences in K predict the

number of attentional templates that can be activated and used during visual search. This
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study combined a change detection task (to measure K and CDA amplitudes) with an RSPP
visual search task to assess attentional selection via N2pc components. Across three
memory loads (1, 2, and 3), individuals with higher K showed higher behavioural accuracy
and more robust probe- and target-evoked N2pcs in the search task. These results suggest
that those with higher vWM capacity can maintain and use more templates simultaneously.
These results reinforce the idea that capacity is not only about how much information can

be stored, but how efficiently that information can guide attention.

5.2 Theoretical implications for models of VWM capacity

The findings across all three studies have important implications for how VWM is
conceptualised within existing frameworks. Rather than supporting a single framework, the
results here draw to a bigger picture of hybrid and integrative models, which incorporate

core aspects from discrete-slot, fixed resource and interference models of VWM capacity.

Discrete-slot models propose a fixed number of items (three to four) that can be held
in VWM, regardless of their features (Cowan, 2001; Luck & Vogel, 1997). The findings from
Study 1 provide mixed support for this model. For example, in Experiment 1a, K peaked at
five colours but declined when increasing to seven colours, suggesting a capacity limit of
around four items, consistent with previous research also supporting a discrete-slot model
(Luck & Vogel, 1997; Rouder et al., 2008; Vogel et al., 2001). However, in Experiment 1b,
many distractors impaired capacity relative to trials without distractors, despite the target
set size remaining fixed. This experiment indicates that distractor interference can diminish
capacity even before a slot limit is reached. This finding is not easily explained by the
discrete-slot model which is based purely on item count. Similarly, the discrete-slot model

struggles to account for the differences observed across conditions in Experiment 2. In
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Experiment 2a and 2b, K declined as eccentricity increased from near to far conditions,
suggesting that eccentricity can modulate capacity even within the same set size. As neither
item complexity or set size changed, these effects are difficult to explain with both slot and
resource models. Instead, these results support interference-based accounts (Oberauer &
Kliegl, 2001), which propose that it is not only the number of items stored but how well they

can be differentiated in space.

Perceptual grouping in Experiment 3 had no effects on capacity estimates, suggesting
that Gestalt principles may not consistently enhance encoding under these conditions,
inconsistent with previous research which finds strong differences in gestalt principles (Jiang
et al., 2000; Peterson & Berryhill, 2013; Woodman et al., 2003; Xu, 2002, 2006; Xu & Chun,
2007). In Experiment 4, K varied largely by stimulus type, supporting previous research
(Alvarez & Cavanagh, 2004). Results showed higher K values for letters than for shapes,
demonstrating that item complexity influences capacity, consistent with flexible resource-
based predictions. Zhang and Luck’s (2008) hybrid model suggests that multiple slots can be
assigned to a single item to increase representational precision when fewer items are
encoded. In other words, when the total number of items are below an individual’s
maximum capacity, the ‘unused’ slots do not remain inactive but can instead be devoted to
strengthening the representation of existing items, meaning each item benefits from more
memory resources. Thus, this could help explain the high K values observed in the letter
trials, where fewer complex features may have allowed for precision enhancing slot
allocation. In Experiment 5, K declined in the randomised locations condition, consistent
with previous research (Jiang et al., 2000; Logie et al., 2011) which aligns with interference-
based models (Oberauer & Kliegl, 2001, 2006). This model states that when spatial or

feature bindings vary, items compete for representation. Thus, capacity appears reduced,
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not because fewer items can be stored, but because their representations are more

vulnerable to interference.

Study 1 highlights the importance that no single capacity model fully captures the
dynamics of VWM capacity. Collectively, the results of Study 1 are best explained by hybrid
(Zhang & Luck, 2008) or interference-based models (Oberauer & Kliegl, 2001, 2006) which
incorporate aspects of slot-based approaches with dynamic encoding constraints. These
models suggest that interference, spatial crowding, or perceptual competition can reduce
capacity, even without increased set size or complexity of items (Davelaar et al., 2005;
Oberauer & Kliegl, 2006). Overall, Study 1 shows that VWM capacity is not purely restricted

by item limits but is shaped by how visual information is organised and structured.

While Study 1 specifically emphasised how perceptual structure modulates vWM
performance, Study 2 shifted focus to the influence of contextual regularities on vWM
capacity. The findings from Study 2 provide strong support for the view that vVWM capacity is
not strictly determined by fixed item limits but can be flexibly modulated by learned
regularities in the environment. Thus, the observed capacity improvements under repeated
spatial configurations in this study are difficult to settle with traditional slot-based models
(Cowan, 2001; Luck & Vogel, 1997) which assume capacity is fixed regardless of context.
Instead, and like Study 1, the results in Study 2 are better accounted for by hybrid models of
vWM capacity, such as Zhang and Luck’s (2008) proposal. In repeated configurations, with
stable spatial regularities, this allocation may become more efficient. These results are
further supported by the interference-based model (Oberauer & Kliegl, 2006) which

suggests that VWM is not only limited by quantity but also item interference. For instance,



146

repeated configurations, compared to novel configurations, may reduce the overlap

between stored features, minimising interference, thus allowing for more efficient storage.

Neural evidence from the CDA in Study 2 also presents further evidence to these
interpretations. As such, the CDA is understood to reflect the number of items held in
memory (Vogel & Machizawa, 2004) but it may also reflect the quality of the representation
(Luria et al., 2016). CDA amplitudes in Study 2 were found to be modulated by contextual
regularities in the display. For example, in Experiment 2, the CDA was reduced in the
repeated (consistent) configurations compared to the novel ones, despite identical set sizes.
This reduction suggests that fewer resources were needed to maintain the same number of
items when repeated configurations could guide encoding. Rather than reflecting a drop in
stored items in the repeated configuration condition, the reduced CDA may indicate less
effortful maintenance due to reduced competition. The findings from Study 2 also have
important implications for research that emphasises the context-sensitive nature of VWM.
For instance, studies on statistical learning suggest that vWM can encode structured
environments better by exploiting spatial or temporal regularities (Brady & Oliva, 2008;
Brady et al., 2009). Alike Study 2, this process is often implicit, thus participants are unaware

of repeated configurations yet still show improved behavioural and neural performance.

Together the findings of Study 2, like those of Study 1, move away from slot-based
approaches and support more hybrid (Zhang & Luck, 2008) and interference-based models
(Oberauer & Kliegl, 2001, 2006). Capacity here appears to be shaped by environmental
structure and prior learning. Thus, when input is more predictable, vWM capacity improves
and fewer resources are needed to maintain the information, as shown by the reduced CDA

amplitude. Overall, the findings of Study 2 stress that capacity is sensitive to regularities in
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the environment, supporting the idea that vWM operates as a context-sensitive and

adaptive system.

Shifting from an external focus to an internal focus, Study 3 provided important
theoretical insight into the role of attentional control in individual differences in vWM
capacity. The shift from external contextual factors in Study 2 to internal control processes in
Study 3 allowed us to understand a more comprehensive view of VWM as shaped not only
by the structure of the information processed but by the cognitive systems ability to manage

that information.

The findings from Study 3 are consistent with Unsworth and Engle’s (2007) dual-store
model. This model argues that vWM capacity reflects both the ability to maintain
information in primary memory (a capacity limited attentional store) and the efficient search
and retrieval of information from secondary memory. Both abilities play a vital role in active
maintenance and retrieval of goal-related information, and it is suggested that individual
differences in vWM capacity mainly stem from fluctuations in these two abilities. Thus, high-
K individuals outperform low-K individuals not because they store more items, but because
they are more effective at maintaining goal relevant information and resisting interference
from irrelevant representations. The results from Study 3 match this account: high-K
participants showed stronger neural indices of attentional deployment (N2pc) and WM
maintenance (CDA). This supports the idea that attentional control, not just storage,
underlies effective vWM performance. Furthermore, as shown by Engle and colleagues
(lkowska & Engle, 2010; Kane & Engle, 2003), individuals with higher vWM capacity are

better at executing top-down control, particularly in complex tasks. Thus, in the light of
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Study 3’s findings, this may have translated into a better ability to maintain three target

templates in mind.

Following the same pattern as Study 1 and Study 2, the findings from Study 3 are also
compatible with hybrid models of capacity (Zhang & Luck, 2008). Participants who
demonstrate larger attentional control may be able to flexibly allocate resources where
needed, resulting in stronger encoding and more efficient search performance. Likewise,
interference-based models (Oberauer & Kliegl, 2006) can also offer insight into these
findings. Perhaps high-K individuals may be more efficient at resolving competition between
overlapping representations, particularly when target features must be maintained and then

retrieved amongst distractor items.

Importantly, the findings from Study 3 help to reassess the concept of capacity in the
broader attentional system. Rather than being a fixed limit, vWM capacity appears to reflect
successful coordination between attention and memory, specifically regarding attentional
templates, supported by the converging evidence from behavioural measures (K) and neural
indices (CDA and N2pc components). Overall, these findings underpin the need for

theoretical models of VWM to account for both storage and selection processes.

Altogether, the findings from this thesis support a multi-factorial view of VWM
capacity. Whilst discrete-slot models capture a limit of around 3-4 items, they are insufficient
to explain variability produced by perceptual parameters, learned regularities or the
guidance of attention. Therefore, the present thesis adopts hybrid models as a more
comprehensive account, capable of accommodating the range of findings observed across all
three studies (Davelaar et al., 2005; Oberauer & Kliegl, 2001, 2006; Zhang & Luck, 2008).

Hybrid models are well suited to capture this complexity in that they incorporate multiple
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mechanisms beyond just a fixed item limit. These include slot-based precision for a limited
number of high-quality representations, flexible resource allocation based on item
relevance, interference dynamics that constrain encoding and retrieval, and attentional
control mechanisms. As opposed to conflicting one model over another, this thesis
emphasises the importance of integrative approaches that account for both structural and
functional capacity. K serves as an effective behavioural index, but its interpretation is
enhanced by combining it with neural data and experimental manipulations that probe

encoding strategies, attentional selection, and learning effects.

5.3 Limitations and future directions

While the findings of this thesis offer valuable insights into the flexible and dynamic
nature of VWM capacity, several caveats must be acknowledged as well as potential avenues

for future research.

While K is widely adopted for estimating the number of items held in VWM, it is built
on the assumption of slot-based storage and thus struggles to account for fluctuations in
encoding precision, implicit learning or attentional lapses, as presented within the three
studies in the current thesis. Alternative methods of estimating capacity, such as the ‘fixed-
capacity + attention model’ (Rouder et al., 2008), add an attentional lapse parameter to
estimates of VWM capacity. Adding an attentional lapse parameter accounts for trials in
which participants are inattentive to the task. Participants often make errors on trials that
should be well within their capacity limits (e.g., set size 1) and this addition of a lapse
parameter can help explain these dips in performance. Unlike the method of K, where a K
value is computed for each set size, this model uses a log-likelihood estimation technique

that estimates a single capacity parameter by considering performance across all set sizes
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and change probability conditions. Importantly, this model assumes that data are obtained
for at least one sub-capacity set size and errors made on this set size would reflect an
attentional lapse. If the model is fit to data that do not contain at least one sub-capacity low
set size (e.g., set size 1 or 2), then the model will provide invalid parameter estimates. For
instance, Van Snellenberg et al. (2014) applied this model to calculate capacity for a change
detection task and reported low reliability in the estimated capacity parameter, which also
failed to correlate with other WM tasks. This outcome was possibly due to their high set
sizes (4 and 8), resulting in poor model fit. In contrast, Study 3 of the present thesis did
include lower set sizes (1, 2 and 3), making it especially suitable for applying such models.
Applying the ‘fixed capacity + attention’ framework here could have helped distinguish true
capacity limitations from attentional disengagement. This would have been particularly
valuable given the studies focus on the relationship between vWM capacity and attentional

control.

Another important consideration for this thesis is the role of experience, through
either explicit practice or implicit learning, in shaping VWM capacity. Research shows that
practice can free up WM resources by making responses more automatic, thus leaving more
resources for complex processing (Beilock & DeCaro, 2007; Beilock et al., 2007; Chein &
Schneider, 2005). Particularly under high load, practice can reduce susceptibility to
distraction, a benefit for individuals specifically more prone to interference (Forster & Lavie,
2007). This is particularly relevant considering the ongoing popularity of whether training
affects WM capacity (Melby-Lervag & Hulme, 2013; Shipstead et al., 2012). This
interpretation is supported by Xu et al. (2018), who looked at how consistent estimates of
capacity are from day to day. They collected thirty-one sessions of change detection

performance spanning 60 days and found that while participants’ relative K values remained
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consistent across sessions, absolute performance slightly improved with practice. These
findings suggest that while absolute performance can improve with repeated task exposure,
the measurement of individual differences in capacity remains robust over time. More
specifically, the results highlight the role of experience in optimising VWM performance,

even without explicit strategy.

Similar to this broader view, Study 2 provides a complementary example of how prior
exposure through implicit learning can enhance VWM. Although participants in Study 2 did
not specifically undergo extended training, repeated exposure to spatial configurations led
to improved performance for those displays. However, one specific caveat of Study 2 was the
inability to assess when implicit learning of repeated configurations occurred. Repeated and
novel trials were analysed across the entire task without dividing performance into epochs,
making it difficult to determine at what point participants began to benefit from the
regularities. Incorporating epoch-based analysis would have allowed a more specific
examination of performance over time and determine how quickly these repeated
configurations were learnt. Together the findings from long-term practice studies and Study
2 stress the importance that vWM capacity is adaptively modulated by familiarity and

contextual predictability.

5.4 Conclusion

This thesis set out to clarify the nature of VWM capacity as both a stable, trait-like
individual difference and a flexible, state-like system shaped by environmental and cognitive
context. Whilst K remains a widely used and robust measure of how many items can be held
in VWM capacity, findings across all three studies demonstrate that vWM capacity is not

fixed. Instead, it is shaped by perceptual parameters (Study 1), implicit learning (Study 2),
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and it is related to attentional control (Study 3). These results extend beyond traditional slot-
based models and support more hybrid assumptions which reflect the dynamic nature of
vWM capacity that affects how visual information is selected, structured, and prioritised.
Thus, future models should move beyond viewing capacity as fixed and instead look at how

performance reflects both underlying constraints and the flexible use of cognitive resources.
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