
Durham E-Theses

Contributions to Nonparametric Predictive Inference:

Classi�cation and Performance Evaluation

GHONEM, HADEER,ABDOU,ABDELKADER

How to cite:

GHONEM, HADEER,ABDOU,ABDELKADER (2025) Contributions to Nonparametric Predictive

Inference: Classi�cation and Performance Evaluation, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/16348/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/16348/
 http://etheses.dur.ac.uk/16348/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Contributions to Nonparametric

Predictive Inference: Classification

and Performance Evaluation

Hadeer A. Ghonem

A Thesis presented for the degree of

Doctor of Philosophy

Statistics Group

Department of Mathematical Sciences

University of Durham

England

September 2025

Dedicated to
My Beloved Family

Contributions to Nonparametric Predictive

Inference: Classification and Performance Evaluation

Hadeer A. Ghonem

Submitted for the degree of Doctor of Philosophy

September 2025

Abstract

Nonparametric predictive inference (NPI) is a statistical methodology which uses im-

precise probability to quantify uncertainty. In imprecise probability, lower and upper

probabilities are assigned to events to represent uncertainty about the events. NPI pro-

vides lower and upper probabilities for future events based on observed data.

Since NPI uses imprecise probability, methods based on the NPI approach provide

predictions which are, by nature, imprecise, making it challenging to compare their per-

formance directly with methods based on classical probability. This highlights the impor-

tance of studying the performance of the methods based on the NPI approach. Examining

their performance when predictions take the form of a single value, an interval or a more

general set of values, is important. This thesis contributes to NPI-based methods by

investigating their performance across different scenarios of predictive inference.

In classification, the Direct Nonparametric Predictive Inference (D-NPI) method is

based on the NPI approach. This method uses a splitting criterion, Correct Indication

(CI), which relies on NPI lower and upper probabilities. Imprecise classification and

multi-label classification are two important problems within the area of classification.

In imprecise classification, a classifier, which is known as imprecise classifier, predicts a

set of class labels rather than a single class label. In multi-label classification, a single

data point in a dataset, which is known as an instance, can be associated with multiple

labels simultaneously. This thesis applies D-NPI to ensemble methods, imprecise clas-

sification and multi-label classification, and investigates its performance across different

classification problems. Experimental studies are conducted to evaluate the performance

of the proposed methods using several measures and statistical tests. Further studies are

iv

carried out to compare the performance of the proposed methods to other methods from

the literature.

The results obtained from the proposed ensemble methods, bagging and random for-

est, indicate their effectiveness compared to the D-NPI method. The D-NPI-based ran-

dom forest method performs well compared to the well known random forest method from

the literature. In imprecise classification, some of the proposed imprecise classifiers have

strong performance compared to other methods. In multi-label classification problems,

the results, according to various evaluation measures, show that the best performance

is observed for methods which are based on the NPI approach for most of the datasets

considered.

This thesis further contributes to the new use of performance evaluation measures

for imprecise probability inferences focusing on an NPI-based method for bivariate data.

Performance measures for imprecise probability methods are required to consider both

the accuracy and the imprecision of predictions. These measures include loss functions as

well as a new interval score measure, designed with three weights to evaluate the perfor-

mance of prediction intervals. This thesis investigates the performance of an NPI method

for bivariate data in different scenarios using the introduced performance measures, and

compares its performance with an alternative method. The results show that the per-

formance measures are effective in assessing the performance of the method, enabling

investigation of the accuracy and the imprecision of intervals, and comparing different

scenarios. Using the interval score measure enables evaluating the performance in terms

of both accuracy and precision, selecting its weights depends on the requirements of the

application.

Declaration

The work in this thesis is based on research carried out at the Department of Mathemat-

ical Sciences, Durham University, England. No part of this thesis has been submitted

elsewhere for any other degree or qualification and it is all my own work unless referenced

to the contrary in the text.

Copyright © 2025 by Hadeer A. Ghonem.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged”.

v

Acknowledgements

Writing this thesis has been a journey of learning and personal growth. First and fore-

most, I would like to say ”Alhamdulillah”.

I would like to express my deep appreciation and gratitude to my supervisors, Prof.

Tahani Coolen-Maturi and Prof. Frank Coolen, for their invaluable guidance, patience,

and support. They have been more than supervisors; they have been like family through-

out my PhD journey, making this process not just a scholarly pursuit but a truly enriching

experience. I am deeply grateful for all that I have learned from them.

My special thanks and love go to my beloved family, Mum, Dad, sisters, and brother,

for their unconditional love, prayers, and endless encouragement. Their support during

the most challenging moments, has kept me going.

I would like to extend my gratitude to my friends and colleagues for the discussions

and their encouragement when I needed it the most. Their shared experiences have made

my journey not only bearable but truly memorable. They have influenced my growth in

ways I can’t fully express.

I would also like to express my gratitude to Prof. Thomas Augustin at the University

of Munich for welcoming me during my research visit. I am grateful for interesting

discussions with him and the group at the University of Munich, allowing me to expand

my insights.

I would also like to express my appreciation to the Engineering and Physical Sciences

Research Council (EPSRC) for the financial support, which made this research possible.

A special thank you goes to the University of Durham for providing me with the resources

and academic environment to carry out this research.

vi

Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Preliminaries 1

1.1 Introduction . 1

1.2 Imprecise probabilities . 3

1.3 Nonparametric predictive inference (NPI) 4

1.3.1 NPI for circular data . 6

1.3.2 NPI for Bernoulli data . 6

1.3.3 NPI for multinomial data . 8

1.4 Classification trees . 9

1.5 Classification trees using NPI . 11

1.5.1 Direct-NPI for binary data . 12

1.5.2 Direct-NPI for multinomial data 16

1.6 Thesis outline . 19

2 Bagging and random forest with NPI 21

2.1 Introduction . 21

vii

Contents viii

2.2 Bagging and random forest . 23

2.3 NPI for bagging and random forest 25

2.4 Experimental setup . 27

2.4.1 Performance comparison of proposed methods and base classifier . 27

2.4.2 Performance comparison of proposed methods and existing ap-

proaches . 32

2.5 Conclusions . 36

3 Imprecise classification with NPI 39

3.1 Introduction . 39

3.2 NPI model for multinomial data . 41

3.3 Direct-NPI for imprecise classification 42

3.4 Performance measures . 46

3.4.1 Performance evaluation metrics 46

3.4.2 Statistical tests . 49

3.5 Performance evaluation . 51

3.5.1 Experimental setup . 51

3.5.2 Results and discussion . 52

3.6 Conclusions . 61

4 Multi-Label classification with NPI 63

4.1 Introduction . 63

4.2 Label Powerset (LP) method for multi-label classification (MLC) 65

4.2.1 MLC via LP transformation . 66

Contents ix

4.2.2 Imprecise classification for MLC via LP transformation 68

4.3 Performance evaluation . 71

4.4 Experiments . 73

4.4.1 Predicting a single subset of labels (Method 1) 74

4.4.2 Predicting a set of subsets of labels (Method 2) 80

4.5 Conclusions . 84

5 Performance evaluation of NPI with bivariate copula 88

5.1 Introduction . 88

5.2 Preliminaries . 91

5.3 Performance evaluation measures 93

5.4 Performance evaluation via simulation study 98

5.5 Comparison with existing method 107

5.6 Conclusions . 113

6 Conclusions and future work 115

Appendix 120

A Extra material for Chapter 1 120

A.1 Pseudocode of the D-NPI algorithm 120

A.2 Example . 121

B Extra material for Chapter 2 125

C Extra material for Chapter 3 127

C.1 Pseudocodes for the imprecise classifiers 127

C.2 Additional results . 131

Contents x

D Extra material for Chapter 5 139

D.1 Illustrations of the intervals [lk, uk] 139

D.2 Extended results for loss function 149

D.3 Extended results for interval score 160

Bibliography 174

Chapter 1

Preliminaries

1.1 Introduction

In the field of statistics, the assessment of the performance of statistical methods is a

crucial aspect of model evaluation, ensuring that models and methods are both reliable

and valid. By systematically assessing the statistical methods, decision-makers can en-

sure that the derived insights are neither biased nor misleading. Performance evaluation

provides a framework for recognising valid models and refining methodologies to improve

predictive accuracy. Whether applied in predictive methods or inferential statistics, per-

formance evaluation plays a pivotal role in reducing overconfidence in model predictions.

For example, in classification, model performance evaluation provides an estimate of

model accuracy and reliability, reflecting its true performance rather than overestimating

its effectiveness due to overfitting, thereby its efficiency can be improved.

Imprecise probability-based methods frequently provide indeterminate predictions,

which makes comparing with classical methods that are based on precise probability

models complicated and performance evaluation challenging. In particular, Nonparamet-

ric Predictive Inference (NPI) is a frequentist statistical framework that relies on minimal

modelling assumptions and uses imprecise probability to quantify uncertainty [15]. NPI

provides lower and upper probabilities for events involving a future random quantity

based on observed data. As a result, predictions from NPI-based methods are basically

imprecise. Therefore, studying the performance of NPI methods is challenging.

When assessing predictions, the evaluation method used depends on the type of the

prediction. Prediction types include single-value predictions, set-based predictions, and

1

Introduction 2

interval predictions. A single-value prediction provides a precise value but it risks being

entirely incorrect if the prediction value deviates from the true value, including traditional

classification methods [24]. A set-based prediction offers a set of possible values. The

prediction is considered correct if the true value falls within this set, such as in imprecise

classification [4]. Although this approach increases the possibility of a correct prediction,

the set might be too large. An interval prediction provides a range within which the true

value is expected to fall [89]. Evaluation methods assess whether the interval contains the

true value while also considering the width of the interval. For example, in classification,

an instance might be associated with a single class label. A classical classifier predicts a

single class label, while an imprecise classifier predicts a set of class labels.

In classification, various algorithms have been developed based on the NPI approach

[7, 12, 17]. Abellán et al. [7] constructed classification trees using NPI Model for Multi-

nomial data (NPI-M), with the maximum entropy measure used for selecting the best

attribute to split the trees. Alharbi [12] presented a recent method for classification

that is entirely based on the NPI approach. This method, named Direct NPI classifica-

tion algorithm (D-NPI), introduces a split criterion based on the NPI lower and upper

probabilities, which is called Correct Indication (CI).

In real-world applications, datasets used to build classification trees often contain

uncertainty, noise, and incomplete information. Traditional classification methods assign

a single class label to each instance, which can lead to overconfident and potentially

misleading predictions. Assigning a set of class labels rather than a single class label to

an instance offers a more robust and cautious approach, addressing the limitations of the

traditional classification methods.

In Multi-label classification, each instance can be associated with multiple class labels,

rather than being assigned to a single class label. Multi-label classification addresses

scenario in which class labels overlap, which describe the situation in which an instance

is simultaneously assigned multiple labels.

This study aims to investigate different types of predictions resulting from NPI-based

methods. It introduces an application of the D-NPI method to bagging and random

forest methods, providing deeper insights into its performance. The study also presents

extensions of the D-NPI method to imprecise classification. Furthermore, this thesis

contributes to multi-label classification based on the D-NPI method, investigating its

Imprecise probabilities 3

applicability and effectiveness in complex scenarios.

A further method in this thesis considers problems with bivariate data, which is based

on the NPI approach. Coolen-Maturi et al. [29] introduced a semi-parametric predictive

method to combine NPI with bivariate parametric copulas. They used NPI for the

marginals, followed by estimating the dependence structure between random quantities

using a bivariate parametric copula. They conducted a comprehensive study to evaluate

the performance of the method by deriving lower and upper NPI probabilities for events

involving a bivariate future observation. This thesis introduces a novel use of performance

measures to evaluate the semi-parametric predictive method, enabling a more detailed

analysis from a different perspective.

This chapter establishes the necessary foundations for Chapters 2, 3, and 4, while the

introduction of the semi-parametric predictive method is presented in Chapter 5. Section

1.2 presents an overview of imprecise probability. An overview of the NPI approach for

different data types is presented in Section 1.3. Section 1.4 provides the main concepts

and methods of classification. Section 1.5 introduces the D-NPI method, for both binary

data and multinomial data. Finally, the structure of the thesis is outlined in Section 1.6.

1.2 Imprecise probabilities

The idea of using imprecise probabilities dates back to the middle of the 19th century and

was first proposed by Boole [19]. Since then, imprecise probabilities have been applied

in a wide area of statistics, including predictive inference [45, 67], artificial intelligence

[112], and robust Neyman-Pearson testing [14, 73]. Recently, there has been increasing

activity in this area by researchers from various backgrounds, leading to special issues in

academic journals [42, 44].

In classical probability, a precise probability is assigned to an event, while imprecise

probability provides an interval of lower and upper probabilities to the event, representing

uncertainty about the event. Let Ω be a sample space, and let A be a set of events.

Imprecise probability involves assigning an interval probability, [P (A), P (A)], to an event

A, where 0 ≤ P (A) ≤ P (A) ≤ 1 for all A ∈ A, to quantify uncertainty rather than using

precise probability. Here, P (A) denotes the lower probability, while P (A) represents

the upper probability. In classical probability theory, a probability P (A) ∈ [0, 1] is

Nonparametric predictive inference (NPI) 4

assigned to each event A, which describes uncertainty about A, where P (A) satisfies

Komogorov’s axioms [15]. Generally speaking, classical probability is a special case of

imprecise probability when P (A) = P (A) for all A ∈ A. Absence of information about

event A can be represented by P (A) = 0 and P (A) = 1. Weichselberger [110] defined the

structure M:

M = {p(.) : P (A) ≤ p(A) ≤ P (A),∀A ∈ A},

where p(.) is a set function on A in classical probability theory which satisfies Kol-

mogorov’s axioms. The lower and upper probabilities of the event A are defined as

follows:

P (A) = inf
p(.)∈M

p(A), ∀A ∈ A,

P (A) = sup
p(.)∈M

p(A), ∀A ∈ A.

The lower and upper probabilities are conjugated, that is P (A) = 1 − P (Ac), where

Ac is the complement of the event A. The lower probability P (A) reflects the information

in favour of A, while 1 − P (A) reflects the information in favour of Ac. If A and B are

disjoint, lower probability is superadditive, and upper probability is subadditive,

P (A ∪B) ≥ P (A) + P (B) ∀A,B ∈ A, with A ∩B = φ,

and

P (A ∪B) ≤ P (A) + P (B) ∀A,B ∈ A, with A ∩B = φ.

In the real world, the information about an event A is often not sufficient for using

precise probability to quantify uncertainty. Using the lower and upper probabilities is

more informative, as it can reflect the amount of information. Hence, imprecise proba-

bility can offer advantages compared to precise probability, as it can allow for a better

representation of the uncertainty about A.

1.3 Nonparametric predictive inference (NPI)

Nonparametric predictive inference (NPI) is a frequentist inference framework based on

Hill’s assumption A(n) [69, 70], it uses only few modelling assumptions enabled by using

Nonparametric predictive inference (NPI) 5

imprecise probabilities to quantify uncertainty [15].

The assumption A(n) was first proposed by Hill [69] for statistical inference on fu-

ture observations, without requiring specific prior knowledge of the underlying distribu-

tion. Let X1, X2, ..., Xn+1 be real-valued and exchangeable random quantities, and let

n observations x(1) < x(2) < ... < x(n) represent the order statistics of data xi, where

i = 1, 2, ..., n. Define x(0) = −∞, and x(n+1) = ∞ for simplicity of notation. Assume

there are no ties between data points, where xi 6= xj for all i 6= j. The future obser-

vation, Xn+1, is equally likely to fall within each open interval Ij = (x(j−1), x(j)), where

j = 1, 2, ..., n+ 1 with equal probability. Therefore, A(n) is defined as [71]:

P (Xn+1 ∈ Ij) =
1

n+ 1
, for j = 1, 2, ..., n+ 1.

So the data x1, x2, ..., xn split the real-line into n + 1 intervals and the probability that

the future observation falls within any interval (x(j−1), x(j)) is 1/(n+ 1). The NPI lower

and upper probabilities for the event Xn+1 ∈ B, are defined as

P (Xn+1 ∈ B) =
1

n+ 1
|{j : Ij ⊆ B}|,

and

P (Xn+1 ∈ B) =
1

n+ 1
|{j : Ij ∩B 6= φ}|.

The NPI lower probability is obtained by considering only the probability mass that

has to be in B, corresponding to a probability mass of 1
n+1

for each interval Ij, provided

that the entire interval is fully contained within B. The NPI upper probability is achieved

by including all probability mass that could possibly lie within B, which corresponds to a

probability mass of 1
n+1

for each interval Ij, provided that the intersection of Ij and B is

non-empty. For m ≥ 1 future observations, Hill’s assumptions A(n), A(n+1), ..., A(n+m−1)

can be applied subsequently [13]. The need to use NPI methods arises from the need

to make inferences based on observed data, using few assumptions. NPI is suitable in

situations where there is limited information about the random quantities of interest.

NPI provides an approach not only for predicting a single future observation but also for

events involving multiple future observations. NPI methods have been applied in various

applications in statistics [31]. NPI methods have been used for different types of data

Nonparametric predictive inference (NPI) 6

such as Bernoulli data [30], multinomial data [33, 34], real-valued data [35], and ordinal

data [37, 52].

1.3.1 NPI for circular data

Circular data, or directional data, are measured on a cyclical scale where the beginning

and end points coincide, unlike linear data, which are measured on a straight scale with

fixed endpoints. The A(n) assumption is not suitable for circular data, as they are not

represented on the real line. The Circular-A(n) assumption, denoted by A○
(n)

, was pro-

posed for prediction of a future random quantity Xn+1 for the circular data [31]. Assume

n ordered circular observations xi, i = 1, 2, ..., n, so that n intervals on a circle are created

by these data. According to the assumption A○
(n)

, a future random quantity, Xn+1, falls

within each open interval Cj = (xj, xj+1), where j = 1, 2, ..., n and Cn = (xn, x1), with

equal probability, as [31],

P (Xn+1 ∈ Cj) =
1

n
, for j = 1, 2, ..., n.

This assumption is related to the exchangeability of n+1 circular random quantities, in

the same way that A(n) is related to the exchangeability of real-valued random quantities.

In [31], Coolen presented the NPI lower and upper probabilities for a future observa-

tion, Xn+1, based on A○
(n)

assumption. Suppose B is a segment of the circle on which

the circular data are represented. The NPI lower probability for the event Xn+1 ∈ B,

P (Xn+1 ∈ B), is derived by considering only the probability mass assigned to intervals

Cj that fall completely within B. The NPI upper probability, P (Xn+1 ∈ B), is de-

rived by summing all probability masses assigned to intervals Cj that have a non-empty

intersection with B.

1.3.2 NPI for Bernoulli data

Coolen [30] presented NPI for Bernoulli data, which provides NPI lower and upper prob-

abilities for m future observations based on n observed values. The NPI for Bernoulli

random quantities relies on a latent variable representation, in which Bernoulli data are

represented by real-valued observations with unknown threshold value such that obser-

vations on one side are considered successes and those on the other side failures [30].

Nonparametric predictive inference (NPI) 7

Consider a sequence of n+m exchangeable Bernoulli trials, where each trial can result in

either a ’success’ or a ’failure’, and the observed data consists of s successes out of the first

n observations. Let Xn
1 be the random number of successes in the first n trials, then, due

to the assumed exchangeability of the trials, Xn
1 = s provides a sufficient representation of

the data for the inferences. Let Xn+m
n+1 be the random number of successes in trials n+1 to

n+m. Let Rt = {r1, r2, . . . , rt}, with 1 ≤ t ≤ m+1 and 0 ≤ r1 < r2 < · · · < rt ≤ m, and

let
(
s+r0
s

)
= 0 for ease of notation. The NPI upper probability for the event Xn+m

n+1 ∈ Rt,

given that Xn
1 = s, for s ∈ {0, 1, . . . , n}, is given by [30]:

P (Xn+m
n+1 ∈ Rt|Xn

1 = s) =

(
n+m

n

)−1 t∑
j=1

[(
s+ rj
s

)
−
(
s+ rj−1

s

)](
n− s+m− rj

n− s

)
.

(1.1)

The corresponding NPI lower probability can be derived using the conjugacy property,

P (A) = 1− P (Ac), where Ac is the complementary event of A,

P (Xn+m
n+1 ∈ Rt|Xn

1 = s) = 1− P (Xn+m
n+1 ∈ Rc

t |Xn
1 = s), (1.2)

where Rc
t = {0, 1, . . . ,m} \Rt. These NPI lower and upper probabilities were derived by

Coolen [30] using Hill’s assumptions A(n), A(n+1), ..., A(n+m−1) and counting arguments.

The
(
n+m
n

)
different orderings of the observed data and future observations, based on

Hill’s assumptions, are equally likely. For each of these orderings, the n + m values of

latent variables partition the real line into n + m + 1 intervals, and the success-failure

threshold value can be in any of these intervals. The counting method for these NPI

lower and upper probabilities is explained in details in Aboalkhair [9]. For illustrative

purposes, consider the case when m = 1, the NPI lower and upper probabilities for the

event Xn+1
n+1 = 1|Xn

1 = s, are given by:

P (Xn+1
n+1 = 1|Xn

1 = s) =
s

n+ 1
, P (Xn+1

n+1 = 1|Xn
1 = s) =

s+ 1

n+ 1
. (1.3)

Correspondingly, for the event Xn+1
n+1 = 0|Xn

1 = s, the lower and upper probabilities are:

P (Xn+1
n+1 = 0|Xn

1 = s) =
n− s
n+ 1

, P (Xn+1
n+1 = 0|Xn

1 = s) =
n− s+ 1

n+ 1
. (1.4)

The case when m = 1 is presented here due to its relevance in Section 1.5. Further

Nonparametric predictive inference (NPI) 8

details about NPI for Bernoulli quantities can be found in [30].

1.3.3 NPI for multinomial data

Coolen and Augustin [33, 34] have introduced Nonparametric Predictive Inference for

Multinomial data model (NPI-M) as an alternative model to Walley’s Imprecise Dirichlet

Model (IDM) [107]. The NPI-M is based on the A○
(n)

assumption [31], which is presented

in Section 1.3.1. Coolen and Augustin developed the NPI-M for both scenarios when the

number of categories is known [34] and when it is unknown [33]. Throughout this study,

primary attention is given to the scenario in which the number of categories is known and

denoted by K. Assume that a known number of categories K ≥ 3. When K = 2, the

NPI for Bernoulli data is more appropriate [30] as it results in less imprecision; however,

the NPI-M can then also be used. In this section, the NPI-M is summarised for the case

when K is known.

The NPI-M is based on a probability wheel representation, where each categorical

observation represented by a single segment of the wheel. A probability wheel consists

of equally sized segments, each is an area between two lines from the centre of the wheel

to its circumference. Let n be the total number observations, each of the n observations

is represented by a line from the centre of the wheel, partitioning the wheel into n-

equally sized slices. Using the circular-An assumption, presented in Section 1.3, each

future observation has an equal probability of 1
n

for the falls into each of these slices.

The assumption that each observation category is represented by one segment on the

probability wheel implies that observations within the same category are positioned next

to each other [34].

Assume that the number of possible categories is known and denoted by K ≥ 3.

Let the categories be represented by C1, C2, . . . , CK and let ni denote the number of

observations in category Ci, where i = 1, 2, . . . , K. Assume ni ≥ 1 for a single category

Ci. The NPI lower and upper probabilities for events Xn+1 ∈ Ci are

P (Xn+1 ∈ Ci) = max
(

0,
ni − 1

n

)
(1.5)

and

P (Xn+1 ∈ Ci) = min
(ni + 1

n
, 1
)
. (1.6)

Classification trees 9

If a category Ci has not yet been observed, then the NPI lower probability for events

Xn+1 ∈ Ci is 0, and the NPI upper probability for the events Xn+1 ∈ Ci is 1
n
. Further

details and examples of NPI for multinomial data are provided by Coolen and Augustin

[34].

1.4 Classification trees

Classification is one of the most effective predictive tools in machine learning and data

mining. In a classification problem, the dataset comprises a set of instances, where each

instance refers to a single observation characterised by multiple input attributes and an

associated class label from a predefined set of class labels. The input attributes may be

numerical, categorical, or a mixture of both. The class label is a categorical variable,

indicating the class or category to which the instance belongs.

The aim of classification is to construct a predictive model designed to assign instances

to a class label from a predefined set of classes based on their attributes. This process

involves learning the patterns within labeled dataset to enable prediction of class label

for new, unseen observations. Several supervised learning classifiers have been used to

construct the predictive model, including regression analysis [41], decision trees [24], K-

nearest neighbours [40], neural networks [18], random forest [22], and support vector

machine [39]. Throughout this thesis, the terms classifier, classification algorithm, and

algorithm are used interchangeably.

Classification trees are used when the class variable is categorical, such as fraud de-

tection; if it is fraud or not. They are widely used due to their ease of visualisation and

interpretability, thereby enabling straightforward understanding [65]. Also, they capable

of handling both numerical and categorical data.

The structure of the classification tree is represented in Figure 1.1. In a classification

tree, each node represents an attribute except for the leaf nodes; a class label is repre-

sented in the leaf node. The structure of the classification tree begins with the root node,

followed by branches growing towards the subsequent internal nodes, and ends with the

leaf nodes. A classification tree is constructed by recursively splitting the data, starting

from the root node and creating a branching structure that leads to leaf nodes where class

labels predictions are made. This structure enables the classification of a new instance

Classification trees 10

Root node

Internal node Internal node

Leaf node Leaf node Leaf node Leaf node

Figure 1.1: A structure of classification tree.

into a class label.

After constructing the classification tree, its performance is validated to ensure its

predictive accuracy. To achieve this, the dataset is partitioned into two subsets: a training

dataset, which is used to build the classification tree, and a test dataset, which is used to

evaluate its performance. The training dataset enables the classifier to learn the pattern

within the data, constructing the structure of the classification tree. While the test

dataset is used for evaluating performance of the algorithm. .

Classification algorithms use various splitting criteria to divide the data based on the

selected attribute variable. Splitting criteria refer to the measures used to determine the

best attribute for splitting data at each node of a classification tree. These criteria aim to

improve the purity of the resulting subsets. A node is considered pure when all instances

it contains belong to the same class label. Among the various splitting criteria, those

most commonly considered include criteria such as Gini impurity [24], information gain

[93], gain ratio [94], imprecise information gain [5]. Alharbi [12] has recently introduced

a splitting criterion called ‘Correct Indication’ (CI), which is based on the NPI approach

and learns from data.

A variety of algorithms can be applied to construct the classification trees. Some of

the most commonly algorithms include ID3, which uses the information gain criterion

[94]; C4.5, an extension of ID3 that uses the gain ratio criterion [94]; and CART, which is

based on the Gini impurity criterion [24]. Additionally, there are algorithms that use the

imprecise information gain criterion and are based on imprecise probability models, such

as Imprecise Dirichlet Model (IDM) [1] and Nonparametric Predictive Inference Model

for multinomial data (NPI-M) [6].

Classification trees using NPI 11

During building classification trees using the C4.5 algorithm, the gain ratio splitting

criterion is used to select the best attribute variable to split a node. The attribute

variable with the highest gain ratio is selected and assigned to the node, then the dataset

is divided into subsets according to the attribute values.

An essential concern in the construction of classification trees is to decide when to stop

growing the trees. There are various methods used to stop building the trees, which are

commonly grouped into two approaches: pre-pruning and post-pruning [53]. Pre-pruning

approach stops tree construction during the growth phase by establishing stopping rules

such as reaching a pure node, limiting the maximum depth of the tree, or having a

minimum number of instances at a node. This approach aims to prevent the growth of

the branches that seem to cause overfitting. Post-pruning allows the trees to grow fully,

followed by reducing the size of the tree by removing less informative branches. Pre-

pruning is commonly considered as a form of stopping criterion, as it stops the growth

of the tree during its construction. While, post-pruning is often referred to simply as

pruning. Selecting appropriate criteria to stop tree growth is important for balancing the

tradeoff between tree complexity and predictive accuracy.

In order to establish the basis for the methods adopted in this study, the next section

details the splitting and stopping criteria of a recent classification tree algorithm called

Direct Nonparametric Predictive Inference (D-NPI) [12].

1.5 Classification trees using NPI

Abellán and Moral [5] have constructed classification trees based on imprecise probability

using the IDM [1]. They used the maximum entropy measure to quantify uncertainty for

building classification trees. In the IDM, prior assumptions about the data are assumed

through a hyperparameter s [1]. The value of hyperparameter s determines how fast the

lower and upper probabilities converge with increasing available data. For this reason, the

NPI-M can provide an alternative to the IDM with using the maximum entropy measure

to quantify uncertainty, as it does not assume any prior knowledge about the data.

Abellán et al. [6] proposed two algorithms to derive the maximum entropy distribution

using the NPI-M; the NPI-M algorithm and an approximation of the NPI-M, which is

called A-NPI-M algorithm. Abellán et al. [7] have constructed classification trees using

Classification trees using NPI 12

the NPI-M, with using the maximum entropy measure to quantify uncertainty. It was

shown that constructing classification trees with the IDM has a high dependence on

the parameter used [7]. Further details and comparisons with NPI-M and A-NPI-M

algorithms can be found in [7, 17].

A recent method for classification has been introduced by Alharbi [12], which is called

D-NPI algorithm. This classification algorithm uses a new splitting criterion, correct

indication (CI). This section presents the D-NPI classification algorithm and CI splitting

criterion. The use of CI splitting criterion to construct classification trees is presented

in this section. This thesis contributes to the application of the D-NPI algorithm to

bagging and random forest in Chapter 2, to imprecise classification in Chapter 3, and to

multi-label classification in Chapter 4. Section 1.5.1 provides an overview of the D-NPI

algorithm for Bernoulli data, while Section 1.5.2 presents the method for multinomial

data.

1.5.1 Direct-NPI for binary data

The D-NPI classification algorithm has recently been introduced by Alharbi [12] for both

binary and multinomial data. For binary data, the author focused on scenarios where

both the attribute variables and the class variable were binary. For the multinomial

data setting, attribute variables or class variable can have multiple values. The D-NPI

algorithm uses the splitting criterion CI, which is based on the NPI approach and does

not use any additional concepts such as entropy. The CI reports the strength of evidence

provided by each attribute variable, based on the data. The CI helps build more flexible

and cautious models. The CI can be directly applied to categorical data or to continuous

data after converting it to categorical data using a discretisation method. The tree

construction process in the D-NPI algorithm follows a procedure similar to that of the

C4.5 algorithm; but, it uses the CI splitting criterion to select the best attribute at each

node. The performance of the D-NPI algorithm was evaluated through an experimental

study and compared to other classification methods from the literature [12]. The results

showed that the D-NPI algorithm performed slightly better than the other algorithms

in terms of classification accuracy (the performance of the classification method on the

testing dataset) and in-sample accuracy (the performance of the classification method on

the training dataset). For the previous reasons, this criterion is interesting to investigate

Classification trees using NPI 13

in this thesis.

Consider a dataset with n instances that can take two values, 0 and 1, and with T bi-

nary attribute variables. Let xi represent the attribute variables, where i ∈ {1, 2, . . . , T}.

The binary class variable is denoted by C ∈ {0, 1}. Let n0 be the total number of

instances classified as 0, and n1 be the total number of instances classified as 1. The

total number of instances of attribute xi with the value 1 is denoted by n(xi = 1), while

n1(xi = 1) represents the total number of instances of attribute xi with the value 1 and

classified as 1. Similarly, n0(xi = 1) denotes the total number of instances where the

attribute xi has the value 1 and C = 0. Let n0(xi = 0) be the total number of instances

which are classified as C = 0 and have the attribute value xi = 0, and let n(xi = 0) be

the total number of instances which have the attribute value xi = 0.

Using NPI for Bernoulli data [30], the NPI lower and upper probabilities for the

event that a future instance, is classified as Cn+1 = 1 given that its attribute variable is

xn+1,i = 1, can be derived, where Cn+1 is the unknown class label for the future instance

and xn+1 is its attribute variable. The NPI lower and upper probabilities are

P (Cn+1 = 1|xn+1,i = 1) =
n1(xi = 1)

n(xi = 1) + 1
, (1.7)

and

P (Cn+1 = 1|xn+1,i = 1) =
n1(xi = 1) + 1

n(xi = 1) + 1
. (1.8)

By the conjugacy property, the NPI lower and upper probabilities for the event Cn+1 =

0|xn+1,i = 1 are

P (Cn+1 = 0|xn+1,i = 1) = 1− P (Cn+1 = 1|xn+1,i = 1) =
n0(xi = 1)

n(xi = 1) + 1
, (1.9)

and

P (Cn+1 = 0|xn+1,i = 1) = 1− P (Cn+1 = 1|xn+1,i = 1) =
n0(xi = 1) + 1

n(xi = 1) + 1
. (1.10)

Similarly, the NPI lower and upper probabilities for the event that the future instance is

classified as Cn+1 = 0 given that the attribute value is xn+1,i = 0 are

P (Cn+1 = 0|xn+1,i = 0) =
n0(xi = 0)

n(xi = 0) + 1
, (1.11)

Classification trees using NPI 14

and

P (Cn+1 = 0|xn+1,i = 0) =
n0(xi = 0) + 1

n(xi = 0) + 1
. (1.12)

The NPI lower and upper probabilities for the event Cn+1 = 1|xn+1,i = 0 are derived

using the conjugacy property as

P (Cn+1 = 1|xn+1,i = 0) = 1− P (Cn+1 = 0|xn+1,i = 0) =
n1(xi = 0)

n(xi = 0) + 1
, (1.13)

and

P (Cn+1 = 1|xn+1,i = 0) = 1− P (Cn+1 = 0|xn+1,i = 0) =
n1(xi = 0) + 1

n(xi = 0) + 1
. (1.14)

These NPI lower and upper probabilities report the strength of the evidence for the

class label of the future instance, assuming to be exchangeable with the n instances in

the dataset. Alharbi [12] derived the NPI lower and upper probabilities for the event that

each attribute leads to the CI, aiming for the highest values for both the NPI lower and

upper probabilities for CI.

Let p be the probability that the attribute xi has the value 1, hence, p = P (xi = 1).

Using NPI for Bernoulli data [30], presented in Section 1.3.2, then

p ∈
[
n(xi = 1)

n+ 1
,
n(xi = 1) + 1

n+ 1

]
, (1.15)

where n(xi = 1) is the total number of instances of the attribute xi which have the value

1, and n is the total number of instances in the dataset. Different attribute values occur

with different frequencies in the dataset leads to using the theorem of total probability

to calculate weighted average over all values of using p as weights. The total probability

theorem states that if B1, B2, . . . , Bn is a partition of the sample space, then for any event

A, the probability of A is expressed as P (A) =
∑n

i=1 P (A | Bi)P (Bi). The NPI lower

probability for the event that the attribute xi leads to CI is derived by taking the lower

probabilities for the events Cn+1 = 0 | xn+1,i = 0 and Cn+1 = 1 | xn+1,i = 1 to minimise

the weighted average [12]:

P i(CI) = min
p

(
n0(xi = 0)

n(xi = 0) + 1
(1− p) +

n1(xi = 1)

n(xi = 1) + 1
p

)
. (1.16)

Classification trees using NPI 15

The value of p which minimises P i(CI) is:

p =


n(xi = 1) + 1

n+ 1
if

n0(xi = 0)

n(xi = 0) + 1
≥ n1(xi = 1)

n(xi = 1) + 1
,

n(xi = 1)

n+ 1
otherwise.

(1.17)

Similarly, the NPI upper probability for the event that the attribute xi leads to CI is

P i(CI) = max
p

(
n0(xi = 0) + 1

n(xi = 0) + 1
(1− p) +

n1(xi = 1) + 1

n(xi = 1) + 1
p

)
, (1.18)

which is achieved for

p =


n(xi = 1) + 1

n+ 1
if
n0(xi = 0) + 1

n(xi = 0) + 1
≤ n1(xi = 1) + 1

n(xi = 1) + 1
,

n(xi = 1)

n+ 1
otherwise.

(1.19)

The NPI lower and upper probabilities for the event that the attribute xi leads to CI

are calculated for each attribute variable. In [12], when constructing the classification

tree, it is assumed that n1(xi=1)
n(xi=1)

≥ n1(xi=0)
n(xi=0)

, ensuring that the positive attribute value cor-

responds to the positive class label. Relabelling attribute values may be required during

tree construction to maintain link between positive attribute values and the positive class

label, as the dataset is partitioned across different tree stages.

After presenting the CI splitting criterion used to construct the classification tree, the

D-NPI algorithm uses a stopping criterion introduced by Alharbi [12]. Let P (NA) and

P (NA) be the NPI lower and upper probabilities for CI if no attribute variable used,

respectively. These NPI lower and upper probabilities correspond to stating the most

frequent value in the class variable. Using NPI for Bernoulli data, presented in Section

1.3.2, the NPI lower and upper probabilities for CI if no attribute variable used are [12]

[P (NA), P (NA)] =

[
nmax

n+ 1
,
nmax + 1

n+ 1

]
, (1.20)

where nmax is the number of instances of the most frequent class and n is the total number

of instances. When building the classification tree, at each node, for each attribute

variable xi, the NPI lower and upper probabilities for CI for that attribute are derived

using Equations (1.16) and (1.18). After comparing the NPI lower and upper for CI for

Classification trees using NPI 16

all attributes, the attribute with the highest NPI lower and upper probabilities for CI is

selected. The attribute variable xi with the highest NPI lower and upper probabilities for

CI P ∗i (CI) and P
∗
i (CI) is selected to split the tree at a node if the following conditions

are satisfied

P ∗i (CI) > P (NA) and P
∗
i (CI) > P (NA). (1.21)

If two or more attribute variables satisfy the conditions in (1.21) and have CI intervals

which overlap, the attribute variable with the highest upper probability for CI is selected.

In the case where multiple attribute variables that satisfy (1.21) and have the same NPI

lower probabilities as well as the same NPI upper probabilities, any of these attribute

variables can be selected. At the node, if there is no attribute that satisfies the conditions

in (1.21), the algorithm stops building the tree. This thesis presents a new application of

the D-NPI method for binary data to bagging and random forest, with an investigation

of its performance in Chapter 2.

1.5.2 Direct-NPI for multinomial data

In many classification problems, such as finance, medical diagnosis, or image recognition,

attribute variables can be categorical with multiple levels. For example, in medical diag-

nosis, patient data often include blood type or symptom categories (e.g., mild, moderate,

severe). Alharbi [12] has recently constructed classification trees using the CI splitting

criterion for multinomial data.

Suppose that there is a dataset with T attribute variables and n instances, and let

xi represent the attribute variables, where i ∈ {1, 2, . . . , T} and let vij be the values in

the attribute variable, xi, where j ∈ {1, 2, . . . , ki}. The class variable is denoted by

C ∈ {c1, c2, . . . , cR}, with all class labels being observed in the dataset.

Let ncr be the number of instances in the dataset classified as class cr, for r ∈

{1, 2, . . . , R}, then the total number of instances in the dataset is n = nc1 +nc2 + · · ·+ncR .

Let n(xi = vij) be the total number of instances where the attribute variable xi has the

value vij, and let ncr(xi = vij) be the total number of instances where the attribute variable

xi has the value vij and is associated with class cr. The NPI lower and upper probabilities

for the event that a future instance is assigned to class cr for r ∈ {1, 2, . . . , R}, given that

its attribute variable values are vij, xn+1,i = vij, for i ∈ {1, 2, . . . , T}, and j ∈ {1, 2, . . . , ki},

Classification trees using NPI 17

are

P (Cn+1 = cr|xn+1,i = vij) =
ncr(xi = vij)

n(xi = vij) + 1
, (1.22)

and

P (Cn+1 = cr|xn+1,i = vij) =
ncr(xi = vij) + 1

n(xi = vij) + 1
. (1.23)

For each attribute variable, each value is linked with the class label most frequently

associated with it [12]. To clarify, the value vij is linked to the class label cr that mostly

occurs for this attribute value, where (C = cr|xi = vij) are the conditional events of

interest according to the D-NPI algorithm [12].

Let pi,j be the probability that the attribute xi has the observed values vij, hence,

pi,j = P (xi = vij), for j ∈ {1, 2, . . . , ki}, and i ∈ {1, 2, . . . , T}, so
∑ki

j=1 pi,j = 1. Using

NPI for multinomial data [34], presented in Section 1.3.3, then

pi,j ∈
[
n(xi = vij)− 1

n
,
n(xi = vij) + 1

n

]
. (1.24)

Using the total probability theorem, the NPI lower probability for the event that the

attribute xi leads to CI is given by considering the lower probabilities for the events

Cn+1 = c1 | xn+1,i = vi1, . . . , Cn+1 = cR | xn+1,i = viki to minimise the weighted average

[12]:

P i(CI) = min
pi,j∈P

(
ki∑
j=1

ncr(xi = vij)

n(xi = vij) + 1
pi,j

)
, (1.25)

with

Pi =
{
p|pi,j ∈

[
n(xi = vij)− 1

n
,
n(xi = vij) + 1

n

]
∀j ∈ {1, 2, ..., ki},

ki∑
j=1

pi,j = 1
}
. (1.26)

The corresponding NPI upper probability for the event that the attribute xi leads to CI

is

P i(CI) = max
pi,j∈P

(
ki∑
j=1

ncr(xi = vij) + 1

n(xi = vij) + 1
pi,j

)
. (1.27)

The NPI lower and upper probabilities for CI are calculated for each attribute xi, for

i ∈ {1, 2, . . . , T}. In [12], the NPI lower probability P i(CI) for each attribute variable

xi has been obtained when ki is even or odd, for i ∈ {1, 2, . . . , T} after ordering the

attributes increasingly according to their fraction values
ncr (xi=v

i
j)

n(xi=vij)+1
. For ki even, the NPI

Classification trees using NPI 18

lower probability,
n(xi=v

i
j)−1

n
, is assigned to all attribute variable values, and there are ki

remaining probabilities each having a value of 1
n
. Then, a probability of 2

n
is assigned

to the attribute variable values vi1 to viki
2

. When ki is odd, after assigning the NPI lower

probability
n(xi=v

i
j)−1

n
to all attribute variable values, a probability of 2

n
is assigned to the

values from vi1 to viki
2
− 1

2

. Following that, the last remaining probability 1
n

is assigned to

the values viki
2
+ 1

2

.

In order to derive the NPI upper probability P i(CI) for each attribute xi, for i ∈

{1, 2, . . . , T}, Alharbi [12] assigned probabilities to attribute variable values considering

ki odd and even after ordering the attributes increasingly according to their fraction

values
ncr (xi=v

i
j)+1

n(xi=vij)+1
. For ki even, the NPI lower probability,

n(xi=v
i
j)−1

n
, is first assigned

to all the values. There will be remaining ki probabilities, each with a value of 1
n
. A

probability of 2
n

is then assigned to viki
2
+1

to viki . If ki is odd, a probability of
n(xi=v

i
j)−1

n
is

assigned to all the values. The probability 2
n

is assigned to the values from viki
2
+ 3

2

to viki ,

followed by assigning the last remaining probability 1
n

to the value viki
2
+ 1

2

.

Alharbi [12] constructed classification trees using the D-NPI algorithm following a

similar process as in the C4.5 algorithm, but using the CI splitting criterion to select

the best attribute at each node. During building a classification tree using the D-NPI

algorithm, the NPI lower and upper probabilities for each attribute xi for CI are derived,

and a stopping criterion is used to determine when to stop building the tree. Alharbi

[12] introduced a stopping criterion when using the CI splitting criterion for multinomial

data. Let P (NA) and P (NA) be the NPI lower and upper probabilities for CI if no

attribute variable is used. Using NPI for multinomial data, presented in Section 1.3.3,

the NPI lower and upper probabilities are

P (NA) = max (0,
nmax − 1

n
), (1.28)

and

P (NA) = min (
nmax + 1

n
, 1), (1.29)

where nmax is the number of instances with the most frequent class label and n is the

total number of instances. When building a classification tree, the attribute variable xi

with the highest NPI lower and upper probabilities P ∗i (CI) and P
∗
i (CI) compared to the

Thesis outline 19

other attributes, and satisfies the following conditions is selected:

P ∗i (CI) > P (NA) and P
∗
i (CI) > P (NA). (1.30)

As in CI for binary data, if two or more attribute variables meet the conditions (1.30)

and have overlapping NPI lower and upper probabilities for CI, the attribute variable

with the highest upper probability for CI is selected. In the case where multiple attribute

variables that satisfy (1.30) and have the same NPI lower probabilities as well as the

same NPI upper probabilities, any of these attribute variables can be selected. A node

is not split further if there is no attribute satisfies the conditions in (1.30).

The pseudocode of the D-NPI algorithm based on the steps which introduced by

Alharbi [12] is presented in Appendix A. Also, an illustrative example is presented in

Appendix A to show how the D-NPI algorithm builds classification trees.

This thesis extends the use of the D-NPI algorithm for multinomial data across mul-

tiple classification problems: bagging and random forest in Chapter 2, imprecise classifi-

cation in Chapter 3, and multi-label classification in Chapter 4.

1.6 Thesis outline

This thesis is organised as follows: Chapter 2 applies the D-NPI algorithm for both

binary data and multinomial data to ensemble methods, specifically bagging and random

forest, to assess how it performs when used in ensemble methods. The performance of

the algorithms is also investigated and compared to other methods from the literature.

Chapter 3 extends the D-NPI classification method for multinomial data to imprecise

classification, by developing new algorithms based on the D-NPI algorithm. The per-

formance of the algorithms is evaluated, and compared to other classification algorithms

from the literature. Some results of this chapter have been presented at a Statistics

seminar at the University of Durham, United Kingdom, 26 June 2025.

In Chapter 4, the D-NPI algorithm is extended to multi-label classification prob-

lems, investigating its performance. An experimental study is conducted to evaluate the

performance of the algorithm, comparing it to other algorithms from the literature.

Chapter 5 introduces a novel application of performance measures to evaluate impre-

Thesis outline 20

cise probability inferences, including the NPI method for bivariate data. The focus of

this chapter is to study the performance of the semi-parametric predictive method in-

troduced by Coolen-Maturi et al. [29], using performance measures. A simulation study

is conducted to evaluate the performance of the method under different scenarios, and a

comparative analysis is carried out using the same measures to compare it with another

method. Some results of Chapter 5 have been presented at the Research Students’ Con-

ference in Probability and Statistics at the University of Nottingham, United Kingdom,

05-08 September 2022. Also, part of this chapter has been presented at the 13th Interna-

tional Symposium on Imprecise Probability: Theories and Applications (ISIPTA’23) at

Oviedo, Spain, 11-14 July 2023.

Finally, Chapter 6 provides the key findings and conclusions of the thesis. It also

suggests interesting directions for future research.

The analysis and computations in this thesis have been implemented using the statis-

tical software R [95]. Some of the computations have been carried out on different com-

puters due to computation time. In order to implement the proposed methods presented

in Chapters 2, 3, and 4, the D-NPI classification algorithm is implemented entirely in R

without relying on existing packages. Implementing the D-NPI algorithm from scratch

allows full control over the splitting and stopping criteria, ensuring that the extensions

proposed in this thesis are straightforward to incorporate and adapt.

Chapter 2

Bagging and random forest with NPI

2.1 Introduction

Classification trees, while effective for a variety of predictive tasks, are inherently sus-

ceptive to high variance; meaning their predictive performance can be sensitive to small

changes in the dataset used for training [60]. Their sensitivity arises from their tendency

to capture details and closely align with the unique characteristics of the training dataset.

For example, when a dataset has random noise or infrequent patterns, the classification

tree may incorporate these into its structure. Consequently, small variations in the train-

ing dataset, such as slightly changing a few instances, can result in different classification

trees.

The tradeoff between bias (the error caused by overly simplifying the model) and

variance (the sensitivity of the model to small changes in the dataset) is a fundamental

concept that affects the model’s accuracy [68]. To address the limitations of classification

trees, ensemble methods have proven to be effective tools by combining multiple classifica-

tion trees to produce more accurate and robust models. These models have been shown to

perform well on both noisy and noise-free datasets [48]. Among the most widely adopted

ensemble methods are bagging (bootstrap aggregating) and random forest [21, 22].

In 1996, Breiman [21] introduced bagging as a technique to reduce variance by cre-

ating multiple bootstrap samples from the training dataset (i.e., random samples with

replacement from the training dataset), training a separate model on each sample, and

aggregating the predictions. The diversity of bootstrap samples introduces variation in

individual classification trees, thereby reducing correlation between the predictions of

21

Introduction 22

the individual trees and enhancing the ensemble’s performance by reducing variance.

Majority vote is the aggregation method used in classification ensemble methods.

Adding a further layer of randomness in attribute selection may offer improvements

over the bagging method. Breiman [22] introduced random forest method as an extension

of the bagging method, aiming to enhance predictive performance by reducing correlation

among the predictions of the individual classification trees. This method adds an extra

layer of randomness by selecting a random subset of attribute variables at each split

within the classification trees. Selecting a subset of attributes at each split, instead of

choosing a fixed subset prior to building the classification tree, increases the diversity

of the individual classification trees in the ensemble, and helps to reduce correlation

between the predictions. The random forest method helps in avoiding overfitting by

ensuring that different attribute variables are considered during the tree construction

process, enhancing the diversity of the individual classification trees in the ensemble,

resulting in the method’s ability to generalise.

Fernández-Delgado et al. [55] showed that, among the 179 classifiers evaluated across

121 datasets, the random forest versions ranked among the best-performing classifiers.

The authors concluded that three out of the best five methods were random forest. The

best classifier was parallel random forest (parRF t), implemented using the ’randomForest’

package in R with ’caret’ for interface, tuning the parameter mtry (controlling the num-

ber of selected attributes at each split) to be 2:2:8 (from 2 to 8 in steps of 2). The

other best results were achieved by classifiers rf t and rforest R, where the rf t tuned the

parameter mtry = 2:3:29 (from 2 to 29 in steps of 3), and the rforest R was the random

forest by Breiman [22] without tuning the parameter. The No Free Lunch (NFL) theorem

for supervised classification suggests that no single classifier outperforms others across

all datasets [111]. However, Fernández-Delgado et al. [55] showed that the performance

of the random forest method was close to the best performance for almost all datasets,

with the exception of three datasets out of a total of 121 datasets.

In this chapter, the application of the D-NPI method [12] to ensemble methods is

introduced. New ensemble methods for bagging and random forest are proposed, which

are called Nonparametric Predictive Inference for Bagging (NPI-Bag) and Nonparametric

Predictive Inference for Random Forest (NPI-RF). These methods are introduced for both

binary data and multinomial data using the D-NPI algorithm (introduced in Section 1.5)

Bagging and random forest 23

as the base classifier. An experiment is conducted using different datasets, and the

accuracy measure is used to assess the performance, comparing the results of models to

the D-NPI algorithm.

This chapter is structured as follows: Section 2.2 provides an overview of bagging and

random forest methods. Section 2.3 introduces the new methods for bagging and random

forest. Section 2.4 details the experimental study, comprising a comparative study which

compares the proposed ensemble methods with the base classifier (D-NPI). Section 2.4.2

presents a performance evaluation study to compare the performance of the proposed

ensemble method against ensemble methods from the literature. Finally, Section 2.5

provides concluding remarks.

2.2 Bagging and random forest

In decision-making processes, it is crucial to combine multiple sources of information (or

decisions) to improve the final outcome. In classification, ensemble approaches enhance

the performance of classifiers by aggregating multiple trees [48]. Rather than relying on

a single classification tree, ensemble methods combine a set of trees using the majority

voting criterion, which is simple and intuitive.

Bagging was developed by Breiman [21] to generate multiple models using boot-

strapped samples and to determine the final prediction through majority voting. Boot-

strapped samples are datasets created by sampling with replacement from the original

dataset, maintaining equal size, and thereby introducing variability into the training

datasets [21]. Random forest was later introduced by Breiman [22] as an extension of

bagging by adding attribute randomness, which reduces the correlation between the pre-

dictions of the individual trees. This ensemble method improves classifier accuracy and

enhances robustness by randomly selecting a subset of attributes at each node. The

bagging and random forest methods are illustrated in Figures 2.1 and 2.2, respectively.

Dietterich [47] presented an experimental comparison of three popular ensemble learn-

ing methods (randomizing, bagging, and boosting), aiming to compare their performance

with the C4.5 algorithm [94]. His study showed that the results achieved by the boosting

C4.5 method were the best in cases where there was no or little noise in the data, and the

bagging C4.5 method achieved best performance when adding noise to data by taking

Bagging and random forest 24

Training Dataset

Bootstrap Sample 1

Bootstrap Sample 2

Bootstrap Sample 3

Classification
Tree 1

Classification
Tree 2

Classification
Tree 3

Aggregation (Voting)

Figure 2.1: Bagging ensemble method.

Training Dataset

Bootstrap Sample 1

Bootstrap Sample 2

Bootstrap Sample 3

Random Attributes
Subset at Each Split

Random Attributes
Subset at Each Split

Random Attributes
Subset at Each Split

Classification
Tree 1

Classification
Tree 2

Classification
Tree 3

Aggregation (Voting)

Figure 2.2: Random forest ensemble method.

advantage of the noise added to data to produce more diverse trees.

In the literature, bagging and random forest methods have been introduced using

models based on imprecise probabilities. Abellán [2] introduced bagging using Nonpara-

metric Predictive Inference Model for Multinomial data (NPI-M) to address classification

problems with noise, and compared its performance to other classifiers, including bagging

using the J48 classifier (the J48 classifier is an implementation of the C4.5 algorithm in

Weka software), bagging with Credal decision trees (CDTs) using the Imprecise Dirichlet

Model (IDM), and random forest classifier from the literature. The results showed that

the bagging scheme with CDTs using the NPI-M outperformed other ensemble methods

when the data contained a high level of noise.

Abellán et al. [8] modified the random forest base classifier to use a measure to quantify

uncertainty based on imprecise probabilities instead of precise probability, which was

called Credal Random Tree (CRT). It used Imprecise Info-Gain (IIG) measure [5]. Then,

they introduced a random forest procedure using the CRT classifier as a base classifier.

This method was called Credal Random Forest (CRF). An experimental study was carried

NPI for bagging and random forest 25

out to evaluate the performance of the CRF classifier in comparison with other classifiers

when adding noise to datasets. The other classifiers were bagging using the C4.5 algorithm

(BA-C4.5), bagging with CDTs (BA-CDT), random forest (RF), and CRF. The results

showed that the CRF classifier outperformed other procedures and remained robust when

noise was added to class variable.

The ability of bagging and random forest methods to achieve a tradeoff between bias

and variance can give advantages over the base classifier. The D-NPI algorithm performed

well in comparison with other algorithms from the literature [12], making it interesting to

apply it to bagging and random forest methods. The next section presents the proposed

algorithms designed for bagging and random forest.

2.3 NPI for bagging and random forest

This section presents the proposed algorithms for bagging and random forest using the

Direct-NPI algorithm introduced by Alharbi [12] as the base classifier. The D-NPI algo-

rithm employs the Correct Indication (CI) splitting criterion to build classification trees

based on the NPI approach, as described in Section 1.5. This algorithm was originally

developed for both binary and multinomial data. The proposed bagging and random

forest algorithms are designed to improve the performance of the D-NPI classifier and to

investigate its behaviour when used in ensemble methods. The bagging method is de-

scribed first. Algorithm 2.1, Nonparametric Predictive Inference for Bagging (NPI-Bag),

incorporates the D-NPI algorithm (presented in Appendix A) as the base classifier and

adopts the CI splitting criterion. Algorithm 2.2, Nonparametric Predictive Inference for

Random Forest (NPI-RF), also uses the D-NPI algorithm (presented in Appendix A) as

the base classifier and applies the CI criterion for splitting, with random forests enabling

additional attribute randomness to enhance the accuracy of the ensemble.

This study has two main goals. The first goal is to evaluate the performance of the en-

semble methods NPI-Bag and NPI-RF in comparison to the base algorithm, D-NPI. This

comparison aims to determine whether the ensemble methods improve the performance

of the base classifier by combining multiple classifiers to reduce errors and enhance accu-

racy. The second goal is to compare the performance of the proposed ensemble methods

with ensemble methods from the literature. Section 2.4 presents the experimental studies

NPI for bagging and random forest 26

Algorithm 2.1 Pseudocode of the NPI-Bag algorithm.

Input: Dataset (D), Attributes (Att), Class Variable (C), Number of trees (Ntrees)
Procedure NPI-Bag (D, Att, C,Ntrees)

for t = 1 to Ntrees

Generate bootstrap sample Dt from dataset D
Call D-NPI using Dt as the training dataset, and build Classification Tree CT t

Return Bagging model
for each new instance x

Aggregate predictions for instance x across all trees CT 1, CT 2, . . . , CT T
Determine final prediction by majority voting

Return The predicted class label of x

Algorithm 2.2 Pseudocode of the NPI-RF algorithm.

Input: Dataset (D), Attributes (Att), Class Variable (C), Number of trees (Ntrees,
Number of selected features (m))
Procedure NPI-RF (D, Att, C,Ntrees, m)

for t = 1 to Ntrees

Generate bootstrap sample Dt from dataset D
Call D-NPI using Dt as the training dataset with m randomly selected attributes

at each split, and build Classification Tree CT t
Return Random Forest model
for each new instance x

Aggregate predictions for instance x across all trees CT 1, CT 2, . . . , CT T
Determine final prediction by majority voting

Return The predicted class label of x

conducted to evaluate the performance of the proposed ensemble methods.

Experimental setup 27

2.4 Experimental setup

The experimental analysis is presented in two main sections. Section 2.4.1 provides a

detailed analysis of the performance of the proposed ensemble methods, NPI-Bag and

NPI-RF, compared to the base algorithm, D-NPI. This includes experiments conducted

on several datasets. Section 2.4.2 presents a comparative study, in which the proposed

methods are evaluated in comparison with other ensemble methods from the literature.

2.4.1 Performance comparison of proposed methods and base

classifier

In this experiment, 20 datasets from the UCI Machine Learning Repository [75] are

used. These datasets vary in size, number of attributes, number of class labels, and

range of values for nominal attributes. They cover a variety of classification problems,

including both binary and multinomial cases. Table 2.1 provides an overview of the

datasets where the column “n” represents the size of the dataset, “Att” indicates the

number of attributes, “Num” represents the number of numerical attributes, “Nom”

displays the number of nominal attributes, “R” denotes the number of class labels, and

“Range” specifies the range of values of nominal attributes.

The datasets are prepared for classification by replacing missing values with the mode

for nominal attributes or the mean for continuous attributes. Discretisation is applied

as a standard preprocessing step to prepare continuous attributes for classification. Note

that discretisation is applied in this chapter only as a preprocessing step to transform

continuous attributes into categorical attributes, thereby making the dataset compatible

with the classification algorithms which require categorical attributes. The aim of this

chapter is not to evaluate the discretisation methods, but rather to evaluate and com-

pare the performance of the classification algorithms. For the Banknote Authentication

and Breast Cancer Wisconsin dataset, the continuous attributes are discretised to bi-

nary attributes as in Alharbi [12], based on the optimal threshold determined using the

Information Gain Ratio splitting criterion [94]. The remaining datasets, which contain

continuous attributes are processed using the ‘discretize’ function from the package

‘FSelectorRcpp’ in R [114]. Continuous attributes are discretised using Fayyad and

Irani’s method [54]; if no valid cut points are found, the equal-width binning method is

Experimental setup 28

Dataset n Att Num Nom R Range

Balance-Scale 625 4 4 - 3 -
Banknote Authentication 1372 4 4 - 2 -
Breast Cancer Wisconsin 699 9 9 - 2 -
Congressional Voting Records 435 16 - 16 2 2
CMC 1473 9 2 7 3 2-4
Dermatology 366 34 1 33 6 2-4
Glass 214 9 9 - 7 -
Hayes 160 4 - 4 3 3-4
Hypothyroid 3772 27 6 21 4 2-5
Iris 150 4 4 - 3 -
Mushroom 8124 22 - 22 2 2-12
Nursery 12960 8 - 8 5 2-5
Post-Operative Patient 90 8 - 8 3 2-4
Primary-Tumor 339 17 - 17 21 2-3
Qualitative-Bankruptcy 250 6 - 6 2 3
Soybean-Large 683 35 - 35 19 2-7
Sponge 76 44 - 44 3 2-9
Vehicle 846 18 18 - 4 -
Yeast 1484 8 8 - 10 -
Zoo 101 17 1 16 7 2

Table 2.1: Datasets [75]. Size “n”, number of attributes “Att”, number of numerical
attributes “Num”, number of nominal attributes “Nom”, number of class labels “R”,
and range of values of nominal attributes “Range”.

applied using the ‘discretize’ function from the same package [114].

First, the D-NPI algorithm introduced by Alharbi [12] is used in this section to eval-

uate how the proposed ensemble methods improve performance compared to the base

algorithm. The bagging and random forest methods, NPI-Bag and NPI-RF, along with

D-NPI, are executed in R software. The proposed ensemble methods are implemented

following the procedures in Algorithms 2.1 and 2.2.

The number of trees used in this study is 100, following the approach adopted in pre-

vious studies, including Abellán [2]. For the NPI-RF algorithm, the number of attributes

selected at each split is approximately
√

Att, as suggested by Breiman [22]. To assess

performance, the accuracy metric is applied, defined as the ratio of correct predictions to

the total number of predictions. Performance is evaluated using K-fold cross-validation,

where the dataset is divided into K folds. The model is trained on K−1 folds and tested

on the remaining fold, repeating the process K times so that each fold serves once as the

testing set [78].

Experimental setup 29

Dataset NPI-Bag NPI-RF D-NPI

Balance-Scale 70.73 70.26 68.17
Banknote Authentication 89.50 89.50 89.50
Breast Cancer Wisconsin 95.14 95.71 95.29
Congressional Voting Records 95.61 94.92 95.61
CMC 53.02 53.70 52.48
Dermatology 95.38 95.64 94.54
Glass 77.08 78.40 73.38
Hayes 76.25 80.63 71.25
Hypothyroid 99.20 92.52 99.28
Iris 95.33 94.67 95.33
Mushroom 100.00 100.00 99.96
Nursery 91.98 91.19 91.94
Post-Operative Patient 66.67 71.11 66.67
Primary-Tumor 39.80 42.15 40.09
Qualitative-Bankruptcy 99.60 100.00 99.60
Soybean-Large 85.35 92.67 85.36
Sponge 92.32 92.32 92.32
Vehicle 73.15 71.87 72.44
Yeast 60.31 60.24 59.30
Zoo 92.09 94.18 92.09

Table 2.2: Accuracy results: comparison with base classifier.

In the NPI-Bag and NPI-RF ensemble methods, for each iteration, one fold is hold

out as the testing set, while the remaining K − 1 folds are used to generate multiple

bootstrap samples of the same size for training. The ensemble methods are then trained

on these bootstrap samples. In this experiment, a 10-fold cross-validation procedure

is applied across all datasets. The performance of all classifiers is assessed using the

accuracy metric, and the final result is obtained by averaging the accuracy across all

folds.

Table 2.2 presents the results for each algorithm, showing the accuracy for each

dataset. The results demonstrate the effectiveness of the ensemble methods, NPI-Bag

and NPI-RF, compared to the D-NPI algorithm.

The algorithms perform equally well for the datasets Banknote Authentication and

Sponge. Having identical performance for all algorithms for these datasets can be due

to the similarity of individual trees in the ensemble methods, leading to the class label

being predicted as majority class same as in the D-NPI algorithm. For example, for the

Sponge dataset, the class variable distribution is highly imbalanced, with three class labels

containing 70, 3, and 3 instances. The minority class labels have very low frequencies.

Experimental setup 30

As a result, the D-NPI algorithm tends to either stop very early or fails to split. In

the ensemble methods, NPI-Bag and NPI-RF, bootstrap samples are likely to include

the majority class repeatedly, while underrepresenting or even excluding the minority

class labels. This results in many identical individual classification trees, even when

attributes are sampled randomly in NPI-RF, leading to identical performance values

across algorithms.

For binary datasets, such as Banknote Authentication, Breast Cancer Wisconsin and

Congressional Voting Records, all algorithms tend to have similar performance. For the

Congressional Voting Records dataset, the D-NPI and NPI-Bag algorithms show slightly

higher accuracy values than the NPI-RF algorithm. This may be due to sampling subsets

from a high number of attributes compared to the other datasets, which increases the

possibility of missing informative attributes when building individual classification trees,

unlike when using the full set of attributes in D-NPI and NPI-Bag.

The NPI-RF ensemble method tends to perform better for some datasets with a large

number of attributes, as this increases the diversity in the ensemble, reducing correla-

tion among predictions of individual trees. For example, for the datasets Dermatology,

Primary-Tumor, Soybean-Large, and Zoo, the NPI-RF method benefits from the large

number of attributes.

The Hypothyroid dataset has 27 attributes, the NPI-RF ensemble method has lower

performance compared to the other algorithms. To explain this, all algorithms use a

stopping criterion, but the NPI-RF algorithm produces shallower individual trees on av-

erage compared to D-NPI and NPI-Bag. This is primarily due to the attributes sampling

in the NPI-RF algorithm, which limits the set of possible attributes at each split and

leads to weaker splits. In contrast, the NPI-Bag and D-NPI algorithms use the full set of

attributes, allowing the trees to grow deeper due to the availability of more informative

splitting options. Further analysis of the NPI-RF method without the stopping criterion

is presented later in Section 2.4.2.

For the datasets CMC, Mushroom, Nursery, Qualitative-Bankruptcy, Vehicle, and

Yeast, the classification accuracies of the three algorithms show only minimal differences.

However, the best accuracy values are observed among the ensemble methods, NPI-Bag

and NPI-RF. All these datasets, except for the Yeast dataset, have low number of class

labels (typically between 2 and 4), which may lead to less complex learning, and often

Experimental setup 31

do not require deep individual trees. The Yeast dataset contains 10 class labels, but it

has a highly imbalanced class distribution. When using bootstrap samples, the resulting

samples can often contain the majority class repeated multiple times. This leads to

individual classification trees in the ensemble methods with almost similar performance

to that produced by the D-NPI algorithm. This explains the similar performance observed

across all the algorithms for this dataset.

For datasets with small sizes, such as Glass, Hayes, and Iris datasets, differences in

accuracy values among algorithms are expected. This is because their testing sets contain

a small number of instances, meaning that a single incorrect prediction can affect the

overall accuracy. However, for the Glass and Hayes datasets, the ensemble methods tend

to perform better than the D-NPI algorithm, observing the highest accuracy values for the

NPI-RF method. In the case of the Hayes dataset, the large difference in accuracy values

between the NPI-RF algorithm and the D-NPI algorithms can be due to the informative

nature of all attributes. Sampling attributes at random at each split allows different

attributes to be used, which allows capturing different patterns. The D-NPI algorithm

selects a single best attribute among the four attributes at the root node. However, due

to the randomisation in the NPI-RF method, it allows all attributes to be selected across

different individual trees. As a result, the variation among the individual trees can be

beneficial, allowing better performance for the NPI-RF method compared to the single

classification tree produced by the D-NPI algorithm.

Table 2.2 shows that among the three methods, the NPI-RF algorithm achieves the

highest accuracy values for most of the datasets, followed by the NPI-Bag algorithm. The

D-NPI algorithm has similar performance to either NPI-RF or NPI-Bag for a few number

of datasets. These results show the strong performance of both NPI-Bag and NPI-RF

compared to D-NPI. This experiment shows that the ensemble methods are capable of

enhancing the performance of the D-NPI algorithm by applying it to ensemble methods.

Section 2.4.2 presents the performance of the new ensemble methods compared to two

methods from the literature.

Experimental setup 32

Dataset NPI-Bag NPI-RF NPI-M-B RF

Balance-Scale 70.73 70.26 69.29 69.78
Banknote Authentication 89.50 89.50 89.50 89.50
Breast Cancer Wisconsin 95.14 95.71 95.43 96.43
Congressional Voting Records 95.61 94.92 96.29 96.53
CMC 53.02 53.70 54.38 52.95
Dermatology 95.38 95.64 93.71 97.84
Glass 77.08 78.40 73.74 79.42
Hayes 76.25 80.63 73.75 81.88
Hypothyroid 99.20 92.52 98.99 99.63
Iris 95.33 94.67 95.33 94.00
Mushroom 100.00 100.00 100.00 100.00
Nursery 91.98 91.19 95.97 99.57
Post-Operative Patient 66.67 71.11 71.11 65.56
Primary-Tumor 39.80 42.15 44.21 41.56
Qualitative-Bankruptcy 99.60 100.00 99.60 99.60
Soybean-Large 85.35 92.67 92.09 94.72
Sponge 92.32 92.32 92.32 92.32
Vehicle 73.15 71.87 62.88 74.58
Yeast 60.31 60.24 58.68 60.24
Zoo 92.09 94.18 94.09 96.00

Table 2.3: Accuracy results: comparison with other ensemble methods.

2.4.2 Performance comparison of proposed methods and exist-

ing approaches

In this section, a comparative analysis between the proposed ensemble methods and two

existing methods from the literature is presented. The first ensemble method considered

is bagging, which uses a base classifier proposed by Abellán et al. [7], and is based on

Nonparametric Predictive Inference Model for Multinomial data (NPI-M). It uses maxi-

mum entropy measure within the imprecise information gain splitting criterion to select

the best attribute to split a node. This method is referred to as NPI-M-B throughout

this chapter. Random forest, adopted as the second method for comparison, is based on

the random forest algorithm proposed by Breiman [22]. This method is referred to as RF

throughout this chapter.

The NPI-M-B method is implemented using the ’imptree’ package in R [56], and the

RF method with the ’randomForest’ package in R [23], both with their default settings

(with fully grown trees for RF). The same experimental procedure as in Section 2.4.1 is

followed. Table 2.3 reports the accuracy for each dataset and the overall average.

Experimental setup 33

Starting with the binary datasets, such as Banknote Authentication, when the number

of attributes is low, all classifiers achieve the same performance. For the Breast Cancer

Wisconsin, the RF ensemble method has the highest accuracy compared to the other

algorithms. As mentioned in Section 2.4.1, the NPI-RF ensemble method uses a stop-

ping criterion, while RF fully grows the individual trees, which may cause the observed

decrease in the performance for the NPI-RF classifier. The NPI-RF ensemble method is

implemented with fully grown individual trees later in this section to enable the compari-

son without using the stopping criterion for the individual trees. Regarding the NPI-Bag

and NPI-M-B methods, they tend to perform similarly for the Breast Cancer Wisconsin

dataset with only a slight difference.

For the Mushroom dataset, all classifiers achieve an accuracy of 100%, which can be

attributed to the predictive nature of the attributes in this dataset, making all classifiers

perform similarly well. All algorithms have identical performance for the Sponge dataset,

for the reasons discussed in Section 2.4.1.

For further investigation, the RF algorithm achieves an accuracy of 99.51% for the

Nursery dataset, subsequently outperforming the NPI-RF algorithm, which attains 91.33%.

This performance gap is likely due to RF producing fully grown individual trees, which

helps the learning of complex patterns in the dataset, particularly for this dataset with

a large number of instances. Moreover, for the Hypothyroid dataset, when the bagging

methods NPI-Bag and NPI-M-B are used, the observed accuracy values are high, as in

the case when using the RF algorithm. However, for the NPI-RF algorithm the perfor-

mance is comparatively lower than that of all classifiers. While the NPI-RF algorithm

uses a stopping criterion, which may limit the individual classifiers’ ability to learn more

complex patterns compared to the RF algorithm. Tree Depth (TD) measure is addition-

ally used. It refers to the maximum number of edges from the root node to any leaf

node. When investigating further, the observed TD average value of the individual trees

produced by the NPI-Bag method is higher than this observed for the NPI-RF method.

This explains the low performance of the NPI-RF method, which can be improved by

using fully grown individual trees.

The NPI-Bag and NPI-RF classifiers tends to perform well when the datasets contain

relatively low Range (i.e., the number of values in each attribute is ≤ 4). These datasets

include CMC, Glass, Hayes, Iris, Post-Operative Patient, Qualitative-Bankruptcy, and

Experimental setup 34

Yeast. For the CMC, Iris, and Yeast datasets, the discretised attributes have a number

of values ≤ 4. The NPI-RF classifier allows multiway splits, while the RF classifier allows

binary splits. As a result, the RF classifier can produce deeper individual trees compared

to the NPI-RF classifier. Adapting the D-NPI algorithm to work using binary splits

presents an interesting direction for future research.

Across multiple datasets, the two algorithms NPI-Bag and NPI-M-B, show similar

performance. The NPI-Bag algorithm achieves competitive results for certain datasets

such as Dermatology, Glass, and Vehicle, and NPI-M-B achieves high values compared

to the NPI-Bag classifier, particularly for the datasets Nursery, Post-Operative Patient,

Primary-Tumor, and Soybean-Large. The reason for this observation remains unclear,

indicating that further investigation may be required in the future.

The primary difference between the two random forest-based algorithms lies in their

tree growth strategies: the RF algorithm allows fully grown individual trees and uses

an ensemble of these trees to reduce overfitting through aggregating, which often helps

capture complex patterns better. In contrast, the NPI-RF algorithm uses a stopping

criterion, which may result in shallower individual trees that can affect their ability to

capture complex structures, potentially limiting performance for more complex datasets.

To investigate this further, the NPI-RF ensemble method is implemented without the

stopping criterion, producing fully grown individual trees, and the results are presented

in Table 2.4. In Table 2.4, the NPI-RF algorithm, when implemented with fully grown

trees, is referred to as NPI-RF-FG. The results of both algorithms, NPI-RF and NPI-

RF-FG, are compared to the RF algorithm.

In Table 2.4, it is observed that when constructing fully grown trees using the NPI-RF-

FG classifier, the accuracy is higher than the that of the NPI-RF algorithm across most

datasets. For the Hypothyroid datasets, as mentioned earlier in this section, when using

the stopping criterion, as applied in the NPI-RF classifier, resulted in early termination

of the trees construction, which produces shallow individual trees in the ensemble. When

allowing fully grown trees using the NPI-RF-FG classifier, the performance is higher than

that of the NPI-RF classifier.

For the Nursery dataset, the NPI-RF-FG classifier achieves better performance com-

pared to the NPI-RF classifier, which is due to allowing deeper and more diverse in-

dividual trees in the ensemble. However, the accuracy of the NPI-RF-FG method is

Experimental setup 35

Dataset NPI-RF NPI-RF-FG RF

Balance-Scale 70.26 70.09 69.78
Banknote Authentication 89.50 89.50 89.50
Breast Cancer Wisconsin 95.71 96.57 96.43
Congressional Voting Records 94.92 95.84 96.53
CMC 53.70 52.34 52.95
Dermatology 95.64 96.73 97.84
Glass 78.40 80.80 79.42
Hayes 80.63 80.00 81.88
Hypothyroid 92.52 98.73 99.63
Iris 94.67 95.33 94.00
Mushroom 100.00 100.00 100.00
Nursery 91.19 96.44 99.57
Post-Operative Patient 71.11 65.56 65.56
Primary-Tumor 42.15 44.51 41.56
Qualitative-Bankruptcy 100.00 99.60 99.60
Soybean-Large 92.67 93.40 94.72
Sponge 92.32 92.32 92.32
Vehicle 71.87 74.70 74.58
Yeast 60.24 60.31 60.24
Zoo 94.18 95.00 96.00

Table 2.4: Accuracy results: comparison with base classifier (fully grown).

lower than that of the RF classifier, possibly because RF uses binary splits (based on the

CART algorithm), which can produce deeper individual trees than those generated by

the NPI-RF-FG classifier. This dataset contains a large number of instances, which may

require deeper individual trees to be capable of capturing the underlying complexity of

this dataset. This finding suggests that using ensemble methods with fully grown trees

can be more effective when dealing with large datasets, as they enable better capturing

of the complexity of the dataset.

Interestingly, applying the stopping criterion in the NPI-RF method led to slightly

better performance compared to allowing the individual trees to grow fully, as in the NPI-

RF-FG method, particularly for the datasets such as Balance-Scale, CMC, Dermatology,

Post-Operative Patient, and Qualitative-Bankruptcy. For datasets like Post-Operative

Patient, which has limited size and imbalance class labels, fully grown trees tend to

make highly specific splits to fit rare patterns in the bootstrap samples. Using stopping

criterion, as in the NPI-RF method, can lead to better performance.

In this analysis, the NPI-RF-FG method achieves a competitive performance com-

pared to the RF method across a diverse range of datasets. It is also highlighted that

Conclusions 36

for some datasets, it is beneficial to allow stopping early, which can result in improved

performance and computational efficiency.

To delve deeper into the performance of the introduced ensemble methods, an illus-

trative example showing the depth of the individual trees in the ensembles is provided in

Appendix B. The TD measure is used in the example.

The results of this example show that the ensemble methods, NPI-Bag and NPI-

RF, allow variation in TD among individual trees. For the NPI-RF classifier, the TD

values of the individual trees tend to vary more than those of the NPI-Bag classifier, with

many trees being deeper. This helps to enhance the performance of the NPI-RF method

compared to the D-NPI and NPI-Bag algorithms in the example. When using bagging and

random forest methods, deeper trees can be produced, which might overfit the bootstrap

samples used for their training. However, using aggregation for the final prediction aims

to reduce overfitting caused by the individual classifiers within the ensemble. Regarding

the NPI-Bag method, the individual trees have limited complexity, observed in their TD

values compared to the classification tree produced by the D-NPI classifier. The NPI-RF

method injects more randomness by selecting a subset of attributes at each split [22],

resulting diverse TD values of the individual trees compared to the NPI-Bag method,

thereby enhancing the final predictions by aggregating the predictions of the individual

classifiers.

2.5 Conclusions

In this chapter, two ensemble methods have been introduced for bagging and random

forest, referred to as NPI-Bag and NPI-RF, respectively, each using D-NPI as the base

classifier. These proposed ensemble methods were designed to use the strengths of the D-

NPI algorithm while enhancing predictive accuracy through ensemble learning techniques.

This study evaluated the performance of the proposed ensemble methods by comparing

them to the D-NPI algorithm and other ensemble methods. The primary objective was to

improve the performance of the D-NPI algorithm when applied to ensemble methods. The

second goal was to investigate how the proposed ensemble methods perform in comparison

with other ensemble methods.

Experimental studies were conducted to evaluate the performance of the proposed

Conclusions 37

methods. Two main scenarios were included in this study. The first focused on comparing

the proposed ensemble methods to the base classifier, including experiments on multiple

datasets. The second scenario involved comparing the proposed methods against two

other ensemble methods, namely NPI-M-B for bagging and RF for random forest. This

included an additional investigation in which the NPI-RF method was applied without a

stopping criterion, allowing fully grown individual trees in the ensemble. This method,

referred to as NPI-RF-FG method, was compared to the NPI-RF and RF methods.

In the first scenario, the proposed ensemble methods, NPI-Bag and NPI-RF, per-

formed well compared to the D-NPI algorithm, with the NPI-RF algorithm showing best

performance for most of the datasets.

In the example, the performance of the classification algorithms D-NPI, NPI-Bag,

and NPI-RF was evaluated in terms of accuracy and tree depth across the Soybean-Large

dataset (see Appendix B). Additionally, the distributions of the individual trees depths in

the NPI-Bag and NPI-RF ensemble methods were analysed to assess model complexity.

The results showed diversity in the tree depth values in the NPI-RF method, and how this

diversity affected its overall high performance. The NPI-Bag method achieved the same

accuracy as the D-NPI algorithm for this dataset, with the NPI-Bag method producing

shallow and less diverse individual trees compared to the NPI-RF method. The reduced

complexity of the NPI-Bag method compared to the NPI-RF method could affect its

performance, making it lower than that of the NPI-RF method.

In the second scenario, the RF method was the only method to produce fully grown

individual datasets, achieving the highest performance compared to the other meth-

ods. While the NPI-RF algorithm struggled to achieve the highest accuracy for several

datasets, particularly for the large-sized datasets, due to its stopping criterion, limit-

ing its ability to capture complex patterns. Meanwhile, the bagging methods, NPI-Bag

and NPI-M-B, achieved similar results across most datasets, except for some datasets

where performance varied without a clear reason, highlighting a potential area for future

investigation.

For further study, the performance of the NPI-RF method was analysed without the

stopping criterion to allow producing fully grown individual trees. This method was re-

ferred to as the NPI-RF-FG method. The results were compared to those of NPI-RF

and RF. Producing individual trees using the NPI-RF-FG method resulted in higher per-

Conclusions 38

formance compared to the NPI-RF method across most of the datasets, especially when

working with larger datasets such as the datasets Hypothyroid and Nursery. The NPI-

RF-FG method had competitive performance compared to the RF method. While the

NPI-RF-FG method shows promising results, for more complex datasets, future research

could explore using binary splits rather than multiway splits, allowing the capture of

more complex patterns. Based on these results, it is beneficial to allow deeper or fully

grown individual trees in ensemble methods in order to capture complex patterns.

This study concluded the good performance of the ensemble methods, NPI-Bag and

NPI-RF, using the D-NPI algorithm as a base classifier. A topic for future investigation

is to extend this work to weighted cost sensitive classification [104], with the aim of

addressing the challenge of imbalanced class distributions. Studying the robustness of

the methods in classification noise problems is worth investigating in future work.

Chapter 3

Imprecise classification with NPI

3.1 Introduction

In classification problems, a single class label is assigned to each instance in traditional

methods, which can potentially lead to misleading predictions due to the tendency of

datasets to contain noise and limited information in real-life applications. Assigning a

set of possible class labels to each instance offers a more cautious approach, providing

an edge over the traditional methods. The classifiers used to predict a set of class labels

are known as “imprecise classifiers” [4] or “credal classifiers” [113]. These classifiers are

functions that map instances to a set of predicted class labels.

In traditional classification methods, a new instance is assigned the most frequent class

label of the terminal node it reaches. In imprecise classification, by contrast, classifiers

assign probability intervals using a model based on imprecise probabilities. A dominance

criterion is then applied to obtain the set of predicted class labels, known as the set of

non-dominated states. The term set of non-dominated states will be denoted as set of

non-dominated labels in this chapter, to align with the terminology in this thesis.

In the literature, several methods use imprecise probabilities to build classification

trees. These methods use Imprecise Dirichlet Model (IDM) [107] to derive credal sets or

Nonparametric Predictive Inference Model for Multinomial data (NPI-M) [33] to obtain

possible non-convex sets of probabilities. In 2002, Zaffalon [113] introduced the first adap-

tation of the Naive Bayes Classifier (NBC) to imprecise classification, using credal sets

and the IDM, thereby establishing the Naive Credal Classifier (NCC). The NCC classifier

was proposed as a generalisation of standard classification using a credal dominance cri-

39

Introduction 40

terion to produce credal classification. The study developed procedures for classification,

and for computing the corresponding lower and upper posterior probabilities. Corani and

Zaffalon [38] extended the NCC classifier for treating of incomplete data, introducing a

classifier which is named NCC2. In an empirical study, they compared the performance of

the NBC and NCC2 classifiers. The results indicated that NBC produced overconfident

and unreliable predictions on hard to classify instances, whereas the NCC2 classifier re-

sulted in set-valued (cautious but informative) classifications when uncertainty was high.

They showed that both classifiers performed similarly on the other instances (not hard

instances).

Abellán and Masegosa [4] introduced an adaptation of the Credal Decision Tree (CDT)

[5] to imprecise classification, using the IDM and upper entropy, which is called Imprecise

Credal Decision Tree (ICDT). The ICDT classifier uses a dominance criterion to obtain

a set of predicted class labels, known as the set of non-dominated states. They compared

the ICDT classifier with the NCC classifier, revealing that the former is more precise and

informative.

Moral et al. [84] presented an adaptation of the CDT to imprecise classification, based

on Nonparametric Predictive Inference for Multinomial data (NPI-M) model [33], which

is referred to as Imprecise Credal Decision Tree with NPI (ICDT-NPI). This classifier uses

the NPI-M, unlike the ICDT classifier, which is based on the IDM. The main reason is that

the IDM assumes prior knowledge about the data through the hyperparameter s, and its

performance strongly depends on the choice of this parameter [81]. The study concluded

that the ICDT-NPI classifier outperforms the ICDT classifier when the hyperparameter

s = 3, while ICDT-NPI provides comparable results to ICDT when the hyperparameter

s = 1, 2.

In this chapter, a new adaptation of the D-NPI algorithm (introduced in Section 1.5)

to imprecise classification is proposed. Specifically, three new algorithms are introduced,

which are based on the NPI approach and use imprecise probabilities without adding any

additional assumptions. In order to assess the performance of the proposed algorithms,

various evaluation metrics are applied. Additionally, the performance of the proposed

algorithms is compared with four existing imprecise classifiers based on the NPI-M model

and the IDM.

This chapter is organised as follows: Section 3.2 provides a brief overview of the

NPI model for multinomial data 41

NPI-M and the dominance criterion. In Section 3.3, the new algorithms for imprecise

classification are introduced. Section 3.4 presents the performance evaluation metrics

for imprecise classification, along with the statistical tests for comparisons. Section 3.5

presents the experimental study, including comparisons, results, and discussions. Finally,

Section 3.6 concludes the chapter and presents potential topics for future research.

3.2 NPI model for multinomial data

As introduced earlier in Section 1.3, the Nonparametric Predictive Inference Model for

Multinomial data (NPI-M) has been developed by Coolen and Augustin [33, 34]. In this

section, the notation used in their work is adapted to align with that used in this chapter.

Let C be a class variable with the values c1, c2, . . . , cR and let ncr be the total number

of instances in the category cr, where r = 1, 2, . . . , R. The total number of instances in

c1, c2, . . . , cR is n, hence
∑R

r=1 n
cr = n. The NPI lower and upper probabilities for the

event Cn+1 = cr, where Cn+1 is the unknown class label for the future instance, are [34]

P (Cn+1 = cr) = max

(
0,
ncr − 1

n

)
, (3.1)

P (Cn+1 = cr) = min

(
ncr + 1

n
, 1

)
. (3.2)

Consequently, a set of probability intervals for individual singletons is defined as:

I = {[lr, ur], r ∈ {1, 2, . . . , R}} , (3.3)

where lr = max

(
0, n

cr−1
n

)
and ur = min

(
ncr+1
n

, 1

)
. This set of reachable probability

intervals corresponds to the credal sets given below [43]

P(I) = {p ∈ P(C) | p(cr) ∈ [lr, ur], ∀r ∈ {1, 2, . . . , R}} , (3.4)

where P(C) is the of set all probability distributions for the categorical class variable C.

For singleton events (e.g., observing a future outcome belonging to a specific category),

the lower and upper probabilities associated with the NPI-M model are obtained to form a

credal set, which is the set of all probability distributions consistent with these probability

Direct-NPI for imprecise classification 42

intervals. However, not all the probability distributions in the credal set are compatible

with the constraints of the NPI-M model due to the structure required by the assumed

probability wheel [6]. In order to avoid the constraints associated with the NPI-M model,

an approximation model is derived from the NPI-M model, this model is referred to as A-

NPI-M model [6]. The A-NPI-M model considers the convex hull of the set of probabilities

compatible with the NPI-M model. Abellán et al. [6] introduced two algorithms based

on the NPI approach and the maximum entropy measure. The first algorithm is used to

attain the maximum entropy probability distribution based on the NPI-M, and the second

algorithm uses the A-NPI-M to obtain the maximum entropy probability distribution.

These algorithms, NPI-M and A-NPI-M, can be used to construct classification trees with

the maximum entropy probabilities in the imprecise information gain criterion to select

the best attribute to split a node.

Dominance criterion is a concept in decision-making processes under uncertainty, used

to get the most plausible class labels. A class label is considered non-dominated if no

other class label is better, based on a dominance criterion. The set of predicted class

labels is defined to be the set of non-dominated labels. A common dominance criterion

used is “Strong dominance”. Based on this criterion, a class label is said to dominate

another if and only if its lower probability is greater than or equal to the upper probability

for the other class label. Consider a class variable C with two possible values: c1 and

c2 and let the probability intervals of c1 and c2 be represented by [l1, u1] and [l2, u2],

respectively. In this case, c1 is considered to have a strong dominance on c2 if and only if

l1 ≥ u2. Another dominance criterion is the Credal dominance criterion [113]. The class

label c2 is said to be credal-dominanted by the class label c1 if and only if p(c1) ≥ p(c2) for

all probability distributions p ∈ P . In this study, the strong dominance criterion is used

to attain the set of non-dominated labels when building imprecise classification trees.

3.3 Direct-NPI for imprecise classification

This section introduces three new algorithms for imprecise classification based on the

D-NPI algorithm as presented by Alharbi [12]. The D-NPI classification method is built

on the NPI approach and applies the Correct Indication (CI) splitting criterion, which

itself is derived from NPI, see Section 1.5 for more details. The main difference between

Direct-NPI for imprecise classification 43

the vanilla D-NPI algorithm and the proposed algorithms lies in the criterion used when

the tree reaches a leaf node during the classification of a new instance, denoted as x.

While the D-NPI algorithm assigns the most common class label to the leaf node, the

proposed algorithms assign probability intervals to the class labels based on the NPI-M

model, as discussed in Section 3.2. In the proposed algorithms, the strong dominance

criterion is used to derive the non-dominated labels after assigning a probability interval

for each class label. The main differences between them lie in the criterion used for

selecting the best attribute to split the tree and in the stopping criterion. The selecting

criterion and the stopping criterion in the D-NPI algorithm are recalled from Chapter

1 for their relevance in this chapter. In the process of constructing a classification tree,

an attribute is selected to split the tree. In the D-NPI algorithm, the NPI lower and

upper probabilities for the attribute variable xi leads to CI which reports the strength

of evidence for the class label of the future instance. After deriving the NPI lower and

upper probabilities for each attribute xi for CI, a stopping criterion is used determine

when to stop building the tree. Let n be the total number of instances and nmax be the

number of instances with the most frequent class label. Let P (NA) and P (NA) be the

NPI lower and upper probabilities for CI if no attribute variable is used. Using NPI for

multinomial data [34], the NPI lower and upper probabilities are

P (NA) = max (0,
nmax − 1

n
), (3.5)

and

P (NA) = min (
nmax + 1

n
, 1). (3.6)

Let P i(CI) and P i(CI) be the NPI lower and upper probabilities for the event that

the attribute xi leads to CI. During building the classification tree, the attribute variable

xi with the highest NPI lower and upper probabilities P ∗i (CI) and P
∗
i (CI) compared to

the other attributes is selected if

P ∗i (CI) > P (NA) and P
∗
i (CI) > P (NA), (3.7)

In [12], if two or more attributes satisfy the conditions in (3.7) and overlap in their

lower and upper probabilities, the attribute variable with the highest upper probability

Direct-NPI for imprecise classification 44

for CI is selected. This can result in an optimistic strategy by considering the maximum

potential support for a class label of the future instance. As the lower probability reports

the evidence in favour of the class label of the future instance, it is of interest to explore

selecting the attribute with the maximum NPI lower probability for CI in case of multiple

attributes overlap in their lower and upper probabilities and satisfy the conditions in (3.7).

In the case of multiple attribute variables that satisfy the conditions (3.7) and have the

same NPI lower probabilities and same NPI upper probabilities, any of these variables

may be selected. If there is no attribute that satisfies the conditions (3.7), a node is not

split further.

The aim of introducing the algorithms relies on the criterion of selecting the best

attribute to split the tree and the stopping criterion according to the two conditions

in (3.7). By satisfying both conditions in (3.7), the attribute selected to split the tree

aims to achieve the highest strength of evidence for the class label of the future instance.

Selecting an attribute which satisfies only the condition P
∗
i (CI) > P (NA) is likely to

result in a higher level of imprecision in the NPI lower and upper probabilities for CI than

an attribute which satisfies both conditions in (3.7). The purpose of varying the selection

criterion, whether based on the NPI upper probability for CI, or both the NPI lower and

upper probabilities for CI, is to investigate how different decision-making strategies affect

the performance of the classifier and to identify the most effective approach in imprecise

classification problems.

In this study, the new algorithms use the splitting criterion, CI, as presented in Section

1.5.2. The new algorithms are now introduced with adding the abbreviation IC to the

algorithm names to reflect Imprecise Classification.

Algorithm 1: D-NPI-IC1

When building the classification tree, this algorithm stops building the tree at a node if

no attribute satisfies the conditions in (3.7). If multiple attributes satisfy the conditions

given in (3.7), the attribute with the highest NPI lower and upper probabilities for CI

is selected. However, if no attribute has the highest NPI lower and upper probabilities

among the attributes but multiple have overlapping CI intervals, the attribute with the

highest NPI upper probability for CI is selected. This algorithm uses the same splitting

and stopping criteria as in the D-NPI algorithm but it returns a set of predicted class

labels rather than a single class label when reaching a leaf node.

Direct-NPI for imprecise classification 45

Algorithm 2: D-NPI-IC2

In this algorithm, if there are multiple attributes that satisfy the conditions outlined in

(3.7), and there is no single attribute that has both the maximum NPI upper and lower

probabilities for CI, then the attribute with the highest NPI lower probability for CI is

selected to split the tree. This algorithm stops splitting a node further if there is no

attribute meeting the conditions (3.7).

Algorithm 3: D-NPI-IC3

This algorithm stops splitting a node further if there is no attribute meets the following

condition

P
∗
i (CI) > P (NA). (3.8)

If two or more attributes satisfy the condition in (3.8), and overlap in their NPI

lower and upper probabilities for CI, then the attribute with the highest NPI upper

probability for CI is selected. In cases where multiple attributes have identical NPI

upper probabilities for CI and identical NPI lower probabilities for CI and satisfy the

condition in (3.8), any of these attributes can be selected.

In order to demonstrate how these algorithms select the best attribute, the following

example is considered.

Example 3.1. Suppose the NPI lower and upper probabilities for attributes x1 and x2

are [0.40, 0.60] and [0.43, 0.57], respectively. Additionally, the NPI lower and upper prob-

abilities if no attribute is used is [0.33, 0.50]. These two attributes overlap in their NPI

lower and upper probabilities for CI (no single attribute has both maximum NPI lower

and upper probabilities). In this case, both attributes x1 and x2 satisfy the conditions in

(3.7). According to the D-NPI-IC1 algorithm, the attribute with the highest NPI upper

probability for CI is selected to split the tree; in this case, it is x1.

According to the D-NPI-IC2 algorithm, attribute x2 is selected to split the tree as it

achieves the highest NPI lower probability for CI (i.e., 0.43 > 0.40). This algorithm may

select the attribute variable with less imprecise CI interval compared to the D-NPI-IC1

algorithm.

If there are multiple attributes that satisfy the conditions in (3.7) and have the same

NPI lower probabilities and the same NPI upper probabilities, then any of these attributes

Performance measures 46

Algorithm 3.1 Classification of a new instance.

1: Input: Classification Tree (CT) and New Instance (x)
2: Procedure ClassifyInstance (T ,x)
3: Apply x in CT to reach a leaf node.
4: Obtain probability intervals for each class label in the terminal node using the NPI-M

model: {[lr, ur], r = 1, . . . , R}.
5: Apply the strong dominance criterion to the probability intervals from the previous

step to get a set of non-dominated labels for x.

can be selected according to algorithms D-NPI-IC1 and D-NPI-IC1. For instance, suppose

that the attributes x1 and x2 have the same NPI lower probabilities and the same upper

probabilities, [0.43, 0.57]. Then, either x1 or x2 can be selected to split the tree.

Based on algorithm D-NPI-IC3, Both attributes x1 and x2 satisfy the condition in

(3.8). Without comparing the NPI lower probabilities for CI for the attributes, the

attribute variable with the highest NPI upper probability for CI is selected. Therefore,

the attribute x1 is selected to split the tree.

Pseudocodes outlining these three algorithms are provided in Appendix C. After in-

troducing the process of building classification trees using the three algorithms, the steps

for classifying a new instance, x, when reaching a leaf node are presented in Algorithm

3.1.

The next section presents various measures for evaluating the performance of imprecise

classifiers as well as statistical tests, which will be used in Section 3.5.

3.4 Performance measures

This section outlines the appropriate measures to evaluate the performance of imprecise

classifiers, along with the statistical tests used for comparative analysis.

3.4.1 Performance evaluation metrics

In the context of imprecise classification, several measures are used to evaluate the per-

formance of imprecise classifiers. It is important to consider two main aspects: first, if the

classifier correctly predicts the class label, i.e., if the correct class value falls within the

set of predicted labels, and secondly, the informativeness of the set of predicted labels,

quantified by its cardinality. Let n be the total number of instances in the dataset, and

Performance measures 47

let Et represent the classifier’s prediction for instance t, where Et is the set of predicted

labels assigned to instance t. The cardinality of a set Et, denoted by |Et|, is the number

of labels contained in Et. An instance t is classified precisely if |Et|= 1, meaning the

classifier returns only one label for that instance. The following metrics are defined by

Corani and Zaffalon [38]:

• Determinacy: This is the proportion of instances with a precise classification.

The Determinacy (DET) is defined as:

DET =
1

n

n∑
t=1

I(|Et|= 1), (3.9)

where I(|Et|= 1) is an indicator function that equals 1 if |Et|= 1 (i.e., the instance

is classified precisely), and 0 otherwise.

• Single Accuracy: This is the accuracy of the classifier when the predicted class is a

single label. Let np denote the number of instances where the classifier predicts the

label precisely, and let ncp represent the number of instances among these np where

the classifier correctly predicts the correct label. The Single Accuracy (SingleA) is

SingleA =
ncp

np

. (3.10)

• Set Accuracy: This is the proportion of the sets of predicted labels where the

correct class label is among the corresponding set of the predicted labels. Let ns

denote the number of instances where the classifier predicts more than one state (i.e.,

there are multiple non-dominated labels). Let ncs represent the number of instances

among these ns for which the actual class label is among the set of predicted labels.

The Set Accuracy (SetA) can be expressed as:

SetA =
ncs

ns

(3.11)

• Indeterminacy Size: This returns the average size of the set of predicted labels.

This measure reflects the indeterminacy of the classifier when it outputs indetermi-

Performance measures 48

nate predictions. The Indeterminacy Size (IS) can be expressed as:

IS =
1

ns

ns∑
t=1

|Et|. (3.12)

Each of these measures addresses one of the two main aspects of performance eval-

uation, namely whether the classifier predicts correctly or how informative the set of

predicted labels is. For example, the Determinacy and Indeterminacy Size tell how in-

formative the classifier is, while the Single Accuracy and Set Accuracy indicate if the

classifier makes correct predictions or not. These metrics have been previously used

by Corani and Zaffalon work [38], Abellán and Masegosa [4], and others in imprecise

classification tasks.

It is also essential to assess the overall performance of the classifiers comprehensively,

for which two additional metrics are used. The first metric is the Discounted Accuracy

[38]. Let ct be the correct class for instance t, and let Et be the set of predicted labels

for instance t. The Discounted Accuracy (DACC) is defined as:

DACC =
1

n

n∑
t=1

I(ct ∈ Et)
|Et|

, (3.13)

where I(ct ∈ Et) denotes the indicator function, which equals 1 if the set of predicted

labels contains the correct label, and 0 otherwise. This metric evaluates the performance

of classification models based on the two key aspects of performance evaluation discussed

earlier. It assigns a value of 0 if the classifier’s prediction for a set of predicted labels is

incorrect, meaning that the correct class value is not within the set of predicted labels.

Conversely, when the classifier outputs a set of predicted labels that contains the correct

class label, it adds a value to the metric, which is penalised by the size of the non-

dominated labels. The optimal value of this metric is 1 when the classifier returns a

set containing only one non-dominated labels for each instance in the dataset, and all

predictions are correct. If the classifier’s set of predicted labels includes all possible class

labels (denoted by R), then the DACC value will be 1
R

. The value of DACC is 0 when

the classifier misclassifies all instances in the testing dataset.

Another Measure for Imprecise Classification, denoted by MIC, has been introduced

by Abellán and Masegosa [4]. This metric aims to deal with prediction errors by adding

Performance measures 49

a value when the classifier correctly predicts the labels among the set of predicted labels,

depending on the value |Et|
R

. However, when the prediction is wrong, it adds a constant

value depending on R. The MIC metric is defined as:

MIC =
1

n

(
−

∑
t:success

log
|Et|
R

+
1

R− 1

∑
t:error

logR

)
. (3.14)

The higher the value of MIC, the better the performance of the classifier, with the

optimal value being logR when the classifier correctly and precisely predicts the set

of labels for all instances in the testing dataset. The MIC value is 0 when the set of

predicted labels is the same as the full set of class labels R, indicating that the classifier

is not informative. The DACC metric assigns 0 to incorrect predictions, as it sums 0

when the classifier predicts a set of predicted labels that does not contain the correct

class label. Unlike the DACC metric, each incorrect prediction is assigned a value of

logR
R−1 in the MIC. If the imprecise classifier always predicts the full set of class labels R,

the value of DACC is 1
R

, and the value of MIC is 0, which is lower, indicating that the

classifier is not informative. In [4], the MIC metric takes into account different degrees

of importance of errors using a cost matrix of the errors. Since specifying these degrees

of importance of the errors requires an expert in a specific domain, this study focuses on

adding a constant value for all errors (i.e., assuming the same level of importance for all

errors). Investigating the performance of imprecise classifiers in a particular area using

the MIC metric with different levels of importance of errors is an interesting topic for

future research.

3.4.2 Statistical tests

Statistical tests are used to evaluate the performance of classification algorithms, pro-

viding an approach for comparing their effectiveness over multiple datasets. Demšar [46]

examined two tests for comparing the performance of multiple classifiers over multiple

datasets, namely ANOVA test and Friedman test. Demšar [46] concluded that the Fried-

man test is safer than the ANOVA test, as it does not assume normality or homogeneity

of variance. If the null hypothesis of the Friedman test is rejected, a post-hoc statistical

test is used, which is named Nemenyi test. The Friedman test and Nemenyi test are

defined as follows:

Performance measures 50

• Friedman test: A nonparametric statistical test used to compare the performance

of different algorithms across multiple datasets [58]. The null hypothesis states

that all classifiers have equivalent performance across multiple datasets. The test

involves ranking the classifiers’ performances within each dataset, assigning rank 1

to the best-performing classifier, rank 2 to the second-best classifier, and so on. The

ranks are then analysed to determine if there are statistically significant differences

between the classifiers. Let k be the number of classifiers and m be the number

of datasets. Let Sdl be the rank of the l-th classifier on the d-th dataset based on

a performance metric. Let Sl =
∑m

d=1 Sdl denote the sum of ranks for classifier l

across all m datasets. The test statistic (F) is calculated as follows:

F =
12

mk(k + 1)

k∑
l=1

S2
l − 3m(k + 1) (3.15)

Under the null hypothesis, F approximately follows a chi-squared distribution with

k − 1 degrees of freedom: F ∼ χ2
k−1. If significant differences are detected with

the test statistic F , further post-hoc test can be performed to determine which

classifiers differ in performance.

• Nemenyi test: A post-hoc statistical test used when the null hypothesis of Fried-

man test is rejected, indicating that at least one classifier performs differently from

the others [88]. It compares all classifiers with each other to determine which pairs

of classifiers reveal statistically significant differences in their performance. The

critical difference (CD) is defined by

CD = qα,k

√
k(k + 1)

6m
(3.16)

where qα,k is the critical value from the Studentized range statistic (based on the

desired significance level α and the number of classifiers k) divided by
√

2 [46].

If the difference in the average ranks of two classifiers is greater than the critical

difference, CD, then the null hypothesis of the performance of the Nemenyi test is

rejected.

Performance evaluation 51

3.5 Performance evaluation

In this section, the experiments evaluate the performance of the algorithms proposed in

Section 3.3, with comparisons to existing methods. For this purpose, the classifiers NPI-

M and A-NPI-M are included [6] (see Section 3.2), along with two IDM-based classifiers

[1] using hyperparameter values s = 1 and s = 2. Section 3.5.1 describes the experimental

setup, including datasets, classifiers, and evaluation metrics, while Section 3.5.2 presents

and discusses the results in detail.

3.5.1 Experimental setup

In this experiment, three algorithms for imprecise classification are implemented, with the

aim of evaluating their performance in comparison to existing methods. For comparison,

two classifiers introduced by Abellán et al. [7] and two additional classifiers proposed

by Abellán and Masegosa [4] are included. These classifiers are referred to as NPI-M,

A-NPI-M, IDM1 (with hyperparameter s = 1), and IDM2 (with hyperparameter s = 2).

Twenty-one publicly available datasets were obtained from the UCI Machine Learning

Repository [75]. These datasets vary in terms of size, number of attributes, number of

class values, and the range of categories for nominal attributes. Table 3.1 summarises

these datasets. The column “n” represents the size of the dataset, “Att” indicates the

number of attributes, “Num” shows the number of numerical attributes, “Nom” displays

the number of nominal attributes, “R” denotes the number of class values, and “Range”

specifies the range of the categories for nominal attributes.

To prepare the datasets for classification, missing values in any dataset are replaced by

the mode for nominal attributes and the mean for numerical attributes. Discretisation is

applied to pre-process continuous attributes discretised using the ‘discretize’ function

from the ‘FSelectorRcpp’ package in R [114], applying Fayyad and Irani’s discretisation

method, or the equal-width binning method when no valid cut points are found. For the

Waveform dataset, the equal frequency method from the package ‘arules’ in R is used

via the ‘discretize’ function [66], since some attributes in the Waveform dataset cannot

be discretised using the ‘discretize’ function from the ‘FSelectorRcpp’ package.

The primary purpose of this experiment is to evaluate the classification performance

of the proposed imprecise classifiers D-NPI-IC1, D-NPI-IC2, and D-NPI-IC3 compared to

Performance evaluation 52

other imprecise classifiers. The classifiers, namely NPI-M, A-NPI-M, IDM1, and IDM2,

are implemented using the ‘imptree’ package in R [56], and the strong dominance crite-

rion is applied when reaching a leaf node for classifying a new instance. These classifiers

are selected because they are based on imprecise probability.

For each dataset, a 10-fold cross-validation procedure is applied to mitigate bias and

provide a robust evaluation of classifier performance [78].

The evaluation metrics used are Determinacy (DET), Single Accuracy (SingleA), Set

Accuracy (SetA), Indeterminacy Size (IS), Tree Depth (TD), DACC, and MIC. Finally,

statistical tests are used to compare the performance using the metrics DACC and MIC,

across the different classifiers, as presented in Section 3.4. The Friedman test is applied,

if the null hypothesis is rejected, the Nemenyi post-hoc test is applied with significance

level α = 0.05 (see Section 3.4 for more details about the tests).

The algorithms D-NPI-IC1, D-NPI-IC2, and D-NPI-IC3 are implemented by following

the procedures outlined in Section 3.3 (Pseudocodes for these algorithms are presented

in Appendix C). All experiments are conducted using the statistical software R.

3.5.2 Results and discussion

This section presents the results of evaluating the proposed algorithms against well-known

algorithms using various performance metrics. To maintain clarity and conciseness, the

algorithms are abbreviated in the tables as follows: the three new algorithms are referred

to as ’ICx’ for x = 1, 2, 3, ’NPIM’ corresponds to Algorithm NPI-M, and ’ANPIM’ stands

for Algorithm A-NPI-M. The abbreviations of the two algorithms, IDM1 and IDM2, are

not changed.

Table 3.2 presents the results for each algorithm, averaged over all datasets, according

to the metrics: Determinacy (DET), Single Accuracy (SingleA), Set Accuracy (SetA),

Indeterminacy Size (IS), and Tree Depth (TD). The complete results for all metrics, for

each dataset, are provided in Appendix C.

As seen in Table 3.2, the evaluation according to the DET metric, averaged across

all datasets, reveals that algorithm IC2 achieves the highest value. This algorithm differs

from the IC1 algorithm when multiple attributes have overlapping CI intervals. In such

cases, the IC2 algorithm tends to select the attribute with the less imprecise CI interval

compared to the IC1 algorithm. The IC2 imprecise classifier tends to be quite confident

Performance evaluation 53

Dataset n Att Num Nom R Range

Balance-Scale 625 4 4 - 3 -
CMC 1473 9 2 7 3 2-4
Dermatology 366 34 1 33 6 2-4
Hayes 160 4 - 4 3 3-4
Hypothyroid 3772 27 6 21 4 2-5
Iris 150 4 4 - 3 -
Letter 20000 16 16 - 26 -
Lymphography 148 18 - 18 4 2-8
Nursery 12960 8 - 8 5 2-5
Page-Blocks 5473 10 10 - 5 -
Pendigits 10992 16 16 - 10 -
Primary-Tumor 339 17 - 17 21 2-3
Segment 2310 16 16 - 7 -
Soybean 683 35 - 35 19 2-7
Splice 3190 60 - 60 3 4-6
Sponge 76 44 - 44 3 2-9
Vehicle 846 18 18 - 4 -
Vowel 990 11 10 1 11 2
Waveform 5000 40 40 - 3 -
Yeast 1484 6 6 - 10 -
Zoo 101 17 1 16 7 2

Table 3.1: Datasets [75]. Size “n”, number of attributes “Att”, number of numerical
attributes “Num”, number of nominal attributes “Nom”, number of class labels “R”,
and range of values of nominal attributes “Range”.

in making single predictions (around 93%). The IC1 algorithm follows closely with ap-

proximately 92%. In contrast, the IC3 algorithm is less confident about producing single

predictions, as it tends to build deeper trees than the other algorithms. The excessive

splits in the IC3 algorithm, compared to the IC1 algorithm, can result in reaching leaf

nodes with few instances, implying less confidence about producing single predictions.

Algorithms NPIM, ANPIM, and IDM2 show to have lower determinacy compared to al-

gorithms IC1 and IC2. The IDM1 algorithm tends to be more confident about predicting

single predictions compared to IDM2, with a DET value approximately 3% higher than

that of IDM2.

Regarding the accuracy of the classifier when the prediction is a single label (SingleA),

algorithms with higher values of DET tend to produce slightly more incorrect predictions

than those with lower DET. That is because, in some cases where certain algorithms are

not confident in predicting a single label, others have higher confidence, which increases

the risk of incorrect predictions. This can be observed in the IC1, IC2, and IC3 algorithms,

Performance evaluation 54

Average IC1 IC2 IC3 NPIM ANPIM IDM1 IDM2

DET 0.9178 0.9313 0.8675 0.8670 0.8667 0.8949 0.8629
SingleA 0.8381 0.8306 0.8501 0.8081 0.8080 0.7997 0.8056
SetA 0.9359 0.9369 0.9515 0.9139 0.9154 0.9017 0.9046
IS 6.5446 6.7044 6.2187 4.7686 4.8087 4.1197 4.2833
TD 5.7048 5.9238 6.3333 5.1429 5.1286 5.2952 4.9333

Table 3.2: Summary results of measures: DET, SingleA, SetA, IS, and TD for all algo-
rithms.

where the IC2 algorithm which achieves the highest value of DET, also has the lowest

SingleA value, and vice versa for the IC3 algorithm. The SingleA values for the last four

algorithms are relatively close.

A high value of DET means that the classifier returns a lower percentage of inde-

terminate predictions. In the case of the IC3 algorithm, out of approximately 13% of

indeterminate predictions, the accuracy is 95.15% (SetA), which is relatively high com-

pared to the other algorithms. However, this high SetA value does not always indicate

better performance of the classifier, as it might return a set of predicted labels with a

large size. Therefore, using the DACC and MIC measures is advantageous, as they pro-

vide meaningful insights into the tradeoff between correct prediction and the size of the

set of predicted labels. Algorithms NPIM and ANPIM perform similarly when producing

indeterminate predictions, and the same applies to algorithms IDM1 and IDM2, although

both have lower SetA values than those of algorithms NPIM and ANPIM.

Algorithms IDM1 and IDM2 have the lowest values of IS compared to the other

algorithms, with the lowest value achieved by the IDM1 algorithm. The IC1 algorithm

achieves the highest value of IS; this may explain its high value of SetA. Similarly, the

low IS values observed for the IDM1 and IDM2 algorithms correspond to their lower

SetA values. This can be intuitively explained by the fact that, as the size of the set of

predicted labels excessively increases, the classifiers’ ability to include the correct class

label within the set increases. Conversely, an excessive decrease in the size of the set of

non-dominated labels has the opposite effect. The first three classifiers tend to produce

prediction sets whose sizes correspond to approximately 86%, 89%, and 82%, respectively,

of the average size of the full labels set, while classifiers NPIM and ANPIM include around

63% and 64%, respectively, of the full possible set of labels on average.

In terms of the TD measure, the values for all algorithms, except for the IC3 algorithm,

Performance evaluation 55

Dataset IC1 IC2 IC3 NPIM ANPIM IDM1 IDM2

Balance-Scale 0.6833 0.6884 0.7193 0.7241 0.7241 0.7017 0.7241
CMC 0.5226 0.5451 0.4875 0.5442 0.5442 0.5416 0.5455
Dermatology 0.9432 0.9204 0.9359 0.8903 0.8903 0.8981 0.8835
Hayes 0.7115 0.6927 0.6833 0.6781 0.6781 0.6729 0.7021
Hypothyroid 0.9930 0.9930 0.9922 0.9881 0.9881 0.9897 0.9888
Iris 0.9533 0.9400 0.9533 0.9444 0.9444 0.9533 0.9533
Letter 0.7330 0.7404 0.7240 0.5016 0.5021 0.5081 0.5011
Lymphography 0.7552 0.7811 0.7338 0.7807 0.7807 0.7932 0.7742
Nursery 0.9182 0.9181 0.9262 0.9475 0.9465 0.9624 0.9376
Page-Blocks 0.9652 0.9651 0.9614 0.9572 0.9572 0.9601 0.9551
Pendigits 0.8665 0.8707 0.8537 0.8000 0.7998 0.8219 0.7980
Primary-Tumor 0.3637 0.3457 0.3180 0.3488 0.3466 0.3564 0.3623
Segment 0.9279 0.9433 0.9164 0.7759 0.7756 0.7864 0.7732
Soybean-Large 0.8192 0.8395 0.7975 0.9005 0.9005 0.9033 0.8376
Splice 0.8847 0.8812 0.8841 0.6969 0.6969 0.7016 0.6969
Sponge 0.9232 0.9232 0.8911 0.9232 0.9232 0.9232 0.9232
Vehicle 0.7058 0.7112 0.6899 0.6145 0.6145 0.6219 0.6047
Vowel 0.7351 0.7441 0.7299 0.5325 0.5306 0.5729 0.5262
Waveform 0.7669 0.7661 0.7488 0.7546 0.7546 0.7554 0.7483
Yeast 0.5848 0.5865 0.5667 0.5678 0.5676 0.5674 0.5610
Zoo 0.9038 0.8747 0.9038 0.8752 0.8752 0.9352 0.8574

Average 0.7933 0.7938 0.7818 0.7498 0.7496 0.7584 0.7454

Table 3.3: Performance of all algorithms on different datasets (Metric: DACC).

are close, with the IDM2 algorithm achieving the lowest value. The IC3 algorithm has

a TD value higher than that of the IC1 algorithm, as the latter selects attribute that

satisfies the two conditions in (3.7), while the former is less strict, selecting attribute that

satisfies the only one condition in (3.8). It is worth mentioning that NPIM, ANPIM,

IDM1, and IDM2 generally have lower TD values across most datasets.

In order to study the performance of the classifiers in terms of the balance between the

correct prediction and the size of the set of predicted labels, the DACC and MIC metrics

are used. The results for each dataset are presented to support further investigation.

In Table 3.3, the performance of the algorithms with respect to the DACC metric

varies across the evaluated datasets. It is observed that the IC1 and IC2 algorithms

achieve higher DACC values for most of the datasets. Algorithm IC2 achieves the highest

average DACC value, closely followed by algorithm IC1, whereas algorithm IDM2 attains

the lowest value.

For the Primray-Tumor dataset, the DACC values are notably low across all algo-

Performance evaluation 56

rithms when compared to the other datasets. This dataset is relatively small in size and

is characterised by a high number of attributes and class labels, a presence of missing

values, and an imbalanced class distribution. The classifiers demonstrate high indetermi-

nacy for this dataset compared to others. Among the classifiers, algorithm IC3 observed

to be the most indeterminate classifier, returning approximately 50% of indeterminate

predictions while achieving the lowest DACC value (see Appendix C). The IC2 achieves

the highest DET value, but the IC1 has the highest DACC value. This is due to the IC1 al-

gorithm achieving a higher SingleA value compared to the IC2 algorithm, with IC2 having

slightly higher SetA and IS values than the IC1 algorithm. As a result, the IC1 algorithm

achieves the best balance between correct predictions and the sizes of the prediction sets

according to the DACC measure. The IDM2 follows closely the IC1 algorithm.

All the classifiers have high performance for the Iris and Page-Blocks datasets, which

are defined by their relatively small number of continuous attributes, small number of

class labels, and no missing values. For the Iris dataset, IC1, IC2, IC3, IDM1, and IDM2

are 100% determinate. Notably, the IDM1 and IDM2 algorithm show identical behaviour

and performance for the Iris dataset and same happens for both algorithms IC1 and

IC3. The NPIM and ANPIM algorithms have lower DET values compared to the other

algorithms, along with slightly higher TD values, which affects their overall lower DACC

values.

For the Dermatology dataset, algorithm IC1 achieves the most favourable tradeoff be-

tween correct predictions and the set of predicted labels, achieving higher value of DACC

compared to the other algorithms. The first three algorithms have high determinacy and

SingleA values compared to the remaining algorithms for this dataset, which contributes

to their high values of DACC. Notably, the IC1 achieves the highest DET and SingleA

values.

For the Letter dataset, the gap between the DACC values for the first three algorithms

and the last four algorithms is due to the low SingleA and SetA values observed for the

latter algorithms compared to the first. The NPIM, ANPIM, IDM1, and IDM2 algorithms

tend to stop building tree early (low TD values), producing prediction sets with smaller

sizes compared to those of the algorithms IC1, IC2, and IC3. For these reasons, the

algorithms IC1, IC2, and IC3 have better performance in terms of the DACC measure.

Also, these algorithms have better performance for the Splice dataset, as they have high

Performance evaluation 57

SingleA and SetA values compared to the NPIM, ANPIM, IDM1, and IDM2 algorithms,

which resulted in their higher accuracy values with respect to the DACC measure.

In the case of the Pendigits dataset, which contains a moderate number of instances,

the first three algorithms have good performance, with the best DACC value achieved by

algorithm IC2. Although this dataset has a moderate number of class labels, it is charac-

terised by a balanced class distribution. Algorithms IC1, IC2, and IC3 have high values of

SingleA and SetA compared to the NPIM, ANPIM, IDM1, and IDM2 algorithms, which

explain their high values of DACC. The first three algorithms tend to produce deeper

trees (i.e., higher values of TD), and when combined with the balanced class distribution,

this can lead to identifying more meaningful splits, resulting in a higher percentage of

correct predictions. Among the last four algorithms, algorithm IDM1 has a relatively

high DACC value, which can be attributed to its low value of IS.

The NPIM, ANPIM, and IDM1 algorithms demonstrate strong performance in terms

of their DACC values compared to other algorithms for the Nursery and Soybean datasets.

For the Soybean dataset, it has a relatively high number of missing values, a moderate

size, a high number of attributes, and imbalanced class distribution. The NPIM, AN-

PIM, and IDM1 algorithms tend to be highly confident in predicting single labels, often

accompanied by high SingleA values. In contrast, the IC1 and IC2 algorithms have high

determinacy but with low SingleA and SetA values and high IS values, resulting in their

low DACC values compared to algorithms NPIM, ANPIM, and IDM1. Regarding the

Nursery dataset, the IC1 and IC2 algorithms have low SingleA values, which impacts

their low DACC values compared to the NPIM, ANPIM, and IDM1 algorithms.

The first three algorithms can have different structure of the trees due to their internal

criteria for selecting the most informative attribute to split the trees, and their stopping

criteria. In particular, selecting attributes based on the two conditions in (3.7) for the

algorithms IC1 and IC2 results in better performance than selecting attributes based on

the single condition given in (3.8).

For further investigation, performance is evaluated and presented using the MIC met-

ric across all datasets. The results of the MIC in Table 3.4, on average, indicate that

the IC2 algorithm achieves the highest value, closely followed by the IC1 algorithm, while

the lowest value is obtained by the IDM2 algorithm. Notably, the average MIC met-

ric values for Algorithms IC3 and IDM1 show minimal variation, indicating comparable

Performance evaluation 58

Dataset IC1 IC2 IC3 NPIM ANPIM IDM1 IDM2

Balance-Scale 0.9233 0.9244 0.9085 0.8426 0.8426 0.8694 0.8426
CMC 0.7625 0.7957 0.6289 0.7385 0.7385 0.7693 0.7492
Dermatology 1.6891 1.6499 1.6755 1.6069 1.6069 1.6299 1.5972
Hayes 0.8433 0.8278 0.7304 0.7858 0.7858 0.8039 0.7970
Hypothyroid 1.3794 1.3794 1.3780 1.3709 1.3709 1.3742 1.3724
Iris 1.0730 1.0657 1.0730 1.0583 1.0583 1.0730 1.0730
Letter 2.3969 2.4261 2.3674 1.7496 1.7505 1.7691 1.7608
Lymphography 1.0740 1.1368 1.0264 1.0824 1.0824 1.1372 1.1008
Nursery 1.5094 1.5093 1.5101 1.5432 1.5417 1.5629 1.5340
Page-Blocks 1.5616 1.5628 1.5522 1.5525 1.5525 1.5580 1.5512
Pendigits 1.9978 2.0097 1.9617 1.8871 1.8865 1.9382 1.8834
Primary-Tumor 1.1499 1.1120 1.0141 1.1904 1.1825 1.2036 1.2519
Segment 1.8089 1.8399 1.7850 1.5682 1.5679 1.5962 1.5684
Soybean-Large 2.4354 2.4941 2.3803 2.6747 2.6747 2.6949 2.5708
Splice 1.0175 1.0142 0.9988 0.8136 0.8136 0.8417 0.8313
Sponge 1.0564 1.0564 0.9917 1.0564 1.0564 1.0564 1.0564
Vehicle 1.0641 1.0752 1.0336 0.9768 0.9768 1.0001 0.9666
Vowel 1.8109 1.8311 1.7990 1.4269 1.4199 1.5268 1.4095
Waveform 0.9561 0.9575 0.9202 0.9212 0.9212 0.9287 0.9336
Yeast 1.4425 1.4457 1.4074 1.4122 1.4115 1.4240 1.3997
Zoo 1.7834 1.7316 1.7834 1.6879 1.6879 1.8241 1.6540

Average 1.4160 1.4212 1.3774 1.3308 1.3300 1.3610 1.3288

Table 3.4: Performance of all algorithms on different datasets (Metric: MIC).

performance. Furthermore, the NPIM and ANPIM algorithms perform equally for most

of the datasets with the NPIM algorithm showing slightly higher MIC values for some

datasets. The findings per each dataset for the MIC metric align with those of when

using the DACC metric with small variations for some datasets.

For the Balance-Scale dataset, interestingly, the first three algorithms have higher

MIC values compared to the other algorithms. Upon further investigation, it is observed

that the algorithms IC1 and IC2 are approximately 99% determinate with low SingleA and

SetA values, while the NPIM, ANPIM, IDM1, and IDM2 algorithms are less determinate,

having high values of SingleA and SetA. To explain, in terms of the DACC measure

presented in Table 3.3, the performance of the IC1 and IC2 algorithms is affected by the

the low values of SingleA and SetA, resulting in their lower DACC values. When applying

the MIC measure, a constant value of log 3
2
' 0.55 is added for each wrong prediction, and

either − log 2
3
' 0.41 when the cardinality of the set of predicted labels is 2, or 0 when

the cardinality is 3. As the IC1 and IC2 algorithms have incorrect predictions more than

Performance evaluation 59

the NPIM, ANPIM, IDM1, and IDM2 algorithms, as reflected in their values of SingleA

and SetA, the value 0.55 is assigned to each wrong prediction more frequently, leading

to increased MIC value. Similar reasoning explains the observed results for the CMC

dataset.

In the case of the Primary-Tumor dataset, the IC1 achieves the highest DACC value,

while the IDM2 achieves the highest MIC value. As the IC1 algorithm has IS approxi-

mately value 15, while IDM2 has a value of approximately 11, this difference affects the

values that MIC adds for each correct imprecise prediction. In the case of IDM2, the

MIC tends to assign higher values for correct imprecise predictions, which results in its

high MIC value.

For further comparison, the performance of all algorithms is statistically tested using

the Friedman rank test, followed by the Nemenyi test when significant differences are

detected. Table 3.5 presents the results of the metrics DACC and MIC. The reason for

selecting these two metrics, as discussed in Section 3.4, is that they capable of evaluating

the performance of the classifiers while considering if the predictions are correct or not

along with the size of the set of the predicted labels. These metrics have also been used

in the literature for evaluating the performance of imprecise classifiers, including the

work by Abellán and Masegosa [4]. In Table 3.5, the average values of the metrics, the

Friedman rank, and the Nemenyi test results are presented for each algorithm.

For the DACC measure, the Friedman test results in a p-value of 0.0011, suggesting

that there are significant differences between the algorithms at the 5% level. According

to the results in Table 3.5, the algorithm IC1 achieves the best average rank among the

other classifiers, suggesting consistent performance across datasets, while the algorithm

IC2 achieves the highest average value of DACC. To further investigate these differences,

the Nemenyi test is conducted, and both algorithms significantly outperform the IDM2

algorithm, while no significant differences are observed between the other algorithms.

The algorithm IDM2 has the highest rank and the lowest average value of DACC, indi-

cating overall weak performance compared to the other classifiers. This finding can be

attributed to the observed behaviour of the IC1 and IC2 algorithms being more deter-

minate compared to the other algorithms, along with achieving high SingleA and SetA

values, resulting in their overall high accuracy.

According to the MIC measure, the Friedman test has a p-value of 1.142−7, thereby

Performance evaluation 60

Algorithm Average Friedman Rank Nemenyi

DACC

IC1 0.7933 2.8095 IDM2
IC2 0.7938 3.0476 IDM2
IC3 0.7818 4.2857 -
NPIM 0.7498 4.4762 -
ANPIM 0.7496 4.7143 -
IDM1 0.7584 3.5238 -
IDM2 0.7454 5.1429 -

MIC

IC1 1.4160 2.7143 NPIM, ANPIM, IDM2
IC2 1.4212 2.4286 IC3, NPIM, ANPIM, IDM2
IC3 1.3774 4.6190 -
NPIM 1.3308 5.0238 -
ANPIM 1.3300 5.2619 -
IDM1 1.3610 3.0000 NPIM, ANPIM
IMD2 1.3288 4.9524 -

Table 3.5: Performance comparison of all algorithms with the metrics: DACC and MIC.
Column “Nemenyi ” shows the classifiers, in which the classifier in the row is significantly
better based on the Nemenyi test.

indicating statistically significant differences among the algorithms. In Table 3.5, algo-

rithm IC2 achieves both the best rank and average values among the classifiers, followed

closely by algorithm IC1, then the IDM1 algorithm. After applying the Nemenyi test,

the results show that IC1 and IC2 perform significantly better than NPIM, ANPIM, and

IDM2. Moreover, IC2 significantly outperforms IC3. Additionally, IDM1 demonstrates

better performance than NPIM and NPIM. The observed reason for the low performance

of the NPIM, ANPIM, and IDM2 algorithms in terms of MIC is their lower DET values,

which results in more imprecise predictions. As discussed previously, imprecise prediction

can lead to a lower value of MIC as long as the cardinality is sufficiently low. This can be

easily achieved if the number of classes in the dataset is low. These differences in MIC

values are particularly noticeable for the datasets which have 3 class labels, as imprecise

predictions can take only cardinality value between 2 and 3. The large differences be-

tween the algorithms according to this metric can be reduced for datasets with higher

number of class labels.

Conclusions 61

3.6 Conclusions

In this chapter, three new algorithms were adapted to imprecise classification based on

the NPI approach and the CI splitting criterion. These algorithms are D-NPI-IC1, D-

NPI-IC2, and D-NPI-IC3. They were developed to investigate the performance of the

D-NPI algorithm when adapted to imprecise classification, considering different criteria

for selecting the best attribute and for stopping the tree-building process. In this study,

after a tree is built using an algorithm, a probability interval from the NPI-M model is

assigned to each class label at the leaf nodes. The strong dominance criterion is then

applied to obtain the set of predicted labels.

Different measures for imprecise classification and statistical tests were presented in

this study to investigate the performance of the classifiers. The measures DACC and

MIC were important for assessing the overall performance of the algorithms. The DACC

measure considers whether the set of predicted labels contains the correct class label,

and the cardinality of the set of predicted labels. The MIC metric accounts for the same

aspects as the DACC metric, while in addition assigning a constant value for incorrect

prediction.

An experimental study was conducted to evaluate the performance of the proposed

algorithms and compare them with the algorithms NPI-M, A-NPI-M, IDM1, and IDM2

from the literature. The NPI-M and A-NPI-M algorithms are based on the NPI approach,

while the IDM1 and IDM2 are based on the IDM with the hyperparameter s = 1 and

s = 2, respectively.

The results of this study revealed that the D-NPI-IC1 and D-NPI-IC2 algorithms

tended to be less indeterminate compared to the other algorithms, with having high single

accuracy and set accuracy values. The D-NPI-IC3 was less determinate but achieved the

highest single and set accuracy values. The D-NPI-IC1, D-NPI-IC2, and D-NPI-IC3

tended to have deep trees. The NPI-M, ANPI-M, IDM1, and IDM2 algorithms achieved

low indeterminacy size values compared to the proposed algorithms.

Regarding the DACC and MIC measures, the results indicated that the D-NPI-IC1

and D-NPI-IC2 algorithms demonstrated the best performance compared to the other

algorithms. In terms of DACC, they achieved a balance between high accuracy values

when the predictions were either precise or imprecise. They showed significantly better

Conclusions 62

performance than the IDM2 algorithm for this metric.

In case of the MIC measure, the D-NPI-IC1 and D-NPI-IC2 algorithms achieved the

highest performance, showing significantly better performance than the NPI-M, A-NPI-

M, and IDM2 algorithms. The observed reason for this was that the NPI-M, A-NPI-M,

and IDM2 algorithms were less determinate compared to the D-NPI-IC1 and D-NPI-IC2

algorithms, which affected the resulting MIC values, particularly for datasets with low

values of class labels.

The results showed that the proposed algorithms D-NPI-IC1 and D-NPI-IC2 achieved

best performance compared to the other imprecise classifiers from the literature, indicat-

ing their potential as promising methods for imprecise classification problems.

In the D-NPI algorithm for multinomial data, Alharbi [12] derived the NPI lower

and upper probabilities for the event that a future instance has a specific class based

on NPI for Bernoulli data. However, he mentioned that using NPI for multinomial data

instead might result in slightly larger imprecision. It is an interesting topic for future

research to use NPI for multinomial data to derive these probabilities and investigate the

performance when applied to imprecise classification tasks.

It will be interesting to extend the algorithms to weighted cost sensitive classification

[104], aiming to improve the performance of the algorithms in scenarios where misclas-

sification costs vary. It provides a more effective way to handle the issues related to

imbalanced datasets than the traditional methods for classification using weights.

Adapting the D-NPI algorithm to imprecise classification by changing the criterion

for selecting the best attribute based solely on the NPI lower probability is possible,

but needed to be approached with caution. During splitting the tree, if only one of

the possible values of an attribute is observed in the data, this can lead to high NPI

lower probability for CI. If no appropriate settings are configured in implementation,

such attribute can be selected to split the tree, but the splitting will be stopped later due

to selecting uninformative attribute. This issue can be further investigated in future.

Chapter 4

Multi-Label classification with NPI

4.1 Introduction

Multi-label classification (MLC) is an area within machine learning where multiple labels

can be assigned to each instance simultaneously, unlike traditional single-label classifica-

tion. It has gained attention due to its applicability across various domains, including

text categorization [74], biology [91], and bioinformatics [108], where multiple labels nat-

urally appear. In text categorization [74], for instance, a single document can belong to

multiple tags simultaneously, requiring a multi-label classification approach. Similarly,

in biology [91], a single clinical report can describe more than one medical condition,

further emphasising the necessity for multi-label classification models to assign multiple

relevant diagnostic codes to each radiology report. In bioinformatics [108], multi-label

classification is used to predict multiple functions for each protein based on its sequence.

The methods used for MLC problems are grouped into two main categories: algo-

rithm adaptation methods and problem transformation methods. Algorithm adaptation

methods, such as decision trees [27], neural networks [115], and support vector machines

[51], extend traditional classification methods to handle multiple labels directly. Whereas

problem transformation methods transform MLC problems into either one or two tradi-

tional single-label classification problems. These methods include Binary Relevance (BR)

[20, 105], Label Powerset (LP) [105], and Classifier Chains (CC) [98].

Clare and King [27] made a foundational contribution to MLC by extending the well

known C4.5 algorithm [94] to handle the problem of genes associated with multiple func-

tions (the multi-label problem). Their study introduced the multi-label C4.5 (ML-C4.5)

63

Introduction 64

algorithm by modifying the entropy splitting criterion for MLC and assigning multiple

labels at the leaf nodes.

In 2007, Tsoumakas and Vlahavas [106] introduced an ensemble method for MLC

which is called Random k-Labelsets algorithm (RAkEL). By constructing an ensemble

of LP classifiers, the RAkEL method effectively considers label correlations avoiding the

complications associated with the large number of labels. The results showed that the

RAkEL classifier could achieve higher performance compared to the BR and LP classifiers.

Moral-Garćıa et al. [83] introduced a Multi-Label Decision Trees (ML-DT) algorithm,

which is based on Nonparametric Predictive Inference Model for Multinomial data (NPI-

M) [33], using imprecise probability, unlike the methods for decision trees which use

precise probability in the splitting criterion. The experiments revealed that the ML-DT

algorithm, based on NPI-M, outperformed the existing ML-DT algorithm, which uses

precise probability, and proved to be more robust against data noise.

Moral-Garćıa and Abellán in [82] proposed two lazy Multi-Label Classification algo-

rithms, Binary Relevance Credal K-Nearest Neighbor (BR-Credal-KNN) and Multi-Label

Credal K-Nearest Neighbor (ML-Credal-KNN), which use NPI-M to improve robustness

against label noise and address class imbalance, outperforming classical approaches like

Multi-Label K-Nearest Neighbor (ML-KNN) and Binary Relevance K-Nearest Neighbor

(BR-KNN) in Accuracy and F1 metrics. The experimental results indicated that the

ML-Credal-KNN algorithm performed comparably to other algorithms in ranking-based

metrics, whereas the BR-Credal-KNN algorithm was less effective in ranking problems.

This finding suggested that the ML-Credal-KNN algorithm was better suited for MLC

tasks, particularly those involving noise and class imbalance.

In this chapter, the Direct Nonparametric Predictive Inference (D-NPI) algorithm is

first applied to multi-label classification (MLC) using the problem transformation ap-

proach, specifically the Label Powerset (LP) method, enabling it to handle multiple la-

bels effectively. The LP method is simple and can capture dependencies between labels.

However, using other transformation methods may be considered for future research. By

converting an MLC problem into single-label classification problems, the D-NPI algo-

rithm can be applied in this setting, thereby extending its applicability to multi-label

tasks. The performance of the proposed algorithm is evaluated and compared to other

algorithms from the literature across multiple datasets for MLC problems.

Label Powerset (LP) method for multi-label classification (MLC) 65

To address the limitations of classical MLC methods, which typically produce a deter-

ministic prediction (a single subset of labels), this work also explores the use of imprecise

classification algorithms for MLC problems. The aim is to reduce overconfidence by pre-

dicting a set of possible subsets of labels rather than a single subset of labels. Instead of

forcing the classifier to return a single subset of labels when confidence is low, imprecise

classification allows it to provide multiple candidate subsets. By considering a set of

predicted subsets of labels, imprecise classification algorithms can enhance the ability to

model the uncertainty of data.

This study implements the D-NPI-IC1 algorithm, introduced in Chapter 3 for impre-

cise classification, alongside the LP method for MLC, to investigate classifier performance

in this context. In addition, several established imprecise classifiers from the literature

are employed for comparison on MLC problems.

This chapter is structured as follows. Section 4.2 introduces the fundamental frame-

work of the LP method and its application with classification algorithms in two scenarios.

It outlines the procedures of the algorithms used in each case, with two detailed and il-

lustrative examples. Section 4.3 describes the performance evaluation measures used to

assess the multi-label classifiers. Section 4.4 explores the performance of the proposed

methods through experimental studies by comparing them to other methods from the

literature. Finally, Section 4.5 concludes the chapter and suggests directions for future

research.

4.2 Label Powerset (LP) method for multi-label clas-

sification (MLC)

This section outlines the fundamental framework for applying the Label Powerset (LP)

method in Multi-Label Classification (MLC). The framework is presented in two sections.

Section 4.2.1 explains how multi-label datasets are transformed into single-label datasets,

enabling the application of standard classification algorithms. Section 4.2.2 describes the

framework for employing imprecise classification algorithms to address MLC tasks.

Label Powerset (LP) method for multi-label classification (MLC) 66

Algorithm 4.1 MLC using LP approach.

1: Input: Dataset D = {(xt,Yt) | t = 1, 2, . . . , n}
2: foreach unique subset Yr ⊆ Y in D, where r ∈ {1, 2, . . . , R}
3: Assign a unique class label cYr = cr, r ∈ {1, 2, . . . , R}
4: Create a new dataset D′ = {(xt, ct) | t = 1, 2, . . . , n}, where ct ∈ {c1, c2, . . . , cR}
5: Train a single-label classifier, H, on the transformed dataset D′
6: foreach instance in the testing dataset xj where j = 1, 2, . . . , nnew

7: Predict the class ĉr using the trained model H
8: Retrieve the corresponding subset Yr associated with the predicted class ĉr
9: Return the predicted subset of labels Yr

4.2.1 MLC via LP transformation

In Multi-Label Classification (MLC), the problem is defined over T -dimensional attribute

space: X ⊆ RT , where x1, x2, . . . , xT denote the T attribute variables. The set of Q labels

is defined as: Y = {y1, y2, . . . , yQ}, Q > 1. The objective is to learn a predictive model

from a dataset: D = {(xt,Yt) | 1 ≤ t ≤ n}, where xt = (xt1, xt2, . . . , xtT) ∈ X represents

the T -dimensional attribute vector for the t-th instance, and Yt ⊆ Y represent the subset

of labels associated with that instance. A label yq ∈ Y is said to be relevant for an

instance xt if the label yq is associated with the instance xt, that is yq ∈ Yt, or else it is

considered irrelevant.

Using the LP method, the dataset is first transformed into a higher-dimensional space,

where each instance is associated with one of all possible subsets of labels from the set

of labels Y . This transformation captures the complexity of multi-label classification by

treating each possible combination of labels as a distinct class label, thereby modelling

the relationships between instances and their associated subsets of labels. This allows

each unique subset of labels as a single class label. This transformation is defined by a

mapping function that assigns each multi-label subset to a single class label.

Assume that H is a mapping which transforms a unique subset of labels in Y into a

single class label. Then the mapping function H is defined as:

H : X → 2|Y|.

For a new instance xnew, H(xnew) is the subset of labels predicted as relevant for the

new instance. The LP approach used in this study is outlined in Algorithm 4.1.

In this chapter, the LP method is employed to adapt algorithms originally designed

Label Powerset (LP) method for multi-label classification (MLC) 67

for single-label (standard) classification to multi-label problems. Five algorithms are

considered. Three of these are based on the NPI approach: Direct-NPI (D-NPI) [12],

introduced in Section 1.5, and the NPI-M and A-NPI-M algorithms [6], both derived

from the NPI-M model. The remaining two algorithms are based on the IDM [1], using

hyperparameter values s = 1 and s = 2, and are referred to as IDM1 and IDM2. These

algorithms were also applied in Chapter 3. The following example presents the application

of the D-NPI algorithm to MLC problems using the LP method.

Example 4.1. Suppose an artificial dataset consists of categorical attributes related to

patients’ lifestyle and demographics. Each instance corresponds to a patient and can be

associated with multiple conditions. The goal is to illustrate the MLC setting, where

more than one label can be assigned to an individual patient. Suppose five attribute

variables: an age group, gender, physical activity level, diet type, and smoking status.

These attributes are denoted by X1, X2 X3, X4, and X5. Suppose the label space consists

of four binary class variables: Diabetes, Heart Disease, Obesity, and Hypertension, where

each label takes the value 1 if the condition is present and 0 otherwise. These variables

are denoted by y1, y2, y3, and y4. Table 4.1 presents an artificial dataset consisting of 10

patient instances.

In order to apply the Label Powerset (LP) method for multi-label classification, each

unique combination of class labels is treated as a single class label. This transformation

converts the original MLC problem into a single-label classification problem, where each

transformed class label represents a specific combination of the original binary health con-

ditions (e.g., Diabetes = 0, Obesity = 1, Heart Disease = 1, Hypertension = 0).

The combination of labels is called the subset of label in this chapter. The resulting

dataset shows the original input attributes but associates each instance with a single

label corresponding to its observed subset of labels. Table 4.1 presents the transformed

dataset under this transformation method.

The transformed dataset presented in Table 4.2 is used to construct the classification

tree. Using D-NPI classification method, the NPI lower and upper probabilities for each

attribute leading to CI are derived, then the best attribute is selected to split the tree.

After reaching a leaf node, the most frequent subset of labels is assigned.

In Figure 4.1, the corresponding classification tree is constructed using the trans-

formed dataset in Table 4.2. In this method, after reaching a leaf node, the most frequent

Label Powerset (LP) method for multi-label classification (MLC) 68

X1 X2 X3 X4 X5 y1 y2 y3 y4

x2 x2 x2 x2 x2 0 1 1 0
x1 x1 x1 x1 x1 0 0 0 0
x4 x2 x2 x4 x2 1 0 0 1
x3 x1 x3 x5 x1 0 0 0 1
x2 x1 x2 x2 x1 0 0 1 0
x4 x1 x2 x1 x2 0 1 0 1
x1 x2 x1 x3 x1 0 0 0 0
x3 x2 x3 x4 x2 1 0 0 0
x2 x1 x1 x5 x1 0 0 0 0
x4 x2 x2 x2 x2 1 1 1 0

Table 4.1: Dataset description for Example 4.1.

X1 X2 X3 X4 X5 class

x2 x2 x2 x2 x2 c1
x1 x1 x1 x1 x1 c2
x4 x2 x2 x4 x2 c3
x3 x1 x3 x5 x1 c4
x2 x1 x2 x2 x1 c5
x4 x1 x2 x1 x2 c6
x1 x2 x1 x3 x1 c2
x3 x2 x3 x4 x2 c7
x2 x1 x1 x5 x1 c2
x4 x2 x2 x2 x2 c8

Table 4.2: Transformed dataset using LP method for Example 4.1.

class is assigned. The class is then reverse-transformed to its original subset of labels. For

example, if a new instance with attribute variable X1 = x3 is considered, following the

classification path from the root to a leaf node in Figure 4.1 leads to a leaf node where

the predicted class label is c4, corresponding to the original subset of labels [0, 0, 0, 1].

This indicates the presence of the last label (e.g. y4) and the absence of the remaining

labels.

4.2.2 Imprecise classification for MLC via LP transformation

Imprecise classifiers, when used for single-label classification problems, return a set of

predicted states [4]. By integrating imprecise classification with MLC problems, the im-

precise classifier predicts a set of subsets of labels rather than a single subset of labels.

This approach is particularly valuable in contexts where the traditional classification

method lacks confidence in predicting a single subset of labels due to insufficient infor-

Label Powerset (LP) method for multi-label classification (MLC) 69

X1

x1

x1

x2

c2

x2 x3 x4

X2

c2 c1

c4 c3
[0,0,0,0]

[0,0,0,0] [0,1,1,0]

[1,0,0,1][0,0,0,1]

Figure 4.1: Classification tree using the LP method.

Algorithm 4.2 Imprecise classification for MLC using LP method.

1: Input: Dataset D = {(xt,Yt) | t = 1, 2, . . . , n}
2: foreach unique subset Yr ⊆ Y in D, where r ∈ {1, 2, . . . , R}
3: Assign a unique class label cYr = cr, r ∈ {1, 2, . . . , R}
4: Create a new dataset D′ = {(xt, ct) | t = 1, 2, . . . , n}, where ct ∈ {c1, c2, . . . , cR}
5: Train a classifier, H, on the transformed dataset D′
6: foreach instance in the testing dataset xj where j = 1, 2, . . . , nnew

7: Apply xj in CT to reach a leaf node
8: Get probability intervals for each class label in the terminal node using the NPI-

M model: [lr, ur], r ∈ {1, 2, . . . , R}
9: Apply the strong dominance criterion to the probability intervals from the pre-

vious step to get a set of non-dominated labels for x
10: Retrieve the corresponding subset of labels Yr for each subset in the set of non-

dominated labels.
11: Return the predicted set of subsets of labels

mation.

In MLC problems, certain labels may be rare, making it challenging for a traditional

classification method to accurately predict a single subset of labels. Instead, predicting a

set of subsets of labels using imprecise classifiers can enable enhancement of the reliability

of predictions. This approach provides multiple possible label combinations, enabling

the classifier to be cautious in scenarios where predictions are difficult due to limited

information.

In this classification method, the LP method is used with imprecise classification

algorithms for MLC. These imprecise algorithms assign interval probabilities to each class

label at the leaf nodes, rather than assigning the most frequent class label. The criterion

used to determine the predicted set of labels is the dominance criterion, as presented in

Label Powerset (LP) method for multi-label classification (MLC) 70

X1 X2 X3 X4 X5 y1 y2 y3 y4

x2 x2 x2 x2 x2 1 0 1 1
x1 x1 x1 x1 x1 0 0 0 0
x4 x2 x2 x4 x2 1 1 1 1
x3 x1 x3 x5 x1 0 0 0 0
x2 x1 x2 x2 x1 1 1 1 1
x4 x1 x2 x1 x2 0 0 0 0
x1 x2 x1 x3 x1 0 0 0 0
x3 x2 x3 x4 x2 1 1 1 1
x2 x1 x1 x5 x1 0 0 0 0
x4 x2 x2 x2 x2 1 1 1 1

Table 4.3: Dataset description for Example 4.2.

X1 X2 X3 X4 X5 class

x2 x2 x2 x2 x2 c1
x1 x1 x1 x1 x1 c2
x4 x2 x2 x4 x2 c3
x3 x1 x3 x5 x1 c2
x2 x1 x2 x2 x1 c3
x4 x1 x2 x1 x2 c2
x1 x2 x1 x3 x1 c2
x3 x2 x3 x4 x2 c3
x2 x1 x1 x5 x1 c2
x4 x2 x2 x2 x2 c3

Table 4.4: Transformed dataset using LP method for Example 4.2.

Section 3.2. This method is presented in Algorithm 4.2.

To clarify how this approach works, the following example is provided.

Example 4.2. In this example, the same variables used in Example 4.1 are used. Ta-

ble 4.3 presents an artificial dataset consisting of 10 patient instances. This dataset is

then transformed using the LP method, and the resulting transformed dataset is shown

in Table 4.4.

The procedure in Algorithm 4.2 is followed to construct the classification tree. The

NPI lower and upper probabilities for CI for each attribute are derived as in the D-NPI

classifier, and the best attribute is selected to split the tree. Unlike in Example 4.1,

rather than assigning the most frequent subset of labels to the leaf node, according to

this method a set of subsets of labels is assigned.

As shown in Figure 4.2, the corresponding classification tree is constructed using the

transformed dataset in Table 4.4. In this method, after reaching a leaf node, the strong

Performance evaluation 71

X4

x2

x5x1

x3 x4
{c2}

{c1,c3}
{c1,c2,c3}

{c2}

{c3}
{[0,0,0,0]}

{[1,0,1,1],[1,1,1,1]}

{[1,0,1,1],[0,0,0,0],[1,1,1,1]}

{[1,1,1,1]}

{[0,0,0,0]}

Figure 4.2: Imprecise classification tree using LP method.

dominance criterion is applied, and a set of non-dominated subsets of labels is assigned.

This set is then reverse-transformed to the corresponding set of the original subsets of

labels. For example, if a new instance has X4 = x2, the predicted set of labels is {c1, c3},

which corresponds to the original subsets of labels {[1, 0, 1, 1], [1, 1, 1, 1]}. Instead of

assigning a single subset of labels, this approach allows for predicting a set of subsets of

labels. This can be reliable in situations where the classifier lacks confidence in assigning

a single subset of labels. For instance, this may occur when there is a lack of sufficient

information.

4.3 Performance evaluation

In the context of multi-label classification, several measures are used to evaluate the

performance of classifiers [116]. Evaluating the performance of MLC classifiers can be

relatively difficult; the prediction is a subset of labels, and it can be fully correct, fully

wrong, or partially correct [20]. In this chapter, example-based measures are used to

assess MLC methods, focusing on the performance per instance (example) and averaged

over all instances in testing dataset [61, 63, 99]. These measures include subset accuracy,

accuracy, Hamming loss, Precision, Recall, and F1-score. Example-based classification

measures provide a comprehensive evaluation by assessing the performance of the clas-

sifiers on a per-instance basis, allowing for an evaluation of how well the algorithms

predict the subset of labels for each instance. However, future research may consider

adopting label-based measures to enable a more detailed assessment of MLC methods

across individual labels.

Performance evaluation 72

Let n be the total number of instances in the dataset, Y ′t represent the predicted

subset of labels assigned to instance t, and Yt be the subset of labels associated with

instance t where t = 1, . . . , n. The following measures [61, 63, 99], will be used in Section

4.4.

• Subset Accuracy: The proportion of instances for which the predicted subset of

labels exactly matches the true subset of labels. It is defined as:

Subset Accuracy =
1

n

n∑
t=1

I(Y ′t = Yt). (4.1)

• Accuracy: The average Jaccard similarity coefficient [97] between the predicted

subset of labels and the true subset of labels for each instance. For an instance xt,

the Jaccard similarity between Y ′t and Yt is given by:

Accuracy =
1

n

n∑
t=1

|Y ′t ∩ Yt|
|Y ′t ∪ Yt|

. (4.2)

• Hamming Loss: The proportion of incorrect labels, on average, across all in-

stances. It is defined as:

Hamming Loss =
1

n

n∑
t=1

|Y ′t∆Yt|
Q

, (4.3)

where ∆ denotes the symmetric difference between the predicted subset of labels

and the true subset of labels, representing the labels that are in either of the subsets

but not in their intersection.

• Precision: The average proportion of the relevant labels in the predicted set that

are really relevant for the instances:

Precision =
1

n

n∑
t=1

|Y ′t ∩ Yt|
Y ′t

. (4.4)

• Recall: The average proportion of relevant labels for the instances which are pre-

dicted as relevant:

Recall =
1

n

n∑
t=1

|Y ′t ∩ Yt|
Yt

. (4.5)

Experiments 73

• F1-score: The average harmonic mean between Precision and Recall. It is given

by:

F1-score =
1

n

n∑
t=1

2× |Y ′t ∩ Yt|
|Y ′t|+|Yt|

. (4.6)

These measures evaluate how well the predicted subset of labels matches the correct

subset of labels for each instance and have been widely used in MLC tasks (see, e.g.

Madjarov et al. [80], Moral-Garćıa and Abellán [82], and Moral-Garćıa et al. [83]). In

this chapter, they are applied to the testing dataset to assess and compare classifier

performance.

For imprecise classification with MLC, the measures from Section 3.4 are used, includ-

ing Determinacy (DET), Single Accuracy (SingleA), Set Accuracy (SetA), Indeterminacy

Size (IS), DACC, and MIC.

4.4 Experiments

This section describes the experiments conducted to evaluate the performance of the

algorithms for MLC using the LP method. These experiments are structured into two

main sections based on the methods used for classification. The first section focuses

on studying the performance of classifiers which predict a single subset labels, while the

second section presents the experiment using imprecise classification algorithms for MLC.

In this section, six datasets from different applications, each with distinct characteris-

tics, are used. These datasets can be accessed and downloaded from the ‘mldr.datasets’

package in R [25]. The datasets vary in terms of the degree of multi-label nature. In

order to measure the degree of multi-label nature, two metrics are used: label cardinality

(lc) and label density (ld). The label cardinality metric is defined as the average number

of labels associated with each instance in the dataset. The label density represents the

average proportion of labels associated with each instance, divided by the total number

of possible labels in the dataset. Table 4.5 summarises the datasets where “n” represents

the size of the dataset, “Num” is the number of numerical attributes, “Nom” is the num-

ber of nominal attributes, “nl” is the number of labels, “lc” is the label cardinality, “ld”

is the label density.

Prior to the experiment, the datasets are subjected to a preprocessing phase. Un-

Experiments 74

Dataset n Num Nom nl lc ld Domain

Bibtex 7395 - 1836 159 2.4 0.015 Text
Corel5k 5000 - 499 374 3.52 0.009 Multimedia
Enron 1702 - 1001 53 3.38 0.064 Text
Genbase 662 - 1186 27 1.252 0.046 Biology
Medical 978 - 1449 45 1.24 0.028 Text
Yeast 2417 103 - 14 4.24 0.303 Biology

Table 4.5: Datasets. Size “n”, number of numerical attributes “Num”, number of nominal
attributes “Nom”, number of labels “nl”, label cardinality “lc”, and label density “ld”.

labelled instances and attributes with constant values are removed, as they provide no

useful information for learning. Additionally, continuous attributes in the Yeast dataset

are discretised by applying the equal frequency method from the package ‘arules’ in R

by using the ‘discretize’ function [66]. To reduce noise in the datasets from extremely

rare labels, labels with fewer than 5 occurrences in the datasets are removed. In or-

der to assess the performance of algorithms and compare their performances, a 5-fold

cross-validation procedure is used due to the computational cost.

In this study, the primary aim is to evaluate how well the classifiers perform for MLC

problems. The secondary aim is to compare the performance of the classifiers.

The algorithms used in these experiments, either for predicting a single subset of

labels or a set of subsets of labels, are the D-NPI algorithm [12], the NPI-M algorithm

[6], the A-NPI-M algorithm [6], the IDM1 algorithm with the hyperparameter s = 1 [1],

and the IDM2 algorithm with s = 2 [1]. For the algorithms NPI-M, A-NPI-M, IDM1,

and IDM2, the ‘imptree’ package in R is used [56]. For ease of reference, multi-label

classification using the LP method (as detailed in Section 4.2.1) is referred to as Method

1 throughout this section. Similarly, imprecise multi-label classification using the LP

method (as explained in Section 4.2.2) is referred to as Method 2.

4.4.1 Predicting a single subset of labels (Method 1)

This section presents a study of the performance of the classifiers using the LP method

for MLC, using the procedure in Algorithm 4.2 in Section 4.2. The performances of

the classifiers are evaluated and compared using the metrics: subset accuracy, accuracy,

Hamming loss, Precision, Recall and F1, which are introduced in Section 4.3. While

performing 5-fold cross-validation, the metrics are computed for each fold, and the average

Experiments 75

Dataset D-NPI NPI-M A-NPI-M IDM1 IDM2

Bibtex 0.1501 0.1562 0.1571 0.0719 0.0788
Corel5k 0.0206 0.0234 0.0236 0.0148 0.0144
Enron 0.1175 0.1392 0.1381 0.1281 0.1293
Genbase 0.9879 0.9880 0.9880 0.9864 0.9819
Medical 0.6869 0.7004 0.6973 0.6859 0.6818
Yeast 0.1192 0.1556 0.1568 0.1254 0.1332

Table 4.6: Subset accuracy for all classifiers.

values are reported to summarise the results.

The results of the five classification algorithms across the metrics are presented as

follows: subset accuracy (Table 4.6), accuracy (Table 4.7), Hamming loss (Table 4.8),

Precision (Table 4.9), Recall (Table 4.10) and F1-score (Table 4.11). In this section, the

analysis of the experimental results is presented, showing the strengths and limitations

of each algorithm within the context of the evaluated datasets.

The Bibtex dataset [74] contains data about Bibtex, where each instance represents

a BibTeX item. The Bibtex dataset is characterised by high dimensionality, indicated

by a large number of instances, attributes and labels, and exhibits label sparsity, as

reflected by a low value of ld. These characteristics lead to low values of subset accuracy

across all algorithms. In Table 4.6, the best subset accuracy is achieved by the A-NPI-M

algorithm. The IDM1 and IDM2 algorithms have low values compared to the first three

algorithms, with the IDM1 algorithm achieving the lowest value of subset accuracy. The

relatively low values for algorithms IDM1 and IDM2 reflect their lower ability to handle

the dataset’s complexity compared to the other algorithms.

The Corel5k dataset [50] contains 5000 Corel images, each annotated with 4-5 key-

words. Due to the large number of labels and the sparsity of labels for this dataset, the

subset accuracy values for all algorithms are the lowest among the other datasets, which

struggle to return correct subset of labels for this dataset. The subset accuracy values

for the NPI-M and A-NPI-M algorithms are the highest, with A-NPI-M being the best,

followed by the D-NPI algorithm. Algorithms IDM1 and IDM2 achieve the lowest values

of subset accuracy. The classifiers D-NPI, NPI-M, and A-NPI-M, which are based on the

NPI approach tend to perform similarly for this dataset.

The Enron dataset [77] contains data on the emails of Enron seniors, featuring a large

number of attributes, which makes it a challenging dataset for classification. The low

Experiments 76

density of labels leads to high sparsity. The NPI-M and A-NPI-M algorithms achieve

the highest subset accuracy values, followed closely by algorithms IDM2 and IDM1. The

D-NPI algorithm is less effective compared to the other algorithms.

The Genbase dataset [49], which contains protein data, is particularly interesting for

internal investigation, as all algorithms achieve the highest subset accuracy values for it

compared to the other datasets. This dataset has high dimensional attribute with low

labels density, however, it includes a large number of attributes with a constant value.

During preprocessing, these attributes are removed because they are not informative,

changing the number of attributes from 1186 to 112. This results in the dataset having a

reduced dimensional attribute. The low total number of labels and low value of cardinality

increases the chance of predicting the exact subset of labels for all algorithms. The D-

NPI, NPI-M and A-NPI-M algorithms have similar performance, while IDM1 and IDM2

follow with values of 0.9864 and 0.9819, respectively.

The medical dataset [91] contains documents, each document has a patient symptom

history. The subset accuracy values across classifiers show minimal variation for the this

dataset, resulting in similar performance. The NPI-M algorithm achieves the highest

value, whereas the IDM2 algorithm has the lowest value. The Yeast dataset [51] contains

data about functions of genes. This dataset has a high cardinality of labels, which reduces

the chance of accurately predicting the exact subset of labels, as demonstrated by the

results in Table 4.6. Algorithms NPI-M and A-NPI-M achieve the highest subset accuracy

values among all others, while both algorithms IDM1 and IDM2 achieve the lowest values.

Upon further investigations, the D-NPI algorithm tends to produce deep trees for

many of the datasets, possibly learning complex patterns, but this can lead to overfitting,

affecting its generalisation performance. In contrast, the IDM1 and IDM2 algorithms

produce shallow trees for most of the datasets, possibly reducing overfitting. However,

they may struggle to capture complex patterns, as observed in the case of the Bibtex

dataset. Meanwhile, the NPI-M and A-NPI-M algorithms tend to produce classification

trees with moderate depth compared to other algorithms across a variety of datasets,

offering a good balance between learning meaningful patterns and avoiding overfitting.

This can explain the best performance observed for the NPI-M and A-NPI-M algorithms

across the subset accuracy measure.

Regarding the accuracy measure, since it is more forgiving of incorrect labels than

Experiments 77

Dataset D-NPI NPI-M A-NPI-M IDM1 IDM2

Bibtex 0.2632 0.2608 0.2614 0.1391 0.1450
Corel5k 0.0966 0.0883 0.0929 0.0725 0.0714
Enron 0.3616 0.3774 0.3787 0.3640 0.3658
Genbase 0.9919 0.9922 0.9922 0.9925 0.9907
Medical 0.7559 0.7548 0.7532 0.7467 0.7450
Yeast 0.3945 0.4559 0.4564 0.4043 0.4173

Table 4.7: Accuracy for all classifiers.

the subset accuracy measure, its values are generally higher than those of the subset

accuracy measure across the classifiers and the datasets. This is expected, as subset

accuracy is more strict than accuracy measure in penalising incorrect labels. Table 4.7

shows that the D-NPI algorithm achieves the highest accuracy values for the Bibtex,

Corel5k, and Medical datasets. Notably, these three datasets have the lowest label density

values among the other datasets. For the Bibtex and Corel5k datasets, the combination

of low label density values with a large number of labels leads to a large number of

combinations when using the LP method. This, in turn, results in reduced performance

across classifiers compared to the other datasets. For these datasets, the NPI-M and A-

NPI-M algorithms achieve the next-highest performance, with A-NPI-M outperforming

NPI-M for the Bibtex and Corel5k datasets. Meanwhile, IDM1 and IDM2 show the lowest

values of accuracy for these datasets, with IDM2 outperforming IDM1 for the Bibtex and

Medical datasets.

For the Enron dataset, the D-NPI classifier achieves an accuracy value that is three

times higher than that of the subset accuracy measure. This highlights its ability to

correctly identify relevant labels among its predicted subset of labels. The A-NPI-M

algorithm has the highest accuracy value, followed by the NPI-M algorithm. The D-

NPI, IDM1, and IDM2 perform similarly in terms of the accuracy measure for the Enron

dataset. For the Genbase dataset, the classifiers tend to have similarly high performance,

indicating that this dataset has informative attributes with simple pattern for classifiers

to learn. The NPI-M classifier has the highest accuracy value for the Yeast dataset.

However, the D-NPI, IDM1 and IDM2 classifiers have high accuracy values compared to

their subset accuracy values, indicating their notable ability to predict relevant labels in

their subset of labels.

In Table 4.8, according to the Hamming loss, all classifiers achieve their lowest values

Experiments 78

Dataset D-NPI NPI-M A-NPI-M IDM1 IDM2

Bibtex 0.0202 0.0187 0.0186 0.0207 0.0202
Corel5k 0.0211 0.0209 0.0212 0.0220 0.0220
Enron 0.0735 0.0704 0.0702 0.0688 0.0680
Genbase 0.0012 0.0014 0.0014 0.0011 0.0014
Medical 0.0214 0.0214 0.0215 0.0227 0.0226
Yeast 0.2840 0.2485 0.2482 0.2722 0.2666

Table 4.8: Hamming Loss for all classifiers.

Dataset D-NPI NPI-M A-NPI-M IDM1 IDM2

Bibtex 0.3480 0.3551 0.3572 0.2004 0.2093
Corel5k 0.1361 0.1262 0.1315 0.1041 0.1024
Enron 0.4927 0.5113 0.5118 0.5064 0.5047
Genbase 0.9950 0.9945 0.9945 0.9940 0.9944
Medical 0.7969 0.7951 0.7941 0.7820 0.7846
Yeast 0.5304 0.5951 0.5958 0.5505 0.5605

Table 4.9: Precision for all classifiers.

for the Genbase dataset. As this dataset represents proteins, each protein can belong to

multiple function label. These labels can co-occur frequently, leading to repeated patterns

across the proteins. Using the LP method with these repeated patterns of labels results

in a limited combinations of labels. For this dataset, using informative attributes along

with the small number of label combinations leads to the high performance and low loss

values.

All classifiers have low values of the Hamming loss measure for the Bibtex, Corel5k,

and Medical datasets. As these datasets have the lowest values of label density, the

possibility of incorrect labels in the predicted subset of labels is reduced. For example, if

an instance is associated with only two out of 159 possible labels, and the predicted subset

of labels includes three relevant labels, the loss remains minimal due to the large total

number of labels. In contrast, the Yeast dataset has a moderate value of label density,

which increases the possibility of incorrect labels in the subset of labels. This results in

higher values of Hamming loss across classifiers compared to the other datasets.

As shown in Table 4.8, the A-NPI-M algorithm has the lowest misclassification rate

among these algorithms for the Bibtex dataset. For the Enron dataset, the IDM2 algo-

rithm has the lowest Hamming loss value. The D-NPI and NPI-M algorithms achieve an

identical lowest Hamming loss for the Medical dataset.

Experiments 79

Dataset D-NPI NPI-M A-NPI-M IDM1 IDM2

Bibtex 0.3202 0.2999 0.2991 0.1665 0.1691
Corel5k 0.1366 0.1194 0.1285 0.1047 0.1040
Enron 0.4712 0.4747 0.4767 0.4500 0.4510
Genbase 0.9925 0.9932 0.9932 0.9940 0.9918
Medical 0.7839 0.7699 0.7694 0.7728 0.7685
Yeast 0.5176 0.5621 0.5626 0.5184 0.5321

Table 4.10: Recall for all classifiers.

Dataset D-NPI NPI-M A-NPI-M IDM1 IDM2

Bibtex 0.3132 0.3067 0.3073 0.1712 0.1769
Corel5k 0.1338 0.1207 0.1278 0.1028 0.1015
Enron 0.4616 0.4753 0.4765 0.4599 0.4605
Genbase 0.9932 0.9933 0.9933 0.9936 0.9925
Medical 0.7791 0.7732 0.7722 0.7673 0.7661
Yeast 0.4980 0.5627 0.5632 0.5085 0.5223

Table 4.11: F1-score for all classifiers.

For the Bibtex dataset, Tables 4.9, 4.10, and 4.11 show that algorithm D-NPI has

a reasonable Precision value, the highest Recall value, and the highest F1-score value.

The results indicate that algorithm D-NPI includes more incorrect labels in the predicted

subset of labels compared to the A-NPI-M and NPI-M algorithms, which achieve the

highest Precision value. Algorithms IDM1 and IDM2 have the lowest values for these

three measures for this dataset. The same pattern of results is observed for the medical

dataset. For these two datasets, the IDM1 and IDM2 classifiers tend to produce shal-

low trees. In high-dimensional datasets, this may lead to a failure to capture complex

relationships between attributes and labels, limiting their predictive performance.

The D-NPI algorithm has the highest values for Precision, Recall and F1-score for the

Corel5k dataset, followed by algorithms A-NPI-M and NPI-M, respectively. Whereas,

algorithms IDM1 and IDM2 have the lowest performance on these measures compared to

the other algorithms. The Bibtex, Corel5k, and Medical dataset have lower label density

value compared to the other datasets. The algorithms which are based on NPI approach

tend to perform better than those based on the IDM for these datasets, highlighting the

effectiveness of using NPI in such data characteristics.

While algorithm D-NPI has the best Precision value for the Genbase dataset, al-

gorithm IDM1 has the highest Recall and F1-score values, achieving a good tradeoff

Experiments 80

between Precision and Recall measures. Algorithms NPI-M and A-NPI-M follow closely

behind, with algorithm D-NPI falling behind in terms of Recall and F1-score measures.

All classifiers tend to perform similarly for this dataset across all performance measures.

Algorithms NPI-M and A-NPI-M perform similarly for the Enron dataset across the

three measures presented in Tables 4.9, 4.10 and 4.11, achieving better results than the

other algorithms. The D-NPI achieves the lowest Precision value, but offers a good

tradeoff between Precision and Recall, as reflected by its F1-score.

The next section presents the use of imprecise classifiers for MLC problems, which

results in a predicted set of subsets of labels rather than a single subset of labels.

4.4.2 Predicting a set of subsets of labels (Method 2)

This section presents a detailed comparative analysis of the imprecise classifiers over

eight datasets using the metrics: Determinacy (DET), Single Accuracy (SingleA), Set

Accuracy (SetA), Indeterminacy Size (IS), DACC, and MIC, as presented in Section 3.4.

The imprecise classifier D-NPI-IC1, introduced in Chapter 3, is used in this experiment,

following the steps outlined in Algorithm 4.2, in order to apply the LP method. The

algorithms NPI-M, A-NPI-M, IDM1, and IDM2 are implemented after transforming the

datasets using the LP method, by using the ‘imptree’ package in R [56]. The strong

dominance criterion is used at a leaf node when assigning a new instance. In this section,

the algorithms are renamed to better align with the concept of imprecise classification

and to ensure distinction from those used in the experiment in Section 4.4.1. The names

incorporate the term Imprecise Classification (IC) to reflect their alignment with impre-

cise classification concepts. The algorithm names used in this experiment are D-NPI-IC,

NPI-M-IC, A-NPI-M-IC, IDM1-IC, and IDM2-IC.

Tables 4.12 to 4.17 provide a summary of the performance of all algorithms across

various datasets, evaluated using the eight different metrics.

Regarding the Bibtex dataset, A-NPI-M-IC has the highest determinacy value, but

its SingleA value is the lowest among the first three algorithms. In contrast, D-NPI-IC,

with a moderate value of DET, achieves the highest SingleA and SetA values among all

algorithms. The primary reason that D-NPI-IC exhibits a notably higher SetA value is its

comparatively high IS value, as observed in Table 4.15, relative to the other algorithms.

This can be caused by its tendency to split further, resulting in deeper trees which

Experiments 81

Dataset D-NPI-IC NPI-M-IC A-NPI-M-IC IDM1-IC IDM2-IC

Bibtex 0.3992 0.4445 0.4695 0.2366 0.1953
Corel5k 0.1833 0.4831 0.2860 0.1109 0.0522
Enron 0.3478 0.4900 0.4571 0.3137 0.2720
Genbase 1.0000 0.9819 0.9819 0.9879 0.9894
Medical 0.9053 0.8785 0.8775 0.8836 0.8269
Yeast 0.4857 0.8188 0.8167 0.3947 0.3033

Table 4.12: Determinacy (DET) for all classifiers.

leads to more non-dominated subsets of labels, particularly with many class labels in the

transformed dataset results after using the LP method. The first three algorithms have

moderate confidence in predicting a single subset of labels. In contrast, the algorithms

based on the IDM appear to be less deterministic. Consequently, they have the lowest

values for both SingleA and SetA. For this dataset, the high number of labels with low

value of label density leads to a large number of possible combinations when using the LP

method. When the number of combinations increases co-occurrence is rare, the classifiers

tend to lack confidence in returning a single subset of labels, often producing instead a

set of subsets of labels. In terms of DACC and MIC measures in Tables 4.16 and 4.17,

A-NPI-M-IC achieves the highest values for both, followed by NPI-M-IC and D-NPI-

IC, respectively. The results indicate that it offers a good tradeoff between achieving

correct predictions and maintaining an appropriate size of the predicted set, compared

to the other algorithms. The low values of DACC and MIC for the IDM1-IC and IDM2-

IC algorithms are due to their low values of SingleA and SetA compared to the other

algorithms.

When analysing the results of the Corel5k dataset, all algorithms show variability in

their DET values. For this dataset, the NPI-M-IC algorithm tends to terminate tree-

building process earlier than the other classifiers. This early termination can result in

higher confidence in predicting a single subset of labels compared to the other algorithms.

However, terminating the tree construction early increases the possibility of having more

observations in the class variables, which may cause one class label to dominate the

others. The NPI-M-IC algorithm fails to achieve the highest SingleA value; rather, it

records the lowest among all algorithms. However, it achieves the highest values for

DACC and MIC. The results indicate that it offers a good balance in achieving correct

predictions along with a good size of the predicted set compared to the other algorithms.

Experiments 82

Dataset D-NPI-IC NPI-M-IC A-NPI-M-IC IDM1-IC IDM2-IC

Bibtex 0.3409 0.3204 0.3058 0.2043 0.2500
Corel5k 0.0776 0.0427 0.0633 0.0475 0.0701
Enron 0.2908 0.2603 0.2750 0.3189 0.3743
Genbase 0.9879 0.9923 0.9923 0.9863 0.9893
Medical 0.7392 0.7624 0.7598 0.7482 0.7572
Yeast 0.2223 0.16721 0.1677 0.2373 0.2896

Table 4.13: Single Accuracy (SingleA) for all classifiers.

Dataset D-NPI-IC NPI-M-IC A-NPI-M-IC IDM1-IC IDM2-IC

Bibtex 0.9390 0.8288 0.8566 0.5948 0.7497
Corel5k 0.8895 0.8214 0.8688 0.8030 0.8701
Enron 0.9370 0.9136 0.8962 0.6394 0.7740
Genbase - 1.0000 1.0000 1.0000 1.0000
Medical 0.9241 0.9075 0.9075 0.8688 0.7563
Yeast 0.8812 0.4589 0.4325 0.4530 0.6103

Table 4.14: Set Accuracy (SetA) for all classifiers.

The D-NPI-IC algorithm achieves low DET value and the highest SingleA and SetA

values. Its high value of IS impacts the DACC and MIC values, leading to low values for

both measures. Algorithm IDM2-IC has the weakest performance among all algorithms

regarding the DACC and MIC measures. This is primarily due to its limited ability to

produce determinant predictions compared to the other algorithms, which observed in

its low value of DET. In terms of the DACC and MIC measures, the results of the first

three algorithms compared to the IDM1-IC and IDM2-IC algorithms suggest that the

algorithms based on the NPI approach have better performance compared to those based

on the IDM for this dataset.

For the Enron dataset, the classifiers have the same pattern as for the Corel5k dataset

in terms of their DET values. The NPI-M-IC and A-NPI-M-IC algorithms achieve the

highest values for DACC and MIC. The D-NPI-IC algorithm has high values for SetA

and IS which affect its low values for DACC and MIC compared to the other algorithms.

Algorithms IDM1-IC and IDM2-IC achieve the lowest score for the SetA metric, which

can be caused by their notable low values for IS.

Considering the Genbase dataset, the D-NPI-IC algorithm is 100% deterministic with

a reasonably high value for SingleA and the highest DACC and MIC values compared

to all algorithms. Note that, its SingleA value is the same as the subset accuracy value

Experiments 83

Dataset D-NPI-IC NPI-M-IC A-NPI-M-IC IDM1-IC IDM2-IC

Bibtex 2667 2276 2354 1588 2026
Corel5k 2738 2502 2662 2445 2661
Enron 693 668 652 440 540
Genbase - 23 23 18 4
Medical 57 55 55 44 30
Yeast 173 58 54 77 102

Table 4.15: Indeterminacy Size (IS) for all classifiers.

Dataset D-NPI-IC NPI-M-IC A-NPI-M-IC IDM1-IC IDM2-IC

Bibtex 0.1379 0.1482 0.1495 0.0565 0.0565
Corel5k 0.0160 0.0209 0.0197 0.0071 0.0057
Enron 0.1040 0.1319 0.1314 0.1087 0.1106
Genbase 0.9879 0.9751 0.9751 0.9762 0.9835
Medical 0.6747 0.6776 0.6745 0.6745 0.6526
Yeast 0.1123 0.1507 0.1505 0.1094 0.1079

Table 4.16: DACC for all classifiers.

when using the D-NPI algorithm in Section 4.4.1. The NPI-M-IC and A-NPI-M-IC

algorithms have identical performance across all metrics for this dataset. The IDM2-IC

algorithm has good performance across the metrics, achieving the second-highest values

of DACC and MIC among all classifiers. Interestingly, the IS value for this classifier is

much lower compared to the other algorithms, which could be due to its tendency to

produce shallow trees compared to other algorithms. As more data becomes available,

the classifier becomes more confident about the correct prediction, resulting in its low

value of IS (small size of the predicted set). Due to the low value of IS, this algorithm

achieves a good overall performance in terms of DACC and MIC. All classifiers have good

performances for this dataset.

Based on the Medical dataset, the results indicate that NPI-M-IC and A-NPI-M-IC

have similar performance, with slight variations across some measures. For the IDM2-IC

algorithm, the IS value is very low, affecting its SetA low value, which results in the

lowest values of both DACC and MIC for this dataset. The D-NPI-IC and IDM1-IC

algorithms perform at a level close to that of the NPI-M-IC and A-NPI-M-IC algorithms

in terms of DACC and MIC. The D-NPI-IC tends to be the most deterministic classifier

among all classifiers for this dataset.

Finally, concerning the Yeast dataset, NPI-M-IC has the best performance regarding

Conclusions 84

Dataset D-NPI-IC NPI-M-IC A-NPI-M-IC IDM1-IC IDM2-IC

Bibtex 1.1070 1.2494 1.2579 0.5817 0.5939
Corel5k 0.1384 0.1941 0.1833 0.1085 0.0854
Enron 0.7015 0.9028 0.9079 0.8432 0.8581
Genbase 3.0993 3.0560 3.0560 3.0643 3.0928
Medical 2.8691 2.8859 2.8730 2.8989 2.8537
Yeast 0.6018 0.8830 0.8813 0.6984 0.7499

Table 4.17: MIC for all classifiers.

the DACC and MIC measures. This dataset has considerable variation across algorithms.

Algorithms NPI-M-IC and A-NPI-M-IC are almost twice as deterministic as the other

classifiers with lower values for SingleA and SetA. However, they have the lowest values

of IS, which helps maintain the balance observed in the DACC and MIC values. The D-

NPI-IC classifier achieves a high DACC value but a relatively low MIC value compared to

the IDM1-IC and IDM2-IC algorithms. This can be caused by producing approximately

49% of determinant predictions, with a relatively high value of SingleA and the highest

value of SetA compared to the other classifiers. This can lead to a slight increase in

the DACC value compared to the IDM1-IC and IDM2-IC. However, its high value of IS

affects the decreased value of MIC. To explain, MIC assigns values to all predictions,

correct and incorrect, depending on their correctness and informativeness. It assigns a

lower value in case of the prediction is correct with a high value of set cardinality (less

informative), which in some cases less than the value assigned to wrong prediction.

4.5 Conclusions

In this chapter, the D-NPI classification method was extended to multi-label classification

(MLC) using the Label Powerset (LP) approach. In addition, four other algorithms were

used in this study: the NPI-M and A-NPI-M algorithms, as well as the two algorithms

based on the IDM with different hyperparameters values (i.e., s = 1, 2).

This study considered two methods for addressing MLC problems using the LP ap-

proach. The first method focused on predicting a single subset of labels, employing

algorithms originally developed for classical classification problems. The second method

applied imprecise classifiers to obtain a predicted set of subsets of labels.

Experimental studies were conducted to evaluate the performance of the classifiers for

Conclusions 85

the two methods. Different evaluation measures were used to assess the performance of

the algorithms. For the first method, example-based measures were used to evaluate the

performance of the classifiers on a per-instance bases. For the second method, imprecise

classification measures were used. This study included six datasets, each characterised

by distinct properties, including size, attribute types, label cardinality, and label density.

The use of label-based classification measures and ranking-based measures for the first

method is a topic for future investigation.

The results of the first method varied across the classifiers according to the charac-

teristics of the datasets. All classifiers tend to perform well for the Genbase and Medical

datasets compared to the others. For the Genbase dataset, labels appeared to be corre-

lated and frequently co-occurred, which enabled the classifiers to perform more effectively.

Although all classifiers performed well for this dataset, the IDM2 algorithm had slightly

lower performance. For the Medical dataset, classifiers based on the NPI approach slightly

performed better than those based on the IDM.

The datasets from the text domain, such as Bibtex, Enron, and Medical, the D-NPI,

NPI-M, and A-NPI-M classifiers generally performed better than the IDM1 and IDM2

classifiers across most evaluation measures. The Corel5k dataset, which contains a high

number of labels and low label density value, caused challenges for all algorithms, result-

ing in poor performance. Applying the LP method under these conditions likely led to

a high number of label combinations, making it difficult for classifiers to produce mean-

ingful patterns. However, classifiers based on the NPI approach achieved slightly better

performance than those based on the IDM; specifically, the D-NPI algorithm achieved

the best results across most evaluation measures. This could be due to its tendency to

produce deep trees which can capture complex patterns.

The NPI-M and A-NPI-M algorithms performed similarly across various datasets, and

the same was observed for the IDM1 and IDM2 for some datasets. The D-NPI algorithm

showed good performance with datasets that have low label density values.

Transforming the datasets from a multi-label classification problem to a single-label

classification problem using the LP approach introduces challenges due to the large num-

ber of class labels in the transformed datasets and the potential for high imbalance. Ex-

ploring alternative methods for MLC problem, including adaptation of D-NPI to handle

multiple labels directly, remains an important topic for future research.

Conclusions 86

In the second method, all the algorithms are used for imprecise classification after

transforming the datasets. For prediction, after reaching a leaf node, a strong dominance

criterion is applied and instead of assigning a single subset of labels to a new instance, a

set of subsets of labels is assigned to it. The imprecise algorithms were called D-NPI-IC,

NPI-M-IC, A-NPI-M-IC, IDM1-IC and IDM2-IC in this chapter.

The performance of the algorithms varied across the datasets and the evaluation

metrics. The results showed that Determinacy (DET) and single accuracy (SingleA)

were generally inconsistent, indicating that the classifiers’ ability to confidently predict a

single subset of labels depended on the dataset. For the Genbase and Medical datasets,

as discussed for the first method, appeared to provide favourable characteristics for the

classifiers to perform effectively. Similarly, in this method, the classifiers tended to be

more deterministic than for the other datasets, achieving high accuracy among predictions

of a single subset of labels.

Set accuracy was often high, leading to the classifiers’ capability to include the correct

class label within the predicted set of subsets of labels. The D-NPI-IC algorithm tended

to produce the highest SetA values due to its high values of Indeterminacy size (IS). This

observation led to decreasing the informativeness of this classifier compared to the others

for certain datasets. While DACC and MIC were efficient for imprecise classification

problems, providing tradeoff between imprecision and accuracy. The NPI-M-IC and A-

NPI-M-IC algorithms tended to achieve the highest DACC and MIC values across most

datasets. This study revealed the importance of dataset characteristics in determining

classifier suitability. Certain datasets, such as the Genbase dataset, had scenarios where

the algorithms performed exceptionally well, with near-perfect determinacy and accuracy.

Conversely, the Corel5k dataset is challenging due to its label density value being low,

combined with a high number of labels.

Further investigation is required to determine the efficiency of imprecise classifiers

when being used for MLC problems. In some cases, due to the large number of labels

obtained after transforming the data using the LP method, the size of the indeterminate

predicted set of subsets of labels is large, which directly impacts the DACC and MIC

values. Exploring this point in future research can provide valuable findings. Investigating

a criterion for selecting the most relevant labels from among the predicted set of subsets

of labels presents an interesting direction for future research.

Conclusions 87

Overall, classifiers based on the NPI approach outperformed those based on the IDM

across most datasets for both methods. Specifically, the classifiers based on the NPI-M

and A-NPI-M. The D-NPI classifier tended to produce deep trees, which can be beneficial

for some datasets, helping in capturing their complex patterns. However, in the second

method, after transforming the datasets, producing deep trees with a large number of class

labels in the transformed dataset can result in less informative indeterminate predictions.

Implementing an early stopping criterion or applying a post-pruning approach for MLC

problems remains a topic for future investigation.

Chapter 5

Performance evaluation of NPI with

bivariate copula

5.1 Introduction

Evaluating the performance of statistical inference methods, including prediction, pa-

rameter estimation, or hypothesis tests, is important to understand their effectiveness.

After introducing a new method, assessing the performance using evaluation measures is

required to measure the efficiency of the method. In statistics, several methods are used

for performance evaluation, either for evaluating a new method without any comparisons

to other methods or to compare its performance to different methods.

Investigating the performance of Nonparametric Predictive Inference (NPI) methods

is important. NPI methods have been widely applied in various areas of statistics, making

it important to assess their performance both individually and in comparison with other

methods. The nature of NPI results differs from that of standard statistical methods, as

they primarily consist of imprecise probabilities. Consequently, evaluating these methods

while taking imprecision into account can be challenging.

The aim of this chapter is to introduce the use of performance evaluation measures to

assess the performance of NPI-based methods in terms of both accuracy and precision.

In this context, accuracy refers to the ability of a method to correctly or approximately

include the target value within its predictions, while precision refers to the narrowness of

the prediction intervals.

Modelling dependences between random quantities is important in statistics. Across

88

Introduction 89

various application areas, it is important to understand relationships between variables

by studying the dependence structure. Copulas are widely used in finance [26, 79], in

hydrology [59], and in reliability analysis [103]. Sklar’s Theorem [102] is a theoretical

foundation for copula-based modelling. It establishes a connection between multivariate

cumulative distribution functions and their marginal distributions functions through a

copula function. It states that for any multivariate cumulative distribution function

(CDF) G(y1, y2, . . . , yd), with marginal CDFs F1(y1), F2(y2), . . . , Fd(yd), a copula function

C : [0, 1]d → [0, 1] exists such that

G(y1, y2, ..., yd) = C(F1(y1), F2(y2), . . . , Fd(yd)). (5.1)

This theorem allows modelling the dependence structure separately from the marginals.

There are several parametric copula families, each differing in terms of dependance

structure, characteristics and applications, including Gaussian (Normal) [87], Frank [57],

Clayton [28], and Gumbel [64]. An overview of various families of bivariate copulas has

been provided by Nelson [87]. In the following, some of the famous families of bivariate

copulas are presented for the aim to be used later in this chapter.

One of the best-known copulas is the Normal copula, which can be used to model

linear dependencies, particularly when the dependencies are symmetric. It is defined as

Cθ(y1, y2) = Φθ(Φ
−1(y1),Φ

−1(y2)), (5.2)

where Φ is the CDF of the standard normal distribution, and Φθ is the CDF of the

standard bivariate normal with correlation parameter θ. It captures the dependence

between variables, but it is asymptotically independent in both the lower and upper

tails, so it does not show tail dependence [87].

Another important family of copulas is the Frank copula, which can be used to model

symmetric dependence between variables [57]. It is characterised by a parameter θ, which

controls the strength of the dependence. The Frank copula is defined as:

Cθ(y1, y2) = −1

θ
ln

(
1 +

(e−θy1 − 1)(e−θy2 − 1)

e−θ − 1

)
, (5.3)

where θ ∈ (−∞,∞) \ {0} is the copula parameter.

Introduction 90

A further family of copulas is the Clayton copula, particularly useful for modelling

lower tail dependence [28]. This means that it is suitable for cases where extreme values

are more likely to occur together in the lower range of the variables. It is defined as:

Cθ(y1, y2) =
[
max

(
y1
−θ + y2

−θ − 1, 0
)]−1/θ

, (5.4)

where θ ∈ (−1,∞) \ {0} is the copula parameter which controls the strength of depen-

dence, particularly in the lower tail.

The copula’s parameter θ has a relationship with the measure of association that is

Kendall’s tau, τ [87]. The relationship between the copula’s parameter θ and τ has a

distinct formula for each of the previously discussed parametric copula families, see [29].

For the Normal copula, τ = 2
π

arcsin(θ); for the Frank copula, τ = 1− 4
θ
[1− 1

θ

∫ θ
0

x
ex−1dx];

and for the Clayton copula, τ = θ
θ+2

.

Coolen-Maturi et al. [29] introduced a semi-parametric predictive method by com-

bining NPI with bivariate parametric copulas. This method uses NPI for the marginals,

while the dependence structure between random quantities is estimated using a bivariate

parametric copula. The performance of this method was previously assessed by using

a simulation study [29, 85]. This method was introduced for prediction of a future bi-

variate random quantity, providing NPI lower and upper probabilities for an event of

interest. The method was assessed via a simulation study using frequentist comparisons.

This evaluation process resulted in an interval of lower and upper bounds of proportions,

which corresponds to a quantile level. The findings of that study raise an important ques-

tion regarding the performance evaluation: is it always indicative of poor performance

when the quantile level lies outside the interval? And if the interval does not contain

the quantile level, how can the performance be evaluated in that case? This chapter

presents an investigation into these questions by introducing a new use of performance

evaluation measures, and is organised as follows: Section 5.2 presents an outline of the

semi-parametric predictive method by Coolen-Maturi et al. [29]. Section 5.3 describes

a new use of measures for evaluating a method’s performance. Section 5.4 presents the

results of this performance evaluation study. A comparative study with an alternative

method is conducted in Section 5.5. Finally, concluding remarks are provided in Section

5.6.

Preliminaries 91

5.2 Preliminaries

This section provides an overview of the semi-parametric predictive method using copulas,

denoted by NPI-C throughout this thesis, presented by Coolen-Maturi et al. [29]. The

NPI-C method uses NPI for the marginals together with a parametric copula to take the

dependence structure between the random quantities into account. Assume n bivariate

observations, denoted as (xi, yi), i = 1, 2, ..., n, and let xi and yj represent the ordered

observations related to the marginals, where i = 1, 2, ..., n and j = 1, 2, ..., n. In order to

predict one future bivariate observation, (Xn+1, Yn+1), Hill’s assumption A(n) is used to

derive a predictive probability distribution for Xn+1 given the observations x1, x2, ..., xn,

and a predictive probability distribution for Yn+1 given the observations y1, y2, ..., yn, as

follows:

P (Xn+1 ∈ (xi−1, xi)) =
1

n+ 1
and P (Yn+1 ∈ (yj−1, xj)) =

1

n+ 1
, i, j = 1, 2, ..., n+ 1,

where x0, y0 = −∞ and xn+1, yn+1 = ∞. The bivariate random quantity (Xn+1, Yn+1)

is then transformed from the [−∞,∞]2 plane to the [0, 1]2 plane, where the plane [0, 1]2

is partitioned into (n + 1)2 squares of equal size based on the observed n bivariate ob-

servations. The resulting transformed random quantities are denoted by (X̃n+1, Ỹn+1),

where

X̃n+1 ∈
(i− 1

n+ 1
,

i

n+ 1

)
and Ỹn+1 ∈

(j − 1

n+ 1
,

j

n+ 1

)
,

where, i, j = 1, 2, ..., n+ 1. Then based on A(n) assumption for the marginals,

P
(
X̃n+1 ∈

(i− 1

n+ 1
,

i

n+ 1

))
=

1

n+ 1
and P

(
Ỹn+1 ∈

(j − 1

n+ 1
,

j

n+ 1

))
=

1

n+ 1
.

After the transformation for the marginals, the corresponding uniform marginal dis-

tributions are discretised on [0, 1], which aligns with copulas, since copulas have uniform

marginals. In the next step, a bivariate copula is assumed, and the parameter is esti-

mated. To align with the marginal transformations and to allow for the estimation of the

copula parameter, denoted by θ̂, independently of the marginals, the transformed data

pairs are used in the estimation step. Instead of using the original observed pairs (xi, yi)

for i = 1, 2, ..., n, the ranks (
rxi
n+1

,
ryi
n+1

) are used, where rxi is the rank of xi among the

Preliminaries 92

n pairs of x observations, and ryi is the rank of yi among the n pairs of y values. By

combining NPI for marginals with the estimated copula parameter θ̂, the probability for

the event that the transformed pair (X̃n+1, Ỹn+1) lies within any of the (n+ 1)2 squares

of the partitioned plane [0, 1]2 is:

hij(θ̂) = PC(X̃n+1 ∈
(
i− 1

n+ 1
,

i

n+ 1

)
, Ỹn+1 ∈

(
j − 1

n+ 1
,

j

n+ 1

)
|θ̂), (5.5)

where i, j = 1, 2, ..., n + 1, and PC(.|θ̂) is the copula probability with the estimated

parameter θ̂. Suppose Tn+1 = Xn+1 + Yn+1 and the event Tn+1 > t is the event of

interest, then the corresponding NPI lower and upper probabilities for this event are

P (Tn+1 > t) =
∑

(i,j)∈Lt

hij(θ̂), (5.6)

where Lt = {(i, j) : xi−1 + yj−1 > t, i, j ∈ {1, 2, ..., n+ 1}}, and

P (Tn+1 > t) =
∑

(i,j)∈Ut

hij(θ̂), (5.7)

where Ut = {(i, j) : xi + yj > t, i, j ∈ {1, 2, ..., n+ 1}}.

In order to evaluate the performance of the NPI-C method, a simulation study was

conducted by Coolen-Maturi et al. [29] and Muhammad [85], for this event of interest.

At each simulation step j = 1, 2, ..., N , n + 1 bivariate data pairs are generated from an

assumed parametric copula family. The first n pairs are used as the observed data for

the NPI-C method, while the remaining pair is used to evaluate the performance of the

method. Let (xji , y
j
i) denote the i-th pair in the j-th sample, where each sample consists

of n pairs, and let (xjf , y
j
f) be the last pair for the j-th simulation step. Let tjf be the

sum of the last remaining pair in the j-th sample, then tjf = xjf + yjf . Using Equations

(5.6) and (5.7), and for a given quantile level q ∈ (0, 1), the inverse values for the NPI

lower and upper probabilities for the event Tn+1 > t can be derived and denoted by tjq

and t
j
q for each simulation step j. The key to this evaluation is to satisfy the inequality

l ≤ q ≤ u, where l and u are defined as:

l =
1

N

N∑
j=1

I(tjf ≥ t
j
q), (5.8)

Performance evaluation measures 93

and

u =
1

N

N∑
j=1

I(tjf ≥ tjq), (5.9)

where j = 1, 2, . . . , N .

The simulation study conducted by Coolen-Maturi et al. [29] and Muhammad [85]

focused on two scenarios. The first scenario assumed that the copula used for generating

the data was the same as the copula used for the NPI-C method. The second scenario

involved two different copulas, one for the NPI-C method and another for simulating the

data. The first scenario is important for assessing how well the method performs and for

studying the level of imprecision expressed by u− l. Although the first scenario is impor-

tant, the second scenario may be more relevant in practice, as in real-life applications,

the copula family assumed for the data is unknown and prone to potential misspecifi-

cation. Two values, l and u, are calculated for each quantile level q, as tjq ≤ t
j
q holds,

the performance is evaluated by checking whether q lies within the interval [l, u]. As the

sample size n increases, the imprecision u− l, decreases, resulting in a higher number of

q values not satisfying the inequality l ≤ q ≤ u. This chapter investigates the perfor-

mance of the NPI-C method using different performance evaluation measures, aiming to

include studying cases when q lies outside the interval [l, u]. In the following section, the

performance measures used for the evaluation process in this chapter are presented.

5.3 Performance evaluation measures

The aim of this chapter is to examine performance measures for imprecise probability

inferences, with a focus on NPI with copulas for bivariate data, in order to evaluate the

performance of the NPI-C method presented by Coolen-Maturi et al. [29] and Muhammad

[85]. The performance measures considered in this chapter address two aspects of eval-

uation: accuracy and precision, as explained in Section 5.1. Accuracy refers to whether

an interval contains a target value, while precision concerns the width of the interval. In

what follows, several performance measures are presented to capture these two aspects.

Prediction Interval Coverage Probability (PICP) is a measure used to assess

the efficiency of predictive methods. It measures the proportion of target values (actual

observations) which fall within the prediction intervals. Khosravi et al. [76] constructed

Performance evaluation measures 94

prediction intervals instead of point prediction produced neural network metamodels,

aiming to determine best structures of metamodels. The PICP measure has been widely

used in the literature to evaluate the performance of prediction intervals, and many

authors have applied it across various applications, including Alcántara et al. [11], Pang

et al. [90], and Shrestha and Solomatine [100]. Given Nc experimental runs, let the

prediction interval for the k-th run be [lk, uk] and the target value for the k-th run be qk.

The Prediction Interval Coverage Probability (PICP) is defined by:

PICP =
1

Nc

Nc∑
k=1

I(lk ≤ qk ≤ uk). (5.10)

A high value of PICP indicates good performance; however, if it is too high, the

intervals may be excessively wide, suggesting high indeterminacy. Conversely, if the

value is too low, the intervals may be too narrow, indicating low uncertainty. While PICP

assesses how well the intervals capture the target values, it does not provide insight into

the imprecision level of these intervals.

Mean Prediction Interval Width (MPIW) is a measure defined to consider the

width of the prediction interval. The metric is used to measure the average width of the

prediction intervals in order to assess how narrow or wide the intervals are [100]. For Nc

experimental runs, the mean prediction interval width (MIPW) is defined as:

MPIW =
1

Nc

Nc∑
k=1

(uk − lk), (5.11)

where uk − lk is the width of the interval k-th. Lower values of MPIW indicate that the

intervals is narrow (i.e., less imprecision), whereas higher values suggest that the intervals

are likely to be wide (i.e., high imprecision).

Two additional measures aim to separate the intervals that include the target values

from those that do not, thereby creating two groups. The average of each group is then

calculated separately. These measures are constructed using the two previously defined

measures in Equations (5.10) and (5.11). For clarity and conciseness, the first group,

where the target values fall within the intervals, is referred to as Case 1. The second

group, where the intervals do not contain the target values, is referred to as Case 2.

The MPIW for Case 1 (MPIW-C1) and for Case 2 (MPIW-C2) are introduced below.

Performance evaluation measures 95

Specifically, MPIW-C1 is used to assess the level of imprecision (width) for intervals that

include the target values, while MPIW-C2 measures the imprecision (width) of intervals

that do not contain the target values.

Mean Prediction Interval Width for Case 1 (MPIW-C1) is constructed using

the previous measures in Equations (5.10) and (5.11). It is defined by

MPIW-C1 =

∑Nc

k=1(uk − lk)× I(lk ≤ qk ≤ uk)∑Nc

k=1 I(lk ≤ qk ≤ uk)
. (5.12)

This measure aims to assess the level of imprecision (width) for the prediction interval

that include the target values. To measure the imprecision (width) of the intervals that

do not contain the target values, the following measure is used. Mean Prediction

Interval Width (MPIW) for Case 2 (MPIW-C2) is defined by

MPIW-C2 =

∑Nc

k=1(uk − lk)× (1− I(lk ≤ qk ≤ uk))∑Nc

k=1(1− I(lk ≤ qk ≤ uk))
. (5.13)

By applying these measures, prediction intervals results from a predictive method

can be assessed in terms of both accuracy and precision. Although these measures are

useful, it is important to further study the distance between the target value and the

corresponding interval, whether the target value falls within its corresponding interval

or not. For instance, if there are two prediction intervals, [0.8, 0.9] and [0.5, 1], and the

target value is 0.7, then one may consider the second interval is the best choice as it

contains the target value 0.7, but in fact, in some applications, the first interval can be

more informative than the second, even if it does not contain the value 0.7. This can

be explained by two factors. The first factor is the width of the intervals, where the

width of the first interval is much less than the width of the second interval; 0.1 and 0.5,

respectively. The second reason is that the first interval, [0.8, 0.9], is reasonably close to

the true value 0.7 although it does not contain it.

In statistics, a loss function is often used to measure the distance between the pre-

dicted values and the target values. Several loss functions are commonly used, including

the quadratic loss function [10, 68], the absolute loss function [68, 92], the Huber loss func-

tion [68, 72], and the Hinge loss function [109]. Studying the performance of predictive

methods using loss functions is interesting. This section also presents loss functions to

evaluate the performance of predictive methods, taking into account the distance between

Performance evaluation measures 96

the target value and the interval. The discussion focuses on two types: the quadratic

and absolute loss functions, which are defined below. Other loss functions, though also

of interest, are left for future research.

The quadratic loss function (L2) is defined as the squared distance between the

predicted value (p) and the target value (q):

L2 = (p− q)2. (5.14)

The L2 loss function penalises larger errors heavily, so it is sensitive to outliers.

The absolute loss function (L1) measures the absolute value of the distance be-

tween the predicted value (p) and the target value (q):

L1 = |p− q|. (5.15)

This loss function is less sensitive to outliers than the L2 loss function.

In certain applications, strict adherence to either the lower or upper bound of the

interval is enforced, depending on the context and decision criteria. If the target value

falls outside the interval, a metric is used to assign a score to the interval, assigning

penalties accordingly. The Interval score measure is detailed below.

Here, explanation of how the loss functions are used in this study is provided. Re-

garding quadratic loss L2 and absolute loss L1, two types of intervals are considered to

derive the minimum loss and the maximum loss. First, when the interval contains the

target value, the minimum loss of the interval is 0, and the maximum loss is defined as the

maximum distance between the target value and either the lower or upper bound of the

interval, depending on the loss function used. Secondly, if the interval does not contain

the target value, the minimum loss is the minimum distance between the target value

and either the lower or upper bound of the interval, and the maximum loss is obtained

as in the first type.

Interval Score (ISα) is a metric defined as a score for the (1 − α) × 100% central

prediction interval [62]. It is a linear function which remains constant between the lower

and upper bounds and has slope of ± 2
α

outside the interval. This metric comprises three

terms, each providing a penalisation while evaluating the intervals. Let [l, u] represent

the (1− α)× 100% central prediction interval, and q denote the target value. The ISα is

Performance evaluation measures 97

defined as follows:

ISα = (u− l) +
2

α
max{0, l − q}+

2

α
max{0, q − u}. (5.16)

This metric assigns a value for each prediction interval, with a lower score indicating

better performance. The value of the ISα is 0 when l = q = u, which is the optimal score.

In this study, this metric is refined by replacing the original coefficients 1, 2
α

, and 2
α

with

new weights c1, c2, c3, respectively, where
∑3

i=1 ci = 1 and ci ≥ 0. As a result, this allows

for a reformulation of the ISα using the new weights, which adds flexibility in a given

context. Let [l, u] be an interval, the new interval score IS(c1,c2,c3) is defined as follows:

IS(c1,c2,c3) = c1(u− l) + c2 max{0, l − q}+ c3 max{0, q − u}. (5.17)

The weights c2 and c3 are used to penalise the distances between the target value

and either the lower bound or the upper bound, represented by l and u, respectively,

depending on the application requirements. The weight c1 is used to penalise the width

of the interval. If l and u are in [0, 1], then the minimum and maximum scores will be 0

and 1, respectively. A lower score reflects better performance, with 0 being the optimal

score. This measure can assess the performance of the method in terms of both accuracy

and precision.

Let us consider two prediction intervals: [1, 5] and [3, 5] and let the target value be

q = 2. The IS(c1,c2,c3) for these intervals using (5.17) can be determined as follows. For

the first interval [1, 5]:

IS(c1,c2,c3) = c1(5− 1) + c2 max{0, 1− 2}+ c3 max{0, 2− 5} = 4c1,

and for the second interval [3, 5]:

IS(c1,c2,c3) = c1(5− 3) + c2 max{0, 3− 2}+ c3 max{0, 2− 5} = 2c1 + c2.

Regarding the first interval, the score depends only on c1 since the interval [1, 5] includes

the true value q = 2. Therefore, the penalisation will be determined based on the width

of the interval according to the application or the decision criteria. On the other hand,

the IS(c1,c2,c3) for the second interval is influenced by the weights c2 and c3, because q = 2

Performance evaluation via simulation study 98

does not fall within the interval [3, 5], specifically lying to the left of its lower bound 3.

This chapter investigates the use of these performance measures for evaluating the

NPI-C method. In the following section, a simulation study is conducted, enabling the

use of the measures to assess the performance of the NPI-C method in terms of two

evaluation aspects: accuracy and precision.

5.4 Performance evaluation via simulation study

This section presents the simulation study conducted to evaluate the performance of the

NPI-C method, introduced by Coolen-Maturi et al. [29]. In this simulation study, the

main steps as presented by Coolen-Maturi et al. [29] and Muhammad [85] are followed

with slight modifications. First, the entire simulation steps are repeated a number of

times, say Nc = 100, to obtain 100 intervals instead of one interval. Additionally, due to

the computation cost, the number of repeating internal simulation steps, N , is reduced

from 1000 to 500 during the calculation of the probabilities using Equations (5.8) and

(5.9). The steps used to implement this simulation study are presented in Algorithm 5.1.

Two scenarios are considered: the first scenario uses the same parametric copula for both

generating the samples and the NPI-C method. The second scenario assumes different

parametric copulas, one for simulating the samples and the other for the NPI-C method.

In the first scenario, a Normal copula is used both to generate the samples and for the

NPI-C method. In the second scenario, a Normal copula generates the data, while Frank

and Clayton copulas are used for the NPI-C method. Three different values for each τ and

q are employed: τ = 0.25, 0.5, 0.75, and q = 0.25, 0.5, 0.75. When generating the samples,

the parameter of the assumed parametric copula is set to the value corresponding to the

selected value of τ . The estimation method used for estimating the copula parameter

is pseudo maximum likelihood, which is available in the R package ‘VineCopula’ [86].

For Clayton copula, the generated data should have a valid copula parameter to ensure

the NPI-C method could be properly applied; this step should not affect the process, as

parameter estimation methods are not the focus of this chapter. Two sample sizes are

considered in this study: n = 20 and n = 50.

The main difference between this simulation study and the simulation study imple-

mented by Coolen-Maturi et al. [29] and Muhammad [85] is that this simulation study

Performance evaluation via simulation study 99

Algorithm 5.1 Calculating lk and uk, where k = 1, . . . , Nc.

1: For k = 1 to Nc

2: For r = 1 to N
3: Generate n+ 1 pairs sample from a parametric copula
4: Use the first n pairs for the NPI-C method and the last pair for assessing per-

formance
5: Estimate the copula parameter θ̂ using the first n pairs sample
6: Compute the probabilities hij(θ̂) using Equation (5.5)
7: Compute trn+1 = xrn+1 + yrn+1, t

r
q, and t

r
q

8: Compute l and u using Equations (5.8) and (5.9)
9: Return l and u
10: Return lk and uk, where k = 1, . . . , Nc

results in Nc intervals for each q value, while the study by Coolen-Maturi et al. [29]

and Muhammad [85] results in one interval corresponding to each q value. Obtaining a

number of intervals allows for investigating the performance of the method in terms of

applying the measures presented in Section 5.3. The intervals of proportions from this

simulation study, [lk, uk], for k = 1, 2, . . . , 100, are derived from the NPI lower and upper

probabilities following the steps in Algorithm 5.1, reflecting varying levels of imprecision.

This chapter introduces measures, as described in Section 5.3, to evaluate the NPI-C

method while accounting for imprecision, particularly for intervals that do not include

the value q. For clarity, the value q is referred to as the “target value” throughout this

study.

After obtaining the Nc intervals [lk, uk], the first four measures in Section 5.3 are

applied using Equations (5.10), (5.11), (5.12) and (5.13). The results are presented in

Tables 5.1, 5.2 and 5.3. Table 5.1 displays the results for the first scenario, in which a

Normal copula is used for both simulation and inference. Tables 5.2 and 5.3 show the

results for the second scenario, where the data are generated using a Normal copula, and

inference is based on assumed Frank and Clayton copulas.

The results in Table 5.2 indicate that for n = 20, the values of PICP, MPIW,

MPIW-C1 and MPIW-C2 are greater than those observed for n = 50. To explain,

as the sample size increases, the inverse values of the NPI lower and upper survival func-

tions tjq and t
j
q tend to converge toward the quantile value tjf for j = 1, 2, . . . , N . As

a result, the probabilities lk and uk tighten around the value q, leading to a narrower

width of the interval [lk, uk]. Reducing the width of the interval [lk, uk] affects the num-

ber of intervals that contain the value q, resulting in lower values of PICP when n = 50.

Performance evaluation via simulation study 100

τ = 0.25

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.78 0.0556 0.0579 0.0475
50 0.48 0.0230 0.0253 0.0210

0.5
20 0.87 0.0668 0.0682 0.0577
50 0.50 0.0260 0.0271 0.0250

0.75
20 0.88 0.0569 0.0574 0.0533
50 0.35 0.0238 0.0254 0.0229

τ = 0.5

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.83 0.0523 0.0527 0.0505
50 0.38 0.0208 0.0212 0.0205

0.5
20 0.83 0.0564 0.0573 0.0519
50 0.46 0.0220 0.0225 0.0216

0.75
20 0.87 0.0522 0.0530 0.0463
50 0.46 0.0219 0.0239 0.0202

τ = 0.75

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.75 0.0500 0.0504 0.0486
50 0.42 0.0200 0.0208 0.0194

0.5
20 0.75 0.0478 0.0486 0.0456
50 0.42 0.0206 0.0209 0.0203

0.75
20 0.78 0.0488 0.0508 0.0415
50 0.38 0.0209 0.0227 0.0197

Table 5.1: Simulation from Normal; Normal copula assumed for inference.

For small sample sizes, such as n = 20, the interval [lk, uk] tends to be wider, allowing

more q values to satisfy the inequality lk ≤ q ≤ uk. Notably, the results show that

MPIW-C1 > MPIW > MPIW-C2, indicating that intervals which do not contain the

value q are slightly narrower than those that contain the value q.

In Table 5.2, when using a Frank copula for inference, the pattern of the results is

generally similar to those in Table 5.1 with only slight differences. However, in Table

5.3, the results differ from those observed in Table 5.1 and Table 5.2 when q = 0.5.

When generating the samples using a Normal copula, they are characterised by having

a symmetric dependence structure and no tail dependence. Conversely, using a Clayton

copula for inference, it models the data as having asymmetric dependence structure and

lower tail dependence. This tends to affect the results for the NPI-C method. Since the

Clayton copula tends to capture strong lower tail dependence, the corresponding lower

Performance evaluation via simulation study 101

τ = 0.25

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.78 0.0560 0.0581 0.0485
50 0.47 0.0232 0.0261 0.0206

0.5
20 0.85 0.0666 0.0680 0.0584
50 0.50 0.0264 0.0271 0.0257

0.75
20 0.89 0.0569 0.0574 0.0524
50 0.44 0.0249 0.0267 0.0235

τ = 0.5

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.76 0.0512 0.0524 0.0473
50 0.39 0.0205 0.0225 0.0192

0.5
20 0.81 0.0550 0.0552 0.0543
50 0.42 0.0239 0.0257 0.0226

0.75
20 0.80 0.0497 0.0509 0.0450
50 0.43 0.0213 0.0219 0.0208

τ = 0.75

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.75 0.0498 0.0516 0.0444
50 0.46 0.0198 0.0206 0.0192

0.5
20 0.77 0.0484 0.0489 0.0467
50 0.46 0.0212 0.0218 0.0207

0.75
20 0.81 0.0497 0.0509 0.0442
50 0.46 0.0205 0.0223 0.0189

Table 5.2: Simulation from Normal; Frank copula assumed for inference.

and upper inverse quantiles tjq and t
j
q may be sensitive to the dependence near the centre,

often resulting in lower values of both lk and uk. Consequently, many values of q lie above

the interval [lk, uk]. The observed intervals for q = 0.5 show that the value q frequently

falls outside the interval [lk, uk] above the upper bound, that is, when uk < q, as shown

in Figures D.7 to D.9 in Appendix D.

For illustration, the intervals [lk, uk] for k = 1, ..., 100 are plotted in Figures D.1 to

D.9 in Appendix D. Figures D.1, D.2 and D.3, when using a Normal copula for inference,

show that although many intervals do not contain the value q when n = 50, the intervals

are very close to the value q. Figures D.4, D.5 and D.6 display comparable trends to

those observed in the first three figures.

Studying the performance of the NPI-C method using loss functions is considered next.

First, the maximum and minimum losses are derived using the quadratic loss function L2

Performance evaluation via simulation study 102

τ = 0.25

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.82 0.0568 0.0587 0.0486
50 0.53 0.0223 0.0239 0.0206

0.5
20 0.67 0.0672 0.0687 0.0642
50 0.31 0.0269 0.0281 0.0264

0.75
20 0.90 0.0569 0.0576 0.0498
50 0.38 0.0239 0.0251 0.0231

τ = 0.5

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.87 0.0536 0.0541 0.0498
50 0.45 0.0217 0.0232 0.0205

0.5
20 0.60 0.0553 0.0565 0.0535
50 0.27 0.0237 0.0255 0.0230

0.75
20 0.80 0.0492 0.0510 0.0421
50 0.34 0.0220 0.0229 0.0215

τ = 0.75

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.77 0.0492 0.0504 0.0452
50 0.45 0.0200 0.0212 0.0189

0.5
20 0.67 0.0487 0.0491 0.0479
50 0.28 0.0203 0.0222 0.0195

0.75
20 0.78 0.0482 0.0501 0.0415
50 0.37 0.0205 0.0225 0.0193

Table 5.3: Simulation from Normal; Clayton copula assumed for inference.

and the absolute loss function L1, based on Equations (5.14) and (5.15), as described in

Section 5.3. Next, the average maximum and minimum losses are presented, with results

reported separately for cases where q falls within the interval and where it does not. The

results when applying the quadratic loss function L2 are presented in Figures D.10 to

D.14 in Appendix D, and additional results for the absolute loss function L1 are provided

in Appendix D.

Regarding the average values of the maximum loss using L2 in Figure D.10, the

results are quite similar when using either Normal or Frank copulas for inference. When

τ = 0.75 (lower tail), the results using a Clayton copula for inference remain consistent

with those obtained using the other two copulas for inference. Using a Clayton copula, the

averages of the maximum losses when q = 0.5, with both values of τ = 0.25 and τ = 0.5,

are relatively high. This is due to the observation that, as the value of τ increases,

Performance evaluation via simulation study 103

the resulting intervals [lk, uk] become narrower, reducing the level of imprecision and,

consequently, the maximum loss values. This decrease in the level of imprecision can be

seen in the corresponding values of the measures MPIW, MPIW-C1, and MPIW-C2 in

Table 5.3. In Figures D.10, D.11 and D.12, the average values of the maximum losses

for q = 0.5 are greater when τ = 0.25 than when τ = 0.5 or τ = 0.75. Notably, the

differences between the averages when n = 20 and n = 50, for τ = 0.25 are larger than

the differences observed for τ = 0.5 and τ = 0.75. Similar patterns are observed in Figure

D.12, suggesting that when q ∈ [lk, uk], any assumed parametric copula for inference leads

to comparable results.

In terms of the average values of the minimum loss obtained using the L2, Figure D.13

shows that when using a Clayton copula for inference, the highest values are achieved

when q = 0.5 holds across all values of τ , with the highest average occurring for τ = 0.5.

This is due to the large number of intervals that do not include the value q, which is most

frequent when τ = 0.5 compared to the other cases.

When the averages of the minimum loss values are reported, as shown in Figure D.14,

the overall averages when n = 50 are greater than those when n = 20. This is because

when n = 50, more intervals do not contain the value q compared to n = 20. However,

the average values remain relatively low, as a result of the intervals being near the value

q. An exception to this occurs when using a Normal copula with τ = 0.25 and q = 0.25,

where the average value when n = 20 is slightly higher than when n = 50. This is caused

by the presence of some intervals that are far from the target value q when n = 50.

In general, the average values of the maximum loss using L2 tend to decrease as τ

increases. This can be attributed to the strong dependence structure, which enhances

the ability of the copula to model the data more accurately, resulting in more accurate

intervals. The results also demonstrate that using loss functions to evaluate the per-

formance of the NPI-C method is effective. For example, in the presence of a strong

dependence structure, any copula used for inference produces almost identical results for

both q = 0.25 and q = 0.75. If the goal is to achieve more precise intervals while relaxing

the strict inclusion criterion, a larger sample size (e.g., n = 50) can yield satisfactory

results.

Finally, the interval score measure IS(c1,c2,c3), as presented in Section 5.3, is used in

this simulation study, assuming different values for the weights c1, c2, and c3. It should be

Performance evaluation via simulation study 104

noted that determining appropriate values for these weights depends on the context and

specific application requirements. However, the selection of the weights in this chapter is

primarily intended to observe the performance of the method across different cases and

to examine how changes in the weights affect the overall performance. Two cases are

considered in this chapter: first, when c1 = c2 = c3 = 1
3
, and second, when c1 = 0.2 and

c2 = c3 = 0.4. Additional cases are included in Appendix D. The scores are represented

as box plots in Figures 5.1 and 5.2.

In Figure 5.1, when using equal weights, the results show that when n = 50, the

intervals often achieve lower scores than when n = 20. As explained earlier in this

section, when n = 50 the intervals [lk, uk] tend to be close to the q value even if they do

not capture the q value, resulting in lower scores compared to cases when n = 20. When

penalising intervals that do not include the q value more strictly, as shown in Figure

5.2 (IS(0.2,0.4,0.4)), and assigning a lower penalty to the width of the interval, the results

indicate that the scores of the intervals are lower than those of IS(1
3
, 1
3
, 1
3
). This difference

is affected by being less strict about the degree of imprecision of the intervals, which

reduces the gap between the cases n = 20 and n = 50. When n = 20, more intervals

satisfy the condition lk ≤ q ≤ uk, although they are often wide compared to those when

n = 50. However, when IS(0.2,0.4,0.4), the results show more outliers, particularly when

n = 50, due to the presence of intervals with u < q or l > q that are far from the q value.

Overall, most of the values of interval score when n = 50 tend to be lower than those

observed when n = 20, indicating that when n = 50, even if the intervals do not satisfy

the inequality lk ≤ q ≤ uk, they are likely to be close to the q value. Selecting the

weights c1, c2, and c3 primarily depends on the application requirements. For example,

if an application requires the predictive intervals to strictly include the target value or

to be outside but near the lower bound, then a higher value should be assigned to the

weight c2, and the method that produces the lowest interval score will be considered the

best.

Performance evaluation via simulation study 105

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(c) τ = 0.75

Figure 5.1: Results of IS(1
3
, 1
3
, 1
3
); simulation from Normal copula; Normal, Frank, and

Clayton copulas are for inference.

Performance evaluation via simulation study 106

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(c) τ = 0.75

Figure 5.2: Results of IS(0.2,0.4,0.4); simulation from Normal copula; Normal, Frank, and
Clayton copulas are for inference.

Comparison with existing method 107

5.5 Comparison with existing method

In this section, the performance evaluation measures presented in Section 5.3 are used to

compare the NPI-C method with another method introduced by Muhammad [85]. This

method employs a nonparametric copula with NPI for bivariate data, unlike the NPI-C

method, which uses a parametric copula. It is referred to as NPI-NC throughout this

chapter. In the NPI-NC method, NPI is applied to the marginals and combined with a

nonparametric copula. Only kernel-based methods are used in NPI-NC, providing greater

flexibility than the parametric copulas used in the NPI-C method [85]. For more details

on the NPI-NC method, see [85]. The aim of this section is to compare the performance

of the NPI-C and NPI-NC methods, following the same simulation study steps presented

in Section 5.4.

A Normal copula is used to simulate the data, while a nonparametric copula is used

for inference. Since the primary aim of this chapter is to propose a new use of perfor-

mance measures for NPI-based methods rather than introduce a new predictive method,

a single nonparametric copula estimation method, the normal reference rule-of-thumb

for bandwidth selection in kernel-based nonparametric estimation [101] is applied, and

the results are compared to those in Section 5.4. The normal reference rule-of-thumb is

implemented using the ‘npudistbw’ function in the ‘np’ package in R [96].

In this comparison study, the value of τ is set to 0.25, and three values of q are used,

q = 0.25, 0.5, 0.75. Two sample sizes are employed in this section: n = 20 and n = 50.

As explained in Section 5.4, before applying the measures presented in Section 5.3, the

main steps in Algorithm 5.1 are followed to obtain 100 intervals [lk, uk], but using a

nonparametric copula instead of a parametric copula. After obtaining 100 intervals, the

first four measures described in Section 5.3, namely Equations (5.10), (5.11), (5.12) and

(5.13), are applied.

The results obtained using the nonparametric copula are presented and compared to

those obtained using Normal, Frank, and Clayton copulas in Section 5.4, as shown in

Tables 5.4, 5.5 and 5.6. The normal reference rule-of-thumb method for fixed bandwidth

is indicated as fixed bandwidth in the tables.

Table 5.4 presents a comparison between the different scenarios in terms of the ac-

curacy of the predictions, represented by the PICP measure, and in terms of precision,

Comparison with existing method 108

presented by the measures: MPIW, MPIW-C1 and MPIW-C2.

When the sample size is small, n = 20, all copulas used for inference results in

reasonably high values of PICP except the Clayton copula when q = 0.5. When using

a Normal copula for inference, the intervals often tend to have small width, regardless

of whether they include the q values or not, compared to using other copulas. As Frank

copula is symmetric as Normal copula, it tends to perform similarly to Normal copula

in most cases, except when q = 0.75 and n = 50, where using a Frank copula results in

more intervals having the value q than when using a Normal copula. However, on average,

the resulting intervals when using a Normal copula are less imprecise than when using a

Frank copula. When using a nonparametric copula, the method performs well, but the

widths of the intervals are slightly wide compared to using other copulas, except when

q = 0.75 and n = 50, where it achieves the narrowest intervals, on average. The results

indicate that when a method yields intervals with high accuracy (e.g., high PICP), it

often tends to be less imprecise. Specifying the correct copula family before applying the

method helps ensure a balanced tradeoff between the accuracy and the precision. If the

copula family is known beforehand, it leads to more accurate probabilities without a high

level of imprecision (u− l). On the other hand, if the data comes from unknown copula

family and it is difficult to identify it, it may be safer to use a nonparametric copula,

especially when the sample size is large.

In order to investigate the performance of the methods in terms of the loss functions,

the average values of the maximum and minimum losses for intervals are calculated and

presented in Table 5.5. The average value of maximum losses when using L2 is referred

to as MaxL2, and MaxL1 when applying L1. Similarly, the average value of minimum

losses is referred to as MinL2 when applying L2, and MinL1 when applying L1.

The results in Table 5.5 show that when using L2 loss function the average values of

losses are nearly similar for most cases. However, when using the Clayton copula and

q = 0.5 for both values of n, the values of MaxL2 and MaxL1 are slightly higher than

in other copulas. Additionally, when using the nonparametric copula for q = 0.75 and

n = 20, the value of the MaxL2 is greater than that obtained from other copulas. The

high value of MaxL2 results from the high level of imprecision observed when using a

nonparametric copula, compared to other copulas. This is reflected in the highest values

of the measures MPIW, MPIW-C1 and MPIW-C2 among other copulas.

Comparison with existing method 109

Using L1 highlights the differences between the various scenarios more effectively than

L2, as shown in Table 5.5. When using the nonparametric copula, the results indicate

that when q = 0.75 and n = 50, the value of MaxL1 is the lowest among the other

scenarios. This is again, caused by the low values of the measures MPIW, MPIW-C1 and

MPIW-C2, indicating that when the intervals include the q value, the average of widths

is low, but when they do not include it, the average of widths tends to be lower, with the

value of q being outside but close to the bounds of the intervals.

Table 5.6 shows the average values of the interval score measure, which reflects both

the accuracy and precision of the method, using different weights. Using IS(1
3
, 1
3
, 1
3
), the

c1 = 1
3

places greater importance on the interval width compared to the weight c1 = 0.2

using IS(0.2,0.4,0.4).

Using the IS(1
3
, 1
3
, 1
3
) places greater importance on the interval width compared to using

IS(0.2,0.4,0.4). Consequently, when using any copula, the resulting values when n = 20 are

higher than the values when n = 50. This is because, when n = 20, more of the intervals

include the q value compared to when n = 50. However, the distance between the value

q and the bounds of the intervals is shorter when n = 50 (e.g., MaxL2 and MaxL1 values

are lower when n = 50), resulting in lower values of IS(1
3
, 1
3
, 1
3
) when n = 50. The lowest

values are observed when n = 50 for IS(0.2,0.4,0.4), due to balancing between having narrow

intervals along with q lying in or outside but close to the bounds of the intervals.

In this comparative study, the analysis presents the results of the performance mea-

sures used to evaluate the method when employing a parametric or a nonparametric

copula for inference. Misspecification of the copula used for inference, compared to the

one used to generate the data, leads to different results across the copulas. The perfor-

mance measures allow comparison of the methods in terms of two key aspects: accuracy

and precision.

Comparison with existing method 110

Normal copula

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.78 0.0556 0.0579 0.0475
50 0.48 0.0230 0.0253 0.0210

0.5
20 0.87 0.0668 0.0682 0.0577
50 0.50 0.0260 0.0271 0.0250

0.75
20 0.88 0.0569 0.0574 0.0533
50 0.35 0.0238 0.0254 0.0229

Frank copula

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.78 0.0560 0.0581 0.0485
50 0.47 0.0232 0.0261 0.0206

0.5
20 0.85 0.0666 0.0680 0.0584
50 0.50 0.0264 0.0271 0.0257

0.75
20 0.89 0.0569 0.0574 0.0524
50 0.44 0.0249 0.0267 0.0235

Clayton copula

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.82 0.0568 0.0587 0.0486
50 0.53 0.0223 0.0239 0.0206

0.5
20 0.67 0.0672 0.0687 0.0642
50 0.31 0.0269 0.0281 0.0264

0.75
20 0.90 0.0569 0.0576 0.0498
50 0.38 0.0239 0.0251 0.0231

Fixed bandwidth

q n PICP MPIW MPIW-C1 MPIW-C2

0.25
20 0.81 0.0568 0.0583 0.0504
50 0.51 0.0245 0.0251 0.0239

0.5
20 0.84 0.0669 0.0682 0.0596
50 0.43 0.0275 0.0284 0.0268

0.75
20 0.80 0.0578 0.0576 0.0587
50 0.41 0.0229 0.0241 0.0221

Table 5.4: Simulation from Normal; PICP, MPIW, MPIW-C1 and MPIW-C2.

Comparison with existing method 111

Normal copula

q n MaxL2 MinL2 MaxL1 MinL1

0.25
20 0.0022 0.0001 0.0450 0.0026
50 0.0009 0.0001 0.0268 0.0068

0.5
20 0.0030 0.0000 0.0525 0.0015
50 0.0010 0.0001 0.0295 0.0067

0.75
20 0.0020 0.0000 0.0430 0.0011
50 0.0010 0.0001 0.0293 0.0073

Frank copula

q n MaxL2 MinL2 MaxL1 MinL1

0.25
20 0.0022 0.0001 0.0454 0.0024
50 0.0009 0.0001 0.0272 0.0070

0.5
20 0.0030 0.0000 0.0526 0.0015
50 0.0010 0.0001 0.0295 0.0065

0.75
20 0.0020 0.0000 0.0429 0.0011
50 0.0010 0.0001 0.0298 0.0074

Clayton copula

q n MaxL2 MinL2 MaxL1 MinL1

0.25
20 0.0021 0.0001 0.0442 0.0023
50 0.0008 0.0001 0.0264 0.0071

0.5
20 0.0039 0.0001 0.0590 0.0050
50 0.0017 0.0004 0.0372 0.0127

0.75
20 0.0019 0.0000 0.0425 0.0009
50 0.0010 0.0002 0.0292 0.0080

Fixed bandwidth

q n MaxL2 MinL2 MaxL1 MinL1

0.25
20 0.0021 0.0000 0.0441 0.0020
50 0.0010 0.0001 0.0282 0.0070

0.5
20 0.0031 0.0000 0.0531 0.0021
50 0.0013 0.0002 0.0339 0.0087

0.75
20 0.0025 0.0000 0.0471 0.0024
50 0.0010 0.0002 0.0284 0.0080

Table 5.5: Simulation from Normal; loss functions.

Comparison with existing method 112

Normal copula

q n IS(1
3
, 1
3
, 1
3
) IS(0.2,0.4,0.4)

0.25
20 0.0122 0.0194
50 0.0100 0.0073

0.5
20 0.0228 0.0140
50 0.0109 0.0079

0.75
20 0.0193 0.0118
50 0.0104 0.0077

Frank copula

q n IS(1
3
, 1
3
, 1
3
) IS(0.2,0.4,0.4)

0.25
20 0.0122 0.0195
50 0.0100 0.0074

0.5
20 0.0227 0.0139
50 0.0110 0.0079

0.75
20 0.0193 0.0118
50 0.0108 0.0080

Clayton copula

q n IS(1
3
, 1
3
, 1
3
) IS(0.2,0.4,0.4)

0.25
20 0.0197 0.0123
50 0.0098 0.0073

0.5
20 0.0241 0.0154
50 0.0132 0.0105

0.75
20 0.0193 0.0117
50 0.0106 0.0080
Fixed bandwidth

q n IS(1
3
, 1
3
, 1
3
) IS(0.2,0.4,0.4)

0.25
20 0.0196 0.0122
50 0.0105 0.0077

0.5
20 0.0230 0.0142
50 0.0121 0.0090

0.75
20 0.0193 0.0118
50 0.0103 0.0078

Table 5.6: Simulation from Normal; interval score.

Conclusions 113

5.6 Conclusions

This chapter presented a novel use of performance evaluation measures for imprecise

probability inferences focusing on NPI-based method for bivariate data. This method is

the semi-parametric predictive method (NPI-C), which was introduced by Coolen-Maturi

et al. [29]. When assessing the performance of the NPI-C method in [29, 85], it resulted

in intervals of proportions [l, u] corresponding to the quantile level q using NPI lower and

upper probabilities. The aim of this study is to investigate if the interval [l, u] is still

informative when it does not contain the value q, taking into account the imprecision

u − l using different performance measures. These measures focus on the accuracy and

precision of the predictions.

This study introduced different measures to evaluate the performance of the NPI-C

method when dealing with prediction intervals. The first four measures, PICP, MPIW,

MPIW-C1, and MPIW-C2, were introduced to measure the coverage (accuracy) and

the width (imprecision) of the intervals. Moreover, loss functions were used to measure

the maximum and minimum distances between [l, u] and the target value q. Two loss

functions were used: quadratic loss function (L2) and absolute loss function (L1). Finally,

a modified interval score (IS(c1,c2,c3)) was introduced with three weights, c1, c2, and c3,

where c1 penalises wider intervals, while c2 and c3 imposes penalties if l > q and if u < q,

respectively. The choice of the weights of this metric depends on the context and the

application requirements.

A simulation study was conducted to evaluate the performance of the NPI-C method

using the introduced measures. The study included two scenarios: one where the same

parametric copula was used for both generating the data and inference, and another where

different copulas were applied. Subsequently another study was carried out to apply the

performance measures in order to compare the performance of the NPI-C method with a

method introduced by Muhammad [85], which uses a nonparametric copula for inference.

This method is referred to as NPI-NC throughout this chapter.

The results of this study showed that the intervals, when n = 20, tended to be more

accurate than when n = 50. However, when n = 50, the intervals were more precise

compared to the case when n = 20. Using the same copula can help achieve a tradeoff

between the accuracy of the predictions and the precision of intervals. However, when

Conclusions 114

using a different copula for inference (parametric or nonparametric), it can still achieve

good results, but with the risk of reducing performance in specific cases. For example,

when a Normal copula for generating the data and a Clayton copula for inference, the

Clayton copula may fail to capture the dependence in the centre, leading to lower perfor-

mance compared to the other copulas when q = 0.5. Using a nonparametric copula can

be a safer choice if the underling copula for the data is unknown or uncertain. For larger

sample sizes, both method NPI-C and method NPI-NC can produce good results if the

goal is to get more precise intervals, and the target value is accepted to be outside but

close the bounds of the interval.

Using the loss functions revealed that when the inequality l ≤ q ≤ u was not satisfied,

the intervals tended to be near the value q. The average values of the maximum loss

tended to decrease with an increase in the value of τ . This could be attributed to the

ability of copula to model the data more accurately when the dependence was strong,

which resulted in more precise intervals.

Using the interval score measure IS(c1,c2,c3) proved effective in evaluating the perfor-

mance of the methods in terms of both the accuracy and the precision. However, selecting

the weights c1, c2, and c3 is important and depends on the specific application. This mo-

tivates the development of a method to find optimal values for weights in this metric.

While this study aimed to apply different measures to evaluate the performance of

the NPI method for bivariate data, it would be interesting to extend these measures to

assess other methods and applications based on the NPI approach.

Chapter 6

Conclusions and future work

This thesis has contributed to nonparametric predictive classification methods and the

performance evaluation of NPI-based methods. The choice of performance evaluation

methods depends on the nature of the prediction, and this thesis involved various types

of predictions, necessitating different evaluation measures. Key contributions include

applying the D-NPI classification method introduced by Alharbi [12] to ensemble meth-

ods, imprecise classification, and multi-label classification, with an investigation of the

performance of these new algorithms.

In classical classification methods, classifiers predict a single class for an instance,

which is associated with a correct class label; this framework was used when evaluating

the ensemble methods. In imprecise classification, classifiers predict a set of possible labels

for an instance, which has a correct class label. In multi-label classification, classifiers

predict a subset of labels for an instance, which is associated with a correct subset of

labels. This work investigated the performance of the D-NPI algorithm, based on the

NPI approach, across these classification problems. A further scenario of performance

evaluation examined in this thesis involved providing an interval and assessing whether a

single target value falls within it, as in the work by Coolen-Maturi et al. [29]. This chapter

presents the main findings of the thesis and highlights several interesting directions for

future research.

Chapter 2 introduced two ensemble methods, including bagging and random forest,

using the D-NPI algorithm. These methods were named NPI-B for bagging and NPI-RF

for random forest. These ensemble methods were designed to adopt the strengths of the

D-NPI algorithm with the aim of investigating its performance when applied to ensemble

115

116

techniques. The performance of the ensemble methods was evaluated by comparing them

to the D-NPI algorithm and other ensemble methods. Two main scenarios were included

in this study. The first scenarios focused on comparing the proposed ensemble methods

against the base classifier, while the second aimed to compare the proposed methods with

a bagging method based on the Nonparametric Predictive Inference for Multinomial data

model, which was referred to as NPI-M-B, and the random forest method referred to as

RF. In the first scenario, the NPI-B and NPI-RF algorithms performed well compared to

the D-NPI algorithm, with the best performance observed for the NPI-RF algorithm. An

example was illustrated in-depth to further investigate the performance of the algorithms.

The results of this example showed the ability of the NPI-RF algorithm to produce

individual classification trees with diverse depth values, resulting in its high performance.

In the second scenario, the RF method achieved good performance but it was the only

method to produce fully grown individual trees. The NPI-RF algorithm struggled to

achieve high accuracy across several datasets, due to its stopping criterion which prevents

individual trees from learning complex patterns, particularly for large-sized datasets. The

bagging methods NPI-B and NPI-M-B achieved similar performance for most datasets.

For further investigation, the performance of the NPI-RF method was evaluated without

the stopping criterion, allowing fully grown individual trees. This method was called NPI-

RF-FG. The NPI-RF-FG method achieved higher performance compared to the NPI-RF

algorithm, having competitive performance compared to the RF method. According

to the results, allowing fully grown individual trees in the ensemble methods helps in

capturing complex pattern. Building on our findings, subsequent research could extend

the NPI-B and NPI-RF to weighted cost sensitive classification, aiming to address the

problem arising from imbalanced class distribution.

In Chapter 3, three new algorithms for imprecise classification, referred to as D-NPI-

IC1, D-NPI-IC2, and D-NPI-IC3, were proposed based on the D-NPI algorithm. The

D-NPI algorithm used NPI lower and upper probabilities; therefore, this study aimed to

develop new algorithms by considering different criteria for selecting the best attribute to

stop building the classification tree. The selection process depended on the NPI lower and

upper probabilities for CI for each attribute. During the process of building a classification

tree, upon reaching a leaf node, a probability interval is assigned to each class label. Then,

a dominance criterion was used to determine the set of non-dominated labels, which was

117

called strong dominance. An experimental study was conducted to evaluate and compare

their performance with four existing imprecise classifiers from the literature, called NPI-

M, A-NPI-M, IDM1 (hyperparameter s = 1), and IDM2 (hyperparameter s = 2) [1, 7].

Various metrics were used to evaluate the performance, along with using statistical tests

for a comparative analysis. Among the metrics, DACC and MIC were used to report how

informative the classifiers were. The D-NPI-IC1 and D-NPI-IC2 algorithms achieved

the highest performance among the other algorithms. Extending these algorithms to

ensemble methods would be an intriguing topic for future research. Additionally, it will

be of interest to adapt the algorithms to weighted cost sensitive classification.

Chapter 4 introduced the D-NPI classification method and the D-NPI-IC1 impre-

cise classifier to multi-label classification using the Label Powerset (LP) approach. This

study included two methods: the first method used classical classification methods for

multi-label classification tasks to predict a single subset of labels. The second method

used imprecise classification methods for MLC problems to predict a set of subsets of

labels. The study included additional four algorithms from the literature, including NPI-

M, A-NPI-M, IDM1, and IDM2 [1, 7]. When applying the first method, example-based

measures were used to evaluate the performance of the classifiers on a per-instance bases.

Further performance measures are necessary to be explored in future research, including

label-based classification measures and ranking-based measures. Performance evaluation

measures for imprecise classification were used when applying the second method, as

used in Chapter 3. An experiment study was conducted, and the results varied across

the classifiers according to the characteristics of the datasets. The results suggested that

no single classifier consistently outperformed the others across all datasets and metrics for

both methods. Classifiers based on the NPI approach had high performance compared

to the classifiers based on the IDM across most datasets in both methods, particularly,

the NPI-M and A-NPI-M classifiers. Expanding this research to include algorithm adap-

tation methods for multi-label classification is a topic for future research. An interesting

direction for further research would be studying in-depth the scenario when an instance

associated with a subset of class label and the classifier predicts a set of subset of class

labels.

Chapter 5 presented a new use of performance evaluation measures for NPI-based

methods for bivariate data. This method is called the semi-parametric predictive method

118

(NPI-C) and introduced by Coolen-Maturi et al. [29]. In [29, 85], a simulations study

was conducted to evaluate the performance of the NPI-C method, where intervals of

proportions, [l, q], using NPI lower and upper probabilities were produced corresponding

to a quantile level q. The aim of this chapter was to evaluate the performance of the

NPI-C method, investigating if the interval [l, u] was still informative when it did not

contain the value q, taking into account the level of imprecision u− l. The measures are

introduced to focus on the accuracy and precision of the predictions. In this chapter, a

simulation study was conducted to evaluate the performance of NPI-C under different

scenarios, varying the copulas used for data generation and inference—whether they were

the same or different—using the measures introduced earlier. Further study was presented

to use the measures for comparative evaluation with a method introduced by Muhammad

[85]. The results of this chapter revealed that the intervals obtained with smaller sample

sizes tended to be more accurate than those obtained with larger sample sizes. However,

when a larger sample size was used, the intervals were more precise. The measures in

this study included loss functions and interval scores. When applying loss functions, the

results showed that when the value q was observed outside the interval, it is tended to

be near the interval. When using the interval score, the predictions were evaluated in

terms of both the accuracy and precision, however, selecting the weights for the measure

was important according to the specific application. Future investigations could focus on

studying the performance of the other NPI-based methods using these measures.

Further topics will be interesting for future research. For example, in the D-NPI

method introduced for multinomial data, the NPI lower and upper probabilities for the

event that a future instance has a specific class were derived based on NPI for Bernoulli

data. An interesting direction for further research would be using NPI for multinomial

data instead to provide insights when used for imprecise classification.

When assigning a precise probability or probability interval to each class label, apply-

ing a choice function to obtain either a single prediction or a predicted set of class labels is

a further topic left for future research. These choice functions could include Γ-maximax,

Threshold-Based Decision Rule, Interval dominance, and E-admissibility (see Augustin

et al. [16]).

Furthermore, exploring classifiers in classical classification, imprecise classification,

and multi-label classification problems while taking into account ordinal class variable is

119

another possible direction. For example, if a class variable has values {1, 2, 3} and an

instance with a class label 1. If a classical classifier predicts the class label to be 2, how

can this prediction be assessed? This topic is also left for future research.

Appendix A

Extra material for Chapter 1

A.1 Pseudocode of the D-NPI algorithm

In this section, the pseudocode of the D-NPI algorithm according to the steps introduced

by Alharbi [12] is presented in A.1. The notations used in Alharbi’s work [12] are adapted

to be consistent with that used in this thesis. For binary data, the D-NPI for binary data

is used for calculating the NPI lower and upper probabilities as presented in Section 1.5.1.

For multinomial data, the NPI lower and upper probabilities are derived based on the

D-NPI for multinomial data as described in Section 1.5.2.

120

Example 121

Algorithm A.1 Pseudocode of the D-NPI algorithm.

1: Input: Dataset (D), Attributes (Att), Class Variable (C)
2: Create a Root node for the tree
3: if D have the same class label then
4: Return a single-node tree with the class label
5: if Att is empty then
6: Return the single-node tree with the most common class label in D
7: Otherwise
8: foreach attribute, x in Att do
9: Calculate P x(CI) and P x(CI)
10: Choose the attribute with the highest NPI lower and upper probabilities for CI,

P x(CI) and P x(CI)
11: if P x(CI) > P (NA) and P x(CI) > P (NA) then
12: Choose the attribute, x for Root (∗)
13: else
14: Return a leaf node labelled with the most common class label in D
15: Create Root with attribute x
16: foreach value of x, vj, do
17: Create a branch below Root, with x = vj
18: Create a subset of D based on x = vj, referred as Dx=vj
19: if Dx=vj is empty then
20: Add a leaf node labelled with the most common class in D
21: else
22: Add the subset via D-NPI using the Dx=vj as the training dataset
23: Return Root

(∗) In case of ties, see Section 1.5.

A.2 Example

In this section, an illustrative example is presented in order to show how the D-NPI

algorithm works.

Example A.1. In this illustrative example, the process of building a classification tree

using the D-NPI for multinomial data is presented. Suppose a small artificial dataset

consists of 12 instances, as presented in Table A.1. This dataset includes four attribute

variables and a class variable, which contains three class labels. The first step in con-

structing the tree is to verify whether the dataset contains the same class label; if so, a

leaf node is returned with the class label. This step is repeated throughout the branching

process. Subsequently, the NPI lower and upper probabilities for each attribute for CI

are derived using Equations (1.25) and (1.27) in Section 1.5.1.

The resulting NPI lower and upper probabilities for each attribute for CI are presented

Example 122

x1 x2 x3 x4 Class

3 2 1 2 3
3 2 1 1 2
3 2 1 2 3
2 3 1 2 1
2 1 2 2 3
2 3 2 1 2
1 1 2 1 1
3 3 1 2 3
3 1 2 2 3
2 3 2 2 1
3 3 2 1 3
1 2 1 1 1

Table A.1: Dataset description for Example A.1.

xi P i(CI) P i(CI)

x1 0.5754 0.8286
x2 0.3833 0.6167
x3 0.4286 0.5714
x4 0.4792 0.6667

NA 0.4167 0.5833

Table A.2: CI intervals for all attributes.

in Table A.2. To decide which attribute to select for splitting, the NPI lower and upper

probabilities for NA are calculated using the Equations (1.28) and (1.29) in Section

1.5.1. Then, the following values are obtained: P (NA) = max(0, 6−1
12

) = 0.4167 and

P (NA) = min(6+1
n
, 1) = 0.5833. By comparing the lower and upper probabilities for

each attribute for CI with the probabilities [0.4167, 0.5833], as shown in Table A.2, and

according to the conditions defined in (1.30) in Section 1.5.1, attributes x1 and x4 satisfy

the conditions. Next, by comparing CI intervals of x1 and x4, attribute x1 achieves the

highest CI interval. Therefore, attribute x1 is selected to split the tree and assigned to

the root node. Subsequently, the dataset is partitioned into three subsets according to

the values of attribute x1.

After partitioning the dataset, three branches are obtained x1 = 1, x1 = 2, and x1 = 3.

For the branch x1 = 1, the resulting subset contains all instances with the same class label

1. In this case, a leaf node is created, and the class label 1 is assigned to it. For the branch

x1 = 2, the NPI lower and upper probabilities for each attribute (excluding the previously

used splitting attribute x1) are calculated, and the NPI lower and upper probabilities for

Example 123

xi P i(CI) P i(CI)

x2 0.5000 0.8750
x3 0.2500 0.7500
x4 0.5000 0.8750

NA 0.2500 0.7500

Table A.3: CI intervals for all attributes; the branch x1 = 2.

xi P i(CI) P i(CI)

x2 0.5278 0.9170
x3 0.6111 0.9000
x4 0.5667 0.9444

NA 0.6667 1.0000

Table A.4: CI intervals for all attributes; the branch x1 = 3.

NA is derived. The results are presented in Table A.3. After comparing the calculated

probabilities, attributes x2 and x4 satisfy the conditions in (1.30) in Section 1.5.1. Since

both attributes have identical lower probabilities and identical upper probabilities, either

one can be selected to split the tree. For the branch x1 = 3, the resulting probabilities

are presented in Table A.4. Upon comparison, no attribute satisfies both conditions in

(1.30) in Section 1.5.1. Therefore, a leaf node is created and assigned the most frequent

class label, which is 3.

Below the branch x1 = 2 a node is created with the selected attribute x2, and three

branches are created with the attribute values x2 = 1, x2 = 2, and x2 = 3. There is no

further splits below these branches. For the first branch, the subset contains only one

instance, and the corresponding class label 3 is assigned to a leaf node. In the second

branch, the resulting subset contains no instances, so a leaf node is created and assigned

the most frequent class label from the dataset on which the split was performed, which is

1. For the third branch, no attribute satisfies the conditions in (1.30) in Section 1.5.1, and

a leaf node is created with the most frequent label 1. The classification tree is illustrated

in Figure A.1.

Example 124

X1

1

1

2

1

2
3

X2

3 1

3

1

3

Figure A.1: A structure of classification tree Example A.1.

Appendix B

Extra material for Chapter 2

This appendix presents an additional example for Chapter 2. In this example, a detailed

analysis of the performance of the three algorithms is conducted for the Soybean-Large

dataset. The Soybean-Large dataset comprises 638 instances and includes 35 nominal

attributes and 19 class labels. The missing values in this dataset are replaced by the

modal values of the corresponding attribute. This dataset is selected due to the difference

in classification accuracy between the NPI-RF method and the other classifiers, as well

as its nominal attributes, which eliminates the need for discretisation.

In the experiment in Section 2.4, a 10-fold cross validation procedure was used to

evaluate the performance of the classifiers for this dataset. In this example, one case

from these folds is randomly selected to illustrate the differences between the classifiers.

To ensure a consistent comparison among the classifiers, the same fold is used for all

classifiers.

In order to study the complexity of the individual classification trees, Tree Depth (TD)

measure is used. Table B.1 presents the classification accuracy for each algorithm for the

Soybean-Large dataset. Additionally, Table B.1 shows the TD value for the D-NPI algo-

rithm (e.g., single classification tree) and the average TD values for the individual trees

when ensemble methods NPI-Bag and NPI-RF are used. Furthermore, the distribution

of trees depths in the NPI-Bag and NPI-RF ensemble methods is analysed to provide

insights into the variability and complexity of the individual classification trees in the

ensemble methods. Figure B.1 illustrates the resulting TD values for the NPI-Bag and

NPI-RF classifiers.

As shown in Table B.1, the accuracy value for the D-NPI classifier coincides with

125

126

Algorithm D-NPI NPI-Bag NPI-RF

Accuracy 85.51 84.06 95.65

TD 7 6.84 8.73

Table B.1: Classification accuracies and tree depth (TD) for Soybean-Large dataset.

NPI−Bag NPI−RF

7.5 10.0 12.5 7.5 10.0 12.5

0

10

20

30

40

50

Tree Depth

F
re

qu
en

cy

Figure B.1: Bagging ensemble method for Soybean-Large dataset.

the classification tree having low TD value. The NPI-Bag classifier has lower accuracy

value than this of the D-NPI classifier. As illustrated in Figure B.1, the NPI-Bag method

has predominality shallow individual trees in the ensemble, with almost half of the trees

having a TD value of 7, which is the same as the TD value of the D-NPI algorithm.

Moreover, more than 30 of the trees have TD value 6. The limited variations in TD

values among the individual classification trees produced by the NPI-Bag algorithm,

as well as many shallow trees, result in no improvement in capturing complex patterns

compared to the D-NPI classifier for this dataset which has relatively a moderate number

of attributes.

As illustrated in Figure B.1, compared to the NPI-Bag classifier, the NPI-RF classifier

increases the diversity among the individual trees, which can be observed in variation in

TD values of the individual trees. This is due to the randomness in the NPI-RF introduced

through attributes selection at each split, unlike in the NPI-Bag classifier, which uses

all available attributes at each node. Moreover, the NPI-RF classifier produces deeper

individual trees, with TD values varying from 6 to 14, which helps in capturing complex

patterns in the dataset. This results in the highest accuracy achieved by the NPI-RF

classifier compared to the other classifiers, as shown in Table B.1.

Appendix C

Extra material for Chapter 3

C.1 Pseudocodes for the imprecise classifiers

In this section, the pseudocodes outlining the steps of the D-NPI-IC1, D-NPI-IC2, and

D-NPI-IC3 algorithms are presented in C.1 to C.3.

127

Pseudocodes for the imprecise classifiers 128

Algorithm C.1 Pseudocode of the D-NPI-IC1 algorithm.

1: Input: Dataset (D), Attributes (Att), Class Variable (C)
2: Procedure D-NPI-IC1 (D, Att, C)
3: Create a Root node for the tree
4: if all Data have the same class label then
5: Return a leaf node
6: else
7: foreach attribute, xi in Att do
8: Calculate P i(CI) and P i(CI)
9: Choose the attribute with the highest NPI lower and upper probabilities for CI,
P ∗i (CI) and P

∗
i (CI)

10: if P ∗i (CI) > P (NA) and P
∗
i (CI) > P (NA) then

11: Choose the attribute, xi (∗)
12: else
13: Return a leaf node
14: Create a node with attribute xi
15: foreach value of xi, v

i
j, do

16: Create a branch for xi = vij
17: Create a subset of data based on xi = vij, referred as Dsubset
18: if subset is not empty then
19: Call D-NPI-IC1 (Dsubset, Att, C) recursively
20: else
21: Return a leaf node
22: Return Root

(∗) In case of ties, see Section 3.3.

Pseudocodes for the imprecise classifiers 129

Algorithm C.2 Pseudocode of the D-NPI-IC2 algorithm.

1: Input: Dataset (D), Attributes (Att), Class Variable (C)
2: Procedure D-NPI-IC2 (D, Att, C)
3: Create a Root node for the tree
4: if all Data have the same class label then
5: Return a leaf node
6: else
7: foreach attribute, xi in Att do
8: Calculate P i(CI) and P i(CI)
9: Choose the attribute with the highest NPI lower and upper probabilities for CI,
P ∗i (CI) and P

∗
i (CI)

10: if P ∗i (CI) > P (NA) and P
∗
i (CI) > P (NA) then

11: Choose the attribute, xi (∗)
12: else
13: Return a leaf node
14: Create a node with attribute xi
15: foreach value of xi, v

i
j, do

16: Create a branch for xi = vij
17: Create a subset of data based on xi = vij, referred as Dsubset
18: if subset is not empty then
19: Call D-NPI-IC2 (Dsubset, Att, C) recursively
20: else
21: Return a leaf node
22: Return Root

(∗) In case of ties, see Section 3.3.

Pseudocodes for the imprecise classifiers 130

Algorithm C.3 Pseudocode of the D-NPI-IC3 algorithm.

1: Input: Dataset (D), Attributes (Att), Class Variable (C)
2: Procedure D-NPI-IC3 (D, Att, C)
3: Create a Root node for the tree
4: if all Data have the same class label then
5: Return a leaf node
6: else
7: foreach attribute, xi in Att do
8: Calculate P i(CI) and P i(CI)
9: Choose the attribute with the highest NPI lower and upper probabilities for CI,
P ∗i (CI) and P

∗
i (CI)

10: if P
∗
i (CI) > P (NA) then

11: Choose the attribute, xi (∗)
12: else
13: Return a leaf node
14: Create a node with attribute xi
15: foreach value of xi, v

i
j, do

16: Create a branch for xi = vij
17: Create a subset of data based on xi = vij, referred as Dsubset
18: if subset is not empty then
19: Call D-NPI-IC3 (Dsubset, Att, C) recursively
20: else
21: Return a leaf node
22: Return Root

(∗) In case of ties, see Section 3.3.

Additional results 131

C.2 Additional results

This section presents the results for each imprecise classifier presented in Chapter 3.

Tables C.1 to C.7 present the results for each algorithm, showing their performance across

all datasets according to the metrics: Determinacy (DET), Single Accuracy (SingleA),

Set Accuracy (SetA), Indeterminacy Size (IS), DACC, MIC, and Tree Depth (TD).

Additional results 132

Datasets DET SingleA SetA IS DACC MIC TD

Balance-Scale 0.9937 0.6860 0.5000 2.0000 0.6833 0.9233 3.6
CMC 0.8684 0.5482 0.8912 2.6384 0.5226 0.7625 7.9
Dermatology 0.9645 0.9719 1.0000 6.0000 0.9432 1.6891 6.0
Hayes 0.8438 0.7733 1.0000 2.7283 0.7115 0.8433 3.3
Hypothyroid 0.9995 0.9934 1.0000 4.0000 0.9930 1.3794 4.9
Iris 1.0000 0.9533 - - 0.9533 1.0730 1.0
Letter 0.7945 0.9019 0.9587 22.6301 0.7330 2.3969 6.9
Lymphography 0.8714 0.8258 1.0000 3.8889 0.7552 1.0740 3.2
Nursery 0.9976 0.9198 1.0000 4.3214 0.9182 1.5094 7.0
Page-Blocks 0.9889 0.9732 0.9833 4.4143 0.9652 1.5616 4.4
Pendigits 0.9140 0.9351 0.9693 8.9428 0.8665 1.9978 5.6
Primary-Tumor 0.6022 0.5549 0.7786 15.1531 0.3637 1.1499 12.2
Segment 0.9554 0.9618 1.0000 6.2471 0.9279 1.8089 5.4
Soybean-Large 0.9210 0.8778 0.9183 14.6674 0.8192 2.4354 7.4
Splice 0.9721 0.8994 0.9917 2.7304 0.8847 1.0175 7.0
Sponge 1.0000 0.9232 - - 0.9232 1.0564 1.8
Vehicle 0.8901 0.7492 0.9632 3.0353 0.7058 1.0641 6.6
Vowel 0.8535 0.8203 0.9498 7.1826 0.7351 1.8109 6.7
Waveform 0.9766 0.7764 0.9676 2.6887 0.7669 0.9561 8.8
Yeast 0.9266 0.6139 0.9096 6.5777 0.5848 1.4425 7.0
Zoo 0.9400 0.9409 1.0000 4.5000 0.9038 1.7834 3.1

Table C.1: Results of different measures for the imprecise classifier D-NPI-IC1.

Additional results 133

Datasets DET SingleA SetA IS DACC MIC TD

Balance-Scale 0.9920 0.6922 0.5000 2.3333 0.6884 0.9244 3.7
CMC 0.9002 0.5682 0.8601 2.6359 0.5451 0.7957 8.0
Dermatology 0.9535 0.9576 1.0000 6.0000 0.9204 1.6499 6.0
Hayes 0.8312 0.7611 1.0000 2.6810 0.6927 0.8278 3.6
Hypothyroid 0.9995 0.9934 1.0000 4.0000 0.9930 1.3794 4.9
Iris 1.0000 0.9400 - - 0.9400 1.0657 1.0
Letter 0.8202 0.8843 0.9412 21.9834 0.7404 2.4261 7.4
Lymphography 0.9186 0.8274 1.0000 3.6000 0.7811 1.1368 4.0
Nursery 0.9976 0.9197 1.0000 4.3214 0.9181 1.5093 7.0
Page-Blocks 0.9923 0.9709 0.9667 4.6250 0.9651 1.5628 4.8
Pendigits 0.9251 0.9306 0.9674 9.0430 0.8707 2.0097 5.7
Primary-Tumor 0.6668 0.4830 0.7952 15.5294 0.3457 1.1120 12.2
Segment 0.9732 0.9648 1.0000 6.7857 0.9433 1.8399 5.7
Soybean-Large 0.9459 0.8793 0.9630 14.2778 0.8395 2.4941 7.9
Splice 0.9715 0.8964 1.0000 2.8196 0.8812 1.0142 7.1
Sponge 1.0000 0.9232 - - 0.9232 1.0564 1.8
Vehicle 0.9150 0.7468 1.0000 3.2863 0.7112 1.0752 6.9
Vowel 0.8667 0.8216 0.9705 7.2399 0.7441 1.8311 6.4
Waveform 0.9800 0.7745 0.9642 2.7336 0.7661 0.9575 8.8
Yeast 0.9286 0.6162 0.8737 6.4892 0.5865 1.4457 7.7
Zoo 0.9800 0.8918 1.0000 7.0000 0.8747 1.7316 3.8

Table C.2: Results of different measures for the imprecise classifier D-NPI-IC2.

Additional results 134

Datasets DET SingleA SetA IS DACC MIC TD

Balance-Scale 0.8974 0.7616 0.7677 2.1324 0.7193 0.9085 4.0
CMC 0.6599 0.5602 0.8880 2.6131 0.4875 0.6289 8.5
Dermatology 0.9591 0.9689 1.0000 6.0000 0.9359 1.6755 6.9
Hayes 0.6750 0.8278 0.9900 2.6392 0.6833 0.7304 4.0
Hypothyroid 0.9984 0.9934 1.0000 4.0000 0.9922 1.3780 5.0
Iris 1.0000 0.9533 - - 0.9533 1.0730 1.0
Letter 0.7745 0.9113 0.9584 22.5464 0.7240 2.3674 6.9
Lymphography 0.8176 0.8351 1.0000 3.7500 0.7338 1.0264 3.5
Nursery 0.9811 0.9391 1.0000 4.4461 0.9262 1.5101 7.0
Page-Blocks 0.9777 0.9770 0.9747 4.1290 0.9614 1.5522 5.6
Pendigits 0.8856 0.9459 0.9754 8.9186 0.8537 1.9617 6.0
Primary-Tumor 0.5048 0.5633 0.7749 15.0844 0.3180 1.0141 14.7
Segment 0.9411 0.9607 0.9938 5.9710 0.9164 1.7850 6.9
Soybean-Large 0.8843 0.8794 0.9348 13.4594 0.7975 2.3803 8.1
Splice 0.9461 0.9139 0.9958 2.8043 0.8841 0.9988 8.0
Sponge 0.9357 0.9321 1.0000 3.0000 0.8911 0.9917 1.8
Vehicle 0.8499 0.7497 0.9384 2.9911 0.6899 1.0336 8.1
Vowel 0.8232 0.8335 0.95696 6.9969 0.7299 1.7990 6.9
Waveform 0.9338 0.7743 0.9845 2.6433 0.7488 0.9202 9.3
Yeast 0.8323 0.6301 0.8957 5.7492 0.5667 1.4074 7.7
Zoo 0.9400 0.94091 1.0000 4.5000 0.9038 1.7834 3.1

Table C.3: Results of different measures for the imprecise classifier D-NPI-IC3.

Additional results 135

Datasets DET SingleA SetA IS DACC MIC TD

Balance-Scale 0.7200 0.8573 0.8315 2.0786 0.7241 0.8426 4.0
CMC 0.7800 0.5974 0.8689 2.4537 0.5442 0.7385 6.8
Dermatology 0.9482 0.9287 1.0000 5.7407 0.8903 1.6069 4.6
Hayes 0.6875 0.8055 0.8785 2.2802 0.6781 0.7858 2.9
Hypothyroid 0.9928 0.9931 1.0000 3.6963 0.9881 1.3709 5.7
Iris 0.9867 0.9523 1.0000 3.0000 0.9444 1.0583 1.2
Letter 0.8794 0.5393 0.6627 6.0256 0.5016 1.7496 4.9
Lymphography 0.8495 0.8738 1.0000 3.9375 0.7807 1.0824 5.0
Nursery 0.9931 0.9518 1.0000 3.8006 0.9475 1.5432 7.0
Page-Blocks 0.9832 0.9676 0.9486 3.2233 0.9572 1.5525 3.0
Pendigits 0.9209 0.8472 0.9270 6.0096 0.8000 1.8871 4.0
Primary-Tumor 0.5545 0.5324 0.8053 12.3073 0.3488 1.1904 10.3
Segment 0.9139 0.8196 0.9338 4.1707 0.7759 1.5682 4.0
Soybean-Large 0.9429 0.9407 0.9619 11.3005 0.9005 2.6747 6.9
Splice 0.8082 0.7763 0.9433 2.7192 0.6969 0.8136 6.7
Sponge 1.0000 0.9232 - - 0.9232 1.0564 1.9
Vehicle 0.8167 0.6745 0.8629 2.5347 0.6145 0.9768 5.0
Vowel 0.6586 0.6599 0.8265 4.4175 0.5325 1.4269 6.1
Waveform 0.9286 0.7819 0.9951 2.6190 0.7546 0.9212 8.3
Yeast 0.9420 0.5899 0.8329 6.0561 0.5678 1.4122 5.9
Zoo 0.9000 0.9584 1.0000 7.0000 0.8752 1.6879 3.8

Table C.4: Results of different measures for the imprecise classifier NPIM.

Additional results 136

Datasets DET SingleA SetA IS DACC MIC TD

Balance-Scale 0.7200 0.8573 0.8315 2.0786 0.7241 0.8426 4.0
CMC 0.7800 0.5974 0.8689 2.4537 0.5442 0.7385 6.8
Dermatology 0.9482 0.9287 1.0000 5.7407 0.8903 1.6069 4.6
Hayes 0.6875 0.8055 0.8785 2.2802 0.6781 0.7858 2.9
Hypothyroid 0.9928 0.9931 1.0000 3.6963 0.9881 1.3709 5.7
Iris 0.9867 0.9523 1.0000 3.0000 0.9444 1.0583 1.2
Letter 0.8807 0.5392 0.6664 6.0816 0.5021 1.7505 5.0
Lymphography 0.8495 0.8738 1.0000 3.9375 0.7807 1.0824 5.0
Nursery 0.9934 0.9508 1.0000 4.0087 0.9465 1.5417 7.0
Page-Blocks 0.9832 0.9676 0.9486 3.2233 0.9572 1.5525 3.0
Pendigits 0.9204 0.8473 0.9287 6.0384 0.7998 1.8865 4.0
Primary-Tumor 0.5426 0.5361 0.8283 12.6554 0.3466 1.1825 10
Segment 0.9147 0.8188 0.9338 4.1788 0.7756 1.5679 4.0
Soybean-Large 0.9429 0.9407 0.9619 11.3005 0.9005 2.6747 6.9
Splice 0.8082 0.7763 0.9433 2.7192 0.6969 0.8136 6.7
Sponge 1.0000 0.9232 - - 0.9232 1.0564 1.9
Vehicle 0.8167 0.6745 0.8629 2.5347 0.6145 0.9768 5.0
Vowel 0.6636 0.6558 0.8366 4.5717 0.5306 1.4199 6.0
Waveform 0.9286 0.7819 0.9951 2.6190 0.7546 0.9212 8.3
Yeast 0.9420 0.5899 0.8238 6.0561 0.5676 1.4115 5.9
Zoo 0.9000 0.9584 1.0000 7.0000 0.8752 1.6879 3.8

Table C.5: Results of different measures for the imprecise classifier ANPIM.

Additional results 137

Datasets DET SingleA SetA IS DACC MIC TD

Balance-Scale 0.8128 0.7829 0.8057 2.1230 0.7017 0.8694 4.0
CMC 0.8391 0.5781 0.8550 2.4492 0.5416 0.7693 7.6
Dermatology 0.9510 0.9289 1.0000 4.1481 0.8981 1.6299 4.9
Hayes 0.7250 0.7730 0.8735 2.2984 0.6729 0.8039 3.0
Hypothyroid 0.9952 0.9928 1.0000 3.0750 0.9897 1.3742 6.6
Iris 1.0000 0.9533 - - 0.9533 1.0730 1.1
Letter 0.8847 0.5455 0.6069 4.9179 0.5081 1.7691 5.0
Lymphography 0.9119 0.8469 1.0000 3.9048 0.7932 1.1372 4.8
Nursery 0.9950 0.9651 1.0000 2.5081 0.9624 1.5629 7.0
Page-Blocks 0.9876 0.9674 0.9300 3.1159 0.9601 1.5580 3.0
Pendigits 0.9450 0.8537 0.8902 5.0277 0.8219 1.9382 4.0
Primary-Tumor 0.5956 0.5187 0.7580 12.2524 0.3564 1.2036 10.4
Segment 0.9416 0.8124 0.9206 3.3288 0.7864 1.5962 4.0
Soybean-Large 0.9531 0.9297 1.0000 6.6278 0.9033 2.6949 6.0
Splice 0.8511 0.7596 0.9506 2.7274 0.7016 0.8417 6.9
Sponge 1.0000 0.9232 - - 0.9232 1.0564 1.9
Vehicle 0.8653 0.6586 0.9030 2.3765 0.6219 1.0001 5.9
Vowel 0.7404 0.6600 0.8068 3.3853 0.5729 1.5268 6.0
Waveform 0.9430 0.7776 0.9955 2.6853 0.7554 0.9287 9.1
Yeast 0.8855 0.6069 0.8360 4.3227 0.5674 1.4240 6.1
Zoo 0.9700 0.9587 1.0000 7.0000 0.9352 1.8241 3.9

Table C.6: Results of different measures for the imprecise classifier IDM1.

Additional results 138

Datasets DET SingleA SetA IS DACC MIC TD

Balance-Scale 0.7200 0.8573 0.8315 2.0786 0.7241 0.8426 4.0
CMC 0.8072 0.5939 0.8590 2.5362 0.5455 0.7492 6.9
Dermatology 0.9510 0.9203 1.0000 5.7778 0.8835 1.5972 4.2
Hayes 0.6938 0.8387 0.8948 2.2643 0.7021 0.7970 3.1
Hypothyroid 0.9936 0.9931 1.0000 3.4375 0.9888 1.3724 6.7
Iris 1.0000 0.9533 - - 0.9533 1.0730 1.1
Letter 0.8485 0.5510 0.6810 6.5084 0.5011 1.7608 5.0
Lymphography 0.8171 0.8746 1.0000 2.9750 0.7742 1.1008 3.9
Nursery 0.9994 0.9378 1.0000 2.0000 0.9376 1.5340 6.0
Page-Blocks 0.9845 0.9642 0.9183 3.0258 0.9551 1.5512 3.0
Pendigits 0.9284 0.8405 0.9249 6.0259 0.7980 1.8834 4.0
Primary-Tumor 0.5102 0.5721 0.7464 10.8792 0.3623 1.2519 9.7
Segment 0.9152 0.8131 0.9374 3.7702 0.7732 1.5684 4.0
Soybean-Large 0.8375 0.9243 0.9755 5.3039 0.8376 2.5708 5.4
Splice 0.8458 0.7608 0.9539 2.8124 0.6969 0.8313 6.8
Sponge 1.0000 0.9232 - - 0.9232 1.0564 1.8
Vehicle 0.8085 0.6657 0.8582 2.5092 0.6047 0.9666 5.8
Vowel 0.6879 0.6341 0.8342 4.5133 0.5262 1.4095 5.5
Waveform 0.9544 0.7650 0.9854 2.6436 0.7483 0.9336 7.7
Yeast 0.9279 0.5876 0.7866 5.3211 0.5610 1.3997 5.1
Zoo 0.8909 0.9475 1.0000 7.0000 0.8574 1.6540 3.9

Table C.7: Results of different measures for the imprecise classifier IDM2.

Appendix D

Extra material for Chapter 5

D.1 Illustrations of the intervals [lk, uk]

This section includes the intervals [lk, uk] for k = 1, ..., 100 obtained from the simulation

study. The results are presented in Figures D.1 to D.9.

139

Illustrations of the intervals [lk, uk] 140

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.1: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for both simulation
and inference, τ = 0.25.

Illustrations of the intervals [lk, uk] 141

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.2: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for both simulation
and inference, τ = 0.5.

Illustrations of the intervals [lk, uk] 142

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.3: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for both simulation
and inference, τ = 0.75.

Illustrations of the intervals [lk, uk] 143

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.4: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for simulation and
Frank copula is for inference, τ = 0.25.

Illustrations of the intervals [lk, uk] 144

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.5: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for simulation and
Frank copula is for inference, τ = 0.5.

Illustrations of the intervals [lk, uk] 145

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.6: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for simulation and
Frank copula is for inference, τ = 0.75.

Illustrations of the intervals [lk, uk] 146

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.7: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for simulation and
Clayton copula is for inference, τ = 0.25.

Illustrations of the intervals [lk, uk] 147

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.8: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for simulation and
Clayton copula is for inference, τ = 0.5.

Illustrations of the intervals [lk, uk] 148

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(a) q = 0.25, n = 20

0.1

0.2

0.3

0.4

0 25 50 75 100
N_c

l

q

u

(b) q = 0.25, n = 50

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(c) q = 0.5, n = 20

0.4

0.5

0.6

0 25 50 75 100
N_c

l

q

u

(d) q = 0.5, n = 50

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(e) q = 0.75, n = 20

0.6

0.7

0.8

0.9

0 25 50 75 100
N_c

l

q

u

(f) q = 0.75, n = 50

Figure D.9: Intervals [lk, uk] where k = 1, ..., 100; Normal copula is for simulation and
Clayton copula is for inference when τ = 0.75.

Extended results for loss function 149

D.2 Extended results for loss function

This section includes additional results from the simulation study when using absolute loss

function (L1) using Equation (5.15) in Chapter 5. Then the average values of maximum

and minimum loss are reported in Figures D.18 and D.19. The results show almost the

same pattern as when using quadratic loss L2. Figure D.19 shows that when τ = q = 0.25

and Normal copula is used for inference, unlike when using L2, the average value of

minimum loss using L1 when n = 50 is higher than the value when n = 20. This can be

explained as L2 penalises outliers heavily unlike L1 which is less sensitive to them.

Extended results for loss function 150

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.001

0.002

0.003

0.004

0.005

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.001

0.002

0.003

0.004

0.005

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.001

0.002

0.003

0.004

0.005

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.10: Average of maximum loss using L2; simulation from Normal copula; Normal,
Frank, and Clayton copulas are for inference.

Extended results for loss function 151

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.002

0.004

0.006

0.008

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.002

0.004

0.006

0.008

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.002

0.004

0.006

0.008

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.11: Average of maximum loss using L2, when q /∈ [lk, uk]; simulation from
Normal copula; Normal, Frank, and Clayton copulas are for inference.

Extended results for loss function 152

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.001

0.002

0.003

0.004

0.005

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.001

0.002

0.003

0.004

0.005

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.001

0.002

0.003

0.004

0.005

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.12: Average of maximum loss using L2, when q ∈ [lk, uk]; simulation from
Normal copula; Normal, Frank, and Clayton copulas are for inference.

Extended results for loss function 153

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0e+00

2e−04

4e−04

6e−04

8e−04

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0e+00

2e−04

4e−04

6e−04

8e−04

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0e+00

2e−04

4e−04

6e−04

8e−04

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.13: Average of minimum loss using L2; simulation from Normal copula; Normal,
Frank, and Clayton copulas are for inference.

Extended results for loss function 154

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0e+00

2e−04

4e−04

6e−04

8e−04

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0e+00

2e−04

4e−04

6e−04

8e−04

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0e+00

2e−04

4e−04

6e−04

8e−04

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.14: Average of minimum loss using L2 when q /∈ [lk, uk]; simulation from Normal
copula; Normal, Frank, and Clayton copulas are for inference.

Extended results for loss function 155

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.15: Average of maximum loss using L1; simulation from Normal copula; Normal,
Frank, and Clayton copulas are for inference.

Extended results for loss function 156

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.16: Average of maximum loss using L1 when q /∈ [lk, uk]; simulation from Normal
copula; Normal, Frank, and Clayton copulas are for inference.

Extended results for loss function 157

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.02

0.04

0.06

0.08

q

Av
er

ag
e_

M
ax

im
um

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.17: Average of maximum loss using L1 when q ∈ [lk, uk]; simulation from Normal
copula; Normal, Frank, and Clayton copulas are for inference.

Extended results for loss function 158

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.005

0.010

0.015

0.020

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.005

0.010

0.015

0.020

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.005

0.010

0.015

0.020

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.18: Average of minimum loss using L1; simulation from Normal copula; Normal,
Frank, and Clayton copulas are for inference.

Extended results for loss function 159

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.005

0.010

0.015

0.020

0.025

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.005

0.010

0.015

0.020

0.025

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.000

0.005

0.010

0.015

0.020

0.025

q

Av
er

ag
e_

M
ini

mu
m

_L
os

s

n

20

50

(c) τ = 0.75

Figure D.19: Average of minimum loss using L1 when q /∈ [lk, uk]; simulation from Normal
copula; Normal, Frank, and Clayton copulas are for inference.

Extended results for interval score 160

D.3 Extended results for interval score

Interval score (IS(c1,c2,c3)) is used in this section, assuming additional different values for

the weights c1, c2, and c3. Two cases are considered: first, when c1 = 0.2, c2 = 0.3, and

c3 = 0.5, and second, when c1 = 0.2, c2 = 0.5, and c3 = 0.3. The results are presented in

Figures D.20 and D.21. In Figure D.20, when the penalisation for u < q is greater than

that for l > q and u − l, the results show almost the same pattern as in Figure 5.2 in

Chapter 5. In some cases, interquartile ranges are lower than those in Figure 5.2, with

more outliers. Increasing the weight c3 leads to considering more intervals ”far away”

from the value q. In contrast, when using Clayton copula for inference, and q = 0.5 and

n = 50, the interquartile ranges are higher than those in Figure 5.2. This it is likely

because when the inequality l < q < u is not satisfied, more intervals tend to follow

u < q. This trend is also observed in Figures D.7, D.8, and D.9 in Chapter 5. When

comparing those results to those of the box plots. In Figure D.21, when IS(0.2,0.5,0.3), the

interquartiles ranges are lower due to the positions of the intervals being near the value

q when l > q is applied.

Extended results for interval score 161

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(c) τ = 0.75

Figure D.20: Results of IS(0.2,0.3,0.5); simulation from Normal copula; Normal, Frank, and
Clayton copulas are for inference.

Extended results for interval score 162

Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(a) τ = 0.25
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(b) τ = 0.5
Normal Frank Clayton

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.00

0.01

0.02

0.03

0.04

0.05

q

In
te

rv
al_

Sc
or

e

n

20

50

(c) τ = 0.75

Figure D.21: Results of IS(0.2,0.5,0.3); simulation from Normal copula; Normal, Frank, and
Clayton copulas are for inference.

Bibliography

[1] Abellán, J. (2006). Uncertainty measures on probability intervals from the impre-

cise Dirichlet model. International Journal of General Systems, 35(5), 509–528. doi:

10.1080/03081070600687643.

[2] Abellán, J. (2013). An application of non-parametric predictive inference on multi-

class classification high-level-noise problems. Expert Systems with Applications,

40(11), 4585–4592. doi: 10.1016/j.eswa.2013.01.066.

[3] Abellán, J. and Masegosa, A.R. (2012a). Bagging schemes on the presence of class

noise in classification. Expert Systems with Applications,, 39(8), 6827–6837. doi:

10.1016/j.eswa.2012.01.013.

[4] Abellán, J. and Masegosa, A.R. (2012b). Imprecise classification with credal decision

trees. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

20(5), 763–787. doi: 10.1142/S0218488512500353.

[5] Abellán, J. and Moral, S. (2003), Building classification trees using the total uncer-

tainty criterion. International Journal of Intelligent Systems, 18(12), 1215–1225. doi:

10.1002/int.10143.

[6] Abellán, J., Baker, R.M. and Coolen, F.P.A. (2011). Maximising entropy on the

nonparametric predictive inference model for multinomial data. European Journal of

Operational Research, 212(1), 112–122. doi: 10.1016/j.ejor.2011.01.020.

[7] Abellán, J., Baker, R.M., Coolen, F.P.A., Crossman, R.J. and Masegosa, A.R.

(2014). Classification with decision trees from a nonparametric predictive infer-

ence perspective. Computational Statistics and Data Analysis, 71, 789–802. doi:

10.1016/j.csda.2013.02.009.

163

Bibliography 164

[8] Abellán, J., Mantas, C.J. and Castellano, J.G. (2017). A Random Forest ap-

proach using imprecise probabilities. Knowledge-Based Systems, 134, 72–84. doi:

10.1016/j.knosys.2017.07.019.

[9] Aboalkhair, A.M.A. (2012). Nonparametric Predictive Inference for Sys-

tem Reliability. PhD thesis, Durham University, United Kingdom.

https://etheses.dur.ac.uk/3918/.

[10] Aitken, A.C. (1936). On least squares and linear combination of obser-

vations. Proceedings of the Royal Society of Edinburgh, 55, 42–48. doi:

10.1017/S0370164600014346.

[11] Alcántara, A., Galván, I.M. and Aler, R. (2022). Direct estimation of pre-

diction intervals for solar and wind regional energy forecasting with deep neu-

ral networks. Engineering Applications of Artificial Intelligence, 114, 105128. doi:

10.1016/j.engappai.2022.105128.

[12] Alharbi, A.A. (2022). Direct Nonparametric Predictive Inference Classification Trees.

PhD thesis, Durham University, United Kingdom. http://etheses.dur.ac.uk/14473/.

[13] Arts, G.R.J., Coolen, F.P.A. and Laan, P.van der. (2004). Nonparametric predictive

inference in statistical process control. Quality Technology & Quantitative Manage-

ment, 1(2), 201–216. doi: 10.1080/16843703.2004.11673073.

[14] Augustin, T. (2002). Neyman-Pearson testing under interval probability by globally

least favorable pairs; Reviewing Huber-Strassen theory and extending it to general

interval probability. Journal of Statistical Planning and Inference, 105(1), 149–173.

doi: 10.1016/S0378-3758(01)00208-7.

[15] Augustin, T. and Coolen, F.P.A. (2004). Nonparametric predictive inference and

interval probability. Journal of Statistical Planning and Inference, 124(2), 251–272.

doi: 10.1016/j.jspi.2003.07.003.

[16] Augustin, T., Coolen, F.P.A., de Cooman, G. and Troffaes, M.C.M. (2014). Intro-

duction to Imprecise Probabilities. John Wiley & Sons, New York.

Bibliography 165

[17] Baker, R.M. (2010). Multinomial Nonparametric Predictive Inference: Selection,

Classification and Subcategory data. PhD thesis, Durham University, United King-

dom. http://etheses.dur.ac.uk/257/.

[18] Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford university

press, Oxford.

[19] Boole, G. (1854). An Investigation of the Laws of Thoughts on Which Are Founded

the Mathematical Theories of Logic and Probabilities. Walton and Maberly, London.

doi: 10.1017/CBO9780511693090.

[20] Boutell, R.M., Luo, J., Shen, X. and Brown, M.C. (2004). Learning

multi-label scene classification. Pattern Recognition, 37(9), 1757–1771. doi:

10.1016/j.patcog.2004.03.009.

[21] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. doi:

10.1007/BF00058655.

[22] Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. doi:

10.1023/A:1010933404324.

[23] Breiman, L., Cutler, A., Liaw, A. and Wiener, M. (2022). randomForest: Breiman

and Cutlers Random Forests for Classification and Regression. R package version

4.7-1.1 https://CRAN.R-project.org/package=randomForest.

[24] Breiman, L., Friedman, J., Olshen, R.A. and Stone, C.J. (1984). Classification and

Regression Trees. Chapman & Hall, New York. doi: 10.1201/9781315139470.

[25] Charte, F. and Rivera, A.J. (2019). mldr.datasets: R Ultimate Mul-

tilabel Dataset Repository. R package version 0.4.2 https://CRAN.R-

project.org/package=mldr.datasets.

[26] Cherubini, U., Luciano, E. and Vecchiato, W. (2004). Copula Methods in Finance.

John Wiley & Sons, Chichester. doi: 10.1002/9781118673331.

[27] Clare, A. and King, R.D. (2001). Knowledge discovery in multi-label phenotype data.

In Principles of Data Mining and Knowledge Discovery, vol 2168. Springer, Berlin,

Heidelberg, pp. 42–53. doi: 10.1007/3-540-44794-6˙4.

Bibliography 166

[28] Clayton, D.G. (1978). A model for association in bivariate life tables and Its ap-

plication in epidemiological studies of familial tendency in chronic disease incidence.

Biometrika, 65(1), 141–151. doi: 10.2307/2335289.

[29] Coolen-Maturi, T., Coolen, F.P.A. and Muhammad, N. (2016). Predictive inference

for bivariate data: combining nonparametric predictive inference for marginals with

an estimated copula. Journal of Statistical Theory and Practice, 10(3), 515–538. doi:

10.1080/15598608.2016.1184112.

[30] Coolen, F.P.A. (1998). Low structure imprecise predictive inference for Bayes’

problem. Statistics and Probability Letters, 36(4), 349–357. doi: 10.1016/S0167-

7152(97)00081-3.

[31] Coolen, F.P.A. (2006). On nonparametric predictive inference and objective

Bayesianism. Journal of Logic, Language and Information, 15, 21–47. doi:

10.1007/s10849-005-9005-7.

[32] Coolen, F.P.A. (2011). Nonparametric predictive inference. In International Ency-

clopedia of Statistical Science, Springer, Berlin, pp. 968–970.

[33] Coolen, F.P.A. and Augustin, T. (2005). Learning from multinomial data: a non-

parametric predictive alternative to the Imprecise Dirichlet Model. In ISIPTA’05:

Proceedings of the Fourth International Symposium on Imprecise Probabilities and

Their Applications, vol 5, pp. 125–134.

[34] Coolen, F.P.A. and Augustin, T. (2009). A nonparametric predictive alternative to

the Imprecise Dirichlet Model: the case of a known number of categories. International

Journal of Approximate Reasoning, 50(2), 217–230. doi: 10.1016/j.ijar.2008.03.011.

[35] Coolen, F.P.A. and van der Laan, P. (2001). Imprecise predictive selection based

on low structure assumptions. Journal of Statistical Planning and Inference, 98(1–2),

259–277. doi: 10.1016/S0378-3758(00)00313-X.

[36] Coolen, F.P.A. and Yan, K.J. (2004). Nonparametric predictive inference with

right-censored data. Journal of Statistical Planning and Inference, 126, 25–54. doi:

10.1016/j.jspi.2003.07.004.

Bibliography 167

[37] Coolen, F.P.A., Coolen-Schrijner, P., Coolen-Maturi, T. and Elkhafifi, F.F. (2013).

Nonparametric predictive inference for ordinal data. Communications in Statistics -

Theory and Methods, 42(19), 3478–3496. doi: 10.1080/03610926.2011.632104.

[38] Corani, G. and Zaffalon, M. (2008). Learning reliable classifiers from small or incom-

plete data sets: the naive credal classifier 2. Journal of Machine Learning Research,

9, 581–621.

[39] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20,

273–297. doi: 10.1007/BF00994018.

[40] Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. In IEEE

Transactions on Information Theory, 13(1), 21–27. doi: 10.1109/TIT.1967.1053964.

[41] Cox, D.R. (1958). The regression analysis of binary sequences. Journal of the Royal

Statistical Society. Series B (Methodological), 20(2), 215–242.

[42] Cozman, F. and Moral, S. (2000). Reasoning with imprecise probabilities. Inter-

national Journal of Approximate Reasoning, 24(2–3), 121–299. doi: 10.1016/S0888-

613X(00)00030-X.

[43] de Campos, L.M., Huete, J.F. and Moral, S. (1994). Probability intervals: a tool for

uncertain reasoning. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 2(2), 167–196. doi: 10.1142/S0218488594000146.

[44] de Cooman, G. (2000). Imprecise probabilities. Risk, Decision and Policy, 5(2),

107–181. doi: 10.1017/S135753090000017X.

[45] Dempster, A.P. (1967). Upper and lower probabilities included by a multi-

valued mapping. The Annals of Mathematical Statistics, 38(2), 325–339. doi:

10.1214/aoms/1177698950.

[46] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Jour-

nal of Machine Learning Research, 7, 1–30.

[47] Dietterich, T.G. (2000a). An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, Boosting, and Randomization. Ma-

chine Learning, 40, 139–157. doi: 10.1023/A:1007607513941.

Bibliography 168

[48] Dietterich, T.G. (2000b). Ensemble methods in machine learning. In Multiple Clas-

sifier Systems, vol 1857. Springer, Berlin, Heidelberg. doi: 10.1007/3-540-45014-9˙1.

[49] Diplaris, S., Tsoumakas, G., Mitkas, P.A. and Vlahavas, I. (2005). Protein classi-

fication with multiple algorithms. In Advances in Informatics, vol 3746. Springer,

Berlin, Heidelberg, pp. 448–456. doi: 10.1007/11573036˙42.

[50] Duygulu, P., Barnard, K., de Freitas, J.F.G. and Forsyth, D.A. (2002). Object recog-

nition as machine translation: Learning a lexicon for a fixed image vocabulary. In

Computer Vision, vol 2353. Springer, Berlin, Heidelberg, pp. 97–112. doi: 10.1007/3-

540-47979-1˙7.

[51] Elisseeff, A. and Weston, J. (2001). A Kernel method for multi-labelled classification.

In Proceedings of the Annual ACM Conference on Research and Development in

Information Retrieval, pp. 681–687.

[52] Elkhafifi, F.F. and Coolen, F.P.A. (2012). Nonparametric predictive inference for

accuracy of ordinal diagnostic tests. Journal of Statistical Theory and Practice, 6,

681–697. doi: 10.1080/15598608.2012.719802.

[53] Esposito, F., Malerba, D. and Semeraro, G. (1997). A comparative analysis of meth-

ods for pruning decision trees. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(5), pp. 476-491. doi: 10.1109/34.589207.

[54] Fayyad, U. and Irani, K. (1993). Multi-valued interval discretization of continuous-

valued attributes for classification learning. In Joint Conference on Artificial Intelli-

gence, pp. 1022–1027.

[55] Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014). Do we

Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal

of Machine Learning Research, 15, 3133–3181.

[56] Fink, P. (2018). imptree: Classification Trees with Imprecise Probabilities. R package

version 0.5.1. https://CRAN.R-project.org/package=imptree.

[57] Frank, M.J. (1979). On the simultaneous associativity of F (x, y) and x+y−F (x, y).

Aequationes Mathematicae, 19, 194–226. doi: 10.1007/BF02189866.

Bibliography 169

[58] Friedman, M. (1940). A comparison of alternative tests of significance for the

problem of m rankings. The Annals of Mathematical Statistics, 11(1), 86–92. doi:

10.1214/aoms/1177731944.

[59] Genest, C. and Favre, A.C. (2007). Everything you always wanted to know about

copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4),

347–368. doi: 10.1061/(ASCE)1084-0699(2007)12:4(347).

[60] Geurts, P., Ernst, D. and Wehenkel. L. (2006). Extremely randomized trees. Machine

learning, 63, 3–42. doi: 10.1007/s10994-006-6226-1.

[61] Ghamrawi, N. and McCallum, A. (2005). Collective multi-label classification. In

International Conference on Information and Knowledge Management, pp. 195–200.

doi: 10.1145/1099554.1099591.

[62] Gneiting T. and Raftery, A.E. (2007) Strictly proper scoring rules, prediction, and

estimation. Journal of the American Statistical Association, 102(477), 359–378. doi:

10.1198/016214506000001437.

[63] Godbole, S. and Sarawagi, S. (2004). Discriminative methods for multi-labeled clas-

sification. In Advances in Knowledge Discovery and Data Mining, vol 3056. Springer,

Berlin, Heidelberg, pp. 22–30. doi: 10.1007/978-3-540-24775-3˙5.

[64] Gumbel, E.J. (1960). Distributions de valeurs extrêmes en plusieurs dimensions.

Publications de l’Institute de Statistique de l’Université de Paris, 9, 171–173.

[65] Gupta, B., Rawat, A., Jain, A., Arora, A. and Dhami, N. (2017) . Analysis of various

decision tree algorithms for classification in data mining. International Journal of

Computer Applications, 163(8), 15–19. doi: 10.5120/ijca2017913660.

[66] Hahsler, M., Buchta, C., Gruen, B. and Hornik, K. (2023). arules: Mining As-

sociation Rules and Frequent Itemsets. R package version 1.7-6 https://CRAN.R-

project.org/package=arules.

[67] Hampel, F. (1997). What can the foundation discussion contribute to data analysis?

And what may be some of the future directions in robust methods and data analy-

sis? Journal of Statistical Planning and Inference, 57(1), 7–19. doi: 10.1016/S0378-

3758(96)00031-6.

Bibliography 170

[68] Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Second Edition, Springer Series in

Statistics.

[69] Hill, B.M. (1968). Posterior distribution of percentiles: Bayes’ theorem for sampling

from a population. Journal of the American Statistical Association, 63(322), 677–691.

doi: 10.2307/2284038.

[70] Hill, B.M. (1988). De Finetti’s Theorem, Induction, and A(n) or Bayesian nonpara-

metric predictive inference (with discussion). Bayesian Statistics, vol 3. Oxford Uni-

versity Press. pp. 211–241.

[71] Hill, B.M. (1993). Parametric models for An: Splitting processes and mixtures. Jour-

nal of the Royal Statistical Society: Series B (Methodological), 55(2), 423–433. doi:

10.1111/j.2517-6161.1993.tb01912.x.

[72] Huber, P.J. (1964). Robust estimation of a location parameter. The Annals of Math-

ematical Statistics, 35(1), 73–101. doi: 10.1214/aoms/1177703732.

[73] Huber, P.J. and Strassen, V. (1973). Minimax tests and the Neyman-Pearson lemma

for capacities. The Annals of Statistics, (1)2, 251–263. doi: 10.1214/aos/1176342363.

[74] Katakis, I., Tsoumakas, G. and Vlahavas, I. (2008). Multilabel text classification for

automated tag suggestion. In Proceedings of the ECML/PKDD Discovery Challenge,

pp. 75–83.

[75] Kelly, M., Longjohn, R. and Nottingham, K. (2025). The UCI Machine Learning

Repository. Available: https://archive.ics.uci.edu.

[76] Khosravi, A., Nahavandi, S. and Creighton, D. (2010). A prediction interval-based

approach to determine optimal structures of neural network metamodels. Expert Sys-

tems with Applications, 37(3), 2377–2387. doi: 10.1016/j.eswa.2009.07.059.

[77] Klimt, B., Yang, Y. (2004). The Enron corpus: A new dataset for email classifica-

tion research. Machine Learning, vol 3201. Springer, Berlin, Heidelberg, Berlin. pp.

217–226. doi: 10.1007/978-3-540-30115-8˙22.

Bibliography 171

[78] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation

and model selection. In Proceedings of the Fourteenth International Joint Conference

on Artificial Intelligence, vol 2, pp. 1137–1143.

[79] Kole, E., Koedijk, K. and Verbeek, M. (2007). Selecting copulas for risk management.

Journal of Banking & Finance, 31(8), 2405–2423. doi: 10.1016/j.jbankfin.2006.09.010.

[80] Madjarov, G., Kocev, D., Gjorgjevikj, D. and Džeroski, S. (2012). An extensive

experimental comparison of methods for multi-label learning. Pattern Recognition,

45(9), 3084–3104. doi: 10.1016/j.patcog.2012.03.004.

[81] Mantas, C.J., Abellán, J. (2014). Credal-C4.5: Decision tree based on imprecise prob-

abilities to classify noisy data. Expert Systems with Applications, 41(10), 4625–4637.

doi: 10.1016/j.eswa.2014.01.017.

[82] Moral-Garćıa, S. and Abellán, J. (2024). Lazy multi-label classification algorithms

based on non-parametric predictive inference. Expert Systems with Applications,

256(5), 124921. doi: 10.1016/j.eswa.2024.124921.

[83] Moral-Garćıa, S., Mantas, J.C., Castellano, G.J. and Abellán, J. (2020). Non-

parametric predictive inference for solving multi-label classification. Applied Soft

Computing, 88, 106011. doi: 10.1016/j.asoc.2019.106011.

[84] Moral, S., Mantas, C.J., Castellano, J.G. and Abellán, J. (2020). Imprecise classifi-

cation with non-parametric predictive inference. In Information Processing and Man-

agement of Uncertainty in Knowledge-Based Systems. IPMU 2020. Communications

in Computer and Information Science, vol 1238. Springer, Cham. doi: 10.1007/978-

3-030-50143-3˙5.

[85] Muhammad, N. (2016). Predictive Inference with Copulas for Bivariate Data. PhD

thesis, Durham University, United Kingdom. https://etheses.dur.ac.uk/11597/.

[86] Nagler, T., Schepsmeier, U., Stoeber, J., and Brechmann, E.C., Graeler, B. and

Erhardt, T. (2023). VineCopula: Statistical Inference of Vine Copulas. R package

version 2.5.0 https://CRAN.R-project.org/package=VineCopula.

[87] Nelsen, R.B. (2006). An Introduction to Copulas. Springer Series in Statistics, New

York.

Bibliography 172

[88] Nemenyi, P. (1963). Distribution-Free Multiple Comparisons. Doctoral dissertation,

Princeton University, New Jersey, USA.

[89] Olive, D.J. (2007). Prediction intervals for regression models. Computational Statis-

tics & Data Analysis, 51(6), 3115–3122. doi: 10.1016/j.csda.2006.02.006.

[90] Pang, J., Liu, D., Peng, Y. and Peng, X. (2018). Optimize the coverage probability of

prediction interval for anomaly detection of sensor-based monitoring series. Sensors,

18(4), 967. doi: 10.3390/s18040967.

[91] Pestian, J.P., Brew, C., Matykiewicz, P., Hovermale, D.J., Johnson, N., Cohen, B.

and Duch, W. (2007). A shared task involving multi-label classification of clinical

free text. In Biological, translational, and clinical language processing, Association

for Computational Linguistics, pp. 97–104.

[92] Powell. J.L. (1984). Least absolute deviations estimation for the censored regression

model. Journal of Econometrics, 25(3), 303–325. doi: 10.1016/0304-4076(84)90004-6.

[93] Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1, 81–106. doi:

10.1007/BF00116251.

[94] Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers, California.

[95] R Core Team (2023). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

[96] Racine, J.S. and Hayfield, T. (2024). np: Nonparametric Kernel Smoothing

Methods for Mixed Data Types. R package version 0.60.18 https://CRAN.R-

project.org/package=np.

[97] Rajaraman, A. and Ullman, J.D. (2011). Mining of Massive Datasets. Cambridge

University Press, Cambridge.

[98] Read, J., Pfahringer, B., Holmes, G. and Frank, E. (2009). Classifier chains for multi-

label classification. In Machine Learning and Knowledge Discovery in Databases, vol

5782. Springer, Berlin, Heidelberg, pp. 254–269. doi: 10.1007/978-3-642-04174-7˙17.

Bibliography 173

[99] Schapire, R.E. and Singer, Y. (2000). Boostexter: A boosting-based system for text

categorization. Machine Learning, 39, 135–168. doi: 10.1023/A:1007649029923.

[100] Shrestha, D.L. and Solomatine, D.P. (2006). Machine learning approaches for esti-

mation of prediction interval for the model output. Neural Networks, 19(2), 225–235.

doi: 10.1016/j.neunet.2006.01.012.

[101] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chap-

man & Hall, London.

[102] Sklar, A. (1959). Fonctions de répartition à n-dimensions et leurs marges. Publica-

tions de l’Institut de Statistique de l’Université de Paris, 8, 229–231.

[103] Tang X.-S., Li, D.-Q. Zhou, C.-B. and Zhang L.-M. (2013). Bivariate distribution

models using copulas for reliability analysis. Proceedings of the Institution of Me-

chanical Engineers, Part O: Journal of Risk and Reliability, 227(5), 499–512. doi:

10.1177/1748006X13481928.

[104] Ting, K.M. (2002). An instance-weighting method to induce cost-sensitive trees.

In IEEE Transactions on Knowledge and Data Engineering, 14(3), 659–665. doi:

10.1109/TKDE.2002.1000348.

[105] Tsoumakas, G. and Katakis, I. (2007). Multi-label classification: An overview.

International Journal of Data Warehousing and Mining, 3(3), 1–13. doi:

10.4018/jdwm.2007070101.

[106] Tsoumakas, G. and Vlahavas, I. (2007). Random k-Labelsets: An ensemble method

for multilabel classification. In Machine Learning, vol 4701. Springer, Berlin, Heidel-

berg, pp. 406–417. doi: 10.1007/978-3-540-74958-5˙38.

[107] Walley, P. (1996). Inferences from multinomial data: learning about a bag of mar-

bles. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 3–57.

[108] Wang, H., Yan, L., Huang, H. and Ding, C. (2017). From protein sequence

to protein function via multi-label linear discriminant analysis. In IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 14(3), 503–513. doi:

10.1109/TCBB.2016.2591529.

Bibliography 174

[109] Wang, Q., Ma, Y., Zhao, K. and Tian, Y. (2022). A comprehensive survey

of loss functions in machine learning. Annals of Data Science, 9, 187–212. doi:

10.1007/s40745-020-00253-5.

[110] Weichselberger, K. (2000). The theory of interval-probability as a unifying concept

for uncertainty. International Journal of Approximate Reasoning, 24(2–3), 149–170.

doi: 10.1016/S0888-613X(00)00032-3.

[111] Wolpert, D.H. (2002). The supervised learning no-free-lunch theorems. In Soft Com-

puting and Industry, Springer, London. pp. 25–42. doi: 10.1007/978-1-4471-0123-9˙3.

[112] Yager, R.R., Kacprzyk. J. and Fedrizzi, M. (1994). Advances in the Dempster-Shafer

Theory of Evidence. John Wiley & Sons, USA.

[113] Zaffalon, M. (2002). The naive credal classifier. Journal of Statistical Planning and

Inference, 105(1), 5–21. doi: 10.1016/S0378-3758(01)00201-4.

[114] Zawadzki, Z. and Kosinski, M. (2023). FSelectorRcpp: ‘Rcpp’ implementation of

‘FSelector’ entropy-based feature selection algorithms with a sparse matrix support. R

package version 0.3.11 https://CRAN.R-project.org/package=FSelectorRcpp.

[115] Zhang, M.-L. and Zhou, Z.-H. (2006). Multilabel neural networks with applications

to functional genomics and text categorization. In Transactions on Knowledge and

Data Engineering, 18 (10), 1338–1351. doi: 10.1109/TKDE.2006.162.

[116] Zhang, M.-L. and Zhou, Z.-H. (2014). A review on multi-label learning algorithms.

In IEEE Transactions on Knowledge and Data Engineering, 26(8), 1819–1837. doi:

10.1109/TKDE.2013.39.

	Abstract
	Declaration
	Acknowledgements
	Preliminaries
	Introduction
	Imprecise probabilities
	Nonparametric predictive inference (NPI)
	NPI for circular data
	NPI for Bernoulli data
	NPI for multinomial data

	Classification trees
	Classification trees using NPI
	Direct-NPI for binary data
	Direct-NPI for multinomial data

	Thesis outline

	Bagging and random forest with NPI
	Introduction
	Bagging and random forest
	NPI for bagging and random forest
	Experimental setup
	Performance comparison of proposed methods and base classifier
	Performance comparison of proposed methods and existing approaches

	Conclusions

	Imprecise classification with NPI
	Introduction
	NPI model for multinomial data
	Direct-NPI for imprecise classification
	Performance measures
	Performance evaluation metrics
	Statistical tests

	Performance evaluation
	Experimental setup
	Results and discussion

	Conclusions

	Multi-Label classification with NPI
	Introduction
	Label Powerset (LP) method for multi-label classification (MLC)
	MLC via LP transformation
	Imprecise classification for MLC via LP transformation

	Performance evaluation
	Experiments
	Predicting a single subset of labels (Method 1)
	Predicting a set of subsets of labels (Method 2)

	Conclusions

	Performance evaluation of NPI with bivariate copula
	Introduction
	Preliminaries
	Performance evaluation measures
	Performance evaluation via simulation study
	Comparison with existing method
	Conclusions

	Conclusions and future work
	Appendix
	Extra material for Chapter 1
	Pseudocode of the D-NPI algorithm
	Example

	Extra material for Chapter 2
	Extra material for Chapter 3
	Pseudocodes for the imprecise classifiers
	Additional results

	Extra material for Chapter 5
	Illustrations of the intervals [l_k,u_k]
	Extended results for loss function
	Extended results for interval score

	Bibliography

