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Kaviyadharshini Dhamotharan

Abstract: This thesis investigates the impact of degenerate boron doping on vibrational

and scattering properties of crystalline silicon using a combined approach involving elec-

tron microscopy, multislice simulations, and density functional theory (DFT). Momentum-

resolved and momentum-integrated electron energy loss spectroscopy measurements

revealed broad, high-energy optical phonon modes centred around 132 meV, features

absent in intrinsic silicon. DFT simulations attributed these signatures to localised

vibrational modes arising from neutral interstitial boron clusters, particularly compact

configurations such as 3B0
i (confi 1 and 2), which produced non-dispersive modes in

agreement with experimental data. Selected area diffraction patterns (SADPs), sup-

ported by multislice simulations, were used to probe diffuse scattering behaviour in

doped silicon. At low scattering angles, enhanced Kikuchi lines and increased back-

ground intensity were observed without Bragg peak broadening, consistent with local-

ised strain from boron incorporation. Simulations confirmed that both substitutional

and interstitial defects contributed to this behaviour. At high scattering angles, an an-

omalous increase in diffuse intensity was observed in doped silicon. This enhancement,

absent in frozen phonon simulations, was attributed to boron-induced localised phonon

modes. Cryogenic experiments confirmed this interpretation. The final study provides

a foundational step in bridging theoretical and experimental thermal diffuse scatter-

ing (TDS). First-order TDS profiles computed from DFT were fitted to experimental

data, and empirical corrections using Gaussian and exponential models significantly

improved agreement. These findings demonstrate the feasibility of integrating phonon

theory with experimental electron scattering in doped silicon.
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Chapter 1
Thesis overview

1.1 Motivation

Semiconductor materials are necessary for modern electronics based technologies, form-

ing the backbone of numerous devices that have transformed our lives, communication,

and computing. Their applications stretch over a variety of electronic devices, including

diodes[1], transistors [2], integrated circuits (ICs) [3], light-emitting diodes (LEDs) [4],

solar cells, and sensors [5]. Semiconductors were first observed by Michael Faraday

in 1833 [6], although their practical applications began with the invention of the first

metal-semiconductor junction device [7]. Since silicon (Si) emerged as the material with

most favourable properties in the 1930s [8], the semiconductor industry’s advancements

were rapid which led to an entirely new field in solid state electronics [9].

These advancements in electronics were significantly accelerated by the introduction of

the Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) in 1960 [10]. Today,

the majority of semiconductor devices manufactured heavily depend on silicon in their

construction. During the final decades of the 20th century, there was a rapid produc-

tion of integrated circuits, where numerous transistors were etched into a single device.

Initially, such a device may have contained a fewer separate semiconductor devices.

However, today, these circuits contain billions of transistors. This has lead to a wide-

spread adoption of technologies such as cell phones, GPS devices, laptops, tablets, and
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our global communications infrastructure [11]. Figure 1.1 shows how the number of

transistors in a single integrated circuit increased over time, described by Moore’s Law

which is an empirical law coming from economics[12].

Figure 1.1: The increase in transistors count on a given IC by year for several manu-
facturers[12].

The presence of defects in semiconductors can significantly impact device performance

as scaling increases. Understanding the physics of defects is essential in exploring the

physical properties of semiconductor materials. These include zero-dimensional defects,

i.e, point defects, one-dimensional (linear) defects such as dislocations, two-dimensional

(planar) defects encompassing external and internal surfaces, and three-dimensional

(volume) defects like point defect clusters, voids, and precipitates [13]. This thesis ex-

clusively examines point defects and clusters. Point defects in crystals can be intrinsic

(native defects, such as vacancy and interstitial) which involve atoms of the host crys-

tal, or extrinsic which involves intentional and unintentional ‘impurity’ atoms [14, 15].

The performance of semiconductor devices is highly dependent on the concentration
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of both native defects and intentionally introduced impurities within the lattice struc-

ture. Point defects influence the optical, electrical, and mechanical characteristics of the

host semiconductor materials. They introduce electronic levels into the energy bandgap

of the semiconductors [16]. Point defects also introduces localised vibrational modes

that might affect the material’s thermal conductivity [17, 18]. Other significant effects

include:

1) Point defects serve as scattering centres for electrons and holes travelling through the

crystal, which decreases charge carriers mobility. Additionally, they can create deep-

level traps within the bandgap, impacting the semiconductor’s conductivity [19–21].

2) Point defects introduce localised states which can influence the spin-photon interac-

tion in devices designed to store and transfer quantum information, playing essential

roles in applications such as quantum computing, sensing, and networking [22].

3) The change in yield strength due to a point defect is attributed to the alteration of

the crystal’s stress state. This occurs because the point defect induces stress concen-

trations in its vicinity, thereby affecting the material’s overall strength [23].

Extensive research has to be conducted to characterise, and either eliminate these

defects or effectively manage their behaviour. A variety of experimental as well as

simulation techniques have been developed to acquire detailed information about these

defects properties. This thesis explores two such methods.

Electron microscopy, including transmission electron microscopy (TEM) and scanning

transmission electron microscopy (STEM), is a powerful tool for characterising point

defects in semiconductors. One of the primary advantages of electron microscopy over

X-ray and neutron diffraction methods is its spatial resolution [24]. Electron micro-

scopes can achieve atomic-scale resolution, allowing for the direct observation of indi-

vidual defects [25].

X-ray diffraction and neutron scattering, while valuable for certain types of structural

analysis, have limitations when it comes to defect analysis. X-ray diffraction provides
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information about the overall crystal structure and can detect changes in lattice para-

meters caused by defects [26, 27]. However, X-ray diffraction typically lacks the spatial

resolution needed to observe individual point defects or defect clusters [24, 28]. X-rays

interact with a large volume of the sample, which means that fine details about local

defects are often averaged out [29]. Additionally, X-ray techniques are less effective for

studying light elements due to weaker scattering [30], such as boron in silicon, which is

a primary focus of this thesis.

Additionally, X-rays interact entirely with the electronic cloud surrounding the atomic

nucleus, with negligible scattering by the nucleus itself. This interaction leads to a phase

mismatch for scattering from individual electrons at higher scattering angles, resulting

in an intensity reduction described by the conventional X-ray form factor. The form

factor decreases with larger scattering vectors k, making X-ray diffraction less effective

for detecting point defects compared to electron microscopy, as the form factor is even

more pronounced since scattering from the nucleus is higher due to a nuclear scattering

contribution [31].

Neutron scattering, although sensitive to lighter elements [32], is less effective for defect

detection due to its isotropic scattering amplitude [33], which arises from interactions

with the atomic nucleus rather than the electron cloud. Therefore, neutron scattering is

not suitable for detailed defect analysis compared to electron microscopy. Additionally,

neutron experiments typically involve sample volumes much larger than X-rays, which

further limits their effectiveness in observing defects at the atomic scale.

First-principles calculations offer powerful tools for exploring the properties of defects

in semiconductors and insulators. Advanced techniques such as density functional the-

ory (DFT) [34] allow for quantitative predictions of electronic and atomic structures, as

well as optical properties [35]. Comparing these predictions with experimental results

from techniques such as STEM helps identifying the nature and local structure of the

defect and evaluate the suitability of materials for device applications.
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DFT is a quantum mechanical method used to investigate the electronic structure

of many-body systems at the atomic scale. By solving the Kohn-Sham equations [36],

DFT enables the calculation of electronic density, which in turn allows for the deriv-

ation of various material properties [37]. One of the significant advantages of DFT

in the context of defect analysis is its ability to provide insights into the vibrational

properties of materials, which are directly affected by the presence of point defects.

Defects lead to local vibrational modes (LVMs), whose frequencies and polarisations

reveal information about the chemical nature of the involved atoms and their bonding

environment [38]. The vibrational properties, phonon dispersion spectra, reflect how

atoms oscillate around their equilibrium positions and are sensitive to changes induced

by defects [39]. These changes can be quantitatively assessed using DFT, which helps

in understanding how defects affect material performance.

1.2 Aim of this thesis

The aim of this thesis is to investigate the effects of degenerate boron doping in silicon

through a comprehensive approach combining experimental electron microscopy tech-

niques and advanced simulations, including multislice simulations for electron scattering

and density functional theory (DFT) calculations of phonon properties using CASTEP.

Boron is a p-type dopant in silicon and is widely used in the semiconductor industry. It

also shows anomalous behaviour, which motivates its study in this thesis. The primary

objective is motivated by previous observations reported by Perovic et al., who noticed

an unexpectedly strong high-angle annular dark-field (HAADF) contrast, as in Figure

1.2, in degenerate boron-doped silicon (B-Si) compared to pure silicon (Si), despite the

lower atomic number of boron [40].
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Figure 1.2: Image of Si containing 50 nm B-Si layers as viewed along 〈110〉 zone axis.
Threading dislocation segments are also visible under the following imaging conditions:
(a) bright field (BF), and (b) high angle annular dark field (HAADF) [40].

Two potential explanations for this anomalous contrast are considered: first, static

atomic displacements of silicon atoms from their equilibrium lattice sites adjacent to

substitutional boron atoms, which may result in so-called “Huang” contrast; and second,

the introduction of boron leading to local vibrational modes above the optical mode

frequency of 16 THz, thereby modifying high angle thermal diffuse scattering (TDS).

To address these aspects, this thesis employs transmission electron microscopy (TEM)

in selected area diffraction pattern (SADP) mode at both room and cryogenic (liquid

nitrogen) temperatures to analyse the strain fields around boron atoms in silicon and

their effect on high-angle scattering. Additionally, multislice simulations are performed

to further understand how strain from boron doping influences high-angle scattering.

Recent advancements in aberration-corrected scanning transmission electron micro-

scopy (STEM), combined with improvements in spectrometers and monochromators,

have led to STEM systems capable of achieving atomic resolution with electron energy

loss spectroscopy (EELS) at energy resolutions around 5 meV [41]. One of the main

applications of EELS in this context is the study of phonon lattice vibrations, which

typically occur within the range of a few meV to 1 eV, especially at large scattering
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angles (10 -1000 mrad) [42–44]. This thesis also utilises aberration corrected STEM

with monochromated EELS to directly measure the vibrational frequencies of boron-

doped silicon. This experimental data is complemented by density functional theory

(DFT) calculations to validate and interpret the observed vibrational frequencies. Spe-

cifically, we conduct DFT-based vibrational studies using the CASTEP software to

calculate the phonon dispersion curves of boron doped silicon. The theoretical phonon

dispersion curves obtained from these DFT calculations will be compared against STEM

EELS experimental data to assess the accuracy and reliability of the theoretical models.

Furthermore, this thesis aims to bridge the gap between experimental and theoret-

ical approaches in understanding phonon dynamics in silicon by developing and im-

plementing a novel methodology for extracting phonon dispersion curves from electron

diffraction patterns of elemental silicon, and to rigorously compare these experimental

results with theoretical phonon dispersion curves derived from first order thermal dif-

fuse scattering intensity.

This part of the work was stimulated by similar measurements on silicon using X-

ray diffraction by Xu and Chiang, where they used experimental X-ray TDS diffraction

patterns (Figures 1.3a and 1.3b), in combination with a theoretical Born-von Karman

model (Figures 1.3c and 1.3d) to determine phonon frequencies in silicon. By fitting

the experimental TDS data to the theoretical TDS calculations, they successfully ex-

tracted accurate phonon dispersion relations, which describe the variation of phonon

frequencies with respect to the momentum in the crystal [45]. Extension of this method

to electron diffraction provides additional benefits over X-rays, such as an improvement

in the spatial resolution and less demand on the sample quality, i.e. polycrystalline

samples can be used instead of single crystals, provided the grain size is large enough

for acquiring a SADP of a single grain.
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Figure 1.3: Experimental TDS images of Si for (a) [111] and (b) [100] zone axes, along
with theoretical first-order TDS calculations for (c) [111] and (d) [100] [45].
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Chapter 2
Introduction

Since most modern information processing and electronic devices depends critically on

the purity and perfection of semiconductor materials, it is important to investigate

the fundamental physics behind their crystallinity, including impurities and defects.

Therefore, the intention of this chapter is to review and summarise the importance of

semiconductors, their crystal structures, their electronic and vibrational properties and

to explore how their lattice structures are impacted by doping, leading to defects and

changes in their structural and vibrational properties.

There are certain substances that are neither good conductors (e.g. metals) nor in-

sulators (e.g. glass). A substance which has a crystalline structure and contains very

few free, conduction electrons at room temperature is called a semiconductor. More

precisely semiconductors are materials whose energy band gap (Eg) is typically between

0 eV and 3 eV [46]. There are a few exceptions to this definition, such as diamond and

gallium nitride (GaN), whose energy band gaps are about 5.5 eV and 3.5 eV, respect-

ively. While silicon stands as the most widely used semiconductors, numerous others

exist beyond it, e.g. naturally occurring minerals such as zincblende (ZnS) [47]. Semi-

conductors are found in a wide array of chemical compositions with a large variety of

crystal structures. They can be elemental semiconductors, such as Si, compounds such

as antimony selenide (Sb2Se3) or organic compounds, e.g. polyacetylene (CH)n [48, 49].

Semiconductors can be classified into two categories; intrinsic semiconductors where
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the concentration of electrons and holes are equal, and extrinsic semiconductors which

contain added impurities through a process called doping [50], discussed in detail in

section 2.4.

One of the main reason why semiconductors plays a vital role in electronic applica-

tions is that their conductivity can be manipulated by factors such as temperature,

illumination, and minute amount of impurity atoms [51]. Electrical conductivity (σ)

of a material is determined by two factors: the concentration of free carriers available

to conduct current and their mobility:

σ = q[µn(T )n(T ) + µp(T )p(T )]. (2.1)

where q is the magnitude of the electron charge, µn and µp refer to the mobilities of

the electrons and holes, and n and p refer to the number density of electrons and holes,

respectively. In a semiconductor, both mobility and carrier concentration are temper-

ature (T ) dependent, and there are a variety of possible temperature dependencies for

conductivity [52]. As some useful properties of semiconductors, such as conductivity

and sensitivity to strain, can easily be influenced by the crystal structure, it is crucial

to understand the specific arrangement and periodicity of atoms in semiconductors in

order to investigate these useful properties [53].

2.1 Crystal structure

2.1.1 Primitive lattice

An ideal crystalline solid is represented by atoms or group of atoms called a ‘basis’ that

repeat regularly throughout the material, as if they were connected to an underlying set

of points with corresponding periodicity. These points in space are not physical entities

but rather an analytical construct derived from studying the geometric arrangement of

the crystal. The collection of these mathematical points where the basis is attached is

referred to as the ‘lattice’ [54]. In three dimensions, the lattice can be defined in terms
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of three translational vectors denoted by a1, a2 and a3 from symmetry. One then can

express a vector R connecting any two lattice points in a crystal as

R = ua1 + va2 + wa3, (2.2)

where, u, v and w are arbitrary integers. The complete set of such vectors is called

a Bravais lattice, and the generated lattice will have translational symmetry. Hence,

the crystal looks the same when viewed from the point r as well as every point r′ if

r′ = r+ R [46]. The primitive cell of a lattice represents the smallest volume that,

when translated through the entire Bravais lattice, it fills all the space through periodic

repetition [55].

2.1.2 Some important crystal lattices

There exists 14 types of Bravais lattices. For metals and semiconductors the atoms

in a lattice tend to arrange themselves in close-packed structures. The most basic

close-packed structures exhibit either cubic or hexagonal symmetry. Cubic crystals are

more symmetrical than other crystal structures and their symmetry is easier to visualise

directly. Figures 2.1a, 2.1b and 2.1c shows the simple cubic (SC), body-centred cubic

(BCC), and face-centred cubic (FCC) structures. The SC unit cell has lattice points

only at the cube corners and is not therefore common. The BCC unit cell has lattice

points at the cube corners and an additional lattice point at the centre of the cube,

while the FCC unit cell has additional lattice points at the centre of each cube face

[56]. In both diamond and zincblende crystal structures the basis consists of two atoms,

shown in Figures 2.1d and 2.1e. The two atoms are separated by a 1
4 [111] vector. The

only difference is that the basis in the diamond structure (Figure 2.1d) consists of two

silicon atoms, while in zincblende (Figure 2.1e) the two atoms are zinc and sulfur [57].
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Figure 2.1: Some important unit cells characterising crystalline solids.(a) The simple
cubic (SC) unit cell, (b) the body centered cubic (BCC) unit cell, (c) the face-centred
cubic (FCC) unit cell, (d) diamond cubic unit cell, (e) zincblende unit cell [58].

2.1.3 Crystal planes, crystal Directions and Miller indices

Since many physical properties are dependent on the plane and the direction in the

crystal lattice [59], it is important to define a particular lattice direction and plane.

A convenient method of defining crystal directions and planes in a crystal is to use

Miller indices. The figure 2.2 below shows Miller indices for some significant planes and

directions.
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Figure 2.2: Miller indices for some significant planes and directions in a cubic crystal.
(a) (100) plane, (b) (110) plane, (c) (111) plane, (d) family of 〈100〉 directions, and (e)
[111] direction [60].

For a given crystal plane, the corresponding Miller indices can be determined by finding

the intercepts on each of the a1, a2, a3 axes, and then taking the reciprocal of these

intercepts. Three integers h, k and l are assigned to the plane, such that their ratios

correspond to the ratios of the reciprocal intercepts [61]. The three integers h, k and

l are called the Miller indices, and the lattice is expressed in reciprocal space using

these integers. The integers enclosed in a round brackets (hkl) denotes the planes in

a crystal, and square brackets [uvw] denotes specific directions in a crystal. If a plane

intersects an axis on the negative side of the origin, its corresponding index is negative,

denoted by placing a minus sign above the index, e.g. (hkl). The indices [uvw] of a

direction in a lattice is represented by a set of three integers that maintain the same

ratio as the components of a vector in that direction. These vector components, as

in Equation 2.2, are expressed as multiples of the basis vectors, and the integers are

reduced to their smallest values while preserving their proportional relationship [60].
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2.1.4. Reciprocal lattice

Since many planes and directions in a lattice are equivalent due to symmetry, the indices

of such equivalent planes and directions are collectively denoted by curly brackets and

angle brackets (Figure 2.2d), respectively, e.g.{hkl} and 〈uvw〉 [62].

2.1.4 Reciprocal lattice

Because of the periodicity of the real crystal lattice, a function in real space can be

expressed as a Fourier series in terms of the reciprocal space translation vector G. The

set of reciprocal lattice basis vectors a∗
1, a∗

2 and a∗
3 are related to the direct lattice

vectors a1, a2 and a3 by

a∗
i = 2π aj × ak

a1 · (a2 × a3)
. (2.3)

where i, j, and k represent a cyclic permutation of the three indices 1, 2, and 3 and

a1 ·(a2 × a3) is the volume of the primitive cell [63]. By defining the reciprocal lattice

vectors in this manner, it imposes the condition that ai·a∗
j= 2πδij, where δij is the

Kronecker delta symbol. The general reciprocal lattice vector G is then given by

G = ha∗
1 + ka∗

2 + la∗
3. (2.4)

A significant characteristic of the Bravais lattice and reciprocal lattice vectors is that

they satisfy:

G · R = 2πI. (2.5)

Where, I is an integer. The primary advantage of the reciprocal lattice is its ability

in describing functions that exhibit the periodicity of the lattice. Hence, it can be

expressed as plane waves with the periodicity of the Bravais lattice [57]:

eiG·(r+R) = eiG·reiG·R = eiG·r. (2.6)

The reciprocal lattice vectors have dimensions of inverse length, meaning they are not

present in the typical real space but rather in what is known as k-space, where ‘k’

represents the wave vector with inverse length dimensions. As the momentum of a

particle is expressed as ℏk, this space is also called as momentum space ( ℏ is the

reduced Planck’s constant) [52].
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2.1.5. Brillouin zone

2.1.5 Brillouin zone

The primitive cell of a reciprocal lattice can be represented by a Wigner-Seitz (WS)

cell by drawing perpendicular planes that bisect the lines connecting the origin to all

the nearest neighbour lattice points. The irreducible WS cell in k space consisting of

all points k is referred to as the first Brillouin zone [64]. The construction of the Bril-

louin zone is very convenient for describing many crystal properties, such as electronic

structures and phonon structures of crystals [62]. In the Brillouin zone, several points

hold special significance and are assigned individual symbols using abbreviations de-

rived from group theory, such as Γ, L, K, X, etc [65].

For a face centred cubic crystal, ∆ represents a direction, such as [100], intersect-

ing the zone boundary at X, situated in the midpoint of a square face (Figure 2.3),

Λ represents the [111] direction, perpendicular to the close-packed planes of the face-

centered structure, and intersects the midpoints of the hexagonal faces of the zone at

L. [110] direction denoted by Σ , meeting the boundary at K, positioned in the mid-

point of an edge shared by two hexagons [66]. Among these, the most crucial point is

where k = 0, which is the centre of the first Brillouin zone, this particular location in

k-space is referred to as the Γ point [65]. Figure 2.3 shows the first Brillouin zone with

high-symmetry points labeled for a face-centered cubic lattice [67]. In this case, the

Brillouin zone is a truncated octahedron. For certain Bravais lattices, the Brillouin zone

exhibits a distinct shape. However, for some Bravais lattices, the shape of the Brillouin

zone can vary, depending on the axial ratios and inter-axial angles of the lattice [68].
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2.2. Electronic band structure

Figure 2.3: Depiction of the first Brillouin zone for the face-centered cubic lattice (FCC)
with lattice constant a. Several high-symmetry points are highlighted: Γ = (0, 0, 0),
X = 2π

a
(1, 0, 0), L = 2π

a
(0.5, 0.5, 0.5), W = 2π

a
(1, 0.5, 0) [67].

2.2 Electronic band structure

The behaviour of electrons within semiconductors can be described by solving the

Schrödinger equation appropriate to the crystal’s structure. These solutions, which are

the collection of electron energies, yield the electronic band structure of the electrons,

and can be determined using techniques like tight binding, pseudopotential, orthogon-

alised plane wave, and perturbative methods. When analysing band structure, the

complexity reduces significantly when dealing with crystalline materials as electrons

encounter a periodic potential due to the repeating structure of those materials [69].

In a perfect crystalline lattice, due to the translation symmetry, the potential energy

V(r) of a crystal lattice satisfies V(r + R) = V(r). Since the potential is periodic,

the electron wavefunction Ψk,n(r) can be written as the product of a periodic function

uk,n(r) and a plane wave eik·r [70], which is a Bloch function of the form,

Ψk,n(r) = eik·ruk,n(r). (2.7)
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2.2. Electronic band structure

where uk,n(r) = uk,n(r+R) has the same periodicity as the potential and is a function of

k. For every value of the wave vector k, there exists an infinite set of eigenfunctions with

varying u, labeled by n [64]. Given that a real macroscopic crystal is effectively ‘infinite’

with approximately 1023 atoms or molecules, the set of k values densely populates k

space. Consequently, the energy levels of a crystal can be confined to the first Brillouin

zone, accounting for the translation symmetry of the crystal [71]. By solving the

Schrödinger equation using Bloch wave functions, the eigenvalues En(k), which is a

continuous function of k can be obtained. A plot of the eigenvalues En(k) versus the

wave vector k is known as the electronic band structure. Since the electron energies

of a crystal are continuous, they are represented by energy bands whose widths are

determined by the the overlap of the Bloch wavefunctions within the crystal [67].

Forbidden energy band gaps are also formed where no electrons are allowed. Figure 2.4

shows a schematic of the energy bands for tetravalent elements such as silicon (Si), and

germanium (Ge) in relation to atomic spacing.
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Figure 2.4: Schematic diagram of the energy bands for tetravalent semiconductors such
as silicon (Si), and germanium (Ge) in relation to atomic spacing [72].

At absolute zero temperature, electrons occupy an energy band from the lowest energy

level upwards. The highest occupied energy band is referred to as the valence band

(VB), which is completely filled in a semiconductor at absolute zero temperature. The
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2.3. Phonon band structure

subsequent available energy band is termed the conduction band (CB). The energy dif-

ference between the highest energy level of the valence band and the lowest energy level

of the conduction band, determining whether a material behaves as a semiconductor

or an insulator, is defined as the energy band gap (Eg) [73]. When the lowest energy

point of the conduction band matches the highest energy point of the valence band in

k-space, it is a direct-gap semiconductor (Figure 2.5b). Otherwise, it is an indirect-gap

semiconductor (Figure 2.5a) [74].
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Figure 2.5: The energy band structures of (a) silicon and (b) gallium arsenide exhibit an
indirect and direct band gap, respectively (band structures generated using CASTEP
code [75]).

2.3 Phonon band structure

At finite temperatures, atoms within a crystalline lattice are not static but undergo

thermal vibrations around their equilibrium positions. Due to the crystal symmetries,

these vibrations inside a solid can be analysed as collective modes of ion motion known

as phonons. These modes correspond to collective excitations, which, similar to elec-

tronic states, can be excited by heating the solid. Phonons are considered bosons due

to their ability to exist at the same quantum state without a limit [76]. Each phonon
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2.3.1. Harmonic model

carries an energy E = ℏω, where ω represents the angular frequency of the oscillation,

and ℏ denotes the reduced Planck constant [77].

Since the dynamics of atoms within a crystal lattice are interconnected, their inter-

actions are governed by equations of motion. The phonon frequencies obtained are

termed as the normal modes of the lattice, where the relationship between frequencies

and reciprocal lattice vectors is expressed through the dispersion relation, shown in

Figure 2.6, denoted as ω(k) [46].

Figure 2.6: Phonon dispersion curves in diamond and zinc-blende structured semicon-
ductors along high-symmetry points. (a) Gallium arsenide (GaAs), (b) Diamond (C)
(Phonon structures generated using CASTEP code [75]).

2.3.1 Harmonic model

The behaviour of phonon waves can be predicted using the harmonic oscillator model,

assuming that all the atoms inside a crystal lattice are connected by massless electronic

springs [78]. Under the Born-Oppenheimer approximation, the motion of the nuclei

is considered to be independent of the electrons as the electrons are assumed to follow

adiabatic ionic motion. The Hamiltonian governing the dynamics of the nuclei in a
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2.3.1. Harmonic model

lattice with s atoms per unit cell can be expressed as follows:

Ĥ =
∑
ls

Pα(ls)2

2ms

+ U, (2.8)

with

Pα(ls) = ms∂uα(ls)
∂t

. (2.9)

where pls is the momentum of an atom of mass ms, U is the potential energy, and

uα(ls) denotes the α-Cartesian component of the displacement of the s-th atom in the

l-th unit cell from its equilibrium position [47, 79]. Each atom in the unit cell l of a

crystal vibrates about its equilibrium position with the displacement of uα(ls). Hence,

the instantaneous position in terms of the equilibrium position of an atom s can be

written as:

r(ls) = R(l) + τ (s) + u(ls). (2.10)

where, R(l) is the unit cell translational vector and τ (s) is the basis vector of atom s

[80]. If atomic displacements are small compared to the lattice parameter, the potential

energy of the system can be harmonically approximated by expanding it in a Taylor

series around the equilibrium position [81]. Hence, the potential energy of a given crys-

tal can be expressed as

U = U0 + 1
2
∑
ll′

∑
ss′

∑
αβ

Φαβ{ls; l′s′}uα(ls)uβ(l′s′), (2.11)

with

Φαβ(ls; l′s′) = ∂2U

∂uα(ls)uβ(l′s′)

∣∣∣∣∣
uα(ls)uβ(l′ s′ )=0

. (2.12)

Where U0 represents the potential energy of the static crystal. uβ(l′s′) denotes the β-

Cartesian component of the displacement of the s′-th atom in the l′-th unit cell from its

equilibrium position. The Φαβ{ls; l′s′} are the atomic force constants of the crystal due

to the interaction between the atoms denoted by (ls) and (l′s′). Within the harmonic

approximation, the Hamiltonian can be expressed as [82]:

Ĥ = U0 +
∑
ls

Pα(ls)2

2ms

+ 1
2
∑
ll′

∑
ss′

∑
αβ

Φαβ{ls; l′s′}uα(ls)uβ(l′s′). (2.13)
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2.3.1. Harmonic model

The equation of motion for the s-th atom can be expressed using Newton’s second law

by taking the derivative of the Hamiltonian with respect to atomic displacements and

momenta in a Cartesian basis α [79]. The equation of motion for the s-th atom in the

l-th unit cell is expressed as:

msüα(ls) = −
∑
l′ s′ β

Φαβ{ls; l′s′}uβ(l′s′). (2.14)

The displacement uα(ls) can be expressed as a plane wave of the following form with

wavevector k [83]:

uα(ls) = 1
√
ms

ak ϵk,s exp[ik · (R(l)) − iωkt], (2.15)

where ωk is the frequency, ak is the vibrational amplitude, and ϵk,s is the polarisation

vector that signifies the direction in which the atoms oscillate. By taking the second

derivative of the above displacement expression and substituting into Equation (2.14),

we obtain:

ω2
k,jϵk,j = Dk · ϵk,j. (2.16)

where j labels different phonon branches sharing the same wave vector k, and Dk is

the dynamical matrix with elements defined by [84]:

Dk = −
∑
l′

Φαβ{ls; l′s′}
√
msms′

exp{ik · [R(l′) − R(l)]}. (2.17)

If there are N number of atoms per primitive unit cell, the dynamical matrix will have

3N × 3N elements. The solutions to the Equation (2.16) gives 3N vibrational modes

for each values of k: 3 acoustical branches and 3N–3 optical branches [46, 85]. Since

the vibrational modes exhibit the same periodicity as the reciprocal lattice, it is prac-

tical to limit the solution to all wave vectors k within the first Brillouin zone [79]. For

each polarisation mode in a specified propagation direction, the dispersion relation ω(k)

forms two distinct branches: the acoustical branch and the optical branch.

The acoustical branch typically corresponds to lower-frequency modes, which include
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2.4. Defects due to doping

longitudinal (LA) and transverse (TA) acoustic modes. Conversely, the optical branch

is characterised by higher-frequency modes, comprising longitudinal optical (LO) and

transverse optical (TO) modes [47]. When the polarisation vector ϵ is parallel to

the the wave vector k, the wave is termed longitudinal, with particle displacements

occurring parallel to the direction of wave propagation. If the polarisation vector ϵ

is perpendicular to k , the wave is termed as transverse, with particle displacements

occurring perpendicular to the direction of propagation [86].

2.4 Defects due to doping

Intrinsic semiconductors have limited practical applications due to being neither ef-

fective conductors nor insulators, and their electrical conduction is heavily influenced

by temperature. However, the conductivity of these semiconductors can be modified

significantly by introducing impurities or dopants into the crystal lattice. This doping

process creates defects in the otherwise perfect crystal structure, subsequently altering

the material’s properties. A semiconductor crystal with added dopants is referred to as

an extrinsic semiconductor or a doped material. A semiconductor that is doped with

a donor impurity, e.g. for silicon this is a dopant with five electrons in its outer shell,

is called an n-type semiconductor (Figure 2.7a) and has electrons as majority carriers.

Semiconductor that is doped with an acceptor impurity, e.g. for silicon this is a dopant

with three electrons in its outer shell, is called a p-type semiconductor (Figure 2.7b)

and has holes as majority carriers [11, 87, 88].
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2.4. Defects due to doping

a) b)

Figure 2.7: Schematic silicon crystal lattice with (a) pentavalent impurity atom (n-
type), (b) trivalent impurity atom (p-type) [88].

At absolute zero, the Fermi level (Ef ) of an intrinsic semiconductor is positioned in

the middle of the energy gap, separating occupied electron energy levels (valance band)

from empty energy electron levels (conduction band). Due to doping, in n-type semi-

conductors, Ef resides between the conduction band and the donor impurity energy

levels (ED), as in Figure 2.8a. In p-type semiconductors, Ef lies between the valence

band and the acceptor impurity energy levels (EA), as in Figure 2.8b [89].
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Figure 2.8: Schematic representation of the Fermi energy Ef of (a) an n-type and, (b)
a p-type semiconductor at 0 K. In (a), ED denotes the donor energy levels, and in (b),
EA represents the acceptor energy levels [89].
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2.4.1. Point defects

For shallow (energy levels with very low binding energies, on the order of 10−2 eV) [90]

donors, the energy level of donor electrons is positioned just below the bottom of the

conduction band (Figure 2.8a). Therefore, donor electrons can easily move into the

conduction band, becoming free conduction electrons and leaving behind positively

charged ionised donors. Similarly, for the shallow acceptors, the acceptor atom accepts

an additional electron from the valence band to form covalent bonds with all its nearest

neighbours when it replaces a host atom. This creates a positively charged hole in the

valence band and leaves the acceptor atom negatively ionised. The acceptor energy

level is just above the top of the valence band (Figure 2.8b) [91, 92].

At low doping concentration, typically in the range of 1015 to 1018 atoms/cm3, semicon-

ductor materials exhibit non-degenerate behaviour, where impurity atoms are sparsely

distributed, creating discrete energy levels within the energy bandgap. In contrast, at

high doping concentration, typically in the range of 1019 to 1020 atoms/cm3, the density

of impurity atoms increases to the point where the wavefunctions associated with indi-

vidual donor or acceptor atoms overlap significantly. This leads to a degenerate state

where impurity states broaden out and merge with the conduction or valence bands,

forming continuous energy bands. For instance, in degenerate n-type semiconduct-

ors, the Fermi level shifts into the conduction band, causing electronic states between

the conduction band edge and the Fermi level to be predominantly occupied by elec-

trons. Conversely, in degenerate p-type semiconductors, the Fermi level shifts into the

valence band, filling most states between the valence band edge and the Fermi level

with holes [60, 93, 94].

2.4.1 Point defects

Doping processes induce zero-dimensional (extrinsic) defects in materials by introdu-

cing impurities to the host semiconductor crystal and produce a local distortion in the

otherwise perfect lattice [95]. This leads to the modification in their physical prop-

erties, e.g. the electronic conduction [96]. Impurity atoms can occupy two different
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2.4.2. Lattice distortion

types of lattice sites: (a) interstitial, where the impurity atom occupies an interstice

between perfect lattice sites, and (b) substitutional, where an atom in the host lattice

at a lattice site is replaced by the impurity atom [15].

In the context of DFT the energy required for a point defect of charge q to be formed

is defined as:

Ef [Xq] = Etot[Xq] − Etot[bulk] −
∑

i

niµi + qEF + Ecorr. (2.18)

where Etot[Xq] is the total energy of the supercell containing the defect Xq and Etot[bulk]

is the total energy of the perfect (defect-free) crystal lattice. ni is an integer which

denotes the number of atoms of species i that has been added (ni > 0) to or removed

(ni < 0) from the host crystal lattice to create the defect, µi is the chemical potential

of species i. EF is the Fermi energy level. Ecorr represents a correction factor that

adjusts for finite k-point sampling in cases involving shallow impurities or for elastic

electrostatic interactions. q = 0 for a neutral defect; if one electron is removed, q = 1; if

one electron is added, q = -1 [97]. Point defects can occasionally jump from one lattice

site or interstice to another, as atoms vibrate randomly due to thermal fluctuations,

e.g. boron interstitials in silicon are mobile even at room temperature. These random

jumps produce no effect for large numbers of atoms under equilibrium conditions, as

there are as many jumps in one direction as in any other [98].

2.4.2 Lattice distortion

Impurity atoms, which are comparable in size to the atoms of the host lattice, occupy

substitutional sites and cause distortions that are spherically symmetric in crystal lat-

tices that are close to being isotropic. On the other hand, smaller impurity atoms can

occupy both interstitial sites and substitutional sites. When smaller impurity atoms

reside in interstitial sites, the distortions produced vary according to the symmetry of

these sites. The interstice sites, generally have volumes smaller than that of a single

host atom. Hence, interstitial atoms tend to create substantial distortions among neigh-

bouring atoms. This leads to the relatively large values of the defect formation energy
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2.4.2. Lattice distortion

and can result in crystal volume expansions as significant as several atomic volumes per

interstitial atom [15, 99].

The distortion and the additional energy in the lattice due to the defects depends

on the amount of “space” between the atoms in the lattice and the “size” of the atoms

introduced. In symmetric interstitial sites, such as octahedral or tetrahedral sites found

in closely-packed lattices, interstitial defects induce spherically symmetric distortions.

In contrast, distortions resulting from non-symmetric interstitial sites are themselves

non-symmetric. The nature of these distortions influences the interactions between

point defects and other imperfections within the crystal structure [15, 99].

Essentially, the presence of a point defect in a perfect crystal lattice causes the surround-

ing host atoms to be displaced from their original lattice positions, as in Figure 2.9,

leading to a distortion of the local potential energy of the host crystal lattice.

- Impurity atom - Host lattice atom

a) b)

Figure 2.9: Schematic diagram of the lattice distortion due to single point defect in the
host crystal lattice. (a) crystal lattice before the lattice relaxation, (b) distorted crystal
lattice after the lattice relaxation [100].

This distortion due to a point defect can be viewed as the result of applying a distribu-

tion of external forces to each position in a perfect lattice, known as Kanzaki forces [100].

The Kanzaki force FK
α (ls) of a defect refers to the hypothetical set of forces that would
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2.4.3. Local vibrational modes

need to be applied to a perfect, defect-free lattice in order to produce the same elastic

field as observed in a lattice containing a defect. This force can be obtained by ex-

panding the potential energy of the crystal containing a defect up to quadratic terms

in the displacements of the atoms from their positions in the undistorted lattice. The

equilibrium equations are then constructed and solved by expanding the displacements

in terms of normal coordinates. This approach leads to a set of 3s equations in the 3s

unknown normal coordinates for each value of a wave vector k [101, 102].

The forces Fα(ls) induced by a point defect on neighboring atoms causes displacements

uβ(l′s′) , where Fα(ls) = ∑
l′ s′ β

Φαβ{ls; l′s′}uβ(l′s′) and Φ is the the force constant

matrix of the defect system. The equilibrium atomic positions around a defect can be

obtained by introducing Kanzaki force FK
α (ls) in to the crystal lattice. The Kanzaki

force is expressed as:

FK
α (ls) =

∑
l′ s′ β

Φ0
αβ{ls; l′s′}uβ(l′s′),

= Fα(ls) −
∑
l′ s′ β

∆Φαβ{ls; l′s′}uβ(l′s′).
(2.19)

where ∆Φ = Φ−Φ0, and Φ0 being the force constant matrix of the host crystal lattice.

The Kanzaki force is designed to produce the same local distortion uβ(l′s′) in the host

crystal as the “direct” force Fα(ls) causes in the defect system [100, 103].

2.4.3 Local vibrational modes

The vibrational modes of a defect crystal can be obtained by the Kanzaki force. Since

the defect system is relaxed, the displacement uβ(l′s′) can be expressed as:

uβ(l′s′) =
∑
kj

1
√
ms′

ak,j ϵk,j exp[ik · R(l′)]. (2.20)

Given that the Kanzaki force is equivalent in magnitude to the forces producing the

displacement field in the defect-free system, the equation of motion for the defect crys-

tal in terms of the Kanzaki forces becomes [100, 101]:
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2.4.3. Local vibrational modes

FK
α (ls) =

∑
l′ s′ β

Φαβ{ls; l′s′}uβ(l′s′). (2.21)

To determine the eigen equation for the defect crystal, we follow a similar approach as

that used for the defect-free crystal in section 2.3.1. By taking the second derivative of

the displacement uα(ls) and substituting it into the equation of motion, we obtain:

ω2
k,jϵk,j =

∑
l′ s′ β

Φαβ{ls; l′s′}
√
msms′

exp[ik · (R(l′) − R(l))]ϵk,j. (2.22)

The above expression can be written as:

√
msω

2
k,jexp[ik · R(l)]ϵk,j =

∑
l′ s′ β

Φαβ{ls; l′s′}
√
ms′

exp[ik · R(l′)]ϵk,j. (2.23)

Substituting the expression of uβ(l′s′) from equation (2.20) in equation of motion (2.21),

we get:

FK
α (ls) =

∑
l′ s′ β

Φαβ{ls; l′s′}
√
ms′

ak,j ϵk,j exp[ik · R(l′)]. (2.24)

By substituting equation (2.23) into the above equation we obtain:

FK
α (ls) =

∑
kj

√
msω

2
k,jexp[ik · R(l)]ϵk,jak,j. (2.25)

Since the eigenvectors ϵk,j satisfy the orthonormality condition, the above equation can

be written using ϵk,j · ϵ∗
k′

,j′ = δk,k′ δj ,j′ as [101]:

ω2
k,j =

∑
kj

FK
α (ls)

ak,j
√
ms

exp[−ik · (R(l) + τ (s′))]ϵ∗
k,j. (2.26)

The above equation gives the vibrational modes of a crystal with defects. When light

dopant atoms, such as boron in silicon, are introduced into the lattice, they generally

lead to an increase in phonon frequencies, resulting in vibrational modes that lie above

the optical branch. Although the force constants between the impurity atoms and the

host lattice are typically reduced compared to those in the pure crystal, the lower atomic
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2.5. Point defects due to boron doping in silicon

mass of the impurity atom compensates for this reduction, leading to higher vibrational

modes that fall above the optical branch [104].

Conversely, when heavier dopant atoms, such as phosphorus in silicon, are introduced

into the lattice, they generally result in lower phonon frequencies, shifting vibrational

modes into the acoustic region. The force constants between the impurity atoms and

the host are further reduced compared to those in the pure crystal. This reduction in

force constants, combined with the increased atomic mass of the heavier dopant, leads

to lower vibrational frequencies, causing the phonon modes to fall within the acoustic

band [104, 105]. In addition to a change in vibrational frequency, defect phonon modes

are also found to be spatially localised around the defect. This compares to phonon

modes in a perfect crystal, which extend over the entire specimen.

2.5 Point defects due to boron doping in silicon

Boron is the most commonly used impurity for creating p-type silicon. When boron

atoms are introduced into silicon, they create point defects by occupying either substitu-

tional or interstitial sites within the crystal lattice. Substitutional boron replaces a sil-

icon atom, contributing to the intended p-type conductivity. However, boron atoms can

also occupy interstitial positions, leading to the formation of boron interstitial clusters

(BICs). At high doping concentrations, boron atoms can cluster together, sometimes

in combination with native defects, to form electrically inactive complexes [106].

One of the primary effects of boron doping on silicon is the increase in carrier concentra-

tion. As the doping concentration increases, the number of holes increases, which leads

to a reduction in the resistivity of the silicon. This is because resistivity is inversely pro-

portional to the carrier concentration; as more carriers are available to conduct electric

current, the material’s ability to conduct electricity improves [107]. This is illustrated

in Figure 2.10.
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2.5. Point defects due to boron doping in silicon

Figure 2.10: The dependency of the electrical resistivity of silicon at 300 K temperature
on the p type (boron) doping concentration [107].

The increase in carrier concentration due to boron doping also has complex implications

for carrier mobility. While the addition of boron increases the number of holes, it also

introduces scattering centres in the form of ionised impurities and potential clusters.

These scattering centres can impede the movement of carriers, thereby reducing their

mobility (see Figure 2.11). The overall mobility of carriers in heavily boron doped

silicon is determined by a balance between the increased number of carriers and the in-

creased scattering events. At very high doping levels, the high concentration of dopants

compensates for the reduction in mobility caused by the dominance of lattice scattering

effects, resulting in enhanced conductivity [108–110].
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2.6. Summary

Figure 2.11: Electron mobility of silicon as a function of boron acceptor doping con-
centrations at 300 K temperature [108].

2.6 Summary

This chapter has provided a foundational overview of the structural and electronic

properties of semiconductors, with a focus on silicon and its response to boron dop-

ing. Beginning with an outline of crystal lattices and reciprocal space, the discussion

extended into the formation of electronic and phonon band structures, illustrating the

quantum mechanical framework underlying semiconductor behaviour. The role of dop-

ing was explored in detail, highlighting how the introduction of boron atoms generates

point defects, lattice distortions, and localised vibrational modes, all of which influ-

ence the electrical and vibrational characteristics of the material. Having examined

how doping alters material properties at the atomic scale, the next chapter introduces

scattering theory, a critical tool for probing these changes experimentally.

31



Chapter 3
Scattering Theory

Scattering theory is a fundamental concept in the study of materials, particularly in

understanding how waves or particles interact with matter. In the context of electron

diffraction, scattering theory provides the framework for interpreting how electrons

are diffracted by the atomic structures of a material, revealing crucial details about

its crystallographic properties. This chapter delves into the principles of scattering

theory, starting with ideal single crystals and key concepts like Bragg diffraction, atomic

scattering and structure factors, and thermal diffuse scattering due to phonons. It then

covers diffuse scattering from point defects, so-called Huang diffuse scattering. This

exploration provides the essential background to interpret the experimental results in

this thesis.

3.1 Scattering from ideal single crystals

Electron scattering from ideal single crystals is a fundamental concept in solid-state

physics and materials science, particularly in techniques like electron diffraction and

electron microscopy. In an ideal single crystal, atoms are arranged in a perfectly peri-

odic lattice, enabling coherent electron scattering. This coherence leads to distinct

diffraction patterns, which are crucial for determining the crystal structure [111].

When an electron beam interacts with a crystal, the electrons are scattered by the peri-
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3.1. Scattering from ideal single crystals

odic potential created by the atoms in the crystal lattice. This interaction is governed

by the wave nature of electrons, as proposed by de Broglie [112]. The mathematical

description of electron scattering from a crystal involves solving the Schrödinger equa-

tion for an electron in the periodic potential of the crystal lattice. This potential can

be expressed as a sum of plane waves using a Fourier series expansion:

V (r) =
∑
G
V (G)eiG·r, (3.1)

where, G are the reciprocal lattice vectors, and V (G) are the Fourier coefficients of

the potential [113]. The periodic nature of the potential in an ideal crystal causes the

scattered electron waves to interfere constructively or destructively depending on the

geometry of the lattice and the wavelength of the incident electrons [114].

The geometry of scattered waves is described by the scattering vector Q, which is

defined as the difference between the incident wave vector kin and the scattered wave

vector kout. As an electron beam passes through a crystal, it can be represented by a

wave with a specific wave vector kin. Upon interacting with the atoms in the crystal,

this wave scatters in various directions, resulting in each scattered wave having its own

wave vector kout. The scattering vector Q thus represents the change in the wave vector

resulting from this scattering process [115, 116],

Q = kin − kout. (3.2)

The magnitude of Q is related to the semi-angle of scattering θ and the wavelength λ

of the electrons by the equation[117],

|Q| = 2 sin θ
λ

. (3.3)

This relationship forms the foundation for analysing the diffraction patterns that result
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3.1.1. Bragg diffraction

from electron scattering in crystals, as it helps determine how the scattered waves

interfere with one another to create the observed patterns.

3.1.1 Bragg diffraction

Bragg diffraction is based on the principle that when an incident wave, such as an

electron wave, interacts with a periodic crystal lattice, diffraction occurs if the wave

satisfies the Bragg condition which leads to the formation of strong, sharp Bragg dif-

fraction spots. Bragg’s law is expressed as [118]:

nλ = 2dhkl sin θB, (3.4)

where n is an integer, λ is the wavelength of the incident electrons, dhkl is the inter-

planar spacing of the crystal planes, and θB is the angle of incidence [119].

Equation (3.4) arises from the constructive interference of scattered waves (Figure 3.1a).

For constructive interference to occur, the path difference between waves scattered from

adjacent crystal planes must be an integer multiple of the wavelength. When this con-

dition is met, the scattered waves reinforce each other, resulting in a strong diffraction

peak. The spacing between lattice planes determines the angles at which these peaks

are observed, while the wavelength of the incident wave influences the overall diffraction

pattern [120].

At Bragg angle θB, the magnitude of scattering vector Q has a special value, denoted

by QB, which is equal to G, where G is a reciprocal lattice vector corresponding to the

set of lattice planes responsible for the diffraction peak [121]. This can be expressed as:

QB = 1
dhkl

= G. (3.5)

This geometric interpretation of Bragg’s law shows that the lattice planes act like
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3.1.1. Bragg diffraction

mirrors for the incident electron beam (Figure 3.1a). The diffraction spots observed

in electron diffraction patterns are effectively the result of these planes reflecting the

incident waves with the same phase [122].
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Figure 3.1: Illustration of Bragg’s diffraction (a) and the Ewald sphere construction (b).
In (a), the incident and diffracted beams are shown, with wave vectors kin and kout at
the Bragg angle θB, while the interplanar spacing is denoted by dhkl. In (b), the Ewald
sphere construction illustrates the relationship between the incident wave vector kin,
diffracted wave vector kout, and the reciprocal lattice point G, with the sphere radius
equal to 1

λ
, showing the geometric condition for diffraction [120].

Bragg diffraction can also be visualised through the concept of the Ewald sphere (Figure

3.1b). The Ewald sphere is constructed by drawing a sphere centred on the incident

wave vector kin with a radius equal to the magnitude of kin, which is 1
λ
, in reciprocal

space. When an incident wave interacts with the crystal, it scatters to a new wave

vector kout on the Ewald sphere. The Bragg condition is satisfied when the surface

of the Ewald sphere intersects a reciprocal lattice point G. This intersection signifies
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3.1.2. Atomic scattering factor

that the scattering vector corresponds to a reciprocal lattice vector, thereby fulfilling

Bragg’s Law [123, 124].

Since a crystal is made up of repeating identical unit cells, analysing the diffraction

from a single unit cell is enough to comprehend the diffraction behaviour of the entire

crystal. Each atom within the unit cell scatters the electron beam, with the scattering

intensity influenced by the atomic scattering factor f(Q) and the phase determined by

the atom’s specific position within the unit cell [62, 125].

3.1.2 Atomic scattering factor

The atomic scattering factor, also known as the atomic form factor, describes how the

amplitude of the wave scattered by an isolated atom varies as a function of the scatter-

ing angle [126]. Using the First Born Approximation (which assumes that the scattered

intensity is weak), the atomic scattering factor is given by the Fourier transform of the

electrostatic Coulomb potential V (r) of the atom as:

f(Q) = C
∫ b

a
V (r)e(iQ·r) dr, (3.6)

where, C = 2πme
h2 , m and e are the mass and charge of the electron, and h is the Planck

constant. If an atom is isotropic, both the electrostatic potential and the scattering

factor are spherically symmetric [127].

The Coulomb atomic potential is connected to the charge density through Poisson’s

equation, which includes contributions from both the atomic nucleus and the electrons

surrounding the atom [128],

∇2V (r) =
[

−4πe(ρn(r) − ρe(r))
ϵ0

]
, (3.7)

where ρe(r) is the number density of the atomic electrons and ρn(r) is that of the atomic
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3.1.2. Atomic scattering factor

nucleus. For a static atom, the nucleus can be approximated as a point charge of atomic

number Z, simplifying the equation to:

∇2V (r) =
[

−4πe(Zδ(r) − ρe(r))
ϵ0

]
. (3.8)

By combining equation 3.6 with equation 3.8, the relationship between the scattering

factor for electrons and the atomic form factor used in X-ray diffraction can be shown

as [128]:

f(Q) = 2me2

ℏ2Q2ϵ0
[Z − f ∗(Q)], (3.9)

with,

f ∗(Q) =
∫ b

a
ρe(r)e(iQ·r) dr. (3.10)

The first term inside the brackets in equation 3.9 represents scattering due to the nuc-

leus, while the second term accounts for scattering by the atomic electrons. The atomic

scattering factor for electrons includes contributions from both the nuclear charge and

the electron charge density of the atom [129].

The scattering amplitude f(Q) for electrons in the first Born approximation can also be

parameterised as a sum of Lorentzian and exponential terms. This empirical expression

is useful for practical calculations and fits experimental data effectively [130].

f(Q) =
n∑

i=1

[
ai

Q2 + bi

+ ci exp(−diQ2)
]

(3.11)

where, ai, bi, ci, and di are fitting parameters. To demonstrate this, the atomic scattering

factor has been plotted using this empirical expression for four different elements -

silicon, carbon, germanium, and gold, as shown in Figure 3.2.
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3.1.3. Structure factor and Bragg intensities
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Figure 3.2: Graph of the atomic scattering factor f(Q) for carbon (C), silicon (Si), ger-
manium (Ge), and gold (Au), computed using the empirical expression n Equation 3.11.
The graph displays the atomic scattering factor as a function of scattering vector mag-
nitude Q for each element, showcasing the variations in scattering properties among
the different materials [130].

3.1.3 Structure factor and Bragg intensities

The structure factor describes how an incident electron wave is scattered by a crystal’s

periodic arrangement of atoms, incorporating contributions from all atoms within the

unit cell. In electron diffraction, the structure factor is expressed as the sum of the

atomic scattering factors of individual atoms, weighted by phase shifts due to their

positions within the unit cell. For a crystal with s atoms, the structure factor Fhkl(Q)

for a particular set of lattice planes can be written as [131]:

Fhkl(Q) =
∑
l,s

fs(Q)eiQ·R(ls). (3.12)
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3.1.3. Structure factor and Bragg intensities

where fs(Q) is the atomic scattering factor and R(ls) is the position vector of the

sth atom in the l unit cell. The structure factor determines which reflections will be

observed in a diffraction pattern and follows selection rules specific to the crystal struc-

ture [132].

In some crystal structures, certain reflections do not appear in the diffraction pattern

due to the specific atomic arrangement and symmetry of the lattice. These forbidden re-

flections occur when the structure factor for certain Miller indices hkl is zero. Forbidden

reflections result from destructive interference of scattered waves due to symmetry con-

straints within the crystal lattice. When the structure factor equals zero, the scattered

waves from the atomic planes corresponding to those indices cancel each other out. As

a result, those specific reflections are absent from the diffraction pattern, provided the

specimen is thin enough to ensure weak (i.e. kinematic) scattering. Forbidden reflec-

tions are useful for understanding the symmetry and atomic arrangement within the

crystal [133].

Since the structure factor encapsulates both the amplitude and phase of the scattered

waves by summing the contributions of all atoms in the unit cell, the Bragg intens-

ity IBragg(Q) of the diffracted beam can be expressed in terms of the structure factor.

IBragg(Q) is proportional to the square of the modulus of the structure factor [134]:

IBragg(Q) ∝
∣∣∣∣∑

l,s

fs(Q)eiQ·R(ls)
∣∣∣∣2. (3.13)

For elastic scattering, the magnitude of incoming wave vectors and the scattered wave

vectors are equal, i.e,
∣∣∣kin

∣∣∣ =
∣∣∣kout

∣∣∣ = 2π
λ

. Whenever the scattering vector(Q) is equal

to a reciprocal lattice vector(G), Bragg scattering from all atoms in the crystal can

take place, provided the structure factor is non-zero. Equation 3.13 is valid for thin

specimens (kinematic scattering). For thicker specimens, multiple scattering can occur,

which means the Bragg beam intensity is no longer determined by the structure factor.
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3.1.4. Thermal diffuse scattering

Therefore, reflections with zero structure factor can have some intensity provided the

specimen is thick enough. Chapter 5 describes the multislice procedure for calculating

Bragg beam intensities under multiple scattering conditions.

3.1.4 Thermal diffuse scattering

Compared to an ideal crystal, the Bragg intensities are altered due to the displace-

ment of lattice atoms from their equilibrium positions caused by thermal vibrations.

These atomic displacements result in a modification of the scattered intensities. When

thermal vibrations are introduced, the intensity of the scattered electron wave by the

crystal is expressed as the time-averaged intensity, since the atomic displacements u(ls)

are functions of time. The kinematic intensity of the scattered wave, incorporating dis-

placements due to thermal vibrations, is given by [135]:

I(Q) ∝
〈∣∣∣∣∑

l,s

fs(Q)eiQ·[R(ls)+u (ls)]
∣∣∣∣2〉, (3.14)

In the above expression, R(ls) denotes the position of atom in the l-th unit cell, which

is decomposed into:

R(ls) = R(l) + τ (s), (3.15)

where, R(l) is the lattice vector and τ (s) is the atomic basis vector within a unit cell.

By substituting R(ls) = R(l) + τ (s) and expanding the squared magnitude of the sum

of the exponential terms, the equation 3.14 is expressed as:

I(Q) ∝
∑

l,l′,s,s′
fs(Q)fs′(Q)e−iQ·[R(l′)−R(l)+τ (s′)−τ (s)] ×

〈
eiQ·[uα(ls)−uβ(l′s′)]

〉
. (3.16)

Under the Gaussian approximation, the average of the exponential term can be rewrit-

ten as:

〈
eiQ·[u (ls)−u (l′s′)]

〉
= e− 1

2 ⟨[Q·(u (ls)−u (l′s′))]2⟩, (3.17)
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3.1.4. Thermal diffuse scattering

= e− 1
2 ⟨(Q·u (ls))2⟩e− 1

2 ⟨(Q·u (l′s′))2⟩e⟨(Q·u (ls))(Q·u (l′s′))⟩. (3.18)

Given the translational symmetry of the crystal lattice, the mean squared displacement

for a particular atom and site is the same across all equivalent sites in the lattice.

This implies that ⟨(Q · u(l′s′))2⟩ = ⟨(Q · u(ls))2⟩. The mean squared displacement ex-

pression (3.18) can be simplified by using the atomic displacements due to all lattice

vibration modes [136]. The atomic displacement can be expressed as a sum of plane

waves each with wavevector k in the following form [83]:

u(ls) = Re
1

√
ms

∑
k,j

ak,j ϵk,j,s e
[ik·R(l)−iωk,jt]. (3.19)

Here, √
ms is the atomic mass, ωk,j is the frequency, ak,j is the vibrational amplitude,

and ϵk,j,s is the polarisation vector. By using equation 3.19, the mean squared displace-

ment can be rewritten as:

1
2⟨|Q · (u(ls) − u(l′s′))|2⟩ = Ms +Ms′ −

∑
k,j

|ak,j|2

2√
msms′

×

(Q · ϵk,j,s)∗(Q · ϵk,j,s′ ) × eik·[R(l′)−R(l)],

(3.20)

where, Ms and M ′
s are the Debye-Waller factors, which accounts for how atomic vibra-

tions can reduce the intensity of scattering. For an atom labeled s (or s′ for a different

atom), the Debye-Waller factor Ms can be expressed as [137]:

Ms = 1
4ms

∑
k,j

|ak,j|2|Q · ϵk,j,s|2. (3.21)

For cubic systems, this reduces to:

Ms = Q2

12ms

∑
k,j

|ak,j|2|ϵk,j,s|2. (3.22)

The square amplitudes of the vibrational modes |ak,j|2 can be determined from the

mean kinetic energy and total energy of the crystalline solid, which is modelled as a
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3.1.4. Thermal diffuse scattering

collection of harmonic oscillators„ leading to the expression [138]:

|ak,j|2 =
∑
k,j

ℏ
Nωk,j

coth
(
ℏωk,j

kBT

)
, (3.23)

where, N is the total number of unit cells in the crystalline solid, T is the temperature,

and kB is the Boltzmann constant.

Incorporating the mean squared displacements and Debye-Waller factors into the in-

tensity expression 3.14 yields,

I(Q) ∝ N
N∑

l=1

n∑
s,s′=1

fs(Q)fs′(Q)e(−Ms−Ms′ )e−iQ·[R(l)+τ (s′)−τ (s)] e[Gl,s,s′ (Q)], (3.24)

with,
Gl,s,s′(Q) = ℏ

2N√
msms′

∑
k,j

{ 1
ωk,j

(Q · ϵk,j,s)∗(Q · ϵk,j,s′ )

× coth
(
ℏωk,j

kBT

)
eik·[R(l)]

}
.

(3.25)

This intensity formula for electron thermal diffuse scattering from a single crystal

provides a comprehensive picture of how atomic vibrations contribute to the scattering

process.

To make the thermal diffuse scattering (TDS) intensity more practical for numerical

computation, the expression 3.24 can be simplified by expanding the exponential term

involving Gl,s,s′(Q) using a Taylor series expansion. The term Gl,s,s′(Q) , which ac-

counts for the atomic displacements due to thermal vibrations (phonons), is assumed

to be small for practical purposes. This assumption is reasonable because the dis-

placements of atoms in a crystal due to phonon vibrations are typically small at room

temperature compared to the interatomic distances [45].

By expanding exp[Gl,s,s′(Q)], the total intensity (Equation 3.24) can be expressed as a

series of terms:

I(Q) = I0(Q) + I1(Q) + I2(Q) + ...., (3.26)
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3.2. Diffuse scattering from point defects

where, I0(Q) is the zeroth-order term, corresponding to Bragg diffraction, the first-

order term, I1(Q) corresponding to first-order TDS, I2(Q) is the second-order term,

corresponding to the second-order TDS, and so on.

The first-order term, I1(Q), often dominates the thermal diffuse scattering (TDS),

and is given by [139, 140]:

I1(Q) ∝ Nℏ
2
∑
Q,j

1
ωQ,j

coth
(
ℏωQ,j

kBT

)
|Fj(Q)|2, (3.27)

with,

Fj(Q) =
∑

s

fs(Q)
√
ms

exp(−Ms)(Q · ϵQ,j,s) exp(−iKQ · τ (s)). (3.28)

Equation 3.27 is a simplified version of 3.24. It describes the scattering intensity res-

ulting from interactions with phonons of wavevector Q, and is primarily used to study

lattice dynamics through TDS measurements in section 8.

3.2 Diffuse scattering from point defects

While TDS arises from the thermal vibrations of atoms (phonons) within the crystal,

leading to temperature-dependent diffuse scattering intensity around Bragg peaks, dif-

fuse scattering from point defects originates from static lattice distortions caused by

structural imperfections such as vacancies, substitutional atoms, or interstitials.

Unlike TDS, where atomic vibrations are dynamic and vary with temperature, the

displacements caused by defects are ‘largely’ static and independent of temperature.

The resulting diffuse scattering pattern is therefore determined by the type and con-

centration of defects, as well as the displacement fields they induce.

Compared with the ideal crystal, the Bragg intensities are modified due to the shift
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3.2. Diffuse scattering from point defects

of the atoms from their ideal lattice sites to new sites, caused by introduction of defects

such as vacancies, interstitials, or substitutional atoms. The position of atoms s includes

the term u(lst) which represents the displacement vector associated with the lth unit

cell, caused by the introduction of a defect at position t. The total static displacement

ud(ls), caused by all defects in the crystal, can be expressed as the superposition of

displacements produced by each individual defect. Thus, it can be written as the sum

of displacements due to each defect [141]:

ud(ls) =
∑

t

Ct u(lst), (3.29)

where, Ct is the defect concentration at position t. In addition to the modification in

atomic positions of the host crystal, introduction of point defects into the crystal lat-

tice also alters the atomic scattering factor in regions where defects are present. This is

caused by a change in the local composition (e.g. vacancy or substitutional defect) [142].

In the kinematic approximation, the scattering intensity I(Q) of the defect system

is given by [143]:

I(Q) ∝
〈∣∣∣∣∑

ls

f(Q)eiQ·(R(ls)+ud(ls)) + fD(Q)
∣∣∣∣2〉, (3.30)

where ⟨· · · ⟩ represents the average over all defect configurations, and fD(Q) is the

scattering amplitude of all defects. The diffuse scattering intensity IDiff(Q) due to

defects can be obtained by subtracting above equation 3.30 from Bragg scattering in-

tensity 3.13 [144].

IDiff(Q) ∝
〈∣∣∣∣∑

ls

f(Q)eiQ·(R(ls)+ud(ls)) + fD(Q) −
∑
ls

f(Q)eiQ·R(ls)
∣∣∣∣2〉. (3.31)

Using equation 3.29 for total static displacement, the above equation can be rewritten

as:
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3.2. Diffuse scattering from point defects

IDiff(Q) ∝
∑
ls

〈∣∣∣∣(f(Q)eiQ·R(ls)∏
t

eiQ·u(lst)Ct + fD(Q) −
∑
ls

f(Q)eiQ·R(ls)
∣∣∣∣2〉. (3.32)

The term iQ · u(lst)Ct in eiQ·u(lst)Ct is the static Debye-Waller factor which represents

the contribution of static displacements to the scattering intensity. The product of

the exponential term of the static Debye-Waller factor can be simplified, assuming the

static atomic displacements caused by defects are small compared to the interatomic

distances, as [141, 142, 145]:

∏
t

eiQ·u(lst)Ct = 1 + i
∑

t

CtQ · u(lst). (3.33)

By substituting the above equation, The diffuse scattering intensity due to defects

(Equation 3.32) can be simplified as:

IDiff(Q) ∝
∑
ls

〈∣∣∣∣if(Q)
∑

t

CtQ · u(lst)eiQ·R(ls) + fD(Q)
∣∣∣∣2〉. (3.34)

For the static displacement u(lst), the diffuse scattering intensity gives the Fourier

transform:

ũ(Q) =
∑

t

Ctu(lst)eiQ·R(ls). (3.35)

By using the above equation, equation 3.34 can be written as:

IDiff(Q) ∝
〈∣∣∣∣if(Q)Q · ũ(Q) + fD(Q)

∣∣∣∣2〉. (3.36)

The second term in the above equation 3.36 is the Laue scattering from the defect

itself [134]. The atomic scattering factor fD(Q) of the defect atoms takes on differ-

ent forms depending on the nature of the defect. For interstitial impurities, fD(Q) is

given by fD(I)e(iQ·R(I)), where fD(I) is the scattering factor of the interstitial impurity
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3.2.1. Huang diffuse scattering

and R(I) is the interstitial position. For substitutional impurities, it is the differ-

ence between the scattering factor of the interstitial impurity and that of the normal

atoms, i.e.,fD(Q) = fD(I) − f(Q) . In the case of vacancies, the structure factor is

fD(Q) =−f(Q) [146, 147].

3.2.1 Huang diffuse scattering

The first term in equation 3.36 is the Huang diffuse scattering due to lattice distor-

tion. The scattering intensity is given by the Fourier transform of the distortion field

when the scattering vector Q is approximately equal to the reciprocal lattice vector G

(Q ≈ G), i.e Q= G+g, where g is the deviation from the Bragg reflection and is small

compared to G [148]. The diffuse scattering observed near the Bragg reflections, where

the intensity is particularly strong, is known as Huang diffuse scattering IHDS [149, 150].

IHDS(Q) ∝ f 2(Q)
∣∣∣∣Q · ũ(Q)

∣∣∣∣2, (3.37)

where,ũ(Q) is the Fourier transform of the elastic displacement field.

For an isotropic defect in an isotropic medium the displacement field, and its Four-

ier transform, are both isotropic. Since the scattered intensity (Equation 3.37) depends

on Q.ũ(Q), we can expect zero intensity whenever Q perpendicular to ũ(Q). For an

isotropic defect this happens on a plane perpendicular to G through the reciprocal lat-

tice point. When g → 0 we can expect maximum scattering intensity in the direction

of G (Q//ũ)and has the approximate functional form [134, 151, 152]:

IHDS(Q) ∼ Q2

g2 . (3.38)

For isotropic defects, the diffraction contrast from spherically symmetrical coherency

strains resulting from spherical domains should lead to a butterfly-like pattern (Fig-

ure 3.3). For anisotropic defects, the diffuse scattering intensity is averaged due to the

random distribution of the defects orientations. Each defect orientation yields a differ-

ent zero intensity plane and the zero intensity plane is no longer perpendicular to G.

46



3.3. Summary

Zero intensity planes of different defect orientation may however coincide for symmetry

reasons [134, 148]. Low-symmetry defects lead to scattering in all directions without

distinct zero-intensity planes or lines.

Figure 3.3: Isointensity curves for an isotropic point defect in Cu for different reflections.
a) [100] reflection (dotted curve, isotropic approximation); (b)curve in (001) plane for
a [110] reflection; (c) curve in (110) plane for a [111] reflection [148].

3.3 Summary

This chapter has outlined the theoretical framework underpinning electron scattering

phenomena in crystalline materials. Starting with scattering from ideal single crystals,

the principles of Bragg diffraction, atomic and structure factors, and thermal diffuse

scattering were described to clarify how periodic atomic arrangements and lattice vi-

brations influence diffraction patterns. The discussion then turned to diffuse scattering

from point defects, highlighting how imperfections within the lattice can subtly alter

scattering signatures. The following chapter will introduce the experimental techniques

used to probe these scattering phenomena through electron microscopy and spectro-

scopic methods.
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Chapter 4
Experimental Techniques

This chapter provides a overview of the experimental techniques employed in this thesis

to investigate the effects of degenerate boron doping in silicon. It begins by outlining

the instrumentation and working principles of transmission electron microscopy (TEM),

detailing its structural components, the interaction of the electron beam with matter,

and modes of operation. It also discusses limitations such as spherical and chromatic ab-

errations of the lenses. Next, the chapter delves into scanning transmission electron mi-

croscopy (STEM), which combines the advantages of both TEM and scanning electron

microscopy, allowing for high-resolution imaging and the analysis of vibrational prop-

erties through monochromated electron energy loss spectroscopy (EELS). In addition

to these primary techniques, the chapter covers secondary experimental methods that

contribute to the overall material characterisation, including Raman Spectroscopy, Hall

Effect measurements, and Secondary Ion Mass Spectrometry (SIMS), which provide

complementary information on the structural, electronic, and compositional properties

of the boron doped silicon.

4.1 Transmission electron microscopy

Transmission electron microscopy (TEM) is a pivotal technique in the field of materials

science and biology that allows researchers to observe the fine structure of materials at

the atomic level. The foundations of TEM can be traced back to the early 20th century,
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when scientists began to explore the dual wave-particle nature of electrons, a concept

proposed by de Broglie in 1924 [153]. This breakthrough led to the realisation that

electrons, due to their significantly smaller wavelength compared to visible light, could

be utilised to surpass the resolution limitations imposed by optical microscopes [154].

As a result, TEM became an essential tool for examining material properties at the

nanoscale, providing critical insights into the nature of crystal defects and the micro-

structural characteristics of various crystalline materials [155].

The first transmission electron microscope was constructed by Max Knoll and Ernst

Ruska in 1931, marking a transformative moment in microscopy history. Their pion-

eering work enabled the use of high-energy electron beams to achieve high resolution,

paving the way for TEM as an essential tool for examining material properties at the

nanoscale [156]. By transmitting a high-energy electron beam, typically around 200

keV, through a thin specimen (∼ 100-150 nm thick), TEM allows for the investigation

of the internal structure of materials with exceptional detail [157].

The transmitted electrons can be either elastically or inelastically scattered. Elastically

scattered electrons provide crucial information about the crystalline structure via dif-

fraction patterns and contribute to high-contrast images, while inelastically scattered

electrons reveal insights into the material’s electronic and vibrational properties via

techniques like electron energy loss spectroscopy (EELS) [158, 159]. The resolving

power of TEM can reach down to 0.1 nm, which is significantly better than that of

conventional optical microscopes [160]. Such exceptional resolution has led to investig-

ations of materials at the atomic level, especially investigations on nanoscale features

like point defects [161], grain boundaries [162], and dislocations [163], which are critical

to understanding the mechanical, vibrational and electronic properties of crystalline

materials. For example, TEM has been instrumental in analysing semiconductor ma-

terials used in microelectronics, where atomic-level insights can significantly influence

device performance [164].
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Despite its strengths, TEM has inherent limitations. One significant challenge is the

requirement for samples to be extremely thin (generally about 100 nm) to allow for

sufficient electron transmission [157]. This necessitates sample preparation techniques

such as ion milling or focused ion beam (FIB) milling, which can unintentionally in-

troduce structural and chemical changes, leading to potential artefacts in the obtained

data [165]. Additionally, the interaction of the electron beam with sensitive mater-

ials can cause radiation damage, limiting the usability of TEM for certain types of

specimens [166].

4.1.1 TEM instrumentation

The main components of a TEM include: the electron gun (source of electrons); gun

alignment controls; condenser lenses (magnetic lenses for beam collimation); objective

lens (for image focusing and initial magnification); apertures (to restrict the electron

beam diameter); intermediate lens; projector lens; sample holder; viewing screen; and

detectors.

Two kinds of electron sources have been used in TEMs: thermionic source and field emis-

sion source. Thermionic guns (Figure 4.1a) operate by heating materials like lanthanum

hexaboride (LaB6) or tungsten to high temperatures. This heating provides electrons

in these materials with enough energy to overcome the work function barrier (Ew),

the energy threshold that keeps electrons bound to the solid, allowing them to escape

and form a continuous electron beam (Figure 4.1b). Materials like LaB6 and tung-

sten are well-suited for thermionic guns due to their high melting points, which enable

them to withstand the intense heat required for electron emission. LaB6 cathodes pro-

duce brighter and more coherent beams due to their smaller tip radius and lower work

function. Tungsten filaments, although less efficient, offer a cost-effective and simpler

alternative [167, 168]. Field Emission Guns (FEGs)(Figure 4.1c), on the other hand,

emit electrons through a process driven by a strong electric field at a very sharp single

crystal tungsten tip. This electric field facilitates the field emission process, allowing
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electrons to tunnel through the potential barrier and escape into the vacuum (Fig-

ure 4.1d). FEGs produce a highly focused electron beam with a small energy spread

and high brightness, making them ideal for high-resolution imaging. However, FEGs

are more expensive to operate and require ultra-high vacuum conditions to prevent

contamination of the tip, which is essential for maintaining stable performance [168–

170].

Figure 4.1: (a) Tungsten hairpin filament of a thermionic emitter, (b) The energy-level
diagram of thermionic emission, the symbol E denotes the energy required to transfer
an electron from the lowest energy state within the metal to the vacuum, (c) Tungsten
field emission gun, (d) Energy-level diagram of field emission, d denotes the potential
barrier width [171].

After electrons are emitted from either the thermionic or field emission source, they are

accelerated by a high voltage, forming an electron beam. This beam is then aligned

and focused onto the sample using the TEM’s magnetic lenses. In TEM, following the

electron source there are two condenser lenses ( C1 and C2), as in Figure 4.2. The
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C1 lens is responsible for controlling the spot size of the beam by creating a crossover

point for the electrons emitted from the gun gun. C1 effectively demagnifies the electron

beam. The C2 lens, on the other hand, regulates the convergence angle of the beam,

enabling the generation of either a parallel or a convergent beam depending on the

operational mode selected [168].

Figure 4.2: A schematic diagram of an electron microscope. The electron beam is
illustrated in blue, while gray brackets indicate the lenses. Black bars represent the
apertures, and a red arrow signifies the specimen and its (intermediate) images. The
trajectories of scattered electrons are shown in orange and green [172].

Following the condenser lenses, the objective lenses serve as a critical component of

the TEM. Most TEMs feature an objective twin-lens system (Figure 4.2) that consists

of two electromagnetic lenses: one positioned above the sample to provide additional

control over the beam and another below the sample that magnifies the image by
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approximately 50 times [172]. The intermediate lens, located further down the TEM

column (Figure 4.2), is responsible for magnifying the initial image generated by the

objective lens and projecting it onto the viewing screen in imaging mode. By adjusting

the excitation of the intermediate lens, it can also project the diffraction pattern, which

is focused on the back focal plane (BFP) of the objective lens, onto the viewing screen

in diffraction mode.

4.1.2 Aberrations

In TEM, various lens aberrations such as spherical (Cs) aberration, chromatic (Cc) ab-

erration and astigmatism significantly impact image quality and resolution. Spherical

aberration, as in Figure 4.3a, arises because electrons that are farther from the op-

tical axis are bent more strongly by the magnetic lens than those near the optical axis,

leading to the formation of a disk instead of a perfect point focus. As a consequence,

instead of converging to a single point, these electrons form a disk-like pattern. Chro-

matic aberration (Figure 4.3b), on the other hand, occurs due to differences in electron

speeds as they travel through the lens; slower electrons are focused more effectively

than faster ones, resulting in multiple focal points instead of a single one. Spherical

aberration can be corrected by using multipole correctors, such as hexapole or quad-

rupole/octupole elements, which create additional magnetic or electrostatic fields to

counteract the aberration. Chromatic aberration can be minimised by using energy fil-

ters or monochromators to select electrons of a narrow energy range, thus reducing the

spread caused by energy differences. Astigmatism arises when magnetic lenses, which

are ideally assumed to possess perfect rotational symmetry, exhibit imperfections due

to factors such as machining errors, variations in the lens material, asymmetry in wind-

ings, and contamination on apertures. These imperfections can lead to elliptical rather

than circular symmetry in the lens. This issue is commonly resolved using stigmators,

small coils that create a compensating magnetic field to balance the inhomogeneities

causing astigmatism [168, 171, 173].
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Figure 4.3: Schematic representation of (a) spherical aberration (Cs) and (b) chromatic
aberration (Cc) in an electron lens. ds and dc are the minimum diameters for spherical
and chromatic aberrated electron beams, respectively [171].

4.1.3 The modes of operation

The operation of TEM is fundamentally organised around two primary modes: diffrac-

tion mode and imaging mode (Figure 4.4). In both modes, the objective lens plays

a critical role in controlling how the resulting data is captured. In diffraction mode,

the objective lens collects electrons that have passed through unscattered or scattered

by the specimen at different angles to create a diffraction pattern (DP) in the back-

focal plane (BFP). This diffraction pattern contains essential information about the

specimen’s crystal structure and periodicity. Subsequently, these scattered electrons

are recombined by the lens system to form an image in the image plane, which al-

lows for detailed structural analysis of the specimen. The ability to switch between

these modes allows for the examination of either diffraction data or imaging features at

various resolutions [168, 174].
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Figure 4.4: This diagram represents the optical paths and operational modes in a trans-
mission electron microscope (TEM). (a) diffraction mode, and (b) imaging mode [168].

One of the key operations within diffraction mode is micro/nano-diffraction (Figure 4.4).

In this mode, the goal is to isolate diffraction data from a specific area of the speci-

men, reducing the information from unrelated regions. A typical DP may contain

electrons scattered from the entire illuminated area of the specimen, which can pose

significant challenges. For instance, specimen irregularities such as uneven thickness

and deformation can cause diffraction patterns to become diffuse, and intense direct

beam illumination can saturate the diffraction pattern, making the analysis difficult.

To mitigate these issues, micro/nano-diffraction is employed to refine the diffraction
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pattern by limiting the illuminated region of the specimen. By doing so, a specific area

of interest within the sample can be selected, enhancing the clarity of the diffraction

data [168, 175].

There are two primary strategies to perform micro/nano-diffraction by limiting the

illuminated area of the specimen: reducing the size of the electron beam or insert-

ing an aperture that selectively allows only a portion of the electrons to pass through

and form a diffraction pattern. The first method, which involves manipulating the

condenser lenses to converge the electron beam at the specimen, is used for creating

convergent beam electron diffraction (CBED) patterns [168]. The second and more

common method involves using a selected-area aperture. This aperture is inserted into

one of the image planes of the imaging lens, which is conjugate with the specimen plane.

This configuration creates a virtual aperture at the specimen’s location, enabling the

selection of a specific region to contribute to the diffraction pattern. By choosing the cor-

rect area through the aperture, a more precise diffraction pattern can be obtained [174].

Figure 4.5: Ray diagrams of imaging modes in a transmission electron microscope
(TEM). (a) Bright-field (BF) mode, where the objective aperture selects the unscattered
(direct) beam. (b) Dark-field (DF) mode, with the objective aperture selecting a dif-
fracted beam. (c) Centred DF imaging with a tilted incident beam [168].
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Image mode can be divided into two primary types: bright-field (BF) and dark-field

(DF) imaging. These modes differ in how the transmitted electrons are detected to form

an image. In bright-field imaging, the objective aperture is placed in such a way that

it allows only the unscattered (electrons that suffered no angular deviation) electrons

to pass through to the detector, as in Figure 4.5a. This results in an image where the

sample appears dark compared to the surrounding vacuum. On the other hand, dark-

field imaging selected the diffracted electrons rather than the transmitted ones. DF

imaging highlights areas of the samples that scatter the electron beam in a particular

direction. The sample appears bright in these regions, contrasting with the surrounding

dark vacuum [155, 176]. Because the scattered electron beam is travelling at an angle

to the optic axis (Figure 5b) a standard DF image is blurred by the spherical aberration

in the objective lens. To overcome this the incident electron beam can be tilted using

specialised coils located above the specimen, such that the desired scattered beam now

passes along the optic axis (Figure 5c). This mode of operation is called ’centred’ DF

imaging.

4.1.4 Scanning transmission electron microscopy

Scanning transmission electron microscopy (STEM) is a technique that utilises a con-

verged electron beam for imaging and analysis. In contrast to TEM, which employs a

nearly parallel electron beam with a small convergence angle, STEM focuses the beam

into a finely converged probe with a relatively large convergence angle (as shown in

Figure 4.6). The probe scans across the sample in a raster pattern, constructing an

image pixel by pixel, with the signal recorded based on the probe’s position. This serial

data acquisition method results in slower imaging compared to TEM . The resolution

depends on the probe size, which is influenced by parameters such as, beam current,

and aberrations in the objective lens. The condenser and objective lenses project the

electron source onto the sample to form the probe, which is demagnified to limit its

contribution to the final spot size [168, 177, 178].
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Figure 4.6: Electron optics in a scanning transmission electron microscope (STEM),
showing the trajectory of electron beams as they pass through optical components such
as condenser, objective, projector lenses and apertures. The diagram also shows the
array of detectors used to capture transmitted electron signals [179].

STEM employs a variety of detectors to capture different types of electron scattering,

enabling multiple imaging modes (as shown in Figure 4.7). Bright-field (BF) imaging is

achieved by using a BF detector that collects electrons scattered within a probe semi-

convergence angle from the optical axis. Dark-field (DF) imaging is performed using

an annular detector, which collects electrons scattered outside the BF disc. This setup

forms an image known as the annular dark-field (ADF) image. For higher-angle scat-

tering, a high-angle annular dark-field (HAADF) detector is used, collecting electrons

scattered at angles typically greater than five times the probe semi-convergence angle,

which is particularly useful for imaging heavier elements due to Rutherford scatter-

ing. In Rutherford scattering, electrons are deflected at larger angles by nuclei, causing

the heavier atoms to appear brighter in the resulting image. This effect is utilised in

HAADF imaging, which is often referred to as ‘Z-contrast’ imaging due to the distinct

contrast between elements with different atomic numbers (Z). Heavier atoms scatter

electrons more strongly, generating a greater signal and appearing brighter in the im-

age compared to lighter atoms [168, 178].
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4.1.4. Scanning transmission electron microscopy

Figure 4.7: Schematic of STEM detection geometry showing different detectors used
for various angular ranges of scattered electrons[168].

The resolution of STEM images is primarily limited by spherical aberration due to

the rotational symmetry of the probe-forming electromagnetic lenses. This limitation

has driven significant efforts to improve resolution by correcting these aberrations. In

1947, Scherzer proposed that breaking the rotational symmetry of the optical system

could overcome these inherent aberrations and enhance resolution. This idea paved the

way for the development of aberration correctors, which rely on non-round elements

known as multipoles (Figure 4.8) to correct spherical aberration. Multipoles, named

after their rotational symmetry (e.g., quadrupoles, hexapoles, and octupoles), allow for

the correction of aberrations that would otherwise be impossible with traditional round

lenses. There are two primary types of aberration correctors: quadrupole-octupole

(QO) correctors and hexapole correctors [179].
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Figure 4.8: Diagram of magnetic multipoles used for spherical aberration correction
shows the top view of poles with alternating polarities [179].

In a quadrupole-octupole (QO) corrector (Figure 4.9), the alternating combination of

multipoles is used to correct spherical aberration. The first quadrupole creates a line

focus along the negative spherical aberration axis of the first octupole. The octupole

introduces negative spherical aberration along a pair of axes perpendicular to the beam

propagation direction (e.g., the x and y axes), while simultaneously creating positive

spherical aberration along axes oriented at 45◦ to these directions. To continue the

correction process, two additional quadrupoles are employed. The second and third

quadrupoles produce a line focus along the perpendicular direction for the second oc-

tupole, while the final quadrupole is used to reform the beam into a round shape. The

two octupoles impart negative spherical aberration in the x and y axes, but also cause

some four-fold distortion of the beam. A third octupole, acting on the round beam, is

required to correct this distortion and eliminate the aberration [180]. The quadrupoles

act as focusing and defocusing lenses: along the x axis, the quadrupole compresses

the beam, while along the perpendicular y axis, it spreads the beam out. This ar-

rangement ensures that the beam undergoes the necessary transformations to achieve

the desired spherical aberration correction, resulting in a properly focused and round

beam [179–181].
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Figure 4.9: A diagram of the trajectories of axial rays in the x and y directions through
the QO aberration corrector (with z along the optic axis) [180].

With the integration of multipole aberration correctors, STEM imaging has achieved re-

markable improvements in spatial resolution. In addition to the abberation correctors,

the introduction of monochromators (MC) into STEM instrumentation has led to en-

hanced spatial resolution in STEM imaging and a significant improvement in the energy

resolution achievable for electron energy loss spectroscopy (EELS). Several monochro-

mator designs have been developed for STEM, incorporated into existing microscope

columns. The design we focus on here is the alpha-type magnetic monochromator,

which was used in conjunction with the aberration correctors in the SuperSTEM facil-

ity employed in this work. An alpha-type monochromator works by using two parallel

energy filters (magnetic prisms) and an energy selection slit placed between them (Fig-

ure 4.10).
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4.1.4. Scanning transmission electron microscopy

Figure 4.10: Schematic cross section of alpha shaped monochromator of STEM
column [182].

The incident electron beam first passes through the first magnetic energy filter, which

disperses the electron beam. The dispersed beam then enters the energy selection slit

which allows only electrons of a narrow energy range to pass through. The energy res-

olution after monochromation by the slit improves as the width of the energy selection

slit narrows. However, as the energy resolution increases, the number of monochro-

mated electrons decreases due to the selective energy filtering by the slit. After the

electron beam is dispersed by the first and second magnetic energy filters, it enters the

third filter, where the electrons are effectively directed in the opposite manner. At this
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stage, the third energy filter undisperses the beam, counteracting the dispersion intro-

duced by the first two filters. Once the dispersion is corrected, the beam is re-directed

along the electron optic axis, where it is then focused onto the specimen for imaging or

spectroscopy. The quadrupoles, positioned between the first and second prisms (Fig-

ure 4.10), control the energy dispersion and adjust the spectrum’s magnification. The

quadrupole after the second prism fine-tunes first-order abberations to cancel energy

dispersion at the exit crossover, ensuring proper beam alignment. Sextupoles, located

in both halves of the monochromator, correct second-order aberrations, maintaining

the beam’s accuracy and preventing distortions. Together, quadrupoles and sextupoles

optimise the monochromator’s performance, ensuring a precise, energy-selective beam

output [182, 183].

4.1.5 Electron energy loss spectroscopy

Electron energy loss spectroscopy (EELS) is a powerful analytical method in TEM and

STEM that measures the energy distribution of electrons that have interacted with a

specimen and lost energy through inelastic scattering. These energy losses result from

various electron-specimen interactions, and their analysis provides information about

the material’s physical and chemical properties. The energy loss of primary electrons

typically ranges from 0 eV to several keV. Generally, energy losses up to 50 eV corres-

pond to interactions with valence electrons, including plasmon scattering and phonon

excitations. Losses beyond 50 eV are associated with core electron excitations, reveal-

ing element-specific ionisation edges that provide insights into atomic composition and

bonding environments [168, 184]. By exposing the specimen to a beam of electrons with

a known, narrow range of kinetic energies, EELS detects energy losses due to inner-shell

ionisations and other scattering processes, allowing for the identification of elemental

components. This capability extends to determining atomic composition, chemical

bonding, valence and conduction band properties, and surface-specific phenomena. It

can also provide element-specific pair distance distribution functions, offering a detailed

picture of the material at the atomic level [185, 186]. With electron beam monochro-
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mation, EELS is capable of achieving energy resolutions down to a few millielectron

volts (meV), which enables it to resolve both vibrational and electronic modes of energy

losses.

The energy loss is measured using the dispersive properties of a homogeneous mag-

netic field in an EEL spectrometer. EELS instrumentation relies on a magnetic prism

(Figure 4.11), in which a uniform magnetic field B is produced by an electromagnet

equipped with precisely shaped pole pieces. When high-energy electrons pass through

a magnetic field B , oriented perpendicular to their momentum meν, they are deflected

along a circular trajectory due to the Lorentz force. The radius r of this trajectory is

given by the equation [159, 187]:

r = γmeν

eB
(4.1)

Here, e represents the electron charge, me is the electron mass, ν is the electron speed,

and γ is the relativistic correction factor. The radius of the circular path varies with

the energy of the electrons, allowing the spectrometer to separate them based on their

energy losses. An EEL spectrum is obtained by collecting electrons sorted by their

energy, offering a detailed distribution of energy losses for analysis [187].
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Figure 4.11: Schematic of an electron energy loss spectroscopy (EELS) system illustrat-
ing the dispersion of electrons through a magnetic prism, analogous to the dispersion
of white light through a glass prism, with the formation of a spectrum in the dispersion
plane [168].

An energy-loss spectrum typically consists of three main regions: the zero-loss peak,

the low energy-loss peaks (primarily from plasmon excitations), and the high energy-

loss peaks (associated with ionisation losses). An example EELS spectrum is shown in

Figure 4.12, highlighting these regions. The zero-loss peak mainly comprises electrons

that have experienced minimal energy loss. While it is called the “zero-loss" peak, it

also contains electrons that have undergone slight energy losses, which are below the

resolution of the EEL spectrometer„ such as those due to phonon excitations. The full

width at half maximum (FWHM) of the zero-loss peak is commonly used to define the

resolution of the EELS system. This width results from both the intrinsic resolution of

the spectrometer and the energy spread of the electron beam [188]. The low-loss region

refers to the energy range up to approximately 50 eV, where electrons experience energy

loss due to phenomena such as plasmon oscillations or inter-band transitions. Plasmons

can be thought of as the quantised version of free electrons oscillations in the material.

The oscillations occur due to weak interactions between electrons and are non-localised.
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The energy lost by the electron due to generating a plasmon of frequency ωp is given

by the equation [159, 188]:

Ep = h

2πωp = h

2π

√
ne2

ϵ0m
(4.2)

where, h represents Planck’s constant, e and m denote the charge and mass of an elec-

tron, respectively, ϵ0 is the permittivity of free space, and n signifies the density of free

electrons. In the energy-loss spectrum, the plasmon peak is a prominent feature. It is

typically the second-most significant peak after the zero-loss peak and can be used to

estimate the specimen thickness (t). The specimen thickness relies on the relationship

between the intensity of the total energy loss spectrum peak (It) and the zero-loss peak

(I0), as well as the total energy loss mean free path (λt), which is material-specific.

This relationship can be expressed as follows [168, 189]:

t = λt
It

I0
. (4.3)

The thickness measurement using EELS has distinct advantages over other thickness

measurement techniques, as it can be applied to any specimen, whether amorphous or

crystalline, across a wide range of thicknesses [168].

Apart from collective plasmon excitations, other excitations, such as valence state excit-

ations and low-lying core state excitations, are also present in the low-loss region. The

energy associated with plasmon excitations is typically in the range of 5–25 eV. The

position and width of these plasmon peaks are related to the electronic structure of the

material and can be utilised to distinguish between different materials [187]. Finally,

in a core-loss process, an inner-shell electron in the sample is excited from an occupied

state to an unoccupied state above the Fermi level. The initial state is a bound core

state, while the final state depends on the band structure of the solid. The position of

the energy loss edges in the core-loss region (greater than 50 eV to a few keV) provides

valuable information about the chemical composition of the sample and its local elec-
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tronic structure, as these transitions are specific to the element and the shell involved

(e.g., K, L, or M shells) [179].

Figure 4.12: Example of an EELS spectrum highlighting key features, including the
zero-loss peak, plasmon peak, and energy loss edges associated with specific ele-
ments [168].

4.2 Raman spectroscopy

Raman spectroscopy is a powerful vibrational spectroscopic technique used to study

the vibrational, rotational, and other low-frequency modes of molecules. It is named

after the Indian physicist C. V. Raman, who first discovered the effect in 1928 [190].

Raman spectroscopy is based on the interaction between light and matter. When

monochromatic light, typically from a laser, strikes a molecule of a material, the energy

of the photons can be transferred to or from the molecule, resulting in an inelastic

scattering process. This scattering can cause a shift in the energy of the scattered

photons compared to the incident photons. The amount of energy shifted corresponds

to the vibrational energy levels of the molecule, enabling Raman spectroscopy to probe

the vibrational modes of the material.
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4.2.1 Theory

When electromagnetic waves interacts with molecules, an electric dipole within the mo-

lecule is induced, as the atoms in the molecule become polarised. Polarisation occurs

when the centre of negative charge (i.e. the electrons) is displaced from the atomic nuclei

upon the interaction with an external electromagnetic field. This results in an induced

electric dipole moment. The extent to which this dipole moment is induced depends on

how easily the molecule’s electron cloud can be distorted, which is characterised by the

molecule’s polarisability (α) in response to the external electric field (E). The induced

dipole oscillates at the frequency of the external electromagnetic field, and this oscilla-

tion generates an electromagnetic wave, which is scattered in all directions [191, 192].

In the case of elastic scattering, or Rayleigh scattering, the polarisability is considered

static, i.e. it does not change over time, leading to no frequency shift in the scattered

electromagnetic wave. The frequency of the scattered wave remains the same as that

of the incident light. However, Raman noticed that when a molecule is vibrating, the

polarisability of the molecule changes with time. The vibrational motion (phonons)

causes fluctuations in the electron cloud, leading to variations in the dipole moment as

the molecule vibrates. This results in inelastic scattering, where the frequency of the

scattered light differs from that of the incident light. The energy difference between

the incident and scattered photons corresponds to the energy of the molecular vibra-

tions [191, 192].

There are two main types of Raman scattering (as shown in Figure 4.13): Stokes

and anti-Stokes scattering. In Stokes scattering, the scattered photon has less energy

h(ν0 − ν1) than the incident photon, and the energy difference is transferred to the

molecule, exciting it to a higher vibrational state. Conversely, in anti-Stokes scattering,

the scattered photon has more energy h(ν0 + ν1) than the incident photon, and the

energy is transferred from the molecule to the scattered photon, causing the molecule

to relax to a lower vibrational state. Stokes scattering typically results in stronger sig-

nals than anti-Stokes scattering due to the higher population of molecules in the lower
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energy states at room temperature [193, 194].

Figure 4.13: Energy level diagrams illustrating Rayleigh, Stokes, and Anti-Stokes Ra-
man scattering [193].

4.2.2 Instrumentation

Raman spectroscopy relies on highly monochromatic light, typically provided by con-

tinuous wave laser sources. Among these, helium-neon (He-Ne) lasers are a common

choice, emitting a single wavelength at 632.8 nm. The wavelength of monochromatic

light used in Raman spectroscopy varies, with the most common sources emitting in

the range of 532 to 785 nm. The optical setup, as illustrated in Figure 4.14, uses a mi-

croscope system to illuminate and collect light from a microscopic area of the sample.

The microscope has a high numerical aperture (NA) to effectively collect the Raman-

scattered light over a wide solid angle [195].

Next, a pinhole spatial filter eliminates diffraction rings and high frequency noise sur-

rounding the focused spot, ensuring a clean, focused laser beam to illuminate the

sample. Then the monochromated beam is reflected by a beam splitter and passes

through an objective lens to illuminate the sample. The Raman-scattered light from

the sample is collected by a wide-aperture objective lens and focused onto an adjustable

pinhole spatial filter located in the microscope’s image plane. This pinhole spatial filter

ensures that only light from the focused area of the sample reaches the spectral analyser
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and detector. By adjusting it, the spatial resolution can be improved to 1 µm with a

100× objective lens [120, 196].

Figure 4.14: Optical diagram of a Raman spectroscopy system. The setup includes a
laser source, spatial filters (D1 and D1), beam splitter, microscope objective for focusing
the beam on the sample, holographic filter, and a rotating grating spectrometer for
spectral analysis. The removable mirror allows the beam to be directed to the eyepiece
for visualisation or to the detector for Raman signal acquisition[120].

Since the Raman scattering is intrinsically weak, it is important to suppress the signal

from Rayleigh scattering. Holographic filters are commonly employed in Raman instru-

ments nowadays to filter the Rayleigh signal out. The Raman-scattered light is then

dispersed by a diffraction grating, which is the core component of the spectral ana-

lyser. The diffraction grating disperses the light according to its wave number, based

on principles similar to Bragg’s Law, where different wavelengths are diffracted at dis-

crete angles. This allows the system to resolve Raman shifts with a spectral resolution

of 1 cm−1. Modern Raman systems use a rotating diffraction grating to cover a wide

spectral range, typically from 400 to 4000 cm−1 [120, 195].
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The dispersed light is detected by either single-channel or multi-channel detectors.

Single-channel detectors, such as photomultiplier tubes (PMTs), were used in the spec-

trometer for this work and are commonly employed in Raman studies. PMTs are known

for their high sensitivity, low background noise, wide wavelength range, reliability, and

relatively low cost. However, their main disadvantage is their low throughput, as they

can only read one wavelength at a time. This limitation results in longer acquisition

times to record a full spectrum. Despite this, their characteristics make them a pop-

ular choice for many Raman applications. The resulting data is then processed and

plotted as a Raman spectrum, providing valuable insights into the sample’s vibrational

properties [197].

4.3 Focused ion beam

The focused ion beam (FIB) system is a versatile tool with a wide array of applications

across scientific research and industrial sectors. The working principle of FIB involves

focusing a beam of charged ions, typically gallium, onto the surface of a sample. These

ions are accelerated to high energies (usually between 2 kV and 30 kV) and interact

with the material, causing both physical sputtering (ejection of atoms from the sample

surface) and electronic excitations. The sputtering process allows for the controlled

milling or etching of a surface with high precision, while the electronic interactions

generate secondary electron emissions, which are detected to provide high-resolution

images of the sample surface. FIB systems are often integrated with scanning electron

microscopes (SEM), offering simultaneous imaging and milling capabilities. While its

primary use is precision milling, it is also essential for several specialised tasks. One of

its most notable applications is the preparation of samples for TEM, where it enables

the creation of thin lamellae with nanometer precision [198].
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4.3.1 Instrumentation

A typical FIB system includes a sample chamber maintained under high vacuum, an ion

column with an ion source, accelerating, focusing, and scanning optics, and a series of

detectors for secondary electron and ion detection. Many FIB systems also incorporate

an electron column, called dual-beam FIB (Figure 4.15), typically mounted vertically

above the stage, which focuses on the same point onto the sample as the ion column.

This setup enables simultaneous use of both the ion and electron beams in a system

known as a dual-beam FIB [199].

Figure 4.15: A schematic of the arrangement of an ion beam column, electron beam
column, Omniprobe needle, and Pt needle with respect to the sample in a dual-beam
system [200].

The focused ion beam (FIB) system uses a liquid metal ion source (LMIS), typically

gallium (Ga), which is heated to near evaporation and then flows to coat a sharp, heat-

resistant tungsten needle. The Ga flows to the needle tip, forming a Taylor cone under

the influence of an electric field. This field causes field evaporation, emitting Ga ions,

which are then accelerated down the ion column. The LMIS operates at low emission

currents (1–3 µA) to maintain a stable beam, as higher currents can lead to droplets and
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instability. The ion current is controlled by the extractor and a suppressor (4.16). The

suppressor adjusts the extraction current by applying an electric field of upto +2kV,

ensuring a constant beam current without disturbing the needle tip. This is crucial

for stable operation, as changes in the extractor voltage can cause beam drift. The

suppressor also helps maintain consistent ion emission by counteracting contamination

effects [201].

Figure 4.16: A ray diagram detailing the key components of a FIB system, including the
suppressor, extractor, beam defining aperture, lenses, quadrupole, and the sample [200].

In ion beam columns, the ion beam is shaped by a series of lenses and passes through

an interchangeable aperture with varying hole sizes, which control the beam diameter

and determine the final beam current. Additional components include deflection plates

to raster the beam across the sample surface, stigmation poles to maintain a spher-

ical beam profile, and a high-speed beam blanker to redirect the beam onto a stop,

such as a Faraday cup. Ions require electrostatic components for focusing and steering,

as their charge-to-mass ratio makes electromagnetic lenses impractically heavy, unlike

those used for electrons [199, 202].

For the ion beam to interact with the sample precisely, the sample is mounted on

a grounded stage with three-axis translation, rotation, and tilt capabilities. The stage

is designed with eucentric point, ensuring the field of view remains centred when the
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specimen is tilted. This point, where the two beams cross (in dual-beam FIB), allows

for accurate alignment. The region of interest is moved to this eucentric point using

translation and rotation, and then tilted for the desired angle of beam incidence. The

instrumentation also includes a gas injection system (GIS), which is essential for site-

specific deposition or etching. Common deposition materials are tungsten and platinum.

During TEM sample preparation, a protective layer of platinum or tungsten is depos-

ited to protect the region of interest from ion beam damage during milling. Depending

on the application, the emitted signal after ion beam interaction with the sample can

be detected using appropriate detectors within the sample chamber. Traditional de-

tectors, such as those found in SEM, can be used to detect the electrons or X-rays

produced by the interaction of the ion beam with the sample. The ions sputtered from

the sample can also be detected using a range of detectors, including charge electron

multipliers [199, 200, 202].

Preparation of TEM specimens involves the following steps: (a) identification of the

region of interest, (b)bringing the specimen to eucentric height, (c) platinum deposition

using GIS, initially by the electron beam for materials which are too sensitive to ion

beam and then ion beam, (d) ion milling (with Ga ions at 30 kV and 2.7 nA ) to make

a lamella by forming trenches adjacent to the platinum coated region using cleaning

cross-section mode (Figure 4.17a) and then under cut the sample(Figure 4.17b) , e) lift

the lamella out using an Omniprobe (Figure 14.17c), (f) transferring the lamella onto a

TEM grid , and welding with platinum (Figure 4.17d), (g) cleaning the specimen’s sur-

face with a low energy gallium beam (at 5 kV or lower) by tilting the milled surface of

the specimen at 54◦ with respect to the beam (Figure 4.17e) so that the final thickness

of the lamella is less than 100 nm (Figures 4.17f).
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Figure 4.17: (a) Ion milled trenches adjacent to the platinum coated region, (b) attached
omniprobe with the platinum deposition, (c) lifting the sample out using omniprobe, (d)
the lamella near a TEM grid before attaching. (e) the lemalla before coarse thinning,
and (f) the final polished lemalla.

4.3.2 Modes of operation

When ions collide with the sample, they transfer energy to the atoms in the material

through inelastic collisions. Example include displacement of surface atoms, often caus-

ing the ejection of atoms or clusters, a process known as sputtering. This phenomenon

is central to material removal, enabling precise milling and patterning.There can be ex-

citation of the sample’s surface atoms or electrons, leading to the emission of secondary

electrons [203].

FIB systems primarily operate in three main modes (Figure 4.18): imaging, milling,

and deposition. In imaging mode, the ion beam scans across the surface of the sample,

and detectors capture secondary electrons emitted as a result of ion-sample interactions.

This mode provides high spatial resolution but may result in sample damage due to

the high-energy ions. The resolution is generally lower than that of an SEM owing to

the greater mass of ions compared to electrons. In milling mode, controlled sputter-
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ing of the material by the ion beam is used to create nano and micro-scale structures,

cross sections for analysis, or precisely defined trenches. Finally, in deposition mode,

a platinum needle is positioned near the sample, and the focused ion beam is directed

at the specimen region of interest. Secondary electrons from the ion beam-specimen

interactions causes platinum from the needle to be deposited onto the sample surface in

precise locations. This mode is particularly useful for tasks such as applying protective

layers, repairing devices, or creating functional features, with platinum often used for

its excellent conductivity and protective properties [201].

Figure 4.18: Illustration of three modes of FIB: (a) imaging via secondary ions and
electrons, (b) milling by sputtering material, and (c) deposition using a Pt needle.

4.4 Secondary ion mass spectroscopy

Secondary ion mass Spectroscopy (SIMS) is a powerful analytical technique primarily

used for the detailed characterisation of the surface composition and layer structure

of solid materials. It operates by bombarding a material with primary ions (typic-

ally in the keV range), which penetrate the solid to a certain depth, depositing energy

along their track (Figure 4.19). At energies ranging from a few keV to tens of keV,

energy deposition primarily occurs through nuclear collisions, known as nuclear stop-

ping power, as opposed to electronic stopping power that dominates at much higher

energies (MeV range). This energy induces the emission of secondary particles, includ-

ing positive or negative ions, electrons, and neutrals. The process involves collision
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cascades, which cause intense fragmentation and bond breaking near the ion track,

producing mainly atomic particles. Moving outward from the ion track, where energy

deposition decreases, intact molecules may be emitted if they gain enough energy to

overcome surface binding forces. The secondary ions, which can be atomic or molecu-

lar, provide significant information about both the surface and deeper regions of the

sample, depending on the mechanisms involved in secondary ion formation [204, 205].

Figure 4.19: Schematic of ion-solid interactions in SIMS [205].

4.4.1 Instrumentation

A secondary ion mass spectrometer (SIMS) consists of five key components: a primary

ion gun that generates the primary ion beam; a primary ion column for accelerating and

focusing the beam onto the sample; a high-vacuum sample chamber; a mass analyser

that separates ions according to their mass-to-charge ratio; and a detector for measur-

ing the ion intensity [206]. SIMS requires a high vacuum (below 10−10 mbar) to prevent

secondary ions from colliding with background gases and to minimise surface contamin-

ation [207]. Three types of ion guns are commonly used: electron ionisation sources for

generating gaseous ions (e.g., Ar+, O+
2 , SF+

5 ), surface ionisation sources for producing

Cs+ ions, and liquid metal ion guns (LMIG) such as Ga [206]. The choice of ion source

depends on the required current, beam dimensions, and the sample being analysed. For
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instance, an oxygen primary beam (O+
2 ) is used to generate positive secondary ions,

while a caesium primary beam (Cs+) is used to generate negative secondary ions [208].

The mass analyser can be a sector field, quadrupole, or time-of-flight (ToF) type, with

ToF being the most common in static SIMS due to its ability to detect all secondary

ions simultaneously. In a ToF analyser, ions are accelerated to a constant kinetic energy

from an acceleration potential (V ) of 3–8 kV, and their flight time (t) through a tube

of distance (L) to the detector is measured. The flight time is calculated using the

formula [120]:

t = L(2V )− 1
2

(
m

z

) 1
2

(4.4)

This allows the mass to charge ratio (m
z

) of the ions to be determined, with heavier ions

having longer flight times compared to lighter ones. Detectors include Faraday cups

for high current signals, electron multipliers for single ion detection, and microchannel

plates for lateral resolution combined with fluorescence detection. Detection limits

range from 1012 to 1016 atoms per cubic centimetre, depending on the instrument and

conditions.

4.4.2 Modes of operation

In static SIMS mode, the intensity and size of the primary ion beam are controlled so

that the disturbed volume does not overlap with adjacent areas affected by previous

ion impacts. This mode allows for the collection of data on an essentially unaltered

sample surface, where the effects of ion implantation are minimised. Studies show that

SIMS spectra remain consistent when ion fluence is below 10−13 ions per cm2, which

suggests that the sample surface is not significantly modified under such conditions [3].

Static SIMS is commonly used to analyse surface compositions with minimal depth

alteration [120].

Conversely, dynamic SIMS involves higher primary ion fluences, which progressively

erode the sample surface. This process enables the acquisition of depth profiles, with

secondary ion intensities recorded as a function of the increasing ion fluence. By calib-

rating ion fluence with depth, a high-resolution depth profile can be achieved, making
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dynamic SIMS particularly useful for thin films, layered materials, and for tracking

elemental or molecular changes from the surface to the bulk [209].

4.5 Hall measurements

Temperature-resolved Hall measurement is an important technique for Understanding

how charge carriers behave in semiconductors across different temperatures is funda-

mental to characterising their electrical properties. One of the most widely used tech-

niques for this purpose is the temperature-resolved Hall measurement, which allows for

the determination of charge carrier concentration, mobility, and resistivity as a function

of temperature. This method provides crucial insights into how doping affects carrier

dynamics.

4.5.1 Principle

The Hall effect, first discovered by Edwin Hall in 1879, is a phenomenon that occurs

when a current-carrying material is placed in a perpendicular magnetic field. The Hall

effect results in the deflection of charge carriers in the material, which leads to the

formation of a transverse voltage — known as the Hall voltage. This voltage arises

due to the Lorentz force acting on the charge carriers in the material, causing them to

accumulate on one side of the conductor. By carefully measuring this voltage, we can

deduce important information about the charge carriers, including their concentration

and type (whether they are positive or negative), which are crucial for understanding

the material’s electrical properties [210].

4.5.2 Hall measurement setup

In a typical Hall measurement setup (Figure 4.20), a current (Ix) is driven through a

thin conducting material with a magnetic field (Bz) applied perpendicular to the plane

of the slab. As the current flows through the material, the charge carriers (electrons
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or holes) move along the length of the conductor in response to the applied electric

field (Ex). For materials with electrons as the charge carriers, these carriers flow in

the direction opposite to the current, while in materials with holes, the charge carriers

move in the same direction as the current. The magnetic field applied perpendicular to

the plane of the conductor exerts a Lorentz force on the charge carriers, causing them

to accumulate on one side of the conductor. This accumulation results in the creation

of a transverse electric field (Ey), known as the Hall electric field, which counteracts the

magnetic force. Once equilibrium is reached, the transverse electric field balances the

magnetic force, leading to no net movement of charge carriers in the y-direction [85].

The Hall voltage (VH) generated due to this accumulation of charge is related to the

Hall electric field (Ey) by:

VH = Eyw, (4.5)

where, w is the width of the material. The carrier concentration n can then be determ-

ined from the measured Hall voltage using the following equation:

n = IxBz

VHqt
(4.6)

where Ix is the current, q is the charge of the carriers, t is the thickness of the slab,

and VH is the measured Hall voltage. For materials with holes as the charge carriers,

the Hall voltage will have an opposite polarity compared to those with electrons. The

sign of the Hall voltage thus reveals the type of charge carriers in the material, with a

positive Hall voltage indicating holes and a negative Hall voltage indicating electrons.

This distinction allows Hall measurements to determine not only carrier concentration

but also the type of conductivity in a semiconductor [46].

Temperature plays a critical role in determining both the Hall voltage and the car-

rier concentration in semiconductors. At low temperatures, carrier freeze-out occurs

as thermal energy is insufficient to ionise the dopant atoms, leading to a significant

decrease in free charge carriers (n) and an increase in VH . In this freeze-out regime,

most of the dopants remain in their neutral state, and conduction is dominated by any
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free charge carriers from shallow impurities. As temperature increases, more dopant

atoms ionise, increasing the carrier concentration and reducing VH . This follows the

Arrhenius-type relation [58]:

n ∝ exp
(−Ea

kbT

)
(4.7)

where kb is the Boltzmann constant, T is the temperature, and Ea is the dopant ac-

tivation energy, which represents the energy required to ionise a dopant atom. In non-

degenerate semiconductors, this relationship dominates the temperature dependence of

the carrier concentration. However, in heavily doped semiconductors, the situation is

different. Due to the high doping concentration, the Fermi level moves deeper into the

valence band, and leads to ionisation even at low temperatures. As a result, n becomes

less temperature-dependent, and the variation in VH is primarily influenced by changes

in carrier mobility rather than carrier concentration [211].

Figure 4.20: Schematic diagram of the Hall effect measurement setup. A rectangular
silicon sample (dimensions: L × W × t) is placed in a perpendicular magnetic field (Bz),
with a constant current (Ix) applied along its length. Due to the Lorentz force, charge
carriers are deflected, creating a transverse Hall voltage (VH) across the width of the
sample [210, 212].
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4.6 Summary

This chapter has provided a comprehensive overview of the experimental techniques

employed to investigate the structural, electronic, and vibrational characteristics of

degenerate boron-doped silicon. It began with a detailed explanation of TEM, includ-

ing its fundamental principles, instrumentation, and operational modes, highlighting its

ability to probe atomic-scale features. The chapter then introduced scanning STEM and

EELS, both of which enable nanoscale imaging and phonon analysis. Supplementary

techniques such as Raman spectroscopy were presented to complement EELS findings,

offering an optical means of identifying vibrational modes. FIB methods were outlined

as essential for site-specific sample preparation, particularly in generating thin lamel-

lae for TEM analysis. The chapter also detailed the use of SIMS for high-sensitivity

elemental profiling, and concluded with an in-depth discussion of Hall measurements,

including temperature-dependent setups to assess carrier type, mobility, and concen-

tration. Collectively, these methods form a robust experimental foundation for the

subsequent investigation of boron-induced effects in silicon, enabling the investigations

of structural, electronic, scattering and vibrational properties.
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Chapter 5
Simulation Techniques

5.1 Density functional theory

Quantum mechanical simulations of material properties generally involves solving the

many-body Schrödinger equation, which describes the interactions between all particles

(electrons and nuclei) in a system. This equation, in its complete form, is incredibly

complex, especially for materials with a large number of particles. The direct solution

of the Schrödinger equation for such systems is computationally not possible due to

the vast number of degrees of freedom involved. A significant simplification is made

through the Born-Oppenheimer approximation, which assumes that the nuclei of a sys-

tem, being much heavier than the electrons, move much slower. Consequently, the

nuclei are treated as static in comparison to the rapidly moving electrons. By applying

the Born-Oppenheimer approximation, the total wavefunction of the system can be

separated into nuclear and electronic components. This allows for the simplification of

the problem by focusing on the electronic degrees of freedom while assuming that the

nuclei are fixed in place [213].

The electronic Hamiltonian (Ĥ), describing the total energy of the system’s electrons,

within the Born-Oppenheimer approximation is given by [34]:

Ĥ = T̂ + V̂ext + V̂ee. (5.1)
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Where, T̂ represents the kinetic energy of the electrons, V̂ext represents the external

potential due to the interaction of the electrons with the fixed nuclei, and V̂ee accounts

for the electron-electron Coulomb interaction. Solving the electronic part of the above

Schrödinger equation directly still remains computationally demanding. To overcome

the difficulties associated with directly solving the many-body Schrödinger equation,

density functional theory (DFT) simplifies the problem by using the electron density

as the primary variable to describe the system’s properties [34].

The foundational work of DFT is built on the two Hohenberg-Kohn theorems, which

form the theoretical basis for DFT by demonstrating that the ground-state properties

of a system can be determined from the electron density n(r) alone. This is a signific-

ant simplification because, instead of working with a wavefunction that depends on the

positions of all the electrons in the system, we can instead focus on the much simpler

electron density, which depends only on three spatial coordinates.

The first Hohenberg-Kohn theorem states that the external potential V(r), govern-

ing the interaction between the electrons and the external environment (static nuclei),

is uniquely determined by the ground-state electron density n0(r). In other words, each

ground-state wavefunction corresponds to a unique potential, and each ground-state

electron density corresponds to a unique ground-state wavefunction. If two different

external potentials, VA(r) and VB(r), produce the same ground-state wavefunction

ϕ0(r), then these potentials must be identical except for an additive constant. This

implies that the ground-state wavefunction uniquely defines the external potential, and

consequently, the potential V (r) can be determined from the wavefunction alone. The

second Hohenberg-Kohn theorem complements this by introducing the energy func-

tional E[n], which expresses the total energy of the system as a functional of the electron

density. It can be written in general form as [214]

E[n] = FKH [n] +
∫
n(r)V(r)d3r, (5.2)
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where, FKH [n] is known as the universal Hohenberg-Kohn functional, defined as

FKH [n] = T[n] + U[n], (5.3)

with T[n] representing the exact kinetic energy of the interacting electrons and U[n]

the electron-electron interaction energy. The energy functional E[n] encompasses all

terms that are independent of the external potential and therefore applies universally

to many-electron system. The theorem states that the value of this energy functional

is minimised when the electron density corresponds to the true ground-state density

n0(r). If there were any other electron density n(r) that produced a lower energy

than n0(r), it would violate the variational principle, which is not physically possible.

Therefore, the electron density that minimises the energy functional must correspond to

the ground state. Together, these theorems simplify the complex many-body problem

by reducing it to a functional of the electron density, which depends only on three

spatial coordinates, rather than the wavefunction that depends on the positions of all

electrons in the system [215, 216].

5.1.1 Kohn-Sham equations

While the Hohenberg-Kohn theorems provide a solid theoretical foundation, they do

not directly provide a practical method for calculating material properties due to the

interacting nature of electrons. The Kohn-Sham approach, introduced by Kohn and

Sham in 1965 [217], simplifies the problem by treating the interacting many-body elec-

tron system as a fictitious system of non-interacting electrons that generate the same

ground state electron density as the interacting system. This is achieved by replacing

the many body wavefunction |ϕ⟩ by a set of single-particle wavefunctions ψi(r), each

governed by a single-particle Hamiltonian. The interacting system is thus described

by a system of non-interacting particles moving in a Kohn-Sham potential VKS, which

includes the external potential, the Hartree potential, and the exchange-correlation po-

tential, yet yield the same ground-state electron density of the real interacting system.
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The Kohn-Sham equation is written as [65][
− ℏ2

2m∇2 + VKS(r)
]
ψi(r) = ϵiψi(r), (5.4)

with

VKS(r) = Vext(r) + VH(r) + VXC(r), (5.5)

where, ψi(r) are the Kohn–Sham orbitals, ϵi are the corresponding eigenvalues, and

VXC(r) is the exchange-correlation potential. The external potential Vext(r) defines the

interaction between electron and atomic nuclei. The Hartree potential VH(r) describes

the classical Coulomb repulsion between an electron and the total electron density and

is given by:

VH(r) =
∫ n(r′)

|r − r′|
dr′. (5.6)

However, the Hartree potential includes a self-interaction term, as the electron be-

ing considered contributes to the total density. Since this self-interaction is unphys-

ical, it must be corrected, along with other missing quantum effects, by the exchange-

correlation potential VXC(r), which is defined as the functional derivative of the exchange-

correlation energy EXC[n]. This term accounts for both exchange effects, which arise

due to the antisymmetry of the wavefunction, and correlation effects [65, 218, 219].

Solving the Kohn-Sham equations requires an iterative approach due to the circular

nature of this method, as illustrated in Figure 5.1.
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Figure 5.1: Schematic illustration of the self-consistent cycle for solving the Kohn–Sham
equations [219].

The Hartree potential depends on the electron density, but determining the density

requires solving the Kohn-Sham wavefunctions, which in turn requires solving the Kohn-

Sham equations. This creates a circular dependency, which is resolved iteratively. First,

an initial trial electron density is assumed. The equations are then solved to obtain

single-electron wavefunctions, from which a new electron density is computed. This

process repeats until self-consistency is reached, ensuring that the final electron density

accurately represents the system’s ground state [217, 219].
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5.1.2 The exchange-correlation functional

Unlike the external and Hartree potentials, the exact form of the exchange-correlation

energy is unknown. As a result, approximations are required to make DFT calculations

practical while maintaining a reasonable level of accuracy. The exchange-correlation

functional is expressed as a functional of the electron density n(r), which means that

EXC[n] depends on the distribution of electrons in space. The exact functional is defined

as:

EXC[n] =
∫
ϵXC(r) n(r) dr (5.7)

where ϵXC(r) represents the exchange-correlation energy density. Physically, the exchange-

correlation energy may be interpreted as the Coulomb interaction between the electronic

density and the associated exchange-correlation hole. This ‘hole’ arises due to the reduc-

tion in the probability of finding two electrons close together, a consequence of the Pauli

exclusion principle and the Coulomb repulsion. In essence, the exchange-correlation en-

ergy captures the subtleties of electron–electron interactions that go beyond a simple

mean-field treatment [220].

One of the simplest and most extensively employed approximations is the Local-Density

Approximation (LDA). In this thesis, LDA has been used due to its computational sim-

plicity. In the LDA, the exchange-correlation energy at any point in space is assumed

to be the same as that of a uniform electron gas having the same local electron density.

Because the electron density is assumed to be uniform at each point r, this local treat-

ment ensures that the exchange-correlation hole satisfies important physical constraints

such as the charge-conservation sum rule and the requirement that the probability of

finding another electron at the same position is correctly reduced. Although the LDA

has been remarkably successful for many systems, particularly those where the elec-

tron density varies slowly, it has limitations in systems with rapid density variations

or strong electron correlation effects. Nevertheless, the LDA remains a cornerstone of

DFT due to its simplicity and the physical insight it provides into the exchange and

correlation phenomena in many-electron systems [220, 221].
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5.1.3 Pseudopotentials

In DFT calculations, the Kohn–Sham equations are solved by expanding the single-

electron wavefunctions in a chosen basis set and diagonalising the resulting Hamiltonian

matrix. For periodic systems, the plane-wave basis set is the preferred choice due to

its inherent compatibility with periodic boundary conditions and its systematic con-

vergence, which is controlled by adjusting the kinetic energy cut-off [213]. Although

Bloch’s theorem indicates that electronic wavefunctions can be expanded in a discrete

set of plane waves, using a plane-wave basis to describe all electrons is impractical.

Tightly bound core electrons and the rapidly oscillating valence electron wavefunctions

within the core region would require an excessively large number of plane waves, leading

to a computationally demanding all electron calculation.

Since the physical properties of solids are predominantly determined by the valence

electrons, the pseudopotential approximation is employed to simplify the problem. This

approximation replaces the strong Coulomb potential from the nucleus and core elec-

trons with a weaker, effective pseudopotential acting on pseudo-wavefunctions, as given

in Figure 5.2.
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Figure 5.2: Schematic illustration of the ‘screened nuclear’ potential (solid lines) and
pseudopotential (dashed lines), along with their corresponding wavefunctions [222].

The pseudopotential is designed such that its scattering properties (or phase shifts)

for the pseudo-wavefunctions are identical to those produced by the core electrons and

ions when interacting with valence electrons, but in such a manner that the pseudo-

wavefunctions exhibit no radial nodes within the core region. Outside the core region,

defined by the cut-off radius rC , the pseudopotential is constructed to be identical

to the all-electron potential, thereby ensuring that the scattering properties of the

pseudo-wavefunctions match those of the true all-electron wavefunctions. This careful

construction ensures that, although the detailed behaviour of the core electrons is not

explicitly treated, their overall effect on the valence electrons is accurately reproduced.

As a result, the number of plane waves required for convergence is drastically reduced,

making the computation far more efficient [222].
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Two main types of pseudopotentials are commonly used in DFT calculations: norm-

conserving and ultrasoft pseudopotentials. Norm-conserving pseudopotentials are con-

structed so that the pseudo-wavefunctions coincide with the true all-electron wavefunc-

tions outside a defined core radius and conserve the integrated charge density within

this core region [223]. Ultrasoft pseudopotentials relax the norm-conservation con-

straint imposed by norm-conserving pseudopotentials, thereby enabling a smoother

effective potential. This adjustment reduces the number of plane waves needed to de-

scribe the system, resulting in a more computationally efficient representation. This is

particularly useful when modelling large-scale, heavy or complex periodic systems, as

the reduced plane-wave count significantly lowers computational cost without sacrificing

accuracy [224]. In this thesis, norm-conserving pseudopotentials (NCP) are used, as sil-

icon is the material under consideration, and this approach is well-suited for accurately

modelling its phonon dispersion.

5.1.4 Phonon calculations - Finite displacement method

For this thesis, the finite displacement method is utilised to compute the phonon dis-

persion of boron-doped silicon systems, enabling a detailed analysis of the vibrational

behaviour introduced by defect configurations. It builds upon the discussion on phonon

band structure already presented in the previous chapter, where the fundamental equa-

tions governing phonon behaviour were detailed. The core principle of the finite dis-

placement method involves displacing atoms within a supercell, evaluating the forces

acting on other atoms, and extracting the interatomic force constants (IFCs) based

on the resulting forces. These force constants are then used to compute the phonon

dispersion relations.

Phonons are formulated within the harmonic approximation, in which the total en-

ergy of a system is expanded as a Taylor series in terms of atomic displacements. The
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force Fα on atom s due to a displacement uβ(l′s′) of atom s
′ is given by [225, 226]:

Fα = −
∑
l′ s′ β

Φαβ{ls; l′s′}uβ(l′s′), (5.8)

where, Φαβ{ls; l′s′} is the interatomic force constant matrix. The force constants are

obtained by computing the forces on all atoms following a small, finite displacement of a

single atom. The method relies on the Hellmann-Feynman theorem [227], which allows

forces to be determined directly from the self-consistent DFT potential. The calculation

begins with the construction of a supercell, which must be large enough to capture the

interactions between displaced atoms and their neighbours while minimising artefacts

from periodic boundary conditions. The choice of supercell size is critical, as it affects

the convergence of the force constants and the accuracy of phonon dispersion relations.

Each atom in the supercell is displaced individually along Cartesian directions by a

small but finite amount. For each displacement, the forces acting on all atoms in the

supercell are calculated. These forces are differentiated to obtain the IFCs [226]:

Φαβ{ls; l′s′} = − ∂Fα

∂uβ(l′s′) , (5.9)

The IFCs are then transformed into reciprocal space to construct the dynamical matrix:

Dk = −
∑
l′

Φαβ{ls; l′s′}
√
msms′

exp{ik · [R(l′) − R(l)]}. (5.10)

Diagonalising the above dynamical matrix at each phonon wave vector k yields the

phonon frequencies and vibrational eigenmodes.

To ensure accuracy, convergence tests must be conducted for supercell size, k vec-

tor sampling, and self-consistent field (SCF) convergence thresholds. Using crystal

symmetries can significantly reduce computational expense by decreasing the number

of required displacements. To further optimise efficiency, a short-range approximation

is often employed, assuming that force constants beyond a certain interaction range

are negligible. In DFT, this approach allows for the accurate determination of phonon

dispersion relations using a relatively small supercell [228].
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5.2 Multislice

The multislice method is a widely used technique for simulating electron diffraction and

high-resolution images in transmission electron microscopy (TEM), especially when

dealing with complex materials, including defective structures. The method plays a

crucial role in the calculation of the transmitted electron wavefunction as it propag-

ates through the specimen under specific illumination conditions, taking into account

the quantum mechanical interactions between the electrons and the material. Various

methods have been developed for this purpose, with the Bloch-wave (BW) method [229]

and the multislice method [230] being the most prominent. The multislice method is

preferred over others for modelling both perfect and defective crystal structures, as it

provides an efficient means of handling the complex diffraction and scattering processes

that occur within the sample. Unlike the BW method, which is more suited for perfect

crystals, the multislice approach is capable of modelling materials with defects, such

as vacancies, interstitials, which makes it especially useful for studies of doped semi-

conductors like boron-doped silicon. This method is based on solving the Schrödinger

equation for each thin slice of the specimen, with the electron wavefunction updated

iteratively as it propagates through each slice. This process effectively simulates how

electrons interact with the atomic potentials in the sample, allowing for the prediction

of diffraction patterns and high-resolution images [231].

5.2.1 Multislice simulation- Static atoms

The multislice method is based on a few key principles of wave propagation and scat-

tering. In particular, it relies on Huygens’ principle to describe the electron beam

propagation through free space [232]. In multislice simulation, as shown in Figure 5.3,

the specimen is divided into thin slices along the electron beam direction (the z-axis),

with each slice having a thickness equal to the periodic planar spacing along the z-axis.

The potential within each slice is treated as a 2D projection of the 3D electrostatic

potential. The electrostatic potential V (r) is determined by the Coulomb fields of the
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individual atoms, and it is assumed that this potential can be approximated as a su-

perposition of the potentials from each atom in the specimen [233]. Mathematically,

the potential at a point r within the material is given by:

V (r) =
∑

i

Vi(r − ri), (5.11)

where, Vi is the atomic potential of ith atom, which has position vector ri. This po-

tential is typically calculated assuming a spherical Coulomb potential for each atom in

free space (i.e. with no bonding), but more complex potentials can be used depending

on the material and the level of accuracy required [234]. Next, this three-dimensional

electrostatic potential is projected along the z-axis (the direction of electron beam

propagation) to obtain a two-dimensional projected potential for each slice of the spe-

cimen. This projection is based on the assumption that the slice is sufficiently thin,

such that the incident electron wave passes through it with minimal deflection. The

projected potential Vn(R) for the nth slice is given by:

Vn(R) =
∫ (n+1)∆z

n∆z
V (R − Ri, z)dz, (5.12)

where, ∆z is the thickness of each slice. This projection simplifies the problem, as

it reduces the three-dimensional electrostatic potential to a two-dimensional function

that varies only with the in-plane coordinates x and y. Here the position vector r is

decomposed into its in-plane coordinates R = (x, y) and the slice-normal coordinate z,

such that r = (R, z) [234, 235].

The next step in the simulation is the calculation of the phase grating, which de-

scribes how the incident electron wave is modulated by the potential of the slice. This

modulation results in a phase shift that depends on the local electrostatic potential

Vn(R). The phase grating is expressed as [236]:

tn(R) = exp(iσV (R)), (5.13)

where, tn(R) is the transmission function for the nth slice, and σ = 2πeλme/h
2 is the

interaction constant, with me being the electron mass, λ the wavelength of the elec-
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5.2.1. Multislice simulation- Static atoms

trons, and h Planck’s constant. The transmission function describes how the electron

wave is phase-shifted as it passes through the potential of the slice [236, 237].

After the transmission function has been applied to the incident electron wave for a

given slice, the wave function is propagated to the next slice using the Fresnel propag-

ator p(R,∆z). This propagator describes the diffraction of the electron wave in free

space between the slices, and it is given by [238]:

p(R,∆z) = 1
iλ∆z exp

[
iπ

λ∆z (x2 + y2)
]
. (5.14)

The Fresnel propagator represents the phase shift due to diffraction over a distance ∆z.

To compute the wavefunction at the next slice, the wavefunction for the slice of interest

is convolved with the Fresnel Propagator. This process repeats till the wavefunction

passes through all slices. The exit wavefunction after propagation is given by [239]:

ψ(n+1)(R) = p(R,∆z) ⊗ tn(R)ψn(R). (5.15)

Convolution in real space is computationally expensive, especially for large grids. There-

fore, it is more efficient to perform this step in reciprocal (Fourier) space. The Fourier

space approach allows the problem to be solved efficiently using fast Fourier transforms

(FFTs) [235]. The propagation is then computed by multiplying the transmission-

modified wave function by the propagator in Fourier space and the exit wave function

ψ(n+1)(R) is given as

ψ(n+1)(R) = F−1[∼p(k,∆z)F [tn(R)ψn(R)]], (5.16)

where, k is the 2D vector in the Fourier space and ∼
p(k,∆z) is the Fourier transform

of the propagator [130]. Once the exit wave function has been obtained through the

multislice propagation through all slices in the sample, the next step is to calculate

the diffraction pattern that corresponds to the electron scattering in reciprocal space.

This is done by Fourier transforming the exit wave function and then taking the square

modulus to obtain the diffraction intensity [238].

I(k) = |F [ψexit(R)]|2 . (5.17)
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Up to this point, the theory has been based on the assumption of static atoms, where

the atoms in each slice are in fixed positions.

)n+1

[ψexit (R)]
2

R(

Figure 5.3: Schematic of the multislice method, where the incident electron wavefunc-
tion is sequentially propagated through multiple slices of the projected crystal potential.
The diffraction intensity distribution is obtained by taking the squared modulus of the
Fourier-transformed exit wavefunction.

5.2.2 Multislice simulation - Frozen phonon

The above idealised scenario does not account for the vibrational motion of atoms

due to thermal effects. However, in reality, atoms in a crystalline material are in

constant thermal motion, even at low temperatures. To simulate this effect, the frozen

phonon (FP) model was introduced, which incorporates the atomic displacements due

to thermal vibrations. These displacements are represented by a random distribution

of atomic positions around their equilibrium positions and are introduced into the

multislice method by modifying the potential. The projected potential V FP
n (R) for
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slice n in the presence of atomic displacements is given by [240]:

V FP
n (R) =

∫ n+∆z

n
Vi(R − Ri −

√
<u2

i> · gi,τ , z)dz, (5.18)

where,
√
<u2

i> represents the temperature-dependent mean square displacements (MSD)

of atom i, and gi,τ are two-dimensional Gaussian normal variables that describes the

random displacement of atom in the direction of the slice at a particular frozen phonon

configuration τ . The displacements are treated as random variables that follow a

Gaussian distribution, with the temperature-dependent MSD given by the Einstein

model [240].

Once the atomic displacements are introduced into the projected potential, the multis-

lice operation is performed using the same framework as in the static case to obtain the

diffraction patterns. Since the atomic displacements are random, a single FP configura-

tion τ will only provide a snapshot of the material’s behavior at one instant in time. To

obtain a realistic diffraction pattern that accounts for the statistical nature of thermal

vibrations, diffraction patterns over multiple FP configurations( τ = 1,2,...,N) are av-

eraged. Hence, the frozen phonon model allows for the simulation of the diffraction

patterns arising from thermal vibrations, by displacing atoms from their equilibrium

positions and averaging the resulting diffraction patterns over multiple configurations

of atomic displacements using the below equation [240, 241].

IFP(k) = 1
N

N∑
τ

IFP
τ (k) (5.19)

Despite incorporating thermal diffuse scattering, the FP model remains elastic. This

is because the model assumes the electron interacts with frozen atomic displacements,

which do not involve real-time phonon creation or significant inelastic scattering. The

electron passage time is much shorter than atomic vibrations, making the scattering pro-

cess effectively elastic, with the averaging over static configurations simulating phonon

effects without actual phonon creation. However, by averaging over many frozen phonon

configurations, the FP model statistically reproduces the effects of phonon scatter-

ing [242].
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5.3 Summary

This chapter outlined the theoretical and computational frameworks employed through-

out this thesis to investigate boron-doped silicon. It began with an overview of density

functional theory (DFT), focusing on the Kohn-Sham approach, exchange-correlation

functionals, and the use of norm-conserving pseudopotentials to simplify the treatment

of core electrons. The finite displacement method was introduced as the primary tool

for calculating phonon dispersion, relying on interatomic force constants derived from

DFT-based force calculations within supercells. Attention was then turned to multislice

simulations, with detailed discussion of the static and frozen phonon (FP) models used

to replicateselected area electron diffraction patterns. The FP model, in particular, al-

lowed thermal vibrations to be statistically accounted for via configurational averaging,

bridging the gap between elastic simulations and thermally-induced diffuse scattering.

Together, these techniques provide a robust and comprehensive toolkit for probing both

the vibrational and electron scattering behaviours of defected crystalline systems.

98



Chapter 6
Influence of Boron Defects on the

Vibrational Properties of Silicon

6.1 Preliminary characterisation of boron

doped Si sample

Degenerate boron doped silicon wafers were purchased from a commercial source (Uni-

versity Wafer). The primary aim of the preliminary characterisation was to confirm the

degenerate doping and verify the presence of boron as the dopant in the silicon sample.

To achieve this, Hall measurements were employed to confirm the degenerate doping

level, while SIMS provided confirmation of the presence of boron in the sample. Hall

measurements were performed by Dr Laurie Phillips (University of Liverpool), while

SIMS was carried out by Prof Guillaume Zoppi (Northumbria University).Additionally,

Raman spectroscopy was performed to gain insight into the vibrational properties of

the sample and further support the confirmation of degeneracy. These results were cru-

cial for establishing the basic properties of the sample before proceeding with further

investigations.
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6.1.1 Hall Measurements

To ensure the boron-doped silicon sample exhibits degenerate doping behaviour, pre-

liminary Hall measurements were carried out across a temperature range of 10 K to

320 K. The hole concentration in the boron-doped silicon remains effectively constant

across the temperature range. This is expected, given that the dopant concentration is

extremely high (around 1020 atoms/cm3), and the boron ions are ionised even at 0K.

Thus, there is little to no fluctuation in the hole concentration across the temperature

range. The carrier concentration is maintained near its maximum, corresponding to the

dopant concentration, with no significant changes occurring over the investigated tem-

perature range. This is illustrated in Figure 6.1, where the hole concentration is shown

to be fluctuating around 1020 atoms/cm3 across the temperature range, confirming the

ionisation of boron even at low temperature.

×1020

Figure 6.1: Hall measurements of boron-doped silicon conducted across a temperature
range of 10 K to 320 K to determine the hole concentration.

6.1.2 SIMS

The Hall measurements conducted on the boron-doped silicon sample confirmed the

degenerate doping concentration of 1020 atoms/cm3 and identified the type of defect
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defect (i.e. donors or acceptors) present. However, the technique could not specify

the precise defect species responsible. To address this limitation, secondary ion mass

spectroscopy (SIMS) analysis was performed to confirm the presence of boron as the

primary defect in the silicon sample (Figure 6.2). The experiment utilised an oxygen

ion beam with a beam energy of 5 keV, a current of 800 nA, and a diameter of 200

µm in a dynamic scanning mode. The analysis employed multiple ion detection (MID)

mode to monitor isotopes of silicon (28Si, 29Si, 30Si) and boron (10B, 11B), with the

instrument output displaying counts per second (cps) on a logarithmic scale over time.

In the SIMS analysis, 29Si was chosen instead of the more abundant 28Si. By selecting
29Si, which is less abundant (around 4.7%) [243], the SIMS instrument was able to

distinguish signals for both boron and silicon simultaneously. This allowed for more

precise analysis of the boron content, without interference from the dominant 28Si iso-

tope. However, this choice led to an underrepresentation of the actual silicon content,

as the silicon signal was solely from 29Si. The relative intensities of isotopes, such as
28Si and 29Si, typically reflect their relative abundances accurately in SIMS. However,

subtle mass fractionation effects can still occur. When comparing isotopes of different

elements like silicon and boron, the signal intensities do not necessarily directly cor-

respond to their actual concentrations due to differences in ionisation efficiency and

sputtering yields between the elements [205].

As shown in Figure 6.2, the underrepresentation of silicon in the SIMS data resulted in

an apparent boron-to-silicon ratio of one boron atom per 65 silicon atoms. In contrast,

the Hall measurement revealed a ratio of one boron atom per 500 silicon atoms. While

the SIMS data likely overestimated the boron concentration, it still confirms the pres-

ence of boron in the silicon matrix, verifying boron as the primary defect species in the

sample.
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Figure 6.2: Secondary Ion Mass Spectrometry (SIMS) profiling of boron-doped silicon
showing the signal from boron (11B) and silicon (29Si) isotopes.

6.1.3 Raman spectroscopy

Raman spectroscopy was employed to characterise elemental silicon (Si), low boron-

doped silicon (Low-B-Si), and heavily (degenerate) boron-doped silicon (High-B-Si).

The measurements were carried out using a laser beam with a wavelength of 633 nm

and a power of 5 mW, a grating of 1800 gr/mm, and a microscope objective with 50×

magnification. The spot size was 500 µm, with an acquisition time of 10–15 seconds

and an accumulation number of 5. The acquisition was performed in single mode at

room temperature. The Raman spectra, presented in Figure 6.3, reveal the character-

istic phonon peak of elemental silicon at approximately 515 cm−1, attributed to the

longitudinal optical (LO) and transverse optical (TO) phonon modes arising from Si-Si

bonding. For low boron-doped silicon, this peak remains sharp and unshifted compared

to elemental silicon, indicating the negligible impact of low boron concentrations on the

crystal lattice vibrational dynamics.

In heavily boron-doped silicon, however, several distinct features emerge. The Raman

peak centred around 515 cm−1 becomes asymmetric, slightly shifted towards the lower
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frequency, exhibit a distinct minimum around 492 cm−1 alongside the central peak,

and significantly broadened. These changes in the line shape indicate Fano resonance

which is caused by the interaction between discrete optical phonon modes and the

continuum of free-carrier transitions within the valence band [244] introduced by high

boron doping. Additionally, increased electron-phonon coupling and localised strain

effects contribute to the broadening and deviation from the ideal Lorentzian line shape.

A new Raman feature is observed around 615 cm−1, likely to arise from vibrations due

to Si-B bonding. This peak highlights the vibrational changes in the silicon lattice due

to the incorporation of boron atoms. The high-B-Si spectrum also exhibits a higher

background intensity, particularly at lower wavenumbers. This behaviour results from

enhanced free carrier absorption and scattering effects, which are more pronounced in

heavily doped semiconductors [245]. Finally, the wavelength cutoff near 650 cm−1 lim-

its any optical modes or vibrational features beyond this cutoff. Consequently, while

the analysis captures phonon modes within the accessible spectral range, any shorter

wavelength optical modes that might provide further insight into the vibrational or

electronic properties of High-B-Si remain undetectable.

Figure 6.3: Raman spectrum of elemental silicon (Si), low boron-doped silicon
(Low-B-Si), and heavily (degenerate) boron-doped silicon (High-B-Si).
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6.2 Experimental EELS measurements of phonon

modes in boron doped silicon

Pure silicon (Si) and degenerately boron doped silicon (High-B-Si) samples were invest-

igated using momentum-resolved electron energy loss spectroscopy (EELS) in scanning

transmission electron microscopy (STEM) mode. The primary objective of these meas-

urements was to identify possible localised vibrational modes associated with boron

incorporation. All EELS data were acquired by Dr Shihao Wang and Professor Quentin

Ramasse at the SuperSTEM Laboratory, Daresbury, UK. STEM-EELS data were col-

lected at an accelerating voltage of 60 kV using the Nion UltraSTEM 100 MC micro-

scope, equipped with a Nion Iris EELS spectrometer and a Dectris ELA hybrid-pixel

direct electron detector. This advanced setup, incorporating an ultra-high energy res-

olution electron beam monochromator [246], is particularly well-suited for vibrational

EELS measurements, enabling the detection of subtle phonon features associated with

dopants. Both full ω–q phonon dispersion map and single-spectrum acquisitions at

selected momentum transfers were collected. The motivation for employing both ac-

quisition modes is discussed in the following sections.

6.2.1 Momentum-resolved EELS spectra

Momentum-resolved EELS was performed in diffraction mode to measure how electron

energy loss due to inelastic scattering varies with momentum transfer. The technique

works by projecting inelastically scattered electrons into the EELS spectrometer so

that both energy and momentum information are captured at once. A rectangular

slot was inserted at the spectrometer entrance in place of the usual circular aperture.

This slot acts as a narrow “window” through the diffraction pattern, selecting electrons

scattered along a specific direction in reciprocal space. By aligning the slot along the 400

systematic row of the [001] zone-axis diffraction pattern, electrons scattered along the

Γ-X-Γ direction of the Brillouin zone were allowed to enter the spectrometer (Figure
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6.4a). The spectrometer disperses the electrons with respect to their energy losses,

typically bending them through 90 degrees, so that one axis on the detector represents

energy loss (ω) and the other represents momentum transfer (q). The result is a two-

dimensional ω–q map, showing how energy loss change with scattering vector. For the

EELS spectra acquisition, a 50 milli-second acquisition time per frame was employed to

balance energy resolution and signal-to-noise ratio. A total of 15,000 frames are aligned

to correct for any misalignments in the zero loss peak and then summed to produce

a cleaner spectrum. The effective energy resolution, i.e. full-width-at-half-maximum

(FWHM) for the zero loss peak in vacuum, is 7 meV. The dispersion is 3 meV/channel.

The STEM probe semi-convergence angle is 2 mrad, which gives a diffraction limited

probe diameter of ∼30 Å and a momentum resolution of 0.04 Å−1.
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Figure 6.4: (a) Diffraction pattern of degenerately boron-doped silicon oriented along
the [100] zone axis, with the selected Γ-X-Γ path defined by the slot aperture (red
rectangle) connecting the 000 and 004 reflections. (b) Momentum-resolved EELS of de-
generately boron-doped silicon showing the energy–momentum (ω–q) dispersion along
theΓ-X-Γ direction.

The STEM-EELS ω−q map for High-B-Si measured along the Γ-X-Γ direction is shown

in Figure 6.5a. The dominant features are the longitudinal acoustic (LA) and optical

phonon branches from the silicon matrix. For reference, the DFT simulated phonon

dispersion curves for silicon along the Γ-X-Γ direction are shown in Figure 6.5b. Since

boron is lighter than silicon, it only contributes to optical modes rather than acoustic
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ones. The complex background from both the EELS zero loss peak and LA phonon

makes it difficult to identify defect modes due to boron. Furthermore, other artefacts

are also present, such as the spurious intensity (circled feature in Figure 6.5a), which

is thought to be due to stray scattering from the EELS slot aperture edges.
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Figure 6.5: (a) Momentum-resolved EELS dispersion measurements of phonons in de-
generate boron doped silicon. (b) Phonon dispersion curves of Si along Γ-X-Γ, showing
the transverse acoustic (TA), longitudinal acoustic (LA), transverse optical (TO), and
longitudinal optical (LO) phonon branches.

To enhance detection of any weak defect modes, EELS spectra over a narrower q-range

close to the direct beam were extracted (orange rectangle in Figure 6.5a). This was

motivated by the following considerations: (i) the dominant LA phonon branch energy

is suppressed near zero q, simplifying the background, (ii) the intensity of the direct

beam is higher, offering an improved signal-to-noise ratio, and (iii) scattering from the

edges of the slot aperture is minimised due to proximity to the direct beam, thereby

reducing unwanted artefacts. The selected q-range is annotated in Figure 6.5a.

The extracted EELS spectrum (Figure 6.6) reveals additional intensity above back-

ground in the ∼100-150 meV energy range, considerably higher than the optical phonon

mode (64 meV) for elemental silicon. This extra intensity is likely due to boron-induced

phonon defect modes. To isolate this contribution, a background fitting procedure was
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applied. A power law function was used to model the underlying background signal

(inset in Figure 6.6), enabling accurate subtraction and revealing the defect-related

contribution, as illustrated in Figure 6.7).

Figure 6.6: Parent spectrum, extracted from a narrow q-range close to the direct beam
(box region in Figure 6.5(a)), with background fit (inset) using power law to isolate the
phonon signal.

The extracted signal, shown in Figure 6.7, displayed a broad peak. Due to the 7 meV

EELS energy resolution, resolving any closely spaced phonon modes is not feasible,

as they would appear as a single broadened feature in the spectrum. Consequently,

a single Gaussian function was fitted to represent the entire defect signal, providing

an effective characterisation of defect modes within the limitations of the instrument.

From Gaussian fitting, the peak maximum was determined to be 131 meV or 1060 cm−1.

The FWHM of the Gaussian fit was 60 meV or 484 cm−1.
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Figure 6.7: Gaussian fit of the high-energy optical modes associated with boron.

6.2.2 Momentum integrated EELS spectra

Momentum-integrated STEM-EELS was employed to further validate the presence of

boron-induced defect modes and to address limitations introduced by slot aperture

artefacts, such as the spurious background intensity observed in the ω–q map. This

decision was based on the observation that the boron-induced defect signal consist-

ently appeared at an energy of approximately 131 meV across Γ → X, indicating

no significant q-dependence. Momentum integrated STEM-EELS provided an advant-

age over momentum-resolved STEM-EELS by eliminating diffraction effects associated

with the rectangular slot used, thereby reducing background artefacts and enhancing

spectral clarity. Momentum-integrated EELS spectra have better signal-to-noise ratio

than momentum-resolved EELS spectra, which can make it easier to detect weak, non-

dispersive phonon modes, such as commonly observed with defects. The idea behind

momentum-integrated EELS is to study the energy loss due to phonons by averaging

the EELS spectra over a selected range of scattering vectors, achieved by controlling

where the spectrometer collects scattered electrons in the diffraction plane. In this ap-
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proach, on-axis measurements are performed by centring the spectrometer aperture on

the transmitted beam, thereby collecting electrons scattered through very small angles.

For off-axis measurements, the electron beam is tilted so that the bright-field disk is

displaced in the diffraction plane.As a result, the spectrometer, which remains fixed in

position, now collects electrons scattered outside the central transmitted beam.

The on-axis and off-axis momentum integrated EELS spectra for both Si and High-B-

Si were acquired at an accelerating voltage of 60 kV. A STEM probe semi-convergence

angle of 30.5 mrad was maintained throughout all measurements. The probe angle is

sufficiently large to detect all phonon modes within the first Brillouin zone, so that the

resulting EELS spectra are momentum integrated (rather than momentum resolved).

The collection semi-angle varied depending on the geometry: a 2 mm circular aper-

ture was used for on-axis acquisition, corresponding to a collection angle of 44 mrad,

while a 1 mm aperture was employed in the off-axis configuration, yielding a smaller

collection angle of 22 mrad. For off-axis collection the centre of the STEM bright-field

disc was deflected by 55 mrad away from the centre of the EELS entrance aperture.

Off-axis EELS spectra have the advantage that the zero loss peak is suppressed, making

background subtraction easier, although there is also less signal intensity. The on-axis

spectra were acquired with a dwell time of 10 milliseconds per pixel. For each on-axis

dataset, 30,000 frames were collected, and a total of over 210,000 frames (30,000 × 7

datasets) were summed to enhance the signal-to-noise ratio (SNR). In contrast, off-axis

spectra, which are inherently noisier due to their reduced signal intensity and angular

displacement from the direct beam, were acquired with a longer dwell time of 30 ms.

Each off-axis dataset consisted of 15,000 frames, and four such datasets (totalling 60,000

frames) were combined to improve SNR. The effective energy resolution, as estimated

by the ZLP full-width-at-half-maximum (FWHM) for the STEM probe incident on the

specimen, was 12 meV and 14 meV for the on-axis and off-axis spectra, respectively.

The dispersion was 1.2 meV/channel.

The collected spectra showed a noticeable increase in noise beyond 0.08 eV, especially

109



6.2.2. Momentum integrated EELS spectra

in the higher-energy part of the data. Since this part of the spectrum is where boron-

induced defect modes appear, these signals can be easily hidden or misinterpreted due

to the high noise level, making it difficult to draw reliable conclusions. To improve the

quality of the data and make sure that important features were not lost in the noise,

we first applied a Savitzky–Golay (S-G) filter, as shown in Figure 6.8 . This is a com-

mon method used to smooth out fluctuations in the data while still keeping the main

shapes and peaks in the spectrum intact. It works by fitting a small set of points in the

spectrum with a low-degree polynomial and moving this fit across the entire dataset

without heavily distorting the real features of the spectrum.

Figure 6.8: Savitzky–Golay (S-G) filtered off-axis EELS spectrum for High-B-Si.

After the smoothing step, the next stage involved isolating the inelastic component of

the spectra by removing the contribution from the zero-loss peak (ZLP). Despite high

energy resolution, the tail of the ZLP can extend into the low-energy loss region, over-

lapping with subtle phonon features and potentially masking weak defect signals. To

address this, a reflected tail method was used. This method assumes that the shape of

the ZLP is approximately symmetric around its maximum, which can be experimentally

achieved in a monochromated electron microscope. By taking the left-hand side of the

ZLP, i.e. the portion of the spectrum at negative energy losses and mirroring it onto the
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right-hand side, an estimated profile of the elastic background was constructed. This

reflected tail was then subtracted from the smoothed spectrum, effectively removing the

influence of the elastic scattering and revealing only the inelastic signal. The smoothed

spectrum and the extracted inelastic signal are shown in Figures 6.9 and 6.10. Fig-

ures 6.9a and 6.9b shows the off-axis EELS spectra for Si and High-B-Si, respectively.

In both cases, the smoothed spectra are shown alongside the extracted inelastic com-

ponents following reflected tail subtraction. Similarly, Figures 6.10a and 6.10b present

the on-axis EELS spectra for Si and High-B-Si.

a) b)

Figure 6.9: Off-axis smoothed spectrum and the extracted inelastic signal plotted to-
gether for (a) Si, and (b) High-B-Si.
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a) b)

Figure 6.10: On-axis smoothed spectrum and the extracted inelastic signal plotted
together for (a) Si, and (b) High-B-Si.

Following this, each extracted inelastic spectrum was normalised to the LO/TO phonon

peak intensity of silicon at 64 meV. This step was necessary to ensure fair comparison

between Si and High-B-Si, as it accounts for variations in signal intensity caused by dif-

ferences in sample thickness and incident electron dose. A power law background was

then fitted and subtracted from each spectrum to remove residual broad signal con-

tributions unrelated to defect vibrational features. The normalised and background-

subtracted spectra for both off-axis and on-axis configurations are presented in Fig-

ures 6.11 and 6.12, respectively.

Figure 6.11a shows the off-axis result for Si, while Figure 6.11b presents the corres-

ponding data for High-B-Si. Similarly, Figure 6.12a displays the on-axis spectrum for

Si, and Figure 6.12b shows the High-B-Si data. Each plot includes the normalised

signal.

112



6.2.2. Momentum integrated EELS spectra

a) b)

Figure 6.11: Background subtracted off-axis EELS intensity for (a) Si, and (b) High-
B-Si plotted alongside the background fit and the normalised smoothed spectrum.

a) b)

Figure 6.12: Background subtracted on-axis EELS intensity for (a) Si, and (b) High-
B-Si plotted alongside the background fit and the normalised smoothed spectrum.

To further investigate the phonon modes and isolate the impact of degenerate boron

doping, the background subtracted signals were compared between Si and High-B-Si in

both on-axis and off-axis configurations. The results of these comparisons are presented

in Figures 6.13a and 6.13b, respectively.

113



6.2.2. Momentum integrated EELS spectra

a) b)

Figure 6.13: Comparison of background subtracted signal of Si and High-B-Si for (a)
off-axis, and (b) on-axis EELS collection geometries.

In both Figures 6.13a and 6.13b, there is a noticeable weak signal in the 100–250 meV

range in Si. This intensity, while unexpected for intrinsic silicon, is likely attributable to

unintentional light-element impurities such as oxygen or carbon, which may have been

incorporated during the crystal growth process [247]. These impurities can introduce

local vibrational modes, giving rise to the observed weak background in this energy

range.

In contrast, the High-B-Si spectra in both Figures 6.13a and 6.13b show a stronger

signal in the 110–150 meV range, clearly exceeding that of the impurity signal observed

in Si. This enhancement is consistent with the introduction of boron defect-induced

phonon modes, which introduce additional optical phonon modes due to boron-boron

and boron-silicon interactions. The distinction between the two spectra, especially the

amplified signal in the High-B-Si case, supports the interpretation that these high-

intensity features are indeed related to boron incorporation, beyond any background

introduced by residual impurities.

To isolate the vibrational contribution specifically due to boron incorporation, the re-

sidual impurities induced signal of Si was subtracted from that of High-B-Si, for both
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off-axis and on-axis configurations. The resulting difference spectra are shown in Fig-

ure 6.14. In both cases, the subtraction reveals a broad residual feature in the 110–150

meV energy range, which was previously obscured by underlying background. This re-

sidual signal highlights the optical vibrational modes introduced by boron doping. The

broadness of the feature across both configurations suggests that the boron-induced

phonon modes are not sharply defined but rather spread across a range of energies,

likely due to the distribution of boron atoms within the silicon matrix.

To characterise the structure of this residual signal, each spectrum was least squares

fitted using two Gaussian functions. This choice was motivated by the presence of a

broader phonon signal due to multiple local vibrational modes, rather than a single

sharply defined phonon peak. In both configurations, the first Gaussian peak (blue

shaded region) is located between 120–135 meV, while the second Gaussian peak (or-

ange shaded region) is located between 140–150 meV. The first Gaussian provides the

most accurate representation of the primary boron-induced phonon mode, given its

close alignment with the observed spectral peak. Therefore, the phonon energy associ-

ated with the first Gaussian peak is taken to represent the characteristic contribution

of degenerate boron doping to the vibrational spectrum. The second Gaussian is tent-

atively assigned to differences in non-boron impurity levels in the Si and High-B-Si

samples. The peak maximum of the first Gaussian was determined to be 132.4 meV for

the off-axis configuration and 131.7 meV for the on-axis configuration, indicating good

consistency between the two independent measurements.
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a)

b)

Figure 6.14: Difference spectrum obtained by subtracting the signal of Si from that of
High-B-Si for both (a) off-axis, and (b) on-axis EELS spectra. The difference spectrum
is modelled by least squares fitting two Gaussian functions. The sum of the Gaussians
is overlaid to evaluate the goodness of fit and the extent to which the Gaussian model
captures the spectral features.

It should be noted, however, that it was challenging to precisely pinpoint the exact

phonon energy of the boron-induced mode due to limitations in detector energy res-

olution (approximately 7 meV), which may cause overlapping or merging of closely

spaced modes, potentially masking finer structure in the defect signal. Nevertheless,

the Gaussian fitting approach enables a reasonable approximation of the defect phonon

characteristics and supports the conclusion that boron introduces distinct, localised

optical vibrational modes around 132 meV or 1065 cm−1.
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6.3 Simulation of phonon modes for boron defects

in silicon

This section presents the simulation results of phonon modes for various boron defect

configurations in silicon. The purpose of these simulations was to reproduce and un-

derstand the experimentally measured phonon wavenumber of High-B-Si obtained via

monochromated-EELS. By employing DFT through the CASTEP code, we investigated

how different defect types, ranging from isolated substitutional and interstitial boron

atoms to clusters of boron interstitials, influence the vibrational properties of the host

silicon lattice.

6.3.1 Convergence tests

To ensure both the accuracy and computational efficiency of the phonon dispersion cal-

culations, a series of convergence tests were performed prior to conducting the full sim-

ulations of boron defect systems in silicon. These included convergence with respect to

the supercell size, the plane-wave cutoff energy, and the Monkhorst-Pack (MP) k-point

mesh. All convergence tests were carried out by employing norm-conserving pseudopo-

tentials and the local density approximation (LDA) for the exchange-correlation func-

tional.

Since phonon calculations are based on periodic boundary conditions, any defect in-

troduced into the system is replicated in all directions. A supercell that is too small

can result in unphysical defect-defect interactions between the defect and its periodic

images in adjacent cells, leading to unphysical phonon mode generation. To mitig-

ate such interactions while maintaining computational feasibility, we also conducted

a convergence test on the supercell size for both substitutional boron acceptors and

interstitial boron defects by calculating the phonon dispersion curves along the Γ to X

direction of the Brillouin zone for supercells containing 64, 216, and 512 silicon atoms.
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For the single boron interstitial system, the highest optical phonon wavenumber along

the Γ to X direction differed by approximately 20 cm−1 between the 64-atom and 216-

atom supercells. For the boron acceptor defect, the difference in the highest optical

phonon wavenumber was around 10 cm−1. Increasing the supercell size to 512 atoms

caused no significant change in the phonon wavenumber. All phonon calculations were

performed using a plane-wave cutoff energy of 700 eV and a 2×2×2 MP k-point mesh,

which were kept consistent across all supercells to ensure comparability. Based on

these results, we concluded that the 64-atom supercell is sufficiently large for phonon

dispersion calculations for both defect types. However, it should be noted that the ac-

ceptor defect system, when modelled using the 64 atom supercell, does not accurately

reproduce the hole concentration observed in experimental Hall measurements. The

64 atom supercell corresponds to a boron concentration of approximately 8×1020cm−3,

which significantly exceeds the typical experimental doping levels of 1020cm−3 observed

in Hall measurements. This leads to a higher concentration of boron than is experi-

mentally observed, which can be considered a limitation of using this supercell for the

acceptor system. Despite this, due to the minimal difference in the phonon wavenum-

ber between the 64 atom and 216 atom supercells, and the substantial reduction in

computational cost, the 64 atom supercell was selected.

Following the selection of the 64-atom supercell, the convergence of the total ground-

state energy with respect to the plane-wave cutoff energy was evaluated for a single

boron acceptor within a 64-atom silicon supercell. The plane-wave cutoff energy de-

termines the maximum kinetic energy of the basis set used to represent the electronic

wavefunctions. An insufficient cutoff can lead to incomplete convergence and inaccurate

forces and energies. For the convergence test, the cutoff energy was varied from 100

eV to 600 eV, while the MP k-point grid was fixed at 2×2×2. The total ground-state

energy of the system was monitored as a function of the cutoff energy, as in Figure 6.15.
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× 104

Figure 6.15: Variation of the total energy of a 64-atom silicon supercell containing a
single boron acceptor as a function of the plane-wave cutoff energy.

As the cutoff energy increased, the total energy initially rose significantly between

100 eV and 200 eV, correcting the artificial overbinding observed at low cutoff energies.

Beyond 300 eV, the total energy changes became progressively smaller, indicating con-

vergence. At 500 eV, the total energy reached -13825.49 eV, with a further increase to

600 eV resulting in only a marginal change of less than 0.1%. Based on these results,

a cutoff energy of 500 eV was selected for all subsequent simulations, providing an ap-

propriate balance between accuracy and computational cost.

A similar convergence test was conducted for the MP k-point sampling. In this case,

the plane-wave cutoff energy was held fixed at 500 eV, and the number of k-points

along each reciprocal lattice vector direction was incrementally increased from 1 to 4.

The energy variation exhibited a rapid convergence with respect to the k-point mesh,

as in Figure 6.16. A single k-point (1×1×1) produced a noticeably higher total energy

of -13818.35 eV, indicating poor sampling of the Brillouin zone. A denser 2×2×2 grid

resulted in a significantly lower energy of -13825.49 eV, close to the fully converged

value. Further increasing the grid density to 3×3×3 and 4×4×4 led to marginal energy

reductions, reaching -13825.58 eV and -13825.59 eV, respectively. Given the minimal

gain in accuracy beyond the 2×2×2 mesh and the increased computational cost asso-

119



6.3.2. Structural configurations of boron defects in silicon

ciated with denser grids, the 2×2×2 k-point grid was deemed sufficient for all defect

systems under investigation.

× 104

Figure 6.16: Variation of the total energy of a 64-atom silicon supercell containing a
single boron acceptor as a function of the k-point grid density.

6.3.2 Structural configurations of boron defects in silicon

Various boron defect configurations using DFT were simulated to understand the in-

fluence of degenerate boron doping on the vibrational properties of silicon. Vibrational

modes are highly sensitive to the local atomic environment, bonding distortions, and

defect-induced strain fields, meaning that the structure and arrangement of boron atoms

within the silicon lattice play a critical role in shaping the observed phonon behaviour.

Therefore, careful modelling of individual boron defects and clusters was necessary

to link specific structural features to experimentally measured phonon modes. It is

assumed that boron dopants are the primary contributors to the experimentally ob-

served defect peak, and that any interactions between boron and unintentional other

light impurities can be largely neglected. This assumption is supported by Hall meas-

urements indicating degenerate p-type extrinsic behaviour, confirming that the boron

concentration is significantly higher than the impurities. The defect systems studied in

this work include isolated substitutional boron acceptors, boron interstitials, and boron
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interstitial clusters. Each defect type was constructed to reflect physically plausible

configurations that could arise during high-concentration doping conditions.

The single substitutional boron acceptor defect (B−) was modelled by replacing a silicon

atom with a boron atom at a lattice site (Figure 6.17a), thus mimicking the conven-

tional p-type dopant configuration in silicon. For the single boron interstitial defect

(B0
i ), the neutral boron atom was placed at the midpoint of a silicon nearest-neighbour

tetrahedron edge (Figure 6.17c), corresponding to an energetically favourable intersti-

tial position based on previous theoretical studies [248]. In addition to modelling the

neutral boron interstitial, a single negatively charged boron interstitial (B−
i ) was also

constructed in order to investigate whether the formation of such an ionised interstitial

is energetically favourable under degenerate doping conditions. Furthermore, a system

containing two nearest-neighbour ionised boron acceptors (2B−) (Figure 6.17b) was also

modelled to explore the interactions between substitutional boron atoms at high doping

concentrations.
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a)

d)c)
[100]

[0
10

]

b)

Figure 6.17: Structural configurations of, (a) a single boron acceptor (B−), (b) two
nearest-neighbour ionised boron acceptors (2B−), (c) a neutral boron interstitial (B0

i ),
and (d) two boron interstitials cluster (2B0

i ), boron defects in silicon as viewed along
[001]. Red and blue atoms represent boron and silicon atoms, respectively.

To simulate boron interstitial clustering, systems containing multiple neutral boron

interstitials (XB0
i , where X = 2 or 3) were constructed. In the two boron interstitial

cluster system (2B0
i ), the two neutral boron atoms were arranged to maintain nearest-

neighbour positioning, simulating a tightly bound defect pair (Figure 6.18a).
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Figure 6.18: Structural configurations of boron defects in silicon as viewed along [001].
(a) The boron interstitial cluster (2B0

i ) with two neutral boron atoms in interstitial
sites.(b) Boron interstitial cluster (3B0

i - confi 1) with three neutral boron atoms illus-
trates a tightly bound trio of interstitials. (c) Boron interstitial cluster (3B0

i - confi 2)
shows three neutral boron atoms arranged in a linear fashion, forming a less compact
structure. (d) Boron interstitial cluster (3B0

i - confi 3) shows a linear arrangement with
alternating boron interstitial atoms and empty interstitial spaces.

Three-boron interstitial clusters (3B0
i ) were investigated in three distinct configurations

to capture a range of physical arrangements, each with differing packing densities. It is

important to note that an exhaustive search of all possible cluster configurations has not

been performed in this study. The primary goal was to identify the physical nature of

the point defects that contribute to the phonon wavenumbers observed experimentally.

In configuration 1 (3B0
i - confi 1), all three interstitial boron atoms were confined within

a single silicon unit cell, representing the most compact and strongly interacting cluster

(Figure 6.18b). Configuration 2 (3B0
i - confi 2) depicted a linear arrangement of the
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boron atoms aligned along the [111] direction, with moderate spacing between the

atoms, thereby spanning multiple unit cells (Figure 6.18c). Configuration 3 (3B0
i - confi

3) presented a further delocalised configuration in which the interstitial boron atoms

were again aligned along the [111] direction but with alternating boron interstitial atoms

and empty interstitial spaces (Figure 6.18d). In all interstitial cluster configurations,

the interstitial boron atoms were clustered on the same (101) crystallographic plane.

6.3.3 Defect formation energies

The calculation of defect formation energies provides critical insight into the stability

of various boron-related defects within silicon. Understanding these energies is es-

sential to determine which configurations are energetically favourable and thus most

likely to occur under realistic doping conditions. All defect structures were simu-

lated within a 64-atom silicon supercell. The supercells were geometry optimised

prior to the defect formation energy calculations. The geometry optimisation em-

ployed Norm-conserving pseudopotentials (NCP) with the Local Density Approxima-

tion (LDA) exchange-correlation functional, a plane-wave basis cutoff energy of 500 eV,

and a Monkhorst-Pack k-point grid of 2×2×2 to sample the Brillouin zone. The struc-

tural relaxation process for all systems continued until the residual force on each atom

was less than 0.05 eVÅ−1, the energy difference between consecutive ionic relaxation

steps per ion was below 5×10−5 eV, and the maximum displacement was <1×10−3 Å.

After structural relaxation, total energy calculations were performed for both defected

and perfect silicon cells, and the defect formation energies were obtained following the

formalism outlined below [249]:

Ef = ET
defect − ET

perfect −
∑

i

niµi + qEF , (6.1)

where ET
defect and ET

perfect represent the total energies of the supercell with and without

the defect, respectively. The term ni is the number of atoms of species i added or

removed, while µi denotes the chemical potential of species i. Here, q is the charge
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state of the defect and EF the Fermi energy level. The chemical potentials used were

defined as µSi = ET
Si/NSi for silicon, where ET

Si is the total energy of a silicon supercell

with no defects and NSi is the number of silicon atoms, calculated from a defect-free

silicon supercell energy, and µB = ET
B/NB for boron, where ET

B is the total energy of

the rhombohedral boron primitive cell and NB is the number of boron atoms.

The calculated formation energies are presented in Table 6.1. The single boron ac-

ceptor (B−) configuration exhibits the lowest formation energy of 2.17 eV for isolated

defects. This result strongly suggests that at low doping concentrations, boron atoms

preferentially occupy substitutional lattice sites, thus acting as effective dopants and

providing holes to the silicon lattice when ionised. The substitutional boron impose

relatively little uniform strain on the silicon lattice because the boron atom fits well

within the tetrahedral framework, resulting in a low defect formation energy. A single

neutral boron interstitial (B0
i ) exhibits a considerably higher formation energy of 3.73

eV, indicating that isolated interstitials are less favourable compared to substitutional

boron under these conditions as it forces the surrounding silicon atoms out of their

equilibrium positions, causing significant lattice distortion compared to single boron

acceptor. Furthermore, the formation energy of an ionised boron interstitial (B−
i ) is

even higher at 5.77 eV, indicating that isolated charged interstitials are unlikely to

form since the added charge increases local electrostatic repulsion. As a result, for

all subsequent calculations involving boron interstitials and clusters, only the neutral

charge state (B0
i ) was considered.

As the boron concentration increases, the spatial separation between boron atoms re-

duces to the point where interactions between them become significant. Table 6.1

reveals that the formation of interstitial clusters becomes energetically favourable com-

pared to acceptor clusters. Specifically, the formation energy of a neutral two-boron

interstitial cluster (2B0
i ) is 5.10 eV, corresponding to 2.55 eV per boron atom, which

is lower than the formation energy per atom for two neighbouring acceptors (2B−) at

2.60 eV. The preference for interstitial clustering over substitutional defect clustering
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at high concentrations arises because substitutional boron atoms, carrying a negative

charge, experience mutual repulsion, making close proximity less favourable. In con-

trast, neutral interstitial clusters avoid such repulsive interactions, allowing a denser

and more stable arrangement.

When the number of boron atoms in a cluster increases further, the total lattice distor-

tion grows, which raises the total defect formation energy, but the per-atom energy can

decrease if there is bonding between neighbouring atoms. For instance, the most com-

pact cluster configuration (3B0
i - confi 1) yields an average formation energy per atom

of 1.90 eV, significantly lower than that of a single boron acceptor. Less densely packed

configurations, however, such as 3B0
i - confi 2 and 3B0

i - confi 3, exhibit higher formation

energies per atom (2.38 eV and 3.41 eV respectively), demonstrating the critical role

of packing density in stabilising boron clusters. These results suggests that at high

boron concentrations, boron clustering in the form of interstitial aggregates is favoured

in addition to the acceptor formation.

Table 6.1: Formation energies of boron point defect configurations in silicon. Numbers
within brackets denote the formation energy per atom.

Defect type Defect formation energies(eV)
B− 2.17
B0

i 3.73
B−

i 5.77
2B− 5.19 (2.60)
2B0

i 5.10 (2.55)
3B0

i - confi 1 5.71 (1.90)
3B0

i - confi 2 7.13 (2.38)
3B0

i - confi 3 10.22 (3.41)

The simulation of an octahedrally shaped 6-neutral interstitial boron cluster 6B0
i config-

uration showed further reduction in the formation energy per atom (1.75 eV). However,

the geometry optimisation process revealed significant local strain around the cluster as

shown in Figure 6.19b, suggesting that although such clusters are energetically favour-

able, they impose considerable distortions on the silicon lattice. The build-up of strain

may ultimately limit the size and packing density of boron interstitial clusters that
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can be accommodated within the crystal without leading to the formation of extended

defects or the breakdown of the lattice structure.

Figure 6.19: Silicon supercell containing an octahedrally shaped 6B0
i interstitial cluster,

viewed along the [111] crystallographic direction. (a) Initial configuration of the cluster
before geometry optimisation. (b) Relaxed configuration after geometry optimisation,
showing the local distortion and strain induced in the surrounding silicon lattice.

6.3.4 Phonon modes

Following the calculation of formation energies, phonon dispersion simulations were

performed for each boron defect configuration to gain insight into their influence on

silicon’s vibrational properties. The phonon modes associated with these defect config-

urations were found to be non-dispersive along Γ to X. This invariance of vibrational

wavenumber across momentum space indicates that the defect-induced modes are highly

localised. This is demonstrated in Figure 6.20, which shows the phonon dispersion of

a boron acceptor defect in an 8-atom supercell, calculated using a 5×5×5 k-point grid

and a plane-wave cutoff energy of 500 eV.
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XΓ

Boron induced defect modes

Figure 6.20: Phonon dispersion curves of a single boron acceptor defect in an 8-atom
silicon cell along the Γ → X direction. The phonon branches are folded due to the
larger cell size.

The DFT simulated, vibrational wavenumbers for the different point defect configura-

tions are summarised in Table 6.2. For a system with N atoms, there are a total of 3N

vibrational modes, consisting of three acoustic and 3(N−1) optical modes. Since boron

is lighter than silicon, it only contributes to optical modes rather than acoustic ones.

Table 6.2 therefore lists wavenumbers for the 3NB number of highest energy modes

for each defect configuration, where NB is the number of boron atoms in the defect.

Note that all three defect-related vibrational modes for the B− acceptor are degenerate,

meaning they occur at the same energy, so only one wavenumber needs to be listed.

The mode for B− is located at 632 cm, which is only slightly higher in energy than

the 516 B− optical phonon mode of pure silicon. Because these two modes are so close

in energy, the B− mode cannot explain the much higher energy defect modes, such as

the one observed at 1065 cm−1 in the STEM-EELS measurements. The wavenumber

difference between the B− and silicon optical modes is approximately 116 cm−1, which

is comparable to the effective energy resolution of the measurements, 12 meV (97 cm−1)

for on-axis and 14 meV (113 cm−1) for off-axis spectra. This limited resolution likely
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explains why the B− modes were not observed experimentally, despite a measured hole

concentration of 1020 cm−3 using the Hall technique. For interstitial boron atoms, a

broader and higher range of vibrational wavenumbers are observed, due to replacing the

relatively stiff Si-B bonds with lighter mass boron atoms that are only weakly bonded.

The maximum wavenumber generally increases with cluster size, provided the packing

density is sufficiently high; for example, 840, 937 and 1015 cm−1 for B0
i , 2B0

i and 3B0
i

(configuration 1), respectively. The maximum wavenumber (825 cm−1) for the 3B0
i

configuration 3 is lower than the other two 3B0
i configurations and also has a negative

frequency. This is attributed to the reduced packing density of the boron interstitials,

which effectively decouples the boron atoms from one another and led to an unstable

geometry.

The maximum wavenumbers for 3B0
i configurations 1 and 2 are similar to the 1065

cm−1 peak wavenumber extracted from STEM-EELS. This suggests that in addition to

dopant acceptor ions the specimen also contains interstitial clusters. The broad Gaus-

sian fit 1 in Figure 6.14a and 6.14b, with full-width-at-half-maximum (FWHM) values

of 0.017 eV (137 cm−1) for the on-axis spectrum and 0.021 eV (169 cm−1) for the off-axis

spectrum, are consistent with the wide range of defect phonon wavenumbers expected

for interstitial boron clusters, although it is likely that there are also multiple cluster

sizes and configurations in our sample, which will also contribute to the broadening. A

further complication is that not all defect modes will contribute equally to the EELS

phonon spectrum. In fact, the oscillator strength depends on q · e, where q and e are

the scattering and phonon polarisation vectors, respectively [250]. Phonon modes with

polarisation vector perpendicular to the sample plane cannot therefore be excited by

the focussed STEM probe.
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Table 6.2: Vibrational wavenumbers of boron point defect configurations in silicon. The
defect phonon modes for a B− acceptor are triply degenerate.

Defect type Wavenumber (cm−1)

B−
632

B0
i 532, 770, 840

2B0
i 528, 548, 697,700, 733, 937

2B−
494, 525, 525, 586, 586, 619

3B0
i - confi 1 511, 515, 529, 563, 612, 708, 720, 949, 1015

3B0
i - confi 2 502, 507, 521, 538, 638, 709, 731, 895, 1212

3B0
i - confi 3 504, 507, 511, 524, 587, 652, 772, 793, 825

6.4 Conclusion

The combined use of monochromated STEM-EELS and DFT has provided a detailed

understanding of how boron incorporation influences the vibrational properties of sil-

icon. Experimentally, momentum-resolved and momentum-integrated EELS spectra

revealed the presence of high-energy optical phonon modes in degenerately boron doped

silicon that are absent in intrinsic silicon. These boron-induced features were consist-

ently observed around 132 meV in the momentum-resolved EELS spectrum as well as

in both on-axis and off-axis geometries, with Gaussian fitting indicating broad phonon

peaks characteristic of boron-induced vibrational modes arising from cluster configura-
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tions. DFT simulations confirmed that substitutional boron (B−) modes lie too close to

the intrinsic silicon optical phonon mode, and the interstitial boron atoms and clusters

produced a broad range of defect phonon modes with 3B0
i - confi 1 and 3B0

i - confi 2

giving rise to the optical phonon modes that are close to the experimentally observed

phonon wavenumber (1065 cm−1). The boron defect modes for all defect configura-

tions were found to be non-dispersive in reciprocal space, confirming their localised

nature. These results indicate that, in degenerately boron doped silicon, in addition to

substitutional acceptor dopants, interstitial boron clusters are also present and contrib-

ute significantly to the vibrational spectrum, leading to the emergence of high-energy

localised optical phonon modes.
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Chapter 7
Diffuse scattering analysis: Elemental

vs. Boron-Doped Silicon

This chapter presents a comparative analysis of undoped and heavily (degenerate)

boron-doped silicon using selected area electron diffraction (SAED) to examine how

boron-induced strain and phonon modes influence electron scattering. Diffraction pat-

terns are acquired along [100] and [110] zone axes to reveal zone-specific scattering

behaviour, and multislice simulations incorporating both substitutional and interstitial

boron cluster configurations are used to interpret the observed changes in scattering

intensity distribution. SAED patterns were acquired and simulated at cryogenic tem-

perature to distinguish thermal diffuse scattering and static strain effects. By combin-

ing experimental and simulated approaches, the study builds a detailed picture of how

boron incorporation perturbs the silicon lattice and modifies its scattering response.

7.1 SAED techniques and indexing DPs

Selected area electron diffraction (SAED) technique was employed to obtain the diffrac-

tion patterns (DPs) of both degenerate boron-doped silicon (High-B-Si) and elemental

silicon (Si). The diffraction patterns of both High-B-Si and Si can be indexed in a man-

ner that identifies high-symmetry zone axes [UVW], which are expected to give rise to
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7.1. SAED techniques and indexing DPs

the highest Bragg intensities. To determine the zone axis, the vector cross product of

two adjacent Bragg spots near the direct beam was taken, where each spot represents

a specific set of crystallographic planes. The indices of the individual diffracted spots

are obtained by measuring the distance from the unscattered beam to a diffraction spot

and comparing it with the theoretically calculated interplanar spacing dhkl of the planes

of atoms. For instance, in Figure 7.1, which shows the electron diffraction pattern of

boron-doped silicon, the interplanar spacing hkl is found by taking the reciprocal of the

distance between spots A and C, which measures 2.09 Å. This is then compared to the

calculated values for all interplanar spacings that result in non-zero structure factors.

Spot A is indexed as the 220 reflection, while spot B is indexed as the 022̄ reflection.

The indexing is constrained by the observed angle between these two reflections, which

is 60° (as shown in Figure 7.1). The indices for the zone axis are then derived by taking

the vector cross product of the 220 and 022̄ reflections, yielding the zone axis direction

of [1̄11]. A similar process is followed for the diffraction patterns shown in Figures 7.3

and 7.4, with all reflections indexed in the same manner.

Figure 7.1: Indexing of the electron diffraction pattern from boron doped Si along [1̄11].
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7.2 Effects of strain due to boron doping in silicon

at room temperature

The effect of strain due to degenerate boron doping in silicon was analysed through

transmission electron microscopy at room temperature. The goal was to better un-

derstand how boron doping modifies the structure and phonon scattering behaviour of

silicon, particularly in degenerate doping conditions where the doping concentration is

high. To do this, selected area diffraction patterns (SADPs) were acquired from both

Si and High-B-Si in the [100] and [110] zone axes orientations at 200 kV.

In addition to the experimental measurements, the selected area electron diffraction

patterns for both Si and High-B-Si in the [100] and [110] zone axes orientations were

simulated using the multislice algorithm in AbTEM software. For the simulation of

High-B-Si diffraction patterns, two types of supercells were used: one representing

boron acceptor and the other based on the interstitial boron cluster configuration 1

(3B0
i - confi 1). The boron acceptor system was chosen based on Hall measurements,

which confirmed the presence of degenerate doping of acceptor atoms. The inclusion

of the 3B0
i – confi 1 in the simulations was motivated by its close correspondence with

the actual defect structure present in the sample, as demonstrated in Chapter 6, where

this configuration was shown to closely match the localised high energy optical phonon

modes observed experimentally in degenerately boron doped silicon. Furthermore, scan-

ning transmission electron microscopy- high angle annular dark field (STEM-HAADF)

images were acquired for both Si and High-B-Si samples to complement the diffraction

analysis. The HAADF images were acquired at the SuperSTEM laboratory, by Prof

Quentin Ramasse. These experimental and simulations observations form part of the

results discussed below, specifically focusing on room temperature data.
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7.2.1 The role of boron concentration in diffuse scattering at

low scattering angles

Si and High-B-Si samples were prepared using Focused Ion Beam (FIB). STEM HAADF

images were acquired for both Si (Figure 7.2a) and High-B-Si (Figure 7.2b) samples to

confirm the absence of FIB artefacts in both samples and to ensure that any changes

in diffuse scattering in High-B-Si arise solely due to the presence of boron.

Figure 7.2: STEM HAADF images of (a) Si, and (b) High-B-Si.

Initial examination by STEM-HAADF revealed randomly distributed, bright atoms,

which were presumed to be re-deposited Pt atoms from FIB-TEM specimen prepara-

tion. These surface atoms were removed using gentle ion-milling with a 500 V voltage

for 10 minutes, followed by 300 V for 8 minutes, employing the Fischione nanomill at

SuperSTEM. STEM HAADF images after the nanomill show no observable differences

between the Si and High-B-Si. One potential reason for the lack of visible difference

could be the slightly thicker nature of the High-B-Si sample (t/λ ∼ 0.57 at 60 kV).

The atomic number contrast due to individual boron atoms embedded in a silicon host

lattice is less visible for thicker specimens.

The t/λ (thickness-to-inelastic mean free path) ratio was measured using electron en-
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7.2.1. The role of boron concentration in diffuse scattering at low scattering angles

ergy loss spectroscopy (EELS), and efforts were made to ensure that the thicknesses of

the two samples were closely matched. For the [100] zone axis, the t/λ ratio was 0.59

for elemental silicon (Si) and 0.58 for High-B-Si at 200 kV. For the [110] zone axis, the

t/λ ratio was 0.94 for Si and 0.94 for High-B-Si at 200 kV. The selected area diffrac-

tion patterns (SADPs) were acquired under identical diffraction conditions. As this is

a comparative study, ensuring similar sample thicknesses and consistent experimental

conditions was essential to isolate the effects of boron concentration on diffuse scatter-

ing. Figures 7.3 and 7.4 shows SADPs of Si and High-B-Si for the [100] and [110] zone

axes.
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Figure 7.3: Selected Area Electron Diffraction Patterns (SADPs) of silicon (Si) and
heavily boron-doped silicon (High-B-Si). (a) [100] zone axis SADP of Si, (b) [100] zone
axis SADP of High-B-Si

.
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Figure 7.4: Selected Area Electron Diffraction Patterns (SADPs) of silicon (Si) and
heavily boron-doped silicon (High-B-Si). (a) [110] zone axis SADP of Si, and (b) [110]
zone axis SADP of High-B-Si.

To further analyse the effect of boron doping on low angle scattering, the diffraction

patterns are also presented on a logarithmic intensity scale (Figure 7.5). In diffraction

patterns, the Bragg reflections are often very intense, while the diffuse scattering and

weaker diffraction features can be several orders of magnitude lower in intensity. If a

linear intensity scale is used, the strong reflections may dominate, making the weaker

features nearly invisible. A logarithmic scale helps to compress this intensity range,

allowing both strong and weak features to be observed more clearly.

In the SADPs of Si and High-B-Si (Figure 7.5a and 7.5b), a ring feature is observed

around the unscattered beam in the [100] zone axis, which can be attributed to amorph-

isation of the surface during FIB specimen preparation. This amorphisation is global,

resulting in the formation of a ring at low scattering angles. The radius of the ring

corresponds to the d-spacing of the [111] plane, approximately 0.308 nm, leading to the

conclusion that it is due to amorphisation. The intensity of the ring is however much

weaker than the Bragg reflections (see Figure 7.6a).
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7.2.1. The role of boron concentration in diffuse scattering at low scattering angles

Figure 7.5: Selected Area Electron Diffraction Patterns (SADPs) of silicon (Si) and
heavily boron-doped silicon (High-B-Si). (a) [100] zone axis SADP of Si, (b) [100] zone
axis SADP of High-B-Si, (c) [110] zone axis SADP of Si, and (d) [110] zone axis SADP
of High-B-Si. The SADPs are displayed in a logarithmic intensity scale.

For the [100] zone axis, the SADP of Si (Figure 7.5a) shows sharp Bragg reflections with

streaking arising from (largely acoustic) phonon scattering along ⟨110⟩ crystallographic

directions around the Bragg reflections. For the High-B-Si, the SADP (Figure 7.5b)

reveals that the Kikuchi lines are unexpectedly sharper compared to those in Si. Ad-

ditionally, the streaking along the 〈110〉 directions is more pronounced and narrower

in High-B-Si. Similarly, for the [110] zone axis, the Kikuchi lines in Si (Figure 17.5c)
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7.2.1. The role of boron concentration in diffuse scattering at low scattering angles

are well-defined, with sharp, high-contrast bands over a relatively weak diffuse back-

ground. In High-B-Si (Figure 7.5d), the Kikuchi lines again appear sharper due to

strain-induced lattice distortions.

While boron doping creates strain fields around the dopant atoms, these strain fields

are highly localised and inhomogeneous, meaning they do not uniformly distort the

crystal lattice on a large scale. Rather than causing a general loss of crystallinity,

the strain from boron atoms results in subtle, localised distortions that influence the

electron-phonon interaction in a way that enhances the diffuse scattering process. The

additional phonons introduced by boron doping, particularly those above silicon’s op-

tical mode frequency, and the inhomogeneous lattice strain lead to increased inelastic

and incoherent scattering of electrons. These inelastically and incoherently scattered

electrons may satisfy Bragg conditions, allowing them to undergo coherent scattering

and form sharper Kikuchi lines. In other words, the inhomogeneous strain and the ad-

ditional phonon modes likely redistributes scattering intensity, enhancing the contrast

and sharpness of the Kikuchi lines.

To further investigate the impact of boron doping on the structural and scattering

properties of silicon, a comparative analysis of the intensities from the diffraction spots

from the [100] and [110] zone axes orientations of Si and H-B-Si was carried out at low

scattering angles. For this purpose, 12 SADPs were collected from both Si and High-

B-Si samples along the [100] and [110] zone axes at room temperature. As mentioned

before, the t/λ ratio for these set of SADPs was similar to maintain consistency in the

data analysis. These SADPs were then summed to enhance the scattering features.

Intensity profiles were extracted along specific directions near selected diffraction spots

in the integrated diffraction patterns. To ensure a direct and meaningful comparison

between the SADPs of Si and High-B-Si, a normalisation procedure was applied to

account for differences in total intensity. This was performed separately for integrated

diffraction patterns acquired along the [100] and [110] zone axes. First, the sum of all

pixel intensities was extracted for both Si and High-B-Si SADPs along each zone axis.
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7.2.1. The role of boron concentration in diffuse scattering at low scattering angles

A scaling factor was then determined separately for each zone axis as the ratio of the

total intensity of the Si SADP to that of the High-B-Si SADP. The total intensity of the

High-B-Si SADP was then multiplied by this scaling factor so that the total intensity

of High-B-Si matched that of Si for each zone axis independently. This normalisation

provides a clearer, relative assessment of how the boron doping affects the scattering be-

haviour of the material, independent of extrinsic variables (e.g. fluctuations in electron

beam current) that could influence the absolute intensity of the diffraction pattern. For

the [100] zone axis, the 02̄2 and 022̄ spots were chosen (Figure 7.6a). For the [110] zone

axis, the 002̄ and 002 spots were chosen, again with the unscattered beam between

them (Figure 7.6b). Since the change in the lattice parameter for High-B-Si is very

small, and the diffraction patterns were acquired on two separate days, the diffraction

patterns of High-B-Si were calibrated with respect to Si d-spacing between spots to

ensure accurate comparisons.
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Figure 7.6: Intensity profiles comparison of symmetrical diffraction spots for elemental
silicon (Si) and heavily boron-doped silicon (High-B-Si) along the (a) [100] and (b) [110]
zone axes.

Since the 022̄ and 02̄2 spots for the [100] zone axis and the 002̄ and 002 spots for the

[110] zone axis are symmetric, the analysis focused on one spot from each pair: 022̄ for

the [100] zone axis and 002 for the [110] zone axis. These were fitted with a Gaussian

function, and the subsequent analysis was based on these fitted parameters. Here, we

are essentially examining g values close to the Bragg reflections.
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Figure 7.7: Gaussian fit of the diffraction peaks for silicon (Si) and boron-doped silicon
(H-B-Si) from the 022̄ diffraction spot for a) the [100] zone axis of silicon and b) the
[100] zone axis of boron-doped silicon, and from the 002 diffraction spot for c) the [110]
zone axis of silicon and d) the [110] zone axis of boron-doped silicon.

For the 022̄ diffraction spots in the [100] zone axis, Gaussian fitting demonstrates a slight

difference in the standard deviation (sigma) values.The Si data exhibits a sigma of 0.31

nm−1(Figure 7.7a), while for High-B-Si, the sigma decreases to 0.28 nm−1(Figure 7.7b).

Similarly, for the 002 diffraction spots in the [110] zone axis, Si shows a sigma of 0.35

nm−1(Figure 7.7c),while for High-B-Si, sigma decreases to 0.33 nm−1(Figure 7.7d).
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These results suggest that, contrary to expectations, the diffraction spots for High-B-Si

are not significantly broader than those for Si, indicating that strong diffuse scattering

from strain is not a dominant factor. Normally, one would expect a peak broadening

with 1/g2 dependency from the long-range displacement field of point defects [148],

where g represents the deviation from the Bragg condition. This dependency arises

because long-range displacement fields from the defect contribute more significantly

at lower scattering angles (small g). However, in this case, the observed diffraction

broadening does not follow the expected trend, suggesting that the displacement field

associated with boron is more localised rather than extended over long ranges. This

could explain why the expected strain-induced broadening is not as prominent in the

low-g region, and why the overall diffuse scattering from strain appears to be less signi-

ficant than anticipated. Additionally, factors such as amorphisation of silicon and the

detector point spread function could further obscure the expected scattering trends,

particularly at lower scattering angles.

To further assess the influence of degenerate boron doping on low angle scattering,

multislice simulations were performed using the AbTEM software. The simulations

aimed to replicate the SADPs observed experimentally and to provide insight into how

boron incorporation affects electron scattering behaviour. A pristine silicon supercell

(Si) containing 512 atoms was used to model the undoped system. For High-B-Si, two

supercells were constructed: one with a single boron acceptor (High-B-Si-acc), compris-

ing a total of 512 atoms, and another with an interstitial boron cluster (3B0
i - confi 1),

consisting of 515 atoms. The total cell volume after geometric relaxation for the Si and

interstitial boron cluster (High-B-Si-int) systems was 10252 Å3, while the volume for the

High-B-Si-acc system was 10055 Å3. For the [100] zone axis, the unit cell length along

the beam direction was 21.72 Å for both the Si and High-B-Si-int systems, and 21.58 Å

for the High-B-Si-acc system. This was divided by 16 to obtain slice thicknesses of 1.36

Å and 1.35 Å, respectively. Each of these systems was then repeated 20 times along the

z-axis, resulting in a total thickness of 43.4 nm for the Si and High-B-Si-int systems,

and 43.2 nm for the High-B-Si-acc system. These thicknesses were chosen based on the
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7.2.1. The role of boron concentration in diffuse scattering at low scattering angles

t/λ measurements for experimental [100] diffraction patterns (Section 7.2.1). Prior to

stacking along the beam direction, the defect-containing supercells (both High-B-Si-int

and High-B-Si-acc) were shifted in the x and y directions to produce a more randomised

spatial distribution of boron atoms, thereby better representing the disordered nature

of real doped systems. This shifting was performed while carefully preserving the tet-

rahedral bonding geometry of the surrounding silicon lattice, ensuring no unrealistic

bond distortions were introduced.

For the [110] zone axis, the slicing must account for the fact that the atomic layers

are arranged along the face diagonal direction of the cubic unit cell. The effective

length of the supercell along [110] is given by
√

2a, where ‘a’ is the supercell dimen-

sion, leading to a diagonal length of 30.72 Å for the Si and High-B-Si-int systems and

30.52 Å for the acceptor system. To ensure that each slice contains exactly one atomic

layer, this length is divided by 16, resulting in a slice thickness of 1.92 Å and 1.91

Å, respectively. Each of these systems was then repeated 14 times along the z-axis,

resulting in a total thickness of 43 nm for the Si and High-B-Si-int systems, and 42.7

nm for the High-B-Si-acc system. Since the beam direction of [110] zone axis is along

the cube face diagonal, re-orienting the supercell would naturally create gaps between

adjacent slices. To address this, the multislice simulation duplicates the supercell in

regions where gaps appear and then crops it to obtain a cubic supercell with a length of

30.72 Å for for the Si and High-B-Si-int systems and 30.52 Å for the acceptor system.

This allows the simulation to reconstruct the potential seamlessly, avoiding artefacts

that might arise from physical gaps in the repeated structure. A beam view of 3B0
i -

confi 1 (High-B-Si-int) along the [100] and [110] zone axes is shown in Figure 7.8 to

illustrate how the AbTEM multislice simulation views the supercell for these specific

orientations.
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a) b)

Figure 7.8: Projection view of the interstitial boron cluster system (High-B-Si-int) along
the (a) [100], and (b) [110] zone axes. The red atoms represent silicon, and the blue
atoms represent boron.

The simulations used an electron beam energy of 200 keV. Atomic thermal vibrations

were modelled using the frozen phonon approach, which follows the Einstein model,

treating each atom as vibrating independently in a harmonic potential. The standard

deviation (σ) of atomic displacements, representing the root-mean-square displacement

(RMSD), was estimated for boron using the formulation described by Soma and Mat-

suo [251]. For silicon, the RMSD was taken directly from values reported by Muller

et al. [252]. Debye temperature for boron was taken from experimental data reported

by Slack et al. [253]. All RMSD values were calculated for a temperature of 297 K,

yielding 0.076 Å for silicon and 0.0816 Å for boron. The infinite projection method was

used to assign the entire potential of each atom to a single slice. Simulations utilised

100 frozen phonon configurations (as determined by the seed value of 1) and employed

the Kirkland parametrisation of the atomic scattering factors. The grid points were set

to 512. The SADPs for Si and High-B-Si, including both the acceptor and interstitial

systems for High-B-Si, were simulated for the [100] and [110] zone axes. Figures 7.9a–c

and 7.10a–c display the simulated SADPs for Si, High-B-Si-int, and High-B-Si-acc,
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while Figures 7.9d and 7.10d present corresponding the comparative intensity profiles

at low scattering angles. These simulations allow a direct comparison of the scattering

behaviour between the systems.

a) b)

c) d)

50 mrad 50 mrad

50 mrad

Figure 7.9: Simulated SADPs for (a) Si, (b) High-B-Si-int, and (c) High-B-Si-acc along
the [100] zone axis, all displayed on a logarithmic intensity scale. Panel (d) shows
the corresponding radial intensity profiles extracted from each pattern, plotted on a
logarithmic scale.

146



7.2.1. The role of boron concentration in diffuse scattering at low scattering angles

b)

c) d)
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Figure 7.10: Simulated SADPs for (a) Si, (b) High-B-Si-int, and (c) High-B-Si-acc
along the [110] zone axis, all displayed on a logarithmic intensity scale. Panel (d) shows
the corresponding radial intensity profiles extracted from each pattern, plotted on a
logarithmic scale.

The comparison intensity profiles from Figures 7.9d and 7.10d for the [100] and [110]

zone axes provide a clearer assessment of how boron doping alters the scattering be-

haviour of the crystal. Notably, the defect-containing systems exhibit a slightly higher

diffuse background intensity at low scattering angles compared to Si. This trend is

consistent across both zone axes and supports the experimental SADPs (Figures 7.5b

and 7.5d), where High-B-Si demonstrated enhanced low-angle scattering despite the

absence of significant peak broadening. The enhancement observed in the simulated

patterns may arise from the localised strain fields introduced by the boron defects,

which perturb the surrounding lattice and lead to an increase in phonon-mediated
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inelastic scattering. These localised distortions redistribute electron scattering intens-

ity without compromising the overall crystallinity, as evidenced by the persistence and

sharpness of Kikuchi lines in both experimental and simulated datasets. The agreement

between simulation and experiment reinforces the interpretation that inhomogeneous,

short-range strain introduced by degenerate doping is responsible for the subtle but

measurable increase in diffuse intensity observed at room temperature.

To further support this, individual silicon’s atomic displacements for the supercells of

High-B-Si-acc and single interstitial (High-B-Si-single-acc) were calculated. Although

the three boron interstitial cluster system ( 3B0
i - confi 1) would more accurately cap-

ture the strain information, the presence of multiple boron atoms made displacement

analysis more complex and less interpretable. Instead, the single interstitial system

was used to demonstrate that interstitial boron defects produce more spatially complex

strain than acceptor boron. The graph below shows the magnitude of silicon atom

displacements as a function of distance from the boron site. Figure 7.11a presents the

data for the acceptor boron system, while Figure 7.11b illustrates the data for the in-

terstitial boron system. Each dot on the plot corresponds to a specific magnitude of

displacement at a given radial distance, and multiple atoms can share the same mag-

nitude if they experience uniform displacement at a specific radial distance, leading to

overlap of some data points in the plot. In the High-B-Si-acc system, the displacement

of silicon atoms is more uniform, as indicated by fewer points on the plot, suggesting

that many atoms have similar magnitudes of displacement. This implies that the strain

field created by the acceptor boron is local and relatively homogeneous. In contrast,

the High-B-Si-single- int system exhibits a greater number of points, reflecting more

non-uniform displacement of silicon atoms. This indicates that the strain field from

interstitial boron is more complex and spatially varied, with silicon atoms experiencing

a wider range of magnitudes of displacement. The displacements of silicon atoms in

close proximity to the boron interstitial atom are significantly higher compared to the

boron acceptor. This increased displacement leads to more strain in the system, as the

local distortion of the silicon lattice is more pronounced around the interstitial boron
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atoms. This greater strain contributes to the enhanced low angle scattering observed

in the simulation. While the displacement magnitudes in the High-B-Si-acc system

are lower, they are not negligible. Even this moderate strain contributes to increased

scattering at low angles, as observed in the simulated intensity enhancement for the

acceptor system. This suggests that both types of defects, acceptors and interstitial

clusters, induce measurable lattice strain that redistributes scattering intensity into the

low angle region. Hence, the enhanced Kikuchi line intensity observed experimentally

in High-B-Si is more likely to arise from the combined strain fields of both defect types

as they both are present in the sample.

Figure 7.11: Magnitude of silicon atomic displacements as a function of distance from
the boron site for a a) single acceptor boron configuration (High-B-Si-acc), and (b)
single interstitial boron configuration (High-B-Si-single-int).

149



7.2.2. The role of boron concentration in diffuse scattering at high scattering angles

7.2.2 The role of boron concentration in diffuse scattering at

high scattering angles

The scattering behaviour of Si and High-B-Si was further investigated at high scattering

angles, extending the analysis from the previous section where low scattering angles were

examined. Here, the focus is on understanding the effects of degenerate boron doping

on the diffuse scattering at high scattering angles with a combination of experimental

data and simulations. From the integrated experimental SADPs, radial intensity profiles

were extracted by measuring the intensity from the centre of the SADP along the radial

direction. The radial intensity profiles for both Si and High-B-Si were then compared

along the [100](Figure 7.12) and [110] (Figure 7.13) zone axes at the high scattering

angle region.

×102

Figure 7.12: Comparison of radial intensity profiles for Si and High-B-Si along the [100]
axis.
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×102

Figure 7.13: Comparison of radial intensity profiles for Si and High-B-Si along [110]
zone axis.

The experimental results from Figure 7.12 and Figure 7.13 revealed an anomalous in-

tensity trend for High-B-Si at high scattering angles. Typically, because High-B-Si has

a lower atomic number (Z) compared to Si, it would be expected to show lower intens-

ity at high scattering angles than Si due to unscreened Rutherford scattering which is

directly proprtional to Z2. However, experimental data demonstrated that High-B-Si

exhibits enhanced intensity at high scattering angles compared to Si.

This behaviour is likely attributable to strain induced Huang scattering and thermal

diffuse scattering (TDS). The presence of boron in the silicon lattice, particularly for

a degenerate concentration, creates local strain fields, which scatter more electrons to

higher angles. The strain induced scattering from boron atoms could possibly the reason

for the enhanced intensity at high scattering angles, as observed experimentally. In ad-

dition, as established in the previous chapter, boron incorporation significantly modifies

the phonon spectrum, introducing high energy localised optical phonon modes around

132 meV. These defect induced phonon modes provide additional inelastic scattering

that redistribute electrons to larger scattering angles. Thus, the observed high angle

intensity enhancement in the experimental data is best interpreted as the combined

result of localised strain and phonon mediated inelastic scattering. The experimentally
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observed anomalous high angle scattering behaviour is consistent with previous studies,

such as that by Perovic et al., which noted similar scattering anomalies in degenerately

doped silicon [40].

To further interpret this behaviour, the extracted radial intensity profiles at high scat-

tering angles from frozen phonon multislice simulated SADPs of the three systems,

elemental silicon (Si), single boron acceptor (High-B-Si-acc), and three boron intersti-

tial cluster (High-B-Si-int), were compared for the [100] and [110] zone axes, as shown

in Figure 7.14.

a)

b)
×107

×107

Figure 7.14: Comparison of radial intensity profiles for Si, High-B-Si-acc, and High-B-
Si-int, calculated along (a) the [100] and (b) the [110] zone axes. . The intensity profiles
were extracted from frozen phonon multislice simulations.
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The anomalous scattering observed experimentally is not reproduced in the correspond-

ing multislice simulations, as shown in Figures 7.14a and 7.14b. In the simulated data,

all systems, Si, High-B-Si-acc, and High-B-Si-int, exhibit nearly identical scattering in-

tensities at high angles for both zone axes. This could be from a fundamental limitation

of the frozen phonon multislice model employed in the simulations. The simulations

were performed using the frozen phonon approximation based on the Einstein model,

wherein atoms undergo independent, uncorrelated Gaussian-distributed displacements

defined by their RMSD. While this approach successfully captures basic thermal dif-

fuse scattering, it does not account for the boron induced localised high energy optical

phonon modes (∼ 132 meV) shown in the previous chapter. Therefore, it is likely

that the simulations underestimate the high-angle scattering intensity because they do

not capture scattering from these localised high energy defect phonon modes. The

Gaussian-displacement approach used in the frozen phonon approximation only reflects

the mean thermal vibration amplitude and lacks the vibrational complexity of real ma-

terials containing defect induced phonon modes. The effect of Huang scattering due

to static displacements should however be accounted for in the multislice simulations.

Figure 14 nevertheless indicates that its effect is weak compared to thermal vibrations.

This is discussed further in Section 1.3.2.

7.3 Effects of temperature on diffuse scattering

The anomalous high-angle scattering observed observed experimentally in High-B-Si

at room temperature ould be due to a combination of strain due to point defects and

phonon interactions. At room temperature, both Huang scattering, caused by local

strain fields around defects, and TDS might contribute to the diffuse intensity. How-

ever, to determine the primary cause of the enhanced high angle scattering in High-B-Si,

it is essential to separate these two effects.

To achieve this, SADPs of High-B-Si were obtained at room temperature and close

to liquid nitrogen temperature (-178°C), where TDS is significantly suppressed, and
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allowing for a clearer observation of the cause of the anomalous intensity. In paral-

lel, SADPs were simulated using the multislice algorithm for Si, High-B-Si-acc and

High-B-Si-int for the experimentally observed temperature, providing an idealised rep-

resentation of electron scattering with almost no contibutions from thermal vibrations.

By comparing the room temperature radial intensity profiles of Si and High-B-Si with

the radial intensity of High-B-Si obtained at cryogenic conditions, it is possible to assess

how boron induced strain fields influence high angle scattering.

7.3.1 Cryogenic temperature calibration using EELS

To ensure the accuracy of the cryogenic temperatures reached during the acquisition of

SADPs from High-B-Si, a temperature calibration was performed using EELS measure-

ments of aluminum (Al) based on the method described by Kumar et al.(2024). This

approach is based on the principle that the bulk plasmon energy of a metal, particularly

Al, exhibits a temperature-dependent shift due to changes in electron density arising

from thermal expansion or contraction. As the temperature decreases, the aluminium

lattice contracts, increasing electron density and thereby causing a measurable shift

in the plasmon energy. This phenomenon allows the plasmon energy to be used as

a nanothermometer. The plasmon energy Ep(T ) at a given temperature is related to

the reference plasmon energy Ep(T0) (taken at T0= 300K) by the free-electron model

as [254]:

Ep(T ) = Ep(T0)
[
1 − 3

2f(T )
]
, (7.1)

where f(T ) represents the thermal expansion integral. The theoretical f(T ) was calcu-

lated numerically using empirical expansion coefficients for Al at different temperatures

and fitted using the polynomial expansion:

f(T ) ≈ α0(T − T0) + α1

2 (T − T0)2 + α2

3 (T − T0)3 + α3

4 (T − T0)4

+ α4

5 (T − T0)5
(7.2)

where α0 = 2.318 × 10−5 K−1, α1 = 2.117 × 10−8 K−2, α2 = −1.708 × 10−10 K−3,
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7.3.1. Cryogenic temperature calibration using EELS

α3 = −1.247 × 10−12 K−4, α4 = −6.187 × 10−15 K−5 are the fitting constants.

To assess the actual temperature of the sample during the cryo-TEM experiment, the-

oretical values of f(T ) were first computed across the relevant cryogenic range using

equation 7.2. The EEL spectra (0.1 eV/channel dispersion) of Al were acquired at

room temperature and liquid nitrogen cryogenic temperature (-176 °C). In contrast to

previous studies[254] that employed the first plasmon peak, the fifth plasmon peak was

selected in this study. This is because the plasmon shift is below the energy resolution

of our EELS spectrometer. The peak shift however increases linearly for higher order

plasmon modes, making it easier to detect. Furthermore, the fifth plasmon peak, being

located at a higher energy, is more isolated from ZLP tailing and background artefacts,

thus enabling more reliable peak fitting. After performing background subtraction, the

fifth plasmon peak was fitted using a Gaussian function to extract the peak maximum.

The resulting background-subtracted fifth plasmon peaks at room temperature and

cryogenic temperature are shown in Figure 7.15. At room temperature, the extracted

energy was 76.4 eV, while at cryogenic temperature, it shifted to 76.9 eV, indicating

a clear shift in plasmon energy as expected from lattice contraction of Al. These ex-

perimental plasmon energies were then used in the rearranged form of equation 7.1 to

calculate empirical values of f(T ). The resulting f(T ) value at cryogenic temperat-

ure was subsequently matched to the theoretical f(T ) value derived from equation 7.2,

yielding a corresponding actual sample temperature of –152.15 °C. This result confirms

a measurable offset between the sample holder temperature and the true sample tem-

perature and validates that the sample reached a cryogenic temperature of –150 °C

during diffraction data acquisition.
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×103

Figure 7.15: Comparison of background-subtracted EELS spectra of the fifth plasmon
peak of Al at room temperature (25 °C) and cryogenic temperature (–176 °C)

7.3.2 Radial intensity analysis

Radial intensity profiles at high scattering angles were extracted from SADPs acquired

along the [100] zone axis for both Si and High-B-Si at room temperature (22°C) and

cryogenic temperatures (experimentally observed –178°C for High-B-Si and –179°C for

Si; calibrated temperatures –152 °C and –153 °C respectively). The resulting raidal

intensity profiles comparison is presented in Figure 7.16.

The High-B-Si sample at room temperature exhibits an enhanced high-angle scattering

signal compared to Si (Figure 7.16), due to a combination of TDS and local strain

induced Huang scattering. Upon cooling to cryogenic temperatures, the High-B-Si

shows a noticeable reduction in intensity. This decrease is consistent with the expected

suppression of TDS at low temperatures, as thermal vibrations diminish and phonon

populations are significantly reduced. At -152 °C, the phonon energy available to the

lattice is approximately 10.4 meV. As a result, phonon modes with energies above this

energy are effectively eliminated due to the cooling. This includes the vast majority

of optical phonon modes in silicon, as well as any high-energy localised boron induced
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7.3.2. Radial intensity analysis

defect modes (∼132 meV) previously identified in High-B-Si.

The cryogenic High-B-Si profile more closely resembles that of Si, indicating that the

majority of the enhanced scattering at room temperature arises from thermally activ-

ated inelastic scattering processes rather than static strain alone. Importantly, the Si

sample also shows a slight reduction in intensity at cryogenic temperatures, though the

magnitude of change is less pronounced due to the absence of dopant related vibra-

tional and strain effects. This observation suggests that the elevated scattering at room

temperature is primarily driven by TDS, and that any static strain related scattering

from boron defects is either minimal or not detectable.

×102

Figure 7.16: Radial intensity profiles extracted from SADPs acquired along the [100]
zone axis for Si and High-B-Si at room temperature and cryogenic temperatures.

To further investigate the nature of the high angle scattering enhancement observed

experimentally, multislice simulations were performed for Si, High-B-Si-acc, and High-

B-Si-int at a cryogenic temperature of –152 °C. In the frozen phonon simulations, the

RMSD were calculated to reflect the target temperature of –152 °C, with RMSD values

of 0.042 Å for silicon and 0.045 Å for boron, derived using the temperature-scaling

relation described by Kirkland [130]:
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7.3.2. Radial intensity analysis

Wobble = Wobble0

√
T

300 (7.3)

where Wobble is RMSD of an atom at temperature T , and Wobble0 is the RMSD

at the reference temperature of 300 K. The simulated diffraction patterns and their

corresponding radial intensity profiles at -152 °C are presented in Figure 7.17, where

Figure 7.17a-c shows the SADPs of Si, High-B-Si-acc, and the High-B-Si-int system.

Figure 7.17d provides a direct comparison of the high angle intensity profiles for all of

three systems.

×107

a) b)

c) d)

Figure 7.17: Simulated SADPs for (a) Si, (b) High-B-Si-acc, and (c) High-B-Si-int at
–152 °C, displayed on a logarithmic intensity scale, with corresponding high-angle radial
intensity profiles comparison shown in (d).
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The simulation results show a distinct enhancement in high angle scattering for both

boron-doped configurations when compared to pure Si (Figure 7.17), even at cryogenic

temperatures where TDS is largely suppressed. Among the two boron defect systems,

High-B-Si-int displays the highest intensity, followed by High-B-Si-acc, with Si exhibit-

ing the lowest. These trends clearly suggest that static lattice strain due to the boron

incorporation causes measurable high angle diffuse scattering, when TDS is signific-

antly reduced. However, this simulation result stands in contrast to the experimental

cryogenic data, where the high-angle intensity of High-B-Si closely resembles that of Si.

The experimental outcome implies that once thermal vibrations are removed from the

defect system, the dominant contribution to high angle scattering diminishes signific-

antly, which means that the primary contributor to this anomaly is TDS.

This contradiction between simulation and experiment raises a key question: why does

the experimental cryogenic data not capture this strain induced enhancement as clearly?

One likely explanation lies in the spatial distribution of interstitial boron clusters within

the actual sample. In the simulations, the cluster defect configuration is densely em-

bedded when repeated along the beam direction. However, in the experimental sample,

it is possible that the distribution of interstitial clusters is more sparse and inhomo-

geneous. As a result, the macroscopic contribution of static strain to diffuse scattering

may be diluted, falling below the detection threshold once TDS is suppressed. While

the interstitial boron cluster system used in the simulations (3B0
i –confi 1) was shown

in the previous chapter to closely match the boron induced high-energy phonon modes

observed experimentally via EELS, we cannot assert with certainty what the concen-

tration of interstitial clusters in the sample is. Although Hall measurements reported a

1020 cm−3 hole concentration (Subsection 6.1.1), this corresponds to negatively charged

boron acceptor ions, while the interstitial clusters are electrically neutral. It is there-

fore possible that the interstitial cluster concentration used in multislice simulations is

larger than the true value.

To further validate the boron induced strain effects, additional multislice simulations
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7.3.2. Radial intensity analysis

were performed in static mode for the doped systems, in which the atomic positions were

fixed and the RMSD set to zero. In this configuration, atoms do not vibrate thermally,

and any diffuse intensity therefore arises solely from static displacements of atoms from

their ideal lattice positions around boron defects. Both the acceptor (Figure 7.18a)

and interstitial defect (Figure 7.18b) systems show additional diffuse intensity relat-

ive to pristine Si under these static conditions. This intensity originates from diffuse

scattering of electrons by atoms displaced from their ideal sites due to the local strain

field introduced by boron incorporation. Those diffuse scattered electrons then satisfied

Bragg conditions, giving rise to Kikuchi-like bands in the simulated diffraction patterns.

These bands are a characteristic signature of strain-induced diffuse scattering, distinct

from thermal diffuse scattering. In other words, even when atomic motion is completely

frozen, the static strain field produced by boron defects redistributes electron intensity

away to form kikuchi bands.

a) b)

50 mrad 50 mrad

Figure 7.18: Simulated SADPs for (a) High-B-Si-acc, and (b) High-B-Si-int at 0K,
displayed on a logarithmic intensity scale.

Thus, the anomalous high angle scattering observed at room temperature in High-

B-Si is primarily driven by defect phonon mode TDS, but the underlying strain field,

especially from interstitial boron clusters, is nonetheless capable of enhancing scattering

if present in sufficient density. The simulations serve as a confirmation that strain effects
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are indeed intrinsic to the defect structures, even if their manifestation in practice is

modulated by sample-specific factors.

7.4 Conclusion

This chapter examined the impact of degenerate boron doping on the scattering beha-

viour of silicon, combining experimental SADPs and multislice simulations to analyse

both low and high angle scattering responses. At low scattering angles, High-B-Si

exhibited enhanced diffuse intensity without significant Bragg’s peak broadening and

sharper Kikuchi lines compared to Si. This was attributed to localised and inhomogen-

eous strain fields introduced by boron incorporation, which enhances the Kikuchi lines

intensity without compromising crystallinity. Simulations supported this interpretation,

showing increased low angle scattering for both acceptor and interstitial cluster config-

urations. At high scattering angles, experimental data at room temperature revealed

an anomalous intensity increase in High-B-Si relative to Si. However, this enhancement

was not reproduced in the simulations. The likely cause is the omission of boron in-

duced high energy localised phonon modes (∼132 meV) from the frozen phonon model,

which only accounts for thermal vibrations via uncorrelated Gaussian displacements.

Cryogenic experiments confirmed that the high angle scattering enhancement is primar-

ily due to defect phonon mode TDS as, upon cooling, the diffuse intensity in High-B-Si

reduced significantly and closely matched that of Si. Simulations at – 152 °C, however,

showed enhanced scattering due to static strain. This discrepancy is attributed to differ-

ences in interstitial boron defect density and distribution; simulations use dense defects

when repeated along the electron beam direction, whereas the experimental sample may

have sparse and spatially variable interstitial clusters.The anomalous diffuse scattering

in High-B-Si thus arises from both static strain and boron induced localised high energy

phonon modes. While strain plays a role, particularly at low angles and in simulations,

its experimental impact is significantly modulated by defect distribution and boron

induced vibrational modes.
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Chapter 8
Comparative Analysis of Experimental

and Theoretical Thermal Diffuse

Scattering (TDS) in Silicon

In this chapter, the calculation of first-order thermal diffuse scattering (TDS) intensit-

ies for pristine silicon is presented, using phonon eigenvalues and eigenvectors obtained

from ab initio density functional theory (DFT) calculations via CASTEP. The aim is to

use this theoretical data to estimate TDS contributions along specific high symmetry

paths in the first Brillouin zone, and to compare these with experimentally extrac-

ted TDS intensities along a particular reflection from selected area electron diffraction

patterns (SADP). This forms a bridge between theoretical lattice dynamics and experi-

mentally observed inelastic scattering in transmission electron microscopy (TEM). The

broader goal is to establish a methodological basis for integrating phonon simulations

with experimental TDS analysis.

8.1 Theoretical background

The formulation of first-order TDS used here is adapted from the analytical framework

originally developed for X-ray diffraction by Xu and Chiang [84]. Although electron
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diffraction involves stronger multiple scattering, and thus typically requires a dynamical

theory, the first-order TDS expression remains a valuable approximation when seeking

to understand phonon-mediated intensity variations along a specific direction in the

reciprocal space.

The calculation of first-order TDS intensity I1(Q) for silicon begins with phonon dis-

persion simulations performed on the two silicon atom primitive unit cell along high

symmetry directions in the first Brillouin zone. DFT implemented within CASTEP

was used to obtain phonon frequencies (ωQ,j) and eigenvectors (ϵQ,j,s) along the Γ–K

path. The resulting phonon dispersion curves are shown in Figures 8.1, illustrating the

six phonon branches that arise from two silicon atoms.

KΓ

Figure 8.1: Phonon dispersion curves of silicon along Γ–K.

To determine the scattering vector Q corresponding to these paths, the reciprocal lattice

vectors Ghkl were calculated using the expression:

Ghkl = ha∗
1 + ka∗

2 + la∗
3, (8.1)

where, h, k and l are the Miller indices of the reflection G, and a∗
1, a∗

2 and a∗
3 are the

reciprocal lattice basis vectors. This was applied to obtain the reciprocal lattice vec-
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tors for the 022 reflection, corresponding to the Miller indices (0,2,2). This reflection

was selected because it was observed in the experimental electron diffraction pattern of

silicon, obtained along the [100] zone axis. Subsequently, the scattering vectors Q were

determined as vectors extending from the origin (000) in reciprocal space and tracing

the direction 000→022. These scattering vectors lie along the Γ–K–Γ path, consistent

with the phonon dispersion calculations, and serve as the scattering vectors at which

the first-order TDS intensity was evaluated.

The intensity of first-order TDS at these scattering vectors was then computed us-

ing the expression derived and discussed in detail in Chapter 2:

I1(Q) ∝ ℏ
2
∑
Q,j

1
ωQ,j

coth
(
ℏωQ,j

kBT

)
|Fj(Q)|2. (8.2)

where, ℏ is the reduced Plank’s constant, T is the temperature, and kB is the Boltzmann

constant. Here, the summation over j runs from 1 to 6, corresponding to the six phonon

branches arising from the two silicon atoms in the primitive cell. The term |Fj(Q)|2

denotes the square magnitude of the one-phonon structure factor for mode j, and is

given by:

|Fj(Q)|2 =
∑

s

fs(Q)
√
ms

exp(−Ms)(Q · ϵQ,j,s) exp(−iKQ · τ (s)), (8.3)

where, fs(Q) is the atomic scattering factor for electrons associated with atom s (in this

case silicon), ms is the atomic mass of silicon, Ms is the Debye-Waller factor for silicon,

KQ is the reciprocal lattice vector Q folded into the first Brillouin zone„ and τ(s) is

the atomic basis vector for atom s. The basis vectors used for silicon are τ(1)=(0,0,0)

for the first atom and τ(2)=(1.36Å,1.36Å,1.36Å) for the second atom.

The atomic scattering factors f(Q) for silicon were computed using the Kirkland em-

pirical parameterisation [130], which provides an analytic expression for the electron

scattering amplitude as a function of scattering vector. Since the scattering amplitude

depends on the relativistic electron wavelength, and consequently on the accelerating

voltage of the electron beam, a scaling factor was applied to adjust for the specific
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experimental conditions. This scaling factor, e=1.3914, arises from the ratio of the re-

lativistic electron mass m at 200 kV accelerating voltage to the rest mass m0, effectively

correcting the scattering amplitude to reflect the increased electron momentum. Thus,

the Kirkland formula for the atomic scattering factor was multiplied by this factor e to

obtain f(Q) values appropriate for the 200 keV electron beam used in the experiments.

While the Kirkland formula itself is detailed in Chapter 2, this relativistic correction

factor is an additional empirical scaling applied in the current calculations to enhance

accuracy as relativistic effects are significant at high accelerating voltage and must be

accounted for to precisely model scattering behaviour.

The Debye-Waller factor Ms, which accounts for the attenuation of the scattering amp-

litude due to thermal vibrations in silicon, was calculated using the expression:

Ms = Q2

12ms

∑
k,j

|ak,j|2|ϵk,j,s|2, (8.4)

Where, |ak,j|2 is the square amplitudes of each phonon mode at a given wavevector k,

and is given by:

|ak,j|2 = ℏ
ωQ,j

coth
(
ℏωQ,j

kBT

)
(8.5)

The squared phonon eigenvector magnitudes in equation 8.4, |ϵk,j,s|2, were extracted

directly from CASTEP. Due to the symmetry and mass equivalence of the two atoms,

the eigenvector contributions are equally partitioned, with each atom contributing 0.5

to the total normalised eigenvector magnitude for each mode and wavevector, satisfying

the normalisation condition:
2∑

s=1
|ϵk,j,s|2 = 1 (8.6)

This framework combines the lattice dynamical information from CASTEP with scat-

tering theory to compute theoretical first-order TDS intensities at reciprocal lattice

vectors relevant to the experiment.
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8.1.1. TDS intensity analysis at room temperature

8.1.1 TDS intensity analysis at room temperature

TDS intensities were experimentally extracted from SADP of silicon acquired along the

[100] zone axis at room temperature with t/λ ratio of 0.59. To quantify TDS intensity

near the 022 reflections, line profiles were extracted along the 〈110〉 crystallographic

directions adjacent to these Bragg spots. Specifically, eight line profiles were extrac-

ted symmetrically around the 022 reflections. Each line profile traces the variation of

scattered intensity as a function of scattering vector magnitude Q, centred near the 022

reflection. The decision to collect eight line profiles arises from the practical challenge

of achieving perfect alignment to the [100] zone axis. Minor misalignments or slight

deviations from the ideal zone axis can significantly influence the measured diffraction

intensities and TDS features. By extracting multiple datasets with small variations,

these minor deviations are effectively averaged out, thereby minimising systematic er-

rors associated with slight zone axis misalignment. Figure 8.2 illustrates the [100] zone

axis diffraction pattern, with arrows indicating the directions along which these line

profiles were taken.

Alternative reflections located further from the central beam, such as 044, can be con-

sidered; however, the intensity of these reflections will be lower. To ensure quantitative

reliability of the extracted TDS profiles, the 022 reflections situated close enough to the

central beam were selected for better accuracy.
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Figure 8.2: SADP of silicon acquired along the [100] zone axis at room temperature.

At each discrete scattering vector Q, along these profiles, the experimental intensity

values were averaged across the eight line profiles to obtain the mean intensity Iexp(Qi).

The standard deviation σ was also calculated at each point, providing an empirical

estimate of the experimental uncertainty associated with intensity measurements. This

variance reflects local fluctuations, thus enabling statistically meaningful error bars for

subsequent analysis. Prior to comparison with theoretical data, both the mean exper-

imental intensities and the corresponding theoretical first-order TDS intensities were

normalised. Normalisation involved scaling each dataset such that their maximum in-

tensity was unity, thereby preserving relative variations while removing absolute scale

discrepancies caused by experimental conditions such as exposure time, detector sens-

itivity, and beam current. The theoretical first-order TDS intensity (I1(Qi)) calculated

at room temperature (300 K) and the mean experimental intensity (Iexp(Qi)) were then

plotted together as a function of the scattering vector magnitude Q (Figure 8.3).
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a)

b)

Figure 8.3: (a) Comparison of the theoretical first-order TDS intensity and mean ex-
perimental TDS intensity as a function of scattering vector magnitude Q with error
bars of σ, and (b) Residuals between experimental and first-order TDS intensities.

The figure presents the mean experimental TDS intensity, plotted with error bars rep-

resenting one standard deviation (σ) calculated from the eight line profiles, alongside

the theoretical first-order TDS intensity. The comparison shown in Figure 8.3a reveals

that while the theoretical and experimental TDS intensities generally follow the same

overall pattern as the scattering vector Q varies, the experimental intensities are no-

ticeably higher than the theory predicts between approximately 0.3 and 1.8 nm−1. This

suggests that there are additional contributions to the scattering in the experiment that

the current theoretical model does not capture.

To examine these discrepancies in more detail, a residual analysis was performed in

which the difference between the mean experimental intensity and uncorrected theor-
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etical intensity was computed at each scattering vector. The resulting residuals are

shown in Figure 8.3b, plotted together with error bars corresponding to the experi-

mental standard deviation derived from the eight line profiles. The residuals are sys-

tematically positive across most of the Q range, with a pronounced maximum between

approximately 0.3 and 1.0 nm−1. This pattern indicates a consistent excess of experi-

mental intensity relative to the theoretical predictions, and highlights that the model

substantially underestimates the diffuse scattering in this region.

The reduced chi-square statistic, defined by

χ2
ν = 1

N − p

N∑
i

[Iexp(Qi) − I1(Qi)]2
σ2(Qi)

, (8.7)

was calculated to evaluate the degree of agreement between theory and experiment.

Here, N is the number of data points, p = 0 since no fitting parameters were applied at

this stage, and σ(Qi) is the experimental uncertainty at each Qi. This yielded a reduced

chi-square value of approximately 36, highlighting a substantial deviation between the

theoretical model and the measured data. This large value of χ2
ν confirms that the the-

oretical model in its raw form does not adequately describe the experimental intensities.

This discrepancy can be attributed to several factors that influence the experimental

measurements but are not fully represented in the theoretical model.

To quantify and improve the agreement between the theoretical and experimental TDS

intensities, a fitting procedure was performed to the theoretical intensity. Since ab-

solute intensity scales between theory and experiment can differ due to variations in

beam current, exposure time, and detector sensitivity, the theoretical TDS curve was

scaled by an adjustable factor. Furthermore, to account for the influence of instru-

mental resolution, the theoretical intensity was convolved with a Gaussian point-spread

function (PSF), which accounts for the imperfections of the detector. Additionally, to

model the sharp elastic scattering signal near the Bragg peak, which is not included in

the theoretical first-order TDS, a Dirac delta function δ(Q - G) centred at the Bragg
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reflection G was included in the model and similarly convolved with the same Gaussian

PSF. This term simulates the Bragg reflection broadened by instrumental effects. The

model for the fitted intensity Imodel(Q) as a function of the scattering vector magnitude

was thus expressed as:

Imodel(Q) = [A× δ(Q − G) +B × I1(Qi)] ⊗G(Qi) + C, (8.8)

with

G(Qi) = 1
ω

√
2π

exp
(

−|Qi − G|2

2ω2

)
, (8.9)

where, A and B are scale factors applied to match experimental conditions, G(Qi) is

the Gaussian PSF with standard deviation ω, and C is a constant offset accounting

for residual background signal, such as dark subtraction errors in the detector. The

PSF is area-normalised, such that
∫
G(Qi) dQi = 1, conserving total intensity during

convolution.

To improve the agreement between theory and experiment, the four fitting parameters

A,B,C and ω were adjusted. This optimisation was performed to minimise the reduced

chi-square value, which ultimately converged to approximately 11.7. Although this rep-

resents a notable improvement over the uncorrected case, it still indicates a significant

residual mismatch between the theoretical and experimental intensity distributions.
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b)

a)

b)

Figure 8.4: (a) Comparison of the optimised theoretical first-order TDS intensity and
mean experimental TDS intensity (Equation 8.8) as a function of scattering vector
magnitude Q with error bars of σ, and (b) Residuals between experimental and first-
order TDS intensities.

Several factors likely contribute to this discrepancy. Firstly, the theoretical intensity

model is based solely on the first-order thermal diffuse scattering approximation and

does not incorporate higher-order phonon contributions, which can add diffuse intensity

in the experimental intensity. Secondly, the theoretical model is based on a kinematic

approximation which assumes electrons scatter only once. But electrons strongly inter-

act with the crystal and undergo multiple scattering events. These complex interactions

can redistribute intensity in ways that increase the diffuse signal. Because dynamical

scattering is not accounted for in the current theory, the predicted intensities tend to

underestimate the experimentally observed values. Thirdly, the Gaussian point-spread

function used here assumes a symmetric and idealised form of instrumental broadening,

but in practice, the actual broadening may be asymmetric, or affected by specimen-
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specific features such as slight surface amorphisation, as evidenced by the diffuse ring

around the central beam in Figure 8.2. Finally, while the constant offset term C ac-

counts for background noise, it cannot compensate for intensity arising from inelastic

scattering such as plasmons. As a result, the fitted model captures the general shape of

the diffuse signal but does not reproduce its full complexity, explaining why the reduced

chi-square remains high despite parameter optimisation.

As an alternative to the Gaussian PSF convolution model, a second fitting strategy

was implemented in which the theoretical first-order TDS intensity was scaled and

directly augmented by an exponential decay function of the form A e(−bQ2). This expo-

nential term accounts for additional diffuse background and/or broadening arising from

instrument-related effects such as the detector point spread function. Unlike the PSF

convolution method, which spreads the entire TDS profile according to a Gaussian func-

tion, this exponential term decreases the baseline intensity more smoothly and broadly

in regions away from the Bragg peak, and thus provides a more flexible mechanism for

matching the diffuse tails observed in the experimental data. The resulting model was

expressed as:

Imodel(Q) = S × I1(Q) + A exp(−bQ2) + C, (8.10)

where, S is a scale factor applied to the theoretical intensity, A and b define the amp-

litude and decay of the exponential broadening term, and C is a constant background

offset.

The resulting comparison between the optimised model and the experimental TDS

intensity is shown in Figure 8.5a. Optimisation of this model produced a reduced chi-

square value of approximately 1.5, representing a substantial improvement over the

previous model incorporating the delta function and PSF convolution (which yielded

≈ 11.7). This result indicates that the exponential decay function provides a better

empirical match to the experimental diffuse intensity distribution, effectively compens-

ating for background contributions and instrumental broadening not captured in the

theoretical model alone.
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8.1.2. TDS Intensity analysis at cryogenic temperature

a)

b)

Figure 8.5: a) Comparison of the experimental TDS intensity with the optimised model
(Equation 8.10) incorporating a scaled theoretical TDS curve and an exponential back-
ground of the form exp(−bQ2), and b) Residuals between experimental and first-order
TDS intensities.

8.1.2 TDS Intensity analysis at cryogenic temperature

To investigate the temperature dependence of thermal diffuse scattering, a follow-up

experimental and theoretical analysis was conducted at cryogenic conditions. The goal

was to evaluate how phonon population changes at lower temperature influence the TDS

signal, and to compare this with corresponding theoretical calculations.[100] SADP pat-

tern of silicon was acquired at approximately 123 K, and the same data extraction and

analysis described for the room temperature case was applied to this low-temperature

dataset. The phonon frequencies and eigenvectors used to compute the theoretical

TDS intensity were kept unchanged, as these depend on the crystal structure and in-
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8.1.2. TDS Intensity analysis at cryogenic temperature

teratomic force constants, which vary only slightly with temperature in the harmonic

approximation. However, the temperature T in the first-order TDS expression was up-

dated from 300 K to 123 K. Figure 8.6 shows the normalised theoretical TDS intensities

calculated at 300 K and 123 K. Since the temperature enters the model through the

thermal occupation factor coth
(

ℏω
kBT

)
, cooling the sample effectively reduces the pop-

ulation of thermally excited phonons, particularly the intermediate-frequency acoustic

modes that contribute most significantly to diffuse scattering at intermediate scattering

vectors. As these modes are increasingly depopulated at lower temperatures, the corres-

ponding TDS intensity diminishes markedly with Q. This explains why the cryogenic

curve in Figure 8.6 is noticeably narrower than the room temperature counterpart: the

suppression of acoustic phonon contributions at 123 K leads to a sharper decline in

intensity with increasing Q, reflecting the reduced diffuse scattering at intermediate Q.

Figure 8.6: Comparison of the theoretical first-order TDS intensities computed at 300K
and 123K.

To investigate the experimental impact of temperature on thermal diffuse scattering

(TDS), the same line profile extraction procedure described in the previous section was

applied to data acquired at cryogenic temperature (123 K). The resulting profiles for

both room temperature (300 K) and cryogenic conditions are compared in Figure 8.7.

174



8.1.2. TDS Intensity analysis at cryogenic temperature

Both datasets were normalised such that their maximum intensity is unity, allowing

their relative profiles to be directly compared.

Figure 8.7: Comparison of the experimental intensities computed at 300K and 123K.

As shown in the Figure 8.7, the diffuse scattering signal at 123 K is consistently lower

than that observed at 300 K across the entire range of scattering vector Q. This re-

duction in intensity is a direct consequence of the diminished phonon population at

lower temperatures, particularly the acoustic branches that dominate scattering at in-

termediate Q. The difference between the two curves is most evident in the range

Q ≈ 0.2 - 1.5 nm−1, where TDS is strongest due to contributions from thermally pop-

ulated vibrational modes. The experimental results closely mirror the trends predicted

by the theoretical model, with both datasets exhibiting a clear suppression of diffuse

scattering intensity at cryogenic temperatures. In particular, the steeper decay and

reduced intensity of the 123 K curves in both theory and experiment confirm that the

observed temperature dependence arises from the diminished population of acoustic

phonon modes.

To quantitatively assess the agreement between the theoretical predictions and the
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8.1.2. TDS Intensity analysis at cryogenic temperature

experimental diffuse scattering intensities measured at 123 K, the reduced chi-square

statistic was first computed using the unmodified theoretical TDS intensity calculated

at 123 K. Both datasets were normalised, and no scaling or instrumental corrections

were applied at this stage. Figure 8.8a presents a direct comparison between the theor-

etical curve and the mean experimental intensity profile, with error bars indicating one

standard deviation derived from the eight extracted line profiles. The corresponding

residuals are shown in Figure 8.8b.

a)

b)

Figure 8.8: a) Comparison of the theoretical first-order TDS intensity and mean exper-
imental TDS intensity as a function of scattering vector magnitude Q with error bars
of σ at 123 K, and b) Residuals between experimental and first-order TDS intensities.

This analysis yielded a reduced chi-square value of approximately 20. While this is

notably lower than the corresponding value at room temperature (approximately 36),

the improvement does not necessarily indicate that the model performs more accurately
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8.1.2. TDS Intensity analysis at cryogenic temperature

under cryogenic conditions. Instead, the reduction is primarily attributed to increased

experimental uncertainty in the 123 K dataset, as reflected in the larger standard de-

viations calculated across the eight extracted line profiles. This elevated uncertainty

arises from the fact that the diffraction pattern was not perfectly aligned with the [100]

zone axis, leading to enhanced profile-to-profile variation during averaging. As a result,

the error bars in the cryogenic dataset are broader, which in turn reduces the statistical

weight of residuals when computing the reduced chi-square. It is also worth noting that,

despite the lower chi-square value, the absolute residuals in the cryogenic dataset are

significantly higher, reaching values up to approximately 0.22, in contrast to a maximum

of around 0.08 in the room temperature case. This highlights that reduced chi-square

values must be interpreted cautiously, taking into account both residual magnitude, its

profile, and experimental error.

To improve the model fit and account for instrumental broadening, the theoretical TDS

intensity was subsequently scaled and convolved with a Gaussian PSF, together with a

Dirac delta function to represent the elastic scattering contribution broadened by the

same PSF. The functional form of this model is identical to that described previously

for the room-temperature data (Equation 8.8). Optimisation of the scale factors and

PSF width was carried out following the same procedure as in the room-temperature

analysis, by minimising the reduced chi-square statistic between the model and exper-

imental data.

This approach reduced the chi-square value to approximately 6. Although this rep-

resents a numerical improvement, the residuals remain substantial throughout the Q

range, as illustrated in Figure 8.9. The figure shows both the fitted model compared

with the experimental data and the corresponding residuals plotted as a function of

scattering vector. The comparison plot highlights that, while the PSF-convolved model

reproduces the overall decay of the measured intensity, it does not fully capture the

finer details of thermal diffuse scattering behaviour.
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8.1.2. TDS Intensity analysis at cryogenic temperature

a)

b)

Figure 8.9: (a) Comparison of the optimised theoretical first-order TDS intensity (Equa-
tion 8.8) and mean experimental TDS intensity as a function of scattering vector mag-
nitude Q with error bars of σ at 123 K, and (b) Residuals between experimental and
first-order TDS intensities.

To further improve the agreement between theory and experiment, a second fitting

strategy was implemented in which the theoretical first-order TDS intensity was scaled

and augmented by an exponential decay function (Equation 8.10). The same fitting

procedure used for the room-temperature dataset was applied here. Parameter optim-

isation yielded a reduced chi-square value of approximately 1.7, representing a signific-

ant improvement over both the uncorrected model (χ2
ν ≈ 20) and the PSF-convolved

model (χ2
ν ≈ 6). The resulting comparison between the fitted model and experimental

data is shown in Figure 8.10, along with the corresponding residuals.
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a)

b)

Figure 8.10: (a) Comparison of the optimised theoretical first-order TDS intensity
(Equation 8.10) and mean experimental TDS intensity as a function of scattering vector
magnitude Q with error bars of σ at 123 K, and (b) Residuals between experimental
and first-order TDS intensities.

Although the exponential model significantly reduces the residual scatter and achieves

a lower chi-square statistic, it does not perfectly reproduce the experimental intensity

distribution. In particular, the model systematically underestimates the intensity at low

scattering vectors ( Q < 0.4 nm−1), where the experimental signal remains elevated.

This discrepancy may reflect subtle physical effects not captured by the exponential

background, such as higher-order phonon scattering or residual dynamical interactions

that disproportionately influence low- Q intensity. Another likely contributing factor

is the slight misalignment of the diffraction pattern from the ideal [100] zone axis dur-

ing data acquisition. As discussed previously, this misalignment introduced variability

across line profiles and may have led to artificially elevated low-angle scattering in the
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experimental average. It is therefore plausible that a more precise zone axis alignment

would have resulted in a closer match between the fitted model and experimental data.

Despite this limitation, the exponential model provides the best overall agreement with

the experimental data among the models tested, and its relatively low chi-square value

demonstrates that it captures the majority of the diffuse scattering behaviour observed

at cryogenic temperature.

8.1.3 Conclusion

This chapter presented a comparative analysis of theoretical and experimental TDS in

silicon at room temperature (300 K) and cryogenic temperature (123 K). Theoretical

TDS intensities were computed from phonon dispersion curves along Γ-K obtained via

DFT and compared to experimental profiles extracted along 000→022 from [100] elec-

tron diffraction pattern of silicon. While the uncorrected theoretical model captured the

general decay of intensity with increasing scattering vector, it consistently underestim-

ated experimental values, particularly at intermediate Q due to the model’s limitation

to the first-order TDS and the instrumental errors in the experimental data. Fitting

the model using a Gaussian point spread function and then an exponential background

improved the agreement significantly. The exponential model yielded the best fit at

both temperatures, lowering the reduced chi-square to approximately 1.5 at room tem-

perature and 1.7 at 123 K. However, at cryogenic temperature, improved chi-square

values were partially due to increased experimental uncertainty from slight zone axis

misalignment. Nonetheless, the study confirms that empirical fitting can effectively

bridge the gap between first-order TDS theory and experimental measurements, lay-

ing a foundation for integrating phonon simulations with experimental TDS in more

complex systems.
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Chapter 9
Outlook

The investigations presented in this thesis have laid a robust foundation for under-

standing the influence of degenerate boron doping on the vibrational and scattering

properties of silicon using a combination of density functional theory (DFT) and ad-

vanced electron microscopy techniques. These results do not represent an endpoint but

rather the beginning of a broader research trajectory that links atomic-scale phenomena

with materials performance.The insights obtained here open a range of opportunities

for deepening the theoretical framework, expanding the methodological reach, and ap-

plying the approach to other technologically vital materials systems..

The first strand of future work arises from the vibrational analysis of boron-related

defects. While this study successfully established the vibrational properties of boron

defects in silicon through both experimental EELS and density functional theory sim-

ulations, the natural next step is to undertake the computation of Raman spectra for

the range of defect configurations already considered. In particular, simulations of the

Raman active vibrational modes for the substitutional acceptor defects, the interstitial

boron atoms, and the various interstitial cluster configurations can be carried out. By

applying DFT, the susceptibility tensor associated with each vibrational mode can be

computed and used to obtain the Raman intensity. This analysis would clarify which

specific phonon modes are expected to be strongly Raman-active and would allow the

construction of simulated Raman spectra for each configuration. These simulated spec-
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tra could then serve as a benchmark for future theoretical or experimental studies

involving other defect types or more complex doping profiles.

The second major direction builds upon the diffuse scattering analysis comparing ele-

mental and boron-doped silicon through selected area diffraction patterns and multislice

simulations. An essential progression of this work is to incorporate the effects of correl-

ated phonon displacements into the multislice calculations. The methodology employed

in this thesis relied predominantly on the frozen phonon approximation, wherein the

thermal motion of atoms is modelled as an ensemble of uncorrelated displacements

sampled from Gaussian distributions defined by the Debye–Waller factor. This approx-

imation, though often sufficient for bulk materials, neglects the reality that phonon

modes, particularly in defect systems, are spatially correlated. Extending the multis-

lice approach to incorporate such correlations will require implementing methods that

couple the thermal diffuse scattering contribution with the lattice dynamical matrix de-

rived from DFT. Notably, this would involve calculating the phonon eigenvectors and

frequencies, then constructing displacement fields that are consistent with these modes,

rather than sampling independent Gaussian displacements per atom. Such an approach

will improve the realism of diffuse scattering simulations and more accurately capture

the temperature dependence of the TDS.

In parallel, the scope of point defect investigations should be broadened beyond boron

doped silicon. A compelling direction is to apply similar simulation methodologies to

oxygen-related point defects in complex oxides, especially those with functional prop-

erties such as superconductivity or ionic conductivity. For example, oxygen vacancies

and interstitials in superconducting cuprates, or in Brownmillerite-type structures, can

have profound effects on lattice dynamics and local strain fields. Extending the diffuse

scattering analysis to these systems will allow researchers to probe defect induced dis-

tortions and lattice softening in technologically important materials, while leveraging

the techniques refined in this thesis.
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The comparative study of first-order TDS intensities and experimental measurements

presented in the third result chapter yielded promising initial agreement but was ne-

cessarily constrained by the use of a kinematical scattering approximation and the

exclusion of higher-order TDS terms. So the third research avenue for future work

will therefore be to incorporate dynamical scattering effects into the TDS simulation

framework. Dynamical diffraction effects, arising from multiple elastic and inelastic

scattering events within the specimen, are known to distort both the angular depend-

ence and the magnitude of TDS intensities. Accurately capturing these effects requires

implementation of dynamical diffraction formalisms, potentially via the multislice ap-

proach extended to inelastic phonon and plasmon scattering. Another promising av-

enue for incorporating plasmon contributions into theoretical TDS simulations involves

the use of a combined Bloch wave–Monte Carlo framework. This method allows for

the explicit treatment of delocalised inelastic scattering events such as plasmon ex-

citation, where electron wavefunction evolution is computed following probabilistically

determined scattering events within the crystal. The framework accounts for changes

in trajectory, scattering angle, and energy loss while maintaining consistency with the

underlying dynamical diffraction conditions. Incorporating phonon and plasmon scat-

tering in the current model would allow a more faithful reproduction of the experimental

observations.

Beyond the inclusion of dynamical scattering, future work should seek to account for

higher-order TDS contributions. These arise from processes in which two or more phon-

ons are excited simultaneously, leading to intensity components beyond the first-order

term. Though the computational cost of including such terms is formidable, given the

need to sum the entire first Brillouin zone, it is anticipated that these contributions

become increasingly important important with specimen thickness and may partially

explain discrepancies between modelled and experimental profiles observed in this study.

Finally, a further prospective avenue is the extension of TDS studies to defective sys-

tems incorporating point defects, such as interstitial boron clusters and substitutional
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acceptors. A promising approach for simulating the diffuse scattering contributions of

such defects is the incorporation of Kanzaki forces, lattice force fields induced by point

defects, directly into the expression for the scattered intensity. The Kanzaki formalism

enables a rigorous treatment of lattice relaxation fields surrounding defects and can

therefore capture defect-induced diffuse scattering in defect systems.
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