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Chapter 1

Preamble and abstracts

At the Institute of Particle Physics Phenomenology (IPPP) at Durham Uni-
versity, where I have had the good fortune to study, it is normal for projects
involving complex calculations and the development of numerical applications to
be undertaken in relatively short timescales. Active and fruitful collaborations
are routine. In order to accommodate a part-time PhD student, the first in the
IPPP’s history, it has been necessary (a) to choose a project for which part-time
working results in an acceptable timescale; and (b) to avoid introducing delays
into active collaborations. It was these considerations that led to the choice of
the project reported in Part I of this thesis, in which I explore the possibility that
a six-dimensional spinor helicity approach might offer a scalable tool which can
be used to calculate NLO amplitudes for Higgs boson production in conjunction
with increasing numbers of jets.

Working within the IPPP environment and thus with access to wider academic
resources and the work of researchers in diverse fields, I have been allowed the
freedom also to explore a very different research question, alongside my work
on NLO amplitude calculations. I had been puzzled for some time about the
relationship between the big unanswered questions in cosmology, including the
nature of dark matter and dark energy, and the simplifications employed in the
standard model of cosmology. Part II of this thesis reports on the outcome
of my research so far, and presents a proposed new theoretical framework for
cosmology which treats the universe as an evolving complex system.

I hope that readers find both interesting.



CHAPTER 1. PREAMBLE AND ABSTRACTS

Abstract: part I

Part I of this thesis explores a numerical, six-dimensional spinor helicity approach
to next-to-leading-order (NLO) virtual amplitude calculations for the gluon-
fusion production of a Higgs boson, scalable for high-multiplicity jets.

Abstract: part II

The standard cosmological model has achieved the status of a concordance model,
but remains incomplete and subject to increasing challenge. Part II of this thesis
is an exposition of an alternative approach, that acknowledges the universe as
a complex system. The new theoretical framework I suggest puts complexity
centre-stage by incorporating the self-organised criticality (SOC) paradigm first
proposed by Bak, Tang and Wiesenfeld [1] and releasing GR from the FLRW
constraints into which it has historically been squeezed. This SOCGR framework
predicts observed phenomena without the necessity of unknown matter or energy
and supports further scientific investigation.

2



Part I

Six-dimensional spinor
helicity as a numerical tool

for NLO gg → h+jets
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Chapter 2

Introduction

Part I of this thesis explores a numerical, six-dimensional spinor helicity approach
to next-to-leading-order (NLO) virtual amplitude calculations. It is framed in the
context of gluon-fusion (ggF) production of a Higgs boson with high-multiplicity
jets, but the approach could equally be applied to other processes.

The 2012 discovery of the Higgs boson during run I (2009-2013) of the Large
Hadron Collider (LHC) [2,3] was a significant achievement for the scientific com-
munity. Research into the properties of the Higgs boson remains an important
field, and precision measurement of the coupling of the Higgs boson to Standard
Model particles is a key objective of the LHC, HL-LHC and future high-energy
collider projects. In that context, it is crucial that high-precision theoretical
predictions keep pace with the availability of experiemental data for relevant
cross-sections.

Scattering amplitudes are the basic building blocks of the cross-section cal-
culations by which the Standard Model is challenged by experimental data from
collider experiments. High precision calculations are of fundamental importance,
therefore, in high energy physics. Monte-Carlo tools like Sherpa excel at calcu-
lating tree-level amplitudes and related quantities such as infrared subtraction
terms, but to generate full cross-sections need the virtual matrix elements to be
supplied by external packages. In the construction of high-precision amplitudes,
bottlenecks can arise in the calculation of these virtual matrix elements.

There also continues to be considerable scope for improvement in the preci-

4



CHAPTER 2. INTRODUCTION

sion of theoretical predictions. In QCD in general, high precision requires beyond
leading order (LO), i.e. one-loop, corrections: only at NLO it is possible to
address the LO problem of dependence on renormalization and factorization
scales arising only via the running coupling and the evolving parton distribution
functions. In fact, at least next-to-next-to-leading order (NNLO) calculations
are desirable, as is clear from the bi-annual Les Houches report on the precision
wishlist [4]. The current state of the art reported there for ggF production of the
Higgs boson is N3LO in the high top mass limit, without jets. For the ggF Higgs
boson plus three jets only NLO, also in the high top mass limit, is known (ibid).

Increasing the multiplicity of jets included in available amplitude calculations is
thus also important. It is this objective that is the subject of this thesis, which
is work done to extend the boundaries of availability of theoretical predictions
by calculating virtual matrix elements with multiple jets.

Specifically, the work reported here is in relation to the calculation of the
NLO virtual amplitude contributions to cross-sections for gg → h+ jj... The
reasons for selecting this process are:

• Quantitative measurement of the Higgs sector potential is important in
the context of challenging the Standard Model.

• At the 13TeV LHC the gg → h production mode is dominant, representing
about 85 per cent of the total inclusive Higgs production cross section [5].

• The main source of backgrounds comes from multi-jet final states, but
multi-jet virtual matrix elements are difficult to calculate and are available
only for one-, two- or three-jet states. Traditional Feynman diagram
approaches to calculations suffer from very rapid growth in the number of
diagrams as external legs are added (at tree level, gg → 8g requires more
than one million diagrams [6]).

• It is desirable to calculate for no fewer than three jets in order to differen-
tiate from Higgs production via weak boson fusion qq → hjj (also known
as vector boson fusion, VBF). Although ggF is the dominant production
mode for Higgs at the LHC, VBF is also interesting because it offers an
important test for unitarity 1. Higgs production from VBF at LO has

1A study of the ggF for Higgs + ≤ 3 jets in the high top mass limit as background to VBF
is reported in [7].

5



CHAPTER 2. INTRODUCTION

two (forward) jets in the final state with no radiation in the middle. Thus
calculations for ggF production which involve a three- or more jet signature
can be clearly differentiated from VBF.

• Increasing the number of jets beyond three improves differentiation and
precision still further and, ideally, we would like to calculate higher mul-
tiplicities of parton jets. However, higher multiplicity brings with it
increasing complexity in calculation. In particular, there is a substantial
step up in ‘bookkeeping’ requirements between calculations involving a
single quark anti-quark pair, which can arise in a three-jet final state,
and calculations involving two such pairs which can arise in the four- and
five-jet cases.

• There is a gap in availability of calculations for the gg → h+jets process.
Many NLO tools cannot be readily applied to it because it is in fact a two-
loop process at NLO. The high top mass limit effective theory approach
used to reduce it to a one-loop process at NLO is a simple one, but
nevertheless invalidates or complicates some approaches typically used at
one loop.

This thesis is not the first to attempt a solution to this problem. Armstrong’s
2017 thesis [8] set out to calculate the same virtual amplitudes, for any number
of jets, but met with both practical and theoretical obstacles. That work has
been useful in signposting difficulties and has informed the choice of alternative
approach in this project.

The question I seek to answer in this work is, then, ‘can six-dimensional spinor
helicity methods be used to set up a numerical framework to calculate the NLO
virtual contribution to gg → h that can be scaled for an arbitrary number of
additional jets?’ The new work is (a) a numerical implementation of selected
6D spinor helicity methods for multi-leg tree amplitudes and (b) assembly of a
framework for incorporating that implementation in a calculation of NLO Higgs
plus many jets virtual amplitudes. Despite the interesting question of managing
quark pairs I have worked with purely gluon jets for this project. However, the
answer to this question for gluon jets potentially opens a similar pathway for
quarks, subject to additional ‘bookkeeping’.

It is possible, perhaps likely, that there is in fact some MHV-like structure
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to be uncovered in the amplitudes for this process, despite the Higgs boson’s
status as a scalar. An added incentive for the numerical solution which is the
eventual goal towards which this project is progressing is that ready availability
of numerical calculations may enable a simple structure of the amplitude to be
uncovered. This may be by using machine methods to search for analytical expres-
sions for the numerical solutions, for example as employed in [9], or by trying out
analytical ansätze which can be tested by comparison with this numerical method.

The ultimate aim is to support development of a package that can be added to
the existing BlackHat [10,11] software suite for NLO amplitudes.

The structure of this report is as follows:

• Chapter 3 outlines the nature of the problem and describes the choice of
approach to seeking a solution.

• Chapter 4 sets out the six-dimensional spinor helicity formalism that
supports the core generator for the necessary tree amplitudes that feed the
one-loop calculation.

• Chapter 5 describes the implementation of the numerical six-dimensional
spinor helicity calculations, which are coded in Python. In fact it describes
two implementations. The first case enables up to the calculation of six-
dimensional four point amplitudes and has working six-dimensional BCFW
and three-point amplitudes. However, it is not a stable framework on which
to build. The second implementation, which is presented in an addendum
to Chapter 5, uses the experience of the first and is significantly more
robust. The code in the addendum has been written recently by Daniel
Maitre and is immensely valuable.

• In Chapter 6 I present work that fits neatly at the end of this report but
was actually carried out very early in the project. Before we can begin to
code an effective numerical solution, we need to have a complete theoretical
basis for the entire calculation. This chapter provides a framework for
the entire one-loop calculation within the context of the chosen approach,
making clear which parts are already available to connect with the new
implementation in this project.

• In Chapter 7 the work and its implications are discussed and conclusions
are drawn.
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Chapter 3

Choosing an approach

3.1 Context

Recent decades have been an exciting time for those involved in calculating
amplitudes for theoretical predictions of cross-sections for processes arising in
collider experiments. Onerous Feynman diagram approaches have largely given
way to on-shell techniques, spinor helicity approaches have hugely simplified
amplitudes, and unitarity considerations have transformed calculations at loop-
as well as tree-level [12,13]. Structure has become evident in some amplitudes,
notably Parke Taylor amplitudes for n-gluon scattering [14]. In the decade
following the Les Houches 2005 Workshop at TeV Colliders [15], which saw NLO
2→ 4 processes as the cutting edge, a ‘NLO revolution’ took place [16]. This
saw the development of automated tools for NLO corrections for 4- [17] or even
5-jet processes [18] in some cases.

Against this background, the calculation of NLO gg → h + jj... amplitudes
remains stubbornly difficult for high jet multiplicity. The process at NLO is
actually a two-loop process. Reducing it to a single loop by applying the top-mass
limit mt →∞ (HTL) rules out the four-dimensional loop-level recursion (‘boot-
strap’) approach to evaluating the rational terms that arise in the loop amplitude
as a result of dimensional regularisation. Constrained to use D-dimensional
unitarity approaches instead, where D > 4, not only are four-dimensional spinors
inadequate but also all known MHV-type simplification is stripped away. Fur-
thermore, in whatever D > 4 we choose to work, the amplitude for external
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CHAPTER 3. CHOOSING AN APPROACH

momenta ultimately must be stated in four dimensions if it is to contribute to
a physically-relevant result. As the number of external legs increases, i.e. as
more jets are added, this requirement to bring loop amplitudes back into four
dimensions becomes a non-trivial problem.

This thesis is a successor to an earlier project [8] in which NLO gg → h+ n jets
was addressed. In that project, four-dimensional, cut-constructible parts of the
NLO amplitude were successfully calculated but the full framework of a solution
remained incomplete. In particular, the objective of using MHV-related simplifi-
cation to carry out efficient amplitude calculations for a tower of any number of
final-state jets proved to be unworkable because of the need to calculate rational
parts of the amplitude in more than four dimensions. That work has been useful
in demonstrating the practical problems that can arise in the calculation and has
provided solid information about what is required, what might work well, and
what does not. The outcome of that earlier project is summarised in Section 3.4.1.

The current project is necessarily directed towards a slightly different objective:
rather than a single calculation for any number of final-state hadrons, the search
is for a framework that can be scaled for additional jets in a reasonably tame
way. The selection of theories, methods and techniques has of course been
informed by the earlier attempt. We also benefit from the fact that it is no
longer necessary to focus on computationally efficient methods: since it is now
increasingly possible to derive analytic expressions from numerical results (see,
for example, [9]), we need only to find an implementation that works, it does
not need to minimise steps in calculation. The code implemented in BlackHat
could then be the relevant analytic expressions .

Clearly, there is more than one way to approach the calculation of NLO
gg → h+ jj... virtual amplitudes. In this chapter I first address the nature of
the problem, including why it is a difficult one. What, exactly, is the process?
Why does the existing BlackHat approach to the virtual matrix elements not
work in this case? I then summarise the approaches that are available, including
what work has already been done and what can we learn from them. The aim
is to conclude on a practical, numerical approach to constructing the necessary
one-loop amplitudes.

The chosen way forward is set out at the end of the chapter, in Section 3.5.
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To check that all the components necessary to compute the full, NLO virtual
amplitude are available, a ‘road map’ for the entire calculation is presented in
Chapter 6.

3.2 The gg → h + jj... process

In the Standard Model, the Higgs boson coupling to two gluons is mediated at
LO by a heavy-quark loop. The Higgs boson coupling is proportional to mass,
hence the strongest interaction in QCD is with the top quark: contributions
from other quarks are suppressed by at least a factor of O(m2

b/m
2
t ) where mb is

the mass of the bottom quark and mt is the mass of the top.

Figure 3.2.1 shows that LO gg → h is already a one-loop process: therefore, NLO
ggF production of higgs plus jets is a two-loop process. Presently, true NLO (i.e.
two-loop) calculations are not defined beyond Higgs plus one jet. However, it
is conventional to treat the top quark as approaching infinite mass, i.e. HTL,
and to approximate other quarks as massless. That this approximation is a
reasonable one whenever the mass of the Higgs and the transverse momentum of
the jets are not larger than the mass of the top quark has been confirmed via LO
computations of Higgs plus two and three jets with full top-mass dependence [19].
Harlander et al [20] have also demonstrated that the HTL approximation is valid
at the 2− 3% level as long as the transverse momentum of the Higgs remains
below about 150 GeV.

Figure 3.2.1: Leading order gg → h and the HTL effective vertex

In the HTL approximation the degrees of freedom of the loop quark can be
integrated out to give a new effective vertex between two gluons and a Higgs
boson as shown in Figure 3.2.1.

The effective operator is
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LintH = C

2 HtrGµνGµν (3.2.1)

where C is the dimensionful coupling constant which can be calculated at order
αs, H is the Higgs boson field and Gµν is the gluon field strength tensor. The
NLO computation is then brought down to one loop, but at the expense of
introducing an additional power of the loop momentum in the numerator of
the amplitude. As a result, the formalism used so effectively in the BlackHat
package for one-loop W and Z amplitudes cannot be applied to this problem.

The NLO process then, shown here with gluon jets, is represented in Figure 3.2.2.

Figure 3.2.2: NLO gg → h+ jj...

3.3 On-shell, unitarity methods

In the traditional Feynman diagram approach to amplitude calculations one
algorithmically draws and computes all the possible diagrams and sums them.
For a simple process this is very straightforward but, as the number of external
legs increases, there is rapid growth in complication. At tree level in QCD
g + g → 8g requires more than one million diagrams [6]. Fortunately, since
the pioneering work by Bern, Dixon and others [21–24] in the mid-1990s more
efficient methods have been developed. In particular, on-shell methods for
computing amplitudes focus on the key analytic properties that any physical am-
plitude must satisfy and so avoid gauge non-invariant information intermediate
states. They are therefore much more efficient than Feynman diagram techniques.

11



CHAPTER 3. CHOOSING AN APPROACH

The basic toolkit for such calculations is now well understood, and there are
numerous sources of detailed descriptions of the approach, for example [12].
The procedure, which is outlined below, begins with separating out colour
permutations.

3.3.1 Colour decomposition

QCD is a Yang-Mills theory which uses the SU(3) gauge group to describe
the strong force. The first step in the on-shell technology is to simplify the
calculations by separating SU(3) colour information from kinematics. This step
is well understood, clearly defined and obviously helpful. I therefore take it as
read that this will form part of the final approach and leave the description of
the method to Section 6.2 of the ‘roadmap’ in Chapter 6, where the components
of the chosen approach are set out in order.

3.3.2 Unitarity at tree level: factorisation and BCFW

Since the pioneering work of Britto, Cachazo, Feng and Witten (BCFW) [25]
it has been known that on-shell tree amplitudes can be factorised into two
lower-multiplicity tree amplitudes, as shown in Figure 3.3.1.

Figure 3.3.1: Pictorial representation of the BCFW recursion relation in 4D.
The difference between the terms in the two sums is just the helicity assignment
of the internal line. Source: [26]

BCFW recursion is based on the idea that tree-level amplitudes are continuously
deformable, analytic functions of the scattering momenta, which are retained
on-shell. It is therefore possible to construct amplitudes for generic kinematics
from their behaviour in singular, limiting kinematics. In other words, we use the
behaviour of an amplitude under a complex deformation of the particle momenta
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to calculate the amplitude. In practice, we impose a complex shift of the helicity
spinors λ 1 for two neighbouring legs of the momenta, say legs n− 1 and n:

λn−1 → λ̂n−1(z) = λn−1 − zλn

λ̃n → ˆ̃λn(z) = λ̃n + zλ̃n−1
(3.3.1)

where z is a complex parameter and the deformation preserves momentum
conservation and on-shell conditions. Let us call the deformed partial amplitude
A (z). We need to understand how

A (z) = δ(4)

(
n∑
i=1

pi

)
An(z) (3.3.2)

relies on how the amplitude An(z) behaves in the z complex plane. It is found
that [27]

1. With Pi ≡ p1 + p2 + ...+ pi−1, the amplitude An(z) has simple poles in z
at positions

zpi = P 2
i

λn,αPαα̇i λ̃n−1,α̇
(3.3.3)

2. Near the pole zpi the amplitude lim
z→zPi

An(z) factorises into a product of

lower-point, ‘left’ and ‘right’ amplitudes

lim
z→zpi

An(z) = 1
z − zpi

−1
〈n|Pi|n− 1]

∑
s

AL
(
1̂(zpi), 2, ...., i− 1,−P̂h(zpi)

)
×AR

(
P̂ ĥ(zpi), i, ...., n− 1, n̂(zpi)(zpi)

)
(3.3.4)

3. Complex analysis and the residue theorem can then be used to construct
An(z = 0) from what is known about the poles of An(z). If An(z)→ 0 as
z →∞ for a suitable shift and C is the circle at infinity then

0 = 1
2πi

∮
C

dz
An(z)
z

= An(0) +
n−1∑
i=2

Res

[
An(z)
z

]
|z=zpi

(3.3.5)

1These four-dimensional helicity spinors are defined in the next chapter, Section 4.1.
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So

A(0) = −
n−1∑
i=2

Res

[
An(z)
z

]
|z=zpi (3.3.6)

With the expression for An in equation 3.3.4 and the pole at z given by
3.3.3 we can solve for A(0) for the BCFW recursion relation:

An = A(0) =
n−1∑
i=2

∑
h

AhL(zPi)
1
P 2
i

Ah̄R(zPi) (3.3.7)

Since knowledge of three-point amplitudes then allows the construction of all
higher point amplitudes, generation of multi-leg tree amplitudes is greatly
simplified by this method. It will be crucial in our approach.

3.3.3 Loop-level methods

On-shell and unitarity methods are now commonly used in one-loop computa-
tions in the high parton multiplicity of LHC events [13]. The unitarity method
developed by Bern, Dixon, Dunbar and Kosower in the 1990s [22,23] uses the
branch-cut structure of loop integrals to find the coefficients of the integrals in
terms of products of on-shell tree amplitudes, see Figure 3.3.2. In contrast to
Feynman diagram approaches, computational algorithms exhibit only polynomial
complexity.

A review of these on-shell and unitarity methods in the context of numeri-
cal implementations is given in Ita 2011 [28] and for a thorough description of
the conceptual and technical aspects see Ellis et al 2012 [29]. A nice summary
of the development of these approaches is given in [30], including Ossola, Pa-
padopoulos and Pittau’s (OPP) parametrisation of loop momenta to compute
higher order terms [31] further developed by Forde [32] using complex analysis
to isolate the coefficients of the scalar integrals. The methods have been applied
for some processes in numerical calculations at loop level in BlackHat [10,33–35].

In brief, the unitarity constraint allows factorisation of an amplitude into cuts
and rational parts, such that the cut amplitude can be written as a tree amplitude
on one side of the cut multiplied by a tree amplitude on the other side, with
the loop integral replaced by an integral over the phase space of the particles
crossing the cut [23].
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Figure 3.3.2: Decomposition of 1-loop amplitude into basis scalar box, triangle
and bubble integrals multiplied by kinematical coefficients, with a rational part
Rn which cannot be detected using cuts with four-dimensional cut loop momenta.
Source: [13]

At loop level, then, divergences result in rational pieces of the amplitude that
are not captured by the four-dimensional unitarity cuts. There are essentially
two ways of dealing with the rational parts, which I outline below.

Option 1: Loop-level recursion, a.k.a. ‘bootstrapping’

In this method, which exploits multi-particle factorisation properties [36–38],
the rational pieces are constructed by on-shell recursion relations in four di-
mensions [10,38–40]. It has been used to derive analytic expressions for many
helicity amplitudes up to eight final state gluons [40] as well as all-mulitplicity
expressions for one-loop MHV amplitudes [39,41].’

The method applies equally well to amplitudes with massive external parti-
cles, including gluons coupling to a Higgs boson [42–44].

In BlackHat, these recursion relations are combined with Forde’s coefficient
extraction [32].

Option 2: Generalised D-dimensional unitarity

D-dimensional cutting techniques also completely determine the loop ampli-
tude [24, 36, 45]. Some rational coefficients are known (Badger 2009), but we
wish to build a scalable solution and so need to be able to calculate unknown
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rational coefficients.

The identified options are:

• A numerical D-dimensional unitarity procedure for any one-loop QCD
amplitude was developed by Giele, Kunszt and Melkikov [46] using the
OPP on-shell procedure of reducing integrals [31]. Ellis, Giele, Kunszt and
Melnikov [47] extended the generalised D-dimensional unitarity method
for numerical evaluation of one-loop amplitudes by incorporating massive
particles.

• A related approach uses the relationship between states that are massive
in 4D and states in extra dimensions to reduce the integrals obtained
from unitarity cuts [24, 30]. These D-dimensional approaches were ex-
tended by Badger [30] to use Forde’s complex analysis techniques for
cut-constructible as well as rational parts. The additional mass-dependent
integral coefficients can be extracted from the large mass limit, analytically
or numerically, associating the D − 4-dimensional pieces with masses to
give rational terms. The rational terms in D = 4 − 2ε dimensions can
be determined from quadruple, triple and double cuts without need for
independent pentagon contributions, using a massive integral basis. A
numerical implementation (BlackHat, see Section 3.4.2 [33,48]) has been
developed and applied for some processes.

• The 6D spinor helicity formalism created by Cheung & O’Connell produces
cut-constructible and rational parts for all helicities. Davies [49] uses D-
dimensional unitarity and Cheung and O’Connell’s six-dimensional spinor
helicity formalism together to calculate QCD amplitudes, capturing cut-
constructible and rational pieces together. His work is analytical rather
than numerical.

In his one-loop use of the Cheung and O’Connell six-dimensional spinor helicity
formalism, Davies [49] used the Four Dimensional Helicity Scheme (FDH) [21,
24, 50] for regularisation. At the end of the calculation the loop momenta are
analytically continued to D = 4− 2ε dimensions and a state-sum reduction is
performed to reduce the spin states of the six dimensions to match the FDH
scheme. Other schemes are available, for example the ’tHooft-Veltman Scheme
(HV) [51], the Conventional Dimensional Regularisation Scheme (CDR) [52], the
Dimensional Reduction Scheme (DRED) [53]. The schemes share the dimensional
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regularisation of momentum integrals but differ in the ways in which they handle
observed states and spin degrees of freedom. FDH is common and well understood.
Although Kilgore showed that FDH is not unitary at higher-orders [54], it is
effective at one loop and suitable for our purpose.

3.3.4 Spinor helicity tools

On-shell and unitarity methods rely upon tree amplitudes. The methods work
particularly well when combined with the spinor helicity formalism for ampli-
tudes which, in four dimensions, is very well established and is summarised at
the beginning of Chapter 4. We have seen in Section 3.3.3, however, that four
dimensions are not sufficient to obtain the rational parts of the amplitude we are
calculating: the existing approach in BlackHat, using an on-shell recursion to
reconstruct rational pieces, requires knowledge of the pole structure of the cut
terms which we could only gather in this case by resorting to the Feynman dia-
gram techniques we are seeking to avoid. Instead, we must turn to D-dimensional
generalised unitarity. So, if we wish to use spinor helicity methods, we must do
so in more than four dimensions. As our approach is numerical, the number of
dimensions must be an integer.

The earlier project addressing the NLO gg → h + jj.. problem [8] included
a six-dimensional spinor helicity approach but it remained incomplete and did
not reach the stage of calculating any six-dimensional amplitudes. I have already
mentioned that an alternative six-dimensional spinor helicity formalism has
been pioneered at tree level by Cheung and O’Connell [55], which does specify
tree amplitudes and does include an analytic approach to the derivation of a
four-point amplitude using a definition of six-dimensional BCFW. This formalism
is described in Chapter 4.

Cheung and O’Connell’s formalism has been combined with the generalised
unitarity method by Bern, Carrasco, Dennen, Huang and Ita [45] to construct
analytic loop-level scattering amplitudes, using the example of QCD one-loop
four-point amplitudes. In the same year Davies [49] applied the method to an
analytic approach to one-loop QCD processes with a Higgs boson and three
partons. Badger, Brønnum-Hansen, Buciuni and O’Connell [56] have used the
six-dimensional helicity formalism to perform generalised unitarity cuts in d

dimensions and applied the method to gg → tt̄, with a numerical implementation
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of two of the leading colour primitive amplitudes required for this process. None
of these approaches has included a public, working, six-dimensional implementa-
tion of three-point amplitudes or the BCFW framework. These will be required
if we are to be able to build tree amplitudes with increasing numbers of partons.

The Cheung and O’Connell six dimensional formalism is immediately attractive,
as it offers the extra-dimensionality required to calculate both the cut and the
rational part of the virtual amplitude together and it is amenable to coding
for numerical approaches. However, it adds complication. Whereas in the four-
dimensional formalism many sub-amplitudes vanish as a result of simplification
possible using MHV rules, in the six-dimensional extension of the spinor helicity
method that simplification is lost. In 4D spinor helicity formalism terms, each
external jet must be represented by either a chiral2 or an antichiral spinor, but
not both. In 6D, however, each particle is labelled by a pair of little group
indices. In six dimensions the little group SU(2) x SU(2) connects all helicities
together and a single formula describes the amplitude. Specific helicity cases
must then be calculated by choice of little group indices and the solution we use
must be capable of reducing the additional chirality states in the six-dimensional
spinors back to the four-dimensional physical process.

3.3.5 Treatment of the Higgs boson

The Higgs is a scalar boson: the only fundamental scalar particle so far found
to exist outside bound states. Some very nice work has been done treating the
Higgs boson as the real part of a complex scalar in amplitude calculations, with
H = φ+ φ† [57,58]. This appealing approach enables the application of MHV
rules to eradicate up-front a number of vanishing tree amplitude components and
to establish towers of amplitudes up to n gluons in some cases. In six dimensions,
however, it is not the case that all required tree amplitudes are eradicated: see
Figure 3.3.3. On this figure, all combinations of gluon helicity that are either
blank or have an open circle may be non-vanishing and require some element of
calculation. It is for this reason that we are not in a position to generate a solu-
tion that can be applied to an arbitrary number of jets, even in the all-gluon case.

2Helicity is the projection of its spin onto its momentum direction. Chirality is the left-
or right-handedness of a particle’s spin projection along its direction of motion, and does not
change. For a massless particle, helicity and chirality are the same. In this project, all external
particles are either a Higgs boson, which is a scalar, or massless gluons, for which chirality and
helicity are the same.
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Figure 3.3.3: The combined MHV tower for φ+ n gluons and anti-MHV tower
for φ† + n gluon amplitudes. The vertical axis labels the total number of gluons,
n+ + n−. The horizonal axis measures the degree of ’helicity violation’, labelling
the difference n+ − n−. Solid dots represent full ’φ-MHV’ vertices, whilst open
circles represent amplitudes which are composites built from φ-MHV vertices and
pure-gauge-theory MHV vertices. MHV is red, anti-MHV is green. Source: [57]
figure 3.

Therefore, we must select an approach that enables us readily to calculate
the tree amplitudes that are required and, in order to obtain the coefficients
of the rational part of the loop amplitude, to calculate them in D > 4. We
have seen above that the strongest candidate for these calculations precludes
MHV-type simplifications. With the major advantage of the complex scalar
approach thus inaccessible I therefore choose to avoid having the additional
step of combining calculations for φ and φ† and simply treat Higgs as a real scalar.

The Higgs is also, of course, massive. As it appears only as an external leg, I
will incorporate its mass in calculations via momentum conservation.

3.4 Previous work

3.4.1 Work on ggF Higgs boson production

A useful overview of the status of calculations using on-shell techniques, and
to computation of rational terms, is given in the Les Houches 2015 Standard
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Model Working Group Report [59], see pp 77 onwards. The more recent 2023
Les Houces report [4] provides a summary of the current status of amplitude
calculations.

The landscape of existing approaches to QCD calculations for Higgs plus jet
production from ggF is summarised below.

Table 3.4.1: Previous work on gg → h+jets.

Order Jets Summary
LO 2j In the 1990s work was done in HTL, see Dawson and

Kauffman [60], Kauffman, Desai and Risal [61].

LO 2j By 2001 top mass dependence had been included: real
emission corrections to gg → H + 2 jets were calculated
at order α4

s by Del Duca, Kilgore, Oleari, Schmidt and
Zeppenfeld [62].

LO 2j Calculation of gg → H + 2 jets scattering amplitudes as
induced by top-quark triangle-, box- and pentagon-loop
diagrams. The diagrams are evaluated analytically
for arbitrary top mass. Del Duca, Kilgore, Oleari,
Schmidt and Zeppenfeld [63].

LO 3j Tree-level amplitudes for Higgs with five partons of
fixed helicities had been made available by Del Duca,
Frizzo and Maltoni [64] by 2004.

LO MHV Also from 2004, the work done by Dixon, Badger,
Glover and Khoze to establish MHV-type rules for a
complex scalar φ provides analytical computations of
tree amplitudes for Higgs with multiple gluons [57]
and with multiple partons [65] in HTL.

They are available numerically through the matrix-
element Monte Carlo generators ALPGEN [66] and

Continued on next page
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Table 3.4.1 – continued from previous page
Order Jets Summary

MadEvent [67].

NLO 1j Schmidt computed three-parton helicity amplitudes for
Higgs boson production from ggF in HTL
in 1997 [68].

NLO 1j In 2011 Davies [49] applied the six-dimensional helicity
formalism combined with D-dimensional generalised
unitarity to compute one-loop amplitudes in
dimensionally regularized QCD. Davies [49] applies
approach to NLO QCD correction to Higgs processes:
compute NLO correction to Higgs plus three positive-
helicity gluons amplitude in HTL.

NLO 2j With the work outlined in LO above, the tree
amplitudes and MHV rules necessary for the one-loop,
two-jet calculation had been completed by 2005.

NLO 2j A semi-numerical calculation of NLO results for H + 4p
is given in Zanderighi [69]

All amplitudes for a Higgs with four partons are now
known analytically at one-loop:

NLO 2j Analytic results for one-loop amplitudes for a Higgs
boson plus four partons in the case of two quark-
antiquark pairs were reported in 2005 by Ellis, Giele
and Zanderighi [70].

NLO 2j All vanishing tree amplitudes for complex φ were
available by 2007, Berger et al [42].

NLO 2j One-loop phi-MHV amplitudes with two negative and
Continued on next page
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Table 3.4.1 – continued from previous page
Order Jets Summary

any number of positive helicity gluons were published
in 2008 by Glover, Mastrolia and Williams [44]. Their
work included explicit calculation for the four-
gluon case.

NLO 2j The calculation of the NMHV case of quark-antiquark
pair plus negative helicity gluon pair is reported
in Badger et al [71].

NLO 2j For the one-loop amplitude for Hq̄qQ̄Q and Hq̄qgg
cases, the latter restricted to opposite-helicity gluons,
see [72].

NLO 2j With the one positive and any number of negative
helicity gluon case, the full analytic results for one-loop
higgs plus four gluons of any helicity was published by
Badger, Glover, Mastrolia and Williams in 2010 [58].

All of the NLO 2j calculations above use the HTL
approximation.

NLO 2j Analytic formulae for the one-loop amplitude
for Higgs plus 4 partons (i.e. 2 jets) with full mass
dependence were reported by Budge, Ellis and
others in 2022 [73].

NLO 3j Automated calculations in relation to NLO QCD
corrections for Higgs production from ggF in the
HTL approximation have been computed by Cullen
et al 2013 [74], Greiner et al 2015 [75] and Luisioni
et al in 2016 [76]. All of these calculations have been
performed numerically using GoSam and Sherpa,
based on an algebraic generation of d-dimensional

Continued on next page
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Table 3.4.1 – continued from previous page
Order Jets Summary

integrands using a Feynman diagram approach.

NLO φ MHV The work by Berger et al 2007 [42] and Badger et al [43]
referenced above use the complex phi approach to solve
on-shell recursion relations for arbitrary numbers of
gluons in MHV cases.

NNLO low Work is proceeding at NNLO, but not yet at high jet
multiplicity. For example, in 2015 Chen et al [77]
computed the entire cross section and differential
distributions for the production of a Higgs boson with
one hadronic jet at NNLO.

N3LO 0j Mistelberger [78] published an exact formula for the
ggF Higgs boson in the HTL approximation, using
an analytic computation involving elliptic integrals.

From the nature of the previous work that is summarised in Table 3.4.1 it is
clear that the substantial progress that has been achieved has been incremental.
It is surely desirable to find, if possible, a mechanism for moving forward, at
least with increasing jet multiplicity, in a relatively simple way. The earlier
PhD thesis [8] was an attempt to do just that, seeking to find generic results for
one-loop amplitudes for n partons with arbitrary helicities, reducing the number
of tree calculations as much as possible by identifying and excluding MHV cases
and invalid combinations of helicities in loop cuts. However, no generic means
of obtaining the rational part of the one-loop amplitude was found, and the
following substantial difficulties were encountered:

• a method for calculating the six-dimensional tree amplitudes that were
required remained elusive;

• defining the necessary conditions for identifying amplitudes that would
vanish when reduced to four dimensions proved complex and, due to time
constraints, remained incomplete; and
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• no algorithm amenable to automated processing was found to handle
the final conversion to four-dimensional expressions and so the author
concluded this would have to be done manually (ibid, pg.101).

3.4.2 BlackHat library for NLO without Higgs

The BlackHat Library for One-Loop Amplitudes [79,80] offers calculations for
amplitudes with quarks, gluons and W± [33] or Z, γ∗ + 3-Jet Distributions at
the Tevatron [35] and other processes but not yet the Higgs boson.

The four-dimensional ‘bootstrap’ loop recursion relations approach used in
the existing BlackHat suite is unsuitable for the NLO gg → h + jj... process
because the HTL vertex used so effectively to reduce the NLO ggF Higgs produc-
tion process to one loop introduces an additonal propagator into the numerator
of the amplitude. The calculation of the rational part cannot be constrained in
just four dimensions.

3.5 Chosen approach

In summary, I will work with HTL to reduce NLO to one loop for the gg → h+jj...
process. I will treat the Higgs boson as a real scalar.

New developments have resulted in a capacity to use numerical solutions to
extract analytical amplitudes [9, 60]. As a result, computational efficiency is no
longer a principal driver for the choice of method for the numerical application,
since any approach that provides reliable results can be used to obtain analytical
expressions to be coded into BlackHat or other frameworks, rather than the
full numerical calculation. I therefore choose D-dimensional unitarity, using
Cheung and O’Connell’s six-dimensional formalism both to calculate multi-leg
tree aplitudes and to capture the cut and rational pieces of the one-loop virtual
amplitude, with the FDH scheme for regularisation.

To check that all the components necessary to compute the full, NLO vir-
tual amplitude are available, a ‘road-map’ for the full calculation has been
constructed and is presented in Chapter 6. The road map indicates a com-
plete implementation is possible, as long as the six-dimensional spinor helicity
framework and its implementation can provide many-leg, six-dimensional tree
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amplitudes. This comes down to a question of whether three-point amplitudes
and six-dimensional BCFW can be reliably constructed. The main purpose of
this part of this thesis, then, is to implement the six-dimensional spinor helicity
formalism in order to address those questions.
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Chapter 4

Spinor helicity in theory

The six-dimensional spinor helicity formalism was developed by Cheung and
O’Connell [55]. I begin, as did they, with a brief recap of the well-understood
four-dimensional spinor helicity technology and then move on to describe the
six-dimensional formalism.

This chapter serves to define the basic spinor notation choices. The function
names for our Python implementation of the formalism described in Chapter 5
are given in boldface alongside the definitions where appropriate.

Throughout, the convention that all momenta are outgoing is used.

4.1 Four-dimensional spinor helicity

For 4D objects indices are:

SL(2,C) fundamental labels α, β, ... = 1, 2 and α̇, β̇, ... = 1, 2
SO(3,1) vector labels µ, ν, ... = 0, 1, 2, 3

Following [55] we use the mainly minus Minkowski metric:

ηµν = diag(+,−,−, ...,−) (4.1.1)

Pauli matrices

For the Pauli matrices we use the normal convention
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sig4i: σ0 = 1, σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
With

• (σ̃µ)αα̇ = (1,−σ)

• (σµ)αα̇ = εαβεα̇β̇(σ̃µ)ββ̇ = (1, σ)

• (σ̃µ)αα̇ = (1, σ)

• (σµ)αα̇ = (1,−σ)

using the totally anti-symmetric Levi-Civita tensors

lev2u εαβ ≡

[
0 1
−1 0

]

lev2d εαβ ≡

[
0 −1
1 0

]
Note that we later also use higher-dimensional anti-symmetric Levi-Civita tensors

lev3 εαβγ

lev4 εαβγδ

In these cases the index up and down tensors have the same matrix representa-
tion.

4-momentum

For a momentum four-vector pµ = (p0, pi) = (E, pi) and hence pµ = ηµνp
ν =

(p0,−p1,−p2,−p3), contraction with Pauli matrices gives

pαα̇ ≡
pµσ̃αα̇µ

psig4u
=
[
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

]
≡

[
p+ p⊥−

p⊥+ p−

]

pαα̇ ≡
pµσ

µ
αα̇

psig4d
=
[

p0 − p3 −(p1 − ip2)
−(p1 + ip2) p0 + p3

]
≡

[
p− −p⊥−
−p⊥+ p+

] (4.1.2)

The determinant of the momentum, |pαα̇| = p2.
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Weyl spinors

For massless momenta, the rank of the pαα̇-matrix is one, so it can be written
as an outer product of two, two-vector Weyl (helicity) spinors:

pα̇α = λαλ̃α̇ (4.1.3)

where an explicit case is

la λα ≡ 1√
p0+p3

[
p0 + p3

p1 + ip2

]
= 1√

p+

[
p+

p⊥+

]
lat λ̃α̇ ≡ 1√

p0+p3
[ p0 + p3, p1 − ip2)] = 1√

p+
[ p+, p

⊥
−]

cla λα ≡ 1√
p0+p3

[−(p1 + ip2), p0 + p3] = 1√
p+

[−p⊥+, p+]

clat λ̃α̇ ≡ 1√
p0+p3

[
−(p1 − ip2),
p0 + p3

]
= 1√

p+

[
−p⊥−
p+

]

As usual the Levi-Civita tensors raise and lower the spinor indices:

λα = εαβλβ λα = εαβλ
β λ̃α̇ = εα̇β̇λ̃β̇ λ̃α̇ = εα̇β̇λ̃

β̇ (4.1.4)

Spinors λi and λ̃i are independent when extended into the complex plane.

For Weyl spinors we define the short-hand notation

|i〉 ≡ λα(pi) 〈i| ≡ λα(pi) [i| ≡ λ̃α̇(pi) |i] ≡ λ̃α̇(pi)
la cla lat clat

4D spinor contractions and products

Lorenz-invariant quantities are constructed using the contraction of angle and
square bracket spinors:

sp22 〈ij〉 ≡ λα(pi)λα(pj)
[ij] ≡ λ̃α̇(pi)λ̃α̇(pj)

Contracted with the Pauli matrices Weyl spinors may also form a vector product

〈i|σµ|j]
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The vector product has the property that it allows the original 4-vector to be
recovered:

pµ = 〈p|σ
µ|p]

2 (4.1.5)

As usual, we define the Mandelstam variable:

sp4ij sij = (pi + pj)2

In the case where p2
i = p2

j = 0 we have

sij = 2pi.pj = pαα̇i pjαα̇

Properties of products:

• 〈ij〉 = −〈ji〉

• [ij] = −[ji]

• 〈ii〉 = [ii] = 0

• sij = 〈ij〉[ji]

• Schouten identity:
|i〉〈jk〉 = |j〉〈ik〉+ |k〉〈ji〉
|i][jk] = |j][ik] + |k][ji]

• Fierz identity:
〈i|σµ|j]〈k|σµ|l] = 2〈ik〉[lj]

Evaluating spinor strings [12]: multiplying a spinor string by 1 = [i4i1]〈iii4〉/si1i4 ,
etc, enables any spinor string to be broken up into strings of length

• two, as above, 〈ij〉[ji] = sij

• and four, which can be evaluated using the Dirac trace:

〈ij〉[jl]〈lm〉[mi] = tr
(

1
2 (1− γ5) 6 pi 6 pj 6 pl 6 pm

)
= 1

2

[
sijslm − silsjm + simsjl − 4iε(i, j, l,m)

] (4.1.6)

where ε(i, j, l,m) = εµνσρp
µ
i p
ν
j p
σ
l p
ρ
m
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4D Polarisation vectors

Take a massless reference vector qµ. Then the polarization vectors for massless
particles with momentum p are:

εµ+(p, q) = 〈q|σ
µ|p]√

2〈qp〉
and εµ−(p, q) = 〈p|σ

µ|q]√
2[pq]

, (4.1.7)

which obey the relations

p.ε±(p, q) = 0, ε±(p, q).ε±(p, q) = 0, ε±(p, q).ε∓(p, q) = −1 (4.1.8)

and completeness relation

εµ+(p, q)εν−(p, q) + εµ−(p, q)εν+(p, q) = −gµν + pµqν + qµpν

p.q
. (4.1.9)

Helicity states ± are produced by ε±.

Recall we have chosen the convention that all momenta are considered to be
outgoing. Helicity is labelled accordingly.

Solutions of 4D Dirac equation

Weyl (helicity) spinors λα and λ̃α̇ are the building blocks for the positive an
negative energy solutions of the massless, 4D Dirac equation

γµpµψ = 0. (4.1.10)

Following Davies [49] we use the chiral representation of the Dirac matrices:

gam4i: γ0 =
[

0 1
1 0

]

γi =
[

0 σi

−σi 0

]
, i = 1, 2, 3

γ5 =
[
−1 0
0 1

]
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Solutions of the 4D Dirac equation in this basis are:

up =
[
la
0

]
: u+ = v− =

[
λα

0

]
≡ |p〉

um =
[

0
clat

]
: u− = v+ =

[
0
λ̃α̇

]
≡ |p]

ubp =
[
0 lat

]
: u+ = v− =

[
0 λ̃α̇

]
≡ [p|

ubm =
[
cla 0

]
: u− = v+ =

[
λα 0

]
≡ 〈p|

Satisfying 6 p|p〉 = 0 =6 p|p]. (Note that here |p〉 and |p] are not Weyl spinors.)

4.2 Six-dimensional basics and notation

The 6D spinor helicity formalism used here follows that established by Cheung
and O’Connell [55] and explicated by Bern et al [45] and Davies [49].

It is helpful to begin this section with a summary of the indices used in this
formalism in the context of six-dimensional spinors. To begin with, the spinor
representation of SO(5,1)1 is used to express a vector pAB in six dimensions,
where A,B are fundamental representation indices of the covering group, SU*(4).
SO(6) is the special orthogonal group with 6 × 6 matrices of determinant 1;
SO(5,1) specifies a quadratic form having 5 positive eigenvalues and 1 negative.
This corresponds to 5 spatial dimensions and one timelike. SU(4) is the complex
Lie group of 4x4 unitary matrices with determinant 1 isomorphic to SO(6), and
SU*(4) is the compact real form of SU(4), i.e it is a real Lie group that has the
same complexification as SU(4), and is also isomorphic to SO(6). Since this
group has a simpler structure than SO(6) it is common to use it in applications.

The indices used in this section, then, are:

SU*(4) fundamental labels A,B, ... = 1, 2, 3, 4
SO(5,1) vector labels µ, ν, ... = 0, 1, 2, 3, 4, 5
SU(2) x SU(2) helicity labels a, b, ... = 1, 2 and ȧ, ḃ, ... = 1, 2

Note that the SU*(4) fundamental labels A,B = 1, 2, 3, 4 cannot be raised and
lowered.

1SO(6) is the group of rotations in 6 dimensions, 6x6 orthogonal matrices with determinant
1.
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For any object with little group indices, the convention is that the first in-
dex labels the rows and the second the columns.

It is possible to identify 6D objects by the presence of little group indices
a, ȧ but, to aid clarity in notation, for 6D objects we also replace 4D notation
equivalents with upper case:

pµ → Pµ sij → Sij σµ → Σµ λα → ΛA λ̃α̇ → Λ̃A εµ± → E
µ
aȧ

4.2.1 6D Pauli matrices

To satisfy the Clifford Algebra

ΣµΣν + ΣνΣµ = 2ηµν

The chosen 6D equivalent of the 4D Pauli matrices are:

sig6i Σ0 ≡ iσ1 ⊗ σ2

Σ1 ≡ iσ2 ⊗ σ3

Σ2 ≡ −σ2 ⊗ σ0

Σ3 ≡ −iσ2 ⊗ σ1

Σ4 ≡ −σ3 ⊗ σ2

Σ5 ≡ iσ0 ⊗ σ2

So:

Σ0
AB =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 Σ1
AB =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 Σ2
AB =


0 0 i 0
0 0 0 i

−i 0 0 0
0 −i 0 0



Σ3
AB =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 Σ4
AB =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 Σ5
AB =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


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and
sigt6i Σ̃0 = −Σ0

Σ̃1 = Σ1

Σ̃2 = −Σ2

Σ̃3 = Σ3

Σ̃4 = −Σ4

Σ̃5 = Σ5.

4.2.2 6-momentum

Contracting 6D Pauli matrices with 6-momentum Pµ gives

PAB = PµΣµAB =


0 −(ip4 + p5) −(p1 + ip2) p0 + p3

ip4 + p5 0 −(p0 − p3) p1 − ip2

p1 + ip2 p0 − p3 0 ip4 − p5

−(p0 + p3) −(p1 − ip2) −(ip4 − p5) 0



slash(p) =


0 −pmasst −pperp pplus

pmasst 0 −pminus pperm
pperp pminus 0 −pmass
−pplus −pperm pmass 0



(4.2.1)

Likewise we have

PAB = PµΣ̃µAB =


0 ip4 − p5 −(p1 − ip2) −(p0 − p3)

−(ip4 − p5) 0 p0 + p3 p1 + ip2

p1 − ip2 −(p0 + p3) 0 −(ip4 + p5)
p0 − p3 −(p1 + ip2) ip4 + p5 0



slasht(p) =


0 −pmass −pperm −pminus

pmass 0 pplus pperp
pperm −pplus 0 −pmasst
pminus −pperp pmasst 0


(4.2.2)

Our approach will shortly require us to express spinors for 6-momenta which
have p4, p5 6= 0 in terms of spinors for pairs of 4-momenta which each have
p4, p5 = 0, using the relationship
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(4)pαα̇ = λαλ̃α̇ + ρµαµ̃α̇ (4.2.3)

where 2

λ is the spinor for the null 4-vector p[ defined in equation 4.2.4 below
µ is the spinor for the null 4-vector q, arbitrary except that q.p 6= 0
ρ = κκ̃ = κ′κ̃′ = m2

2 (4)p.q
, with:

ka κ ≡ m
〈µλ〉

kat κ̃ ≡ m̃
[λµ]

kap κ′ ≡ m̃
〈µλ〉

kapt κ̃′ ≡ m
[λµ]

pmass m ≡ p5 − ip4

pmasst m̃ ≡ p5 + ip4

We therefore treat the massless six-vector P = (P 0P 1P 2P 3P 4P 5) as if it is a
massive 4-vector (4)p = (P 0P 1P 2P 3), such that ((4)p)2 = (P 4)2 + (P 5)2 = m2.
Using the derivation in Appendix E we can then generate the ’flattened’ 4-vector
p[ , such that (p[)2 = 0, as follows:

pflat p[ ≡ (4)p− m2

2 (4)p.q
q (4.2.4)

4.2.3 The 6D Dirac equation and constructing spinors

We use holomorphic and anti-holomorphic spinors ΛA and Λ̃A to fulfil relations
with the 6-momentum and 6D Pauli matrices similar to those in 4D.

The six-dimensional Λ matrices are the basis for solution of the six-dimensional
Dirac equation:

PµΣµABΛB = 0, PµΣ̃µABΛ̃B = 0 (4.2.5)

However, as P.Σ̃AB has rank two and not one as in the 4D case, the spinors
must carry an extra index. This index is the little group index a, ȧ = 1, 2. The
6D spinors are therefore 4× 2 matrices. We have

2The convention here has a sign reversal compared to [49].
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εbaΛAa ΛBb = ΛAaΛBa = PµΣ̃µAB

Λ̃AȧεȧḃΛ̃Bḃ = Λ̃AȧΛ̃ḃB = PµΣµAB
(4.2.6)

where

A,B SU*(4) indices label the rows
a, ȧ little group indices with values 1 and 2 label the columns

Using the relationship in equation 4.2.3 we can write the 6D spinors ΛAa and
ΛAȧ in terms of λ(p[) and µ(q). The solutions to equation 4.2.5 then are:

sp6d ΛAa (p) =
[
−κµα λα

λ̃α̇ κ̃µ̃α̇

]
aA

=
[
−ka la(q) cla(pflat)
lat(pflat) kat lat(q)

]

sp6td Λ̃Aȧ(p) =
[
κ′µα λα

−λ̃α̇ κ̃′µ̃α̇

]
Aȧ

=
[

kap la(q) la(pflat)
−-clat(pflat) kapt clat(q)

]

The little group indices are raised and lowered as usual by εab, so

sp6u ΛAa(p) = εabΛAb
sp6tu Λ̃ȧA(p) = εȧḃΛ̃Aḃ

In this project external particles are in four dimensions, with the κ components
all zero. Hence, for external particles the six-dimensional Λ spinors reduce to
the conventional four-dimensional λ form:[

0 λα(p)
λ̃α̇(p) 0

]
(4.2.7)

4.2.4 6D spinor contractions and products

The 6D equivalent of the Mandelstam variable sij is:

sp6sij Sij = (Pi + Pj)2 = 2Pi.Pj

Lorentz-invariant inner products of 6D spinors products are defined by contraction
of the SU*(4) indices as
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sp62 〈ia|jḃ] ≡ ΛAai Λ̃jAḃ = [jḃ|ia〉

〈ia|j ḃ] ≡ ΛAiaΛ̃ḃjA = [j ḃ|ia〉

〈ia|jḃ] ≡ ΛAiaΛ̃jAḃ = [jḃ|ia〉

〈ia|j ḃ] ≡ ΛAai Λ̃ḃjA = [j ḃ|ia〉.

The following spinor contractions with the SU*(4)-invariant Levi-Civita tensor
will be necessary for amplitude calculations:

sp64 〈iajbkcld〉 ≡ εABCDΛAai ΛBbj ΛCck ΛDdl

〈iajbkcld〉 ≡ εABCDΛAiaΛBjbΛCkcΛDld

[iȧj ḃkċlḋ] ≡ εABCDΛ̃ȧiAΛ̃ḃjBΛ̃ċkCΛ̃ḋlD

[iȧjḃkċlḋ] ≡ εABCDΛ̃iAȧΛ̃jBḃΛ̃kCċΛ̃lDḋ.

And for calculations involving scalars there will also be contractions of little-group
indices:

〈iajbkckc〉 ≡ εABCDΛAiaΛBjbΛCkeΛDek

[iȧjḃkėkė] ≡ εABCDΛ̃iAȧΛ̃jBḃΛ̃kCėΛ̃ėkD.

Spinor products have the following properties:

• 〈ia|iȧ] = 0

• det(〈ia|jḃ]) = Sij , where the determinant is taken over the little group
indices

• 〈ijkl〉〈m|+ 〈jklm〉〈i|+ 〈klmi〉〈j|+ 〈lmij〉〈k|+ 〈mijk〉〈l| = 0 for the chiral
spinors, which is the 6D generalisation of the Schouten identity. The
equivalent for anti-chiral spinors also stands.
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Amplitude calculations also require spinor strings, which are defined in general
as:

〈ia| 6 p1 6 p2... 6 p2n+1|jb〉 = (Λi)A1a(p1)A1A2(p2)A2A3 ...(p2n+1)A2n+1A2n+2(Λj)A2n+2b

〈ia| 6 p1 6 p2... 6 p2n|jḃ] = (Λi)A1a(p1)A1A2(p2)A2A3 ...(p2n)A2nA2n+1(Λ̃j)A2n+1ḃ

(4.2.8)

In practice for the tree amplitudes in the amplitude catalogue in Appendix A
we require only strings up to a 6 p4 term. Hence we write:

〈ia| 6 p1|jb〉 = (Λi)A1a(p1)A1A2(Λj)A2b (4.2.9)

sp6s1 = sp6i psig1 sp6j

〈ia| 6 p1 6 p2|jb] = (Λi)A1a(p1)A1A2(p2)A2A3(Λ̃j)A3b (4.2.10)

sp6s2 = sp6i psig1 psig2 sp6j

〈ia| 6 p1 6 p2 6 p3|jb〉 = (Λi)A1a(p1)A1A2(p2)A2A3(p2)A3A4(Λj)A4b (4.2.11)

sp6s3 = sp6i psig1 psig2 psig3 sp6j

〈ia| 6 p1 6 p2 6 p3 6 p4|jḃ] = (Λi)A1a(p1)A1A2(p2)A2A3(p3)A3A4(p4)A4A5(Λ̃j)A5ḃ

(4.2.12)

sp6s4 = sp6i psig1 psig2 psig3 psig4 sp6j

with the raised or lowered indices defined as required.

Vector products can also be defined

〈iaΣµjb〉, [iȧΣ̃µjḃ], (4.2.13)

which have a Lorentz-index and two little group indices and hence can be written
as 6-vectors of 2 x 2 matrices. They have the properties

Pµ = −1
4 〈P

aΣµPa〉 = −1
4 [PȧΣ̃µP ȧ] (4.2.14)
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〈iaΣµjb〉Piµ = 〈iaΣµjb〉Pjµ = [iȧΣ̃µjḃ]Piµ = [iaΣ̃µjb]Pjµ = 0 (4.2.15)

〈iaΣµjb〉[kċΣ̃µlḋ] = 2
(
〈ialẋ]〈jbkċ]− 〈iakċ]〈jblḋ]

)
(4.2.16)

4.2.5 6D polarisation vectors

6D polarisation vectors are written in terms of the vector products

pol Eµaȧ(P,Q) = −1√
2
〈PaΣµQb〉
〈QbP ȧ] = 1√

2
[QḃΣ̃µPȧ]
〈P aQḃ]

(4.2.17)

where Q is the axial reference vector, and a redefinition of Q will hence corre-
spond to a gauge transformation.

Note that the polarisation states cannot be labelled as + or − because in
six dimensions gluons have four polarisation states, labelled by a, ȧ. The six-
dimensional polarisation states are related to four-dimensional states: when
the reference vector is four-dimensional, states with (a, ȧ) being either (1, 1̇) or
(2, 2̇) correspond to positive and negative helicity states, respectively, whilst
labels (1, 2̇), (2, 1̇) correspond in four dimensions to scalars. Of course, the
specific map between four-dimensional helicities and six-dimensional quantum
numbers depends on the particular embedding of four-dimensional spinors in
the six-dimensional space [45].

We have the following completeness relationship:

Eµ11Eν22 + Eµ22Eν11 − E
µ
12Eν21 − E

µ
21Eν12 = −gµν + PµQν +QµP ν

P.Q
. (4.2.18)

4.3 Building tree amplitudes in six-dimensions

4.3.1 6D BCFW recursion relation

Using the BCFW principles outlined in Section 3.3.2 a six-dimensional BCFW
relation is given in [55] as
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xax̃ȧAaȧbḃ...(p1, p2, ...) =
∑
L,R

∑
cċ

(− i

k2 )xax̃ȧAaȧcċ(p̂1(z∗), ..., k̂)

×Acċ
bḃ

(p̂2(z∗), ...,−k̂)
(4.3.1)

where:

xax̃ȧ = Xaȧ labels the deformation of the shift, i.e.
p̂1 = p1 + zXaȧε1aȧ

p̂2 = p2 − zXaȧε1aȧ

z is the complex shift paramter
A are tree amplitudes
L,R sums over partitions of the external legs into two groups
cċ is the polarization of the intermediate leg
k is the physical momentum of the intermediate leg
k̂ is shifted momentum of the intermediate leg
... denotes the other external momenta

4.3.2 Four-point tree amplitude

Using BCFW and a derived expression for the six-dimensional three-point
amplitude, Cheung and O’Connell find that the colour-ordered Yang Mills,
six-dimensional four-point amplitude is simply

A4(1aȧ, 2bḃ, 3cċ, 4dḋ) = − i

st
〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] (4.3.2)

Whilst calculation of this four-point amplitude is straightforward, numerical
calculation of the three-point necessary to obain higher-point amplitudes is not.
Therefore I leave further discussion about six dimensional tree amplitudes to
the implementation Chapter 5.
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Chapter 5

Implementing 6D spinor
helicity in practice

5.1 Introduction

In the Chapter 6 roadmap we see that much of the functionality needed to carry
out the multi-leg NLO amplitude calculations we seek is already available. The
roadmap sets out a full procedure by which both the cut and rational parts of the
loop amplitude can be obtained. The crucial functionality that is missing in order
to implement the solution is the capacity to calculate multi-leg six-dimensional
tree amplitudes. For this we need an effective, six-dimensional BCFW recursion.

In the previous chapter we outlined the spinor helicity formalism as it stands
in theory. Working on the implementation, it took a while before it became
apparent that the principal challenge lies with the calculation of three-point
amplitudes. These are essential components of the BCFW strategy, but their
calculation is not straightforward. Cheung and O’Connell [55] themselves offered
a four-dimensional, special case of the approach in their paper. Bern et al [45]
did not go beyond this, and for the analytic loop-amplitude approach constructed
by Davies [49] only four-point amplitudes were used. Badger et al [81] presented
numerical code consistent with the four-dimensional, simplified construction of a
three-point amplitude in Cheung and O’Connell’s paper, but did not use it in
their four-point calculation. In order to meet the aims of the current project, it
is necessary to compute fully six-dimensional, three-point amplitudes.
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In this chapter we address the six-dimensional three-point amplitude and BCFW
construction for all helicities. We set out the practical implementation of a
numerical approach to the construction of six-dimensional tree amplitudes and a
six-dimensional BCFW method. Together, these create the missing functionality.

In fact, we present two approaches to the code: the initial development, described
in Sections 5.2 to 5.4, includes full functionality but retains consistency problems
relating to multiples of -1 and contraction of indices within the multi-layer,
nested manipulation of the six-dimensional spinors and the 2x1 objects derived
from spinor products. Although after much work many of the problems have
been eradicated, it is clear that this implementation is not a sound foundation for
further development. Using the lessons learned during development of the first
implementation a second approach has been tried successfully and is presented
as an addendum in Section 5.5. This code, which uses a bespoke package for
tensor definitions tensors.py, has been written by Daniel Maitre.

The original application and that in the addendum are both coded in Python.
The sections in this chapter are related to the modules in the Python code. The
code itself is presented in Jupyter notebook form in Appendix F.

5.2 Basic building blocks

module: utils

Utils is used by all other modules in the package. Then necessary four- and six-
dimensional sigma and gamma matrices, levi civita tensors, Minkowski products,
slashed momenta and Mandelstam variable functions are gathered together in
this module. It also contains the P[ function that is necessary for the construction
of the six-dimensional spinors.

module: randrot

In order to test our amplitude calculations we need to be able to generate
the six-dimensional spinors from rotated momenta so that they retain Lorentz
invariance and can be used to compare against the results of calculations using
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the original four-dimensional momenta values.

The randrot module handles rotation of four-dimensional momenta into six
dimensions and generates random momenta and random phase space points in
both dimensions. It also constructs the required rotated spinors. The getSpinors
function which does this is derived from a separate module, lieAlgebra.

module: spinors

The straightforward basic elements of the formalism described in the previ-
ous chapter are included in module spinors, including calculation of the κ
components of the spinor solutions ΛAa and Λ̃Aȧ to equation 4.2.5, and the
six-dimensional spinor products that are necessary for amplitude calculations.

The convention that all momenta are outgoing is used throughout, and the func-
tion momSpinors handles negative energy momenta by applying Λ−p = iΛp.

5.3 Trees and BCFW in six dimensions

Module: tree_with_spinors

5.3.1 Four-point tree amplitudes

Cheung and O’Connell provided the very nice analytic expression for the four-
point, all gluon amplitude in equation 4.3.2, which they derived from six-
dimensional BCFW using analytic manipulation of the expression for three-point
amplitudes.

In the tree_with_spinors module we begin by calculating the four-point
amplitude using equation 4.3.2 with spinors and spinor products defined in the
spinors module. For phase space points of external particles the result agrees
with output from the S@M package.

5.3.2 Implementing a 6d BCFW approach

In brief, the route to calculating a BCFW amplitude from two factorised am-
plitudes with a shift by a complex parameter z between P1 and P2 as shown in
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Figure 5.3.1: Momenta for BCFW split between P1 and P2

Figure 5.3.1 is as follows:

• Create an auxiliary matrix Xaȧ = xax̃ȧ where xa, x̃ȧ are arbitrary.

• Define polarisation vector for P1 with respect to P2.

• Calculate a null vector r which will satisfy P1.r = P2.r = 0.

• Calculate sum of momenta, P2j = P2 + ...+ Pj .

• Calculate z2j , the location of the pole at P2j(z)2 = 0 : z2j =
−P 2

2j
2r.P2j

.

• Calculate shifted spinors for P̂1 = P1 + zr, P̂2 = P2− zr using C&O’C eqns
5.7-10.

• Use spinors to calculate unshifted amplitude asXaȧAtreen (0) =
∑n−1
j=3

∑
hX

aȧL(P̂2, ..., Pj ,−P̂−h2j )×
1
P 2

2j
AR(P̂h2j , Pj+1, ..., P̂1)|z=z2j .

Each of these steps is addressed in turn in Sections 5.3.3 to 5.3.9. The most
difficult part of this process is the construction of three-point amplitudes, which
will be necessary for all higher-point amplitudes in this numerical application, is
addressed separately in Section 5.4.

5.3.3 Auxiliary matrix
xuu Xaȧ = xax̃ȧ

xdd Xaȧ = xax̃ȧ

xud Xa
ȧ = xax̃ȧ

xdu X ȧ
a = xax̃

ȧ

where xa is arbitrary and we have used
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xa = x̃ȧ =
[

1
0

]
.

so that

Xaȧ =
[

1 0
0 0.

]
(5.3.1)

5.3.4 Polarisation vector

With a null reference vector Q, such that P.Q 6= 0, there are associated spinors
P = |qa〉〈qb|εab and Q = |qȧ][qḃ|εȧḃ. The polarisation vectors are then defined to
be

pol Eµaȧ = 1√
2
〈pa|Σµ|qb〉(〈qb|pȧ])−1

= 1√
2

(〈pa|qḃ])
−1[qḃ|Σ̃

µ|pȧ]
(5.3.2)

where the object

(〈pa|qḃ])
−1 = −〈pa|q

ḃ]
2P.Q . (5.3.3)

5.3.5 Shift vector

The vector for the shift is a null vector with the properties of a polarisation
vector. It is obtained from

rv rAB = 1√
2
Xaȧ(EAB1 )aȧ (5.3.4)

For the purposes of our BCFW shifted momenta we will use the polarisation of
momentum P1 and choose the reference spinor for the polarisation vector to be
Λ2. Note that P1.r = r.P2 = 0.

5.3.6 Calculate z and the location of the pole

Calculate location of pole for the shift between legs one and two:

zPole z2j =
−P 2

2j
2r.P2j

(5.3.5)

where P2j = P2 + ...+ Pj .
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5.3.7 Shifted momenta

The vector for the shift is a null vector with the properties of a polarisation
vector: rAB = 1√

2X
aȧ(EAB1 )aȧ. For the purposes of our BCFW shifted momenta

we will use the polarisation of momentum P1 and choose the reference spinor for
the polarisation vector to be Λ2.

The shifted momenta are in practice obtained by using the pFromS6D function
which encodes equation 4.2.14 to extract them from their ZSpinors, which are
described in the following section. Alternatively, with a shift between Pi and Pj
the shifted momenta are given by

pHat1 p̂i = pi + zXaȧEiaȧ
pHat2 p̂j = pj − zXaȧEiaȧ

(5.3.6)

where z is the shift, X is the auxiliary vector Xaȧ = xax̃ȧ and E is the polarisa-
tion vector.

The third momentum in each left-, right-hand set of momenta is that of the
internal propagator, pHat2j ±P̂2j . The spinor for this momentum is found
by summing the other two momenta and then using the normal momSpinors
construction in module spinors.

5.3.8 Spinors for shifted momenta

Class: ZSpinors

The spinor construction of the deformed external legs p̂i cannot be derived
from dropping the shifted momenta into the usual code momSpinors in the
spinors module. If we simply apply the normal prescription to generate the
six-dimensional spinors from these transformed momenta the two columns of
the resulting spinors emerge with a non-trivial distortion: the two columns are
not independently Lorentz invariant. The correct approach is to construct the
shifted spinors directly from spinors and z. The expressions for these shifted
spinors that are given in Cheung and O’Connell, Bern et al and Davies are not
completely consistent. The form of the spinors that has been found to work in
practice is:

45



CHAPTER 5. IMPLEMENTING 6D SPINOR HELICITY IN PRACTICE

zspu1 ΛAa1̂ = ΛAa1 − z

s12
Xa
ȧ [1ȧ|2b〉ΛA2b

zspu2 ΛAb2̂ = ΛAb2 −
z

s12
Xa
ȧΛA1a[1ȧ|2b〉

zsptd1 Λ̃1̂Aȧ = Λ̃1Aȧ + z

s12
Xa
ȧ 〈1a|2ḃ]Λ̃

ḃ
2A

zsptd2 Λ̃2̂Aḃ = Λ̃2Aḃ + z

s12
Xa
ȧ Λ̃ȧ1A〈1ȧ|2ḃ]

(5.3.7)

where, as usual, a hatted P̂ indicates a shifted momentum.

5.3.9 Calculate the BCFW 4-point from 3-point ampli-
tudes

The general expression for six-dimensional BCFW is

xax̃ȧAtreen (0) =
n−1∑
j=3

∑
h

xax̃ȧAL(P̂2, ..., Pj ,−P̂−h2j )

× i

P 2
2j
AR(P̂ (h)

2j , Pj+1, ..., P̂1)|z=z2j

(5.3.8)

In the specific implementation of a four-point amplitude from two three-points,
for which there is only one diagram, we have:

xax̃ȧA4;aȧbḃcċdḋ = i

t
xax̃ȧAL;aȧeėdḋAR;bḃcċ

eė (5.3.9)

Where there is a sum over the e, ė little group index which defines the helicity
states of the intermediate propagator. The equation also demonstrates that a
contraction over the auxiliary matrix is necessary on both sides.

All external particles can be only little group 1,1 or 2,2 (or scalar, as in the case
of Higgs). Mixed little group indices, however, exist in the shifted momenta but
are constrained by the requirement that the shifted momentum contribution to
the left-hand amplitude must have the opposite helicity to that in the right-hand
amplitude. The intermediate propagator can also have mixed helicity states but
these are summed over.

The actual calculation of the left- and right-hand three-point amplitudes AL
and AR is described below.
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5.4 Three-point tree amplitudes

module: tree_with_spinors.ipynb

5.4.1 Structure of the amplitudes

The component Yang Mills, six-dimensional 3-point amplitude in equation 5.3.9
is [55]:

g3Amp A3(1aȧ, 2bḃ, 3cċ) = iΓabcΓ̃ȧḃċ (5.4.1)

where

gam Γabc = u1au2bw3c + u1aw2bu3c + w1au2bw3c

gamt Γ̃ȧḃċ = ũ1ȧũ2ḃw̃3ċ + ũ1ȧw̃2ḃũ3ċ + w̃1ȧũ2ḃũ3ċ
(5.4.2)

and the u, ũ are 2 × 1 objects that are described in Section 5.4.2 below. For
the right hand side when we use BCFW we need alternate helicity for the shift
vector, which for illustration purposes is labelled here 3cċ:

A3(1aȧ, 2bḃ, 3
cċ) = iΓab cΓ̃ȧḃ

ċ (5.4.3)

At least two of the momenta will be complex momenta shifted into six dimensions,
and all helicity combinations - including those which are not utilised when the
result is contracted with the auxiliary matrix - are calculated simultaneously.
The u, ũ components must be normalised to cyclical spinor products and, in order
to ensure that the BCFW relation works, the inverse w, w̃ components for the
three-point amplitude on each side of the factorisation must be consistent with
each other and must also comply with momentum conservation. The practicality
of all this is particularly tricky in six dimensions, which no doubt has played a
part in the fact that no numerical implementation of the calculation, apart from
the work reported here, so far exists.

In order to derive the u, ũ, w, w̃ we must first establish the left- and right-hand
momenta groups, Section 5.3.2.

5.4.2 Find and normalise u, ũ, w, w̃

Function: uutilde
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This function takes a set of three six-dimensional Λ and Λ̃ spinors as argu-
ments and calculates cyclical products. Since the determinant of the matrix
|〈ia|jḃ]| = 0, it is rank one. The aim is to express this rank one matrix as the
product of two 2x1 matrices such that

uiaũjḃ = 〈ia|jḃ] (5.4.4)

In their paper, Cheung and O’Connell [55] use a four-dimensional example for
clarity and state a simple construction ui = [0, Ni] and ũ = [0, Ñi], where:

N2 = 〈23〉
〈31〉N1, N3 = 〈23〉

〈12〉N1,

Ñ1 = 〈12〉〈31〉
〈23〉

1
N1

, Ñ2 = 〈23〉
〈31〉N1, Ñ3 = 〈12〉

N1
,

(5.4.5)

where the 〈ij〉 are four-dimensional spinors. is that of a ZSpinor. In practice,
at least one of the three-point momenta is always a six-dimensional shifted leg
and a second leg is formed by the internal six-dimensional propagator. Finally,
when loop cuts become involved, the third momentum may also be similarly
six-dimensional. None of this prevents us from obtaining the u, ũ construction
required by the three-point amplitude: the spinor products are all rank one
matrices with zero determinants, so it is straightforward to express each of them
as the product of two, two-by-one matrices normalised by choosing one of the
N values and calculating each in rotation. However, a naive approach here has
unpleasant repercussions when we move on to calculate the pseudoinverse objects
w, w̃.

Equation 5.4.2 requires the construction of w, w̃, with the inverse condition

uiawjb − uibwia = εab

ũiȧw̃jḃ − ũiḃw̃iȧ = εȧḃ
(5.4.6)

For any object u an inverse can be found quite easily, though such an inverse is
not unique. However, the inverses must be constructed such that:

1. momentum is conserved; and

2. the left-hand w for the internal momentum is consistent with the right-hand
u spinor product values and vice versa.
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The first requirement can be stated in the form

|w1.1〉+ |w2.2〉+ |w3.3〉 = 0 (5.4.7)

Where the notation indicates contraction over the little group index, i.e.

w1a|1a〉+ w2b|2b〉+ w3c|3c〉 = 0

With ui = [0, Ni] and ũi = [0, Ñi] Cheung and O’Connell construct a simple
inverse

wia =
[

1
Ni

BiNi

]
, w̃ia =

[
1
Ñi

BiÑi

]
(5.4.8)

where Bi is a constant, chosen to meet the momentum conservation condition
equation equation 5.4.7.

An expression that meets the inverse condition for all including six-dimensional
cases is found to be:

wi = Bi
ui[0]

[
ui[0]
ui[1]

]
−

[
0

1/ui[0]

]
(5.4.9)

We can solve for Bi by substituting equation 5.4.9 into equation 5.4.7:

∑
i

Λi

(
Bi
ui[0]

[
ui[0]
ui[1]

]
−

[
0

1/ui[0]

])
= 0 (5.4.10)

However, this approach does not necessarily lead to a satisfactory compliance
with the second of our consistency requirements, i.e. that the left-hand w for the
internal momentum is consistent with the right-hand u spinor product values
and vice versa. Without the relation

w−P̂2j
.wP̂2j

= 1
u−P̂2j

.uP̂2j

(5.4.11)

the combination of the left- and right-hand amplitudes in BCFW does not
produce the correct result.

It has been found that it is essential first to diagonalise the spinor product
matrices, and this is the approach taken in uutilde. The construction and
normalisation then become straightforward. In uutilde, the spinor product
〈1a|2ḃ] is used as the basis for both.
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5.4.3 Calculate three-point amplitude

Function: spFor3g

We first obtain the spinors for each of the left- and right-hand amplitudes
shown in Figure 5.3.1 .

Function spFor3g takes as input a four-dimensional (i.e. real) phase space
point P1, P2, P3, P4 extended to a six-dimensional format, i.e. P4 = P5 = 0. For
such a real phase space point all external particles are in four dimensions and
the six-dimensional spinor construction reduces to the nice four-dimensional case
in equation 4.2.7. The split is set to be between P1 and P2 (the order of the
input momenta is, of course, adjustable).

With the convention that all momenta are outgoing, the cyclical order of the
left-hand set of momenta is then determined to be P4, P̂1,−P̂2j and that of the
right-hand set of momenta is P̂2, P3, P̂2j .

Spinors for the unshifted external momenta P3, P4 are obtained simply from
momSpinors in the spinors module, as are the spinors for the internal propa-
gator P̂2j , as described in section 5.3.7. Those for the deformed external legs P̂1

and P̂2 are ZSpinors, Section 5.3.8.

Function: g3Gamma

Taking the family of u, ũ, w, w̃ from uutilde for either the left- or the right-hand
side momenta as input, equation 5.4.2 is implemented.

Function: g3Amp

The amplitude calculation takes a real phase space point as input, obtains
spinors from spFor3g and then separates these into left- and right-hand sets. It
calls uutilde twice, using each of the spinor sets, and then uses the u, ũ, w, w̃
output from that function as input to g3Gamma in the two cases, to obtain
both left- and right-hand results.
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The function implements equation 5.4.1 and returns the left- and right-hand
amplitudes, g3L, g3R.

5.5 Addendum: alternative code

The state of play with the six-dimensional BCFW four-point amplitude calcula-
tion in Section 5.3.9 is that some results are consistent with expectations but oth-
ers are not. Test results for this code have been left in the tree_with_spinors
Jupyter notebook in Appendix F. Repeated review and correction has led to
steady improvement, almost all related to management of indices, contractions
and factors of −1. What has become clear is that consistent manipulation of
spinor and other objects in nested calculations requires a different approach to
the basic operations if it is to be sufficiently robust to support further develop-
ment.

A likely contender for such an alternative has been written by Daniel Maitre,
and I include it in Appendix F because it provides important evidence that the
six-dimensional spinor helicity approach is viable. There is still a residual factor
of −1 that has to be adjusted in order for consistent results to be obtained, but
undoubtedly the cause of that can be determined and corrected given more time.
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Chapter 6

A road map for the full
1-loop calculation

6.1 Overview

In Chapter 3 we carried out a high-level review of options for a choice of methods
to calculate a NLO virtual amplitude for the process gg → h + jj..., which
can be used by Monte-Carlo tools like Sherpa to calculate cross-sections. In
the subsequent two chapters the focus has been on the six-dimensional spinor
helicity approach to obtaining the tree amplitudes that are the building blocks
of the calculation. The full family of these tree amplitudes was not previously
available. The purpose of this chapter is to step back again from that focus and
to ensure that the other parts that will be necessary to complete the framework
are accessible. In fact this work was carried out before that reported in Chapters
4 and 5.

In this chapter I will set out all the steps required for the calculation, clearly
identifying those which are already available from existing sources, and demon-
strating how the six-dimensional spinor helicity formalism selected in the previous
chapter is sewn into the total framework.

We begin with the generic form of a loop amplitude, which is
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AL−loopn =
∑
j

∫ ( L∏
l=1

dDl1
(2π)D

) 1
Sj

njcj∏
αj
p2
αj

(6.1.1)

where

L is number of loops
j is all possible Feynman diagrams
l1 are the L loop-momenta
αj are the propagators
Sj is the symmetry factor associated with the diagram
nj are polynomials of Lorentz-invariant contractions of external-

and loop-momenta and polarisation vectors
cj are constants which depend on couplings and gauge group factors

The expression for the one-loop amplitude we wish to calculate then is

A1
n =

∑
j

∫ ( dDl1
(2π)D

) 1
Sj

njcj∏
αj
p2
αj

(6.1.2)

6.2 Colour-dressed, virtual amplitude

In QCD the gauge fields are matrices and hence do not commute: there is
self-interaction in gluon fields. The underlying group is SU(N), where in the
QCD case N = 3.

The first step in the on-shell technology is to separate colour permutations
from kinematics in order to simplify calculations. The Higgs boson of course
does not carry colour, and has no effect on the colour ordering. When construct-
ing the full amplitude it must simply be included in all possible positions within
the colour permutation.

The tree-level n-gluon amplitude colour decomposition is as follows [64]:

A0
n(1, ..., n) = 2(n−2)/2gn−2

∑
σ∈Sn/Zn

tr(T aσ1 ...T aσn )An(σ1, ..., σn) (6.2.1)

At one-loop the n-gluon colour decomposition is [12]:
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A1
n({pi, hi, ai}) = gn

( ∑
σ∈Sn/Zn

NcTr(T aσ1 ...T aσn )An;1(σ1, ..., σn)

+
[n/2]+1∑
c=2

∑
σ∈Sn/Zn

Tr(T aσ1 ...T
aσ(c−1) )Tr(T aσc ...T aσn )

×An;c(σ1, ..., σn)
)

(6.2.2)

where

pi and hi gluon momenta and helicities
ai adjoint colour index, a = 1, 2, ...,N2

c − 1
g gauge coupling g2

4π = αs

Sn set of all permutations of n objects
Zn subset of cyclic permutations, which preserves the trace
An;c colour-ordered, primitive amplitudes calculated in our

chosen six-dimensional spinor helicity formalism.

6.3 One-loop, colour-ordered amplitude in basis
of master integrals

The colour-ordered amplitudes An;c of equation 6.2.2 include both cut and
rational parts. In the six-dimensional spinor helicity formalism we have chosen
to use they are combined and calculated together [49], using:

A(1)
n = µ2ε

(4π)2−ε

(∑
K4

C
[0]
4;K4

I4−2ε
4;K4

+
∑
K4

C
[4]
4;K4

I4−2ε
4;K4

[µ4]

+
∑
K3

C
[0]
3;K3

I4−2ε
3;K3

+
∑
K3

C
[2]
3;K3

I4−2ε
3;K3

[µ2]

+
∑
K2

C
[0]
2;K2

I4−2ε
2;K2

+
∑
K2

C
[2]
2;K2

I4−2ε
2;K2

[µ2]
)

+O(ε)

(6.3.1)

where
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Kr refers to the set of all ordered partitions of the external
momenta into r distinct groups.

I are known integrals defined below in equation 6.4.1.
C [0] are coefficients of cut-constructible pieces, calculated as defined

in Section 6.5.
C [i], i = 2, 4 are coefficients of rational pieces, calculated as also defined

in Section 6.5.

6.4 Master integrals

The master integrals in equation 6.3.1 are given by

I4−2ε
n [f(µ2)] = i(−1)n+1(4π)2−ε

∫
d4−2εl

(2π)4−2ε

× f(µ2)
l2(l − P1)2(l − P1 − P2)2...(l + Pn)2

(6.4.1)

where Pi is the momentum of the ith external leg.

All the master integrals for this calculation are already known (see, in particular,
Ellis and Zanderighi [82, 83]) and can be retrieved from qcdloop [83] rather than
be calculated from scratch. For completeness, we state them below.

6.4.1 Non-scalar

Where the renormalisation scale f(µ2) 6= 1.

Sources: [49, 58]

I4−2ε
4 [µ4] ε→0−−−→ − 1

6 (6.4.2)

I4−2ε
3 [µ2] ε→0−−−→ − 1

2 (6.4.3)

I4−2ε
2 [µ2] ε→0−−−→ − 1

6 (s− 3(m2
1 +m2

2)) (6.4.4)
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6.4.2 Scalar

f(µ2) = 1

Source: [23, 82]

Box integral

In the zero mass case:

I0m
4 = rτ

1
st

{ 2
ε2
[
(−s)−ε + (−t)−ε − ln2

(−s
−t

)
− π2

}
(6.4.5)

where s and t are the Mandelstam variables

s = (P1 + P2)2 (6.4.6)

t = (P2 + P3)2 (6.4.7)

There are also given the expressions for boxes with one or more external massive
legs.

Triangle integral

A single off-shell external leg depends only on the momentum invariant of
the massive leg, t[n−2]

i+2 = t
[2]
i

I1m
3;i = rτ

ε2
(−t[2]

i )−1−ε (6.4.8)

Bubble integral

I2 : r; i ≡ I2[1] = rτ
ε(1− 2ε (−t[r]i )−ε

= rτ

(1
ε
− ln(−t[r]i ) + 2

)
+O(ε)

(6.4.9)

,

I2[pµ] = Pµ

2 I2:r;i (6.4.10)
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where

t
[r]
i ≡ (Pi + Pi+1 + ...+ Pi+r−1)2

P = Σi+r−1
l=i Pl is the total momentum flowing out of one side

r is the number of external legs clustered on one side of the bubble
starting at leg i

rτ is the dimensional regularization parameter, ε = (4−D)/2
rτ = Γ(1+ε)Γ2(1−ε)

Γ(1−2ε)

6.5 6D Coefficients

The coefficients of the master integrals in equation 6.3.1 given here are all as
stated by Davies [49].

Box

C
[0]
4 = i

2

∑
σ

A1A2A3A4(l̃σ1 )|µ2→0 (6.5.1)

C
[4]
4 = i

2

∑
σ

[Infµ2A1A2A3A4](µ2)|µ4 (6.5.2)

Where

• [Infµ2A1A2A3A4](µ2) =
∑2
i=0 ciµ

2i then C [4]
4 is restricted to be the coef-

ficient of the µ4 term. Note that for a numerical application, for the Inf
functions we would use discrete Fourier transforms.

• An is a tree amplitude.

The sum is over the two solutions to the quadruple cut and the product
A1A2A3A4 must be computed for each. In this regard, Davies [49] comments
that, ’The usual procedure is to sew four three-point amplitudes together, but
working with three-point amplitudes in six dimensions can be complicated. It
is, in fact, easier to multiply simpler four-point tree amplitudes by inverse
propagators making them equivalent to the sum of products of two three-point
amplitudes, given the cut conditions.’ (pg. 9) See Figure 6.5.1.
For the purposes of our implementation, described in Chapter 5, this approach
is inadequate because the aim is to be able to construct tree amplitudes with
many legs. Hence a three-point amplitude construction for BCFW is essential.
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Figure 6.5.1: The four-point quadruple cut. Two pairs of three-point amplitudes
are grouped together (indicated by blue ovals) to form two easier-to-use four-
point tree amplitudes. The cut propagators of the four-point tree amplitudes
are cancelled by multiplying by inverse propagators prior to imposing the cut
conditions. (Davies fig. 5)

Triangle

C
[0]
3 = − 1

2nγ

∑
σ

[InftA1A2A3(l̃σ1 )](t)|µ2→0,t→0 (6.5.3)

C
[2]
3 = − 1

2nγ

∑
σ

[Infµ2 [InftA1A2A3(l̃σ1 )](t)](µ2)|µ2,t→0 (6.5.4)

where, once again, there is a polynomial expansion (in t) but only the t0 term is
retained.

The sum is over the solutions, including the conjugate-momentum solution,
to the cut conditions.

Bubble

C
[0]
2 = −i[Inft[InfyA1A2](y)](t)|µ2→0,t→0,ym→Ym

−1
2
∑
Cm

∑
σy

[InftA1A2A3](t)|µ2→0,tj→Tj
(6.5.5)

C
[2]
2 = −i[Infµ2 [Inft[InfyA1A2](y)](t)](µ2)|µ2,t→0,ym→Ym

−1
2
∑
Cm

∑
σy

[Infµ2 [InftA1A2A3](t)](µ2)|µ2,tj→Tj
(6.5.6)

where

• Y0 = 1

• Y1 = 1
2
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• Y2 = 1
3

(
1− µ2

S1

)
• Y3 = 1

4

(
1− 2µ

2

S1

)
• Y4 = 1

5

(
1− 3µ

2

S1
+ µ4

S2
1

)
• T0 = 0

• T1 = −S1〈χ−|6P3|P [−1 〉
2γ̃∆

• T2 = − 3S1〈χ−|6P3|P [−1 〉
2

8γ̃2∆2 (S1S3 + P1.P3S1)

• T3 = −〈χ−|6P3|P [−1 〉
3

48γ̃3∆3 (15S2
1S

2
3 + 30P1.P3S

3
1S3 + 11(P1.P3)2S3

1 + 4S4
1S3 +

16µ2S2
1∆)

• ∆ = (P1.P3)2 − S1S3

State sum reduction of coefficients to regularisation scheme

In 6D, gluons have additional, non-physical polarisation states. To reduce the
coefficients to those of the four-dimensional helicity (FDH) scheme, we subtract
twice the contribution of cuts where all internal gluons have been replaced by
scalars [49]. (See also [81] pg 16.) Expressions for amplitudes with scalars are
included in Appendix A.

6.6 6D Colour-ordered tree amplitudes

Definition of the required cuts for tree amplitudes is described in Section 6.8
below.

The relevant loop momenta can be calculated using the definitions in Section 6.7
below.

Some analytic formulae for the necessary 6D tree amplitudes are already pub-
lished in the 6D helicity scheme and a catalogue of these is in Appendix A. Those
which are not yet available will be built using the colour-ordered Feynman rules
in Appendix C where necessary and 6D BCFW relations described above. The
analytic formulae that exist will be useful in testing the BCFW results.
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6.7 Loop momentum solutions

To solve the cut conditions we view the massless 6D loop momentum as massive
4D momentum. To solve for the cut conditions we consider a particle with a
uniform mass around the loop.

6.7.1 Box

For quadruple cut in 4 − 2ε dimensions and loop momentum l, on-shell cut
conditions are:

l21 = l22 = l23 = l24 = 0 (6.7.1)

i.e.

l̃21 = l̃22 = l̃23 = l̃24 = µ2 (6.7.2)

where

• l̃i represent momenta l truncated to four dimensions

• µ represents the (−2ε)-dimensional components, and µ2 can be regarded
as a mass term

With two external momenta P1, P4, both outgoing in our convention, we use
Forde’s formalism for parametrisation of the loop momentum [30,32] by choosing

l̃1 = aP [4 + bP [1 + c|P [4〉[P [1 |+ d|P [1〉[P [4 | (6.7.3)

where

• P bµ1,4 is the massless projection of one of the external legs in the direction
of the other masslessly projected leg:
P bµ1 = γ14(γ14P

µ
1 −P

2
1 P

µ
4 )

γ2
14−P 2

1 P
2
4

P bµ4 = γ14(γ14P
µ
4 −S4P

µ
1 )

γ2
14−P 2

1 P
2
4

• γ14 = P1.P4 ±
√

(P1.P4)2 − P 2
1P

2
4

• Si = P 2
i
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The coefficients are then fixed by the on-shell conditions, so:

l̃1 = aP [4 + bP [1 + c|P [4〉[P [1 |+
γ14ab− µ2

cγ14
|P [1〉[P [4 | (6.7.4)

where now

• a = P 2
1 (P 2

4 +γ14)
γ2

14−P 2
1 P

2
4

• b = −P
2
4 (P 2

1 +γ14)
γ2

14−P 2
1 P

2
4

• c± = −c1±
√
c2

1−4c0c2
2c2

• c0 =
(
ab− µ2

γ14

)
〈P b−1 | 6 P2|P b−4 〉

• c1 = a〈P b−4 | 6 P2|P b−4 〉+ b〈P b−1 | 6 P2|P b−1 〉 − P 2
2 − 2P1.P2

• c2 = 〈P b−4 | 6 P2|P b−1 〉

There are four solutions but only two are independent.

6.7.2 Triangle

The triangle loop momenta are given by

l̃µ1 = aP [µ3 + bP [µ1 + t

2 〈P
[−
3 |γµ|P

[−
1 〉+ γ13ab− µ2

2tγ13
〈P [−1 |γµ|P

[−
3 〉 (6.7.5)

where t is a complex, free parameter. The calculation is averaged with conjugate
solutions.

6.7.3 Bubble

l̃µ1 = yP bµ1 +P 2
1 (1− y)
γ̃

+ t

2 〈P
[−
1 |γµ|χ−〉+

y(1− y)P 2
1 − µ2

2tγ̃ 〈χ−|γµ|P [−1 〉 (6.7.6)

where

• t is a free parameter

• y is a free parameter, which for the triangle contribution to the bubble
coefficient is fixed to put another propagator on-shell: y± = B1±

√
B2

1+4B0B2
2B2

(see Davies (4.18) for B0, B1, B2)

• χ is an arbitrary massless vector

• P [µ1 = Pµ1 −
P 2

1
γ̃ χ

µ

• γ̃ = 2(P1.χ)
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6.8 Cut construction

For Higgs plus 5 gluons (i.e. a three-jet process), for example, we require up to
7-point 6D tree amplitudes in cuts, in the following categories:

• Gluon

• Gluon plus Higgs

• Both with 2 internal gluons replaced by scalars (for state sum reduction)

A sketch of the cuts for the first of the above categories, the all-gluon loop,
is presented in Appendix B. Collection of the full family of cuts from existing
sources is available in Armstrong [8] with code LoopCuts.
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Chapter 7

Discussion and conclusion

This work has had, from the beginning, a different objective from that in the
previous work on NLO gg → h with 1, 2 or 3 jets reported in Table 3.4.1. Rather
than calculate a specific process, the intention has been to explore the creation
of a numerical framework for the calculation of NLO gg → h with any number
of jets.

Specifically, at the beginning of this work we set out to answer the question ‘Can
six-dimensional spinor helicity methods be used to set up a numerical framework
to calculate the NLO virtual contribution to gg → h that can be scaled for
an arbitrary number of additional jets?’. The stated aim was to support the
development of a package to be added to the existing BlackHat software suite for
NLO amplitudes, and the hope was that the construction of such a tool might
ultimately facilitate a breakthrough in understanding hidden structures in the
amplitudes.

The predecessor project with a similar aim [8] which, at the time, was bound
by the imperative of calculation efficiency, set out to identify and exclude all
vanishing amplitudes in order to simplify the calculation as much as possible.
This approach was highly successful for calculating the four-dimensional cut
parts of the amplitude but, in the D > 4 dimensions required to extract the
rational parts of the loop amplitude, it remained incomplete. In part this was due
to time constraints, as no six-dimensional amplitudes were calculated and spinor
products were causing incorrect results. More significantly, it was concluded
that the conversion of six-dimensions to four would have to be done manually as
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it was impossible to declare a rule ( [8] Chapter 6 pg. 101).

This previous work was highly influential in two ways: (a) it informed the
choice of tools for the present thesis; and (b) it highlighted the importance of
ensuring from the outset, as much as possible, that there is a theoretical route
through the entire calculation. It is also very relevant that the imperative of
calculation efficiency has relaxed in recent years, as new tools have become avail-
able which are expected to enable the determination, by machine methods, of
analytic expressions from the numerical results. It can therefore be the analytic
expressions that are implemented in BlackHat.

The current project also remains incomplete, in that there is not yet a package
that produces numerical results for the NLO amplitudes we set out to calculate.
In the implementation Chapter 5 the reasons for this are described. The last
sticking point has been the reliable numerical calculation of six-dimensional three-
point, all-gluon amplitudes in the Cheung and O’Connell formalism. Whilst this
obstacle has now been overcome, by changing the entire structure of the code for
six-dimensional spinors, that breakthrough has come too late for it to be carried
through into the next steps in the calculation.

What, then, is the real value of the work that has been done so far? And
what is the answer to the question posed at the beginning of the thesis?

This project has used the lessons learned from its predecessor. Its main contri-
butions, then, lie in:

• Identifying a theoretical formalism that offers the potential to overcome the
block encountered in the predecessor project. The Cheung and O’Connell
six-dimensional spinor helicity formalism leads naturally to the calculation
of cut and rational parts together for all helicity commbinations.

• Drawing together, from multiple sources of analytical work in this formalism
and others, a complete ‘road map’ of the one-loop calculation, so that the
requirements for the entire calculation are clear. Happily, the components
of much of the remaining calculation are already available.

• Recognising that the key component for a scalable solution is the availability
of six-dimensional three-point amplitude calculations. These are essential
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in order to be able to use the BCFW approach to generating the tree
amplitudes that feed the loop calculation, at increasing multiplicity.

• Building and reporting a deep understanding of the practical challenges
that are faced in implementing the six-dimensional formalism in practice. I
found that, whilst it is straightforward to construct four-point amplitudes
directly from the analytic expression, the same is not true for three-point
amplitudes. This has led to an appreciation of the need to approach the
underlying spinor constructions in a way that goes beyond simply coding
the analytic expressions in the theory.

• Demonstrating, with the aid of the new spinor code developed by Maitre 5.5
as a solution to the difficulties encountered in the original implementation,
that the formalism can correctly calculate usable three-point amplitudes.

In conclusion, the answer to the original question is that there is every indication
that it is indeed possible to use the Cheung and O’Connell six-dimensional spinor
helicity formalism to build a framework for NLO gg → h that can be scaled for
additional jets. It is also clear that to do so is not a trivial task, and would likely
benefit from team effort.
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Part II

Self-organised criticality
and general relativity - a
new theoretical framework
for the complex universe
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Chapter 8

Introduction

We believe that we are actually at the beginning of a new scientific era.
We are observing the birth of a science that is no longer limited to idealized

and simplified situations but reflects the complexity of the real world.
Ilya Prigogine (1996) [84], pg. 7

When Einstein first published the field equations of general relativity (GR) more
than a century ago there was a sense that solutions to those equations needed to
be found, even though Einstein himself didn’t know if that would be possible.
To everyone’s surprise the first exact solution, by Karl Schwarzschild working
whilst in the army in the awful conditions of the First World War, took only a
matter of weeks. The Schwarzschild solution describes the vacuum spacetime
in the region surrounding a perfectly spherical, isolated matter source. In a
sense, it represents the essence of a deep problem. If the focus is on solving the
equations, extreme simplification is necessary. If the focus is on understanding
the universe, extreme simplification may be ineffectual. Which is it to be?

In the decades following the emergence of GR as a theory there has contin-
ued to be a focus on solution. In part this was inevitable - the only tools
available in the early- and mid-20th century were those of equilibrium ther-
modynamics. The assumptions required to justify the use of those tools - the
Friedmann-Lemaitre-Robertson-Walker (FLRW) recipe of homogeneity, isotropy,
matter and radiation behaving like non-interacting, frictionless dust in the vast
expanse of the universe - all seemed reasonable based on empirical observation
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at the time. Solving the field equations using simplifying assumptions was
an obvious thing to do. However, the FLRW framework forces some extreme
conclusions, which perhaps have become accepted only because there has seemed
to be no realistic alternative. Big Bang, inflation, dark energy, dark matter -
these concepts have become bread and butter to cosmologists but they are far
from being understood and even further from being proven.

There is the added problem that the statistical framework so effective for the
analysis of perfect fluids and equilibrium conditions is actively misleading when
the simplifying assumptions are unjustified. Meanwhile, new concepts and tools
for understanding and working with complex systems have been developing in
physics in recent decades. These neither require nor expect symmetry, regularity
or equilibrium. Perhaps there is a new way of looking at GR and the evolution
of the universe?

This thesis is an exposition of such an alternative approach, that is not based on
solving the field equations but instead acknowledges the universe as a complex
system. The new theoretical framework I suggest puts complexity centre-stage
by incorporating the self-organised criticality (SOC) paradigm first proposed
by Bak, Tang and Wiesenfeld [1] and releasing GR from the FLRW constraints
into which it has historically been squeezed. This SOCGR framework predicts
observed phenomena without the necessity of unknown matter or energy and
supports further scientific investigation.

The components of this work have been drawn from a number of disciplines in-
cluding complexity science, non-equilibrium statistical physics and mathematical
general relativity as well as cosmology. My aim is to present sufficient infor-
mation about these diverse topics, citing reputable sources, to enable a reader
who is not expert in all of these disciplines nevertheless to follow the argument
of the SOCGR framework. Much of the information, therefore, is not original.
Even the argument that the existing approach to modelling the evolution of the
cosmos is flawed is not a new one - others have also reported evidence in support
of aspects of that challenge. The originality of this thesis lies in highlighting a
coherent set of inadequacies in the concordance model and demonstrating that
there is a viable alternative paradigm. The alternative is consistent with the
theory of GR yet allows the universe to be treated as what it is - a vast web of
complex interaction featuring omnipresent, multi-scale, self-organised structures.
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The new framework resolves tensions in the standard cosmological model, opens
doors to fresh questions and offers exciting new directions for research.

In some cases, words mean different things in different disciplines. For ex-
ample, dissipation may be used to refer to a gradual disappearance or loss of
energy. However, the technical use of dissipative system in the context of complex
systems is defined as ‘an open system that relies on external energy flows to
maintain its organization and carry out self-organizing processes, dissipating
energy gradients in the process’. Likewise, scale invariance is commonly used in
cosmology in a way that is quite different from its definition in statistical physics.
In cosmology the primordial spectrum is decribed as scale-invariant because
the amplitude of its fluctuations does not change relative to the only scale in
the expanding universe model, the horizon scale. In statistical physics, scale
invariance has nothing to do with the amplitude of fluctuations but is instead
associated with a particular range of power-law behaviours in the correlation
function, i.e. with invariance under scale transformations (see, for example, [85]
pg. 171). Throughout this work I have provided definitions where a risk of
misunderstanding is evident.

This thesis is organised as follows:

• Chapter 9, the case for a new theoretical framework: key features of the
standard cosmological model and challenges to it.

• Chapter 10, the nature of complexity and its impact on physical quantities
and behaviour, such as mass-energy, transitions and evolution. Why
it matters that the universe is a complex system, and new methods in
statistical physics which are applicable to complex systems.

• Chapter 11, introducing the SOC paradigm and its theoretical implications.
Can we say that the universe is - or that it isn’t - a SOC system?

• Chapter 12, exploring the signficance of textbook GR, without the FLRW
constraints.

• Chapter 13 presents a quantitative simulation and a qualitative discussion
in the context of a five-body model galaxy. The aim is to support the
argument that models which simplify by ignoring interaction or by using
Newtonian gravity as a proxy for GR, or both, cannot provide a good
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approximation of the behaviour or the mass-energy of a real (complex)
galaxy.

• Chapter 14 applies both SOC and GR to the open questions of cosmology
in the universe as a whole.

• Chapter 15 suggests directions for future work and concludes the thesis.
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The case for a new
theoretical framework

The ΛCDM model is so widely accepted that it is essentially a concordance
model. It is hugely successful, so why do we need to look for alternatives? To
answer that question, in this chapter I highlight key features of the standard
model and refer to some of the significant challenges to it. I begin with a brief
introduction to the Friedmann-Lemaitre-Robertson-Walker (FLRW) framework,
which is the foundation of ΛCDM.

9.1 The basis of FLRW cosmologies

The derivation of FLRW models of cosmology is available in many textbooks,
for example [86,87]. Since there are numerous sources, in this section I present
the main features of such models largely without further citation.

Einstein’s original publication of GR in 1915 presented field equations in the
form1

Rµν −
1
2Rgµν = 8πG

c4
Tµν (9.1.1)

1Various sign conventions are used in the literature and the form of the equation here is the
Landau-Liftschitz Spacelike Convention (LLSC), in which the spacetime metric is (−+ ++)
and both the Riemann tensor and 8πG

c4 Tµν are positive. I use this convention throughout this
thesis. A very useful summary of other sign conventions is inside the front cover of Misner,
Thorne and Wheeler [86]. Einstein himself used a different convention.
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where the left-hand side is spacetime geometry and the right-hand side is the
source of gravity. Specifically, Rµν is the Ricci tensor, R the Ricci scalar, Tµν
a stress energy tensor, all of which are described more fully in Chapter 12, G
is the Einstein constant, and gµν is a generic spacetime metric. In the early
20th century, Einstein would have believed that the entire universe had a den-
sity similar to that of the Milky Way: the now-familiar hierarchy of structures
including galaxy clusters, walls, filaments and voids was then unknown. The
spacetime metric, therefore, would have only to apply to the relativly smooth
density function of a galaxy to describe, approximately, the whole universe [88].

By 1917 Einstein had added a cosmological constant term Λ to the left hand
side of the field equations:

Rµν −
1
2Rgµν + Λgµν = 8πG

c4
Tµν (9.1.2)

Einstein’s motivation for the new Λgµν term was to include a mathematically
viable additional component that could potentially allow the universe to exist in
a steady state, a feature he thought essential.

The usual approach is to assume that the density field in the early universe
can be characterised by a homogeneous and isotropic matter distribution on
which tiny, Gaussian perturbations are superimposed. These perturbations are
considered to be the seeds of structure formation. It is argued that at the
present day there is still a ‘sufficiently large’ scale at which the universe is both
homogeneous and isotropic. It is thus ‘natural’ to describe spacetime by the
spatially symmetric Robertson-Walker metric tensor

gµν =


−1 0 0 0
0 R(t)2 0 0
0 0 R(t)2r2 0
0 0 0 R(t)2r2sin2θ

 (9.1.3)

where R(t) is the scale factor describing the expansion of the universe. From
the relationship ds2 = gµνdx

µdxν the squared line element

ds2 = c2dt2 −R2(t)
[ dr2

1− k2r2 + r2(dθ2 + sin2θ dφ2)
]

(9.1.4)

is derived, stated here in co-moving polar coordinates r̄, θ, φ, with k being a
curvature parameter which can have values ±1, or 0.
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Given a sufficiently simple stress-energy tensor, this metric allows an exact
solution of the GR field equations. Any model based on such a solution assumes
that the field equations can indeed be applied to the universe as a whole. In effect,
that all matter and radiation is within a four-dimensional spacetime that can be
described by the metric gµν . We should note that, whilst it is straightforward to
apply this argument to an early-time fluid of particles, it is less clear that it is
applicable once structures have formed [88]. The fall-back argument that the
universe continues to be homogeneous and isotropic at sufficiently large scales
is not a comfortable one: not only is the physical reality of this assertion still
unproven, there is a substantive concern arising from the question of whether
statistical homogeneity is a sufficient condition in relation to the nonlinear field
equations. Labini and others [85] have coined the term superhomogeneity to
describe the required state, commenting that the inferred real-space correlation
properties of such a universe are equivalent to those of glass [89].

The cosmological constant term Λ in equation 9.1.2 is now used to model
a universe with accelerated expansion, which is somewhat ironic given that it was
originally intended to ensure a steady state solution was possible. To accommo-
date the additional cosmological constant term it is conventional to assume that
the stress-energy tensor Tµν of the universe is adjusted by a contribution from
dark energy. The stress-energy tensor is assumed to be that of frictionless dust,
i.e. an ideal fluid, locally at rest with respect to a comoving observer. Of course,
the real universe does not manifest a dust-like density function everywhere and
at all times. The assertion that, nevertheless, on average the universe can be
modelled in this way gives rise to an issue referred to as the averaging problem.
For a clear description of the impact of scale on the averaging problem see
Wiltshire [88]).

With density ρ and pressure p the conventional, frictionless dust stress-energy
tensor takes the form

Tµν =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (9.1.5)

More precisely, there are considered to be three components to the ideal fluid:
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radiation, matter and dark energy. The homogeneous cosmic density at time t is
therefore

ρ(t) = ρm(t) + ρr(t) + ρΛ (9.1.6)

The density of dark energy in the standard model is constant but, as the universe
expands (or contracts), the densities of matter and radiation change, with the
general relationships

ρm ∝
1
R3 ; ρr ∝

1
R4 (9.1.7)

In an expanding universe this leads to a conclusion that there are three epochs
in cosmic time: a period of radiation dominance, followed by matter dominance
then, at the present time, dark energy dominance.

In practice the pressure of matter is usually ignored, in which case it is de-
scribed as dust. If it is included, it is described by an equation of state

pm = ωρc2 (9.1.8)

where ω is a constant that is 0 in the case of dust.

As a result of the high degree of symmetry in the Roberston-Walker metric tensor
9.1.3 and of the many zeros in that metric tensor and in the FLRW stress-energy
tensor 9.1.5, this all leads to a very simple solution to the field equations. The
solution is just two independent equations, known as the Friedmann equations:

(
H2(t) ≡

) [ 1
R

dR

dt

]2
= 8πG

3 ρ− kc2

R2

and
1
R

d2R

dt2
= −4πG

3

(
ρ+ 3p

c2

) (9.1.9)

H is the Hubble factor, defined as shown. The calculation requires an assumed
composition of the universe. The chosen densities of matter, radiation and dark
energy are usually expressed as proportions of the critical density2 ρc, where

2This use of the term critical in ‘critical density’ is quite different from that which we
will encounter in the context of self-organised criticality in Chapter 11. In statistical physics,
critical has a technical meaning related to states associated with phase transitions. A definition
is given in Section 11.1.1.
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ρc(t) = 3H2(t)
8πG (9.1.10)

The fractional density parameters are then

Ωm(t) = ρm(t)
ρc(t)

, Ωr(t) = ρr(t)
ρc(t)

, ΩΛ(t) = ρΛ(t)
ρc(t)

(9.1.11)

A cosmological model based on the Robertson-Walker metric and Friedmann
equation scale factor is commonly described as a FLRW model. The standard
ΛCDM model is a specific example of a FLRW model.

9.2 Implications of FLRW models

The assumptions of the FLRW framework have profound consequences for the
intellectual and academic framework of standard cosmology:

• In a homogenous and isotropic, spatially expanding universe one is led
inexorably to the conclusion that there was an infintely dense beginning.
Time evolves linearly, and the universe has an age.

• The beginning was a mathematical singularity, since the field equations
break down in conditions of infinite density. In practice, quantum effects
are expected to be dominant at this scale but, since FLRW can shed
no light on the nature of the beginning that it advocates, within that
framework it remains a singularity.

• It is valid to analyse cosmological data using statistical methods which are
predicated on the existence of a well-defined mean density.

• Further, since all matter, radiation and dark energy are ideal fluids, the
statistical tools of equilibrium thermodynamics are applicable.

• The field equations of GR are largely irrelevant, except for the calculation
of the scale factor via Friedmann’s equations 9.1.9.

.
I have already pointed out that the model requires superhomogeneity, which is
not the physical reality. We will see in Section 9.3 that there are signs that even
the weaker conditions of statistical homogeneity and isotropy may not apply in
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the real universe.

It is also a problem that the FLRW framework has become so familiar to
generations of cosmologists that it is now widely described as the rather than
a GR solution. Reputable authors say, for example, ‘The necessity for [dark
energy] arises from using the Friedmann equation to describe the evolution of the
cosmic expansion; if this equation is incorrect, it would require the replacement
of Einstein’s relativistic theory of gravity with some alternative.’ (in Section
22.4.7 of [90]). In fact, the Friedmann equations are the solution of an extraor-
dinarily confined and simplified statement of Einstein’s relativistic theory of
gravity. Before we throw out that theory we should certainly reconsider the
assumptions and approximations that have been used to obtain the particular
FLRW family of solutions. In fact, we see in Chapter 12 that FLRW models
diminish GR to such an extent that its fundamental features are effectively erased.

Finally, the FLRW assumptions support an expectation that, in a weak-field,
sub-relativistic system, gravity described by Newtonian theory serves well as
a proxy for GR. This assumption drives almost all conventional cosmological
analysis and modelling3. However, whilst it may be substantially valid for a solar
system, at least over timescales that are short relative to cosmic time, without a
priori acceptance of the FLRW assumptions there is no evidence that it is so for
larger scale structures or over cosmic timescales.

9.3 ΛCDM: evidence and challenges

Lambda-Cold-Dark-Matter, ΛCDM, is a standard abbreviation for a FLRW
model with cold4 dark matter, a cosmological constant, inflationary initial condi-
tions, standard radiation and neutrino content, and a flat universe with Ωtot = 1.
This concordance model enbodies a parameter fit that the community generally
agrees provides ‘a good description of a wide range of astrophysical and cosmo-
logical data’ [92].

3For the final infall phase of inspiralling binary black holes or neutron stars it is acknowledged
that Newtonian theory is inadequate. Template banks of gravitational waveforms are generated
for use in experiments to detect gravitational waves, using calculations that have evolved
over the last two decades from purely the Post-Newtonian approximation (see Appendix H)
to numerical relativity [91]. These calculations, limited to two-bodies and constructed on a
case-by-case basis, represent the state of the art for GR modelling.

4‘Cold’ as in very sub-relativistic.
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In this section I briefly review and comment on the evidence for the model
and some of the challenges to it.

9.3.1 Big Bang nucleosynthesis (BBN)

Big Bang nucleosynthesis (BBN) is the theory predicting the abundances of the
light element isotopes D, 3He, 4He and 7Li and is a fundamental component
of the standard cosmological model. In the 1960s it was hugely influential in
causing the growing emphasis on the family of theories that would come to
include ΛCDM. A Big Bang origin of the universe became widely accepted
largely as a result of the observation in 1965 of the cosmic microwave background
radiation (CMB) [93, 94], predicted in the late 1940s by those theories of pri-
mordial nucleosynthesis which assumed an evolving rather than a steady state
universe [95–98]. I discuss the CMB in Section 9.3.3, but first I summarise where
its prediction came from, the influence of those theories on the standard model
of cosmology, and the extent to which current research continues to support the
BBN model.

We have seen that the FLRW framework leads to a mathematical conclusion
that the universe originated as an infinitely dense singularity from which all that
exists burst and continues to expand. Nevertheless, there was initially a strong
resistance to this view, in favour of an alternative ‘steady state’ universe scenario.

In 1946 Gamow [95] pointed out that the existing attempts to explain the
abundance curve of elements, which were based on an equilibrium state de-
termined by nuclear binding energies at some high temperature and density,
could not hold. He proposed instead that the decrease of relative abundance
along the natural sequence of elements must be understood as being caused
by processes of radiative capture over a longer time, leaving the present high
abundance of hydrogen as a result of competition between the β-decay of original
neutrons and the processes by which the neutrons were incorporated into heavier
nuclei. His student Alpher and their collaborator Herman [95, 96] developed
a model which included the prediction of the existence of a relic background
radiation of the order of a few kelvin [97]. Whilst this work was unaccountably
omitted [99] from citation in the 1965 discovery papers by Penzias and Wil-
son [93] and by Dicke, Peebles, Roll and Wilkinson [94] it is now recognised to
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have laid the foundation for Fred Hoyle’s term ‘Big Bang’, originally intended
to be rather derogatory, to become the accepted view of the origin of the universe.

For the current status of this theory, I summarise the review article [90] and
refer the reader to source citations there. Briefly, nucleosynthesis occurs at
a temperature scale of order 1 MeV, corresponding to an age t ∼ 1 s in the
standard cosmological model. In standard BBN theory, i.e. that based on
the Standard Model of particle physics, the abundances of the light elements
are predicted based on only one key parameter, the baryon-to-photon ratio,
η ≡ nb/nγ . The value of nγ is usually fixed by the present CMB temperature.
When η is calculated using the Planck [100] result for baryon density, predictions
for light element abundances are:

• for D/H: ‘in excellent agreement’ with the deuterium abundance observed
in quasar aborption systems and ‘in reasonable agreement’ with the he-
lium abundance observed in extragalactic HII regions, once systematic
uncertainties are accounted for; and

• for Li: systematically higher than the Li abundance observed in the
atmospheres of halo dwarf stars.

The predictions of the standard cosmological model BBN are thus reasonably
consistent with observations of light element abundances, apart from the ob-
served Li deficit. The latter is commonly known as the lithium problem.

It is important to note that the model is highly sensitive to physical condi-
tions in the early universe and requires rapid inflation and cooling in the first
second after the Big Bang for the necessary temperature scale to be reached.
This early inflation is not yet understood, as discussed in Section 9.3.2.

As further comment, the origins of BBN theory lie in the assumption of a
Big Bang beginning and, in the mid 20th century, this was one of only two
options that were perceived: a steady state universe, or a spatially symmetrical
evolving universe which began with a Big Bang5. If the FLRW framework is put
to one side, theories of complexity make clear that there are other options. The

5An interesting modern variation on this is Penrose’s idea of a cyclical universe based on
mathematical extension beyond the intial singularity. He proposed his somewhat controversial
theory of conformal cyclic cosmology (CCC) in [101].
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universe can be perpetual without being steady state. In this case, the nature of
the questions we ask about the abundances of elements have scope to change.

9.3.2 Inflation

The Big Bang origin of the universe results in a model that has problems of
fine-tuning: it is extremely sensitive to initial conditions. In this sense the model
may be considered incomplete [90], requiring some additional component(s) in
order to resolve:

• The horizon problem and the isotropy problem. Since light signals can only
propagate a finite distance in the time since the Big Bang, and the standard
model has a period of radiation dominance in the early universe, there is a
particle horizon. At the time of the formation of the CMB at z u 1100,
the horizon is calculated to be of order 100Mpc in size subtending an angle
of 1o [90]. Thus, assuming one can integrate along the light cone back to
t = 0, the sky is filled with regions that should be causally disconnected
yet apparently manifest a nearly isotropic and homogeneous state.

• The flatness problem. A universe of non-zero curvature at the present
time requires that the total density parameter Ω(t) must be very precisely
equal to unity as the initial time tends to zero. In addition to this being a
problem of fine-tuning, an Ω = 1 universe is unstable [90]

To address these problems, the inflation hypothesis [102] has been proposed.
In an adiabatically expanding universe the relation between the scale factor R
and the temperature T is RT ∼ constant. The concept of inflation is based on
the premise that one or more phase transitions could have occured in the early
universe, during which that relation need not hold. If the value of RT changed
by a factor of O(1029) in the very early universe, causing the universe to increase
in spatial extent by a factor of 1023 during 10−34 seconds, the problems outlined
above could be resolved. The accelerated expansion would (a) expand the causal
horizon beyond the present Hubble length; and (b) drive any curvature in a
Robertson-Walker spacetime towards spatial flatness [90].

Inflation is a seemingly elegant solution to the gaps in the cosmological model
and many theoretical explanations for it have been proposed. A useful modern
review is the 2021 Snowmass paper [103]. There are three main classes of ob-
servational signatures of inflation: primordial gravitational waves; primordial
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non-Gaussianity; and deviations from the minimal power-law power spectrum of
primordial fluctuations which, it is suggested, would indicate that new energy
scales play an important role in inflationary dynamics. Inflation theories are
therefore a very active field of research.

All of these signatures are currently explored in the statistical environment
of the standard cosmologiccal model, i.e. assuming that the tools of equilibrium
statistical physics are appropriate. Therefore they do not offer a test of that
model. No definitive theory has yet been identified.

9.3.3 Cosmic microwave background (CMB)

In the ΛCDM framework the CMB radiation, first observed by Penzias and
Wilson in 1965 [93], originated at the era of last scattering6 (z u 1100).
The spectrum of the CMB is described as a blackbody function with tem-
perature estimated by WMAP together with the FIRAS7 experiment to be
T = (2.72548 ± 0.00057)K [104]. The spectral form of the CMB is generally
considered to be compelling, if indirect, evidence of the validity of ΛCDM. The
CMB is usually analysed, however, based on the ΛCDM framework. For example,
Planck 2018 [105] uses ΛCDM parameters and the statistical methods employed
are valid only in a homogeneous population. These analyses therefore cannot be
said to offer a test of the model’s assumptions. I expand on this point in the
next chapter, Section 10.4.

The main CMB observables are the angular variation in temperature and polari-
sation correlations. Studies of the latter are in relative infancy, so I focus here
on the temperature mapping of the sky. With the final Planck data release in
2018 [100,106] mapping is considered to have reached high precision.

In conventional analysis, the majority of the cosmological information is consid-
ered to be contained in the temperature variance as a function only of angular
separation, i.e. the 2-point function. The argument given for this is that only
weak phase correlations are seen and no preferred direction is inferred (see review
paper [107]). The anisotropies are usually expressed and studied using a spherical
harmonic expansion of the sky8

6Often described as the time of ‘recombination’.
7FIRAS: Far-InfraRed Absolute Spectrophotometer
8For derivation see Appendix G
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T (θ, φ) =
∑
lm

almYlm(θφ) (9.3.1)

Higher-order multipoles - variations at l > 2 - are interpreted as the result
of perturbations in the density of the early universe. There are proposed ex-
periments which will make it feasible to probe spectral distortion mechanisms
arising from expected damping and dissipation of relatively small primordial
perturbations [107]. This new data could provide valuable additional input in
time.

Gaussian uniformity is not immediately obvious in the raw data used in CMB
mapping and arises only when the data is both cleaned to remove foreground
components and adjusted for, in particular, the dipole anisotropy in the l = 1
first spherical harmonic. Usually interpreted as being caused by the motion
of the Solar System relative to the blackbody field, it is sometimes called the
kinematic dipole isotropy. It has amplitude 3.3621± 0.0010mK [100] and leads
to an implied velocity for the Galaxy and Local Group of galaxies relative to
the CMB.

It is thus important to be aware that the familiar map of the CMB temperature,
shown in Figure 9.3.1, does not represent raw data. Planck measures data
across 9 fequencies and the part of the CMB that is observable, i.e. which is
not obscured by the foreground of the solar system, the Milky Way and other
known factors, varies depending on the frequency: usually in the region of 70%
of the celestial sphere [108]. For the properties of the CMB behind the galaxy
mask and other foreground features a model must be used. Usually a Gaussian
distribution is assumed. The mean temperature monopole is, of course, removed
and the data is also adjusted for the kinematic dipole.

The association of the dipole solely with local kinematics is subject to grow-
ing challenge. Using data for 1.36 million quasars observed by the Wide-field
Infrared Survey Explorer (WISE), Secrest et al [109] reported that the am-
plitude of the dipole in the quasar sky is over twice as large as expected in
an exclusively kinematic interpretation, with 4.9σ significance. Performing a
bayesian analysis of the same sample, Dam et al [110] found that the conven-
tional kinematic explanation of the CMB dipole is rejected with 5.7σ significance.
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Figure 9.3.1: Planck: CMB temperature map after adjustment for
foreground noise, monopole mean temperature and dipole
Image credit ESA and the Planck Collabroation

It is pertinent to ask, then, is the CMB indeed isotropic? There are features
of the CMB that are regarded as unexpected, including a hemispherical power
asymmetry and a large cold spot in the Southern hemisphere, which seem to
violate statistical isotropy and scale invariance of inflationary perturbations.
Schwarz et al [111] have carried out a critical analysis of the current under-
standing of these and other features, concluding that the physics of the CMB
anomalies remains a puzzle which may be resolved by further observations.

More recently, Pranav and Buchert [112] used homology analysis of the CMB
temperature maps to test for statistical isotropy. They found that the results
of their analysis differed depending on whether the mean and variance were
calculated locally from the non-masked patch or from the full masked sky, prima
facie indicating a breakdown of statistical isotropy in the CMB maps. They
concluded that more work is required to determine the source of the anomaly but
pointed out that there may be significant consequences for parameter estimation.

If statistical isotropy of the CMB temperature maps remains unproven, what
about Gaussianity? In most analyses, Gaussianity is simply assumed. In a rare
attempt to carry out model-independent analysis, Buchert et al 2017 [108] used
Minkowski functionals to carry out analyses on non-Gaussianity in Planck CMB
maps. They reported a weak level of non-Gaussianity at 1−2σ of the foreground
corrected masked Planck 2015 maps. More work on this topic would be valuable.
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Study of the CMB is a vast and varied field. I note particularly that (a)
theories predict the expectation value of the CMB power spectrum whereas the
data represents just one realisation, so there is an inherent source of uncertainty;
(b) discarding large anisotropies from analysis can result in the truncation of what
would be the tails of a power law Pareto-Levy function, leaving a distribution
that is trivially Gaussian [113]; (c) the analyses is founded in an assumption that
a spherical expansion is appropriate; and (d) ΛCDM parameters are routinely
used in analyses. Whilst the results can then be said to be consistent with
ΛCDM, we must beware of circular reasoning. It is not valid to conclude that
the ΛCDM model is tested or validated by comparison with the outcome of the
analyses.

9.3.4 Dark energy

In 1929 Edwin Hubble’s observations caused him to conclude that the Universe
is expanding [114]. Seventy years later, data from supernova surveys was inter-
preted as evidence that the expansion is accelerating [115,116]. The term dark
energy is commonly used to describe any source of this cosmic acceleration.

In the concordance model dark energy is simply the cosmological constant,
Λ, in the GR field equations 9.1.2. The energy density of dark energy is ap-
proximately (2.2 meV)4 when parameters ω = −1, Ωv = 0.68, h = 0.67 are
used [90], i.e. roughly 10−123M4

P , where MP is the Planck mass. On the one
hand, this number is so small it is considered ‘unnatural’, since there should be
contributions to dark energy from quantum effects (a classic review including a
number of suggested responses to the problem is presented in Weinberg [117]).
On the other hand, within the context of ΛCDM the existence of dark energy is
said to be ‘well established by multiple lines of independent evidence from a tight
web of precise cosmological measurements’ [90]. As with CMB measurements,
however, the precision is an outcome of analysis which has been carried out
based on the accepted model and its parameters.

Within the context of the conventional analysis of observations, which conclude
that there is accelerated expansion of the universe, the cosmological constant is
not the only possible explanation. Other theories fall broadly into one of two
categories: either modified gravity, or some new form of energy, such as a rolling
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scalar field with a potential V (φ) (sometimes called quintessence). A variety of
observational probes are underway to test or to constrain current theories. For
a thorough review see [90] Chapter28.

There is a further school of thought that dark energy may be a relic of over-
simplification in cosmological modelling, see for example [109,118,119], or bulk
flow [120, 121]. These suggestions are presented as a substantial challenge to the
standard cosmological model, but do not go so far as to propose an alternative
to the FLRW approach.

9.3.5 Dark matter and structure formation

In ΛCDM the eponymous cold dark matter is non-relativistic and does not
interact either with itself or with any particle in the Standard Model of particle
physics9. It accounts for 84.4% of the matter density (26.4% of the critical
density) of the universe [107] and, in the ΛCDM model, is essential for structure
formation. Evidence for the existence of dark matter phenomena is compelling:
galaxy rotation curves, gravitational lensing studies and ‘the matter of the bullet
cluster’. Yet its nature remains unknown. All the sources of evidence for dark
matter are probes of gravitational potential. In other words, dark matter is the
name given to gravitational potential that differs in magnitude or distribution
from that estimated to arise from normal matter. (With hindsight, a less pre-
scriptive name might have been more appropriate. Perhaps ‘dark mass’.) The
excess potential is in relation to that expected within the context of equilibrium
statistical thermodynamics and quasi-Newtonian gravity in a FLRW framework
with flat spacetime.

In dark matter research the conventional choice is between the possibilities
that (a) the only interactions beetween dark matter and normal matter are grav-
itational; or (b) there is some interaction, however weak, between dark matter
and the particles of the Standard Model of particle physics. Dark matter particle
research commonly pursues the second of these possibilities. Much progress
has been made in exploring the parameter space of a variety of models but no

9Some theories posit contributions from dark baryonic sources such as primeval black holes.
In the cosmological context baryonic usually refers to matter made up of Standard Model
particles, ignoring electrons (which have, relatively, negligible mass) and excluding neutrinos.
There is also, of course, a contribution to dark matter from the masses of neutrinos, although
in the Standard Model of particle physics neutrinos do not have mass.
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definitive theory has emerged and there has not yet been any direct detection
of dark matter particles. Section 27 of reference [107] gives a clear and concise
summary of the current status of related research and open problems. (See also
Snowmass [122]). To date, there is no specific evidence that dark matter has a
particle solution.

Here I summarise the evidence for dark matter and consider how that evi-
dence supports the case for the ΛCDM standard model - and how it can also be
interpreted as a challenge to it.

Galaxy rotation curves

Luminous matter in galaxies, i.e. stars and ionised hot gas, can be directly
detected. Observed galaxy rotation curves do not agree with expectations cal-
culated based on the detectable matter and Newtonian gravity. This was first
clearly shown in 1970 [123] and more extensively in work by Rubin et al [124].
Dark matter haloes must be assumed to make the data fit.

As early as 1933 Fritz Zwicky had already noticed an anomaly [125]. He reported
that the average density of matter in the Coma cluster ‘would have to be at least
400 times larger than that derived on the grounds of observations of luminous
matter’ in order to explain galaxy kinematics. I mention this early work because,
despite numerical inaccuracies in the data Zwicky used, his paper sets out clearly
the basis of the calculation, which is still commonly considered to be valid [126].

In his calculation Zwicky assumed a uniform, spherical density distribution
of baryonic matter and used the virial theorem10 with a Newtonian gravitational
force law. He then calculated that the total potential energy in the system U

should be

U = −3
5G

M2

R
(9.3.2)

where G is the gravitational constant, M the mass of luminous matter and R
the radius of the cluster. Using the data at the time, the calculated value of

10The virial theorem, first devised by Rudolf Clausius (1822–1888) to describe motions of
particles in thermodynamics, is predicated on energy equilibrium. To illustrate, for a static
system in the absence of a surface pressure term its scalar form is simply 〈Etot〉 = K + W

2
where K is the kinetic energy of the system and W is the potential energy [127].
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U would result in an average Doppler effect of 80 km/s, whereas the observed
value was 1, 000 km/s or more.

At the time, Zwicky considered three alternatives to his assumptions: that
virial theorem did not apply and all the available energy was kinetic rather than
potential; that the Coma cluster was unstable and would in future disperse be-
cause of its high radial velocities; and that the apparent velocities were the result
of distortion by gravitational redshift. He found none of these alternatives to be
satisfactory. Zwicky did not consider alternatives to the Newtonian gravitational
force law or to uniform density distribution.

Galaxy kinematics, i.e. using galaxy orbits as tracers of the underlying po-
tential as did Zwicky, continue to be used. Lensing studies use observations of
distortions of background galaxies to assess the intervening mass distribution.
One of the most effective modern methods for measuring the masses of clusters
employs X-ray and Sunrayev-Zeldovich (SZ) observations, which use measure-
ments of the distribution of the intra-cluster medium to probe the potential as a
function of radius. Boundary and other corrections are made to accommodate
the fact that clusters are not in perfect equilibrium, but hydrostatic equilibrium
is assumed. A useful review article is [128], where further references are given.

Each of the methods has underlying assumptions and possible biases which
are increasingly well understood but are still the subject of active research, often
using numerical simulations. These methods are all probes of gravitational po-
tential: as would be expected, therefore, they give broadly similar results. Taken
together with the estimated baryonic matter content of clusters, the propor-
tions are considered to be ∼3 % stars, ∼12% ionised hot gas in the intracluster
medium and ∼85% dark matter [128]. The fundamental basis for the analysis of
these methods and for the estimation of baryonic matter content continues to
be Newtonian gravity, and local evolution to approximate equilibrium is assumed.

Equation 9.3.2 bears no relation whatsover to the ten, interconnected, second-
order differential GR field equations 9.1.2. So why is it expected that the
Newtonian and virial theorem approach can produce reliable results for galaxy
kinematics?

With this question in mind, an alternative approach to galaxy rotation curve
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analysis has been reported, particularly by Cooperstock and Tieu [129], Balasin
and Grumiller [130], and Ludwig [131]. Using a stationary, axially symmetric
spacetime metric and the approximation of a co-rotating, pressureless, perfect
fluid source for a rotating disk galaxy, it has been suggested that the GR gravi-
toelectromagnetism (GEM) mass-energy contribution11 is sufficient to obviate
the need for dark matter (for an infinitely thin disk [129], and for any rotating
galaxy [130]). Ludwig [131] concluded that the GEM field produced by mass
currents modifies galactic rotation curves notably at large distances, commenting,
‘... at large distances the Lorentz force due to the gravitomagnetic field effec-
tively controls the mass equilibrium balance in view of the decaying centrifugal
force. The field produced by the large disk of mass currents basically acts as a
gravitomagnetic brake against the gravitational attraction.’

This work is not universally accepted and I do not cite it as definitive. However,
at least one critic [132] mistakenly states that, ’it is widely accepted that the
modelling of galaxy rotation curves in general relativity requires the inclusion
of a dark matter halo in order to reproduce observations’, when in fact, as we
have seen, mdelling of galaxy rotation curves uses Newtonian gravity and virial
theorem not GR. That paper also states, ’An immediate question regarding
such claims is how such significant behaviours can have been consistently missed
in the long history of numerical relativity.’ The authors fail to recognise that
state-of-the-art calculations in numerical relativity are confined to two-body
scenarios and cannot be applied to galaxies [91].

The matter of the bullet cluster

‘The matter of the bullet cluster’ is a different class of evidence for dark matter.
In 2006 Clowe et al presented weak lensing observations of the 1E0657-558 cluster
merger [133]. At publication the paper caused immediate interest because it
demonstrates spatial segregation of normal matter and inferred dark matter.
Gravitational lensing maps produced by the team showed that gravitational
potential in this merger does not trace the dominant normal matter mass compo-
nent but rather has a centre of mass offset from the centre of the normal matter
mass peaks at 8σ significance. The optical and lensing map produced in the
study is reproduced in Figure 9.3.2.

11Gravitoelectromagnetism (GEM) is a general relativistic field effect associated with frame-
dragging. I discuss it further in Section 12.4.4.
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Figure 9.3.2: The Bullet Cluster
Image credit X-ray: NASA/CXC/CfA/M.Markevitch, Optical and lens-
ing map: NASA/STScI, Magellan/U.Arizona/D.Clowe, Lensing map:
ESO WFI

Clowe et al concluded that the observed displacement proves the presence of dark
matter ‘for the most general assumptions regarding the behaviour of gravity’, and
say that, ‘Any non-standard gravitational force that scales with baryonic mass
will fail to reproduce these observations.’ However, they do not acknowledge that
in GR, which is certainly a standard theory of gravity, gravity does not scale
linearly with mass. In fact, the field equations 9.1.2 are nonlinear in both the
spacetime metric and its first derivative12. Therefore, it is more correct to say
that their findings do not prove the presence of dark matter, they demonstrate
only that the distribution of gravitational potential differs from that calculated
in Newtonian (or any other linear) theory. As far as I am aware, the relationship
between the observed phenomena and any configuration of potential that might
arise in nonlinear GR applied to a many-body, dynamical system has not yet
been considered.

Specifically, in the bullet cluster the distribution of mass energy is seen to
follow the component galaxy clusters as they draw apart. This is contrary to

12For a full explanation of this see Section 12.4.5
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expectation in conventional analyses, which calculate that the majority of mass
will remain with the retarded gas clouds that previously formed the intra-cluster
media. It is interesting to note that the work on GEM-influenced galaxy kine-
matics [129–131] could point towards an explanation for this: the mass-energy in
the interacting structures exceeds that of the non-interacting dust. I will revisit
this argument in Chapter14.

Structure formation

One argument for the existence of dark matter is based on the success of sophisti-
cated N-body simuations of cosmic evolution, for example the Virgo Consortium’s
EAGLE project [134] and the IllustrisTNG TNG50 project [135]. Such simu-
lations, which use Newtonian theory for the accumulation of normal, visible
matter, can only generate realistic structure if a framework of cold dark matter
is built first, with a dominating mass energy, onto which the normal matter
accretes [136]. A different way of looking at this is to notice that the modern
N-body simulations require a framework of cold dark matter because without it
there is insufficient time for the (linear) attractive force of Newtonian gravity to
result in the structures we observe [136].

The argument that these simulations are evidence for the validity of ΛCDM
model is, in a sense, reversible: they may demonstrate challenge to it. It could
instead be argued that extant N-body simulations, which are implemented using
the standard FLRW cosmology, fail to produce realistic structure unless grav-
itational potential from an unknown source, on a scale which far exceeds the
mass-energy of known matter, is added in by hand.

9.3.6 Parameter fit, and tensions

ΛCDM embodies a fit of parameters carefully calibrated to establish consistency
with observational data. This is, of course, the purpose of a model. However, if
those parameters are then used to carry out analysis on the data, as is often the
case, then there is a real risk of circular argument. Those analyses cannot in any
way test the model, because they are already shaped by it. Then ‘high-precision’
really means that a precise fit of data and model is possible because the data is
presented in a way that is dependent on the model.

Despite the high precision claimed for the model, tensions in fundamental ΛCDM
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parameters do exist and show no signs of resolution [92,137]. In particular:

• Hubble tension

The disagreement between predictions of the Hubble constant H0 = H(z =
0) made by early-time probes in conjunction with the ΛCDM model
on the one hand and, on the other hand, late-time, model-independent
determinations made from local measurements of distances and redshifts.
The inferred values H0 are in tension at 4σ − 6σ.

• The S8 tension

The S8 parameter is a measure of the homogeneity of the Universe, defined
as S8 ≡ (Ωmatter/0.3)0.5σ8 where σ8 is the standard deviation of the density
fluctuation in an 8h−1 Mpc radius sphere. There is disagreementat at 3σ
significance between what is predicted by extrapolating the fluctuations in
the CMB forward to the present day, and what is measured by multiple
probes of the inhomogeneity in the nearby Universe.

9.4 Averaging, scale, and backreaction

The FLRW framework describes universes that are locally homogeneous and
isotropic on all scales, not universes that are only statistically homogeneous and
isotropic. Yet no-one claims that the real universe is locally homogeneous and
isotropic: large variations in density clearly exist.

This averaging problem has been known for some time. A very clear expla-
nation of the impact of scale and the physical foundations of the averaging
problem is given by Wiltshire in [88]. Ellis [138] introduced the term fitting
problem to describe the issue of finding a model that best descibes the average
of the real universe with its complex structures.

It is suggested that the large local deviations of density mean that the average
evolution may be far from the FLRW behaviour even above the homogeneity
scale, if such a scale exists. The possibility that the observed change in average
quantities from those of the ΛCDM model at later times is due to the formation
of structures, an effect first studied by Shirokov and Fisher [139], is termed ‘the
backreaction conjecture’ [140].
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The backreaction conjecture and Wiltshire’s related timescape cosmology [141]
offer very interesting approaches. Both are nevertheless based firmly within
the FLRW premise that the universe is expanding from a primordial and small
Gaussian beginning, and that there is a well-defined mean density. The latter
assumption is not necessarily valid in a complex system.

9.5 A new paradigm: complexity matters

In the preceding sections I have drawn attention to some of the challenges to the
concordance model that are already being raised within the physics community.
Such questioning is becoming more widespread, and was the subject of a 2024
meeting at the Royal Society [142]). To date, alternative suggestions either
retain key assumptions (for example backreaction in the late universe [143]
and timescape cosmology [88]) or, as in theories of modified gravity, do not
attempt to replace the whole model. Yet each new generation of observational
data, particularly recent observations by JWST [144], add to the need to review
previously accepted views about the development of the early universe. The
difficulty is, any new approach must be capable of fitting all the data at least as
well as ΛCDM. This is far from trivial.

In the next chapter I begin to lay the foundations for an alternative approach to
study of the universe by treating it as a complex system. Complex systems are
physically different from those which are simple: they exhibit irregularity and
do not reach equilibrium. However they can and often do evolve quasi-stable
structures. The rigorous study of complexity is a growing interest in many
scientific disciplines.
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Chapter 10

Complexity

The ability to reduce everything to simple fundamental laws does not imply the
ability to start from those laws and reconstruct the universe.

P. W. Anderson (1972) [145]

It is more natural, or at least less ambiguous, to speak of complex behaviour
rather than complex systems.

G Nicolis and Ilya Prigogine (1989) [146]

10.1 Introduction

In the latter decades of the 20th century it became widely recogised that
systems exhibiting complex behaviour are ubiquitous in nature. Physics Nobel
laureate Philip Anderson gave his seminal 1972 paper the title More is different
[145], pointing out that systems involving many-body dynamics and nonlinear
interaction behave in a way that is both qualitatively and quantitatively different
from extrapolations of simple systems. In 2021, the Nobel Prize for Physics was
awarded for work on understanding complex systems [147]. Complexity science
is now mainstream in multiple disciplines but not, yet, in cosmology. In this
chapter I will summarise some of the fundamental differences between, on the
one hand, the simple behaviour described in classical mechanics and equilibrium
thermodynamics and, on the other, complex behaviour. I will draw attention to
the implications for cosmology and introduce some of the tools that have been
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developed to analyse complex behaviour and structures. In the next chapter I go
on to focus on self-organised criticality, a particular paradigm that has emerged
from complexity science in physics as an explanation for the form of emergent
structures.

10.2 Complex systems

What is meant by ‘complex’? Despite widespread use of the term there is still
no concise or consensus definition of what a complex system is. Ladyman et
al [148] present a useful summary of the literature on this topic and suggest that
the following features are necessary for a system to be complex:

• The system is an ensemble of many elements.

• There is interaction between the elements of the system. This feature is
necessary because independent particles have no means of forming patterns
or establishing order.

• Complex systems are those in which order emerges from disorder, i.e. there
is self-organisation. This is by contrast with a simple system, such as a gas,
in which many similar elements interact but do not generate organisation.
Self-organised systems are considered by some to be synonymous with
being dissipative, a term introduced by Nobel Laureate Ilya Prigogine [149].
A characteristic of dissipative systems is that they are far from equilibirum.

They go on to list further features, such as nonlinearity and feedback, that are
common in complex systems. Although consistent with the literature, classifying
systems in this way is not particularly rigorous in practice. For example, complex
systems can exhibit intermittent chaos as well as order. At the opening of this
chapter there is a quote from Nicolis and Prigogine’s classic and influential
text [146], in which they suggest that it is more natural to explore complex
behaviour than to seek to define a complex system. Following that approach, I
will not seek to present a definition of a complex system but, in the remainder
of this section, will focus on features and behaviour. The principal reference for
this section is Exploring Complexity [146], where the terminology is standardised
and explained and multiple examples are given.
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10.2.1 Dissipation and irreversibility

Dissipative systems are those which are open to an exchange of energy or material
flows. In the fields of evolution, biology and chemisty there has long been an
awareness that dissipation can result in increasing energy and complex struc-
ture. In physics, such systems have historically been studied primarily in the
context of energy loss by a system, for example as a result of friction. A broader
awareness of dissipation in diverse transport mechanisms first began to emerge
in physics during the 20th century in the field of fluid mechanics [146]. It is now
well-established in the context of complex systems, but the term ‘dissipative’ is
still not commonly used in its technical sense.

To offer a specific example: physicists are comfortable with the notion of a
damped pendulum as a dissipative system, its motion exhibiting gradual energy
loss. There is less awareness of a forced pendulum as a dissipative system, yet it
is equally so. In that case the energy transfer is from the environment to the
pendulum system. The energy transfer could be constant, periodic or irregu-
lar, and the impact on the motion of the pendulum in each case would be different.

Dissipative systems are associated with reliance on external energy flows to
maintain their organisation - a tornado is a good example.

In contrast to open, dissipative systems, classical dynamics is concerned with
conservative, i.e. closed, systems. Total energy, total momentum and total
angular momentum remain constant in closed systems. The related conservation
laws are functions of acceleration, i.e. a second derivative with respect to time,
rather than position or velocity. Since a transformation of time from positive
to negative leaves acceleration invariant, the equations of motion are reversible.
In contrast, dissipative systems are not isolated from their environment and
their macroscopic description must use collective variables to define the state
of the system at any instant, for example temperature, pressure, convection
velocity. The equations of evolution of these variables are not invariant under a
transformation from time to negative time and the evolution of the system is
seen to be irreversible. Time symmetry is broken [146].
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10.2.2 Instability and nonequilibrium

Equilibrium states are stable and, by definition, stationary: their properties do
not vary with time. In mechanics, all points of a system in equilibrium have
zero velocity and acceleration. Hydrostatic equilibrium and thermodynamic
equilibrium both relate to a state in which the properties of a system are in
detailed balance with its environment or, in the case of an isolated thermodynamic
system, with itself. Detailed balance is a term used by Prigogine and others to
refer to the property that for any process which induces a variation, there is an
inverse process inducing a variation in an exactly opposite direction. There are
no net fluxes across the system.

If on the contrary there is a nonvanishing flux between between a system
and its environment, as is the case in a dissipative system, then differences
can arise in state variables and the system is in a state of nonequilibirum. Dif-
ferences in state variables can be transient or, if appropriate conditions are
maintained, they can become permanent. Prigogine and his collaborators re-
ferred to such maintained conditions as constraints [146]. It is important to note
that, even in the case of long-standing state variables, the state is not equilibrium.

In the presence of constraints, which may of course be entirely natural:

• Nonequilibrium states become susceptible to change. Variation is to be
expected, as detailed balance does not hold.

• Such variations can give rise to bifurcations to new states that are funda-
mentally different from equilibrium. Here, the nontechnical sense of the
term bifurcation and its mathematical meaning are consistent: a splitting
into two branches of solution, which are different from each other.

• New phenomena which involve long-range correlations emerge. A classic
example in thermal convection is the creation of Bénard cells in a layer
of fluid subjected to the constraint of heating. Below a critical point, the
distribution of the fluid’s molecules remains homogeneous and uncorrelated.
Temperature is the same across the entire system. As the temperature is
increased beyond a critical point, however, ordered and highly correlated
convection cells spontaneously form1. (See Chapter 1 of [146] for a full

1Further heating, beyond a second critical point, disrupts the orderly cells and turbulence
ensues.
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description of this well-known experiment.) Long-range correlations are
a key feature of self-organised criticality, which is the subject of the next
chapter.

Dissipative systems are not in detailed balance so persist in nonequilibrium
states: they are not stationary but instead demonstrate evolution and transitions
between states. Prigogine [149] extended the second law of thermodynamics
to systems that are far from equilibrium, suggesting that ordered ‘dissipative
structures’ could form from disorder in such conditions. These structures cannot
exist independent of their environment [150].

10.2.3 Dynamical evolution of state: nonlinearity and feed-
back

We have already seen that dissipative systems are not in equililbrium: they evolve.
The equations which describe the evolution of state variables of a dissipative
system must be compatible with the conditions imposed by energy exchange
with the system’s environment and, in the case that the conditions are absent,
must revert to a stationary, equilibrium solution.

Equations of state variable evolution do not have a generic form but are in-
stead specific to each physical case. What such equations do share is that
their solutions are often (but not always) nonlinear. In a nonlinear system
the superposition principle does not apply: if solutions to the equations that
describe the system are summed, they do not yield another solution. Multi-
plying a solution by a factor does not yield another solution. ‘In a nonlinar
system adding a small cause to one that is already present can induce dramatic ef-
fects that have no common measure with the amplitude of the cause.’ pg 59 [146].

When a part of a nonequilibrium system interacts with another part, the new
behaviour of the second part becomes an input to the subsequent behaviour of
the first. This is feedback, which fuels nonlinearity.

10.2.4 Inhomogeneity: self-organisation and structure

A concise definition of self-organisation is this: ‘Self-organisation is a process in
which the organisation of a system, or its susceptibility to a constraining action,
spontaneously increases, and this increase follows without control of any external

96



CHAPTER 10. COMPLEXITY

forces of the environment.’ [150]

The key features of emergent structure an be summarised as:

• Self-organisation

Self-organised structures in complex systems are evolving, inhomogeneous
(i.e. irregular) and often fractal. This has significant consequences for the
suitability of statistical methods used in their analysis, a topic which I
explore further in Section 10.4.

• Transitions and evolution

I began this chapter with a quote from Nicolis and Prigogine [146]. Al-
though they declined in their classic book to give a definition of complexity,
they commented that an essential feature of complex behaviour is the
capacity to make transitions between different states, so that evolution
plays an important role in observed behaviour.

• Nonequilibrium

Complex systems may exhibit quasi-stability but they are neither station-
ary nor static and, in all cases, small differences can result in radically
different outcomes as a complex system evolves. Structure in nonlinear,
dynamical systems is far from equilibrium. This is not inconsistent with
the self-organisation feature above. Indeed, Nicolis and Prigogine state,
‘Nonequilibrium may be a source of order’ [149] p.25.

• High energy states

There is no tendency towards minimum-energy states. On the contrary, as
in the example of the tornado mentioned earlier, high energy is expected.
I expand on this point in Section 10.3.2.

10.2.5 Symmetry breaking and order

Just as time symmetry is broken in dissipative systems, the absence of homogene-
ity in nonequilibrium states results in the breaking of spatial symmetry. Nicolis
and Prigogine comment, ‘Broken symmetry accompanies the appearance of new
properties that prompt us to charcterize the material as ordered’ pg 41 [146].
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10.2.6 Comments on chaos

Complexity and chaos are often conflated in common perception but, although
they can be related by shared characteristics such as feedback and nonlinearity,
they are different. In particular, neither chaos nor nonlinearity are necessary or
sufficient for complexity [151].

Chaos theory began with Poincaré and his work on the ‘three body problem’ in
Newtonian gravity. It is a branch of the theory of dynamical systems address-
ing systems whose time evolution is sensitively dependent on initial conditions.
Mathematically, the property is captured by Lyapunov exponents and spectra2.

The behaviour of chaotic systems is often indistinguishable from random be-
haviour because it is unpredictable yet they are, in fact, deterministic: their
future state is completely fixed by their present state coupled with the laws that
govern them [152].

10.3 Implications of a complex universe

10.3.1 A complex universe

The universe has many, interacting components; its interaction is nonlinear; and
it evolves self-organised structure. Gravity, the mechanism for interaction, has
infinite range, therefore cosmic structures must all be dissipative. It seems clear
that the universe is a complex system and it is surprising that there is not a
consensus that this is so.

Complexity has profound implications for the science of cosmology. In par-
ticular:

• A model of cosmic evolution that treats the universe as a homogenous and
isotropic perfect fluid is not obviously justifiable, even if gravity were a
linear interaction (which it is not).

2The Lyapunov exponent of a dynamical system is a quantity that characterizes the rate of
separation of infinitesimally close trajectories. There is a spectrum of Lyapunov exponents,
equal in number to the dimensionality of the phase space of the system, because the rate of
separation can be different for different orientations of initial separation vector.
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• There are significant implications in relation to emergent structure. This
is essentially the subject of Chapter 11.

• Since complex systems do not attain equilibrium and do not establish
minimum-energy states there are implications for the mass-energy of cosmic
structures. The effect of complex interaction on mass-energy in general is
outlined in Section 10.3.2. The impact for cosmic structures in particular
is addressed in Chapter 14.

• The statistical tools of equilibrium thermodynamics are not appropriate for
the analysis of complex systems. In Section 10.4 I signpost to alternative
statistical methods that can be applied to irregular as well as regular
distributions.

10.3.2 Complex interaction impacts on mass-energy

To illustrate the high-energy of complex interaction, and its associated impact
on mass-energy, I report three examples. Two are physical, at very different
scales: merging black holes and the proton. The third example is an N-body
simulation based on simple rules.

Example 1: binary black hole merger

In an otherwise empty universe populated by two massive bodies initially at rest,
Newtonian theory predicts that the bodies accelerate towards each other with
simple equations of motion and the mass-energy of the system is a straightfoward
function of the intrinsic masses of the two bodies.

In general relativity (GR) the situation is different. Even from rest and with
no other interactions, no general equations of motion can be defined, since the
spacetime curvature is subject to feedback and continual change. In GR, even a
binary system exhibits complex behaviour. What, then, is the mass-energy of
the binary system?

For gravitational-wave detector experiments it is necessary to answer this ques-
tion with high precision, and several groups have worked on the problem in recent
decades. Two complementary methods are used to approximate the nonlinear
solution. For the initial stages of an inspiral the post-Newtonian approximation
is used and this is brought together with a numerical relativity result for the
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final infall phase (see Appendix H). Numerical relativity calculates solutions to
‘relaxed’ field equations which incorporate a pseudotensor3 for field potential.
This is an effective approach for two bodies which are very close to one another
but it cannot be extrapolated generally because the pseudotensor would need to
be restated for every applicable inertial frame. For a binary system, the post
Newtonian and numerical relativity methods combine to generate a better-than-
Newtonian model of the evolution of the binary system’s mass-energy [153].

The first detection of a gravitational wave was reported by the LIGO col-
laboration in 2016 [154], from a binary black hole merger. The modelled initial
black hole mass-energies were 36+5

−4M� and 29+4
−4M� with a final black hole

mass-energy 62+4
−4M�. Radiation as gravitational waves amounted to 3.0+0.5

−0.5M�.
This example demonstrates that there is net gravitational energy release when
the system undergoes a transition from binary to a combined, single body. In
other words, the mass-energy of the dynamical, interacting, two-body system
exceeded the mass-energy of the final, unitary black hole.

Example 2: the proton

Let us now move on to the scale of nuclear and particle physics. The mass scale
for all normal atomic matter in the universe is set by the proton. Unlike the
mass of an electron, which is an elementary particle, the mass of the proton is
not fully understood. In the concluding chapter of their classic text on parti-
cles and nuclei, Povh et al [155] comment that, ‘The best description always
seems to come from the framework of an “effective theory" chosen according to
our experimental resolution. This is by no means a peculiarity of the complex
systems of the strong interaction, but is a general property of many-body systems.’

In the Standard Model of particle physics protons are systems of three quarks
confined in a self-interacting gluon field. Quarks have no internal structure and
the rest-frame inertial mass of each quark, mq, is attributed to interaction with
the Higgs field. The strong force carriers, gluons, are also elementary particles
but do not interact with the Higgs field so they are massless. However, the
empirical rest mass of a proton is not

∑
mq = 9.8 MeV as might naively be

expected, but is two orders of magnitude greater, mp = 938.27 MeV. Only ∼ 1%
3A pseudotensor is an object which looks like a tensor but, unlike a real tensor, is not

invariant under coordinate transformations.
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of the proton mass is attributable to the Higgs mechanism.

Research in nuclear physics has shown that a part of the additional mass arises
from purely quantum effects. However, the majority of it is a result of energetic
dynamics and nonlinear (self) interaction, i.e. complexity. For the interested
reader, I have briefly summarised in Appendix I relevant aspects of current
proton mass research in the context of the Standard Model QCD Lagrangian.

Example 3: an N-body model

Tang et al [156] set out to examine the behaviour of a system with multiple
effective degrees of freedom and complex dynamics using a model simple enough
to be characterised theoretically. The model of an array of N balls of mass
m, each connected to its neighbours by springs with a force constant K, was
subject to a sinusoidal potential driven by a time-periodic square-wave force.
They found that rather than equilibrium, the dynamics of the system selected
configurations of minimal stability. Contrary to the expectation of equilibrium
statistical mechanics, the peak of the probability density of total elastic energy
of the chain was not at the energy minimum. In fact, the minimum-energy
configuration was the least likely state to be observed and the maximum energy
configurations were most heavily weighted.

10.4 Statistical methods for complex systems

10.4.1 Context

Statistical physics is the study of the macroscopic behaviour and properties of
systems which have sufficiently large numbers of constituent components for
statistics to be applied. In different terminology, it is the study of systems with
many degrees of freedom.

In their thought-provoking book Statistical Physics for Cosmic Structures [85],
published two decades ago, Gabrielli, Labini, Joyce and Pietronero begin by
commenting that:

Cosmology has, in particular in the development of its formalism
since the 1970s, borrowed tools from statistical physics. The mathe-
matical language used to describe correlations in galaxy catalogs, for
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example, was imported from the theory of liquids. Direct exchange
or even collaboration between people in the two communities has,
however, been rare. Cosmology has thus tended to seek instruments
when necessary from statistical physics, but has not been very much
in contact with or influenced by the many developments which have
taken place in statistical physics in the last decades.

Gabrielli et al (2005) [85], pg.1

It is a sobering thought that, in twenty years, very little has changed. There is
still an emphasis in cosmology on traditional statistical methods that are valid
only if the a piori assumption of homogeneity holds. Those methods do not
enable that assumption to be tested.

The traditional tools of theoretical physics are analytical functions and dif-
ferential equations. The efficacy of these tools is predicated on smooth functions
and structures, with irregularities treated as perturbations or isolated singulari-
ties. By contrast, complex systems give rise to structures that are intrinsically
irregular and nonanalytic. Figure 10.4.1 illustrates the distinction between
regular and irregular, analytic and nonanalytic.

In recent decades renormalisation group theory and other new developments
have occurred which take statistical physics into the realm of irregular distri-
butions, scale transformations and nonequilibrium systems, including critical
phenomena [158]. Does it matter that these new developments have not been
incorporated into the statistical physics toolkit of cosmology? Already in the
late 1990s Labini, Pietronero and others were arguing that it does matter [157]. I
find their argument compelling, particularly as the alternative tools they suggest
are equally applicable to homogeneous distributions and, indeed, can be used to
test the homogeneity assumption.

Complex systems generate irregular measure distributions. For such systems,
the tools of fractal analysis are appropriate but the tools of equilibrium statisti-
cal physics are not. That does not mean that complex systems always create
mathematically perfect fractals - in nature that is not the case. In that sense,
the impassioned debate within the physics community about whether or not the
universe has fractal structure, which I touch on in the next chapter, is barely
relevant. Rather, in relation to the efficacy of particular statistical methods,
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Figure 10.4.1: Example of analytical and nonanalytic structures.
Top panels: (Left) A cluster in a homogeneous distribution. (Right) Den-
sity profile. In this case the fluctuation corresponds to an enhancement
of a factor 3 with respect to the average density. Bottom panels: (Left)
Fractal distribution in the two dimensional Euclidean space. (Right)
Density profile. In this case the fluctuations are nonanalytical and there
is no reference value, i.e. average density. The average density scales as
a power law from any occupied point of the structure. (From [157])

a key question is this: does the total population we wish to analyse have a
well-defined and positive mean density?

If the answer is ‘yes’, then it may be possible to use the standard tools of
equilibrium statistical physics. This is especially so if the system is statistically
homogeneous, i.e. its distribution does not change under spatial transforma-
tion. (We should note that statistical homogeneity is not the same as the more
demanding quality of homogeneity.) A statistically homogeneous system can
be analysed using the theory of Stationary Statistical Processes (SSPs), where
stationary means invariant under spatial translation. If it is also isotropic, i.e. its
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distribution does not change under rotation, that is even better. In either case,
large enough samples of the total population can be expected to be representative
of the whole, and the familiar two-point correlation function and its Fourier
transform, the power spectrum, are suitable analysis tools.

If the answer is ‘no’, because the distribution is irregular and there is no
well-defined, positive mean density, we enter into the regime of fractal analysis.
This is irrespective of whether the distribution is a mathematically rigorous
fractal or multi-fractal: the fact that it has no well-defined mean density is
sufficient to invalidate the traditional tools. Samples are not representative of
the whole, and two-point correlation functions are not only unreliable, they are
mathematical nonsense and actively misleading. In those circumstances, the
newer tools of fractal analysis are required.

If the answer is ’probably - our hypothesis is that the system is homogeneous’,
then it is important to test that hypothesis. Tools that assume the hypothesis is
correct and are valid only if it is, cannot adequately fulfil the need.

The new tools for statistical physics in irregular systems do not, by them-
selves, shed any light on the physical processes driving the evolution of the
universe. To bridge that gap, in Chapter 11 I draw attention to self-organised
criticality, a concept that is mainstream in many disciplines in physics but not,
yet, in cosmology.

10.4.2 Uniformity, regularity and traditional methods

The most simple hypothesis for representation of finite samples of a stochastic
field is to use a uniform average background with imposed stochastic fluctuations.
This framework, referred to as the theory of stationary stochastic processes (SSP),
is well understood: fluctuations can be treated as perturbations around a mean
field, and suitable perturbation theories can be developed. The approach is
applicable to both (a) continuous processes, i.e. those in which the fluctuating
signal in space is continuous and practically constant over sufficiently large
regions; and (b) statistically stationary spatial measure distributions of discrete
point particles, as long as there is a well-defined average.

As already mentioned, stationary refers to statistical homogeneity, a spatial
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characteristic. It is equivalent to statistical translational invariance.

A particular mass or measure density field may be thought of as a single
realisation of the SSP.

It is common to describe and analyse spatial mass distributions in cosmic
structure by measuring the correlation between density fluctuations using the
reduced two-point correlation function

ξ(r) ≡ 〈n(r)n(0)〉
〈n〉2

− 1

In the case of a statistically homogeneous process the power spectrum P (k) is
the Fourier transform of the correlation function ξ(r).

This two-point correlation function is suitable for analyses carried out in the
context of standard cosmological models, which assume statistical homogeneity.
The approach has routinely been applied to the temperature fluctuation field of
the CMB radiation (see Section 9.3.3), and to the spatial distributions of cosmic
structures.

There are, however, some density or measure fields for which the statistical
tools of SSP give spurious and invalid results, in particular when the mean
density 〈n〉2 is not well defined. An important example is densities or measures
which have fractal distributions. In such cases, the average density decays slowly
from any point in the set but is asymptotically zero. Therefore, the estimator
of the average mass density in any finite sample gives an infinite relative error
with respect to the actual, zero value in the population. There is a further
implication, that the distribution is extremely irregular. In fact, it is singular at
every distribution point.

It is therefore essential that, before applying the simple and well-understood SSP
statistical framework, the hypothesis that they are appropriate is tested. The
tests cannot be carried out using SSP but must instead use statistical physics
that can be applied to irregular distributions. These mathematical and statistical
methods are usually called fractal analysis, which is the subject of the next
section.
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10.4.3 Irregular and nonanalytic structures: fractal anal-
ysis

In recent decades Pietronero, Labini and others have devoted substantial effort
to defining and applying a statistical framework for studies of irregular, including
fractal, structures (see for example [85, 159–167]. I briefly outline the nature of
fractals in Appendix J, including the definition of ’fractal dimension’ which is a
key characteristic of the statistical behaviour of irregular distributions.

I have already commented that the average density of a fractal mass distri-
bution is zero in the infinite volume limit. In that case, average density in a finite
sample has no intrinsic meaning, because it depends on sample size. In practice,
calculating a precise fractal dimension for a complex physical system using, for
example, the Hausdorff dimension defined in Appendix J may be impossible. One
can instead examine the conditional density which, for stochastic and isotropic
distributions, is defined as [168]:

〈n(−→r )〉p = 〈n(r)n(0)〉
〈n(0)〉

for spherical shells of radius r. The integrated condisional density gives the
average density of particles in spheres of volume V (r) .

These measures can be used to identify the scale at which the regime of large
fluctuations gives way to that of small fluctuations, i.e. the scale at which the
average density becomes well-defined, if indeed it does.

To extend the two-point description of fractal mass distributions to three-point
statistical properties the concept of lacunarity, i.e. void distribution, is in-
troduced. Deeper characterization of strongly irregular distributions uses the
concept of measure theory. Gabrielli et al provide a thorough exposition of these
and other tools [85].

For completeness, I note that in respect of statistical mechanics for GR there are
other approaches that can also be explored. These include, for example, work
published on non-local kinetic and generalized hydrodynamic equations [169,170]
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10.4.4 Spatial and temporal: the impact of GR

The preceding sections in this chapter summarise work by Labini, Pietronero,
Gabrielli and others. In this section I state a new aspect of the problem of
finding appropriate tools for the statistical analysis of our universe: the problem
of variant time in GR. I address GR in some detail in Chapter 12. Here, I
wish simply to point out that mass-energy distributions in the cosmos are, in
the theory of GR, functions of both space and time. Time is not an invariant,
background measure. One cannot take a single time slice and obtain ‘accurate’
analyses of spatial distributions on it. Spacetime, everywhere, is relative and
subject to gravitational waves.

In the standard model of cosmology this aspect of time variance is ignored
completely, relying on the model-dependent assumption that the effect is neg-
ligible because spacetime is, essentially, flat Euclidean space. In a different
theoretical regime, which allows the possibility that the universe is not a smooth
and homogeneous distribution but is instead irregular, the flat spacetime as-
sumption cannot be consistent with the theory of GR.

I do not yet have an answer to offer with respect to how this can be addressed
in a statistical framework. The problem is included in Section 15.1.3.
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Chapter 11

Self-organised criticality

Self-organized criticality is a new way of viewing nature.
Per Bak (1996) [171], p.xi

The idea of self-organised criticality seems to me to be, not the right
and unique solution ... but to have paradigmatic value, as the kind of

generalisation which will characterize the next stage of physics.
P. W. Anderson (2011) [172], p.112

11.1 SOC: an explanation of emergent structure

In the preceding chapter I introduced complexity and commented briefly on
statistical physics for complex systems. The tools of fractal analysis I referred
to there facilitate analysis of complex structures but they do not by themselves
offer explanations of dynamical physical phenomena. In this chapter I turn
to another facet of statistical physics to make good this deficiency. I propose
self-organised criticality (SOC) as an appropriate paradigm for study of the
behaviour and evolution of structure in the complex, dynamical universe. I choose
to describe SOC as a paradigm rather than as a model or a theory because it
describes a broad family of processes which, whilst they share certain statistical
characteristics, can arise within vastly different physical systems.
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SOC emerged from the disciplines of statistical mechanics and condensed matter
theory. It was introduced by Bak, Tang and Wiesenfeld (BTW) [1] in 1987 in a
paper that now has more than ten thousand citations in peer reviewed journals
in multiple disciplines.

SOC was originally presented as an explanation for two empirical observa-
tions of nature: that spatially extended forms often exhibit self-similar fractal
structure [173] and that long-range correlations in time series are ubiquitous in
diverse transport systems (see e.g. [174]). The existence of fractal structure in
nature had been known since the pioneering work of Mandelbrot [175] but the
mechanism by which these structures form was previously unknown. Mandel-
brot’s work implied a common dynamical origin for large and small events [113],
as their statistical probability distribution functions are the same: Pareto-Levy
functions. The probability of large events is given by the tails of those distribu-
tions, which fall off as power laws, i.e. much slower than Gaussian distributions.
The time-series phenomenon, commonly termed 1/f noise, is associated with
low-frequency power spectra displaying power-law behaviour characterised by a
power spectral density P (f) ∝ f−α, where f is frequency, over vastly different
time scales1. Bak and his collaborators argued that the spatial and temporal
phenomena, both of which involve long-range correlations, are related. They
presented a heuristic argument and simple numerical models.

The heuristic argument, which is independent of the details of any particu-
lar physical system, is compelling. Consider a many-body, dynamical and
dissipative system with spatial degrees of freedom. As components interact in
the presence of a slow-drive2 energy source, structures emerge. These structures
continue to evolve until they reach a minimally-stable, critical state. The local
state is critical in the sense that it is related to phase transition: when the
local energy accumulation breaches a threshold in the physics of that system, an
abrupt cascade, or avalanche of energy release occurs. That noise propagates
through the scaling clusters, disturbing the barely stable states and causing a
cascade of energy dissipation on all length scales. The outcome is spatio-temporal
correlations which manifest scale-free, fractal structure. Note that the critical

1Except for α = 0, ’white noise’, which represents random, uncorrelated fluctuations.
2Here slow-drive refers to an energy input that is slow in relation to intermittent and rapid

cascades of energy release.
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point is not the result of fine-tuning a parameter such as temperature but is
instead an attractor reached by starting far from equilibrium.

Details of specific models and examples of SOC systems are given in, for example,
Jensen [176], Preussner [177] and Aschwanden et al [178].

Historically, SOC has engendered some controversy [179]. This was largely
driven by resistance to early claims that all systems in nature demonstrate
SOC, as implied by the title of Bak’s popular book How Nature Works [171],
and by the failure to find the expected universality classes3 [177]. As the con-
cept has matured, however, SOC has fuelled substantial and fruitful research
in complex systems in many fields, including solar and astrophysics [180] and
plasmas [181]. SOC has also provided motivation for recent application in quan-
tum fields, termed ‘self-organised localisation’ [182]. Very little has yet been
written about the application of SOC at cosmological scales [178], although
an interesting early paper by Smolin [183] does explicitly address the issue of
criticality and self-organisation, in the context of both spiral galaxies and the
large scale organisation of the universe.

11.1.1 Definitions

I first clarify the meaning of terms used in definitions of SOC:

• Self-organisation. This is not a new term introduced with SOC, it is a
pre-existing concept in complexity science and is defined in Section 10.2.4.
An alternative but consistent definition is give by Jensen [176]: ‘An ability
by certain nonequilibrium systems to develop structures and patterns in
the absence of control or manipulation by an external agent’.

• Criticality. The technical origin of criticality lies in equilibrium ther-
modynamics, in the context of phase transitions. It refers to a state in
which a disturbance decays algebraically with all members of the system
influencing each other, as opposed to a disturbance in a non-critical system
in which a disturbance falls off exponentially amongst local neighbours.

3In the context of ordinary critical phenomena certain dimensionless universal quantities
such as critical exponents, the scaling function and ratios of amplitudes are independent of
many details of a system. Systems that share universal features and share these characteristics
are said to be in the same universality class.
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Whilst criticality in SOC is also associated with phase transition, there
are the following fundamental differences:

– In equilibrium thermodynamics, achieving a critical state requires
fine-tuning of an appropriate parameter such as temperature. The
critical point in dynamical SOC systems is not a result of tuning any
parameter but is instead an attractor reached by starting far from
equilibrium. The scaling properties4 of the attractor are insensitive
to the model parameters.

– Whereas there is a clear mathematical framework for calculating the
statistical properties, including critical points, of equilibrium systems,
there is no equivalent formalism to calculate the probablility that
particular configurations of a dynamical system will occur. In SOC
in particular, there is the problem that sharp thresholds in dynamics
introduce highly nonlinear and nonanalytic terms in the equations of
motion [176].

– In SOC, criticality does not mean that the system organises itself
into a state where every local degree of freedom is close to some
threshold [179].

• Scale invariance refers to invariance of a system or its fluctuations under
scale transformations, which is the common usage in statistical physics.
This is different from ‘scale-invariant’ used in cosmology to refer to, for
example, the primordial power spectrum. The latter usage refers to a
property of a specific system, in which the amplitude of fluctuations
remains invariant as the ‘horizon scale’ increases [85].

It is now possible to define Self-organised criticality (SOC). A modern defi-
nition of SOC which I consider to be useful is given by Preussner, and defines
SOC as a phenomenon rather than a class of systems: ‘SOC is regarded as ...
scale invariance without external tuning of a control parameter, but with all the
features of the critical point of an ordinary phase transition, in particular long
range (algebraic) spatiotemporal correlations. In contrast to (other) instances
of generic scale invariance it displays a separation of time scales, avalanches, is
interaction dominated and contains nonlinearities.’ [177]

4The scaling properties of an attractor include: fractal dimension, which quantifies how
it scales with the size of the system (see Appendix J); correlation dimension, measuring the
density of points on the attractor; and scale dependence.
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Aschwanden et al use the following alternative but consistent definition: ‘SOC
is a critical state of nonlinear energy dissipation system that is slowly and
continuously driven towards a critical value of a system-wide instability thresh-
old, producing scale-free, fractal-diffusive, and intermittent avalanches with
powerlaw-like size distributions.’ [180]

11.1.2 Necessary conditions and phonomenological features

There is broad agreement about the necessary generating conditions for SOC. In
1998 Jensen [176] proposed that SOC behaviour would be observed in slowly-
driven, interaction-dominated threshold systems (SDIDT). Watkins et al [179]
noted that SDIDT need not exclusively be SOC but the conditions for SOC they
proposed are effectively SDIDT:

• Nonlinear interaction in the form of thresholds.

• Intermittent avalanches, i.e. sudden and extreme releases of energy, which
are to be expected in the presence of thresholds and slow driving.

• Separation of time scales, i.e. avalanches are distinct.

Implicit in the 1987 BTW paper [1], explicit in [113] and recognised in both
of these definitions is the important point that the dynamical systems must
involve interaction as well as spatial degrees of freedom for structure to emerge.
For example, a quantum many-body system will relax from a non-Gaussian
initial state to a Gaussian state under non-interacting dynamics - but recover
its non-Gaussian condition when interaction is restored [184]. Similarly, in the
temporal case, electrical systems produce 1/f noise when there is a current
flowing but not otherwise [174].

The key features of SOC phonomenology are [179]:

• Non-trivial scaling without dependence on a control parameter.

• Spatio-temporal power law correlations.

• Apparent self-tuning to the critical point.
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11.2 Is the universe a SOC system?

It cannot be claimed that all complex systems display SOC behaviour. There
is no sufficient condition that guarantees that a system can be classified as
exhibiting SOC, but there are generating conditions that are required and there
is characteristic phenomenology. Therefore, I turn now to the question of whether
SOC can be excluded as a viable paradigm for cosmology - in other words, whether
any of the required conditions or the characteristic phenomenology is missing.

11.2.1 Generating conditions

We recall that the generating conditions for SOC behaviour are the presence of:
a slow drive energy source; interaction-domination; thresholds and associated
intermittent avalanches [176,179].

Let us first consider the case for gravity as an energy source in the universe.
Smolin [183] observes: ‘While gravitationally bound systems may spend long
periods of time in quasi equilibrium configurations, they do not reach true equi-
librium states, characterized by maximal entropy. The reason is that they have
practically inexhaustible sources of energy ... gravitationally bound systems such
as galaxies can maintain significant flows of energy for cosmological time scales.’
Furthermore, I will show in Chapter 12 that in the theory of GR energy is not
conserved in any subsystem of the universe. Gravitational systems are dissipative.

The gravitational energy source is generally ‘slow’ drive because gravity is
weak except in extreme conditions.

We observe intermittent energy release associated with thresholds: in an early
review of SOC studies in astrophysical accretion systems Dendy et al [185]
concluded that the potential sites for SOC in such systems are numerous. More
generally, thresholds are designed into modern hydrodynamical simulations of
galaxy evolution. They are required in order to simulate realistic structure (see,
for example, the EAGLE (Evolution and Assembly of GaLaxies and their Envi-
ronments) simulation [134,186]). At this level, the specific physics of threshold
feedback processes include Active Galactic Nuclei (AGN), exploding massive
stars and core collapse supernovae, explosive events which limit the fraction of
gas that forms stars as a galaxy evolves.
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There is no obvious converse argument that thresholds and associated sudden
energy release do not occur.

11.2.2 Characteristic phenomenology

Turning now to the phenomenology of SOC systems, the key features are [179]:

• Non-trivial scaling without dependence on a control parameter.

• Spatio-temporal power law correlations.

• Apparent self-tuning to the critical point.

Simply put, SOC systems evolve to self-organised fractal structure. The usual
assumption, fundamental to FLRW cosmology and described in Chapter 9, is that
the universe is isotropic and homogenous at large scales, not fractal. As we have
seen in the previous chapter, the statistics of conventional cosmological modelling
are only valid if this assumption holds. But does the universe in fact display frac-
tal structure? The first person to pose the question was Mandelbrot himself in
1975, referenced in [187]. Using simple toy models, Mandelbrot predicted that not
only clusters but also filaments, voids and walls would emerge in cosmic structure.

Fractals are usually characterised by their dimension. As I have explained
in Section 10.4, fractal dimension is defined for an entire population: samples
cannot be representative of a fractal structure. However, we must work with
the data we have. An early study by Peebles [188] concluded that the space
distribution of galaxies on scales less than about 15 Mpc h−1 could be described
well as fractal with dimension D = 1.23± 0.04, but that this was not the case at
larger scales. Two decades later Labini et al [165], using the Sloan Digital Sky
Survey, found inhomogeneities compatible with a continuation of fractal corre-
lations but incompatible with a homogeneity scale smaller than 100 Mpc h−1.
They concluded that the evidence demonstrates that the large amplitude density
fluctuations are limited only by sample sizes. Another quantitative study of
average conditional density in the Sloan Digital Sky Survey Release 7 data
concluded, ‘Due to the scaling and data collapse we argue that the large scale
galaxy distribution shows similarities with critical systems.’ [189])

At larger scales, it has become clear that our universe does indeed exhibit
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a pattern of clustering, filaments and voids. With each new release of data from
sky surveys, the scale of identified structures has increased: in the 1986 CfA2
Redshift Survey the Great Wall was observed, a structure with size approximately
200 x 80 x 10 Mpch−1, limited only by the sample size. In 2000, the Sloan
Great Wall, some three times larger than the Great Wall, was identified [190].
The relative scale of these structures5 is shown in Figure 11.2.1. In 2024 an ultra
large scale structure described as the Big Ring, some 400 Mpch−1 in diameter,
was seen in Mg II-absorber catalogues [191]. In 2025, using X-ray galaxy clusters
to map matter density distribution, a 400 Mpch−1 structure, named Quipu, has
been identified [192].

In 2021 De Marzo, Labini and Pietronero [167] used the properties of the Zipf-
Mandelbrot law6 to complement the standard correlation function analysis to
examine the size distribution of superclusters of galaxies. Their conclusion
was that galaxy superclusters are well described by a pure Zipf’s law with no
deviations and that currently available catalogues are not sufficiently large to
spot a truncation in the power-law behaviour.

There are counter-arguments to these findings and some studies have concluded
that the transition to homogeneity occurs at less than 100 Mpc h−1. One such
study, based on analysis of the WiggleZ Dark Energy Survey data, reports that
for a survey of over 200, 000 blue galaxies in a cosmic volume of ∼ 1 Gpc3 h−3

the mean number of galaxies in spheres of comoving radius r is proportional to r3

within 1 per cent at radii larger than 71± 8 Mpc h−1 at z ∼ 0.2, 70± 5 Mpc h−1

at z ∼ 0.4, 81 ± 5 Mpc h−1 at z ∼ 0.6 and 75 ± 4 Mpc h−1 at z ∼ 0.8 [193].
This work also provides useful references to other studies, including some of the
papers I have cited in this section. For our purposes, the WiggleZ analysis is
interesting but cannot be conclusive, since it explicitly uses a cosmological model
to underpin the analysis: ‘Certain parts of our analysis require the assumption

5Note that the characteristic scale, a measure defined as the scale at which fluctuations in
the galaxy density field are rougly twice the value of the sample density, is r0 ∼ 5 Mpc/h. This
scale is indicated by the small dot at the bottom of the image. To give physical meaning to r0

in a finite sample it is necessary to verify that the average density is a well-defined concept: in
a fractal structure it is not.

6The Zipf–Mandelbrot law (otherwise known as the Pareto-Zipf law or as Korčak’s law)
is a discrete power-law distribution generalised from Zipf’s empirical law formulated using
mathematical statistics that refers to the fact that for many types of data studied in the
physical and social sciences, the rank-frequency distribution is an inverse relation.
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Figure 11.2.1:
Reproduced from Labini and Pietronero [164]: Latest progress in redshift surveys.
SDSS Great Wall (2003) compared to CfA2 (1986) Great Wall at the same scale.

Redshift distances cz are indicated. The small circle at the bottom has a diameter of 5
Mpc/h, the clustering length according to the standard interpretation of galaxy

correlation. The SDSS slice is 4 degrees wide, the CfA2 slice is 12 degrees wide to
make both slices approximately the same physical width at the two walls.

of a cosmological model and, implicitly, homogeneity (i.e. for converting Wig-
gleZ redshifts to distances, correcting for the selection function, calculating the
uncertainties using lognormal realisations, and finding the best-fitting bias). In
these cases we use an input ΛCDM cosmology...’ [193].

I comment that I am not seeking here to establish that the universe is fractal,
only to explore whether there is valid statistical evidence that it is not. It
would be an interesting piece of work to review the WiggleZ paper alongside
analyses that conclude the scale of homogeneity is not yet apparent in other
surveys but, as it stands, the WiggleZ analysis is ultimately dependent on the
assumption of homogeneity. In particular, since the WiggleZ survey was not
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large enough to contain spheres of the size at which homogeneity was claimed
to set in, the protruding regions were populated with galaxies drawn from a
random, i.e. homogenous, distribution.

Finally, I note that SOC does not suggest that the entire system is expected to
be in a critical, i.e. fractal, state at all times.

11.2.3 Implications of the CMB

A common argument in support of the FLRW assumptions is the isotropy of the
CMB at z ∼ 1100 [104]. However, in the SOC framework: (a) initial conditions
are not relevant to the emergence of structure so homogeniety and isotropy in
the past are not evidence of an absence of fractal structure now; and (b) SOC
does not suggest that all structure is at all times is in a critical state, only that
it evolves to it.

11.2.4 Conclusion: SOC is not excluded as a possibility

I conclude that the conditions necessary to generate SOC-behaviour cannot
be shown to be absent and that there is not yet any definitive evidence that
SOC-consistent fractal phenomenology is not present in the universe.

11.3 Theoretical implications of SOC

There are some very interesting implications of SOC phenomenology. For my
purposes the following are particularly significant:

• The emergence of structure is an inherent property of SOC and is indepen-
dent of initial conditions.

• It is not the case, however, that all parts of a system are perpetually at a
critical point [179].

• Mass-energy is expected to accumulate as configurations evolve to critical
states.

• At the critical point, configurations with maximum mass-energy are statis-
tically preferred [156]. This is directly contrary to the minimum energy
expectation of a system in equilibrium.
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• Avalanche dissipation occurs when a threshold is breached. Thereafter, the
slow-drive accumulation again takes over.

• Since the avalanche dissipation from a critical point affects the entire
system algebraically, long-range spatio-temporal correlations occur.

• There is no well-defined mass density in a fractal system: therefore samples
cannot be representative of the population and equilibrium statistical tools
are not applicable.

• We observe the universe from a point in spacetime which is special, in the
sense that we are in the fractal.

11.4 Working with SOC

SOC can predict neither a specific system configuration nor the mass-energy of
a galaxy or cluster. Yet, ‘The power of SOC lies in the ability to both describe
and explain a large variety of physical systems in a quantitative and physically-
motivated manner’ [194]. SOC is statistical physics. Crucially, unlike other
statistical tools used in the analysis of structures, it also offers an explanation of
how and why structures form in the universe.

SOC warns that the statistical tools applicable to homogeneity and equilib-
rium are not only inappropriate but actively misleading. Yet it is important to
clarify that there is no outright, universally applicable mathematical formalism
for SOC [176]. Numerical simulations exist for a number of classes of system,
and a review of models, including the archetypal ‘sand pile’ model introduced
by BTW in 1987, is given in Preussner [177]. I am not aware of any extant SOC
model built with a general-relativity-like nonlinear interaction .

What is required in order to work with SOC, then, is a combination of:

1. Analysis tools that do not assume, a priori, large-scale homogeneity and
distribution of matter around a well-defined mean. As we have seen in
Section 10.4, appropriate tools do exist, broadly categorised as fractal
analysis.

2. A paradigm which supports investigation of observational data without
requiring exact solutions to GR field equations and without a priori as-
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sumptions of specific initial conditions coupled with a linear lifecycle for
the universe as a whole. This paradigm is supplied, I suggest, by SOC.

I discuss the next steps more fully in Chapter 15. In the meantime, I move on
to address the theoretical implications of GR, when the theory is freed from the
restrictions of the conventional FLRW framework.
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Chapter 12

General relativity - back to
basics

Spacetime tells matter how to move; matter tells spacetime how to curve.
J.A. Wheeler [195] pg 235

12.1 The case for general relativity

General relativity (GR) is the most complete description of the geometrical
properties of the universe available and the theory has, so far, passed every
experimental challenge [196].

GR has become so strongly associated with the FLRW framework that it is easy
to forget that FLRW is not, actually, GR at all. The FLRW framework, which
we described in Section 9.1, is a set of assumptions and approximations that
allow solutions to the field equations to be found. The price paid is that GR is
stripped of its fundamental nature: relativity in space and time and the effect
of interaction are excluded. In this section we go back to basics and restore
attention to the profound implications of the full theory.

12.2 Key principles and terms

The following key terms and principles are employed:
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• Equivalence principle. It is always possible to find a frame of reference
in which all local gravitational fields disappear.

• Mass Surprisingly, there is no rigorous and unambiguous definition of
mass (see Jammer’s works [197,198] for interesting reviews of the topic).
Nevertheless, physicists work with mass. In the Standard Model of particle
physics mass is a function of coupling with the Higgs boson but, even
at the still subatomic scale of the proton, we have seen in Section 10.3.2
that this is not a sufficient definition as only ∼ 1 % of the proton mass is
attributable to the Higgs mechanism. As a working definition we follow
Misner et al and say ‘Mass is the source of gravity’ [86] pg. 404.

• All forms of energy contribute to the gravitational field of an
object Einstein [199]. Thus mass and energy are equivalent.

• Gravitational field. We again follow Misner et al [86] and use the
term gravitational field to mean both the geometry of spacetime and
the various mathematical entities that collectively are associated with
gravitation including the metric, the Riemann and Ricci curvature tensors,
the covariant derivatives, connection coefficients and so on which are on
the left-hand side of Einstein’s field equations 9.1.2.

• Matter. Weyl said, ‘We shall assign the term “matter” to that real thing,
which is represented by the energy-momentum tensor’ ( [200] pg.203). Weyl
meant, in the context of his time, the states and dynamics of ‘real’ normal
matter and radiation fields. We have seen in Section 9.1 that Einstein’s
introduction of a cosmological constant term in equation 9.1.2 required the
energy-momentum tensor to incorporate an additional source of energy, Λ,
that the standard cosmological model associates with dark energy. And,
of course, the standard model also requires non-interacting dark matter.
When we refer to matter in this chapter we do so in the original spirit of
Weyl.

• Baryonic matter. In cosmology it is conventional to refer to normal (as
opposed to dark) matter as baryonic matter. More precisely, it refers to
matter made up of Standard Model particles except for electrons (which
have, relatively, negligible mass) and neutrinos (which, in the Standard
Model, do not have mass). We prefer to avoid the term but, where it is
quoted in this thesis, it is in that context.
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• Timepoint. Usually described as an ‘event’ we define a timepoint to be
an infinitesimal point in four-dimensional spacetime.

• Timespan-region. We call an extent of spacetime that is non-infinitesimal
in either or both of space and time a timespan-region.

12.3 Einstein’s field equations

In principle the core field equations are very simple1 2:

Gµν = Tµν

spacetime geometry stress-energy tensor
(12.3.1)

The devil is in the detail. The left-hand side, Gµν , is gravity, a function of the
geometry of spacetime. The right-hand side, Tµν , is the source of gravity: a
second-order tensor variously described as the stress-energy tensor, the energy-
momentum tensor, or the matter-energy tensor.

More precisely, Gµν is a function of the spacetime metric gµν and its first
and second derivatives:

Gµν = Rµν − 1
2Rgµν is spacetime curvature, with

Rµν the contracted Riemann (‘Ricci’) curvature tensor

Rµν ≡
∑
γ

Rγµνγ (12.3.2)

where
1A normalisation factor κ = 8πG/c4 which ensures consistency with Newtonian gravity

in the weak field limit is commonly included, as we showed in equation 9.1.1, but has been
omitted here for simplicity. Due to general coordinate invariance a term k gµν may be added
to the left-hand side, where k is a constant (and is, in equation 9.1.2, Λ). With reference to
quantum field theory, the right-hand side may also be scaled by a factor k′ gµν to accommodate
the energy density of the vacuum, which is Lorentz invariant. None of these terms has any
bearing on the points we are about to make.

2I have omitted the cosmological constant term Λgµν which is the common depiction of the
k gµν term referred to in the footnote above. The value of Λ has been shown to have negligible
impact on star formation rate [201] and therefore is relevant only to the macroscopic evolution
of the universe, which has been discussed in Section 9.3.4.
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Rδµν γ ≡
∂Γδµγ
∂xν

−
∂Γδµν
∂xγ

+
∑
λ

ΓλµγΓδλν −
∑
λ

ΓλµνΓδλγ (12.3.3)

with connection coefficients

Γλµν = 1
2
∑
σ

gλσ
(∂gσν
∂xµ

+ ∂gµσ
∂xν

− ∂gµν
∂xσ

)
(12.3.4)

R is the Ricci scalar R ≡
∑
µν g

µνRµν

Tµν is the covariant form of Tµν , the rank-two, symmetric stress-energy tensor (or
energy-momentum tensor which is a function of the energy density and energy
flux of matter, including radiation, across the four dimensions of spacetime.
Usually stated in its contravariant form:

Tµν =


T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 (12.3.5)

The precise form of the tensor depends on what the spacetime contains. The
following stress-energy tensors are familiar in cosmology:

• Vacuum:
Tµν = 0, ∀µ, ν

• Dust, a cloud of non-interacting particles with mass-energy density ρ all
at rest in an isotropic rest frame:

Tµµ = ρ; µ = 0

Tµµ = 0; µ 6= 0

Tµν = 0; µ 6= ν

• Perfect fluid in equilibrium, with density ρ and pressure p, in an isotropic
rest frame. In this frame the particles may be moving but their momenta
cancel out.

Tµµ = ρ; µ = 0

Tµµ = p; µ 6= 0

Tµν = 0; µ 6= ν
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Of course, pressure may not be isotropic and the stress exerted by a fluid need
not be perpendicular to the surface on which it acts. The diagonal elements of
the matrix are then anisotropic pressure, and the off-diagonal elements are the
shear stress, which is what gives rise to name ‘stress-energy’ tensor.

The stress-energy tensor is, then, the total energy of the components of the
spacetime. In practice it is not possible to define a realistic Tµν for the universe
or for any timespan-region that contains dynamical, interacting components,
for reasons which we explore in the next section. Furthermore, even if it were
possible to establish what Tµν is at a particular instant that result would no
longer be correct for the next, infinitesimal instant.

12.4 Implications of the theory

12.4.1 GR is fundamentally different

The GR field equations 12.3.1 describe a theory that is fundamentally different
from other field theories. In particular:

• The theory of GR is built in Riemannian rather than Euclidean geometry.
This distinction is familiar to mathematicians but not to many cosmolo-
gists, who work with FLRW-GR. In Euclidean space the shortest distance
between two points is always a straight line. In Riemannian geometry, the
extremal (shortest) line between two points is a geodesic. Any particle in
a gravitational field follows a geodesic path, not a straight line. Einstein,
Infeld and Hoffmann showed in 1938 [202] that the trajectories of massive
particles, even so far apart that their gravitational interactions are weak
and between which the vacuum field equations hold, cannot be arbitrary.
Each particle must move along a geodesic in the spacetime determined by
the others (see, for example, [203] pg 64). Therefore, wherever there is
matter present, its particles follow geodesics and, ‘The motions of mat-
ter can already be obtained from the vacuum field equations in the region
outside the matter, without needing any details of the stress-energy tensor.
This makes gravity very different from other interactions.’ [203] pg 65.

• The field is not only curvilinear, it is explicitly free of coordinate dependence.
There is no background. In flat, Euclidean space we can feel confident that
we understand the physical inerpretation of a chosen coordinate system.
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In curved space that is no longer true: results may be difficult to interpret
in terms of physical observables.

• Space and time are interchangeable and must be considered to be spacetime.
Whereas spatial geodesics have line elements that are always positive
definite that is not the case for spacetime geodesics.

• Spacetime curvature, aka the Einstein tensor Gµν , aka gravity, responds to
all forms of energy. This includes not only inertial mass and electromagnetic
fields but also the energy density of the gravitational field itself. Solving
the equations of motion of a charged particle in an electromagnetic field
requires two indepdenent steps, because the particle may be subject to
forces other than the electromagnetic force: solve Maxwell’s equations for
the field and then use the Lorentz force law to find the acceleration in
the field. Gravity, by contrast, sees everything: this is because any other
forces that are present carry energy and therefore also couple with the
gravitational field.

These differences have immense significance. In the rest of this chapter we state
the principal implications.

12.4.2 No integral conservation of energy

In GR, energy is not conserved in any timespan-region. In the terminology of
Chapter 10, any region in spacetime is and must be dissipative.

Conservation of energy is a fundamental principle of physics, arising from the
invariance of physical laws under time translation. In the FLRW-GR framework
time translation invariance is preserved, one of the assumptions necessary to
make a solution to the field equations tractable. In the full theory of GR time is
not independent and we must work with spacetime. Time translation invariance
is broken.

The energy conservation condition in GR is simply that the covariant derivative
of the stress-energy tensor, its divergence, vanishes:

5µ Tµν = 0 (12.4.1)

The divergence is a vector field that describes the source or sink of energy and
momentum density. At any timepoint in spacetime it is zero. This does not help
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us at all in finding some statement of conservation of energy in a timespan-region.
In other field theories, for example electromagnetism, energy conservation can
also be written in an integral form. Surely we can do the same for GR, and
write a (spacetime) volume integral that represents the conserved gravitational
‘charge’ within that timespan-region?

The answer in a spcific case is yes, Gaussian flux integrals can indeed be
generalised to GR. But, in general, the answer is no.

The explanation for this is as follows. In electromagnetic theory it is possi-
ble to establish the total conserved charge Q of a source by using a Gaussian
flux integral over a closed 2-surface surrounding it (see, for example, Misner et
al [86]pg 463):

Q = 1
4π

∮
Ejd2Sj = 1

4π

∮
F 0jd2Sj (12.4.2)

Here E is the electric field, F is the electromagnetic field tensor and dS is an
element of any limited surface. Similarly, in Newtonian gravity it is possible
to establish the total mass M of a source via the Gaussian flux integral as a
function of the Newtonian gravitational potential Φ

M = 1
4π

∮
Φ,jd2Sj (12.4.3)

One can derive Gaussian flux integrals for the four-momentum and angular
momentum of a gravitational source also in GR. However, the integrals can
only be evaluated if (a) the closed surface of the integral is an asymptotically
flat region surrounding the source; and (b) using asymptotically Minkowskian3

coordinates. As Misner et al state very clearly:

3The Minkowski metric ηµν with line element ds2 = −cdt2 + dx2 + dy2 + dz2 is the metric
of flat spacetime.
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‘In particular, when evaluating the 4-momentum and angular
momentum of a localized system, one must apply the flux inte-
grals only in asymptotically Minkowskian coordinates. If such
coordinates do not exist (spacetime not flat at infinity), one must
completely abandon the flux integrals, and the quantities that rely
on them for definition: the total mass, momentum, and angular
momentum of the gravitating source... Attempts to use [the flux
integral] formulas in ways that lose sight of the Minkowski bound-
ary conditions (and especially simply adopting them unmodified
in curvilinear coordinates) easily and unavoidably produce non-
sense.’ (Misner et al [86] pg. 463)

The italics are the authors’ own.

In other words, unless we require that spacetime is both asymptotically flat and
that flat spacetime coordinates can be used to describe it, there is no integral
conservation condition. The FLRW-GR of the standard cosmological model
has conservation of energy in regions of spacetime. The full theory of GR does not.

The significance of this can hardly be overstated. In flat spacetime energy
conservation is straightforward: in Newton’s theory, mass is an intrinsic quantity
that is itself conserved; in special relativity the mass m of a particle is not
conserved but its energy E and its momentum p are both subject to conservation
laws and are related to its mass by the equation E2 = p2c2 + m2c4. In the
dynamically curved spacetime of full GR, however, the stress-energy tensor Tµν

of equation 12.3.1 is not a conserved object. The conservation condition is
instead that its covariant derivative vanishes, equation 12.4.1. Whilst a Tµν can
certainly be differentiated to obtain 5µTµν , the result cannot be integrated to
give conservation laws over a timespan-region [204].

Every existent timespan-region is an open and dissipative system, not a closed
and conservative one.

12.4.3 Spacetime is nowhere flat

Matter is represented by curvature, but not every curvature does represent
matter; there may be curvature ‘in vacuo’.
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G Lemaitre in Schlipp (1949), p.440

The standard argument in cosmology is that the universe is almost perfectly flat,
so conservation of energy applies. Yet no-one argues that spacetime is flat in the
region of a black hole, for example. In the universe there are regions of relatively
dense mass-energy and there are voids, on multiple scales. However flat the
universe may be ‘on average’, or ‘on sufficiently large scales’, its four-dimensional
topography cannot be said to be flat. If there are any sources at all in the
universe, spacetime cannot be flat.

Specifically, in the absence of sources, i.e. Tµν = 0, the Ricci tensor in equation
12.3.1 must vanish. However, this does not necessarily mean that the Riemann
tensor is zero. If it is not, then the metric tensor gµν must differ from the flat
spacetime Minkowski metric ηµν . An example of such a non-Minkowskian metric
in a vacuum is the Schwarzschild metric for the vacuum spacetime surrounding
an isolated matter source. Lemaitre’s quote above may therefore be rephrased
as: matter has mass-energy but not all mass-energy is matter.

12.4.4 There is potential in the gravitational field

GR is a field theory so, although a body at any timepoint experiences no gravi-
tational field in its own reference frame, in any timespan-region there arises a
relative gravitational field potential.

The stress-energy tensor Tµν in equation 12.3.1 includes only the energy of
matter (which, in this case, would include the dark matter and dark energy
of the standard cosmological model if that were the framework we were using)
and does not include any purely gravitational potential 4. Indeed, no tensor
can be defined for gravitational energy density because, in compliance with the
equivalence principle, it vanishes at each timepoint and so must vary with the
co-ordinate frame5. In applying numerical relativity to binary mergers the field
equations are supplemented by a pseudo-tensor to account for the gravitational
field potential in that specific calculation [153].

4For a good explanation of the fact that there is no energy-momentum tensor for the field
potential see Lambourne [87].

5There is an active field of research into practical and theoretical approaches to defining
quasi-local energy momentum in GR, see for example Szabados [205] and references therein.
That work does not invalidate the point that, in GR, non-infinitesimal physical spaces and
times experience relative gravitational field potential.
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Using the notation - althought not the linearised argument - in Misner et
al [86] we will define a stress-energy pseudotensor for the gravitational field, tµν ,
such that:

tµν ≡ Tµνeff − T
µν (12.4.4)

Here Tµν is the normal stress energy tensor but Tµνeff , like tµν , has no geometric,
coordinate-free significance. Equation 12.4.4 is not a covariant tensor equation.
Instead, Tµνeff is a coordinate-dependent object representing the total effective
source of gravity influencing the evolution the spacetime metric for a specific
timespan-region.

Gravitoelectromagnetism (GEM) and frame-dragging

The gravitational energy in GR is generated by mass currents in the gravitational
field. This field theory nature of GR has invited analogy with electromagnetism,
to the extent that the effect is usually called gravitoelectromagnetism (GEM)
because of the formal analogy between the two field theories although it has,
of course, nothing to do with electromagnetism. In his Princeton lectures of
1921 [206], Einstein pointed out that there are three sources of such currents:
rotation of massive bodies, their linear motion, and their inertial mass. The
currents are now usually described as frame-dragging.

Already in 1918 the question of the field effect of rotating bodies had been
explored for a hollow sphere by Thirring and for a solid sphere by Lense and
Thirring, both in the weak field approximation. (Translations of both papers
are given in full in [207].) They concluded that, although small, the effect on
the moons of Jupiter might be measurable. The ‘Lense-Thirring effect’ of frame
dragging in rotational systems has indeed now been measured, for example in a
binary pulsar system [208].

Calculations of the frame-dragging effect of single rotating bodies predict they
are very small. By contrast, some studies based on modelling exact solutions of
GR field equations in simplified galaxy systems have found that the GEM impact
on such systems is large. Using a stationary, axially symmetric spacetime metric
and the approximation of a co-rotating, pressureless, perfect fluid source for a ro-
tating disk galaxy, it has been suggested that the GEM mass-energy contribution
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is sufficient to obviate the need for dark matter (for an infinitely thin disk [129],
and for any rotating galaxy [130]). These studies are not without their critics,
so we do not present them as conclusive evidence of the scale of frame-dragging
effects. They do demonstrate that such effects are mathematically consistent
with the theory of GR [131].

12.4.5 Gravity does not scale linearly with mass

The field equations 12.3.1 are manifestly nonlinear in the metric gµν and its first
derivative.

More fundamentally, there is a feedback loop between the spacetime metric
terms on the left-hand side of the field equations and the stress-energy tensor
on the right. As Wheeler said, ‘Spacetime tells matter how to move; matter
tells spacetime how to curve’ [195]. This loop, which can clearly drive escalating
interaction, is completely missing in the FLRW formulation.

Simply put, gravity does not scale linearly with mass.

12.4.6 Equilibrium cannot be established

Stability may arise at some scales in some timespan-regions of the system, but
equilibrium cannot arise since the system cannot be stationary. Gravity responds
to all forms of energy, therefore all gravitational systems are open and dissipative
and it is not possible to attain a dynamical balance of forces. This is exactly the
same argument as that used in Section 10.2.2 in the chapter on complex systems.

12.4.7 Relativity in space and time

Space and time are not absolute. From the perspective of any observer in space,
it is straightforward to state that there is no meaning in the question, ‘Am I
moving away from that region or is it moving away from me?’ Questions of
relative time are more subtle. The ticking of a clock held in the hand of an
observer who considers themselves to be stationary will not be synchronysed
with the ticking of a clock held in another’s hand unless they share a common
Lorentz frame.

In full GR, time is nonlinear and the implications of removing the timeslice
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approximation are profound. They include, as we have seen in Section 12.4.2,
the extinction of a conservation of energy condition in any timespan-region. The
‘timescape’ implication has been explored extensively by Wiltshire, see [141] for
an introduction to the topic.

12.4.8 Gravity is not a force

As a direct consequence of the equivalence principle, a body falling freely in its
own reference frame experiences no force at all. It is therefore inappropriate to
describe gravity as a force.

12.4.9 The gravitational field can repel as well as attract

Not only is gravity not a force in GR, the gravitational field is not always
attractive. Although all known forms of matter satisfy the dominant energy
condition [204]

T00 ≥ |Tµν |, ∀ µ, ν

such that the mass-energy of that matter must be positive, there is no bound
for the purely gravitational potential tµν described in Section 12.4.4.

To illustrate, see Figure 12.4.1. Consider a spherical timespan-region A, which
contains a galaxy that is accumulating mass-energy as it forms. Let A be sur-
rounded by a spherical ‘near-zone’ sufficiently thin that light (and gravitational
waves) pass through it in a short timespan. A further zone, B, is an extended,
vacuum spacetime such that light and gravitational waves take much longer to
traverse the zone. Finally, let there be a zone C which contains the remainder
of the universe. The energy conservation condition is that the divergence of
the stress-energy tensor at each timepoint is zero, i.e. there is no background
gravitational field at any timepoint. Hence, the accumulation of gravitational
field potential in timespan-region A cannot increase total energy in the universe
and must be offset somewhere. Gravitational waves can travel no faster than the
speed of light. Therefore, in the scenario here, increasing field potential energy in
A will impact the near-zone of A almost immediately but will take longer to flow
into zones B and C. The gravitational field potential in the near-zone of A must
have the opposite sign to that in A until that wave has time to disperse into B
and C. In the near-zone of A gravity must be repulsive rather than attractive.
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Figure 12.4.1: Schematic diagram of gravitational attraction and repul-
sion. Zone A is a deepening attractive potential well; The near zone
of A has potential with an opposite sign, i.e. repellent; in zone B the
gravitational wave is spreading outwards to equalise with the rest of the
universe, zone C.

In Section 14.3.3 we comment further on the implication that under-dense regions
are to be expected in the vicinity of cosmic structures, and refer to the repulsion
effect of voids seen in studies of the CMB dipole repeller [209].

12.4.10 No general solution is possible

The first exact solution to Einsein’s field equations 12.3.1 was found by Karl
Schwarzshild in 1915, just a few weeks after their publication. The Schwarzshild
solution employs a stationary, static, spherically symmetric metric to describe
the vacuum spacetime outside a spherical mass. In modern times a number of
exact solutions to the field equations are known (see [210] for a useful catalogue).
However, physically-relevant solutions are specific to narrowly defined cases, such
as the Kerr solution for a rotating black hole [211].

132



CHAPTER 12. GENERAL RELATIVITY - BACK TO BASICS

Why is it so difficult to find solutions that can be applied to widespread cos-
mological phenomena? There are problems of tractability and there are also
fundamental barriers to solution which arise because of the nature of the theory:

• The feedback loop, Tµν → Gµν → Tµν → ..., introduces perpetual change
in each term of the system of equations.

• The stress-energy tensor cannot be defined for a realistic system, as dis-
cussed above.

• Even if a stress-energy tensor were to be constructed for some representation
of the structure of matter, it would not lead to a general solution. Einstein,
Infeld and Hoffmann made this clear [202]: ‘Such energy-momentum tensors
... must be regarded as purely temporary and more or less phenomenological
devices for representing the structure of matter, and their entry into the
equations makes it impossible to determine how far the results obtained are
independent of the particular assumption made concerning the constitution
of matter ... Actually, the only equations of gravitation which follow
without ambiguity from the fundamental assumptions of the general theory
of relativity are the equations for empty space.’

• The field equations cannot uniquely determine the spacetime metric gµν .
The requirement that coordinate transformations must be possible means
that any metric related to another solution must also be a valid solution.
Hence, only six of the ten field equations are truly independent (see, for
example, [212] pg.251).

• When it comes to solving the equations for a timespan-region we encounter
the insuperable problem that the field equations of GR cannot be integrated,
as explained above. In textbook terms, the equations are ‘non-localisable’
[86].

In the absence of any general solution, there are in principle three ways to
approach the problem:

1. Choose gµν and solve for a Tµν .

2. Choose Tµν and solve for gµν .
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3. Seek to identify both gµν and Tµν from the underlying physical character-
istics of the system, and explore the relationship.

In the search for physically relevant solutions the third method is usually em-
ployed. The FLRW framework of Section 9.1 is an example.
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Chapter 13

Complexity in a model
galaxy simulation

13.1 Introduction and purpose

In Chapter 14 I will address the application of SOC and GR to the universe. As
a precursor to that, in this chapter I consider a model, five-body galaxy with two
spatial dimensions. It is insufficient to demonstrate a key feature of complexity,
self-organisation, as there are too few components. However, the interaction of
the bodies with each other is expected to give rise to complex behaviour.

The aim of this work is to explore aspects of the following assertions:

1. Non-interacting dust or perfect fluid approximations are inadequate when
modelling systems in which many-body interaction is present, since that
interaction results in complex behaviour.

2. Interactions calculated in Newtonian gravity result in different behaviour
from GR, even if the system is sub-relativistic and the spacetime is ap-
proximately flat.

3. In GR, the mass-energy of an interacting system exceeds the mass-energy
of the rest-state of its constituent bodies.

To frame complexity specifically in this model, first consider a system of five
bodies in which there is no interaction. This is a simple system and we can easily
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calculate motion arising from any external force independently for each body.
Let us now allow the five bodies to interact with each other through an attractive
force which is proportional to mass, i.e. a linear interaction, and specify that
one of the five bodies has a mass which far exceeds that of the other four. This
is no longer a simple system but it can be modelled quite accurately as if it is,
by treating the body with the dominating mass as the centre of the system and
ignoring interactions between the small masses. Some adjustments will become
necessary over time, but the model will produce results that are good for many
purposes. This kind of approximation is routinely used in modelling our own
solar system, for example.

If we instead specify that none of the five bodies has a dominant mass, and
decline to ignore interactions between the bodies, the system exhibits complex
behaviour. The equations of motion of the system have no analytical solutions
that can be used to predict its evolution. This is so even if the interaction is
completely linear. We must resort to numerical simulations of evolution from a
specified initial configuration1.

In the complex case, i.e. when interaction between the bodies is taken into
account, I would like to address the above assertions by comparing the evolution
of the model galaxy in the Newtonian gravity case with its evolution in the
GR framework. However, whilst simulating the model galaxy dynamics with
Newtonian gravity is straightforward, the same is not true for GR. I cannot
carry out a simulation of a five-body system in GR, for the reasons outlined in
Section 12.4.10. I therefore take the following approach:

• I first state the conventional approach to modelling a galaxy, which is to
treat it as a simple, non-interacting system. The dynamics that arise in
the model if it is approximated by a disk of noninteracting, pressureless
dust contracting under its own gravity are summarised in Section 13.3.

• I then set out in Section 13.2 two different approaches to gravity: (a) linear
Newtonian gravity; and (b) a linear approximation in which two features
of GR are introduced. The first feature is that mass-energy is the source
of gravity and the second is that energy is not subject to a conservation

1Numerical methods have identified that there are simple choreographies for certain N-body
problems in the Newtonian potential case. These require very particular initial conditions [213]
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condition within the model system. I use the term ‘GR approximation’ for
this framework, although it represents only a small step towards GR.

• I present quantitative simulations in Section 13.4 in which the five bodies
interact with each other as a complex system, in each of the two linear
approaches to gravity.

• The extension of the comparison to a full, nonlinear GR regime is addressed
qualitatively in Section 13.5.

• I discuss the findings in Section 13.6.

13.2 Gravity in the model

13.2.1 Newtonian gravity

In Newtonian theory the source of gravity is intrinsic mass and, in flat spacetime,
total energy in the region of the simulation must be constant

Etotal = −Epotential + Ekinetic = constant

Any increase in kinetic energy is offset by a corresponding change in potential
energy and vice versa. For i bodies of mass mi the total energy in the system is
thus

Esys tot = −G
∑
i 6=j

mimj

rij
+ 1

2
∑
i

mi|vi|2 = constant (13.2.1)

where G is Newton’s gravitational constant, rij is the distance between bodies i
and j and vi is each body’s velocity.

The source of gravity in this theory is invariant mass. I therefore calculate
equations of motion arising from the Newtonian force on each particle

FNi = G
∑
i 6=j

mimj

|r2
ij |

r̂ij (13.2.2)

and a constant system mass that is simply

MsysN =
∑
i

mi (13.2.3)
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13.2.2 Linear approximation with aspects of GR

The ‘GR approximation’ that I use in the simulation is based on only two
GR-related features: I use mass-energy as the source of gravity and I do not
impose an energy conservation condition within the system. Specifically, in
the numerical simulation I exclude GR’s nonlinearity and inherent feedback, I
employ discrete steps of invariant time and space2, and I ignore the impact of
gravitational field potential within the timespan-region of the system (Section
12.4.4). These considerations are reintroduced in the qualitative evaluation in
Section 13.5.

I am not using the stress-energy tensor Tµν of the field equations in my calcula-
tions but we do want to understand how it relates to the mass-energy source I
will define. For this I look to the stress-energy tensor for a point particle (see,
for example, [203] pg. 60):

Tµν = m

∫
dzµ

ds

dzν

ds
δ(4)(x− z(s))ds (13.2.4)

In flat spacetime the integral can be carried out to obtain, in normal Cartesian
co-ordinates, the standard four-momentum density for a point particle [203]

Tµ0 = m
dzµ

ds
δ(3)(xi − zi(s)) (13.2.5)

This is usually written as (E, p1, p2, p3), so T 00 is the energy density E.

The mass-energy source of gravity for the model then is an estimate of T 00, which
I will call T . On experimental grounds, it is known that the relativistic version
of gravitational mass includes all forms of energy [214]. To derive a workable
approximation for total mass-energy I borrow from the post-Newtonian3 formal-
ism for gravitational interaction, which is described for N-bodies in Chapter 9 of
Poisson and Will [212]:

1. Poisson and Will first note that the behaviour of a perfect fluid is governed
by the continuity equation ∂tρ

∗ + ∂j(ρ∗vj) = 0, where ρ∗ ≡
√

(−g)γρ
with γ ≡ u0/c is the conserved mass density and vj is the fluid’s velocity

2I am well aware that in flat spacetime energy is conserved. Here the point is that the aim
of this simulation is to move towards GR, which is not a flat spacetime regime.

3Post-Newtonian theory is defined as ’the theory of weak-field gravity within the near zone,
and of the slowly moving systems that generate it and respond to it.’ pg 371 [212].
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field defined with respect to the time coordinate t. As usual, g is the
determinant of the matrix of components of the metric gµν . Expressions
for the fluid’s conserved mass-energy M , its total momentum P j and its
centre-of-mass position Rj are then derived. The results of this analysis
are applied to a collection of separated bodies (retaining the conservation
of energy condition).

2. For a system of N bodies labelled with the index A = 1, 2, ..., N the fluid
density is expressed as

ρ∗ =
∑
A

ρ∗A (13.2.6)

with ρ∗A zero everywhere except within the volume occupied by A, and the
total mass energy of body A is

MA ≡ mA + 1
c2

(
TA + ΩA + Eint

A

)
+O(c−4) (13.2.7)

where, in A’s co-moving frame:

mA ≡
∫
A

ρ∗d3x is the material mass of A

TA ≡
1
2

∫
A

ρ∗v̄2d3x̄ is the kinetic energy of A

ΩA ≡ −
1
2G
∫
A

ρ∗ρ∗
′

|x̄− x̄′|
d3x̄′d3x̄ is gravitational potential energy of A

EintA ≡
∫
A

ρ∗Πd3x̄ is A’s internal energy (Π is internal energy per unit mass)

(13.2.8)

In GR we must have ΩA = 0 in A’s co-moving frame and in my model of point
particles with mass m we also have EintA = 0. Thus the total mass energy of
body A reduces to material mass plus kinetic energy. For my purposes, then, I
say

Ti ≈ mi + 1
c2

1
2miv

2
i (13.2.9)

For a system of i bodies total mass-energy is then given by
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Esys tot ≡
∑
i

Ti =
∑
i

(mi + 1
c2

1
2miv

2
i ) (13.2.10)

I now denote FGRi to be the source of gravity felt by particle i in the model. I use
equation 13.2.9 as the expression of mass and write the equivalent of Newtonian
force equation 13.2.2 as:

FGRi = G
∑
j 6=i

(
(mi + 1

c2
1
2miv

2
i )(mj + 1

c2
1
2mjv

2
j )

|r2
ij |

r̂ij

)
(13.2.11)

The mass-energy of the system is calculated as

MsysGR = Esys tot =
∑
i

(mi + 1
c2

1
2miv2

i ) (13.2.12)

13.3 Simple system: no interaction between par-
ticles

In the case that interaction between randomly-distributed particles in a two-
dimensional space is ignored, the usual approach to gravity modelling is to treat
the system as a homogeneous, axisymmetric disk and to calculate the radial
collapse of that disk.

In Newtonian gravity this problem can be solved analytically but in GR numeri-
cal methods are required [215]. In either case the disk contracts, ultimately to a
black hole. For example, Abrahams et al (ibid) report the simulation of collapse
of a cold homogeneous disk, the disk analogue of the spherical Oppenheimer-
Snyder collapse, considering both black hole formation and gravitational wave
radiation.

Simply put, a simple system contracts under gravity. In terms of the lin-
ear equations 13.2.2 and 13.2.11 that are employed below, the only difference
between Newton’s theory and my linear approximation of GR would be that in
the latter the collapse would happen faster.
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13.4 Complex system: particles interact with
each other

13.4.1 A numerical simulation

In the simulation I work with i point particles, where i = 5. Each par-
ticle has a mass of 103kg. Their initial configuration is random, set in a
100m× 100m x,y plane. The total simulation time is T = 106s and time steps
are t = ∆T = 10−2s. I use a gravitational constant G′ = 2 × 10−9Nm2kg−1).
Each particle has a randomly assigned initial velocity on the x,y plane in the
range −0.001c ms−1 < v < 0.001c ms−1. Since the initial velocities are random,
there is no imposed net angular momentum.

The units of mass, space and time I have assigned are described as ‘kilograms’,
‘metres’ and ‘seconds’ respectively. Apart from the time unit ‘seconds’, however,
these are not to be read as normal physical units, since the scale of the simulation
has been adjusted to accommodate c = 1 and a practicable run time. The scaling
impact of assigning c = 1 is as follows:

• Inertial mass 103 kg remains unaffected. For reference, a physically realistic
mass of a star is substantially higher, O(1030) kg.

• Distance x, y = (1× c× s)m in the simulation has a physical equivalent
x, y ≈ 108 m. Thus a 100m × 100m grid in the simulation, i.e. physical
equivalent 1010m×1010m, is substantially smaller than a physically realistic
spatial extent of a galaxy, which could be O(1015)m to O(1025)m

• Velocity v = 0.001c in my simulation scale is v = 0.001ms−1 and the
un-scaled equivalent would be v ≈ 105ms−1. This is consistent with a
realistic average velocity of a star in a galaxy, O(105)ms−1.

• The units of force are kg ms−2. Newtonian gravitational force as defined in
equation 13.2.2 has the gravitational constant G and mass in the numerator
and the square of distance in the denominator. In the GR approximation,
equation 13.2.11, the numerator also has a velocity-dependent term (with
no units, as it is v/c). I have set a scale of G’ O(10−9). The c-related
scaling of the force arises from the squared distance: in my simulation, the
demoninator is O(1), whereas the physical scale is O(1016). However, the
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simulation mass scale of 103kg, which appears in the numerator, is several
orders of magnitude smaller than a realistic mass scale.

• The outcome of scaling with respect to acceleration is that the simulation
runs with higher values for acceleration than are strictly realistic in a
physical galaxy. This ‘speeding-up’ of the simulation enables it to produce
results within a manageable run-time but does not affect the nature of the
outcome.

I use discrete time steps and model the simple differential equations for accelera-
tion and velocity using Newtonian dynamics and numerical methods. Numerical
solutions are, of course, approximations. My consideration of the reliability of
the simulation is in Appendix K.1.

13.4.2 Expectation

The Newtonian and approximate GR formulations I have defined, equations
13.2.2 and 13.2.11 respectively, are very similar when velocities are small. I know
that in a chaotic phase preceding order in a complex system small changes to
inputs can produce very large differences in behaviour so, despite the almost
negligible change in input, I expect to see disproportionate differences in the
dynamical behaviour of the five bodies in the two different regimes.

The equations for mass-energy, Newtonian 13.2.3 and GR approximation 13.2.12,
are defined such that Newtonian mass is constant, under conservation of energy,
and mass in the GR approximation is always greater than rest mass. Clearly,
I will see this result. I do not know in advance how the GR-approximation
mass-energy will fluctuate over time.

13.4.3 Outcome

From the initial, random distribution of five particles in Figure 13.4.1 I calculate
position, velocity, acceleration and mass-energy values for each of the particles
at time steps of ∆T = t = 0.1s up to a total elapsed time T = 106s, in both the
Newtonian case and the GR approximation, using equations 13.2.2 and 13.2.11
respectively as the source of gravity.

142



CHAPTER 13. COMPLEXITY IN A MODEL GALAXY SIMULATION

20 30 40 50 60 70 80
x in metres

30

40

50

60

70

80

y 
in

 m
et

re
s

Initial positions (B=5,(seed=1234)

Figure 13.4.1:
Random initial configuration of five massive point particles, random seed = 1234

Dynamical behaviour

The simulation, which retains complex system interaction in both the Newtonian
case and the GR approximation, does not demonstrate contraction: see Figure
13.4.2.

The range of the GR-approximation and Newtonian outcomes in Figure 13.4.2
is very different so, for comparison purposes, I present a zoom to a 200× 200m
scale in both cases in Figure 13.4.3.

In both cases the systems demonstrate complex behaviour. On closer inspection,
as shown in Figure 13.4.4, the calculations are nearly indistinguishable in early
times. This is consistent with the commonly held assumption that, in a sub-
relativistic, weak-field system the Newtonian calculation is a good approximation
for gravity. However, over a longer period there is a divergence between the
calculations and, once that divergence has occurred, the difference between the
two sets of calculations grows rapidly. The final positions of the five particles, in
Figure 13.4.5, are very different.
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What is happening where the calculations diverge? With this particular ini-
tial configuration Figure 13.4.4 shows that the divergence occurs at time T ∼
3.8 × 105s. I examine the dynamics of the GR approximation more closely
in Figure 13.4.6 by adding time markers to the position evolution of the GR
approximation.

Figure 13.4.6a allows us to identify two points at which particles experience re-
versals of direction in the GR approximation that do not occur in the Newtonian
calculation. One of these, involving the particles labelled with purple and green,
is clearly a gravitational ‘sling-shot’ effect that occurs at time T ∼ 3.77× 105s,
see Figure 13.4.6b. At time T ∼ 3.× 105s the particle labelled red is decelerating
sharply and then changes trajectory towards the high-velocity green-labelled
particle. These effects are not abnormal, but they are different from the New-
tonian calculation. The shifts in velocity are clear in the velocity magnitude
plot in Figure 13.4.7. In that plot, the sharp reversals of velocity as the green-
and purple-labelled particles interact with each other, particularly bewteen
T ∼ 2.55× 105s and T ∼ 3.77× 105s, appear as steep oscillations.

In Appendix K.2.1 I present simulation results for four other sets of random
initial conditions. In all cases, divergences occur abruptly and then grow over
time. The simulation is 106s: I am not dealing with values that are large relative
to the universe. Over cosmic time the two sets of calculations would bear no
relationship to each other or, it must be said, to any simple-system approximation.

Of course, in a complex system, slightly different initial conditions would also
result in very different outcomes, But, again, Newtonian calculations and the
GR approximation would diverge for that alternate set of initial conditions.

The difference between the GR approximation and the Newtonian calculation,
both in a complex system, arises from the fact that the source of gravity is
mass-energy and the conservation of energy condition is not and should not be
present in the GR approximation. Which leads us to consider next what this
means for the mass-energy of the individual particles and of the system as a
whole.
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Mass-energy

In the GR approximation, mass-energy is sensitive to velocity. We have seen the
changes in velocity magnitude in Figure 13.4.7. The impact on particle mass is
shown in Figure 13.4.8 and on system mass in Figure 13.4.9. In the Newtonian
case, conservation of energy ensures total mass-energy does not change. The
solution to GR approximation equation 13.2.11, on the other hand, manifests a
variable mass-energy profile, until effective particle interactions stop.

In Figure 13.4.9, and in the case of other random initial conditions in Appendix
K.2.2, the mass-energy of the system always exceeds the intrinsic mass of the
constituent particles. Indeed this must be so with the approximation defined in
equation 13.2.11.
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(a) GR approximation

(b) Newtonian

Figure 13.4.2: Position evolution, full scale. Elapsed time T = 106s, interval
t = 0.1s.)

.
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(a) GR approximation

(b) Newtonian

Figure 13.4.3: Position evolution, zoom to 200m x 200m. Elapsed time T = 106s,
interval t = 0.1s.)

.

147



CHAPTER 13. COMPLEXITY IN A MODEL GALAXY SIMULATION

Figure 13.4.4: Difference between the GR approximation and the Newtonian
positions over time. Elapsed time T = 106s, interval t = 0.1s.)

.

(a) GR approximation (b) Newtonian

Figure 13.4.5: Final position after time T = 106s.
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(a) Zoom to centre, timestamp units of 104s.
.

(b) Zoom to purple/green transition, timestamp
units of 103s.
.

(c) Zoom to red transition, timestamp units of
103s.
.

Figure 13.4.6: Position evolution in the GR approximation, zoom to transition
points and add time stamp.

.
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Figure 13.4.7: GR approximation, velocity magnitude. Total elapsed time
T = 106s, time interval t = ∆T = 0.1s.

.
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(a) GR approximation

(b) Newtonian

Figure 13.4.8: Particle mass difference. Elapsed time T = 106s, time interval
t = ∆T = 0.1s.
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(a) GR approximation

(b) Newtonian

Figure 13.4.9: System mass difference. Elapsed time T = 106s, time interval
t = ∆T = 0.1s.
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13.5 Impact of full GR interaction

Retaining the physical premise of the model galaxy, i.e. point particles with
equal intrinsic mass, the Newtonian simulation I employed in Section 13.2.1 is
complete but the GR approximation in Section 13.2.2 is far from the end of the
story. There are elements of the right hand side of the field equations, the source
of gravity, that are missing. What would happen if the approximation were to
be improved? My approach to this question must be qualitative rather than
quantitative, for the reasons outlined in Section 12.4.10.

In GR, each individual particle, in its own inertial frame, experiences no force
at all. I have chosen to consider five particles together, as a system, and have
imposed co-ordinates for that purpose. I have calculated positions and velocities
for each particle relative to the others in the chosen co-ordinate system. Because
of these choices, if I wish to understand the dynamics and mass-energy of all
five particles and the entire system I must consider:

1. The spacetime metric and stress-energy tensor at the timepoints inhabited
by each particle, see Section 13.5.1.

2. The spacetime metric throughout the timespan-region within which the
particles exist, including those timepoints in which there is no particle, see
Section 13.5.2.

3. The significance of covariant time, Section 13.5.3.

13.5.1 Particle at a timepoint

The field equations 12.3.1 require a spacetime metric with a stress-energy tensor
source and, at a timepoint, the relationship expressed in the equation is exact.
There is a minimum value for the stress-energy tensor, since all known forms
of matter satisfy the dominant energy condition T00 ≥ |Tµν |, ∀ µ, ν [204]
such that the mass-energy of that matter must be positive. However, the field
equations 12.3.1 impose no maximum, since the spacetime metric can move freely.

The mass-energy approximation defined for my simulation T in equation 13.2.11,
i.e. a mass plus kinetic energy framework. This does not incorporate energy
arising as a result of anisotropic pressure and sheer stress, i.e. off-diagonal terms
in Tµν , which could increase the mass-energy content of the stress-energy tensor.
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I therefore assert that the impact of a more realistic stress-energy tensor source
would be to increase rather than decrease the mass-energy of the system.

13.5.2 System occupying a timespan-region

I have described in Section 12.4.4 that, in the GR framework, within any
timespan-region of spacetime there exists gravitational field potential tµν relative
to the rest of the universe. This gravitational energy is also a source of mass, but
it is not included in the stress-energy tensor and cannot be written as a tensor,
because it is co-ordinate dependent. In order to determine the total mass-energy
of a system in a specified timespan-region, A, I would like to be able to write
and to solve a system of equations of the form

“
∫
A
Gµν =

∫
A
Tµν +

∫
A
tµν ”

but I cannot: neither Gµν nor Tµν are integrable, and tµν is a coordinate-
dependent object that cannot be written as a tensor. The simulation in this
paper uses equation 13.2.12, a simple sum of the mass-energies of five individual
particles, as an approximation for the GR mass-energy of the system. It com-
pletely ignores the mass-energy of the gravitational field itself. We must ask,
how much mass-energy am I omitting?

In Section 12.4.4 on gravitoelectromagnetism and frame-dragging, I referred to
work by Cooperstock et al [129] and Balasin et al [130] which suggests that the
GEM mass-energy contribution is sufficient to obviate the need for dark matter.

In [130], it is interesting that the authors concluded also that the ‘Newto-
nian approximation breaks down in an extended rotating region, even though
it is valid locally everywhere.’ Ludwig [131] further concluded that the GEM
field produced by mass currents modifies galactic rotation curves notably at
large distances, commenting, ‘... at large distances the Lorentz force due to
the gravitomagnetic field effectively controls the mass equilibrium balance in
view of the decaying centrifugal force. The field produced by the large disk of
mass currents basically acts as a gravitomagnetic brake against the gravitational
attraction.’
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These authors did not take a complex system approach to the problem but
instead modelled exact solutions to the GR-field equations using a stationary,
axially symmetric spacetime metric and the approximation of a co-rotating,
pressureless, perfect fluid source for a rotating disk galaxy. These papers are
not, therefore, a direct answer to the question of ‘How much mass-energy am I
omitting?’. But GR does predict mass-energy in the gravitational field and these
studies do lend weight to the consideration that its effect may be substantial in
dense regions.

13.5.3 Time

The simulation and analysis accommodates time variance in the sense that I
acknowledge the absence of energy conservation within the GR model, but
otherwise it is based on the treatment of time in slices. This is itself an
approximation, as discussed in Section 12.4.7.

13.6 Discussion

I have asserted that galaxies are complex systems, whatever the theory of gravity.
Based on the maturing understanding of complex systems in modern physics I
do not expect simplifying assumptions to do a good job of modelling galaxies
made up of interacting bodies. Similarly, linear Newtonian gravity cannot be a
good approximation for highly nonlinear GR except in special circumstances.
With the aid of a model simulation I have demonstrated that:

• Treating a model galaxy as a complex, i.e. an intreacting, many-body
system, produces results that are different from any simple, non-interacting
approximation.

• The approximate GR and the Newtonian dynamics are initially similar
but diverge irredemiably over time. How much time it will take for the
difference to become significant cannot be predicted, and divergences can
be abrupt.

• The absence of energy conservation within the system in the approximate
GR case results not only in divergent dynamics but also higher mass-energy
than the Newtonian calculation.
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• The qualitative extension in Section 13.5 supports an expectation that
increasing the accuracy of the GR approximation would increase rather
than reduce the difference between the two simulations and would magnify
the mass-energy of the system still further.

A point-particle, five-body model is hardly a physical system. Could it be that
in larger and more realistic systems the differences between simple and complex,
or between Newtonian calculations and GR, would be less significant? In other
words, over a vast population could these results cancel out? There is an active
and interesting field of research into averaging and backreaction effects from
structure, see for example [118,216,217]. Yet, for the reasons outlined in Chapter
10, there are good reasons to think that neither simplifying nor averaging are
the answer.

156



Chapter 14

SOCGR in the universe

If ... we grant that clumpiness in the distribution of matter in the universe is
a basic property of fundamental importance for cosmology and not merely a local
nuisance that can be ignored in the grand smoothed-out view, we must pay much

more attention than we have thus far to the possible consequences of this
situation.

G de Vaucoulers (1970) [218], p.1211

In Chapter 11 we considered the necessary generating conditions for and the
characteristic phenomenology of SOC systems, and concluded that SOC cannot
currently be excluded as a possible paradigm for study of the universe. Chapter
12 presented text-book GR, freed from the simplifying assumptions of the FLRW
framework. In this chapter I bring the two together to address the big questions
in cosmology. I distinguish between implications of the framework, which cannot
necessarily be tested, and predictions arising from the framework. The latter
cannot be stated in precise numerical terms because they are necessarily statistical
in nature, but they are capable of test and challenge.

14.1 SOCGR implications and predictions: the
basis

I begin by summarising the key features of the SOC paradigm from Section
11.3 and the theory of GR from Section 12.4, since they form the basis of this

157



CHAPTER 14. SOCGR IN THE UNIVERSE

chapter.

1. SOC

1.1 The emergence of structure is an inherent property of SOC and the
characteristics of the emergent structure are independent of initial
conditions.

1.2 The system dynamics are irreversible: time symmetry is broken.

1.3 Mass-energy accumulates as configurations evolve to critical states,
but it is not the case that all parts of a system are perpetually at a
critical point.

1.4 At the critical point, configurations with maximum energy are statis-
tically preferred (contrary to the minimum energy expectation of a
system in equilibrium).

1.5 When a local physical threshold is breached, there is a phase tran-
sition and avalanche dissipation occurs, affecting the entire system
algebraically. This results in long-range spatio-temporal correlations.

1.6 There is no well-defined mass density in a fractal system: therefore
samples cannot be representative of the population and statistical
tools applicable in systems exhibiting equilibrium and regularity are
not valid.

1.7 We observe the universe from a point and time in space which is in
the fractal.

2. GR

2.1 Gravity does not scale linearly with mass-energy.

2.2 The field equations 12.3.1 embody a feedback loop, and equilibrium
is not possible except in a vacuum or single-body universe.

2.3 There is potential in the gravitational field, with associated gravito-
electromagnetic (GEM) phenomena including frame-dragging.

2.4 In low density regions the gravitational field can repel as well as
attract.

2.5 The gravitational field cannot be integrated over a timespan-region.
Therefore, there is no conservation condition that applies to mass-
energy in a timespan-region.

2.6 Time, as well as space, is fundamentally relative.
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14.2 Implications of SOCGR

14.2.1 Initial conditions are irrelevant

For any system in which the SOC paradigm applies, i.e. a system in which there
are many interacting components with a slow-drive energy source and some
physical mechanism(s) which introduce thresholds, initial conditions are not
relevant to the evolution of structure. There is no initial condition that must be
special or tuned in any way.

We cannot, by any analysis, rewind the present configuration of matter and
energy to uncover a unique starting point.

14.2.2 The ‘arrow of time’ is irreversible

Not only are we unable, by any analysis, to rewind the present configuration
of matter and energy to uncover a unique starting point - we cannot rewind at
all. There is no analysis that can recover a previous state and there is no mecha-
nism at all which can restore a past configuration. This is a general property
of complex systems, as evolving structure clearly distinguishes an irreversible
relationship between now and what has gone before.

This does not mean that we cannot understand the system, but it does mean
that we must adopt a different approach from that traditionally employed when
dealing with reversible mechanics.

14.2.3 The universe may have no beginning

In SOC, there is no suggestion that the universe emerges from a singularity at
the beginning of time. Rather, the picture is one of perpetual change.

Nevertheless, SOC is not incompatible with aspects of the Big Bang. In the SOC
paradigm, catastrophic avalanches are expected to occur with non-vanishing
probability and no limit to their potential extent. In principle, therefore, the
Big Bang scenario with which we are so familiar could be the outcome of such
an event affecting the whole system: in other words, our universe could be the
ongoing flow of a total structural reformation event. With this idea, there may or
may not be a mathematical singularity associated with the beginning of the flow,
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but it is possible to assert that there is no reason to assume that the beginning of
this flow is a beginning of all phenomena. Equally, the universe we can observe
and study may not represent the entirety of all phenomena: there may be an
eternally-evolving ‘super-universe’ of which our particular flow is just one region.

14.2.4 The universe has no objective age

Time is tricky in GR. Even if time was everywhere flat - and in GR it is not, as
eloquently argued by Wiltshire [141] - there is no way to establish how old the
universe is. In fact, in the full implications of GR, the age of the universe is not
a well-defined question.

At a deeper level, taken together with the SOC implication that the universe
may have no beginning, it may simply be that the universe has no age at all.

Of course, this does not prevent us from carrying out valuable analysis based on
relative time and age - as long as we are careful to take into consideration the
implications of GR-associated variability.

14.2.5 There is no Hubble tension

The Hubble constant is a feature of the FLRW framework. It is only defined in
that context, as described in Section 9.3.6. In SOCGR there is no such parameter
and no valid comparison to be made between early- and late-time expansion.

14.2.6 The horizon, isotropy and flatness problems vanish

In Section 9.3.2 I described the horizon and isotropy problems, associated with
correlations across the entire sky which should not be possible within the past
light cone of the present horizon size. In the SOCGR paradigm we lose the
condition of a particular time duration which limits causal connection, and we
gain a mechanism which generates long-range spatio-temporal correlations, with
no need for any inflationary mechanism.

Likewise, the flatness problem is a relic of FLRW and hence vanishes in the
SOCGR framework: in its complex reality, the universe is a shifting topography
of interacting gravitational waves. It is nowhere flat.
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In fact, in SOCGR all cosmologial fine-tuning problems disappear.

14.3 Predictions of SOCGR

In this section I summarise those predictions of the SOCGR framework which
are, in principle, testable. In each case I first explain the prediction and then
refer to tests and evidence. In Chapter 15 I make suggestions for further work
in this regard.

14.3.1 There is emergent structure which tends towards
scale-free, fractal configurations

1. Structure perpetually emerges, tending towards scale-free, frac-
tal configurations.

This is a core feature of SOC.

In Section 11.2.2 I discussed the question of whether the universe
manifests fractal characteristics. This issue is not yet fully determined
but it can be tested. Testing must use statistical tools that are not
based on the a priori assumptions of homogenity and the existence
of a well-defined mean density.

2. In present and future sky surveys will show that ever-larger
structures exist.

This is an expectation based on the scale-free nature of fractal struc-
tures.

As discussed in Section 11.2.2, so far this prediction has been fulfilled.

3. Spatio-temporal correlations extend throughout the entire uni-
verse and such correlations will be manifest in, for example,
nascent fractal structure in the CMB.

The emergence of spatio-temporal correlations in SOC structures is a
fundamental feature of the paradigm. (Of course, the temporal aspect
of the correlation may be difficult to come to grips with in the GR
theory of gravity.)
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The high degree of spatial correlation observed in the universe, cause
of the isotropy problem in the standard cosmological model (see
Section 9.3.2), is supporting evidence for this aspect of the SOCGR
framework.

It will be interesting to use, explicitly, statistical methods for irregular
structures to reanalyse sky surveys and CMB data.

14.3.2 There is excess mass-energy in cosmic structures
(a.k.a. dark matter)

1. The mass-energy of structures such as galaxies and clusters will
exceed the Newtonian expectation.

This prediction arises as follows:

• Mass-energy accumulates under a slow-drive energy source. In
GR, the stress-energy tensor accumulates the dynamical mass-
energy generated in SOC processes and can do this until some
physical threshold is reached, since it is unconstrained by Gµν
which is nonlinear and unbounded (although Einstein found there
may be a gravitational minimum for spatial extent, beyond which
additional energy results in renewed expansion - see Einstein
1939 [219]).
• There is no conservation of energy in any timespan-region, since
the field equations cannot be integrated.

• In addition to the stress-energy tensor there is gravitational field
energy within the timespan-region relative to other timespan
regions. This energy cannot be written as a tensor.

• Gravity does not scale linearly with mass-energy: the field equa-
tions are nonlinear in the spacetime metric and its first derivative
and they also embody a positive feedback loop. As a result of
the feedback loop in the field equations it is to be expected that,
as the energy of matter and radiation in the stress-energy tensor
increases, the gravitational field will also increase the system’s
mass-energy by drawing down potential from the region external
to the timespan region occupied by the system. In other words,
increasing kinetic and stress energy leads to increasing rather
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than decreasing gravitational field potential. In this framework,
the greater the interaction the greater the drawdown of potential.

SOCGR does not deny the possibility of new particles, but they are
not required to explain the excess potential usually described as dark
matter.

This prediction is instantly recognisable as an expectation of dark
matter phenomena. All the compelling and self-consistent galaxy
rotation curve and gravitational lensing evidence for dark matter,
described in Section 9.3.5, supports the argument.

2. Given two regions in which the sum of masses of components is
the same, one of which is highly interactive and another which
is not (for example, dust, gas or a highly dispersed galaxy), the
total mass-energy of the highly-interactive region will always
exceed that of the mass-energy of the low interaction region.

I have described above the SOCGR mechanism whereby complex
systems of interacting bodies accrue increasing mass-energy. In a
system of non-interacting bodies, i.e. a simple system, there is no
such mechanism.

In Section 9.3.5 we noticed that the matter of the bullet cluster is
evidence that the mass-energy associated with colliding clusters tracks
the galaxies in those clusters rather than the intra-cluster gas, even
though by conventional assumptions the gas is estimated to have
greater intrinsic mass1.

Studies of correlations between structure characteristics and dark
matter distribution have been underway for some time, see for example
[220]. It will be interesting to revisit them from the perspective of
SOCGR.

Specifically, statistical analysis of galaxy characteristics, using tools
that are appropriate for irregular, nonequilibrium systems, should

1As an aside I note in relation to the bullet cluster that, in GR, clusters are expected to
occupy deep, asymmetric and dynamical wells of gravitational potential and a proportion of
their mass-energy is derived from that field potential. If we think of each potential well as a
minimally-stable ‘standing wave’ in the gravitational field then the meeting of two such waves
must result in interference. It is not unreasonable that the profile of the potential should
mimic that of shock waves as is the case in the bullet cluster.
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demonstrate a relationship between the degree of interaction and the
mass-energy gap.

I note the recently reported findings that the ultra-diffuse dwarf galaxy
FCC 224 is deficient of dark matter [221,222].

3. There will be variability in the profile of excess gravitational
potential in cosmic structure. Statistically, high mass-energy
systems are expected to predominate.

In SOC systems, configurations with maximum energy are preferred
at the critical point. Although it is not the case that all systems
are at all times at the critical point, the fact that the slow-energy-
drive accumulation phase in SOC structure formation takes place
over extended periods whilst the intermittent cascades of energy
release which are triggered by the breach of a physical threshold are
rapid suggests that there will be a statistical bias towards high- and
maximum-energy systems in the population of cosmic structures.

Therefore, statistical analysis of galaxy characteristics, using tools
that are appropriate for irregular, nonequilibrium systems, should
demonstrate that high mass-gap systems predominate.

It will be interesting to see if there are correlations between mass-gap
and stage of evolution and/or shape of galaxy structures.

14.3.3 Adjacent to structures there are voids

1. Regions of underdensity will be present adjacent to and related
to dynamical cosmic structures.

This prediction arises as follows:

• The dynamic frame-dragging of gravitational potential energy
into wells incorporating dense regions of energetic interaction
must result in a compensatory change in the gravitational field
outside the well. This is because the field potential only exists in
a timespan-region relative to the rest of the universe: for each
timepoint in the universe there is no potential, and there is a
conservation condition OµTµν = 0.

• I argue that, because gravitational waves can travel no faster
than the speed of light, it is likely that the frame-dragging effect
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of potential being drawn into the energetic region will establish a
wave peak that is a higher potential than that in the surrounding
timespan-region. See Figure 12.4.1.

• The unexpectedly high radial velocities observed in clusters is
not unstable precisely because the clusters are unable to disperse:
they are constrained by deep potential wells, the peak of which is
higher than the potential in the background region. These wells
serve the same function as halos of dark matter in conventional
terminology.

• This profile, which is particular to GR, allows the quasi-stability
in structure to extend over long periods.

That voids are closely related to structure is supported by the findings
of the recent Dark Energy Survey’s Y3 reconstructed weak lensing
convergence mass maps [223], which are weighted projections of the
primarily dark matter density field in the foreground of observed
galaxies. The team found underdensities in tomographic slices of
the galaxy catalogue of which they said, ‘On average, these tunnel-
like voids correspond to density minima that are compensated by
an overdense zone in their surroundings’. An extended underdensity
consistent with a super-void with radius Rv ∼ 250 Mpc/h is also
reported [224] (pg 18).

Closer to home, an investigation of a galaxy underdensity covering
90% of the sky in the region around the around the Milky Way is
reported in [225].

14.3.4 Distant structures will appear to accelerate away
(a.k.a dark energy)

1. Observations of distant structures in the universe will indicate
that they are accelerating away from us.

SOCGR makes no prediction about whether the universe is under-
going overall spatial expansion or, if it is, whether that expansion is
accelerating or not. In fact, since no boundaries to the universe are
known (in SOCGR, there is not even a boundary at an initial time),
and since time and space are all relative, the question of universal or
general expansion is meaningless in this framework.
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SOCGR does predict that an observer in one timespan-region of the
universe will see acceleration in distant objects that differs from that
which would be calculated by an observer in another timespan-region.
This is a consequence of fractal structure.

SOCGR predicts that observers in relatively dense regions of the
universe will calculate that all distant objects are accelerating away
from them. This is because:

• Structure formation leads to a deepening gravitational potential
well, as described in Section 14.3.2.
• Time is not linear: in the region of a deep and deepening potential
well, time proceeds normally for observers within that Lorentz
frame but slows down for a distant observer (this concept is
familiar to us from the extreme case of a black hole). For the
observer within the well, objects outside it are subject to relative
time compression.

This prediction is, essentially, a statement that the observation of
apparent expansion conventionally described as dark energy is to be
expected - but is not necessarily expansion. Thus the observations
that distant Type I supernovae do appear to be accelerating away
from us as observers, described in Section 9.3.4, are also evidence for
SOCGR.
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Chapter 15

Next steps and conclusion

The fact that we are traditionally accustomed to think in terms of smooth or
analytical structures has a crucial effect on the type of questions we ask and on

the methods we use to answer them.
Gabrielli, Labini, Joyce, Pietronero (2005) [85], p.5

Often complex structures arise from processes which are strongly out of
equilibrium and dissipative ... A fundamental notion in this context is that of
irregularity, one which is completely new to physics... All the previous ‘regular
fluid-like’ concepts and theoretical methods lose their meaning and, in order to
give a proper characterization of the properties of this sytem, one has to look at

it from a new perspective.
Gabrielli, Labini, Joyce and Pietronero (2005) [85], pg. 3

15.1 Ways forward

15.1.1 A new and multi-disciplinary approach

SOC is a paradigm rather than a single mathematical theory, and non-FLRW
GR has no general solution. Therefore, the SOCGR framework I have introduced
is essentially an invitation to ask new questions and to employ the developing
tools and techniques designed for work with irregular, complex, nonequilibrium
systems to revisit the vast and growing available data. This work must necessarily
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be multi-disciplinary, involving people with expertise in cosmology, complexity
science, modern statistical physics, fluid dynamics and vortices, modelling and
simulations. It is likely that machine learning will play a valuable role in future.

The aim must be to analyse existing and new data in ways which test the
assumptions of our models as well as explore best fit scenarios. For example,
the Dark Energy Survey Year 3 results [226] conclusion has the statement, ‘we
dropped the two highest redshift bins of the MagLim sample as they contributed
to a very poor fit to all models considered in this paper’. I do not comment on
this treatment in particular, but note that in future new models may make sense
of old data.

I suggest that it would be valuable to incorporate awareness of complexity
science and training in the techniques of non-equilibirum statistical physics in
graduate taught and research programmes.

15.1.2 Working with statistical physics for complex struc-
tures

I concur with Gabrielli et al [85] that it is essential that the new tools of statistical
physics for complex systems should come to be employed in cosmology.

Purely analytical methods cannot support research in this field alone: nu-
merical and experimental work is necessary, in co-ordinated, inter-disciplinary
approaches. Gabrielli et al [85] suggest such efforts can be characterised at three
levels:

1. Mathematical and geometrical methods, including those of fractal
geometry introduced by Mandelbrot [227].

2. Physical models, including computer simulations generating structures
by self-organisation. Gabrielli et al list a number of such models and
Preussner’s work [177] provides a portfolio of SOC-specific approaches.

3. Developing theoretical understanding. Scaling theory derived from
applications in critical phenomena has been used in phenomenological
approaches to complex systems, allowing identification of relations between
properties. On the other hand, specific mechanisms for structure formation
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do not appear to allow generalisation in fundamental theories. Any possible
specific theory must accommodate the facts that these systems are far from
equilibrium and have irreversible dynamics. This is where SOC provides a
useful starting point.

15.1.3 Create a clear programme of work

A first step will be to draw up a clear and well-defined programme of work. The
following are not intended to be complete proposals, nor are they comprehensive.

• As far as I am aware, there has been no SOC-based examination of the
cosmos as a whole, but there has been work which uses the tools of statistical
physics for irregular and nonequilibrium systems, for example [162–168].
It would be helpful to conduct a thorough review of these papers, in
collaboration with their authors, to understand them fully and explore
ways in which they can be extended.

• It would be interesting to review alternative views alongside this work: in
particular, a thorough understanding of the different conclusions of the
work cited in the preceding paragraph and the analysis of the WiggleZ
survey [193] is desirable.

• Carry out a critical review of the WMAP paper [228] to clarify how this
analysis is model-dependent and what the implications and alternatives
are.

• A review of Galaxy characteristics and correlations in the new perspective of
structure emerging from a slow-drive, nonlinear energy source punctuated
by period cascades of release would be interesting.

• Employ tools used in fluid dynamics and the study of vortices to explore
how gravitational potential might behave in a frame-dragging, deepening
potential well.

• A SOC mechanism predicts that there should be nascent fractal structure
in the CMB. I am aware of two studies that have analysed CMB data and
found evidence of fractal dimension in the CMB, [229] in 2011 and [230]
in 2020, and there may be others. It would be interesting to do a full
literature review and revisit these analyses.
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• For all of the above, a good understanding of the impact on distance
estimates of both time variance and the topography of gravitational waves
in a structure tending towards fractal is essential. This represents a very
substantial field of work, revisiting the construction of the cosmological
distance ladder.

There are further inferences, i.e. tentative predictions, that can be drawn from
the framework. Clarifying these is a stream of work in its own right. It seems
likely that, for example:

• All structures will tend towards rotation, and there will be spiral-like
signatures in regions of strong interaction. This suggestion arises primarily
from GR in a many-body system: in particular, from the phenomenon
of frame-dragging in the gravitational field, described in Section 12.4.4.
As bodies interact they follow geodesic paths relative to each other, with
positive feedback leading to spirals and rotation.

• Emerging structures as they mature will tend towards being flat, i.e.
oriented in a plane.

• GR will result in a predominance of spiral structure for galaxies.

• In very dense, strongly interacting regions, jets of energy release will occur.
This is a likely consequence of the physical impact of gravitational slingshot
when highly-energetic, dynamical bodies travel so close to each other than
they each experience strong deflection.

As an aside, although in the SOCGR paradigm the present state of the system
can tell us nothing about its past evolution, the latter statement is not so precise
in relation to the universe, since to look out into the cosmos is to look back in
time.

15.2 On worldviews and how they shape our re-
search

‘One of the main tasks of cosmology is to measure the density of the Universe,
and how this is divided between dark matter and baryons.’ From Chapter 22 [90].
This is a statement from the Big Bang, FLRW worldview of cosmology. The
question is not only not relevant in the alternative paradigm of SOCGR, it is
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not valid, since the density of the universe is not defined when we view it as a
complex system. The way in which we view our universe has a huge impact on
the questions we believe we can ask, and the scope of the answers that we will
admit into consideration.

A worldview may be described as ‘a largely unconscious but generally coherent
set of presuppositions and beliefs that every person has which shape how we
make sense of the world’1. This is related to the idea of a paradigm introduced
by Kuhn in his influential book The Structure of Scientific Revolutions [231]:
‘(Paradigms) I take to be universally recognised scientific achievements that for
a time provide model problems and solutions to a community of practitioners’.

In the introduction I posed the question: do we want to solve an equation,
or do we want to understand the universe? In a very real sense this is a question
about worldview and about paradigm. In the western history of sciences, and
of physics in particular, there is a widespread presupposition that it is only by
solving equations that we can understand the Universe. We have seen that the
drive to solve the field equations of GR for the universe as a whole has led to a
grand standard model that simplifies and smooths, posits a beginning and an end
for all things, an age of the universe of order 13 billion years, and which carries
in its wake considerable unknowns, uncertainties, tensions and singularities.

In this thesis I have attempted to demonstrate that there are options for the
questions we ask and for the scientific methods we use. That there is, in effect,
an alternative worldview available which can lead to paradigms that are no less
rigorously scientific than the FLRW exact GR solution.

As a final word, it is becoming ever more clear that humanity’s collective
worldview must shift from one in which our society, our environmennt and our
climate are perceived as stable background processes which we can perturb at will
around a well-defined equilibrium state and instead realise that we will owe our
continued existence to a respectful relationship with the complex, interconnected
web of a reality in which there is no uniformity and no equilibrium. Every action
we take matters: a small push here, or there, cannot be relied upon to have
a small impact. Perhaps Physics as a discipline, as it begins to focus beyond

1This form of the definition is taken from OxfordReference.com
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the traditional tools of simplification, can contribute to this shift in collective
worldview.

15.3 Conclusion

Physics in the 20th century solved the problems of constucting hierarchical levels
which obeyed clear-cut generalizations within themselves: atomic and molecular
theory, nuclear physics, quantum chromodynamics, electroweak theory, quantum
many-body theory, classical hydrodynamics, molecular biology ... In the 21st

century one revolution that can take place is the construction of generalizations
which jump and jumble the hierarchies, or generalizations which allow scale-free

or scale-transcending phenomena. The paradigm for the first is broken
symmetry, for the second self-organised criticality.

P. W. Anderson (2011) [172], p.112

I have argued that the universe is a complex system and that it is not pos-
sible to model it effectively by choosing simplifications that negate its complex
reality. Even if the universe proves to be statistically homogeneous and isotropic
at large scales, the simplifying assumptions of the standard cosmological model,
the FLRW framework, do not apply: the statistical validity of that framework
is assured only in the case of super-homogeneity. In other words, it requires
that the universe is everywhere and at all times smoothly homogeneous and flat.
Very clearly, it is not.

We need to analyse the vast data we have accumulated in this and the last
century using different statistical tools, so assumptions can be tested rather than
taken as given. Fortunately, such tools have begun to be developed in recent
decades. They are not yet mainstream in cosmology, but there are groups who
have used them to great effect.

New tools in statistical physics cannot, by themselves, tell us about the dynami-
cal processes which generate the evolution of structures. They cannot explain
how emergent structure evolves in complex systems. For that we need a new
paradigm, and I have suggested that SOC is a powerful place to start. There are
numerous SOC models but, even if there were one which seemed perhaps relevant
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to the entire universe - and there is no such model - the extreme nonlinearity of
gravity cannot be adequately implemented as an interaction algorithm. However,
the heuristic story which underpins SOC is a perfect example of an alternative
way of looking at the questions of cosmology. What happens if we remove the
need for linear evolution from a singular beginning? If we look at the CMB data
without analysing it within a framework of assumed homogeneity and isotropy,
what do we see? If our carefully constructed distance ladder is revisited in the
context of a timescape, what impact is there on our assessment of the distance
in time and space of the phenomena we observe?

Without equations that can be solved or a specific model that we can write as
a simulation for the universe as a whole, it is still possible to do effective work
that will lead to an ever-greater understanding of the universe we inhabit. As a
bonus, SOCGR predicts the observed phenomena commonly described as dark
matter and dark energy without invoking new matter or fields.

In conclusion, there is much we do not yet understand about mass and its
role in structure formation. This is exciting - there is a lot to be done. The
standard, Big Bang cosmology puts us at the centre of the universe with every-
thing in all directions expanding away from us. Ptolemy’s model of the solar
system put Earth in the centre: it was able, using complex adjustments, to
predict the movements of the planets. Copernicus’ heliocentric model which
replaced it, and new data from telescope observations, opened up the way for
Kepler’s simplifying laws. In the modern era, the physics community has created
extraordinary theoretical, experimental and technological advances and has ac-
cumulated vast data of staggering precision. Perhaps we are at the point where
we can proceed to move beyond the open problems of 20th century cosmology
to find new questions that belong to the next generation.

173



Appendices to Part I

174



Appendix A

Catalogue of 6D tree
amplitudes

A.1 Polarisation and helicity in 6D amplitudes

Our convention is that all momenta are outgoing, hence an incoming momentum
P is −P in calculations.

In this project we consider only external gluons and Higgs, and internal gluon
and scalar loop momenta in amplitude calculations. Scalars are unaffected by
direction. Gluons, however, have four helicity states in 6D (see page 38). Since
these cannot be assigned a simple +,− it is not valid simply to reverse helicity for
a negative momentum: instead, it is sufficient to multiply the spinor associated
with the negative momentum by a factor of i.

This adjustment to the spinors in the amplitude calculation is made in gghj
module spinors.

A.2 6D 3-point analytic amplitudes used in cal-
culation

3-point - all gluon
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Source: [55]

A0
3(1gaȧ, 2

g

bḃ
, 3gcċ) = iΓabcΓ̃ȧḃċ (A.2.1)

where the tensors

Γabc = u1au2bw3c + u1aw2bu3c + w1au2bu3c

Γ̃ȧḃċ = ũ1ȧũ2ḃw̃3ċ + ũ1ȧw̃2ḃũ3ċ + w̃1ȧũ2ḃũ3ċ
(A.2.2)

are written in terms of the 2x1 spinors u, ũ satisfying the following properties
defined on a cyclic order {ijk}:

uiaũjb = 〈ia|jb〉

ujaũib = −〈ja|ib〉
(A.2.3)

and w, w̃ are the inverse of u, ũ, for which we also impose momentum conserva-
tion. These objects are described in full in Section 5.4.2.

3-point - 1 higgs 2 gluons

Source: [49]:

A0
3(H, 1aȧ, 2bḃ) = i〈1a|2ḃ]〈2b|1ȧ] (A.2.4)

h1g2 = i sp62(sp6d12, sp6d21)

3-point - 1 higgs 2 scalars

Source: [49]:

A0
3 = −is12 (A.2.5)

h1s2 = −i sp6sij12

3-point - 2 scalars 1 gluon

Source: [56] Appendix B:

A0(1φ
1,2
, 2φ1,2 , 3gcċ) = −i

2sr3
〈3c|(1− 2)|r|3ċ] (A.2.6)
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where r is a massless refernce vector satisfying sr3 6= 0.

A.3 6D 4-point analytic amplitudes used in cal-
culation

4-point - all gluon

Source: [55]

A0
4 = −i

st
〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] (A.3.1)

Repeated in [45] Section II C and in [56] Appendix B:

A0
4(1gaȧ, 2

g

bḃ
, 3gcċ, 4

g

dḋ
) = −i

s12s23
〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] (A.3.2)

g4 = −i
sp6sij12sp6sij23

sp64d(1, 2, 3, 4, a, b, c, d) sp64td(1, 2, 3, 4, a, b, c, d)

We can choose to construct this 4-point amplitude from the 3-point using BCFW,
using equation 4.3.1 and selecting 1 and 2 for the shift. There is only one Feynman
diagram, see Figure 5.3.1, and A0

4 thus takes the form:

A0
4 = − i

k2A3LA3R (A.3.3)

4-point - 3 gluons 1 higgs

Source: [49]:

A0
4(H, 1gaȧ, 2

g

bḃ
, 3gcċ) = −i

s12s2
23s

2
13

× {(s12m
2
H + s13s23)〈1a| 6 k3|2b〉[1ȧ| 6 k3|2ḃ]〈3c| 6 k2 6 k1|3ċ]

− s23(s13m
2
H + s12s23)〈1a|3ċ]〈3c|1ȧ]〈2b| 6 k1 6 k3|2ḃ]

+ s13(s23m
2
H + s12s13)〈2b|3ċ]〈3c|2ḃ]〈1a| 6 k2 6 k3|1ȧ]

− s12〈1a| 6 k2 6 k3|1ȧ]〈2b| 6 k1 6 k3|2ḃ]〈3c| 6 k2 6 k1|3ċ]}
(A.3.4)
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4-point - 2 gluons 2 scalars

Source: [56] Appendix B:

A0
4(1gaȧ, 2

g

bḃ
, 3φ1,2 , 4φ1,2) = −i

4s12s23
〈1a2b3e3e〉[1ȧ2ḃ3ė3

ė] (A.3.5)

4-point - 1 gluon 1 higgs 2 scalars

Source: [49]:

A0
4(H, 1gaȧ, 2s, 3s) = −i

( 1
s23

+ m2
H

s12s13

)
〈1a| 6 k3 6 k2|1ȧ] (A.3.6)

A.4 6D higher-point amplitudes from BCFW -
examples

In this Section we retain the p, k notation for the intermediate momentum that
is used in the original sources.
5-point - all gluon

Source: [55]

Using BCFW equation 4.3.1 to construct this tree amplitude there are two
diagrams (figure 2 from [55]):

And A0
5, stated here for simplicity without the Xaȧ and spinor little group indices

which are shown in full in Section 5.4.3, thus takes the form:

A0
5 = − i

k2
23
A4LA3R + i

k2
15
A3LA4R (A.4.1)

6-point - all gluon

Using equation 4.3.1 relations and the three diagrams:
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We have the form:

A0
6 = − i

k2
23
A5LA3R −

i

k2
234

A4LA4R −
i

k2
16
A3LA5R (A.4.2)

7-point - all gluon

Using equation 4.3.1 relations and the four diagrams:

A0
7 = − i

k2A6LA3R −
i

k2A5LA4R −
i

k2A4LA5R −
i

k2A3LA6R (A.4.3)

A.5 6D analytic amplitude expressions available
for use in testing

5-point - all gluon

Source: [55]

A0
5 = − i

k2A4LA3R + i

k2A3LA4R = 1
s12s23s34s45s51

(A+D) (A.5.1)

where

179



APPENDIX A. CATALOGUE OF 6D TREE AMPLITUDES

Aaȧbḃcċdḋeė = 〈1a| 6 p2 6 p3 6 p4 6 p5|1ȧ]〈2b3c4d5e〉[2[̇a]3[̇b]4[̇d]5[̇e]]+cyclic permutations
(A.5.2)

and

Daȧbḃcċdḋeė = 〈1a(2.∆̃2)ḃ〈2b3c4d5e〉[1ȧ3ḃ4ḋ5ė] + 〈3c(4.∆̃4)ḋ〈1a2b4d5e〉[1ȧ2ḃ3ċ5ė]

+ 〈4d(5.∆̃5)ė〈1a2b3c5e〉[1ȧ2ḃ3ċ4ḋ]− 〈3c(5.∆̃5)ė〈1a2b4d5e〉[1ȧ2ḃ3ċ4ḋ]

− ([1ȧ(2.∆2)b〉[2ḃ3ċ4ḋ5ė]〈1a3c4d5e〉+ [3ċ(4.∆4)d〉[1ȧ2ḃ4ḋ5ė〉〈1a3c4d5e〉

+ [4d(5.∆5)e〉[1ȧ2ḃ3ċ5ė]〈1a2b3c4d〉 − [3c(5.∆5)e〉[1ȧ2ḃ4ḋ5ė]〈1a2b3c4d〉)
(A.5.3)

with

∆1 = 〈1| 6 p2 6 p3 6 p4− 6 p4 6 p3 6 p2|1〉

∆̃1 = [1| 6 p2 6 p3 6 p4− 6 p4 6 p3 6 p2|1]
(A.5.4)

and other ∆i defined by cyclic permutations.

There are two contributions, one in the s23 channel and the other in the s51

channel ( [45] Section III B). Evaluating the diagrams gives

A0
5(1gaȧ, 2

g

bḃ
, 3gcċ, 4

g

dḋ
, 5geė) = −i

s45s51̂s23
(〈1̂a2̂b4d5e〉u3c + 〈1̂a3c4d5e〉u2̂b)

× ([1̂ȧ2̂ḃ4ḋ5ė]ũ3ċ + [1̂ȧ3ċ4ḋ5ė]ũ2̂ḃ
)

−i
s34s51s2̂3

(〈2̂b1̂ab4d3c〉u5e + 〈2̂b5e4d3c〉u1̂a)

× ([2̂ḃ1̂ȧ4ḋ3ċ]ũ5ė + [2̂ḃ5ė4ḋ3ċ]ũ1̂ȧ)

(A.5.5)

Note that Section V G. on pg 14 [49] comments that the [55] expression was
found through BCFW recursion and repeated use of the 5-point Shouten identity,
but he finds it convenient to use an intermediate form before the use of the
Shouten identity:
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A0
5(1gaȧ, 2

g

bḃ
, 3gcċ, 4

g

dḋ
, 5geė) = −i

s12s2
23s34s45s15

×
(
〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ]

× (s14〈5e| 6 p1 6 p3 6 p2 6 p4|5ė]− s13〈5e| 6 p1 6 p4 6 p2 6 p4|5ė]

+ s12〈5e| 6 p1 6 p4 6 p3 6 p4|5ė])

− 〈1a2b3c4d〉[1ȧ2ḃ3ċ5ė]

× (s14〈5e| 6 p1 6 p3 6 p2 6 p5|4ḋ]− s13〈5e| 6 p1 6 p4 6 p2 6 p5|4ḋ]

+ s12〈5e| 6 p1 6 p4 6 p3 6 p5|4ḋ])

+ 〈1a2b3c5e〉[1ȧ2ḃ3ċ5ė]

× (s14〈4d| 6 p5 6 p1 6 p2 6 p3|5ė]− s13〈4d| 6 p5 6 p1 6 p2 6 p4|5ė]

+ s12〈4d| 6 p5 6 p1 6 p3 6 p4|5ė])

+ s15〈1a2b3c5e〉[1ȧ2ḃ3ċ5ė]〈4d| 6 p5 6 p1 6 p2 6 p3|4ḋ]

− s45〈2b3c4d5e〉[2ḃ3ċ4ḋ5ė]〈1a| 6 p5 6 p4 6 p3 6 p2|1ȧ]

+ s45〈2b3c4d5e〉[1ȧ2ḃ3ċ4ḋ]〈1a| 6 p2 6 p3 6 p4 6 p1|5ė]

+ s45〈2b3c4d5e〉[1ȧ2ḃ3ċ55̇]〈1a| 6 p5 6 p1 6 p2 6 p3|4ḋ]

− s45〈1a2b3c4d〉[2ḃ3ċ4ḋ55̇]〈5e| 6 p1 6 p4 6 p3 6 p2|1ȧ]

− s45〈1a2b3c5e〉[2ḃ3ċ4ḋ55̇]〈4d| 6 p3 6 p2 6 p1 6 p5|1ȧ]
)
(A.5.6)

A.6 4D analytic amplitude expressions available
for use in testing

For complex momenta:

Atree
3 (1−g , 2−g , 3+

g ) = i
〈12〉4

〈12〉〈23〉〈31〉 (A.6.1)

Atree
3 (1+

g , 2+
g , 3−g ) = −i [12]4

[12][23][31] (A.6.2)

For all n ≥ 4:

Atree
n (1±g , 2+

g , ..., n
+
g ) = Atree

n (1±g , 2−g , ..., n−g ) = 0 (A.6.3)

181



APPENDIX A. CATALOGUE OF 6D TREE AMPLITUDES

Atree
n (1+

g , 2+
g , ...i

−
g , ..., j

−
g , ...n

+
g ) = i

〈ij〉4

〈12〉〈23〉...〈n1〉 (A.6.4)

With quarks:

Atree
n (1−q , 2+

q , ...i
−
g , ..., n

+
g ) = i

〈1i〉2〈2i〉
〈12〉〈23〉...〈n1〉 (A.6.5)

A.7 6D amplitudes with quarks for future work

3-point - 2 quarks, 1 gluon

Source: [56] Appendix B:

A0(1qa, 2
q
b , 3

g
cċ) = i

sr3
〈1a2b3crx〉〈rx|3ċ] (A.7.1)

where r is a massless reference vector satisfying sr3 6= 0
4-point - 2 quarks, 2 gluons

Source: [45] Section III C:

A0
4(1gaȧ, 2

g

bḃ
, 3qc , 4

q
d) = −i

s12s23
〈1a2b3c4d〉[1ȧ2ḃ3ė3

ė] (A.7.2)

where the repeated index ė is summed.

Source: [56] Appendix B:

A0
4(1gaȧ, 2

g

bḃ
, 3qc , 4

q
d) = −i

2s12s23
〈1a2b3c4d〉[1ȧ2ḃ3ė3

ė] (A.7.3)

3-point - 2 quarks, 1 scalar

Source: [56] Appendix B:

A0(1φ1 , 2qb , 3
q
c) = i√

2
〈1a|2ḃ]

A0(1φ2 , 2qb , 3
q
c) = i√

2
〈1a|γ5|2ḃ]

(A.7.4)

4-point - 2 quarks, 2 scalars

Source: [49]:
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A0
4(1s, 2s, 3qc , 4

q
d) = i(s13 − s23)

4s12s23
〈1a1a3c4d〉 (A.7.5)

4-point - 2 quarks, 1 gluon, 1 scalar

Source: [49]:

A0
4(1gaȧ, 2

q
b , 3

s, 4qd) = − i

4
√

2s12s23
〈1a2b3c3c〉[1ȧ3ċ3ċ4ḋ] (A.7.6)
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Appendix B

Examples of cuts: all-gluon
loop

This appendix includes a sketch of the cuts for the all-gluon loop. Collection of
the full family of cuts from existing sources is available in Armstrong [8] with
code LoopCuts.
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Appendix C

Colour-ordered Feynman
rules

Possible vertices with gluons are defined by the Lagrangian, LintH = C
2 HtrGµνGµν .

This generates vertices involving two, three or four gluons.

The full set of rules required for the calculation is [12], [61], [49]:
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i
6p−mψ+i0

i
k2+i0

(
gµν + (ξ − 1)k

muknu

k2

)

− i√
2

(
gµν(k1 − k2)σ + gνσ(k2 − k3)µ + gσµ(k3 − k1)ν

)

igµσgνρ − i
2 (gµνgρσ + gµρgσν)

i√
2γ

µ

− i√
2γ

µ
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iAδab(gµνp1p2 − pν1p
µ
2 )

−Ag
[
(p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ

]

−Ag2
[
(gµρgνσ − gµσgνρ) + (gµνgρσ − gµσgνρ) + (gµνgρσ − gµρgνσ)

]

−2ik1.k2 = −is12

−i
√

2(k1 − k2)µ
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Appendix D

Lie algebra

D.1 Introduction

We examine here the impact of transformations on the 6-D spinor representation
used in our calculations for two reasons:

• In Section 4 we have chosen a specific representation of six-dimensional
spinors because it reduces to the familiar four-dimensional spinor represen-
tation when momenta are four-dimensional. We wish to demonstrate that
the chosen spinor representation is, in fact, Lorentz invariant.

• For practical purposes our suite of test momenta, from randrot in Appendix
F, have been generated by rotation from four dimensions into six dimensions.
If we simply apply the normal prescription to generate the six-dimensional
spinors from these transformed momenta sets the two columns of the
resulting spinors emerge with a non-trivial distortion: the two columns
are not independently Lorentz invariant. In order to test our amplitude
calculations we need to be able to generate the six-dimensional spinors
from rotated momenta so that they retain Lorentz invariance and can
be used to compare against the results of calculations using the original
four-dimensional momenta values.

We do this by examining the associated Lie algebras for the rotations and boosts
sub groups of the Lorentz group.
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D.2 Background

For continuous (Lie) groups it is useful to consider the infinitesimal generators
of the group, which form a structure known as a Lie algebra (pg 96) [232].

SO(2) is the group of proper rotations in two dimensions, all abut the same axis,
which we take as the z axis.

SO(3)(SU(2)) is the group of all proper rotations in three dimensions. (pg
101) [232]

The group is specified by its law of composition: how two rotations combine to
make a third. The structure formed by the infinitesimal generators Xi is known
as an algebra, which is in the first place a vector space since (complex) linear
combinations of the Xi are again generators. there is, however, an additional
composition law given by commutation: for any two generators X,Y the com-
mutator [X,Y ] is also a generator.

The Lie algebra of the group is the commutator relation [Xa, Xb] = ifabcXc for
some constants fabc. The commutator in the algebra plays a role similar to the
multiplication law for the group. (page 47) [233]

Gran-Schmidt procedure

Given any basis fi of V it is possible to construct an orthonormal basis ei
satisfying

(ei, ej) = δij (D.2.1)

by the ’Gran-Schmidt’ procedure as follows:

• First construct e1 by normalising f1

e1 = f1/||f1|| (D.2.2)

• Then construct e2 from f2 by subtracting its ’component’ along e1 to make
it orthogonal to e1 and then normalising

e2 = (f2 − (e1, f2)e1)/||...|| (D.2.3)
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• The next vector e3 is constructed from f3 by subtracting off its components
along both e1 and e2 and then normalising, and so on.

D.3 Building the Lie algebras

The python implementation follows in the form of a Jupyter notebook.
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import numpy as np
import sys
sys.path.append('./tests/')
import scipy.linalg
from scipy.linalg import det

import randrot as rr
import spinors as sp
from utils import *

Building the lie algebra for rotations
We define matrices for the Lie algebra of rotations in the $SU(4)$ representation:

$$\sigma^{ij}\phantom{}^A\phantom{}_B = \frac14\left(\tilde\gamma^{i}\phantom{}^{AC}\gamma^{j}\phantom{}_{CD} - \tilde\gamma^j\phantom{}

^{AC}\gamma^{i}\phantom{}_{CD}\right)$$

$$\tilde\sigma^{ij}\phantom{}_A\phantom{}^B = \frac14\left(\gamma^{i}\phantom{}_{AC}\tilde\gamma^{j}\phantom{}^{CD} - \gamma^j\phantom{}

_{AC}\tilde\gamma^{i}\phantom{}^{CD}\right)$$

def sigma(mu,nu):
return 0.25 * 1* (np.dot(sigt6[mu][0], sig6[nu][0]) - np.dot(sigt6[nu][0], sig6[mu][0]))

def sigmat(mu,nu):
return 0.25 * 1 *(np.dot(sig6[mu][0], sigt6[nu][0]) - np.dot(sig6[nu][0], sigt6[mu][0]))

The elements of the algebra are labelled by two indices, the two axis that will get rotated. It is a 10-dimensional.

sindices = [ (i,j) for i in range(1,6) for j in range(1,6) if i<j]

# an alternative definition of sigma is through e^{ijklmn}g_k g_l g_m g_n
def osigma(i,j):

ret = np.zeros((4,4), dtype='complex128')
for k in range(6):

for l in range(6):
for m in range(6):

for n in range(6):
sign = (permutationSign([0,1,2,3,4,5],[i,j,k,l,m,n])) 
ret += sign * np.dot(gammast[k],np.dot(gammas[l],np.dot(gammast[m],gammas[n])))

return ret/48

for i, j in sindices:
#print ("sigma and osigma(",i,",",j,")")
#print (sigma(i,j))
#print ("osigma(i,j)")
#print(osigma(i,j))
assert np.allclose(sigma(i,j),osigma(i,j))

This is the algebra for the fundamental representation of rotations in $R^5$.

def w(i,j):
ret = np.zeros((5,5))
if i == j :

return ret
ret[i, j] = -1
ret[j, i] = 1
return ret

#for i in range(5):
#    for j in range(5):
#        print("indices ", i,j)
#        print(w(i,j))

The sigma and sigma tilde matrices are sort of orthonormal to each other, so we can use them to project linear combinations onto components.

#print (('{:7} ' *11).format('   ....... ', *sindices))
print (('{:} ' *11).format('   ....... ', *sindices))
for i in sindices:

row = []
for j in sindices:

row.append(np.trace(np.dot(sigmat(*i).T, sigma(*j))))    
#print (('{:7} '*11).format(i,*row))
print (('{:} '*11).format(i,*row))

   .......  (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5) 
(1, 2) (1+0j) 0j 0j 0j 0j 0j 0j 0j 0j 0j 
(1, 3) 0j (1+0j) 0j 0j 0j 0j 0j 0j 0j 0j 
(1, 4) 0j 0j (1+0j) 0j 0j 0j 0j 0j 0j 0j 
(1, 5) 0j 0j 0j (1+0j) 0j 0j 0j 0j 0j 0j 
(2, 3) 0j 0j 0j 0j (1+0j) 0j 0j 0j 0j 0j 
(2, 4) 0j 0j 0j 0j 0j (1+0j) 0j 0j 0j 0j 
(2, 5) 0j 0j 0j 0j 0j 0j (1+0j) 0j 0j 0j 
(3, 4) 0j 0j 0j 0j 0j 0j 0j (1+0j) 0j 0j 
(3, 5) 0j 0j 0j 0j 0j 0j 0j 0j (1+0j) 0j 
(4, 5) 0j 0j 0j 0j 0j 0j 0j 0j 0j (1+0j) 

windices = [ (i,j) for i in range(5) for j in range(5) if i<j]
#print (('{:7} '*11).format('   ....... ', *windices))
print (('{:} '*11).format('   ....... ', *windices))
for i in windices:

row = []
for j in windices:

row.append(np.trace(np.dot(w(*i).T, w(*j))))    
#print (('{:7} '*11).format(i,*row))
print (('{:} '*11).format(i,*row))
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   .......  (0, 1) (0, 2) (0, 3) (0, 4) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) 
(0, 1) 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
(0, 2) 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
(0, 3) 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
(0, 4) 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 
(1, 2) 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 
(1, 3) 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 
(1, 4) 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 
(2, 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 
(2, 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 
(3, 4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 

def projSigma(m):
ret = [ 1 * np.trace(np.dot(m, sigmat(*ss).T)) for ss in sindices]
return np.array(ret)

def projSigmat(m):
ret = [1 * np.trace(np.dot(m, sigma(*ss).T)) for ss in sindices]
return np.array(ret)

for ind, i in enumerate(sindices):
target = np.zeros(10)
target[ind] = 1
assert np.allclose(projSigma(sigma(*i)), target)

for ind, i in enumerate(sindices):
target = np.zeros(10)
target[ind] = 1
assert np.allclose(projSigmat(sigmat(*i)), target)

#for i in sindices:
#    row = []
#    for j in sindices:
#        c,s = sigmaComm(i,j)
#        print("i ", i, "j ", j)
#        print("c", c)
#        print("s", s)

def projW(m):
indices = [ (i,j) for i in range(5) for j in range(5) if i<j]
ret = [0.5* np.trace(np.dot(m, w(*ss).T)) for ss in windices]
return np.array(ret)

for ind, i in enumerate(windices):
target = np.zeros(10)
target[ind] = 1
assert np.allclose(projW(w(*i)), target)

def sigmaComm(i,j):
pro = projSigma(comm(sigma(*i),sigma(*j)))
nz = np.nonzero(pro)
assert len(nz)<=1
if len(nz[0]) == 0:

return 0.0, None    
#print nz
c = pro[nz[0]][0]
assert c.imag == 0
return c.real,sindices[nz[0][0]]

def sigmatComm(i,j):
pro = projSigmat(comm(sigmat(*i),sigmat(*j)))
nz = np.nonzero(pro)
assert len(nz)<=1
if len(nz[0]) == 0:

return 0.0, None    
#print nz
c = pro[nz[0]][0]
assert c.imag == 0
return c.real,sindices[nz[0][0]]

def wComm(i,j):
pro = projW(comm(w(*i),w(*j)))
nz = np.nonzero(pro)
assert len(nz)<=1
if len(nz[0]) == 0:

return 0.0, None    
#print nz
c = pro[nz[0]][0]
assert c.imag == 0
return c.real,windices[nz[0][0]]

This checks the commutation relations in the two albebras are the same:

print('='*10, ' sigma ', '='*10)
#print (('{:7} '*11).format('....... ', *sindices))
print (('{:} '*11).format('....... ', *sindices))

for i in sindices:
row = []
for j in sindices:

c, s = sigmaComm(i,j)
if s is None:    

row.append('.')
else:

row.append('{} s_{}{}'.format(int(c),*s))    
#print (('{:7} '*11).format(i,*row))
print (('{:} '*11).format(i,*row))

print('='*10, ' sigmat ', '='*10)
#print (('{:7} '*11).format('....... ', *sindices))
print (('{:} '*11).format('....... ', *sindices))
for i in sindices:

row = []
for j in sindices:

c, s = sigmatComm(i,j)
if s is None:    

row.append('.')
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else:
row.append('{} s_{}{}'.format(int(c),*s))    

#print (('{:7} '*11).format(i,*row))
print (('{:} '*11).format(i,*row))

print('='*10, ' w ', '='*10)

#print (('{:7} '*11).format('....... ', *windices))
print (('{:} '*11).format('....... ', *windices))
for i in windices:

row = []
for j in windices:

c, s = wComm(i,j)
if s is None:    

row.append('.')
else:

row.append('{} s_{}{}'.format(int(c),*s))    
#print (('{:7} '*11).format(i,*row))
print (('{:} '*11).format(i,*row))

==========  sigma  ==========
.......  (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5) 
(1, 2) . 1 s_23 1 s_24 1 s_25 -1 s_13 -1 s_14 -1 s_15 . . . 
(1, 3) -1 s_23 . 1 s_34 1 s_35 1 s_12 . . -1 s_14 -1 s_15 . 
(1, 4) -1 s_24 -1 s_34 . 1 s_45 . 1 s_12 . 1 s_13 . -1 s_15 
(1, 5) -1 s_25 -1 s_35 -1 s_45 . . . 1 s_12 . 1 s_13 1 s_14 
(2, 3) 1 s_13 -1 s_12 . . . 1 s_34 1 s_35 -1 s_24 -1 s_25 . 
(2, 4) 1 s_14 . -1 s_12 . -1 s_34 . 1 s_45 1 s_23 . -1 s_25 
(2, 5) 1 s_15 . . -1 s_12 -1 s_35 -1 s_45 . . 1 s_23 1 s_24 
(3, 4) . 1 s_14 -1 s_13 . 1 s_24 -1 s_23 . . 1 s_45 -1 s_35 
(3, 5) . 1 s_15 . -1 s_13 1 s_25 . -1 s_23 -1 s_45 . 1 s_34 
(4, 5) . . 1 s_15 -1 s_14 . 1 s_25 -1 s_24 1 s_35 -1 s_34 . 
==========  sigmat  ==========
.......  (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5) 
(1, 2) . 1 s_23 1 s_24 1 s_25 -1 s_13 -1 s_14 -1 s_15 . . . 
(1, 3) -1 s_23 . 1 s_34 1 s_35 1 s_12 . . -1 s_14 -1 s_15 . 
(1, 4) -1 s_24 -1 s_34 . 1 s_45 . 1 s_12 . 1 s_13 . -1 s_15 
(1, 5) -1 s_25 -1 s_35 -1 s_45 . . . 1 s_12 . 1 s_13 1 s_14 
(2, 3) 1 s_13 -1 s_12 . . . 1 s_34 1 s_35 -1 s_24 -1 s_25 . 
(2, 4) 1 s_14 . -1 s_12 . -1 s_34 . 1 s_45 1 s_23 . -1 s_25 
(2, 5) 1 s_15 . . -1 s_12 -1 s_35 -1 s_45 . . 1 s_23 1 s_24 
(3, 4) . 1 s_14 -1 s_13 . 1 s_24 -1 s_23 . . 1 s_45 -1 s_35 
(3, 5) . 1 s_15 . -1 s_13 1 s_25 . -1 s_23 -1 s_45 . 1 s_34 
(4, 5) . . 1 s_15 -1 s_14 . 1 s_25 -1 s_24 1 s_35 -1 s_34 . 
==========  w  ==========
.......  (0, 1) (0, 2) (0, 3) (0, 4) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) 
(0, 1) . 1 s_12 1 s_13 1 s_14 -1 s_02 -1 s_03 -1 s_04 . . . 
(0, 2) -1 s_12 . 1 s_23 1 s_24 1 s_01 . . -1 s_03 -1 s_04 . 
(0, 3) -1 s_13 -1 s_23 . 1 s_34 . 1 s_01 . 1 s_02 . -1 s_04 
(0, 4) -1 s_14 -1 s_24 -1 s_34 . . . 1 s_01 . 1 s_02 1 s_03 
(1, 2) 1 s_02 -1 s_01 . . . 1 s_23 1 s_24 -1 s_13 -1 s_14 . 
(1, 3) 1 s_03 . -1 s_01 . -1 s_23 . 1 s_34 1 s_12 . -1 s_14 
(1, 4) 1 s_04 . . -1 s_01 -1 s_24 -1 s_34 . . 1 s_12 1 s_13 
(2, 3) . 1 s_03 -1 s_02 . 1 s_13 -1 s_12 . . 1 s_34 -1 s_24 
(2, 4) . 1 s_04 . -1 s_02 1 s_14 . -1 s_12 -1 s_34 . 1 s_23 
(3, 4) . . 1 s_04 -1 s_03 . 1 s_14 -1 s_13 1 s_24 -1 s_23 . 

Here we check that the commutation relations match what we expect for $SO(5)$

def delta(i,j):
if i == j:

return 1
else:

return 0

def predictedComm(i, j, matrixFn):
ret = np.zeros_like(matrixFn(1,2))
ret += delta(i[0], j[0]) * matrixFn(i[1], j[1])
ret -= delta(i[0], j[1]) * matrixFn(i[1], j[0])
ret -= delta(i[1], j[0]) * matrixFn(i[0], j[1])
ret += delta(i[1], j[1]) * matrixFn(i[0], j[0])
return ret

for i in windices:
for j in windices:

assert np.allclose(predictedComm(i, j, w), comm(w(*i),w(*j)))

for i in sindices:
for j in sindices:

assert np.allclose(predictedComm(i, j, sigma) , comm(sigma(*i),sigma(*j)))
for i in sindices:

for j in sindices:
assert np.allclose(predictedComm(i, j, sigmat) , comm(sigmat(*i),sigmat(*j)))

def makeLorenzRotation(params):
ws = np.array([w(*i) for i in windices])
L = np.sum(np.multiply(params[:,np.newaxis, np.newaxis] , ws) , axis =0)
R = scipy.linalg.expm(L)
return R

def makeSpinorRotations(params):
sigmas = np.array([sigma(*i) for i in sindices])
L = np.sum(np.multiply(params[:,np.newaxis, np.newaxis] , sigmas) , axis =0)
U = scipy.linalg.expm(L)
sigmats = np.array([sigmat(*i) for i in sindices])
L = np.sum(np.multiply(params[:,np.newaxis, np.newaxis] , sigmats) , axis =0)
Ut = scipy.linalg.expm(L)
return U, Ut

Building lieAlgebra for boosts
We define boost transformation matrices for i = 1 to 5

# Define generators
def boostGen(i):

# i is index for boost
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Y = np.zeros([6,6], dtype = complex)
Y[0,i] = -1j
Y[i,0] = -1j
return Y

def boostMatrix(chi, i):
# chi is boost
# i is index for boost
B = np.eye(6)
B[0,0] = np.cosh(chi)
B[i,i] = np.cosh(chi)
B[0,i] = -np.sinh(chi)
B[i,0] = -np.sinh(chi)
return B

def lorentzBoost(p,chi,i):
# p is momentum to be boosted
# chi is boost
# i is index for boost
ret = np.zeros(6)
B = boostMatrix(chi,i)
ret += np.dot(B,p.T)
return ret

We expect commutator for boosts on i and j axes to be a rotation around the same axes: $$ [Y_i,Y_j,] = W_{ij} $$ It is necessary to account for the shift in

indices: Y is 6 x 6 with indices 0 to 5. Excluding the i and j = 0 means we use only indices 1 to 5. We map to W which are 5 x 5 matrices with indices 0 to 5.

# Define the boost commutator
def boostComm(i,j):

Yi = boostGen(i)
Yj = boostGen(j)
return comm(Yi,Yj)

# Test commutation relation gives expected result
for i in range(5):

for j in range(5):
Ycomm = boostComm(i,j)
Wij = w(i-1,j-1)
for a in range(1,5):

for b in range(1,5):
assert Ycomm[a,b] == Wij[a-1,b-1]

Transformations

p = rr.getRandom6Momentum(1235)
q = refq(p)

params = np.zeros(10)
params[0] = np.pi/2

params = rr.randomDirection(10)

R = makeLorenzRotation(params)
assert np.allclose(np.dot(R, R.T), np.eye(5))
assert np.isclose(np.linalg.det(R), 1.0)

(prot, qrot) = rr.rotate6D([p,q], rotation=R)

U, Ut = makeSpinorRotations(params)
assert np.allclose(np.dot(U, U.T.conj()), np.eye(4))
assert np.isclose(np.linalg.det(U), 1.0)

assert np.allclose(np.dot(Ut, Ut.T.conj()), np.eye(4))
assert np.isclose(np.linalg.det(U), 1.0)

gammas_rot = np.array([np.dot(Ut, np.dot(g, U.T.conj())) for g in gammas])
gammast_rot = np.array([np.dot(U, np.dot(g, Ut.T.conj())) for g in gammast])

p_contracted = p*np.array([1,-1,-1,-1,-1,-1])
pslash_rot = np.array([pp* gg for pp,gg in zip(p_contracted, gammas_rot)])
pslash_rot = np.sum(pslash_rot ,axis=0)
pslash_rot = slashedMomentum(p, gammas_rot)
pslasht_rot = slashedMomentum(p, gammast_rot)

Contracting

• the original $p$ with rotated gamma matrices

• the rotated $p$ with the original matrices

is equivalent

assert np.allclose(pslash_rot,slash(prot))
assert np.allclose(pslasht_rot,slasht(prot))

Here I check that the rotated spinor is a solution of the rotated dirac equation, but they are not the same as basis as the building the spinor from the rotated

momentum.

s = sp.Spinor6(p).sp6d()
st = sp.Spinor6(p).sp6td()
s_rot = sp.Spinor6(prot).sp6d()

assert np.allclose(np.dot(pslash_rot,s_rot), np.zeros((4,2)))

assert np.allclose(np.dot(pslash_rot, np.dot(U,s)), np.zeros((4,2)))

np.allclose(np.dot(U,s), s_rot)

False

Using these transformation rules the spinor products are truly invariant:
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for i in range(20):
test_params = rr.randomDirection(10)
test_U, test_Ut = makeSpinorRotations(test_params)
test_p1, test_p2 = rr.getRandom6Momenta(2)
sprod_of_rotated_spinors = sp.sp62_all(

test_U.dot(sp.Spinor6(test_p1).sp6d()),        
test_Ut.dot(sp.Spinor6(test_p2).sp6td())
)

orig_sprod = sp.sp6_dd(test_p1, test_p2)
assert np.allclose(sprod_of_rotated_spinors, orig_sprod)

The spinor product transforms from

$$\left\langle \lambda\mu\right]_{a\dot b} = \lambda_a\phantom{}^A \tilde\mu_{A,\dot b}$$

to

$$\left\langle \lambda'\mu'\right]_{a\dot b} = \lambda'_a\phantom{}^A \tilde\mu'_{A,\dot b} = U^A\phantom{}_B\lambda_a\phantom{}^B \tilde

U_A\phantom{}^C \tilde\mu_{C,\dot b} = U^A\phantom{}_B \tilde U_A\phantom{}^C \;\lambda_a\phantom{}^B \tilde\mu_{C,\dot b}$$

so we see that we must have the property

$$U^A\phantom{}_B \tilde U_A\phantom{}^C = \delta_B^C$$

assert np.allclose(Ut.T.dot(U), np.eye(4))

This property has an equivalent condition on the Lie algebra:

$$\left(\tilde \sigma^{ij}\right)^T = - \sigma^{ij}$$

for i,j in sindices:
assert np.allclose(sigmat(i,j).T, - sigma(i,j))

Reconstruction of the momentum from the spinors

def pFromS(s):
res= np.zeros(6, dtype='complex128')
for i in range(6):

prod = (np.dot(s.T, np.dot(gammas[i], s)))
component = -0.25*(prod[1,0]-prod[0,1])
assert np.isclose(prod[1,0], -prod[0,1])
res[i] = component

return res
    
def pFromSt(st):

res= np.zeros(6, dtype='complex128')
for i in range(6):

prod = (np.dot(st.T, np.dot(gammast[i], st)))
component = -0.25*(prod[0,1]-prod[1,0])
res[i] = component

return res

assert np.allclose(pFromS(s), p)
assert np.allclose(pFromSt(st), p)

#assert np.allclose(pFromS(us),prot)
#assert np.allclose(pFromSt(ust),prot)

Covariant definition of the basis for 6D spinors
We use

$$C_4 = i \gamma^0\gamma^1\gamma^2\gamma^3$$

The definition of the spinors is such that

$$\not q |s\rangle$$

is an eigenvector of $C_4$ with eigenvalue $\mp 1$ for the first and second column respectively. We see that below:

c4 = 1j * gammas[0].dot(gammast[1]).dot(gammas[2]).dot(gammast[3])
q = np.array(refq(p))
qs = np.dot(slash(q),s)
proj = np.dot(c4,qs)
qs_rec = reciprocal(qs)
chopComplex(np.dot(qs_rec, proj))

array([[-1.+0.j,  0.+0.j],
       [ 0.+0.j,  1.+0.j]])

This is also the case for the spinor constructed for the rotated momentum:

qs_rot = np.dot(slash(q),s_rot)
proj_rot = np.dot(c4,qs_rot)
s_rot_rec = reciprocal(qs_rot)
chop(np.dot(s_rot_rec, proj_rot ))

array([[-1.+0.j,  0.+0.j],
       [ 0.+0.j,  1.+0.j]])

For the transformed spinor $U|s\rangle$ the columns are not eigenvectors of $C_4$:

us = np.dot(U, s)
qus = np.dot(slash(q),us)
proj_rot = np.dot(c4,qus)
qus_rec = reciprocal(qus)
S = chopComplex(np.dot(qus_rec, proj_rot ))
S,det(S)
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(array([[-0.49281518+0.j        , -0.17968734-0.85137868j],
        [-0.17968734+0.85137868j,  0.49281518+0.j        ]]),
 (-1-2.7755575615628914e-17j))

But the determinant is $-1$ so it is consistent with having eigenvalues $1$ and $-1$.

We define projectors onto the positive and negative eigenvectors of $C_4$:

Pplus = 0.5*(np.eye(4)+c4)
Pminus = 0.5*(np.eye(4)-c4)

assert np.allclose(Pplus.dot(Pplus), Pplus)
assert np.allclose(Pminus.dot(Pminus), Pminus)
assert np.allclose(Pminus + Pplus, np.eye(4))

c4_rot = 1j * gammas_rot[0].dot(gammast_rot[1]).dot(gammas_rot[2]).dot(gammast_rot[3])

General construction
Here I construct the spinors from general principle: as solution of hte dirac equation and the labelling of the first and second vector is given by the

eigenvalues of an operator. This fixes the columns up to a phase per column.

def getSpinors(p, q, Pp, Pm):
assert np.allclose(Pp + Pm, np.eye(4))
assert np.allclose(np.dot(Pp, Pp), Pp)
assert np.allclose(np.dot(Pm, Pm), Pm)
assert np.allclose(np.dot(Pm, Pp), np.zeros_like(Pp))
assert np.allclose(np.dot(Pp, Pm), np.zeros_like(Pp))
ev, vs = np.linalg.eig(slash(p))
sols = vs.T[np.isclose(ev, 0.0)]
# check the solutions are solutions...
assert np.allclose(chopComplex(slash(p).dot(sols.T)), np.zeros_like(sols.T))
# make sure the vectors are orthonormal
if not np.allclose( sols.dot(sols.T.conj()), np.eye(2)):

b1 = sols[0]
b1 = b1/np.sqrt(b1.dot(b1.T.conj()))
b2 = sols[1]
b2 = b2 - np.dot(b2, b1.conj().T) * b1 
b2 = b2/np.sqrt(b2.dot(b2.T.conj()))

else:
b1, b2 = sols

bp = np.array([b1,b2])
# now they must be orthonormal:
assert np.allclose(chopComplex(np.dot(bp,bp.T.conj())), np.eye(2))
# check they are still a solution of the dirac equation:
assert np.allclose(chopComplex(np.dot(slash(p),bp.T)), np.zeros_like(bp.T))
# calculate the components of the vectors with appropriate eigenvector of P_{\pm}q
comp_minus = scipy.linalg.null_space(bp.dot(np.dot(Pp,slash(q))).T)
comp_plus = scipy.linalg.null_space(bp.dot(np.dot(Pm,slash(q))).T)
# check there is only one vector:
#print scipy.linalg.svd(bp.dot(np.dot(Pp,slash(q))).T)
#print scipy.linalg.svd(bp.dot(np.dot(Pm,slash(q))).T)
#print comp_plus.shape
#print comp_plus.shape, comp_minus.shape
assert comp_plus.shape == (2,1)
assert comp_minus.shape == (2,1)
comp_plus = comp_plus[:,0]
comp_minus = comp_minus[:,0]
# get the two vectors for the two columns of the spinor
c1 = bp.T.dot(comp_plus)
c2 = bp.T.dot(comp_minus)
final = np.array([c1,c2]).T
# check they are still solutions of the dirac equation
assert np.allclose(chopComplex(slash(p).dot(final)),np.zeros((4,2)))
# check they re orthnormal
assert np.allclose(final.T.conj().dot(final), np.eye(2))
ratios = pFromS(final)/p
#print ratios
assert np.allclose(ratios[np.isfinite(ratios)],ratios[0])
scale = 1.0/np.sqrt( ratios[0] )
final = final*scale
assert np.allclose(pFromS(final), p)
return final

# Define tilde spinors
#def getSpinorsTilde(p,q,Pp,Pm):
#    sp = getSpinors(p,q,Pp,Pm)
#    t1 = sp[:,0]
#    t2 = sp[:,1]
#    final = np.array([t1,t2]).T
#    final = np.matrix.conjugate(final)
#    return final
    

params = rr.randomDirection(10)
#params[8:] = [0,0]
R = makeLorenzRotation(params)
(prot, qrot) = rr.rotate6D([p,q], rotation=R)
U, Ut = makeSpinorRotations(params)

s = sp.Spinor6(p).sp6d()
st = sp.Spinor6(p).sp6td()
s_rot = sp.Spinor6(prot).sp6d()
us = np.dot(U, s)

sp1 = getSpinors(p, q, Pplus, Pminus)
phase1 = sp1[2,0].conj()/np.abs(sp1[2,0])
phase2 = sp1[1,1].conj()/np.abs(sp1[1,1])
final = np.array([phase1*sp1[:,0], phase2*sp1[:,1]]).T
assert np.allclose(final, s)

sp2 = getSpinors(prot, q, Pplus, Pminus)
phase1 = sp2[2,0].conj()/np.abs(sp2[2,0])
phase2 = sp2[1,1].conj()/np.abs(sp2[1,1])
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final = np.array([phase1*sp2[:,0], phase2*sp2[:,1]]).T
assert np.allclose(final, s_rot)

Pplus_rot = np.dot(Ut, np.dot(Pplus, Ut.T.conj()))
Pminus_rot = np.dot(Ut, np.dot(Pminus, Ut.T.conj()))

assert np.allclose(Pplus_rot.dot(Pplus_rot), Pplus_rot)
assert np.allclose(Pminus_rot.dot(Pminus_rot), Pminus_rot)
assert np.allclose(Pminus_rot + Pplus_rot, np.eye(4))

sp_rot = getSpinors(prot, qrot, Pplus_rot, Pminus_rot)
phase1 = sp_rot[0,0]/us[0,0]
phase2 = sp_rot[0,1]/us[0,1]
final = np.array([sp_rot[:,0]/phase1, sp_rot[:,1]/phase2]).T
assert np.allclose(final, us)

Expected change

def change(p, params):
q = refq(p)
R = makeLorenzRotation(params)
(prot, qrot) = rr.rotate6D([p,q], rotation=R)

U, Ut = makeSpinorRotations(params)
spp = sp.Spinor6(p).sp6d() # getSpinors(p, q, Pplus, Pminus)
sppt = sp.Spinor6(p).sp6td() # getSpinors(p, q, Pplus, Pminus)
#print(sp)
sp_rot_2 = sp.Spinor6(prot).sp6d() #getSpinors(prot, q, Pplus, Pminus)
spt_rot_2 = sp.Spinor6(prot).sp6td() #getSpinors(prot, q, Pplus, Pminus)

usp = np.dot(U,spp)
utstp = np.dot(Ut,sppt)
transMatrix = np.dot(reciprocal(sp_rot_2), usp)
transMatrixt = np.dot(reciprocal(spt_rot_2), utstp)

assert np.isclose(det(transMatrix), 1.0)
assert np.allclose(transMatrix.T.conj().dot(transMatrix), np.eye(2))
assert np.allclose(usp, sp_rot_2.dot(transMatrix))

assert np.isclose(det(transMatrixt), 1.0)
assert np.allclose(transMatrixt.T.conj().dot(transMatrixt), np.eye(2))
assert np.allclose(utstp, spt_rot_2.dot(transMatrixt))

return transMatrix, transMatrixt

params = rr.randomDirection(10)

p1, p2 = rr.getRandom6Momenta(2, seed=1212)
pxy = np.array([1,0,0,0.6,0.8,0])
R = makeLorenzRotation(params)
U, Ut = makeSpinorRotations(params)
p1rot, pxyrot = rr.rotate6D([p1, pxy], rotation = R)
tmp1, tmtp1 = change(p1, params)
tmxy, tmtxy = change(pxy, params)
sprod = sp.sp6_dd(p1,pxy)

sprod_rot = sp.sp6_dd(p1rot,pxyrot)
sprod_rot

array([[-0.84209556-0.52203865j, -0.30999959-1.10718329j],
       [ 0.30999959-1.10718329j, -0.84209556+0.52203865j]])

assert np.allclose(tmp1.T.dot(sprod_rot).dot(tmtxy), sprod)

Test Lie algebra for boost

#Obtain a 6d phase space point
ps = rr.phaseSpacePoint6(4,2,1234)
p1,p2,p3,p4 = ps
q = np.array(refq(p1))
c4 = 1j * gammas[0].dot(gammas[1]).dot(gammas[2]).dot(gammast[3])
Pplus = 0.5 * (np.eye(4) + c4)
Pminus = 0.5 * (np.eye(4) - c4)
chi = 1

# Boost it
b1 = lorentzBoost(p1,chi,1)
b2 = lorentzBoost(p2,chi,1)
b3 = lorentzBoost(p3,chi,1)
b4 = lorentzBoost(p4,chi,1)
qb = lorentzBoost(q,chi,1)

Check that spinor product agrees to a phase

spp1 = sp.Spinor6(p1).sp6d()
spp2 = sp.Spinor6(p2).sp6d()
spp3 = sp.Spinor6(p3).sp6d()
spp4 = sp.Spinor6(p4).sp6d()

spb1 = getSpinors(b1,qb,Pplus,Pminus)
spb2 = getSpinors(b2,qb,Pplus,Pminus)
spb3 = getSpinors(b3,qb,Pplus,Pminus)
spb4 = getSpinors(b4,qb,Pplus,Pminus)

for a in range(2):
for b in range(2):

for c in range(2):
for d in range(2):

sp64_orig = sp.sp64(spp1,spp2,spp3,spp4,a,b,c,d)
sp64_boost = sp.sp64(spb1,spb2,spb3,spb4,a,b,c,d)
assert abs(sp64_orig) - abs(sp64_boost) < 1e-13
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Appendix E

Derivations

E.1 Flattened vector

For a massless 6-vector P we can define an equivalent massive 4-vector p4 in
terms of an arbitrary null reference vector q as follows:

p4 = p[ + ρq (E.1.1)

squaring both sides

(p4)2 = (p[)2 + 2p[ρq + ρ2q2 = m2 (E.1.2)

Using (p[)2 = 0 = q2 and using equation E.1.1 to express p[ in terms of p4 we
have

2(p4 − ρq)ρq = m2 (E.1.3)

and as before q2 = 0, so

2p4ρq = m2

ρ = m2

2p4.q

(E.1.4)

and hence equation E.1.1 gives

p[ = p4 − m2

2p4.q
q (E.1.5)
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Appendix F

Jupyter notebooks

F.1 utils

Function

g2 gµν Metric is mainly negative, +–... 2x2
g4 gµν 4x4
g6 gµν 6x6
g8 gµν 8x8
MP4 Minkowski products
MP6
refq q Arbitrary null reference vector
pflat p[ Flattened 4-vector
lev2u εαβ Levi-Civita tensors
lev2d εαβ

lev3 εαβγ = εαβγ

lev4 εαβγδ = εαβγδ

sig4 σi
αβ̇
, σαβ̇i 4D Pauli matrices

sigt4 σiαβ̇ , σiαβ̇
sig6 ΣiAB 6D sigma matrices, Cheung and

O’Connell convention
sigt6 Σ̃iAB

gam4 γi 4D gamma matrices, Weyl (chiral) basis,
4x4
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APPENDIX F. JUPYTER NOTEBOOKS

Function

gam6 Γi 6D gamma matrices, 8x8
slash4 pαα̇ = pµσ

µ
αα̇ 4-momentum contraction with Pauli ma-

trices
slash4t pα̇α = σ̃α̇αµ pµ

slash PAB = PµΣµAB 6-momentum contraction with Sigma
matrices

slasht PAB = PµΣµAB

sij4 sij 4D Mandelstam
sij6 Sij 6D Mandelstam
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utils: utilities
For gghj package

• IN: None

• PROCESS:

▪ Sets up the metric, levi-civita sigma and gamma matrices for 4 and 6 dimensions

▪ Provides Minkowski products

Conventions follow Cheung and O'Connell 2009, use Weyl basis for 4d sigma matrices.

$ p_{\mu} = (p0, p1, p2, ...) $, and $ p^{\mu} = (p0, -p1,-p2, ....)$

Work with $p_{\mu} $ unless otherwise stated.

Import standard packages

import numpy as np
import itertools as it 
import sympy
import math
from cmath import sqrt
from sympy.physics.quantum import tensorproduct
from scipy.linalg import det

Definitions

Minkowski metric

Metric is mainly negative: +----...

g2 = np.diagflat([1, -1])
g4 = np.diagflat([1, -1, -1, -1])
g6 = np.diagflat([1, -1, -1, -1, -1, -1])
g8 = np.diagflat([1, -1, -1, -1, -1, -1, -1, -1])

Minkowski products

def MP4(p, q):
return p[0] * q[0] - np.dot(p[1:4] , q[1:4])

def MP6(p, q):
return p[0] * q[0] - np.dot(p[1:6] , q[1:6])

Function refq: arbitrary reference vector

Obtain arbitrary null vector q and check that q.p is not zero:

def refq(p):
refq_original = (5,0,3,4,0,0)
refq_nozeros = (abs(sqrt(14)),1,2,3,0,0)
refq_nozerosscaled = (abs(sqrt(56)),2,4,6,0,0)
refq_randm = (2.000000000000001 +0.j, -0.7628747983169564+0.j, -0.0504656249392774+0.j,

-1.8481004471598275+0.j, 0. +0.j, 0. +0.j)
refq_fromsam = (2.17027666842246047, 0.27345005368269976,

2.00302541595091689, -0.78943971821443050,0,0)
refq_min = (1,0,-1,0,0,0)
refq = refq_min

    
# Now check that p.q !+ 0
pq = p[0] * refq[0]
for i in (1,2,3):

pq -= p[i] * refq[i]
if pq == 0:

# If it is, generate alternate refq
refq = refq_randm

    
return refq

Function pflat: flat four-momentum

We also define here the 'flat' 4-momentum associated with any 6-vector with $ p4,p5 \neq 0 $ in relation to a null reference vector q, such that $ p^{\flat 2}

= 0 $:

• pflat = (4)p - [(4)p^2 / ((6)P + q)^2] * q

def pflat(p):
pflat = np.zeros((6), dtype = complex)

    
# Check p is not already a flat 4-momentum:
if p[4] != 0 or p[5] != 0:

q = refq(p)
        

# Calculate numerator
#num = Mom(p).pmass() * Mom(p).pmasst()
num = p[0]**2 - p[1]**2 - p[2] **2 - p[3]**2

        
# Calculate denominator
pq = p[0] * q[0]
for i in (1,2,3):

pq -= p[i] * q[i]
den = 2 * pq

        
# Calculate pflat
pflat = np.zeros((6), dtype = complex)
for i in (0,1,2,3):

pflat[i] = p[i] - (num / den) * q[i]
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else:

# if p is already a 4-momentum
for i in range (6):

pflat[i] = p[i]
            

assert abs(MP6(pflat,pflat)) < 1e-12
    

return pflat

# Check numerically the same as Mathematica implementation
dp1d = np.array([sqrt(13*13 + 3*3 + 7*7 + 2*2 + 5*5), 13,-3,-7,2,5])
assert abs(np.all(pflat(dp1d) - np.array([14.8846,13,-1.88462,-7,0,0]))) < 1e-10

Levi-Civita tensors - lev

Levi-Civita tensors are:

• lev2u is 2D levi-civita^ab = [0 1][-1 0]

• lev2d is 2D levi-civita_ab = -lev2u

lev2u = np.array([[0, 1], [-1, 0]])

lev2d = - lev2u

lev3 = np.zeros((3, 3, 3), dtype = complex) 
perm3 = np.zeros((3)) # initialise permutations
l30 = 0 # define indices
l31 = 1
l32 = 2   
for l3y in (it.permutations([l30, l31, l32])):

np.put(perm3, [0, 1, 2],l3y)
l3x = (np.sign(perm3[1] - perm3[0]) * np.sign(perm3[2] - perm3[0])

* np.sign(perm3[2] - perm3[1]))
lev3[l3y] = l3x

lev4 = np.zeros((4, 4, 4, 4), dtype = complex) 
perm4 = np.zeros((4))
l40 = 0                        
l41 = 1
l42 = 2
l43 = 3
for l4y in (it.permutations([l40, l41, l42, l43])):

np.put(perm4, [0, 1, 2, 3], l4y)
l4x = (np.sign(perm4[1] - perm4[0]) * np.sign(perm4[2] - perm4[0])

* np.sign(perm4[3] - perm4[0]) * np.sign(perm4[2] - perm4[1])
* np.sign(perm4[3] - perm4[1]) * np.sign(perm4[3] - perm4[2]))

lev4[l4y] = l4x

Standard Pauli matrices - sig4

We use the following convention for Pauli matrices:

• sig40d = $ \sigma_0 $ = 1 = [(1, 0), (0, 1)]

• sig41d = $ \sigma_1 $ = [(0, 1), (1, 0)]

• sig42d = $ \sigma_2 $ = [(0, -i), (i, 0)]

• sig43d = $ \sigma_3 $ = [(1, 0), (0, -1)]

(If we need to distinguish between little group indices up and down, see H&P app B)

sig40d = np.identity(2, dtype = complex)
sig41d = np.array([[0, 1],[1, 0]], dtype = complex)
sig42d = np.array([[0,-1j],[+1j, 0]], dtype = complex)
sig43d = np.array([[1, 0],[0, -1]], dtype = complex)

sig4d = ([sig40d], [sig41d], [sig42d], [sig43d])

For sigmatilde4 with $ \mu $ index down:

• sigt40d = $ \tilde{\sigma}_0 $ = sig40

• sigt41d = $ \tilde{\sigma}_1 $ = -sig41

• sigt42d = $ \tilde{\sigma}_2 $ = -sig42

• sigt43d = $ \tilde{\sigma}_3 $ = -sig43

sigt40d = sig40d
sigt41d = -sig41d
sigt42d = -sig42d
sigt43d = -sig43d

sigt4d = ([sigt40d], [sigt41d], [sigt42d], [sigt43d])

We also define $ \sigma^{\mu} $

sig40u = sig40d
sig41u = -sig41d
sig42u = -sig42d
sig43u = -sig43d

sig4u = ([sig40u], [sig41u], [sig42u], [sig43u])

sigt40u = sigt40d
sigt41u = -sigt41d
sigt42u = -sigt42d
sigt43u = -sigt43d

sigt4u = ([sigt40u], [sigt41u], [sigt42u], [sigt43u])

Sigma matrices in 6d - sig6
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The sigma6 matrices are antisymmetric matrices which for convenience are simply related to a standard choice of gamma matrices in 4d. The specific form

of these matrices here is as Appendix A of Cheung and O'Connell 2009:

• sig60u = $ \Sigma^0_{AB} = i \sigma_1 \otimes \sigma_2 $

• sig61u = $ \Sigma^1_{AB} = i \sigma_2 \otimes \sigma_3 $

• sig62u = $ \Sigma^2_{AB} = -\sigma_2 \otimes \sigma_0 $

• sig63u = $ \Sigma^3_{AB} = -i \sigma_2 \otimes \sigma_1 $

• sig64u = $ \Sigma^4_{AB} = -\sigma_3 \otimes \sigma_2 $

• sig65u = $ \Sigma^5_{AB} = i \sigma_0 \otimes \sigma_2 $

Note that $ \Sigma^{\mu}_{AB} $ (upper $ \mu $ index) is a product of $ \sigma_{\mu} $ (lower index). It has the AB indices down, following C&O'C.

With tilde matrices (AB index up) given by:

• sigt60u = $ \tilde{\Sigma}^{0AB} = -\Sigma^0_{AB}$ = -sig60u

• sigt61u = $ \tilde{\Sigma}^{1AB} = \Sigma^1_{AB}$ = sig61u

• sigt62u = $ \tilde{\Sigma}^{2AB} = -\Sigma^2_{AB}$ = -sig62u

• sigt63u = $ \tilde{\Sigma}^{3AB} = \Sigma^3_{AB}$ = sig63u

• sigt64u = $ \tilde{\Sigma}^{4AB} = -\Sigma^4_{AB}$ = -sig64u

• sigt65u = $ \tilde{\Sigma}^{5AB} = \Sigma^5_{AB}$ = sig65u

sig60u = 1j * np.kron(sig41d, sig42d)
sig61u = 1j * np.kron(sig42d, sig43d)
sig62u = -np.kron(sig42d, sig40d)
sig63u = -1j * np.kron(sig42d, sig41d)
sig64u = -np.kron(sig43d, sig42d)
sig65u = 1j * np.kron(sig40d, sig42d)
sig6u = ([sig60u], [sig61u], [sig62u], [sig63u],[sig64u], [sig65u])

sigt60u = -sig60u
sigt61u = sig61u
sigt62u = -sig62u
sigt63u = sig63u
sigt64u = -sig64u
sigt65u = sig65u
sigt6u = ([sigt60u], [sigt61u], [sigt62u], [sigt63u],[sigt64u], [sigt65u])

We also define $ \Sigma_{\mu}$ and $ \tilde{\Sigma}_{\mu}$

sig60d = sig60u
sig61d = -sig61u
sig62d = -sig62u
sig63d = -sig63u
sig64d = -sig64u
sig65d = -sig65u
sig6d = ([sig60d], [sig61d], [sig62d], [sig63d],[sig64d], [sig65d])

sigt60d = sigt60u
sigt61d = -sigt61u
sigt62d = -sigt62u
sigt63d = -sigt63u
sigt64d = -sigt64u
sigt65d = -sigt65u
sigt6d = ([sigt60d], [sigt61d], [sigt62d], [sigt63d],[sigt64d], [sigt65d])

#print('sig6u')
#print(sig6u)
#print()
#print('sigt6u')
#print(sigt6u)
#print()
#print('sig6d')
#print(sig6d)
#print()
#print('sigt6d')
#print(sigt6d)
#print()

Slash momenta

• slash(p) = $ P_{AB} = P_{\mu} \Sigma^{\mu}_{AB}$

• slasht(p) = $ P^{AB} = P_{\mu} \tilde{\Sigma}^{\mu AB}$

4d contraction with Pauli matrices (used in testing) also defined here:

• psig4d = p_alpha, alphadot = p_mu sigma4^mu_alpha, alphadot

• psig4u = p^alphadot, alpha = sigma4tilde_mu^alphadot, alpha p^mu

(note: sigmatilde_mu^little group up shares definition of sigma^mu_little group in invar)

gammas = np.array([ss[0] for ss in sig6u])
gammast = np.array([ss[0] for ss in sigt6u])
gammasd = np.array([ss[0] for ss in sig6d])
gammastd = np.array([ss[0] for ss in sigt6d])

#print(gammas) #These are definitely the same as DM Mathematica implementation

def slashedMomentum(p, gammaMatrices):
    

#Original version used p^mu, but this is incorrect:
#p_contracted = p*np.array([1,-1,-1,-1,-1,-1])
#pslash = np.array([pp* gg for pp,gg in zip(p_contracted, gammaMatrices)])

    
pslash = np.array([pp* gg for pp,gg in zip(p, gammaMatrices)])
pslash = np.sum(pslash ,axis=0)
return pslash
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def slash(p):
return slashedMomentum(p, gammas)

def slasht(p):
return slashedMomentum(p, gammast)

And required for testing 4D spinors:

gammas4 = np.array([ss[0] for ss in sig4d])
gammast4 = np.array([ss[0] for ss in sigt4d])

def slashed4Momentum(p, gammaMatrices):
#p_contracted = p*np.array([1,-1,-1,-1])
#pslash = np.array([pp* gg for pp,gg in zip(p_contracted, gammaMatrices)])

    
pslash = np.array([pp* gg for pp,gg in zip(p, gammaMatrices)])
pslash = np.sum(pslash ,axis=0)
return pslash

def slash4(p):
return slashed4Momentum(p, gammas4)

def slasht4(p):
return slashed4Momentum(p, gammast4)

# Check numerically the same as Mathematica implementation

dp1d = np.array([sqrt(13*13 + 3*3 + 7*7 + 2*2 + 5*5), 13,-3,-7,2,5])
dp1d4 = np.array([sqrt(13*13 + 3*3 + 7*7), 13,-3,-7])

dPSlash = np.array([[0, 1j*dp1d[4]+dp1d[5], dp1d[1]+1j*dp1d[2], dp1d[0]-dp1d[3]],
[-1j*dp1d[4]-dp1d[5], 0, -dp1d[0]-dp1d[3], -dp1d[1]+1j*dp1d[2]],
[-dp1d[1]-1j*dp1d[2], dp1d[0]+dp1d[3], 0, -1j*dp1d[4]+dp1d[5]],
[-dp1d[0]+dp1d[3], dp1d[1]-1j*dp1d[2], 1j*dp1d[4]-dp1d[5], 0]])

assert np.allclose(slash(dp1d)-dPSlash, 0)

dPSlasht = np.array([[0, -1j*dp1d[4]+dp1d[5], dp1d[1]-1j*dp1d[2], -dp1d[0]-dp1d[3]],
[1j*dp1d[4]-dp1d[5], 0, dp1d[0]-dp1d[3], -dp1d[1]-1j*dp1d[2]],
[-dp1d[1]+1j*dp1d[2], -dp1d[0]+dp1d[3], 0, 1j*dp1d[4]+dp1d[5]],
[dp1d[0]+dp1d[3], dp1d[1]+1j*dp1d[2], -1j*dp1d[4]-dp1d[5], 0]])

assert np.allclose(slasht(dp1d)-dPSlasht, 0)

dPSlash4 = np.array([[dp1d4[0]+dp1d4[3], dp1d4[1]-1J*dp1d4[2]],
[dp1d4[1]+1J*dp1d4[2], dp1d4[0]-dp1d4[3]]])

assert np.allclose(slash4(dp1d4)-dPSlash4, 0)

Mandelstam

• S_ij = (P_i + P_j)^2 = 2 P_i.P_j

sij6 = 2P_i.P_j

• s_(ij) = (p_i + p_j)^2 = 2.p_i.p_j = p_i^(alpha alphadot).p_j_(alpha alphadot)

sij4 = 2p_i.p_2

def sij6(p1,p2):
return 2 * MP6(p1,p2)

def sij4(p1,p2):
return 2 * MP4(p1,p2)

Other utilities

# Commutator
def comm(m1, m2):

return np.dot(m1,m2) - np.dot(m2,m1)

def permutationSign(new, orig):
assert len(new) == len(orig) 
n = len(new)
m = np.zeros( (n,n) , dtype=int)
for i, j in zip(new, orig):

m[i, j] = 1
return int(det(m))

def chop(a):
a[np.abs(a)<1e-12] = 0
return a

def chopComplex(a):
ret = chop(np.real(a))+ 1j * chop(np.imag(a))
return ret

def reciprocal(vs):
'''

        Return a matrix with the reciprocal vectors as row, such that reciprocal(vs).dot(vs) == 1
    '''

v2 = np.dot(vs.T.conj(), vs)
assert np.isclose( v2[0,1], 0.0 ) 
assert np.isclose( v2[0,1], 0.0 ) 
assert np.isclose( v2[1,1], v2[0,0] ) 
rec = vs/v2.diagonal()
rec = rec.T.conj()
assert np.allclose(np.dot(rec,vs), np.eye(2))
return rec

def dotprod(u,w):
# Calculate dot product of two 2x1 matrices
res = 0
for i in (0,1):

res += u[i] * w[i]
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APPENDIX F. JUPYTER NOTEBOOKS

F.2 randrot

Function

Rotations Set up function required for rotation
randomDirection
getBasis
getRandomRotation
getRandomRotationWithFixedVector
rotate6D

Random momenta
getRandom4Momenta
getRandom6Momentum
getRandom6Momenta
random4Momentum6D With trailing zeros
random4Momenta6d

Phase space point Make a random phase space point
boost
boostedMomenta
boosted6Momenta (not required)
phaseSpacePoint4
phaseSpacePoint46 With trailing zeros
phaseSpacePoint6

Import from S@M
momset4d Import 100 sets of 4-particle, 4D phase

space points generated by S@M
Build Lie algebras

sigma
sigmat
sindices
w
comm
windices
makeLorenzRotation
makeSpinorRotations
pFromS Reconstruct momentum from spinors
pFromSt
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Function

Covariant basis
c4
Pplus
Pminus

General construction
getSpinors Obtain spinors from rotated momentum

sets
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randrot: random momenta, phase space points and rotated spinors
For gghj package

• IN: None

• PROCESS:

▪ Generates random four-momenta

▪ Rotates to 6D to create random six-momenta

▪ Generates random 4D phase space points

▪ Rotates to 6D to create random 6D phase space points

▪ Generates rotated spinors for the rotated momenta using lieAlgebra relations

Import standard packages

import numpy as np
import sympy
import scipy
import scipy.linalg 
from scipy.linalg import det
import math
from cmath import sqrt

Import other gghj modules

from utils import *

Rotations

First set up functions required for rotation

def randomDirection(n):
# n is number of randomDirections required
# used in rotated spinor generation

    
while True:

p = np.random.uniform(-1,1,n)
r = np.sum(p**2)
if r <=1:

break

p /= np.sqrt(r)
return p

def getBasis(preexisting):
# preexisting is a momentum

    
ndim = len(preexisting[0])
refs = np.eye(ndim)
vs = list(preexisting)
nMissing = ndim - len(preexisting)
ind = 0
while len(vs) < ndim:

v = np.empty(ndim)
v[:] = refs[ind]
ind += 1
#print(v)
for ivb, vb in enumerate(vs):

v = v - np.dot(v, vb) * vb 
#print(v)
for vbb in vs[:ivb]:

assert np.isclose(0,np.dot(v,vbb))
if np.allclose(v,np.zeros(ndim)):

continue

v /= np.sqrt(sum(v**2))
vs.append(v)

return vs

def getRandomRotation(ndim):
rds = [randomDirection(idim) for idim in range(ndim, 0 , -1) ]
vs = [rds[0]]
for istep in range(1,ndim):

m = np.array(getBasis(vs))
nv = np.dot(rds[istep], m[istep:])
vs.append(nv)

rot = np.array(vs)
assert np.allclose(np.dot(rot,rot.T), np.eye(ndim))
return rot

def getRandomRotationWithFixedVector(ndim, p):
pnorm = p / np.sqrt(np.sum(p*p))
S = np.array(getBasis([pnorm]))
assert np.allclose(np.dot(S,S.T), np.eye(ndim))

    
r = getRandomRotation(ndim-1)
R = np.eye(ndim)
R[1:,1:] = r

rot = np.dot(S.T,np.dot(R,S))
assert np.allclose(np.dot(rot,rot.T), np.eye(ndim))
assert np.allclose(np.dot(rot,p), p)
return rot

Define rotation rotate into 6D

def rotate6D(ps, seed=None, keepFixed=None, rotation=None):
if seed:
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np.random.seed(seed)
if keepFixed is None:

if rotation is None:
r = getRandomRotation(5)

else :
r=rotation
# print("r = rotation")
#print(r)

else:
r = getRandomRotationWithFixedVector(5, keepFixed)

ret = []
for p in ps:

new = np.zeros([6], dtype = complex)
new[0] = p[0]
#print("new 0", new)
new[1:] = np.dot(r, p[1:])
#print("new 1:", new) 
ret.append(new)
#print(ret)
assert abs(MP6(p,p)) < 1e-13 

return ret

Random momenta

def getRandom4Momenta(n, seed = None):
# n random momenta in 4D, n can be 1, not connected as a phase space point
# equivalent to rambo 

    
if seed:

np.random.seed(seed)
E = np.random.uniform(0.2,2.0, n)
c = np.random.uniform(-1,1, n)
phi = np.random.uniform(0, np.pi, n)
s = np.sqrt(1 - c**2)
momenta = np.array([E, E * s * np.sin(phi), E * s * np.cos(phi), E * c]) 
return momenta.T

def getRandom6Momentum(seed=None):
# A single random momentum obtained by rotation from 4D
if seed:

np.random.seed(seed)
E = np.random.uniform(0.2,2.0)
rot = getRandomRotation(5)
ref = np.array([E,0,0,0,0])
vec = np.dot(rot,ref)
ret = np.empty(6)
ret[0] = E
ret[1:] = vec
assert abs(MP6(ret,ret)) < 1e-13 
return ret

def getRandom6Momenta(n, seed=None):
if seed:

np.random.seed(seed)
ret = np.empty( (n, 6) )
for i in range(n):

ret[i] = getRandom6Momentum()
return ret

def random4Momentum6D(seed=None):
if seed:

np.random.seed(seed)
E = np.random.uniform(0.2,2.0)
rot = getRandomRotation(3)
ref = np.array([E,0,0])
vec = np.dot(rot,ref)
ret = np.empty(6)
ret[0] = E
ret[1:4] = vec
ret[4] = 0.0
ret[5] = 0.0
assert abs(MP6(ret,ret)) < 1e-13 
return ret

def random4Momenta6D(n, seed=None):
if seed:

np.random.seed(seed)
ret = np.empty( (n, 6) )
for i in range(n):

ret[i] = random4Momentum6D()
return ret

Make a random phase space point

# Brought in from my makePSP

def boost(q,x,gamma,b):
# all parmeters are from posMomenta:
# q     = one of the momenta from getRandomMomenta
# x     = required total energy / total 'mass' of random set
# gamma = sum of q[0] terms / total 'mass' of random set
# b     = array(-qi / total 'mass') for i = 1,2,3

    
p0 = x*(gamma*q[0] + np.dot(b,q[1:]))
p = np.array(q[1:])
p += b*q[0]
f = 1 / (1 + gamma)
f *= np.dot(b,q[1:])
p += b*f
p *= x
return (p0,) + tuple(p)

def boostedMomenta(E,n, seed = None):
# Obtain n light-like momenta which sum to energy E
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if seed:

np.random.seed(seed)
qs = getRandom4Momenta(n,seed)  
Q = np.array([ sum([q[j] for q in qs]) for j in range(4)])
M = math.sqrt(MP4(Q,Q))
b = np.array( [-q/M for q in Q[1:]])
x = E / M
gamma = Q[0] / M
boostM = [boost(q,x,gamma,b) for q in qs]
assert (abs(MP6(p,p)) < 1e-13 for p in boostM)
return boostM

def boosted6Momenta(E,n, seed = None):
# Obtain n light-like momenta which sum to energy E
# Not required

    
if seed:

np.random.seed(seed)
        

qs = getRandom6Momenta(n, seed)
Q = np.array([ sum([q[j] for q in qs]) for j in range(6)])
M = math.sqrt(MP6(Q,Q))
b = np.array( [-q/M for q in Q[1:]])
x = E / M
gamma = Q[0] / M
boostM = [boost(q,x,gamma,b) for q in qs]
return boostM

def phaseSpacePoint4(n,m, seed = None):
# n is the total number of momenta
# m is the total number of negative momenta
# seed is optional, may be useful for testing

    
if n < 2 or m < 2:

return(print("Error, both n and m must be >= 2"))
    

if seed:
np.random.seed(seed)

E = n/2   
pneg = boostedMomenta(E, m, seed) 
neg = np.array([-1,1,1,1])
pneg = np.multiply(pneg,neg)    
ppos = boostedMomenta(E, n-m)  
# No seed passed to ppos to avoid pneg and ppos using same momenta
psp = np.concatenate((pneg, ppos), axis=0)

    
# Check this is a valid phase space point
checkpsum = np.zeros(4)
for p in psp:

for i in range(4):
checkpsum[i] += p[i]

assert np.allclose(checkpsum, np.zeros(4))
    

return psp 

def phaseSpacePoint46(n,m, seed = None):
#Obtain a 4D phase space point and add trailing zeros

    
if seed:

np.random.seed(seed)
    

psp = np.zeros((n,6))
#print(psp)
psp4 = phaseSpacePoint4(n,m,seed)
#print(psp4)
for i in range(n):

for j in range(4):
psp[i,j] += psp4[i,j]   

return psp

def phaseSpacePoint6(n,m, seed = None):
# n is the total number of momenta
# m is the total number of negative momenta

    
if n < 2 or m < 2:

return(print("Error, both n and m must be >= 2"))
    

if seed:
np.random.seed(seed)

        
E = n/2   
pneg = boosted6Momenta(E, m, seed) 
neg = np.array([-1,1,1,1,1,1])
pneg = np.multiply(pneg,neg)   
ppos = boosted6Momenta(E, n-m)  
return np.concatenate((pneg, ppos), axis=0)  

Import 100 sets of 4-particle, 4d phase space points generated by S@M

# Import 4D phase space points from S@M and reconfigure with trailing zeros
# Used in testing module: tree

def momset4d():
momset4d = np.zeros((100,4,6))
rawsam = np.loadtxt("sam_momenta_sets.txt")

n = 0
for a in range (100):

row = 0
for row in range(4):

col = 0
for col in range(4):

momset4d[a,row,col] = rawsam[n]
n += 1
col += 1
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momset4d[a,row,4] = 0
momset4d[a,row,5] = 0
row += 1

a += 1
return momset4d 

sam4p = momset4d()

Using lieAlgebra for rotated spinors

Building the lie algebras

We define matrices for the Lie algebra of rotations in the $SU(4)$ representation:

$$\sigma^{ij}\phantom{}^A\phantom{}_B = \frac14\left(\tilde\gamma^{i}\phantom{}^{AC}\gamma^{j}\phantom{}_{CD} - \tilde\gamma^j\phantom{}

^{AC}\gamma^{i}\phantom{}_{CD}\right)$$

$$\tilde\sigma^{ij}\phantom{}_A\phantom{}^B = \frac14\left(\gamma^{i}\phantom{}_{AC}\tilde\gamma^{j}\phantom{}^{CD} - \gamma^j\phantom{}

_{AC}\tilde\gamma^{i}\phantom{}^{CD}\right)$$

def sigma(mu,nu):
return 0.25 * 1* (np.dot(sigt6[mu][0], sig6[nu][0]) - np.dot(sigt6[nu][0], sig6[mu][0]))

def sigmat(mu,nu):
return 0.25 * 1 *(np.dot(sig6[mu][0], sigt6[nu][0]) - np.dot(sig6[nu][0], sigt6[mu][0]))

The elements of the algebra are labelled by two indices, the two axis that will get rotated. It is a 10-dimensional.

sindices = [ (i,j) for i in range(1,6) for j in range(1,6) if i<j]

This is the algebra for the fundamental representation of rotations in $R^5$.

def w(i,j):
ret = np.zeros((5,5))
if i == j :

return ret
ret[i, j] = -1
ret[j, i] = 1
return ret

def comm(m1,m2):
return np.dot(m1,m2) - np.dot(m2,m1)

windices = [ (i,j) for i in range(5) for j in range(5) if i<j]

def makeLorenzRotation(params):
ws = np.array([w(*i) for i in windices])
L = np.sum(np.multiply(params[:,np.newaxis, np.newaxis] , ws) , axis =0)
R = scipy.linalg.expm(L)
return R

def makeSpinorRotations(params):
sigmas = np.array([sigma(*i) for i in sindices])
L = np.sum(np.multiply(params[:,np.newaxis, np.newaxis] , sigmas) , axis =0)
U = scipy.linalg.expm(L)
sigmats = np.array([sigmat(*i) for i in sindices])
L = np.sum(np.multiply(params[:,np.newaxis, np.newaxis] , sigmats) , axis =0)
Ut = scipy.linalg.expm(L)
return U, Ut

Reconstruction of the momentum from the spinors

DO NOT USE - CORRECT 6d FORUMULATION NOW IN utils.ipynb

def pFromS(s):
res= np.zeros(6, dtype='complex128')
for i in range(6):

prod = (np.dot(s.T, np.dot(gammas[i], s)))
component = -0.25*(prod[1,0]-prod[0,1])
assert np.isclose(prod[1,0], -prod[0,1])
res[i] = component

return res
    
def pFromSt(st):

res= np.zeros(6, dtype='complex128')
for i in range(6):

prod = (np.dot(st.T, np.dot(gammast[i], st)))
component = -0.25*(prod[0,1]-prod[1,0])
res[i] = component

return res

#assert np.allclose(pFromS(s), p)
#assert np.allclose(pFromSt(st), p)

Covariant definition of the basis for 6D spinors

We use

$$C_4 = i \gamma^0\gamma^1\gamma^2\gamma^3$$

The definition of the spinors is such that

$$\not q |s\rangle$$

is an eigenvector of $C_4$ with eigenvalue $\mp 1$ for the first and second column respectively. We see that below:
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c4 = 1j * gammas[0].dot(gammast[1]).dot(gammas[2]).dot(gammast[3])

We define projectors onto the positive and negative eigenvectors of $C_4$:

Pplus = 0.5*(np.eye(4)+c4)
Pminus = 0.5*(np.eye(4)-c4)

General construction of rotated spinors

Notes re using this general construction:

For a single momentum, to use getSpinors we will require the following steps

• params = randomDirection(10)

• R = makeLorenzRotation(params)

• U, Ut = makeSpinorRotations(params)

• Pplus_rot = np.dot(Ut, np.dot(Pplus, Ut.T.conj()))

• Pminus_rot = np.dot(Ut, np.dot(Pminus, Ut.T.conj)))

• specify a momentum, p

• specify a reference vector, q

• (prot,qrot) = rotate6D([p,q], rotation = R)

• For getSpinors specify: p = prot, q = qrot, Pp = Pplus_rot, Pm = Pminus_rot

For a phase space point, to use getSpinors for all momenta we will require the following steps

• params to Pminus_rot as above

• specify a phase space point ps = phaseSpacePoint46

• p1,p2,p3,p4,... = ps

• specify a reference vector, q

• q = np.array(refq(p1))

• r1, r2, r3,r4,... = rotate6D(ps, rotation = R)

• qr = rotate6D([q], rotation = R)

• qrot = qr[0]

• For getSpinors specify: p = r1, q = qrot, Pp = Pplus_rot, Pm = Pminus_rot

• Then p = r2, q = qrot ... etc
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def getSpinors(p, q, Pp, Pm):

assert np.allclose(Pp + Pm, np.eye(4))
assert np.allclose(np.dot(Pp, Pp), Pp)
assert np.allclose(np.dot(Pm, Pm), Pm)
assert np.allclose(np.dot(Pm, Pp), np.zeros_like(Pp))
assert np.allclose(np.dot(Pp, Pm), np.zeros_like(Pp))
ev, vs = np.linalg.eig(slash(p))

    
sols = vs.T[np.isclose(ev, 0.0)]

# check the solutions are solutions...
assert np.allclose(chopComplex(slash(p).dot(sols.T)), np.zeros_like(sols.T))
# make sure the vectors are orthonormal
if not np.allclose( sols.dot(sols.T.conj()), np.eye(2)):

b1 = sols[0]
b1 = b1/np.sqrt(b1.dot(b1.T.conj()))
b2 = sols[1]
b2 = b2 - np.dot(b2, b1.conj().T) * b1 
b2 = b2/np.sqrt(b2.dot(b2.T.conj()))

else:
b1, b2 = sols
print("b1, b2 = sols")

bp = np.array([b1,b2])

# now they must be orthonormal:
assert np.allclose(chopComplex(np.dot(bp,bp.T.conj())), np.eye(2))
# check they are still a solution of the dirac equation:
assert np.allclose(chopComplex(np.dot(slash(p),bp.T)), np.zeros_like(bp.T))

# calculate the components of the vectors with appropriate eigenvector of P_{\pm}q
comp_minus = scipy.linalg.null_space(bp.dot(np.dot(Pp,slash(q))).T)
comp_plus = scipy.linalg.null_space(bp.dot(np.dot(Pm,slash(q))).T)
# check there is only one vector:
assert comp_plus.shape == (2,1)
assert comp_minus.shape == (2,1)

    
comp_plus = comp_plus[:,0]
comp_minus = comp_minus[:,0]
# get the two vectors for the two columns of the spinor
c1 = bp.T.dot(comp_plus)
c2 = bp.T.dot(comp_minus)
final = np.array([c1,c2]).T
## check they are still solutions of the dirac equation
assert np.allclose(chopComplex(slash(p).dot(final)),np.zeros((4,2)))
# check they re orthnormal
assert np.allclose(final.T.conj().dot(final), np.eye(2))
ratios = pFromS(final)/p
assert np.allclose(ratios[np.isfinite(ratios)],ratios[0])
scale = 1.0/np.sqrt( ratios[0] )
final = final*scale
assert np.allclose(pFromS(final), p)
return final

# THIS IS NOT TESTED (AND NOT USED) ******************************************

def getTildeSpinors(p, q, Pp, Pm):

assert np.allclose(Pp + Pm, np.eye(4))
assert np.allclose(np.dot(Pp, Pp), Pp)
assert np.allclose(np.dot(Pm, Pm), Pm)
assert np.allclose(np.dot(Pm, Pp), np.zeros_like(Pp))
assert np.allclose(np.dot(Pp, Pm), np.zeros_like(Pp))
ev, vs = np.linalg.eig(slasht(p))

    
sols = vs.T[np.isclose(ev, 0.0)]

# check the solutions are solutions...
assert np.allclose(chopComplex(slasht(p).dot(sols.T)), np.zeros_like(sols.T))
# make sure the vectors are orthonormal
if not np.allclose( sols.dot(sols.T.conj()), np.eye(2)):

b1 = sols[0]
b1 = b1/np.sqrt(b1.dot(b1.T.conj()))
b2 = sols[1]
b2 = b2 - np.dot(b2, b1.conj().T) * b1 
b2 = b2/np.sqrt(b2.dot(b2.T.conj()))

else:
b1, b2 = sols
print("b1, b2 = sols")

bp = np.array([b1,b2])

# now they must be orthonormal:
assert np.allclose(chopComplex(np.dot(bp,bp.T.conj())), np.eye(2))
# check they are still a solution of the dirac equation:
assert np.allclose(chopComplex(np.dot(slash(p),bp.T)), np.zeros_like(bp.T))

# calculate the components of the vectors with appropriate eigenvector of P_{\pm}q
comp_minus = scipy.linalg.null_space(bp.dot(np.dot(Pp,slash(q))).T)
comp_plus = scipy.linalg.null_space(bp.dot(np.dot(Pm,slash(q))).T)
# check there is only one vector:
assert comp_plus.shape == (2,1)
assert comp_minus.shape == (2,1)

    
comp_plus = comp_plus[:,0]
comp_minus = comp_minus[:,0]
# get the two vectors for the two columns of the spinor
c1 = bp.T.dot(comp_plus)
c2 = bp.T.dot(comp_minus)
final = np.array([c1,c2]).T
## check they are still solutions of the dirac equation
assert np.allclose(chopComplex(slash(p).dot(final)),np.zeros((4,2)))
# check they re orthnormal
assert np.allclose(final.T.conj().dot(final), np.eye(2))
ratios = pFromS(final)/p
assert np.allclose(ratios[np.isfinite(ratios)],ratios[0])
scale = 1.0/np.sqrt( ratios[0] )
final = final*scale
assert np.allclose(pFromS(final), p)
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APPENDIX F. JUPYTER NOTEBOOKS

F.3 spinors

Class Function

Mom pplus p0 + p3 Momentum components of
spinors

pminus p0 − p3

pperp p1 + ip2

pperm p1 − ip2

pmasst p5 + ip4

pmass p5 − ip4

Spinor2 la λα, |i〉 Weyl spinors
lat λ̃α̇, [i|
cla λα, 〈i|
clat λ̃α̇, |i]

Spinor4 up u+ = v− =
[
λα

0

]
, |p〉 Spinor solutions of 4D Dirac

um u− = v+ =
[

0
λ̃α̇

]
, |p]

ubp ū+ = v̄− =
[
0 λ̃α̇

]
, [p|

ubm ū− = v̄+ =
[
λα 0

]
, 〈p|

Sp6Ka ka κ κ components of 6D spinors
kat κ̃

kap κ′

kapt κ̃′

Spinor6 sp6d ΛAa 6D spinors
sp6td Λ̃Aȧ
sp6u ΛAa

sp6tu Λ̃ȧA
sp22 〈ij〉 = λαλα etc Weyl spinor contractions
sp62 〈ia|jḃ] = [jḃ|ia〉 = ΛAai Λ̃jAḃ etc 6D spinor contractions
sp64 〈ia, jb, kc, ld〉
sp6s1 〈ia| 6 P |jb〉 6D spinor strings
sp6s2 〈ia| 6 P1 6 P2|iȧ]
sp6s3 〈ia| 6 P1 6 P2 6 P3|jb〉
sp6s6 〈ia| 6 Pj 6 Pk 6 Pl− 6 Pl 6 Pk 6 Pj |ia〉
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Class Function

pol εµaȧ Polarisation vector
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spinors: 6D spinor formalism
For gghj package

• IN: Receives from module tree calls for specified spinor-related values associated with specified 6D momenta.

• FUNCTIONALITY:

▪ Calculates 6D spinor products and spinor strings.

▪ According to the Cheung and O'Connell (2009) formalism.

• OUT: Returns requested spinor-related values to tree.

Import standard packages

import numpy as np
import sympy
import scipy 
from cmath import sqrt

Import other gghj modules

from utils import * # metric, levi-civita, sigma and gamma matrices, Minkowski products etc
import randrot as rr # random momenta generator to replace randm and testm    

Class Mom: Momentum spinor components and contraction

Convention:

• $ p_{\mu} $ = p = (p0, p1, p2, p3, p4, p5);

• $ p^{\mu} $ = pu = (p0, -p1, -p2, -p3, -p4, -p5)

Calculate momentum components of spinors:

• pplus = $ p_0 + p_3 $

• pminus = $ p_0 - p_3 $

• pperp = $ p_1 + ip_2 $

• pperm = $ p_1 - ip_2 $

• pmasst = $ p_5 + ip_4 $

• pmass = $ p_5 - ip_4 $

class Mom:
def __init__(self, p):

self._p = p
self.c = (self._p)
self._pplus = None

self._pminus = None

self._pperp = None

self._pperm = None

self._pmasst = None

self._pmass = None

self._psig6d = None

self._psig6u = None

self._psig4d = None

self._psig4u = None

    
def __str__(self):

out = "Mom: Momentum spinor components and contractions with sigma matrices\
               for momentum{}".format(','.join([str(cc) for cc in self.c]))

return out
def __repr__(self):

return "Mom({})".format(','.join([str(cc) for cc in self.c]))
    
    

def pplus(self):
self._pplus = self._p[0] + self._p[3]
return self._pplus

    
def pminus(self):

self._pminus = self._p[0] - self._p[3]
return self._pminus

    
def pperp(self):

self._pperp = self._p[1] + 1j * self._p[2]
return self._pperp

    
def pperm(self):

self._pperm = self._p[1] - 1j * self._p[2]
return self._pperm

def pmass(self):
self._pmass = self._p[5] - 1j * self._p[4]
return self._pmass

    
def pmasst(self):

self._pmasst = self._p[5] + 1j * self._p[4]
return self._pmasst

    

Class Spinor2: Weyl spinors

Four-momentum can be represented as a bispinor, using massless chiral and anti-chiral spinors. Notation (is per DM Mathematica):

• $ p^{\alpha \dot{\alpha}}_{\mu} = p_{\mu} \sigma^{\mu \alpha \dot{\alpha}} = \tilde{\lambda} ^{\dot{\alpha}} \lambda^{\alpha}$ = lat la

• $ p_{\mu \alpha \dot{\alpha}} = p_{\mu} \sigma^{\mu}_{\alpha \dot{\alpha}} = \lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}$ = cla clat = $

\epsilon_{\alpha \beta} \lambda^{\beta} \epsilon_{\dot{\alpha} \dot{\beta}} \tilde{\lambda}^{\dot{\beta}}$

In [1]:
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So:

• la: | i > lambda^alpha

• lat: [ i | lambdatilde^alphadot

• cla: < i | lambda_alpha

• clat: | i ] lambdatilde_alphadot

Comments:

• Handling division by zero: if the plus component of SixMomentum is zero then a denominator with this component will result in 'divide by zero' error.

However, all spinors with plus in the denomenator also have a factor of plus in the numerator, hence safe to give answer zero.

• All Spinor2 are represented as 2 x 1 matrices.

class Spinor2:
    

# This version has the square root demoninator explicit in each calculation
    

def __init__(self, p):
self._p = p
self.c = (self._p)
self._la = None

self._lat = None

self._cla = None

self._clat = None

    
def __str__(self):

out = "Spinor2: 2d chiral/anti-chiral spinors with 4-momentum \
               components{}".format(','.join([str(cc) for cc in self.c]))

return out
def __repr__(self):

return "Spinor2({})".format(','.join([str(cc) for cc in self.c]))
    
    

def la(self):
if self._la is None:

self._la = np.zeros((2,1), dtype = complex)
if Mom(self._p).pplus() != 0: 

self._la[0] = Mom(self._p).pplus()
self._la[1] = Mom(self._p).pperp()

return self._la / sqrt(Mom(self._p).pplus())
    

def lat(self):
if self._lat is None:

self._lat = np.zeros((2,1), dtype = complex)
if Mom(self._p).pplus() != 0: 

self._lat[0] = Mom(self._p).pplus() 
self._lat[1] = Mom(self._p).pperm()

return self._lat / sqrt(Mom(self._p).pplus())
    

def cla(self):
if self._cla is None:

self._cla = np.zeros((2,1), dtype = complex)
if Mom(self._p).pplus() != 0:

self._cla[0] = -Mom(self._p).pperp()
self._cla[1] = Mom(self._p).pplus()

return self._cla / sqrt(Mom(self._p).pplus())
    

def clat(self):
if self._lat is None:

self._clat = np.zeros((2,1), dtype = complex)
if Mom(self._p).pplus() != 0:

self._clat[0] = -Mom(self._p).pperm()
self._clat[1] = Mom(self._p).pplus()

return self._clat / sqrt(Mom(self._p).pplus())

Class Sp6Ka: construct kappa components of 6D spinors

The p4, p5-related components required to construct 6-d spinors are (Bern 2011 pg 4):

• ka = kappa = (p5 - ip4) / < cla_p la_q >

• kat = kappatilde = (p5 + ip4) / [lat_q clat_p]

• kap = kappaprime = (p5 + ip4) / < cla_p la_q >

• kapt = kappaprimetilde = (p5 - ip4) / [lat_q clat_p]

(Test for denominator = 0 is applied but this should never occur because reference vector is defined as one for which q.p != 0.)

# Products spaa and spbb now defined consistently with Bern et al

class Ka6:
def __init__(self, p):

self.p = p
self.pflat = pflat(p)
self.q = refq(p)
self._spaa = sp22(Spinor2(self.q).cla(), Spinor2(self.pflat).la())
self._spbb = sp22(Spinor2(self.pflat).lat(), Spinor2(self.q).clat())
self.c = (self.p, self.pflat, self.q, self._spaa, self._spbb)
self._ka = None

self._kat = None

self._kap = None

self._kapt = None

        
def __str__(self):

out = "Sp6Ka: Kappa components of 6D spinors from\
               #being {}".format(','.join([str(cc) for cc in self.c]))

return out
def __repr__(self):

return "Sp6Ka({})".format(','.join([str(cc) for cc in self.c]))
    
        

def ka(self):
num = Mom(self.p).pmass()
if self._spaa == 0: self._ka = 0
else: self._ka = num / self._spaa
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return self._ka
    

def kat(self):
num = Mom(self.p).pmasst()
if self._spbb == 0: self._kat = 0
else: self._kat = num / self._spbb
return self._kat

    
def kap(self):

num = Mom(self.p).pmasst()
if self._spaa == 0: self._kap = 0
else: self._kap = num / self._spaa
return self._kap

    
def kapt(self):

num = Mom(self.p).pmass()
if self._spbb == 0: self._kapt = 0
else: self._kapt = num / self._spbb
return self._kapt

Class Spinor6: spinor solutions of 6D Dirac equation

The $ \Lambda_a $ and $ \Lambda_{\dot{a}} $ solutions are found by solving the 6D Dirac equation. The $ a, \dot{a} $ indices are raised using $

\epsilon^{ab} $.

6d massless spinors are then expressed in terms of massless 4d spinors via the expressions

• sp6d $ =\ \Lambda^A_a \ = \begin{bmatrix} \kappa' \mu_{\alpha} & \lambda_{\alpha}\\ \tilde{\lambda}^{\dot{\alpha}} & -\tilde{\kappa}' \tilde{\mu}

^{\dot{\alpha}}\end{bmatrix} = \begin{bmatrix} \text{kap cla(q)} & \text{cla(pflat)} \\ \text{lat(pflat)} & \text{-kapt lat(q)} \end{bmatrix}$

• sp6td $ = \tilde{\Lambda}_{A \dot{a}} = \begin{bmatrix} \kappa \mu^{\alpha} & \lambda^{\alpha}\\ \tilde{\lambda}_{\dot{\alpha}} & -\tilde{\kappa}

\tilde{\mu}_{\dot{\alpha}}\end{bmatrix} = \begin{bmatrix} \text{ka la(q)} & \text{la(pflat)} \\ \text{clat(pflat)} & -\text{kat clat(q)} \end{bmatrix}$

• sp6u $ =\ \Lambda^{Aa} = \ \epsilon^{ab}\Lambda^{Ab} $

• sp6tu $ = \tilde{\Lambda}_{A}^{\dot{a}} \ = \epsilon^{\dot{a}\dot{b}}\tilde{\Lambda}_{A\dot{b}} $

The two columns in sp6, sp6t correspond to the little group index a and adot taking value 1 or 2 respectively. The A index represents the rows.

The 6d massless condition is p^2 = 4p^2 - p4^2 - p5^2 = 4p^2 - mass x masstilde = 0. Therefore these massless 6d spinors can represent 4-momenta via a

combination of massless 4d spinors.

In the special case that SixMomentum has p4, p5 = 0, i.e. 4-momentum is massless, the ka-type components are zero and the 6-d spinors simplify to 4-d

spinors.

Note that the Bern et al definitions differ:

• $ =\ \Lambda^A_a \ = \begin{bmatrix} -\kappa \mu_{\alpha} & \lambda_{\alpha}\\ \tilde{\lambda}^{\dot{\alpha}} & \tilde{\kappa} \tilde{\mu}

^{\dot{\alpha}}\end{bmatrix} = \begin{bmatrix} \text{-ka cla(q)} & \text{cla(pflat)} \\ \text{lat(pflat)} & \text{kat lat(q)} \end{bmatrix}$

• $ = \tilde{\Lambda}_{A \dot{a}} = \begin{bmatrix} \kappa' \mu^{\alpha} & \lambda^{\alpha}\\ -\tilde{\lambda}_{\dot{\alpha}} & \tilde{\kappa}'

\tilde{\mu}_{\dot{\alpha}}\end{bmatrix} = \begin{bmatrix} \text{kap la(q)} & \text{la(pflat)} \\ \text{-clat(pflat)} & \text{kapt clat(q)} \end{bmatrix}$

The differences in $ \kappa $ definitions are:

• $ m \leftrightarrow \tilde{m} $

• $ \langle \mu \lambda \rangle \leftrightarrow \langle \lambda \mu \rangle $, i.e. factor of -1

• $ [\lambda \mu ] \leftrightarrow [ \mu \lambda] $, similarly a factor of -1

Bern also has a factor of -1 in column 1 of $ \tilde{\Lambda}_{A \dot{a}} $

Coding the Bern et al definitons in the conventions used in gghj does not solve the Dirac equation.

class Spinor6:
    

def __init__(self, p):
self.p = p
self.pflat = pflat(p)
self.q = refq(p)
self.la_p = Spinor2(self.pflat).la()
self.lat_p = Spinor2(self.pflat).lat()
self.cla_p = Spinor2(self.pflat).cla()
self.clat_p = Spinor2(self.pflat).clat()
self.la_q = Spinor2(self.q).la()
self.lat_q = Spinor2(self.q).lat()
self.cla_q = Spinor2(self.q).cla()
self.clat_q = Spinor2(self.q).clat()
self._sp6d = None

self._sp6td = None

self._sp6u = None

self._sp6tu = None

                
#def __str__(self):

#out = "Spinor6: 6-d spinors expressed in terms of massless 4-d spinors\
#with momenta{}".format(','.join([str(cc) for cc in self.c]))

#return out
#def __repr__(self):

#return "Spinor6({})".format(','.join([str(cc) for cc in self.c]))
     

def sp6(self):
if self._sp6d is None:

self._sp6d = np.zeros((4,2), dtype = complex)
self._sp6d[0,0] = (Ka6(self.p).kap() * self.cla_q[0])[0]
self._sp6d[1,0] = (Ka6(self.p).kap() * self.cla_q[1])[0]
self._sp6d[2,0] = (self.lat_p[0])[0]
self._sp6d[3,0] = (self.lat_p[1])[0]
self._sp6d[0,1] = (self.cla_p[0])[0]
self._sp6d[1,1] = (self.cla_p[1])[0]
self._sp6d[2,1] = -(Ka6(self.p).kapt() * self.lat_q[0])[0]
self._sp6d[3,1] = -(Ka6(self.p).kapt() * self.lat_q[1])[0]

        
if self._sp6u is None:

self._sp6u = np.matmul(self._sp6d,lev2u)
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return self._sp6d, self._sp6u

    
def sp6t(self):

if self._sp6td is None:
self._sp6td = np.zeros((4,2), dtype = complex)
self._sp6td[0,0] = (Ka6(self.p).ka() * self.la_q[0])[0]
self._sp6td[1,0] = (Ka6(self.p).ka() * self.la_q[1])[0]
self._sp6td[2,0] = (self.clat_p[0])[0]
self._sp6td[3,0] = (self.clat_p[1])[0]
self._sp6td[0,1] = (self.la_p[0])[0]
self._sp6td[1,1] = (self.la_p[1])[0]
self._sp6td[2,1] = (-Ka6(self.p).kat() * self.clat_q[0])[0]
self._sp6td[3,1] = (-Ka6(self.p).kat() * self.clat_q[1])[0]

        
if self._sp6tu is None:

self._sp6tu = np.matmul(self._sp6td,lev2u) 
        

return self._sp6td, self._sp6tu  

Function definitions, including spinor products

Functions momSpinors: obtain spinors from positive or negative momenta

Our convention is all momenta treated as outgoing. Incoming momenta, therefore, are negative. For all-gluon amplitudes, the prescription for a spinor for a

negative momentum is:

$$ \Lambda_{(-p)} = i \Lambda_{(p)} $$

def posS(p):
spd,spu = Spinor6(p).sp6()
sptd,sptu = Spinor6(p).sp6t()
return spd,spu,sptd,sptu

def negS(p):
spd,spu = Spinor6(-p).sp6()
sptd,sptu = Spinor6(-p).sp6t()
spd *= 1j
spu *= 1j
sptd *= 1j
sptu *= 1j 
return spd,spu,sptd,sptu

def momSpinors(p):
if p[0] < 0:

spd, spu,sptd,sptu = negS(p)
else: 

spd,spu,sptd,sptu = posS(p)
return spd,sptd,spu,sptu

Functions pFromS6D: reconstruct momentum from spinors

To obtain momenta from spinors use the following:

$$ p_{\mu} = - \frac{1}{4} \langle p_a | \Sigma_{\mu} | p_b \rangle \epsilon^{ab} = - \frac{1}{4} [p_{\dot{a}}|\tilde{\Sigma}_{\mu}|p_{\dot{b}}]

\epsilon^{\dot{a}\dot{b}} $$

NOTE THIS REPLACES pFromS and pFromSt in randrot, which do not use correct formula for 6D spinors

def pFromS6D(s):
res= np.zeros(6, dtype='complex128')
for i in range(6):

prod1 = np.dot(s,-lev2u) # lev2u is epsab, here need epsba so -lev2u
prod2 = np.dot(s.T, np.dot(gammastd[i], prod1))
component = -0.25*np.trace(prod2)
res[i] = component

return res
    
def pFromSt6D(st):

res= np.zeros(6, dtype='complex128')
for i in range(6):

prod1 = np.dot(st,-lev2u) # lev2u is epsab, here need epsba so -lev2u
prod2 = np.dot(st.T, np.dot(gammasd[i], prod1))
component = -0.25*np.trace(prod2)
res[i] = component

return res

Functions sp22: contractions of two Weyl spinors

This function takes 2D spinors as arguments.

For two particles i and j we calculate contractions of Weyl spinors with the following definitions (H&P p6 16, 175):

• < ij > = - < ji > = lambda_i^alpha x lambda_j_alpha

• [ ij ] = - [ ji ] = lambdatilde_i_alphadot x lambdatilde_j^alphadot

etc

Bern et al clarify: $ \langle ij \rangle = \epsilon^{\alpha \beta} \lambda_{i \beta} \lambda_{j \alpha} $, $ \ \ \ [ij] = \epsilon_{\dot{\alpha} \dot{\beta}}

\tilde{\lambda}^{\dot{\beta}} \tilde{\lambda}^{\dot{\alpha}} $, $ \ \ \ \langle ij \rangle [ji] = s_{ij} $

def sp22(sp2i, sp2j):
sp22 = sp2i[0] * sp2j[0] + sp2i[1] * sp2j[1]
return sp22

def spaa(p,q):
return sp22(Spinor2(p).cla(), Spinor2(q).la())

def spbb(p,q):
return sp22(Spinor2(p).lat(), Spinor2(q).clat())
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Functions sp62: contractions of two 6D spinors

Takes as arguments two 6D spinors.

For two particles i and j we calculate 2 x 2 6D spinor inner products with the following definitions:

• < i^a | j_bdot ] = Lambda_i^Aa x Lambdatilde_j_Abdot = [ j_bdot | i^a >

• < i_a | j^bdot ] = Lambda_ia^A x Lambdatilde_jA^bdot = [ j^bdot | i_a >

• < i_a | j_bdot ] = Lambda_ia^A x Lambdatilde_jAbdot = [ j_bdot | i_a >

• < i^a | j^bdot ] = Lambda_i^Aa x Lambdatilde_jA^bdot = [ j^bdot | i^a >

sp62(ij) = sp6xx(p_i) sp6xx(p_j)

def sp62(sp6i, sp6j, a, b):
sp62 = 0
for A in (0,1,2,3):

sp62 += sp6i[A,a] * sp6j[A,b]
return sp62

# For all helicities:

def sp62_all_old(sp6i, sp6j):
sp62 = np.zeros((2,2), dtype = complex)
for i in (0,1,2,3):

sp62[0,0] += sp6i[i,0] * sp6j[i,0]
sp62[1,0] += sp6i[i,1] * sp6j[i,0]
sp62[0,1] += sp6i[i,0] * sp6j[i,1]
sp62[1,1] += sp6i[i,1] * sp6j[i,1]

return sp62

def sp62_all(sp6i, sp6j):
sp62 = np.matmul(np.transpose(sp6i),sp6j)
return sp62

Shorthand, specified by momenta:

def sp6_dd(p1, p2):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd2,sptd2,spu2,sptu2 = momSpinors(p2)
return sp62_all(spd1,sptd2)

Functions sp64: contractions of four 6D spinors

Takes as arguments four 6D spinors and their specified helicities.

• < i_a j_b k_c l_d > = levi4_ABCD. Lambda_i^A_a. Lambda_j^B_b. Lambda_k^C_c. Lambda_l^D_d

• < i^a j^b k^c l^d > = levi4_ABCD. Lambda_i^Aa. Lambda_j^Bb. Lambda_k^Cc. Lambda_l^Dd

sp64 = tensor contraction of outer product of [lev4_ABCD . sp6(A,i) . sp6(B,j) . sp6(C,k) . sp6(D,l)]

def sp64(sp6i,sp6j,sp6k,sp6l,a,b,c,d):
# This function calculates a single number, for specified helicities
# Add an error exit here for a,b,c,d not 0,1
sp64 = 0
for A in range(4):

for B in range(4):
for C in range(4):

for D in range(4):
if lev4[A,B,C,D] == 1:

sp64 += (sp6i[A,a] * sp6j[B,b] * sp6k[C,c] * sp6l[D,d])
if lev4[A,B,C,D] == -1:

sp64 -= (sp6i[A,a] * sp6j[B,b] * sp6k[C,c] * sp6l[D,d])
return sp64

Functions sp6s: spinor strings

These functions take two 6D spinors and a specified number of 6-momenta (contracted with Sigma matrices)

• < 1_a | P2slash | 3_b > = Lambda^A_a P^AB Lambda^B_b

sp6s1 = sp6d(p1) slash(p2) sp6d(p3)

• < i_a | Pslash_3 Pslash_4 | j^a]

sp6s2 = sp6d(p1) slash(p2) slasht(p3) sp6td(p4)

etc

def sp6s1(p1,p2,p3,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd3,sptd3,spu3,sptu3 = momSpinors(p3)
sp1 = spd1
sl2 = slash(p2)
sp3 = spd3
spm = np.empty([4,2], dtype = complex)
spm[:,0] = np.matmul(sl2,sp3[:,0])
spm[:,1] = np.matmul(sl2,sp3[:,1])

return sp62(sp1, spm, a, b)             

def sp6st1(p1,p2,p3,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd3,sptd3,spu3,sptu3 = momSpinors(p3)
sp1 = sptd1
sl2 = slash(p2)
sp3 = sptd3
spm = np.empty([4,2], dtype = complex)
spm[:,0] = np.matmul(sl2,sp3[:,0])
spm[:,1] = np.matmul(sl2,sp3[:,1])

return sp62(sp1, spm, a, b)             

def sp6s2(p1,p2,p3,p4,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd4,sptd4,spu4,sptu4 = momSpinors(p4)
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sp1 = spd1
sl2 = slash(p2)
sl3 = slasht(p3)
sp4 = spd4
step1 = np.matmul(sl2,sl3)
spm = np.empty([4,2], dtype = complex)
spm[:,0] = np.matmul(step1,sp4[:,0])
spm[:,1] = np.matmul(step1,sp4[:,1])

return sp62(sp1, spm, a, b)             

def sp6s3(p1,p2,p3,p4,p5,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd5,sptd5,spu5,sptu5 = momSpinors(p5)
sp1 = spd1
sl2 = slash(p2)
sl3 = slasht(p3)
sl4 = slash(p4)
sp5 = spd5
step1 = np.matmul(sl2,np.matmul(sl3,s14))
spm = np.empty([4,2], dtype = complex)
spm[:,0] = np.matmul(step1,sp5[:,0])
spm[:,1] = np.matmul(step1,sp5[:,1])

return sp62(sp1, spm, a, b)             

def sp6st3(p1,p2,p3,p4,p5,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd5,sptd5,spu5,sptu5 = momSpinors(p5)
sp1 = sptd1
sl2 = slash(p2)
sl3 = slasht(p3)
sl4 = slash(p4)
sp5 = sptd5
step1 = np.matmul(sl2,np.matmul(sl3,s14))
spm = np.empty([4,2], dtype = complex)
spm[:,0] = np.matmul(step1,sp5[:,0])
spm[:,1] = np.matmul(step1,sp5[:,1])

return sp62(sp1, spm, a, b)             

def sp6s4(p1,p2,p3,p4,p5,p6,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd6,sptd6,spu6,sptu6 = momSpinors(p6)
sp1 = spd1
sl2 = slash(p2)
sl3 = slasht(p3)
sl4 = slash(p4)
sl5 = slasht(p5)
sp6 = spd6
step1 = np.matmul(sl3,np.matmul(sl4,s15))
step2 = np.matmul(sl2,step1)
spm = np.empty([4,2], dtype = complex)
spm[:,0] = np.matmul(step2,sp6[:,0])
spm[:,1] = np.matmul(step2,sp6[:,1])

return sp62(sp1, spm, a, b)             

def sp6s5(p1,p2,p3,p4,p5,p6,p7,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd7,sptd7,spu7,sptu7 = momSpinors(p7)
sp1 = spd1
sl2 = slash(p2)
sl3 = slasht(p3)
sl4 = slash(p4)
sl5 = slasht(p5)
sl6 = slash(p6)
sp7 = spd7
step1 = np.matmul(sl4,np.matmul(sl5,s16))
step2 = np.matmul(sl2,np.matmul(sl3,step1))
spm = np.empty([4,2], dtype = complex)
spm[:,0] = np.matmul(step2,sp7[:,0])
spm[:,1] = np.matmul(step2,sp7[:,1])

return sp62(sp1, spm, a, b) 

def sp6st5(p1,p2,p3,p4,p5,p6,p7,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd6,sptd6,spu6,sptu6 = momSpinors(p7)
sp1 = sptd1
sl2 = slash(p2)
sl3 = slasht(p3)
sl4 = slash(p4)
sl5 = slasht(p5)
sl6 = slash(p6)
sp7 = sptd7
step1 = np.matmul(sl4,np.matmul(sl5,s16))
step2 = np.matmul(sl2,np.matmul(sl3,step1))
spm = np.empty([4,2], dtype = complex)
spm[:,0] = np.matmul(step2,sp7[:,0])
spm[:,1] = np.matmul(step2,sp7[:,1])

return sp62(sp1, spm, a, b) 

def sp6s6(p1,p2,p3,p4,p5,p6,p7,p8,a,b):
spd1,sptd1,spu1,sptu1 = momSpinors(p1)
spd8,sptd8,spu8,sptu8 = momSpinors(p8)
sp1 = spd8
sl2 = slash(p2)
sl3 = slasht(p3)
sl4 = slash(p4)
sl5 = slasht(p5)
sl6 = slash(p6)
sl7 = slasht(p7)
sp8 = sptd8
step1 = np.matmul(sl5,np.matmul(sl6,s17))
step2 = np.matmul(sl3,np.matmul(sl4,step1))
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APPENDIX F. JUPYTER NOTEBOOKS

F.4 treewithspinors

Class Function

g4 A4(1aȧ, 2bḃ, 3cċ, 4dḋ) All-gluon 4-point amplitude
auX xax̃ȧ Auxiliary matrix
pol Eµaȧ Polarisation vector
rv rAB Shift vector
zPole z2j Shift parameter z

ZSpinor zsp1 Λa1̂ ,Λ1̂a Spinors for shifted momenta
zsp2 Λb2̂,Λ2̂b

zspt1 Λ̃ȧ1̂ , Λ̃1̂ȧ

zspt2 Λ̃ḃ2̂, Λ̃2̂ḃ

pHatZs p̂1, p̂1 Shifted momenta from
Zspinors

pHat p̂1, p̂1 Shifted momenta from mo-
menta

spFor3g Λ1̂a...Λ2̂j Spinors for three-point mo-
menta

uutilde u, ũ, w, w̃ 2 × 1 components of spinor
products

g3Gamma Γabc Γ̃̇̇bċ Components of 3-point ampli-
tude

g3Amp A3(1aȧ, 2bḃ, 3cċ) Three-point amplitude

223



tree_with _spinors

Import standard packages

import numpy as np
from cmath import sqrt
from cmath import exp
import scipy
from scipy.sparse import csr_matrix # Used to find non-zero elements in g3 normalisation
from matplotlib import pyplot as plt

Import other gghj modules

from utils import *

import spinors as sp
import randrot as rr # random momenta and phase space points for testing

Set up data for preliminary testing

Momenta

# As used in Mathematica check
dp1d = np.array([sqrt(13*13 + 3*3 + 7*7 + 2*2 + 2*2), 13,-3,-7,2,-2])
dp2d = np.array([sqrt(9*9 + 7*7 + 5*5 + 1 + 7*7), -9,7,-5,1,-7])

Phase space points

def psp_from_rr46(seed):
# A 4D with trailing zeros phase space point from randrot
psp_for_test = rr.phaseSpacePoint46(4,2,seed)
psp1 = psp_for_test[0,:]
psp2 = psp_for_test[1,:]
psp3 = psp_for_test[2,:]
psp4 = psp_for_test[3,:]

return psp1,psp2,psp3,psp4

def psp_from_rr6(seed):
# A 6D phase space point from randrot
psp_for_test = rr.phaseSpacePoint6(4,2,seed)
psp1 = psp_for_test[0,:]
psp2 = psp_for_test[1,:]
psp3 = psp_for_test[2,:]
psp4 = psp_for_test[3,:]

return psp1,psp2,psp3,psp4

def psp_from_SaM(seed):
# A 4D phase space point from S@M with trailing zeros
# Note that there are only 100 of these in the set, so seed cannot exceed 100

if seed > 100: 
print('psp_from_S@M seed outside range 100, replaced by 1')
seed = 1

psp1 = rr.momset4d()[seed,0,0:]
psp2 = rr.momset4d()[seed,1,0:]
psp3 = rr.momset4d()[seed,2,0:]
psp4 = rr.momset4d()[seed,3,0:]

return psp1,psp2,psp3,psp4

def psp_from_DMtensors():
psp1 = np.array([np.sqrt(1+1+4+1+(1.5)**2)*-1,1,1,2,1,1.5])
psp2 = np.array([np.sqrt(1+1+4+1+1),-1,-1,-2,-1,1])
psp3 = np.array([np.sqrt(4+1+1+1+1)*-1,2,-1,-1,1,-1])
psp4 = np.array([np.sqrt(4+1+1+1+1.5**2),-2,1,1,-1,-1.5])
#print(psp1)
#print(psp2)
#print(psp3)
#print(psp4)
for psp in (psp1,psp2,psp3,psp4):

assert np.allclose(MP6(psp,psp),0)
#print(MP6(psp,psp))

return psp1,psp2,psp3,psp4
    
    
psp1_1,psp1_2,psp1_3,psp1_4 = psp_from_rr46(1234)
psp2_1,psp2_2,psp2_3,psp2_4 = psp_from_SaM(1)
psp3_1,psp3_2,psp3_3,psp3_4 = psp_from_rr6(1234)
psp4_1,psp4_2,psp4_3,psp4_4 = psp_from_DMtensors()

np.savez('rr6.npz',p1=psp3_1, p2=psp3_2, p3=psp3_3, p4=psp3_4)
np.savez('rr46.npz',p1=psp1_1, p2=psp1_2, p3=psp1_3, p4=psp1_4)
np.savez('sam.npz',p1=psp2_1, p2=psp2_2, p3=psp2_3, p4=psp2_4)

Load the S@M-generated amplitude sets

For testing, 3 helicity configurations for each phase space point

# Load the S@M-generated amplitude sets: 3-helicity configurations for each phase space point

def ampset4d():
ampset4d = np.zeros((100,3,1), dtype = complex)
rawsam = np.loadtxt("sam_amplitude_sets.txt")
n = 0
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for a in range (100):
for row in range(3):

ampset4d[a,row,0] = -rawsam[n,1] + 1j *rawsam[n,0]
n += 1

return ampset4d

Tree amplitudes - 4-point
The formulae used here for 4-point amplitudes are given in the Catalogue appendix:

• for g4 see D.2.1

• for g3h1 see D.2.2

• for g2s2 see D.2.3

• for g1h1s2 see D.2.4

All gluon 4-point

# Set up g4 to calculate for all helicities using momSpinors(p)

def g4(p1,p2,p3,p4):
spd1,sptd1,spu1,sptu1 = sp.momSpinors(p1)
spd2,sptd2,spu2,sptu2 = sp.momSpinors(p2)
spd3,sptd3,spu3,sptu3 = sp.momSpinors(p3)
spd4,sptd4,spu4,sptu4 = sp.momSpinors(p4)
res = np.zeros([2,2,2,2,2,2,2,2], dtype = complex)

    
for a in (0,1):

for ad in (0,1):
for b in (0,1):

for bd in (0,1):
for c in (0,1):

for cd in (0,1):
for d in (0,1):

for dd in (0,1):
if a==ad and b==bd and c==cd and d==dd:

res[a,ad,b,bd,c,cd,d,dd] += (sp.sp64(spd1,spd2,spd3,spd4,a,b,c,d) *

sp.sp64(sptd1,sptd2,sptd3,sptd4,ad,bd,cd,dd))
res *= - 1j / (sij6(p1,p2) * sij6(p2,p3))
return(res)

# Set up g4 to calculate for specified helicities using momSpinors(p)

def g4_hel(p1,p2,p3,p4,a,ad,b,bd,c,cd,d,dd):
spd1,sptd1,spu1,sptu1 = sp.momSpinors(p1)
spd2,sptd2,spu2,sptu2 = sp.momSpinors(p2)
spd3,sptd3,spu3,sptu3 = sp.momSpinors(p3)
spd4,sptd4,spu4,sptu4 = sp.momSpinors(p4)

sp64 = sp.sp64(spd1,spd2,spd3,spd4,a,b,c,d)
sp64t = sp.sp64(sptd1,sptd2,sptd3,sptd4,ad,bd,cd,dd)
res = sp64 * sp64t  
res *= (-1j / (sij6(p1,p2) * sij6(p2,p3)))
return(res)

# TESTS ARE ALSO IN TESTING SECTION

# First check that g4 and g4_hel give the same results

def test_g4_1(p1,p2,p3,p4):
testg4 = g4(p1,p2,p3,p4)
for a in (0,1):

for ad in (0,1):
for b in (0,1):

for bd in (0,1):
for c in (0,1):

for cd in (0,1):
for d in (0,1):

for dd in (0,1):
if a==ad and b==bd and c==cd and d==dd:

testg4hel = g4_hel(p1,p2,p3,p4,a,ad,b,bd,c,cd,d,dd)
assert abs(testg4hel) == abs(testg4[a,ad,b,bd,c,cd,d,dd])

# Test g4 for 4D momenta agrees to amplitudes calculated in S@M (abs value)

# Load the S@M-generated amplitude sets: 3-helicity configurations for each phase space point

def ampset4d():
ampset4d = np.zeros((100,3,1), dtype = complex)
rawsam = np.loadtxt("sam_amplitude_sets.txt")
n = 0
for a in range (100):

for row in range(3):
ampset4d[a,row,0] = -rawsam[n,1] + 1j *rawsam[n,0]
n += 1

return ampset4d

def test_g4_2():
samamp = ampset4d()
for n in range(100):

p0 = rr.sam4p[n,0,0:]
p1 = rr.sam4p[n,1,0:]
p2 = rr.sam4p[n,2,0:]
p3 = rr.sam4p[n,3,0:]

samamp_mmpp = samamp[n,0,0]   
g4_mmpp = g4_hel(p0,p1,p2,p3,1,1,1,1,0,0,0,0)
assert np.allclose(samamp_mmpp,g4_mmpp)

samamp_mpmp = samamp[n,1,0]   
g4_mpmp = g4_hel(p0,p1,p2,p3,1,1,0,0,1,1,0,0)
assert np.allclose(samamp_mpmp,g4_mpmp)

    
samamp_mppm = samamp[n,2,0]   
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g4_mppm = g4_hel(p0,p1,p2,p3,1,1,0,0,0,0,1,1)
assert np.allclose(samamp_mppm,g4_mppm)

def test_g4_3():
# Use test data set psp2_1....
samamp = ampset4d()
p0 = rr.sam4p[1,0,0:]
p1 = rr.sam4p[1,1,0:]
p2 = rr.sam4p[1,2,0:]
p3 = rr.sam4p[1,3,0:]

samamp_mmpp = samamp[1,0,0]   
g4_mmpp = g4_hel(p0,p1,p2,p3,1,1,1,1,0,0,0,0)
assert np.allclose(samamp_mmpp,g4_mmpp)

samamp_mpmp = samamp[1,1,0]   
g4_mpmp = g4_hel(p0,p1,p2,p3,1,1,0,0,1,1,0,0)
assert np.allclose(samamp_mpmp,g4_mpmp)

    
samamp_mppm = samamp[1,2,0]   
g4_mppm = g4_hel(p0,p1,p2,p3,1,1,0,0,0,0,1,1)
assert np.allclose(samamp_mppm,g4_mppm)

    
print('test_g4_3')
print('momenta')
print(p0)
print(p1)
print(p2)
print(p3)
print('samamp_mmpp')
print(samamp_mmpp)
print('g4_mmpp = g4_hel(p0,p1,p2,p3,1,1,1,1,0,0,0,0)')
print(g4_mmpp)
print('samamp_mpmp')
print(samamp_mpmp)
print('g4_mmpp = g4_mpmp = g4_hel(p0,p1,p2,p3,1,1,0,0,1,1,0,0)')
print(g4_mpmp)
print('samamp_mmpp')
print(samamp_mppm)
print('g4_mppm = g4_hel(p0,p1,p2,p3,1,1,0,0,0,0,1,1)')
print(g4_mppm)

test_g4_1(psp2_1,psp2_2,psp2_3,psp2_4)
test_g4_2()
test_g4_3()

test_g4_3
momenta
[ 1.23419873 -0.88976435 -0.60409097 -0.60550805  0.          0.        ]
[1.22926242 0.95260605 0.62170184 0.4659556  0.         0.        ]
[-1.17281121  0.50708293 -0.67729778 -0.8121704   0.          0.        ]
[-1.29064994 -0.56992463  0.65968691  0.95172284  0.          0.        ]
samamp_mmpp
(-0.5929259092487204-2.619816501532103j)
g4_mmpp = g4_hel(p0,p1,p2,p3,1,1,1,1,0,0,0,0)
(-0.5929259092487206-2.619816501532103j)
samamp_mpmp
(0.7478378985765556-0.7489166144556619j)
g4_mmpp = g4_mpmp = g4_hel(p0,p1,p2,p3,1,1,0,0,1,1,0,0)
(0.7478378985765558-0.7489166144556625j)
samamp_mmpp
(0.23370192933897643+0.2897991611863344j)
g4_mppm = g4_hel(p0,p1,p2,p3,1,1,0,0,0,0,1,1)
(0.23370192933897677+0.2897991611863346j)

BCFW

Functions to implement 6d BCFW shift between $ P_1 $ and $ P_2 $:

• Create an auxiliary matrix $ X^{a \dot{a}} = x^a \tilde{x}^{\dot{a}} $ where $ x^a, \tilde{x}^{\dot{a}} $ are arbitrary

• Define polarisation vector for $ P_1 $ with respect to $ P_2 $

• Calculate a null vector r which will satisfy $ P_1 . r = P_2 . r = 0 $

• Calculate sum of momenta, $ P_{2j} = P_2 + ... + P_j $

• Calculate $ z_{2j} $, the location of the pole at $ P_{2j}(z)^2 = 0:\ \ z_{2j} = \dfrac{-P^2_{2_j}}{2r.P_{2j}} $

• Calculate shifted spinors fr $ \hat{P}_1 = P_1 + zr, \hat{P}_2 = P_2 - zr $ using C&O'C eqns 5.7-10

• Use spinors to calculate unshifted amplitude as

$ X^{a \dot{a}}A^{tree}_n(0) = \sum^{n-1}_{j=3} \sum_h X^{a \dot{a}} L(\hat{P}_2, ... , P_j, -\hat{P}^{-h}_{2j}) \times \frac{1}{P^2_{2j}}A_R(\hat{P}

^h_{2j}, P_{j+1}, ... , \hat{P}_1)|_{z = z_{2j}} $

Auxiliary matrix

xuu: $ X^{a \dot{a}} = x^a \tilde{x}^{\dot{a}} $

xdd: $ X_{a \dot{a}} = x_a \tilde{x}_{\dot{a}} $

xud: $ X^{a}_{ \dot{a}} = x^a \tilde{x}_{\dot{a}} $

xdu: $ X_{a}^{\dot{a}} = x_a \tilde{x}^{\dot{a}} $

where $ x^a $ is arbitrary

def auXx():
# Return separate x, xt matrices

    
# Specify an arbitrary matrix for $ x^a, xt^a $
xu = np.array([1,0])
xtu = np.array([1,0])
# Lower indices
xd = np.matmul(xu,lev2d)
xtd = np.matmul(xtu,lev2d)

    
return xu,xtu,xd,xtd
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def auX():
# Return X = x xt full auxiliary matrix

    
# Obtain x components
xu, xtu, xd, xtd = auXx()

    
Xuu = np.outer(xu,xtu)
assert np.linalg.det(Xuu) == 0

    
Xud = np.outer(xu,xtd)
assert np.linalg.det(Xud) == 0

    
Xdd = np.outer(xd,xtd)
assert np.linalg.det(Xdd) == 0

    
Xdu= np.outer(xd,xtu)
assert np.linalg.det(Xdu) == 0

  
return Xuu, Xud, Xdd, Xdu

Polarisation vector

Originally copied in from spinors.py but now amended here to ensure p1.r = r.p2 = 0

With a null reference vector q, such that $p.q \neq 0$, there are associated spinors $ |q^a \rangle \langle q^b|\epsilon_{ab}$ and $q = |q_{\dot{a}}]

[q_{\dot{b}}|\epsilon^{\dot{a}\dot{b}}$. The polarisation vectors are then defined by Cheung and O'Connell to be

$$ \mathcal{E}^{\mu}_{a \dot{a}} = \frac{1}{\sqrt{2}} \langle p_a|\Sigma^{\mu}|q_b\rangle (\langle q_b | p^{\dot{a}}])^{-1}$$ $$\mathcal{E}^{\mu}_{a

\dot{a}} = \frac{1}{\sqrt{2}} (\langle p^a | q_{\dot{b}}])^{-1} [ q_{\dot{b}}|\tilde{\Sigma}^{\mu}|p_{\dot{a}}] $$

Where $ \langle p^a | q_{\dot{b}}])^{-1} = -\dfrac{\langle p_a | q^{\dot{b}}]}{2 p.q}$

def pol(p1,p2):
    

pol = np.zeros([4,6], dtype = complex)
    

# Set up spinors
p1_spd,p1_sptd,p1_spu,p1_sptu = sp.momSpinors(p1)
p2_spd,p2_sptd,p2_spu,p2_sptu = sp.momSpinors(p2)

    
# Obtain inverse of spinor product
#inv21 = (-1/sij6(p1,p2))*sp.sp62_all(p2_spu,p1_sptd)
inv21 = (1/sij6(p1,p2))*sp.sp62_all(p2_spu,p1_sptd)

    
# Calculate 4 reference vectors, one for each helicity combination

    
row = 0
for a in (0,1):

for ad in (0,1):
for mu in range(6):

#sig = gammas[mu]
#sig = gammast[mu]
sig = gammastd[mu]
#sig = gammasd[mu]
for b in (0,1):          

pol[row,mu] += sp.sp62(p1_spd,np.matmul(sig,p2_spd),a,b) * inv21[b,ad]
# Check each vector is null
assert abs(MP6(pol[row],pol[row])) < 1e-14
row += 1     

return pol/sqrt(2)

Shift vector

Vector for the shift is a null vector with the properties of a polarisation vector: $ r^{AB} = \frac{1}{\sqrt{2}}X^{a \dot{a}} (\mathcal{E}^{AB}_1)_{a \dot{a}} $

For the purposes of our BCFW shifted momenta we will use the polarisation of momentum p1 and choose the reference spinor for the polarisation vector to

be $\Lambda_2$.

def rv(p1,p2): 
    

# Obtain auxiliary matrix
Xuu, Xud, Xdd, Xdu = auX()
#Xuu = np.array([[1,1],[1,1]])

    
# Obtain polarisation vectors for all helicity combinations
polv = pol(p1,p2)

    
# Build shift vector
rmu = np.zeros([6], dtype = complex)
for mu in range(6):

rmu[mu] += polv[0,mu] * Xuu[0,0]
rmu[mu] += polv[1,mu] * Xuu[0,1]
rmu[mu] += polv[2,mu] * Xuu[1,0]
rmu[mu] += polv[3,mu] * Xuu[1,1]

assert np.allclose(MP6(rmu,rmu),0)
assert np.allclose(MP6(p1,rmu),0)
assert np.allclose(MP6(rmu,p2),0)

    
return rmu/sqrt(2)

z and location of pole

• Calculate location of pole $ z_{2j} = \dfrac{-P^2_{2_j}}{2r.P_{2j}} $, where $ P_{2j} = P_2 + ... + P_j $

def p2j(*args):
# args are momenta
p2j = np.zeros([6], dtype = complex)
for p in args:

p2j += p

In [10]:
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return p2j

def zPole(rv, p2j):
# rv is shift vector, args are momenta
# Calculate zPole
return -MP6(p2j,p2j) / (2 * MP6(rv,p2j))

# Function is for test

def zGen(z0,t):
# z0 is zPole(rv,p1,p2)
theta = 2
res = z0 + t * exp(1j * theta)
return res    

# Obtain shift parameters for test data

r_1 = rv(psp1_1,psp1_2)
p2j_1 = p2j(psp1_2,psp1_3)
z_1 = zPole(r_1,p2j_1)

r_2 = rv(psp2_1,psp2_2)
p2j_2 = p2j(psp2_2,psp2_3)
z_2 = zPole(r_2,p2j_2)

r_3 = rv(psp3_1,psp3_2)
p2j_3 = p2j(psp3_2,psp3_3)
z_3 = zPole(r_3,p2j_3)

r_4 = rv(psp4_1,psp4_2)
p2j_4 = p2j(psp4_2,psp4_3)
z_4 = zPole(r_4,p2j_4)

Spinors for BCFW shift

NEW DEFINITIONS

ZSpinors rewritten using Bern definitions and $ \epsilon $ to raise/lower indices

$$ \Lambda^{Aa}_{\hat{1}} \ \ = \Lambda^{Aa}_1 - \frac{z}{s_{12}} X^{a}_{\dot{a}} [1^{\dot{a}} | 2^b \rangle \Lambda^A_{2b} $$

$$ \Lambda^{Ab}_{\hat{2}} \ \ = \Lambda^{Ab}_2 - \frac{z}{s_{12}} X^{a}_{\dot{a}} \Lambda^A_{1a} [1^{\dot{a}} | 2^b \rangle$$

$$ \tilde{\Lambda}_{\hat{1} A \dot{a}} \ \ = \tilde{\Lambda}_{1A \dot{a}} + \frac{z}{s_{12}} X^{a}_{\dot{a}} \langle 1_a | 2_{\dot{b}}] \tilde{\Lambda}^{\dot{b}}

_{2A} $$

$$ \tilde{\Lambda}_{\hat{2}A \dot{b}} \ \ = \tilde{\Lambda}_{2A \dot{b}} + \frac{z}{s_{12}} X^{a}_{\dot{a}} \tilde{\Lambda}_{1A}^{\dot{a}} \langle 1_a |

2_{\dot{b}}] $$

class ZSpinors:
def __init__(self,p1,p2,z):

# For amplitude calculations, z is zPole
self.p1 = p1
self.p2 = p2
self.z = z
# Obtain unshifted p1,p2 spinors
self.spd1, self.sptd1, self.spu1, self.sptu1 = sp.momSpinors(self.p1)
self.spd2, self.sptd2, self.spu2, self.sptu2 = sp.momSpinors(self.p2)
# Bring in auxiliary matrix components
self.Xuu,self.Xud, self.Xdd, self.Xdu = auX()

        
self._zspu1 = None

self._zspd1 = None

self._zsptu1 = None

self._zsptd1 = None

self._zspu2 = None

self._zspd2 = None

self._zsptu2 = None

self._zsptd2 = None  
        

def zsp1(self):
if self._zspu1 is None:

self.spinprod1 = sp.sp62_all(self.sptu1,self.spu2)
self.spinprod2 = np.matmul(self.spinprod1,np.transpose(self.spd2))
self.spinprod3 = np.transpose(np.matmul(self.Xud,self.spinprod2))
self._zspu1 = self.spu1 + (self.z / sij6(self.p1,self.p2)) * self.spinprod3
self._zspd1 = np.matmul(self._zspu1,lev2d)

return self._zspu1, self._zspd1

def zsp2(self):
if self._zspu2 is None:

self.spinprod1 = np.matmul(np.transpose(self.Xud), np.transpose(self.spd1))
self.spinprod2 = sp.sp62_all(self.sptu1,self.spu2)
self.spinprod3 = np.matmul(np.transpose(self.spinprod1), self.spinprod2)
self._zspu2 = self.spu2 + (self.z / sij6(self.p1,self.p2)) * self.spinprod3
self._zspd2 = np.matmul(self._zspu2,lev2d)

return self._zspu2, self._zspd2

def zspt1(self):
if self._zsptd1 is None:

self.spinprod1 = sp.sp62_all(self.spd1,self.sptd2)
self.spinprod2 = np.matmul(np.transpose(self.Xud), self.spinprod1)
self.spinprod3 = np.matmul(self.spinprod2,np.transpose(self.sptu2))
self._zsptd1 = self.sptd1 - (self.z / sij6(self.p1,self.p2)) * np.transpose(self.spinprod3)
self._zsptu1 = np.matmul(self._zsptd1,lev2u)

return self._zsptu1, self._zsptd1
    

def zspt2(self):
if self._zsptd2 is None:

self.spinprod1 = np.matmul(self.Xud, np.transpose(self.sptu1))
self.spinprod2 = sp.sp62_all(self.spd1,self.sptd2)
self.spinprod3 = np.matmul(np.transpose(self.spinprod1),self.spinprod2)
self._zsptd2 = self.sptd2 - (self.z / sij6(self.p1,self.p2)) * self.spinprod3
self._zsptu2 = np.matmul(self._zsptd2,lev2u)

return self._zsptu2, self._zsptd2
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def test_ZSpinor6_dirac(p1,p2,z):

zspu1,zspd1 = ZSpinors(p1,p2,z).zsp1()
zspu2,zspd2 = ZSpinors(p1,p2,z).zsp2()
zsptu1,zsptd1= ZSpinors(p1,p2,z).zspt1()
zsptu2,zsptd2= ZSpinors(p1,p2,z).zspt2()

p1h = sp.pFromS6D(zspd1)
p2h = sp.pFromS6D(zspd2)  

assert np.allclose(np.matmul(slasht(p1h), zspd1),0, atol = 1e-10)
assert np.allclose(np.matmul(slasht(p2h), zspd2),0, atol = 1e-10)
assert np.allclose(np.matmul(slash(p1h), zsptd1),0, atol = 1e-10)
assert np.allclose(np.matmul(slash(p2h), zsptd2),0, atol = 1e-10)
assert np.allclose(np.matmul(slasht(p1h), zspu1),0, atol = 1e-10)
assert np.allclose(np.matmul(slasht(p2h), zspu2),0, atol = 1e-10)
assert np.allclose(np.matmul(slash(p1h), zsptd1),0, atol = 1e-10)
assert np.allclose(np.matmul(slash(p2h), zsptd2),0, atol = 1e-10)

def test_ZSpinor6_pFromS(p1,p2,z):

zspu1,zspd1 = ZSpinors(p1,p2,z).zsp1()
zspu2,zspd2 = ZSpinors(p1,p2,z).zsp2()
zsptu1,zsptd1= ZSpinors(p1,p2,z).zspt1()
zsptu2,zsptd2= ZSpinors(p1,p2,z).zspt2()

assert np.allclose(sp.pFromS6D(zspu1),sp.pFromS6D(zspd1))
assert np.allclose(sp.pFromSt6D(zsptu1),sp.pFromSt6D(zsptd1))
assert np.allclose(sp.pFromS6D(zspu1),sp.pFromSt6D(zsptd1))
assert np.allclose(sp.pFromS6D(zspu2),sp.pFromS6D(zspd2))
assert np.allclose(sp.pFromSt6D(zsptu2),sp.pFromSt6D(zsptd2))
assert np.allclose(sp.pFromS6D(zspu2),sp.pFromSt6D(zsptd2))

# Use 6D momenta with z = 1

test_ZSpinor6_dirac(dp1d,dp2d,z=1)
test_ZSpinor6_pFromS(dp1d,dp2d,z=1)

# Now use cases with z != 1

test_ZSpinor6_dirac(psp1_1,psp1_2,z_1)
test_ZSpinor6_dirac(psp2_1,psp2_2,z_2)
test_ZSpinor6_dirac(psp3_1,psp3_2,z_3)
test_ZSpinor6_dirac(psp4_1,psp4_2,z_4)

test_ZSpinor6_pFromS(psp1_1,psp1_2,z_1)
test_ZSpinor6_pFromS(psp2_1,psp2_2,z_2)
test_ZSpinor6_pFromS(psp3_1,psp3_2,z_3)
test_ZSpinor6_pFromS(psp4_1,psp4_2,z_4)

Shifted momenta

Obtain shifted momenta from the ZSpinors

def pHatZs(p1,p2,z):
    

zspu1,zspd1 = ZSpinors(p1,p2,z).zsp1()
zspu2,zspd2 = ZSpinors(p1,p2,z).zsp2()
zsptu1,zsptd1 = ZSpinors(p1,p2,z).zspt1()
zsptu2,zsptd2 = ZSpinors(p1,p2,z).zspt2()

p1h_Zs = sp.pFromS6D(zspd1)
p2h_Zs = sp.pFromS6D(zspd2)
p1h_Zst = sp.pFromSt6D(zsptd1)
p2h_Zst = sp.pFromSt6D(zsptd2)

# Check p1h, p2h from spinors and tilde spinors are consistent
assert np.allclose(p1h_Zs,p1h_Zst)
assert np.allclose(p2h_Zs,p2h_Zst)

    
# Check p1h,p2h are null and momentum is conserved
assert np.allclose(MP6(p1h_Zs,p1h_Zs),0)
assert np.allclose(MP6(p2h_Zs,p2h_Zs),0)
assert np.allclose(p1h_Zs + p2h_Zs, p1 + p2)
# Same check for p1h,p2h from tilde spinors
assert np.allclose(MP6(p1h_Zst,p1h_Zst),0)
assert np.allclose(MP6(p2h_Zst,p2h_Zst),0)
assert np.allclose(p1h_Zst + p2h_Zst, p1 + p2)

    
return p1h_Zs, p2h_Zs

Alternatively, with a shift between $p_i$ and $p_j$ the shifted momenta are given by

$$ \hat{p}_i = p_i - zX^{a \dot{a}} \mathcal{E}_{i a \dot{a}} $$ $$ \hat{p}_j = p_j + zX^{a \dot{a}} \mathcal{E}_{i a \dot{a}} $$

where $ z $ is the shift, $ X $ is the auxiliary vector $ X^{a \dot{a}} = x^a \tilde{x}^{\dot{a}} $ and $ \mathcal{E} $ is the polarisation vector.

def pHat(p1,p2,rv,z):
pHat1 = p1 - z * rv
pHat2 = p2 + z * rv

assert np.allclose(MP6(pHat1,pHat1),0)
assert np.allclose(MP6(pHat2,pHat2),0)
assert np.allclose(pHat1 + pHat2, p1 + p2)

    
return pHat1,pHat2

def test_pHat(p1,p2,z,r):
# Obtain phat from ZSpinors
p1h_Zs, p2h_Zs = pHatZs(p1,p2,z)
# Calculate phat
p1h_calc, p2h_calc = pHat(p1,p2,z,r)
# Check they are the same
assert np.allclose(p1h_Zs,p1h_calc)
assert np.allclose(p2h_Zs,p2h_calc)
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test_pHat(psp1_1,psp1_2,z_1,r_1)
test_pHat(psp2_1,psp2_2,z_2,r_2)
test_pHat(psp3_1,psp3_2,z_3,r_3)
test_pHat(psp4_1,psp4_2,z_4,r_4)

Tree amplitudes - 3-point

All gluon 3-point

All-gluon 3-point amplitude per Cheung and O'Connell:

$$ A_3(1_{a \dot{a}}, 2_{b \dot{b}}, 3_{c \dot{c}}) = i \Gamma_{abc} \tilde{\Gamma}_{\dot{a} \dot{b} \dot{c}} $$

where

$$ \Gamma_{abc} = u_{1a}u_{2b}w_{3c} + u_{1a}w_{2b}u_{3c} + w_{1a}u_{2b}w_{3c}$$

$$ \tilde{\Gamma}_{\dot{a} \dot{b} \dot{c}} = \tilde{u}_{1\dot{a}}\tilde{u}_{2\dot{b}}\tilde{w}_{3\dot{c}} + \tilde{u}_{1\dot{a}}\tilde{w}_{2\dot{b}}\tilde{u}

_{3\dot{c}} + \tilde{w}_{1\dot{a}}\tilde{u}_{2\dot{b}}\tilde{u}_{3\dot{c}} $$

And for the right hand side when we use bcfw we need little group index up for the shift vector: $$ A_3(1_{a \dot{a}}, 2_{b \dot{b}}, 3^{e \dot{e}}) = i

\Gamma_{ab}\ ^{e} \tilde{\Gamma}_{\dot{a} \dot{b}}\ ^{ \dot{e}} $$

where

$$ \Gamma_{ab}\ ^{e} = u_{1a}u_{2b}w_3^e + u_{1a}w_{2b}u_3^e + w_{1a}u_{2b}w_3^e$$

$$ \tilde{\Gamma}_{\dot{a} \dot{b}}\ ^{\dot{e}} = \tilde{u}_{1\dot{a}}\tilde{u}_{2\dot{b}}\tilde{w}_3^{\dot{e}} + \tilde{u}_{1\dot{a}}\tilde{w}

_{2\dot{b}}\tilde{u}_3^{\dot{e}} + \tilde{w}_{1\dot{a}}\tilde{u}_{2\dot{b}}\tilde{u}_3^{\dot{e}} $$

Obtain spinors for left- and right-hand amplitudes

For spinor representation of shifted leg we calculate the internal momentum $ \hat{p}_{2j} $ and obtain the relevant spinors from sp.momSpinors.

The split is:

$$\text{lhs } = \hat{p}_1 \pm \hat{p}_{2j} +p_4 $$ $$ \text{rhs } = \hat{p}_2 + p_3 \mp \hat{p}_{2j} $$

Note that the sign of $ \hat{p}_{2j} $ is opposite for the two sides but sp.momSpinors will handle this by applying

$$ \Lambda_{-\hat{p}_{2j}} = i\Lambda_{\hat{p}_{2j}}$$

# This function uses p2jh extracted from spinors, not momenta

def spFor3g(p1,p2,p3,p4):

# Obtain r, p2j (unhatted)  and z
rv12 = rv(p1,p2)
p2j12_right = p2j(p2,p3)
z12 = zPole(rv12,p2j12_right)

    
# Obtain spinors for shifted momenta, p1h, p2h
zs1u,zs1d = ZSpinors(p1,p2,z12).zsp1()
zst1u,zst1d= ZSpinors(p1,p2,z12).zspt1()
zs2u,zs2d = ZSpinors(p1,p2,z12).zsp2()
zst2u,zst2d= ZSpinors(p1,p2,z12).zspt2()

#Check these spinors all return consistent shifted momenta
assert np.allclose(sp.pFromS6D(zs1d),sp.pFromS6D(zs1u))
assert np.allclose(sp.pFromS6D(zs1d),sp.pFromSt6D(zst1d))
assert np.allclose(sp.pFromS6D(zs1d),sp.pFromSt6D(zst1u))
assert np.allclose(sp.pFromS6D(zs2d),sp.pFromS6D(zs2u))
assert np.allclose(sp.pFromS6D(zs2d),sp.pFromSt6D(zst2d))
assert np.allclose(sp.pFromS6D(zs2d),sp.pFromSt6D(zst2u))

     
# Obtain spinors for unshifted momenta p3 and p4
s3d,st3d,s3u,st3u = sp.momSpinors(p3)
s4d,st4d,s4u,st4u = sp.momSpinors(p4)
# Check unshifted spinors return expected momenta
assert np.allclose(sp.pFromS6D(s3d),p3)
assert np.allclose(sp.pFromS6D(s3d),sp.pFromS6D(s3u))
assert np.allclose(sp.pFromS6D(s3d),sp.pFromSt6D(st3d))
assert np.allclose(sp.pFromS6D(s3d),sp.pFromSt6D(st3u))
assert np.allclose(sp.pFromS6D(s4d),p4)
assert np.allclose(sp.pFromS6D(s4d),sp.pFromS6D(s4u))
assert np.allclose(sp.pFromS6D(s4d),sp.pFromSt6D(st4d))
assert np.allclose(sp.pFromS6D(s4d),sp.pFromSt6D(st4u))

# Calculate shifted internal momentum
r_p2jh = sp.pFromS6D(zs2d) + p3
r_p2jht = sp.pFromSt6D(zst2d) + p3
l_p2jh = sp.pFromS6D(zs1d) + p4
l_p2jht = sp.pFromSt6D(zst1d) + p4

# Check tilde and non-tilde spinor source produces same result
assert np.allclose(r_p2jh, r_p2jht)
assert np.allclose(l_p2jh, l_p2jht)
# Check right-hand calculation is equal and opposite to left-hand
assert np.allclose(r_p2jh, -l_p2jh)

    
# Obtain the spinors from p2jh momentum
r_sp2jhd, r_sp2jhtd, r_sp2jhu, r_sp2jhtu = sp.momSpinors(r_p2jh)
l_sp2jhd, l_sp2jhtd, l_sp2jhu, l_sp2jhtu = sp.momSpinors(l_p2jh)

# Check they produce the correct momentum
assert np.allclose(sp.pFromS6D(r_sp2jhd),sp.pFromSt6D(r_sp2jhtd))
assert np.allclose(sp.pFromS6D(r_sp2jhd),sp.pFromS6D(r_sp2jhu))
assert np.allclose(sp.pFromS6D(r_sp2jhd),sp.pFromSt6D(r_sp2jhtu))                  

assert np.allclose(sp.pFromS6D(l_sp2jhd),sp.pFromSt6D(l_sp2jhtd))
assert np.allclose(sp.pFromS6D(l_sp2jhd),sp.pFromS6D(l_sp2jhu))
assert np.allclose(sp.pFromS6D(l_sp2jhd),sp.pFromSt6D(l_sp2jhtu)) 

# ADD TEST TO ENSURE FOR ALL 3point COMBINATIONS pi.pj =0
assert np.allclose(MP6(sp.pFromS6D(zs2d),p3),0)
assert np.allclose(MP6(p3,sp.pFromS6D(r_sp2jhd)),0)
assert np.allclose(MP6(sp.pFromS6D(r_sp2jhd),sp.pFromS6D(zs2d)),0)
assert np.allclose(MP6(sp.pFromS6D(l_sp2jhd),p4),0)
assert np.allclose(MP6(p4,l_p2jh),0)
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assert np.allclose(MP6(l_p2jh,sp.pFromS6D(l_sp2jhd)),0)

    

# Alternatively, calculate shifted interal momentum from pHat
p1Hat, p2Hat = pHat(p1,p2,rv12,z12)
r_p2jh_calc = p2Hat + p3
l_p2jh_calc = p1Hat + p4 
assert np.allclose(r_p2jh_calc, -l_p2jh_calc)
# Obtain spinors from mom.spinors
r_sp2jhd_alt, r_sp2jhtd_alt, r_sp2jhu_alt, r_sp2jhtu_alt = sp.momSpinors(r_p2jh_calc)
l_sp2jhd_alt, l_sp2jhtd_alt, l_sp2jhu_alt, l_sp2jhtu_alt = sp.momSpinors(l_p2jh_calc)

    
# Check spinors return correct momentum
assert np.allclose(sp.pFromS6D(r_sp2jhd_alt),r_p2jh_calc)
assert np.allclose(sp.pFromS6D(l_sp2jhd_alt),l_p2jh_calc)

    
# Test to ensure all 3point combinations pi.pj =0
assert np.allclose(MP6(p2Hat,p3),0)
assert np.allclose(MP6(p3,r_p2jh_calc),0)
assert np.allclose(MP6(r_p2jh_calc,p2Hat),0)
assert np.allclose(MP6(p1Hat,l_p2jh_calc),0)
assert np.allclose(MP6(l_p2jh_calc,p4),0)
assert np.allclose(MP6(p4,p1Hat),0)

 
return (zs1d,zst1d,zs2d,zst2d,s3d,st3d,s4d,st4d,r_sp2jhd, r_sp2jhtd, l_sp2jhd, l_sp2jhtd)

def test_spFor3g(p1,p2,p3,p4): 
#r_p2jh= spFor3g(p1,p2,p3,p4)
zs1d,zst1d,zs2d,zst2d,s3d,st3d,s4d,st4d,r_sp2jhd, r_sp2jhtd, l_sp2jhd, l_sp2jhtd = spFor3g(p1,p2,p3,p4)

#print('psp set 1')
test_spFor3g(psp1_1,psp1_2,psp1_3,psp1_4)
#print('psp set 2')
test_spFor3g(psp2_1,psp2_2,psp2_3,psp2_4)
#print('psp set 3')
test_spFor3g(psp3_1,psp3_2,psp3_3,psp3_4)
#print('psp set 4')
test_spFor3g(psp4_1,psp4_2,psp4_3,psp4_4)

Find u,v and utilde,vtilde for S(2) spinors

Per Cheung and O'Connell: Since we cannot invert $ \langle i|j] $ because det$\langle i|j] = -2p_i p_j = 0 $ we instead express the rank one matrix $ \langle

i_a | j_{\dot{b}}] $ as the product of two 2x1 matrices such that $$u_{ia} \tilde{u}_{j \dot{b}} = \langle i_a | j_{\dot{b}}] $$

# IMPORT getuutilde(spinors) FROM tensors.ipynb

def uutilde(s1,s2,s3,st1,st2,st3):

'''strategy is to make the spinor product s12 diagonal, from there we can deduct the transformed versions 
    of its two constituents as spinors with one zero constituent u1, ut2. Then we extract the other ut3 from s13 adn u3 
    from s32 and then we can get ut1 and u2 from s21 and s31 respectively.
    '''

# Obtain spinor products
s12 = sp.sp62_all(s1,st2)
s23 = sp.sp62_all(s2,st3)
s31 = sp.sp62_all(s3,st1)
# Reverse ordering
s21 = sp.sp62_all(s2,st1)
s13 = sp.sp62_all(s1,st3)
s32 = sp.sp62_all(s3,st2)

#print('s12')
#print(s12)
#print('s23')
#print(s23)
#print('s31')
#print(s31)
#print()
#print('s21')
#print(s21)
#print('s32')
#print(s32)
#print('s13')
#print(s13)

eig_res = np.linalg.eig(s12)
if np.isclose(eig_res.eigenvalues[1],0) :

# swap the eigenvalues adnd eigenvectors
S = np.zeros((2,2), dtype=complex)
orig = np.array(eig_res.eigenvectors)
S[:,0] = orig[:,1]
S[:,1] = orig[:,0]

else:
S = eig_res.eigenvectors

    
Sinv = np.linalg.inv(S)

s12_trans = (Sinv@s12@S)
s13_trans = (Sinv@s13@S)
s21_trans = (Sinv@s21@S)
s23_trans = (Sinv@s23@S)
s31_trans = (Sinv@s31@S)
s32_trans = (Sinv@s32@S)

val = s12_trans[1,1]
          

u1_trans = np.array([[0], [np.sqrt(val)]])
ut2_trans = np.array([[0], [np.sqrt(val)]])
ut3_trans = np.array([[s13_trans[1,0]],[s13_trans[1,1]]])*(-1/np.sqrt(val)) # negative because of the revers order
u3_trans = np.array([[s32_trans[0,1]],[s32_trans[1,1]]])*(-1/np.sqrt(val))
if np.allclose(u3_trans[0,0],0):

ut1_trans = np.array([[s31_trans[1,0]],[s31_trans[1,1]]]) /u3_trans[1,0]
else:

ut1_trans = np.array([[s31_trans[0,0]],[s31_trans[0,1]]]) /u3_trans[0,0]

In [22]:
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if np.allclose(ut1_trans[0,0],0):
u2_trans = np.array([[s21_trans[0,1]],[s21_trans[1,1]]]) / -ut1_trans[1,0]

else:    
u2_trans = np.array([[s21_trans[0,0]],[s21_trans[1,0]]]) / -ut1_trans[0,0]

u1 = (S@u1_trans)
u2 = (S@u2_trans)
u3 = (S@u3_trans)

ut1 = (Sinv.T@ut1_trans)
ut2 = (Sinv.T@ut2_trans)
ut3 = (Sinv.T@ut3_trans)

#positive order
assert np.allclose(np.outer(u1,ut2), s12)
assert np.allclose(np.outer(u2,ut3), s23)
assert np.allclose(np.outer(u3,ut1), s31)

   
# reverse order negative

assert np.allclose(-np.outer(u2,ut1), s21)
assert np.allclose(-np.outer(u1,ut3), s13)
assert np.allclose(-np.outer(u3,ut2), s32)

u1_0, u1_1 = u1[0,0],u1[1,0]
u2_0, u2_1 = u2[0,0],u2[1,0]
u3_0, u3_1 = u3[0,0],u3[1,0]

    
if np.allclose(u1_0,0): 

w1_0, w1_1 = 1/u1_1,0
else: w1_0, w1_1 = 0,1/u1_0
w1 = np.array([[w1_0], [w1_1]])

    
if np.allclose(u2_0,0): 

w2_0, w2_1 = 1/u2_1,0
else: w2_0, w2_1 = 0,1/u2_0
w2 = np.array([[w2_0], [w2_1]])

    
if np.allclose(u3_0,0):

w3_0, w3_1 = 1/u3_1,0
else: w3_0, w3_1 = 0,1/u3_0
w3pre = np.array([[w3_0], [w3_1]])

    
## OBTAIN MOMENTUM SUM
# Raise indices on spinors
s1u = np.matmul(s1,lev2u)
s2u = np.matmul(s2,lev2u)
s3u = np.matmul(s3,lev2u)
momsum = np.zeros([4,1],dtype = complex)
for a in (0,1):

momsum[:,0] += w1[a,0] * s1u[:,a] + w2[a,0] * s2u[:,a] + w3pre[a,0] * s3u[:,a]
if np.allclose(momsum,0):

#print('w momsum works without adjustment')
w3 = w3pre

else:
den = np.zeros([4,1],dtype = complex)
for a in (0,1):

den [:,0] += u1[a,0] * s1u[:,a]
factor = (momsum[0,0]/(den[0,0]) ) # u1*la1 = u2*la2 = u3*la3
w3 = w3pre - factor*u3

    
# Add a check that momcon condition is now met
momsum2 = np.zeros([4,1],dtype = complex)
for a in (0,1):

momsum2[:,0] += w1[a,0] * s1u[:,a] + w2[a,0] * s2u[:,a] + w3[a,0] * s3u[:,a]
assert np.allclose(momsum2,0)

ut1_0, ut1_1 = ut1[0,0],ut1[1,0]
ut2_0, ut2_1 = ut2[0,0],ut2[1,0]
ut3_0, ut3_1 = ut3[0,0],ut3[1,0]

if np.allclose(ut1_0,0): 
wt1_0, wt1_1 = 1/ut1_1,0

else: wt1_0, wt1_1 = 0,1/ut1_0
wt1 = np.array([[wt1_0], [wt1_1]])

    
if np.allclose(ut2_0,0): 

wt2_0, wt2_1 = 1/ut2_1,0
else: wt2_0, wt2_1 = 0,1/ut2_0
wt2 = np.array([[wt2_0], [wt2_1]])

    
if np.allclose(ut3_0,0):

wt3_0, wt3_1 = 1/ut3_1,0
else: wt3_0, wt3_1 = 0,1/ut3_0
wt3pre = np.array([[wt3_0], [wt3_1]])

# Raise indices on tilde spinors
st1u = np.matmul(st1,lev2u)
st2u = np.matmul(st2,lev2u)
st3u = np.matmul(st3,lev2u) 

# Calculate pre-normalised momentum sum
momsumt = np.zeros([4,1], dtype = complex)
for ad in (0,1):

momsumt[:,0] += wt1[ad,0] * st1u[:,ad] + wt2[ad,0] * st2u[:,ad] + wt3pre[ad,0] * st3u[:,ad]
if np.allclose(momsumt,0):

#print('wt momsumt works without adjustment')
wt3 = wt3pre

else:
dent = np.zeros([4,1],dtype = complex)
if np.allclose(ut1_0,0):

for ad in (0,1):
dent [:,0] += ut1[ad,1] * st1u[:,ad]

factort = momsumt[0,0]/dent[0,0] # u1*la1 = u2*la2 = u3*la3
wt3 = wt3pre - factort*ut3  

else:
for ad in (0,1):

dent [:,0] += ut1[ad,0] * st1u[:,ad]
factort = momsumt[0,0]/dent[0,0] # u1*la1 = u2*la2 = u3*la3
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wt3 = wt3pre - factort*ut3

# Confirm momcon condition is now met
momsumt2 = np.zeros([4,1], dtype = complex)
for ad in (0,1):

momsumt2[:,0] += wt1[ad,0] * st1u[:,ad] + wt2[ad,0] * st2u[:,ad] + wt3[ad,0] * st3u[:,ad]
assert np.allclose(momsumt2,0)

return u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3

1. Test uut meets consistency relation C&O'C equation 4.6

With the minus signs specified for sp13,sp21,sp32.

This test is carried out as assertion in uutilde construction.

2. Test uw inverse relation C&O'C equation 4.10

$$ u_{ia}w_{ib} - u_{ib} w_{ia} = \epsilon_{ab} $$ $$ \tilde{u}_{i\dot{a}}\tilde{w}_{i\dot{b}} - \tilde{u}_{i\dot{b}} \tilde{w}_{i\dot{a}} =

\epsilon_{\dot{a}\dot{b}} $$

3. Test derived from momentum condition C & O'C equation 4.9 gives

$$ \tilde{u}_2^{\dot{b}} |2_{\dot{b}}] = \tilde{u}^{\dot{c}}_3 |3_{\dot{c}}],\ \ \ \tilde{u}_1^{\dot{a}} |1_{\dot{a}}] = \tilde{u}^{\dot{c}}_3 |3_{\dot{c}}] $$ $$

u^a_i \langle i_a| = u^a_j \langle j_a | \ \ \ \forall i,j$$

4. Test wwt3R

Calculated wwt3R should meet the condition C&O'C equation 6.5

$$ w_{-\hat{2j}}. w_{\hat{2j}} = \dfrac{1}{ u_{-\hat{2j}}. u_{\hat{2j}}} $$

5.

Expressing right-hand wwt in relation to left-hand uut in equation 6.6 as follows:

$$ w_{-\hat{2j}} = \dfrac{u_{\hat{2j}}}{\sqrt{-s}} $$ $$ \tilde{w}_{-\hat{2j}} = \dfrac{\tilde{u}_{\hat{2j}}}{\sqrt{-s}} $$

where, per equation 6.3

$$ -s = \tilde{u}_{-\hat{2j}} . \tilde{u}_{\hat{2j}} u_{-\hat{2j}} . u_{\hat{2j}} = \tilde{u}_{-\hat{2j}}^{\dot{e}} \tilde{u}_{\hat{2j}\dot{e}} u_{-\hat{2j}}^e

u_{\hat{2j}e}$$

ACTUALLY, IN OUR CASE IT IS THE -p2j THAT IS ON THE LEFT AND +p2j ON THE RIGHT.

As long as approach is internally consistent this should not matter.

6. Test normalised uut spinors meet properties C&O'C equation 6.4

$$ u_{\hat{p}_{2j}}.w_{-\hat{p}_{2j}} = \tilde{u}_{\hat{p}_{2j}}.\tilde{w}_{-\hat{p}_{2j}}= w_{\hat{p}_{2j}}.u_{-\hat{p}_{2j}}= \tilde{w}_{\hat{p}_{2j}}.\tilde{u}

_{-\hat{p}_{2j}}= 0 $$

7. Test wwt spinors meet strong momentum conservation C&O'C equation 4.12

$$ |w_1.1 \rangle + |w_2.2 \rangle + |w_3.3 \rangle = 0 $$

Explicitly

$$ w_1^a \Lambda^A_{1a} + w_2^a \Lambda^A_{2a} + w_3^a \Lambda^A_{3a} = 0 $$ $$ \tilde{w}_{1\dot{a}} \Lambda^{\dot{a}}_{1A} + \tilde{w}_{2\dot{a}}

\Lambda^{\dot{a}}_{2A} + \tilde{w}_{3\dot{a}} \Lambda^{\dot{a}}_{3A} = 0 $$

THIS CONDITION IS USED TO CONSTRUCT THE w AND wt IN uutilde

# Obtain left- and right-hand spinors,u,w for testing

def uutilde_Lset(p1,p2,p3,p4):
    

zs1d,zst1d,zs2d,zst2d,s3d,st3d,s4d,st4d,r_sp2jhd, r_sp2jhtd, l_sp2jhd, l_sp2jhtd = spFor3g(p1,p2,p3,p4)
    

s1 = s4d
st1 = st4d
s2 = zs1d
st2 = zst1d
s3 = l_sp2jhd
st3 = l_sp2jhtd
u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3 = uutilde(s1,s2,s3,st1,st2,st3)
return (s1,st1,s2,st2,s3,st3,u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3)

def uutilde_Rset(p1,p2,p3,p4):

zs1d,zst1d,zs2d,zst2d,s3d,st3d,s4d,st4d,r_sp2jhd, r_sp2jhtd, l_sp2jhd, l_sp2jhtd = spFor3g(p1,p2,p3,p4)
    

s1 = zs2d
st1 = zst2d
s2 = s3d
st2 = st3d
s3 = r_sp2jhd
st3 = r_sp2jhtd
u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3 = uutilde(s1,s2,s3,st1,st2,st3)
return (s1,st1,s2,st2,s3,st3,u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3)

def test_uutilde(p1,p2,p3,p4):

s1L,st1L,s2L,st2L,s3L,st3L,u1L, u2L, u3L, ut1L, ut2L, ut3L, w1L, w2L,\
w3L, wt1L, wt2L, wt3L = uutilde_Lset(p1,p2,p3,p4) 

s1R,st1R,s2R,st2R,s3R,st3R,u1R, u2R, u3R, ut1R, ut2R, ut3R, w1R, w2R,\
w3R, wt1R, wt2R, wt3R = uutilde_Rset(p1,p2,p3,p4)   

# Raise indices on u3,etc
u3Lu = np.matmul(lev2u,u3L)
ut3Lu = np.matmul(lev2u,ut3L)
w3Lu = np.matmul(lev2u,w3L)
wt3Lu = np.matmul(lev2u,wt3L)
u3Ru = np.matmul(lev2u,u3R)
ut3Ru = np.matmul(lev2u,ut3R)

In [24]:
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w3Ru = np.matmul(lev2u,w3R)
wt3Ru = np.matmul(lev2u,wt3R)

u1Lu = np.matmul(lev2u,u1L)
u2Lu = np.matmul(lev2u,u2L)
u1Ru = np.matmul(lev2u,u1R)
u2Ru = np.matmul(lev2u,u2R)
ut1Lu = np.matmul(lev2u,ut1L)
ut2Lu = np.matmul(lev2u,ut2L)
ut1Ru = np.matmul(lev2u,ut1R)
ut2Ru = np.matmul(lev2u,ut2R)

    
t= -2*MP6(p1,p3)
s = 2*MP6(p1,p2)

    
# 2. Test inverse condition

    
print('left inverse calc')
for u,w in ((u1L,w1L),(u2L,w2L),(u3L,w3L),(ut1L,wt1L),(ut2L,wt2L),(ut3L,wt3L)):  

eab = np.zeros([2,2], dtype = complex)
for a in (0,1):

for b in (0,1):
eab[a,b] += (u[a,0] * w[b,0] - u[b,0] * w[a,0])

if np.allclose(eab,lev2d): print('is allclose lev2d')
else: 

if np.allclose(eab,lev2u): print('is allclose lev2u')
else: print('test fails, eab:', eab.round(4))

print()
print('right inverse calc')
for u,w in ((u1R,w1R),(u2R,w2R),(u3R,w3R),(ut1R,wt1R),(ut2R,wt2R),(ut3R,wt3R)):

eab = np.zeros([2,2], dtype = complex)
for a in (0,1):

for b in (0,1):
eab[a,b] += (u[a,0] * w[b,0] - u[b,0] * w[a,0])

if np.allclose(eab,lev2d): print('is allclose lev2d')
else: 

if np.allclose(eab,lev2u): print('is allclose lev2u')
else: print('test fails, eab:', eab.round(4))

# 3. Test from momentum condition
    

print()
print('test conservation consistency, tildes:')
res1L = np.zeros([4,1],dtype = complex)
res2L = np.zeros([4,1],dtype = complex)
res3L = np.zeros([4,1],dtype = complex)
for ad in (0,1):

res1L[:,0] += ut1Lu[ad,0] * st1L[:,ad]
res2L[:,0] += ut2Lu[ad,0] * st2L[:,ad]
res3L[:,0] += ut3Lu[ad,0] * st3L[:,ad]

assert np.allclose (res1L,res2L)
print('res1L = res2L')
assert np.allclose(res1L, -res3L)
print('res1L, res2L = -res3L')

    
res1R = np.zeros([4,1],dtype = complex)
res2R = np.zeros([4,1],dtype = complex)
res3R = np.zeros([4,1],dtype = complex)
for ad in (0,1):

res1R[:,0] += ut1Ru[ad,0] * st1R[:,ad]
res2R[:,0] += ut2Ru[ad,0] * st2R[:,ad]
res3R[:,0] += ut3Ru[ad,0] * st3R[:,ad]

assert np.allclose (res1R,res2R)
print('res1R = res2R')
assert np.allclose(res1L, -res3L)
print('res1R, res2R = -res3R')

print()
print('test conservation consistency, non-tildes:')
resu1L = np.zeros([4,1],dtype = complex)
resu2L = np.zeros([4,1],dtype = complex)
resu3L = np.zeros([4,1],dtype = complex)
for a in (0,1):

resu1L[:,0] += u1Lu[a,0] * s1L[:,a]
resu2L[:,0] += u2Lu[a,0] * s2L[:,a]
resu3L[:,0] += u3Lu[a,0] * s3L[:,a]

assert np.allclose (resu1L,resu2L)
print('resu1L = resu2L')
assert np.allclose(resu1L, -resu3L)
print('resu1L, resu2L = -resu3L')

print()
print('test conservation consistency, non-tildes:')
resu1R = np.zeros([4,1],dtype = complex)
resu2R = np.zeros([4,1],dtype = complex)
resu3R = np.zeros([4,1],dtype = complex)
for a in (0,1):

resu1R[:,0] += u1Ru[a,0] * s1R[:,a]
resu2R[:,0] += u2Ru[a,0] * s2R[:,a]
resu3R[:,0] += u3Ru[a,0] * s3R[:,a]

assert np.allclose (resu1R,resu2R)
print('resu1R = resu2R')
assert np.allclose(resu1R, -resu3R)
print('resu1R, resu2R = -resu3R')

# 4. Test equation 6.5
print()
print('test equation 6.5 w3L.w3Ru = 1/u3L.u3Ru fails:')
print(dotprod(w3L,w3Ru))
print(1/dotprod(u3L,u3Ru))    
#assert np.allclose(dotprod(w3L,w3R),1/dotprod(u3L,u3R))

# 6. Test equation 6.4
print()
print('test equation 6.4:')
for (u,w) in ((u3Ru,w3L),(ut3Ru,wt3L),(w3Ru,u3L),(wt3Ru,ut3L)):

if np.allclose(dotprod(u,w),0): print('pass')
else: print('fail, uRwL is not zero:  ',dotprod(u,w))
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test_uutilde(psp1_1,psp1_2,psp1_3,psp1_4)
test_uutilde(psp2_1,psp2_2,psp2_3,psp2_4)
test_uutilde(psp3_1,psp3_2,psp3_3,psp3_4)
test_uutilde(psp4_1,psp4_2,psp4_3,psp4_4)
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left inverse calc
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u

right inverse calc
is allclose lev2d
is allclose lev2d
is allclose lev2d
is allclose lev2d
is allclose lev2d
is allclose lev2d

test conservation consistency, tildes:
res1L = res2L
res1L, res2L = -res3L
res1R = res2R
res1R, res2R = -res3R

test conservation consistency, non-tildes:
resu1L = resu2L
resu1L, resu2L = -resu3L

test conservation consistency, non-tildes:
resu1R = resu2R
resu1R, resu2R = -resu3R

test equation 6.5 w3L.w3Ru = 1/u3L.u3Ru fails:
[0.39366437-0.30826671j]
[-0.39366437+0.30826671j]

test equation 6.4:
pass
pass
pass
pass
left inverse calc
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u

right inverse calc
is allclose lev2d
is allclose lev2d
is allclose lev2d
is allclose lev2d
is allclose lev2d
is allclose lev2d

test conservation consistency, tildes:
res1L = res2L
res1L, res2L = -res3L
res1R = res2R
res1R, res2R = -res3R

test conservation consistency, non-tildes:
resu1L = resu2L
resu1L, resu2L = -resu3L

test conservation consistency, non-tildes:
resu1R = resu2R
resu1R, resu2R = -resu3R

test equation 6.5 w3L.w3Ru = 1/u3L.u3Ru fails:
[-0.3031506-0.27116091j]
[0.3031506+0.27116091j]

test equation 6.4:
pass
pass
pass
pass
left inverse calc
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u

right inverse calc
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u

test conservation consistency, tildes:
res1L = res2L
res1L, res2L = -res3L
res1R = res2R
res1R, res2R = -res3R

test conservation consistency, non-tildes:
resu1L = resu2L
resu1L, resu2L = -resu3L

test conservation consistency, non-tildes:
resu1R = resu2R
resu1R, resu2R = -resu3R

test equation 6.5 w3L.w3Ru = 1/u3L.u3Ru fails:
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[0.+0.j]
[0.15313761-0.65282566j]

test equation 6.4:
fail, uRwL is not zero:   [-4.11505847+3.64146593j]
fail, uRwL is not zero:   [-0.00715336+0.78259544j]
fail, uRwL is not zero:   [0.13628738+0.12060238j]
fail, uRwL is not zero:   [0.01167882+1.27769266j]
left inverse calc
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u

right inverse calc
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u
is allclose lev2u

test conservation consistency, tildes:
res1L = res2L
res1L, res2L = -res3L
res1R = res2R
res1R, res2R = -res3R

test conservation consistency, non-tildes:
resu1L = resu2L
resu1L, resu2L = -resu3L

test conservation consistency, non-tildes:
resu1R = resu2R
resu1R, resu2R = -resu3R

test equation 6.5 w3L.w3Ru = 1/u3L.u3Ru fails:
[0.+0.j]
[-0.04730239-0.77804917j]

test equation 6.4:
fail, uRwL is not zero:   [0.20095488+0.45056291j]
fail, uRwL is not zero:   [0.72621823-1.74638784j]
fail, uRwL is not zero:   [-0.82565037+1.85119881j]
fail, uRwL is not zero:   [-0.20300944-0.48819101j]

Calculate $ \Gamma_{abc} $ and $ \tilde{\Gamma}_{\dot{a} \dot{b} \dot{c}} $

def g3Gamma(u1,u2,u3,ut1,ut2,ut3,w1,w2,w3,wt1,wt2,wt3):
    

gam = np.zeros([2,2,2], dtype = complex)
gamt = np.zeros([2,2,2], dtype = complex)
for a in (0,1):

for b in (0,1):
for c in (0,1):

gam[a,b,c] += (u1[a,0] * u2[b,0] * w3[c,0] +

u1[a,0] * w2[b,0] * u3[c,0] +

w1[a,0] * u2[b,0] * u3[c,0])
for ad in (0,1):

for bd in (0,1):
for cd in (0,1):

gamt[ad,bd,cd] += (ut1[ad,0] * ut2[bd,0] * wt3[cd,0] +

ut1[ad,0] * wt2[bd,0] * ut3[cd,0] +

wt1[ad,0] * ut2[bd,0] * ut3[cd,0])

return gam, gamt

Calculate left- and right-hand 3-point amplitudes

$$ A_3(1_{a \dot{a}},2_{b \dot{b}}, 3_{c \dot{c}}) = i\Gamma_{abc} \tilde{\Gamma}_{\dot{a} \dot{b} \dot{c}} $$

def g3Amp(p1,p2,p3,p4):
    

# Get the spinors for momenta: external, shifted and propagator
zs1d,zst1d,zs2d,zst2d,s3d,st3d,s4d,st4d,r_sp2jhd, r_sp2jhtd, l_sp2jhd, l_sp2jhtd = spFor3g(p1,p2,p3,p4)

# Assign left- and right-hand spinors........

# Left-hand cyclical momenta are p4,p1h,p2jhl
Ls1 = s4d
Lst1 = st4d
Ls2 = zs1d
Lst2 = zst1d
Ls3 = l_sp2jhd
Lst3 = l_sp2jhtd

# Right-hand cyclical momenta are p2h,p3,p2jhr
Rs1 = zs2d
Rst1 = zst2d
Rs2 = s3d
Rst2 = st3d
Rs3 = r_sp2jhd
Rst3 = r_sp2jhtd

# Obtain the left- and right-hand uut and wwts
Lu1, Lu2, Lu3, Lut1, Lut2, Lut3, Lw1, Lw2, Lw3, Lwt1, Lwt2, Lwt3 = uutilde(Ls1,Ls2,Ls3,Lst1,Lst2,Lst3)
Ru1, Ru2, Ru3, Rut1, Rut2, Rut3, Rw1, Rw2, Rw3, Rwt1, Rwt2, Rwt3 = uutilde(Rs1,Rs2,Rs3,Rst1,Rst2,Rst3)

    
# Raise the index on right-hand u3, W3
Ru3u = np.matmul(lev2u,Ru3)
Rut3u = np.matmul(lev2u,Rut3)
Rw3u = np.matmul(lev2u,Rw3)
Rwt3u = np.matmul(lev2u,Rwt3)

# Obtain $\Gamma$ and $\tilde{\Gamma}$

In [27]:
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Lgam,Lgamt = g3Gamma(Lu1, Lu2, Lu3, Lut1, Lut2, Lut3, Lw1, Lw2, Lw3, Lwt1, Lwt2, Lwt3)
Rgam,Rgamt = g3Gamma(Ru1, Ru2, Ru3u, Rut1, Rut2, Rut3u, Rw1, Rw2, Rw3u, Rwt1, Rwt2, Rwt3u)

# Calculate left-hand amplitude
g3L = np.zeros([2,2,2,2,2,2], dtype = complex)
for d in (0,1):

for dd in (0,1):
for a in (0,1):

for ad in (0,1):
for e in (0,1):

for ed in (0,1):
g3L[d,dd,a,ad,e,ed] += Lgam[d,a,e] * Lgamt[dd,ad,ed]

#g3L *= 1j

# Calculate right-hand amplitude
g3R = np.zeros([2,2,2,2,2,2], dtype = complex)
for b in (0,1):

for bd in (0,1):
for c in (0,1):

for cd in (0,1):
for e in (0,1):

for ed in (0,1):
g3R[b,bd,c,cd,e,ed] += Rgam[b,c,e] * Rgamt[bd,cd,ed]

#g3R *= 1j
   

return g3L,g3R
    

Calculate the BCFW 4-point from left and right g3

Cheung & O'Connell notation $$ x^a \tilde{x}^{\dot{a}} A_{4;a \dot{a} b ...} (p_1,p_2,...) = \sum_{L,R} \sum_{c \dot{c}}\Big(-\dfrac{i}{k^2} \Big) x^a \tilde{x}

^{\dot{a}} A_{a \dot{a} c \dot{c}}(\hat{p}_1(z^*),...,\hat{k}) A_{b \dot{b}}^{c \dot{c}}(\hat{p}_2(z^*),...,-\hat{k}) $$

Bern notation $$ A^{tree}_n(0) = \sum_{j=3}^{n-1} \sum_{h} A_L(\hat{p}_2,...,p_j,-\hat{P}_{2j}^{-h}) \times \dfrac{i}{P^2_{2j}} A_R(\hat{P}_{2j}

^{(h)},p_{j+1},...,\hat{p}_1 )|_{z=z_{2j}} $$

Cheung & O'Connell notation (4-point) $$ x^a \tilde{x}^{\dot{a}} A_{4;a \dot{a} b \dot{b} c \dot{c} d \dot{d}} = \dfrac{i}{t} x^a \tilde{x}^{\dot{a}}A_{L;a

\dot{a} e \dot{e} d \dot{d}} A_{R;b \dot{b} c \dot{c}}\ ^{e \dot{e}} $$

Bern notation (4-point) $$ $$

With our choice of auxiliary matrix $x^a \tilde{\}^{\dot{a}}$ only the $a = 1, \dot{a}=1$ survives and the factor is 1.

We need to sum over $ e, \dot{e} $ index:

def bcfw4_uncontracted(p1,p2,p3,p4):

# Obtain left- and right-hand amplitudes
g3L,g3R = g3Amp(p1,p2,p3,p4)

# Left-hand momenta and indices are p4(d,dd), p1h(a,ad), p2jl(e,ed)
# Right hand momenta and indices are p2h(b,bd), p3(c,cd), p2jr(e,ed)
# Right-hand e,ed indices are already raised in uutilde function above

    
# Calculate product with sum over e and edot
res = np.zeros([2,2,2,2,2,2,2,2], dtype = complex)
for a in (0,1):

for ad in (0,1):
for b in (0,1):

for bd in (0,1):
for c in (0,1):

for cd in (0,1):
for d in (0,1):

for dd in (0,1):
for e in (0,1):

for ed in (0,1):
res[a,ad,b,bd,c,cd,d,dd] += (g3L[d,dd,a,ad,e,ed]

* g3R[b,bd,c,cd,e,ed])    
                 

return res * 1j / sij6(p2,p3)

def bcfw4(p1,p2,p3,p4):

# Obtain uncontracted bcfw amplitude:
g4res = bcfw4_uncontracted(p1,p2,p3,p4)

# Contract over a, adot =1
g4 = np.zeros([2,2,2,2,2,2,2,2], dtype = complex)
a = 1
ad = 1
for b in (0,1):

for bd in (0,1):
for c in (0,1):

for cd in (0,1):
for d in (0,1):

for dd in (0,1):
g4[a,ad,b,bd,c,cd,d,dd] += g4res[a,ad,b,bd,c,cd,d,dd]               

return g4

def test_bcfw4_raw(p1,p2,p3,p4): 
# Just check it runs
fourpoint_bcfw = bcfw4(p1,p2,p3,p4)
fourpoint_g4 = g4(p1,p2,p3,p4)
print()
print()
print('FOURPOINT BCFW')
print(fourpoint_bcfw.round(4))
print()
print()
print('FOURPOINT g4')
print(fourpoint_g4.round(4))

print('psp set 2')
test_bcfw4_raw(psp2_1,psp2_2,psp2_3,psp2_4)
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psp set 2

FOURPOINT BCFW
[[[[[[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]

    [[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]]

   [[[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]

    [[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]]]

  [[[[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]

    [[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]]

   [[[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
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       [ 0.    +0.j      0.    +0.j    ]]]]

    [[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]]]]

 [[[[[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]

    [[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]]

   [[[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]

    [[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]]]

  [[[[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 4.817 -4.8239j  0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]

    [[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[-1.1869+4.1113j  0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]
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      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]]

   [[[[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[-1.1869+4.1113j  0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]

    [[[[-0.5929-2.6198j  0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]

     [[[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]

      [[ 0.    +0.j      0.    +0.j    ]
       [ 0.    +0.j      0.    +0.j    ]]]]]]]]

FOURPOINT g4
[[[[[[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j      0.5929-2.6198j]]]]

    [[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]]

   [[[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]

    [[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.7478-0.7489j]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.2337+0.2898j -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]]]

  [[[[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]
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      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]

    [[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]]

   [[[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]

    [[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]]]]

 [[[[[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]

    [[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]]

   [[[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]

    [[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
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       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]]]

  [[[[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j      0.2337+0.2898j]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[ 0.7478-0.7489j -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]

    [[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]]

   [[[[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]

    [[[[-0.5929-2.6198j -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]

     [[[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]

      [[-0.    +0.j     -0.    +0.j    ]
       [-0.    +0.j     -0.    +0.j    ]]]]]]]]

# Load the S@M-generated amplitude sets: 3-helicity configurations for each phase space point

def ampset4d():
ampset4d = np.zeros((100,3,1), dtype = complex)
rawsam = np.loadtxt("sam_amplitude_sets.txt")
n = 0
for a in range (100):

for row in range(3):
ampset4d[a,row,0] = -rawsam[n,1] + 1j *rawsam[n,0]
n += 1

return ampset4d

def test_g4_2():
samamp = ampset4d()
for n in range(100):

p0 = rr.sam4p[n,0,0:]
p1 = rr.sam4p[n,1,0:]
p2 = rr.sam4p[n,2,0:]
p3 = rr.sam4p[n,3,0:]

samamp_mmpp = samamp[n,0,0]   
g4_mmpp = g4_hel(p0,p1,p2,p3,0,0,1,1,1,1,0,0)
assert abs(samamp_mmpp - g4_mmpp) < 1e13

samamp_mpmp = samamp[n,1,0]   
g4_mpmp = g4_hel(p0,p1,p2,p3,0,1,0,1,1,0,1,0)
assert abs(samamp_mpmp - g4_mpmp) < 1e13

    
samamp_mppm = samamp[n,2,0]   
g4_mppm = g4_hel(p0,p1,p2,p3,0,1,1,0,1,0,0,1)
assert abs(samamp_mppm - g4_mppm) < 1e13

In [47]:
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APPENDIX F. JUPYTER NOTEBOOKS

F.5 Addendum: alternative code

The alternative implementation referenced in Section 5.5 has the following
modules:

Module

4Dspinors.ipynb Implements 4D spinors
spinor_products.py Finds 6D spinor products
tensors.py Implements tensor management
tensors.ipynb Calculates 6D BCFW
momenta_x11.ipynb Checks BCFW 4-point consistent with

S@M)
(or other input data sets)

244



import numpy as np
from tensors import *

from lorentz import makeOnShell

mom = Tensor([np.sqrt(14),1,2,3], [Index(Lorenz, "mu", False)])

def sigmas4(mu_down, ad_down, a_down):
return Tensor([sig0, sig1, sig2, sig3], [Index(Lorenz, mu_down, False), Index(spd, ad_down, False), Index(sp, a_down, False

pslash = contract(sigmas4('mu','ad','a'), mom.raiseIndex('mu'), 'mu')
pslasht = contract(sigmasT4('mu','a','ad'), mom.raiseIndex('mu'), 'mu')

def lam2u(p, a_label):
pd = p.lowerIndex(p.indices[0]).data
data = np.array(

[pd[0] + pd[3], pd[1] + 1j * pd[2]]
)/np.sqrt(pd[0] + pd[3])

return Tensor(data, [Index(sp, a_label, True)]) 

def lamt2u(p, ad_label):
pd = p.lowerIndex(p.indices[0]).data
data = np.array(

[pd[0] + pd[3], pd[1] - 1j * pd[2]]
)/np.sqrt(pd[0] + pd[3])

return Tensor(data, [Index(spd, ad_label, True)]) 

la = lam2u(mom, 'a')
lat = lamt2u(mom, 'ad')

assert np.allclose(contract(pslash, la, 'a').data, 0)
assert np.allclose(contract(pslash, lat, 'ad').data, 0)

assert np.allclose(cartesianProd(la,lat).data, pslasht.data)
assert np.allclose(cartesianProd(la.lowerIndex('a'),lat.lowerIndex('ad')).reorder(pslash.indices).data, pslash.data)  

pslasht

Tensor(data=[[6.74165739+0.j 1.        -2.j]
 [1.        +2.j 0.74165739+0.j]], indices=['a↑', 'ad↑'])

cartesianProd(la.lowerIndex('a'),lat.lowerIndex('ad')).reorder(pslash.indices)

Tensor(data=[[ 0.74165739+0.j -1.        +2.j]
 [-1.        -2.j  6.74165739+0.j]], indices=['ad↓', 'a↓'])

reconstructed = 0.5*contract(cartesianProd(la,lat), sigmas4('mu','ad','a'), 'a').contract('ad')

assert np.allclose(reconstructed.data , mom.data)
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= 
-0
.2
5 
* 
c(
c(
c(
la
_L
, 
si
gm
a6
(m
u,
 '
Ai
nt
er
n'
, 
'B
in
te
rn
')
, 
'A
in
te
rn
')
, 
la
_R
,

'B
in
te
rn
')
, 
ep
s2
('
ai
nt
er
n'
,

'b
in
te
rn
',
ra
is
ed
=F
al
se
),
'a
in
te
rn
')
.c
on
tr
ac
t(
'b
in
te
rn
')
.l
ow
er
In
de
x(
mu
)

r
e
t
u
r
n
 s
hi
ft
ed

 d
e
f
 m
om
Fr
om
La
t(
la
t,
 m
u=
'm
u'
):

  
  
la
t_
L 
= 
la
t.
re
la
be
l(
la
t.
in
di
ce
s[
0]
.l
ab
el
, 
'A
in
te
rn
')
.r
el
ab
el
(l
at
.i
nd
ic
es
[1
].
la
be
l,

'a
di
nt
er
n'
).
lo
we
rI
nd
ex
('
ad
in
te
rn
')

  
  
la
t_
R 
= 
la
t.
re
la
be
l(
la
t.
in
di
ce
s[
0]
.l
ab
el
, 
'B
in
te
rn
')
.r
el
ab
el
(l
at
.i
nd
ic
es
[1
].
la
be
l,

'b
di
nt
er
n'
).
lo
we
rI
nd
ex
('
bd
in
te
rn
')

  
  
sh
if
te
d 
= 
-0
.2
5 
* 
c(
c(
c(
la
t_
L,
 s
ig
ma
6t
(m
u,
 '
Ai
nt
er
n'
, 
'B
in
te
rn
')
, 
'A
in
te
rn
')
, 
la
t_
R,

'B
in
te
rn
')
, 
ep
s2
('
ad
in
te
rn
',
 '
bd
in
te
rn
',
ra
is
ed
=T
ru
e,

do
tt
ed
=T
ru
e)
,'
ad
in
te
rn
')
.c
on
tr
ac
t(
'b
di
nt
er
n'
).
lo
we
rI
nd
ex
(m
u)

r
e
t
u
r
n
 s
hi
ft
ed

   d
e
f
 s
pr
od
Fr
om
La
La
t(
La
_i
np
ut
, 
La
t_
in
pu
t,
 a
_l
ab
el
='
a'
, 
ad
_l
ab
el
='
ad
')
:

a
s
s
e
r
t
 L
a_
in
pu
t.
in
di
ce
s[
0]
.r
ep
re
se
nt
at
io
n 
==
 s
p6
 a
n
d
 L
at
_i
np
ut
.i
nd
ic
es
[0
].
re
pr
es
en
ta
ti
on

==
 s
p6 a
s
s
e
r
t
 L
a_
in
pu
t.
in
di
ce
s[
1]
.r
ep
re
se
nt
at
io
n 
==
 s
p 
a
n
d
 L
at
_i
np
ut
.i
nd
ic
es
[1
].
re
pr
es
en
ta
ti
on

==
 s
pd

  
  
la
 =
 L
a_
in
pu
t.
re
la
be
l(
La
_i
np
ut
.i
nd
ic
es
[0
].
la
be
l,

'A
in
te
rn
')
.r
el
ab
el
(L
a_
in
pu
t.
in
di
ce
s[
1]
.l
ab
el
, 
a_
la
be
l)

  
  
la
t 
= 
La
t_
in
pu
t.
re
la
be
l(
La
t_
in
pu
t.
in
di
ce
s[
0]
.l
ab
el
,

'A
in
te
rn
')
.r
el
ab
el
(L
at
_i
np
ut
.i
nd
ic
es
[1
].
la
be
l,
 a
d_
la
be
l)

r
e
t
u
r
n
 c
on
tr
ac
t(
la
, 
la
t,
 '
Ai
nt
er
n'
)

  d
e
f
 e
ps
2(
a_
up
,b
_u
p,
 r
ai
se
d=
Tr
ue
, 
do
tt
ed
=F
al
se
):
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i
f
 d
ot
te
d:

r
e
t
u
r
n
 T
en
so
r(
sp
.t
en
so
rT
oR
ai
se
, 
[I
nd
ex
(s
pd
,a
_u
p,
ra
is
ed
),
 I
nd
ex
(s
pd
,b
_u
p,
ra
is
ed
)]
)

e
l
s
e
: r
e
t
u
r
n
 T
en
so
r(
sp
.t
en
so
rT
oR
ai
se
, 
[I
nd
ex
(s
p,
a_
up
,r
ai
se
d)
, 
In
de
x(
sp
,b
_u
p,
ra
is
ed
)]
)

  d
e
f
 s
pr
od
(m
om
1,
 m
om
2,
 a
_l
ab
el
='
a'
, 
ad
_l
ab
el
='
ad
')
:

r
e
t
u
r
n
 c
on
tr
ac
t(
la
6(
mo
m1
, 
'A
',
 a
_l
ab
el
),
 l
at
6(
mo
m2
, 
'A
',
 a
d_
la
be
l)
, 
'A
')

 d
e
f
 p
ol
ve
c(
mo
m,
 m
om
q,
 m
u=
'm
u'
, 
a_
la
be
l=
'a
',
 a
d_
la
be
l=
'a
d'
):

  
  
tm
p 
= 
c(
la
6(
mo
m,
 '
Ai
nt
er
n'
, 
a_
la
be
l)
.l
ow
er
In
de
x(
a_
la
be
l)
, 
si
gm
a6
(m
u,
'A
in
te
rn
',

'B
in
te
rn
')
, 
'A
in
te
rn
')

  
  
tm
p 
= 
c(
tm
p,
 l
a6
(m
om
q,
'B
in
te
rn
',
'b
in
te
rn
')
.l
ow
er
In
de
x(
'b
in
te
rn
')
,'
Bi
nt
er
n'
)

  
  
tm
p 
= 
c(
tm
p,
 t
in
v(
sp
ro
d(
mo
mq
, 
mo
m,
 '
bi
nt
er
n'
,

ad
_l
ab
el
))
.r
ai
se
In
de
x(
'b
in
te
rn
')
.l
ow
er
In
de
x(
ad
_l
ab
el
),
'b
in
te
rn
')

  
  
tm
p 
= 
 1
/n
p.
sq
rt
(2
)*
tm
p

r
e
t
u
r
n
 t
mp
.r
eo
rd
er
([
In
de
x(
Lo
re
nz
6,
 m
u,
 r
ai
se
d=
Tr
ue
),
 I
nd
ex
(s
p,
 a
_l
ab
el
, 
ra
is
ed
=F
al
se
),

In
de
x(
sp
d,
 a
d_
la
be
l,
 r
ai
se
d=
Fa
ls
e)
])
  

 d
e
f
 p
ol
ve
c_
v2
(m
om
, 
mo
mq
, 
mu
='
mu
',
 a
_l
ab
el
='
a'
, 
ad
_l
ab
el
='
ad
')
:

  
  
tm
p 
= 
c(
la
t6
(m
om
q,
 '
Ai
nt
er
n'
, 
'b
di
nt
er
n'
),
 s
ig
ma
6t
(m
u,
'A
in
te
rn
',
 '
Bi
nt
er
n'
),
 '
Ai
nt
er
n'
)

  
  
tm
p 
= 
c(
tm
p,
 l
at
6(
mo
m,
'B
in
te
rn
',
 a
d_
la
be
l)
,'
Bi
nt
er
n'
)

  
  
tm
p 
= 
c(
tm
p,
 t
in
v(
sp
ro
d(
mo
m,
 m
om
q,
 a
_l
ab
el
, 
'b
di
nt
er
n'
))
,'
bd
in
te
rn
')

  
  
tm
p 
= 
1/
np
.s
qr
t(
2)
*t
mp

r
e
t
u
r
n
 t
mp
.r
eo
rd
er
([
In
de
x(
Lo
re
nz
6,
 m
u,
 r
ai
se
d=
Tr
ue
),
 I
nd
ex
(s
p,
 a
_l
ab
el
, 
ra
is
ed
=F
al
se
),

In
de
x(
sp
d,
 a
d_
la
be
l,
 r
ai
se
d=
Fa
ls
e)
])
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im
po
rt
 n
um
py
 a
s 
np

 c
l
a
s
s
 R
ep
re
se
nt
at
io
n:

''
' 

  
  
th
e 
te
ns
or
s 
ar
e 
th
e 
on
es
 t
o 
mu
lt
ip
ly
 f
ro
m 
th
e 
ri
gh
t 
to
 o
bt
ai
n 
th
e 
tr
an
sf
or
me
d 
in
de
x

  
  
''
'

d
e
f
 _
_i
ni
t_
_(
se
lf
, 
na
me
, 
te
ns
or
To
Ra
is
e=
No
ne
, 
te
ns
or
To
Lo
we
r=
No
ne
):

  
  
  
  
se
lf
.n
am
e 
= 
na
me

  
  
  
  
se
lf
.t
en
so
rT
oL
ow
er
 =
 t
en
so
rT
oL
ow
er

  
  
  
  
se
lf
.t
en
so
rT
oR
ai
se
  
= 
te
ns
or
To
Ra
is
e

  c
l
a
s
s
 I
nd
ex
:

d
e
f
 _
_i
ni
t_
_(
se
lf
, 
re
pr
es
en
ta
ti
on
, 
la
be
l,
 r
ai
se
d=
Fa
ls
e)
:

  
  
  
  
se
lf
.r
ep
re
se
nt
at
io
n 
= 
re
pr
es
en
ta
ti
on

  
  
  
  
se
lf
.l
ab
el
 =
 l
ab
el

  
  
  
  
se
lf
.r
ai
se
d 
= 
ra
is
ed
 

d
e
f
 _
_r
ep
r_
_(
se
lf
):

r
e
t
u
r
n
 f
"I
nd
ex
(l
ab
el
={
se
lf
.l
ab
el
}
, 
re
pr
es
en
ta
ti
on
={
se
lf
.r
ep
re
se
nt
at
io
n.
na
me
}
,

ra
is
ed
= {
se
lf
.r
ai
se
d}
)"

d
e
f
 _
_s
tr
__
(s
el
f)
:

i
f
 s
el
f.
ra
is
ed
:

r
e
t
u
r
n
 f
"{
se
lf
.l
ab
el
}
↑"

e
l
s
e
: r
e
t
u
r
n
 f
"{
se
lf
.l
ab
el
}
↓"

d
e
f
 _
_e
q_
_(
se
lf
, 
ot
he
r)
:

# 
ne
ed
ed
 t
o 
ig
no
re
 t
he
 r
ai
se
d 
st
at
us
 i
n 
eq
ua
li
ty
 c
he
ck
s

i
f
 n
o
t
 i
si
ns
ta
nc
e(
ot
he
r,
 I
nd
ex
):

r
e
t
u
r
n
 F
al
se

r
e
t
u
r
n
 (
se
lf
.l
ab
el
 =
= 
ot
he
r.
la
be
l 
a
n
d
 

  
  
  
  
  
  
  
  
se
lf
.r
ep
re
se
nt
at
io
n.
na
me
 =
= 
ot
he
r.
re
pr
es
en
ta
ti
on
.n
am
e)

d
e
f
 _
_h
as
h_
_(
se
lf
):

r
e
t
u
r
n
 h
as
h(
tu
pl
e(
[s
el
f.
re
pr
es
en
ta
ti
on
.n
am
e,
 s
el
f.
la
be
l,
 s
el
f.
ra
is
ed
])
)

  c
l
a
s
s
 T
en
so
r:

d
e
f
 _
_i
ni
t_
_(
se
lf
, 
da
ta
, 
in
di
ce
s)
:

  
  
  
  
se
lf
.d
at
a 
= 
np
.a
rr
ay
(d
at
a)

  
  
  
  
se
lf
.i
nd
ic
es
 =
 i
nd
ic
es

d
e
f
 _
_r
ep
r_
_(
se
lf
):

r
e
t
u
r
n
 f
"T
en
so
r(
da
ta
={
se
lf
.d
at
a}
, 
in
di
ce
s=
{
[s
tr
(i
nd
ex
) 
f
o
r
 i
nd
ex
 i
n
 s
el
f.
in
di
ce
s]
}
)"

 
d
e
f
 g
et
In
de
xA
nd
Po
si
ti
on
(s
el
f,
 i
nd
ex
):

i
f
 t
yp
e(
in
de
x)
 =
= 
st
r:

  
  
  
  
  
  
in
ds
 =
 [
i 
f
o
r
 i
 i
n
 s
el
f.
in
di
ce
s 
i
f
 i
.l
ab
el
 =
= 
in
de
x]

#a
ss
er
t 
le
n(
in
ds
) 
==
 1
, 
"I
nd
ex
 m
us
t 
be
 u
ni
qu
e 
in
 t
en
so
r.
"

r
e
t
u
r
n
 s
el
f.
ge
tI
nd
ex
An
dP
os
it
io
n(
in
ds
[0
])

i
f
 i
nd
ex
 n
o
t
 i
n
 s
el
f.
in
di
ce
s:

r
a
i
s
e
 V
a
l
u
e
E
r
r
o
r
(f
"I
nd
ex
 {
in
de
x.
la
be
l}
 n
ot
 f
ou
nd
 i
n 
te
ns
or
 i
nd
ic
es
."
)

  
  
  
  
po
s 
= 
se
lf
.i
nd
ic
es
.i
nd
ex
(i
nd
ex
)

r
e
t
u
r
n
 s
el
f.
in
di
ce
s[
po
s]
, 
po
s

d
e
f
 g
et
2I
nd
ex
Po
si
ti
on
s(
se
lf
, 
in
de
x)
:

i
f
 t
yp
e(
in
de
x)
 =
= 
st
r:

Fi
le
: 
te
ns
or
s(
1)
.p
y

Pa
ge
 2
 o
f 
8

  
  
  
  
  
  
in
ds
 =
 [
i 
f
o
r
 i
 i
n
 s
el
f.
in
di
ce
s 
i
f
 i
.l
ab
el
 =
= 
in
de
x]

#a
ss
er
t 
le
n(
in
ds
) 
==
 1
, 
"I
nd
ex
 m
us
t 
be
 u
ni
qu
e 
in
 t
en
so
r.
"

r
e
t
u
r
n
 s
el
f.
ge
t2
In
de
xP
os
it
io
ns
(i
nd
s[
0]
)

  
  
  
  
in
di
ce
s 
= 
[i
 f
o
r
 i
, 
in
d 
i
n
 e
nu
me
ra
te
(s
el
f.
in
di
ce
s)
 i
f
 i
nd
 =
= 
in
de
x]

a
s
s
e
r
t
 l
en
(i
nd
ic
es
) 
==
 2
, 
"I
nd
ex
 m
us
t 
ap
pe
ar
 e
xa
ct
ly
 t
wi
ce
 i
n 
te
ns
or
."

r
e
t
u
r
n
 i
nd
ic
es

 
d
e
f
 r
ai
se
In
de
x(
se
lf
, 
in
pu
t_
in
de
x)
:

#p
ri
nt
('
ca
ll
in
g 
ra
is
eI
nd
ex
')

  
  
  
  
in
de
x,
 i
nd
ex
_p
os
it
io
n 
= 
se
lf
.g
et
In
de
xA
nd
Po
si
ti
on
(i
np
ut
_i
nd
ex
)

i
f
 i
nd
ex
.r
ai
se
d 
==
 T
ru
e:

r
e
t
u
r
n
 s
el
f.
co
py
()
  
# 
If
 a
lr
ea
dy
 r
ai
se
d 
or
 n
o 
te
ns
or
 t
o 
ra
is
e,
 r
et
ur
n 
a 
co
py

i
f
 i
nd
ex
.r
ep
re
se
nt
at
io
n.
te
ns
or
To
Ra
is
e 
i
s
 N
on
e:

  
  
  
  
  
  
ne
w_
in
di
ce
s 
= 
se
lf
.c
op
y_
in
di
ce
s(
)

  
  
  
  
  
  
ne
w_
in
di
ce
s[
in
de
x_
po
si
ti
on
] 
= 
In
de
x(
in
de
x.
re
pr
es
en
ta
ti
on
, 
in
de
x.
la
be
l,

ra
is
ed
=T
ru
e)
  
# 
Ma
rk
 a
s 
ra
is
ed
  
  
  
  

r
e
t
u
r
n
 T
en
so
r(
se
lf
.d
at
a,
 n
ew
_i
nd
ic
es
)

i
f
 t
yp
e(
in
de
x.
re
pr
es
en
ta
ti
on
.t
en
so
rT
oR
ai
se
) 
==
 s
tr
 a
n
d

in
de
x.
re
pr
es
en
ta
ti
on
.t
en
so
rT
oR
ai
se
 =
= 
'd
is
al
lo
we
d'
:

r
a
i
s
e
 V
a
l
u
e
E
r
r
o
r
(f
"R
ai
si
ng
 i
nd
ex
 {
in
de
x.
la
be
l}
 i
s 
no
t 
al
lo
we
d.
")

  
  
  
  
le
tt
er
s 
= 
'a
bc
de
gh
jk
lm
no
pq
rs
tu
vw
xy
'

  
  
  
  
co
mb
o_
li
st
 =
 [
le
tt
er
s[
i]
 f
o
r
 i
 i
n
 r
an
ge
(l
en
(s
el
f.
in
di
ce
s)
)]

  
  
  
  
co
mb
o_
li
st
[i
nd
ex
_p
os
it
io
n]
 =
 '
i'

# 
Re
pl
ac
e 
th
e 
in
de
x 
po
si
ti
on
 w
it
h 
'i
'

  
  
  
  
co
mb
o_
l 
= 
''
.j
oi
n(
co
mb
o_
li
st
)

  
  
  
  
co
mb
o_
r 
= 
'i
'+
'z
'

  
  
  
  
co
mb
o_
li
st
[i
nd
ex
_p
os
it
io
n]
 =
 '
z'

# 
Re
pl
ac
e 
th
e 
in
de
x 
po
si
ti
on
 w
it
h 
'i
'

  
  
  
  
co
mb
o_
re
s 
= 
''
.j
oi
n(
co
mb
o_
li
st
)

  
  
  
  
co
mb
o 
= 
f'
{
co
mb
o_
l}
,{
co
mb
o_
r}
->
{
co
mb
o_
re
s}
'

  
  
  
  
co
nt
ra
ct
ed
 =
 n
p.
ei
ns
um
(c
om
bo
, 
se
lf
.d
at
a,
 i
nd
ex
.r
ep
re
se
nt
at
io
n.
te
ns
or
To
Ra
is
e)
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Ra
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e 
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e 
in
de
x 
us
in
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th
e 
te
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or
To
Ra
is
e

#m
ov
ed
_t
o_
th
e_
en
d 
= 
np
.m
ov
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xi
s(
se
lf
.d
at
a,
 i
nd
ex
_p
os
it
io
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1)

#r
ai
se
d_
da
ta
 =
 n
p.
do
t(
mo
ve
d_
to
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he
_e
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in
de
x.
re
pr
es
en
ta
ti
on
.t
en
so
rT
oR
ai
se
)

#m
ov
ed
_b
ac
k 
= 
np
.m
ov
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s(
ra
is
ed
_d
at
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 i
nd
ex
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os
it
io
n)

  
  
  
  
ne
w_
in
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s 
= 
se
lf
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op
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in
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)

  
  
  
  
ne
w_
in
di
ce
s[
in
de
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po
si
ti
on
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= 
In
de
x(
in
de
x.
re
pr
es
en
ta
ti
on
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in
de
x.
la
be
l,
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ai
se
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Tr
ue
) 

# 
Ma
rk
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ed
  
  
  
  

r
e
t
u
r
n
 T
en
so
r(
co
nt
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ct
ed
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ne
w_
in
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s)
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:

#p
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in
de
x,
 i
nd
ex
_p
os
it
io
n 
= 
se
lf
.g
et
In
de
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nd
Po
si
ti
on
(i
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ut
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nd
ex
)

i
f
 i
nd
ex
.r
ai
se
d 
==
 F
al
se
:

r
e
t
u
r
n
 s
el
f.
co
py
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# 
No
 c
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ng
e 
ne
ed
ed
 i
f 
al
re
ad
y 
lo
we
re
d 
or
 n
o 
lo
we
ri
ng
 t
en
so
r

i
f
 i
nd
ex
.r
ep
re
se
nt
at
io
n.
te
ns
or
To
Lo
we
r 
i
s
 N
on
e:

  
  
  
  
  
  
ne
w_
in
di
ce
s 
= 
se
lf
.c
op
y_
in
di
ce
s(
)

  
  
  
  
  
  
ne
w_
in
di
ce
s[
in
de
x_
po
si
ti
on
] 
= 
In
de
x(
in
de
x.
re
pr
es
en
ta
ti
on
, 
in
de
x.
la
be
l,

ra
is
ed
=F
al
se
) 
 #
 M
ar
k 
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 r
ai
se
d 
  
  
  
 

r
e
t
u
r
n
 T
en
so
r(
se
lf
.d
at
a,
 n
ew
_i
nd
ic
es
)

i
f
 t
yp
e(
in
de
x.
re
pr
es
en
ta
ti
on
.t
en
so
rT
oL
ow
er
) 
==
 s
tr
 a
n
d

in
de
x.
re
pr
es
en
ta
ti
on
.t
en
so
rT
oL
ow
er
 =
= 
'd
is
al
lo
we
d'
:

r
a
i
s
e
 V
a
l
u
e
E
r
r
o
r
(f
"L
ow
er
in
g 
in
de
x 
{
in
de
x.
la
be
l}
 i
s 
no
t 
al
lo
we
d.
")

  
  
  
  
le
tt
er
s 
= 
'a
bc
de
gh
jk
lm
no
pq
rs
tu
vw
xy
'

  
  
  
  
co
mb
o_
li
st
 =
 [
le
tt
er
s[
i]
 f
o
r
 i
 i
n
 r
an
ge
(l
en
(s
el
f.
in
di
ce
s)
)]

  
  
  
  
co
mb
o_
li
st
[i
nd
ex
_p
os
it
io
n]
 =
 '
i'

# 
Re
pl
ac
e 
th
e 
in
de
x 
po
si
ti
on
 w
it
h 
'i
'

  
  
  
  
co
mb
o_
l 
= 
''
.j
oi
n(
co
mb
o_
li
st
)
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co
mb
o_
r 
= 
'i
'+
'z
'

  
  
  
  
co
mb
o_
li
st
[i
nd
ex
_p
os
it
io
n]
 =
 '
z'

# 
Re
pl
ac
e 
th
e 
in
de
x 
po
si
ti
on
 w
it
h 
'i
'

  
  
  
  
co
mb
o_
re
s 
= 
''
.j
oi
n(
co
mb
o_
li
st
)

  
  
  
  
co
mb
o 
= 
f'
{
co
mb
o_
l}
,{
co
mb
o_
r}
->
{
co
mb
o_
re
s}
'

  
  
  
  
co
nt
ra
ct
ed
 =
 n
p.
ei
ns
um
(c
om
bo
, 
se
lf
.d
at
a,
 i
nd
ex
.r
ep
re
se
nt
at
io
n.
te
ns
or
To
Lo
we
r)

# 
Ra
is
e 
th
e 
in
de
x 
us
in
g 
th
e 
te
ns
or
To
Ra
is
e

# 
mo
ve
d_
to
_t
he
_e
nd
 =
 n
p.
mo
ve
ax
is
(s
el
f.
da
ta
, 
in
de
x_
po
si
ti
on
, 
-1
)

# 
ra
is
ed
_d
at
a 
= 
np
.d
ot
(m
ov
ed
_t
o_
th
e_
en
d,
 i
nd
ex
.r
ep
re
se
nt
at
io
n.
te
ns
or
To
Lo
we
r)

# 
mo
ve
d_
ba
ck
 =
 n
p.
mo
ve
ax
is
(r
ai
se
d_
da
ta
, 
-1
, 
in
de
x_
po
si
ti
on
)

  
  
  
  
ne
w_
in
di
ce
s 
= 
se
lf
.c
op
y_
in
di
ce
s(
)

  
  
  
  
ne
w_
in
di
ce
s[
in
de
x_
po
si
ti
on
] 
= 
In
de
x(
in
de
x.
re
pr
es
en
ta
ti
on
, 
in
de
x.
la
be
l,
 r
ai
se
d=
Fa
ls
e)
 

# 
Ma
rk
 a
s 
ra
is
ed
  
  
  
  

r
e
t
u
r
n
 T
en
so
r(
co
nt
ra
ct
ed
, 
ne
w_
in
di
ce
s)
  
  
 

d
e
f
 _
_g
et
it
em
__
(s
el
f,
 i
nd
ex
):

i
f
 i
si
ns
ta
nc
e(
in
de
x,
 i
nt
):

r
e
t
u
r
n
 T
en
so
r(
 s
el
f.
da
ta
[i
nd
ex
].
co
py
()
, 
se
lf
.i
nd
ic
es
[1
:]
.c
op
y(
) 
)

 

d
e
f
 c
on
tr
ac
t(
se
lf
, 
in
de
x)
:

i
f
 t
yp
e(
in
de
x)
 =
= 
st
r:

  
  
  
  
  
  
th
el
ab
el
 =
 i
nd
ex

e
l
i
f
 i
si
ns
ta
nc
e(
in
de
x,
 I
nd
ex
):

  
  
  
  
  
  
th
el
ab
el
 =
 i
nd
ex
.l
ab
el

  
  
  
  
po
s 
= 
se
lf
.g
et
2I
nd
ex
Po
si
ti
on
s(
in
de
x)

a
s
s
e
r
t
 s
el
f.
in
di
ce
s[
po
s[
0]
].
ra
is
ed
 !
= 
se
lf
.i
nd
ic
es
[p
os
[1
]]
.r
ai
se
d,
 "

In
di
ce
s 
ha
ve
 t
o

ha
ve
 o
pp
os
it
e 
ra
is
ed
 s
ta
tu
s 
to
 c
on
tr
ac
t!
, 
Go
t:
 "
 \

f"
{
se
lf
.i
nd
ic
es
[p
os
[0
]]
}
 a
nd
 {
se
lf
.i
nd
ic
es
[p
os
[1
]]
}
"

  
  
  
  
le
tt
er
s 
= 
'a
bc
de
gh
jk
lm
no
pq
rs
tu
vw
xy
z'

  
  
  
  
co
mb
o 
= 
[ 
le
tt
er
s[
i]
 f
o
r
 i
, 
_ 
i
n
 e
nu
me
ra
te
(s
el
f.
in
di
ce
s)
  
]

  
  
  
  
co
mb
o[
po
s[
0]
] 
= 
'i
'

  
  
  
  
co
mb
o[
po
s[
1]
] 
= 
'i
' 

#p
ri
nt
(c
om
bo
, 
po
s)

  
  
  
  
co
nt
ra
ct
ed
 =
 n
p.
ei
ns
um
('
'.
jo
in
(c
om
bo
),
 s
el
f.
da
ta
)

  
  
  
  
ne
w_
in
di
ce
s 
= 
[i
dx
 f
o
r
 p
,i
dx
 i
n
 e
nu
me
ra
te
(s
el
f.
co
py
_i
nd
ic
es
()
) 
i
f
 p
 n
o
t
 i
n
 p
os
]

r
e
t
u
r
n
 T
en
so
r(
co
nt
ra
ct
ed
, 
ne
w_
in
di
ce
s)

  
d
e
f
 r
eo
rd
er
(s
el
f,
 n
ew
_o
rd
er
):

""
"

  
  
  
  
Re
or
de
r 
th
e 
te
ns
or
 i
nd
ic
es
 t
o 
ma
tc
h 
th
e 
ne
w 
or
de
r.

  
  
  
  
""
"

i
f
 s
et
(n
ew
_o
rd
er
) 
!=
 s
et
(s
el
f.
in
di
ce
s)
:

r
a
i
s
e
 V
a
l
u
e
E
r
r
o
r
("
Ne
w 
or
de
r 
mu
st
 c
on
ta
in
 t
he
 s
am
e 
in
di
ce
s 
as
 t
he
 t
en
so
r.
 G
ot
: 
"

f"
{
ne
w_
or
de
r}
 a
nd
 {
se
lf
.i
nd
ic
es
}
")

  
  
  
  
ne
w_
in
di
ce
s 
= 
[s
el
f.
in
di
ce
s.
in
de
x(
i)
 f
o
r
 i
 i
n
 n
ew
_o
rd
er
]

r
e
t
u
r
n
 T
en
so
r(
np
.t
ra
ns
po
se
(s
el
f.
da
ta
, 
ne
w_
in
di
ce
s)
, 
ne
w_
or
de
r)

d
e
f
 r
el
ab
el
(s
el
f,
 o
ld
_l
ab
el
, 
ne
w_
la
be
l)
:

""
"

  
  
  
  
Re
la
be
l 
an
 i
nd
ex
 i
n 
th
e 
te
ns
or
.

  
  
  
  
""
"

  
  
  
  
ne
w_
in
di
ce
s 
= 
[]

i
f
 t
yp
e(
ol
d_
la
be
l)
 =
= 
in
t:
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ne
w_
in
di
ce
s 
= 
se
lf
.c
op
y_
in
di
ce
s(
)

  
  
  
  
  
  
ne
w_
in
di
ce
s[
ol
d_
la
be
l]
 =
 I
nd
ex
(n
ew
_i
nd
ic
es
[o
ld
_l
ab
el
].
re
pr
es
en
ta
ti
on
, 
ne
w_
la
be
l,

ne
w_
in
di
ce
s[
ol
d_
la
be
l]
.r
ai
se
d)

r
e
t
u
r
n
 T
en
so
r(
se
lf
.d
at
a,
 n
ew
_i
nd
ic
es
)

f
o
r
 i
dx
 i
n
 s
el
f.
co
py
_i
nd
ic
es
()
:

i
f
 i
dx
.l
ab
el
 =
= 
ol
d_
la
be
l:

  
  
  
  
  
  
  
  
ne
w_
in
di
ce
s.
ap
pe
nd
(I
nd
ex
(i
dx
.r
ep
re
se
nt
at
io
n,
 n
ew
_l
ab
el
, 
id
x.
ra
is
ed
))

e
l
s
e
:

  
  
  
  
  
  
  
  
ne
w_
in
di
ce
s.
ap
pe
nd
(i
dx
)

r
e
t
u
r
n
 T
en
so
r(
se
lf
.d
at
a,
 n
ew
_i
nd
ic
es
)

 
d
e
f
 c
op
y_
in
di
ce
s(
se
lf
):

r
e
t
u
r
n
 [
In
de
x(
id
x.
re
pr
es
en
ta
ti
on
, 
id
x.
la
be
l,
 i
dx
.r
ai
se
d)
 f
o
r
 i
dx
 i
n
 s
el
f.
in
di
ce
s]

 
d
e
f
 c
op
y(
se
lf
):

""
"

  
  
  
  
Cr
ea
te
 a
 c
op
y 
of
 t
he
 t
en
so
r 
wi
th
 t
he
 s
am
e 
da
ta
 a
nd
 i
nd
ic
es
.

  
  
  
  
""
"

r
e
t
u
r
n
 T
en
so
r(
se
lf
.d
at
a.
co
py
()
, 
se
lf
.c
op
y_
in
di
ce
s(
))

 
d
e
f
 _
_a
dd
__
(s
el
f,
 o
th
er
):

i
f
 n
o
t
 i
si
ns
ta
nc
e(
ot
he
r,
 T
en
so
r)
:

r
a
i
s
e
 T
y
p
e
E
r
r
o
r
("
Ca
n 
on
ly
 a
dd
 a
no
th
er
 T
en
so
r.
")

r
e
t
u
r
n
 s
um
Te
ns
or
s(
se
lf
, 
ot
he
r)

d
e
f
 _
_n
eg
__
(s
el
f)
:

r
e
t
u
r
n
 T
en
so
r(
-s
el
f.
da
ta
, 
se
lf
.i
nd
ic
es
.c
op
y(
))

 
d
e
f
 _
_s
ub
__
(s
el
f,
 o
th
er
):

i
f
 n
o
t
 i
si
ns
ta
nc
e(
ot
he
r,
 T
en
so
r)
:

r
a
i
s
e
 T
y
p
e
E
r
r
o
r
("
Ca
n 
on
ly
 s
ub
tr
ac
t 
an
ot
he
r 
Te
ns
or
."
)

r
e
t
u
r
n
 s
um
Te
ns
or
s(
se
lf
, 
-o
th
er
)

d
e
f
 _
_m
ul
__
(s
el
f,
 o
th
er
):

i
f
 i
si
ns
ta
nc
e(
ot
he
r,
 T
en
so
r)
:

r
e
t
u
r
n
 c
ar
te
si
an
Pr
od
(s
el
f,
 o
th
er
)

e
l
i
f
 i
si
ns
ta
nc
e(
ot
he
r,
 (
in
t,
 f
lo
at
,c
om
pl
ex
))
:

r
e
t
u
r
n
 T
en
so
r(
se
lf
.d
at
a 
* 
ot
he
r,
 s
el
f.
co
py
_i
nd
ic
es
()
)

e
l
s
e
: r
a
i
s
e
 T
y
p
e
E
r
r
o
r
("
Ca
n 
on
ly
 m
ul
ti
pl
y 
by
 a
no
th
er
 T
en
so
r 
or
 a
 s
ca
la
r.
")

d
e
f
 _
_t
ru
ed
iv
__
(s
el
f,
 o
th
er
):

i
f
 i
si
ns
ta
nc
e(
ot
he
r,
 (
in
t,
 f
lo
at
,c
om
pl
ex
))
:

r
e
t
u
r
n
 T
en
so
r(
se
lf
.d
at
a 
/ 
ot
he
r,
 s
el
f.
co
py
_i
nd
ic
es
()
)

e
l
s
e
:

  
  
  
  
  
  
pr
in
t(
'A
t 
le
as
t 
I 
tr
ie
d.
..
')

r
a
i
s
e
 T
y
p
e
E
r
r
o
r
("
Ca
n 
on
ly
 d
iv
id
e 
by
 a
no
th
er
 T
en
so
r 
or
 a
 s
ca
la
r.
")

 
d
e
f
 _
_r
mu
l_
_(
se
lf
, 
ot
he
r)
:

i
f
 i
si
ns
ta
nc
e(
ot
he
r,
 T
en
so
r)
:

r
e
t
u
r
n
 c
ar
te
si
an
Pr
od
(o
th
er
, 
se
lf
)

e
l
i
f
 i
si
ns
ta
nc
e(
ot
he
r,
 (
in
t,
 f
lo
at
,c
om
pl
ex
))
:

r
e
t
u
r
n
 T
en
so
r(
se
lf
.d
at
a 
* 
ot
he
r,
 s
el
f.
co
py
_i
nd
ic
es
()
)

e
l
s
e
: r
a
i
s
e
 T
y
p
e
E
r
r
o
r
("
Ca
n 
on
ly
 m
ul
ti
pl
y 
by
 a
no
th
er
 T
en
so
r 
or
 a
 s
ca
la
r.
")
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 d
e
f
 c
on
tr
ac
t(
t1
, 
t2
, 
in
de
x)
:

i
f
 t
yp
e(
in
de
x)
 =
= 
st
r:

  
  
  
  
in
ds
 =
 [
i 
f
o
r
 i
 i
n
 t
1.
in
di
ce
s 
i
f
 i
.l
ab
el
 =
= 
in
de
x]

a
s
s
e
r
t
 l
en
(i
nd
s)
 =
= 
1,
 "
In
de
x 
mu
st
 b
e 
un
iq
ue
 i
n 
te
ns
or
."

r
e
t
u
r
n
 c
on
tr
ac
t(
t1
, 
t2
, 
in
ds
[0
])

a
s
s
e
r
t
 i
nd
ex
 i
n
 t
1.
in
di
ce
s 
a
n
d
 i
nd
ex
 i
n
 t
2.
in
di
ce
s,
 "
In
de
x 
mu
st
 b
e 
pr
es
en
t 
in
 b
ot
h

te
ns
or
s.
 G
ot
: 
" 
\

f"
{
t1
.i
nd
ic
es
}
 a
nd
 {
t2
.i
nd
ic
es
}
 w
it
h 
in
de
x 
{
in
de
x.
la
be
l}
"

  
  
in
de
x_
po
si
ti
on
_1
 =
 t
1.
in
di
ce
s.
in
de
x(
in
de
x)

  
  
in
de
x_
po
si
ti
on
_2
 =
 t
2.
in
di
ce
s.
in
de
x(
in
de
x)

  
  
i1
 =
 t
1.
in
di
ce
s[
in
de
x_
po
si
ti
on
_1
]

  
  
i2
 =
 t
2.
in
di
ce
s[
in
de
x_
po
si
ti
on
_2
]

i
f
 i
1.
ra
is
ed
 =
= 
i2
.r
ai
se
d:

r
a
i
s
e
 V
a
l
u
e
E
r
r
o
r
(f
"C
an
no
t 
co
nt
ra
ct
 i
nd
ic
es
 {
i1
}
 a
nd
 {
i2
}
 w
it
h 
th
e 
sa
me
 r
ai
se
d

st
at
us
."
)

  
  
co
nt
ra
ct
ed
 =
 n
p.
te
ns
or
do
t(
t1
.d
at
a,
 t
2.
da
ta
, 
ax
es
=(
in
de
x_
po
si
ti
on
_1
, 
in
de
x_
po
si
ti
on
_2
))

  
  
ne
w_
in
di
ce
s 
= 
[i
dx
 f
o
r
 i
dx
 i
n
 t
1.
co
py
_i
nd
ic
es
()
 i
f
 i
dx
 !
= 
in
de
x]
 +
 [
id
x 
f
o
r
 i
dx
 i
n

t2
.c
op
y_
in
di
ce
s(
) 
i
f
 i
dx
 !
= 
in
de
x]

r
e
t
u
r
n
 T
en
so
r(
co
nt
ra
ct
ed
, 
ne
w_
in
di
ce
s)

   d
e
f
 c
ar
te
si
an
Pr
od
(t
1,
 t
2)
:

  
  
le
tt
er
s 
= 
'a
bc
de
gh
jk
lm
no
pq
rs
tu
vw
xy
z'

  
  
co
mb
o1
 =
 '
'

  
  
co
mb
o2
 =
 '
'

  
  
cu
rr
en
tL
et
te
r=
0

f
o
r
 i
 i
n
 r
an
ge
(l
en
(t
1.
in
di
ce
s)
):

  
  
  
  
co
mb
o1
 +
= 
le
tt
er
s[
cu
rr
en
tL
et
te
r]

  
  
  
  
cu
rr
en
tL
et
te
r 
+=
 1

f
o
r
 i
 i
n
 r
an
ge
(l
en
(t
2.
in
di
ce
s)
):

  
  
  
  
co
mb
o2
 +
= 
le
tt
er
s[
cu
rr
en
tL
et
te
r]

  
  
  
  
cu
rr
en
tL
et
te
r 
+=
 1

   
  
co
mb
o 
= 
f'
{
co
mb
o1
}
,{
co
mb
o2
}
->
{
co
mb
o1
}
{
co
mb
o2
}
'

#p
ri
nt
(c
om
bo
)

  
  
da
ta
 =
 n
p.
ei
ns
um
(c
om
bo
, 
t1
.d
at
a,
 t
2.
da
ta
)

r
e
t
u
r
n
 T
en
so
r(
da
ta
, 
t1
.c
op
y_
in
di
ce
s(
) 
+ 
t2
.c
op
y_
in
di
ce
s(
))

d
e
f
 s
um
Te
ns
or
s(
t1
,t
2)
:

i
f
 s
et
(t
1.
in
di
ce
s)
 !
= 
se
t(
t2
.i
nd
ic
es
):

r
a
i
s
e
 V
a
l
u
e
E
r
r
o
r
("
Te
ns
or
s 
mu
st
 h
av
e 
th
e 
sa
me
 i
nd
ic
es
 t
o 
be
 s
um
me
d.
 G
ot
: 
"

f"
{
t1
.i
nd
ic
es
}
 a
nd
 {
t2
.i
nd
ic
es
}
")

i
f
 t
1.
in
di
ce
s 
!=
 t
2.
in
di
ce
s:

  
  
  
  
ne
w_
t2
 =
 t
2.
re
or
de
r(
t1
.i
nd
ic
es
)

e
l
s
e
:

  
  
  
  
ne
w_
t2
 =
 t
2.
co
py
()
  
  
  
  
  
  
  
  

 
f
o
r
 i
1,
 i
2 
i
n
 z
ip
(t
1.
in
di
ce
s,
 n
ew
_t
2.
in
di
ce
s)
:

i
f
 i
1.
ra
is
ed
 !
= 
i2
.r
ai
se
d:

r
a
i
s
e
 V
a
l
u
e
E
r
r
o
r
(f
"C
an
no
t 
su
m 
te
ns
or
s 
wi
th
 m
is
ma
tc
he
d 
ra
is
ed
 s
ta
tu
s 
fo
r 
in
de
x

{
i1
.l
ab
el
}
. 
"

f"
Go
t 
{
i1
.r
ai
se
d}
 a
nd
 {
i2
.r
ai
se
d}
."
)

r
e
t
u
r
n
 T
en
so
r(
t1
.d
at
a 
+ 
ne
w_
t2
.d
at
a,
 t
1.
in
di
ce
s)
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  ep
s 
= 
np
.a
rr
ay
([
[0
,1
],
[-
1,
0]
])

   ep
s4
 =
 n
p.
em
pt
y(
(4
,4
,4
,4
))

f
o
r
 i
 i
n
 r
an
ge
(4
):

f
o
r
 j
 i
n
 r
an
ge
(4
):

f
o
r
 k
 i
n
 r
an
ge
(4
):

f
o
r
 l
 i
n
 r
an
ge
(4
):

  
  
  
  
  
  
  
  
a 
= 
[i
,j
,k
,l
]

i
f
 l
en
(s
et
(a
))
 <
 4
:
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import numpy as np
from tensors import *

from lorentz import makeOnShell
from spinor_products import *

mom6 = Tensor([np.sqrt(1+4+9+16+25),1,2,3,4,5], [Index(Lorenz6, "mu", False)])

pslash6 = contract(mom6,sigma6('mu','A', 'B'), 'mu')
pslash6t = contract(mom6,sigma6t('mu','A', 'B'), 'mu')

mom1 = makeOnShell(13, -3, -7, 2, -2, mu='mu')
mom2 = makeOnShell(-9,7,-5,1,-7, mu='mu')

def tinv(t):
assert len(t.data.shape) == 2
ind1, ind2 = t.indices
data = np.linalg.inv(t.data)
return Tensor(data, [Index(ind2.representation, ind2.label, not ind2.raised), Index(ind1.representation, ind1.label, not ind1

eps_vec = polvec(mom1,mom2)
eps_vec

Tensor(data=[[[-0.23997307+0.02776756j -0.36734733-0.15111862j]
  [-0.36734733+0.15111862j  0.23997307+0.02776756j]]

 [[ 0.10623516+0.07372073j  0.01922527+0.31806546j]
  [ 0.01922527-0.31806546j -0.10623516+0.07372073j]]

 [[-0.13921547+0.09768719j  0.12852807+0.62132007j]
  [ 0.12852807-0.62132007j  0.13921547+0.09768719j]]

 [[-0.05720355-0.03969578j -0.77789146+0.06506783j]
  [-0.77789146-0.06506783j  0.05720355-0.03969578j]]

 [[ 0.01634387-0.69576513j  0.08043586+0.12529714j]
  [ 0.08043586-0.12529714j -0.01634387-0.69576513j]]

 [[-0.72345065-0.01134165j -0.08043586-0.12529714j]
  [-0.08043586+0.12529714j  0.72345065-0.01134165j]]], indices=['mu↑', 'a↓', 'ad↓'])

pv1 = polvec(mom1,mom2) 
pv2 = polvec_v2(mom1,mom2)
(pv1-pv2).data.round(10)

array([[[-0.-0.j,  0.-0.j],
        [-0.-0.j, -0.-0.j]],

       [[-0.-0.j,  0.+0.j],
        [ 0.+0.j, -0.-0.j]],

       [[ 0.+0.j, -0.+0.j],
        [-0.+0.j,  0.+0.j]],

       [[-0.-0.j,  0.-0.j],
        [ 0.+0.j, -0.-0.j]],

       [[ 0.-0.j, -0.+0.j],
        [ 0.+0.j,  0.+0.j]],

       [[-0.+0.j,  0.-0.j],
        [ 0.-0.j, -0.-0.j]]])

# eq 29
 
eps_vec_a = polvec(mom1,mom2, 'mu', 'a', 'ad')
eps_vec_b = polvec(mom1,mom2, 'mu', 'b', 'bd')

eps_contraction = c(eps_vec_a, eps_vec_b.lowerIndex('mu'), 'mu')
eps_prod = (eps2('a', 'b', raised=False)*eps2('ad', 'bd', raised=False, dotted=True)).reorder(eps_contraction.indices) 
assert np.allclose((eps_contraction - eps_prod).data,0)

eps_vec_mu = polvec(mom1,mom2, 'mu', 'a', 'ad').raiseIndex('a').raiseIndex('ad')
eps_vec_nu = polvec(mom1,mom2, 'nu', 'a', 'ad')

LHS = c(eps_vec_mu, eps_vec_nu, 'a').contract('ad')

# eq 33

mom1nu = mom1.relabel('mu', 'nu')
mom2nu = mom2.relabel('mu', 'nu')

gmunu = Tensor(gmunu6_vals, [Index(Lorenz6, 'mu', False), Index(Lorenz6, 'nu', False)])

RHS = gmunu - (mom1*mom2nu + mom2*mom1nu)/float(MP(mom1,mom2))
RHS = RHS.raiseIndex('mu').raiseIndex('nu')

np.allclose(RHS.data, LHS.data)

True

shift

x = Tensor([1,2j], [Index(sp, 'a', True)])
xt = Tensor([1,3], [Index(spd, 'ad', True)])

y = c(xt, tinv(sprod(mom2, mom1, 'b', 'ad')).lowerIndex('ad'), 'ad')
y
yt = c(x, tinv(sprod(mom1, mom2, 'a', 'bd')).lowerIndex('a'), 'a')
yt

Tensor(data=[-0.02651765+0.01257003j -0.03776698+0.07661194j], indices=['bd↑'])

z = 1
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FUDGE = -1

def shifted(mom1, mom2, z, x, xt):

l1 = la6(mom1, 'A', 'a')
l2 = la6(mom2, 'A', 'a')
lt1 = lat6(mom1, 'A', 'ad')
lt2 = lat6(mom2, 'A', 'ad')

lx = c(x, l1.lowerIndex('a'), 'a')
ly = c(y.relabel('b', 'a'), l2, 'a')
ltx = c(xt.relabel('bd', 'ad'), lt1, 'ad')
lty = c(yt.relabel('bd', 'ad'), lt2, 'ad')

sqrt2 = np.sqrt(2)

la1hat = l1 + FUDGE * sqrt2 * z * x*ly 

lat1hat = lt1 - sqrt2 * z * lty*xt.lowerIndex('ad') 

la2hat = l2 + sqrt2 * z * y.relabel('b','a').raiseIndex('a')*lx 

lat2hat = lt2 - sqrt2 * z * ltx.relabel('bd','ad')*yt.relabel('bd','ad').lowerIndex('ad') 

r = (momFromLa(la1hat, mu='mu')-mom1)
return la1hat, lat1hat, la2hat, lat2hat, r

la1hat, lat1hat, la2hat, lat2hat, r = shifted(mom1, mom2, 1, x, xt)

shifted_1 = momFromLa(la1hat, mu='mu')
shifted_2 = momFromLa(la2hat, mu='mu')
shifted_1t = momFromLat(lat1hat, mu='mu')
shifted_2t = momFromLat(lat2hat, mu='mu')

(shifted_1-mom1).data.round(10)

array([-1.81085763+0.27955545j, -0.35771751-0.42895666j,
       -0.90288576-3.05399637j,  2.02256761+1.05705391j,
       -4.68283652+0.25706522j,  1.14730261-3.79259912j])

(shifted_2-mom2).data.round(10)

array([ 1.81085763-0.27955545j,  0.35771751+0.42895666j,
        0.90288576+3.05399637j, -2.02256761-1.05705391j,
        4.68283652-0.25706522j, -1.14730261+3.79259912j])

(shifted_1t-mom1).data.round(10)

array([-1.81085763+0.27955545j, -0.35771751-0.42895666j,
       -0.90288576-3.05399637j,  2.02256761+1.05705391j,
       -4.68283652+0.25706522j,  1.14730261-3.79259912j])

(shifted_2t-mom2).data.round(10)

array([ 1.81085763-0.27955545j,  0.35771751+0.42895666j,
        0.90288576+3.05399637j, -2.02256761-1.05705391j,
        4.68283652-0.25706522j, -1.14730261+3.79259912j])

zpart = (shifted_1-mom1)

MP(zpart,mom1)

array(-3.8191672e-14-7.99360578e-15j)

MP(zpart,eps_vec).round(10)

array([[ 0.+6.j,  0.-2.j],
       [-3.-0.j,  1.-0.j]])

MP(mom2,eps_vec).round(10)

array([[ 0.+0.j, -0.+0.j],
       [-0.+0.j, -0.+0.j]])

xeps = c(c(x,eps_vec.lowerIndex('a').lowerIndex('ad'), 'a'), xt, 'ad').lowerIndex('mu')
xeps

Tensor(data=[-1.81085763+0.27955545j -0.35771751-0.42895666j -0.90288576-3.05399637j
  2.02256761+1.05705391j -4.68283652+0.25706522j  1.14730261-3.79259912j], indices=['mu↓'])

(r.data/ xeps.data).round(10)

array([1.-0.j, 1.+0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j])

3 point

I take the cyclic order to be 1hat, p ,3

mom3 = makeOnShell(1,-2,3,-4,25, mu='mu')
eps_vec = polvec(mom1,mom2)
xeps = c(c(x,eps_vec.lowerIndex('a').lowerIndex('ad'), 'a'), xt, 'ad').lowerIndex('mu')

z = - MP(mom1, mom3)/MP(xeps, mom3)

la1hat, lat1hat, la2hat, lat2hat, r = shifted(mom1, mom2, z, x, xt)

mom1hat = momFromLa(la1hat, mu='mu')

mom13 = -mom3 - mom1hat

mom1hat, mom3, mom13
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(Tensor(data=[10.36848958-3.36347295j 13.09835385-1.82445387j  1.63884869-9.32793632j
  -4.50852734+7.03734689j -9.79201332-9.81400084j  9.19589168-6.5312287j ], indices=['mu↓']),
 Tensor(data=[25.59296778  1.         -2.          3.         -4.         25.        ], indices=['mu↓']),
 Tensor(data=[-35.96145736+3.36347295j -14.09835385+1.82445387j
    0.36115131+9.32793632j   1.50852734-7.03734689j
   13.79201332+9.81400084j -34.19589168+6.5312287j ], indices=['mu↓']))

assert np.isclose(MP(mom1hat, mom1hat),0)
assert np.isclose(MP(mom3, mom3),0)
assert np.isclose(MP(mom13, mom13),0)

# def sprodFromLaLat(La_input, Lat_input, a_label='a', ad_label='ad'):
#     assert La_input.indices[0].representation == sp6 and Lat_input.indices[0].representation == sp6
#     assert La_input.indices[1].representation == sp and Lat_input.indices[1].representation == spd
#     la = La_input.relabel(La_input.indices[0].label, 'Aintern').relabel(La_input.indices[1].label, a_label)
#     lat = Lat_input.relabel(Lat_input.indices[0].label, 'Aintern').relabel(Lat_input.indices[1].label, ad_label)
#     return contract(la, lat, 'Aintern')

la3 = la6(mom3, 'A', 'a')
lat3 = lat6(mom3, 'A', 'ad')
la13 = la6(mom13, 'A', 'a')
lat13 = lat6(mom13, 'A', 'ad')

s1hp = sprod(mom1hat, mom13)
s3p = sprod(mom3, mom13)
s1h3 = sprod(mom1hat, mom3)

sp1h = sprod(mom13, mom1hat)
sp3 = sprod(mom13, mom3)
s31h = sprod(mom3, mom1hat)

s1hp = sprodFromLaLat(la1hat, lat13)
s3p = sprodFromLaLat(la3, lat13)
s1h3 = sprodFromLaLat(la1hat, lat3)

sp1h = sprodFromLaLat(la13, lat1hat)
sp3 = sprodFromLaLat(la13, lat3)
s31h = sprodFromLaLat(la3, lat1hat)

np.linalg.det(s1hp.data),np.linalg.det(s3p.data),np.linalg.det(s1h3.data)

(np.complex128(9.96810815328841e-14+3.017822048365349e-13j),
 np.complex128(2.5906936961455506e-13+1.6872626448751288e-13j),
 np.complex128(-4.583676499560423e-13-3.5721343919827865e-13j))

def getuutilde(la1, la2, la3, lat1, lat2, lat3):
'''strategy is to make the spinor product s12 diagonal, from there we can deduct the transformed versions 

    of its two constituents as spinors with one zero constituent u1, ut2. Then we extract the other ut3 from s13 adn u3 
    from s32 and then we can get ut1 and u2 from s21 and s31 respectively.
    '''

s12 = sprodFromLaLat(la1, lat2).relabel(la1.indices[0].label, 'a').lowerIndex('a').lowerIndex('ad')
s23 = sprodFromLaLat(la2, lat3).relabel(la1.indices[0].label, 'a').lowerIndex('a').lowerIndex('ad')
s31 = sprodFromLaLat(la3, lat1).relabel(la1.indices[0].label, 'a').lowerIndex('a').lowerIndex('ad')

s21 = sprodFromLaLat(la2, lat1).lowerIndex('a').lowerIndex('ad')
s13 = sprodFromLaLat(la1, lat3).lowerIndex('a').lowerIndex('ad')
s32 = sprodFromLaLat(la3, lat2).lowerIndex('a').lowerIndex('ad')

eig_res = np.linalg.eig(s12.data)
if np.isclose(eig_res.eigenvalues[1],0) :

print('swap of eigenvectors needed!')
# swap the eigenvalues adnd eigenvectors
S = np.zeros((2,2), dtype=complex)
orig = np.array(eig_res.eigenvectors)
S[:,0] = orig[:,1]
S[:,1] = orig[:,0]

else:
S = eig_res.eigenvectors

Sinv = np.linalg.inv(S)

s12_trans = (Sinv@s12.data@S)
s13_trans = (Sinv@s13.data@S)
s21_trans = (Sinv@s21.data@S)
s23_trans = (Sinv@s23.data@S)
s31_trans = (Sinv@s31.data@S)
s32_trans = (Sinv@s32.data@S)

    
val = s12_trans[1,1]
u1_trans = Tensor([0, np.sqrt(val)], [Index(sp, 'a', False)])
ut2_trans = Tensor([0, np.sqrt(val)], [Index(spd, 'ad', False)])
ut3_trans = Tensor( - s13_trans[1]/np.sqrt(val), [Index(spd, 'ad', False)]) # negative because of the revers order
u3_trans = Tensor( - s32_trans[:,1]/np.sqrt(val), [Index(sp, 'a', False)])
ut1_trans = Tensor(s31_trans[0]/u3_trans[0].data, [Index(spd, 'ad', False)])
u2_trans = Tensor(-s21_trans[:,0]/ut1_trans[0].data, [Index(sp, 'a', False)])

#positive order
assert np.allclose((u1_trans*ut2_trans).data, s12_trans), ((u1_trans*ut2_trans).data, s12_trans)
assert np.allclose((u2_trans*ut3_trans).data, s23_trans)
assert np.allclose((u3_trans*ut1_trans).data, s31_trans)

# negative order
assert np.allclose(-(u1_trans*ut3_trans).data, s13_trans)
assert np.allclose(-(u2_trans*ut1_trans).data, s21_trans)
assert np.allclose(-(u3_trans*ut2_trans).data, s32_trans)

    
u1 = Tensor(S@u1_trans.data, [Index(sp, 'a', False)])
u2 = Tensor(S@u2_trans.data, [Index(sp, 'a', False)])
u3 = Tensor(S@u3_trans.data, [Index(sp, 'a', False)])
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ut1 = Tensor(Sinv.T@ut1_trans.data, [Index(spd, 'ad', False)])
ut3 = Tensor(Sinv.T@ut3_trans.data, [Index(spd, 'ad', False)])
ut2 = Tensor(Sinv.T@ut2_trans.data, [Index(spd, 'ad', False)])

u1_1, u1h_2 = u1.data
u2_1, up_2 = u2.data
u3_1, u3_2 = u3.data

w1_1, w1_2 = 0,1/u1_1
w1 = Tensor([w1_1, w1_2], [Index(sp, 'a', False)])
w2_1, w2_2 = 0,1/u2_1
w2 = Tensor([w2_1, w2_2], [Index(sp, 'a', False)])
w3_1, w3_2 = 0,1/u3_1
w3pre = Tensor([w3_1, w3_2], [Index(sp, 'a', False)])
#print(f'{w1=}, {w2=}, {w3pre=}')
#print(f'{la1=}, {la2=}, {la3=}')
momsum = (w1*la1 +w2*la2 + w3pre*la3 ).contract('a')
factor = (momsum.data/(u1*la1).contract('a').data)[0] # u1*la1 = u2*la2 = u3*la3
w3 = w3pre - factor*u3

ut1_1, ut1h_2 = ut1.data
ut2_1, utp_2 = ut2.data
ut3_1, ut3_2 = ut3.data

wt1_1, wt1_2 = 0,1/ut1_1
wt1 = Tensor([wt1_1, wt1_2], [Index(spd, 'ad', False)])
wt2_1, wt2_2 = 0,1/ut2_1
wt2 = Tensor([wt2_1, wt2_2], [Index(spd, 'ad', False)])
wt3_1, wt3_2 = 0,1/ut3_1
wt3pre = Tensor([wt3_1, wt3_2], [Index(spd, 'ad', False)])
momsum = (wt1*lat1.raiseIndex('ad') + wt2*lat2.raiseIndex('ad') + wt3pre*lat3.raiseIndex('ad') ).contract('ad')

factor = (momsum.data/(ut1*lat1.raiseIndex('ad')).contract('ad').data)[0] # u1*la1 = u2*la2 = u3*la3
wt3 = wt3pre - factor*ut3

return u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3

u1h, up, u3, ut1h, utp, ut3,w1, w2, w3, wt1, wt2, wt3 = getuutilde(la1hat, la13, la3, lat1hat, lat13, lat3)

#positive order
assert np.allclose((u1h*utp).raiseIndex('a').data, s1hp.data)
assert np.allclose((up*ut3).raiseIndex('a').data, sp3.data)
assert np.allclose((u3*ut1h).raiseIndex('a').data, s31h.data)

# negative order
assert np.allclose(-(u1h*ut3).raiseIndex('a').data, s1h3.data)
assert np.allclose(-(up*ut1h).raiseIndex('a').data, sp1h.data)
assert np.allclose(-(u3*utp).raiseIndex('a').data, s3p.data)

assert np.allclose((u1h*w1.relabel('a', 'b')-u1h.relabel('a', 'b') *w1 ).data, eps2('a', 'b', raised=False).data)
assert np.allclose((up*w2.relabel('a', 'b')-up.relabel('a', 'b') *w2 ).data, eps2('a', 'b', raised=False).data)
assert np.allclose((u3*w3.relabel('a', 'b')-u3.relabel('a', 'b') *w3 ).data, eps2('a', 'b', raised=False).data)

assert np.allclose((ut1h*wt1.relabel('ad', 'bd')-ut1h.relabel('ad', 'bd') *wt1 ).data, eps2('ad', 'bd', raised=False, dotted=True
assert np.allclose((utp*wt2.relabel('ad', 'bd')-utp.relabel('ad', 'bd') *wt2 ).data, eps2('ad', 'bd', raised=False, dotted=True
assert np.allclose((ut3*wt3.relabel('ad', 'bd')-ut3.relabel('ad', 'bd') *wt3 ).data, eps2('ad', 'bd', raised=False, dotted=True

assert np.allclose((w1*la1hat +w2*la13 + w3*la3 ).contract('a').data, 0 )
assert np.allclose((wt1*lat1hat.raiseIndex('ad') +wt2*lat13.raiseIndex('ad') + wt3*lat3.raiseIndex('ad') ).contract('ad').data

def gammagammabar(la1, la2, la3, lat1, lat2, lat3, a_label='a', b_label='b', c_label='c', ad_label='ad', bd_label='bd', cd_label
    

u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3 = getuutilde(la1, la2, la3, lat1, lat2, lat3)
u1 = u1.relabel(u1.indices[0].label, a_label)
u2 = u2.relabel(u2.indices[0].label, b_label)
u3 = u3.relabel(u3.indices[0].label, c_label)
ut1 = ut1.relabel(ut1.indices[0].label, ad_label)
ut2 = ut2.relabel(ut2.indices[0].label, bd_label)
ut3 = ut3.relabel(ut3.indices[0].label, cd_label)

w1 = w1.relabel(w1.indices[0].label, a_label)
w2 = w2.relabel(w2.indices[0].label, b_label)
w3 = w3.relabel(w3.indices[0].label, c_label)
wt1 = wt1.relabel(wt1.indices[0].label, ad_label)
wt2 = wt2.relabel(wt2.indices[0].label, bd_label)
wt3 = wt3.relabel(wt3.indices[0].label, cd_label)

return u1*u2*w3 + u1*w2*u3 + w1*u2*u3, ut1*ut2*wt3 + ut1*wt2*ut3 + wt1*ut2*ut3

gammagammabar(la1hat, la13, la3, lat1hat, lat13, lat3)
    

(Tensor(data=[[[ 2.52064746+0.19643971j -4.4257652 +3.77913129j]
   [ 2.69341225-1.04943353j  1.3770117 +0.35908511j]]
 
  [[-1.75406118+1.39985499j  2.2970235 -3.94018678j]
   [-2.95683046-0.38050009j  0.25001487+0.02025387j]]], indices=['a↓', 'b↓', 'c↓']),
 Tensor(data=[[[-0.20347571+2.58694533j  7.55520942-9.67784805j]
   [-2.23806806+4.17027203j -0.738519  +5.29791853j]]
 
  [[ 1.64415816-0.32697043j -7.90077432-4.96683052j]
   [ 6.24102187+1.47889157j -0.55874876-0.54731561j]]], indices=['ad↓', 'bd↓', 'cd↓']))

4 point reconstruction

p1= makeOnShell( 1,1,2,1,1.5, mu='mu', energySign=-1)
p2= makeOnShell(-1,-1,-2,-1,1, mu='mu')
p3= makeOnShell( 2,-1,-1,1,-1, mu='mu', energySign=-1)
p4= makeOnShell(-2,1,1,-1,-1.5, mu='mu')

la1 = 1j*la6(-p1, 'A', 'a')
la2 = la6(p2, 'B', 'b')
la3 = 1j*la6(-p3, 'C', 'c')
la4 = la6(p4, 'D', 'd')
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lat1 = 1j*lat6(-p1, 'A', 'ad')
lat2 = lat6(p2, 'B', 'bd')
lat3 = 1j*lat6(-p3, 'C', 'cd')
lat4 = lat6(p4, 'D', 'dd')

p1+p2+p3+p4

Tensor(data=[0. 0. 0. 0. 0. 0.], indices=['mu↓'])

def eps4T(A_label='A', B_label='B', C_label='C', D_label='D', raised=False):
return Tensor(eps4, [Index(sp6, 'A', raised), Index(sp6, 'B', raised), Index(sp6, 'C', raised), Index(sp6, 'D', raised)])

f1 = c(c(c(c(eps4T(),la1,'A'),la2, 'B'), la3, 'C'), la4, 'D')
f1.data.round(10)

array([[[[  0.         +0.j        ,  -1.61437155-12.73741469j],
         [  1.1660456 +12.10674129j,  -4.83675476 -3.82697997j]],

        [[  2.99439733 +4.97757293j,   5.17464855 +5.80493468j],
         [-11.69895179 -4.33153493j,   5.32809638 -3.69752118j]]],

       [[[ -5.32809638 -3.69752118j, -11.69895179 +4.33153493j],
         [  5.17464855 -5.80493468j,  -2.99439733 +4.97757293j]],

        [[ -4.83675476 +3.82697997j,  -1.1660456 +12.10674129j],
         [  1.61437155-12.73741469j,   0.         +0.j        ]]]])

f2 = c(c(c(c(eps4T(raised=True),lat1,'A'),lat2, 'B'), lat3, 'C'), lat4, 'D')
f2.data.round(10)

array([[[[  0.         +0.j        ,  -2.31929248-12.86435175j],
         [  1.82990707+12.24700077j,  -5.00451188 -3.60251446j]],

        [[  3.30936694 +4.90138032j,   6.68078996 -1.77089997j],
         [-12.28946561 -1.76683215j,   5.61393547 -3.47572705j]]],

       [[[ -5.61393547 -3.47572705j, -12.28946561 +1.76683215j],
         [  6.68078996 +1.77089997j,  -3.30936694 +4.90138032j]],

        [[ -5.00451188 +3.60251446j,  -1.82990707+12.24700077j],
         [  2.31929248-12.86435175j,   0.         +0.j        ]]]])

t= -2*MP(p1,p3)
s = 2*MP(p1,p2)
prod_target = -1j/(s*t)* (f1*f2).lowerIndex('a').lowerIndex('b').lowerIndex('c').lowerIndex('d')

prod_target.data.round(10)
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array([[[[[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],

          [[[[ 0.        +0.j        , -0.06998844-1.33694197j],
             [ 0.02821472+1.26791427j, -0.46208882-0.43047749j]],

            [[ 0.27312832+0.54061862j,  0.70160275-0.09389875j],
             [-1.22591153-0.33777675j,  0.61515969-0.28085525j]]],

           [[[-0.52564167-0.42544324j, -1.27141663+0.02125918j],
             [ 0.65599288+0.26596379j, -0.39936432+0.45538523j]],

            [[-0.55487228+0.30158532j, -0.34363859+1.22078466j],
             [ 0.40131231-1.27720814j,  0.        +0.j        ]]]]],

         [[[[[-0.        -0.j        ,  0.10432643+1.26392985j],
             [-0.06280691-1.19975806j,  0.4497956 +0.39445674j]],

            [[-0.27400806-0.50412577j, -0.66165999+0.10888176j],
             [ 1.17040445+0.28493826j, -0.57448719+0.28344632j]]],

           [[[ 0.50982915+0.38788089j,  1.20327236-0.05632056j],
             [-0.6287164 -0.23316274j,  0.36518715-0.44256249j]],

            [[ 0.51681224-0.30135912j,  0.29063465-1.16571678j],
             [-0.34363859+1.22078466j, -0.        -0.j        ]]]],

          [[[[ 0.        +0.j        ,  0.42553158-0.48219621j],
             [-0.4166525 +0.4444687j , -0.0137815 -0.30305919j]],

            [[-0.08807951+0.2773078j ,  0.27227104+0.20369795j],
             [-0.30699543-0.52808939j,  0.30547865+0.11049284j]]],

           [[[-0.03727724-0.32270154j, -0.44333147-0.42021638j],
             [ 0.1356211 +0.31181932j, -0.29013118+0.02194342j]],

            [[-0.29176635-0.08310955j, -0.52837651+0.30326553j],
             [ 0.56713477-0.30323006j,  0.        +0.j        ]]]]]],

        [[[[[[-0.        -0.j        , -0.21518771+0.56618179j],
             [ 0.21987297-0.52998027j,  0.11265673+0.26257611j]],

            [[-0.0143259 -0.27365804j, -0.30756252-0.08926218j],
             [ 0.44575517+0.36369705j, -0.30592395+0.0039113j ]]],

           [[[ 0.13988253+0.27209858j,  0.53015975+0.22339169j],
             [-0.22296361-0.22989056j,  0.2484732 -0.11556394j]],

            [[ 0.284755  -0.02350204j,  0.36518715-0.44256249j],
             [-0.39936432+0.45538523j, -0.        -0.j        ]]]],

          [[[[-0.        -0.j        , -0.42361179+0.69141921j],
             [ 0.42079018-0.64263217j,  0.08303196+0.3733879j ]],

            [[ 0.04907566-0.36356084j, -0.38245266-0.19376388j],
             [ 0.49613451+0.58909033j, -0.40342268-0.07078475j]]],

           [[[ 0.11648482+0.39267241j,  0.64199494+0.42546371j],
             [-0.23625641-0.35776722j,  0.35555668-0.09035681j]],

            [[ 0.38043672+0.03975844j,  0.59025818-0.49156461j],
             [-0.63840185+0.49995055j, -0.        -0.j        ]]]]],

         [[[[[ 0.        +0.j        ,  1.12037494-0.66092719j],
             [-1.07967252+0.59392666j,  0.16327352-0.59149894j]],

            [[-0.34305532+0.47818513j,  0.39609637+0.56226829j],
             [-0.25974345-1.20790989j,  0.51833018+0.40380343j]]],

           [[[ 0.13038482-0.64399005j, -0.5895077 -1.08581473j],
             [ 0.0655729 +0.68464455j, -0.57174579-0.13948017j]],

            [[-0.50910528-0.3425508j , -1.2061264 +0.25239001j],
             [ 1.28064731-0.2280509j , -0.        +0.j        ]]]],
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          [[[[ 0.        -0.j        , -0.61515969-0.28085525j],
             [ 0.57448719+0.28344632j, -0.30071787+0.10644424j]],

            [[ 0.30592395+0.0039113j ,  0.12178124-0.33617496j],
             [-0.43756532+0.47020775j,  0.01785726-0.34111527j]]],

           [[[-0.31330391+0.13608515j, -0.28737958+0.57443164j],
             [ 0.27231275-0.23171111j,  0.11070727+0.28521686j]],

            [[ 0.00550606+0.31895344j,  0.46654257+0.43899361j],
             [-0.47834665-0.47800168j,  0.        -0.j        ]]]]]]],

       [[[[[[[ 0.        +0.j        ,  0.47834665-0.47800168j],
             [-0.46654257+0.43899361j,  0.00550606-0.31895344j]],

            [[-0.11070727+0.28521686j,  0.27231275+0.23171111j],
             [-0.28737958-0.57443164j,  0.31330391+0.13608515j]]],

           [[[-0.01785726-0.34111527j, -0.43756532-0.47020775j],
             [ 0.12178124+0.33617496j, -0.30592395+0.0039113j ]],

            [[-0.30071787-0.10644424j, -0.57448719+0.28344632j],
             [ 0.61515969-0.28085525j,  0.        +0.j        ]]]],

          [[[[-0.        +0.j        ,  1.28064731+0.2280509j ],
             [-1.2061264 -0.25239001j,  0.50910528-0.3425508j ]],

            [[-0.57174579+0.13948017j, -0.0655729 +0.68464455j],
             [ 0.5895077 -1.08581473j,  0.13038482+0.64399005j]]],

           [[[ 0.51833018-0.40380343j,  0.25974345-1.20790989j],
             [-0.39609637+0.56226829j, -0.34305532-0.47818513j]],

            [[-0.16327352-0.59149894j, -1.07967252-0.59392666j],
             [ 1.12037494+0.66092719j, -0.        +0.j        ]]]]],

         [[[[[ 0.        -0.j        , -0.63840185-0.49995055j],
             [ 0.59025818+0.49156461j, -0.38043672+0.03975844j]],

            [[ 0.35555668+0.09035681j,  0.23625641-0.35776722j],
             [-0.64199494+0.42546371j,  0.11648482-0.39267241j]]],

           [[[-0.40342268+0.07078475j, -0.49613451+0.58909033j],
             [ 0.38245266-0.19376388j,  0.04907566+0.36356084j]],

            [[-0.08303196+0.3733879j ,  0.42079018+0.64263217j],
             [-0.42361179-0.69141921j,  0.        -0.j        ]]]],

          [[[[-0.        +0.j        ,  0.39936432+0.45538523j],
             [-0.36518715-0.44256249j,  0.284755  +0.02350204j]],

            [[-0.2484732 -0.11556394j, -0.22296361+0.22989056j],
             [ 0.53015975-0.22339169j, -0.13988253+0.27209858j]]],

           [[[ 0.30592395+0.0039113j ,  0.44575517-0.36369705j],
             [-0.30756252+0.08926218j,  0.0143259 -0.27365804j]],

            [[ 0.11265673-0.26257611j, -0.21987297-0.52998027j],
             [ 0.21518771+0.56618179j, -0.        +0.j        ]]]]]],

        [[[[[[-0.        +0.j        ,  0.56713477+0.30323006j],
             [-0.52837651-0.30326553j,  0.29176635-0.08310955j]],

            [[-0.29013118-0.02194342j, -0.1356211 +0.31181932j],
             [ 0.44333147-0.42021638j, -0.03727724+0.32270154j]]],

           [[[ 0.30547865-0.11049284j,  0.30699543-0.52808939j],
             [-0.27227104+0.20369795j, -0.08807951-0.2773078j ]],

            [[ 0.0137815 -0.30305919j, -0.4166525 -0.4444687j ],
             [ 0.42553158+0.48219621j, -0.        +0.j        ]]]],

          [[[[-0.        +0.j        ,  0.34363859+1.22078466j],
             [-0.29063465-1.16571678j,  0.51681224+0.30135912j]],

            [[-0.36518715-0.44256249j, -0.6287164 +0.23316274j],
             [ 1.20327236+0.05632056j, -0.50982915+0.38788089j]]],

           [[[ 0.57448719+0.28344632j,  1.17040445-0.28493826j],
             [-0.66165999-0.10888176j,  0.27400806-0.50412577j]],

            [[ 0.4497956 -0.39445674j,  0.06280691-1.19975806j],
             [-0.10432643+1.26392985j, -0.        -0.j        ]]]]],
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         [[[[[ 0.        -0.j        , -0.40131231-1.27720814j],
             [ 0.34363859+1.22078466j, -0.55487228-0.30158532j]],

            [[ 0.39936432+0.45538523j,  0.65599288-0.26596379j],
             [-1.27141663-0.02125918j,  0.52564167-0.42544324j]]],

           [[[-0.61515969-0.28085525j, -1.22591153+0.33777675j],
             [ 0.70160275+0.09389875j, -0.27312832+0.54061862j]],

            [[-0.46208882+0.43047749j, -0.02821472+1.26791427j],
             [ 0.06998844-1.33694197j,  0.        +0.j        ]]]],

          [[[[ 0.        -0.j        , -0.        -0.j        ],
             [ 0.        +0.j        , -0.        +0.j        ]],

            [[ 0.        -0.j        , -0.        -0.j        ],
             [-0.        +0.j        , -0.        -0.j        ]]],

           [[[-0.        +0.j        , -0.        +0.j        ],
             [ 0.        -0.j        ,  0.        +0.j        ]],

            [[ 0.        +0.j        ,  0.        +0.j        ],
             [-0.        -0.j        ,  0.        -0.j        ]]]]]]]])

def polvecFromLa(la_in, laq_in, lat_in, latq_in, mu='mu', a_label='a', ad_label='ad'):
la = la_in.relabel(la_in.indices[0].label, 'Aintern').relabel(la_in.indices[1].label, a_label)
laq = laq_in.relabel(laq_in.indices[0].label, 'Bintern').relabel(laq_in.indices[1].label, 'bintern')
tmp = c(la.lowerIndex(a_label), sigma6(mu,'Aintern', 'Bintern'), 'Aintern')
#print(f'{tmp=}')
tmp = c(tmp, laq.lowerIndex('bintern'),'Bintern')
#print(tmp)
tmp = c(tmp, tinv(sprodFromLaLat(laq, lat_in, 'bintern', ad_label)).raiseIndex('bintern').lowerIndex(ad_label),'bintern')
#print(tmp)
tmp = 1/np.sqrt(2)*tmp
return tmp.reorder([Index(Lorenz6, mu, raised=True), Index(sp, a_label, raised=False), Index(spd, ad_label, raised=False)])

def shiftedFromLa(la1,la2,lat1,lat2, z, x, xt):
    

y = c(xt, tinv(sprodFromLaLat(la2, lat1, 'b', 'ad')).lowerIndex('ad'), 'ad')
yt = c(x, tinv(sprodFromLaLat(la1, lat2, 'a', 'bd')).lowerIndex('a'), 'a')

l1 = la1.relabel(la1.indices[0].label, 'A').relabel(la1.indices[1].label, 'a')
l2 = la2.relabel(la2.indices[0].label, 'A').relabel(la2.indices[1].label, 'a')
lt1 = lat1.relabel(lat1.indices[0].label, 'A').relabel(lat1.indices[1].label, 'ad')
lt2 = lat2.relabel(lat2.indices[0].label, 'A').relabel(lat2.indices[1].label, 'ad')

lx = c(x, l1.lowerIndex('a'), 'a')
ly = c(y.relabel('b', 'a'), l2, 'a')
ltx = c(xt.relabel('bd', 'ad'), lt1, 'ad')
lty = c(yt.relabel('bd', 'ad'), lt2, 'ad')

sqrt2 = np.sqrt(2)

la1hat = l1 + FUDGE * sqrt2 * z * x*ly 

lat1hat = lt1 - sqrt2 * z * lty*xt.lowerIndex('ad') 

la2hat = l2 + sqrt2 * z * y.relabel('b','a').raiseIndex('a')*lx 

lat2hat = lt2 - sqrt2 * z * ltx.relabel('bd','ad')*yt.relabel('bd','ad').lowerIndex('ad') 

mom1 = momFromLa(la1, mu='mu')

r = (momFromLa(la1hat, mu='mu')-mom1)
return la1hat, lat1hat, la2hat, lat2hat, r

x = Tensor([1,0], [Index(sp, 'a', True)])
xt = Tensor([1,0], [Index(spd, 'ad', True)])

eps_vec = polvecFromLa(la1,la2,lat1, lat2)
#eps_vec = polvec(-p1,p2)

eps_vec.data.round(10)

array([[[ 1.10498716-0.41870179j, -0.3480831 +0.8691341j ],
        [-0.3480831 -0.8691341j , -1.10498716-0.41870179j]],

       [[ 0.53415428-0.02377714j, -0.72445607+0.10777809j],
        [-0.72445607-0.10777809j, -0.53415428-0.02377714j]],

       [[ 0.01457462-0.37016358j, -0.3077314 +0.76837931j],
        [-0.3077314 -0.76837931j, -0.01457462-0.37016358j]],

       [[ 1.06830856-0.04755428j,  0.01888818+0.80340159j],
        [ 0.01888818-0.80340159j, -1.06830856-0.04755428j]],

       [[ 0.53415428-0.73088392j, -0.01976686+0.04935619j],
        [-0.01976686-0.04935619j, -0.53415428-0.73088392j]],

       [[ 0.09412464-0.03566571j, -0.02965029+0.07403428j],
        [-0.02965029-0.07403428j, -0.09412464-0.03566571j]]])

xeps = c(c(x,eps_vec.lowerIndex('a').lowerIndex('ad'), 'a'), xt, 'ad').lowerIndex('mu')

z = - MP(p1, p4)/MP(xeps, p4)

la1hat, lat1hat, la2hat, lat2hat, r = shiftedFromLa(la1, la2, lat1, lat2, z, x, xt)

mom1hat = momFromLa(la1hat, mu='mu')
mom2hat = momFromLa(la2hat, mu='mu')

In [71]:

In [72]:

In [73]:

Out[73]:

In [74]:
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momP = -p4 - mom1hat
lap, latp = la6(momP, 'A', 'a'), lat6(momP, 'A', 'ad')
lamp, latmp = 1j*lap, 1j * latp

mom1hat, p4, momP

(Tensor(data=[-0.12627773-0.15786318j -0.27534359-0.34421442j  0.68835898+0.86053606j
  -0.55068719-0.68842885j -0.80511228+1.32048762j  1.25168665+0.01344705j], indices=['mu↓']),
 Tensor(data=[ 3.04138127 -2.          1.          1.         -1.         -1.5       ], indices=['mu↓']),
 Tensor(data=[-2.91510354+0.15786318j  2.27534359+0.34421442j -1.68835898-0.86053606j
  -0.44931281+0.68842885j  1.80511228-1.32048762j  0.24831335-0.01344705j], indices=['mu↓']))

assert np.allclose((mom1hat + p4 + momP).data, 0)
assert(np.isclose(MP(mom1hat, mom1hat),0))
assert(np.isclose(MP(p4, p4),0))
assert(np.isclose(MP(momP, momP),0))

assert np.allclose((mom2hat + p3 - momP).data, 0)
assert(np.isclose(MP(mom2hat, mom2hat),0))
assert(np.isclose(MP(p3, p3),0))
assert(np.isclose(MP(-momP, -momP),0))

gL, gtL = gammagammabar(la1hat, lap, la4.relabel('d', 'a').relabel('D','A'), lat1hat, latp, lat4.relabel('D','A').relabel('dd'
gR, gtR = gammagammabar(la2hat, la3.relabel('c', 'a').relabel('C','A'), lamp, lat2hat, lat3.relabel('C','A').relabel('cd','ad'
prod = -1j/complex(2*MP(p1,p3))*c(gL,gR.raiseIndex('e'),'e')*c(gtL,gtR.raiseIndex('ed'),'ed')
reordered = prod.reorder(prod_target.indices)
contracted = c(c(reordered,x,'a'), xt,'ad')

 

swap of eigenvectors needed!

 

 

contracted.data.round(4)

array([[[[[[ 0.    +0.j    ,  0.    +0.j    ],
           [-0.    -0.j    ,  0.    +0.j    ]],

          [[-0.    -0.j    , -0.    +0.j    ],
           [ 0.    +0.j    , -0.    +0.j    ]]],

         [[[-0.    -0.j    , -0.07  -1.3369j],
           [ 0.0282+1.2679j, -0.4621-0.4305j]],

          [[ 0.2731+0.5406j,  0.7016-0.0939j],
           [-1.2259-0.3378j,  0.6152-0.2809j]]]],

        [[[[ 0.    +0.j    ,  0.1043+1.2639j],
           [-0.0628-1.1998j,  0.4498+0.3945j]],

          [[-0.274 -0.5041j, -0.6617+0.1089j],
           [ 1.1704+0.2849j, -0.5745+0.2834j]]],

         [[[ 0.    -0.j    ,  0.4255-0.4822j],
           [-0.4167+0.4445j, -0.0138-0.3031j]],

          [[-0.0881+0.2773j,  0.2723+0.2037j],
           [-0.307 -0.5281j,  0.3055+0.1105j]]]]],

       [[[[[ 0.    +0.j    , -0.2152+0.5662j],
           [ 0.2199-0.53j  ,  0.1127+0.2626j]],

          [[-0.0143-0.2737j, -0.3076-0.0893j],
           [ 0.4458+0.3637j, -0.3059+0.0039j]]],

         [[[-0.    +0.j    , -0.4236+0.6914j],
           [ 0.4208-0.6426j,  0.083 +0.3734j]],

          [[ 0.0491-0.3636j, -0.3825-0.1938j],
           [ 0.4961+0.5891j, -0.4034-0.0708j]]]],

        [[[[ 0.    -0.j    ,  1.1204-0.6609j],
           [-1.0797+0.5939j,  0.1633-0.5915j]],

          [[-0.3431+0.4782j,  0.3961+0.5623j],
           [-0.2597-1.2079j,  0.5183+0.4038j]]],

         [[[-0.    +0.j    , -0.6152-0.2809j],
           [ 0.5745+0.2834j, -0.3007+0.1064j]],

          [[ 0.3059+0.0039j,  0.1218-0.3362j],
           [-0.4376+0.4702j,  0.0179-0.3411j]]]]]])

selected_target = prod_target.data[0,:,:,:,0,:,:,:]
selected_target.round(4)

Out[74]:
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array([[[[[[ 0.    -0.j    ,  0.    -0.j    ],
           [ 0.    -0.j    ,  0.    -0.j    ]],

          [[ 0.    -0.j    ,  0.    -0.j    ],
           [ 0.    -0.j    ,  0.    -0.j    ]]],

         [[[ 0.    +0.j    , -0.07  -1.3369j],
           [ 0.0282+1.2679j, -0.4621-0.4305j]],

          [[ 0.2731+0.5406j,  0.7016-0.0939j],
           [-1.2259-0.3378j,  0.6152-0.2809j]]]],

        [[[[-0.    -0.j    ,  0.1043+1.2639j],
           [-0.0628-1.1998j,  0.4498+0.3945j]],

          [[-0.274 -0.5041j, -0.6617+0.1089j],
           [ 1.1704+0.2849j, -0.5745+0.2834j]]],

         [[[ 0.    +0.j    ,  0.4255-0.4822j],
           [-0.4167+0.4445j, -0.0138-0.3031j]],

          [[-0.0881+0.2773j,  0.2723+0.2037j],
           [-0.307 -0.5281j,  0.3055+0.1105j]]]]],

       [[[[[-0.    -0.j    , -0.2152+0.5662j],
           [ 0.2199-0.53j  ,  0.1127+0.2626j]],

          [[-0.0143-0.2737j, -0.3076-0.0893j],
           [ 0.4458+0.3637j, -0.3059+0.0039j]]],

         [[[-0.    -0.j    , -0.4236+0.6914j],
           [ 0.4208-0.6426j,  0.083 +0.3734j]],

          [[ 0.0491-0.3636j, -0.3825-0.1938j],
           [ 0.4961+0.5891j, -0.4034-0.0708j]]]],

        [[[[ 0.    +0.j    ,  1.1204-0.6609j],
           [-1.0797+0.5939j,  0.1633-0.5915j]],

          [[-0.3431+0.4782j,  0.3961+0.5623j],
           [-0.2597-1.2079j,  0.5183+0.4038j]]],

         [[[ 0.    -0.j    , -0.6152-0.2809j],
           [ 0.5745+0.2834j, -0.3007+0.1064j]],

          [[ 0.3059+0.0039j,  0.1218-0.3362j],
           [-0.4376+0.4702j,  0.0179-0.3411j]]]]]])

nonzero = abs(contracted.data)>1e-8
nonzero_target = abs(selected_target)>1e-8

assert np.all(nonzero == nonzero_target)

(contracted.data[nonzero]/selected_target[nonzero]).round(10)

array([1.+0.j, 1.+0.j, 1.+0.j, 1.-0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
       1.+0.j, 1.+0.j, 1.-0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
       1.+0.j, 1.-0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.-0.j, 1.-0.j, 1.-0.j,
       1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.-0.j,
       1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.-0.j, 1.+0.j,
       1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.-0.j, 1.+0.j, 1.+0.j,
       1.+0.j])

1

1

def BCFW(x,xt):
eps_vec = polvecFromLa(la1,la2,lat1, lat2)
xeps = c(c(x,eps_vec.lowerIndex('a').lowerIndex('ad'), 'a'), xt, 'ad').lowerIndex('mu')

z = - MP(p1, p4)/MP(xeps, p4)

la1hat, lat1hat, la2hat, lat2hat, r = shiftedFromLa(la1, la2, lat1, lat2, z, x, xt)

mom1hat = momFromLa(la1hat, mu='mu')
mom2hat = momFromLa(la2hat, mu='mu')

momP = -p4 - mom1hat
lap, latp = la6(momP, 'A', 'a'), lat6(momP, 'A', 'ad')
lamp, latmp = 1j*lap, 1j * latp

assert np.allclose((mom1hat + p4 + momP).data, 0)
assert(np.isclose(MP(mom1hat, mom1hat),0))
assert(np.isclose(MP(p4, p4),0))
assert(np.isclose(MP(momP, momP),0))

assert np.allclose((mom2hat + p3 - momP).data, 0)
assert(np.isclose(MP(mom2hat, mom2hat),0))
assert(np.isclose(MP(p3, p3),0))
assert(np.isclose(MP(-momP, -momP),0))

gL, gtL = gammagammabar(la1hat, lap, la4.relabel('d', 'a').relabel('D','A'), lat1hat, latp, lat4.relabel('D','A').relabel(
gR, gtR = gammagammabar(la2hat, la3.relabel('c', 'a').relabel('C','A'), lamp, lat2hat, lat3.relabel('C','A').relabel('cd',
prod = -1j/complex(2*MP(p1,p3))*c(gL,gR.raiseIndex('e'),'e')*c(gtL,gtR.raiseIndex('ed'),'ed')
reordered = prod.reorder(prod_target.indices)
contracted = c(c(reordered,x,'a'), xt,'ad')

Out[99]:

In [ ]:
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return contracted

x = Tensor([1,0], [Index(sp, 'a', True)])
xt = Tensor([1,0], [Index(spd, 'ad', True)])

bcfw = BCFW(x,xt)

selected_target = prod_target.data[0,:,:,:,0,:,:,:]

nonzero = abs(contracted.data)>1e-8
nonzero_target = abs(selected_target)>1e-8

assert np.all(nonzero == nonzero_target)

assert np.allclose((bcfw.data[nonzero]/selected_target[nonzero]), 1)

swap of eigenvectors needed!

x = Tensor([0,1], [Index(sp, 'a', True)])
xt = Tensor([0,1], [Index(spd, 'ad', True)])

bcfw = BCFW(x,xt)

selected_target = prod_target.data[1,:,:,:,1,:,:,:]

nonzero = abs(bcfw.data)>1e-8
nonzero_target = abs(selected_target)>1e-8

assert np.all(nonzero == nonzero_target)

assert np.allclose((bcfw.data[nonzero]/selected_target[nonzero]), 1)

swap of eigenvectors needed!

x = Tensor([1,0], [Index(sp, 'a', True)])
xt = Tensor([0,1], [Index(spd, 'ad', True)])

bcfw = BCFW(x,xt)

selected_target = prod_target.data[0,:,:,:,1,:,:,:]

nonzero = abs(bcfw.data)>1e-8
nonzero_target = abs(selected_target)>1e-8

assert np.all(nonzero == nonzero_target)

assert np.allclose((bcfw.data[nonzero]/selected_target[nonzero]), 1)

x = Tensor([0,1], [Index(sp, 'a', True)])
xt = Tensor([1,0], [Index(spd, 'ad', True)])

bcfw = BCFW(x,xt)

selected_target = prod_target.data[1,:,:,:,0,:,:,:]

nonzero = abs(bcfw.data)>1e-8
nonzero_target = abs(selected_target)>1e-8

assert np.all(nonzero == nonzero_target)

assert np.allclose((bcfw.data[nonzero]/selected_target[nonzero]), 1)

swap of eigenvectors needed!
swap of eigenvectors needed!
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import numpy as np
from tensors import *

from lorentz import makeOnShell
from spinor_products import *

3 point

I take the cyclic order to be 1hat, p ,3

def getuutilde(la1, la2, la3, lat1, lat2, lat3):
'''strategy is to make the spinor product s12 diagonal, from there we can deduct the transformed versions 

    of its two constituents as spinors with one zero constituent u1, ut2. Then we extract the other ut3 from s13 adn u3 
    from s32 and then we can get ut1 and u2 from s21 and s31 respectively.
    '''

s12 = sprodFromLaLat(la1, lat2).relabel(la1.indices[0].label, 'a').lowerIndex('a').lowerIndex('ad')
s23 = sprodFromLaLat(la2, lat3).relabel(la1.indices[0].label, 'a').lowerIndex('a').lowerIndex('ad')
s31 = sprodFromLaLat(la3, lat1).relabel(la1.indices[0].label, 'a').lowerIndex('a').lowerIndex('ad')

s21 = sprodFromLaLat(la2, lat1).lowerIndex('a').lowerIndex('ad')
s13 = sprodFromLaLat(la1, lat3).lowerIndex('a').lowerIndex('ad')
s32 = sprodFromLaLat(la3, lat2).lowerIndex('a').lowerIndex('ad')

eig_res = np.linalg.eig(s12.data)
if np.isclose(eig_res.eigenvalues[1],0) :

#print('swap of eigenvectors needed!')
# swap the eigenvalues adnd eigenvectors
S = np.zeros((2,2), dtype=complex)
orig = np.array(eig_res.eigenvectors)
S[:,0] = orig[:,1]
S[:,1] = orig[:,0]

else:
S = eig_res.eigenvectors

Sinv = np.linalg.inv(S)

s12_trans = (Sinv@s12.data@S)
assert np.isclose(s12_trans[0,0], 0), f'{s12_trans.round(10)}'
s13_trans = (Sinv@s13.data@S)
s21_trans = (Sinv@s21.data@S)
s23_trans = (Sinv@s23.data@S)
s31_trans = (Sinv@s31.data@S)
s32_trans = (Sinv@s32.data@S)

    
val = s12_trans[1,1]
u1_trans = Tensor([0, np.sqrt(val)], [Index(sp, 'a', False)])
ut2_trans = Tensor([0, np.sqrt(val)], [Index(spd, 'ad', False)])
ut3_trans = Tensor( - s13_trans[1]/np.sqrt(val), [Index(spd, 'ad', False)]) # negative because of the revers order
u3_trans = Tensor( - s32_trans[:,1]/np.sqrt(val), [Index(sp, 'a', False)])
ut1_trans = Tensor(s31_trans[0]/u3_trans[0].data, [Index(spd, 'ad', False)])
u2_trans = Tensor(-s21_trans[:,0]/ut1_trans[0].data, [Index(sp, 'a', False)])

#positive order
assert np.allclose((u1_trans*ut2_trans).data, s12_trans), ((u1_trans*ut2_trans).data.round(10), s12_trans.round(10))
assert np.allclose((u2_trans*ut3_trans).data, s23_trans), ((u2_trans*ut3_trans).data, s23_trans)
assert np.allclose((u3_trans*ut1_trans).data, s31_trans)

# negative order
assert np.allclose(-(u1_trans*ut3_trans).data, s13_trans), (-(u1_trans*ut3_trans).data, s13_trans)
assert np.allclose(-(u2_trans*ut1_trans).data, s21_trans)
assert np.allclose(-(u3_trans*ut2_trans).data, s32_trans)

    
u1 = Tensor(S@u1_trans.data, [Index(sp, 'a', False)])
u2 = Tensor(S@u2_trans.data, [Index(sp, 'a', False)])
u3 = Tensor(S@u3_trans.data, [Index(sp, 'a', False)])

ut1 = Tensor(Sinv.T@ut1_trans.data, [Index(spd, 'ad', False)])
ut3 = Tensor(Sinv.T@ut3_trans.data, [Index(spd, 'ad', False)])
ut2 = Tensor(Sinv.T@ut2_trans.data, [Index(spd, 'ad', False)])

u1_1, u1h_2 = u1.data
u2_1, up_2 = u2.data
u3_1, u3_2 = u3.data

w1_1, w1_2 = 0,1/u1_1
w1 = Tensor([w1_1, w1_2], [Index(sp, 'a', False)])
w2_1, w2_2 = 0,1/u2_1
w2 = Tensor([w2_1, w2_2], [Index(sp, 'a', False)])
w3_1, w3_2 = 0,1/u3_1
w3pre = Tensor([w3_1, w3_2], [Index(sp, 'a', False)])
#print(f'{w1=}, {w2=}, {w3pre=}')
#print(f'{la1=}, {la2=}, {la3=}')
momsum = (w1*la1 +w2*la2 + w3pre*la3 ).contract('a')
factor = (momsum.data/(u1*la1).contract('a').data)[0] # u1*la1 = u2*la2 = u3*la3
w3 = w3pre - factor*u3

ut1_1, ut1h_2 = ut1.data
ut2_1, utp_2 = ut2.data
ut3_1, ut3_2 = ut3.data

wt1_1, wt1_2 = 0,1/ut1_1
wt1 = Tensor([wt1_1, wt1_2], [Index(spd, 'ad', False)])
wt2_1, wt2_2 = 0,1/ut2_1
wt2 = Tensor([wt2_1, wt2_2], [Index(spd, 'ad', False)])
wt3_1, wt3_2 = 0,1/ut3_1
wt3pre = Tensor([wt3_1, wt3_2], [Index(spd, 'ad', False)])
momsum = (wt1*lat1.raiseIndex('ad') + wt2*lat2.raiseIndex('ad') + wt3pre*lat3.raiseIndex('ad') ).contract('ad')

factor = (momsum.data/(ut1*lat1.raiseIndex('ad')).contract('ad').data)[0] # u1*la1 = u2*la2 = u3*la3
wt3 = wt3pre - factor*ut3
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return u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3

def gammagammabar(la1, la2, la3, lat1, lat2, lat3, a_label='a', b_label='b', c_label='c', ad_label='ad', bd_label='bd', cd_label
    

u1, u2, u3, ut1, ut2, ut3, w1, w2, w3, wt1, wt2, wt3 = getuutilde(la1, la2, la3, lat1, lat2, lat3)
u1 = u1.relabel(u1.indices[0].label, a_label)
u2 = u2.relabel(u2.indices[0].label, b_label)
u3 = u3.relabel(u3.indices[0].label, c_label)
ut1 = ut1.relabel(ut1.indices[0].label, ad_label)
ut2 = ut2.relabel(ut2.indices[0].label, bd_label)
ut3 = ut3.relabel(ut3.indices[0].label, cd_label)

w1 = w1.relabel(w1.indices[0].label, a_label)
w2 = w2.relabel(w2.indices[0].label, b_label)
w3 = w3.relabel(w3.indices[0].label, c_label)
wt1 = wt1.relabel(wt1.indices[0].label, ad_label)
wt2 = wt2.relabel(wt2.indices[0].label, bd_label)
wt3 = wt3.relabel(wt3.indices[0].label, cd_label)

return u1*u2*w3 + u1*w2*u3 + w1*u2*u3, ut1*ut2*wt3 + ut1*wt2*ut3 + wt1*ut2*ut3

4 point reconstruction

momfile = 'sam.npz'
#momfile = 'rr46.npz'
#momfile = 'rr6.npz'

if momfile == 'rr46.npz':
rr6 = np.load('rr46.npz')
p1= Tensor( rr6['p1'], [Index(Lorenz6, 'mu', False)])
p2= Tensor( rr6['p2'], [Index(Lorenz6, 'mu', False)])
p3= Tensor( rr6['p3'], [Index(Lorenz6, 'mu', False)])
p4= Tensor( rr6['p4'], [Index(Lorenz6, 'mu', False)])

la1 = 1j*la6(-p1, 'A', 'a')
la2 = 1j*la6(-p2, 'B', 'b')
la3 = la6(p3, 'C', 'c')
la4 = la6(p4, 'D', 'd')

lat1 = 1j*lat6(-p1, 'A', 'ad')
lat2 = 1j*lat6(-p2, 'B', 'bd')
lat3 = lat6(p3, 'C', 'cd')
lat4 = lat6(p4, 'D', 'dd')

elif momfile == 'sam.npz':
rr6 = np.load('sam.npz')

p1= Tensor( rr6['p1'], [Index(Lorenz6, 'mu', False)])
p2= Tensor( rr6['p2'], [Index(Lorenz6, 'mu', False)])
p3= Tensor( rr6['p3'], [Index(Lorenz6, 'mu', False)])
p4= Tensor( rr6['p4'], [Index(Lorenz6, 'mu', False)])

    
la1 = la6(p1, 'A', 'a')
la2 = la6(p2, 'B', 'b')
la3 = 1j*la6(-p3, 'C', 'c')
la4 = 1j*la6(-p4, 'D', 'd')

lat1 = lat6(p1, 'A', 'ad')
lat2 = lat6(p2, 'B', 'bd')
lat3 = 1j*lat6(-p3, 'C', 'cd')
lat4 = 1j*lat6(-p4, 'D', 'dd')

    
elif momfile == 'rr6.npz':

rr6 = np.load('rr6.npz')

p1= Tensor( rr6['p1'], [Index(Lorenz6, 'mu', False)])
p2= Tensor( rr6['p2'], [Index(Lorenz6, 'mu', False)])
p3= Tensor( rr6['p3'], [Index(Lorenz6, 'mu', False)])
p4= Tensor( rr6['p4'], [Index(Lorenz6, 'mu', False)])

la1 = 1j*la6(-p1, 'A', 'a')
la2 = 1j*la6(-p2, 'B', 'b')
la3 = la6(p3, 'C', 'c')
la4 = la6(p4, 'D', 'd')

lat1 = 1j*lat6(-p1, 'A', 'ad')
lat2 = 1j*lat6(-p2, 'B', 'bd')
lat3 = lat6(p3, 'C', 'cd')
lat4 = lat6(p4, 'D', 'dd')

        

Using la64D for la6
Using la64D for la6
Using la64D for la6
Using la64D for la6
Using lat64D for lat6
Using lat64D for lat6
Using lat64D for lat6
Using lat64D for lat6

p1+p2+p3+p4

Tensor(data=[ 4.44089210e-16 -1.11022302e-16  0.00000000e+00  1.11022302e-16
  0.00000000e+00  0.00000000e+00], indices=['mu↓'])

def eps4T(A_label='A', B_label='B', C_label='C', D_label='D', raised=False):
return Tensor(eps4, [Index(sp6, 'A', raised), Index(sp6, 'B', raised), Index(sp6, 'C', raised), Index(sp6, 'D', raised)])

f1 = c(c(c(c(eps4T(),la1,'A'),la2, 'B'), la3, 'C'), la4, 'D')
f1.data.round(10)
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array([[[[ 0.        +0.j        ,  0.        +0.j        ],
         [ 0.        +0.j        , -0.6713311 +6.00751294j]],

        [[ 0.        +0.j        , -1.45080825-3.50613397j],
         [ 2.12213935+0.74906491j,  0.        +0.j        ]]],

       [[[ 0.        +0.j        ,  2.12213935-0.74906491j],
         [-1.45080825+3.50613397j,  0.        +0.j        ]],

        [[-0.6713311 -6.00751294j,  0.        +0.j        ],
         [ 0.        +0.j        ,  0.        +0.j        ]]]])

f2 = c(c(c(c(eps4T(raised=True),lat1,'A'),lat2, 'B'), lat3, 'C'), lat4, 'D')
f2.data.round(10)

array([[[[ 0.        +0.j        ,  0.        +0.j        ],
         [ 0.        +0.j        , -0.6713311 +6.00751294j]],

        [[ 0.        +0.j        , -1.45080825-3.50613397j],
         [ 2.12213935+0.74906491j,  0.        +0.j        ]]],

       [[[ 0.        +0.j        ,  2.12213935-0.74906491j],
         [-1.45080825+3.50613397j,  0.        +0.j        ]],

        [[-0.6713311 -6.00751294j,  0.        +0.j        ],
         [ 0.        +0.j        ,  0.        +0.j        ]]]])

t= -2*MP(p1,p3)
s = 2*MP(p1,p2)
prod_target = -1j/(s*t)* (f1*f2).lowerIndex('a').lowerIndex('b').lowerIndex('c').lowerIndex('d')

prod_target.data.round(10)
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array([[[[[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],

          [[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]]],

         [[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],

          [[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -1.59309338j]],

            [[ 0.        -0.j        ,  0.48260415+0.87583859j],
             [-0.5777394 -0.1340781j ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        , -0.53389156+0.25830129j],
             [ 0.27736638-0.96076422j,  0.        -0.j        ]],

            [[ 0.35166043+1.55379582j,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]]]],

        [[[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],

          [[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        , -0.48260415+0.87583859j]],

            [[ 0.        -0.j        ,  0.        -0.6277096j ],
             [ 0.27700813+0.24873006j,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.37176735+0.01972769j],
             [-0.44353771+0.44417749j,  0.        -0.j        ]],

            [[ 0.27736638-0.96076422j,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]]],

         [[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.5777394 -0.1340781j ]],

            [[ 0.        -0.j        , -0.27700813+0.24873006j],
             [ 0.        -0.22080297j,  0.        -0.j        ]]],

           [[[ 0.        -0.j        , -0.13860707-0.17187796j],
             [ 0.37176735+0.01972769j,  0.        -0.j        ]],

            [[-0.53389156+0.25830129j,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],
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          [[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]]]]],

       [[[[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],

          [[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.53389156+0.25830129j]],

            [[ 0.        -0.j        , -0.37176735+0.01972769j],
             [ 0.13860707-0.17187796j,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.22080297j],
             [ 0.27700813+0.24873006j,  0.        -0.j        ]],

            [[-0.5777394 -0.1340781j ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]]],

         [[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        , -0.27736638-0.96076422j]],

            [[ 0.        -0.j        ,  0.44353771+0.44417749j],
             [-0.37176735+0.01972769j,  0.        -0.j        ]]],

           [[[ 0.        -0.j        , -0.27700813+0.24873006j],
             [ 0.        -0.6277096j ,  0.        -0.j        ]],

            [[ 0.48260415+0.87583859j,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],

          [[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]]]],

        [[[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        , -0.35166043+1.55379582j]],

            [[ 0.        -0.j        , -0.27736638-0.96076422j],
             [ 0.53389156+0.25830129j,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.5777394 -0.1340781j ],
             [-0.48260415+0.87583859j,  0.        -0.j        ]],

            [[ 0.        -1.59309338j,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],

          [[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]]],
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         [[[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]],

          [[[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]],

           [[[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]],

            [[ 0.        -0.j        ,  0.        -0.j        ],
             [ 0.        -0.j        ,  0.        -0.j        ]]]]]]]])

def polvecFromLa(la_in, laq_in, lat_in, latq_in, mu='mu', a_label='a', ad_label='ad'):
la = la_in.relabel(la_in.indices[0].label, 'Aintern').relabel(la_in.indices[1].label, a_label)
laq = laq_in.relabel(laq_in.indices[0].label, 'Bintern').relabel(laq_in.indices[1].label, 'bintern')
tmp = c(la.lowerIndex(a_label), sigma6(mu,'Aintern', 'Bintern'), 'Aintern')
#print(f'{tmp=}')
tmp = c(tmp, laq.lowerIndex('bintern'),'Bintern')
#print(tmp)
tmp = c(tmp, tinv(sprodFromLaLat(laq, lat_in, 'bintern', ad_label)).raiseIndex('bintern').lowerIndex(ad_label),'bintern')
#print(tmp)
tmp = 1/np.sqrt(2)*tmp
return tmp.reorder([Index(Lorenz6, mu, raised=True), Index(sp, a_label, raised=False), Index(spd, ad_label, raised=False)])

FUDGE = -1
def shiftedFromLa(la1,la2,lat1,lat2, z, x, xt):
    

y = c(xt, tinv(sprodFromLaLat(la2, lat1, 'b', 'ad')).lowerIndex('ad'), 'ad')
yt = c(x, tinv(sprodFromLaLat(la1, lat2, 'a', 'bd')).lowerIndex('a'), 'a')

l1 = la1.relabel(la1.indices[0].label, 'A').relabel(la1.indices[1].label, 'a')
l2 = la2.relabel(la2.indices[0].label, 'A').relabel(la2.indices[1].label, 'a')
lt1 = lat1.relabel(lat1.indices[0].label, 'A').relabel(lat1.indices[1].label, 'ad')
lt2 = lat2.relabel(lat2.indices[0].label, 'A').relabel(lat2.indices[1].label, 'ad')

lx = c(x, l1.lowerIndex('a'), 'a')
ly = c(y.relabel('b', 'a'), l2, 'a')
ltx = c(xt.relabel('bd', 'ad'), lt1, 'ad')
lty = c(yt.relabel('bd', 'ad'), lt2, 'ad')

sqrt2 = np.sqrt(2)

la1hat = l1 + FUDGE * sqrt2 * z * x*ly 

lat1hat = lt1 - sqrt2 * z * lty*xt.lowerIndex('ad') 

la2hat = l2 + sqrt2 * z * y.relabel('b','a').raiseIndex('a')*lx 

lat2hat = lt2 - sqrt2 * z * ltx.relabel('bd','ad')*yt.relabel('bd','ad').lowerIndex('ad') 

mom1 = momFromLa(la1, mu='mu')

r = (momFromLa(la1hat, mu='mu')-mom1)
return la1hat, lat1hat, la2hat, lat2hat, r

x = Tensor([1,1], [Index(sp, 'a', True)])
xt = Tensor([1,1], [Index(spd, 'ad', True)])

eps_vec = polvecFromLa(la1,la2,lat1, lat2)
#eps_vec = polvec(-p1,p2)

eps_vec.data[:,1,1].round(10)

array([0.        +0.j        , 0.        +0.j        ,
       0.        +0.j        , 0.        +0.j        ,
       0.        -0.70710678j, 0.70710678+0.j        ])

In [46]:

In [47]:

In [48]:

Out[48]:
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xeps = c(c(x,eps_vec.lowerIndex('a').lowerIndex('ad'), 'a'), xt, 'ad').lowerIndex('mu')

z = - MP(p1, p4)/MP(xeps, p4)

la1hat, lat1hat, la2hat, lat2hat, r = shiftedFromLa(la1, la2, lat1, lat2, z, x, xt)

mom1hat = momFromLa(la1hat, mu='mu')
mom2hat = momFromLa(la2hat, mu='mu')

momP = -p4 - mom1hat
lap, latp = la6(momP, 'A', 'a'), lat6(momP, 'A', 'ad')
lamp, latmp = 1j*lap, 1j * latp

mom1hat, p4, momP

(Tensor(data=[ 1.49861376e+00-2.22044605e-16j -9.65164405e-01+4.44089210e-16j
   3.19836109e+00-1.06437843e-15j -4.82721806e+00+8.88178420e-16j
   1.77635684e-15+5.67602388e+00j  2.80466360e-16+5.76771277e-16j], indices=['mu↓']),
 Tensor(data=[-1.29064994 -0.56992463  0.65968691  0.95172284  0.          0.        ], indices=['mu↓']),
 Tensor(data=[-2.07963818e-01+2.22044605e-16j  1.53508903e+00-4.44089210e-16j
  -3.85804801e+00+1.06437843e-15j  3.87549522e+00-8.88178420e-16j
  -1.77635684e-15-5.67602388e+00j -2.80466360e-16-5.76771277e-16j], indices=['mu↓']))

assert np.allclose((mom1hat + p4 + momP).data, 0)
assert(np.isclose(MP(mom1hat, mom1hat),0))
assert(np.isclose(MP(p4, p4),0))
assert(np.isclose(MP(mom1hat, momP),0))
assert(np.isclose(MP(momP, p4),0))

assert np.allclose((mom2hat + p3 - momP).data, 0)
assert(np.isclose(MP(mom2hat, mom2hat),0))
assert(np.isclose(MP(p3, p3),0))
assert(np.isclose(MP(-momP, -momP),0))
assert(np.isclose(MP(mom2hat, -momP),0))
assert(np.isclose(MP(mom2hat, p3),0))

np.linalg.det(sprodFromLaLat(la1hat, latp, 'a', 'ad').data).round(10)

np.complex128(-0j)

gL, gtL = gammagammabar(la1hat, lap, la4.relabel('d', 'a').relabel('D','A'), lat1hat, latp, lat4.relabel('D','A').relabel('dd'
gR, gtR = gammagammabar(la2hat, la3.relabel('c', 'a').relabel('C','A'), lamp, lat2hat, lat3.relabel('C','A').relabel('cd','ad'
prod = -1j/complex(2*MP(p1,p3))*c(gL,gR.raiseIndex('e'),'e')*c(gtL,gtR.raiseIndex('ed'),'ed')
reordered = prod.reorder(prod_target.indices)
contracted = c(c(reordered,x,'a'), xt,'ad')

contracted.data.round(4)

array([[[[[[ 0.    +0.j    , -0.    +0.j    ],
           [ 0.    -0.j    , -0.    -0.j    ]],

          [[ 0.    +0.j    ,  0.    +0.j    ],
           [-0.    +0.j    , -0.    +0.j    ]]],

         [[[ 0.    -0.j    , -0.    -0.2208j],
           [ 0.277 +0.2487j,  0.5339+0.2583j]],

          [[-0.5777-0.1341j, -0.3718+0.0197j],
           [ 0.1386-0.1719j,  0.    +0.j    ]]]],

        [[[[-0.    +0.j    , -0.277 +0.2487j],
           [-0.    -0.6277j, -0.2774-0.9608j]],

          [[ 0.4826+0.8758j,  0.4435+0.4442j],
           [-0.3718+0.0197j,  0.    -0.j    ]]],

         [[[-0.    +0.j    , -0.5339+0.2583j],
           [ 0.2774-0.9608j, -0.    -1.5931j]],

          [[ 0.3517+1.5538j,  0.4826+0.8758j],
           [-0.5777-0.1341j,  0.    -0.j    ]]]]],

       [[[[[ 0.    +0.j    ,  0.5777-0.1341j],
           [-0.4826+0.8758j, -0.3517+1.5538j]],

          [[ 0.    -1.5931j, -0.2774-0.9608j],
           [ 0.5339+0.2583j, -0.    +0.j    ]]],

         [[[ 0.    +0.j    ,  0.3718+0.0197j],
           [-0.4435+0.4442j, -0.4826+0.8758j]],

          [[ 0.2774-0.9608j,  0.    -0.6277j],
           [ 0.277 +0.2487j, -0.    +0.j    ]]]],

        [[[[-0.    -0.j    , -0.1386-0.1719j],
           [ 0.3718+0.0197j,  0.5777-0.1341j]],

          [[-0.5339+0.2583j, -0.277 +0.2487j],
           [ 0.    -0.2208j,  0.    +0.j    ]]],

         [[[-0.    -0.j    ,  0.    -0.j    ],
           [-0.    +0.j    , -0.    +0.j    ]],

          [[ 0.    -0.j    , -0.    -0.j    ],
           [ 0.    +0.j    , -0.    -0.j    ]]]]]])

In [49]:

Out[49]:

In [50]:

In [51]:

In [52]:

Out[52]:

In [53]:

In [54]:

Out[54]:
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selected_target = prod_target.data[0,:,:,:,0,:,:,:] + prod_target.data[0,:,:,:,1,:,:,:] +prod_target.data[1,:,:,:,0,:,:,:]+prod_target
selected_target.round(4)

array([[[[[[ 0.    -0.j    ,  0.    -0.j    ],
           [ 0.    -0.j    ,  0.    -0.j    ]],

          [[ 0.    -0.j    ,  0.    -0.j    ],
           [ 0.    -0.j    ,  0.    -0.j    ]]],

         [[[ 0.    -0.j    ,  0.    -0.2208j],
           [ 0.277 +0.2487j,  0.5339+0.2583j]],

          [[-0.5777-0.1341j, -0.3718+0.0197j],
           [ 0.1386-0.1719j,  0.    -0.j    ]]]],

        [[[[ 0.    -0.j    , -0.277 +0.2487j],
           [ 0.    -0.6277j, -0.2774-0.9608j]],

          [[ 0.4826+0.8758j,  0.4435+0.4442j],
           [-0.3718+0.0197j,  0.    -0.j    ]]],

         [[[ 0.    -0.j    , -0.5339+0.2583j],
           [ 0.2774-0.9608j,  0.    -1.5931j]],

          [[ 0.3517+1.5538j,  0.4826+0.8758j],
           [-0.5777-0.1341j,  0.    -0.j    ]]]]],

       [[[[[ 0.    -0.j    ,  0.5777-0.1341j],
           [-0.4826+0.8758j, -0.3517+1.5538j]],

          [[ 0.    -1.5931j, -0.2774-0.9608j],
           [ 0.5339+0.2583j,  0.    -0.j    ]]],

         [[[ 0.    -0.j    ,  0.3718+0.0197j],
           [-0.4435+0.4442j, -0.4826+0.8758j]],

          [[ 0.2774-0.9608j,  0.    -0.6277j],
           [ 0.277 +0.2487j,  0.    -0.j    ]]]],

        [[[[ 0.    -0.j    , -0.1386-0.1719j],
           [ 0.3718+0.0197j,  0.5777-0.1341j]],

          [[-0.5339+0.2583j, -0.277 +0.2487j],
           [ 0.    -0.2208j,  0.    -0.j    ]]],

         [[[ 0.    -0.j    ,  0.    -0.j    ],
           [ 0.    -0.j    ,  0.    -0.j    ]],

          [[ 0.    -0.j    ,  0.    -0.j    ],
           [ 0.    -0.j    ,  0.    -0.j    ]]]]]])

nonzero = abs(contracted.data)>1e-8
nonzero_target = abs(selected_target)>1e-8

assert np.all(nonzero == nonzero_target)

(contracted.data[nonzero]/selected_target[nonzero]).round(10)

array([1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j,
       1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j, 1.-0.j,
       1.-0.j, 1.-0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
       1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j,
       1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])

 

In [55]:

Out[55]:

In [56]:

In [57]:

Out[57]:
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Appendix G

Describing CMB
fluctuations

G.1 CMB power spectrum

Treating the CMB radiation as ‘noise’ from the Big Bang, the amplitude of
fluctuations as a function of scale is quantified by the power spectrum

P (k) = |ak|2 (G.1.1)

where ak are Fourier coefficients which describe the amplitude of the mode and
are given by

ak =
∫
f(x)e−ikxdx (G.1.2)

G.2 Spherical harmonics

The Fourier transform is only defined in flat space. In other spaces, the basis
wave functions for the expansion are found by solving the Laplace equation

O2ψ = 0 (G.2.1)

Assuming that the CMB is defined on a sphere we wish to solve the Laplace
equation in spherical co-ordinates ψ(θ, φ), i.e.
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[
1

sin2φ

∂2

∂θ2 + 1
sinφ

∂

∂φ

(
sinφ ∂

∂φ

)]
ψ = 0 (G.2.2)

which has solution

ψ =
[

(2l + 1)
4π

(l −m)!
(l +m)!

] 1
2

Plm(cosθ)dimφ = Ylm(θ, φ) (G.2.3)

for l ≥ 0 and m = −l, ..., l. Here, rather than the flat space wave number k we
have a multipole moment, l, which determines the ‘wave length’; and m, the
‘shape’ of the mode.

Any function defined on the sphere may be expanded into spherical harmonics:

T (n̂) =
lmax∑
l=0

l∑
m=−l

almYlm(n̂) (G.2.4)

with expansion coefficients

alm =
∫

4π
T (n̂)Y ∗lm(n̂)dΩ (G.2.5)

Figure G.2.1: Schematic representation of the CMB spherical harmonics
transforms. Image credit Hans Kristian Eriksen 2015

The angular power spectrum, defined as an average over m for every l, measures
amplitude as a function of wavelength. Given many independent realisations,
the averaged spectrum is

Cl =
〈

1
2l + 1

l∑
m=−l

|alm|2
〉

(G.2.6)

Whilst the physics is described by Cl, in the sky we see only one realisation of
the spectrum. In other words, we can only observe
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Ĉl = 1
2l + 1

l∑
m=−l

|alm|2 (G.2.7)

Thus there is an inescapable uncertainty in CMB measurements that is usually
described as ‘cosmic variance’.
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Appendix H

Post-Newtonian
approximation and
numerical relativity

H.1 Introduction

(Appendix is based almost entirely on semi-review article by Will in 2011 [153].
Need to go back to original sources and check for recent updates.)

Post-Newtonian approach, numerical simulations using ’exact’ (???!) restatement
of field equations ... unreasonable effectiveness (well, yes, because even in strong-
gravity regime the relative potential difference between two massive bodies is
reduced as they approach each other ... AND the effectiveness is measured,
initally by Will v numerical simulations which are of suspect ’exactness’ and,
more recently, v measured wave forms ... that have been selected for agreement
to the theoretical predictions).
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NUMERICAL RELATIVITY

H.2 Post-Newtonian approximation

The post-Newtonian approximation is considered valid when the gravitational
fields in and around the source are weak and v � c1. Spacetime is treated as
flat and small perturbations are introduced to a known exact solution, such as
the Schwarzshild or Kerr solution.

The field equations G−µν = 8π(G/c4)Tµnu are restated in a ‘relaxed’ form [153]

�hαβ = −16π(G/c4)ταβ (H.2.1)

where:

� ≡ −∂2/∂(ct)2 +52 is the flat spacetime wave operator;

hαβ ≡ ηαβ − (−g)1/2gαβ , which is small because gravity specified as weak;

g is the determinant of gαβ ;

a co-ordinate system has been specified by harmonic gauge condition
∂hαβ/∂xβ = 0; and

the source on the right hand side is an ’effective’ energy-momentum
pseudotensor ταβ = (−g)Tαβ + (16π)−1Fαβ and Fαβ is the nonlinear
field contribution given be terms quadratic and higher in hαβ and its
derivatives.

The term ‘relaxed’ is used because equation H.2.1 can be solved as a functional of
source variables without specifying the motion of the source, using an integration
over the past flat-spacetime null cone C of a field point (t,x).

hαβ(t,x) = 4G
c4

∫
C

ταβ(t− |x− x′|/c,x′)
|x− x′| d3x′ (H.2.2)

The motion of the source can then be determined using a relationship derived
from the harmonic gauge condition:∂ταβ/∂xβ = 0.

The first step is to put the approximation hαβ0 into the source ταβ in equation
H.2.2 and solve for hαβ1 . This procedure can be repeated to increase accuracy.

1If velocities do not fulfil this slow condition the technique below is described as post-
Minkowskian theory
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H.3 Numerical relativity

Numerical relativity is applied to the strong-field regime in which the post-
Newtonian approximation does not apply. It has only become viable since
computing resources have become sufficiently powerful to carry out the con-
siderable computations necesary to handle highly dynamical and asymmetrical
situations. Nevertheless, numerical relativity is still not a full solution to the
field equations of GR: it, too, is an approximation. The approach is broadly as
follows [234,235]:

• A reference frame is selected with respect to which the system will be
described.

• The reference frame is time-foliated, i.e. each 4D object is decomposed
into 3 + 1 components.

• An appropriate form of equations and set of variables must be chosen for
the specific system. The appropriate field equations are written in terms
of the 3 + 1 compnents.

• Inital and/or boundary conditions are defined.

I will not attempt to provide specific examples here, but suggest that the
interested reader may begin with Palenzuela’s brief introduction [235] and
references therein.
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Appendix I

The mass of a proton

The mass of the proton, mp = 938.27MeV ≈ 2000me, sets the mass scale for
all baryonic matter in the universe. The mass of the elementary electron me

is properly attributed in the Standard Model (SM) to its interaction with the
Higgs boson. As a composite particle, however, the proton owes only ∼ 1% of
mp to the constituent valence quark masses supplied by the Higgs mechanism,
which total just 9.8 MeV. The majority of mp remains unaccounted for by the
Higgs.

In 1994 Ji published a first QCD analysis of the mass structure of a nucleon [236].
Setting a mass scale of µ2 = 1GeV2 he used the deep-inelastic sum rule and the
energy momentum tensor of QCD to calculate that: ∼ 9% of total mass is due
to the quark condensate, i.e. masses of the up and down quarks and the sea of
virtual pairs of strange quarks; the dynamics of the confined quarks and gluons
account for ∼ 32% and ∼ 37% respectively; and the remaining ∼ 23% is a purely
quantum effect associated with the QCD mass scale, consisting of contributions
from all quark flavors.

We reference Ji’s early result because it nicely illustrates that there are contribu-
tions to mass from dynamics, i.e. potential and kinetic energy. In other words, the
majority of mp arises from the energy needed to hold quarks together in nucleons.

There have been QCD-connected ab initio computations of the hadron spectrum
using non-perturbative methods which have produced a spectrum of ground-state
hadrons that is in good agreement with experiment, the first being [237]. There
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is hence no suggestion there is anything ’missing’ from the SM QCD formalism.
However the calculations rely on a ΛQCD scale being specified and are unable to
predict mp.

To explore this further it is valuable to go on to review a recent perspective on
emergent hadronic mass, for which we follow Roberts [238] and begin with the
QCD Lagrangian for the strong interaction sector of the SM:

LQCD =
∑

j=u,d,s
q̄j [γµDµ +mj ]qj + 1

4G
aµνGaµν .

Dµ = ∂µ + ig
1
2λ

aAa/mu, Gaµν = ∂µA
a
ν + ∂νA

a
µ − gfabcAbµAcν

(I.0.1)

where {qi} are the quark fields with flavour j and Higgs-generated masses mj ;
{Aaµ, a = 1, ..., 8} are the gluon fields; and the generators of the SU(3) colour
gauge group in the fundamental representation are { 1

2λ
a}. The Higgs mechanism

provides the only obvious energy scale in equation I.0.1, that for the quark
masses mj , but we have already seen that this explains just 1% of mp.

From a classical perspective, QCD is a local non-Abelian gauge field theory
defined in four spacetime dimensions. If the Lagrangian masses for the quarks
are omitted, there is no mass scale in LQCD - this state defines the chiral limit.
When the theory is quantised, a mass scale emerges through the regularisation
and renormalisation of ultraviolet divergences and all quantities in LQCD, in-
cluding field operators, become dependent on the mass scale. This results in
the appearance of a chiral-limit trace anomaly in the QCD energy momentum
tensor. Whereas in QED, photon vacuum polarisation has no infrared mass scale
and so the trace anomaly is negligible, in QCD the trace anomaly expresses a
mass scale that is empirically very significant.

This difference in impact is unsurprising, given that the defining distinction
between QCD and QED lies in the existence in equation I.0.1 LQCD of the gluon
self-interaction term gfabcAbµA

c
ν . Roberts comments that, as a result of this self-

interaction, ’gluons, although behaving as massless entities in the perturbative
domain, actually possess a running mass, with m0 ≈ mp/2 characterising its
value at infrared momenta’ [238].

The mechanisms behind emerging hadronic mass and hence mp are summarised

279



APPENDIX I. THE MASS OF A PROTON

by Roberts [238] as:

• The generation of a running mass for the gluon driven by gluon self-
interactions. Once ΛQCD is fixed, the scale of this effect is known. Roberts
notes, however, that ΛQCD cannot be predicted from within the SM.

• Dynamical chiral symmetry breaking (DCSB), the effect by which quarks
which are massless in the absence of Higgs mechanism also acquire a
running mass as a result of gluon mass generation. At infrared momenta,
the scale of DCSB is ∼ 1

3mp.

For our purposes, the main point is that the empirical mass that clearly and
unequivocally emerges from dynamics and interaction is two orders of magnitude
greater than the Higgs-associated mass of the components.
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Appendix J

Fractal dimension

The main tool in fractal analysis is the fractal dimension. This brief introduction
to the mathematical background to fractal dimension is based largely on Falconer
[239].

J.1 Measures and mass distributions

Measure theory is a key part of the mathematics of fractal analysis. Whilst the
group theory language of measure theory appears technical, a ‘measure’ is really
just a way of attributing a numerical quantity to sets in such a way that, if one
set is decomposed into parts, then the sum of the parts is equal to the numerical
value of the whole [239].

In the set of real numbers of n dimensions, Rn, µ is a measure on Rn if it
assigns a non-negative number (which might be ∞) to each subset of Rn such
that:

1. µ(∅) = 0, i.e. the null set has zero measure.

2. If A ⊂ B, µ(A) 6 µ(B): i.e. the larger the set, the larger the measure.

3. For a finite sequence of sets A1, A2, ... then µ(∪∞i=1Ai) 6
∑∞
i=1 µ(Ai): if a

set is a union of a non-infinite number of parts then the sum of the measure
of those parts is at least equal to the measure of the whole.

4. Where the Ai are disjoint Borel sets, µ(∪∞i=1Ai) =
∑∞
i=1 µ(Ai) : i.e. if the

decomposition of the set is into a finite number of dijoint Borel sets then
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the total measure of the parts is equal to the measure of the whole. (The
class of Borel sets is defined as the smallest collection of subsets of Rn

with the properties that (i) every open ad every closed set is a Borel set;
(ii) the union of every finite collection of Borel sets is a Borel set; and (iii)
so, too, is the intersection of every finite collection.)

It is therefore straightforward to think of µ(A) as the size of A measured in some
way. We can treat µ(A) as the mass of the set A and then a mass distribution is
a measure on a bounded subset of Rn for which 0 < µ(Rn) <∞.

Using a point mass as a simple example, a point a in Rn may be described as a
mass distribution µ where µ(A) is defined as 1 if A contains a and 0 if it does not.

The Hausdorff measure generalises length, area, volume and so on to any number
of dimensions. The s-dimensional Hausdorff measure, H s(F ), of a subset F of
Rn is established as follows1:

• Let U be any non-empty subset of Rn.

• The diameter of U , being the greatest distance between any pair of points
within it, is defined as |U | = sup{|x− y| : x, y ∈ U}.

• {Ui} is called a δ-cover of F if it is a finite collection of sets of diameter
no greater than δ that cover F , so F ⊂ ∪∞i=1Ui.

• Define H s
δ (F ) = inf{

∑∞
i=1 |Ui|s : {Ui} is a δ-cover of F}, for any δ > 0.

The s-dimensional Hausdorff measure of F is then given by

H s(F ) = lim
δ→0

H s
δ (F ) (J.1.1)

J.2 Definitions of fractal dimension

Fractals are usually characterised by their dimension. The dimension does not
uniquely define the form of the fractal pattern but it is a measure that clearly
differentiates fractal from classical homogeneity. Simply, the mass-radius relation
is used which, in homogeneous cases, is

1The abbreviations ‘sup’ and ‘inf’ are for supremum (the smallest upper bound of a set or
subset), and infimum (the largest quantity that is less than or equal to each of a given set or
subset of quantities) respectively.

282



APPENDIX J. FRACTAL DIMENSION

M(R) = δFRD (J.2.1)

where:

• M(R) is the mass within a sphere of radius R whose centre, importantly,
is part of the distribution.

• D is the dimension. In classical homogeneity D = 3 but in fractal homo-
geneity 0 < D < 3.

• In classical homogeneity F is 4π/3 but in the fractal case is a random
variable rather than a numerical factor.

• δ is a density. In the fractal case, δ is separated from F by normalising
〈F 〉 = 1.

There is more than one definition of fractal dimension, but all utilise the concept
of measures at a scale, δ. For each set, irregularities of a scale less than δ are
ignored, and the behaviour of the measurements as δ → 0 are explored.

The oldest definition [239], constructed long before Mandelbrot coined the
term ‘fractal’, is the Hausdorff dimension, based on defining measures using
covers of sets. Its principal advantages are that it is mathematically defined for
any set, and the measures on which it is based are easy to manipulate. However,
it can be difficult to calculate and difficult even to estimate numerically in real
data sets. We introduce it here because awareness of the Hausdorff dimension is
onsidered a good foundation for understanding the nature of fractal analysis.

The s-dimensional Hausdorff measure has been defined in equation J.1.1. The
nature of the function is that, if H s(F ) is plotted against values of s, there is a
critical value of s at which H s(F ) abruptly jumps from ∞ to 0. This value of s
is the Hausdorff dimension of F , written dimHF . Specifically:

dimHF = inf{s : H s(F ) = 0} = sup{s : H s(F ) =∞} (J.2.2)

The Hausdorff dimension has the following principal properties, which are
expected to hold for any other ‘reasonable’ definition of dimension [239]:

• If F ⊂ Rn is an open set, F has a positive n-dimensional volume and so
dimHF = n.
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• If F ⊂ Rn is a continuosly differentiable m-dimensional submanifold of Rn

then dimHF = n.

• If E ⊂ F then dimHE 6 dimHF .

A simple definition that lends itself well to computational methods is a power law
approach, where the dimension of F is determined by the power law obeyed by
a measurement Mδ(F ) as δ → 0. For constants dimension s and s-dimensional
‘length’ c :

Mδ(F ) ∼ cδ−s

logMδ(F ) ' log c− s logδ

s = lim
s→0

logMδ(F )
− log δ

(J.2.3)

Then s can be estimated as the gradient of a log-log graph plotted over a range
of δ. If there is no exact power law, lower and uppler limites may be set.

An alternative definition is box-counting dimension2. The box-counting di-
mension of F is defined as:

dimB F = lim
δ→ 0

logNδ(F )
− log δ (J.2.4)

where F is a non-empty bounded subset of Rn and Nδ(F ) is the smallest number
of sets of diameter at most δ which can cover F .

2Also known as Kolmogorov entropy, entropy dimension or capacity dimension
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Appendix K

Five-body simulation:
additional material

K.1 Numerical approximation

Numerical solutions to differential equations are approximations and we need to
consider their reliability if we wish to draw inferences about physical phenomena.

K.1.1 Selection of time interval for the simulation

A numerical approach to solving the differential equation 13.2.11 requires an
appropriate time-step for the calculation.

We first show that our model converges to a solution of equation 13.2.11 as
the calculation time interval, ∆T = t, is reduced. Figure K.1.1 shows that
solutions for the position evolution of the system converge as t→ 0s, and Fig-
ure K.1.2 similarly demonstrates convergence for the mass-energy of the particles.

Clearly the extended time step t = 100s is a poor approximation, as we would
expect. While t = 0.001s is the best of the intervals we have presented it is
computationally intensive so, for the remaining analysis, we use t = 0.1s as a
reasonable degree of approximation.
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K.1.2 Numerical stability

Errors can arise in numerical solutions as a result of the methods used in their
design and coding. A textbook example of inherent instability in a numerical
simulation is the Euler solution to the problem of simple harmonic motion, in
which the instability arises because the algorithm fails to conserve energy. An
effective correction is to apply the Euler-Cromer method [240], a minor change
to the code. In this example the existence of an error in the Euler solution is
very easy to spot because an analytic solution to the problem exists, against
which the numerical outcome can be compared.

In another example, although there is no analytic solution to the Newtonian
three-body problem there is a theoretical expectation: three bodies of equal mass
which are arranged initially in an exactly equidistant configuration should persist
thereafter in stable orbits. Many simulations of this scenario exist, and it is well
known that the numerical quality of the simulation can be improved by various
computational methods, for example the Kahan-Babuška-Klein algorithm, which
addresses the problem of cumulative loss of accuracy in sums of floating point
numbers.

Despite best efforts at precision, simulations of the three-body Newtonian case,
after a sufficiently large number of iterations, do become unstable and the simu-
lated system displays chaotic behaviour. From a computing perspective, this is
seen as an error and it is desireable to work towards eradicating it. However,
there is an underlying physical message in the behaviour of the simulation: a
perturbation from (highly non-physical) perfect symmetry in this Newtonian
system, however tiny it may be, will result in irregular and unpredictable (al-
though fully-determined) behaviour. The apparent stability of the three-body
system in its early phases is not a physical equilibrium. Any three-body system
of this kind is inherently, physically, unstable. It is a complex system.

Which leaves us, still, with the question of how to assess the reliability of
the numerical simulation of our toy, five-body system. We have no analytic
solution and, explicitly, no theoretical expectation other than that the system
will demonstrate complex behaviour. In GR theory there is not even energy
conservation to help us.
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We can check that our simulation converges to a solution as the time inter-
val becomes small, and we have demonstrated in Section K.1.1 that it does.
In relation to our equations and the simulation code, we have considered the
following:

• We code in Python. The simulation calculations are simple but include
multiplication, division, squaring, trigonometric functions and summations,
all of floating point numbers. Floating point numbers are approximations.
It is no doubt possible to improve the precision of the calculations through
judicious use of carefully designed algorithms but, as in the three-body
Newtonian case, any perturbations caused by tiny inaccuracies in the
floating point numbers in a sense make the system more physically realistic.

• The dynamics and mass variances of the simulation reported in Section
?? and, for alternative random initial conditions in Appendix ??, tell a
consistent story. Irrespective of the numerical values of particular plots,
the profile of the outcomes of the various simulations indicate that there is
a case to answer. The complex, five-body toy - whether using Newtonian
dynamics or a GR model - is not the same as a simple system and the two
approaches are not the same as each other.
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(a) t = 100s (b) t = 10s

(c) t = 1s (d) t = 0.1s

(e) t = 0.01s (f) t = 0.001s

Figure K.1.1: Evolution of position of 5 bodies with initial random configuration
in Figure 13.4.1 over elapsed time T = 105s: convergence towards the solution
of the differential equations as time interval t = ∆T → 0s

.

288



APPENDIX K. FIVE-BODY SIMULATION: ADDITIONAL MATERIAL

(a) t = 100s (b) t = 10s

(c) t = 1s (d) t = 0.1s

(e) t = 0.01s (f) t = 0.001s

Figure K.1.2: Evolution of particle mass difference for 5 bodies with initial equal
intrinsic mass and very small random velocities over elapsed time T = 105s:
convergence towards the solution of the differential equations as time interval
t = ∆T → 0s

.
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K.2 Additional results

In Section 13.4.3 we have presented results for a single set of random initial
conditions. In this Appendix we present plots obtained from diffent random
start points.

K.2.1 Position evolution: GR approximation v Newton

The following figures show the difference between position evolution in the GR
approximation and the Newtonian calculation for five different random initial
configurations.

Figure K.2.1: Position comparison GR approx v N, initial random 1234

Figure K.2.2: Position comparison GR approx v N, initial random 1233
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Figure K.2.3: Position comparison GR approx v N, initial random 1232

Figure K.2.4: Position comparison GR approx v N, initial random 1231

Figure K.2.5: Position comparison GR approx v N, initial random 1230
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K.2.2 Mass-energy evolution: GR approximation

Particle and system mass-energy evolution for the five different random initial
configurations in the GR approximation, displayed as variance from initial mass.
Note that in each case the equivalent Newtonian variance is zero, so these plots
also show the difference between the GR approximation and the Newtonian
calculation.

(a) Particle mass difference (b) System mass difference

Figure K.2.6: Mass-energy difference over time for random seed 1234 initial state.
Elapsed time T = 106s, time interval t = ∆T = 0.1s.)

.

(a) Particle mass difference (b) System mass difference

Figure K.2.7: Mass-energy difference over time for random seed 1233 initial state.
Elapsed time T = 106s, time interval t = ∆T = 0.1s.)

.
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(a) Particle mass difference (b) System mass difference

Figure K.2.8: Mass-energy difference over time for random seed 1232 initial state.
Elapsed time T = 106s, time interval t = ∆T = 0.1s.)

.

(a) Particle mass difference (b) System mass difference

Figure K.2.9: Mass-energy difference over time for random seed 1231 initial state.
Elapsed time T = 106s, time interval t = ∆T = 0.1s.)

.

293



APPENDIX K. FIVE-BODY SIMULATION: ADDITIONAL MATERIAL

(a) Particle mass difference (b) System mass difference

Figure K.2.10: Mass-energy difference over time for random seed 1230 initial
state. Elapsed time T = 106s, time interval t = ∆T = 0.1s.)

.
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