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Abstract

Recent advances in generative Transformer-based foundation models have driven

remarkable progress in artificial intelligence, yet their internal mechanisms for rep-

resenting complex hierarchical structures remain largely unknown, posing signific-

ant challenges for interpretability, safety, and robust generalisation. This thesis

aims to progress on these issues by systematically investigating how such models

internalise hierarchical structures, the relationship between this learning and be-

haviours like generalisation versus memorisation, and how hierarchical principles

can inform the development of safer, more accurate, generative models. To this

end, we first introduce novel probing techniques to map the layer-wise emergence

of linguistic hierarchies in language models and extend this analysis to the visual

domain by developing PSViT: a pixel-space Transformer with hierarchical decom-

positions of video image patches, shown to learn and generalise hierarchical physical

dynamics from raw video data. We investigate memorisation during fine-tuning, es-

tablishing an n-gram based early warning signal for verbatim leakage and proposing

scalable defences that promote structural generalisation over verbatim memorisa-

tion. Building on these insights, we further demonstrate that a unified next-frame

prediction framework enables a single model to process text, images, audio, and

video without modality-specific encoders, thereby learning shared hierarchical pat-

terns across these diverse inputs. Collectively, our findings underscore that the

capacity to learn and represent hierarchical structure is a fundamental character-

istic of Transformer models, and that a focused analysis of these underpinnings is

crucial for advancing more capable, interpretable, and safer artificial intelligence.
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Chapter 1

Introduction

Human language and vision are among nature’s most intricate information-bearing

systems. Each offers a seemingly unbounded combinatorial space: language fea-

tures sentences layered by syntax and discourse, and vision features scenes com-

posed of objects in motion. Both have long served as benchmarks for artificial intel-

ligence. Turing’s “imitation game” (Turing, 1950) elevated conversational compet-

ence to a test of machine intelligence, and later decades added visual challenges such

as scene understanding and autonomous navigation. Today, reliable algorithms for

understanding, reasoning, and generating linguistic or visual data enable applica-

tions ranging from real-time translation and medical-image triage to open-domain

question answering and self-driving cars.

From rules to data. Early systems depended on hand-crafted rules and fea-

ture templates. Symbolic grammars and finite-state transducers powered dialogue

programs such as Winograd’s SHRDLU (Winograd, 1972), while vision pipelines

coupled Scale-Invariant Feature Transform or Histogram of Oriented Gradients

with support-vector machines (Viola and Jones, 2001; Dalal and Triggs, 2005). Al-

though effective in constrained settings, such methods faltered under the ambiguity

and long-tailed variability of real-world data (Manning and Schutze, 1999).

The explosion of digital corpora in the 1990s prompted a decisive shift to statistical

learning. In language technology, n-gram models and probabilistic parsers replaced

rule lists; in vision, bag-of-visual-words classifiers learned object labels from code-

1



1. Introduction

word histograms (Chen and Goodman, 1999; Sivic and Zisserman, 2003). These

models moved feature discovery into the data, yet they still captured little beyond

local co-occurrence patterns and often required task-specific heuristics.

Deep learning and self-supervision. A second revolution began when deep

neural networks learned entire feature hierarchies end-to-end (Goodfellow, 2016).

Convolutional Neural Network (CNN) models surpassed hand-engineered vision

systems on ImageNet (Krizhevsky et al., 2012); sequence-to-sequence models with

attention (Sutskever et al., 2014; Bahdanau et al., 2015) reshaped machine trans-

lation and speech recognition. Crucially, self-supervised objectives: predicting

masked words (Mikolov et al., 2013; Devlin et al., 2019), next tokens (Radford

et al., 2019), or contrastive image views (He et al., 2020), unlocked unlabelled

corpora vastly larger than any curated dataset.

The Transformer era and foundation models. The Transformer architec-

ture (Vaswani, 2017) replaced recurrence and convolution with fully parallel self-

attention, enabling training on billions of tokens or image patches. Bidirectional

masked-language models such as BERT (Devlin et al., 2019) advanced sentence

understanding, whereas causal models like GPT-2 and GPT-3 (Radford et al.,

2019; Brown et al., 2020) revealed emergent in-context learning, summarised by

scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022). Pure-Transformer back-

bones in vision: the Vision Transformer (ViT ) (Dosovitskiy et al., 2021), Swin (Liu

et al., 2022), and ViViT (Arnab et al., 2021), have likewise matched or surpassed

CNN baselines. Collectively, these developments have produced foundation models

(Bommasani et al., 2021) — single networks pre-trained on heterogeneous data and

adapted to a wide range of machine learning tasks.

Yet increasing scale does not answer every scientific question. Training runs now

consume gigawatt-hours (OpenAI et al., 2024), placing them beyond typical aca-

demic resources. More importantly, fundamental unknowns about their internal

workings persist. This thesis aims to provide a deeper understanding of how these

models learn, represent, and generalise hierarchical structure, an understanding

that we believe is crucial for addressing these fundamental unknowns. Thus, we
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pose three central research questions:

1. Where do foundation models internalise hierarchical structures from data?

2. What is the relationship between this internalisation of hierarchy and model

behaviours such as generalisation and memorisation?

3. How can insights into hierarchical reasoning guide the development of more

unified, robust, and interpretable multimodal systems?

In the subsequent section, we elaborate on the specific motivations for this thesis,

which are shaped by the rapidly-moving trends and emerging topics of contempor-

ary AI research.

1.1 Motivation

Over the lifecycle of this doctoral thesis, the rise of foundation models has re-

shaped Natural Language Processing (NLP). Autoregressive Transformers such as

the GPT model family (Brown et al., 2020) and PaLM (Chowdhery et al., 2022)

can write code, translate poetry, and draft policy briefs with minimal task-specific

fine-tuning. Comparable trends appear in computer vision and speech. These

achievements, however, rest on budgets affordable only by a few industrial laborat-

ories∗. Pursuing ever larger models is therefore beyond the scope of an individual

researcher. Instead, this thesis focuses on the representational foundations that

underpin the capabilities of such systems, particularly their learning and use of

hierarchical structure, and examines this with the goal of improved interpretabil-

ity, understanding, and safety.

Language is inherently hierarchical: morphemes form words, words combine into

phrases, phrases into clauses, and clauses into discourse (Chomsky, 1957, 1965).

Video shows a similar structure: optical flow aggregates into object trajectories,

short interactions build into activities, and sequences of scenes compose narrat-

ive arcs (Arnab et al., 2021). Throughout this thesis, we define such hierarchical
∗OpenAI estimates single-digit gigawatt-hours for GPT-4 pre-training (OpenAI et al., 2024)
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structure as the principle by which simple components are recursively composed

into larger, meaningful units, which in turn serve as building blocks for higher

levels of abstraction. Although autoregressive Transformers achieve state-of-the-

art performance, they are trained only to minimise next-token prediction loss. Re-

markably, this simple objective appears to enable them to uncover aspects of syntax

and semantics (Hewitt and Manning, 2019; Tenney et al., 2019); yet the depth, loc-

alisation, and robustness of these internalised hierarchical representations remain

unclear. Seemingly benign paraphrases or controlled syntactic rearrangements can

still trigger dramatic failures (McCoy et al., 2020; Bastings and Baroni, 2021). Un-

derstanding which layers encode which hierarchical abstractions, and how stable

those encodings are, is essential if models are to be trusted. This directly motivates

our first research question regarding how and where such structures are encoded.

This investigation into hierarchical reasoning is aligned with our own understand-

ing of human cognition, as we naturally perceive the world not as a flat stream

of data, but through nested layers of objects, events, and narratives. Therefore,

by pursuing AI models with a similar capacity, we are not only building more ro-

bust and efficient systems but also creating a framework to better understand the

principles of intelligence itself. Ultimately, hierarchical reasoning is a prerequisite

for tackling the next frontier of AI challenges, such as long-term planning, com-

plex problem-solving, and genuine creativity, which are all defined by their deeply

nested structures.

Closely linked to hierarchical abstraction is the problem of memorisation. With

billions of parameters, Transformers can store entire passages verbatim; extraction

attacks have revealed private e-mails and unpublished fiction within supposedly

general models (Carlini et al., 2021). Such leakage threatens copyright and con-

fidentiality. However, the ability to remember and recall facts is crucial for model

transferability and performance. While memorisation is often undesirable, it can

be beneficial when models must retain canonical facts that support downstream ac-

curacy such as information retrieval. The goal is to promote structured abstraction

while constraining verbatim recall to appropriate contexts. The challenge, related

4



1.1. Motivation

to our second research question, is to distinguish beneficial generalisation of hier-

archical structures from harmful verbatim memorisation and recall of superficial

n-grams or specific instances, particularly during model adaptation. This requires

developing methods to detect and mitigate excessive memorisation without discard-

ing valuable, generalisable, structurally learned knowledge (Zhang et al., 2021).

The same issues of hierarchical representation and the balance between generalisa-

tion and memorisation arise in vision. Pure-Transformer architectures such as ViT

and Swin have replaced CNN backbones for images, and extensions like TimeS-

former and ViViT rival CNNs for video (Arnab et al., 2021; Bertasius et al., 2021;

Liu et al., 2022). Yet how these models fuse spatial and temporal cues, track

identities through occlusion, and encode physical causality over long horizons (all

inherently hierarchical tasks) remains underexplored. Adapting Transformer archi-

tectures and probing tools from NLP to investigate spatiotemporal hierarchies in

video, as pursued in this work, promises deeper insight into whether current models

genuinely learn multi-scale physical abstractions or merely interpolate.

Finally, real intelligence is multimodal. Humans read text, watch demonstrations,

and manipulate objects in a unified cognitive space. Most current systems still rely

on separate modality-specific encoders and decoders. Inspired by task reformula-

tion in NLP (Raffel et al., 2020), our third research question leads us to explore

whether a single, unified predictive objective can encourage the learning of shared

hierarchical representations across text, images, audio, and video. Such unification

would not only simplify architecture design but also provide a common frame-

work for studying how hierarchical reasoning principles apply and transfer across

different modalities, potentially leading to more robust and versatile AI.

This thesis addresses the overarching goal of understanding and leveraging hier-

archical reasoning in modern Transformers by investigating: (1) the nature and

location of learned hierarchical structures; (2) the interplay between hierarchical

generalisation and memorisation; and (3) the application of hierarchical principles

to build unified multimodal models. Through probing studies, controlled fine-

tuning, and cross-modal reformulations, we aim to move the discussion beyond
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benchmark scores towards a principled understanding of these complex AI sys-

tems.

1.2 Research Objectives and Contributions

To address the central research questions concerning the internalisation, generalisa-

tion, and application of hierarchical structures in Transformer models, this thesis

makes six principal contributions:

• We develop probing techniques revealing where and how Transformer lan-

guage models encode syntactic and semantic hierarchy in contextual embed-

dings.

• We construct ancestor classification tasks to expose layer-wise hierarchical

representation quality across diverse architectures, comparing their internal-

isation of such structures.

• We investigate memorisation dynamics during fine-tuning, identifying when

hierarchical learning degrades into verbatim memorisation, and introduce

scalable defences to promote structural generalisation over verbatim recall.

• We design PSViT, a video Transformer with explicit hierarchical priors (e.g.,

U-Net structure, tailored spatiotemporal attention), showing its enhanced

capability for pixel-space modelling of complex physical dynamics.

• We extend hierarchical probing to video, using PSViT to show how its spa-

tiotemporal attention encodes hierarchical physical dynamics and long-range

dependencies, advancing understanding of visual hierarchy internalisation.

• We propose a unified next-frame prediction framework, using an adapted

PSViT, enabling a single Transformer to process text, image, audio, and

video, thereby fostering the learning of shared hierarchical representations

for unified multimodal systems.
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1.3 Publications

Research contributing to this thesis has been submitted for publication or pub-

lished in journals and conference proceedings. The publications and corresponding

chapters are listed below:

• Chapter 3 contains work partially presented in Slack, D. L., Hardey, M., &

Al Moubayed, N. (2020). On the Hierarchical Information in a Single

Contextualised Word Representation. Proceedings of the AAAI Con-

ference on Artificial Intelligence, 34(10), 13917-13918.

• Chapter 4 contains work presented in Slack, D. L., & Al Moubayed, N.,

(2024) Early Detection and Reduction of Memorisation for Domain

Adaptation and Instruction Tuning. Transactions of the Association for

Computational Linguistics (TACL) (Under Revision Review).

• Chapter 5 contains work presented in Slack, D. L, Hudson, G. T., Winterbot-

tom, T., & Moubayed, N. A. (2024). Video Prediction of Dynamic Phys-

ical Simulations with Pixel-Space Spatiotemporal Transformers. IEEE

Transactions on Neural Networks and Learning Systems (TNNLS) (Accepted

pending minor revision).

• Chapter 6 contains work presented in Hudson, G. T., Slack, D. L, Winter-

bottom, T., Sterling, J., Xiao, C., Shentu, J., & Moubayed, N. A. (2024).

Everything is a Video: Unifying Modalities through Next-Frame

Prediction. IEEE/CVF International Conference on Computer Vision (ICCV)

(Under Review).

1.4 Thesis Structure

This thesis sets out to discover how hierarchical information is learned, encoded,

and represented inside Transformer networks, addressing the central questions of

where these structures reside, how their learning relates to generalisation versus
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memorisation, and how these insights can inform the development of unified mul-

timodal models. We begin with causal language models, tracing how internal hier-

archies emerge, how they sometimes surface as undesirable memorisation, and how

similar structural priors in attention extend these findings to video and wider mul-

timodal settings.

Chapter 2 lays the theoretical groundwork. We review probabilistic learning, deep-

network optimisation, and self-supervision; formalise syntactic, semantic, and spa-

tiotemporal hierarchies; and catalogue current methods for probing, memorisation

analysis, and multimodal fusion. This chapter equips the reader with the concepts

and tools employed in later chapters.

Chapter 3 directly addresses our first research question by probing the emergence of

hierarchical linguistic structure inside contemporary Transformer language models.

We introduce token-level “ancestor” tasks: sentiment and syntactic labels for a

constituent word’s parent, grand-parent, great-grand-parent, and sentence root,

and apply them across BERT, GPT-2, XLNet, and Reformer in both base and

large configurations. Layer-wise results show that bidirectional models concentrate

hierarchy near the top of the stack, whereas causal or permutation-masked models

disperse it more evenly. Fine-tuning magnifies mid-layer abstraction for XLNet and

Reformer without erasing low-level cues, suggesting that architectural bias matters

at least as much as raw parameter count. The probing framework established here

supplies the analytical lens for investigating where and how hierarchy is encoded.

Chapter 4 turns that lens on our second research question, concerning the practical

risk of memorisation during fine-tuning and its relationship to hierarchical learn-

ing. Using Pythia, Llama 2 and Llama 3, and Mistral language models covering

a wide range of model sizes, we track verbatim leakage across domain-adaptation

and instruction-tuning regimes. A simple n-gram “partial memorisation” score

proves a reliable early warning signal, rising sharply one epoch before verbatim

memorisation occurs. Exploiting this insight, we devise (i) an n-gram-threshold

early-stopping rule and (ii) an n-gram-aware loss regulariser; together, they cut

memorisation by up to 40% with only marginal cost to downstream accuracy, offer-
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ing a scalable defence for promoting generalised hierarchical learning over verbatim

memorisation.

Chapter 5 extends the hierarchical analysis from the linguistic domain to dy-

namic video modelling, further exploring our first and third research questions.

We present PSViT, an end-to-end U-Net-style Transformer that predicts future

video frames directly in pixel space. Evaluated on partial-differential-equation

simulators and standard Moving-MNIST/BAIR benchmarks, PSViT outperforms

latent-space baselines in long-horizon object tracking whilst remaining architec-

turally minimal. Probing of hidden states recovers latent simulation parameters

and localises motion-specific attention heads, indicating that the model internalises

hierarchical physical abstractions akin to those observed in language, and demon-

strating how architectural priors can facilitate this.

Chapter 6 generalises the thesis theme to multimodal reasoning, directly addressing

our third research question. Building on task-reformulation ideas from NLP, we

recast text, image, audio, and video problems as a unified next-frame-prediction

objective and train a single causal Transformer without modality-specific encoders.

The resulting model performs competitively on captioning, visual question answer-

ing, and audio-to-text alignment, while sharing parameters and attention mech-

anisms across modalities, and offering a simpler end-to-end training regime. This

task reformulation serves as a step towards universal models capable of learning

shared hierarchical representations across modalities.

Chapter 7 summarises the contributions in light of the initial research questions,

acknowledges limitations, and outlines future directions, ranging from adaptive at-

tention mechanisms and causal-graph priors to privacy-preserving training regimes.

We close by arguing that a hierarchy-centred analysis is essential for building safe,

transparent, and physically-accurate foundation models.
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Chapter 2

Background

The research presented in Chapters 3 to 6 of this thesis investigates hierarchical

reasoning within Transformer models across language, vision, and multimodal ap-

plications. This background chapter provides the essential theoretical, conceptual,

and methodological foundations for these empirical studies. It is designed to sup-

port the thesis’s central inquiry (outlined in Chapter 1) into how foundation models

internalise hierarchical structures, the relationship between this internalisation and

behaviours such as generalisation versus memorisation, and the application of hier-

archical principles in developing unified multimodal systems. While this chapter

will cover specific concepts, a basic familiarity with the principles of machine learn-

ing, Natural Language Processing (NLP), and Computer Vision (CV) is presumed.

For a comprehensive introduction to these foundational fields, readers are directed

to key texts such as Bishop (2006a); Jurafsky and Martin (2009); Szeliski (2010);

Goodfellow et al. (2016).

This Chapter is organised into four sections:

1. Machine Learning and Probability Theory (§2.1);

2. Language Modelling (§2.2);

3. Transformer Architecture (§2.3);

4. Hierarchical Reasoning (§2.4).

14



2.1.1. Foundations

2.1 Machine Learning and Probability Theory

Contemporary language and vision models (and more broadly, all systems explored

in later Chapters) in large part derive their capabilities from probabilistic reason-

ing and data-driven optimisation. Probability theory allows us to quantify un-

certainty inherent in linguistic or visual inputs, while machine learning supplies

flexible approaches to make predictions or uncover underlying patterns (Bishop,

2006b; Murphy, 2012). This section briefly covers the fundamentals of key con-

cepts that recur throughout the thesis, providing a backbone for understanding

the Transformer-based models and the hierarchical reasoning principles investig-

ated.

2.1.1 Foundations

Probabilistic reasoning is fundamental to contemporary machine learning, provid-

ing the mathematical scaffolding to manage uncertainty in real-world data (Bishop,

2006b). Whether handling ambiguity in language interpretation, variability in

visual perception, or complexity in multimodal interactions, models must quantify

their confidence in predictions through clearly defined probabilistic frameworks.

This subsection introduces foundational concepts and notation for probability the-

ory, essential for subsequent discussions of autoregressive models (Chapters 3 and

4), hierarchical probing, and later analyses of model behaviour.

Uncertainty and Probability Distributions. Natural data (whether text, im-

ages, or audio) rarely conform to deterministic patterns. Language, for example, is

inherently ambiguous, context-sensitive, and richly variable (Shannon, 1951; Man-

ning and Schütze, 1999; Chen and Goodman, 1999). Visual data also present con-

siderable variability due to factors like viewpoint, lighting, and occlusion. Probab-

ility theory formalises such uncertainty by assigning likelihoods to outcomes rather

than making categorical predictions. Instead of asserting definitively the identity

of the next token or the content of an image region, a probabilistic model defines a
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distribution over potential outcomes. Such distributions are fundamental to gener-

ative tasks (e.g., language modelling, Section 2.2, or video generation, Chapter 5)

and scenarios requiring explicit confidence estimates (e.g., regression with uncer-

tainty quantification (Lakshminarayanan et al., 2017)). For hierarchical reasoning,

understanding how uncertainty propagates across nested structures or latent vari-

ables is crucial for developing robust and interpretable models, a key aim of this

thesis (Pearl, 2009; Murphy, 2012).

Random Variables: Discrete vs. Continuous. A random variable X maps

outcomes in a sample space to numerical values. In NLP, word tokens are often

modelled by discrete random variables (taking values in a finite vocabulary V).

Continuous random variables arise for real-valued embeddings, physical parameters

(as explored in Chapter 5 for simulation-based tasks), or pixel intensities in images.

Formally:

• Discrete Random Variables: Characterised by a probability mass func-

tion P (X = x), with
∑

x∈V P (X = x) = 1.

• Continuous Random Variables: Characterised by a probability density

function p(x), which integrates to 1 over the domain. For real-valued vec-

tors, e.g., embeddings, p(x) might assume parametric forms like a Gaussian

(Bishop, 2006a).

Joint, Marginal, and Conditional Probability. Data in language and vision

often exhibit dependencies: the probability of one word depends on preceding

words, and the interpretation of an image region can depend on its surroundings.

A joint distribution P (X1, . . . , XT ) describes the likelihood of entire sequences or

sets of variables. We often focus on conditional probabilities, such as P (Xt |

X1, . . . , Xt−1) in autoregressive language models (Bengio et al., 2003; Radford et al.,

2019), or P (object class | image features) in image classification (Krizhevsky et al.,

2012). Marginal distributions (for instance P (X1, X2)) emerge by summing or
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integrating out the other variables. This is useful in tasks such as partial likelihood

estimation or certain hierarchical Bayesian setups.

Chain Rule of Probability. The chain rule breaks down a joint distribution

into a product of simpler conditionals:

P (X1, . . . , XT ) =
T∏

t=1
P (Xt | X1, . . . , Xt−1). (2.1)

This factorisation is the cornerstone of autoregressive language modelling (Sec-

tion 2.2), where each token’s probability is conditioned on all prior tokens (Bengio

et al., 2003; Brown et al., 2020). Similarly, it can be applied to model sequences

of frames in video prediction (Chapter 5). We often train models to maximise∑T
t=1 log P (xt | x1:t−1), a strategy central to large-scale language models.

Maximum Likelihood Estimation. A natural follow-on to the chain rule is

the practical approach for estimating these conditional probabilities. The most

common method employed is Maximum Likelihood Estimation (MLE) (Bishop,

2006b). Given a set of observed training sequences D = {x
(n)
1:T }N

n=1, MLE seeks

parameters θ that maximise the likelihood of observing the training data under the

model Pθ:

θMLE = arg max
θ

N∏
n=1

Pθ(x(n)
1:T ). (2.2)

Typically, we optimise the logarithm of the likelihood (log-likelihood), which is

computationally more convenient and numerically stable for gradient-based meth-

ods:

θ̂MLE = arg max
θ

N∑
n=1

T∑
t=1

log Pθ(x(n)
t | x

(n)
1:t−1). (2.3)

MLE thus provides the foundational principle underpinning the training of nearly

all language and generative vision models discussed in this thesis: from autore-

gressive Transformers (Chapters 3 and 4) to spatiotemporal video prediction mod-

els (Chapter 5). Understanding the properties of MLE estimators, such as consist-

ency and potential biases, is crucial when diagnosing model behaviour, particularly

the distinction between memorisation versus generalisation of learned structures

(Hastie et al., 2009).
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Notation Conventions. Throughout this thesis, we adopt consistent notation:

• X1:T denotes sequences of length T .

• xt and x denote scalar and vector variables, respectively.

• θ represents model parameters.

• Pθ(x) indicates probability distributions parameterised by θ.

2.1.2 Machine Learning in Natural Language Processing

Natural Language Processing (NLP) is a field of artificial intelligence and linguistics

concerned with the interactions between computers and human language; in partic-

ular, how to program computers to process and analyse large amounts of natural

language data (Jurafsky and Martin, 2009). Machine learning has become the

dominant paradigm for tackling complex NLP tasks, moving beyond earlier rule-

based and statistical approaches (Manning and Schütze, 1999; Goldberg, 2017).

Tasks such as text classification (e.g., sentiment analysis, topic categorisation), se-

quence labelling (e.g., part-of-speech tagging, named entity recognition), machine

translation, and question answering are commonly framed as supervised or semi-

supervised learning problems (Goldberg, 2017; Deng and Liu, 2018).

Initially, machine learning in NLP often relied on hand-crafted features extracted

from text (e.g., bag-of-words, TF-IDF representations) fed into algorithms like Na-

ive Bayes, Support Vector Machines (SVMs), or Logistic Regression (Manning and

Schütze, 1999). While effective for certain tasks, these methods struggled with

the inherent ambiguity, richness, and long-range dependencies present in human

language. The advent of deep learning, particularly Recurrent Neural Networks

(RNNs) (Mikolov et al., 2010; Sherstinsky, 2020) and later Transformers (Sec-

tion 2.3), revolutionised the field by enabling models to learn relevant features

directly from raw text data, leading to significant improvements in performance

(Goodfellow et al., 2016; Goldberg, 2017).

Evaluation of NLP models depends on the specific task. For classification tasks,

such as the probing tasks used in Chapter 3 to assess hierarchical information,
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metrics like accuracy, precision, recall, and F1-score are standard (Manning et al.,

2008; Deng and Liu, 2018). For language modelling itself, perplexity is a com-

mon intrinsic measure (discussed further in Section 2.2). The challenges in NLP,

including capturing nuanced semantic meaning, understanding context, and gen-

erating coherent and grammatically correct text, continue to drive research into

more sophisticated models and learning techniques, forming the backdrop for the

investigations into Transformer capabilities in this thesis.

2.1.3 Machine Learning in Computer Vision

Computer Vision (CV) aims to enable machines to interpret and understand visual

information from the world, such as images and videos. Similar to NLP, machine

learning, especially deep learning, has become the cornerstone of modern CV, sup-

planting many classical techniques that relied on manually designed filters and

features (Bishop, 2006b; Goodfellow et al., 2016). Tasks central to CV include im-

age classification (assigning a label to an entire image), object detection (locating

and classifying multiple objects within an image), image segmentation (partition-

ing an image into meaningful regions), and video analysis (understanding motion,

activities, and events over time), which is particularly relevant to Chapters 5 and

6.

Classical CV often involved extracting local features like Scale-Invariant Feature

Transform (SIFT) (Lowe, 2004) or Histogram of Oriented Gradients (HOG) (Dalal

and Triggs, 2005), followed by machine learning classifiers. However, CNN models

brought a paradigm shift by learning hierarchical feature representations directly

from pixel data, from simple edges and textures in early layers to more complex ob-

ject parts and entire objects in deeper layers (LeCun et al., 1998; Krizhevsky et al.,

2012; Goodfellow et al., 2016). This ability to learn features end-to-end has led to

breakthroughs across numerous vision benchmarks. More recently, Transformer ar-

chitectures, initially designed for NLP, have also demonstrated remarkable success

in vision tasks (Dosovitskiy et al., 2021), as discussed in Section 2.3 and explored

in Chapters 5 and 6.
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Evaluation metrics in CV are task-dependent. Image classification often uses accur-

acy or top-k accuracy. Object detection is commonly evaluated using mean Average

Precision (mAP), a metric popularised through challenges like the PASCAL VOC

challenge (Everingham et al., 2010). For video analysis and prediction tasks like

those in Chapter 5, metrics can include pixel-level measures like Peak Signal-to-

Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) (Wang et al.,

2004), or task-specific metrics like object tracking accuracy. The challenges in CV

are vast, including handling variations in scale, viewpoint, illumination, deforma-

tion, and occlusion, as well as understanding complex spatiotemporal dynamics in

videos. These challenges motivate the development of robust hierarchical models

capable of learning invariant and discriminative representations.

2.1.4 Model Capacity, Overfitting, and Generalisation

Understanding the principles of probabilistic modelling and machine learning also

requires acknowledging the practical challenges encountered when fitting flexible

models to finite datasets. These considerations are particularly salient for the

high-capacity Transformer architectures central to this thesis. Key concepts in-

clude model capacity, the risk of overfitting, and the ultimate goal of achieving

good generalisation. Each concept critically influences how effectively and reliably

models can encode and generalise hierarchical structures across language, vision,

and multimodal domains.

Model Capacity and Complexity. Model capacity refers to the expressive

power of a model class, typically related to the number of parameters or degrees

of freedom it possesses (Goodfellow et al., 2016). Higher-capacity models, such

as large-scale Transformers (e.g., GPT-3), can represent increasingly sophisticated

patterns and hierarchical structures, capturing subtle dependencies within com-

plex data (Kaplan et al., 2020; Chowdhery et al., 2022). However, this flexibility

comes at a cost: without sufficient data or appropriate regularisation, models with

high capacity are more prone to fitting noise or idiosyncratic patterns specific to

20



2.2. Language Modelling

the training set, potentially hindering their performance on unseen data (Bishop,

2006b; Zhang et al., 2017).

Overfitting and Generalisation. Overfitting occurs when a model learns the

training data too well, including its noise and specific quirks, to the detriment of its

performance on new, unseen data (Bishop, 2006b; Murphy, 2012). This is typically

observed as a low error rate on the training data but a significantly higher error

rate on a separate validation or test dataset. Formally, overfitting manifests as

a divergence between training and test performance metrics, often measured by

differences in likelihood (perplexity), accuracy, or task-specific evaluation scores.

Classical statistical learning theory often describes this through the bias-variance

trade-off: overly complex models (high capacity) may have low bias as they can

fit the training data well, but they might suffer from high variance, meaning they

are very sensitive to the specific training data and thus generalise poorly to new

data (Hastie et al., 2009). Conversely, overly simple models (low capacity) may

exhibit high bias (failing to capture the underlying structure) but low variance.

Achieving good generalisation by balancing bias and variance is a central goal in

machine learning, often addressed through techniques such as regularisation, early

stopping, or careful model selection (Goodfellow et al., 2016).

2.2 Language Modelling

Language modelling has emerged as a foundational task within NLP, profoundly

shaping research directions and methodologies over recent decades (Goldberg, 2017;

Jurafsky and Martin, 2023). Originally framed as a probabilistic task focused on

predicting the next word in a sentence (Shannon, 1951), it has expanded into a ver-

satile paradigm encompassing text generation, representation learning, and trans-

fer learning (Radford et al., 2019; Brown et al., 2020; Bommasani et al., 2021).

Advances driven by language modelling have yielded powerful tools for diverse ap-

plications such as machine translation (Sutskever et al., 2014; Bahdanau et al.,

2015), dialogue systems (Serban et al., 2016), and information retrieval (Nogueira
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and Cho, 2020). Crucially, breakthroughs in language modelling underpin the rise

of modern neural NLP systems, including the Transformer-based models investig-

ated in this thesis. Understanding how these models learn linguistic phenomena,

particularly hierarchical structures, is essential for their effective and safe applica-

tion, aligning with the core goals of this thesis (Ruder et al., 2019; Rogers et al.,

2020).

Language modelling is the task of learning a probability distribution over sequences

of tokens in a language. Formally, given a sequence x1, x2, . . . , xT of tokens, a lan-

guage model assigns a probability P (x1, x2, . . . , xT ) to the sequence. Using the

chain rule of probability introduced previously (Equation 2.1), this joint distribu-

tion factorises into conditional probabilities:

P (x1, x2, . . . , xT ) =
T∏

t=1
P (xt | x1, . . . , xt−1) , (2.4)

where P (x1 | x<1) ≡ P (x1) is the marginal probability of the initial token. Histor-

ically, early statistical language models relied on Markov assumptions to simplify

this estimation by conditioning each token only on the preceding n − 1 tokens

(forming an n-gram model). Despite their simplicity, these models suffered from

data sparsity and limited contextualisation, restricting their ability to capture long-

range dependencies inherent in language (Manning and Schütze, 1999; Chen and

Goodman, 1999). Neural language models address these limitations by learning

distributed representations (embeddings) of tokens, enabling generalisation bey-

ond observed n-grams and capturing more complex linguistic patterns (Bengio

et al., 2003; Mikolov et al., 2010). By using neural networks to estimate condi-

tional probabilities, such models can learn P (xt | x<t) from data without explicit

Markov constraints, forming the basis for the powerful sequential models discussed

in subsequent chapters.

2.2.1 Causal Language Modelling

Causal Language Modelling (CLM), also known as autoregressive language model-

ling, explicitly models the sequential generation of tokens (Goldberg, 2017; Jurafsky
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and Martin, 2023). Given a sequence, the model predicts each token based only

on the preceding tokens, strictly adhering to the temporal or sequential order.

Formally, the training objective is to maximise the log-likelihood of the observed

sequences under the model’s parameters θ:

LCLM(θ) =
N∑

i=1

Ti∑
t=1

log Pθ(x(i)
t | x

(i)
1 , . . . , x

(i)
t−1), (2.5)

for a corpus of N sequences, where x
(i)
t is the t-th token of the i-th sequence. This

approach directly aligns with the chain rule of probability, making it naturally

suited for tasks involving sequential generation, such as text completion, dialogue

generation (Radford et al., 2019), and the predictive coding mechanisms hypothes-

ised in human language processing (Shannon, 1951). Prominent examples include

Transformer-based autoregressive models like GPT-2 and GPT-3 (Radford et al.,

2019; Brown et al., 2020), which leverage masked self-attention (detailed in Sec-

tion 2.3) to preserve causal ordering during training and inference. Understanding

how these models, despite their simple next-token prediction objective, manage to

learn and represent complex hierarchical structures (as investigated in Chapter 3)

is central to one of the core research questions of this thesis.

2.2.2 Masked Language Modelling

Masked Language Modelling (MLM) (often referred to as autoencoding language

models), introduced prominently by BERT (Bidirectional Encoder Representations

from Transformers) (Devlin et al., 2019), diverges from the strictly causal formu-

lation. Instead of predicting the next token in a sequence, MLM involves pre-

dicting randomly masked tokens using their surrounding unmasked context, thus

leveraging both preceding (left) and succeeding (right) tokens. Formally, given a

sequence X = (x1, . . . , xT ) where a subset of tokens XM is masked, and X\M are

the observed tokens, MLM aims to reconstruct the original tokens in XM :

LMLM(θ) =
∑

xm∈XM

log Pθ(xm | X\M ). (2.6)

Typically, around 15% of the input tokens are randomly selected for masking dur-

ing pre-training, with specific strategies like replacing the token with ‘[MASK]’,
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a random token, or keeping it unchanged (Devlin et al., 2019). The model then

learns by minimising the prediction error at these masked positions. This bidirec-

tional approach encourages the learning of rich contextual embeddings that capture

deep linguistic relationships. Unlike causal modelling, MLM models do not directly

define a sequential generative process for entire sequences from scratch but excel

at learning general-purpose linguistic representations suitable for a wide array of

downstream tasks, such as classification, question-answering, and textual entail-

ment, often via fine-tuning (Devlin et al., 2019; Rogers et al., 2020). Chapter 3

explores how the bidirectionality of MLM influences the encoding of hierarchical

information compared to causal models.

2.2.3 Self-Supervised Learning

Both causal and masked language modelling are prime examples of Self-Supervised

Learning (SSL), a learning paradigm that has become a cornerstone of modern

AI. In SSL, models learn to represent data by solving “pretext” tasks where the

supervision signal is generated automatically from the input data itself, rather

than relying on costly and often scarce human-provided labels (Bengio et al., 2013;

Goodfellow et al., 2016). For language modelling, the pretext task involves predict-

ing parts of the input text (e.g., a masked word in MLM or the next word in CLM)

based on other parts of the same text (Mikolov et al., 2013; Devlin et al., 2019).

This intrinsic supervision allows models to learn from the abundant unlabelled text

available on an unprecedented scale.

The fundamental strength of SSL lies in its ability to unlock the potential of massive

unlabelled datasets. By defining pretext tasks, researchers have enabled models to

learn rich, hierarchical, and transferable representations that capture underlying

data structures, which is central to understanding how hierarchical structures are

internalised by these models. For instance, in NLP, models like BERT (Devlin

et al., 2019) learn contextual word embeddings by predicting masked words, while

models like GPT (Radford et al., 2019) learn by predicting the next word. These

representations have proven highly effective for a wide range of downstream tasks.
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The success of these approaches has drastically reduced the dependency on large la-

belled datasets for specific tasks, shifting the paradigm towards pre-training on gen-

eral domain data and then fine-tuning on smaller, task-specific datasets (Howard

and Ruder, 2018; Ruder et al., 2019).

While language modelling provides prominent examples, the SSL paradigm extends

across various modalities and has resulted in numerous innovative pretraining tasks.

In computer vision, influential SSL approaches include contrastive learning meth-

ods like SimCLR (Chen et al., 2020) and MoCo (He et al., 2020), which learn

representations by discriminating between similar and dissimilar augmented views

of images. Masked image modelling, analogous to MLM in text, has also proven

highly effective, with models like Masked Autoencoders (MAE) (He et al., 2022)

reconstructing randomly masked patches of an image. Other approaches include

Bootstrap Your Own Latent (BYOL) (Grill et al., 2020) and Contrastive Predictive

Coding (CPC) (van den Oord et al., 2018), which explores predictability in latent

spaces. Similarly, in speech processing, models like HuBERT learn representations

by predicting masked acoustic units (Hsu et al., 2021). This broad applicability un-

derscores the power of self-supervision to extract meaningful patterns irrespective

of the data modality.

The representations learned through SSL often implicitly capture complex semantic

and syntactic properties in language (Tenney et al., 2019; Hewitt and Manning,

2019), or compositional visual features (Caron et al., 2021), even though these are

not explicitly supervised. This emergent understanding is crucial for the gener-

alisation capabilities observed in large models. Indeed, SSL is the driving force

behind the development of foundation models – large models pre-trained on broad

data that can be adapted to a wide range of downstream applications, often ex-

hibiting impressive few-shot or zero-shot learning capabilities (Brown et al., 2020;

Bommasani et al., 2021). The self-supervised framework not only circumvents

the data-labelling bottleneck but also encourages the development of models that

learn more robust and broadly useful internal representations, significantly mitig-

ating overfitting when applied to specific tasks with limited labelled data. Con-
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sequently, SSL has become integral to modern AI pipelines, facilitating efficient

transfer learning and domain adaptation, properties that are particularly relevant

to the adaptation studies conducted in Chapter 4 of this thesis. The very ability

of Transformers to learn hierarchical structures is largely enabled through these

powerful SSL objectives during their pre-training phase.

2.2.4 Text-to-Text and In-Context Learning

The advancements in SSL and the scaling of Transformer models have given rise

to a powerful and flexible approach for tackling diverse NLP tasks: the text-

to-text paradigm. Popularised by models like T5 (Text-to-Text Transfer Trans-

former) (Raffel et al., 2020), this framework unifies various tasks by casting them

all as problems of generating a textual output given a textual input. For example,

translation, summarisation, question answering, and even classification can be re-

framed such that the model reads a prompt describing the task (and potentially

including input data) and generates the desired output as a string of text. This

approach simplifies the need for task-specific architectures and loss functions, pro-

moting a more general method of transfer learning.

Perhaps one of the most striking emergent abilities of large-scale causal language

models, such as GPT-3 (Brown et al., 2020), is in-context learning or few-shot

prompting. Unlike traditional fine-tuning, where model weights are updated on

a task-specific dataset, in-context learning allows these models to perform new

tasks simply by conditioning on a textual prompt that includes a natural language

description of the task and a few examples (or “shots”) demonstrating the input-

output pattern. The model then generates a completion that, for a well-crafted

prompt, often correctly solves the task for a new input provided in the prompt, all

without any direct modification of its parameters (Brown et al., 2020). This cap-

ability significantly lowers the barrier for adapting these powerful models to novel

applications and has driven extensive research into prompt engineering and un-

derstanding the mechanisms behind such rapid, example-driven adaptation. More

advanced prompting techniques, such as chain-of-thought prompting, which en-
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courage the model to generate intermediate reasoning steps, can further enhance

performance on complex reasoning tasks (Wei et al., 2022; Ouyang et al., 2022).

The capacity for in-context learning highlights a sophisticated level of pattern re-

cognition and analogical reasoning learned during pre-training, and its relationship

with how models represent and utilise knowledge, including hierarchical structures,

is an active area of investigation.

2.2.5 Pretrained Language Models

While earlier approaches to learning word representations, such as Word2Vec (Miko-

lov et al., 2013) and GloVe (Pennington et al., 2014), provided static, non-contextual

embeddings, the field witnessed a significant shift with the advent of Pretrained

Language Models (PLMs) capable of generating contextual word representations.

These models are typically deep neural networks trained on vast amounts of text

data using self-supervised language modelling objectives, as discussed previously.

The feasibility of pretraining such large models increased with advancements in

computational resources. Early explorations by Dai and Le (2015) demonstrated

pretraining language models on large in-domain document collections, and sub-

sequent work began to apply pretrained LLMs to specific downstream tasks like se-

quence labelling (Peters et al., 2017) and machine translation (Ramachandran et al.,

2017). A pivotal moment came with Peters et al. (2018) who demonstrated that

representations from a bidirectionally trained Long Short-Term Memory (LSTM)

language model (ELMo) could significantly improve performance across a wide ar-

ray of NLP tasks. These ELMo representations were ‘deep’ in that they were a

function of all internal layers of the language model and contextual because the

representation for each word depended on the entire input sentence.

Following this, Radford et al. (2018) scaled this approach by training a deeper

Transformer-based language model, the Generative Pretrained Transformer (GPT),

on more extensive data, showcasing strong performance on several benchmarks

through fine-tuning. A further major development was the introduction of the

MLM objective by Devlin et al. (2019) in BERT, which allowed for deep bid-
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irectional pretraining. These PLMs have demonstrated remarkable capabilities,

achieving substantial improvements on many established NLP tasks (Ruder et al.,

2019; Qiu et al., 2020). Their success stems from their ability to learn rich linguistic

knowledge from large corpora, which can then be transferred to downstream tasks.

This transfer learning capability has been particularly impactful for domain adapt-

ation and for enabling few-shot or even zero-shot learning scenarios (Howard and

Ruder, 2018; Radford et al., 2018; Brown et al., 2020).

2.2.6 Fine-tuning and Feature Extraction

Once a language model has been pretrained on a large general-domain corpus,

it needs to be adapted to specific downstream tasks. The process of leveraging

pretrained knowledge for a new task is a form of transfer learning. There are two

primary strategies for adapting PLMs: fine-tuning and feature extraction (Howard

and Ruder, 2018; Peters et al., 2018; Ruder et al., 2019).

Feature Extraction involves using the pretrained model as a fixed feature ex-

tractor. The PLM processes the input text, and its hidden states (often from one

or more layers) are taken as contextual embeddings (Peters et al., 2018). These em-

beddings are then used as input features for a separate, often simpler, task-specific

model (e.g., a linear classifier or a shallow neural network) which is trained from

scratch on the target task data. The weights of the pretrained model itself are

‘frozen’ and not updated during this process. This approach is beneficial as exist-

ing task-specific architectures can be reused, and if features are needed repeatedly,

they only need to be extracted once, which can be computationally cheaper for

multiple training iterations or tasks (Salman et al., 2023).

Fine-tuning, in contrast, involves unfreezing some or all of the pretrained model’s

parameters and continuing to train them on the target task data, typically with a

task-specific output layer appended to the PLM (Howard and Ruder, 2018; Devlin

et al., 2019). The pretrained parameters serve as a sophisticated initialisation, and

gradients from the task-specific loss are propagated back through the PLM, allow-

ing its representations to adapt to the nuances of the target task. Fine-tuning is
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often convenient as it allows a single general-purpose model to be adapted with

minimal modifications and has generally been found to yield better performance

than using static (frozen) embeddings, especially when the pretrained model ar-

chitecture is well-suited to the task (Howard and Ruder, 2018; Devlin et al., 2019)

(though early work like Kim (2014) already showed benefits of fine-tuning word

vectors). Howard and Ruder (2018) proposed ULMFiT, which introduced sev-

eral effective techniques for fine-tuning language models, such as discriminative

fine-tuning (different learning rates for different layers) and gradual unfreezing,

significantly boosting the effectiveness of transfer learning in NLP.

However, fine-tuning is not without its challenges. For instance, if the target task

training set is very small, fine-tuning all parameters can lead to overfitting (Howard

and Ruder, 2018). Moreover, for word embeddings, only the parameters of words

seen during fine-tuning are updated, potentially making embeddings of out-of-

vocabulary or rare words ‘stale’ if they are not encountered frequently in the fine-

tuning data or if subword units are not sufficiently representative in the new domain

(Balde et al., 2024). The choice between feature extraction and fine-tuning can

depend on factors like the similarity between the pretraining and target tasks, the

size of the target dataset, and computational constraints. Some studies suggest

that fine-tuning performs better when source and target tasks are similar, while

feature extraction may be more robust when they are distant (Peters et al., 2019).

Understanding the dynamics of fine-tuning, including the risk of memorising task-

specific data (a key aspect of the second research question in this thesis) is explored

in Chapter 4.

2.2.7 Evaluating Language Models

Evaluating language models quantitatively is essential for assessing their quality

and comparing different architectures or training strategies. The primary intrinsic

evaluation metric for language models, particularly causal ones, is perplexity. Per-

plexity measures how well a probability model predicts a sample. For a test set

sequence X1:T = (x1, x2, . . . , xT ), the perplexity is defined as the exponential of
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the average negative log-likelihood per token:

Perplexity(X1:T ) = exp
(

− 1
T

T∑
t=1

log Pθ(xt | x<t)
)

, (2.7)

where log Pθ(xt | x<t) is the log-likelihood of the t-th token conditioned on the

preceding tokens. We can think of this as measuring a model’s capacity to make

uniform predictions across all tokens in a training corpus.

A lower perplexity score indicates that the model is better at predicting the sample

sequence, meaning the distribution learned by the model is closer to the empirical

distribution of the language (Chen and Goodman, 1999). While perplexity is a

useful measure of a model’s fluency and ability to capture statistical regularities,

it may not always directly correlate with performance on downstream NLP tasks

(Gadre et al., 2024) or capture deeper aspects of linguistic understanding, such as

syntactic correctness or semantic coherence, particularly in complex, long-context

scenarios (Chi et al., 2024) or when probing the generalisation of learned hierarch-

ical structures versus surface statistics. Other evaluation methods often involve

assessing performance on specific downstream tasks (extrinsic evaluation), such as

text classification (using accuracy, F1-score) or question answering, often through

comprehensive benchmarks (Wang et al., 2018; Liang et al., 2022). However, these

classical metrics alone may obscure deeper issues such as overconfidence (Guo et al.,

2017), the risk of memorising training data (explored in Chapter 4), and vulnerab-

ility to subtle distribution shifts (Yang et al., 2023).

2.2.8 Relevance to Transformer Architectures

The Transformer architecture, which will be detailed in Section 2.3, has become

the de facto standard for the state-of-the-art PLMs discussed above, largely sup-

planting previous recurrent architectures like LSTMs for these large-scale endeav-

ours (Vaswani et al., 2017). Its parallelisable self-attention mechanism is highly

effective at capturing dependencies across long sequences of text and scales ef-

ficiently with computational resources and vast datasets, making it particularly

well-suited for the objectives of both CLM and MLM training.
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Specifically, Transformer models implement the CLM objective (e.g., in GPT-style

autoregressive architectures) by employing a specific type of attention mask (often

an upper-triangular mask) that restricts each token from attending to subsequent

tokens, thereby strictly preserving the autoregressive, left-to-right generation pro-

cess (Vaswani et al., 2017; Radford et al., 2019). This is crucial for tasks like

text generation and forms the basis for the emergent in-context learning abilities

observed in models like GPT-3 (Brown et al., 2020). Conversely, for the MLM

learning objective (e.g., in BERT-style architectures), Transformers are typically

configured to allow tokens to attend to all other tokens in the input sequence bi-

directionally (or non-directionally) when constructing representations to predict

the masked tokens (Devlin et al., 2019). This rich bidirectional context is a key

reason for BERT’s strong performance on various natural language understanding

tasks. The inherent flexibility of the Transformer in accommodating these differ-

ent pretraining objectives, coupled with its scalability, has cemented its role as the

foundational architecture for exploring the capabilities of PLMs. This includes in-

vestigating the emergence and interpretability of hierarchical linguistic structures

(a central theme of Chapter 3) and how these structures relate to model gener-

alisation and memorisation (Chapter 4), key questions posed in this thesis. The

capacity of these Transformer-based PLMs to be adapted via fine-tuning or used

in few-shot settings further underscores their impact on the field.

2.2.9 Summary

In summary, language modelling has evolved from a probabilistic task of sequence

prediction into a cornerstone of modern NLP, driving significant advancements in

how machines understand and generate human language. Key developments in-

clude the shift from n-gram models to neural approaches, the refinement of causal

(autoregressive) and masked (autoencoding) objectives, and the transformative im-

pact of self-supervised learning. This has culminated in the era of large PLMs

which produce rich contextual representations and can be adapted effectively to

a multitude of downstream tasks through fine-tuning or leveraged directly via in-
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context learning within the text-to-text paradigm. These PLMs, predominantly

built upon the Transformer architecture, have not only pushed the boundaries of

performance but also opened new avenues for research into their internal workings,

generalisation properties, and the nature of the linguistic knowledge they acquire,

particularly regarding hierarchical structures.

The principles and models discussed in this section, from the foundational chain

rule of probability to sophisticated PLMs and their adaptation methods, provide

the essential background for the empirical investigations undertaken in this thesis.

We build on this with investigations into hierarchical representation learning within

Transformers (Chapter 3), the challenges of mitigating memorisation during fine-

tuning (Chapter 4), and the extension of these ideas to vision and multimodal

learning (Chapters 5 and 6), all of which contribute to addressing the overarch-

ing research questions of this thesis. We will next look into the specifics of the

Transformer architecture itself.

2.3 Transformer Architecture

The Transformer architecture, introduced by Vaswani et al. (2017), represents a

pivotal shift in sequence modelling, particularly within NLP, by moving away from

recurrent and convolutional mechanisms towards a design based entirely on atten-

tion. This section provides a detailed exposition of the Transformer model, its core

components, and its operational principles. While we focus on the architecture

itself, a comprehensive understanding of neural networks, their training via back-

propagation, and optimisation algorithms is presumed. For foundational knowledge

on these broader deep learning topics, readers are referred to standard texts such

as Bishop (2006b) and Goodfellow et al. (2016). Our aim here is to understand

how the Transformer’s specific design choices, from multi-head self-attention to

positional encodings, enable the learning of complex dependencies and hierarchical

features in sequential data, features that are central to this thesis’s investigation

into how models internalise, generalise, and apply hierarchical structure. Under-
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standing these architectural details is crucial, as our later analyses in Chapters 3, 5,

and 6 rely on interpreting the structures and representations learned within these

networks.

2.3.1 Model Overview

The original Transformer architecture (Vaswani et al., 2017), designed for machine

translation, comprises two main blocks (Figure 2.1):

• Encoder Block: A stack of N identical layers, each processing input em-

beddings to produce context-aware representations.

• Decoder Block: Another stack of N layers that receives both the encoder

outputs and its own previous layer outputs to generate predictions autore-

gressively.

For unidirectional language modelling tasks, many influential implementations (e.g.,

GPT-2, GPT-3) utilise only a decoder-like stack with causal masking applied to the

self-attention mechanism (Radford et al., 2019; Brown et al., 2020). Conversely,

models like BERT employ an encoder-only stack for tasks requiring bidirectional

context (Devlin et al., 2019). Despite these variations, the fundamental components

discussed below are common across most Transformer-based systems.

2.3.2 Input and Positional Embeddings

Let X = (x1, x2, . . . , xn) be an input sequence of n tokens. Each token xi is first

mapped to a d-dimensional embedding vector ei ∈ Rd using a learned embedding

matrix. Since the Transformer architecture does not inherently process sequential

order due to the parallel nature of its attention mechanisms (unlike RNNs), explicit

information about the position of tokens in the sequence must be injected. This

is achieved through positional encodings (PE). The original Transformer paper

proposed using sinusoidal functions (Vaswani et al., 2017):
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Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3

Figure 2.1: The Transformer architecture, illustrating the encoder (left) and de-
coder (right) stacks. Adapted from Vaswani et al. (2017).

PE(pos, 2k) = sin
(

pos

100002k/dmodel

)
, (2.8)

PE(pos, 2k + 1) = cos
(

pos

100002k/dmodel

)
, (2.9)

where pos is the position index in the sequence (0 ≤ pos < n), k is an index into the

dimensions of the embedding (0 ≤ k < dmodel/2), and dmodel is the dimensionality of

the embeddings (denoted as d elsewhere in this text for simplicity). These positional
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2.3.3. Self-Attention

encodings ppos ∈ Rdmodel are then added element-wise to the corresponding token

embeddings:

z(0)
pos = epos + ppos (2.10)

The resulting vectors z(0)
pos form the input to the first Transformer layer. The

sinusoidal scheme was chosen because it could allow the model to learn relative

positions and potentially generalise to sequence lengths not seen during training

(Vaswani et al., 2017), although robust length generalisation remains an active

research area (Press et al., 2022). Other forms of positional encodings, including

learned absolute or relative positional embeddings, have also been explored and are

used in various Transformer variants (Shaw et al., 2018; Devlin et al., 2019; Raffel

et al., 2020). The choice of positional encoding can be particularly important for

tasks requiring precise spatial or temporal understanding, as explored in Chapter 5,

and may influence how hierarchical spatial or temporal relationships are encoded.

Positional encodings provide the model with a sense of order or position for each

token. Since every token in a Transformer layer is processed in parallel through

self-attention, without these encodings, the model would be permutation-invariant,

treating the input as an unordered set of tokens. The positional signals allow the

model to learn dependencies based on relative or absolute positions.

2.3.3 Self-Attention

At the heart of the Transformer is the self-attention mechanism (Vaswani et al.,

2017). Self-attention allows the model to weigh the importance of different tokens

in a sequence when computing the representation for each token. Instead of relying

on fixed-window convolutions or sequential processing, self-attention enables each

token to interact directly with all other tokens in its receptive field (which can be

the entire sequence, or a masked portion thereof).

For a given layer l, let the input be a sequence of n vectors represented as a matrix

Z(l−1) ∈ Rn×d, where each row z(l−1)
i is the d-dimensional representation of token

i from the previous layer.
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2.3.3. Self-Attention

Key, Query, and Value Projections. From the input representations Z(l−1),

three matrices are generated by multiplying with learned weight matrices: a Query

matrix Q, a Key matrix K, and a Value matrix V.

Q = Z(l−1)WQ, (2.11)

K = Z(l−1)WK , (2.12)

V = Z(l−1)WV , (2.13)

where WQ ∈ Rd×dk , WK ∈ Rd×dk , and WV ∈ Rd×dv are learnable parameter

matrices. Typically, dk = dv.

The query qi (a row in Q) for a token i can be thought of as asking: “What

information do I need from other tokens to better represent myself?”. The key kj

(a row in K) from another token j represents what kind of information token j

offers. The value vj (a row in V) is the actual content or representation of token

j that will be aggregated if token i attends to token j.

Scaled Dot-Product Attention. The attention scores are computed by taking

the dot product of each query with all keys. These scores are scaled by 1√
dk

to

prevent overly large values which could lead to vanishing gradients in the softmax

function. A softmax function is then applied to these scaled scores to obtain at-

tention weights αij , which represent how much token i should attend to token j.

The output for token i, hi, is a weighted sum of all value vectors. The complete

operation for all tokens can be expressed in matrix form:

Attention(Q, K, V) = softmax
(

QKT

√
dk

)
V, (2.14)

where the matrix of attention weights αij is often denoted A ∈ Rn×n. The output

H ∈ Rn×dv is a sequence of context-aware representations.

Multi-Head Attention. Instead of performing a single attention function, Trans-

formers employ multi-head attention. This involves projecting the queries, keys,

and values H times with different, learned linear projections W(h)
Q , W(h)

K , W(h)
V for

each head h = 1, . . . , H. Scaled dot-product attention is then performed in parallel
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2.3.3. Self-Attention

for each of these “heads“, yielding H output matrices headh ∈ Rn×dv . These are

concatenated and once again projected with a final weight matrix WO ∈ RHdv×d

to produce the final output of the multi-head attention sub-layer:

MultiHead(Z(l−1)) = Concat(head1, . . . , headH)WO (2.15)

where,

headh = Attention(Z(l−1)W(h)
Q , Z(l−1)W(h)

K , Z(l−1)W(h)
V ) (2.16)

Typically, dk = dv = d/H, so the dimensionality of each head’s output is d/H.

Multi-head attention allows the model to jointly attend to information from dif-

ferent representation subspaces at different positions. With multiple heads, each

head can learn to focus on different aspects of the sequence, such as different types

of syntactic dependencies or semantic relationships (Clark et al., 2019; Voita et al.,

2019). This enhances the representational power of the model. The specific roles

and specialisations of attention heads are a subject of interpretability research,

relevant to Chapter 5.

Residual Connections and Layer Normalization. Each sub-layer in a Trans-

former (i.e., the multi-head self-attention mechanism and the position-wise feed-

forward network) is followed by a residual connection (He et al., 2016) and then

layer normalization (Ba et al., 2016). That is, if Sublayer(X) is the function im-

plemented by the sub-layer itself acting on input X, the output is LayerNorm(X +

Sublayer(X)). Residual connections help mitigate the vanishing gradient problem

in deep networks, allowing gradients to propagate more easily through the layers

during training. Layer normalization helps to stabilize the activations and im-

prove training speed and performance by normalizing the inputs to each sub-layer

independently across the feature dimension for each example in the batch.

37



2.3.5. Stacked Layers and Output Layer

2.3.4 Feed-Forward Network

In addition to the attention sub-layers, each layer in the Transformer encoder and

decoder contains a fully connected position-wise Feed-Forward Network (FFN).

This FFN is applied to each position (i.e., each token representation) separately

and identically. It typically consists of two linear transformations with a non-

linear activation function in between. Common activation functions include ReLU

(Rectified Linear Unit) (Nair and Hinton, 2010) or GELU (Gaussian Error Linear

Unit) (Hendrycks and Gimpel, 2016). For an input z ∈ Rd from a specific position,

the FFN is:

FFN(z) = ActivationFunction(zW1 + b1)W2 + b2 (2.17)

If using ReLU, this becomes:

FFNReLU(z) = max(0, zW1 + b1)W2 + b2 (2.18)

And using GELU:

FFNGELU(z) = GELU(zW1 + b1)W2 + b2 (2.19)

Here, W1 ∈ Rd×dff , b1 ∈ Rdff , W2 ∈ Rdff ×d, and b2 ∈ Rd. The dimensionality

of the input and output of the FFN is d, and the inner-layer typically has a larger

dimensionality dff (e.g., dff = 4d).

While the self-attention layers are responsible for capturing dependencies between

different tokens in the sequence, the FFN sub-layer provides additional non-linear

transformations to each token’s representation independently. This can be seen

as further processing or enriching the information aggregated by the attention

mechanism for each position. It is hypothesised that FFNs play a role in storing

factual knowledge or acting as key-value memories (Geva et al., 2021; Meng et al.,

2022).

2.3.5 Stacked Layers and Output Layer

The Transformer stacks N identical layers (e.g., N = 6 or N = 12 for “base”

models, and N = 24 or more for “large” models) in both the encoder and decoder
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sections (Vaswani et al., 2017). This deep stacking allows the model to learn

increasingly complex representations and features. This layer-wise structure and its

role in encoding hierarchical information is a key area of investigation in Chapter 3

and Chapter 5.

For a decoder-only autoregressive Transformer used in CLM training, the output

from the final Transformer layer, Z(N) ∈ Rn×d, where z(N)
t is the representation for

token t, is typically passed through a final linear layer (often called the language

model head). This layer maps the d-dimensional hidden states to logits over the

vocabulary V. A softmax function is then applied to these logits to obtain a

probability distribution over the next token:

p(xt+1 | x1, . . . , xt; θ) = softmax(z(N)
t Wlm + blm) (2.20)

where Wlm ∈ Rd×|V| and blm ∈ R|V| are the parameters of the output layer, and θ

represents all model parameters.

2.3.6 Masking Strategies

Causal (Autoregressive) Masking. For autoregressive tasks like next-token

prediction in CLM training, Transformers (specifically decoder or decoder-only

architectures) apply a causal mask to the self-attention mechanism (Vaswani et al.,

2017). This mask ensures that when computing the representation for token i, the

model can only attend to tokens at positions j ≤ i. This is typically achieved

by adding a mask matrix (with −∞ for disallowed positions and 0 for allowed

positions) to the scaled dot products QKT /
√

dk before the softmax operation. This

masking strategy enforces the left-to-right factorization of the joint probability

of the sequence, p(x1, . . . , xn) =
∏n

i=1 p(xi | x1, . . . , xi−1), directly mirroring the

chain rule and enabling generative capabilities (Radford et al., 2019). Despite this

unidirectional constraint, multi-head attention still allows the model to capture

complex hierarchical dependencies from the preceding context (Warstadt et al.,

2024); investigating how such models learn hierarchical dependencies from purely

sequential signals is a key aspect of this thesis.
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Autoencoding (Bidirectional) Representations. In contrast, autoencoding

models like BERT (Devlin et al., 2019) are designed to learn bidirectional rep-

resentations. During pretraining with the MLM objective, a certain percentage

of input tokens are randomly masked, and the model’s task is to predict these

masked tokens based on the unmasked surrounding context (both left and right).

To achieve this, the self-attention mechanism in BERT’s encoder stack is allowed

to attend to all tokens in the input sequence without a causal mask. This bidirec-

tional context enables the model to learn rich, deep representations that are highly

effective for various natural language understanding tasks (Rogers et al., 2020).

However, this approach means BERT is not directly suited for autoregressive text

generation in the same way that autoregressive CLMs are.

The choice of masking strategy fundamentally influences the type of representations

learned and the tasks for which the model is best suited. Chapter 3 explores how

these different approaches impact the encoding of linguistic hierarchies.

2.3.7 Hierarchical Representations and In-Context Learning

In-Context Learning (Autoregressive Setting). One of the most remark-

able emergent capabilities of Transformer-based Large Language Models (LLMs) is

in-context learning, or few-shot learning (e.g., GPT-3 (Brown et al., 2020)). LLMs

are typically defined and distinguished from earlier models by their vast scale: typ-

ically involving billions of parameters and web-scale training data. These models

can perform new tasks or adapt their behaviour based solely on a few examples

or instructions provided in their input prompt, without any updates to their para-

meters. The model processes the prompt, which includes task demonstrations, and

then generates a completion that often correctly applies the demonstrated pattern

to a new query instance. Mechanistic interpretability studies suggest that spe-

cific components within Transformers, such as “induction heads”, play a role in

detecting and replicating patterns from the prompt, effectively enabling this rapid,

on-the-fly adaptation (Olsson et al., 2022; Elhage et al., 2021). The ability to

guide these models using hierarchically structured prompts (e.g., chain-of-thought
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reasoning (Wei et al., 2022; Ouyang et al., 2022)) further highlights their capacity

to process and leverage nested information. Conversely, jailbreak attacks demon-

strate that pretrained LLM human alignment fine-tuning can be bypassed with

automatically discovered adversarial prompts and are now covered by comprehens-

ive taxonomies of attacks and defences (Zou et al., 2023; Yi et al., 2024).

Relevance to Thesis Goals. The capacity of Transformers to learn hierarch-

ical representations and perform in-context learning is central to the investigations

in this thesis. Understanding how different architectural choices (e.g., causal vs.

bidirectional attention, specific attention mechanisms for spatiotemporal data as

in Chapter 5) and training objectives influence the emergence and nature of these

hierarchical encodings is vital for building more interpretable, robust, and gener-

alisable models. The probing methodologies developed and applied in Chapter 3

are designed to shed light on the internalisation of hierarchy (research question

1), while analyses of in-context learning and memorisation (Chapter 4) relate to

the balance between hierarchical generalisation and verbatim memorisation and

recall (research question 2). Furthermore, applying these insights to guide the de-

velopment of unified multimodal systems (Chapter 6) addresses research question

3.

2.3.8 Representative Transformer Models

Although the original architecture depicted in Fig. 2.1 serves as a foundational blue-

print, practical systems and research explorations invariably incorporate modifica-

tions tailored to specific domains, tasks, or to address computational and efficiency

constraints. Table 2.1 highlights several canonical Transformer variants, including

those reflecting increasing scale and diverse design choices, that are referenced or

relevant to the discussions throughout this thesis.

Hierarchy-aware design trends. Many advancements in Transformer architec-

tures, particularly for vision and long-sequence processing, explicitly incorporate
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notions of hierarchy or efficiency mechanisms that interact with hierarchical pro-

cessing:

• Efficient Attention for Long Sequences: Models like Longformer (Beltagy

et al., 2020) and other sparse attention mechanisms (Child et al., 2019) aim

to reduce the quadratic complexity of full self-attention, often by restricting

attention to local windows combined with some global attention, which can

influence how long-range hierarchical dependencies are captured.

• Hierarchical Architectures for Vision: Vision Transformers like Swin

Transformer (Liu et al., 2021) build explicit hierarchical feature maps by

merging image patches at deeper layers, mimicking the multi-scale processing

of CNNs and facilitating transfer to dense prediction tasks.

• Factorised or Decomposed Attention: For modalities like video, models

such as TimeSformer (Bertasius et al., 2021) factorise attention into spatial

and temporal components, or process dimensions separately, which can be

seen as a structured approach to handling different aspects of spatiotemporal

hierarchy. This is relevant to the PSViT model developed in Chapter 5.

• Cross-modal Alignment at Multiple Granularities: Multimodal mod-

els like CLIP (Radford et al., 2021) and others often learn to align repres-

entations from different modalities (e.g., image regions with text phrases) at

various levels of detail, implicitly or explicitly capturing cross-modal hier-

archical correspondences, a theme explored in Chapter 6.

By grounding later experiments and discussions in the context of these concrete ar-

chitectures and design trends, we can more effectively trace how theoretical claims

about hierarchical encoding manifest in practice, for instance, when probing BERT

layers for constituency information (Chapter 3), analysing spatiotemporal atten-

tion in custom video Transformers (Chapter 5), or considering unified multimodal

frameworks (Chapter 6).
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Model Family Example Params Domain Notable Design Choices or Contributions

BERTBASE
(Devlin et al., 2019) 110M Text Bidirectional (masked) pretraining; segment + position embeddings;

strong for Natural Language Understanding (NLU) tasks.
GPT (Series)
(Radford et al., 2019; Brown et al., 2020; OpenAI, 2023) 1.5B (GPT-2) to 175B (GPT-3) Text Causal decoder-only; large scale; emergent few-shot/in-context learn-

ing; instruction following. GPT-4 details remain partially undisclosed
but build on this paradigm.

T5
(Raffel et al., 2020) Up to 11B Text Unified text-to-text framework; encoder-decoder; explores transfer

learning limits.
Pythia Suite
(Biderman et al., 2023) 70M to 12B Text Fully open-source suite of decoder-only LLMs trained on public data,

with all intermediate checkpoints available; enables research on LLM
development and scaling.

Llama (Series)
(Touvron et al., 2023a,b; AI at Meta, 2024) 7B to 70B+ (Llama 2), up to 405B (Llama 3) Text High-performance, open-access decoder-only LMs; focus on efficient

training and strong performance across benchmarks; variants include
instruction-tuned models.

Longformer
(Beltagy et al., 2020) 149M Long Text Efficient attention (sliding window + global) for processing long se-

quences (e.g., 4k–8k+ tokens).
Vision Transformer
(Dosovitskiy et al., 2021) 86M (ViT-B/16) Images Applies Transformer directly to image patches; encoder-only; min-

imal vision-specific inductive bias.
TimeSformer
(Bertasius et al., 2021) 121M Videos Factorised spatial and temporal attention for video understanding;

processes video clips as sequences of patch embeddings.
CLIP
(Radford et al., 2021) Up to 400M Image+Text Dual-encoder contrastive pretraining on image-text pairs; learns

aligned vision and language representations.

Table 2.1: Illustrative Transformer models and families, highlighting their characteristics relevant to discussions in later chapters. Parameter
counts are approximate and refer to specific model sizes or ranges.
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2.3.9 Summary

In summary, the Transformer architecture has revolutionised sequence processing

by leveraging self-attention mechanisms to capture complex dependencies within

data, without relying on recurrence or explicit convolutions. Its core components:

multi-head self-attention, positional encodings, position-wise FFNs, residual con-

nections, and layer normalization, all combine to form powerful models capable of

learning rich, hierarchical representations from vast amounts of data. Different con-

figurations, such as causal masking for autoregressive generation or bidirectional

context for understanding tasks, tailor the Transformer to diverse objectives.

The ability of Transformers to learn hierarchical structures implicitly, and the emer-

gent phenomenon of in-context learning in large-scale autoregressive versions, are

particularly significant. These capabilities underpin much of their success and are

central to the investigations of this thesis. Understanding the interplay between

the architectural design of Transformers and the nature of the representations they

learn (specifically how they internalise, generalise, and apply hierarchical inform-

ation) is crucial for advancing the field towards more capable, interpretable, and

reliable AI systems. The following chapters will build upon this architectural found-

ation to:

• Investigate how different Transformer designs (CLM vs MLM) encode lin-

guistic hierarchies (Chapter 3), addressing how and where hierarchy is inter-

nalised.

• Analyse how modifications to attention mechanisms, such as spatiotemporal

attention in video models, can better exploit multi-level sequential inform-

ation (Chapter 5), further exploring the internalisation and application of

hierarchical principles.

• Assess how these design choices and learned representations impact phenom-

ena like in-context learning, memorisation (Chapter 4), and generalisation

across different modalities (Chapter 6), probing the relationship between hier-
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archical generalisation and memorisation, and guiding the development of

unified multimodal systems.

2.4 Hierarchical Reasoning

Hierarchical structures are fundamental to understanding complex information in

both language and vision. In linguistics, hierarchy governs how words combine into

phrases and sentences, and how meaning is composed across discourse levels (Chom-

sky, 1957, 1965; Jackendoff, 1977; Pollard and Sag, 1994). In vision, it describes how

pixels form edges, parts, objects, and scenes (Marr, 1982; Zeiler and Fergus, 2014),

and how these elements interact over time in dynamic events (Oprea et al., 2020).

A robust grasp of these hierarchical properties is critical for designing, training, and

interpreting modern deep learning models, particularly Transformers, which often

implicitly learn to encode and exploit such structures (Tenney et al., 2019; Hewitt

and Manning, 2019; Clark et al., 2019). Empirical and psycholinguistic evidence

further underscores the importance of hierarchical processing in human cognition

for both language comprehension (Frazier and Rayner, 1979; Stowe, 1986; Gibson,

1998) and visual perception (Palmer, 1977; Biederman, 1987; Maniglia and Öttl,

2024). This section reviews theories of hierarchy in language and vision, discusses

how these concepts manifest in computational models, and explicitly catalogues

probing methods and interpretability tools (ranging from linear probes to causal

tracing and attention analysis) that are employed in the subsequent chapters to in-

vestigate how and where foundation models internalise hierarchical structures and

the implications thereof.

Recent developments and open questions. The study of how neural net-

works, especially Transformers, acquire and represent hierarchical knowledge is a

vibrant research area, directly relevant to the core questions of this thesis. Large-

scale experiments now indicate that CLM Transformers can develop a preference for

tree-consistent generalisations when the training signal contains sufficient semantic

content (Yedetore and Kim, 2024). Conversely, synthetic studies have revealed a
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striking “grokking” phenomenon, where models may initially memorise surface pat-

terns for many epochs before abruptly uncovering and generalising based on latent

hierarchical rules (Power et al., 2022; Murty et al., 2023b,a). This highlights the

critical distinction between superficial memorisation and genuine hierarchical un-

derstanding, a key focus of Chapter 4. Mechanistic interpretability work has begun

to pinpoint how such learning occurs, tracing hierarchical processing to specialised

components like induction heads within attention mechanisms (Elhage et al., 2021;

Olsson et al., 2022) and to the role of FFNs as key-value memories (Geva et al.,

2021). Additionally, recent work on model editing shows that specific factual asso-

ciations in Transformer LLMs can be precisely located and rewritten (Meng et al.,

2022; Fang et al., 2025). These findings motivate the diverse probing and attention

analysis methods introduced later in this section and deployed extensively in later

Chapters.

2.4.1 Hierarchy in Language

Human language is widely recognised as inherently hierarchical. Words combine

to form syntactic constituents like noun phrases (NPs) and verb phrases (VPs),

which in turn form larger phrasal or clausal units, often recursively (Chomsky,

1957, 1965; Pollard and Sag, 1994). This hierarchical organisation is not confined

to syntax; it also extends to semantic composition and discourse structure (Mann

and Thompson, 1988; Kayne, 1994; Pesetsky, 1995; Sag et al., 2012). The system-

atic arrangement of linguistic elements in these layered structures underpins the

expressive power, generativity, and flexibility of human communication (Frazier

and Rayner, 1979; Pinker, 1994; Gibson, 1998).

Constituency and recursion. A central concept in modern linguistics is that

language is not merely a linear sequence of tokens but is structured into larger,

meaningful units called constituents (Chomsky, 1957, 1965; Radford, 2016). These

constituents can be recursively nested, forming hierarchical parse trees that rep-

resent the grammatical structure of sentences. For example, in the sentence, “The
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book that John read was fascinating”, the NP “The book that John read” contains a

relative clause (“that John read”), which itself has an internal syntactic structure.

This capacity for recursion allows for the generation of an unbounded number of

novel and complex sentences from a finite set of rules and lexical items (Hauser

et al., 2002). Such nested structures are crucial for explaining phenomena like:

• Long-distance dependencies: Agreement or case marking between words

that are distant in the linear string but syntactically related (e.g., subject-

verb agreement across an embedded clause) (Chomsky, 1981).

• Structural ambiguity: Sentences that can have multiple interpretations

based on different underlying constituent structures (e.g., “I saw the man

with the telescope”) (Jurafsky and Martin, 2009).

• Coordination and subordination: How phrases and clauses are linked at

the same or different hierarchical levels to build complex sentences (Huddle-

ston and Pullum, 2002).

Understanding these phenomena requires models that can process hierarchical re-

lationships, not just linear contiguity.

Syntactic vs. semantic hierarchies. Hierarchies operate at multiple linguistic

levels. Syntactic hierarchies pertain to the formal rules of composition that govern

how words form phrases and clauses, as described by grammars (Radford, 2004;

Jurafsky and Martin, 2009). Semantic hierarchies, on the other hand, concern how

meaning is composed from smaller units to larger ones, from individual words to

phrases, sentences, and entire discourses (Partee, 1995; Goldberg, 2006). For in-

stance, the meaning of a complex phrase like “the old red car that sped down the

highway” is built compositionally from the semantics of its constituents and their

structural relationships. Modern computational models, particularly LLMs, often

learn representations where syntactic and semantic information is intertwined (Lin-

zen et al., 2016; Hewitt and Manning, 2019; Tenney et al., 2019). For example,
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resolving subject-verb agreement (a syntactic phenomenon) may require under-

standing semantic roles, and anaphora resolution (a discourse-level semantic task)

depends on identifying syntactically valid antecedents. Research has shown that

data-driven models can learn emergent hierarchical behaviours, implicitly encod-

ing bracketed structures or latent phrase boundaries without explicit grammatical

supervision (Clark et al., 2019; Kudugunta et al., 2019; Manning, 2020). Further-

more, providing richer semantic supervision appears to guide these models towards

more tree-consistent syntactic generalisation (Yedetore and Kim, 2024).

• From morphology to discourse: Hierarchical composition is evident from

the lowest levels (morphemes combining to form words) through lexical and

phrasal levels (words forming phrases expressing tense, mood, or argument

structure) up to the discourse level (sentences combining to form coherent

narratives or arguments) (Grosz et al., 1995; Goldberg, 2006; Linzen et al.,

2016).

• Coreference and topic flow: Discourse-level phenomena such as pronoun

resolution and topic continuity rely on analysing reference chains and them-

atic structures that span multiple clauses or sentences, often reflecting hier-

archical discourse organisation (Tenney et al., 2019; Manning, 2020).

• Real-time comprehension: Psycholinguistic studies indicate that humans

parse sentences incrementally, using cues like phrase boundaries and syntactic

expectations to build hierarchical structures on the fly (Frazier and Rayner,

1979; Stowe, 1986; Tanenhaus et al., 1995), underscoring the cognitive reality

and efficiency of hierarchical processing.

By incorporating or learning these hierarchical cues, computational models can

achieve more robust ambiguity resolution, maintain better coherence, and gen-

eralise more effectively to novel linguistic inputs. The extent to which current

models successfully do this, and how such internalised hierarchies are structured,

is a primary focus of this thesis.
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2.4.2 Hierarchical Representations in Language Models

Although Transformer models process input sequences in parallel via self-attention,

causal variants like GPT still generate text token by token, conditioning strictly

on past context. Remarkably, this unidirectional constraint does not prevent them

from modelling long-range syntactic and semantic dependencies that are inherently

hierarchical (Warstadt et al., 2024); indeed, the left-to-right factorisation may even

facilitate the analysis of the hierarchical structures they learn (Rogers et al., 2020).

While much foundational work on probing linguistic structure has focused on bid-

irectional models like BERT (Goldberg, 2019; Tenney et al., 2019; Jawahar et al.,

2019), research increasingly explores these phenomena in autoregressive settings,

which is particularly relevant to this thesis’s focus on how such models internalise

and generalise hierarchical information.

Implicit hierarchy in autoregressive attention. With a causal mask, each

token attends to all preceding tokens, allowing global patterns and dependencies

to emerge:

• Syntactic dependencies: Autoregressive models have been shown to learn

and represent syntactic dependencies, including phenomena like subject-verb

agreement, though their performance can vary based on context and model

scale (Lakretz et al., 2021; Warstadt et al., 2024). Probing studies (discussed

later) on bidirectional models show that information about such dependencies

often appears in specific layers, with lower layers tracking more local agree-

ments and higher layers encoding broader clausal grammar (Clark et al., 2019;

Tenney et al., 2019); understanding if and how similar layer-wise specialisa-

tion occurs in causal models is pertinent to this thesis.

• Recursive nesting: On synthetic tasks designed to test for recursive struc-

ture (e.g., bracket completion or list processing), causal Transformers can

infer approximate tree structures without explicit tree-based supervision,

though their ability to generalise deeply recursive patterns robustly is an
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area of active research (Arora et al., 2024; Fernando, 2024). Earlier work on

RNNs (Shen et al., 2019) and BERT (McCoy et al., 2020) also explored sim-

ilar capabilities. Performance can degrade as the required depth of recursion

increases beyond that seen in training, sometimes linked to the “grokking”

phase transition (Murty et al., 2023b).

• Tree emergence at scale with semantic guidance: Recent work suggests

that when the training corpus provides rich semantic signals, CLMs tend to

favour tree-consistent generalisations, sometimes outperforming bidirectional

models on out-of-distribution syntactic tests (Yedetore and Kim, 2024; Ahuja

et al., 2024).

These findings indicate that causal self-attention can foster internal hierarchical

representations rather than merely shallow n-gram statistics, particularly when the

training objective and data implicitly reward such structure. The precise mechan-

isms and robustness of these learned hierarchies in causal models, and how they are

internalised (research question 1), remain an active area of investigation (López-

Otal et al., 2024).

Few-shot prompts as hierarchical scaffolds. A hallmark of text-generative

CLMs (e.g., GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022)) is in-

context learning: the model adapts to new tasks by conditioning on a few examples

provided in the prompt, without weight updates. Mechanistic interpretability re-

search has identified specialised “induction heads” in attention layers that detect

and replicate token subsequences from the prompt, effectively performing pattern

completion over variable-length chunks that can be hierarchically structured (El-

hage et al., 2021; Olsson et al., 2022). Prompting strategies that explicitly provide

intermediate reasoning steps (chain-of-thought prompting (Wei et al., 2022)) can

further improve performance on complex tasks (Ouyang et al., 2022), underscoring

the model’s ability to leverage explicitly structured hierarchical information in its

input.
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Memorisation, chunking, and abstraction. The capacity of LLMs to store

and process information also leads to challenges like verbatim memorisation of

training data (Carlini et al., 2021, 2022), a topic explored in detail in Chapter 4.

The interplay between learning useful hierarchical abstractions and rote memorisa-

tion is complex, forming the core of this thesis’s second research question, and is

the focus of the contributions discussed in Chapter 4.

• Memorisation vs. generalisation dynamics: Models might initially

memorise surface n-grams before later “grokking” underlying hierarchical

rules (Feldman, 2020; Power et al., 2022; Murty et al., 2023b). Understanding

this transition is key to distinguishing robust generalisation from superficial

pattern matching.

• Role of feed-forward networks: FFNs in Transformers have been char-

acterised as key-value memories that can store factual knowledge and multi-

word expressions as somewhat atomic units (Geva et al., 2021; Meng et al.,

2022; Dai et al., 2022). While this aids fluency and knowledge recall, it can

also contribute to generating memorised text, potentially at the expense of

generalising hierarchical patterns.

A key goal of interpretability research, therefore, is to disentangle beneficial hier-

archical abstraction (e.g., learning syntactic rules, semantic roles) from potentially

harmful verbatim memorisation and recall, or superficial pattern matching.

2.4.3 Hierarchy in Vision

Hierarchical organisation is as fundamental to visual perception as it is to language.

At the lowest level, pixel intensities form local features like edges and textures;

these combine into parts, which assemble into objects and scenes; and in dynamic

visual data like video, objects and scenes evolve and interact over time to form

events (Marr, 1982; Biederman, 1987; Oprea et al., 2020). Classical CV systems,

particularly CNNs, explicitly encoded such multi-scale processing through stacked
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layers of convolutions and pooling operations, where early layers learn low-level

features and deeper layers learn more abstract, complex structures (LeCun et al.,

1998; Zeiler and Fergus, 2014). More recent Vision Transformer (ViT) models learn

visual hierarchies end-to-end by applying self-attention mechanisms to sequences

of image patches or video tubelets (Dosovitskiy et al., 2021; Bertasius et al., 2021;

Arnab et al., 2021). This thesis explores whether similar principles of hierarchical

internalisation observed in language models extend to the visual temporal domain.

Illustrative cases and challenges in video. Understanding dynamic scenes

in video requires processing information hierarchically across space and time:

• Object permanence and tracking: Identifying and tracking an object

(e.g., a ball in motion) as it becomes occluded and reappears requires bind-

ing fine-grained appearance cues to a longer-range spatiotemporal traject-

ory (Kuehne et al., 2018; Yun et al., 2022).

• Action recognition and compositionality: Recognising a complex ac-

tion (e.g., “overtaking on a motorway”) often involves identifying a sequence

of simpler sub-actions (“checking mirrors”, “signalling intent”, “accelerating

into the adjacent lane”, “clearing the vehicle”), each composed of even finer-

grained movements. This mirrors clausal embedding in language (Feichten-

hofer et al., 2019; Sener et al., 2020).

• Scene understanding and transitions: Interpreting events across scene

changes (e.g., physical objects entering a scene and interacting together, or

performing human action recognition (both explored in Chapter 6)) requires

models to build abstract scene representations that persist or evolve coher-

ently across abrupt visual shifts (Tapaswi et al., 2016; Oprea et al., 2020).

Effectively modelling such phenomena necessitates architectures that can integrate

information across multiple spatiotemporal scales, a form of hierarchical processing.
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Hierarchical spatiotemporal attention in Transformers. Transformer vari-

ants for video understanding often incorporate explicit hierarchical design choices

or factorised attention mechanisms to manage the complexity of spatiotemporal

data:

• Factorised space-time attention: Models like TimeSformer (Bertasius

et al., 2021) and ViViT (Arnab et al., 2021) often separate spatial atten-

tion (within frames) from temporal attention (across frames), allowing local

spatial features to be aggregated before reasoning about temporal dynamics.

• Progressive patch merging and hierarchical feature pyramids: Ar-

chitectures such as the Swin Transformer (Liu et al., 2021) and its video ex-

tensions (e.g., Video Swin Transformer (Liu et al., 2022)) create hierarchical

representations by progressively merging tokens corresponding to adjacent

spatial or spatiotemporal regions, effectively creating multi-scale feature pyr-

amids similar to CNNs. Multiscale Vision Transformers (MViT) also employs

pooling to create hierarchical feature representations (Fan et al., 2021).

• Slow-Fast pathways inspiration: Though originally developed for CNNs,

the SlowFast concept (Feichtenhofer et al., 2019): using a high-frame-rate

“fast” pathway to capture rapid motion and a low-frame-rate “slow” pathway

for semantics, has inspired hybrid or analogous designs in video Transformers,

enabling them to process information at different temporal resolutions.

These architectural adaptations aim to provide inductive biases that facilitate the

learning of spatiotemporal hierarchies. SSL pretraining strategies for video, such

as VideoMAE (Tong et al., 2022), also leverage these backbones to learn power-

ful representations from unlabelled video data. The PSViT model developed in

Chapter 5 builds on these ideas, using causal attention in pixel space to model

physical dynamics and investigate the internalisation of hierarchical physical rules.

Hierarchy, interpretability, and transfer in vision models. Similar to lan-

guage models, probing studies on Vision Transformers suggest a layer-wise emer-
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gence of hierarchical features. Early layers tend to focus on low-level features

like edges and textures within patches, middle layers may learn to group parts of

objects, and final layers often represent more global scene context or object categor-

ies (Dosovitskiy et al., 2021; Caron et al., 2021). Such structured representations

can aid transfer learning, where features learned for one task (e.g., image classific-

ation) are adapted for others (e.g., object detection, video action recognition (Bao

et al., 2022; Yoo et al., 2023)). A lack of appropriate temporal hierarchy can

lead to models making brittle, short-horizon predictions in video tasks, motivating

the exploration of spatiotemporal inductive biases in Chapters 5 and 6 as part of

understanding how to guide more robust hierarchical reasoning.

2.4.4 Integrating Language and Vision Hierarchies

Many real-world AI applications require joint reasoning over linguistic and visual

hierarchies. For instance, an image captioning system must align noun phrases with

object regions while mapping clausal semantics to global scene properties (Ander-

son et al., 2018; Wang and et al., 2022). In video description or question answering,

a multi-clause linguistic narrative often corresponds to a sequence of complex spa-

tiotemporal interactions unfolding across frames (Yan et al., 2021; Lei et al., 2021;

Alayrac et al., 2022). Successfully bridging these modalities demands architectures

that can represent and align hierarchical structures on both sides, learning corres-

pondences at multiple levels of granularity. This directly informs the third research

question of the thesis concerning unified multimodal systems.

Tasks requiring spatiotemporal–linguistic coherence. For video-language

tasks, models must achieve coherence between unfolding events and their linguistic

descriptions. Below are two relevant tasks:

• Video Question Answering: Models like Flamingo (Alayrac et al., 2022)

process sequences of video frames and a textual question, often using cross-

attention from the text (being generated or processed) to relevant video

54



2.4.4. Integrating Language and Vision Hierarchies

frames to ground the answer. Hierarchical prompting can guide these models

to consider both recent visual input and broader narrative context.

• Video Summarisation/Description: Generating textual summaries or

detailed descriptions of video content requires mapping complex, tempor-

ally extended actions and events to appropriate linguistic structures (clauses,

sentences, paragraphs) (Zhang et al., 2020; Bertasius et al., 2021; Yan et al.,

2021).

Chapter 6 explores a unified next-frame prediction approach to tackle such mul-

timodal tasks, aiming to learn these alignments implicitly through shared hierarch-

ical representations.

Cross-modal alignment strategies for multimodal tasks. Various approaches

have been developed to learn joint language-vision representations:

• Multi-granularity alignment: Models like X-VLM (Wang and et al., 2022)

and Oscar (Li et al., 2020) explicitly aim to align visual tokens (e.g., image

patches or regions) with textual tokens (e.g., words or phrases) at differ-

ent scales, from local object-noun correspondences to global image-sentence

mappings.

• Contrastive learning for joint embeddings: Approaches such as CLIP

(Radford et al., 2021) and ALIGN (Jia et al., 2021) learn a shared embed-

ding space where corresponding image-text pairs have high similarity. While

often operating at a global image-text level, extensions explore finer-grained

alignments (Li et al., 2021).

• Unified vision-language pretraining: Models like SimVLM (Wang et al.,

2022) and CoCa (Yu et al., 2022) employ large-scale pretraining on image-

text data using objectives that encourage both image understanding and text

generation conditioned on visual input, implicitly learning to map linguistic

structures to visual content.

55



2.4.4. Integrating Language and Vision Hierarchies

• Iterative attention and fusion for complex inputs: Architectures like

Perceiver IO (Jaegle et al., 2021) and PaLI (Chen et al., 2022) use cross-

attention mechanisms to flexibly integrate information from very large visual

inputs (many patches) with textual queries or prompts, enabling reasoning

over detailed multimodal contexts.

Interpretability and Probing in Multimodal Models. Understanding how

these complex models make decisions and what representations they learn is crucial

for trust and development, particularly concerning their grasp of compositional and

hierarchical multimodal information. Interpretability techniques are adapted and

extended to the multimodal setting:

• Attention Analysis: Visualising attention maps in Transformers can offer

insights into which parts of an image or video a model focuses on when pro-

cessing related text, or vice-versa (Clark et al., 2019; Hila et al., 2021). How-

ever, directly equating attention with explanation can be misleading (Jain

and Wallace, 2019; Wiegreffe and Pinter, 2019).

• Probing Multimodal Representations: Similar to unimodal probing

(Chapter 3), linear classifiers or other simple models can be trained on in-

termediate representations from multimodal models to test if they encode

specific unimodal or cross-modal properties (e.g., object categories from text-

conditioned image features, or syntactic roles from visually-grounded lan-

guage representations) (Hewitt and Manning, 2019; Belinkov and Glass, 2019;

Hendricks and Pinter, 2021).

• Causal Tracing and Mediation Analysis: More advanced techniques aim

to understand the causal effect of specific model components (e.g., individual

neurons or attention heads) on model outputs. For example, causal tracing

can identify and even edit factual knowledge stored in language models (Meng

et al., 2022; Dai et al., 2022). Applying such methods to multimodal models

could reveal how information from different modalities is integrated and trans-

formed (Vig et al., 2020). Circuit-based analysis, inspired by work like Olah
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et al. (2020) and Elhage et al. (2021), seeks to understand the “algorithms”

learned by specific pathways within the network, including those involved

in multimodal fusion or cross-modal reasoning like induction heads (Olsson

et al., 2022).

These interpretability tools are vital for dissecting whether models are truly per-

forming hierarchical, compositional reasoning across modalities or relying on super-

ficial correlations, thereby informing the development of more robust multimodal

systems as per this thesis’s third research question.

2.4.5 Conclusion and Outlook for Hierarchical Reasoning

This section has underscored the pervasive nature of hierarchy across language

and vision, and the increasing capacity of Transformer-based models to learn and

leverage such structures. In language, hierarchical representations manifest from

syntactic constituency to discourse coherence. In vision, they span from local fea-

tures to complex spatiotemporal events. Modern deep learning models, especially

large-scale Transformers, demonstrate an emergent ability to capture these layers,

even when trained on ostensibly flat sequence prediction objectives (Tenney et al.,

2019; Hewitt and Manning, 2019; Dosovitskiy et al., 2021).

Recent research highlights that the conditions of training, including the nature of

the data and the specifics of the learning objective, significantly influence whether

models generalise via hierarchical rules or resort to simpler heuristics or memor-

isation (Power et al., 2022; Murty et al., 2023b; Yedetore and Kim, 2024). This

distinction is central to the research questions posed in this thesis. For instance, se-

mantically rich training signals appear to promote tree-consistent generalisations in

language models, while in vision, architectures with explicit multi-scale processing

or factorised attention mechanisms often achieve superior performance on complex

video tasks (Bertasius et al., 2021; Liu et al., 2022).

The integration of language and vision further complicates but also enriches the

study of hierarchical reasoning, requiring models to build and align hierarchies
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across modalities. The interpretability tools discussed, from probing to causal

analysis, are becoming increasingly important for understanding these complex

systems and ensuring that their impressive performance is built upon robust and

generalisable internal representations rather than shallow pattern matching.

The overarching lessons from the study of hierarchical reasoning in these domains

suggest that:

1. Hierarchy is a fundamental organising principle for complex data, and models

that capture it tend to generalise better and are often more interpretable.

2. Scale and appropriate inductive biases (architectural or data-driven) play

crucial roles in the emergence of hierarchical understanding in models.

3. Multimodal reasoning presents new frontiers for understanding how differ-

ent types of hierarchical structures can be learned, aligned, and composed,

offering a path towards more unified AI systems.

2.5 Epilogue

This chapter has laid the essential theoretical and methodological groundwork ne-

cessary to support the empirical investigations presented in the remainder of this

thesis, which aim to address our central research questions on hierarchical reasoning

in Transformers. We began by covering foundational concepts in machine learning

and probability theory, establishing the basis for understanding model training and

evaluation. We then looked into the principles of language modelling, discussing

various paradigms such as CLM (autoregressive) and MLM (autoencoding) train-

ing objectives, the transformative role of SSL within NLP, the rise of pretrained

LLMs with contextual representations, methods for their adaptation, and the shift

towards the text-to-text paradigm with emergent in-context learning capabilities.

We then detailed the Transformer architecture, from its core components like self-

attention and positional encodings to its configurations in powerful autoregress-

ive and autoencoding models. Following this, we explored the critical concept
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of hierarchical reasoning, surveying its manifestations in language and vision, its

emergence in computational models, and tools for its analysis. Together, these dis-

cussions provide the theoretical foundation for our thesis’s empirical contributions:

understanding how models internalise hierarchical structures, the interplay between

generalisation and memorisation, and the development of unified multimodal sys-

tems.

The subsequent chapters of this thesis will now turn these foundational observa-

tions and concepts into concrete experiments, each addressing specific aspects of

hierarchical reasoning in generative Transformer models:

• Chapter 3 explores where and how hierarchical linguistic signals are encoded

within contemporary LLMs, directly addressing the first research question.

This will involve employing techniques such as linear probes, alongside ana-

lysis of attention mechanisms including induction-head tracing, and poten-

tially causal mediation tests to understand the internal representations.

• Chapter 4 tackles the critical trade-off between hierarchical abstraction and

undesirable memorisation, particularly during model adaptation, thus invest-

igating the second research question. It proposes early-warning diagnostics

and an n-gram-aware regularisation technique designed to mitigate verbatim

leakage while preserving valuable learned abstractions.

• Chapter 5 extends the hierarchical analysis from the linguistic domain to dy-

namic video modelling. It introduces PSViT: a pixel-space spatiotemporal

Transformer, and investigates whether causal attention, when equipped with

appropriate inductive biases, can effectively recover and represent latent phys-

ical dynamics from raw video, contributing to research questions 1 and 3.

• Chapter 6 proposes and demonstrates a unified next-frame prediction for-

mulation to advance research question 3. This approach aims to allow a

single Transformer model to operate across diverse modalities including text,

images, audio, and video, positioning hierarchical alignment as a key prin-
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ciple for achieving truly general perception and learning shared hierarchical

representations.

Taken together, these studies argue that a hierarchy-centred analysis is not merely

descriptive but can be prescriptive: it offers insights that can guide architectural

choices, help safeguard against issues like memorisation, and illuminate a path

towards more transparent, robust, and versatile multimodal foundation models.
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Chapter 3

Hierarchical Information in

Contextual Representations

While Transformer LLMs demonstrate impressive benchmark performance, a clear

understanding of how and where they internalise linguistic hierarchy remains elu-

sive. This chapter aims to shed light on this by treating every contextualised word

embedding as a diagnostic probe into the model’s latent structure. Concretely, we

address three related questions:

1. At which layers do syntactic and semantic hierarchies first become linearly

recoverable?

2. How do architectural choices, autoregressive vs autoencoding, permutation

language modelling, or locality-sensitive hashing, shape the depth-wise dis-

tribution of that recoverable hierarchical information?

3. What footprint does task-specific fine-tuning leave on these distributions, and

what does this reveal about the interplay between hierarchical learning and

potential memorisation?

To answer these questions, we design two parallel suites of ancestor probing tasks.

Focusing on sentiment and syntactic hierarchies, these tasks are applied across

diverse Transformer architectures (BERT, GPT-2, XLNet, and Reformer). Our
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analysis reveals that distinct architectural paradigms and fine-tuning regimes sys-

tematically shape how these models encode such structural knowledge layer-by-

layer within individual token representations. The probing framework and the

understanding of internalised linguistic hierarchy developed here are foundational,

providing the analytical lens for our subsequent investigations into memorisation

(Chapter 4), spatiotemporal reasoning (Chapter 5), and multimodal unification

(Chapter 6).

The remainder of this chapter is organised as follows. Section 3.1 provides a detailed

introduction to the challenge of understanding linguistic features in pre-trained lan-

guage models and further elaborates on this chapter’s specific research aims and

contributions. Section 3.2 describes the pre-trained Transformer models chosen for

our comparative analysis. Section 3.3 then details the ancestor probing tasks, the

construction of datasets from the Stanford Sentiment Treebank, our fine-tuning

procedures, and non-linear experimental setups. The core empirical findings from

our extensive probing experiments are presented and discussed in Section 3.4, cov-

ering layer-wise performance distributions and the impact of fine-tuning.

3.1 Introduction

Pre-trained Transformer-based LLMs have enabled widespread transferability and

performance gains across many NLP tasks, yet detailed knowledge about the lin-

guistic features they produce is still developing. The pre-training of neural language

models has become ubiquitous in NLP, driven largely by efforts to improve the

quality of linguistic features contained within word embeddings. This has resulted

in contextual word embeddings: continuous representations conditioned on the en-

tire input context. Notable examples of this approach are ELMo (an autoregressive

LSTM) (Peters et al., 2018b), BERT (an autoencoding Transformer model) (Devlin

et al., 2019), and GPT-2 (an autoregressive Transformer model) (Radford et al.,

2019). These techniques have led to significant state-of-the-art improvements on

many downstream NLP tasks, highlighting the potential to advance transfer learn-
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ing and language model pre-training (Howard and Ruder, 2018).

However, our understanding of the linguistic information contained within contex-

tual representations produced by these models remains incomplete. Consequently,

a thriving new area of research has emerged, employing novel analysis techniques to

improve the interpretability and explainability of these models, specifically concern-

ing how simple language-modelling pre-training leads to such effective, transferable

features that appear to capture linguistic structure. Examples of such work include

probing the behaviour of single neurons to identify the type of features encoded

(Dalvi et al., 2019b). Analysis of single-neuron activation behaviour on test inputs

suggests that specific features within a single representation are responsible for en-

coding attribute identifiers such as number, tense, position in sentence, and other

taxonomic groups of language (Dalvi et al., 2019a). The work of Coenen et al.

(2019) analyses the internal states of the BERT language model, specifically the

geometry of the word representations produced in terms of syntactic and semantic

subspaces. They find that linguistic features belonging to distinct linguistic taxo-

nomic groups also appear to be represented by separate subspaces within BERT

representations. This is part of a now large body of work studying the BERT lan-

guage model, an area often coined BERTology (Rogers et al., 2021), reflecting the

model’s significant impact within NLP.

Despite the aforementioned work, much progress is still needed beyond task-specific

performance metrics to determine how internal representations of hierarchical struc-

ture vary between architectures and how their learned features are distributed

across internal layers. Works such as Peters et al. (2018a) and Liu et al. (2019)

explore how the performance of probing classifiers trained on representations pro-

duced by language model architectures vary by layer depth across a range of tra-

ditional NLP tasks. They show that syntactic features tend to be encoded by

shallower layers and semantic features by deeper layers of the model. Similarly,

edge probing tasks were introduced in Tenney et al. (2019c) and Tenney et al.

(2019a) to explore sentence-level knowledge within word representations by train-

ing classifiers limited to specific spans of the input sequence. This chapter builds
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upon such probing methodologies to specifically investigate the encoding of explicit

hierarchical relationships.

Our contributions in this chapter, addressing the specific questions posed at the

beginning of this chapter, are threefold:

1. Hierarchical probing tasks. We introduce ancestor-level probes for both

sentiment and syntax, requiring each token embedding to predict labels for

its parent, grand-parent, great-grand-parent, and the sentence root, thereby

directly testing for multi-level hierarchical information.

2. Layer-wise analysis across architectures. Using BERT, GPT-2, XL-

Net, and Reformer (base and large), we chart how recoverable hierarchical

information varies by depth, showing that autoregressive and permutation-

masked variants disperse useful cues more evenly than their strictly bidirec-

tional counterparts.

3. Impact of fine-tuning and architectural bias. We demonstrate that fine-

tuning amplifies mid-layer abstraction of hierarchical information in XLNet

and Reformer without erasing lower-level word information, whereas BERT

and GPT-2 benefit less in this regard. Architectural innovations such as

permutation masking or locality-sensitive hashing yield larger gains in rep-

resenting hierarchy than merely scaling parameter count.

These findings reveal that hierarchical signals reside, layer by layer, in the very vec-

tors treated as atomic word features by downstream models. The probing frame-

work established here therefore becomes the empirical lens for Chapter 4, where

we examine memorisation during fine-tuning, and for Chapters 5 and 6, where we

extend the analysis to video and multimodal Transformers.

3.2 Pre-trained Transformer Contextualisers

To examine how architectural design choices influence the depth-wise encoding

and internalisation of hierarchical information, we select four representative Trans-
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former families: BERT, XLNet, GPT-2, and Reformer, each in base and large

variants. All models are drawn from the HuggingFace transformers library

(Wolf et al., 2019) and fine-tuned in PyTorch (Paszke et al., 2019). Parameter

counts and pre-training corpora are matched as closely as possible so that ob-

served differences may be attributed primarily to architecture rather than sheer

scale. In addition, static GloVe embeddings (Pennington et al., 2014) serve as a

non-contextual baseline.

BERT BERT (Devlin et al., 2019) stacks bidirectional Transformer encoders

without modifying the original multi-head attention of Vaswani et al. (2017). Pre-

training masks 15% of input tokens and tasks the model with reconstructing them,

while an auxiliary next-sentence prediction objective encourages cross-sentential

representations.

• BERT (base): 12 layers, 768 hidden units, 12 heads, 110M parameters.

• BERT (large): 24 layers, 1024 hidden units, 16 heads, 340M parameters.

XLNet XLNet (Yang et al., 2020) is autoregressive but mitigates the uni-directionality

of standard language models via permutation language modelling: the model pre-

dicts each token given a random ordering of its predecessors, thereby accessing both

left and right context during training. A segment-recurrence mechanism further

lengthens its effective context window.

• XLNet (base): 12 layers, 768 hidden units, 12 heads, 110M parameters.

• XLNet (large): 24 layers, 1024 hidden units, 16 heads, 340M parameters.

GPT-2 GPT-2 (Radford et al., 2019) employs the Transformer decoder stack

with causal masking, learning to predict the next token from left context only. Its

strictly autoregressive training grants strong generative ability but limits immediate

access to right-hand context.
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• GPT-2 (base): 12 layers, 768 hidden units, 12 heads, 117M parameters.

• GPT-2 (medium): 24 layers, 1024 hidden units, 16 heads, 345M paramet-

ers.

Reformer Reformer (Kitaev et al., 2020) targets the quadratic memory cost of

attention. It replaces exact dot-product attention with locality-sensitive hashing

(LSH) and swaps sinusoidal positions for trainable coordinate-wise encodings, per-

mitting far longer sequences on commodity hardware.

• Reformer (base): 12 layers, 768 hidden units, 12 heads, 125M parameters.

• Reformer (large): 24 layers, 1024 hidden units, 16 heads, 355M paramet-

ers.

Non-contextual reference. GloVe 840B (Pennington et al., 2014) (300-dim.)

provides a static baseline whose performance marks the ceiling attainable without

contextualisation. Any gains achieved by the probes must therefore arise from

structure encoded within the Transformer rather than from token identity alone.

3.3 Methodology and Datasets

In this section, we outline the approach taken for dataset generation and processing.

Both tasks are built upon the same underlying corpus, with the same hierarchical

constituency parse trees. This allows us to perform a direct comparison for each

word representation with respect to what kind of sentiment and part-of-speech

information related to the hierarchy is encoded.

3.3.1 Ancestor Sentiment Classification

We leverage an existing dataset with sentiment classifications for each constituent

phrase in a sentence: the Stanford Sentiment Treebank (SST) (Socher et al., 2013).
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An

almost unbearably

morbid love story

.

Figure 3.1: Illustration of the constituency tree structure and associated ancestor
tagging levels. Sample taken from the SST dataset, where each leaf node corres-
ponds to a token in the sentence, with the sentiment classification of each node
ranging from negative (darker red) to positive (lighter blue). The dashed lines
represent the nodes for the corresponding ancestor tagging levels of the highlighted
token ‘almost’. Purple is the root level tag, blue is the leaf tag, with red, green,
and orange being Parents 3, 2, and 1, respectively.

SST contains 11,855 sentences from Rotten Tomatoes movie reviews, each parsed

into a constituency tree using the Stanford Constituency Parser (Klein and Man-

ning, 2003a) that yields 215,154 phrases annotated by three human judges. Labels

were collected via an Amazon Mechanical Turk slider interface and then merged

into five discrete sentiment classes (very negative to very positive) for phrase and

sentence-level supervision. Each phrase/sentence received three scores on a 25-

point slider; with the authors noting an average inter-rater variance of 9.7 and

that human judges overwhelmingly used the five anchor positions—motivating the

standard five-class discretisation of SST, as well as binary (no neutral class). Of

the 11,855 sentences, the five classes are imbalanced: 1,510 very negative (12.7%),

3,140 negative (26.5%), 2,242 neutral (18.9%), 3,111 positive (26.3%), and 1,852
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very positive (15.6%).

We use both the SST five-class and binary sentiment labels for each constituent

phrase of a sentence. Using this hierarchically labelled sentiment data, we formulate

a token-wise ancestor sentiment analysis task designed to assess how different levels

of semantic (sentiment) hierarchy are encoded. For a given token in a sentence,

its corresponding contextualised word representation is tasked with predicting the

sentiment classification of its parent, grandparent, and great-grandparent constitu-

ent phrase. For token-level labelling, if a token is split into multiple subwords by

the tokenizer, we use the embedding of the first subword as the token representa-

tion. Words split into a single subword are unchanged. For cases where the token

does not have an ancestor phrase at a given level, the linear model is tasked to

predict a ‘None’ classification label. As we are probing for semantic features useful

for classifying sentiment at varying constituency levels, we perform all tasks using

single word representations contextualised on the full root sentence.

Additionally, as each sentence has a sentence-level sentiment classification, we task

each word representation to predict the overall root sentence sentiment. All clas-

sifiers are trained on words contained in full sentences only, with no sub-phrases

included (8,544 sentences).

Figure 3.1 illustrates the constituency tree and associated ancestor tags for a given

token. In the example shown, it can be clearly seen that to correctly predict the

root-level sentiment for the token ‘love’, information from the left-hand side of the

sentiment tree must be encoded within the representation of that token to correctly

identify the sentiment negation.

3.3.2 Ancestor Constituency Phrase Tagging

We use the same SST corpus data, parsed using the Stanford Constituency Parser

(Klein and Manning, 2003b), such that the constituency parse trees are identical

to those found in SST, with the addition of having Constituency Part-of-Speech

labels for each hierarchical phrase. The resulting task is formulated to probe syn-
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tactic hierarchy: for each token in a sentence, its corresponding contextualised

word representation is tasked with predicting the constituency phrase label of its

parent, grandparent, and great-grandparent constituent phrases, as well as the leaf

part-of-speech classification. For cases where the token does not have an ancestor

phrase at a given level, the linear model is tasked to predict a ‘None’ classification

label. The distribution is heavy-tailed: Noun Phrase (NP) is the most frequent

constituent category by a wide margin, followed by Verb Phrase (VP) and Prepos-

itional Phrase (PP), with subordinate clauses (SBAR), Adjective Phrases (ADJP),

Adverb Phrases (ADVP) considerably rarer.

3.3.3 Fine-tuned Layer Performances

In addition to the linear probing tasks outlined above, we explore the impact of

fine-tuning on the representation of hierarchical information. The precedent in

the current state of transfer learning within NLP is to fine-tune a pre-trained

Transformer model on each downstream task. Fine-tuning yields consistently better

performances for the majority of tasks when compared to feature extraction, where

a task-specific model processes the raw features extracted from pre-trained models.

In light of this, for comparison with raw feature extraction results, we fine-tune

each Transformer model on each ancestor tagging task. The goal is to compare

distributions of layer-performance for feature extraction and for fine-tuning, which

could reveal how hierarchical information is modified throughout the model due to

the fine-tuning process, and whether or not performance is retained at lower layers

after fine-tuning.

Fine-tuning Procedure Fine-tuning of pre-trained Transformer models is far

simpler and faster than the pre-training step, owing to the decision by many model

designers to use additional special classification tokens during tokenisation and pre-

training. These classification tokens, appended to the input context (position and

value are specific to each Transformer model), are used to fine-tune the model by the

addition of a linear classification layer (dimension of output is task-specific). The
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benefit of using such classification tokens is that their representations are designed

to aggregate information from the entire input sequence, making them suitable for

sentence-level (or context-level) classification tasks. While the parameters of the

appended linear classification layer are trained for the specific task, the fine-tuning

process allows gradients to propagate back through the entire pre-trained model.

This potentially adjusts many of its internal weights, enabling the model to adapt

its representations more broadly to the nuances of the new task.

3.3.4 Non-linear Experiments

To determine how much performance is constrained by using linear-only classifi-

ers, we train non-linear classifiers for each experiment described earlier. This will

allow a comparison to non-linear models leveraging the entire input context. The

non-linear classifier is a simple feed-forward ReLU (Nair and Hinton, 2010) layer

matching the dimension of the embeddings for each model (768 for base, and 1024

for large).

All results reported henceforth are on the test splits of each dataset. Linear and

non-linear classifiers are trained for 5 epochs using the Adam optimiser (Kingma

and Ba, 2017), with a learning rate of 1 × 10−4, and a batch size of 64. We report

accuracy as the primary metric, consistent with prior sentence classification (Wang

et al., 2018). To manage seed sensitivity and stay comparable to probing protocols,

we run each experiment 5 times, each initialised with unique random seeds, and

report the best run, mirroring multi-run reporting used to reduce noise in probing

and addressing known variance across seeds (Tenney et al., 2019c).

3.4 Results and Discussion

Table 3.1 reports the best performing layer results for all linear classifier layers for

each Transformer model, in addition to non-contextualised baseline comparisons

using GloVe, as well as a state-of-the-art comparison (where all input tokens are

used), for ancestor sentiment classification of the root (full sentence), leaf (input
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Pre-trained Transformer Leaf Parent 1 Parent 2 Parent 3 Root

BERT (base) 92.74 64.25 58.15 54.16 39.04
GPT2 (base) 93.23 62.42 55.19 51.59 37.61
Reformer (base) 93.46 64.66 59.28 55.96 41.70
XLNet (base) 92.80 65.11 59.16 55.24 42.45

BERT (large) 93.13 64.24 58.27 54.15 39.06
GPT2 (large) 93.44 62.58 55.04 51.86 37.61
Reformer (large) 94.57 64.15 58.94 55.10 41.11
XLNet (large) 93.82 65.48 59.20 54.99 43.73

BERT Fine Tuned (base) 92.60 64.81 58.45 54.92 45.67
GPT2 Fine Tuned (base) 93.25 62.35 54.81 51.60 40.10
Reformer Fine Tuned (base) 93.44 64.70 60.08 56.67 50.08
XLNet Fine Tuned (base) 92.77 65.86 60.30 55.87 51.58

BERT Fine Tuned (large) 93.36 65.64 58.94 55.79 46.77
GPT2 Fine Tuned (large) 93.14 63.01 55.34 52.82 42.88
Reformer Fine Tuned (large) 94.54 65.05 60.57 55.97 51.94
XLNet Fine Tuned (large) 93.95 66.68 60.90 56.58 53.51

GloVe (840B.300d) (non-contextual) 90.27 60.28 47.53 39.96 28.81
State-of-the-art (all tokens) - - - - 54.70

Table 3.1: Best performing layer per contextualiser on Fine-grained Ancestor SST
Classification. Entries report accuracy (%) of each pre-trained Transformer con-
textualiser on the 5-class ancestor sentiment analysis task. Sections are divided
into models of comparable size; base and large versions of each architecture. Best
performing contextualisers per task are in bold. All models and results reported are
evaluated using the test split of the dataset (2,210 sentences) and a linear classifier
layer.

token), and constituent parents 1, 2, and 3. Results for ancestor sentiment classi-

fication across each constituent task show that all pre-trained Transformers vastly

outperform the non-contextualised baseline, confirming that a significant amount

of global, hierarchical sentence-level sentiment information is contained within a

single contextualised representation. Furthermore, we observe that the leaf-level

sentiment classification is also improved relative to the non-contextual baseline,

suggesting the quality of word-level information is not compromised by encod-

ing contextual information into the embeddings. As for comparisons between the

Transformer architectures, GPT-2 shows a drop in performance on the higher-level

and root tasks relative to the other architectures. This is most likely due to GPT-2

embeddings being limited to prior context only as a result of the autoregressive

pre-training procedure used, thereby having reduced access to global information

relative to the other architectures.
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Pre-trained Transformer Leaf Parent 1 Parent 2 Parent 3 Parent 4

BERT (base) 94.31 88.39 74.08 59.89 60.04
GPT2 (base) 91.78 84.91 68.38 57.15 57.24
Reformer (base) 94.05 87.71 73.08 59.02 58.82
XLNet (base) 95.58 88.62 74.42 60.74 60.72

BERT (large) 92.78 87.53 73.63 60.03 59.88
GPT2 (large) 91.88 84.92 67.90 57.17 57.53
Reformer (large) 93.47 87.57 72.65 58.94 58.85
XLNet (large) 95.64 88.77 73.50 59.58 59.82

GloVe (non-contextual) 91.03 85.02 72.13 45.99 23.93
State-of-the-art (all tokens) - - - - 61.30

Table 3.2: Best performing layer per contextualiser on Ancestor Constituency
Phrase Tagging. Entries report accuracy (%) of each pre-trained Transformer con-
textualiser on the 76-class ancestor constituency phrase tagging task. Sections are
divided into models of comparable size; base and large versions of each architec-
ture. Best performing contextualisers per task are in bold. All models and results
reported are evaluated using the test split of the dataset.

Table 3.2 reports the corresponding results for Ancestor Constituency Phrase Tag-

ging. Similar to the results for sentiment classification, we see that all models

significantly outperform the non-contextual baseline across all tasks, as well as at

the leaf level where contextual information is not strictly required but can still

be beneficial. GPT-2 suffers the same drop in performance on higher-level con-

stituents as mentioned above, relative to the other architectures. Interestingly, the

larger models do not show a consistent performance increase over the base models

for these syntactic hierarchy tasks.

3.4.1 Layer Performance Distributions

When evaluating the base models on both tasks, we can see that the Reformer and

XLNet architectures consistently outperform BERT and GPT-2. The increased

gap in performance is most notable on the higher-level tasks, particularly for an-

cestor sentiment classification. When analysing the layer-wise performances for

sentiment analysis shown in Figures 3.2, 3.3, and 3.4, we see that Reformer and

XLNet have much flatter performance distributions than BERT and GPT-2, with

the best performance for hierarchical sentiment often extracted from middle layer

representations. This contrasts with BERT and GPT-2, where the best perform-
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Figure 3.2: Linear classifier layer-wise performances for Ancestor Sentiment Clas-
sification tasks for (a) BERT (large) and (b) GPT-2 (medium) using raw, non-fine-
tuned features.

ance for such tasks is often achieved in the later layers (for GPT-2, this is frequently

the final layer).

The distribution of layer performances for constituency phrase tagging shows that

Reformer, XLNet, and GPT-2 often show their best performance for syntactic

hierarchy towards the early-to-mid layers of the network. Aside from leaf (word-

level) classification, the figures for sentiment (e.g., Figure 3.3) suggest that the
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Figure 3.3: Linear classifier layer-wise performances for the Ancestor Sentiment
Classification tasks for (a) Reformer (large) using raw features and (b) Reformer
(large) after fine-tuning.

optimal layers for extracting hierarchical information for a given task (sentiment

or syntax) do not vary drastically between different parent levels (e.g., Parent 1 vs

Parent 3), indicating that hierarchical information related to a specific phenomenon

is concentrated within particular layer ranges rather than being diffused uniquely

for each level of the hierarchy.

Transformer encoders tend to disperse task-relevant signals across layers and heads,
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Figure 3.4: Linear classifier layer-wise performances for the Ancestor Sentiment
Classification tasks for (a) XLNet (large) using raw features and (b) XLNet (large)
after fine-tuning.

with progressively higher-level abstractions appearing in later layers (Tenney et al.,

2019b). This dispersion brings robustness: many attention heads can be pruned

with little or no loss, yet also redundancy (Michel et al., 2019). On the down-

side, it complicates analysis: a single layer’s representations may not be linearly

separable for a given property, so probe results depend on probe capacity. Prac-

tically, although lower layers encode broadly useful linguistic features, fine-tuning
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Pre-trained Transformer embedder SST-5 Root
Linear Non-linear

BERT (base) 39.04 40.21
GPT2 (base) 37.61 37.80
Reformer (base) 41.70 43.09
XLNet (base) 42.45 44.30

BERT (large) 39.06 42.40
GPT2 (large) 37.61 38.33
Reformer (large) 41.11 44.48
XLNet (large) 43.73 47.10

GloVe (non-contextual) 28.81 29.22
State-of-the-art (all tokens) - 54.70

Table 3.3: Performance (accuracy %) comparison of linear and non-linear probing
classifiers on the SST-5 root classification task for all contextualisers, including a
non-contextual baseline, and a state-of-the-art model utilising all input tokens as
opposed to a single embedding. Best results in each group are in bold.

(or lightweight adapter tuning) is often required to make task-relevant information

accessible to simple heads. Fine-tuning reconfigures upper layers for the target

task, and adapter-style updates can tap information across the stack (Merchant

et al., 2020; Peters et al., 2019).

3.4.2 Fine-tuning Comparisons

To assess how the fine-tuning process affects layer-wise representation of hierarch-

ical sentiment, we fine-tune each model on root-level sentiment classification using

the same SST dataset as described before. Results are shown in the bottom-half of

Table 3.1. We observe similar relative performance trends as before, with Reformer

and XLNet significantly outperforming BERT and GPT-2 on this hierarchical task

when probed layer-wise post fine-tuning. Interestingly, we note that the accuracy

achieved by the best performing layer of the fine-tuned XLNet model on root-level

sentiment classification is competitive with a fine-tuned BERT model that utilises

all input tokens.

Finally, we compare the layer-wise performances before and after fine-tuning, as

shown in Figures 3.3(b) and 3.4(b) for the large Reformer and XLNet models. For

XLNet and Reformer models, the fine-tuning process clearly improves the root-
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level sentiment classification performances from the middle to end layers of the

Transformer, showing that information gained from fine-tuning is propagated fur-

ther down the layer stack when compared to the other architectures. This also

comes at no cost to the performance on lower-level (leaf or shallow parent) tasks.

3.4.3 Non-linear Classifiers

Results for the best performing layers of the non-linear classifiers are reported in

Table 3.3. The larger models appear to benefit more from including non-linearities

in the classification layer for root-level sentiment prediction, relative to the linear

results, suggesting that some hierarchical information might be encoded in a non-

linearly separable manner. A likely reason is that, as model scale and paramater-

isation grows, models increasingly represent information in distributed/superposed

features, so the useful signals exist but are not necessarily aligned to a single linear

direction in the embedding space, and non-linear heads can combine interacting

features to recover it whereas linear probes cannot.

3.5 Conclusion

The experiments presented in this chapter show that a single contextualised word

representation is capable of encoding significant information useful for classifying

sentiment and constituent tags at multiple levels of the syntactic and semantic hier-

archy of the sentence it is contextualised on. Linear probing results for ancestor

sentiment analysis and constituency tagging using a range of pre-trained Trans-

former architectures show that hierarchical sentence information is often found

within specific layer ranges for each task, with lower layers typically retaining more

local word-level information. Additionally, we compare performance distributions

of each Transformer and find that the XLNet and Reformer architectures often

exhibit much flatter distributions when compared to BERT and GPT-2. These

architectures also yield bigger gains from fine-tuning across all layers in terms of
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representing hierarchical information, suggesting such information can more easily

propagate to their earlier layers.

In Transformer encoders, task-relevant signals are often dispersed across layers and

heads rather than localized in a single point, with different layers capturing com-

plementary abstractions (Tenney et al., 2019b; Liu et al., 2019). This dispersion

brings upsides: robustness and transferability, since redundant cues make models

resilient to ablations (e.g., many attention heads can be pruned with little loss)

and provide multiple access points for downstream tasks (Michel et al., 2019; Voita

et al., 2019) However, it also complicates interpretation and intervention: useful

information may not be linearly separable at any one layer, and higher-capacity

probes risk learning the task themselves, motivating careful probe design and com-

plexity controls.

Finally, we show there is enough global hierarchical information encoded in a

single representation of a fine-tuned XLNet to achieve 53.51% accuracy on 5-class

sentence-level sentiment analysis; comparable with a fine-tuned BERT model util-

ising the entire input context. These findings help further our understanding of

how and where hierarchical structures are internalised within these models, helping

to address research question 1.

Future work could aim to probe a wider range of pre-trained contextualisers and

NLP classification tasks typically solved by sequential classifiers utilising the full

sequence, where single tokens can be tasked to predict labels at varying constituent

levels or hierarchy classes of the sequence. Additionally, we aim to explore how

capable each layer is at capturing the presence of linguistic categories in the input

sample such as age, gender, region, dialect, etc., and how this varies between

architectures.

3.6 Epilogue

This chapter has demonstrated that rich hierarchical information, encompassing

both syntactic and semantic structures, is robustly encoded and recoverable from
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token-level representations within diverse Transformer architectures. Our core

findings reveal that the internalisation of this hierarchy is a layer-dependent phe-

nomenon, systematically shaped by architectural choices (such as bidirectionality

versus autoregression) and further refined by task-specific fine-tuning. These res-

ults provide crucial insights into how and where foundation models learn to repres-

ent linguistic structure, directly addressing a key component of our first research

question.

The developed ancestor probing framework and the specific patterns of hierarchical

encoding uncovered here serve as an essential foundation for the remainder of this

dissertation. Understanding that detailed structural information resides within in-

dividual embeddings informs our subsequent investigation in Chapter 4 into the

interplay between such learning and memorisation (related to research question 2).

Moreover, these insights into analysing internalised hierarchy are adapted and ex-

tended to explore spatiotemporal reasoning in video Transformers (Chapter 5) and

to guide the development of a unified multimodal framework (Chapter 6, relevant

to research question 3), marking this chapter as a first step in our broader inquiry

into hierarchical reasoning in contemporary AI.
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Chapter 4

Hierarchy in Language Model

Memorisation

While LLMs are designed and optimised to generalise to unseen data, they also ex-

hibit a tendency to memorise training data, a behaviour that can be significantly

amplified during fine-tuning and poses considerable risks regarding data privacy

and model trustworthiness. Building upon the findings in Chapter 3 which revealed

how Transformers internalise rich hierarchical structures, this chapter addresses the

second research question of our thesis: investigating the critical interplay between

this internalisation of hierarchy and the onset of unwanted verbatim memorisation.

Specifically, we explore the dynamics of verbatim memorisation during common

fine-tuning regimes and develop practical, scalable methods to detect and mitigate

such undesirable storage, thereby promoting a better balance between useful struc-

tural learning and harmful data leakage. Our key findings and proposed mitigation

techniques are detailed within.

The chapter is structured as follows. Section 4.1 further introduces the challenge of

memorisation in fine-tuned LLMs and outlines this chapter’s specific contributions

to addressing it. We then review relevant literature not covered in Chapter 2 on

measuring, characterising, and mitigating memorisation in Section 4.2. Section 4.3

describes our experimental methodology, including the metrics for verbatim and n-

gram memorisation, the diverse datasets and models employed, and our fine-tuning
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protocols. The core empirical findings, focusing on the predictive utility of n-gram

overlap and a comparative analysis of our mitigation techniques, are presented and

discussed in Section 4.4. Finally, Section 4.5 acknowledges the limitations of this

study.

4.1 Introduction

LLMs have become increasingly powerful, achieving remarkable performance across

diverse tasks and domains as they scale from millions to trillions of parameters

(Brown et al., 2020b; Fedus et al., 2022). Transformer-based architectures have

propelled significant advancements in NLP, setting new benchmarks in various

applications (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020a). How-

ever, alongside these achievements, concerns have emerged about the extent to

which these models memorise their training data rather than genuinely under-

standing and generalising underlying hierarchical linguistic patterns (Khandelwal

et al., 2019; Tänzer et al., 2021).

Memorisation in LLMs poses serious privacy and security risks. Models have been

shown to reproduce verbatim passages from their training data, including sensitive

personal information and copyrighted material (Patil et al., 2024). This not only

presents ethical challenges and potential legal issues but can also undermine user

consent when deploying models in a generative environment. Training data extrac-

tion attacks (Carlini et al., 2021) demonstrate that adversaries can recover spans

of pre-training sample data, highlighting the practical threat of generative model

deployment.

Most existing mitigation efforts focus on unlearning strategies and regularisation

techniques applied during pre-training (Cheng et al., 2021; Carlini et al., 2023).

While valuable, these approaches often lack scalability and are not easily deploy-

able in practice, especially given the immense computational resources required

to retrain large models or apply differential privacy methods (Anil et al., 2022).

Moreover, on large datasets, exhaustive extraction tests are infeasible, making it
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Figure 4.1: Memorisation increases (number of new samples memorised at a given
epoch) at successive fine-tuning epochs, comparing fine-tuning for domain adapt-
ation (orange) and instruction tuning (purple) on the same data. Dashed vertical
lines mark the average epoch for which validation perplexity (orange) and task
evaluation accuracy (purple) are achieved, showing high memorisation before for
both (a) Pythia 1.4B and (b) Pythia 12B models.

challenging to assess and mitigate memorisation effectively. Fine-tuning pre-trained

LLMs on domain-specific and instruction-specific data is a common practice to ad-

apt models to new domains and tasks, often utilising datasets with private and

sensitive information. Despite this widespread application, there is a gap in un-

derstanding how fine-tuning for domain adaptation or instruction tuning impacts

memorisation dynamics.

Our preliminary observations, illustrated in Fig. 4.1, show significant memorisa-

tion occurring early during fine-tuning, often before the model achieves optimal

validation perplexity or task evaluation performance. This suggests that LLMs

rapidly memorise new information before reaching typical early stopping criteria,

potentially exposing sensitive information. Owing to this, this chapter presents

our empirical investigation into memorisation in LLMs during fine-tuning. We fo-

cus on fast, deployable mitigation strategies and insights applicable during both

domain adaptation and instruction tuning, leveraging widely used memorisation

metrics. We perform fine-tuning experiments using the Pythia model family (Bi-

derman et al., 2023) across multiple parameter scales (1.4B - 12B), as well as Llama
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2 7B (Touvron et al., 2023), Llama 3 8B and 70B (Grattafiori et al., 2024), and

Mistral 7B (Jiang et al., 2023) models for both domain adaptation and instruction

tuning across a range of common text-generative LLM evaluation datasets.

Our key contributions, which directly address the challenge of understanding and

mitigating memorisation in the context of fine-tuning, are:

• Understanding memorisation dynamics to safeguard structural learn-

ing: We examine how verbatim memorisation manifests during common fine-

tuning paradigms (domain adaptation and instruction tuning). This analysis

offers crucial insights into the conditions under which the generalisation of

learned hierarchical structures, a key focus of this thesis, may be undermined

by verbatim memorisation.

• Early detection of verbatim memorisation to preserve hierarchical

understanding: We establish that an n-gram based partial memorisation

metric serves as a robust early indicator of verbatim data leakage. This

provides a critical tool for interventions aimed at preserving the integrity of

learned hierarchical patterns over superficial memorisation.

• Optimal stopping criteria to favour structural generalisation: Lever-

aging our n-gram metric, we identify optimal stopping criteria during fine-

tuning that significantly reduce verbatim memorisation. This approach helps

to preserve robust task performance by promoting the model’s reliance on

generalised hierarchical learning.

• Scalable mitigation for enhanced structural generalisation: We in-

troduce and evaluate an n-gram aware loss regulariser, demonstrating its

capacity to achieve scalable and generalisable reductions in verbatim mem-

orisation. This technique supports the development of models that main-

tain strong task performance based on generalised hierarchical understand-

ing, rather than reliance on memorised training instances, helping promote

safer AI systems.
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4.2 Related Work

Prior research on memorisation in LLMs spans three main areas: measurement,

characterisation across pre-training versus fine-tuning, and mitigation, each covered

in the following sub-sections.

4.2.1 Measuring Memorisation

Evaluating the extent of memorisation in LLMs necessitates robust metrics and

evaluation techniques. Carlini et al. (2023) introduce the concept of k-extractable

memorisation, which measures a model’s tendency to reproduce training data when

provided with specific input prefixes, representing a stringent test for data leakage.

Complementary approaches include membership inference attacks aimed at classi-

fying pre-training samples (Shokri et al., 2017). Memorisation and generalisation

have been shown to carry interdependent relationships (Yeom et al., 2018; Khan-

delwal et al., 2019; Tänzer et al., 2021), with memorisation dynamics in large-scale

LLMs studied in Tirumala et al. (2022); Carlini et al. (2023).

4.2.2 Memorisation in Pre-training Versus Fine-tuning

The dynamics of memorisation exhibit distinct characteristics during the pre-

training and fine-tuning stages of LLM development. In the pre-training phase,

models are exposed to extensive and often publicly available datasets, where factors

such as data redundancy and model size play critical roles in determining the ex-

tent of memorisation (Khandelwal et al., 2019; Tänzer et al., 2021; Carlini et al.,

2023). Research indicates that larger models are more prone to rapidly memor-

ising training data (Tirumala et al., 2022; Nasr et al., 2023). Conversely, during

fine-tuning on specialised or private datasets, different memorisation risks emerge.

Studies have demonstrated that specific fine-tuning methodologies, like adapter-

based techniques, can reduce the likelihood of memorising sensitive information

(Raffel et al., 2020; Dodge et al., 2021; Mireshghallah et al., 2022). Additionally,
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Category Dataset Domain Input type Output type

Classification SST-5 Movie reviews Single review sentence 5-way sentiment
QQP Quora community QA Question1, Question2 Duplicate? (yes/no)
RTE News & Wikipedia Premise, Hypothesis Entail / Not-entail
WANLI MultiNLI-derived genres Premise, Hypothesis Entail / Neutral / Contradict

QA SQuAD v2 Wikipedia articles Paragraph context, Question Answer span or [NoAnswer]
HellaSwag WikiHow narratives Context + 4 candidate endings Correct ending (MC-4)
PubMedQA Biomedical abstracts Abstract (no conclusion), Question Yes / No / Maybe

Summarisation XSum BBC news Full news article One-sentence summary
CNN/DailyMail CNN & Daily Mail news Full news article Multi-sentence highlights

Instruction Alpaca Mixed user prompts Instruction (± optional input) Free-form response
FLAN v2 Multi-domain tasks Instruction template Free-form response

Table 4.1: Summary and grouping of datasets used for fine-tuning.

counterfactual memorisation assessments (Zhang et al., 2021) aid in distinguishing

between memorisation arising from pre-training and that from fine-tuning, thereby

informing targeted mitigation strategies tailored to each training phase.

4.2.3 Mitigation Strategies and Regularisation

During the training process, regularisation methods such as the addition of noise

to input embeddings (Miyato et al., 2017) are employed to mitigate memorisation

(Feldman and Zhang, 2020; Tirumala et al., 2022). Post-training techniques include

fine-tuning and machine unlearning approaches (Maini et al., 2023), which aim to

remove specific data from the model without necessitating a complete retraining.

Despite these measures, achieving a balance between preserving model performance

and ensuring data privacy remains a significant challenge. Mitigating memorisation

in language models is critical for preserving privacy and preventing the leakage of

sensitive information. Conventional regularisation techniques, such as weight decay

and dropout, are designed to prevent overfitting and thereby reduce memorisation

(Feldman and Zhang, 2020). However, these methods have proven inadequate

in fully reducing memorisation within LLMs (Tirumala et al., 2022). Advanced

regularisation approaches, including data-dependent token dropout (Hans et al.,

2024) and targeted token masking (Jain et al., 2024), offer partial mitigation but

often fail to eliminate the risk of memorising entire data passages, especially when

dealing with highly duplicated datasets.
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4.3 Methodology

We begin by defining how we measure memorisation, leveraging an existing ap-

proach and introducing a partial measure for more fine-grained analysis. We follow

this by introducing the experimental setup for our study of fine-tuning for domain

adaptation and instruction tuning.

4.3.1 Memorisation Metrics

For an exact and scalable measure of verbatim memorisation, we employ the widely

used extraction metric introduced in Carlini et al. (2023).

Memorisation: Let f be a generative LLM trained on data D, with prefix-suffix

pair (p, s) contained within a sample in D. A suffix s is said to be k-extractable

(memorised) if f generates a string containing s exactly when prompted with a

prefix of length k using greedy decoding.

Therefore we can compute the percentage of the fine-tuning data memorised at

each fine-tuning epoch as:

Mem =
(number of extractable suffixes s

total samples in data D

)
× 100. (4.1)

This definition provides a directly computable metric on the generated output from

our fine-tuned models, allowing fast evaluation at each fine-tuning epoch. We use

the above as the definition for memorisation throughout this chapter.

4.3.2 n-gram Memorisation

For a fine-grained measure of memorisation, we implement a partial memorisation

metric based on n-gram overlap.

n-gram Memorisation: For a set of n-gram sizes N = {n1, n2, . . . , nk}, the n-

gram memorisation score between the model’s output f(p) and the target sequence
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s is defined as the proportion of matching n-grams of sizes in N . The matches are

exact for each n-gram, but the score is invariant to the ordering of n-grams within

the sequences.

Formally, given Mi as the fraction of matching n-grams from the set N between

f(pi) and si for a given sample i, the n-gram memorisation score for the dataset

D is then calculated as:

n-gram Mem =
(∑

d∈D Md

|D|

)
× 100. (4.2)

This metric provides a finer-grained measure of partial memorisation that allows

for different lengths and numbers of n-grams, which can be tuned for suitability

for specific datasets, sequence lengths, and the granularity of sensitive information.

Because the score sums exact n-gram matches over all positions, the same n-gram

can be counted multiple times via overlapping windows; consequently, shorter n-

grams, which occur far more frequently carry greater effective weight, and poten-

tially provide an earlier, more sensitive memorisation signal.

4.3.3 Datasets

We leverage datasets taken from three open instruction pools: the Public Pool

of Prompts (P3) (Sanh et al., 2021), the FLAN collection (Wei et al., 2023), and

the Alpaca-52K corpus (Taori et al., 2023). We conduct both instruction tuning

and domain adaptation experiments by choosing to include or remove the task-

specific instruction prompt for each dataset. These datasets encompass a range of

core NLP task types: classification, Natural Language Inference (NLI), coreference

resolution, Question-Answering (QA), and free-form instruction following, and span

diverse domains such as encyclopedic text, news, clinical notes, biomedical research,

and social media content. A summary of all datasets used is outlined in Table 4.1,

with further details in Appendix 4.8. We categorise them into the following:

• Classification & NLI: short, label-based prompts (sentiment, paraphrase,

entailment).
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• Question-Answering: a mix of extractive, multiple-choice, and yes/no

items.

• Summarisation: single-sentence and multi-sentence summaries.

• Instruction Following: open-ended prompts from Alpaca and FLAN tasks.

These datasets are chosen to provide task and domain diversity for evaluating how

this impacts memorisation, as well as providing datasets which can be used for

both domain adaptation and instruction tuning.

4.3.4 Pre-trained Models

Experiments are run on the Pythia model family (Biderman et al., 2023) using sizes

of 1.4B, 2.8B, 6.9B, and 12B parameters. The Pythia suite offers a controlled set-

ting where pre-training hyper-parameters and dataset composition are kept fixed

while model size is systematically varied, providing a clean scaling ladder for eval-

uation. Additionally, we use Llama 2 7B (Touvron et al., 2023), Llama 3 8B and

70B (Grattafiori et al., 2024), and the Mistral 7B model (Jiang et al., 2023). These

models are chosen to enable comparisons between architectural variants at similar

model sizes. All pre-trained model checkpoints are publicly accessible via Hug-

gingFace (Wolf et al., 2019). Fine-tuning is performed using the Adam optimiser

(Kingma and Ba, 2014). We perform full-parameter fine-tuning and, for compar-

ison, conduct partial fine-tuning in which only the top n Transformer layers are

updated while the rest remain frozen, enabling us to measure how restricting the

trainable subset of parameters alters memorisation behaviour.

4.3.5 Fine-Tuning Approach

We employ domain adaptation and instruction tuning by fine-tuning each model

for up to 8 epochs on a maximum of 5,000 samples from the target dataset. When

performing domain adaptation, we simply remove the task-specific instructions
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Figure 4.2: Partial n-gram memorisation across fine-tuning epochs for the four
dataset categories, with domain indicating domain adaptation fine-tuning. In each
panel, the coloured solid line reports, at epoch t, the median score of samples
that become memorised at subsequent epoch t + 1; the point colour encoding that
memorisation epoch. The grey shaded region spans the full score range of all
samples that ever become memorised, irrespective of when the transition occurs.
Error bars show the standard deviation over five random seeds, while the black
dashed line is the baseline for samples that are never memorised. Results are
averages over Pythia model sizes from 1.4B to 12B parameters.

from the input. We evaluate on a held-out validation set for both validation per-

plexity and task-specific evaluation performance. For evaluation performance, we

use the standard evaluation metrics for each task (details can be found in Ap-

pendix 4.8). For our memorisation and n-gram memorisation metrics, we evaluate

on the 5,000 samples of training data used for fine-tuning. The small number of

fine-tuning samples allows us to rapidly experiment over model scales and data-

sets while remaining relevant to typical scenarios involving small and potentially

private fine-tuning datasets. Evaluations are performed at each epoch to monitor

the progression of memorisation relative to validation performance and evaluation

performance.

We test k-extractable memorisation with three prefix lengths, k ∈ {12, 16, 20}, and

a fixed 20-token suffix. We diverge from Carlini et al. (2023) by using smaller prefix

lengths due to the following rationale: lengths below 12 tokens collide frequently
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4.4.1. n-gram Memorisation Predicts Verbatim Memorisation

across corpora, whereas prefixes longer than 20 tokens vastly limit the number of

samples we can use from each of the datasets, as they are selected for fine-tuning

and not language model pre-training. We empirically find that 4, 5, and 6-grams

for our n-gram memorisation metric provide a good signal for highly memorised

phrases without being computationally prohibitive. All results are averaged over

10 runs with random seed initialisations. For robustness, we use different randomly

sampled prefix-suffix pairs for each of the 10 randomly initialised fine-tuning runs.

4.4 Results and Discussion

We begin by evaluating n-gram memorisation results over model scales and do-

mains. Subsequently, we discuss epoch selection criteria for minimising memorisa-

tion and their performance trade-offs. Finally, we compare mitigation strategies

across model scales.

4.4.1 n-gram Memorisation Predicts Verbatim Memorisation

Driven by the observation shown in Fig. 4.1 that high-rate memorisation occurs in

the early epochs preceding optimal stopping criteria for both validation perplexity

and task evaluation performance, we investigate n-gram memorisation values as

a proxy for fine-grained memorisation. To correctly identify early warning signs

of samples at high risk of verbatim memorisation, we evaluate n-gram memorisa-

tion after each fine-tuning epoch. Fig. 4.2 shows our results for this evaluation

on each of the dataset categories outlined in Table 4.1, with domain indicating

domain-adaptation fine-tuning. For all samples that are identified as memorised

during 8 fine-tuning epochs, we track their associated n-gram memorisation score

on the epochs preceding the transition to verbatim memorisation. This allows us

to understand if the partial memorisation score is higher in the epoch preceding a

transition to verbatim memorisation, relative to non-memorised phrases. For this,

we plot the average n-gram memorisation for non-memorised phrases throughout

fine-tuning as a baseline.
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4.4.1. n-gram Memorisation Predicts Verbatim Memorisation

For each of the dataset categories visualised, we observe a clear distinction in par-

tial memorisation between the memorised and non-memorised samples, with the

majority of epochs scoring markedly higher than the baseline for non-memorised

samples. We see the degree to which this is higher varies significantly between

domains, with the largest discrepancy observed in Instruction following and Sum-

marisation. The News domains used in the summarisation tasks tend to include

high-frequency stock phrases; as such, these datasets are known to encourage ex-

tractive copying (Tejaswin et al., 2021), with which our results concur. Most not-

ably, we find that for all datasets, the domain adaptation version sees a significant

increase in partial memorisation over the baseline, whereas the baseline scores do

not change significantly. Interestingly, there is a large increase in partial memor-

isation scores of samples which are memorised in the early epochs when performing

domain adaptation.

We perform the same evaluation but compare model size and architecture, shown in

Fig. 4.3. We identify the expected trend that larger model sizes correlate to higher

memorisation capacity, which is reflected in the partial memorisation score increase

across the Pythia models. The partial memorisation score gap between memor-

ised and non-memorised samples increases significantly with increasing model size,

showing a strong indicator that this metric serves as a scalable precursor to ver-

batim memorisation. An unexpected result is that for the smaller 1.4B model,

partial memorisation decreases for samples memorised in the latter epochs of fine-

tuning; a trend which does not follow for the larger model sizes. Comparing differ-

ent architectures, we find similar gaps to baseline and the same trend of increasing

partial memorisation gap to baseline over fine-tuning epochs.

Figure 4.4 repeats the analysis for Llama3 8B when only the top n Transformer

layers are updated. The non-memorised baseline is unaffected, but unfreezing more

layers suppresses partial memorisation in the first few epochs and heightens it in

later epochs. This is consistent with a capacity-bottleneck view in which extra

trainable layers delay, yet ultimately amplify, overfitting during fine-tuning.
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(a) Pythia 1.4B
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(b) Pythia 2.8B
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(c) Pythia 6.9B
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(d) Pythia 12B
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(f) Llama3 8B
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(g) Llama3 70B

Figure 4.3: Partial memorisation across epochs for different models. The coloured
solid line gives the median score of samples that will be memorised at epoch t + 1;
point colour marks that future epoch. The grey region shows the full range for
all eventually memorised samples, while the black dashed line is the baseline for
samples never memorised. Error bars denote the standard deviation across five
random seeds.

4.4.2 Selection Criteria as Mitigation

Following our findings that high-rate memorisation occurs before optimal valid-

ation perplexity or task evaluation performance, and that partial memorisation

serves as a potential precursor to memorisation, we now investigate the efficacy of
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(b) Final 4 layers
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(c) Final 8 layers

1 3 5 7
Epoch

16

18

20

22

24

26

28

30
Pa

rti
al

 m
em

or
isa

tio
n 

(%
)

1

7

M
em

orisation epoch

(d) Final 16 layers

Figure 4.4: Final-layer partial fine-tuning comparison of the Llama3 8B model.
The final n layers of the model are unfrozen and updated when fine-tuning, with
the remaining layers frozen.

utilising this as an early stopping criterion. Without resorting to regularisation

or unlearning strategies, we explore using n-gram memorisation as a threshold for

early stopping. To adapt n-gram memorisation as an early stopping criterion, we

test different threshold values for which to stop fine-tuning if exceeded. We find

that an average partial memorisation threshold score of 20 on the fine-tuning set

yields good results. We compare this to the naive selection criterion of validation

perplexity and task evaluation for domain adaptation and instruction tuning, re-

spectively, although we experiment with applying validation perplexity and best

accuracy to both.

Results for these experiments are shown in Fig. 4.5, highlighting the trade-offs

between different early stopping criteria and their impact on both memorisation
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Figure 4.5: Memorisation and performance comparison for domain adaptation and
instruction tuning across different early stopping selection criteria. (a) and (c) show
the verbatim memorisation percentage for different values of extraction prompt
prefix length k ∈ {12, 16, 20} using three early stopping selection criteria: validation
perplexity (Best val), evaluation performance (Best acc), and n-gram memorisation
(Best n-gram) for domain adaptation (solid) and instruction tuning (hatched). (b)
and (d) present the difference to the best task evaluation performance (orange)
and validation perplexity (green), across the same selection criteria and fine-tuning
approaches.

and model performance. Using evaluation performance/accuracy as the selection

criterion consistently reduces memorisation rates in both domain adaptation and

instruction tuning scenarios (Fig. 4.5(a) and Fig. 4.5(c)). This could be due to

task evaluation performance correlating more highly with the latent capabilities of

the pre-trained model, rather than validation perplexity on a single domain, and

therefore being optimised at lower memorisation. However, this comes at the cost of

a significant decrease in validation perplexity, as indicated by the high variance and

larger differences to the best perplexity scores shown in Fig. 4.5(b) and Fig. 4.5(d).

Conversely, when validation perplexity is used as the selection criterion, the models

tend to show the opposite behaviour by achieving better perplexity scores, but with
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4.4.2. Selection Criteria as Mitigation

QA Summarisation Instruction Average

Model + Strategy Mem ↓ Eval ↓ Mem ↓ Eval ↓ Mem ↓ Eval ↓ Mem ↓ Eval ↓

Pythia 2.8B 9.71 - 12.59 - 14.30 - 12.20 ± 0.65 -
+ Best n-gram 4.36 7.51 5.63 6.53 6.43 8.09 5.47 ± 0.38 7.38 ± 0.28
+ n-gram reg 2.90 5.08 3.75 4.25 4.29 6.54 3.65 ± 0.29 5.29 ± 0.24
+ Goldfish reg 3.37 5.04 4.38 4.31 5.01 6.07 4.25 ± 0.22 5.14 ± 0.22

Pythia 6.9B 12.80 - 16.50 - 18.70 - 16.00 ± 0.77 -
+ Best n-gram 5.76 7.54 7.42 6.21 8.42 8.30 7.20 ± 0.38 7.35 ± 0.30
+ n-gram reg 3.84 5.15 4.95 4.54 5.61 6.30 4.80 ± 0.24 5.33 ± 0.23
+ Goldfish reg 4.48 5.07 5.77 4.83 5.55 6.59 5.27 ± 0.20 5.50 ± 0.25

Mistral 7B 13.65 - 17.50 - 19.88 - 17.01 ± 0.95 -
+ Best n-gram 6.12 7.55 7.88 6.00 8.91 8.89 7.64 ± 0.41 7.48 ± 0.29
+ n-gram reg 4.18 5.53 5.25 4.40 5.34 6.08 4.92 ± 0.19 5.34 ± 0.22
+ Goldfish reg 4.01 5.40 5.12 4.42 4.97 6.21 4.70 ± 0.21 5.34 ± 0.22

LLaMA3 8B 14.40 - 18.50 - 20.94 - 17.95 ± 0.84 -
+ Best n-gram 6.48 9.21 8.33 6.56 9.41 10.31 8.07 ± 0.47 8.69 ± 0.35
+ n-gram reg 4.32 4.38 5.55 3.81 6.27 5.32 5.38 ± 0.23 4.50 ± 0.20
+ Goldfish reg 5.04 5.02 6.47 4.33 7.32 6.99 6.28 ± 0.15 5.45 ± 0.24

Pythia 12B 17.66 - 22.50 - 25.30 - 21.82 ± 1.05 -
+ Best n-gram 7.92 9.20 10.12 6.41 11.39 8.30 9.81 ± 0.45 7.97 ± 0.36
+ n-gram reg 5.28 3.98 6.75 4.02 7.59 4.91 6.54 ± 0.27 4.30 ± 0.21
+ Goldfish reg 6.10 3.90 7.57 4.36 8.86 5.00 7.51 ± 0.14 4.42 ± 0.22

LLaMA3 70B 20.80 - 26.50 - 29.70 - 25.67 ± 1.11 -
+ Best n-gram 9.36 9.39 11.93 5.96 13.37 8.45 11.55 ± 0.56 7.93 ± 0.38
+ n-gram reg 6.24 5.54 7.05 3.91 8.91 5.44 7.40 ± 0.30 4.96 ± 0.23
+ Goldfish reg 7.18 5.50 7.27 4.01 10.40 6.11 8.28 ± 0.16 5.21 ± 0.24

Table 4.2: Main memorisation mitigation results across model scales and mitigation
strategies. For each result we report the memorisation (Mem, lower is better), and
Evaluation difference (Eval, lower is better) to the best performance achieved for
the naive unmitigated strategy (top row of each model group). Bold values indicate
the best (lowest) score within each model group (base row excluded). Memorisation
scores are taken as the average of all prefix lengths k ∈ {12, 16, 20} extractions.
Results are averages over 10 randomly initialised fine-tuning runs, and we report
mean ± s.d. in the Average columns.

substantially higher memorisation rates, particularly for instruction-tuned models

which consistently exhibit the highest memorisation levels compared to domain

adaptation results.

Interestingly, the n-gram selection criterion strikes a balance, reducing memorisa-

tion without the steep performance trade-offs observed in the other criteria. It

provides a more favourable balance by keeping memorisation lower and maintain-

ing better accuracy and perplexity than either of the naive criteria (evaluation

accuracy or validation perplexity), as seen by the smaller performance differences

at consistently lower memorisation percentages. In summary, instruction tuning

appears more prone to memorisation, particularly under validation-based selection,

whereas domain adaptation is relatively less affected by these selection criteria, and
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4.4.3. Comparing Mitigation Strategies

n-gram thresholding as a stopping criterion is a simple and effective memorisation

mitigation strategy.

4.4.3 Comparing Mitigation Strategies

We test whether our n-gram approach can be incorporated into a loss regularisation

function by adapting the typical causal LLM loss to include a term that penalises

high-confidence n-grams exceeding a tunable confidence threshold, relative to that

of the pre-trained model. Intuitively, this penalty is designed to discourage the

model from assigning excessively high probabilities to these n-grams as a proxy

measure for n-gram memorisation. The key limitations of this strategy are in

requiring the original model to run inference alongside fine-tuning to acquire the

baseline confidence values, and keeping n-gram sizes within practical bounds to

avoid becoming computationally intensive. Further details of this approach can be

found in Appendix 4.9.

We compare our n-gram regularisation to the Goldfish loss regularisation technique

(Hans et al., 2024), which incorporates random sampling of dropped tokens from

the loss calculation for a given training sample. At the time of writing, this is the

only comparable approach for which we can compare to. We test across all models

to evaluate transferability and scalability of the approach.

We present our results in Table 4.2, grouped by model size and dataset category,

including comparisons to naive baseline results for both domain adaption and in-

struction tuning (top row of each model group). We include the stopping criterion

Best n-gram as a simple non-regularisation approach based on the promising find-

ings in Section 4.4.2. We consider memorisation (Mem %) and evaluation per-

formance (Eval %), where Eval is taken as the difference to the best achieved

performance, essentially measuring the performance trade-off of the memorisation

mitigation technique. We group our results by model size, and report the best

(bold) within each group.

114



4.5. Limitations

Impact of model size These results highlight key trends across different model

scales and mitigation strategies. Generally, memorisation increases with model

size, as observed with the unmitigated baseline for Pythia 2.8B of 12.2% rising

to 21.8% for Pythia 12B and 25.7% for Llama3 70B. Importantly, the mitigation

strategies show consistent reductions in memorisation across all models. For ex-

ample, n-gram regularisation reduces memorisation from 12.2% to 3.6% in Pythia

2.8B, and from 21.8% to 6.5% in Pythia 12B. We see similar reductions in the

Llama3 and Mistral models. Goldfish regularisation is also effective, though its

impact is more pronounced on the Mistral 7B model, whereas our n-gram regu-

larisation outperforms this on all other models. Across the board, larger models

present greater challenges in balancing memorisation, validation perplexity, and

accuracy. The results suggest that as model size increases, the trade-offs become

more pronounced.

Impact of mitigation strategy Averaged over all models, n-gram regularisation

delivers the best trade-off, lowering memorisation to 5.45% with a performance eval-

uation gap of 4.95%; this is a ≈40% relative reduction in memorisation and a ≈35%

smaller performance hit compared with the simple Best n-gram early-stopping rule

(8.29%, 7.80%). Goldfish is a close second (6.05%, 5.18%), performing best on

Mistral 7B. While the early-stopping heuristic of Best n-gram consistently sees

higher memorisation and worse evaluation performance, it still significantly reduces

memorisation from the naive baseline, highlighting the importance of a simple non-

regularisation approach.

4.5 Limitations

Our study provides insights into memorisation during domain adaptation and in-

struction tuning of generative LLMs, but has limitations. We focused on greedy

decoding, while real-world applications often use more complex methods like beam

search, which likely influence memorisation differently; future research should ex-

plore memorisation under various decoding strategies.
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4.6. Conclusion and Future Work

We used validation perplexity and evaluation performance as metrics, but their

trade-offs with memorisation are not necessarily equivalent. Investigating altern-

ative metrics could offer a more nuanced understanding of these relationships. Our

experiments were limited to a single high-parameter model (Llama3 70B) due to

computational budget limitations; ideally, we would evaluate these findings on a

larger pool of models and sizes, as well as different fine-tuning protocols.

4.6 Conclusion and Future Work

This study explores memorisation dynamics during both domain adaptation and in-

struction tuning across eight open-weight LLMs (1.4B–70B parameters). We show

that a simple n-gram partial memorisation score indicates at-risk samples. The

gap between memorised and non-memorised items is widest in domain adaptation

and summarisation datasets, reflecting repetition and lack of diversity often seen

with instruction-tuning, whereas classification and QA tasks exhibit a smaller, but

still measurable, rise. We also show that our partial memorisation metric scales

very well with increasing model size, where memorisation is more pronounced.

Building on these observations, we explore memorisation mitigation strategies. A

threshold-based early stopping with the n-gram score halves memorisation relative

to the baseline at low performance cost, but an explicit n-gram penalty in the loss is

more effective, averaging 5.45% memorisation and a 4.95% performance gap, with

around a 40% reduction in memorisation. We show this scales from small models

to 70B-parameter models and generalises across datasets and tasks.

Future work will extend this analysis in two directions. First, alternative decoding

strategies such as beam search may surface different leakage patterns and should

be audited with the same metrics. Secondly, we will test whether the n-gram

regulariser curbs memorisation in code generation, mathematical reasoning, and

multimodal tasks.
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4.6.1 Mitigation strategies

Based on our findings in this chapter, we recommend the following practices to

curb unintended memorisation when this is a concern:

• Low overhead: Stop when partial memorisation exceeds a threshold (we

used 20). Lowers memorisation with small performance and computation

cost (Fig. 4.5).

• Dataset-aware thresholds. Track partial memorisation per dataset and

tuning mode; variability is high (Fig. 4.2).

• High risk: Use the n-gram regulariser (App. 4.9) when risk is high or train-

ing to convergence; strongest reductions, extra compute.

4.7 Epilogue

This chapter has established that memorisation arising during fine-tuning can be

monitored and curtailed without sacrificing downstream accuracy. A simple n-gram

overlap metric provides an actionable early-warning signal, and an n-gram–aware

regulariser offers a scalable defence that applies across model families from 1.4B to

70B parameters.

The practical lesson from this work is methodological rather than purely thematic:

careful control of the optimisation schedule and an explicit bias against verbatim

copying are prerequisites for the representation-centric analyses that follow. This

chapter’s key insight is to treat memorisation itself as a hierarchical process. Our

n-gram metric acts as a proxy for this, revealing that verbatim leakage often be-

gins with the model learning to reproduce smaller constituent structures (n-grams

and key phrases) before this behaviour escalates to the memorisation of complete

sequences. By monitoring this structural progression from partial to full recall,

we can try to encourage the models to not merely store their inputs, but instead

generalise learned (hierarchical) structures. This control clears the ground for ad-

dressing the final research questions of this thesis: investigating how such structure

is learned, represented, and exploited across modalities.
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4.7. Epilogue

We now step beyond a purely linguistic focus within NLP: Chapter 5 examines how

hierarchical structure manifests in the spatiotemporal dynamics of video Trans-

formers, while Chapter 6 extends the investigation to a unified next-frame frame-

work spanning language, vision, and audio.
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4.8 Appendix: Datasets

The following datasets are used and evaluated according to their respective bench-

marks, found in Wang et al. (2018); Taori et al. (2023); Wei et al. (2023).

• SST-5. Movie-review sentences annotated with five sentiment levels. Tem-

plate: Sentence: <s> - What is the sentiment?. Metric: accuracy.

• QQP. Pairs of Quora questions labelled as duplicates or not. Template: Q1:

<q1>\nQ2: <q2> - Duplicate? Yes/No. Metric: accuracy and F1.

• RTE. Premise–hypothesis pairs drawn from news and Wikipedia, framed as

binary entailment. Template: Premise: <p> Hypothesis: <h> - Entailed?

Yes/No. Metric: accuracy.

• WANLI. Large-scale adversarial Natural Language Inference corpus gener-

ated via human–AI collaboration. Template: Premise: <p>, Hypothesis:

<h>, Label: entail/neutral/contradict. Metric: accuracy.

• SQuAD v2. Wikipedia paragraphs paired with questions, mixing answer-

able and unanswerable cases. Template: Context: <para> Question: <q>

Answer:. Metric: exact match (EM) and F1.

• HellaSwag. Multiple-choice commonsense completion task built from Wiki-

How and activity narratives. Template: Story: <ctx> Which ending (A–D)

is most plausible?. Metric: multiple-choice accuracy.

• PubMedQA-L. Biomedical abstracts with yes/no/maybe answers to re-

search questions. Template: Abstract: <abs> Question: <q> Answer

(yes/no/maybe):. Metric: accuracy.

• XSum. BBC news articles paired with single-sentence abstractive summar-

ies. Template: Article: <doc> \nWrite a one-sentence summary:. Metric:

ROUGE-1/2/L.
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• CNN/DailyMail. Long-form news articles with multi-sentence “highlights”.

Template: Article: <doc> Summarise concisely:. Metric: ROUGE-1/2/L.

• Alpaca-52k. GPT-3.5-generated instruction–response pairs covering diverse

tasks. Template: Instruction: <i>, Input: <in>, Response: <r>. Met-

ric: GPT-4 preference win-rate.

• FLANv2. Composite collection of ∼1.8k tasks (12M examples) in instruc-

tion format. Template: Instruction: {task}Input: {x} Answer:. Metric:

task-specific (Accuracy, F1, ROUGE, etc.).
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4.9 Appendix: n-gram Regularisation Loss

To incorporate n-gram regularisation into the standard CLM loss function (as

covered in §2.2.1, Eq. 2.5), we modify the loss function to include a penalty term

that discourages the model from assigning excessively high confidence to certain

n-grams compared to the pre-trained model.

The modified loss function consists of two main components:

1. Primary Loss Term:

LLM = −
T∑

t=1
log pθ(xt | x<t) (4.3)

where T is the total length of the token sequence, xt is the token at position

t, x<t = (x1, x2, . . . , xt−1) represents all previous tokens before position t,

pθ(xt | x<t) is the probability of token xt given previous tokens under the

current model parameters θ, and θ represents the model parameters. This is

the standard cross-entropy loss used for causal LLM training.

2. N-gram Regularisation Term:

Lreg = λ
∑
g∈G

I (pθ(g) > τ) [pθ(g) − pθ0(g)]2 (4.4)

where pθ(g) is the probability assigned by the fine-tuned model to the n-gram g,

pθ0(g) is the probability assigned by the pre-trained model to the n-gram g, λ ≥ 0

is the regularisation strength, and τ ≥ 0 is the confidence threshold.

The key goal of this term is to penalise the model when it assigns a high probability

(exceeding the threshold τ) to an n-gram g more than the pre-trained model does.

Balancing this term is key to not overly-penalise the model and reduce latent pre-

trained performance. We use I (pθ(g) > τ) to ensure that the penalty is applied

only when the model’s confidence in the n-gram g exceeds the threshold τ .
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Chapter 5

Spatiotemporal Reasoning in

Video

Having established in Chapter 3 that Transformer LLMs encode rich, layer-wise

hierarchical information in text, we now turn our attention to the visual domain.

This chapter investigates whether similar principles of hierarchical internalisation

apply to video: a data modality inherently structured in both space and time. To

explore this, we develop a causal Pixel-Space Spatiotemporal Video Transformer

(PSViT), which predicts future frames autoregressively. By training PSViT on

synthetic scenes governed by known Partial-Differential Equations (PDEs), we can

interrogate the model’s internal states using a probing approach analogous to that

employed for language.

Our primary goals are twofold: first, to determine if the self-attention mechanisms

within PSViT learn multi-scale physical abstractions rather than merely mem-

orising frame sequences; and second, to establish diagnostic tools and insights

into visual hierarchical reasoning that will support the unified multimodal frame-

work proposed in Chapter 6, such as optimal hierarchical priors like different self-

attention layouts, positional encodings, and network structure. Our investigation

involves designing and evaluating spatiotemporal attention layouts, analysing in-

ternal network dynamics to localise learned physical signals, and probing hidden

states to assess the abstraction of simulation parameters. Through this investig-
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ation, we identify several hierarchically-aware optimisations for the final PSViT

model, selecting the best-performing spatiotemporal self-attention layout, posi-

tional encoding scheme, and U-Net style patch-merging strategy based on extens-

ive ablation studies. These explorations collectively argue that appropriately con-

figured Transformers can indeed extract and localise physical hierarchical structure

directly from raw video pixels, even when such structures are not directly observ-

able in pixel-space (e.g., PDE properties governing the video).

The chapter is structured as follows. Section 5.1 introduces the challenges of video

prediction, our focus on PDE-driven physical simulations as a testbed for hierarch-

ical reasoning, and summarises this chapter’s contributions. Section 5.2 reviews

relevant prior work in video generative models, autoregressive video approaches,

and dynamic simulation modelling. We then formalise the task of autoregressive

video prediction in Section 5.3. Our novel PSViT model architecture, including its

patch processing, spatiotemporal attention strategies, and U-Net style adaptations

designed to capture hierarchical features, is detailed in Section 5.4. The exper-

imental methodology, datasets providing ground truth for evolving hierarchical

systems, and evaluation metrics are described in Section 5.5. Section 5.6 presents

our quantitative video prediction results, comparisons with existing approaches,

and qualitative assessments of learnt dynamics. Finally, Section 5.7 conducts a

structural analysis of PSViT, discussing spatial and temporal reasoning, attention

head mechanisms, and the probing of PDE dynamics information from learned

representations to understand the internalisation of physical hierarchies.

5.1 Introduction

Building on the insights from Chapter 3 regarding linguistic hierarchy in Trans-

formers, this chapter extends our investigation to the visual domain, specifically

focusing on video. Recent progress in the development of Transformer-based gener-

ative models has led to increased efforts to extend their application beyond linguist-

ics (Dosovitskiy et al., 2021; Yan et al., 2021; Oprea et al., 2020; Farazi et al., 2021).
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Following successes in image generation with models like Variational Autoencoders

(VAEs) (Razavi et al., 2019) and Diffusion models (Zhang et al., 2023), generative

modelling of videos is an area of escalating research, concentrating on novel archi-

tectures and techniques for model interpretability (Castrejon et al., 2019; Oprea

et al., 2020; Zhou et al., 2020). In this work, we investigate both aspects. Drawing

direct inspiration from the performance and scalability of LLMs, we propose and

evaluate a pure Transformer model as an end-to-end approach for unsupervised

video prediction. Our primary focus is on physical simulation datasets driven by

PDEs, as these provide a quantifiable measure of a model’s ability to learn and

apply hierarchical spatiotemporal reasoning. Our PSViT model offers a highly

simplified architectural approach for end-to-end video prediction while aiming to

extend the time horizon of physically accurate outputs, thereby probing the model’s

capacity to internalise underlying dynamic laws.

Autoregressive Transformer LLMs at scale have been shown to exhibit emergent

properties beyond their apparent pre-training goals (Brown et al., 2020; Wei et al.,

2022). Video generation is therefore a natural next step for causal modelling,

considering both input complexity and computational demand, necessitating in-

novation and adaptations of existing techniques in deep generative modelling. The

emergent and highly generalisable behaviour of autoregressive LLMs hints at prom-

ising applications of spatiotemporal modelling beyond conditional video generation.

This is particularly true for scenarios where underlying laws governing dynamics

are not directly observable from raw pixel-space but represent a deeper hierarchical

understanding, such as simulating fluid dynamics (Kohl et al., 2023), weather fore-

casting (Sønderby et al., 2020), robot motion planning (Finn and Levine, 2017),

generating future scenarios for autonomous driving (Wen et al., 2023; Hu et al.,

2023), and traffic prediction (Gao et al., 2022).

The majority of existing work on video generative modelling evaluates on either

pixel-based or perceptual quality metrics, conditioned on either prior video frames

or a textual prompt (Xing et al., 2023; Croitoru et al., 2023; Yu et al., 2023),

often with inherently stochastic outputs. These existing approaches for video pre-
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Figure 5.1: Example outputs from our PSViT model trained on video simulation
data exhibiting physical dynamics, compared to ground truth frames. Successful
collision prediction timestep annotated by the red boxes, indicating the model’s
grasp of hierarchical event structures.

diction typically employ an encoder-predictor-decoder architecture that learns a

compressed latent feature space of image frames (discrete or continuous), with

the predictor backbone model used to enforce a causal prior for predicting future

frames. Yet, there is less work exploring and evaluating the physical accuracy of

generated videos over time (an area where these models often falter (Ming et al.,

2024)) and investigating whether modelling a continuous pixel-space representa-

tion can offer a simpler approach for improved, interpretable video prediction that

captures such physical hierarchies. Owing to this, we explore the benefits of us-

ing a simple, effective, and interpretable autoregressive Transformer adapted for

end-to-end video prediction (Fig. 5.1 shows example model outputs). Our focus is

on modelling videos depicting physical simulations, allowing for quantitative eval-

uation of learnt hierarchical physical dynamics via object positioning over time,

and comparison against existing state-of-the-art approaches. We argue that mod-

elling in continuous pixel-space can provide a simple and interpretable approach for

investigating Transformers as an end-to-end model for both feature learning and

129



5.2. Related Works

autoregressive video prediction of hierarchical events. Additionally, we conduct a

range of experiments highlighting layer-wise spatiotemporal reasoning, and to what

extent our model encodes sequence-specific PDE parameters governing the physical

simulation, which represent abstract hierarchical knowledge.

Our key contributions in this chapter are:

• We propose PSViT, a novel end-to-end Transformer, and through it, we

design and evaluate several hierarchical priors aimed at enhancing spati-

otemporal reasoning. These priors, including a U-Net style architecture for

multi-scale processing and various spatiotemporal attention schemes, demon-

strate a simple yet effective approach to video prediction that does not rely

on complex, domain-specific components or multi-stage training goals.

• Using an object tracking metric that reflects the understanding of core phys-

ical dynamics (a form of hierarchical event structure), we demonstrate that

our model offers increased accuracy for video prediction of PDE-driven se-

quences over time when compared to existing latent-space approaches, as well

as competitive performance on common video prediction benchmarks (Mov-

ing MNIST and BAIR), highlighting where direct pixel-space modelling can

be advantageous for physical coherence.

• We conduct interpretability experiments to identify network regions and at-

tention heads associated with measurable physical dynamics (e.g., collisions,

velocity). Furthermore, by probing internal model representations, we ac-

curately estimate out-of-distribution simulation parameters, demonstrating a

significant degree of learning and generalisation of underlying physical laws

(abstract hierarchical knowledge) not directly apparent in pixel space.

5.2 Related Works

We briefly summarise recent progress in video generative models, Transformer-

based approaches for video prediction, and, more specifically, video prediction
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models of physical systems, highlighting work relevant to learning spatiotemporal

hierarchies not covered in Chapter 2.

5.2.1 Video Models

Research into unsupervised video models explores feature learning from images

and videos (Ranzato et al., 2014; van den Oord et al., 2017, 2018; Donahue and Si-

monyan, 2019; Chen et al., 2020), as well as exhibiting improved downstream task

performance from unsupervised pre-training (Chen et al., 2020; Wu et al., 2022;

Hong et al., 2023). A new category of image reconstruction loss functions, DeeP-

SiM (Dosovitskiy and Brox, 2016), calculates image differences based on features

extracted from pre-trained image models, helping to mitigate smoothing artefacts

observed when using image-space distance metrics. Existing approaches utilising

convolutional architectures include van Amersfoort et al. (2017); Dai et al. (2017);

Wang et al. (2020); Yılmaz and Tekalp (2021).

Studies adapting Transformer models for image and video classification (Xie et al.,

2021; Dosovitskiy et al., 2021; Bertasius et al., 2021) tend to involve a patch-

based framework whereby input images are split into image patches and linearly

embedded into a sequence of higher-dimensional 1D vector representations, typ-

ical for Transformer model inputs. Feature learning and classification are per-

formed exclusively using the Transformer architecture; as such, the patch-wise

processing helps control parameter efficiency and influences how locality is cap-

tured. Purely Transformer-based approaches distinguish themselves from CNN-

based feature learning primarily in how they handle spatial and temporal locality.

Unlike CNNs, which directly capture locality through convolutional layers, any

inherent locality as a structural prior in standard Transformers is restricted to

intra-patch processing by feed-forward fully-connected layers, with self-attention

handling longer-range (potentially hierarchical) dependencies. Predicting high-

resolution future frames by leveraging pre-trained image generators and a latent

video prediction architecture (Seo et al., 2022) has been shown to significantly

reduce training costs and improve prediction quality for various datasets.
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5.2.2 Autoregressive Video Models

Autoregressive video prediction models have emerged as a prominent approach

for forecasting future frames in video sequences, with notable examples including

Weissenborn et al. (2020); Gao et al. (2022). Models for autoregressive video pre-

diction can be broadly defined as pixel-based models (Van Den Oord et al., 2016;

Denton and Fergus, 2018; Chen et al., 2020; Gao et al., 2022), or compressed lat-

ent models (Rakhimov et al., 2021; Yu et al., 2023). Transformer-based models

for video prediction often employ an encoder-predictor-decoder structure, whereby

a convolutional encoder model compresses the input image representation, with

the Transformer component processing the extracted features as a causal predictor

model (Yan et al., 2021; Rakhimov et al., 2021; Seo et al., 2022). An example of

this is VideoGPT (Yan et al., 2021), which uses a Vector-Quantised Variational Au-

toencoder (VQ-VAE) encoding strategy with a Transformer model processing the

compressed discrete latent representations as a causal frame predictor. SimVP (Gao

et al., 2022) uses a Vision Transformer (ViT) (Dosovitskiy et al., 2021) as a pre-

dictor model, with CNN encoder/decoders for spatial feature extraction. IAM4VP

(Seo et al., 2023) incorporates a stacked autoregressive approach, demonstrating

improved performance in preserving temporal coherence and reducing error accu-

mulation over long prediction horizons.

A significant shortcoming of these approaches remains the inherent propagation of

errors accumulated at each prediction timestep, resulting in difficulties modelling

longer sequences due to out-of-distribution predictions diverging from ground-truth

(Oprea et al., 2020). This is evident when observing the physical accuracy of pre-

dictions over time, particularly for complex hierarchical dynamics, and hence why

we focus on evaluating model performance on predictions involving such physical

systems.
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5.2.3 Dynamic Simulation Modelling

Introductory work exploring physically accurate video prediction models from un-

supervised training (Finn et al., 2016) involves pixel-motion estimation and action-

conditioning to generate future image frames. PhyDNet (Le Guen and Thome,

2020) attempts to separate the modelling of videos of physical dynamics governed

by PDEs, from unknown residual information (e.g., texture, high-frequency de-

tails) by learning a semantic latent representation of the underlying PDE physics

separate to variable pixel-based image information. The ‘Physics 101’ dataset (Wu

et al., 2016) was introduced to study physical properties of dynamic objects in

video sequences, together with a model designed to explicitly encode physical laws

via supervised parameter estimation. We leverage a set of physics-based video

prediction datasets (Winterbottom et al., 2024) (further details in Section 5.5),

where each dataset is associated with a parameter estimation task, allowing us to

probe for internalised hierarchical knowledge about these parameters. The DINo

model (Yin et al., 2023) introduces a data-driven approach for PDE forecasting

that operates with continuous-time dynamics and spatially continuous functions,

allowing learning from sparse and irregular data and generalisation across differ-

ent grids or resolutions. Other works exploring dynamic system modelling include

Tompson et al. (2017); Shi et al. (2017); de Bezenac et al. (2018); Kolter and Manek

(2019). A Fourier Neural Operator (Li et al., 2021) is used to directly learn solu-

tions to families of PDEs with high efficiency and accuracy, outperforming previous

learning-based PDE solvers. The DyAd model (Wang et al., 2022) employs meta-

learning to improve generalisation in deep learning models for dynamics forecasting

across varied domains, by partitioning them into distinct tasks. It features a two-

part architecture with an encoder for inferring time-invariant task features and a

forecaster learning shared dynamics, significantly outperforming existing methods

in predicting complex physical phenomena like turbulent flow and ocean currents.

Our approach distinguishes itself from the above through its focus on reducing the

need for explicit structural priors specific to modelling physical dynamics. Instead,

we investigate an unsupervised, end-to-end training paradigm for a pure Trans-
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former architecture, exploring how spatiotemporal attention layouts can themselves

facilitate the learning of hierarchical physical regularities directly from pixel data.

5.3 Autoregressive Video Prediction

This section formalises the task definition for video prediction used throughout this

work and outlines the associated autoregressive learning objectives.

5.3.1 Task Definition

Consider a sequence V consisting of image frames representing timesteps of a video.

Let X = {xt | t = 1, . . . , T} be an input sequence comprising the first T timesteps

of V , and Y = {yt′ | t′ = T + 1, . . . , T + T ′} be a target sequence consisting of

the subsequent T ′ frames of V , where each xt ∈ RC×H×W and yt′ ∈ RC×H×W

represents a C-channel image of height H and width W . Given a video predictive

model F parameterised by θ, F is tasked with mapping the input sequence X to the

sequence of future frames Y. This can be performed in an autoregressive manner

as follows:

ŷt′ = F(x1, . . . , xT , ŷT +1, . . . , ŷt′−1; θ), (5.1)

where,

ŷT +1 = F(x1, . . . , xT ; θ), (5.2)

such that ŷT +1 represents the first predicted frame, directly dependent on the input

sequence. Each subsequent frame prediction ŷt′ up to timestep T + T ′ depends on

all previous predictions {ŷT +1, ŷT +2, . . . , ŷt′−1} and the original sequence X . The

above describes the inference process of a model F performing autoregressive video

prediction given an input sequence X .

5.3.2 Autoregressive Learning Objective

Considering the learning objective of the autoregressive video prediction model

described above, the training goal for F is to minimise the average reconstruction
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loss between model predicted frames ŷt′ and ground truth target frames yt′ for each

timestep of the input sequence. During training, the input sequence X consists of

the entire video sequence V minus the final frame; X = {xt | t = 1, . . . , T − 1},

with targets Y consisting of V minus the first frame; Y = {vt | t = 2, . . . , T}, such

that predictions at each timestep are conditioned only on ground truth frames and

not model outputs. Causal masking of the input sequence ensures that only prior

frames contribute to future timestep predictions. Our learning objective per video

sequence X can therefore be expressed as follows:

min
θ

T −1∑
t=1

L (xt+1, F(x1, . . . , xt; θ)) , (5.3)

where L represents the loss function providing a statistical measure for the recon-

struction discrepancy between predicted and target image frames. Typical choices

for loss function L include pixel-wise Mean Squared Error (MSE), Mean Absolute

Error (MAE), and Structural Similarity Index Measure (SSIM) (Wang et al., 2004).

5.4 Model Architecture

We build on the ViT (Dosovitskiy et al., 2021) and TimeSformer (Bertasius et al.,

2021) Transformer-based models originally designed for image understanding and

video understanding, respectively, and not primarily for generative modelling. In

this section, we introduce our PSViT model, a pure-Transformer backbone for

testing different spatiotemporal self-attention schemes for end-to-end unsupervised

video prediction in continuous pixel-space. We detail the key adaptations needed

for both spatiotemporal modelling of video sequences and performing autoregress-

ive video prediction, with a focus on architectural choices that may facilitate the

learning of hierarchical representations.

5.4.1 Input Patch Processing

The PSViT model (illustrated in Fig. 5.2) takes as input a video sequence X =

{xt}T
t=1, where each xt ∈ RC×H×W is a C-channel image frame of height H and
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width W , sampled at timestep t for t = 1, 2, . . . , T . Each frame xt is partitioned

into S non-overlapping, equally-sized patches of dimension P × P , with H and W

being divisible by P to ensure S = HW
P 2 patches that span the input image with

no padding. Therefore, for each image frame xt, we denote xt,s ∈ RC×P ×P as the

resulting image patch at index s for timestep t, where s = 1, 2, . . . , S refers to the

spatial location of the patch.

5.4.2 Patch Embedding Representation

Transformer models typically expect a sequence of 1D vector inputs. Following

the partition of each frame into patches, each patch is further flattened into a 1D

vector xt,s ∈ RCP 2 and linearly embedded into a higher-dimensional embedding

space D via a parameterised embedding matrix E ∈ R(CP 2)×D:

z0
t,s = Ext,s, (5.4)

where z0
t,s ∈ RD is the patch embedding vector of dimension D. For spatial and

temporal contextual awareness, individual learnable positional encodings for each

are added to the patch embedding as follows:

zt,s = z0
t,s + etime

t + espace
s , (5.5)

where etime
t ∈ RD and espace

s ∈ RD are parameterised encodings for timesteps

t = 1, 2, . . . , T and spatial positions s = 1, 2, . . . , S, respectively. The resulting

sequence of patch embedding vectors Z = {zt,s | t = 1, . . . , T ; s = 1, . . . , S} serves

as input to the Transformer model, with the embedding process enabling the joint

learning of both spatial and temporal information necessary for modelling video

sequences.

5.4.3 Spatiotemporal Attention Strategies

Essential to our autoregressive video prediction model is the modification of multi-

head self-attention (hereafter denoted self-attention) layers (Vaswani et al., 2017)

to incorporate both intra-timestep spatial relationships and inter-timestep causal
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Partition  + Embed 

Local Space-Time
Transformer Block 

 Patch Merge 

Local Space-Time
Transformer Block 

 Patch Merge 

Global Space-Time
Transformer Block 

 Patch Unmerge 

Local Space-Time
Transformer Block 

 Patch Unmerge 

Local Space-Time
Transformer Block 

 Patch Projection 
+ Recombine

Video Output 

Video Input 

(a)

Spatial Multihead
Self-attention 

Patchwise
GeLU Feed Forward

Masked Temporal Multihead
Self-attention

Patchwise
GeLU Feed Forward

Add & 
Layer Norm

Add & 
Layer Norm

Add & 
Layer Norm

Add & 
Layer Norm

(b)

Figure 5.2: Illustration of (a) an overview of our PSViT model and (b) a space-time
transformer layer (a space-time transformer block is constructed by stacking these
layers). T timestep video image frames are partitioned into N non-overlapping
patches and linearly embedded before being processed by a series of local and
global space-time transformer blocks. Skip connections (dashed lines) are used
between corresponding patch merge/unmerge operations to preserve information
such as static background features, aiding in the representation of hierarchical
spatial detail. Input dimensions are annotated for each component.
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temporal relationships across successive frames. We use a patch-based model sim-

ilar to ViT; therefore, we can view any spatial and temporal operations as cap-

turing patch-wise spatial and temporal relationships. Dividing the input frame

into patches is an effective method to avoid the quadratic growth in complexity

associated with increasing image resolutions. We experiment with a range of spa-

tiotemporal self-attention variations, building on those found in Bertasius et al.

(2021). Fig. 5.3 illustrates these spatiotemporal self-attention layouts. A key con-

sideration when adapting these layouts for autoregressive video prediction is to

enforce temporal causality via masking of patches from future timesteps during

training.

Through preliminary testing, we find that combining spatial and temporal informa-

tion in a single (global or local) self-attention operation (the Joint-ST configuration

(Bertasius et al., 2021)) performs considerably worse when compared to isolating

spatial and temporal information into separately parameterised self-attention lay-

ers. We further separate spatial and temporal self-attention operations by an addi-

tional patch-wise GeLU (Hendrycks and Gimpel, 2016) FFN, as further explained

in Section 5.4.6.

5.4.4 Spatial Attention

Each spatial attention layer performs self-attention over image patch inputs inde-

pendently for each timestep. This approach allows the layer to learn both local

and global patchwise relationships, agnostic of temporal information. We follow

a similar procedure for query, key, value self-attention as described in (Vaswani

et al., 2017; Dosovitskiy et al., 2021; Bertasius et al., 2021) and also covered in our

background Section §2.3.3. Given patch inputs zt,s, we have:

[kt,s, qt,s, vt,s] = zt,sUkqv ∈ R3Dhead , (5.6)

where key, query, and value vectors are k ∈ RDhead , q ∈ RDhead , and v ∈ RDhead ,

respectively, Dhead is the head dimension for multi-headed attention, and Ukqv ∈

RD×3Dhead is a linear projection matrix. Note that Ukqv is shared across timesteps.
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Local Space +
Local Time
(LS+LT) 

Global Space +
Self Time
(GS+T) 

(LS+LT) +
Space Registers

(GS+T) +
Space + Time

Registers

. .
 . 

Figure 5.3: Examples of various spatiotemporal self-attention masking strategies
using video image frames split into 16 patches, with register tokens (additional
empty patch tokens added to the sequence used to accumulate sequence-level in-
formation) visualised by dashed patches. For each strategy we illustrate the follow-
ing: a query patch qt,s shown in yellow for timestep t and patch s, corresponding
patches used for spatial self-attention computation shown in red, patches used
for temporal self-attention computation shown in green, and patches not used or
masked shown in white. Not visualised are all previous timestep frames (compu-
tation remains the same for these), and future frames (for which all are causally
masked during training). These strategies influence how local and global hierarch-
ical dependencies are captured.

We then calculate spatial attention as follows:

zspace
t,s = SM

qt,s ·
[
k⊤

t,1 k⊤
t,2 · · · k⊤

t,S

]
√

Dhead

 ·



vt,1

vt,2
...

vt,S


, (5.7)

where SM is the softmax operator, and zspace
t,s is a single head spatial attention

output for spatial patch s and timestep t. For Local-Space attention (shown in

Fig. 5.3), spatial patch indices not included in the computation are masked. We

follow typical multi-headed self-attention practices for unifying attention heads and

applying layer normalisation as covered in our background Section §2.3.3.
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5.4.5 Causal Temporal Attention

To enable generative autoregressive behaviour, temporal self-attention is causally

masked, allowing each patch to attend only to its own past and current timesteps

across different frames, preventing information leakage from the future. Similar

to spatial attention, for each spatial patch we apply temporal attention across

timesteps, but limited to corresponding spatial patch positions. Due to better

observed performance in preliminary testing, we differ from existing approaches

and learn separate temporal query, key, and value projections calculated from the

output of the preceding spatial attention layer.

5.4.6 Layer Outputs

The output for each patch at each intermediate layer ℓ for L layers is as follows:

zℓ
t,s = FFN’(ztime

t,s (FFN(zspace
t,s ))), (5.8)

where FFN and FFN’ are patchwise non-linear FFN components with layer nor-

malisation and residual connections, typical of those found on the output of the

original Transformer layers. We note the following modifications to existing ap-

proaches: we further separate the computation of spatial and temporal attention

via an FFN layer between spatial and temporal attention operations, and per-

form spatial attention before temporal attention due to consistently better results.

Results are reported for ablations of this setup. The final layer FFN’ output is

down-projected to C × P × P and reshaped to the original image patch dimen-

sions, with patches at each timestep being reconstructed to form an output image

ŷt′ ∈ RC×H×W as illustrated in Fig. 5.2(a).

5.4.7 U-Net Style Adaptation

We further adapt the typical Transformer backbone architecture to progressively

process patches at smaller resolutions, similar to that of U-Net style models (Ron-

neberger et al., 2015), such that adjacent input patches are linearly merged to
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reduce the effective image resolution at each block on the encoding side. This

design choice allows us to train end-to-end models efficiently without resorting

to pre-trained encoder/decoder models and encourages the learning of hierarchical

spatial features. As illustrated in Fig. 5.2, partitioning into patches is followed by a

series of local space-time Transformer blocks separated by patch merge operations,

with a global space-time Transformer block operating on the reduced resolution

patch-based representations. In the example shown, local blocks are restricted to

local spatial and temporal attention windows, separated by non-overlapping patch

merge/unmerge operations with a patch window size of 2. Global blocks operate

on a smaller effective image resolution (e.g., for an input of 64 × 64 and a patch

size of 8 × 8, the effective resolution at the global blocks is 16 × 16). This has the

benefit of capturing multiscale spatial features, while reducing the computational

complexity of the global self-attention operations due to a smaller number of im-

age patches. The reverse process is applied on the decoding side of the model to

produce a predicted next image frame for each input frame.

5.4.8 Register Tokens

We experiment with the addition of a set of register tokens (Darcet et al., 2024)

added to the sequence of embedded image patches at each timestep as a possible

encoding mechanism for sequence-level information and PDE dynamics, repres-

enting higher-level hierarchical information. Nr learnable register tokens rn ∈

RD, for n = 1, 2, . . . , Nr are appended to the set of S patches for each timestep t

after the positional encodings step (Eq. (5.5)), such that our input to the Trans-

former becomes:

Zt = [zt,1, . . . , zt,S , rt,1, . . . , rt,Nr ] for t = 1, . . . , T, (5.9)

(where Z is the full sequence of these Zt). These tokens are discarded before

recombining image patches to generate an output image. The intuition behind

incorporating these tokens is that they act as dedicated “memory” slots that ag-

gregate non-local, sequence-level signals, such as global boundary conditions or
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slowly varying PDE modes, which can be accessed by each spatial patch. These

can serve as a structural prior to enable the aggregation of useful hierarchical in-

formation, both spatially and temporally. We explore the encoding of information

in these register tokens later in the Chapter.

5.5 Methodology

This section covers the datasets used for self-supervised video prediction train-

ing, outlines our experimental setups for training and evaluation, and details the

different model configurations we use.

5.5.1 Datasets

Our work focuses on unsupervised prediction of physics-based simulations involving

objects moving and interacting according to well-defined physical laws, providing

ground truth for complex, evolving hierarchical systems. Specifically, we employ a

set of physics-based simulation datasets introduced in Winterbottom et al. (2024).

These datasets offer a controlled and visually-simple set of dynamic PDE sim-

ulations (calculated using the Runge-Kutta method (Butcher, 1996)), useful for

isolating physical accuracy of frame predictions, and evaluating spatiotemporal

reasoning. Each sequence per dataset is generated under unique initial conditions

and simulation parameters, ensuring no parameter contamination between train,

validation, and test splits. We use the following datasets: Moon - an orbital dy-

namics simulation involving a static body and an orbiting moon, Pendulum - a

swinging pendulum under gravity, Roller - a rolling ball on a curved surface act-

ing under gravity, and 3D Balls - a 3D environment containing elastic collisions

between moving balls and the environment walls.

Each simulation dataset contains 3-channel image frame sequences at a resolution

of 128×128 pixels. We split into training, evaluation, and testing subsets following

an 80/10/10 split, ensuring no overlapping initial conditions or parameters across

the splits. In addition to the simulation datasets above, we experiment with video
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Table 5.1: Dataset Specifications

Dataset Samples Seq. Length Resolution Num. Objects PDE Variables

Roller 5,000 100 128 × 128 1 3
Pendulum 5,000 100 128 × 128 1 5
Moon 5,000 100 128 × 128 2 4
3D Balls 5,000 100 128 × 128 1-3 1
CLEVRER* 5,000 140 128 × 128 5 -
Fluid* 1,000 100 128 × 128 - -

Table 5.2: Parameter Estimation Details for Probing Hierarchical Knowledge

Dataset Parameter In-distribution range Out-of-distribution range

Roller Gravity 0-100 100-150
Pendulum Gravity 0-6 6-10
Moon Mass 72-200 200-300

prediction on the CLEVRER (Yang et al., 2019) colliding objects dataset, and

the Fluid simulation from DPI-Net (Li et al., 2019). Additionally, we benchmark

our model on two common video prediction benchmark datasets, namely Moving

MNIST (Srivastava et al., 2015), and BAIR robot pushing datasets (Ebert et al.,

2017). For the CLEVRER, Fluid, Moving MNIST, and BAIR datasets, we use

predefined training and testing splits. Specifically, for CLEVRER and Fluid, where

the original resolution exceeds 128×128 pixels, we apply a central square crop and

downsample to 128 × 128. A full description of each dataset follows.

Dataset Details Table 5.1 summarises details of the simulation datasets used in

the main work. We further detail the datasets used for parameter estimation prob-

ing tasks below, with Table 5.2 summarising details of the training in-distribution

and out-of-distribution PDE parameter ranges used in the probing experiments.

The Moon simulation consists of an orbiting moon; treated as a rigid body with

a random initial velocity, and a static celestial body. The simulation models the

gravitational interaction between the moon and the static celestial body as follows:

mm
d2r⃗

dt2 = −GMcmm

|r⃗|3
r⃗, (5.10)

where r⃗ is the position vector of the moon relative to the centre of the celestial

body, |r⃗| is the distance between the two bodies, mm is the mass of the moon, Mc
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is the mass of the celestial body, G is the gravitational constant, and d2r⃗
dt2 represents

the acceleration of the moon due to gravity. For each sequence, we vary the initial

tangential velocity of the moon, the radius of the moon, the radius of the celestial

body, and the mass of the celestial body, simulating different orbital trajectories.

G and mm are kept constant for all samples.

The Pendulum simulation consists of a single pendulum modelled as a point mass

at the end of a massless rod. The pendulum swings about a fixed pivot point,

which serves as the centre of rotation for all simulated sequences. The dynamics

are governed by the following:

θ′′(t) = −g

l
sin(θ(t)), (5.11)

where θ(t) is the angle of the pendulum relative to the vertical, g represents the

gravitational strength, and l is the length of the pendulum. For each sequence,

we vary the following parameters: the initial angle of the pendulum, gravitational

strength, pendulum length, pendulum mass, and the size of the pendulum.

The Roller simulation exhibits the motion of a ball of mass M rolling down a

curved track under the influence of gravity. The force acting on the ball along the

track is given by the equation:

F = M · g · cos(α), (5.12)

where F is the force, M is the mass of the ball, g is the acceleration due to gravity,

and α is the angle between the track and the horizontal plane. The ball transitions

to free flight if the normal acceleration exceeds the limit set by the curve’s radius of

curvature at any point. This condition is mathematically represented as an > v2

k ,

where an is the normal acceleration, v is the velocity of the ball, and k is the radius

of curvature at the current point on the track. We vary the gravity strength g and

the initial position.

Dataset generation All four in-house simulation datasets (Moon, Pendulum,

Roller, 3D Balls) were rendered from deterministic ODE/PDE solvers (Runge–Kutta
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integration (Butcher, 1996)) with unique seeds and parameter draws per sequence,

ensuring disjoint train/val/test splits by construction. We validated sequence qual-

ity in three ways: (i) we checked numerical stability and simple invariants (e.g.,

pendulum length constancy, elastic collision momentum symmetry, orbital radius

boundedness under the chosen mass–gravity pairs), (ii) parameter coverage: we

verified the intended parameter ranges and non-overlap across splits (also used later

for the probing ranges in Table 5.2), (iii) render checks: automatic centroid/extent

tracking to flag off-screen objects, or overlaps, followed by a quick visual pass.

These checks ensured the videos reflect the target dynamics without visual arte-

facts that could complicate evaluation. We render the in-house datasets in greyscale

to simplify the visuals and isolate physical accuracy. By contrast, the other bench-

marks include richer visual complexity and colour. For consistency, all datasets are

supplied to the model as three-channel images.

Across all datasets, all scenes are rendered from a fixed camera pose. Consequently,

apparent scale is controlled by object parameters (e.g., moon radius, pendulum bob

size) rather than viewpoint. This helps isolate the effect of the underlying physical

variables we later probe.

5.5.2 Object Divergence Metrics

For each simulation dataset as well as the CLEVRER and Fluid dataset, we per-

form evaluation using an object divergence metric, whereby the centroid positions

of objects contained in the observed scene are compared between predicted and

ground-truth sequences. This allows us to have an image quality-invariant eval-

uation of object positional prediction over time, reflecting a key aspect of under-

standing hierarchical event structure. For each predicted timestep during inference,

the centroid position of each object in the image frame is compared to its ground

truth position via 2D Euclidean pixel distance. A rolling average pixel divergence

up to t timesteps is taken as the Divergence score up to t, with lower indicating

closer prediction to ground truth. We normalise scores assuming a 128 × 128 resol-

ution to allow for fair comparison. For our main results, we evaluate using t = 50.
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It is worth noting that the CLEVRER dataset involves frames in which moving

objects appear from outside of view, and therefore are not predictable and not

considered for object divergence scores. Additionally, the Fluid dataset contains

groups of many particles which collide; we consider the centroid of each group for

tracking purposes.

5.5.3 Positional Encodings

We experiment with multiple positional encoding schemes for our model. A com-

mon approach to providing positional information to each token input is to modify

the input representation with absolute positional embeddings for each token, e.g.,

in the form of a periodic sinusoidal function, or a Learnable Positional Encoding

(LPE) via a parameterised embedding trained jointly with the model (Zhang et al.,

2022). Relative embeddings via positional lookup tables are used in Raffel et al.

(2020), and Rotary Positional Embeddings (RoPE) (Chowdhery et al., 2023; Touv-

ron et al., 2023) perform rotational operations on the query and key self-attention

matrices, using angular values from absolute positions. We experiment with APE,

RoPE, and LPE for both spatial and temporal encodings (e.g., Eq. (5.5)).

5.5.4 Self-attention Strategies

We experiment with three different spatiotemporal self-attention strategies (illus-

trated in Fig. 5.3) for the middle space-time layers (the Global Space-Time Block

in Fig. 5.2(a)), namely local-space + local-time (LS+LT), global-space + self-time

(GS+T), and global-space + local-time (GS+LT). While reducing the patch-wise

receptive field at each layer, local self-attention operations benefit from linear com-

plexity scaling relative to image resolution and choice of patch size P . Addition-

ally, we test the impact of adding register tokens to the input patches as described

in Section 5.4. We experiment with four learnable register tokens, shared across

timesteps. Via preliminary testing we find that a patch size P = 8 performs better

than P = 16 (used in the original ViT work). Increasing the patch size beyond

this becomes parameter inefficient with no observed increase in performance, while
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reducing patch size below P = 8 degrades performance alongside prohibitively high

memory usage. Finally, we test the impact of model scale, with Table 5.3 detailing

the configurations of each.

5.5.5 Training Setup

For all experiments and model configurations, training is performed using the Adam

optimiser (Kingma and Ba, 2015) with a learning rate set at 3 × 10−5, a weight

decay factor of 1 × 10−4, and a batch size of 32. These parameters were selected

following a thorough evaluation of hyperparameters across various datasets and

models. Each model is trained using the SSIM loss function (experiments using

other loss functions were conducted, with SSIM generalising best to all datasets),

with input pixel values normalised to the range [0, 1]. We train each model for a

maximum of 500 epochs. For all setups, we use patch-wise Gaussian noise applied

to a random subset of image patches, due to significant improvements in reducing

error propagation during inference. For simplicity, we do not include any additional

data augmentation techniques. All models are trained on an NVIDIA A100 GPU.

5.5.6 Existing Approaches

We compare our method against state-of-the-art video prediction approaches (model

parameter sizes in brackets). For latent-space baselines, we use: a) MAGVIT

(300M) (Yu et al., 2023), which tokenises clips with a 3-D VQ-VAE and reconstructs

them non-autoregressively via masked-token prediction with a Transformer; b) Lat-

ent Diffusion Transformer Open-Sora (1B) (Zheng et al., 2024), whose Transformer

denoiser learns spatiotemporal dynamics directly on compressed video latents; and

c) CV-VAE (160M) (Zhao et al., 2024), a continuous 3-D video VAE made com-

patible with pre-trained image VAEs for efficient spatiotemporal latent modelling.

Additionally, we benchmark against SimVP (33M) (Gao et al., 2022), a convo-

lutional encoder–decoder that autoregressively forecasts pixels without recurrence

or attention. We follow the original authors’ training protocols for each baseline

wherever possible.
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Table 5.3: Model Configurations.

Model Global ST Layers Heads Model dim. D Head dim. FFN dim. Param.

PSViT small 8 12 512 64 2048 49M
PSViT medium 12 12 512 128 2048 84M

These four baselines span key design paradigms of modern video prediction: latent

vs. pixel space, and non-autoregressive, autoregressive, and diffusion Transformer

architectures, allowing for a broad comparison regarding the ability to capture

hierarchical physical dynamics.

148



5.5.6.
E

xisting
A

pproaches

Table 5.4: Video Prediction Results and Divergence Scores. Divergence scores assess the model’s ability to predict object trajectories accurately
over time.

Divergence (t = 50) ↓

Approach Roller Moon Pendulum 3D Balls Fluid CLEVRER Avg

PSViT Attn. Strategy
- LS + LT 1.52 2.20 2.08 5.83 2.54 6.01 3.36
- GS + LT 1.32 2.17 1.94 5.41 2.31 5.30 3.08
- GS + T 1.30 2.18 1.92 5.41 2.28 5.28 3.06

PSViT Pos Encoding
- APE 1.41 2.18 2.03 5.57 2.34 5.71 3.21
- RoPE 1.30 2.16 1.97 5.37 2.24 5.41 3.08
- LPE 1.28 2.17 1.92 5.28 2.25 5.41 3.05

CV-VAE (160M) (Zhao et al., 2024) 1.18 2.10 1.98 5.35 2.88 5.29 3.13
Diffusion Transformer (1B) (Zheng et al., 2024) 1.20 2.14 2.06 5.42 2.95 5.35 3.19
MAGVIT (300M) (Yu et al., 2023) 1.17 2.20 2.12 6.02 2.54 5.40 3.24
SimVP (33M) (Gao et al., 2022) 1.19 2.12 2.04 5.39 2.93 5.32 3.16
PSViT small (49M) 1.28 2.17 1.92 5.28 2.25 5.41 3.05
PSViT medium (84M) 1.18 2.06 1.84 5.10 2.04 5.18 2.90

SSIM ↑

MAGVIT (Yu et al., 2023) 0.9996 0.9996 0.9993 0.9943 0.9654 0.9803 0.9901
SimVP (Gao et al., 2022) 0.9996 0.9996 0.9994 0.9946 0.9674 0.9839 0.9908
PSViT medium 0.9998 0.9997 0.9997 0.9961 0.9752 0.9951 0.9943

PSNR ↑

MAGVIT (Yu et al., 2023) 59.70 56.56 55.59 50.99 47.03 50.76 53.44
SimVP (Gao et al., 2022) 58.42 56.60 55.36 50.53 48.23 50.21 53.23
PSViT medium 59.78 56.63 56.57 53.91 47.19 53.30 54.56
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5.6 Results

The following section evaluates our proposed PSViT model for autoregressive video

prediction, presenting comparisons with existing approaches, the impact of input

context size, and qualitative assessment of model outputs. All results are evaluated

using held-out test sets for each dataset and model.

5.6.1 Video Prediction Results

Our full set of results for video prediction on the simulation datasets are presented

in Table 5.4. As well as object divergence (lower is better), we report image qual-

ity metrics SSIM (a perception-based index that compares luminance, contrast,

and structure to approximate human-judged fidelity), and PSNR (a decibel-scale

measure based on the mean-squared error that quantifies reconstruction quality).

Further details and a comparison can be found in Horé and Ziou (2010). SSIM and

PSNR scores (higher is better for both) are an average over the first 5 output frames,

while divergence scores are taken after 50 output timesteps. All scores are test set

averages, with the best average performance for each comparison in bold. We first

consider PSViT attention strategy comparisons, finding that GS+T and GS+LT

space-time attention schemes perform significantly better than LS+LT across the

board, clearly showing that reducing the receptive field for each spatial attention

operation is detrimental for these datasets. Restricting temporal attention to the

same patch location (the +T scheme) has very little difference in performance

compared to global temporal attention, with the benefit of linear complexity with

regard to sequence length. The difference is most apparent for the more visually-

complex 3D datasets (3D balls and CLEVRER), implying much better performance

at stable object prediction up to this time horizon while handling increased visual

complexity. Learned spatial positional encodings (LPE) provide a clear benefit

across the majority of datasets compared to existing encoding techniques adapted

from language modelling (APE, RoPE). Example model outputs representative of

the median performance for object divergence are shown in Fig. 5.4 for the CLEV-
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Figure 5.4: Sample outputs from our PSViT model on the Fluid and CLEVRER
datasets, conditioned on 12 input frames, alongside ground truth comparison. In-
termediate timestep outputs are not shown. These examples illustrate the model’s
ability to generate complex, evolving scenes.

RER and Fluid datasets. We observe accurate object trajectories and interactions

of multiple objects relative to ground truth frames up to t = 30, after which we

observe deviations from target object positions. Fig. 5.5 shows example outputs

for the Roller, Moon, and 3D Balls datasets, where a similar observation is made,

with accurate predictions of object trajectories (a key hierarchical dynamic) up to

t ≈ 30.

When considering different model scales and the addition of parameterised register

tokens, we observe a performance increase across all tasks. Perhaps unsurprisingly,

increasing model size has a bigger performance impact on the 3D datasets when

compared to the 2D physics simulations, suggesting that the increased paramet-

erisation is necessary for handling the increase in visual complexity rather than

solely for learning PDE dynamics.

Fig. 5.6 compares performances at each output timestep across datasets for di-

vergence, L1, SSIM, and PSNR. More generally, we note a large relative drop in

performance (higher divergence) for the 3D and CLEVRER datasets over longer ho-
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Figure 5.5: Sample outputs from our PSViT model on the Roller, Moon, and 3D
Balls datasets, conditioned on 12 input frames, alongside ground truth comparison.
Intermediate timestep outputs are not shown. Each example shown is representat-
ive of the median divergence performance for each dataset, illustrating the model’s
ability to capture accurate physical trajectories.

rizons. Interestingly, this difference in sustained physical accuracy is not captured

as markedly by standard L1, SSIM, and PSNR metrics, suggesting that including

our object divergence metric is an important factor in determining model perform-

ance regarding the understanding of underlying physical hierarchies. All tasks show

low object divergence up to t ≈ 20, with the 2D simulation datasets maintaining

slightly better coherence for longer. The divergence rate for the Roller, Moon,

and Pendulum datasets appears to correlate with the number of underlying PDE

variables; the Pendulum dataset, having five PDE variables, performs the worst

in terms of divergence, compared to the Roller dataset with two. Considering the
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Figure 5.6: Model performance metrics over time for (a) Object divergence , (b)
L1 Error, (c) PSNR, and (d) SSIM. All simulations are run with an input-frame
context size of 12 timesteps, self-conditioned up to 80 timesteps of output frames.
Object Divergence scores are a taken as a median of rolling averages over all test set
sequences, reflecting the model’s ability to maintain object trajectory coherence.

relatively high performance of the Fluid dataset given its visual complexity, we

attribute this to lower variance between samples in terms of overall flow patterns,

where object interactions (particle group collisions) typically occur near the centre

of the image.

5.6.2 Comparing Input Context Sizes

We experiment training our model with different fixed input context sizes, shown

in Fig. 5.7. The impact of additional context frames differs significantly between
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Figure 5.7: Comparison of different input context sizes for each dataset using the
PSViT model. Object divergence scores are taken after 50 timesteps of autore-
gressive prediction. Scores are an average over the test sets.

tasks. Interestingly, we see that the maximum context size does not achieve the best

performance for three of the datasets studied, indicating a limitation on handling

increased context length, or perhaps that shorter contexts are sufficient for these

simpler PDE dynamics. We find that the number of context frames has a significant

impact on the timestep at which divergence from ground truth begins to occur, but

does not necessarily impact the rate of divergence past this point. The significant

reduction in divergence between 4 and 8 frames of context for the Fluid dataset is

expected due to the high number of objects being modelled and the complexity of

their spatiotemporal interactions.

5.6.3 Comparison with Existing Approaches

We compare our approach with recent state-of-the-art models covering different

paradigms in video prediction, namely MAGVIT (Yu et al., 2023), SimVP (Gao

et al., 2022), Latent Diffusion Transformer (Zheng et al., 2024), and CV-VAE (Zhao

et al., 2024). Fig. 5.8 compares object divergence performance between four models

on the Roller, Moon, Pendulum, and 3D Balls datasets. Both sizes of our PSViT

154



5.6.3. Comparison with Existing Approaches0 15 30 45 60 75
Timestep

0

4

8

12

16

Di
ve

rg
en

ce

3D Balls

MAGVIT SimVP PSViT-small PSViT-medium

0 15 30 45 60 75
Timestep

0

4

8

12

16

Di
ve

rg
en

ce

3D Balls

(a)

0 15 30 45 60 75
Timestep

0

4

8

12

16

Di
ve

rg
en

ce

Moon

(b)

0 15 30 45 60 75
Timestep

0

4

8

12

16

Di
ve

rg
en

ce

Roller

(c)

0 15 30 45 60 75
Timestep

0

4

8

12

16
Di

ve
rg

en
ce

Pendulum

(d)

Figure 5.8: Object divergence performance over time comparing our model (PS-
ViT ) and existing approaches (MAGVIT and SimVP), on the (a) 3D Balls, (b)
Moon, (c) Roller, and (d) Pendulum datasets. Lower divergence indicates better
adherence to physical trajectories.

model perform significantly better (lower divergence) across the first 50 timesteps

in comparison to SimVP and MAGVIT, with the exception of the 3D Balls dataset

where all models have similar performances. We attribute this to the relatively

simple dynamics of the 3D Balls dataset, as all objects share a constant velocity

across all sequences (only size and initial trajectory are varied). The most notable

difference is the timestep at which divergence begins to increase compared to both

existing approaches, with our approach significantly increasing the time horizon of
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Table 5.5: Video prediction performance on BAIR and Moving MNIST

Approach BAIR (FVD ↓) Moving MNIST (SSIM ↑)

SimVP (Gao et al., 2022) 67.1 0.948
MAGVIT (Yu et al., 2023) 62.4 0.938
CV-VAE (Zhao et al., 2024) 63.6 0.945
Diffusion Transformer (Zheng et al., 2024) 61.0 0.950
PSViT-medium (ours) 64.1 0.963

accurate prediction of these hierarchical trajectories on all datasets by up to 50%.

Averaged over all datasets, Table 5.4 shows both scales of our approach perform

favourably for Divergence scores against all comparisons, especially considering the

parameter differences to models such as the Diffusion Transformer.

In addition to the physical simulation datasets, we also compare our model on

two common video prediction benchmark datasets, BAIR and Moving MNIST.

Results are detailed in Table 5.5. Fréchet Video Distance (FVD) (Unterthiner

et al., 2019) is used for the BAIR dataset. We observe competitive performance of

our model on the BAIR probabilistic dataset, although the latent space approaches

outperform both ours and SimVP on FVD. For the Moving MNIST dataset, the

latent space approaches perform worse on SSIM. This reaffirms that while latent

models can produce high-quality video generation needed for stochastic datasets

such as BAIR, they may fall short in terms of consistent physical coherence over

time when compared to models directly predicting in pixel space.

5.6.4 Qualitative Assessment

We perform a qualitative analysis of model outputs over time, and where they be-

gin to fall short and diverge from the true spatiotemporal evolution of the scene.

Fig. 5.5 shows example model outputs from the visually-simpler physics simulation

datasets. Our model is clearly capable of preserving the shape and colour of objects

over time, regardless of divergence to ground truth. Prediction errors in the spa-

tiotemporal dynamics begin to appear at the later timesteps; for instance, in the

3D Ball scenario shown, there are clear inconsistencies between the shadows of the

colliding objects. The same is true for the CLEVRER and Fluid examples shown
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Figure 5.9: Randomly selected model predictions from the Moving MNIST dataset
conditioned on 4 input frames using PSViT Medium. For each sample, top rows
are ground truth and bottom rows are model outputs, visualised at timesteps t.
The model maintains digit identity and trajectory, key aspects of spatiotemporal
hierarchy.

in Fig. 5.1 and Fig. 5.4, where fine-detail errors increase in late output timesteps,

although shadows and object reflections appear to be modelled successfully. Addi-

tionally, distortions in shape and incorrect modelling of object rotation following

collisions (a higher-order hierarchical interaction) are notable. The Moving MNIST

examples shown in Fig. 5.9 illustrate correct positioning of the characters, though

finer details are smoothed out over time. Additional model output sequences are

included in Appendix 5.9.

5.7 Discussion and Structural Analysis

In the following section, we investigate the representations learned by the patch-

wise spatial and temporal self-attention layers to understand how PSViT internal-

ises hierarchical spatiotemporal information. Each of these structures is responsible

for attending to information across a range of temporal and spatial hierarchies. We

assume the GS+T self-attention scheme throughout the remainder of this section.

We investigate how these layers attend to information at different model depths,

and what sequence-specific, potentially hierarchical, information can be extracted
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Figure 5.10: (a) Visualisation of learned image-patch spatial positional encod-
ings showing cosine similarity between patches.(b) Layer-wise spatial self-attention
head weightings on CLEVRER, Moving MNIST, and Fluid datasets, with activa-
tions normalised by median patch distance scores, such that 0 is the query patch,
and 1 is the most distant patch. (c) Attention activation heatmaps on example
outputs for individual spatial (top, correlated with object interactions) and tem-
poral (bottom, correlated with object velocity) self-attention heads.

from these representations.

5.7.1 Spatial and Temporal Reasoning

Fig. 5.10(a) visualises the learned patch-wise spatial positioning encodings. We

observe that the learned positioning encodings do not learn image-symmetrical

representations for patches, such that patch-wise similarity does not necessarily

scale linearly with patch distance. This can be observed in the corner and edge

patch encodings, which show higher similarity to other edge patches than the middle
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patches, despite being further away. This is a learned distinction that a sinusoidal

absolute encoding would not provide, suggesting a beneficial property for patches

to explicitly encode edge-aware information directly into the embeddings, which

could be a precursor to identifying more complex spatial hierarchies.

Determining how structural hierarchical information is encoded is an important

step in model interpretability. Highlighting the information processed at different

model depths can aid in understanding decision making and the internal reasoning

processes of the model. To this end, Fig. 5.10(b) shows a heatmap of the relative

spatial self-attention distances at each layer and each attention head of the model.

We show test-set averages for the CLEVRER, Moving MNIST, and Fluid datasets.

We calculate this as the median distance over image patches to which each patch

is attending, averaged over all patches. Intuitively, this is the average attended

receptive field per head, indicating the scale of spatial hierarchy being processed.

We observe a general trend of increased receptive field between the middle and

final layers of the model. For instance, the CLEVRER example shows high spatial

receptive field concentrated in the middle layers, with smaller receptive fields in

the shallow and deep layers. A much broader distribution is observed for the

Fluid dataset with an increased receptive field throughout the model, though the

middle and deeper layers attend to more distant patches, likely reflecting the more

distributed nature of fluid dynamics.

5.7.2 Attention Head Mechanisms

In Fig. 5.10(c) we visualise the activation maps for a single spatial (top) and tem-

poral (bottom) attention head on the 3D ball and Roller datasets, respectively, to

understand their role in processing hierarchical events. In the top row, we isolate

an attention head correlating with object collisions (a key hierarchical interaction):

activation is high when the larger ball collides with the box boundary (t = 10),

and when the two balls approach and collide (t = 20, t = 30), followed by reduced

activation over these patches post-collision. Additionally, we identify a temporal

self-attention head highly correlated with object velocity on the Roller dataset (bot-
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Figure 5.11: Visualisation of register spatial attention activations from randomly
selected model outputs on the CLEVRER dataset. The focus on moving objects
suggests registers capture high-level dynamic elements of the scene’s hierarchy.

tom). We observe attention head activity on patches containing the moving object,

where later timesteps are attended to with increased object velocity, suggesting an

encoding of this dynamic aspect of the event hierarchy.

Fig 5.11 shows spatial attention activations for register tokens averaged over all

layers, clearly highlighting attention focus on moving objects. This supports the

hypothesis that register tokens learn to capture and store information about salient,

high-level dynamic elements within the scene’s spatiotemporal hierarchy.

5.7.3 PDE Dynamics Information Probing

In this section, we examine the internal representations of the space-time layers of

our PSViT model to uncover the encoding and extractability of sequence-specific

PDE parameters. These parameters, which define the underlying physical laws,

represent a form of abstract hierarchical knowledge crucial for accurate object pre-

diction over time and for understanding the model’s generalisation capabilities. We

train linear probes on top of frozen intermediate representations extracted from

each layer of our PSViT model to determine what information about these govern-
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Table 5.6: Parameter estimation probing results for PSViT-small, showing Mean
Absolute Error (MAE) for predicting underlying PDE parameters (Gravity G or
Mass M) from layer representations. Lower MAE indicates better recovery of the
PDE parameters. Results are averaged across datasets.

Regression Error (MAE) ↓

Model Depth Roller (G) Pendulum (G) Moon (M) Average

Layer 1 0.47 0.52 0.63 0.54
Layer 2 0.21 0.34 0.45 0.33
Layer 3 0.20 0.31 0.42 0.31
Layer 4 0.16 0.27 0.32 0.25
Layer 5 0.17 0.24 0.29 0.23
Layer 6 0.21 0.30 0.33 0.28
Layer 7 0.35 0.41 0.47 0.41
Layer 8 0.62 0.78 0.80 0.73

Concatenation (all layers) 0.15 0.25 0.32 0.24
Scalar mixing (all layers) 0.15 0.28 0.30 0.24
Registers (all layers, concatenated) 0.14 0.20 0.19 0.18

In-distribution best 0.14 0.18 0.19 0.17
Out-of-distribution best 0.16 0.22 0.24 0.21

Baseline (random model) 0.83 0.90 0.91 0.88

ing parameters is extractable. We also experiment with non-linear estimators to

explore the limits of what can be learned from internal representations.

Table 5.6 reports our probing results for parameter estimation. We perform grav-

ity estimation on the Roller and Pendulum datasets, and mass estimation on the

Moon Orbit dataset. All probing results are an average over a held-out test set of

1,000 sequences. Baseline scores are taken from a randomly initialised equivalent

model. Layers used for individual layer probing are the global space-time layers.

We observe that for all three tasks, middle-layer representations (Layers 4-5) are

most capable of facilitating the extraction of these PDE parameters, with later

layers performing worse, presumably as these layers are closer to the output pixel

regression layer and thus are more concerned with image generation than abstract

parameter representation. Interestingly, we clearly see that the register tokens en-

code a high degree of this sequence-specific information, as we observe the best

overall performance for 2 of the 3 tasks when probing concatenated register token

representations from all layers. This, together with the improved video prediction

performance when including register tokens (Table 5.4), highlights their value for

capturing and utilising high-level PDE information and spatiotemporal context.
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Finally, we include probing tests on out-of-distribution parameter ranges not seen

during training (details of these ranges can be found in Appendix 5.9). We see only

a small increase in MAE averaged over each dataset, from 0.17 (in-distribution)

to 0.21 (out-of-distribution), suggesting strong generalisation of the learned PDE

dynamics and therefore a genuine internalisation of these hierarchical physical prin-

ciples rather than mere memorisation of training instances.

5.7.4 Limitations

For three of the simulation datasets, increasing PSViT model size from small to

medium has minimal impact on long-horizon divergence performance, though it

improves on standard metrics. Further experiments would be needed to show the

impact of larger scale models on these more challenging physical reasoning as-

pects. For stochastic video-generation results on BAIR (evaluated by FVD), our

approach falls short compared to latent space models, suggesting higher quality

image synthesis with those approaches for such data. This is supported by our

qualitative findings that object shapes, although positioned accurately, can dis-

tort over time, particularly when rotation is involved. Furthermore, by perform-

ing end-to-end training, we do not benefit from the large-scale pre-trained image

encoders/decoders often employed by latent space models, which might excel at

perceptual fidelity. It remains to be seen if our pixel-space approach can benefit

from similar large-scale visual pre-training.

5.8 Conclusion and Future Work

In this chapter, we explored the application of a pure Transformer model, PS-

ViT, for end-to-end autoregressive video prediction, emphasising a simple and

interpretable approach to understanding how such models might learn hierarch-

ical spatiotemporal dynamics. Our model leverages several carefully optimised

hierarchical priors, including its U-Net style architecture and specific spatiotem-

poral self-attention layouts, designed to improve the model’s capacity for spati-
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otemporal reasoning, without requiring complex multi-stage training or dedicated

latent feature-learning components. We have shown that PSViT can achieve an

improved horizon for physically accurate prediction (by up to 50%) on PDE-driven

simulation datasets compared to existing latent-space approaches, while maintain-

ing competitive performance on standard video quality metrics and benchmarks

like Moving MNIST. Furthermore, our interpretability studies, including attention

analysis and probing for PDE parameters, indicate that the model does internal-

ise significant hierarchical information about the underlying physical dynamics of

the scenes, rather than simply memorising pixel patterns. We identified specific

network regions and register tokens that correlate with spatiotemporal events and

encode sequence-specific PDE parameters, even generalising to out-of-distribution

parameter values. This high degree of interpretable, internalised hierarchical reas-

oning, combined with the model’s relative architectural simplicity and effectiveness,

highlights the benefit of an end-to-end approach for investigating how Transformers

learn from video. This work serves to further our understanding and refinement

of attention-based spatiotemporal modelling techniques for tasks requiring deep

hierarchical understanding of video content.

Future work will involve developing more sophisticated approaches for evaluating

the nuances of physical accuracy beyond object-based pixel distance, which is lim-

ited in its application to more complex, non-object-centric dynamics. Additionally,

training at larger model scales to accommodate datasets with higher resolution,

increased visual fidelity, and greater physical complexity would be a valuable next

step. This research paves the way for further focus on simple and effective spati-

otemporal modelling, and on building more accurate and interpretable generative

models for video content involving complex hierarchical physical systems.

5.9 Epilogue

This chapter has widened the thesis lens from linguistic hierarchies in sentences

(Chapter 3) to spatiotemporal hierarchies in video, demonstrating that hierarchical
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structure again emerges as a key organising principle inside a Transformer, even

when processing raw pixel data. Layer-wise analyses and probing of our PSViT

model revealed concrete forms of learned hierarchy relevant to physical dynamics:

• Spatial → temporal → sequence abstraction. Early blocks encode local

patch geometry; mid-blocks bind patches across frames to track object mo-

tion; late blocks and dedicated register tokens distil sequence-level variables

such as gravitational constant or mass. Linear probes successfully recover

these abstract parameters, even when they are out-of-distribution, indicating

genuine internalisation of hierarchical physical principles.

• Register-token memory for global context. Dedicated learnable tokens

were shown to accumulate global context and concentrate physical-parameter

information, confirming that Transformers can to store high-level hierarchical

variables when provided with an appropriate architectural mechanism.

• Attention-controlled scale separation for robust prediction. By al-

ternating local and global attention heads within a U-Net like hierarchy, the

model learns to pass coarse layout information upwards while retaining fine

detail near the image-reconstruction layers. This architectural prior for hier-

archical processing extended physically correct prediction horizons signific-

antly over latent-space baselines.

These results echo and extend the findings from Chapter 3: hierarchy is not an

artefact of language alone but a general property that Transformers can discover

and internalise. This chapter has thus provided further evidence regarding our

first research question (how and where hierarchy is internalised, now in the visual

domain) and touched upon the second by showing generalisation of these learned

physical parameters beyond the training data distributions. Having investigated

this phenomenon in two key modalities, we now move in Chapter 6 to (our final)

research question 3: testing whether a single next-frame prediction objective can

induce compatible and shared hierarchical representations across diverse modalities

like text, image, video, and audio, thereby advancing towards the goal of unified,

hierarchy-aware multimodal systems.
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Appendix

A. Qualitative Outputs

Fig. 5.12 shows CLEVRER example outputs where objects appear from out of

view. We observe that, although object position may appear correct, object rota-

tion is often poorly modelled, particularly following a collision. Fig. 5.13 contains

examples of the Fluid dataset, and Fig 5.14 shows examples of the Roller, Moon,

Pendulum, and 3D Balls datasets.

Figure 5.12: Example outputs from our PSViT model trained on the CLEVRER
dataset, containing objects entering the scene partially or mostly obscured.
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Figure 5.13: Example outputs from our PSViT model trained on the Fluid dataset.
Examples shown are randomly sampled.

B. Parameter Range Details for Probing

Table 5.2 in the main text provides the specific in-distribution and out-of-distribution

ranges used for the PDE parameter estimation probing tasks for the Roller (Grav-

ity), Pendulum (Gravity), and Moon (Mass) datasets. These out-of-distribution

ranges were selected to be adjacent to, but not overlapping with, the ranges seen

during the model’s training phase, to test for true generalisation of the learned

physical principles.
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Figure 5.14: Example outputs from our PSViT model trained on the Roller, Moon,
Pendulum, and 3D Balls datasets, annotated with object tracking positions. Ex-
amples shown are randomly sampled.
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Chapter 6

Multimodal Multi-Task

Hierarchical Reasoning

Building upon our explorations of hierarchical structures in language (Chapter 3)

and vision (Chapter 5), this final empirical chapter addresses our third research

question: whether a single hierarchical framework can unify diverse modalities

such as text, image, video, and audio. We investigate this by reformulating a range

of multimodal tasks into a common next-frame prediction problem on a shared

visual canvas. This unified input is processed by a single autoregressive Trans-

former, adapted from the PSViT architecture (introduced in Chapter 5), thereby

avoiding modality-specific encoders and late-fusion mechanisms. Our central aim is

to determine if this approach can enable the model to learn both modality-specific

sub-hierarchies (e.g., for language or visual events) and their effective integration

into a cohesive, cross-modal hierarchical understanding. This chapter demonstrates

the viability of such task reformulation, presenting evidence of competitive per-

formance on several benchmarks and analysing how the model appears to develop

multi-stage, cross-modal hierarchical representations. These findings offer insights

into creating more universal, hierarchy-aware AI systems and conclude the main

investigative arc of this thesis.

The chapter proceeds as follows. Section 6.1 further introduces the motivation for

a unified multimodal approach and details this chapter’s specific contributions to-
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wards developing systems capable of learning shared hierarchical abstractions. We

then review relevant literature in multimodal learning, task reformulation, next-

frame prediction, and the visual representation of text in Section 6.2. Section 6.3

describes the diverse task reformulation strategies for various modalities and the

adaptation of the PSViT architecture for this unified framework, along with train-

ing specifics. The empirical results across a range of multimodal tasks, including

an analysis of attention mechanisms to probe cross-modal hierarchical understand-

ing, are presented in Section 6.4, which also discusses the limitations of this initial

exploration and avenues for future work.

6.1 Introduction

Having explored hierarchical reasoning in unimodal contexts (language in Chapter 3;

video in Chapter 5), we now address the challenge of extending these principles to

multimodal settings, a key component of our third research question. The ability

to process and integrate information from multiple modalities such as text, image,

audio, and video has proven crucial for a range of complex tasks, including cross-

modal retrieval (Wang et al., 2024), visual question answering (Wu et al., 2017;

Zou and Xie, 2020; Lu et al., 2023), and caption generation (Agarwal and Verma,

2023). The capacity to understand and reason about information from different

sensory inputs simultaneously mirrors human perception and cognition, making

the development of effective multimodal models essential for advancing artificial

intelligence towards more generalised and versatile capabilities.

The predominant approach to building multimodal models involves using separ-

ate encoders for each modality. For example, in vision-and-language models, a

CNN or a vision transformer (ViT) (Dosovitskiy et al., 2021) might be used to en-

code images, while an RNN or another Transformer is used to encode text. These

modality-specific encoded representations are then fused at a later stage, typically

via concatenation or attention mechanisms, to enable the model to perform joint

reasoning. While effective for specific tasks, this paradigm has inherent limita-
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tions. It necessitates careful design choices for each modality and often struggles

with scalability and flexibility, especially when extending to new combinations of

modalities or tasks not seen during training (Baltrušaitis et al., 2018; Li et al., 2021;

Jaegle et al., 2021), potentially hindering the development of a more integrated and

potentially universal mechanism for learning shared hierarchical representations.

To address these challenges, we propose a novel approach centred around task

reformulation. Task reformulation is a well-established paradigm in NLP that

facilitates multitask learning by transforming diverse tasks into a common format

(McCann et al., 2018). A prominent example is prompt-based learning, where

NLP tasks are reimagined as instructions or prompts to a generative LLM. This

paradigm allows a wide range of NLP tasks, such as translation, summarisation,

and question answering, to be represented uniformly in a chat message format

(OpenAI, 2023). By doing so, it leverages the generalisation capabilities of large

pre-trained models, enabling them to perform multiple tasks with minimal task-

specific customisation. Our work seeks to find a similar common framework for

studying how hierarchical reasoning principles apply and transfer across different

modalities.

In this work, we extend the concept of task reformulation beyond NLP to the

realm of multimodal learning. Specifically, we propose a framework in which tasks

across various modalities are reformulated as a unified next-frame prediction prob-

lem. This approach simplifies the design of multimodal models by enabling them

to handle diverse input types — text, images, audio, or video — using a single,

coherent mechanism. By representing all tasks as next-frame prediction, we create

a shared interface for the model to learn and reason about information across mod-

alities. This not only facilitates the integration of new modalities with minimal

effort but also enhances the model’s ability to transfer knowledge across different

tasks and domains. Ultimately, analogous to how LLMs serve as foundation models

for NLP, our aim is to explore whether this unified predictive framing can foster

the development of foundational models capable of learning shared hierarchical

abstractions across diverse modalities.
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The main contributions of this chapter are as follows:

• We propose a task-reformulation method and demonstrate how a range of

multimodal tasks can be represented as next-frame prediction in a common

visual canvas.

• We explore how this reformulation allows a single Transformer-based model,

adapted from the PSViT architecture (Chapter 5), to solve text, image, video,

and audio processing tasks without any modality-specific input encoders.

• Demonstrating viable multimodal learning and evidence of emer-

gent cross-modal hierarchical representations: Our experimental res-

ults show that this unified model achieves competitive performance compared

to single-task models trained under similar conditions. Furthermore, our

analysis of its internal mechanisms, particularly attention patterns, provides

initial evidence for the development of shared, multi-stage hierarchical rep-

resentations that integrate information across diverse modalities.

6.2 Related work

Multimodal Learning With the rise of Transformers, LLMs, and very large-

scale pre-training, new paradigms for harmonising different modalities have been

pushed to the forefront of multimodal learning. UNITER (Chen et al., 2019) uses

a single universal Transformer to process both image and text inputs into a joint

embedding space, with image representations prepended to the beginning of the

input embeddings to the Transformer. However, the image inputs are first pro-

cessed by an RNN to obtain an embedding such that it is compatible with the

textual inputs. Our framework, in contrast, has no need to preprocess input mod-

alities differently as they are unified into a single visual input space, theoretically

capable of fully representing all multimodal interactions using a single backbone

architecture (adapted from PSViT, Chapter 5) to process these reformulated in-

puts, encouraging the learning of shared hierarchical features. Baevski et al. (2022)
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propose data2vec, a framework for instilling features from multiple modalities into

a single latent representation. Where data2vec seeks to process raw text, images,

and audio using the same method, our work here reformulates the task inputs

from multiple modalities into the same visual input medium. UniT (Hu and Singh,

2021), a multimodal multitask Transformer, uses separate encoders for each mod-

ality followed by a shared decoder. Our work uses a single visual encoder (as part

of the unified PSViT architecture) for our unified visual input paradigm. The

most powerful state-of-the-art multimodal models such as FLAVA (Singh et al.,

2021) and GPT-4V(ision) (OpenAI, 2023) integrate vision inputs via a patch-wise

processing pipeline through a visual Transformer fully integrated into the training

pipeline. Both the architectural design and scale at which these foundation models

are trained yield revolutionary performance at a variety of open-ended multimodal

tasks. Nonetheless, though these foundation models are the closest that bench-

marks have practically come to seamlessly integrating images with textual inputs,

fundamentally the input modalities are often handled by distinct initial processing

stages before fusion. Our work here aims to bridge this remaining gap by refor-

mulating typically supra-visual tasks into a visual input domain with no loss of

information (i.e., text and audio can be fully represented as image sequences).

This reformulation allows us (for the first time, to the best of our knowledge) to

explore the generative pre-training capacity for multimodal information within one

truly unified representational and predictive framework.

Task Reformulation Task reformulation involves enabling a single model to

solve multiple tasks by converting them into a single ‘supertask’. This technique

is common in NLP, where a range of tasks such as sentiment classification and

coreference resolution have been reformulated as span-extraction (Keskar et al.,

2019), or question answering (McCann et al., 2018), among others.

The recent trend of prompt-based learning uses language modelling on prompt-

answer sequences as the ‘supertask’ (OpenAI, 2023). In this paradigm, the model

is trained to follow an instruction describing the task and provide a response. In this
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way, any NLP task can be reformulated as the language modelling ‘supertask’. In

our work, we extend this concept, exploring how next-frame prediction can be used

as a ‘supertask’ to unite multiple modalities and foster the learning of transferable

hierarchical representations.

Next-frame Prediction CNN-based deep learning architectures for the autore-

gressive generation of future video frames have been steadily improving over the last

decade (Ranzato et al., 2014; van Amersfoort et al., 2017; Yilmaz and Tekalp, 2021;

seok Seo et al., 2023). Transformer-based models trained at scale, such as Video-

GPT (Yan et al., 2021), have substantially improved the performance, quality, and

fidelity of long and short-term future frame predictions. Modern diffusion-based

frame prediction models are now able to generate photorealistic outputs (Gupta

et al., 2023). Our aim in this work is not to propose a new state-of-the-art video

prediction architecture itself, but rather to leverage a capable autoregressive frame-

work (based on PSViT from Chapter 5) as a testbed for our task reformulation and

analysis of multimodal hierarchical learning.

Visual Representation of Text Inspired by the success of unsupervised next-

word prediction with language models, learning the next pixel of images was pro-

posed (Chen et al., 2020) and shown to be able to learn image representations.

Learning textual semantics with vision models, by rendering text into images, has

drawn increasing attention (Rust et al., 2022; Tai et al., 2024; Gao et al., 2024) due

to the drawbacks of tokenisation in traditional language models and limitations in

cross-lingual transferability. Xiao et al. (2024) show that vision models pre-trained

on rendered images have stronger robustness to typo and word-order shuffling per-

turbations, and their representations display better isotropy on out-of-distribution

(OOD) languages. In this work, we extend this approach when reformulating NLP

tasks to video, as well as for other modalities which output text, as part of our

unified visual canvas.
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6.3 Method

Our proposed framework consists of two key components: (1) methods for refor-

mulating a diverse range of input and output modalities into the single task of

next-frame prediction; and (2) a pure Transformer-based model architecture adap-

ted for this unified task. We introduce these components in the following sections.

6.3.1 Reformulation

The datasets we use are carefully selected to cover a diverse range of input and out-

put modalities, illustrating the versatility of our approach in reformulating various

tasks as next-frame prediction problems. Our selection spans tasks from text and

image classification to more complex audio, video, and multimodal tasks, enabling

us to evaluate the model’s ability to generalise across different data types and task

requirements. By converting each task into a uniform format: a 64×64 RGB video

sequence, we create a consistent framework where the model treats every input

and output as sequential frames, simplifying the multimodal learning process and

providing a basis for learning shared hierarchical representations. For each task,

we insert a separator token (|) rendered as a distinct frame between the input and

output frames to clearly delineate where the input ends and the prediction begins.

In tasks involving textual data, we use a simple tokeniser (splitting on spaces

and also on punctuation) to break down the text into individual tokens, which

we then render as video frames in the sequence. Each token is represented in a

consistent format: a fixed-width font scaled to fill the 64×64 frame, ensuring clarity

and compatibility with our video-based input structure. This approach allows the

model to read and predict text as it would any other frame, effectively bypassing

the need for traditional text-based tokenisation while integrating text seamlessly

with other modalities. By converting each token to a visual format, we enable

cross-modal knowledge transfer, allowing the model to process text, images, and

other modalities through a shared, frame-based learning paradigm.
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Text-to-Text The SST2 dataset (previously used in Chapter 3 for ancestor sen-

timent classification and probing) is a widely-used benchmark for sentiment clas-

sification, consisting of thousands of movie review excerpts labelled with binary

sentiment labels (positive or negative) (Socher et al., 2013). We use the text-

encoding method described above, rendering each token as a video frame using a

fixed-width font (Figure 6.1).

unflinchingly<pad> bleak and desperate | negative

Figure 6.1: Truncated example of the SST2 sentiment dataset rendered as a video.
Each square is a frame of the video sequence.

Image-to-Text As a simple test of image recognition ability, we employ the

CIFAR-10 dataset. CIFAR-10 is a benchmark for image classification and con-

sists of 60,000 colour images, each with dimensions of 32 × 32 pixels (Krizhevsky

et al., 2009). These images are equally divided into ten distinct, mutually exclusive

classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

| dog
Figure 6.2: Truncated example of the CIFAR10 image classification dataset
rendered as a video. Each square is a frame of the video sequence.

In our reformulation approach, each CIFAR-10 image is resized to 64 × 64 pixels

to fit our standardised input frame size. Following the resized image, we insert a

separator frame, which visually signifies the end of the input and the beginning of

the output sequence, followed by a frame containing the class label text rendered

as an image (Figure 6.2).

Video-to-Text We utilise the TinyVIRAT action classification dataset to rigor-

ously assess the model’s capacity for understanding video content (Demir et al.,
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| activity carrying, walkingactivity

Figure 6.3: Truncated example of the TinyVIRAT video classification dataset
rendered as a video. Each square is a frame of the video sequence.

2021). The TinyVIRAT dataset comprises 7,663 training and 5,166 testing ex-

amples, each annotated with one or more of 26 distinct action labels that describe

the activities depicted within low-resolution video sequences. This dataset is par-

ticularly noteworthy for its multi-label nature, allowing for nuanced action recog-

nition; for instance, a video sequence might feature a man walking while carrying a

backpack, which would be simultaneously labelled with both “walking” and “car-

rying” actions. This characteristic enables the evaluation of the model’s ability

to recognise and differentiate between overlapping actions occurring in dynamic

environments. As discussed in the background Chapter on hierarchical reasoning

in video (§ 2.4.3), establishing the correct high-level action classification requires

identifying these simpler sub-actions, together forming a spatiotemporal hierarchy.

To reformulate the task for next-frame prediction, we represent each video sequence

by first presenting the input video frames, followed by a separator token frame, and

concluding with a comma-separated list of action labels (rendered as text frames)

that correspond to the activities depicted in the video (Figure 6.3).

Video+Text-to-Text To explore the integration of multiple modalities within

a single input, we leverage the CLEVRER (CoLlision Events for Video REpres-

entation and Reasoning) dataset (as previously explored in Chapter 5 for video

prediction of colliding objects), which is designed for video question answering

(VQA) (Yi et al., 2019). This dataset comprises synthetic video sequences depict-

ing rendered 3D objects interacting through collisions, movements, and occlusions

within a simple, controlled environment. Each video is paired with questions that

require the model to understand and reason about these visual events. The ques-

tions in CLEVRER span various reasoning tasks, including descriptive, explanat-

ory, and predictive questions about the events in the video, such as identifying
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Whatshape leaves scene sphere?the |
Figure 6.4: Truncated example of the CLEVRER task rendered as a video. Each
square is a frame of the video sequence.

|
Figure 6.5: Truncated example of the colorization task rendered as a video. Each
square is a frame of the video sequence.

specific objects, understanding object interactions, and predicting future states.

In our framework, we represent each question and corresponding video as a uni-

fied sequence of frames. Each input sequence begins with frames of the CLEV-

RER video sequence subsampled to 4 frames. This is followed by the question

text (rendered as frames), the separator token frame, and finally the answer text

rendered as frames (Figure 6.4). Similarly, we use the frame QA task from the

TGIF-QA dataset (Jang et al., 2019), containing animated GIFs with QA pairs.

To keep the sequence length manageable, we exclude complex counterfactual ques-

tions and multiple-choice answers from the CLEVRER dataset (using only the

‘descriptive’ subset), as these would require additional frames and could lead to

overly long sequences that complicate training. Correctly answering questions con-

cerning observed object interactions over time requires sophisticated understanding

and encoding of spatiotemporal events.

Video-to-Video We employ two tasks to test video-to-video performance. Firstly,

we convert the TinyVIRAT videos into greyscale and test the model’s ability to col-

ourise the output. The sequence consists of the greyscale-converted video sequence,

the separator frame, then the original RGB video sequence (Figure 6.5).

Additionally, we test the model’s ability to perform object tracking. The Large-

scale Single Object Tracking dataset (LaSOT) consists of 1,550 video sequences

hand-annotated with bounding boxes following an object of interest (Fan et al.,
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|
Figure 6.6: Truncated example of the LaSOT object tracking task rendered as a
video. Each square is a frame of the video sequence.

2019). We reformulate this task by converting it into a sequence which consists of

the first frame of the video with the bounding box overlayed, the rest of the input

video sequence, the separator frame, and finally the full video sequence including

the overlayed bounding box for all frames (Figure 6.6).

Audio-to-Text To demonstrate the ability to process audio data, we utilise the

AudioMNIST dataset, which contains 30,000 audio recordings of spoken digits ran-

ging from zero to nine (Becker et al., 2024). These recordings are spoken by mul-

tiple speakers with varying accents and intonations, providing a diverse dataset

that challenges the model to recognise and classify spoken language across differ-

ent vocal characteristics.

In our framework, each audio sample is preprocessed into a spectrogram, which is

used as the first frame in the video sequence, representing the audio content visually

for consistency with other modalities. Following the spectrogram, a separator token

frame is added, and the label digit is represented in the final frame as text (Figure

6.7). This structured sequence allows the model to interpret audio information in

a form similar to visual or textual data, enabling it to predict the spoken digit

without using a specialised audio encoder.

6.3.2 Video Prediction Model

We adapt the PSViT architecture, introduced and detailed in Chapter 5 (§ 5.4),

for all tasks in this chapter. This allows us to leverage a consistent Transformer-

based framework designed for end-to-end video processing directly in pixel space.

The core principles of PSViT, including its U-Net style structure for capturing

multi-scale features and its patch-based spatiotemporal self-attention mechanisms,
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| 3
Figure 6.7: Example of the AudioMNIST audio classification dataset rendered as
a video. Each square is a frame of the video sequence.

are retained. This continuity allows us to investigate whether a model architecture

shown to learn hierarchical physical dynamics in unimodal video can extend its

capabilities to learn shared hierarchical representations across diverse modalities

when presented through a unified next-frame prediction task.

Briefly, the adapted PSViT model takes as input a sequence of T video frames,

where each frame is a C × H × W tensor (here, 64 × 64 RGB frames). Each frame

is partitioned into non-overlapping patches, which are linearly embedded. The

sequence of embeddings is then processed by a series of Transformer blocks em-

ploying spatiotemporal self-attention. Spatial self-attention operates within each

frame, while causal temporal attention operates across frames for corresponding

patch locations, ensuring autoregressive prediction. The U-Net style architecture

involves patch merging and unmerging operations to process features at differ-

ent resolutions, facilitating the capture of hierarchical information. The model is

trained end-to-end to predict the next frame in the sequence.

6.3.3 Training Details

We train our adapted PSViT model on each dataset independently, with no lan-

guage model or image pre-training on external large-scale datasets, to determine

the feasibility of our task reformulation approach and the model’s capacity to learn

from scratch within this unified framework. We train end-to-end with a Multi-

Scale Structural Similarity Index Measure (MS-SSIM) loss (Wang et al., 2004),

with a constant learning rate of 3 × 10−4, and a batch size that varies per task
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Task Input Len Target Len Batch Size

Text Classification 21 1 16
Image Classification 2 1 128
Video Classification 11 1 16
Audio Classification 2 1 256
Video QA 21 1 16
Object Tracking 21 20 8
Video Colorization 11 10 16

Table 6.1: Training configurations for each task. Input/Target Lengths are in
number of frames.

(Table 6.1) depending on sequence length and memory constraints. We use the

AdamW (Loshchilov and Hutter, 2017) optimiser using default parameters, and

set dropout to 0.1 for all layers except the final output layer. All models are eval-

uated on checkpoints corresponding to the best MS-SSIM validation performance,

with all models trained on a single NVIDIA A100 GPU for a maximum of 7 GPU

days. The input/output lengths and batch sizes are detailed in Table 6.1.

6.4 Experiments

We train our adapted PSViT model on each task independently (we leave train-

ing on all tasks jointly in a multitask setting as future work). For tasks that

output text, we perform Optical Character Recognition (OCR) on the generated

output frames using the open-source Tesseract OCR engine∗. For tasks that have a

fixed vocabulary (e.g., classification tasks), the OCR text is matched to the closest

vocabulary word using Levenshtein distance to minimise OCR-related errors. For

classification tasks, the resulting text is evaluated using F1-score and Accuracy.

The object tracking task is evaluated by extracting the bounding box in the output-

ted frames (rendered as a distinct colour) and then comparing these to the labelled

boxes using Intersection over Union (IoU).

For video colorisation, we evaluate both the colorisation performance and temporal

consistency across the video sequence. Measuring both is particularly important
∗https://github.com/tesseract-ocr/tesseract
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here, as the model could achieve consistency by simply repeating the greyscale input

sequence as the output. To this end, we measure both PSNR and the colorfulness

measure proposed in Liu et al. (2024) which serves as a simple measure of colour

diversity. Finally, we use the Colour Distribution Consistency index (CDC) (Liu

et al., 2024) to evaluate the temporal consistency of the output sequence. CDC

computes the Jensen-Shannon (JS) divergence of the colours between a temporal

offset of t frames:

CDCt = 1
3 × (Nframes − t)

∑
c∈{r,g,b}

Nframes−t∑
i=1

JS(Pc(Ii), Pc(Ii+t))

where Nframes is the video sequence length and Pc(Ii) is the normalised probability

distribution of frame Ii on colour channel c, calculated from the image histogram.

To measure colour consistency over a range of time intervals, the overall measure

is:

CDC = 1
3(CDC1 + CDC2 + CDC4).

6.5 Results

The results across each task are presented in Table 6.2, while Figure 6.8 and Fig-

ure 6.9 illustrates several sample outputs produced by our model, offering a qual-

itative perspective on its performance.

For the SST-2 text classification task, our model achieves an F1-score of 76.8.

Although this is lower than the state-of-the-art performance of 91.3 reported by

Zhong et al. (2023), that result was achieved using extensive pre-training and com-

plex fine-tuning processes. Our model is trained directly on the reformulated SST-2

dataset without any external pre-training, making its performance more compar-

able to other models trained from scratch or simpler baselines (e.g., BERT-base

trained from scratch on SST-2 often yields accuracy around 80-85%, though direct

F1 comparison varies). Some portion of this lower score can also be attributed to

truncating inputs over 20 tokens (limiting the evaluation to shorter inputs of 20

tokens or fewer increases the F1-score to 80.0).
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Task Dataset Model PSNR ↑ SSIM ↑ F1 ↑ Acc ↑ IoU ↑ CDC ↓ Colorfulness ↑

Text Classification SST-2 Ours (PSViT adapted) 41.8 0.987 76.8 75.5 - - -
BERT-base (from scratch baseline) - - - 81.2 - - -
Vega v1 (Zhong et al., 2023)† - - 91.3 - - - -

Image Classification CIFAR-10 Ours (PSViT adapted) 45.7 0.959 89.1 89.1 - - -
ViT-base (from scratch baseline) - - 71.3 71.3 - - -
ResNet-101 (from scratch baseline) - - 90.0 90.0 - - -
PCANet (Chan et al., 2015) - - 77.1 77.1 - - -
ViT-huge (Dosovitskiy et al., 2021)† - - 99.5 99.5 - - -

Video Classification TinyVIRAT Ours (PSViT adapted) 50.1 0.973 74.1 (30.4*) 60.4 - - -
ResNet50† - - 29.1* - - - -
WideResNet† - - 32.6* - - - -

Audio Classification AudioMNIST Ours (PSViT adapted) 50.9 0.989 96.9 97.1 - - -
AlexNet (Becker et al., 2024) - - - 95.8 - - -

Video QA CLEVRER Ours (PSViT adapted) 25.7 0.798 52.4 52.5 - - -
LSTM (Yi et al., 2019)† - - - 34.7 - - -
+ CNN (Yi et al., 2019)† - - - 51.8 - - -

TGIF-QA Ours (PSViT adapted) 42.0 0.985 53.2 52.3 - - -
LSTM + Attn (Jang et al., 2019) - - - 51.9 - - -

Object Tracking LaSOT Ours (PSViT adapted) 35.7 0.987 - - 0.63 - -

Video Colorization TinyVIRAT Ours (PSViT adapted) 42.4 0.997 - - - 0.02 73.1

Table 6.2: Performance metrics across various tasks using our proposed next-frame prediction framework with an adapted PSViT model.
Metrics include Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), F1-score and Accuracy (F1, Acc), Intersection over
Union (IoU), Colour Distribution Consistency index (CDC), and Colorfulness, each tailored to evaluate specific task outputs. *Macro F1-
score used for TinyVIRAT to allow direct comparison with baseline models. †indicates models with pre-training on other datasets or different
architectural components not used in our “from scratch” end-to-end setup.188
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Figure 6.8: Sample outputs from our next frame prediction model across multiple modalities. The model receives frames to the left of the
red line as input and everything right of the red line has been generated by the model. Tasks in order (top to bottom): Audio Classification,
Image Classification, Text Classification, Video Colorization, Video Object Tracking, Video QA, Video Classification (bottom 3 rows)
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On the CIFAR-10 image classification task, our model attains an accuracy of 89.1.

While this score is lower than fine-tuned ViT models leveraging large-scale pre-

trained weights, which can reach accuracies near 99.5 (Dosovitskiy et al., 2021),

our model, trained from scratch on CIFAR-10 alone, performs significantly better

than early deep learning models like PCANet (77.1 accuracy (Chan et al., 2015))

and is competitive with ResNet architectures of moderate size when also trained

from scratch on CIFAR-10 (e.g., ResNet-101 from scratch is around 90-92%). This

performance suggests that our reformulation approach enables the model to learn

effective image classification capabilities without specific image pre-training.

In multi-label video classification on the TinyVIRAT dataset, our approach suc-

cessfully outputs multiple labels per instance, achieving an F1-score of 74.1 (unnor-

malised) and 30.4 (macro F1, for comparison with baselines). This surpasses the

ResNet50 baseline (29.1 macro F1) but does not reach the level of the WideResNet

model (32.6 macro F1) reported by Demir et al. (2021), both of which are strong

vision-specific architectures.

On the AudioMNIST audio classification task, the model achieves an accuracy

of 97.1, surpassing the AlexNet baseline score of 95.82 from the original dataset

paper (Becker et al., 2024). This notable improvement demonstrates the model’s

efficacy in audio-based classification tasks when audio is represented visually as

a spectrogram. Analysis of misclassifications reveals that the most frequent error

involves confusion between the spoken digits “four” and “five”, suggesting areas for

potential refinement in distinguishing phonetically similar sounds.

For the CLEVRER VQA (Visual Question Answering) dataset, our model achieves

an accuracy of 52.5 on descriptive questions. This performance surpasses both the

LSTM (34.7) and LSTM+CNN (51.8) baselines reported by Yi et al. (2019), illus-

trating our model’s ability to understand relationships between visual and textual

information within the unified framework. It is important to note that due to hard-

ware limitations and the long question lengths, we subsampled the video to only

four frames and reduced the resolution to 64×64, significantly limiting the accuracy

achievable by our approach compared to models trained on full data. On TGIF-QA,
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we achieve 52.3% accuracy, comparable to the 51.9% from an LSTM+Attention

baseline (Jang et al., 2019).

In the LaSOT object tracking task, the model reaches an intersection over union

(IoU) of 0.63, demonstrating a consistent ability to track objects throughout video

sequences. Analysis of tracking outputs reveals that the model effectively follows

the object of interest across frames with accurately drawn bounding boxes. How-

ever, tracking accuracy diminishes slightly toward the end of longer sequences,

with the borders of the overlaid bounding box eroding, likely due to autoregressive

pixel-level error propagation.

On the video colorisation task with TinyVIRAT, our model shows improved col-

our diversity in the generated outputs compared to the ground truth (73.1 colour

diversity for our model versus 70.6 in the original dataset). However, it exhibits

less consistency in colour application across the video sequence (0.0169 CDC for

our model versus 0.00522 in the original dataset, where lower CDC is better). This

trade-off suggests that while our approach introduces a more vibrant colour palette,

further refinement could improve temporal coherence.

6.5.1 Attention Maps

To examine what is being learned by our unified model, we visualise internal patch-

wise attention scores both spatially (within a frame) and temporally (between

frames) in Figure 6.9.

In the TinyVIRAT video classification task, the model pays most attention to the

object/person performing the action, as well as frames and pairs of frames which

indicate the class. In the first example (top row), spatial attention focuses on image

patch locations containing the edges of the car which suggest relative movement,

and temporal attention is highest for the final two frames in which the vehicle

moves position, indicating the label “vehicle moving” should be output.

For colorisation, the greatest attention is paid to the first frames of the input

sequence, which we suggest allows the model to produce consistent colouring across
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Figure 6.9: Attention visualisations showing where the model attends both spatially
(indicated by light/dark areas overlaid on the frame) and temporally (indicated by
a colour scale above the sequence). Spatial attention scores are calculated by taking
the patch-wise contribution per frame, averaged over all layers. Temporal attention
scores are calculated by taking the temporal attention weights for each input frame
when generating the target frames, averaged over all global space-time attention
layers. These maps offer insights into how the model integrates information across
modalities and time to perform hierarchically complex tasks.

the whole sequence (more attention is also paid to the first frame of the output

sequence, presumably to maintain colour consistency). Spatially, the model clearly

attends to key moving objects and areas of distinct colour.

In the CLEVRER examples, we see how the model is able to focus on question

frames which contain key words needed to produce the output, such as “colour” and

“metal”. Within the moving object scene frames, we see how the model spatially

attends to objects and their trajectory paths, correctly identifying objects such as

“the metal cylinder” and “the sphere”.

Lastly, for sentiment text classification, we observe a similar pattern to atten-

tion maps in LLMs, where the model pays more attention to words with a strong
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emotive sentiment. In our model, we see frames containing the words ‘nightmare’,

‘painful’, and ‘dumb’ exhibiting high temporal attention weightings, as they are

strong indicators of the overall sentiment of the review. These patterns suggest an

emergent division of labour where the model first processes unimodal features be-

fore integrating them into higher-level, cross-modal, and task-relevant hierarchical

representations.

6.5.2 Limitations and Future work

The aim of this work is not necessarily to surpass state-of-the-art performance on

any of the individual tasks, but rather to demonstrate that unifying these diverse

modalities and tasks via a common next-frame prediction framework is feasible,

achieving competitive performance relative to task-specific baselines trained under

similar from-scratch conditions. Future work should aim to scale this approach,

improving performance and tackling more complex tasks. We suggest that this

can be done by mirroring the improvements gained from pre-training in NLP and

computer vision, by first training the model on unstructured, self-supervised next-

frame prediction tasks across a vast corpus of mixed-modality data. Tasks such as

language modelling (rendered as text frames) and general video/image completion

could be naturally reformulated as next-frame-prediction and included in such a

pre-training paradigm. This is especially important as a large portion of the current

training time on tasks such as classification and question answering is dedicated to

learning to output words as images rather than solely focusing on the core reasoning

aspect of the task. Beginning with a checkpoint already pre-trained on generating

diverse visual frame sequences (including rendered text and spectrograms) would

likely mitigate this and allow the model to better focus on learning the higher-level

hierarchical relationships required for complex multimodal tasks.

OCR can fail when text is complex or when generation introduces artefacts such

as blur, or compression. To evaluate the idea rather than OCR behaviour, we

use simple, high contrast, upright sans serif text at sufficient size and we verified

correct recognition across the full dataset vocabulary. In our pipeline the cost grows
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with the number of frames and with the number of spatial tokens per frame, so

temporal and spatial dimensions compound, whereas in text models length is one

dimensional in tokens. Because outputs are images, inference includes rendering

and OCR, which adds latency and makes exact string evaluation less direct than

token decoding. Increasing the output resolution improves OCR legibility but also

raises memory and compute costs roughly quadratically with image size. It can

slow both training and inference, and may require retuning the patch size.

6.6 Conclusion

In an era increasingly dominated by large foundation models, the trend is to-

wards more unified, end-to-end systems capable of handling diverse tasks and

modalities without task-specific components. In this chapter, we introduced a

novel multimodal learning framework that reformulates various tasks from differ-

ent modalities into a unified next-frame prediction paradigm, processed by a single

Transformer architecture adapted from the PSViT model (Chapter 5). This ap-

proach addresses critical limitations in current multimodal model designs, which

often require modality-specific encoders and are limited in scalability and flexib-

ility when adapting to new tasks. By unifying diverse multimodal tasks under

a single framework, our model can handle text, image, audio, and video inputs

without modality-specific input encoders, significantly simplifying the design and

training process for learning shared hierarchical representations. We have shown

it is possible to train such a model to solve these tasks from scratch, with many of

them achieving performance comparable to, or exceeding, baseline models trained

without large-scale external pre-training data.

Ultimately, our work aims to lay the groundwork for building more generalised and

efficient multimodal foundation models, contributing to research question 3 of this

thesis. It points towards systems that can process and understand information from

diverse modalities through a common predictive lens, potentially learning shared

hierarchical abstractions in a unified and scalable way.
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6.7 Epilogue

This chapter demonstrated that a single Transformer architecture, employing the

principles of the PSViT model from Chapter 5 and trained only with a next-frame

prediction objective, can successfully process and reason over tasks spanning text,

images, video, and audio without recourse to modality-specific encoders. Instead

of a clear layer-wise separation of features, our analysis of the model’s internal

mechanisms (particularly its cross-modal attention) suggests a different kind of

emergent structure. The model learns to create a shared representational space

where it can dynamically align and compose information from different modalities.

For instance, to solve a visual question answering task, the model was observed at-

tending simultaneously to key instruction words rendered as text frames and to the

corresponding, semantically relevant objects in the video frames. This ability to

form on-the-fly, task-relevant connections between disparate data types is a power-

ful form of relational reasoning, indicating the development of an internal strategy

for building a cohesive, cross-modal understanding via end-to-end “from scratch”

training. This emergent strategy of cross-modal alignment, while different in form

from the layer-wise hierarchies observed in Chapters 3 and 5, reinforces the central

theme of this thesis. It demonstrates that when presented with complex, struc-

tured data, Transformers find ways to build hierarchical understandings. In this

case, composing meaning from different modal parts to form a cohesive whole. The

evidence accumulated throughout this thesis suggests that the learning and util-

isation of hierarchical representations are not artefacts of any single domain but

constitute a recurring and fundamental characteristic of how Transformer models

process complex, structured information. This demonstration of a unified frame-

work capable of inducing cross-modal hierarchical understanding directly addresses

research question 3.

The final chapter, Chapter 7, will revisit the findings from all our empirical invest-

igations, and discuss their implications for the design, scaling, interpretation, and

safe deployment of future hierarchy-aware foundation models.
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Chapter 7

Discussion & Concluding

Remarks

7.1 Contributions

This thesis set out to discover how hierarchical information is learned, encoded, and

represented inside Transformer networks, driven by three central research ques-

tions: (1) How and where do foundation models internalise hierarchical structures?

(2) What is the relationship between this internalisation of hierarchy and beha-

viours like generalisation versus memorisation? (3) How can insights into hierarch-

ical reasoning guide the development of more unified, robust, and interpretable

multimodal systems? Through a series of empirical investigations spanning lan-

guage, video, and multimodal tasks, we have uncovered regularities and proposed

practical tools for studying and shaping how Transformers engage with hierarchical

structure. The main innovations are summarised by chapter below:

Chapter 3. Hierarchical Information in Contextual Representations This

chapter aimed to address our first research question:

• We introduced ancestor-level probes that require a single token embedding

to predict labels for increasingly distant syntactic or sentiment parents, re-
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vealing how different levels of linguistic hierarchy emerge layer-by-layer within

models.

• We showed across four Transformer families that bidirectional models tend to

concentrate this hierarchical information near the top of the network, whereas

autoregressive and permutation-masked models distribute it more evenly, an

architectural bias that persists even after fine-tuning.

Chapter 4. Hierarchy in Language Model Memorisation Focusing on our

second research question, this chapter investigated the interplay between useful

hierarchical learning and detrimental memorisation:

• We demonstrated that verbatim leakage during fine-tuning often spikes before

validation perplexity or task accuracy plateaus, and proposed an n-gram

partial-memorisation score that reliably predicts which samples are at

imminent risk of being leaked.

• We leveraged this signal to develop two practical defences: an early-stopping

rule that cuts leakage by approximately 50% at minimal performance cost,

and an n-gram-aware loss regulariser that can reduce leakage by a further

40%, promoting the learning of generalisable structures over verbatim mem-

orised recall.

Chapter 5. Spatiotemporal Reasoning in Video Here, we extended our in-

quiry into hierarchy internalisation to the visual domain and laid groundwork rel-

evant to multimodal systems:

• We introduced PSViT, a Transformer whose architecture incorporates several

hierarchically-aware priors and optimisations, including a U-Net style

structure and a tailored spatiotemporal attention layout, which were selected

through extensive ablation studies to best capture physical dynamics. This

model outperforms latent-space baselines on physical-simulation benchmarks,

extending physically accurate prediction horizons by up to 50%.
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• Using layer-wise object-tracking probes and parameter regression, we showed

that abstract physical parameters (e.g., gravity, mass), which govern the

hierarchical evolution of scenes, are most linearly recoverable from mid-layers,

echoing the mid-layer abstraction peak observed for linguistic hierarchy in

Chapter 3.

Chapter 6. Multimodal Multi-Task Hierarchical Reasoning This chapter

directly addressed our third research question, demonstrating that principles of

hierarchical reasoning can extend to, and help unify, multimodal understanding:

• We established the viability of reformulating diverse tasks (spanning text,

image, audio, and video) into a single next-frame prediction super-task

on a common visual canvas. This approach enabled a single adapted PSViT

model, operating without modality-specific encoders, to achieve competitive

performance across seven benchmarks, indicating the development of effective

shared internal representations necessary for such cross-modal proficiency.

• Our analysis of the model’s attention mechanisms revealed an emergent strategy

for compositional reasoning. We observed attention patterns similar to those

in our unimodal models, where the system learned to dynamically align key

instruction words in text frames with corresponding, semantically-relevant

objects in video frames. This suggests our task reformulation was effective,

and demonstrates that the architectural principles of PSViT, designed to cap-

ture hierarchy, can successfully generalise to guide the model in building a

cohesive, cross-modal understanding from the ground up.

Together, these studies shine a light on how Transformers engage with hierarchical

structure. Whether processing language (Chapter 3) or visual dynamics (Chapter 5),

we observe that causal Transformers first gather local features; then organise them

into more abstract, domain-specific hierarchical representations in their middle lay-

ers; and finally compress these into task-relevant decisions or generations at their

output layers. This emergent hierarchical processing is detectable, and can be influ-
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enced by architectural choices and training regimes. The work in Chapter 6 revealed

this same underlying principle in a new form. Its emergent strategy of cross-modal

alignment, while different from the layer-wise hierarchies observed previously, rein-

forces the central theme of this thesis. It demonstrates that when presented with

complex, structured data, Transformers consistently find ways to build hierarch-

ical understandings: in this case, by composing meaning from different modal parts

to form a cohesive whole. This emergent processing, whether layered or compos-

itional, appears to be a fundamental characteristic of how these models achieve

generalisation across diverse and complex data.

7.2 Limitations and Future Work

While this thesis offers several insights, each empirical chapter also presents limit-

ations that suggest avenues for future research.

Chapter 3. The probing tasks relied primarily on the Stanford Sentiment Tree-

bank and English Penn Treebank-style syntax, which limits the linguistic diversity

of our findings. Future work should extend ancestor probing to morphologically

rich languages, different syntactic formalisms (e.g., dependency grammar, math-

ematical problems, coding), and broader discourse structures.

Chapter 4. Leakage was measured under greedy decoding using datasets of up

to 5, 000 samples. Different decoding strategies (e.g., beam search, temperature

sampling) or industrial-scale fine-tuning datasets may exhibit different memorisa-

tion dynamics. Scaling the n-gram-aware loss regulariser to operate efficiently on

hundreds of billions of tokens, perhaps via low-rank adaptation methods or more

selective n-gram tracking, remains an open engineering challenge.

Chapter 5. PSViT was evaluated at 128 × 128 resolution and predominantly on

deterministic physical simulations. Larger-scale models, more complex stochastic
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environments, and real-world video (e.g., depicting human actions with uncon-

strained camera motion) will be necessary to test the generalisability of the phys-

ical abstraction capabilities we observed. Integrating a differentiable renderer could

also allow for translating mid-layer object and dynamics codes into symbolic physics

engines for more direct interpretability.

Chapter 6. The multimodal model was trained separately for each task. True

joint multitask training on a diverse corpus of reformulated multimodal data might

better foster the emergence of shared hierarchical representations and could po-

tentially close the remaining performance gap with specialist systems. Further-

more, rendering long text sequences or high-fidelity audio into 64 × 64 frames is a

somewhat crude representation; exploring hierarchical or vector-graphic encodings

within the visual canvas could allow for richer information transfer per token or

sound segment.

Across chapters. Our analyses predominantly used linear or shallow non-linear

probes. Understanding how more complex mechanisms interact with learned hier-

archies, and, more fundamentally, whether the identified hierarchical representa-

tions are causally responsible for downstream task success or specific model beha-

viours, calls for more sophisticated interventions and mechanistic analysis.

7.3 Epilogue

Over the lifecycle of this thesis, the community has gone from marvelling at the

contextual capabilities of BERT; to an era dominated by commonplace usage of

generative models like GPT-4. Throughout this time, the impact of model scale

has been unavoidable: “more data, more parameters, better scores”. The work

presented in this thesis does not dispute the empirical success of scaling, but it

argues that size alone is not the whole story. Across four empirical chapters and

three distinct modalities, we have observed a different, fundamental force at work:

the emergent organisation of raw input streams into nested, reusable hierarchical
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abstractions, and we have learned that attending to this force can grant practical

improvements for interpretability, safety, and performance.

Hierarchy is structural, not merely statistical. Our layer-wise probes in

language (Chapter 3) and PDE-driven video (Chapter 5) consistently uncovered a

multi-stage pattern of information processing. In these unimodal contexts, local

features are captured at the bottom layers, more structured and abstract concepts

emerge in the middle layers, and task-specific decisions are finalised at the top.

While our multimodal investigation in Chapter 6 did not focus on layer-wise ana-

lysis, it revealed a different but equally important form of structural organisation:

a compositional hierarchy, where the model dynamically aligned and composed

features across modalities to build a cohesive understanding.

These findings reflect a deep inductive bias of the Transformer architecture when

processing structured data, rather than being a quirk of any single training corpus.

This directly informs our first research question on how and where hierarchy is

internalised. Consequently, designers of future foundation models may wish to

consider the middle layers identified in our unimodal studies as crucial interfaces:

deep enough to have distilled useful abstractions, yet potentially accessible enough

for diagnosis, steering, or extracting interpretable representations.

Remembering with care requires understanding structure. The same

powerful capacity that builds useful hierarchies can also lead to the memorisa-

tion of personal, identifiable, or sensitive text, posing significant risks. Chapter 4

approached memorisation not as an inevitable side effect but as something which

could be mitigated with simple optimisation, where partial n-gram echoes often

precede verbatim reproduction. Detecting this progression enabled the develop-

ment of simple yet effective defences: early stopping based on n-gram overlap and

a lightweight n-gram-aware loss regulariser, that substantially reduce leakage while

largely preserving task accuracy. This helps address our second research question,

demonstrating that interpretability (of internal structure related to n-grams) and

safety (mitigating memorisation) are not necessarily opposing goals; understanding
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internal learning dynamics can directly inform concrete mitigations, promoting the

generalisation of useful structures over memorised learning.

Prediction as a common language for multimodal hierarchy. Re-encoding

text, audio, and imagery as inputs to a single next-frame prediction task initially

seemed like an ambitious experiment. However, as shown in Chapter 6, it proved

to be a viable approach. Without modality-specific encoders, our adapted PSViT

model handled seven diverse benchmarks. More importantly, analyses of its atten-

tion mechanisms suggested the formation of cross-modal alignments that mirrored

the hierarchical processing seen within unimodal language and video contexts. This

way of learning, which emerged naturally from the unified predictive task, mirrors

the hierarchical patterns we observed in our earlier unimodal studies of language

(Chapter 3) and video dynamics (Chapter 5). This consistency across different con-

texts strongly supports our third research question, highlighting that the ability to

learn and use hierarchical representations is a fundamental principle not limited to

any single type of data. By requiring the model to find common rules to predict

the next visual frame for all these varied data streams, the next-frame prediction

approach appears to actively encourage the discovery of shared, deeply structured

ways of understanding. This insight is a step towards developing AI systems that

are truly general and unified in their capabilities.

Open horizons. Several lines of inquiry naturally extend from this work:

• Scaling interpretability of hierarchy. The probes used here were primar-

ily linear. Richer causal intervention techniques could reveal whether the

observed hierarchical representations are not just correlated with, but are

prerequisites for, robust generalisation and specific emergent capabilities.

• Energy and data efficiency through hierarchy. If mid-layer hierarchical

abstractions are indeed stable and transferable across model sizes or tasks,

could smaller, specialised models inherit them through knowledge distilla-
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tion or parameter-efficient adaptation techniques, leading to more efficient

systems?

• Ethics at the abstraction boundary. Controlling what models remem-

ber and generalise becomes even more complex when inputs mix private text,

personal images, and other sensitive data streams. Developing regularisers

or training methodologies that operate on conceptual or hierarchical abstrac-

tions, rather than just surface-level tokens or pixels, to ensure privacy and

fairness is a critical open research agenda.

Transformers will certainly continue to grow larger; supporting increasingly com-

plex data structures and modalities. Whatever form the next generation of found-

ation models takes, the evidence gathered in this thesis argues that their success,

safety, and interpretability will increasingly depend on how well we understand,

measure, and respect the hierarchical structures those networks inevitably build. If

we can achieve this, and make the analysis of structural understanding and hier-

archical reasoning as central to our engineering practices as training loss curves

and benchmark evaluation scores, then we can move a step closer towards devel-

oping AI systems that reason, remember, and create with the layered discipline,

robustness, and generality characteristic of natural intelligence itself.

Dean Lewis Slack

Department of Computer Science

Durham University, United Kingdom

May 2025
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