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Abstract

This paper reviews solution methods for solving linear rational expectations models divided into

three categories, then discusses the existence, uniqueness and discontinuity of the model solu-

tions, and reviews a regularization method to solve the discontinuity problems of the solution

to linear rational expectations model.
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1 Introduction

When policy rules change, economic agents adjust their behavior accordingly. Lucas (1976)

points out that traditional empirical regression models fail to incorporate such behavioral ad-

justment mechanisms and therefore fail to be used as reliable and stable tools for policy analysis.

This critique spurred the development of rational expectations theory, with its core idea, as Muth

(1961) indicates, that the economic agents use their understanding of the economic structure

when forming expectations about the future, and their expectations are consistent with reality

in a statistical sense. Such models built on this foundation are known as rational expectations

models, requiring expectations to be generated endogenously within the model rather than be-

ing imposed exogenously. However, since rational expectations introduce intertemporal variables

(such as inflation and output), the resulting model structures become highly complex. To pre-

serve the rational expectations assumption while maintaining operational tractability, researchers

typically linearize the model structure, giving rise to linear rational expectations model (LREM).
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As an important subclass of dynamic stochastic general equilibrium (DSGE) models, LREMs

are widely used in economics to describe the dynamic evolution of economic variables over time.

LREMs can be represented in various forms, but their fundamental assumption is consistent:

under the rational expectations hypothesis, all such models incorporate the behavior of eco-

nomic agents, who optimize their decisions based on expectations of future economic variables.

Typically, as Whiteman (1984) suggested, an LREM is usually expressed by a system of linear

dynamic equations that include lagged variables and forward-looking expectations to describe

the evolution of variables over time. The model also includes shock terms modeled as white

noise or other stochastic processes, to capture the impact of exogenous shocks on the economic

system. LREM generally includes two types of endogenous variables: predetermined variables,

which are determined by past decisions and reflect the ”inertia” of the economy (such as capital

deposit); non-predetermined variables (or jump variables), which can be adjusted immediately

by expectations about the future to satisfy the equilibrium conditions (such as prices or interest

rates). The exogenous variables in LREM are given externally and are independent of the cur-

rent state of the model, such as random shocks (e.g., technology) or policy variables.

The solution to an LREM is a dynamic path whereby the endogenous variables both satisfy

the model structure and form their rational expectations in a mutually consistent manner at

each step. This solution is not determined by a single equation but rather by the constraints

of the entire system, the expectation structure, stability requirements, and initial conditions.

An LREM may have multiple solutions, meaning that under a given set of parameters, multiple

distinct trajectories can satisfy the model equations. Alternatively, an LREM may have a unique

solution, where a well-defined mechanism for expectation formation ensures that the behavior of

endogenous variables is uniquely determined given the exogenous shocks. In this case, economic

agents do not deviate from equilibrium due to incorrect expectations, and the unique solution

serves as a determinate and stable tool for policy analysis. Policymakers are therefore partic-

ularly concerned with the conditions for uniqueness. Simultaneously, some LREM may have

no solutions at all. Since Blanchard and Kahn (1980) proposed the classic stability conditions

for LREMs, numerous alternative methods have been developed to solve these models such as

Anderson and Moore (1985), King and Watson (1998) , Klein (2000), Sims (2002), Binder and

Pesaran (1999) and Uhlig (1995). Currently, there are few papers that systematically review so-

lution methods for LREMs. A representative paper is Anderson (2008), but it primarily focuses

on emphasizing the advantages of the Anderson and Moore (1985).

For models that satisfy the Blanchard-Kahn conditions, these methods produce equivalent

solutions in the time domain, the difference lies in their respective core ideas. Despite their

respective advantages, these methods invariably expose a fundamental challenge in LREM so-

lutions: non-uniqueness. If the solution to LREM is not unique, there exist multiple (or even

infinite many) dynamic paths that simultaneously satisfy all the equations constraints of the
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given model. Using the thought of Shell (1989), different paths may correspond to different

macroeconomic dynamics, and the equilibrium state my depend on ”beliefs” beyond expecta-

tions (known as ”sunspot equilibria”, see p.274 of Shell (1989)). Therefore, policymakers fails

to uniquely predict which equilibrium the economic agents will coordinate on, leading the policy

analysis ambiguous and even ineffective.

When there are multiple solutions for an LREM, these solutions form a high-dimensional

linear subspace. One must select a solution from this subspace for further analysis. If this

selection is arbitrary, then even small changes in the model parameters may cause the solu-

tion to jump along other directions within the subspace, which is called discontinuity of the

solution. In empirical work for solving LREMs, researchers typically need to estimate model

parameters using methods such as maximum likelihood or Bayesian inference. For maximum

likelihood estimation, if the solution to the linear rational expectations model is discontinuous,

then even minor changes in the parameters may cause the equilibrium of the model to jump

to an entirely different region; moreover, a discontinuous objective function can prevent opti-

mization algorithms from finding a maximum or cause them to oscillate among multiple local

optima. Therefore, for frequentist methods, it is generally required that the objective function

be at least continuous. For Bayesian methods, if the solution to the linear rational expectations

model is discontinuous, then the likelihood function may exhibit sudden jumps at certain pa-

rameter values, which could result in the posterior distribution placing substantial probability

mass on certain “isolated” points or ”atoms” (see Kingman (1975)). In such cases, the posterior

distribution would no longer be a continuous density but rather a mixture that includes discrete

mass points. Thus, for Bayesian inference, it is desirable that the posterior remains a contin-

uous density, without unexpected atoms appearing at unknown locations. Al-Sadoon (2020)

proposed a method named regularization, which allows the users to select a solution form the

solution subspace which is continuous with respect to the model parameters by incorporating

the prior information or the ”preferences” of the users. The regularized solution ensures both

the uniqueness and economic interpret-ability of the solution, while also allows the condition of

using both frequentis and Bayesian analysis.

This paper is organized as follows. Section 2 reviews LREM solution methods by three

categories; Section 3 discusses the existence, uniqueness of the LREM solutions, revealing how

these issues manifest in solution methods; Section 4 discusses the discontinuity of the LREM

solution and reviews the regularization. Section 5 concludes.

2 Review of the LREM Solution Methods

Before starting the review of LREM solution methods, it is important to understand the basic

structure of these models and what it means for a solution to be economically and mathemat-
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ically valid. LREMs are characterized by the current decisions that depend not only on past

and present conditions, but on expectations of the economic agents about the future. This

forward-looking behavior, while economically realistic, can create mathematical instability in

the model. Thus, the key problems of any solution methods is to determine whether a solution

exist, whether it is stable, and is unique. This paper next will have a quick look into stochastic

difference equations to ensure that one can understand the essential ideas hidden in the LREM

solutions by these methods. The letters and Latin symbols used below are defined independently

within each subsection, one can freely choose their preferred notation when applying these meth-

ods.

Consider a model with single variable:

yt = xt + bEt[yt+1]

where

yt is the current decision variable (e.g., consumption, price and output);

xt is a fundamental (while xt−1 is predetermined) variable known at time t;

Et[yt+1] is the expectation of yt+1 (non-predetermined variable) formed at time t;

b ∈ R measures the weight of the forward-looking channel.

This equation of the model shows that current decisions yt depend on current fundamentals

xt and beliefs about the future yt+1. Iterating this equation forward:

yt = xt + bEt[xt+1] + b2Et[xt+2] + · · ·+ bnEt[yt+n],

then add a transversality condition to ensure this expression converges:

lim
n→∞

bnEt[yt+n] = 0,

if such condition holds, the solution can be written as

yt =
n−1∑
k=0

bkEt[xt+k].

It is noticed that this forward-looking solution is valid and stable (mathematically converges)

only if |b| < 1, since the distant future effects will vanish with the time increases. If |b| > 1, the

forward-looking solution diverges, in such case, the model can be rewritten as

yt = xt + byt+1 + bεt+1
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where εt+1 is the expectational error term. Iterating backward yields:

yt = −
∞∑
k=0

b−kεt−k −
∞∑
k=1

b−kxt−k,

which converges only if |b| > 1.

Therefore, the conclusion is that if |b| < 1, one should use the forward-looking solution; if

|b| > 1, one should use the backward-looking solution. This is the very essential idea of the

Blanchard-Kahn condition in the following review part.

Blanchard-Kahn Condition

Blanchard and Kahn (1980) proposed the well-known Blanchard-Kahn condition denotes that if

the number of the unstable roots (eigenvalues outside the unit circle) in the model equal to the

number of jump (forward-looking) variables, there is a unique and stable solution to LREM; if

the number of unstable roots is fewer than the jump variables, there are infinite many solutions

to the model; if the number of unstable roots exceeds the jump variables, there is no solution.

A linear rational expectation model can be expressed as:

Bxt+1 = Axt +Gεt

BEtyt+1 = Ayt +Gεt,

or in matrix form

B

[
xt+1

Etyt+1

]
= A

[
xt

yt

]
+Gεt,

where

xt is n× 1 vector of predetermined variable at time t;

yt is m× 1 vector of non-predetermined (jump) variables at time t;

εt is k × 1 vector of stochastic shocks;

A,B are (n+m)×(n+m) square matrices and G is (n+m)×k matrix due to the dimension of εt.

The expectation of yt+1 is essentially a conditional expectation denoted as Et(yt+1|Ωt), where

Ωt is information set at time t, which may include past and current values of x, y and ε. The

difference between predetermined and non-predetermined variable is a that predetermined vari-

ables is a function of variables known at t+ 1 in Ωt+1 while non-predetermined variable may be

a function of any variable in Ωt.
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Suppose B is non-singular (invertible), the model can be rewritten as[
xt+1

Etyt+1

]
= B−1A

[
xt

yt

]
+B−1Gεt,

replace B−1A by Z, and B−1G by W , there is[
xt+1

Etyt+1

]
= Z

[
xt

yt

]
+Wεt,

which is a difference equation system in matrix form. Blanchard and Kahn (1980) then per-

forms diagonalisation on Z to obtain PDP−1, where eigenvalues orders from the smallest to

largest on the diagonal of matrix D, the corresponding eigenvalues withe same order forms P .

Blanchard-Kahn condition depends on the number of eigenvalues which are outside the unit

circle. If the number of eigenvalues larger than one equals m, which is the dimension of y, then

the Blanchard-Kahn condition holds, there is a stable solution.

Taking the diagonalisation,

Z = PDP−1 ⇒ P−1

[
xt+1

Etyt+1

]
= DP−1

[
xt

yt

]
+ P−1Wεt

partition the matrices P−1 and D as

P−1 =

[
P̂11 P̂12

P̂21 P̂22

]
, D =

[
Λ̂11 0

0 Λ̂22

]
,

[
Ĝ1

Ĝ2

]
= P−1W = P−1B−1G

Substituting back to obtain:[
P̂11 P̂12

P̂21 P̂22

][
xt+1

Etyt+1

]
=

[
Λ̂11 0

0 Λ̂22

][
P̂11 P̂12

P̂21 P̂22

][
xt

yt

]
+

[
Ĝ1

Ĝ2

]
εt

Multiplying the matrices gives the system of equations

P̂11xt+ 1 + P̂12Etyt+ 1 = Λ̂11(P̂11xt + P̂12yt) + Ĝ1εt

P̂21xt+ 1 + P̂22Etyt+ 1 = Λ̂22(P̂21xt + P̂22yt) + Ĝ2εt

Focusing on the second equation above, which involves the explosive dynamics (since eigenvalues

in Λ̂22 are outside the unit circle), define:

λt = P̂21xt + P̂22yt,
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then the second equation becomes

Etλt+1 = Λ̂22λt + Ĝ2εt,

solving forward, since all eigenvalues in Λ̂22 are greater than one in modulus:

λt = −
∞∑
i=0

Λ̂−i−1
22 Ĝ2Etεt+i.

Suppose future shocks are identically distributed (i.i.d.) with zero expectation, then there is

λt = −Λ̂−1
22 Ĝ2εt ⇒ P̂21xt + P̂22yt = −Λ̂−1

22 Ĝ2εt

Solving for yt,

P̂22yt = −P̂21xt − Λ̂−1
22 Ĝ2εt ⇒ yt = −P̂−1

22 P̂21xt − P̂−1
22 Λ̂−1

22 Ĝ2εt,

taking expectation of yt+1,

Etyt+1 = −P̂−1
22 P̂21xt+1

Substituting both above two equations into

P̂11xt+ 1 + P̂12Etyt+ 1 = Λ̂11(P̂11xt + P̂12yt) + Ĝ1εt,

then there is

P̂11xt+1 − P̂12P̂
−1
22 P̂21xt+1 = Λ̂11[P̂11xt − P̂12P̂

−1
22 P̂21xt − P̂12P̂

−1
22 Λ̂−1

22 Ĝ2εt] + Ĝ1εt,

after rearranging,

[P̂11 − P̂12P̂
−1
22 P̂21]xt+1 = Λ̂11[P̂11 − P̂12P̂

−1
22 P̂21]xt − Λ̂11[P̂12P̂

−1
22 Λ̂−1

22 Ĝ2 + Ĝ1]εt,

and the non-predetermined variables are obtained:

xt+1 = [P̂11−P̂12P̂
−1
22 P̂21]

−1Λ̂11[P̂11−P̂12P̂
−1
22 P̂21]xt−[P̂11−P̂12P̂

−1
22 P̂21]

−1Λ̂11[P̂12P̂
−1
22 Λ̂−1

22 Ĝ2+Ĝ1]εt,

this is the equilibrium law of motion under stochastic shocks. Since all eigenvalues in Λ̂11 are

stable (inside the unite circle), this solution is dynamic stable.

The above derivation demonstrates that in order to prevent explosive from the eigenvalues

in Λ̂22, the model must impose exactly m constraints on the jump variables yt corresponding to

the m eigenvalues outside the unit circle, which is:
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(i) if the number of unstable roots equals to m, LREM has a unique stable solution;

(ii ) if the number of unstable roots are more than m, LREM has no solution, the model system

is overdetermined;

(iii) if the number of unstable roots are fewer than m, LREM has multiple or even infinite many

solutions, the model is under-determined.

Blanchard-Kahn gives the necessary and sufficient condition for a unique, stable solution.

Note that it never discusses some special cases such as B is singular when forming Z = B−1A.

But it provides a clear standard for determining the nature of the model solutions and becomes

the fundamental basis for understanding and solving the LREMs. Since Blanchard and Kahn

(1980) proposed these classic stability conditions for linear rational expectations models, a vari-

ety of alternative methods have been developed to solve such models based on distinct underlying

ideas, such as Anderson and Moore (1985) and King and Watson (1998) apply eigenvalue sys-

tem; Sims (2002) and Klein (2000) use QZ decomposition; Binder and Pesaran (1999) and Uhlig

(1995) apply matrix polynomials. Researchers use the outputs of these solution techniques to

estimate models, compute impulse response functions, calculate asymptotic covariances, solve

infinite-horizon linear-quadratic control problems, and construct terminal constraints for non-

linear models.

This paper next reviews three solution methods for LREM divided into the above three cat-

egories of underlying ideas respectively.

Applying Eigenvalue System: AIM

Anderson and Moore (1985) provides a systematic and efficient procedure (denoted as AIM in

this paper) to solve the linear rational expectations models. The core idea of the AIM is trans-

forming the original model into a structured matrix problem and applying a sequence of linear

algebra techniques to determine the existence, uniqueness and the form of the solution. AIM is

easy to implement by MATLAB, code implementing AIM can be found on the official website

of the Federal Reserve. This section states the mathematical process that outlines the solution

strategy entailed in AIM.

AIM solves models of the form:

0∑
i=−τ

Gixt+i +
θ∑

i=1

FiEt[xt+i] = ϵt, τ > 0, θ > 0

where

xt ∈ Rn contains all the variables, irrespective of whether they have an endogenous, an exoge-

nous or a predetermined nature;
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Gi, Fi ∈ Rn×n are given coefficient matrices on current, lagged and lead values;

ϵt ∈ Rn is a mean-zero shock;

the number of the lags τ and leads θ are greater than 1.

The model allows for arbitrary lags and leads. The solution sought takes the following form:

xt =
τ∑

i=1

Bixt−i +B0ϵt

where Bi are reduced form coefficient matrices that represent the dynamics of the endogenous

variables. AIM computes these Bi from the original structural system. First, by forward iterating

the model and taking expectations, AIM constructs a homogeneous system:

0∑
i=−τ

Hixt+k+i = 0, k ≥ 0

where if i ≤ 0, Hi = Gi, and i > 0, Hi = Fi. These equations are stacked into a system over

time t, using the block vector

Xt =


xt+θ

xt+θ−1

...

xt−τ+1

 ∈ Rn(τ+θ),

which leads to the formation of a generalized first-order linear system:

AXt+1 = BXt,

where A,B are n(τ + θ) × n(τ + θ) matrices constructed by shifting the Hi across the block

structure, which capture the dynamic structure of the system with all lags and leads preserved.

AIM second determines the existence and uniqueness of a stable solution by solving a gen-

eralized eigenvalue problem (in MATLAB, using eig(A,B)):

λAs = Bs

to obtain n(τ + θ) eigenvalue–eigenvector pairs (λ1, s1), (λ2, s2), . . . , (λn(τ+θ), sn(τ+θ)). Let m de-

notes the forward-looking (or jump) variables outside the unit circle (|λ| > 1), which must match

the number of jump variables m in the model to satisfy the Blanchard-Kahn condition.

Define the set of stable eigenvectors associated with eigenvalues inside the unite circle

Sstab = {sj ∈ Cn(τ+θ) : |λj| < 1}.
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Let Sstab be the matrix formed by column-wise stacking the vectors in Sstab

Sstab = [sj1 , sj2 , . . . , sjk ],

where each |λjℓ | < 1.

AIM next impose a convergence condition, which is the full stacked state vector Xt must lie

in the column space (or image) of Sstab

Xt ∈ Im(Sstab),

this ensures that the trajectory of the system remains bounded and excludes the explosive

solutions. To construct Xt, let the known vector of initial conditions or the historical states of

the system be:

x̃t =


xt− τ + 1

xt−τ+2

...

xt

 ∈ Rnτ .

If such an Xt can be uniquely written as a linear combination of the stable eigenvectors in Sstab,

then the system has a unique stable solution; if no such Xt exists, the model has no solution; if

more than one Xt are found, the model has multiple solutions or even infinite many solutions.

In some cases, the structural system contains redundant or linear dependent equations, es-

pecially when some Hi are rank-deficient (not in full rank). AIM solves this issue by using a QR

decomposition on the constraint matrices. For any rank-deficient Hi, compute (in MATLAB,

qr(Hi)):

Hi = Qi ×Ri, Qi, Ri ∈ Rn×n

where Qi is an orthogonal matrix with Q⊤
i Qi = I, and Ri is an upper triangular matrix with

possible zero rows. Left-multiplying the system by Q⊤
i gives

Q⊤
i Hixt+i = Q⊤

i εt,

which shifts zero rows (redundant constraints) to the top of the matrix, leaving the non-zero con-

straint block at the bottom. By repeating this decomposition across all Hi, AIM ensures that the

system of constraints has full rank, thus the matrix pencil (A,B) is well-posed. If the effective

number of constraints does not match the number of jump variables after the QR decomposition,

AIM reports either no solution (too many constraints) or multiple solutions (too few constraints).

Once the convergence condition is satisfied and the expectation term are eliminated sing the
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solution subspace, AIM recovers the observable structure

0∑
i=−τ

Sixt+i = εt,

which is a purely backward-looking representation consistent with the data-generating process.

By left-multiplying with −S−1
0 (when it is invertible), the reduced form is:

xt =
τ∑

i=1

Bixt−i +B0εt,

which is the solution to the LREM showed above.

AIM requires no process that transforming the model into a special form with only one lag or

lead, and no expression explicitly distinguishing between predetermined and non-predetermined

variables, thus simplifying the coding implementation. As the model size increases, the com-

putational advantages of AIM become more pronounced. Coenen et al. (2021) applies AIM to

solve a simplified NAWM II (New Area-Wide Model II), a model designed to support monetary

policy decisions for the Euro area while analyzing the impact of financial frictions and policy

tools on the economy, significantly improving the efficiency and robustness of the solution. The

application of AIM provides NAWM II with a powerful technical foundation to support the mon-

etary policy research and decision-making of the European central bank in a low-interest-rate

environment.

The key note of using AIM is that, since it does not distinguish explicitly between pre-

determined and forward-looking variables, the number of jump variables must be specified to

assess determinacy by users. What is more, although avoiding the explicit distinction simplifies

the coding, AIM limits the ability to analyze models where this distinction carries important

economic meanings. If assuming that historical data fully determine all variables date t − 1 or

earlier, then for the models where the distinction between predetermined and non-predetermined

variables is crucial, AIM may not be appropriate.

Using QZ Decomposition: Sims

Sims (2002) provides a method (denoted as Sims) applies the generalized eigenvalue decom-

position and matrix analysis to transform dynamic systems with lead and lag variables into a

recursive relationship at a stable state. It begins with the standard form of a dynamic system,

which can be expressed as:

Γ0y(t) = Γ1y(t− 1) + Ψz(t) + Πη(t)
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where

yt are the L× 1 dimensional state variables;

zt are the M1 × 1 dimensional exogenous variables, independent and i.i.d., with E[ztz
′
t] > 0;

ηt is the M2×1 dimensional expectational error, a k-dimensional martingale difference sequence

with respect to z and is measurable with respect to zt, zt−1, ... with Etηt+1 = 0;

Γ0 is the L× L dimensional structural coefficients matrix;

Γ1 is the L× L dimensional structural coefficients matrix;

Ψ is the L×M1 dimensional structural exogenous variables coefficients matrix;

Π is the L×M2 dimensional structural exogenous errors coefficients matrix, in which designation

of expectational errors identifies the predetermined variables.

Sims uses the QZ decomposition. The QZ decomposition leverages the generalized Schur

decomposition (see Golub and Van (2013)) to decompose the matrix pair, for example (A,B),

in an LREM into two upper triangular matrices (T, S), thus rewriting the model into a stan-

dard recursive form. This decomposition clearly reveals the nature of the dynamic of the model

system: by examining the eigenvalues λ(A,B) = tii/sii, the QZ decomposition distinguishes

between stable and unstable components of the dynamics and solves for the path of the model

system which satisfies the Blanchard-Kahn condition. Sims expresses the model in a form which

is convenient for solving ”forward”, suggesting that it can determine the path of the endoge-

nous variable consistent with arbitrary future values of the exogenous variables, this facilitates

numerical computation while keeping theoretical soundness and transparency.

Under the assumption that the determinant det(Γ0 + Γ1x) ̸= 0 for all x ∈ C with |x| = 1 to

ensure that y will not be canceled out by elementary algebraic operations and there is no unit

root (λ = 1) in the model system, Sims uses two orthogonal matrices Q,Z ∈ RL×L such that

QΓ0Z and QΓ1Z are block upper triangular with either 1 × 1 or 2 × 2 blocks on the diagonal

(the following steps are followed by Al-Sadoon (2020)), the matrices are partitioned as:

QΓ0Z =

[
Λ11 Λ12

0 Λ22

]
,

QΓ1Z =

[
Ω11 Ω12

0 Ω22

]
where Q and Z are n × n orthogonal matrices; all the zeros of the

polynomial det(Λ11 + Ω11x) outside the unit circle, such that Λ11 is non-singular; all the zeros

of the polynomial det(Λ22 + Ω22x) inside the unit circle, such that Ω22 is non-singular. Then

introduce the new variable

wt = Z ′yt =

[
w1,t

w2,t

]
where w1,t is the component in the unstable subspace, w2,t is the component in the stable
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subspace, then rewrite the model system as:

Λwt = Ωwt−1 +QΨzt +QΠηt, t ∈ Z

where the stable part is

Λ22w2,t = Ω22w2,(t−1) +Q2.Ψzt +Q2.Πηt, t ∈ Z

the stable part of the system must exhibit covariance stationarity and thus cannot have explosive

solutions. Moreover, since w2 lies in the stable subspace, the associated dynamic matrix has all

its eigenvalues within the unit circle. Consequently, from the expectation relationships, one

obtain that

w2,(t−1) = Ω−1
22 Λ22Et−1w2,t, t ∈ Z,

which is

w2,t = (Ω−1
22 Λ22)

s−tEtw2,s, s ≥ t.

To avoid the drift or explosion in w2, set w2,t = 0. Substituting it back into the system:

Q2.Ψzt +Q2.Πηt = 0, t ∈ Z.

Then multiplying right by z′t and taking the expectations, using the joint covariance station-

arity of η and z, there is

Q2.ΨE(z0z
′
0) +Q2.ΠE(η0η

′
0) = 0.

Also, for arbitrary t ∈ Z, the vector (Q2Π)
†Q2Ψzt + ηt lies in the kernel (null space) of Q2Π,

where the Q2Π)
† is the Moore-Penrose generalized inverse (see the guidance of Barata and

Hussein (2012)) of Q2Π, and Et−1((Q2Π)
†Q2Ψzt + ηt) = 0. Therefore, given arbitrary matrix

denoted as K whose columns form a basis for the kernel of Q2Π, there is a martingale difference

sequence with respect to z denoted as ν, such that

Kνt = (Q2Π)
†Q2Ψzt + ηt,

then the solution of the model is a pair of (yt, ηt), where

yt = Θ1yt−1 +Θzzt +Θννt

ηt = Kν − (Q2Π)
†Q2Ψzt

with

Θ1 = Z

[
Λ−1

11 Ω11 0

0 0

]
Z ′, Θz = Z

[
Λ−1

11 (Q1.Ψ−Q1.Π(Q2.Π)
†Q2.Ψ)

0

]
,
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Θν = Z

[
Λ−1

11 Q1.Π)

0

]
K.

Sims provides a clear framework for solving dynamic system under uncertainty and expecta-

tional conditions, distinguishing between predetermined and non-predetermined variables while

simultaneously incorporating expectational error terms. It reformulates the problem of solving

LREMs as a generalized eigenvalue problem and extends the application of the QZ decomposi-

tion in this field. Lubik and Schorfheide (2004) uses the sims method to test the determinacy or

indeterminacy in monetary policy rules under a New-Keynesian DSGE model. Similarly, Klein

(2000) also uses the QZ decomposition to solve LREMs, this method decouple backward and

forward variables of the transformed system by QZ decomposition. However, Sims explicitly

eliminates both dynamic and non-dynamic jump variables by imposing the horizontal conditions,

which contributes to ensure the uniqueness and stability of LREMs solutions.

However, the dynamic relationships in the model are implicit, requiring matrix decomposi-

tion, which leads to high computational costs, and the expectational variables are not explicitly

represented in the model equations. Although the Sims method appears recursive in form, it

actually requires iterative computation to obtain a stable solution, as it relies on generalized

eigenvalue decomposition combined with stability conditions and initial values. The expression

of the model by Sims must be in a form with one lag and no leads, which is not efficient for

solving the models with more than a couple of equations. Empirical tests in Anderson (2008)

show that the Sims method incurs a floating point operation cost approximately 30 times higher

than that of the AIM method, and the numerical precision of the Sims method is about five

times worse than AIM. Therefore, although Sims is capable of handling predetermined and non-

predetermined variables as well as expectational errors, its drawbacks include complex matrix

decomposition, high computational burden and inferior numerical accuracy, which makes the

model more susceptible to ill-posed matrices.

Applying Matrix Polynomials: Uhligs

Uhlig (1995) provides a solution method (denoted as Uhligs) built on the model expression of

Binder and Pesaran (1999), solving LREMs by expressing them in terms of expectations over

both endogenous and exogenous variables. Uhligs explicitly incorporates expectations and solves

for a time-invariant, convergent law of motion. It is well suited for applications that require the

forecastability of future variables like consumption and output.

Uhligs expresses the LREM as:

Et[Fxt+1 +Gxt +Hxt−1 + Lzt+1 +Mzt] = 0

14



zt+1 = Nzt + µt+1; Et[µt+1] = 0

where

xt ∈ Rn is the vector of endogenous state variable at time t;

zt ∈ Rm is the vector of exogenous variables following a stable VAR(1) process;

F,G,H,L,M ∈ Rn×n × Rn×n × Rn×n × Rn×m × Rn×m, are the given coefficient matrices;

N ∈ Rm×m is a matrix associates with the exogenous variables which only contains the stable

eigenvalues (all the eigenvalues are in the unit circle), ensuring stability of zt.

µt is an i.i.d. shock vector with E[µtµ
′
t] > 0.

Uhligs seeks a solution of the recursive equilibrium law of motion form:

xt = Pxt−1 +Qzt

where P ∈ Rn×n and Q ∈ Rn×m are matrices of undetermined coefficients. Uhligs aims to

solve for a pair of (P,Q) such that this law of motion satisfies the LREM under the rational

expectations operator.

Uhligs first iterating the law of motion,

xt+1 = Pxt +Qzt+1,

and substituting them with the exogenous process into the model

zt+1 = Nzt + µt+1,

taking expectations at time t:

Et[xt+1] = Pxt +QNzt = P (Pxt−1 +Qzt) +QNzt = P 2xt−1 + PQzt +QNzt,

then substituting xt+1, xt, xt−1, zt+1, zt into the original model to obtain:

F (P 2xt−1 + PQzt +QNzt) +G(Pxt−1 +Qzt) +Hxt−1 + LNzt +Mzt = 0,

grouping terms for xt−1,

(FP 2 +GP +H)xt−1

for zt,

(FPQ+GQ+ FQN + LN +M)zt.
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Since the model must hold for all xt−1 and zt, their coefficients must vanish:

FP 2 +GP +H = 0

(FP +G)Q+ FQN + LN +M = 0.

Uhligs next solves FP 2 +GP +H = 0 for P , proposes to linearize this quadratic equation by a

generalized eigenvalue problem. Define two 2n× 2n matrices

Ξ =

[
−G −H

Im 0

]
, ∆ =

[
F 0

0 Im

]

consider the generalized eigenvalue problem

λ∆s = Ξs,

where

s =

[
λx

x

]
=⇒ (λ2F + λG+H)x = 0.

This transforms the problem into seeking the eigenvalues λ and eigenvectors x satisfying:

det(λ2F + λG+H) = 0,

from the solutions to it, construct eigenvectors

si =

[
λixi

xi

]
, i = 1, ...,m.

Stack the stable ones into matrices:

Ω = [x1, ..., xm], Λ = diag(λ1, ..., λm).

The stability selection here is critical, users should select only the number of n eigenvalues λi

with |λi| < 1. If fewer than n stable eigenvalues are found, no stable solution exists; if more,

there are multiple solutions even infinite many solutions, users can choose a subset that spans a

stable subspace.

Then recover P by:

FΩΛ2 +GΩΛ +HΩ = 0,

right multiplying both sides by Ω−1 yields

F (ΩΛΩ−1)2 +G(ΩΛΩ−1) +H = 0.
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Thus, a solution to the quadratic matrix equation is

P = ΩΛΩ−1,

Uhlig (1995) proved that any diagonalizable solution can be expressed in above form through

the transformation. In particular, when m = 1, the matrix reduces to a scalar, then the solution

to the equation becomes:

P =
−G±

√
G2 − 4FH

2F
, F ̸= 0.

If F = 0 but G ̸= 0, the equation reduces to a linear form

GP +H = 0, P = −H

G
.

After P is solved, Uhligs solves for Q. Given P , equation

(FP +G)Q+ FQN + LN +M = 0

becomes a linear matrix equation in Q, but note that Q appears twice including inside FQN ,

there is no way to factor out Q in term FQN , thus take vec operation. By the properties of the

vec operation:

Let vec(·) be the column stacking operator, there is

vec(ABC) = (BT ⊗ A)vec(Q)

Then the equation solving for Q becomes

[NT ⊗ F + Im ⊗ (FP +G)]vec(Q) + vec(LN +M) = 0,

let

V = NT ⊗ F + I ⊗ (FP +G),

then

vec(Q) = −V −1vec(LN +M).

This equation can be solved using standard numerical linear algebra routines (for example, using

the backslash operator in MATLAB ). Consider the condition of V is invertible or ill-posed, the

Moore-Penrose pseudo inverse may be required.
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Once P and Q are obtained, the model solution is:

xt = Pxt−1 +Qzt

with zt = Nzt−1 + µt, which implies

xt = P tx0 +
t−1∑
i=0

P iQzt−i,

the influence of the initial condition x0 on xt is governed by P tx0. If |λi| < 1 for all eigenvalues

λi of P , limt→∞ P t = 0, then limt→∞ P tx0 = 0, which indicates that the influence of the initial

condition vanishes over time t, and the state variable xt converges to a path driven by the

exogenous variables (essentially driven only by the exogenous shocks µt):

xt =
t−1∑
i=0

P iQzt−i.

The core of Uhligs lies in the explicit incorporation of future expectations (Et[xt+1] and Et[zt+1])

into the dynamic equations of the model. In this expression to linear rational expectations

model, the expected values of future variables are explicitly present and visible in the equations.

Uhligs explicitly expresses the expectation terms, the clear model structure is well suited for

studies which require analyzing expectation shocks. Matrix polynomials can better express the

temporal dependencies between the variables. For example, in the matrix polynomial above,

λ2 corresponds to distant future expectations, λ reflects current term effects, and the constant

term represents the contemporaneous shocks. This structure is more logically align with how

LREM form expectations about the future, especially regarding forecasts of variables such as

future consumptions or output. Barbier-Gauchard et al. (2023) applies Uhligs to log-linearize

and solve a behavioral macroeconomic DSGE model, the results indicate that using Uhlig to

rewrite and solve the DSGE model helps investigate the issue of fiscal policy credibility, as well

as how the expectations of agents about the output gap, public debt, and taxation influence the

fiscal multiplier and debt stability.

However, the solution to the matrix polynomial is highly complex and not unique, and it

is sensitive to the matrix conditions, such as the invertibility of the F matrix. The results in

Anderson (2008) indicate that, although Uhligs is more computationally efficient compared to

Sims, it failed in few given models, and in general, still requires more than twice the computa-

tional cost of AIM. The results also suggest that Uhligs strikes a balance between accuracy and

efficiency, but it is only suitable for cases where a VAR of the exogenous process is required and

the model size is moderate (e.g., a small size DSGE model).
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To summarize, for models that satisfy the Blanchard-Kahn conditions, these methods pro-

duce equivalent solutions in the time domain, the difference lies in their respective underlying

ideas. Researchers is suggested to select the most suitable method depending on their proficiency

with a given approach, and the size of the model to be studied, as Anderson (2008) shown, the

AIM method distinguishes itself with exceptional computational speed and precision, making it

highly suitable for large-scale empirical models, though it is less expressive than other methods

in terms of theoretical structure and expectation modeling. Sims expresses model structure

with explaining the dynamic mechanisms, and delineating the roles of different variables. Uhligs

explicitly expresses and solves for expectations that enhancing structural transparency and bet-

ter serving policy-oriented research where clear analysis of expectation-driven shocks is essential.

However, there not always exists a solution for an LREM, and the selected method may not

always yield a unique solution, which makes policy analysis difficult or even infeasible. The

next section reviews the problems of the existence and uniqueness of the LREMs solutions, and

discusses their implications for the application of LREMs solutions.

3 Existence and Uniqueness of the LREM Solution

Macroeconomic theory typically assumes that the economy is always in some form of equilib-

rium, which implies that, given the current policy rules, shocks, and parameters, the economic

system should follow a stable path. If no solution exists, the effects of exogenous shocks fail to

be absorbed or offset by appropriately choosing the endogenous variables and martingale dif-

ference sequences, and the economic system would fail to reach any equilibrium state. In such

a case, the model would not be suitable for policy analysis and forecasting. At the same time,

under the framework of rational expectations theory, economic agents are assumed to know the

structure of the model and to form expectations that are consistent and rational. If the model

admits multiple solutions, then a given economic environment may correspond to more than

one equilibrium path. In other words, different agents may coordinate on different equilibria,

resulting in distinct dynamic behaviours in variables, such as inflation, interest rates and out-

put. This not only contradicts the assumption of rational expectations, where all agents share

the same equilibrium expectations, but also renders policy analysis ambiguous and infeasible.

Thus, it is crutial to clarify the conditions for the existence and uniqueness of the LREM solution.

Taking the Sims methods as example, as shown in the previous section, to solve the linear

equation

Q2.Ψzt +Q2.Πηt = 0,

the column space of Q2Ψ must be spanned by the column space of Q2Π. In other words, the

impact of exogenous shocks within the stable subspace must be fully absorbed by the martingale
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difference term. Otherwise, no stationary solution exists. Then there is the condition for the

existence of a solution to the model:

im(Q2.Ψ) ⊆ im(Q2.Π)

Once the existence condition is satisfied, the next step is to establish the uniqueness condition

of the solution. Assuming that ηt is not unique, then there exists a vector x such that

Q2Πx = 0.

However,

Q1Πx ̸= 0

then the adjustments to ηt along the vector x will not affect the stable subspace but will affect

the unstable subspace, rendering the solution non-unique. Therefore, it is necessary that the

martingale difference term be ineffective not only in the stable subspace but also in the unstable

subspace, that is, all directions mapped to zero by Q2Π must also be mapped to zero by Q1Π:

ker(Q2.Π) ⊆ ker(Q1.Π)

Therefore, following Sims (2002), assuming that det(Γ0−Γ1x) ̸= 0 for all complex number x with

|x| = 1, there exist a solution for linear rational expectations model if im(Q2.Ψ) ⊆ im(Q2.Π),

there is a unique solution if ker(Q2.Π) ⊆ ker(Q1.Π). When using Sims, a unique solution is

ensured if the given model satisfied the above conditions.

If the existence condition is satisfied but the uniqueness condition is not satisfied, meaning

the solution set constitutes a high-dimensional linear subspace, along some directions within

this subspace, the values of ηt can be chosen freely without violating the stability of the system.

Such degree of ”freedom” implies that one can select any point as the solution in the solution

space. However, the “arbitrary” selection may lead to the chosen solution suddenly jumping to

another point in the solution space when the model parameters experience even slight changes.

Consequently, as the parameters vary, both the dimension of the solution space and the position

of the solution within that space may shift abruptly. This phenomenon manifests as the discon-

tinuity, in which the solution depending discontinuously on the parameters. The discontinuity

of the solution will affect both frequentis and Bayesian analysis.

The next section clarifies the discontinuity by the Sims example and review a method for

dealing the cases where the model solution is non-unique and discontinuous. This method

selects a unique solution from the infinite many solutions of the LREM that aligns with prior

information, therefore addressing the impact of discontinuity on frequentis and Bayesian analysis.
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4 Addressing the Discontinuity: Regularization

When the uniqueness condition is not satisfied in the example of Sims, the solution is not unique,

and there exists a linear subspace of solutions:

yt = a particular solution + arbitrary linear combination of free direction.

This linear subspace is akin to a high-dimensional plane, on which one can arbitrarily choose

a point. However, each point corresponds to a different set of economic dynamics, and these

free directions may shift abruptly as the model parameters change, resulting in a discontinuous

solution.

In a recent study, Al-Sadoon (2020) proposed a regularization method, successfully applied

the regularized solution within the LREM in Sims form: by introducing a weighted objective

function, one can select a solution from the infinite solution space that minimizes a convex and

continuous cost function, incorporating prior knowledge or “preferences.” This solution is both

continuous and economically meaningful. The idea of the regularization under the previous work

of Al-Sadoon (2017) is explicitly making the indeterminacy in the solution space, then penalizing

the undesirable solution directions by minimizing a weighted quadratic loss function. The weight

matrix, denoted as W , specified by the researcher to reflect economic preferences regarding the

solution, for instance, emphasizing fit or smoothness at particular frequencies.

As discussed above, the general solution of LREM by Sims takes the form:

yt = Θ1yt−1 +Θzzt +Θννt

ηt = Kνt − (Q2Π)
†Q2Ψzt

where νt is a martingale difference sequence freely chosen on ker(Q2Π), along the directions of

non-uniqueness, representing the indeterminacy of the solution. Without any restrictions, νt can

vary arbitrarily along these directions, resulting in an infinite number of solutions.

Regularization defines a weighted quadratic loss objective function:

L =
1

2
tr(WE[y0y

′
0])

where W is a given semi-definite weight matrix (selected by users) that reflects preferences

for certain properties of the solution, such as smoother dynamics or solutions that better align

with business cycle frequencies. The aim of regularization is to minimize L subject to the model

constraints.
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The indeterminacy term νt is decomposed as

νt = Bzt + ζt, E[ztζt] = 0

where B represents the deterministic component and ζ is martingale difference sequence, ζt is

a martingale difference sequence serving as the residual with respect to zt. Express covariance

E[y0y
′
0] as a function of B and C = CC ′:

E[y0y
′
0] =

∞∑
j=0

Θj
1(ΘzΣzzΘ

′
z +ΘzΣzzB

′Θ′
ν

+ΘνBΣzzΘ
′
z +ΘνBΣzzB

′Θ′
ν +ΘνCC ′Θ′

ν)Θ
j′

1

and the objective function can be written as:

L =
1

2
tr(W

∞∑
j=0

Θj
1(...)Θ

j′

1 ) =
1

2
tr((...)Ξ),

where

Ξ =
∞∑
j=0

(Θ′
1)

j′WΘj
1

is the unique solution of the equation:

Ξ = Θ′
1ΞΘ1 +W,

taking the derivative of L with respect to B and C, then there are

Θ′
νΞ(Θz +ΘνB) = 0, Θ′

νΞΘνC = 0

if Θ′
νΞΘν is invertible, then the unique solution is

B∗ = −(Θ′
νΞΘν)

−1Θ′
νΞΘz, C∗ = 0

if Θ′
νΞΘν is not invertible, then there is no unique solution, but a class of solution can still be

obtained by minimizing the objective function.

B∗ = −(Θ′
νΞΘν)

†Θ′
νΞΘz +X, C∗ = Y

where im(X), im(Y ) ⊆ ker(Θ′
νΞΘν).

Substituting B∗ and C∗ into yt and ηt yields the unique or a class of regularized solutions:

22



yt = Θ1yt−1 +Θregzt,

ηt = −(K(Θ′
νΞΘν)

−1Θ′
νΞΘz + (Q2Π)

†Q2Ψ)zt

where

Θreg = (I −Θν(Θ
′
νΞΘν)

−1Θ′
νΞ)Θz.

To incorporate frequency-specific weights, such as emphasizing business cycle frequencies,

the objective function can be expressed as an integral over frequencies:

L =
1

2
tr(

∫ π

−π

Wωfωdω)

where fw is the spectral density matrix of y, Wω is the frequency-dependent weight matrix. By

choosing an appropriate Wω, undesirable frequency components can be penalized.

The idea of regularization is analogous to adding a penalty term in linear regression (such as

ridge regression), selecting the solution with the smallest norm from an infinite set of possible

solutions. Regularization addresses the discontinuity and indeterminacy of LREM solutions in

theory, and it allows researchers to incorporate prior information to guide the selection of a

solution by their preference. This feature is particularly important for practical applications in

the frequency domain or Bayesian analysis, as it ensures both the stability of the solution and

the economic interpret-ability of the results.

However, when using regularization, the choice of the weight matrix from the user has a

decisive impact on the results, which requires the user to processes strong economic sense and

mathematical analytical foundation. Applying regularization to the other methods may expand

their applicability, if encounters discontinuity problems during the solution process, one can first

find the sets of all solutions under the selected method and then use regularization to select a

”preferred” unique solution.

5 Conclusion

This paper reviews three solution methods for solving linear rational expectations models divided

into three categories, uses Sims (2002) method to discuss the existence, uniqueness and the

discontinuity of the LREM solution. This paper also reviews a recent method solving for the

discontinuity problems of the LREMs, regularization, which not only addresses the discontinuity

issues but allows users to select economically meaningful solutions tailored to business cycle

considerations and research preferences. Future works could expand the use of regularization to

the other solution method such as Uhlig (1995).
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