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Abstract

This paper reviews solution methods for solving linear rational expectations models divided into
three categories, then discusses the existence, uniqueness and discontinuity of the model solu-
tions, and reviews a regularization method to solve the discontinuity problems of the solution

to linear rational expectations model.

Keywords: Linear rational expectations model, solution methods, uniqueness, discontinuity,

regularization.

1 Introduction

When policy rules change, economic agents adjust their behavior accordingly. Lucas (1976)
points out that traditional empirical regression models fail to incorporate such behavioral ad-
justment mechanisms and therefore fail to be used as reliable and stable tools for policy analysis.
This critique spurred the development of rational expectations theory, with its core idea, as Muth
(1961) indicates, that the economic agents use their understanding of the economic structure
when forming expectations about the future, and their expectations are consistent with reality
in a statistical sense. Such models built on this foundation are known as rational expectations
models, requiring expectations to be generated endogenously within the model rather than be-
ing imposed exogenously. However, since rational expectations introduce intertemporal variables
(such as inflation and output), the resulting model structures become highly complex. To pre-
serve the rational expectations assumption while maintaining operational tractability, researchers

typically linearize the model structure, giving rise to linear rational expectations model (LREM).



As an important subclass of dynamic stochastic general equilibrium (DSGE) models, LREMs
are widely used in economics to describe the dynamic evolution of economic variables over time.
LREMs can be represented in various forms, but their fundamental assumption is consistent:
under the rational expectations hypothesis, all such models incorporate the behavior of eco-
nomic agents, who optimize their decisions based on expectations of future economic variables.
Typically, as Whiteman (1984) suggested, an LREM is usually expressed by a system of linear
dynamic equations that include lagged variables and forward-looking expectations to describe
the evolution of variables over time. The model also includes shock terms modeled as white
noise or other stochastic processes, to capture the impact of exogenous shocks on the economic
system. LREM generally includes two types of endogenous variables: predetermined variables,
which are determined by past decisions and reflect the "inertia” of the economy (such as capital
deposit); non-predetermined variables (or jump variables), which can be adjusted immediately
by expectations about the future to satisfy the equilibrium conditions (such as prices or interest
rates). The exogenous variables in LREM are given externally and are independent of the cur-

rent state of the model, such as random shocks (e.g., technology) or policy variables.

The solution to an LREM is a dynamic path whereby the endogenous variables both satisfy
the model structure and form their rational expectations in a mutually consistent manner at
each step. This solution is not determined by a single equation but rather by the constraints
of the entire system, the expectation structure, stability requirements, and initial conditions.
An LREM may have multiple solutions, meaning that under a given set of parameters, multiple
distinct trajectories can satisfy the model equations. Alternatively, an LREM may have a unique
solution, where a well-defined mechanism for expectation formation ensures that the behavior of
endogenous variables is uniquely determined given the exogenous shocks. In this case, economic
agents do not deviate from equilibrium due to incorrect expectations, and the unique solution
serves as a determinate and stable tool for policy analysis. Policymakers are therefore partic-
ularly concerned with the conditions for uniqueness. Simultaneously, some LREM may have
no solutions at all. Since Blanchard and Kahn (1980) proposed the classic stability conditions
for LREMs, numerous alternative methods have been developed to solve these models such as
Anderson and Moore (1985), King and Watson (1998) , Klein (2000), Sims (2002), Binder and
Pesaran (1999) and Uhlig (1995). Currently, there are few papers that systematically review so-
lution methods for LREMs. A representative paper is Anderson (2008), but it primarily focuses
on emphasizing the advantages of the Anderson and Moore (1985).

For models that satisfy the Blanchard-Kahn conditions, these methods produce equivalent
solutions in the time domain, the difference lies in their respective core ideas. Despite their
respective advantages, these methods invariably expose a fundamental challenge in LREM so-
lutions: non-uniqueness. If the solution to LREM is not unique, there exist multiple (or even

infinite many) dynamic paths that simultaneously satisfy all the equations constraints of the



given model. Using the thought of Shell (1989), different paths may correspond to different
macroeconomic dynamics, and the equilibrium state my depend on ”beliefs” beyond expecta-
tions (known as "sunspot equilibria”, see p.274 of Shell (1989)). Therefore, policymakers fails
to uniquely predict which equilibrium the economic agents will coordinate on, leading the policy

analysis ambiguous and even ineffective.

When there are multiple solutions for an LREM, these solutions form a high-dimensional
linear subspace. One must select a solution from this subspace for further analysis. If this
selection is arbitrary, then even small changes in the model parameters may cause the solu-
tion to jump along other directions within the subspace, which is called discontinuity of the
solution. In empirical work for solving LREMSs, researchers typically need to estimate model
parameters using methods such as maximum likelihood or Bayesian inference. For maximum
likelihood estimation, if the solution to the linear rational expectations model is discontinuous,
then even minor changes in the parameters may cause the equilibrium of the model to jump
to an entirely different region; moreover, a discontinuous objective function can prevent opti-
mization algorithms from finding a maximum or cause them to oscillate among multiple local
optima. Therefore, for frequentist methods, it is generally required that the objective function
be at least continuous. For Bayesian methods, if the solution to the linear rational expectations
model is discontinuous, then the likelihood function may exhibit sudden jumps at certain pa-
rameter values, which could result in the posterior distribution placing substantial probability
mass on certain “isolated” points or "atoms” (see Kingman (1975)). In such cases, the posterior
distribution would no longer be a continuous density but rather a mixture that includes discrete
mass points. Thus, for Bayesian inference, it is desirable that the posterior remains a contin-
uous density, without unexpected atoms appearing at unknown locations. Al-Sadoon (2020)
proposed a method named regularization, which allows the users to select a solution form the
solution subspace which is continuous with respect to the model parameters by incorporating
the prior information or the "preferences” of the users. The regularized solution ensures both
the uniqueness and economic interpret-ability of the solution, while also allows the condition of

using both frequentis and Bayesian analysis.

This paper is organized as follows. Section 2 reviews LREM solution methods by three
categories; Section 3 discusses the existence, uniqueness of the LREM solutions, revealing how
these issues manifest in solution methods; Section 4 discusses the discontinuity of the LREM

solution and reviews the regularization. Section 5 concludes.

2 Review of the LREM Solution Methods

Before starting the review of LREM solution methods, it is important to understand the basic

structure of these models and what it means for a solution to be economically and mathemat-



ically valid. LREMs are characterized by the current decisions that depend not only on past
and present conditions, but on expectations of the economic agents about the future. This
forward-looking behavior, while economically realistic, can create mathematical instability in
the model. Thus, the key problems of any solution methods is to determine whether a solution
exist, whether it is stable, and is unique. This paper next will have a quick look into stochastic
difference equations to ensure that one can understand the essential ideas hidden in the LREM
solutions by these methods. The letters and Latin symbols used below are defined independently
within each subsection, one can freely choose their preferred notation when applying these meth-

ods.

Consider a model with single variable:

Y = X + bE[yi 1]

where

y; is the current decision variable (e.g., consumption, price and output);

x4 is a fundamental (while z;_; is predetermined) variable known at time t;
Ei[ys41] is the expectation of y;,1 (non-predetermined variable) formed at time ¢;

b € R measures the weight of the forward-looking channel.

This equation of the model shows that current decisions g; depend on current fundamentals

x; and beliefs about the future y; ;. Iterating this equation forward:
Yr = T+ DE[x41] + D Ey[zeps] + - + 0" Ey[yyn),
then add a transversality condition to ensure this expression converges:
7}1_{{.10 V" E[ye4n] = 0,

if such condition holds, the solution can be written as

n—1
Y = Z bkEt[xt+k]'
k=0

It is noticed that this forward-looking solution is valid and stable (mathematically converges)
only if |b| < 1, since the distant future effects will vanish with the time increases. If |b] > 1, the

forward-looking solution diverges, in such case, the model can be rewritten as

Yi = Ty + byrp1 + berp



where €, is the expectational error term. Iterating backward yields:

o0 o0
—k —k
Yt = — E b g — E b xy_p,
k=0 k=1

which converges only if [b] > 1.

Therefore, the conclusion is that if |b| < 1, one should use the forward-looking solution; if
|b| > 1, one should use the backward-looking solution. This is the very essential idea of the

Blanchard-Kahn condition in the following review part.

Blanchard-Kahn Condition

Blanchard and Kahn (1980) proposed the well-known Blanchard-Kahn condition denotes that if
the number of the unstable roots (eigenvalues outside the unit circle) in the model equal to the
number of jump (forward-looking) variables, there is a unique and stable solution to LREM; if
the number of unstable roots is fewer than the jump variables, there are infinite many solutions

to the model; if the number of unstable roots exceeds the jump variables, there is no solution.

A linear rational expectation model can be expressed as:
BZL‘t_H = AZL‘t + Gi‘ft

BE,y;11 = Ay + Gey,

or in matrix form
T

Yt

Li+1
Eyyi

B =A + GEt,

where

x; is n X 1 vector of predetermined variable at time ¢;

yy is m x 1 vector of non-predetermined (jump) variables at time t;
g; 18 k x 1 vector of stochastic shocks;

A, B are (n+m) x (n+m) square matrices and G is (n+m) x k matrix due to the dimension of &;.

The expectation of y,.; is essentially a conditional expectation denoted as F;(y;1|€2), where
(), is information set at time ¢, which may include past and current values of x,y and . The
difference between predetermined and non-predetermined variable is a that predetermined vari-
ables is a function of variables known at ¢ 4+ 1 in 2;; while non-predetermined variable may be

a function of any variable in €,.



Suppose B is non-singular (invertible), the model can be rewritten as

= pa M 4 BTG,
Byt Yt
replace B~1A by Z, and B~'G by W, there is
Tl =7 o + Wgt,
Eryiia Yt

which is a difference equation system in matrix form. Blanchard and Kahn (1980) then per-
forms diagonalisation on Z to obtain PDP~!, where eigenvalues orders from the smallest to
largest on the diagonal of matrix D, the corresponding eigenvalues withe same order forms P.
Blanchard-Kahn condition depends on the number of eigenvalues which are outside the unit
circle. If the number of eigenvalues larger than one equals m, which is the dimension of y, then

the Blanchard-Kahn condition holds, there is a stable solution.

Taking the diagonalisation,

Z=pPDpP ' = pt| T ppt [T L plwg,
Eiyii1 Yt
partition the matrices P! and D as
P, P A 0 G
P_1 _ All A12 ’ D — 11 A 7 Al _ P_IW _ P_lB_lG
P21 P22 0 A22 GQ
Substituting back to obtain:
Pn ]312 Tip1 | An 0 1311 1512 Ty n é1 .
A A = N A A - t
Py Py| | By 0 Axl| [Pa Pof |u Gy

Multiplying the matrices gives the system of equations
PHCCt + 1+ plgEtyt +1= A11<p11$t + plgyt) + GAlﬁ-ft

Pyxt + 1+ ]522Et?/t +1= A22<p21xt + ]5223/15) + Glagy

Focusing on the second equation above, which involves the explosive dynamics (since eigenvalues

in Ayy are outside the unit circle), define:

At = P21$t + ngyt,



then the second equation becomes
EiAiy1 = Ago); + Gaey,
solving forward, since all eigenvalues in Ay are greater than one in modulus:
A= — i A;;_léQEt€t+i.
i=0
Suppose future shocks are identically distributed (i.i.d.) with zero expectation, then there is
M = —A3 G2, = Poywy 4 Pogyy = —A5} Goey
Solving for v,
If’ggyt = —lext — A§21G25t =Y = —PQ_legll’t — P231A§21@28t,

taking expectation of y;,1,

A
Eiyi = _P22 Por12444

Substituting both above two equations into
Puat+ 1+ PuEyt + 1= Ay (Pux, + Poy) + Gie,
then there is
Priz — ]512152}1]521@“ = All[Pllmt - ]512P2§1]521$t - P12P2§1A521é25t] + Ghey,
after rearranging,
[]511 - ]312152}1]521]$t+1 = AII[PH - ]512]52511521]It - A11[p12p2}1A§21é2 + él]gt,
and the non-predetermined variables are obtained:
Top1 = [PH_]512P2—21]521]—1A11[]511_?12]52—21P21]xt_[PH_]512P2—21]521]—1f\11[]512]52—21[\2—21(32+@1]5t7

this is the equilibrium law of motion under stochastic shocks. Since all eigenvalues in All are

stable (inside the unite circle), this solution is dynamic stable.

The above derivation demonstrates that in order to prevent explosive from the eigenvalues
in Ay, the model must impose exactly m constraints on the jump variables y; corresponding to

the m eigenvalues outside the unit circle, which is:



(i) if the number of unstable roots equals to m, LREM has a unique stable solution;

(7 ) if the number of unstable roots are more than m, LREM has no solution, the model system
is overdetermined;

(#4) if the number of unstable roots are fewer than m, LREM has multiple or even infinite many

solutions, the model is under-determined.

Blanchard-Kahn gives the necessary and sufficient condition for a unique, stable solution.
Note that it never discusses some special cases such as B is singular when forming Z = B~'A.
But it provides a clear standard for determining the nature of the model solutions and becomes
the fundamental basis for understanding and solving the LREMs. Since Blanchard and Kahn
(1980) proposed these classic stability conditions for linear rational expectations models, a vari-
ety of alternative methods have been developed to solve such models based on distinct underlying
ideas, such as Anderson and Moore (1985) and King and Watson (1998) apply eigenvalue sys-
tem; Sims (2002) and Klein (2000) use QZ decomposition; Binder and Pesaran (1999) and Uhlig
(1995) apply matrix polynomials. Researchers use the outputs of these solution techniques to
estimate models, compute impulse response functions, calculate asymptotic covariances, solve
infinite-horizon linear-quadratic control problems, and construct terminal constraints for non-

linear models.

This paper next reviews three solution methods for LREM divided into the above three cat-

egories of underlying ideas respectively.

Applying Eigenvalue System: AIM

Anderson and Moore (1985) provides a systematic and efficient procedure (denoted as AIM in
this paper) to solve the linear rational expectations models. The core idea of the AIM is trans-
forming the original model into a structured matrix problem and applying a sequence of linear
algebra techniques to determine the existence, uniqueness and the form of the solution. AIM is
easy to implement by MATLAB, code implementing AIM can be found on the official website
of the Federal Reserve. This section states the mathematical process that outlines the solution

strategy entailed in AIM.

AIM solves models of the form:

0 9
Z Gz + ZEEt[xt+i] =€, 7>0,0>0

i=—7 i=1
where
r; € R™ contains all the variables, irrespective of whether they have an endogenous, an exoge-

nous or a predetermined nature;



G, F; € R™™ are given coefficient matrices on current, lagged and lead values;
€; € R™ is a mean-zero shock;

the number of the lags 7 and leads 6 are greater than 1.

The model allows for arbitrary lags and leads. The solution sought takes the following form:

Ty = Z Bix,_; + Boey

=1

where B; are reduced form coefficient matrices that represent the dynamics of the endogenous
variables. AIM computes these B; from the original structural system. First, by forward iterating

the model and taking expectations, AIM constructs a homogeneous system:

0
Z Hixiiiri =0, >0

1=—T

where if 1 < 0, H; = G;, and ¢ > 0, H; = F;. These equations are stacked into a system over
time ¢, using the block vector
Tt

Xt — :L‘H"G_l c Rﬂ(T-’re)’

Ti—r+1

which leads to the formation of a generalized first-order linear system:
AXt-‘rl = BXt7

where A, B are n(t + 0) x n(7 + ) matrices constructed by shifting the H; across the block

structure, which capture the dynamic structure of the system with all lags and leads preserved.

AIM second determines the existence and uniqueness of a stable solution by solving a gen-

eralized eigenvalue problem (in MATLAB, using eig(A, B)):
AAs = Bs

to obtain n(7 + 6) eigenvalue-eigenvector pairs (A1, 51), (A2, 2), - - ., (An(r+0), Sn(r+0))- Let m de-
notes the forward-looking (or jump) variables outside the unit circle (JA| > 1), which must match

the number of jump variables m in the model to satisfy the Blanchard-Kahn condition.

Define the set of stable eigenvectors associated with eigenvalues inside the unite circle

Sstab = {s; € C""H0) . |\;] < 1}.



Let Sstab be the matrix formed by column-wise stacking the vectors in Sstab
Sstab = [sj,, )y, - -, 8j, ],
where each |);,| < 1.

AIM next impose a convergence condition, which is the full stacked state vector X; must lie

in the column space (or image) of Sstab
Xt S Im<Sstab>7

this ensures that the trajectory of the system remains bounded and excludes the explosive
solutions. To construct X;, let the known vector of initial conditions or the historical states of

the system be:

rt—17+1
Ty s
at=| T | err
Tt

If such an X; can be uniquely written as a linear combination of the stable eigenvectors in Sstab,
then the system has a unique stable solution; if no such X; exists, the model has no solution; if

more than one X; are found, the model has multiple solutions or even infinite many solutions.

In some cases, the structural system contains redundant or linear dependent equations, es-
pecially when some H; are rank-deficient (not in full rank). AIM solves this issue by using a QR
decomposition on the constraint matrices. For any rank-deficient H;, compute (in MATLAB,
qr(H,)):

Hi=Q; x R;, Q;,R; € R™™™"

where Q; is an orthogonal matrix with Q; Q; = I, and R; is an upper triangular matrix with

possible zero rows. Left-multiplying the system by Q, gives

T T
Q; Hixyys = Q; €4,

which shifts zero rows (redundant constraints) to the top of the matrix, leaving the non-zero con-
straint block at the bottom. By repeating this decomposition across all H;, AIM ensures that the
system of constraints has full rank, thus the matrix pencil (A, B) is well-posed. If the effective
number of constraints does not match the number of jump variables after the () R decomposition,

AIM reports either no solution (too many constraints) or multiple solutions (too few constraints).

Once the convergence condition is satisfied and the expectation term are eliminated sing the

10



solution subspace, AIM recovers the observable structure

0
E Sﬂtﬂ' = &,

1=—T

which is a purely backward-looking representation consistent with the data-generating process.

By left-multiplying with —S;* (when it is invertible), the reduced form is:

Ty = Z Bix,_; + Boey,

=1

which is the solution to the LREM showed above.

AIM requires no process that transforming the model into a special form with only one lag or
lead, and no expression explicitly distinguishing between predetermined and non-predetermined
variables, thus simplifying the coding implementation. As the model size increases, the com-
putational advantages of AIM become more pronounced. Coenen et al. (2021) applies AIM to
solve a simplified NAWM II (New Area-Wide Model II), a model designed to support monetary
policy decisions for the Euro area while analyzing the impact of financial frictions and policy
tools on the economy, significantly improving the efficiency and robustness of the solution. The
application of AIM provides NAWM II with a powerful technical foundation to support the mon-
etary policy research and decision-making of the European central bank in a low-interest-rate

environment.

The key note of using AIM is that, since it does not distinguish explicitly between pre-
determined and forward-looking variables, the number of jump variables must be specified to
assess determinacy by users. What is more, although avoiding the explicit distinction simplifies
the coding, AIM limits the ability to analyze models where this distinction carries important
economic meanings. If assuming that historical data fully determine all variables date t — 1 or
earlier, then for the models where the distinction between predetermined and non-predetermined

variables is crucial, AIM may not be appropriate.

Using ()Z Decomposition: Sims

Sims (2002) provides a method (denoted as Sims) applies the generalized eigenvalue decom-
position and matrix analysis to transform dynamic systems with lead and lag variables into a
recursive relationship at a stable state. It begins with the standard form of a dynamic system,

which can be expressed as:
Loy(t) = Iy(t — 1) + Wz(t) + LIn(t)

11



where

y; are the L x 1 dimensional state variables;

z; are the M; x 1 dimensional exogenous variables, independent and i.i.d., with E[z;z]] > 0;

¢ is the My x 1 dimensional expectational error, a k-dimensional martingale difference sequence
with respect to z and is measurable with respect to z;, z;_1, ... with Eyn 1 = 0;

[y is the L x L dimensional structural coefficients matrix;

I'y is the L x L dimensional structural coefficients matrix;

¥ is the L x M; dimensional structural exogenous variables coefficients matrix;

IT is the L x M, dimensional structural exogenous errors coefficients matrix, in which designation

of expectational errors identifies the predetermined variables.

Sims uses the )Z decomposition. The (QZ decomposition leverages the generalized Schur
decomposition (see Golub and Van (2013)) to decompose the matrix pair, for example (A, B),
in an LREM into two upper triangular matrices (7', 5), thus rewriting the model into a stan-
dard recursive form. This decomposition clearly reveals the nature of the dynamic of the model
system: by examining the eigenvalues A\(A, B) = t;;/s;, the QZ decomposition distinguishes
between stable and unstable components of the dynamics and solves for the path of the model
system which satisfies the Blanchard-Kahn condition. Sims expresses the model in a form which
is convenient for solving ”forward”, suggesting that it can determine the path of the endoge-
nous variable consistent with arbitrary future values of the exogenous variables, this facilitates

numerical computation while keeping theoretical soundness and transparency.

Under the assumption that the determinant det(I'g + I'yx) # 0 for all x € C with |z] =1 to
ensure that y will not be canceled out by elementary algebraic operations and there is no unit
root (A = 1) in the model system, Sims uses two orthogonal matrices Q, Z € RE*E such that
QT¢Z and QI'1Z are block upper triangular with either 1 x 1 or 2 x 2 blocks on the diagonal
(the following steps are followed by Al-Sadoon (2020)), the matrices are partitioned as:

Ay A
Qo7 — oz |
0 Ag
D e ices:
Q72 = where () and Z are n x n orthogonal matrices; all the zeros of the

22
polynomial det(Ay; + €512) outside the unit circle, such that Aj; is non-singular; all the zeros

of the polynomial det(Agy + 229) inside the unit circle, such that sy is non-singular. Then

introduce the new variable

Wa ¢

w
wt:Z/yt: [ 1,t]

where w;; is the component in the unstable subspace, ws; is the component in the stable

12



subspace, then rewrite the model system as:

AU}t = th,1 + Q\Ifzt + QHT]t, teZ

where the stable part is
Agpwa p = Qoowy -1y + Q2. Yz + Qo Ilny, t € Z

the stable part of the system must exhibit covariance stationarity and thus cannot have explosive
solutions. Moreover, since w, lies in the stable subspace, the associated dynamic matrix has all
its eigenvalues within the unit circle. Consequently, from the expectation relationships, one
obtain that

Wa,(t—1) = Qo Moo By _qwoy, tELZ,

which is

Wy = (QQ_QIAQQ)S_tEth,Su s> t.

To avoid the drift or explosion in ws, set wy; = 0. Substituting it back into the system:
Q2 Vz + Q2 1ln, =0, te€Z.

Then multiplying right by z; and taking the expectations, using the joint covariance station-

arity of n and z, there is
Q2. YV E(202) + Q2.I1E (nomp) = 0.

Also, for arbitrary ¢t € Z, the vector (Q-I1)'Q2¥z; + n; lies in the kernel (null space) of @Q,II,
where the Q,II)" is the Moore-Penrose generalized inverse (see the guidance of Barata and
Hussein (2012)) of Q.I1, and E;_;((Q211)TQ2V2; + n;) = 0. Therefore, given arbitrary matrix
denoted as K whose columns form a basis for the kernel of Q)5I1, there is a martingale difference

sequence with respect to z denoted as v, such that

Kv, = (Qo11) QW z; + 1y,

then the solution of the model is a pair of (y;,7;), where
Yt = @1%—1 + @zzt + @th

m=Kv— (QI)'QsVz

with
AT Q1 — Q1. T1(Q2.1T)Q,. )

Z', e,=27
0

13



AT Q1.I0) K
. .

0,=7

Sims provides a clear framework for solving dynamic system under uncertainty and expecta-
tional conditions, distinguishing between predetermined and non-predetermined variables while
simultaneously incorporating expectational error terms. It reformulates the problem of solving
LREMs as a generalized eigenvalue problem and extends the application of the (QZ decomposi-
tion in this field. Lubik and Schorfheide (2004) uses the sims method to test the determinacy or
indeterminacy in monetary policy rules under a New-Keynesian DSGE model. Similarly, Klein
(2000) also uses the QZ decomposition to solve LREMs, this method decouple backward and
forward variables of the transformed system by )Z decomposition. However, Sims explicitly
eliminates both dynamic and non-dynamic jump variables by imposing the horizontal conditions,

which contributes to ensure the uniqueness and stability of LREMs solutions.

However, the dynamic relationships in the model are implicit, requiring matrix decomposi-
tion, which leads to high computational costs, and the expectational variables are not explicitly
represented in the model equations. Although the Sims method appears recursive in form, it
actually requires iterative computation to obtain a stable solution, as it relies on generalized
eigenvalue decomposition combined with stability conditions and initial values. The expression
of the model by Sims must be in a form with one lag and no leads, which is not efficient for
solving the models with more than a couple of equations. Empirical tests in Anderson (2008)
show that the Sims method incurs a floating point operation cost approximately 30 times higher
than that of the AIM method, and the numerical precision of the Sims method is about five
times worse than AIM. Therefore, although Sims is capable of handling predetermined and non-
predetermined variables as well as expectational errors, its drawbacks include complex matrix
decomposition, high computational burden and inferior numerical accuracy, which makes the

model more susceptible to ill-posed matrices.

Applying Matrix Polynomials: Uhligs

Uhlig (1995) provides a solution method (denoted as Uhligs) built on the model expression of
Binder and Pesaran (1999), solving LREMs by expressing them in terms of expectations over
both endogenous and exogenous variables. Uhligs explicitly incorporates expectations and solves
for a time-invariant, convergent law of motion. It is well suited for applications that require the

forecastability of future variables like consumption and output.

Uhligs expresses the LREM as:

Et[F.TtJrl + Gxt + H.fl;tfl + L2t+1 + MZt] =0

14



zey1 = N2+ pien; Efpia] =0

where

xy € R™ is the vector of endogenous state variable at time ¢;

z € R™ is the vector of exogenous variables following a stable VAR(1) process;

F,.G H L, MR x R"™ x R"™" x R"™™ x R" ™ are the given coefficient matrices;

N € R™*™ is a matrix associates with the exogenous variables which only contains the stable
eigenvalues (all the eigenvalues are in the unit circle), ensuring stability of z;.

e is an ii.d. shock vector with E|puu;] > 0.

Uhligs seeks a solution of the recursive equilibrium law of motion form:
Ty = Pry g+ Qz

where P € R™" and ) € R™™ are matrices of undetermined coefficients. Uhligs aims to
solve for a pair of (P, Q) such that this law of motion satisfies the LREM under the rational

expectations operator.

Uhligs first iterating the law of motion,

T = Pry+ Q2

and substituting them with the exogenous process into the model
Ziyr = Nzg + g,

taking expectations at time ¢:

Ery1] = Pr, + QNz = P(Pxy_1 + Qz) + QNz = P22y + PQz + QN z,
then substituting x; 1, x4, 41, 2411, 2¢ into the original model to obtain:
F(P?z,_y + PQz + QNz) + G(Pry_1 + Qz) + Hry_y + LNz + Mz = 0,

grouping terms for x;_q,
(FP*+ GP+ H)x; 4

for z,

(FPQ + GQ + FQN + LN + M)z.
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Since the model must hold for all z;_; and z;, their coefficients must vanish:
FP*+GP+H =0

(FP+G)Q+ FQN + LN + M = 0.

Uhligs next solves FP? + GP + H = 0 for P, proposes to linearize this quadratic equation by a

generalized eigenvalue problem. Define two 2n x 2n matrices

F 0
0 I,

[1]

I, O

G —H]

consider the generalized eigenvalue problem
AAs = Zs,

where

A
5= [ ‘ ] — (MF+ )G+ H)z = 0.
x
This transforms the problem into seeking the eigenvalues \ and eigenvectors z satisfying:
det(\*F + A\G + H) = 0,

from the solutions to it, construct eigenvectors

i .
§; = , 1=1,....m.
T

Stack the stable ones into matrices:
Q=[z1,...,zn|, A=diag(Ai,..., \n).

The stability selection here is critical, users should select only the number of n eigenvalues \;
with |[\;| < 1. If fewer than n stable eigenvalues are found, no stable solution exists; if more,
there are multiple solutions even infinite many solutions, users can choose a subset that spans a

stable subspace.

Then recover P by:
FOA’ 4+ GQA+ HQ =0,

right multiplying both sides by Q7! yields
FQAQ™)? + GQAQ™) + H = 0.
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Thus, a solution to the quadratic matrix equation is
P =QAQ

Uhlig (1995) proved that any diagonalizable solution can be expressed in above form through
the transformation. In particular, when m = 1, the matrix reduces to a scalar, then the solution
to the equation becomes:

-G +VG?*—-4FH

P= F #0.
5F , B F

If FF=0 but G # 0, the equation reduces to a linear form

H
GP+H=0, P=——.
+ ) a

After P is solved, Uhligs solves for ). Given P, equation
(FP+G)Q+FQN+LN+M =0

becomes a linear matrix equation in (), but note that () appears twice including inside FQN,
there is no way to factor out Q in term F'QQN, thus take vec operation. By the properties of the

vec operation:

Let vec(+) be the column stacking operator, there is
vec(ABC) = (BT @ A)vec(Q)
Then the equation solving for () becomes
IN'®@ F + 1, ® (FP + G)Jvec(Q) + vec(LN + M) = 0,

let
V=N'@F+I®(FP+G),

then
vec(Q) = —V tvec(LN + M).

This equation can be solved using standard numerical linear algebra routines (for example, using
the backslash operator in MATLAB ). Consider the condition of V' is invertible or ill-posed, the

Moore-Penrose pseudo inverse may be required.
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Once P and (@) are obtained, the model solution is:
vy = Pry 1 + Qz

with 2z = Nz;_1 + p4, which implies

t—1

x = Plzg + Z P'Qz_;,
=0

the influence of the initial condition zy on z; is governed by Plzg. If |\;| < 1 for all eigenvalues
A\ of P, lim;_,oo P! = 0, then lim,_,o, P'xy = 0, which indicates that the influence of the initial
condition vanishes over time t, and the state variable x; converges to a path driven by the

exogenous variables (essentially driven only by the exogenous shocks f;):

t—1
§ %

Ty = P ta—i-
1=0

The core of Uhligs lies in the explicit incorporation of future expectations (E;[x;.1] and E¢[z141])
into the dynamic equations of the model. In this expression to linear rational expectations
model, the expected values of future variables are explicitly present and visible in the equations.
Uhligs explicitly expresses the expectation terms, the clear model structure is well suited for
studies which require analyzing expectation shocks. Matrix polynomials can better express the
temporal dependencies between the variables. For example, in the matrix polynomial above,
A2 corresponds to distant future expectations, A reflects current term effects, and the constant
term represents the contemporaneous shocks. This structure is more logically align with how
LREM form expectations about the future, especially regarding forecasts of variables such as
future consumptions or output. Barbier-Gauchard et al. (2023) applies Uhligs to log-linearize
and solve a behavioral macroeconomic DSGE model, the results indicate that using Uhlig to
rewrite and solve the DSGE model helps investigate the issue of fiscal policy credibility, as well
as how the expectations of agents about the output gap, public debt, and taxation influence the

fiscal multiplier and debt stability.

However, the solution to the matrix polynomial is highly complex and not unique, and it
is sensitive to the matrix conditions, such as the invertibility of the F' matrix. The results in
Anderson (2008) indicate that, although Uhligs is more computationally efficient compared to
Sims, it failed in few given models, and in general, still requires more than twice the computa-
tional cost of AIM. The results also suggest that Uhligs strikes a balance between accuracy and
efficiency, but it is only suitable for cases where a VAR of the exogenous process is required and

the model size is moderate (e.g., a small size DSGE model).
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To summarize, for models that satisfy the Blanchard-Kahn conditions, these methods pro-
duce equivalent solutions in the time domain, the difference lies in their respective underlying
ideas. Researchers is suggested to select the most suitable method depending on their proficiency
with a given approach, and the size of the model to be studied, as Anderson (2008) shown, the
AIM method distinguishes itself with exceptional computational speed and precision, making it
highly suitable for large-scale empirical models, though it is less expressive than other methods
in terms of theoretical structure and expectation modeling. Sims expresses model structure
with explaining the dynamic mechanisms, and delineating the roles of different variables. Uhligs
explicitly expresses and solves for expectations that enhancing structural transparency and bet-

ter serving policy-oriented research where clear analysis of expectation-driven shocks is essential.

However, there not always exists a solution for an LREM, and the selected method may not
always yield a unique solution, which makes policy analysis difficult or even infeasible. The
next section reviews the problems of the existence and uniqueness of the LREMs solutions, and

discusses their implications for the application of LREMs solutions.

3 Existence and Uniqueness of the LREM Solution

Macroeconomic theory typically assumes that the economy is always in some form of equilib-
rium, which implies that, given the current policy rules, shocks, and parameters, the economic
system should follow a stable path. If no solution exists, the effects of exogenous shocks fail to
be absorbed or offset by appropriately choosing the endogenous variables and martingale dif-
ference sequences, and the economic system would fail to reach any equilibrium state. In such
a case, the model would not be suitable for policy analysis and forecasting. At the same time,
under the framework of rational expectations theory, economic agents are assumed to know the
structure of the model and to form expectations that are consistent and rational. If the model
admits multiple solutions, then a given economic environment may correspond to more than
one equilibrium path. In other words, different agents may coordinate on different equilibria,
resulting in distinct dynamic behaviours in variables, such as inflation, interest rates and out-
put. This not only contradicts the assumption of rational expectations, where all agents share
the same equilibrium expectations, but also renders policy analysis ambiguous and infeasible.

Thus, it is crutial to clarify the conditions for the existence and uniqueness of the LREM solution.

Taking the Sims methods as example, as shown in the previous section, to solve the linear
equation
Q2. ¥z + Q2.1In, = 0,

the column space of Q¥ must be spanned by the column space of (Q5II. In other words, the

impact of exogenous shocks within the stable subspace must be fully absorbed by the martingale
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difference term. Otherwise, no stationary solution exists. Then there is the condition for the

existence of a solution to the model:

im(Q2.V) C im(Q211)

Once the existence condition is satisfied, the next step is to establish the uniqueness condition

of the solution. Assuming that 7; is not unique, then there exists a vector x such that
QQHZL' = 0.

However,

Qullz # 0

then the adjustments to 7, along the vector x will not affect the stable subspace but will affect
the unstable subspace, rendering the solution non-unique. Therefore, it is necessary that the
martingale difference term be ineffective not only in the stable subspace but also in the unstable

subspace, that is, all directions mapped to zero by Q5II must also be mapped to zero by QI1:

ker(Qa11) C ker(Qq 11)

Therefore, following Sims (2002), assuming that det(I'g—T"1x) # 0 for all complex number x with
|z| = 1, there exist a solution for linear rational expectations model if im(Qy V) C im(Q2 1),
there is a unique solution if ker(Q2Il1) C ker(Q1I1). When using Sims, a unique solution is

ensured if the given model satisfied the above conditions.

If the existence condition is satisfied but the uniqueness condition is not satisfied, meaning
the solution set constitutes a high-dimensional linear subspace, along some directions within
this subspace, the values of 1, can be chosen freely without violating the stability of the system.
Such degree of "freedom” implies that one can select any point as the solution in the solution
space. However, the “arbitrary” selection may lead to the chosen solution suddenly jumping to
another point in the solution space when the model parameters experience even slight changes.
Consequently, as the parameters vary, both the dimension of the solution space and the position
of the solution within that space may shift abruptly. This phenomenon manifests as the discon-
tinuity, in which the solution depending discontinuously on the parameters. The discontinuity

of the solution will affect both frequentis and Bayesian analysis.

The next section clarifies the discontinuity by the Sims example and review a method for
dealing the cases where the model solution is non-unique and discontinuous. This method
selects a unique solution from the infinite many solutions of the LREM that aligns with prior

information, therefore addressing the impact of discontinuity on frequentis and Bayesian analysis.
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4 Addressing the Discontinuity: Regularization

When the uniqueness condition is not satisfied in the example of Sims, the solution is not unique,

and there exists a linear subspace of solutions:
yr = a particular solution + arbitrary linear combination of free direction.

This linear subspace is akin to a high-dimensional plane, on which one can arbitrarily choose
a point. However, each point corresponds to a different set of economic dynamics, and these
free directions may shift abruptly as the model parameters change, resulting in a discontinuous

solution.

In a recent study, Al-Sadoon (2020) proposed a regularization method, successfully applied
the regularized solution within the LREM in Sims form: by introducing a weighted objective
function, one can select a solution from the infinite solution space that minimizes a convex and
continuous cost function, incorporating prior knowledge or “preferences.” This solution is both
continuous and economically meaningful. The idea of the regularization under the previous work
of Al-Sadoon (2017) is explicitly making the indeterminacy in the solution space, then penalizing
the undesirable solution directions by minimizing a weighted quadratic loss function. The weight
matrix, denoted as W, specified by the researcher to reflect economic preferences regarding the

solution, for instance, emphasizing fit or smoothness at particular frequencies.

As discussed above, the general solution of LREM by Sims takes the form:
Y = O1yi—1 + 0.2, + O,

'I’]t = KVt — (QQH)TQQ\I’Zt

where 14 is a martingale difference sequence freely chosen on ker(QsII), along the directions of
non-uniqueness, representing the indeterminacy of the solution. Without any restrictions, 14 can

vary arbitrarily along these directions, resulting in an infinite number of solutions.

Regularization defines a weighted quadratic loss objective function:
]‘ /
L= §t7”(WE[ZJoZ/o])

where W is a given semi-definite weight matrix (selected by users) that reflects preferences
for certain properties of the solution, such as smoother dynamics or solutions that better align
with business cycle frequencies. The aim of regularization is to minimize £ subject to the model

constraints.
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The indeterminacy term v, is decomposed as
vi = Bz + (i, ElzG] =0

where B represents the deterministic component and ( is martingale difference sequence, (; is
a martingale difference sequence serving as the residual with respect to z;. Express covariance
Elyoyp] as a function of B and C' = CC":

Elyoye) = Y ©7(6.%..0. + 6.%..5'6),

J=0

+0,BY,.0" +0,BY,.B'0 + 0,000’

and the objective function can be written as:

where

is the unique solution of the equation:

taking the derivative of £ with respect to B and C, then there are
©=0,+06,B)=0, 6/Z0,C=0

if ©/ =0, is invertible, then the unique solution is
B*=—-(0=z6,)7'ez0,, C*=0

if © =0, is not invertible, then there is no unique solution, but a class of solution can still be
14

obtained by minimizing the objective function.
B*=—(0,20,)'0,20, + X, C*=Y
where im(X), im(Y) C ker(©,=20,).

Substituting B* and C* into y; and 7; yields the unique or a class of regularized solutions:
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Yt = @lyt—l + @regzta
n = —(K(0,20,)7'0/ 20, + (Q.,II)'QyV)

where

Orep = (I — ©,(0,20,)710,2)0.,.

To incorporate frequency-specific weights, such as emphasizing business cycle frequencies,

the objective function can be expressed as an integral over frequencies:

L= %tr(/ W, fudw)

where f,, is the spectral density matrix of y, W, is the frequency-dependent weight matrix. By

choosing an appropriate W,,, undesirable frequency components can be penalized.

The idea of regularization is analogous to adding a penalty term in linear regression (such as
ridge regression), selecting the solution with the smallest norm from an infinite set of possible
solutions. Regularization addresses the discontinuity and indeterminacy of LREM solutions in
theory, and it allows researchers to incorporate prior information to guide the selection of a
solution by their preference. This feature is particularly important for practical applications in
the frequency domain or Bayesian analysis, as it ensures both the stability of the solution and

the economic interpret-ability of the results.

However, when using regularization, the choice of the weight matrix from the user has a
decisive impact on the results, which requires the user to processes strong economic sense and
mathematical analytical foundation. Applying regularization to the other methods may expand
their applicability, if encounters discontinuity problems during the solution process, one can first
find the sets of all solutions under the selected method and then use regularization to select a

"preferred” unique solution.

5 Conclusion

This paper reviews three solution methods for solving linear rational expectations models divided
into three categories, uses Sims (2002) method to discuss the existence, uniqueness and the
discontinuity of the LREM solution. This paper also reviews a recent method solving for the
discontinuity problems of the LREMs, regularization, which not only addresses the discontinuity
issues but allows users to select economically meaningful solutions tailored to business cycle
considerations and research preferences. Future works could expand the use of regularization to
the other solution method such as Uhlig (1995).
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