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Abstract

According to the WHO, one hundred twenty-five million people were affected by earth-
quakes between 1998 and 2017 [1]. Increasing our knowledge of the Earthquake cycle
is an important task, and using machine learning techniques for the prediction of earth-
quakes is a promising research direction.

In recent years, the number of Global Navigation Satellite System (GNSS) receiver
stations has significantly increased, providing daily data on their locations. Geodetic
processes and errors associated with measuring the distance between satellites and re-
ceiver stations influence the apparent location of these receiver stations. The work in this
thesis uses data that include key geodetic signals and underlying components represent-
ing non-geological activity, such as atmospheric components. The separation of these
components is the core inspiration for my work, which I address using the blind source
separation (BSS) technique to isolate seismic events from atmospheric and instrumental
noise in geodetic time and spatial series (GNSS and SAR, respectively) for earthquake
monitoring and post-seismic analysis.

In source separation techniques, it is common to assume that the underlying sources
are independent. One challenge identified in this context is the difficulty in selecting an
appropriate metric to quantify the dependence between sources while effectively opti-
mising toward extrema to produce the most independent sources. To tackle this issue,
I compare various independence metrics using the non-parametric test of Binary Phase
Shift Keying over an additive white Gaussian noise (AWGN) channel, which serves as a
well-established test in Communication Theory. Furthermore, I present an example that
compares a binary signal to the average of other binary signals while gradually increasing
the number of signals included in this average.

Then, I examine the suitability of these metrics as loss functions, particularly con-
cerning their optimisation and the tailored algorithms required to compute challenging
extrema. My research is comprehensive. I apply architectures and metrics to various
benchmark datasets for widely adopted source-separation tasks; extend them to GNSS
and SAR data to provide geological context and explore representation learning. This
multifaceted approach validates my methods on both labelled (for supervised learning)
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and unlabelled (for unsupervised learning) data, providing a robust foundation for my
findings.

In this work, I introduce distance correlation as a metric for assessing signal indepen-
dence and evaluate it on several distinct scenarios:

1. Communication-Theory Benchmark: Binary Phase Shift Keying (BPSK) signals
transmitted over additive white Gaussian noise (AWGN) channels were used to
compare distance correlation to a closed-form mutual information statistic.

2. Synthetic and Hybrid Synthetic/Geodetic Mixtures: The datasets for this task
included combinations of three source signals formed by the linear mixing of sine,
square and sawtooth waves; mixtures involving GNSS station pairs combined with
synthetic seismic deformation signals or SAR data combined with additive signals.
These datasets were used to evaluate various BSS methods, including comparisons
with the popular FastICA algorithm.

3. Geodetic Data: Real GNSS time series collected around a known seismic event
were used to investigate the separation of underlying geophysical sources.

4. Representation Learning: Modelling techniques aimed at extracting semantically
meaningful features from datasets, including image-based classification across ten
categories for CIFAR-10, and disentangled latent features from binary pedestrian
mask sequences in the KITTI-Masks dataset.

For the first experiment, using the synthetic dataset, I extracted three waves from the
input mixtures, such that the neural network was optimised to extract the most indepen-
dent underlying sources. On average, the distance correlation method outperformed the
established gold standard FastICA, a blind source separation technique based on non-
Gaussianity.

I also applied this method to a dataset created by combining two signals from simi-
lar GNSS stations, considered to be one source, to a known synthetic signal representing
an earthquake with post-seismic deformation at different epicentres. In this case, Fas-
tICA slightly outperformed distance correlation in separating the synthetic, seismic sig-
nal. When extracting a real seismic event from two actual GNSS stations, FastICA again
outperformed distance correlation. It is important to note that the seismic signal in this
scenario was compared against the decomposed trend of the GNSS stations and an ele-
ment of afterslip, not a known ground truth. As such, this comparison should be regarded
with caution.

In my final analysis, I applied distance correlation to more advanced representation
learning tasks. For the CIFAR-10 dataset, I used a whitening technique for scattering
and then brought positive pairs closer together using distance correlation. This approach
achieved a Top 1 accuracy of 88.8%. However, it underperformed compared to the origi-
nal W-MSE method, which achieved a Top 1 accuracy of 91.2%.

The previously mentioned whitening representation methods did not yield good re-
sults for the disentanglement task involving the KITTI-Masks dataset. However, when I
updated the InfoNCE loss (Laplace, Unbounded) for double-centred inputs, as a proxy of
distance correlation, I improved the state-of-the-art mean correlation coefficient (MCC)
score by 0.6%.
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CHAPTER 1

Introduction

Between 1980 and 2009, 314,634-412,599 deaths and 845,345-1,145,093 injuries have

been reported to have been attributed to earthquakes, with 61 million people in total af-

fected by earthquakes [7]. These numbers are likely underestimates. Due to an increase in

population and urbanisation in earthquake-prone areas, the impact of earthquakes is ex-

pected to increase in the coming decades. In another example and from an economic

perspective, the direct losses of the 1995 Great Hanshin earthquake, including losses

to infrastructure and utilities, were estimated to be between $100 and $144 billion [8].

Therefore, learning more about earthquakes and their potential prediction is essential.

Earthquakes suddenly release strain energy within the crust of the Earth, radiating

seismic waves from the epicentre. Suppose that a Global Navigation Satellite System

(GNSS) station was within a given distance of the epicentre of an earthquake. In this

case, the displacement time series recorded by said station may contain a step discontinu-

ity. The Nevada Geodetic Laboratory (NGL) uses a threshold distance of 100.5M−0.79 for a

possible discontinuity in a GNSS time series associated with an earthquake, with distances

in km and M being the magnitude of the earthquake on the Richter scale. Therefore, for a

magnitude 4 earthquake, if a sensor is within 16km of the epicentre, a discontinuity in the

GNSS time series may appear. However, it is not necessarily true that displacement will
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occur at the time of a seismic event even when a sensor is within the threshold distance.

The NGL provides caveats that the depth, style, or directionality of displacement is cur-

rently not accounted for in the distance threshold and that the displacement may not have

occurred at the specified time [2].

Recently, there has been a dramatic increase in the number of GNSS stations deployed

to record their location on the surface of the Earth over time, creating an opportunity for

the application of big data methods. Given the applicability of big data and the potential

of GNSS data to contain information relevant to the prediction of Earthquakes, GNSS

displacement time series will be used as the primary geodetic dataset for the ensuing

research.

NGL provides multi-purpose data products from more than 17,000 GNSS stations

around the globe [2]. This increase in the volume and quality of the data also means

improved spatial and temporal coverage and measurement accuracy. The displacement

accuracy, now down to the millimetre, allows for better interpretations of underlying pro-

cesses occurring at active fault zones, such as tectonic strain loading and slips at different

points in the earthquake cycle.

The large volume and high resolution of GNSS data indicate that earthquake predic-

tion could be explored through machine learning. In this thesis, machine learning tech-

niques, predominantly using GNSS displacement time series or a synthetic dataset, will

be investigated in terms of the viability of the independent component analysis of GNSS

signals and its potential to help predict earthquakes.

Moreover, the selection of GNSS data was guided by the primary objective of this

work, which was to study real-world applications, particularly the prediction of earth-

quakes as a part of a hazard mitigation strategy. This focus is in line with the original

GNSS dataset proposed by the project stakeholders. Although more advanced datasets

are available for BSS tasks, such as the Libri2Mix dataset, they are not directly applicable

to the field of earthquake prediction.

There are three primary forms of geodetic data: SAR, InSAR, and GNSS data. SAR

(Synthetic Aperture Radar) detects surface changes but does not provide explicit infor-

mation on deformation. It has a high spatial resolution but lower temporal resolution

compared to GNSS data. Similarly, InSAR (Interferometric Synthetic Aperture Radar)
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maps deformation to the millimetre. However, it also has lower temporal resolution than

GNSS data.

In contrast, GNSS data provides continuous, daily, and sub-daily motion vectors at

discrete stations. This data allows researchers to calculate strain accumulation and plate-

velocity models, providing a wealth of information about the earthquake cycle. Although

GNSS data has high temporal resolution, it is limited by the density of the stations.

Given the advantages and disadvantages of each data type, I selected GNSS data for

its potential to capture critical information in the lead-up to an earthquake that SAR data

might miss due to its resolution constraints. For future work, it would be beneficial to

combine InSAR and/or SAR data with GNSS data. Then machine learning methods sim-

ilar to those applied to audio and video datasets could be explored.

The GNSS displacements are pseudoranges, consisting of components representing

the distance from a satellite to a receiver and other elements associated with errors when

calculating the actual range. The number of underlying processes, measured as underlying

components of the overall GNSS displacement time series, varies from station to station.

This work focuses on signal components with geological meaning, which often comprise

a smaller proportion of the overall GNSS displacement time series. An example would be

slow slip events, which are slip events that are undetectable by seismometers. Slow slip

events have a longer duration compared to earthquakes of comparable seismic moment,

causing a more gradual displacement within the GNSS time series over time. GNSS

time series have aided in the discovery of several slow slip events in subduction zones,

exemplifying the potential power and challenges of using GNSS time series in geological

research.

1.1 Problem

This thesis investigates the applicability of machine learning analysis on GNSS data, fo-

cusing on seismic events. GNSS time series represent the position of a receiver station on

the surface of the Earth, tracking how its three-dimensional coordinates evolve over time

relative to a defined reference frame. As an example, Figure 1.1 presents the daily dis-

placement over time for the J076 station in the east, north, and up directions, referenced
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to the IGS14 frame. GNSS receivers measure their position to the nearest µm in a spe-

cific reference frame. Unless otherwise specified, the global reference frame IGS14 [9],

a 3-dimensional Cartesian geocentric coordinate system for International GNSS Service

data products, is used.

The main focus of this research is to identify and separate components of the GNSS

pseudoranges related to seismic processes, separating not only well-studied processes

but also identifying new processes, ultimately aiming at improving our knowledge about

active faults and the earthquake cycle. A successful example [10], well-documented in

the literature, is the study of slow slip events, the understanding of which has increased

tremendously with the use of GNSS data. It is worth noting nevertheless, that slow slip

events still need to be successfully modelled in sufficient detail to remove their effect from

the GNSS time series as a pre-processing step.

Defining the problem as that of blind source separation emerged from the modelling

limitations identified at the early stages of the project. In particular, the work of Gua-

landi and Michel acted as the motivation for the research outlined within this thesis. [11]

proposed variational Bayesian Independent Component Analysis, vbICA, to extract time

series representative of different processes from GNSS position time series. Following on

from this work, [5] used the proposed vbICA method on the Cascadia fault.

1.1.1 Problem definition

The definition of blind source separation varies, depending on the task and the available

dataset. In the first instance, it will be defined in the context of the Cocktail Party Problem.

Imagine two people speaking concurrently, thought of as two individual sources, s1(t)

and s2(t), and two microphones recording the mixed sounds, x1(t) and x2(t). The mixing

system can be written as:

x1(t)

x2(t)

=

a11 a12

a21 a22

s1(t)

s2(t)

 , (1.1)

or in matrix-vector notation as:

X = AS. (1.2)
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Figure 1.1: The daily displacement over time for the J076 station in the east, north, and
up directions, referenced to the IGS14 frame. Blue points represent the daily data, while
the red curve illustrates a model that estimates the best fit for this data. Grey dotted
lines indicate the timing of nearby earthquakes, while the cyan line marks a possible
step change, potentially resulting from equipment modification or software updates. The
magenta points represent data with a 5-minute sampling rate collected over 24 hours.
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Figure 1.2: A graphical representation of blind source separation viewed as an inverse
problem. On the left, we have the known observations, while on the right are the under-
lying sources. The mixing matrix operates on these underlying sources to produce the
mixtures, which is why the arrows point from right to left.

Equation 1.2 is a general case where X is a column vector filled with the N recorded

mixtures; A is the NxN mixing matrix, and S the column vector filled with the N sources

or the Independent Components, in ICA terms. Figure 1.2 is an example with three mixed

signals and three sources. Note that the arrows point from right to left and that the only

known values are the three mixtures at the left-hand side.

The ICA formulation of this problem, with the time index omitted, is summarised by

Equation 1.3.

x j = a j1s1 +a j2s2 + ...a jNsN j = 1,2, . . . ,N (1.3)
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The time index was dropped because the ICA model assumes that each mixture, x j, and

source, sk, are random variables rather than time series. Thus, the observed values x j(t)

are samples of the random variable x j.

1.1.2 Motivation

In blind source separation, various source signals will be separated, with the aim of dis-

tinguishing processes not under investigation, ‘noise’, from valuable seismic information.

What information is important is application-dependent and subjective. In this work,

geodetic signals are fundamental. However, ionospheric noise, which varies periodically

throughout the day, and seasonal tropospheric noise can have a greater amplitude than

geodetic signals, often dominating them in the GNSS time series. Moreover, as stated

in [11], ‘we are mostly interested in understanding what is not already known, i.e. those

signals for which we do not have any well-established pre-determined model’.

Problem definitions, other than blind source separation, may not provide the scope re-

quired to output information that will provide greater insights into seismic processes that

are currently not well-modelled. Indeed, the previously mentioned slow slip events are an

example of events that are challenging to model with more conventional methods. Slow

slip events are examples of transient deformations, a non-periodic, non-secular accumula-

tion of strain in the crust [11], and attempts to develop basic models for them, consisting

of linear, cyclic, and offset components, have not been successful.

Understanding and modelling transient deformations can be valuable in assessing seis-

mic hazards. However, as the research presented in this thesis progressed, it began to fo-

cus more on detailed investigations of machine learning techniques, independent of their

specific applications.

1.2 GNSS displacement time series

GNSS is an umbrella term for global positioning satellite constellations. It encompasses

systems such as the Global Positioning System (GPS), Galileo, GLONASS, and BeiDou.

These systems are supplemented by ground-based and space-based augmentation systems

[12].
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Figure 1.3: The global distribution of the GNSS receiver stations [2].

Using signals from the GNSS satellites, the NGL calculates and records the posi-

tion coordinates of some 17,000 GNSS ground stations located around the globe [2]. Of

those 17,000 stations, 10,000 stations have their positions taken once daily and the over-

all dataset is updated every week; 5,000 stations have their 5-minute position coordinates

updated every day, and the final 2,000 have their 5-minute position coordinates updated

every hour. Figure 1.3 depicts the global coverage of the GNSS receiver stations.

The positions of these receiver stations are determined by a process known as GNSS

ranging. Given the time at which a signal is sent from a satellite, the position of the

satellite when the signal is sent, and the time at which the GNSS station receives the

signal, the distance from the receiver station to the satellite can be calculated. In ideal

conditions, Equation 1.4 determines the range, ρ , of the signal, that is, the distance it

travelled:

ρ = c ·∆t, (1.4)

where ∆t represents the signal propagation time and c is the speed of light, as the signal

is a form of electromagnetic radiation.
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Figure 1.4: The 2D case, where three satellites, the black symbol, are located in the
centres of circles with radii equal to their calculated range. The orange cross represents
the intersection point and the location of the receiver station.

The range is the radial distance from the satellite to the receiver station, and thus to de-

termine the location of the receiver station, the radial distances to 4 satellites are required,

3 for the spatial coordinates, and one for time. The first satellite locates the receiver some-

where on the surface of a sphere; two satellites locate the receiver somewhere on a circle

created by the intersection of the two spheres; a third sphere provides two possible loca-

tions on the circle where the receiver may be. As stated before, 4 satellites are required

to locate the receiver. The fourth satellite can be used to find the one point where all the

spheres intersect (the location of the receiver). However, one of the two candidate points

can usually be excluded because its location is nonsensical, that is, obviously far away

from the Earth’s surface.

Instead, the fourth satellite is more beneficial in addressing the receiver clock offset, as

receivers usually contain quartz crystal clocks, which can drift around 0.1 nanoseconds to

1 second. For example, a drift of 0.1 nanoseconds compared to the satellite clock causes

the range calculation to be out by around 0.03m, using the lower end of the drift ranges.

To account for clock uncertainty, if the four spheres do not intersect, alternative ranges are

taken from a series of times around the measurement, until there is an intersection point

for all four of the range spheres. Figure 1.4 illustrates the simpler 2-dimensional case.
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The scenario mentioned previously is an idealised case, and many processes affect the

range calculation. Thus, the equation of the pseudorange, essentially an error decompo-

sition, is used instead [13]:

p = ρ +dρ + c(dt−dT )+dion +dtrop + εmp + εp, (1.5)

where p is the pseudorange; ρ is the true range; dρ is the satellite orbital errors; c is

the speed of light, dt is the satellite clock offset; dT is the receiver clock offset; dion is

the ionospheric delay; dtrop is the tropospheric delay, εmp is the multipath and εp is the

receiver noise. In the case where the satellite and receiver clocks are offset by the same

amount, the apparent signal propagation time would equal the actual propagation time as

the offsets would cancel.

As an aside, the noise component of the GNSS displacement pseudorange is often

assumed to be white noise due to model constraints, as stated in the literature [11] [14]

[15]. However, this assumption is not strictly accurate. Fourier analysis has revealed that

the noise is more likely to be Brownian or pink. The distinction between the two types of

noise may arise from low-frequency linear trends in the data, which may be influenced by

the detrending steps applied to the GNSS data. Further analysis is needed to explore this

issue. In my work on BSS with GNSS data, I did not explicitly model the noise, but will

nonetheless maintain the assumption that the noise is white.

Returning to the discussion of GNSS measurements, the position coordinates col-

lected by the NGL are pseudoranges, not pure ranges, and are subject to several uncer-

tainties. For instance, regarding ionospheric errors, the signal moves more slowly through

the ionosphere when there is a higher density of electrons. This happens because free

electrons are released when the UV radiation from the sun ionises them. Consequently,

the impact of the ionosphere on the position-time series of the receiver station exhibits a

regular daily cycle.

Unlike the refraction caused by the ionosphere, the electrically neutral troposphere

does not cause refraction based on the frequency of the signal frequency. Tropospheric

refraction arises because the refractive index of the troposphere decreases as altitude in-

creases such that the signal bends towards the Earth [16]. The GNSS signal with the
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shortest path through the troposphere will be the least delayed by it (i.e. the tropospheric

effect will be minimised if a satellite is directly above the receiver). The refraction has

two components. The more dominant is the dry component, which is closely correlated

to the atmospheric pressure, and the less dominant is the wet component, which depends

on the highly variable water vapour arrangement in the atmosphere.

The effects of both the ionosphere and the troposphere can be reduced by prepro-

cessing the GNSS time series. In the case of the ionosphere, it is known that the de-

lay depends on the frequency of the signal. Dual-frequency receivers can assess the

frequency-dependent signal delays caused by the ionosphere by utilising two different

signal frequencies, allowing for the correction of this error. Tropospheric modelling can

be used in GNSS preprocessing to reduce the tropospheric influence on the GNSS data

by up to 95%. Nevertheless, any residual of these preprocessing steps may still be on the

order of magnitude of the geodetic signals of interest.

Finally, the ‘noise’ components present in the signal can differ depending on the re-

ceiver station’s location. For example, a receiver station near the sea may have multipath

due to the signal’s reflection off the water, but a receiver station in a field may not.

Given the complexities of modelling GNSS signals, a useful and challenging research

question would be ‘How can all signals that are combined to form the GNSS position time

series of a receiver station be separated from one other?’ or if this is not possible, ‘How

can signals representative of seismic processes be extracted from other processes within

the mixed GNSS position time series?’

A further complication in the latter, simpler form of the research question is that the

user may not extract from the mixture processes which have not been modelled that are

nevertheless part of the earthquake cycle if they somehow bias the process to extract

signals that are already known. Consequently, the problem will be approached as a blind

source separation problem.

Blind source separation of GNSS data

The blind source separation will now be redefined for the GNSS case. Take a system of N

GNSS stations whose coordinates are updated daily. These coordinate readings would be

analogous to a mixed microphone recording in the cocktail party formulation, with three
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Figure 1.5: Summary of how the recorded GNSS time series are related to the mixing
matrix A, and the unknown sources S. The GNSS time series is from NGL [2].

channels for the east, north, and up directions. The total number of elements in the time

series would be M = 3N.

For L < M sources, the pseudoranges can be written as a linear combination of the

underlying sources. The problem can thus be written as:

XM×T = AM×LSL×T +NM×T , (1.6)

where A is the mixing matrix; S is the source matrix; and N is a Gaussian noise matrix.

Each row of S contains the time series of a given source, where each source is statistically

independent of the other sources, corresponding to the M observed random variables, that

is, the recorded coordinates, using a linear combination of L variables whose probability

density functions describe the temporal evolution associated with each row of S [11].

Figure 1.5 summarises the GNSS blind source separation problem.

When applying BSS methods to GNSS time series, it is crucial to remember that

both classical ICA algorithms (e.g. FastICA) and my newer distance-correlation-based

BSS techniques assume the underlying sources are independent, identically distributed

and stationary. In contrast, GNSS residuals typically violate stationarity as they contain

a deterministic trend from tectonic plate motion; exhibit seasonal and periodic variations

and can show amplitude changes over time from environmental factors. In my pipeline,

I MIDAS-detrend the data, but residual non-stationarity will remain. However, I make

the assumption that this non-stationary residual effect is negligible for the time window

studied.

In terms of non-linearities, GNSS observables are typically modelled as a linear super-
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position of error sources. After applying the standard corrections, remaining non-linear

effects, such as multipath interference, are usually small relative to the dominant linear

errors. Consequently, these non-linearities behave like high-frequency noise. Linear BSS

methods can therefore separate the main components effectively.

The aim of blind source separation is to extract the underlying sources with limited

supplemental information. In fact, in the definition of the above problem, the only known

variables are the recorded mixed GNSS signals, X . Independent component analysis is

a prevalent blind source separation technique, based on the assumption that the source

signals that mix to form a recorded signals are statistically independent. Commonly, non-

Gaussianity is used as a measure of independence due to the Central Limit Theorem.

Heuristically, it can be said that under most circumstances, the sum of the probability

distributions of two time series is more Gaussian than the individual distributions. That

is, as more signals are mixed, the mixture becomes more Gaussian. Metrics used to

describe Gaussianity in the context of ICA include the fourth-order moment, kurtosis and

negentropy.

However, some fundamental limitations of ICA have not been resolved, and various

alternatives to non-Gaussianity as a measure of signal independence have been proposed.

A well-established alternative measure of signal independence is mutual information. In

addition to the baseline ICA methods, mutual information will serve as a second com-

parator for the methods developed in this thesis.

A limitation of classical ICA is the assumption that each source has a unimodal, non-

Gaussian distribution so that mixing drives the result closer to Gaussian. However, tran-

sient GNSS signals often exhibit multimodal distributions, such as bimodal peaks. There-

fore, their mixtures remain distinctly non-Gaussian. In such cases, the core assumption

of ICA breaks down and it cannot now reliably recover the original components [5]. This

poses a real challenge for GNSS time series, where geophysical processes and underlying

signals, such as the seasonal tropospheric component, may not be unimodal. Therefore,

the use of another form of ICA, variational Bayesian ICA, may be more relevant for blind

source separation of GNSS position-time series [11].
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1.3 Aims and objectives

The broader aim of my work is to examine the suitability and reliability of using blind

source separation and machine learning methods, both novel and well-established, on

GNSS position-time series and well-established datasets. The significance of this re-

search is considerable, as it may provide insight into the earthquake cycle and improve

predictions for earthquakes.

My research objectives were:

• To compare distance correlation, non-Gaussianity and mutual information as mea-

sures of independence, especially regarding their suitability as loss functions for

blind source separation.

• Assess the performance of these methods regarding the separation of a synthetic

earthquake signal embedded in a known GNSS signal, and then on blind source

separation of an actual seismic event (without a known ground truth).

• To determine the applicability of a distance correlation-based loss on other machine

learning tasks: fine-tuning the source separation of the Libri2Mix [17] dataset;

whitening for self-supervised representation learning; and the disentanglement task

using the KITTI-Masks [18] [19] dataset.

• To investigate the relationship between natural signal whitening procedures and

independence as determined by distance correlation.

1.4 Method

One major methodological challenge I encountered during this project was determining

whether a function could effectively serve as an independence loss function. This involved

both accurately describing independence and efficiently computing the extrema of the

function to find its global minimum. Indeed, when tackling a blind source separation

problem, it is not sufficient for the extrema of the independence metric to correspond to

independent signals. One has also to be able to compute these extrema efficiently.
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Addressing this challenge, in Chapter 3, I first apply non-parametric tests to compare

the behaviours of independence metrics on some fundamental models of signals, which

have been extensively studied in Communication Theory, before proceeding in later chap-

ters to comparing the suitability of these independence metrics as loss functions. Perhaps

most importantly, in Chapters 5-6, considerable effort is spent on improving the optimi-

sation algorithms by adjusting them towards the specific characteristics of each indepen-

dence metrics. Thus, the extrema of each independence metric are most often computed

by multiple different optimisation methods. Some of these tailor-made optimisation algo-

rithms can be seen as secondary research contributions to my thesis.

A second major methodological challenge encountered during the project was that in

the context of applied problems such as blind source separation of GNSS data, signal

independence becomes ill-defined. Traditional mathematical concepts of independence,

such as the independence of probability distributions, might not be entirely applicable.

As discussed in Section 1.2, I may not have a ground truth to measure against outputted

sources. Moreover, the number and waveform of the sources themselves could be un-

known.

Whitening is frequently applied to enhance BSS, but it is often used without careful

consideration of the specific type being employed. Therefore, Chapter 4 provides a de-

tailed discussion on whitening to shed light on this topic, with a particular focus on the

difference between independence and decorrelation. Moreover, Chapters 5-7 use various

types of data, including a standard synthetic data benchmark for testing blind source sep-

aration algorithms, as well as GNSS and SAR geological data. Additionally, image and

audio data from multiple sources are included. The goal was to validate my approach by

examining the relevance of my findings across as many different data types as possible.

The specific methods used within this thesis are broken down by research chapter

below:

Ch.3 In my first research chapter, I compare independence metrics on the non-parametric

test of Binary Phase Shift Keying (BPSK) over an Additive white Gaussian noise

(AWGN) channel, exploiting the fact that the simplicity of the setting affords the ef-

ficient computation of the precise values of all metrics. The exercise is then repeated

for different colours of noise, to identify whether white noise gives negentropy in
15



particular an advantage. Next, a similar problem involves comparing a binary sig-

nal to the average of several binary signals. This method exploits the central limit

theorem to increase the Gaussian characteristics of the second signal, allowing for

the investigation of the effects of heightened Gaussianity.

Ch.4 In my second research chapter, whitening is discussed as part of the blind source

separation pipeline. I compare several whitening methods, and emphasise that

decorrelation does not necessarily mean independence. Note that the choice of

whitening method is an issue rarely discussed in applied blind source separation

papers.

Ch.5 In my third research chapter, I compare the use of distance correlation, mutual

information, and negentropy as loss functions. I test the metrics first on a standard

synthetic benchmark for the blind source separation problem, and then on a mixture

of synthetic and geodetic signals. The geodetic signals are GNSS displacement time

series and SAR images. The synthetic signal and the mixing matrix were controlled

and therefore known.

I implement a simple neural network for distance correlation and create a variant

incorporating simulated annealing elements. The mutual information calculations

are based on the Mutual Information Neural Estimation (MINE) algorithm [20].

The negentropy optimisation are based on the FastICA algorithm or its neural vari-

ant, PyFastICA. Two architectures are utilised for each loss function: one learns the

outputted sources explicitly, and the other does so implicitly.

Ch.6 In my fourth research chapter, blind source separation using distance correlation

is applied to a 2-mix-2-source GNSS problem, without any use of synthetic data.

Moreover, I conduct a case study to extract 10 sources from 120 GNSS time series

in Southern California.

Ch.7 In my final research chapter, I use distance correlation to extend the W-MSE method

for the representation learning proposed in [4]. The model is tested on representa-

tion tasks using the CIFAR-10 and KITTI-Masks datasets. Its performance is com-

pared to the InfoNCE contrastive method for KITTI-Masks and the whitening MSE
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methods for CIFAR-10. Additionally, I explore fine-tuning a SepFormer model for

the Libri2Mix task.

1.5 Contributions and Limitations

The main contribution of this thesis is the introduction of distance correlation as a part of

the loss function to train machine learning architectures. While partial distance correlation

has been used in order to compare the functional behaviour of neural network models

in [21], it is believed that this work is the first to use distance correlation as a loss function.

The loss function itself is promising, having the ability to separate signals. However,

its ability to train is not generally robust, leading to variable results. This is overcome by

training networks multiple times and choosing the best results.

Another contribution emerged from comparing distance correlation to traditional cor-

relation. When examining the highest variances described by the eigenvectors in PCA,

an equivalent method for ICA emerged. Consequently, I developed a method to deter-

mine the optimal number of sources to extract through eigenvectors and distance variance,

which effectively represent the directions of maximal dependence.

Moreover, I investigated the use of distance correlation for representation learning. I

examined whitening MSE and InfoNCE losses for their respective representation learning

tasks on CIFAR-10 and KITTI-Masks datasets. In the case of CIFAR-10, the W-MSE

method with a distance correlation loss performed about 2.4% worse than its standard

MSE counterparts. I also applied whitening MSE and its distance correlation extension

to the KITTI-Masks dataset. However, these approaches did not surpass the performance

of InfoNCE. This underperformance might be due to the sphering of the data not aligning

with the natural geometry of the data. Ultimately, the InfoNCE loss, combined with a

double-centred distance extension that I introduced, outperformed all other loss functions

by at least 0.6%.
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1.6 Organisation of the thesis

The following paragraph outlines the structure and content of this thesis. Chapter 2 re-

views the literature relevant to this work. In Chapter 3, non-parametric tests are employed

to compare different independence metrics. Chapter 4 examines various types of whiten-

ing techniques and explores their appropriate applications within the source separation

pipeline. The core research is presented in Chapters 5 and 6, which investigate different

blind source separation methods using both synthetic data and GNSS data, focusing on

independence metrics as loss functions and on optimisation processes. In Chapter 7, I test

distance correlation-based machine learning with deeper neural networks across other ap-

plication domains, specifically using the KITTI-Masks and LibriMix datasets. Finally,

Chapter 8 presents my conclusions and recommendations for future work. See Table 1.1

for an overview of the research questions and methods per chapter.

Returning to the detection of seismic activity, I harnessed distance correlation as an in-

dependence metric within a blind source separation framework to isolate tectonic ground

deformation signals from non-tectonic noise in GNSS time series. I validated my ap-

proach on both synthetic benchmarks and real seismic GNSS data, aiming to recover

a single seismic component from multiple underlying sources to input into earthquake-

forecasting algorithms. Although this method did not yield a ‘seismic’ time series for

such predictions, my experiments demonstrate the capacity of the method to separate

complex, real-world GNSS mixtures and to extract a seismic step from a 2-mixture-2-

source scenario. Furthermore, the self-supervised transfer learning strategy developed

on KITTI-Masks, with natural transitions and where ground truths are available, offers a

promising blueprint for capturing and modelling the subtle, periodic dynamics of seismic

cycles using SAR data.
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Chapter Research Questions Methods
3 Is distance correlation effective as an in-

dependence metric for blind source sepa-
ration when benchmarked against empiri-
cal and MINE-based mutual information,
and normalised negentropy across AWGN,
coloured-noise, and noise-free averaging sce-
narios?

I benchmark distance correlation against em-
pirical and MINE-based mutual informa-
tion and normalised negentropy by com-
puting all four metrics on BPSK sig-
nals over AWGN channels, under coloured-
noise perturbations, and in noise-free binary-
signal averages, using analytic formulas, a
neural-network MINE estimator, and double-
centred distance-matrix computations.

4 How do different whitening transformations
and their placement within the BSS pipeline
affect the ability of distance correlation to
quantify source independence and enhance
overall separation performance?

I evaluated five whitening transformations
against established statistical benchmarks
and analysed the placement of the whitening
step in the BSS pipeline.

5 Can a properly centred, differentiable
distance-correlation loss be optimised in
neural BSS architectures to reliably converge
and match or outperform traditional and
MINE-based losses on synthetic mixtures,
GNSS seismic extractions, and SAR images?

I incorporated distance correlation as a differ-
entiable loss into both separation and recon-
struction neural network architectures, and
benchmarked their convergence and extrac-
tion quality on synthetic three-signal mix-
tures, GNSS seismic mixtures, and SAR im-
ages using SI-SDR and independence met-
rics.

6 Can blind source separation—using distance
correlation ICA and variational Bayesian
ICA reliably decompose GNSS displacement
time series into independent seismic and non-
seismic geophysical processes, matching or
exceeding the performance and interpretabil-
ity of standard methods like FastICA?

I constructed two-station synthetic mix-
tures and a 40-station Southern California
network, then applied FastICA, distance-
correlation ICA, PyFastICA, and variational
Bayesian ICA to decompose seismic and
non-seismic components, evaluating perfor-
mance via source correlation, SI-SDR.

7 Can distance correlation serve as a uni-
fied, differentiable test of statistical inde-
pendence that drives and evaluates neural
source-separation and self-supervised repre-
sentation learning, matching or surpassing
existing benchmarks in convergence, effi-
ciency, and accuracy?

I first benchmarked distance correlation’s
computational cost and SI-SDR separation
accuracy on synthetic and LibriSpeech audio
mixtures using three resampling schemes.
Then I integrated whitened distance corre-
lation and double-centred Laplace proxy of
distance correlation as self-supervised losses
in CIFAR-10 and KITTI-Masks pipelines, re-
spectively, to evaluate their learned represen-
tation quality.

Table 1.1: Research questions and methods for each research chapter.

19



CHAPTER 2

Background

This chapter reviews the literature on blind source separation and independent compo-

nent analysis (ICA) in Section 2.1. Section 2.2 provides an overview of classical ICA

techniques, such as FastICA, and their application to geodetic data, specifically focusing

on Variational Bayesian ICA. The research in this thesis was inspired by the use of Vari-

ational Bayesian ICA on GNSS data in [11], which showed more promise than classical

ICA methods.

In Section 2.3, other independence metrics, including mutual information and dis-

tance correlation, are presented as potential loss functions for neural network adaptations

of ICA and representation learning. Moreover, the Scale Invariant Source to Distortion

Ratio (SI-SDR) is introduced as the evaluation metric in this work. While SI-SDR is used

as an independence metric for training in other works, my research does not centre on su-

pervised learning, which can use this metric. Section 2.5 details GNSS and audio source

separation datasets, while also introducing KITTI-Masks and CIFAR-10 for representa-

tion learning. In Section 2.6, machine learning for source separation and representation

learning, along with whitening in its various forms, is illustrated. The final subsection

provides information on a range of machine learning tasks and techniques used on geode-

tic data, which is the focus of this work due to its task-oriented nature.
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While this background chapter is comprehensive, relevant state-of-the-art research

will also be discussed in each chapter.

2.1 Independent Component Analysis

Section 1.2 of the Introduction introduced the concept of blind source separation (BSS)

for extracting ‘noise’ signals from seismic signals that have been linearly mixed to cre-

ate GNSS displacement time series. Independent Component Analysis (ICA) is a well-

established method within the BSS framework and operates under limited and mild as-

sumptions regarding the mutual independence of the underlying sources.

ICA is often regarded as the gold standard in various fields, including feature extrac-

tion, brain imaging, and telecommunications, for the task of separating a signal into its

constituent components [22]. The fundamental principle behind ICA is the central limit

theorem, which states that when random variables are combined, their resulting distribu-

tion tends to approximate a Gaussian distribution in most circumstances. The goal of ICA

is to ensure that the separated independent sources are as non-Gaussian as possible, thus

minimising the chance that they are simply sums of actual independent sources.

Over the years, many variants of ICA have been developed, each tailored to different

measures of non-Gaussianity, and employing various computational techniques for source

extraction. In the literature, entropy serves as a common measure of Gaussianity, as en-

tropy is maximal for Gaussian distributions with a specific variance. Numerous methods

have been proposed to estimate a signal’s entropy, each involving a trade-off between

speed and accuracy.

The FastICA algorithm is one of the most popular implementations of ICA [23] [24]

[25]. FastICA can identify the bases onto which the input mixtures are projected, resulting

in a lower-dimensional space that minimises Gaussianity. It has been applied to epileptic

seizure detection [26], facial recognition [27], and mechanical fault detection in wind

turbines [28].

The statistical properties of the FastICA algorithm have been analysed in several stud-

ies [29] [23] [30] [31] [32] [33]. These studies compared the results of the FastICA al-

gorithm with those of the Cramér-Rao bound [34] [35] [30]. Additionally, the FastICA
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algorithm has been modified for random variable signals that include complex numbers,

as discussed in [36], [37] and [38], with a study containing the Cramer-Rao bound pre-

sented in [39].

The Cramer-Rao bound serves as a lower limit on the variance of unbiased estimators

for a parameter, indicating the highest precision achievable when estimating that parame-

ter based on a given set of data. This bound establishes a limit on the efficiency of these

estimators. The work in [34] found that the Cramer-Rao bound for source separation is

equivalent to an expression of the signal-to-interference ratio (SIR) derived using Pham’s

method. Therefore, the highest precision for estimating independent sources is achieved

with the best SIR.

The general stability of FastICA has been examined using test problems proposed

in [40] measuring performance using the Amari error [41]. The first test involved applying

multiple algorithms to a two-component ICA problem, which included eighteen different

source distributions in [40]. In the second test, the algorithms were applied to mixtures

produced by two, four, eight, and sixteen underlying sources, with the source distributions

randomly selected from the same eighteen distributions mentioned previously.

The Amari score is a measure used to determine whether ICA has successfully con-

verged on the actual unmixing matrix. It provides a quantitative comparison for source

extraction, offering a clearer picture of when the extraction performance is poor com-

pared to source comparison metrics. In [42], it was found that FastICA performed worse

than other ICA methods, failing to find optimal solutions (or the most non-Gaussian di-

rections) in several cases. Furthermore, in the case of deflation ICA, where independent

components are extracted one at a time, training could become stuck in a local minimum

that does not correspond to the separation of all sources when attempting to separate inde-

pendent components with multimodal distributions [33]. Notably, the algorithm utilising

kurtosis was the only version that did not exhibit this issue.

Since the emergence of FastICA, a variety of studies and extensions have been devel-

oped to enhance its functionality and application. In [43], approximations for negentropy

were developed based on the maximum entropy principle. When only one non-quadratic

function, G, is used, the negentropy approximation is defined as follows:
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J(X) ∝ [E(G(X))−E(G(XGaussian))]
2, (2.1)

where the random variable, X, and the Gaussian variable, XGaussian, have zero mean

and unit variance.

The user-defined non-quadratic function that approximates negentropy was explored

in [44]. The speed of the algorithm improved by substituting non-linear contrast func-

tions, like the hyperbolic tangent function, with rational functions (fractions with poly-

nomials in the numerator and the denominator). The authors of [44] introduced two such

rational functions. The statistical properties in each case remain similar to previous meth-

ods.

Indeed, the impact of non-linearity on the statistical accuracy of algorithms is well

understood. Many variants of FastICA use different non-linear functions, such as tanh

and x3. However, employing a piecewise-linear function can help assess important char-

acteristics of the non-linear function. For instance, [45] found that simple piecewise-

linear-output non-linearities can closely approximate linearity while being sufficiently

non-linear to enable effective separation when using the FastICA algorithm.

The primary advantage of the FastICA algorithm is its speed. Although the kurtosis-

based FastICA is widely used, its speed has not been rigorously assessed or compared

to other methods. This raises questions about the factors contributing to its popularity,

as noted by [46]. In [46], the authors consider speed in relation to the computational

complexity needed to achieve a specific source extraction performance.

RobustICA performs an exact line search optimisation of the kurtosis contrast func-

tion. The step size toward the global maximum of the loss function was identified among

the roots of a fourth-degree polynomial, with this rooting performed algebraically at low

cost for every iteration [47]. The RobustICA method was found to have faster conver-

gence and higher robustness for a range of initialisations compared to FastICA with kur-

tosis [46].

FastICA has become dominant as a BSS technique, primarily due to its speed, but

that comes with drawbacks. In [48], it was found that FastICA failed to recognise the

optimal projections to minimise Gaussianity, even when the pattern is evident to the naked

eye. Therefore, [48] introduced an m-spacing approximation of entropy to overcome
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the limitations of FastICA. m-spacing approximates entropy, Ĥ, by ordering the random

variable, X, of length N in an increasing order and applying the following equation:

Ĥ(X1,X2, ...,XN) =
1
N

N−m

∑
i=1

log
(

N
m
(Xi+m−Xi)

)
. (2.2)

Note that the user chooses m, the index used to calculate the spacing.

The m-spacing entropy approximation approaches the actual entropy as sample sizes

increase, although it is slow to calculate.

To reiterate, the primary advantage of FastICA is its speed, but this can come at the

expense of accuracy. Nonetheless, it is important to note that FastICA will still be used

as a baseline in the following chapters due to its prevalent use in the literature.

2.2 ICA on geodetic data

While classical ICA has been seen in the previous section to both be popular and well-

established for the BSS problem, especially in its FastICA form, it does not always per-

form an optimal decomposition for non-unimodal signals, such as those of slow slip events

in GNSS time series. To overcome this, a Variational Bayesian ICA (vbICA) method was

introduced to recover sources from GNSS signals. Before [11], few applications of ICA

on geodetic data had been presented in the literature.

In [49], the FastICA algorithm was applied to a continuous GPS network in the

Neapolitan volcanic area. In [50] and [51], a modification of the JADE algorithm [52]

was applied to the gravity recovery and climate experiment (GRACE) data. These papers

applied PCA to the GRACE data and model-based total water storage (TWS) time series,

comparing the results with those from ICA and the VARIMAX rotation. The VARIMAX

rotation is an orthogonal rotation method that minimises the number of random variables

that have a high correlation with each factor. In these studies, the actual source signals

are often unknown. However, in simulated cases with known input signals and artifi-

cially generated noise, the components extracted through ICA are closer to the optimal

decomposition, showing less signal mixing compared to PCA and VARIMAX. [50] noted

that the results obtained through ICA provide a more comprehensive representation than

merely decomposing signals into trend, seasonal, and residual components. Here, the
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residuals include inter-annual and episodic features. PCA and ICA encompass all tempo-

ral information in their components. Therefore, ICA may be better suited for investigating

the unknown underlying behaviours in hydrological observations.

In this thesis, following [11], I am interested in signals that may not have known

models, such as transient signals [53]. Transient deformations are less frequent but last

longer, occurring over hours to months, significantly longer than the sudden slip that

happens during an earthquake. As stated previously, the probability density functions of

transient signals can be non-unimodal and, therefore, classical ICA may not perform the

optimal decomposition [54]. In the following section, the extension to ICA used by [11],

vbICA, for use on non-unimodal distribution data will be described in more detail.

Variational Bayesian ICA

A generative model M can be described in terms of observed variables X , hidden variables

H, and hidden parameters, θ , and the relationships between these quantities. However,

only the observed variables can be directly measured. Hidden parameters can be charac-

terised by model weights W = {H,θ}. The goal of the generative model is to find the best

weights to explain the observations and match a priori knowledge that is defined within

the structure of the particular model.

In a Bayesian framework, given a model M and the observed data X , maximising the

posterior probability distribution function over weights W given the data X provides the

best choice for W :

p(W |X ,M) =
p(X |W,M)p(W |M)

p(X |M)
. (2.3)

The denominator, which acts as a normalising constant, is called the evidence and is

denoted by p(X |M). Its calculation is often intractable, requiring an integration over all

weight space. In the following, assuming that the user has defined a specific model, I will

consider that it is given, and thus, the evidence is a constant. Therefore, Equation 2.3

simplifies to Equation 2.4.

p(W |X) =
p(X |W )p(W )

p(X)
=

p(X ,W )

p(X)
(2.4)

This is when the Kullback-Leibler divergence should be introduced in the context of
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the vbICA calculation. The Kullback-Leibler (KL) divergence measures the difference

between the true posterior p(W |X) and its approximation q(W ). The goal is to make

q(W ) as close as possible to p(W |X). The aforementioned KL divergence is given by:

DKL(q(W )∥P(W |X)) = log(q(W ))− log(W |X)

= log(q(W ))− log(P(X ,W ))+ log(p(X))

= log(p(X)+ log(
q(W )

P(X ,W )
)

= log(p(X)+F(q(W )∥P(X ,W ))),

(2.5)

where P(X ,W ) = P(X |W )P(W ) and F(q(W )||P(X ,W ))) is the variational free energy

between the approximate and actual posterior. As the evidence term is independent of the

function approximating the posterior, to minimise the KL divergence in Equation 2.5, one

minimises the variational free energy, F(q(W )||P(X ,W ))), to obtain P(W |X).

The assumption of independence allows the factorisation ∏
N
i=1(q(wi)) and thus, the

use of the expectation-maximisation algorithm to solve the negative variational free en-

ergy (NFE) maximisation problem. When the NFE reaches its maximum value, the Kull-

back–Leibler divergence between the approximating probability density function of the

hidden variables in the model and the true posterior probability distribution function is at

a minimum.

In every case study in [11], the starting values of the hyper-parameters were arbitrary

with non-informative priors, to let the data to reveal their intrinsic structure as much

as possible. The Bayesian framework allows for the automatic relevance determination

(ARD) method [55] to be used to determine the best number of sources to output. Every

column of the mixing matrix represents how large an effect the underlying sources have

on the outputted mixtures, a characteristic exploited by ARD.

One value, the precision, is allocated to each column, as a hidden parameter within

vbICA for the sources. The precision value allocated to a source indicates how relevant

that source is to the explanation of the data. A large value corresponds to a posterior dom-

inated by the prior density, setting elements of the associated signal to 0, i.e. minimising

the effect of this source signal on the data explanation. Therefore, looking at the precision

values associated with each of the sources, those with high values can be excluded as they
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Limitation FastICA vbICA
Pre-whitening Requires input whiten-

ing
Whitening not strictly neces-
sary

Missing data Cannot handle missing
data

Variational Bayesian frame-
work handles missing data

Computational cost Low per iteration and
fast convergence

Higher computational over-
head

Initialisation sensitivity Sensitive: can get stuck
in local minima or sad-
dle points if sources are
initially correlated.

Sensitive: PCA initialisation
can bias towards PCA-like
solutions and random initial-
isations may converge subop-
timally.

Number of independent
components selection

Manual choice Manual choice

Distribution flexibility Limited to kurtosis Models each source PDF as
a Gaussian mixture model,
which is more flexible.

Scalability Scales linearly with di-
mension

Memory and CPU cost grow
faster with network and data
size/dimensions

Uncertainty quantifica-
tion

Produces point esti-
mates

Many hyperparameters to
tune with associated uncer-
tainties

Table 2.1: A comparative table summarising limitations of FastICA against vbICA

do not add to the description of the data, allowing for the most likely number of sources

supported by the observation data to be determined [54].

The use of the vbICA method on synthetic continuous GNSS data, introduced in [11],

has subsequently been adapted to study geodetic signals in several geographic regions,

such as the Cascadia subduction zone in [5], the Baja California region in [3], Central

California in [56], Central Italy in [57] and California in [58]. This list is not exhaustive.

To conclude this section on vbICA, I present a comparative summary of the popular

FastICA versus vbICA, in Table 2.1, to contrast the two methods.

2.3 Independence metrics

For random variables X and Y , with corresponding distributions FX and FY and a joint

distribution of FXY = FY |X FX , independence testing identifies whether FY |X = FY . In terms
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of hypothesis testing, this can be written as:

H0 : FXY = FX FY (2.6)

H1 : FXY ̸= FX FY , (2.7)

with the null hypothesis, H0, corresponding to X and Y being independent.

2.3.1 Mutual information

A natural measure of dependence is mutual information, defined as:

I(X ;Y ) = H(X)−H(X |Y ), (2.8)

where I(X ;Y ) denotes the mutual information between the random variables X and Y ,

H(X) is the marginal entropy of X , and H(X |Y ) the conditional entropy. When X is

independent of Y , the conditional entropy becomes equal to the marginal entropy of X .

While mutual information can determine whether two random variables are indepen-

dent, in practice, the use of the continuous mutual information is hampered by the in-

tractability of its exact computation [20]. While there are many non-parametric methods

to approximate mutual information [59], and independence more generally [60] [61] [2],

they all have limitations in the form of underlying assumptions about the probability den-

sity functions, or they do not scale well with sample size or dimension.

This gap led to the development of the parametric method known as Mutual Informa-

tion Neural Estimation (MINE) [20], which uses the Kullback-Leibler divergence defini-

tion of mutual information:

I(X ;Z) = DKL(PXZ||PX⊗PZ), (2.9)

where PXZ is the joint distribution and PX and PZ are the marginal distributions of the two

respective random variables.

In [20], the following lower bound was derived from the Donsker-Varadhan represen-
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tation of the KL divergence:

DKL(P||Q)≥sup
T∈F EP[T ]− log(EQ[eT ]), (2.10)

where, the supremum is over the class F of functions T , such that both expectations are

finite, and P and Q denote distributions satisfying certain mild conditions.

The idea in MINE is to choose F as the family of functions Tθ : X×Y→R parametrised

by a deep neural network with parameters θ ∈Θ. In this case, the actual mutual informa-

tion I(X ;Z) is approximated by the tight lower bound Iθ (X ,Z):

Iθ (X ,Z) =sup
ϑ∈θ

EPXZ [Tθ ]− log(EPX⊗PZ [e
Tθ ]). (2.11)

In the actual implementation, the expectation values are estimated using empirical

samples, or by shuffling the joint distribution along the batch axis. As I(X ;Y )≥ Iθ (X ,Y ),

the parametrised mutual information Iθ (X ,Y ) is maximised by gradient ascent, to become

as close to the actual mutual information I(X ;Y ) as possible.

2.3.2 Distance correlation

Distance correlation (DistCorr) [62] [63] is a powerful multivariate independence test

based on energy distance, with a fast implementation provided by [64].

The distance correlation between X and Y in an arbitrary dimension is defined as:

R2
n(X,Y) =


ν2

n (X,Y)√
ν2

n (X)ν2
n (Y)

ν2
n (X)ν2

n (Y)> 0

0 ν2
n (X)ν2

n (Y) = 0,

(2.12)

where the distance covariance ν2
n is defined as:

ν
2
n (X,Y) =

1
n2

n

∑
k,l=1

AklBkl (2.13)

and

ν
2
n (X) = ν

2
n (X,X) =

1
n2

n

∑
k,l=1

A2
kl, (2.14)
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with the following dependence statistics:

akl = |Xk−Xl|p ak• =
1
n

n

∑
l=1

akl

a•l =
1
n

n

∑
k=1

akl a•• =
1
n2

n

∑
k=1

akl

Akl = akl−ak•−a•l +a•• . (2.15)

B is the equivalent statistic for the random vector Y . Note that while the original distance

correlation was defined in [62] over continuous random variables, Equation 2.12 is the

corresponding empirical distance correlation.

Distance correlation measures the strength of the relationship between random vari-

ables, be they linear or non-linear associations. The values of distance correlation range

from 0 to 1, where 0 represents independent variables and 1 indicates that the linear sub-

spaces of the random variables are equal.

Taking a step back to enhance intuition, I will describe distance correlation in geomet-

ric terms. Imagine you compute all pairwise distances among the samples within the two

variables; centre the two distance matrices; reshape them into vectors and then measure

the cosine of the angle between those two vectors. That cosine is the distance correla-

tion. A value close to zero indicates no dependence, meaning the double-centred distance

vectors are orthogonal to each other. Conversely, a value nearing one signifies that the

distance patterns align, indicating the existence of dependence.

Additionially, partial distance correlation, introduced in [63], calculates the distance

correlation between two variables, while excluding the effect of a third variable. It can

be used to evaluate correlations between feature spaces of different dimensions. In [21],

partial distance correlation was utilised to compare the functional behaviour of neural

network models. This comparison was crucial in understanding what these models learn

and identifying strategies to improve regularisation and/or efficiency. This methodology

can be applied to various tasks, such as conditioning multiple deep learning models with

respect to one another and learning disentangled representations. Although previous re-

search has shown that comparing two different feature spaces is possible using Canonical

Correlation Analysis (CCA), this approach has not been frequently used.
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Finally, the Hilbert Schmidt Independence Criterion (HSIC) [65] [66] [67] is a kernel-

based analogue of distance correlation, with a Gaussian median kernel by default used

[68].

2.3.3 Other independence metrics

Other statistical definitions of independence include Canonical Correlation Analysis (CCA)

[69] [70] [71] [72] and Rank Value (RV) [73] [74], which are multivariate versions of

Pearson’s correlation. CCA can model the correlation between datasets in two ways,

either stating that one dataset is the dependent variable or not. RV is the multivariate

generalisation of the squared Pearson correlation coefficient.

The Heller Heller Gorfine (HHG) [75] [76] independence test compares inter-sample

distances and computes the Pearson statistic between the distance matrices. This test is

accurate in certain settings but computationally complex and not easily interpretable. Ker-

nel mean embedding random forest (KMERF) [77] uses a random forest-based similarity

matrix to generate an independence statistic. KMERF is a highly accurate independence

test and provides information on important features. However, it is slow, requiring train-

ing for each permutation, and is less viable for training a neural network in real-time. The

Maximal Margin Correlation (MMC) [78] determines the highest pairwise correlation by

analysing the correlations across all combinations of dimension pairs from X and Y. This

method can be effective but also computationally intensive.

The main advantage of CCA and RV methods is their speed. In comparison, HHG,

MMC, and KMERF provide accurate independence measures but are slower.

2.4 Performance and metrics

Several metrics to evaluate source separation techniques were proposed in [79]. An esti-

mation of the source as a function of time t can be decomposed as:

Ŝ(t) = starget(t)+ einter f (t)+ enoise(t)+ earti f (t). (2.16)
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In [79], it was proposed that this decomposition could be combined with orthogonal pro-

jections. Equations 2.17-2.19 represent three orthogonal projections. Equation 2.17 rep-

resents projection onto the subspace spanned by one specific source; Equation 2.18 onto

the subspace of all other sources, and Equation 2.19 onto the subspace spanned by the

noise component.

The computation of starget is:

starget =
⟨ŝ,s⟩s
⟨s,s⟩

. (2.17)

For einter f , in the case that the sources are assumed to be mutually orthogonal, Equa-

tion 2.18 holds.

einter f = ∑
j ̸= j′

〈
ŝ j,s j′

〉
s j′〈

s j′,s j′
〉 (2.18)

It is assumed that the noise signals, ni, are mutually orthogonal and orthogonal to each

source. Therefore:

Ps,nŝ j ≈ Psŝ j +
m

∑
i=1

〈
ŝ j,ni

〉
ni

⟨ni,ni⟩
, (2.19)

where m is the number of mixtures.

It is assumed that the actual source signals and any noise, if present, are known when

calculating the above metric. Additionally, it is presumed that the noise remains consistent

between the training and test datasets. Different types of noise can create problems if the

training and testing conditions do not match.

A numerical performance criterion based on the computed energy ratio in decibels

(dB, though I drop the unit when I report my results) is the Source-to-Distortion Ratio

can be defined as:

SDR = 10log10
||starget ||2

||einter f + enoise + earti f ||2
. (2.20)

The vector norm is denoted as ||x||, and earti f refers to the error term associated with

forbidden or artifact distortions.

Since 2016, there has been a significant uptake in the use of machine learning tech-
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niques for source separation tasks, with the scale-invariant source-to-noise ratio (SI-SNR)

gaining popularity. SI-SNR is defined in Equation 2.22.

enoise = ŝ− starget (2.21)

SI−SNR = 10log10

〈
starget ,starget

〉
⟨enoise,enoise⟩

(2.22)

In 2018, Le Roux et al. [80] proposed a more robust metric in place of SDR, known as

the scale-invariant SDR, such that s− ŝ is orthogonal to the target s. One way is to scale

the target such that the residual is orthogonal to it by finding the orthogonal projection of

the estimate ŝ on the line spanned by the target s.

SI-SDR can be defined as:

SI−SDR =
|s|2

|s−β ŝ |2
, (2.23)

for β subject to s⊥ (s−β ŝ).

The optimal scaling factor is obtained by α =
ŝ T s
||s||2

and scaling the source by this

factor outputs etarget = αs. The estimate ŝ is decomposed as ŝ = etarget + eresidual . Thus,

SI-SDR can be written as follows:

SI−SDR = 10log10
||etarget ||2

||eresidual||2

= 10log10

|| ŝT s
||s||2

s||2

|| ŝT s
||s||2

s− ŝ||2
.

(2.24)

2.5 Datasets

In blind source separation, datasets fall into one of two categories: Application-orientated,

and Diagnosis-orientated datasets. Application-oriented datasets, such as professionally

produced music recordings, involve real signals that simultaneously contain all issues
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that can arise during source separation. Diagnosis-related datasets are artificially created

to highlight one specific issue, such as noisy surroundings in speech separation.

Here, I introduce the benchmark datasets used within this thesis, such as GNSS dis-

placement time series and datasets pertinent to machine learning tasks associated with

source separation or representation learning.

2.5.1 GNSS data

As previously mentioned, the Nevada Geodetic Laboratory (NGL) provides routine up-

dates of GNSS position coordinates across a global network. Approximately 10,000 sta-

tions offer daily-resolution position time-series, which are updated weekly. In addition,

over 5,000 stations supply 5-minute-resolution data updated daily, while around 2,000

stations deliver 5-minute-resolution data on an hourly basis for near-real-time applica-

tions.

GNSS data is provided in plain text format and includes metadata such as station

name and recording date, often redundantly encoded in multiple formats. The core con-

tent consists of both raw measurements and derived quantities. Two primary formats are

commonly used: .tenv and .tenv3. My work has utilised the .tenv format, though the re-

quired data fields are common to both, making the distinction largely inconsequential for

this application. In the .tenv format, the relevant fields are delta_e, delta_n, and delta_v,

representing eastward, northward, and vertical displacements relative to a reference frame

at each epoch. In contrast, the .tenv3 [81] format provides easting, northing, and vertical

fractional coordinates, absolute values mapped via projection (e.g. longitude offset con-

verted to metres along a parallel). The key difference lies in interpretation: delta_e reflects

the time-series of eastward displacement (how far a station has moved from its baseline).

Whereas, easting denotes the absolute projected coordinate at each epoch. While my

analysis was based on .tenv, future workflows may benefit from adopting .tenv3 for its

enhanced spatial context.

This data is made publicly available with related information, such as the position co-

ordinates for each of the geodetic-quality GPS stations from hundreds of different organ-

isations, including the International Global Navigation Satellite Systems Service (IGS)

and UNAVCO, with multiple data intervals and reference frames that benefit different

34



users. To obtain as much useful GPS data as possible and assemble it in one point for

easy access, the NGL uses more than 130 Internet Archives [82].

According to NGL, ‘One person’s noise may be someone else’s signal.’ For example,

to determine a station’s position, an estimate of the variability of the atmospheric refrac-

tion of the GPS signal is required, which is influenced by water vapour content. Data

from this model is helpful for investigations where atmospheric refraction is deemed to

be noise. Therefore, NGL has provided the tropospheric refraction parameters every 5

minutes since 1994 from over 18,600 stations.

NGL also updates station velocities in a global reference frame to determine the

Earth’s surface deformation rates. The velocities are estimated using the Median In-

terannual Difference Adjusted for Skewness (MIDAS, see usage in Section 4.3.2 and

Chapter 6) method, a median-based velocity estimator for GPS stations. This method is

designed to handle the increasing volume of data that can present issues which experts

may identify but are often overlooked. MIDAS is robust against outliers, seasonality,

and step functions caused by earthquakes or equipment changes, as well as variations in

statistical data [82]. The velocity estimator is a variation of the Theil-Sen median trend

estimator, a method for robust linear regression that chooses the median slope among all

lines through pairs of two-dimensional sample points. The benefit of the Theil-Sen me-

dian trend estimator over least-squares trend estimates is that it is more robust to potential

events within the data that would otherwise go undetected.

In order to mitigate seasonality and step discontinuities associated both with earth-

quakes and equipment changes, MIDAS selects pairs that are separated by a year. If there

is missing data, this condition is relaxed in order for all of the data to be used. If a slope is

from a pair that spans a step function, one-sided outliers can bias the median. To reduce

this, MIDAS removes the outliers and recomputes the median.

Lastly, NGL provides data on the timing of known earthquakes. A ground station is

identified as potentially containing a step function in its time series if it falls within a

radius from the epicentre determined by the magnitude of the earthquake. Additionally,

NGL maintains records of any equipment or code changes made that can produce steps in

the GNSS time series.
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2.5.2 LibriMix

LibriMix [17] is an open-source alternative to WSJ0-2mix [83] and its noisy extension,

WHAM!. Based on LibriSpeech [84] (a corpus of approximately 1000 hours of 16kHz

read English speech), LibriMix consists of two- or three-speaker mixtures without noise,

in the clean case, or combined with ambient noise samples from WHAM! [85]. WSJ0-

2mix has become the reference dataset for single-channel speech separation. Therefore,

most deep learning-based speech separation models today are benchmarked on it. How-

ever, recent studies have shown important performance drops when models trained on

WSJ0-2mix are evaluated on other similar datasets.

2.5.3 KITTI-Masks

KITTI-Masks [18] comprises pedestrian segmentation masks from the autonomous driv-

ing vision benchmark KITTI-MOTS [86]. The KITTI-Masks dataset consists of 2120

sequences of binary masks of pedestrians, with varying sequence lengths between 2 and

710.

I selected the KITTI-Masks dataset, along with CIFAR-10, to showcase representa-

tion learning. Representation learning can be viewed as a form of latent source separa-

tion. Rather than disentangling physical sensor signals, it isolates independent factors

of variation in feature space. The KITTI-Masks dataset provides video sequences with

pixel-level instance masks, yielding natural temporal transitions in latent representations,

an ideal proxy for testing models that must capture evolving patterns, such as those found

in seismic deformation time series.

In blind source-separation terms, the KITTI-MOTS dataset’s instance segmentation

masks serve as proxy ground-truth sources, since each pixel is assigned to a single ob-

ject and thus to an independent component. Its video sequences naturally capture non-

stationary mixing, mirroring the evolving mixtures found in seismic or other geophysical

signals. With pixel-level masks, one can rigorously evaluate how well a model recovers

latent components using metrics and quantify feature leakage between sources, as well

as test robustness to occlusion. Moreover, its semi-automatic annotations enable self-

or weakly-supervised methods to discover structured latent factors without the need for
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dense manual labels, making KITTI-MOTS a powerful benchmark for bridging represen-

tation learning and real-world source-separation challenges.

2.5.4 CIFAR-10

CIFAR-10 [87] consists of labelled subsets of 80 million images in the tiny images dataset.

The CIFAR-10 dataset consists of 60,000 32x32 colour images in 10 classes, with 6,000

images per class. There are 50,000 training images and 10,000 test images.

The dataset is divided into five training batches and one test batch, each with 10,000

images. The test batch contains exactly 1,000 randomly selected images from each class.

The training batches contain the remaining images in a random order. Some batches may

contain more images from one class than another. Between them, the training batches

contain exactly 5,000 images from each class.

CIFAR-10 is a widely recognised benchmark for representation learning (the separa-

tion of features in latent space) consisting of 10 classes, and it can be easily expanded to

100 classes through the CIFAR-100 dataset. It was selected as the initial task for repre-

sentation learning because it serves as a baseline dataset for the W-MSE self-supervised

representation learning task, which I modified to include distance correlation. Therefore,

it was chosen to function as a baseline. However, it could also be used similarly for

representation learning for labelled SAR images.

2.6 Machine learning

This section discusses relevant machine learning methods for source separation and rep-

resentation learning, as well as an overview of various techniques applied to geodetic

data.

2.6.1 Source separation

This thesis uses audio source separation, given that it is a well-developed field of study.

It is important to note that in the audio source separation cases, the training sets include

the underlying sources, such as individual instruments in a song. In contrast, geodetic
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data is unlabelled. One of the most commonly used datasets for the speech separation

task is Libri2Mix [17], which consists of a mixture from two speakers along with ambient

noise from WHAM! [85], Several methods applied to this dataset will subsequently be

discussed.

Deep learning techniques for single-channel speech separation fall either into the time-

frequency (TF) domain, the most common technique until recently, or the end-to-end time

domain. The TF features are produced by applying a short-time Fourier transform to data

in the time domain. These features are then separated to obtain features from each source,

with the source waveforms obtained by using the inverse of the aforementioned Fourier

transform [88] [89] [90] [91] [92]. More recently, there have been significant advances

in time-domain approaches, which input the mixture waveform directly into an encoder-

decoder framework [93] [94] [95] [96].

Both of these methods require what is known as permutation invariant training (PIT),

as source separation is not ordered. Therefore, one has to properly match the ground

truth with estimated signals when evaluating the reconstruction errors. PIT [97] dynam-

ically chooses the best label assignment. The assignment of labels in early epochs can

be unstable, leading to slower convergence and reduced performance [98]. In [99], it was

found that self-supervised pre-training could effectively stabilise the label assignment

in PIT during the training of speech separation models, and significantly reduced label

assignment switching during training, resulting in a faster convergence and improved per-

formance.

This method was surpassed by TDANet [100]. The top-down attention in TDANet

is extracted by the global attention (GA) module and the cascaded local attention (LA)

layers. The GA module takes multi-scale acoustic features as its input to extract global

attention signal, which then modulates features of different scales by direct top-down

connections. The LA layers use features of adjacent layers as their input to extract the

local attention signal, which is used to modulate the lateral input in a top-down manner.

In [101], they proposed Vocoder, a diffusion model pre-trained on single-speaker

voices, and applied it to the output of a deterministic separation model, obtaining state-

of-the-art separation results.

Finally, when evaluated on SI-SDRs, the best network as of writing is based on the
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MossFormer model [102], known as the MossFormer2. It is an alternative approach to

SepFormer [103], involving joint attention. MossFormer was found to emphasise longer-

range, coarser-scale dependencies, with a deficiency in effectively modelling finer-scale

recurrent patterns. In MossFormer2, a recurrent module based on a sequential memory

network replaced the recurrent neural networks to capture recurrent patterns without re-

current connections, to produce a hybrid model that could model long-range coarse-scale

and fine-scale recurrent patterns.

2.6.2 Representation learning

Whilst independent components are uncorrelated, decorrelated data is not necessarily in-

dependent. However, in many applications, whitening is used as a preprocessing step for

data decorrelation, transforming the inputted data into an output with identity covariance

matrix. Whitening, or synonymously sphering, takes an n-dimensional random variable

X, with mean µ and covariance matrix ΣΣΣ, and linearly transforms it into a new whitened

random vector Z, with unit diagonal covariance. Thus, the whitening transform matrix

satisfies WT W =ΣΣΣ−1. Notice that this condition does not uniquely determine the whiten-

ing matrix W. Due to the rotational freedom in whitening, there are infinitely many

matrices that conform to this constraint.

In the study conducted by Kessy et al. [6], five types of whitening methods (ZCA-

Mahalanobis, ZCA-cor, PCA, PCA-cor, and Cholesky) were examined to determine if

any statistical function is optimised. All methods, except for Cholesky whitening, showed

some form of optimisation. The findings from this research will be discussed in greater

detail in Chapter 4. In that chapter, I will explore these five whitening methods as part of a

source separation task to assess whether any form of whitening encourages independence,

specifically in terms of distance correlation.

Whitening has the potential to aid the search for independence. In the case of Fas-

tICA, whitening reduces signal redundancy, preventing the sources from tending towards

a single solution by ensuring they remain uncorrelated. Whitening has been integrated

into machine learning tasks, such as self-supervised representation learning, which will

appear in Chapter 7. In most instances, self-supervised representation learning (SSL)

methods are based on contrastive losses for a discrimination task, whereby augmented
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versions of an image instance (labelled as positive) are compared to instances extracted

from other images (labelled as negative), with balanced sets of labels.

Contrastive methods have seen much uptake in recent work given the availability of

large unlabelled datasets. Several theories about contrastive learning and its informative

representations have been proposed, with clashes between theoretical and empirical ob-

servations [104].

In [105], it was found that the contrastive loss converges asymptotically to a combi-

nation of two components: one that encourages the representations of positive pairs to be

similar, and another that acts as a uniformity term, which maximises the entropy of the

learned latent distribution. This approach has been shown to yield results for downstream

tasks that are comparable to, or even better than, previous methods.

The triplet loss is an effective method for determining metric spaces based on human

perceptual similarity [106] [107] [108] [109] [110]. It works by encouraging the posi-

tive sample to be close to the anchor while ensuring that the negative sample is at least a

certain margin away from the positive sample. Both triplet and contrastive losses are sen-

sitive to the quantity and quality of negative samples [111]. To address these challenges,

whitening mean squared error (W-MSE) was proposed as an alternative method in [4].

This whitening process, along with normalisation, imposes a uniformity constraint on the

distribution of features on the hypersphere, while the MSE loss applied to positive pairs

enhances the mutual information through alignment. The semantics of positive samples

are shared while being different from those of the negative samples. These properties

encapsulate the critical aspects of contrastive loss as outlined in [105].

A commonly used contrastive function is InfoNCE, a probabilistic contrastive loss

which encourages the latent space to capture information that is maximally useful to pre-

dict future samples [112]. InfoNCE is based on the concept of noise contrastive estima-

tion (NCE) introduced in [113], which effectively estimates complex statistical models

without the need for normalisation. The InfoNCE loss was defined in [112] for a set

X = {x1, . . . ,xN} of N random variables. This set contains one positive sample drawn

from the distribution p(xt+k|yt) and N−1 negative samples from p(xt+k). The InfoNCE

loss is formulated as follows:
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LN =−EX

[
log

fk(xt+k,yt)

∑x j∈X fk(x j,yt)

]
. (2.25)

Here, y represents the context random variable (denoted as variable c in [112]), and

k indicates the number of steps used to define future observations. When optimising

Equation 2.25, the function f estimates the density ratio:

fk(xt+k,yt) ∝
p(xt+k|yt)

pt+k
. (2.26)

.

It is important to note that Equation 2.25 is related to mutual information as follows:

I(xt+k,yt)≥ log(N)−LN . (2.27)

Thus, minimising the InfoNCE loss maximises to the lower bound of mutual informa-

tion, as described in [112].

In [114], the work of [115] was used to show that for InfoNCE distribution matching

implies parameter matching. In [116], learned latent representations were associated with

ground-truth generative factors to determine under what conditions data generation can

be inverted to recover the true latent factors.

In the context of the InfoNCE case, the theoretical motivation for contrastive learning

involves examining the mutual information between different views, or positive pairs,

as discussed in various studies [112] [111] [117] [104] [118]. The InfoMax principle

can be employed to maximise this mutual information using Jensen-Shannon Divergence.

However, in [119], the InfoMax principle was applied to contrastive learning to evaluate a

loss that was tightly bound to mutual information. It was discovered that having a tighter

bound on mutual information could adversely affect the separations produced, making it

less favourable for contrastive learning.

2.6.3 On geodetic data

The application of machine learning to geodetic data is an emerging field that is gaining

traction. The ideal outcome of this thesis would have been the prediction of earthquakes.
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While efforts have been made towards this goal, it has not been realised in this work.

Other research in this field has used GNSS-based and geodetic data. In the case

of GNSS data, there are strain accumulation models utilising standard [120] and high-

rate [121] [122] [123] GNSS velocity fields for real-time tracking. Moreover, ionospheric

anomalies [124] [125], in the form of Total Electron Content (TEC) detections, may serve

as precursors for seismic events. Some techniques use a combination of SAR and GNSS

data, such as in [126], to analyse coseismic and interseismic activities. Recently, there

has been a growing trend in employing synthetic datasets to train deep learning models,

particularly convolutional neural networks and transformers, to estimate earthquake mag-

nitudes. However, these methods face challenges when it comes to generalising across

different tectonic systems.

In the case of InSAR data, machine learning has been used to: detect, locate, and

classify the presence of co-seismic-like surface deformation within an interferogram us-

ing a CNN called SarNet [127]; classify interferometric fringes in wrapped interfero-

grams with no atmospheric corrections using AlexNet [128]; obtain a relative landslide

hazard map [129] using Artificial Neural Networks, Generalised Boosting Models, and

Maximum Entropy, on InSAR datasets; and, finally, obtain a full coverage map of the

groundwater-induced land subsidence using boosted regression trees and extreme gradi-

ent boosting algorithms for InSAR analysis [130].

In the case of GNSS data, there has been an uptake in the use of machine learning

techniques to deal with the large quantity of data that GNSS provides. Before discussing

machine learning for GNSS data analysis in the context of geodetic data, it is worth noting

that there are other contexts for using machine learning on GNSS data. For instance,

Google DeepMind is enhancing Google Maps by integrating deep learning with Street

View. It uses the GNSS location of the Street View car and address information from the

imagery to refine their existing knowledge [131].

In the systematic review [132], which focuses on machine learning techniques applied

to GNSS data, it was found that the primary methods used include neural networks, de-

cision trees, and random forests. However, this list is not exhaustive, as multiple other

techniques have also been explored.

In [124], an approach to the prediction of earthquakes and determination of their mag-
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nitude using neural networks and ionospheric disturbances was proposed. Vertical Total

Electron Content from the National Oceanic and Atmosphere Administration was used

as the training data, achieving an accuracy of 85.71% in validation assessment to predict

Tres Picos Mw = 8.2 earthquake from 1:30 UTC to 04:00 UTC, approximately 3 hours

before the seismic event. This exemplifies how different ‘noise’ terms within the GNSS

signal are subjective. However, this work has not gained much traction.

In [133], researchers examined the data characteristics that enhance the performance

of machine learning binary classifiers for predicting imminent slip events. Their goal

was to improve the understanding of deformation associated with the seismic cycle in

subduction zones. The machine learning classifiers used GNSS-like surface deformation

data derived from seismotectonic scale modelling, as discussed in [134].

The findings indicated that the timing of when an event was identified as imminent

significantly influenced the performance of the classifiers. Additionally, factors such as

the density of monitoring stations and the duration of data collection also contributed to

performance. The study concluded that accurate earthquake predictions were not achiev-

able with the algorithms used, even in a simplified scenario with an optimally designed

monitoring network. However, the predicted alarm periods aligned reasonably well with

actual earthquakes, particularly when multiple seismic cycles were recorded and a longer

time-frame was considered imminent for an event.

Another interesting paper is [135], which looks at slip events known as slow earth-

quakes, which slip little and have a high frequency. The slow slip history between 2007

and 2017 for the Cascadia fault was used to assess predictability of such events, as multi-

ple slow earthquakes have occurred in different parts of the region over a relatively short

period of time. The system dynamics were characterised using embedding and extreme

value theory, with a non-linear chaotic system found instead of a stochastic system. It was

found that the prediction power of this setting was on the order of days, with long-term

predictions impossible, similar to weather forecasting. It was thought that regular earth-

quakes might similarly be predictable but with a limited prediction horizon. Their analysis

also implies that it should be possible to forecast the onset of large slow slip events ahead

of time, based on an explicit deterministic representation of the system dynamics or some

machine learning algorithm that would implicitly capture it.
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In a more controlled setting, frictional motion for a laboratory fault as it passes through

the stability transition from stable sliding to unstable motion was studied in [136]. It was

found that the seismic cycle of a lab ‘earthquake’ exhibits characteristics similar to those

of natural slow earthquakes. The ‘labquakes’ were best modelled by a random attrac-

tor based on sliding rate- and a state-dependent friction whose dynamics are stochasti-

cally perturbed. Small variations of the shear and the normal stress applied to the fault

greatly affected the macro dynamics and recurrence time of these ‘labquakes’, and the

non-linearity of the friction also reduced the predictability of otherwise periodic macro-

scopic dynamics. Regarding tectonic faults, they found that small stress field fluctuations

can lead to variations in earthquake repeat time of a few percent.
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CHAPTER 3

Distance correlation as an independence metric

3.1 Introduction

In this chapter, I will utilise non-parametric tests to evaluate the effectiveness of distance

correlation as a metric for assessing independence. Rather than using it as a loss function

for an optimisation algorithm, I will first compute distance correlation values on various

signals. I will then compare its behaviour with two other commonly used metrics for

measuring signal independence: mutual information and negentropy.

Section 3.2 employs a fundamental model from Communication Theory [137] [138]

[139], which models the transmission of a digital signal over a noisy analogue channel.

My approach is essentially similar, though more simplistic, to the one employed in [140].

Specifically, it models the transmission as binary phase shift keying (BPSK) modulation

over an additive white Gaussian noise (AWGN) channel. Using this non-parametric com-

munication model, I calculated distance correlation, mutual information, and negentropy

to quantify how effectively they differentiate between the input and output signals with

various levels of AWGN noise.

In this particular case, the simplicity of the BSPK with AWGN setting means that the

computation of the mutual information can be done directly through a closed form for-
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mula, rather than relying on MINE. This also offers an opportunity to assess the accuracy

of MINE and compare its various configurations. See Section 3.2.3.

Section 3.3 compares the behaviour of the distance correlation against negentropy for

various noise colours. The motivation for this broadening of the investigation was two-

fold. First, the observation that Gaussian noise may intrinsically favour the negentropy

independence metric, which itself is based on the notion of non-Gaussianity. Secondly,

certain findings in the literature suggest that noise in time series data is better modelled

by a combination of white and other colours of noise [141].

Finally, for completeness of the investigation, Section 3.4 departs from the additive

noise models of the previous two sections, which create the noisy input channel by adding

a continuous noise function to a discrete signal, and instead generates an input signal by

adding together a number of discrete signals. As the number of signals increases, the

distribution will approach a Gaussian. In a manner similar to Section 3.3, I will compare

distance correlation with negentropy.

In all cases, the simplicity of the setting means that the values of the various indepen-

dence metrics can be computed quickly and accurately.

3.2 Binary Phase Shift Keying in an AWGN channel

In the BPSK with AWGN example, the first signal X , called the input channel, is a ran-

dom variable with two equiprobable values of -1 and 1. The second signal Y , called the

transmitted signal, is the input channel with added Gaussian noise N ∼N (0,σ), which

has a mean of zero and a specified variance. That is Y = X +N.

3.2.1 Computation of metrics

While the closed-form formula for distance correlation is presented in Section 2.3.2, I will

also introduce the empirical mutual information formula for the BPSK over an AWGN

channel and provide a brief recap of negentropy. Note that the computation of the distance

correlation and negentropy are consistent for all of the tests in this chapter.
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Mutual Information

The BPSK modulation problem allows for a non-parametric comparison of distance cor-

relation with a known empirical mutual information. The mutual information for binary

phase shift keying over a Gaussian channel has been introduced to compare the estimated

independence metric with an empirical result. The input channel can take values of 1 and

-1, with equal probabilities of occurrence. The transmission adds Gaussian noise with

zero mean and variance, σ2. The empirical mutual information is then calculated using

Monte Carlo integration.

The mutual information is calculated as:

I(X ;Y ) = DKL(P(X ,Y )||P(X)P(Y ))

= EP(X ,Y )

[
log
(

P(X ,Y )
P(X)P(Y )

)]
≈ 1

K

K

∑
k=1

log
(

P(xk,yk)

P(xk)P(yk)

)
.

(3.1)

In Equation 3.1, there are K samples of the joint distribution used to calculate the

empirical mutual information corresponding to the sample, using Monte Carlo sampling

techniques. xk and yk are samples from the joint distribution. The above is equivalent to:

1
K

K

∑
k=1

log
(

P(xk,yk)

P(xk)P(yk)

)
=

1
K

K

∑
k=1

log
(

P(yk|xk)

P(yk)

)
. (3.2)

As the component of X can be equiprobably -1 or 1, the denominator can be expanded

for the conditional cases of a sampled yk being produced by an X corresponding to one of

these two values, as seen in Equation 3.3.

I(X ;Y )≈ 1
K

K

∑
k=1

log
(

P(yk|xk)

0.5 ·P(yk|X =−1)+0.5 ·P(yk|X = 1)

)
. (3.3)

In Equation 3.3, the numerator is the distribution of a Gaussian centred at xk, with

a variance of σ2. The denominator contains two Gaussians centred at -1 or 1, with a

variance equal to that of the numerator. Thus, the mutual information can be calculated,

with known input signals X and Y , using the Gaussian probability density function.
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Negentropy

Negentropy, J(X), can be seen as the opposite of entropy, measuring the difference be-

tween the entropy, H(X), of a system, X , and its maximum entropy, H(XGaussian), where

entropy is a measure of a state’s randomness or uncertainty. The differential entropy of a

random vector X with a probability density function f(X) is defined as:

H(X) =−
∫

f (X)log( f (X))dX . (3.4)

Equation 3.5 provides the mathematical definition for negentropy:

J(X) = H(XGaussian)−H(X), (3.5)

where XGaussian is a Gaussian random variable with the same variance as the system,

X.

As central limit theorem states that under most conditions, the sum of random vari-

ables tends towards a Gaussian, maximising the negentropy of signals can separate un-

derlying signals from their sums.

While negentropy would naturally be an optimal measure of non-Gaussianity, estimat-

ing negentropy using Equations 3.4 and 3.5 would require a probability density function.

In this chapter, I calculate the entropy as the negative of the expectation of the log-

arithm of the Softmax function (the Softmax acting as a probability density function),

defined as H(X) = −E(log(p(X))). From the entropy, negentropy is computed using

Equation 3.5.

Since negentropy is not a pairwise metric, it is only applied to the output signal as the

input signal remains constant throughout the experiment.

3.2.2 Results

The mutual information (directly computed using Equation 3.3), the negentropy and the

distance correlation for the BPSK examples with various variances can be seen in Fig-

ure 3.1. The signal in the experiment consisted of 1,000 samples.

In this example, a single binary input signal was produced and kept constant through-
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Figure 3.1: Independence metrics in relation to changing AWGN variances for the BPSK
problem. The red line is the empirical mutual information (Equation 3.3), and the blue
and black lines are the distance correlations and the normalised negentropy. For each
Monte Carlo estimate of mutual information, I computed the standard error from both
the sampling variability and the variability across input signals. I then treated these two
sources of uncertainty as independent, summing their variances, taking the square root to
get a combined standard error, and used that to generate the error bars.

out the experiment. For each of 50 variance values equally spaced between 1e-16 and 5,

10 noisy signals were produced. These 10 repeats of the computation allow for a standard

deviation to be calculated, seen as error bars on the plots.

The Pearson correlation between the distance correlation and the empirical mutual

information is 0.984, identifying a high correlation between the two sets of values. Both

the metrics decrease as the variance increases, plateauing with increased variance.

While there is some uncertainty associated with the calculation of distance correla-

tion, the standard deviation remains within acceptable limits, reaffirming its reliability as

a metric. Additionally, there is minimal overlap among the different points associated

with other variances shown in Figure 3.1. Although the distance correlation metric is

higher than the ground truth mutual information and the normalised negentropy, I will

demonstrate that this is an advantage of distance correlation in future.
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In the closed-form curve of mutual information, there is a plateau at very low vari-

ances, the left-hand side of Figure 3.1. This plateau corresponds to the curve approaching

the theoretical maximum, where the input and output signals are equal. In this case, Equa-

tion 3.3 would reduce to log(1/0.5) = log(2) = 0.693. The plateaus for small and large

variances are explained by the effect of the denominator of Equation 3.3, which, on aver-

age, is slow to increase with slight changes in the variance for variances close to zero and

then plateaus for higher variances. The plateau close to zero represents the case where

the empirical mutual information is calculated between a signal and a signal very close to

itself, producing high mutual information values.

Negentropy, as defined in Equation 3.5, tends to approach zero as noise increasingly

dominates the signal at higher variances. It is important to note that the error bars for ne-

gentropy are significantly larger. This is mainly due to the calculation of the differential

entropy using an estimated Gaussian term derived from sampling a distribution. There-

fore, it is preferable to standardise the signal and ignore the entropy of the Gaussian, as

this remains constant when variances are equal, rather than using negentropy with an es-

timation of Gaussian entropy. For easier comparison, I normalised the negentropy values;

its actual range is between -0.00907 and 0.0659.

Distance correlation decreases as the variance of the AWGN added to the transmitted

signal increases, producing a transmitted signal tending toward white noise. As the trans-

mitted signal tends toward white noise, the inputted and transmitted signals become more

independent. The distance correlation does not approach zero. Upon further investiga-

tion, this is also true of Pearson’s correlation coefficient, suggesting a linear relationship

between the inputted and transmitted signals. As a result, the distance correlation should

not tend toward zero since there is at least a linear relationship between the two signals.

This demonstrates that distance correlation is a more effective independence metric for

machine learning based on this test.

The two methods differ as distance correlation examines pairs of random variables,

whereas negentropy focuses on an individual random variable. Therefore, to eliminate

redundancy in solutions, negentropy requires an extra step, such as whitening, to remove

the correlation between variables.

When analysing BPSK over an AWGN channel, I consider it an independence test
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between the X and Y signals. As I increased the noise level in Y, it began to dominate the

signal, leading X and Y to tend to independence. At high variances, when the signals are

nearer to independence, the distance correlation changes more with variance than empir-

ical mutual information. Normalised negentropy exhibits a near linear relationship with

mutual information, indicating that it is also effective in describing source dependence.

However, more subtle features can be captured using the distance correlation metric.

Additionally, at lower variances, the normalised negentropy and distance correlation

do not plateau like the empirical mutual information. This characteristic may allow for

better discrimination among sources close to being independent.

Therefore, both negentropy and distance correlation can identify slight differences

between sources near independence. Conversely, at high levels of dependency, distance

correlation may serve as the more effective metric, enabling the development of fine-

grained representations.

3.2.3 Closed form vs MINE mutual information computations

Figures 3.3 and 3.4 illustrate the empirical ‘true’ BPSK mutual information (depicted in

red and calculated using Equation 3.3) alongside the MINE estimates (shown in black)

averaged over ten runs, as a function of AWGN noise variance. These figures use two

different MINE architectures to produce values for the joint and marginal distributions of

the variables. These values are then used to calculate an estimate of MI using Equation

2.11. The estimates are optimised through gradient ascent to approximate the actual mu-

tual information as closely as possible. In Figure 3.3, where the information-bottleneck

style network is used (see Figure 3.2a), the MINE mutual information estimates almost

overlay the empirical line of best fit across low- and high-noise regimes, showing tight

tracking. In Figure 3.3, where the alternating linear layer and Leaky ReLU network is

used (see Figure 3.2b), the estimates still follow the overall shape of the true MI but begin

to undershoot and display greater scatter at very low-noise (high-MI) settings, reflecting

slightly more bias and variance from the deeper architecture.

To describe in more depth architectures and their corresponding outputs, I will present

Figure 3.3 which corresponds to the architecture which initially applies two linear layers,

one to each random variable. The outputs of the linear layers are summed, and a ReLU
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activation is applied. Finally, one more linear layer is applied. This MINE implementation

was inspired by the information bottleneck outlined in [20], using a ReLU activation

instead of ELU. The deep information bottleneck referenced above was based on the

work in [142], which states that the deep variational information bottleneck objective

is to ‘outperform those that are trained with other forms of regularisation, in terms of

generalisation performance and robustness to adversarial attack’. In the case of 3.4,

the network contains six repeats of a linear layer followed by a Leaky ReLU activation,

with a final linear layer applied to conclude the architecture. In this instance, I used

a deeper neural network architecture to identify whether more parameters could better

maximise the approximate mutual information to the actual mutual information. The two

architectures are exemplified by the diagrams in Figure 3.2.

The lines of best fit in Figures 3.3 and 3.4 illustrate the average of the final 50 mutual

information approximations (black) alongside the empirical mutual information (red). In

Figure 3.3, the two lines appear to be approximately the same. In Figure 3.4, the approx-

imation slightly underestimates the empirical mutual information, although it is within

one standard deviation of the mean value. As MINE maximises the approximate mutual

information to converge on the actual mutual information, the empirical mutual informa-

tion is a ceiling value that can be underestimated, epitomised by the Information Bottle-

neck method outperforming the deeper neural network, reinforcing the robustness results

from [142]. These figures are used to exemplify the potential importance of the choice

of MINE architecture and that mutual information can be used as a metric in a tractable

manner.

However, as MINE is parametric, it can cause issues when being integrated into source

separation problems, as will be discussed later in the thesis.

3.3 Noise colour

In the previous definition of the problem, white Gaussian noise was added to an equally

probable sampled binary signal to simulate random processes related to certain natural

phenomena, as commonly used in information theory examples. Adding white noise may

favour negentropy over distance correlation, as the former is a measure of Gaussianity
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(b) Deep architecture

Figure 3.2: The upper MINE architecture utilises the information bottleneck, while the
lower features an architecture with a deeper network. The upper and lower networks
represent the calculations of marginal and joint distributions. When these calculations are
combined using Equation 2.11 the final step, they approximate the lower bound of mutual
information through gradient ascent. Yp represents a random permutation of Y, permuted
in the time dimension.
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Figure 3.3: Comparison of the average MINE mutual information at the final epoch, cal-
culated over 10 repeats, with the empirical mutual information for BPSK over an AWGN
channel, using the first or, more explicitly, the information bottleneck architecture.

Figure 3.4: Comparison of the average final MINE epoch for ten repeats with the empir-
ical mutual information for BPSK over an AWGN channel, specifically for the second or
alternating linear layer and Leaky ReLU architecture.
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and, therefore, benefits from the noise being the colour white. Moreover, some research

has indicated that time series noise should be represented by a combination of white noise

and power-law processes [141] rather than only white noise.

In this section, several other colours of noise were added to the binary signal X . In

each case, the noise was standardised and then scaled by variance for comparison. The

output signal (Y =X+N) is standardised to align with the central limit theorem, which re-

quires matching variances to compare methods. Colour noise, otherwise known as power

law noise, indicates a power law spectral density. Spectral density per unit bandwidth

is proportional to 1
f

β
, where β is an integer representing a colour of noise and f is fre-

quency. β is 0 for white noise, 1 for pink noise, 2 for Brownian noise and -1 for blue

noise.

One method used to produce data exhibiting a power law spectrum, S( f ) ∼ 1
f

β
, is

provided in Equation 3.6 [143]:

N(t)∼ ∑
2π f

√
S(2π f )cos(2π f t−φ(2π f )) , (3.6)

where φ is a random phase. The amplitude, N(t), is deterministic for each frequency

and only the phase is randomised. This amplitude is the noise to be added to the signal.

The reader can find a wider variety of types of added noise in appendix A. In this

section, I will compare two examples: Brownian noise, as random walks are applied

in various fields, including fluid dynamics, and velvet noise, characterised by a sparse

sequence of positive and negative impulses defined by the density of impulses. The higher

densities approximate white noise, enabling the study of density with known behaviour at

high values.

Brownian noise has an exponent, β , of 2. In this case, the signalz.brownian_noise

function, from the signalz Python module, which generates Brownian noise (also known

as red noise or random walk noise) was used. This module generates Brownian noise by

integrating white Gaussian noise with a given standard deviation. In Figure 3.5, I used a

leaky 10% integration to keep the noise within a reasonable range. The leaky integrator

is the result of integrating a specific differential equation, which leaks some of the input

over time, constraining the possible values of the random walk.
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Figure 3.5: The relationship between a BPSK signal and the BPSK signal with added
Brownian noise while varying the noise component’s variance, as measured by distance
correlation and negentropy. A leaky integration of 10% was employed to maintain the
noise within a reasonable range.

Velvet noise is a sparse noise sequence [144]. I implemented velvet noise using the

scipy.sparse.random module to generate both positive and negative impulses with a spe-

cific density. As I decreased the sparsity (or increased the density), the velvet noise, as

anticipated, began to resemble white noise.

For the velvet case, I conducted two experiments. First, I generated velvet noise

signals with varying densities, ranging from 0.05 to 1, across 50 equidistant points. I

observed two competing effects based on the distance correlation and negentropy results:

the signal shows a tendency toward white noise at higher densities, and the standard de-

viation of the signals changes with the density. Therefore, I will present the negentropy

and distance correlation results, both with and without noise standardisation, alongside

the variations in standard deviation with density.

The three results will help one identify the effects of density. At high-density values,

the signals tend to resemble white noise. First, I will examine this behaviour with and

without the inherent changes in the standard deviations of the velvet noise due to density,
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allowing the effect of changing standard deviation to be observed while also isolating it

when analysing how the probability distribution of the noise changes with varying den-

sities. The variability in standard deviation impacts the test’s objective to examine how

the independence metrics change as the probability distribution of the noise approaches

a Gaussian distribution (at high densities). It is important to note that the noisy signal,

represented as Y=X+N, is standardised in all cases, though N is not.

Secondly, I created a velvet noise signal with a density of 0.1. Then I standardised this

signal and scaled it by a factor between 0 and 5, which adjusted the standard deviation

range while maintaining the same signal probability distribution. I applied the same meth-

ods to the blue, pink, and violet noise case tests (See Appendix A). This test, which varies

the standard deviation, allows the noise component to dominate the signal Y, making it

more independent of X as the noise becomes dominant.

Figure 3.6 illustrates how varying the density affects the noise without standardising

it. Meanwhile, Figure 3.7 shows how the standard deviation of the velvet noise changes

with density. The noise standardisation results can be seen in Figure 3.8. There is a no-

table connection between the change in the distance correlation and the variance of the

noise, both with density, as seen in Figures 3.6 and 3.7, respectively. In Figure 3.6, the

noise has not been standardised. These results emphasise the importance of the stan-

dardisation step, ensuring that no competing elements exist in the experiments. In Figure

3.8, one observes that both metrics decrease and eventually plateau when examining how

negentropy and distance correlation change with increasing density. However, the dis-

tance correlation decreases more slowly. As intimated by Equation 3.5, the negentropy

approaches zero because, with higher density, the terms tend to cancel each other out. On

the other hand, distance correlation reveals a relationship between the random variables.

This suggests that it may serve as a more effective metric for source separation. Unlike

negentropy, which is calculated only on the BPSK signal with added velvet noise, dis-

tance correlation is computed using the original BPSK signal and the noisy signal. It is

important to note that this analysis does not consider the effects of whitening in the source

separation pipeline, which will be discussed further in Chapter 4.

For the results of the second experiment, where the velvet noise had a density of 0.1

and was standardised and scaled by a factor of between 0 and 5, I direct the reader to
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Figure 3.6: The relationship between a BPSK signal and the BPSK signal with added
velvet noise while varying the noise component’s variance, as measured by distance cor-
relation and negentropy. The velvet noise has not been standardised in this case.

Figure 3.7: The standard deviation for a given density related to the velvet noise in Figure
3.6.

Figure 3.9.

As I am focused on the cases where sources are independent, in the case of additive

noise, the equivalent would be to add noise with a high variance such that it dominates the

outputted signal. For each of the colours of noise, the distance correlation has a greater

gradient for higher variances when compared to negentropy, which tends to plateau. For

a more in-depth summary of the impact of different colours of noise, please see Table 3.1.
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Figure 3.8: The relationship between a BPSK signal and the BPSK signal with added
velvet noise while varying the noise component’s variance, as measured by distance cor-
relation and negentropy. The velvet noise has been standardised in this case.

Figure 3.9: Distance correlation and negentropy for a binary signal transmitted through
a velvet noise signal, where the noise has been standardised and scaled by a user-defined
variance within a specific range. This approach allows the observation of how these met-
rics change when the density of the velvet noise signal remains constant, at 0.1, while the
standard deviation varies.

The lack of plateau opens up a fascinating area for further research, as the larger gradi-

ent for distance correlation at high variances could lead to a more fine-grained comparison
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Noise
type

PSD ∝

1/ f k
Temporal
Memory

Impact on Distance
correlation

Impact on negentropy

White k = 0 None Smooth, low-bias de-
cline as variance in-
creases

Smooth decline to a
plateau with increased
variance; large associ-
ated uncertainty

Pink k = 1 Moderate
long-range
memory

Similar decline to the
DistCorr white noise
case

Similar to white noise
case negentropy

Brownian
(Red)

k = 2 Strong long-
range mem-
ory

Similar decline to the
DistCorr white noise
case

Similar to white noise
case negentropy but
with more scatter and
uncertainty

Blue k =−1 Short, anti-
correlated

Similar decline to the
DistCorr white noise
case

Similar to white noise
case negentropy

Violet k =−2 Very
short, anti-
correlated

Similar decline to the
DistCorr white noise
case

Similar to white noise
case negentropy

Velvet
(white)

≈ flat Irregular im-
pulses

A pronounced drop in
DistCorr that levels off
at a non-zero value as
density increases

Density increases
produce greater
Gaussianity, causing
a sharp decline in
negentropy that then
plateaus near zero

Table 3.1: Impact of coloured noise on distance correlation and negentropy. Note that
some researchers consider Brownian noise representative of the noise in geodetic time
series. However, care must be taken to distinguish genuine low-frequency geophysical
signals, such as the linear drift from tectonic plate motion, from noise, to avoid misclas-
sifying these trends as noise, particularly Brownian instead of pink noise.

between random variables close to independence. Such insights could significantly en-

hance the applicability of distance correlation in gradient descent optimisation when used

within loss functions for BSS.

Note that in this comparison, I am not focused on the metric values themselves, as the

negentropy for example could be normalised in order to increase its range for optimisa-

tion.
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3.4 No additive noise

In a separate experiment, I generated 40 input channels labelled as Signal1 to Signal40,

each containing equiprobable values of -1 or 1. I calculated the distance correlation and

negentropy between Signal1 and the average of the signals from indexes 1 to 40, varying

the number of signals included in this average. I computed averages with up to 10,000

signals. However, the average of the first 40 signals accounted for most of the change in

distance correlation and negentropy before they plateaued. This thesis presents findings

on the average of up to 40 BPSK signals, which constitutes most of change as additional

BPSK signals are added to the average signal.

Additionally, the second signal tends to approximate a Gaussian distribution. The

outcomes are based on 25 repetitions, each involving a different set of 40 binary signals,

each with a length of 1,000. It is important to note that the initial and the average signals

were standardised.

Due to the nature of the mean signal and the law of large numbers, an increase in the

number of signals will lead to the sum at each time point approaching zero, which reduces

the variance of the signal. This creates competing effects: on one hand, the distribution

of the mean of a large number of signals tends to resemble a Gaussian, and on the other

hand, the variance moves towards zero. This effect, analogous to the previous section,

emphasises the importance of standardising the second signal.

In Figure 3.10, it is evident that the distance correlation has a value of 1.0, as Signal1

is inherently dependent on itself. In both scenarios, the metrics decrease rapidly as the

number of signals in the average increases, eventually plateauing. The initial decline is

more pronounced in the case of negentropy and gentler for a higher number of signals in

the distance correlation case.

Tying this to the Central Limit Theorem, as one sums k independent sources, their

normalised sum tends to approach a Gaussian distribution, even if the underlying sources

are non-Gaussian. In BSS, ICA algorithms can use non-Gaussianity to measure indepen-

dence, in the form of kurtosis or negentropy in the case of FastICA. The reduction in the

non-Gaussianity, in terms of negentropy, of the mixtures due to the Central Limit Theo-

rem scales as 1/
√

k. This limits the accuracy of source separation and explains the plateau

observed in Figure 3.10. However, distance correlation captures pairwise statistical de-
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Figure 3.10: Distance correlation or negentropy between an initial signal and the average
of all signals up to the number specified by the x-axis.

pendencies, both linear and non-linear, unlike negentropy, which primarily measures the

non-Gaussianity of an individual signal. This includes small residual dependencies when

the number of signals in the average is high. Therefore, it remains effective even when the

Central Limit Theorem has driven a marginal distribution toward normality, supporting its

superior performance.

In the case of distance correlation, its value decreases (though its uncertainty in-

creases) until it reaches a plateau as the sources become more independent. This indi-

cates a point where the binary input source becomes independent of the mean of many

BPSK signals, resulting in similar but non-zero distance correlation values. Addition-

ally, the absolute correlation coefficient between the negentropy of the average signals

and the distance correlation between one of the signals and the average signal is over 0.8,

demonstrating a strong linear relationship between these metrics in this example.
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3.5 Conclusion

In this chapter, I employed non-parametric tests to thoroughly examine the suitability of

distance correlation as an independence metric.

I first transmitted a binary signal through a Gaussian noise channel characterised by a

mean of zero and a known variance. I examined the independence of the input and output

signals using distance correlation and negentropy. In the case of negentropy, I calculated

it solely based on the output signal. These values were then compared to empirical mutual

information, which was determined using Monte Carlo integration.

Both the distance correlation and the empirical mutual information decreased and

eventually plateaued as the variance increased. Similarly, the normalised negentropy also

decreased and then plateaued with increasing variance. In theory, the minimum negen-

tropy value should be zero, as the Signal1 component becomes dominated by noise. The

divergence is an artifact of the calculation technique.

As noise becomes more prevalent, the distance correlation decreases, indicating in-

creased independence. However, it does not tend toward zero, nor does the Pearson cor-

relation coefficient. The Pearson correlation coefficient indicates a linear relationship

between the signals, confirming that a linear relationship exists and that the distance cor-

relation should not reach a minimum value. The fact that the distance correlation does not

tend to zero implies that it could serve as a better loss function for source separation in

a machine-learning context. It provides a more nuanced description of the relationships

between the data, encompassing both linear and non-linear dynamics, which allows for

more effective minimisation of these relationships.

I compared negentropy and distance correlation in scenarios where different types of

noise, including Brownian (pink, blue, violet) and velvet noise, were added to a binary

signal. The results showed that the distance correlation exhibited less uncertainty and

plateaued more gradually. Distance correlation may be more beneficial for gradient de-

scent updates due to increased variation in values. In the case of velvet noise, when the

added noise was normalised, the uncertainty associated with negentropy was higher as a

proportion of the signal (i.e. the actual uncertainty value for negentropy may be lower,

but the metrics are not on the same scale). Additionally, negentropy plateaued earlier than

distance correlation but showed a similar reduction before stabilising.
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Finally, I examined the independence of a binary signal with a standardised average

of other binary signals. As the number of signals included in this average increased, the

result became more similar to white noise. In this case, I found that the distance correla-

tion exhibited a greater variation in values as the number of signals increased compared

to negentropy and had less associated uncertainty.

This chapter concludes that distance correlation offers a more comprehensive rep-

resentation of data by considering both linear and non-linear relationships. In contrast,

negentropy is minimised for BPSK over an AWGN channel, approaching zero when the

random variables have a linear relationship. Furthermore, distance correlation demon-

strates a steeper gradient when dealing with higher variances in examples of coloured

noise. In a proxy scenario for independence, the steeper gradient indicates that a distance

correlation metric can more effectively learn independent sources using gradient descent

optimisations.
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CHAPTER 4

Whitening

After a brief introduction of the most commonly used whitening methods in Section 4.1, in

Section 4.2, I study, empirically and theoretically, the effect of whitening on the distance

correlation between the whitened signals. In Section 4.3, I give some recommendations

on the use of whitening within the BSS pipeline, and provide a conclusion for this chapter

in Section 4.4.

4.1 Whitening methods

Several BSS algorithms employ decorrelation to facilitate the estimation of sources by re-

ducing the number of free parameters. One method commonly used to reduce the number

of parameters is to linearly transform the data into a form that has an identity covari-

ance matrix, effectively eliminating linear relationships present in the original data. This

whitening transformation has the form of a matrix that, when multiplied by the data, in

this case, an n-dimensional vector of random variables xxx, produces a result that is decor-

related.

Let xxx = (x1,x2, . . . ,xn)
T with mean E(xxx) = (µ1,µ2, . . . ,µn)

T , and let the covariance

matrix of xxx be ΣΣΣ. To apply a whitening transformation to xxx, ΣΣΣ must be invertible, and thus,
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the covariance must be positive definite. Then, by applying a whitening matrix WWW , one

can transform xxx into a new random vector:

zzz = (z1,z2, . . . ,zn)
T =WxWxWx, (4.1)

with the covariance matrix of zzz being the identity matrix. Simple computations, see in [6],

show that WWW is a whitening matrix if and only if:

WWW TWWW =ΣΣΣ
−1. (4.2)

Equation 4.2 contains a rotational degree of freedom. Therefore, WWW is not uniquely deter-

mined. This can be seen from the polar decomposition of WWW ,

WWW = Q1ΣΣΣ
− 1

2 , (4.3)

where QQQ1 is an orthogonal matrix. Indeed, inputting Equation 4.3 into Equation 4.2, one

can check that WWW satisfies the whitening condition irrespective of the chosen orthogonal

rotation matrix, because QQQT
1 QQQ1 = I. Interpreting 4.3 geometrically, the whitening trans-

formation first rescales the input vector by ΣΣΣ
− 1

2 and then rotates the output by QQQ1.

A second decomposition of WWW , used in [6] to characterise the various whitening meth-

ods they study, is:

WWW = QQQ2PPP−
1
2VVV−

1
2 = QQQ2GGGΘΘΘ

− 1
2GGGTVVV−

1
2 , (4.4)

where Q2Q2Q2 is again an orthogonal rotation matrix; VVV and PPP are defined through the de-

composition ΣΣΣ =VVV
1
2PPPVVV

1
2 of the covariance matrix into the correlation matrix PPP and the

diagonal variance matrix VVV ; and GGG and ΘΘΘ are defined through the eigendecomposition

of the correlation matrix PPP = GGGΘΘΘGGGT . The eigendecomposition of the covariance matrix

ΣΣΣ =UUUΛΛΛUUUT will also be used.

Before I introduce in more detail the five natural whitening procedures studied in this

Chapter, chosen for comparison to [6], I will introduce the cross-covariance and cross-

correlation matrices between the whitened vector, zzz and the original random vector, xxx.
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The cross-covariance matrix between zzz and xxx is:

φφφ = (φi j) = cov(zzz,xxx) = cov(WxWxWx,xxx) =WWWΣΣΣ =QQQ1ΣΣΣ
1
2 . (4.5)

Similarly, the cross-correlation matrix is:

ψψψ = (ψψψ i j) = cor(zzz,xxx) = φφφVVV−
1
2 =QQQ2PPP

1
2 . (4.6)

Note that the derivation in Equation 4.6 has been shortened for brevity, and I have

omitted the discussion regarding the connections between the rotations in the two decom-

positions of WWW in Equations 4.3 and 4.4 (QQQ1 = (PPP−
1
2VVV−

1
2ΣΣΣ

1
2 )QQQ2, see [6] for more details).

The rotational degrees of freedom of W, represented either by Q1 or by Q2, can be

used to optimise measures of cross-covariance and cross-correlation between the original

and whitened vector. Following [6]. I will verify the previously established relationships

between four such statistical measures, which I will introduce in the following paragraph,

and five whitening transforms. Then, I will extend these results away from whitening for

decorrelation and move towards whitening for independence.

4.1.1 Common whitening methods

In [6], five natural whitening methods were compared in terms of optimisation of vari-

ous measures. Here is a summary of these five popular and commonly used whitening

methods, along with the whitening matrix WWW from Equation 4.1 in brackets:

1. ZCA [145] [146] [6] (WWW ZCA = ΣΣΣ
− 1

2 ): The ZCA whitening transformation is the

unique transformation that minimises the squared distance between the original

and whitened vectors. Simple but non-trivial computations in [6] showed that this

squared distance is minimised when the trace of the cross-covariance matrix tr(φφφ)

of Equation 4.5 is maximised. This happens when the orthogonal rotation matrix

QQQ1 in the decomposition of Equation 4.3 equals the identity matrix. Therefore, the

whitening transformation that minimises the squared distance between the original

and whitened vectors is the ZCA transformation.

2. PCA [147] [25] [6] (WWW PCA =ΛΛΛ
− 1

2UUUT , where ΣΣΣ =UUUΛΛΛUUUT is the eigendecomposition
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of ΣΣΣ): The PCA whitening transformation involves rotating the vectors using the

matrix UUUT composed of the eigenvectors of the covariance matrix, much like PCA.

In this setup, the directions associated with the highest eigenvalues represent the

directions that account for the most variation. Although this rotation results in

orthogonal components, these components typically do not have unit variances. To

address this issue, the components are scaled by the square root of the eigenvalues,

ΛΛΛ
− 1

2 , producing whitened data.

In [6], the optimality properties of the PCA whitening are studied through the

row sums of the squared cross-covariances: φφφ i = ∑
d
j=1 cov(zi,x j)

2 which corre-

spond to the diagonal elements of the matrix φφφφφφ T . PCA whitening maximises the

max(diag(φmφ T
mφmφ T
mφmφ T
m )), and even though it is not unique in that respect, following [6]

we use it as an evaluation metric.

3. ZCA-Cor [6] (WWW ZCA−Cor = PPP−
1
2VVV−

1
2 ): The ZCA-Cor whitening transform min-

imises the squared distance between the original standardised and whitened vectors.

Similar to ZCA whitening, [6] shows that only one component of this squared dis-

tance varies during the whitening process: the trace of the cross-correlation: tr(ψψψ).

Computations similar to the ZCA whitening show that the squared distance is min-

imised when tr(ψψψ) is maximised, and that happens when QQQ2 in Equation 4.4 equals

the identity matrix, resulting in the ZCA-Cor whitening transform.

4. PCA-Cor [6] (WWW ZCA−Cor =ΘΘΘ
− 1

2GGGTVVV−
1
2 , where PPP =GGGΘΘΘGGGT is the eigendecomposi-

tion of the correlation matrix): Like PCA whitening, PCA-Cor additionally ensures

scale invariance by optimising for cross-correlations rather than total correlations.

Analogously, this transform maximises max(diag(ψxψT
xψxψT
xψxψT
x )).

5. Cholesky [6] [148] (WWWChol = LLLT ): This unique procedure gives matrices φφφ and ψψψ

that are both lower triangular and have positive diagonal elements. It is important

to note that this is the only whitening method that does not optimise a metric based

on cross-correlation or cross-covariance.

Note that in the above, the input and whitened vectors are all centred.

As mentioned earlier, whitening transformations assist with source separation by elim-

inating linear relationships within the data. However, as we just saw, the conditions for
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whitening do not yield unique linear transforms WWW . In the machine learning literature,

whitening transforms are often applied without a clear statistical justification. Instead, it

seems that factors such as ease of implementation and consistency with previous studies

are the driving forces behind the choice of whitening transform. Here, I aim at provid-

ing a deeper rationale for my choice of whitening transforms, as well as their positioning

within the source separation pipeline.

4.2 Whitening and distance correlation

I experimented with a small set of synthetic data, applying the five whitening methods

described in Section 4.1, computing the same metrics on the original and the whitened

signals as in [6], as well as distance correlations. My aim is to obtain insights into how

the distance correlations between signals are affected by the various whitening methods

and, where possible, to support my empirical observations with theoretical justifications.

4.2.1 Synthetic data and experimental design

I utilised the synthetic data from the Scikit-Learn FastICA source separation example.

This choice ensures compatibility with existing literature, as this synthetic example is the

sole validation test used in [149], which introduced MINE for source separation. The data

comprises three sources: a sine wave (s1s1s1), a sawtooth wave (s2s2s2), and a square wave (s3s3s3). I

combined these sources to create three mixtures (x1x1x1, x2x2x2, x3x3x3), via the mixing matrix:
1 1 1

0.5 2 1

1.5 1 2

 . (4.7)

Three sources will be extracted from these three mixtures using blind source separa-

tion in Chapter 5. In this chapter, I investigate the effect of whitening on the mixtures

and the underlying sources, which I assume to be known. In future, this problem will be

referred to as the synthetic problem.

I applied the five commonly used whitening transformations of Section 4.1 to the three

synthetic mixtures. Following this, I calculated tr(φxφxφx), maximised by ZCA whitening,
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tr(ψxψxψx), maximised by ZCA-Cor whitening, and max(diag(φxφ T
xφxφ T
xφxφ T
x )) and max(diag(ψxψT

xψxψT
xψxψT
x )),

maximised by the PCA and PCA-Cor whitening transformations, respectively.

I extended my analysis to include the distance correlation between pairs of initial and

whitened mixtures, and the pairwise correlations and distance correlation between the

whitened mixtures and the underlying sources as a small test to identify if any form of

whitening pushes inputs towards independence.

In my comparisons, I allowed permutations between inputs and outputs. First I select

the highest distance correlation between all pairs of whitened vectors and sources, next I

select the highest distance correlation from the remaining pairs, and finally the last result

comes of the only remaining pair. This step produces a permutation-invariant comparison.

It is important to note that while permutations were allowed, only the PCA whitening

versions exhibited their highest values off-diagonal, and those values were anti-diagonal.

Consequently, I presented the results keeping a fixed order where s1s1s1 is always the sine

wave, s2s2s2 the square wave, and s3s3s3 the sawtooth wave, which enhances interpretability.

4.2.2 Experimental results

The experimental results are presented in Tables 4.1, Table 4.2. Table 4.1 records values

between whitened mixtures and original mixtures or sources, while Table 4.2 records

values between whitened sources and original sources. The layout of both tables follows

the format in [6], meaning that the maximum variable of the experiment, with regard to

choice of whitening technique, should be traced row-wise.

The first six rows of Table 4.1 show that Cholesky whitening achieves a maximum

value of 1 for one pair of input and whitened vectors for both correlation and distance

correlation. This is not a coincidence as in Cholesky whitening the final whitened variable

is always a scaled version of the final original variable. Table 4.1 illustrates this effect in

the values of cor(x3x3x3,z3z3z3) and DistCorr(x3x3x3,z3z3z3).

The first six rows of Table 4.2 show the same behaviour on whitened original sources

rather than mixtures. It is important to note that before any processing or computation

the sources had been standardised. I emphasise this point as standardisation removes the

distinction between PCA and PCA-cor as well as between ZCA and ZCA-cor, and the cor-

relation and covariance matrices also become equivalent. This can been seen in Table 4.2,
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ZCA PCA Cholesky ZCA-cor PCA-cor
cor(z1z1z1, x1x1x1) 0.564 0.992 0.150 0.679 0.993
cor(z2z2z2, x2x2x2) 0.839 0.410 0.637 0.822 0.381
cor(z3z3z3, x3x3x3) 0.840 0.034 1.000 0.762 0.065

DistCorr(z1z1z1, x1x1x1) 0.532 0.988 0.191 0.633 0.989
DistCorr(z2z2z2, x2x2x2) 0.863 0.590 0.769 0.848 0.559
DistCorr(z3z3z3, x3x3x3) 0.799 0.137 1.000 0.721 0.144

cor(z1z1z1, s1s1s1) 0.927 0.755 0.776 0.950 0.729
cor(z2z2z2, s2s2s2) 0.933 0.787 0.920 0.914 0.763
cor(z3z3z3, s3s3s3) 0.945 0.595 0.714 0.975 0.565

DistCorr(z1z1z1, s1s1s1) 0.922 0.743 0.765 0.944 0.716
DistCorr(z2z2z2, s2s2s2) 0.951 0.797 0.938 0.934 0.769
DistCorr(z3z3z3, s3s3s3) 0.936 0.548 0.677 0.970 0.516

tr(φxφxφx) 5.115 2.556 4.369 5.069 2.408
tr(ψxψxψx) 2.243 1.369 1.787 2.263 1.309

max(diag(φxφ T
xφxφ T
xφxφ T
x )) 7.115 13.818 12.930 5.606 13.797

max(diag(ψxψT
xψxψT
xψxψT
x )) 1.296 2.745 2.519 1.000 2.749

Table 4.1: Rows 1-3 display the pairwise correlations between the whitened and original
mixtures, and Rows 4-6 the corresponding distance correlations. Rows 7-9 show the pair-
wise correlations between the whitened mixtures and the underlying sources, and Rows
10-12 the corresponding distance correlations. In rows 13 and 14, I provide the traces
of the cross-covariance and cross-correlation matrices between the original and whitened
mixtures. As described in [6], these traces are maximised by the ZCA and ZCA-Cor
whitening transforms, respectively. In rows 15 and 16, I give the maximum values of the
diagonal of the row sum of the squared cross-covariances and cross-correlations. These
diagonals are maximised by the PCA and PCA-Cor whitening transformations, respec-
tively.
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ZCA PCA Cholesky ZCA-cor PCA-cor
cor(WWW (s1s1s1),s1s1s1) 0.999 0.590 0.997 0.999 0.590
cor(WWW (s2s2s2),s2s2s2) 0.999 0.039 0.998 0.999 0.039
cor(WWW (s3s3s3),s3s3s3) 0.999 0.381 1.000 0.999 0.381

DistCorr(WWW (s1s1s1),s1s1s1) 0.999 0.555 0.996 0.999 0.555
DistCorr(WWW (s2s2s2),s2s2s2) 0.999 0.072 0.998 0.999 0.072
DistCorr(WWW (s3s3s3),s3s3s3) 0.999 0.342 1.000 0.999 0.342

tr(φSφSφS) 2.999 0.170 2.996 2.999 0.170
tr(ψSψSψS) 2.997 0.170 2.994 2.997 0.170

max(diag(φSφ T
SφSφ T
SφSφ T
S )) 1.001 1.118 1.006 1.001 1.118

max(diag(ψSψT
SψSψT
SψSψT
S )) 1.000 1.117 1.005 1.000 1.117

Table 4.2: Rows 1-3 of this table display the pairwise correlations between the corre-
sponding elements of the whitened and original sources. Rows 4-6 illustrate the distance
correlations between the whitened and the original sources. The whitened sources sisisi are
denoted W (si)W (si)W (si) rather than zizizi to avoid conflict with the notation of Table 4.1, where zizizi de-
notes whitened mixture. In rows 7 and 8, I provide the traces of the cross-covariance and
cross-correlation matrices between the original and whitened source random vectors. As
discussed in [6], these traces are maximised by the ZCA and ZCA-Cor whitening trans-
formations, respectively. In rows 9 and 10, I present the maximum values of the diagonal
of the row sum of the squared cross-covariances and cross-correlations between the orig-
inal and whitened sources. These are maximised by the PCA and PCA-Cor whitening
transformations, respectively.

where a small discrepancy between the traces of φφφ and ψψψ arise from computational ap-

proximations and rounding errors in the variances of the whitened sources, which do not

equal one.

The last four rows of Tables 4.1 and 4.2 show the maximality of the values of tr(φφφ)

and tr(ψψψ) for ZCA and ZCA-cor whitening, respectively, and similarly, the maximality

of the values of diag(φφφφφφ T ) and diag(ψψψψψψT ) for PCA and PCA-cor, respectively. That is,

as expected, the highest values of these statistics were achieved by the whitening trans-

formation that theoretically maximises them. Indeed, upon examining the last four rows

of the two Tables, the reader will notice that the maximum results highlighted in bold

correspond to the transform that theoretically maximises them. Cholesky whitening does

not optimise any of the four metrics, as it was not defined to do so.

In Table 4.2, the maximum values of tr(φφφ) and tr(ψψψ) nearly reach their theoretical

maximum of three, that is, the dimension of the covariance and correlation matrix. In-

deed, the covariance and correlation matrices will be approximately the identity matrix
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when working with standardised data and inputs that are not highly correlated. Conse-

quently, the ZCA, ZCA-Cor and the Cholesky whitening transforms will all be close to

the identity matrix. Table 4.2 verifies that these three whitening methods nearly maximise

the shared information between standardised inputs and whitened outputs, leading to high

correlations, distance correlations, and high values of tr(φφφ) and tr(ψψψ).

The top six rows of Table 4.2 show that the correlations and distance correlations

between sources and whitened sources are markedly lower for the PCA methods. This is

because its input is an individual underlying source; therefore, compressing them into as

few whitened vectors as possible, as the PCA transform attempts to do, leads to a loss of

information about the relationship between the inputs and their corresponding whitened

outputs.

Finally, from the Rows 4-6 of Table 4.1, one can see that ZCA-cor achieves the high-

est average distance correlation across the three pairs of input and whitened mixtures.

However, it does not yield the maximum for any individual pair. Additionally, from Rows

10-12, one can see that ZCA-cor has the highest average and the best two out of three

pairwise distance correlations between the whitened mixtures and the underlying sources.

Thus, the ZCA and ZCA-cor whitening transforms appear to be effective for source sep-

aration, removing linear relationships from the whitened vectors while maximising either

covariance or correlation, thus preserving the content of the original input for a distance

correlation or negentropy loss optimisation, which will aid in removing remaining non-

linear relationships. It is also noted that whitening can be harmful, as evidenced by the

PCA transforms, which in Rows 10-12 of Table 4.1 show an average distance correla-

tion between the whitened mixtures and sources of 0.712 for PCA, and 0.686 for PCA-

cor. Both of these values are lower than the average distance correlation between the

unwhitened mixtures and sources, which I have separately computed to be 0.733.

As a summary, to select the appropriate whitening transform, consider the following

criteria. If you aim to preserve the spatial or topological structure, ZCA is preferable.

Conversely, if you require the maximal integration with the original features or a specific

ordering of components, consider using PCA or PCA-Cor.

Techniques like FastICA typically focus on removing second-order structure before

assessing higher-order, non-linear dependencies. The choice of whitening affects both
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the convergence speed and the solution quality. For ICA techniques that emphasise strong

non-Gaussian signals, such as FastICA, PCA whitening is a suitable option. In contrast,

for downstream metrics like distance correlation and mutual information, both of which

focus on capturing pairwise dependencies, whitening transformations that minimise ge-

ometric distortion, such as ZCA-Cor or ZCA, are ideally suited for end-to-end machine

learning. These transformations enhance the influence of pairwise metrics on the learn-

ing process. Similarly, representation learning, including techniques like scattering in

self-supervised representation learning, benefits from minimal distortion of the represen-

tation, which is best achieved through ZCA-based whitening.

In what follows, I often chose the Cholesky method for whitening because it produced

the cleanest gradient updates in my PyTorch neural network architecture during my early

research. When it became easier to integrate various forms of whitening, I adjusted the

whitening method to ZCA. However, unless otherwise specified, Cholesky whitening was

used.

4.2.3 Whitening and independence

From the Rows 7-12 of Table 4.1, it can be observed that the whitening method maximis-

ing the correlation of between a whitened mixture and a source, also maximises the dis-

tance correlation. While the choice of whitening transform can lead to smaller or greater

distance correlations between the whitened mixtures and the original sources. Here, I dis-

cuss why it is challenging to select a whitening transformation that maximises the depen-

dence between the whitened mixtures and the sources by maximising the corresponding

distance correlations.

In [6], the ZCA whitening method was shown to decorrelate the input while making

the whitened mean centred random vector zzz as similar as possible to the original mean

centred random vector xxx. Their approach was based on the work of [150], which focused

on minimising the total squared distance between the original and whitened variables.

Therefore, the objective there was to minimise E(z−x)T E(z−x), for mean-centred vec-

tors.

Generally, maximising independence among random variables is not the direct pri-

mary purpose of whitening transforms. These transformations are designed to remove
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linear correlations and produce uncorrelated random variables. Thus, it is not surprising

that they cannot consistently eliminate various types of non-linear dependencies. Never-

theless, under specific conditions, different whitening techniques can enhance indepen-

dence, depending on the nature of the data.

As discussed in detail in Section 4.1, each whitening method corresponds to a distinct

orthogonal rotation of the generic whitening transformation applied to the original data,

and thus, the alignment between the whitening transform and any non-linear dependen-

cies will vary, depending on this orthogonal rotation. Consequently, no single whitening

technique can consistently minimise dependencies, whether linear or non-linear, because

different whitening methods yield different alignments, which may affect the non-linear

dependencies in the data in different ways. Instead, the effectiveness of whitening trans-

formations in this task depends on the distributions and dependencies of the random vari-

ables within the vector, and the alignment of those dependencies with the whitening trans-

form applied.

Taking PCA whitening as an example, if non-linear dependencies in the data are

strongly aligned with the direction of maximum variance, PCA whitening may amplify

them. However, the same transform can reduce non-linear dependencies when their di-

rections do not align with the principal axis. In that case, by aligning the data along the

principal components, PCA whitening may suppress non-linear dependencies in direc-

tions of lower variance.

No single linear whitening method universally maximises statistical independence be-

cause whitening only removes second-order correlations, not the higher-order dependen-

cies ICA exploits. FastICA depends on PCA whitening to emphasise directions of high

variance, often containing non-Gaussian structures, before hunting for the optimal or-

thogonal rotation. By contrast, distance correlation losses reward minimal residual cross-

structure and align with ZCA and ZCA-Cor (see Table 4.2, rows 4–8), which preserve

spatial geometry and produce high pairwise distance correlations. The ideal whitening

hinges on the spectral content of the signal, the colour of the noise, and the degree

of non-Gaussianity. As PCA whitening rescales the axes by 1/
√

λi, the low variance

noise components can be amplified and swamp the underlying non-Gaussian character-

istics. Unmodelled Gaussian noise in the covariance can push the mixture closer to true
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Gaussianity, thwarting ICA’s contrast functions unless the noise structure is accounted

for [151].

To transcend these limits, I propose applying a whitening transform to the underly-

ing components at each epoch of a neural BSS pipeline. Since all whitening transforms

differ only by a rotation, a properly designed algorithm (e.g. with a Restart strategy) can

steer any initial whitened mixture toward the same global independence optimum, though

convergence speed will vary with the data and whitening choice. In practice, ZCA-based

methods remain attractive when preserving the geometric structure of the sources is criti-

cal.

In summary, whitening focuses on decorrelation rather than maximising indepen-

dence, the latter being an objective that no whitening method explicitly addresses. The

rotational degree of freedom among whitening transforms means that each transform can

produce outputs that suppress, magnify, or distort non-linear dependencies in various

ways.

In future chapters, unless otherwise specified, I will use Cholesky whitening. This

choice is made for consistency with the work by [4], which noted that Cholesky de-

composition is fully differentiable and easy to implement in frameworks like PyTorch,

establishing Cholesky whitening as a standard practice in machine learning contexts. The

only exception is Appendix B, where ZCA whitening was employed, for the needs of the

research in that chapter.

4.3 Whitening within the BSS pipeline

In this section, I discuss two issues related to the use of whitening within blind source sep-

aration pipelines that utilise distance correlation. In Section 4.3.1 I argue that whitening

should be applied before the double-centring step of the distance correlation computa-

tion, and in Section 4.3.2 that it should not be used as a pre-processing step within a BSS

pipeline that uses distance correlation computation as loss function.
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4.3.1 Whitening and double-centring

Here, I briefly discuss why whitening should be applied before the double-centring step

of the distance correlation calculation. The main argument is that if the variable x to be

whitened is double-centred, its mean is zero and the covariance matrix ΣΣΣ has determi-

nant zero. Since ΣΣΣ is singular, it is not invertible. Therefore, no matrix W can satisfy

WT W =Σ−1, so the whitening condition fails.

Nevertheless, the pseudo-inverse of singular matrices can be approximated using sin-

gular value decomposition by replacing the diagonal matrix of singular values with its

reciprocal, and if the matrix is invertible, then the pseudo-inverse and the inverse become

the same.

For example, in the official code referenced in [4], the authors employed Cholesky

whitening and added a small perturbation to the covariance matrix to prevent it from be-

coming singular during training. That is, their modification to the covariance definition is

ΣΣΣ = (1− eps)×ΣΣΣ+ eps×III. In my later research, I discovered that even minor changes

in the covariances could adversely affect training and lead to the learning of poor repre-

sentations when the perturbation method was used. As a result, I chose not to employ

pseudo-inverse methods, which would have allowed whitening to be applied before the

double-centring step.

4.3.2 Whitening within the BSS pipeline

Whitening can be applied at multiple points in a BSS pipeline. Here, I will explain why

readers should avoid using whitening as a pre-processing step, as it may lead to subopti-

mal results when processing a larger number of mixtures from fewer sources. In the case

of GNSS data, typically, there are many more mixtures than sources. I will argue that

using a whitening transformation directly on the inputted mixtures is not advisable.

Indeed, whitening the GNSS signals, using PCA whitening in this instance, results in

the same number of outputs as there were inputs. However, by the definition of whiten-

ing, all these outputs have unit variance, which means that the variance explained by

each component will be equal. As none of the whitened mixtures account for more vari-

ance than the others, whitening limits the user’s ability to reduce the number of extracted
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components. Increasing their number, aiming at capturing more variance and reaching a

satisfactory user-defined threshold of variance explained, may lead to overfitting.

The effect of whitening the input mixtures is demonstrated in Figures 4.1 and 4.2,

which show the cumulative distance covariance of the original input mixtures, and their

whitened versions, respectively. The mixtures comprise 120 variables in total, from forty

stations in the South-Western United States of America across three directions. In both

cases, I also show the corresponding graphs for the Median Interannual Difference Ad-

justed for Skewness (MIDAS) detrended data, which is a standard pre-processing tech-

nique for GNSS data. The percentage of distance covariance explained is calculated sim-

ilarly to the percentage of covariance explained in PCA and is described in more detail in

Appendix C.

In Figure 4.1, the first five components of the non-whitened data describe over 50%

and around 80% of the distance variance, with and without MIDAS detrending, respec-

tively. The primary component of distance covariance in the non-MIDAS-detrended case

corresponds to the dominant trend of the time series, explaining over 60% of the distance

variance. This trend is likely removed through MIDAS detrending, accounting for the dif-

ference in distance variance explained with and without this processing step. Meanwhile,

in the case of whitening, the distance covariance described by each component is equal.

Thus, the user will need a larger number of sources to reach a specified percentage of the

distance covariance explained.

However, the importance of the cumulative percentage of variance or the distance

variance explained is slightly exaggerated by the previous statements. By incorporating

the inverse of the whitening transform into the mixing or unmixing layer, one can find the

true mixing or unmixing matrix in the original space. Consequently, the percentage of

variance or distance variance explained by the pre-whitened data can also be represented

in the whitened data through a linear transformation.

That being said, I do not recommend whitening the raw mixtures upfront. This ap-

proach requires the network to first undo an arbitrary rotation and equal-variance scaling

before isolating the signal. As a result, it diminishes the natural variance hierarchy that

highlights the signal subspace, inflating low-variance noise directions to unit scale and

increasing the effective search space. Moreover, the gradients from noise modes compete
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with true signal directions. This competition slows down convergence and may lead to

suboptimal local minima. Even if one uses the pre-whitened variance to determine the

number of components, the initial directions typically account for a small amount of vari-

ance or distance covariance explained. Consequently, the model has to work harder to

learn the mixing and unmixing matrix.

Therefore, it is not advisable to use whitening as a preprocessing step for source sep-

aration, but once the sources have been extracted before calculating the loss function.

Figure 4.1: Non-whitened data (as a pre-processing step applied to the GNSS mix-
tures): Cumulative percentage of the distance covariance described by number of com-
ponents. The GNSS data was provided by the Gualandi et al. as part of a case study
of Post-large earthquake seismic activities in the region [3]. The left-hand figure is not
MIDAS detrended, whilst the right-hand column is. The cumulative distance-covariance
curves rise more quickly than for the cases of the PCA whitened GNSS mixtures (Figure
4.2). See its caption for more detail.
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Figure 4.2: Whitened data (as a pre-processing step applied to the GNSS mixtures):
Cumulative percentage of the distance covariance described by number of components.
The GNSS data was provided by the Gualandi et al as part of a case study of Post-large
earthquake seismic activities [3]. The left-hand figure is not MIDAS detrended, whilst
the right-hand is. After PCA (or any other form of) whitening, each component has
unit variance, so residual dependence (distance-covariance) is distributed evenly across
dimensions. Consequently, the cumulative distance-covariance curves rise more slowly
than for the cases of the raw GNSS mixtures (Figure 4.1), requiring more components
to capture the same fraction of total dependence. In a high-mixture, low-source regime,
(ZCA-, PCA- or Cholesky-based) whitening as a preprocessing step flattens the few dom-
inant source variances, so initial features like principal or independent components no
longer highlight independent directions. By rescaling every axis to unit variance, whiten-
ing removes the variance-based cues that would otherwise rank the strongest source axes.
As a result, all components appear equally strong, which impairs the prioritisation of
the leading sources for extraction, through maximising their independence. To preserve
efficiency, enforce unit-covariance constraints within the source-estimation loop, i.e. re-
whitening during iterative updates of a neural network, rather than solely as an initial
preprocessing step.

4.4 Conclusion

In this chapter, I examined various forms of whitening in relation to independence, specifi-

cally through the lens of distance correlation. The investigation revealed that no particular

form of whitening could be identified as optimal for enhancing independence, as indepen-

dence encompasses both linear and non-linear relationships. Nonetheless, in most cases,

ZCA-based whitening demonstrated strong performance, often yielding the best pairwise

dependence between the original and the whitened variables. Additionally, the analysis in-

dicated that the most effective time to apply whitening is after the source separation step.

While ZCA-based whitening was found to be superior in this chapter, I used Cholesky
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whitening in the subsequent chapters of this thesis to maintain consistency with the work

by [4]. Their research noted that Cholesky decomposition is fully differentiable and easy

to implement in frameworks like PyTorch, which has made Cholesky whitening a stan-

dard practice in machine learning contexts. The Cholesky transformation was also found

to outperform PCA-based whitening in the BSS research in this Chapter. As an excep-

tion, in Appendix B, ZCA whitening was used, in line with the research discussed in this

chapter.

After whitening, each component shows unit variance, eliminating second-order struc-

ture. Standard ICA pipelines, which use whitening followed by rotation, are effective

when the number of mixtures and sources is comparable, with PCA whitening being a

strong choice. However, in cases with a high mixture-to-source ratio, such as GNSS data,

whitening as a preprocessing step is not advisable, as it slows the rise of the cumulative

distance-covariance curve, requiring more components to represent dependence and in-

creasing overfitting risk in neural networks. If fewer components are selected, applying

whitening as a preprocessing step would require the network to work harder to account

for the variance or distance variance explained that is missing from the first components,

when compared to their unwhitened counterparts.

For BSS networks, it is beneficial to integrate whitening constraints within the iterative

source-estimation loop by re-whitening during each training epoch. This maintains unit

covariance throughout optimisation, improving convergence and source extraction. ZCA

whitening aligns well with preserving cross-structure, aiding the search for independence

through gradient updates. However, all whitening methods relate through a rotation and

potentially converge to the same global minimum.
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CHAPTER 5

Distance correlation as a loss function

5.1 Introduction

In this chapter, I will compare the use of distance correlation, mutual information and

negentropy as loss functions used to describe source independence, highlighting the im-

portance and relevance of the comparison in data science and signal processing.

Bakirov et al. [152] introduced distance correlation to measure linear and non-linear

relationships between random variables. Moreover, the authors proposed that distance

correlation could be an effective loss function for optimising blind source separation al-

gorithms due to its distinctive properties. Note that in this chapter, I will consider vectors

as random variables.

Mutual information is a natural metric for evaluating the relationship between two ran-

dom variables from an information-theoretic standpoint. Recently, its application in blind

source separation has gained popularity [149], largely due to the development of computa-

tionally efficient neural networks for estimating mutual information, such as MINE [20].

Negentropy represents a fundamental conceptual difference compared to distance cor-

relation and mutual information. Unlike these metrics, which are calculated using pairs

of random variables, negentropy is derived from a single random variable. It quantifies
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the Gaussianity of a signal by measuring the Kullback-Leibler distance between the sig-

nal’s probability distribution and that of a Gaussian distribution with the same mean and

standard deviation. In most cases, minimizing the Gaussianity of the estimated sources

enhances their independence in BSS, a concept supported by the Central Limit Theorem.

In Chapter 3, I compared the three independence metrics discussed using non-parametric

tests to evaluate their effectiveness in source separation and optimisation. In this chapter,

I will focus on the potential of these three metrics as loss functions for neural networks,

with the aim of addressing two research goals.

Firstly, I will examine how the independence metrics relate to the best extraction of

estimated sources by calculating the SI-SDR values between the estimated sources (pro-

duced solely through the gradient descent algorithm) and the ground truth. In addition,

I will compute Pearson correlation coefficients to compare the final loss for each metric

with their SI-SDR values, assessing how effectively each metric extracts the sources.

Secondly, I will examine the sources related to the best minima and assess how effec-

tive gradient descent optimisation is at finding these solutions. This analysis will explore

the effectiveness of source separation through the gradient descent of the different loss

functions, which can have complex loss landscapes. These complexities may hinder the

effective learning of optimal minima with various random initialisations. To address this

issue, I will employ a Restart algorithm to determine which loss functions extract better

sources at good local minima when compared to the ground truth, independently of their

random initialisations.

The two objectives distinguish between the best possible source separation that can

be achieved with a particular metric and the complexity of training using the gradient

descent algorithm for each metric. In other words, this highlights how likely it is that

optimal outputs will be obtained through standard training methods.

The main contribution of the chapter is a systematic comparison between distance

correlation, mutual information, and negentropy as measures of signal independence. In

this approach:

• I conducted experiments using two optimisation algorithms, one to compute the

extrema of the independence measures and the other to compute the independence

measures through standard gradient descent. My goal was to thoroughly evaluate
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the effectiveness of these independence measures in source separation, distinctly

from the practical aspects of calculating their extrema.

• I used/introduced the use of BSS on several data types: the synthetic data problem

and real GNSS and SAR data containing embedded known signals.

5.2 Implementation

Recently, neural networks, specifically deep neural networks, have been increasingly used

for blind source separation, achieving state-of-the-art results. Sometimes, training is su-

pervised ( [103] [153]) using labelled data from a specific application domain. In other

cases, unsupervised neural networks ( [154] [11] [5]) are used instead of more traditional

iterative methods ( [23] [155]) to solve the optimisation problem.

As an extension to the gradient descent algorithm, a new algorithm was implemented

to explore more of the loss landscape, helping the training process escape local min-

ima. For every epoch in which the independence metric was minimised, I compared the

independence loss for a neural network model with learned parameters (updated by gra-

dient descent) to that of a model with randomly initialised parameters. If the randomly

initialised model exhibited a lower loss function, its parameters were adopted and the

learning was restarted. This strategy enables a thorough exploration of the weight space,

making it easier to find lower loss values by using randomly initialised weights. These

values are more likely to converge to a global minimum, which can improve the source

separation. Additionally, this approach allows for comparisons of optimal source sepa-

ration outputs across different metrics. The Restart algorithm, Algorithm 1, outlines this

method.

I have included a visualisation that illustrates the difference between the original net-

work and the Restart method. See Figure 5.1. On the left, you can see the original

method, which uses gradient-descent-updated weights. On the right are two networks

from the Restart method: one with the same gradient-descent-updated weights as before

and another that is randomly initialised. In the Restart Algorithm case, every epoch, one

of the model’s weights is updated using gradient descent, whilst the other is reinitialised

each epoch. If the second network has a lower loss (as is the case in the visualisation), its
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Algorithm 1 Pseudocode representing the Restart technique.
Randomly initialise θ

for epoch = 1,2, . . . do
Compute S and independence loss L with weights θ

Randomly initialise θ1
Compute S1 and independence loss L1 with weights θ1
if L1 < L then

θ ← θ1
L← L1
S← S1

else
Pass

end if
optimise L wrt. θ

θepoch+1← θepoch−η∆θepoch
end for

parameters replace that of the gradient descent network, and the process continues until

training ends.

Figure 5.1: A visualisation of the Restart method in comparison to the original neural
network.

85



If one considers the white cross on the loss landscape to represent the loss associated

with separation, choosing the second option for the weights brings the results closer to

the global minimum. This approach also helps to avoid the risk of the training process

ending up in a poor local minimum or getting stuck on a saddle point.

I estimated the underlying sources using two methods for each metric (though not for

the FastICA method). The first mixture-input method employs the more common formu-

lation, in which mixtures serve as the input to the neural network. The mixtures are passed

through a linear layer, generating underlying sources (with an equal number of mixtures

and sources). The goal is to maximise the independence of these outputted sources by

optimising negentropy, mutual information through MINE, or distance correlation. This

approach is called the Separation method. See Figure 5.2a. It is important to note that

when using loss functions other than MINE, the MINE component of the architecture is

omitted.

The second method is the source-input case, where the underlying sources are learn-

able parameters within the network. This allows the mixing matrix to be rectangular (i.e.

not square), such that the number of sources and mixtures can differ. I apply a linear layer

to the sources to produce the known mixtures. Then, I employ a reconstruction loss to en-

sure that the sources can accurately reconstruct the known mixtures and an independence

loss to maximise the independence of the sources. This approach is the Reconstruction

method. See Figure 5.2b.

In the Reconstruction method, I found that I needed to prioritise the reconstruction

loss to achieve outputs similar to the known mixtures. If the weighting factor places too

much emphasis on the source independence, it can lead to the development of white noise

sources, which do not adequately combine to form the desired mixtures.

In the context of network architecture, factors such as the number of layers, their sizes,

and the types of non-linearities and normalisation can significantly impact convergence

speed when using distance correlation, MINE-mutual-information or negentropy-based

losses. These elements also influence the final independence scores, including both dis-

tance correlation and SI-SDR values, as well as the sensitivity of the network to initiali-

sation and overfitting.

Shallow networks, such as those consisting of only a linear layer or shallow multilayer
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(a) In MINE, a neural network learns statistically independent outputs through the alter-
nate optimisation of an encoder E and a MINE network M, which are parametrised by
θE and θM, respectively. When using distance correlation or a negentropy-based loss,
these metrics can be expressed in closed form. As a result, the sources are optimised for
independence using one of these non-parametric metrics at each epoch unless MINE is
being investigated. The figure presented illustrates the Separation architecture.

(b) For MINE, the neural network learns statistically independent learnable parameters
Z, the sources, by alternating the optimisation of the decoder D and the MINE network M
parametrised by hidden parameters, which include the decoder parameters and learnable
sources. In the MINE case, mutual information is estimated and minimised between
sources. The non-parametric distance correlation and the negentropy-based losses are
calculated in closed form, allowing them to be computed for each epoch without the
need for an additional neural network to approximate mutual information like MINE.
The figure presented illustrates the Reconstruction architecture.

Figure 5.2: The neural network architectures for the Separation and Reconstruction
methods.
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perceptrons, may be limited to capturing only linear or mildly non-linear mixing. In

contrast, deeper neural networks can better approximate complex source transformations,

although they run the risk of encountering vanishing gradient issues or the sources losing

meaning, or becoming more suited to representation learning. Wider layers enhance the

capacity of the network to disentangle subtle higher-order dependencies but may lead to

overfitting due to capturing spurious noise.

Regarding non-linearities, if activation functions are employed, those with zero-slope

regions (like ReLU) can freeze parts of the network. In contrast, smooth saturating func-

tions (such as tanh) may obscure fine dependencies. Moreover, incorporating batch nor-

malisation or a custom whitening layer during training can enforce unit covariance, po-

tentially stabilising the distance correlation objective. Additionally, residual connections

help preserve identity mappings, allowing the network to focus on decorrelating features

rather than reconstructing the entire transformation, which often enhances convergence,

especially in deeper networks.

Considering the data types, GNSS/SAR data can be classified as either time series or

spatial information. Thus, RNNs or LSTM networks are suitable for GNSS time series

data, while CNNs are more appropriate for SAR spatial data. Convolutional filters can ef-

fectively capture local dependencies, influencing the speed and accuracy of independence

maximisation. However, for source separation in a simple synthetic scenario, this prob-

lem is theoretically solvable with a single linear layer. To simplify my analysis of the loss

function, I aimed to keep the neural network as straightforward as possible. Regarding

the GNSS data, its additive error equation indicates that it could also be modelled as a

linear layer. In both cases, the inputs were treated as random variables rather than time

series. I found no benefit to temporal modelling (RNN/LSTM) in the synthetic case, so I

treated inputs as IID features for simplicity.

In the following sections, I will outline how to implement source separation algo-

rithms using mutual information, distance correlation, and negentropy.

FastICA

In my work, I use two forms of ICA. The first is the FastICA implementation provided

by Scikit-learn [156] [25]. The form of whitening applied to the outputted sources in this
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framework is a unit variance version of PCA whitening.

Additionally, I will introduce PyFastICA, a neural network version of FastICA de-

veloped in PyTorch. This implementation uses a gradient-based iteration scheme rather

than a fixed-point iteration scheme. In this case, I opted for Cholesky whitening because

it aligns well with other machine-learning tasks involving source separation [149] and

representation learning [4]. More importantly, after conducting 100 repetitions, Cholesky

whitening consistently yielded higher average SI-SDR values than the other whitening

techniques. It is important to note that whitening techniques are related through rotations,

which means that different whitening methods can lead to the same separations as the re-

verse of any rotation can then be incorporated into the unmixing matrix. In this case, the

non-quadratic function referenced in Equation 2.1 for PyFastICA is the logarithm of the

softmax function, which I found to be more stable during training than other functions.

Moreover, as the data is whitened, each feature has a variance of 1 and, therefore, the

Gaussian entropy is constant. Thus, the negentropy loss, Equation 2.1, is simplified to be

only the entropy of the whitened data for stability in training.

5.2.1 MINE

The Separation architecture with the MINE extension was introduced in the foundational

paper by Hlynsson and Wiskott [149]. In this work, I utilise the MINE architecture de-

scribed in [149], which computes the joint and marginal distributions of input vectors

using a deep neural network consisting of six linear layers followed by Leaky ReLU ac-

tivations, culminating in a final linear layer. The output sample size is set to 64 for every

linear layer. The outputs of this architecture are used to calculate the parametrised mu-

tual information, as specified in Equation 2.11. I aim to maximise the estimated mutual

information to approximate the actual mutual information closely. This result is then em-

ployed as the mutual information, serving as the independence metric for the subsequent

minimisation step.

As the MINE network is parametric, the outputted sources are kept constant by freez-

ing the linear layer weights for seven out of every eight epochs when the MINE section of

the architecture is iterating. For the final epoch, the weights are unfrozen, and the MINE

architecture’s weights are frozen, to minimise the parametrised mutual information.
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MINE requires many epochs of maximisation within the network to effectively ap-

proximate the lower bound of the actual mutual information before minimisation takes

place. I discovered that if too few steps are used during the maximisation phase, the tran-

sition between maximisation and minimisation tends to converge to zero without crossing

it. Consequently, the lower bound of mutual information may not be accurately estimated.

As a result, source separation may be trained on a value that does not truly represent the

source dependence whilst appearing to have mutual information that is close to the min-

imum. The parametrised mutual information maximisation converges more reliably on

its true value after many epochs. However, incorporating MINE with additional epochs

of maximisation into a source separation algorithm will significantly increase the training

time.

5.2.2 Distance correlation

In this section, I will examine the foundation of the whitening Mean Squared Error (W-

MSE) method used for contrastive representation learning. W-MSE involves scattering

data by whitening it and minimising the distance between positive pairs. Although the

W-MSE method is not the main focus of this chapter, its introduction aligns well with the

introduction of distance correlation as a loss function. In the next chapter, I will utilise

the W-MSE method and its distance correlation extension.

Representation learning is an advanced technique utilised in the field of machine learn-

ing that involves the development and application of algorithms designed to identify and

learn meaningful patterns from a given dataset. This process can occur in two primary

ways: supervised learning, where the model is trained on labelled data, or unsupervised

learning, where it seeks out patterns without any predefined labels.

The aim of representation learning is to create representations that are not only in-

formative but also interpretable. These representations can help uncover hidden features

within the data, making it easier to understand complex datasets.

One of the most effective methods in representation learning is the use of contrastively

trained models. These models focus on measuring the similarity or dissimilarity between

data elements, operating under the premise that similar data points share semantics. As

a result, the distance between these similar points is minimised. Conversely, for dissim-
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ilar pairs, the model ensures that their distances remain maximised (or minimised when

compared to a threshold margin distance).

In W-MSE, a whitening transform projects the latent space representation onto a

spherical distribution. The L2 normalisation then brings the whitened representation onto

the unit hypersphere. The MSE loss function is then used to bring positive pairs together,

as depicted in Figure 5.3 for the distance correlation extension. The original W-MSE

would be represented by this figure if you replace the pairwise distances A and B with X

and Y.

Figure 5.3: Depiction of self-supervised learning through whitening and minimising the
angles between positive pairs. An extension of the work in [4] for a distance correlation-
based loss.

As stated in the seminal paper [4], the relation between the mean squared error of the
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normalised whitened representation and the cosine similarity is:

MSE(X,Y) =

∥∥∥∥ X
∥X∥
− Y
∥Y∥

∥∥∥∥2

2

=
XTX
∥X∥2

2

+
YTY
∥Y∥2

2

− XTY
∥X∥2 ∥Y∥2

− YTX
∥X∥2 ∥Y∥2

= 2−2
⟨X,Y⟩
∥X∥2 ∥Y∥2

.

(5.1)

By expanding the empirical distance correlation, seen in Equation 2.12, and substitut-

ing in Equations 2.13 and 2.14, I derive Equation 5.2, with the index n, in Xn, represent-

ing the sample size of the random variable X (which is not necessarily a mixture in this

instance).

R2
n(X,Y) =

1
n2 ∑

n
k,l=1 AklBkl√

1
n2 ∑

n
k,l=1 AklAkl ∗ 1

n2 ∑
n
k,l=1 BklBkl

(5.2)

In Equation 5.2, the n components of the numerator and denominator cancel out. Ap-

plying vectorisation to Equation 5.2 yields Equation 5.3:

R2
n(X,Y) =

1
∥AAA∥2 ∥BBB∥2

n2

∑
i=1

AAAiBBBi =
⟨AAA,BBB⟩
∥AAA∥2 ∥BBB∥2

. (5.3)

Thus, the relation between the mean squared error and the square of the sample dis-

tance correlation, equivalent to Equation 5.1, is:

MSE(A,B) =
∥∥∥∥ A
∥A∥
− B
∥B∥

∥∥∥∥2

2

=
AT A
∥A∥2

2

+
BT B
∥B∥2

2

− AT B
∥A∥2 ∥B∥2

− BT A
∥A∥2 ∥B∥2

= 2−2
⟨A,B⟩
∥A∥2 ∥B∥2

= 2−2R2
n(X,Y).

(5.4)

In the notation for the Separation Architecture, the inputs are the k mixture signals

(XXX1,XXX2, . . .XXXk) and the output is the k separated sources (SSS1,SSS2, . . .SSSk), all of length n.

Therefore, I calculate the pairwise distance-correlation-based loss between the sources

as:
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∑
1≤i< j≤k

(1−R2
n(SSSi,SSS j)). (5.5)

To increase pairwise independence between sources, this loss function is maximised,

so that the distance correlation, Rn, is minimised.

For comparison, I will present the W-MSE method from [4], which serves as the basis

for the aforementioned method. This method utilises random variables as its input. Here,

I will use the notation XXX and YYY to refer to the random variables for consistency with the

literature. Taking two random variables with a mean of zero and which are normalised,

I can write the Pearson correlation coefficient, which measures the linear relationship

between variables, as:

r(XXX ,YYY ) =
1
n ∑

i
(XXX i ·YYY i). (5.6)

If the random variables are normalised, the MSE between random variables is:

MSE(X,Y) =
1
n

n

∑
i
(XXX i−YYY i)

2 = 2

(
1− 1

n

n

∑
i
(XXX i ·YYY i)

)
. (5.7)

Therefore, it can be seen that the mean squared error is related to Pearson’s correlation

r for normalised variables,

MSE(X,Y) = 2(1− r(X,Y)). (5.8)

Equations 5.8 and 5.4 share a similar structure.

Search space strategy

Comment: In the case of k=3, the components of the loss function of Equation 5.5 are

R2
n(S1,S2), R2

n(S1,S3), and R2
n(S2,S3). Minimising the average can reveal interesting

patterns in various local minima. For instance, in one minimum of the synthetic example,

I noticed a pattern where the training effectively minimised two of the three distance

correlations but at the cost of the third. As a result, two reconstructed signals became

similar, impacting the average SI-SDR. For more details, see Appendix B.
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5.3 Data

In this chapter, I will address the synthetic problem by extracting three known sources

from three mixtures. Refer to Section 4.2.1 for more details.

The standard test bed for developing general blind source separation techniques is

the audio domain. Audio BSS involves extracting underlying signals from mixtures of

human voices and/or other sounds captured by one or more microphones, typically in

a supervised manner. However, BSS in the audio domain will not be addressed in this

chapter but in Chapter 7.

Blind source separation of GNSS and SAR signals presents a more challenging prob-

lem, allowing for more robust comparisons between various independence metrics. This

issue is more complex for geodetic data than audio datasets, where the underlying sources

are known and included in the training data. In geodetic datasets, the number and types of

sources contributing to each mixed GNSS/SAR signal are poorly understood and can vary

by location. For example, slow slip events may occur in the Cascadia subduction zone but

not in southern California. In this chapter, I will use a simplified two-mixture-two-source

problem to compare the independence metrics more easily.

5.3.1 GNSS data

For the temporal ICA case, I created two mixtures by adding a synthetic signal that simu-

lates an earthquake, followed by post-seismic deformation, to actual GNSS signals from

NGL [80]. The goal was to establish source separation tasks with varying difficulty levels

controlled by the scaling factor associated with different epicentres located along a line

between the two GNSS stations. Here, I aimed to extract two sources from two mixtures.

For the initial set of tasks, the vertical component of the GNSS time series data from

two nearby receivers, ORWA and P445, located 1.19 km apart, is used. Due to their

proximity, the time series from these receivers exhibit a high correlation, with a Pearson

coefficient of 0.903 (and coefficients between the two stations and the added signal of

-0.249 and -0.172). The synthetic signal, Synth, consists of a vector containing 400 ze-

ros followed by the values generated by the sigmoid function of 600 equidistant points

ranging from 0 to 8. This vector represents a step function that transitions into a sigmoid
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Figure 5.4: From left to right. Top: ORWA, P445, and the synthetic signal. The time
series have been centred and scaled, producing a unitless y-axis. Bottom: the 100×100
SAR1 and SAR2 images, and the additive sun image.

curve, simulating an earthquake event followed by post-seismic deformation. These two

signals are illustrated in Figure 5.4 (Top).

The synthetic signal is generated at a point between ORWA and P445. The synthetic

signal is combined with the GNSS signals, with weights based on the ratio, r, of the dis-

tance from ORWA to the total distance between the stations. The mathematical equations

are as follows:

mix1 = ORWA+ r×Synth

mix2 = P445+(1− r)×Synth . (5.9)

In order to take the geodetic signals as one source, the two GNSS displacement time

series, ORWA and P445, must be similar. A suitable blind source separation algorithm

should ideally produce one source closely resembling these GNSS series and a second

source reflecting the added synthetic signal. I created five pairs of mixtures, correspond-

ing to ratios of r = 1
8 ,

1
4 ,

1
2 ,

3
4 ,

7
8 . It is noteworthy that r = 1

2 results in two mixtures that

are very similar to each other, making the two-source separation task quite challenging.

In contrast, r = 1
4 and 3

4 , as well as r = 1
8 and 7

8 , present progressively more manageable
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separation tasks.

I followed the same procedure for the second experiment but used the ORWA and

GRSV stations, which are 26km apart. The signals had a lower Pearson coefficient of

0.742 (and coefficients between the two signals and the synthetic signal of -0.192 and

-0.238). Due to the spatial proximity between ORWA and P445, their atmospheric noise

is similar, but that is not necessarily the case for the ORWA/GRSV case.

The proposed hybrid dataset approach benefits from a well-defined ground truth for

the synthetic source. This enables more rigorous and precise comparisons between met-

rics than using solely GNSS data.

5.3.2 SAR data

To evaluate the effectiveness of different metrics on spatial data, I created two source

separation problems: one straightforward and one more complex problem. I based the

problems on two 100×100 pixel crops from synthetic aperture radar (SAR) maps with a

high degree of similarity and a non-geodetic signal dissimilar to both. The two SAR maps

(sar1 and sar2) were collected from sweeps across Carlisle toward Sunderland on June 29,

2023, and July 11, 2023 [157]. The second signal, sun, is a 100× 100 pixel section of

an image of the Sun. I chose the Sun image because it contains spatial information yet is

not derived from a geological context, ensuring that it does not share information with the

SAR maps. The Pearson correlation coefficient between sar1 and sar2 was 0.940, while

the correlations between the SAR maps and the Sun image were -0.0287 and -0.0298,

respectively, for sar1 and sar2.

For the first (Defined) problem, I added a multiple of 0.5 and 2 of the sun signal to

one of the SAR signals, sar1 and sar2, creating two distinct mixtures. That is:

mix1 = sar1+0.5× sun

mix2 = sar2+2× sun. (5.10)

For the second (Undefined) problem, I added a 0.5 scaled sun signal to both sar1 and

sar2, resulting in two similar mixtures that made extracting the added sun more challeng-
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ing. That is:

mix1 = sar1+0.5sun

mix2 = sar2+0.5sun. (5.11)

5.4 Results

To compare the performance of the methods, I adopted the Scale Invariant Signal-to-

Distortion Ratio (SI-SDR) [42], a metric widely used to assess blind source separation

problems, especially audio source separation. I conducted each experiment 10 times and

provided the means and standard deviations of the outputs as the results. The standard

deviation serves as a measure of reproducibility. The target and output sources are both

mean-centred to prevent any bias term from influencing the SI-SDR values, as this would

not accurately reflect the content and interdependence of the signals.

5.4.1 Synthetic problem

In the Synthetic problem, I used two distinct architectures: the Separation architecture

and the Reconstruction architecture. The Separation architecture takes the known mix-

tures as its input, processes them through a linear layer, and learns the unmixing matrix.

On the other hand, the Reconstruction architecture incorporates learnable sources as pa-

rameters of the neural network. I initialised the learnable sources for the Reconstruction

architecture as a tensor of random numbers from a normal distribution with mean 0 and

variance 1. These sources are passed through a linear layer to generate mixtures that

closely approximate the known mixtures.

The Synthetic problem involves three mixtures and three sources, allowing both ar-

chitectures to be employed. I calculate various independence measures (MINE, PyFas-

tICA and distance correlation) for both architectures to maximise the independence of

the sources. The Reconstruction method requires an additional MSE reconstruction ele-

ment in the loss function to ensure that the outputted mixtures are similar to the known

mixtures. The losses were optimised by either gradient descent or the Restart Algorithm
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(Algorithm 1).

Tables 5.1 and 5.2 are the mean SI-SDR values between the known and the outputted

sources for the Separation and Reconstruction architectures, respectively, for the PyFas-

tICA, MINE and distance correlation losses (and for the MSE loss in the Reconstruction

architecture case). Since ICA permits permutations, the resulting sources are rearranged

to maximise the average SI-SDR values across the three outputted sources. This means

that even if the sine wave is intended to be the first source but is instead output as the third

source, the average SI-SDR is not negatively affected due to the permutation-invariant

nature of the evaluation. The FastICA method is a standard fixed-point iterative scheme

that corresponds to the separation method and utilises the method’s default unit-variance

whitening.

I will provide the hyperparameters used for the results shown in Tables 5.1 and 5.2.

For the PyFastICA results in the Table 5.1, the learning rate was set to 0.005, and Cholesky

whitening was applied. In the case of the MINE results, the architecture had hidden layers

with a size of 64, with a learning rate of 0.005 and Cholesky whitening. For the distance

correlation, the learning rate was adjusted to 0.0003, and ZCA whitening was utilised. In

all instances, a Nadam optimiser was used.

In the Separation architecture (Table 5.1), the FastICA method demonstrates the high-

est robustness, achieving the best average performance across all inputs. Although both

the PyFastICA method and MINE also show relatively high average performance, they

do not surpass FastICA. It should be noted that while the distance correlation exhibits a

lower SI-SDR, it has a higher variance, which I intend to leverage to identify the optimal

solutions for achieving good distance correlation minima.

In the case of the Reconstruction method, the results presented in Table 5.2 for the neu-

ral network optimisation were not whitened, as whitening led to suboptimal outcomes. I

randomly initialised the learnable source parameters for the MSE, PyFastICA, and dis-

tance correlation methods. In contrast, the MINE results used the known mixtures for

the initialisation, which yielded a better source output. The learning rates for the MSE,

MINE, PyFastICA, and distance correlation methods are 0.003, 0.003, 0.003, and 0.0003,

respectively.

When comparing the Separation and Reconstruction architectures, the average SI-
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Input FastICA PyFastICA MINE DistCorr
Sine 21.9±0.0 19.2±7.5 13.8±5.7 3.2±8.1

Square 30.9±0.0 23.9±9.5 27.8±4.7 11.0±24.7
Sawtooth 21.6±0.0 20.4±5.4 14.7±4.4 5.9±6.6

Table 5.1: SI-SDR values for the Separation architecture in Fig. 5.2a. Provided is the
average over ten repetitions.

Input MSE FastICA PyFastICA MINE DistCorr
Sine 9.9±6.4 21.9±0.0 0.5±1.2 7.0±0.6 6.1±1.8

Square 8.6±6.0 30.9±0.0 7.9±4.3 19.2±1.0 26.3±2.4
Sawtooth 9.0±4.0 21.6±0.0 2.1±1.3 8.7±0.4 5.5±2.3

Table 5.2: SI-SDR values of the Reconstruction architecture in Fig. 5.2b. Provided is the
average over ten repetitions.

SDR values are higher for the Separation method. The lower values observed in the

Reconstruction method stem from its more complex loss function, which must balance

the trade-off between reconstructing mixtures and achieving independent sources. For

instance, while white noise signals are independent of each other, they cannot combine to

create the known mixtures. MSE was used as a baseline to demonstrate the improvement

or failure in training when employing an independence metric versus not using one.

I will revisit the Reconstruction architecture later, but for now, I will focus on the

Separation architecture. I will examine the high standard deviations in the metrics to

determine if the best outputs from each method are competitive with those of FastICA.

Among the metrics studied, the distance correlation loss has the lowest average perfor-

mance compared to PyFastICA and MINE, as indicated in Table 5.1. However, it does

exhibit a high standard deviation, which I hope to leverage through more intensive train-

ing. I aim to determine whether, when it performs well, distance correlation outperforms

the other independence metrics. For a more thorough examination of the sources pro-

duced using a distance correlation loss and the Separation architecture, both with and

without whitening, please refer to Appendix B.

Here, I performed 100 repeats to produce sufficient final SI-SDR results for a metric

comparison. The best output from every 10 trials, the top 10 results out of 100 and the

Restart method (Algorithm 1) results are shown in Table 5.3. In Table 5.3, PyFastICA
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Best of 10 Best 10 of 100 Restart method
Input FastICA PyFastICA DistCorr PyFastICA DistCorr PyFastICA DistCorr
Sine 21.9±0.0 20.9±0.9 19.4±0.1 21.2±0.9 19.3±0.2 19.6±1.9 19.3±0.1

Square 30.9±0.0 34.0±3.5 53.5±2.7 33.9±2.5 53.8±2.7 27.3±6.6 57.4±3.0
Sawtooth 21.6±0.0 26.1±1.3 19.0±0.1 26.1±1.2 18.9±0.3 23.7±4.7 19.1±0.2

Table 5.3: The average SI-SDR across ten outputs for the PyFastICA and DistCorr meth-
ods is analysed using different strategies to achieve the best results. The strategies dis-
cussed include the Restart method, selecting the best output from every ten generated,
and choosing the best ten outputs from a set of one hundred. All of these methods utilise
the loss function rather than the SI-SDR as a guiding metric. It is important to note that I
dropped the MINE method because it became increasingly unstable and less competitive
when employing the Restart method. This instability arose from its moderate Pearson
correlation of 0.596, measured between the average mutual information between all pairs
of sources and the average SI-SDRs for those sources compared to their ground truth over
100 repeats. Consequently, using a lower average mutual information does not necessar-
ily reduce the average SI-SDR values of the outputted sources. The SI-SDR values for the
sine, square, and sawtooth waves were 9.8± 4.5, 15.1± 4.5, and 11.1± 6.4, respectively,
for the Restart method.

employs Cholesky whitening with a learning rate of 0.005, while DistCorr utilises ZCA

whitening and has a learning rate of 0.0003.

The results in Table 5.3 show that I can utilise the high variance observed in the Py-

FastICA and DistCorr separation methods to achieve effective source separation when

optimisation during training converges to the global minimum for these metrics. The

best overall results and the best results every ten iterations from 100 repeats for the Py-

FastICA and DistCorr methods yield similar SI-SDR values to those obtained using the

gold-standard FastICA method. This suggests that the choice of method is primarily a

matter of training to attain the best optimisation outcomes. On average, the distance cor-

relation method slightly outperforms the two FastICA methods. Furthermore, the Pearson

correlation between the final loss and the SI-SDR of the final source outputs for PyFas-

tICA is 0.577. This correlation coefficient suggests that using negentropy to guide the

Restart method may lead to a degradation in SI-SDR results, as seen in Table 5.3.

The MINE algorithm performs poorly when the Restart approach is applied. There

is a correlation of only 0.596 between the average mutual information approximation

between sources and the SI-SDR values for these sources compared to their ground truths.

This limitation arises because the Restart method does not fully consider the parametrised
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nature of MINE.

MINE estimates the lower bound of mutual information, and performing a gradient

ascent step is essential for fine-tuning the parameters to closely approximate mutual in-

formation at this lower bound. However, convergence to this lower bound is not guar-

anteed, especially when only a few epochs are used during the gradient ascent process.

As a result, when the Restart method picks the lowest approximated mutual information

loss values, it is possible that the training of the MINE network has not fully converged

to a value that accurately reflects the mutual information between the extracted sources

for the learned and randomly initialised architectures. A poor MINE convergence to a

lower parametrised mutual information may indicate that a less accurate approximation is

selected, suggesting that more epochs of MINE training are needed to obtain valid results.

Nevertheless, due to the increased complexity introduced by the parametrised MINE loss,

it will only be used sporadically for BSS in this thesis and is why the MINE method has

been dropped in Table 5.3.

The distance correlation improves significantly with the Restart algorithm, resulting

in the highest average SI-SDR of 31.9±1.0, along with the best SI-SDR value for the

square wave signal. In contrast, the FastICA algorithm achieves an average SI-SDR of

24.8±0.0 across all tested signals. It is important to note that while the average perfor-

mance of the FastICA algorithm is strong for this example, SI-SDR is not a linear metric

and that the research in [152] demonstrated that FastICA may not perform as well as other

ICA algorithms when evaluated using the Amari index on various test cases. Despite con-

cerns regarding FastICA’s ability to extract the most non-Gaussian sources, the example

provided in Scikit Learn illustrates a specific scenario in which FastICA performs excep-

tionally well.

The results in Table 5.3 indicate that no single method is superior, as all yield similar

competitive outcomes. Among the methods, FastICA, distance correlation, and PyFas-

tICA perform best on the sine, square, and sawtooth waves, respectively. A two-sample

t-test (n=10) revealed that for the sine wave, all comparators had p-values below 0.05

when compared to FastICA. Similarly, for the highest value observed with the square

wave, specifically the Restart method with DistCorr loss, all other methods also had p-

values below 0.05. In contrast, for the sawtooth signal, while most p-values were below
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0.05, the results from the other PyFastICA methods were not statistically different. Ad-

ditionally, the average for the Restart distance correlation method is statistically different

from the averages of the other methods.

The main differences in SI-SDR values stem from the additive noise present in the ref-

erence signal. This noise influences how well the sine, square, and sawtooth components

approximate the input signal. Once the non-noise component of the signal is accurately

approximated, the difference between that SI-SDR and the theoretical maximum (which

is infinity) depends on the quality of the additive noise approximation. Since the noise

is not explicitly extracted during BSS but significantly impacts the SI-SDR, its influence

may often be underestimated, even though all methods remain competitive.

In Table 5.4, I compare the average distance correlation between signal pairs for the

original method, the top one every ten results, the top 10%, and the Restart technique. I

haven’t specifically prioritised distance correlation for any pairs through weighting in the

examples provided. The standard deviation of the distance correlations and the distance

correlations decreased when I compared the original to other methods. This reduction

occurs because I only select the best outputs as defined by the independence metric for

this analysis.

The distance correlations obtained from the Best of 10 and Best 10 of 100 methods are

identical. Additionally, the Restart method produce similar results. The minor differences

in SI-SDR values for the different pairs illustrate the trade-offs in reducing the distance

correlation between pairs by modifying the unmixing matrix, affecting all output sources.

It is essential to recognise that merely achieving maximum independence in source sepa-

ration does not guarantee equal pairwise distance correlations. See Table 5.4 to verify the

different distance correlation values for each pair of underlying sources. If these sources

were independent, one would expect a distance correlation loss value of -2.

Regarding the outputted sources being similar for each repeat of the training, the net-

work weights can be initialised using the eigenvalues associated with the PCA of the input

mixtures to improve the robustness of distance correlation without using the Restart algo-

rithm. While independent components have zero covariance, zero covariance alone does

not imply independence. This weight initialisation will likely bring the system to a good

local minimum. The results are presented in Table 5.5. These values slightly underper-
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Input Sine-Square Sine-Sawtooth Square-Sawtooth
Original -1.963±0.026 -1.981±0.002 -1.969±0.015

Best of 10 -1.997±0.000 -1.984±0.000 -1.999±0.000
Top 10% -1.997±0.000 -1.984±0.000 -1.999±0.000
Restart -1.997±0.000 -1.984±0.000 -1.999±0.000

Table 5.4: Means and standard deviations for the ten outputs of the distance correlation
broken down by pairs. The Hungarian method is used to find the best output order

Input PCA eigenvalues Simulated annealing Separate optimisation
Sine 19.5±0.1 12.5±8.2 15.3±6.5

Square 29.1±0.2 22.3±4.6 24.4±17.9
Sawtooth 17.5±0.0 11.5±7.1 14.2±8.2

Table 5.5: The means and standard deviations were calculated over ten outputs using
the distance correlation method. PCA eigenvalue initialisations, simulated annealing, a
probabilistic technique for approximating the global optimum of a function, and the opti-
misation of distance correlation pairs individually were investigated. This approach was
used to determine whether these methods improved the robustness and mean SI-SDR val-
ues provided by the distance correlation method.

form compared to the FastICA method for this problem and the global optimum for the

distance correlation metric.

Simulated annealing is a technique that identifies global solutions without exploring

all possible options. It improves upon the results for distance correlation shown in Table

5.1, although the PCA method remains more robust and yields higher mean values. Ad-

ditionally, optimising the loss associated with each pair of sources with its own optimiser

demonstrated a slight improvement compared to the results presented in Table 5.1.

While these methods help reduce the standard deviation in the outputted SI-SDR val-

ues, they do not consistently achieve the global minimum. Therefore, I will proceed with

the Restart method to identify the most extreme distance correlation values and best out-

puts. This will allow me to compare the best results from this approach with those of the

baseline FastICA method.

Now, I will revisit the Reconstruction case to enhance its Greedy version for distance

correlation. In the Reconstruction case, the loss comparison in Algorithm 1 should con-

centrate exclusively on the reconstruction component of the loss or give it significant

priority. This focus is crucial to ensure the sources combine linearly to produce the mix-
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tures. If too much emphasis is placed on independence, sources such as white noise,

which cannot combine linearly to create the mixtures, may be mistakenly identified and

incorrectly treated as suitable outputs.

The findings from this analysis are presented in Table 5.6. The high SI-SDRs indicate

that applying the Restart method primarily to the reconstruction component of the loss

can effectively extract suitable sources. Moreover, these SI-SDRs are associated with

low distance correlation, through the nature of the Restart Algorithm. However, it is

important to emphasise that the reconstruction aspect of the loss is necessary to constrain

the possible solutions.

Method Whitening Sine Square Sawtooth
Reconstruction Yes 6.9±3.7 14.1±13.5 6.5±4.9
Reconstruction No 13.2±1.1 31.0±0.5 14.6±1.6

Table 5.6: Mean and standard deviations of the SI-SDRs for the reconstruction method
for the 3-mix-3-source example. The Restart method is applied only to the reconstruction
element of the loss in this example.

When comparing the results from Table 5.6 for the SI-SDRs obtained using the Re-

construction method, both with and without whitening, to the results for the sine, square,

and sawtooth waves presented in Table 5.3, it is evident that the Reconstruction method

does not perform as well as the Separation method (in all cases the p-value is less than

0.05). This observation holds even after applying the Restart algorithm to the reconstruc-

tion component of the loss function in the Reconstruction method.

Nonetheless, the Reconstruction method shows promise. With some fine-tuning, it

could become competitive. Additionally, this method allows for varying numbers of input

sources to create output mixtures, suggesting an exciting direction for future research.

5.4.2 GNSS ICA

ICA was applied to separate two sources from two different mixtures in two distinct cases.

In the first example, I utilised the close ORWA and P445 stations, which resulted in sim-

ilar atmospheric components. In contrast, the second example involved the ORWA and

GRSV stations, which are farther apart and may exhibit slightly different atmospheric

components.
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For the geodetic data, I report only the results from the FastICA method, as they were

generally more precise and accurate than those produced by the PyFastICA method in

previous tests. In all optimisation methods, the learning rate was set to 0.0003. Cholesky

whitening was applied for the geodetic data in all instances, except for FastICA, which

utilises unit-variance whitening, and the GNSS case of distance correlation, which em-

ployed ZCA whitening.

Tables 5.7 and 5.8 depict the average SI-SDR with 5 different epicentres for the

ORWA/P445 and ORWA/GRSV examples. In both scenarios, I have structured the prob-

lem to become ill-posed for BSS when the epicentre is at the midpoint between the GNSS

stations. The problem is ill-posed because the number of sources to extract effectively

exceeds the number of known mixtures, which essentially reduces to just one when the

scaling factor for the synthetic source becomes equal for each station. Unlike audio source

separation, which relies on known training signals, true BSS assumes that the sources are

independent without knowing the signals themselves. The further from the midpoint, the

closer the output sources are to their ground truths, as indicated by the SI-SDR values

increasing away from the midpoint. Additionally, the distances between stations and the

atmospheric effects have a minimal impact on SI-SDR values, as the equivalent SI-SDR

values for each station pair are similar.

The distance correlation metric is an effective tool for distinguishing between GNSS

and synthetic signals, making it valuable for source separation compared to FastICA.

While both methods yield similar results when whitening is applied, the Restart method is

exclusively used with the distance correlation metric, as it can negatively affect the MINE

methods. This issue was highlighted by the negative SI-SDR values observed at each

epicentre distance for the synthetic signal (although I have not reported these values here

as they are worse than the whitened results). Consequently, using the Restart method and

selecting the appropriate whitening technique is essential for achieving optimal source

extraction. However, these steps are more challenging to implement and can be more

demanding for MINE-based losses, often requiring more trial and error.

Neural estimators like MINE suffer because of the high variance of their exponen-

tial variational bound and non-convex loss training. Even after apparent convergence,

stochastic mini-batches and small gradients near the optimum cause estimates to oscillate.
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Over-parametrised mutual information approximations can exploit this noise, producing

spurious fluctuations. Using MINE within a BSS pipeline, freezing the MINE architec-

ture for separation and then unfreezing it, amplifies these instabilities. The frozen phase

relies on static, biased MI signals; unfreezing then injects high-variance gradients that can

derail the unmixing matrix.

Downstream one may see lower SI-SDR, longer training, and blurred hyperparam-

eter effects (causing challenges in hyperparameter tuning). In many source-separation

scenarios, the slight gain from a tighter MI bound is outweighed by training instability.

Moreover, in representation learning, it has also been found that a tighter bound on mutual

information does not necessarily lead to better learned representations [158].

ORWA/P445 Signal FastICA MINE DistCorr

1/8
GNSS 11.5±0.0 10.5±2.1 11.8±0.0

Synthetic 6.6±0.0 5.8±1.1 6.6±0.0

1/4
GNSS 9.8±0.0 9.6±0.3 9.8±0.0

Synthetic 3.3±0.0 2.8±0.9 3.2±0.0

1/2
GNSS 4.0±0.0 -2.4±11.6 3.2±0.0

Synthetic -22.4±0.0 -17.8±6.3 -19.0±0.0

3/4
GNSS 9.0±0.0 8.2±1.2 8.4±0.0

Synthetic 2.4±0.0 2.0±0.6 2.0±0.0

7/8
GNSS 10.5±0.0 9.0±5.4 11.9±0.0

Synthetic 6.0±0.0 5.0±2.4 5.9±0.0

Table 5.7: The synthetic signal was placed at various distance ratios between the ORWA
station and station P445. Average SI-SDR values over ten repetitions.

GRSV/ORWA Signal FastICA MINE DistCorr

1/8
GNSS 10.1±0.0 10.8±1.0 11.2±0.0

Synthetic 5.6±0.0 5.2±0.7 5.4±0.0

1/4
GNSS 8.5±0.0 6.4±2.5 7.3±0.1

Synthetic 2.1±0.0 1.2±1.3 1.6±0.0

1/2
GNSS 3.6±0.0 -1.7±9.8 3.0±0.0

Synthetic -20.2±0.0 -17.9±5.9 -17.3±0.0

3/4
GNSS 9.0±0.0 8.3±0.8 8.9±0.0

Synthetic 2.7±0.0 2.4±0.4 2.7±0.0

7/8
GNSS 10.9±0.0 11.0±0.6 11.2±0.0

Synthetic 6.0±0.0 5.6±0.4 5.9±0.0

Table 5.8: The synthetic signal was placed at various distance ratios between the GRSV
and ORWA stations. Average SI-SDR values over ten repetitions.

The SI-SDR values for the GNSS signals are consistent across all the analysed meth-
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ods. The similarity observed between FastICA and MINE can be explained by the follow-

ing observation: Mutual information, defined as I(X ;Y ) = H(Y )−H(Y |X), when min-

imised using the MINE approach, maximises the associated conditional entropy H(Y |X).

This process tends to create a conditional distribution that is as close to Gaussian as pos-

sible, aligning with the definition of negentropy. Maximising mutual information may not

always achieve a Gaussian joint distribution. As a result, there can be differences in the

outcomes between MINE and FastICA. Furthermore, while the MINE technique is less

robust, its results are still generally within one standard deviation of those produced by

the other methods.

5.4.3 SAR ICA

In this section, I will extract two underlying sources from two mixtures, consisting of a

linear combination of 100x100 pixel multi-temporal SAR images and a 100x100 pixel

section of a picture of a star.

In Table 5.9, we can see that when extracting two sources from two mixtures, both in

the Defined and Undefined cases, FastICA, MINE, and DistCorr produce similar SI-SDR

values for the SAR and SUN signals. Overall, the FastICA method yields the best results.

It is worth noting that the SI-SDR values for SAR and SUN are higher in the Defined case

than in the Undefined case when the problem is less ill-posed, and the input mixtures are

more distinct. In the temporal example, an ill-posed scenario occurs when the two input

mixtures are similar, much like the midpoint epicentre between the two GNSS stations.

In the Undefined case, where in effect two sources are separated from one mixture, the

FastICA method produces the best output for SAR. Distance correlation and MINE show

comparable results, differing by no more than three standard deviations from the FastICA

results.

In the Defined case for MINE, the results showed one significant loss divergence. Re-

moving this output resulted in a mean of 10.1±0.6 for the SAR signal and 12.3±0.8 for

the Sun image. Introducing a threshold to halt training in MINE may help mitigate loss

divergence. Similarly, in the Undefined case, there was one divergence in the distance

correlation case. After removing the data associated with the divergence, the results im-

proved to 4.3±0.3 for the SAR signal and−18.2±0.3 for the synthetic signal. However,
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in the latter case, the resulting SI-SDR remains lower than that achieved with the FastICA

method. The negentropy-based loss aims to extract the strongest non-Gaussian compo-

nent in this apparent one-mixture-two-source undefined case, corresponding to the SAR

signal. However, complete separation of both sources is not guaranteed. Furthermore, dis-

tance correlation does not inherently emphasise non-Gaussianity but rather the linear and

non-linear relationships between random variables. This may limit its capacity to identify

the most independent source in cases where prioritizing one more distinguishable source

is necessary.

Signal FastICA MINE DistCorr

Defined
SAR 10.8±0.0 8.1±6.1 10.8±0.0
SUN 13.1±0.0 12.0±1.3 13.0±0.1

Undefined
SAR 5.7±0.0 4.4±0.5 3.6±0.8
SUN -40.2±0.1 -17.0±3.5 -16.7±2.1

Table 5.9: Average SI-SDR values over 10 repeats for the spatial ICA case.

5.5 Conclusion

In this chapter, I proposed several metrics and architectures to maximise the independence

of BSS using both synthetic and geodetic data, aiming to achieve spatially or temporally

independent components.

The baseline FastICA method outperformed the other techniques on the synthetic

dataset. The Restart algorithm allowed for optimal performance of the distance corre-

lation metric, which, in turn, surpassed the baseline results on one out of three metrics

and outperformed it when assessed on the average SI-SDR across all sources. Regarding

the Reconstruction method, a Restart approach, based on minimising the MSE loss, may

yield SI-SDR values comparable to those achieved with the Separation method. However,

the Reconstruction architecture, with the hyperparameters outlined in this chapter, does

not perform as well as the Separation method.

For the hybrid GNSS/synthetic signal, the distance correlation metric extracted sources

for each epicentre performed similarly to the FastICA baseline for all points except the

midpoint, with some minor issues for ill-posed problems. These findings suggest that the

method can differentiate seismic signals from non-seismic ones effectively in most cases.
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Similarly, the FastICA, MINE, and DistCorr loss functions yielded similar results for

the SAR and SUN outputs in the Defined case for spatial ICA with two mixtures and two

sources. As in the GNSS formulation, distance correlation slightly underperforms when

the SAR problem is ill-posed.

This proof-of-concept study indicates that minimizing distance correlation for source

separation is as good as the baseline methods included in this chapter and may be superior

for some geodetic signals. It can accommodate the non-unimodal probability distribu-

tion functions commonly found in transient signals, which traditional ICA methods often

struggle to handle. This limitation is a key motivation behind the proposal of the vbICA

method by [11].

Further development and fine-tuning of the methods described in this chapter would

be necessary to handle larger GNSS datasets effectively. My goal, which I will elaborate

on in Chapter 6, is to enhance the technique’s capability to process pure GNSS data and

accurately separate underlying deformation signals from noise within a GNSS time series.

This will enable direct comparisons between the neural network-based methods proposed

in this chapter and more traditional yet state-of-the-art optimisation methods, such as the

vbICA method utilised in [5].
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CHAPTER 6

Blind source separation for GNSS data

6.1 Introduction

This study focuses on the blind source separation of GNSS data, which is a less explored

area. Separating GNSS data is particularly challenging because establishing a reliable

ground truth solution is not straightforward [159].

In this chapter, I propose the use of distance correlation (DistCorr) as a loss function

for the source separation of GNSS time series through unsupervised learning. DistCorr’s

application in the BSS of GNSS data remains unestablished, making my proposal a unique

contribution to the field.

Evaluating a specific loss function for a BSS task presents challenges, even when a

generally reliable metric for separation quality, such as the SI-SDR, is available. In this

case, SI-SDRs typically work well but are not always robust to noise or offsets. However,

SI-SDR is a widely used metric for audio source separation due to its interpretability and

robustness; therefore, I use it in my work.

Unlike standard error metrics commonly used in classification problems like HTER,

SI-SDR is not a linear measure. Therefore, the reader should assess the mean averages

with caution. Additionally, I want to emphasise that when I report the best SI-SDR values
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for a metric, I refer to the SI-SDRs associated with the best loss function values rather

than the highest SI-SDR values. To address the potentially poor optimisation of an in-

dependence metric, the Restart algorithm, as introduced in Algorithm 1 in Chapter 5, is

utilised again in this chapter. For a detailed analysis of source separation through optimi-

sation of distance correlation for the synthetic problem, I encourage the reader to refer to

Appendix B.

The main contribution of this chapter are summarised as follows:

• Testing BSS methods on GNSS data to distinguish between seismic and non-seismic

time series, and to separate various geodetic signals in the Southern California re-

gion.

As noted in Section 5.1, the primary goal is to assess the effectiveness of distance

correlation for blind source separation. This includes examining its optimal values at the

extremes and its efficiency when trained using gradient descent, particularly here in the

context of GNSS data.

6.2 Experimental set-up and test data

6.2.1 Two mixture problem

In this chapter, I discuss source extraction using the Separation architecture. Figure 6.1

illustrates the simple neural network employed to evaluate the effectiveness of the loss

functions. Notably, the linear layer in the encoder restricts the source separation to situa-

tions where the number of mixtures equals the number of sources.

I utilised a linear layer to extract the sources, which were subsequently ZCA-whitened

and normalised. I computed the average loss for each pair of sources, whether that

loss was distance correlation or a negentropy-based approach. This loss was then op-

timised using gradient descent for PyFastICA and the Restart method, as described in

Algorithm 1, for DistCorr.

I selected two sets of Midas detrended GNSS easterly time series from Japan, covering

the period from 2010 to 2012. This timeframe includes a significant step function in the

GNSS time series that corresponds to the earthquake on March 11, 2011.
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Figure 6.1: A neural network learns statistically independent outputs through a distance
correlation loss and optimising an encoder E parametrised by θE .

I used stations J076 and G119 to analyse nearby stations. They are 1.34 km apart near

Mount Koyama. For sites that are further apart, I selected stations J076 and G025, which

are 18.32 km apart. To address any missing data, I applied linear 1D interpolation.

This problem is presented as a two-mixture-two-source case with the aim of extracting

both seismic and non-seismic signals despite the absence of ground truth data.

The GNSS signal is decomposed into three additive components: trend, seasonality,

and residual to identify a proxy for the underlying seismic signal. This decomposition

is performed using the seasonal decomposition function from the statsmodels library. In

the additive model, the time series can be expressed as X(t) = T (t)+ S(t)+ e(t), where

T (t) represents the trend, S(t) denotes the seasonal component, and e(t) represents the

residuals.

A convolution filter is first applied to extract the trend from the data. In this case, the

series is processed using a simple centred moving average filter that has a length equal

to the seasonal period, applying uniform weighting across the data. The edge values

are dropped rather than using padding. However, the fixed-width moving average filter

assumes constant seasonality and can under- or over-smooth if the cycle drifts. After

the trend has been removed from the time series, the average of the detrended series is

calculated for each user-defined period. Once the seasonal component is removed, the

remaining data corresponds to the residuals.

To create the ground truth signal for comparison, I assumed it was a 2-mix, 2-source

problem, with one seismic signal that contained a step function and another non-seismic

signal that was common to both stations within the pair. I also assumed that the time
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series was stationary over the time frame. This is important as BSS algorithms rely on the

stability of the statistical properties of the sources over time. However, the trend estimated

by seasonal decomposition may violate stationarity when a step is present.

To establish a shared seismic signal, I performed a seasonal decomposition on each

GNSS series in the pairs (J076/G119 or J076/G025) using an additive model with a period

of 2, which corresponds to a biannual period. I then analysed the trend from each time

series, which included the step function, to define the seismic signal. However, when I

averaged these two signals, after centring and standardising them, to determine the ground

truth, the SI-SDR was lower than in previous experiments. The results improved when

I incorporated an element from the residual data (spanning 3 days before and after the

earthquake) that appeared to originate from seismic activity. Consequently, for each case,

I took the average of the two sums of the trend and the residual around the earthquake as

the target signal.

I have introduced several biases due to my choices. For example, I selected a biannual

period because there is a low-frequency oscillation with a biannual cycle. Additionally,

the residuals I chose, which correspond to the days around the earthquake, appear to be

associated with inhomogeneous afterslip. While other time intervals may contain seismic

information, they were less noticeable and therefore missed due to my biased selection.

Using a more geological lense, the trend serves as the main component for the ground-

truth seismic signal, along with an additional element derived from the residual observed

around March 11, 2011, as depicted in Figure 6.2. The selected section of the residual

appears to correspond with models of afterslip. Afterslip refers to the slipping that occurs

during aftershocks following a significant earthquake, characterised by a gradual trough

followed by a peak after the main shock event. For further clarification, I recommend the

paper by [160], which includes figures that illustrate the concept of afterslip. It is impor-

tant to note that my methodology is subjective. My methodology drew inspiration from

the work of [5], which applied vbICA to deformation data from the GRACE satellites to

identify seasonal components in Southern California.
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Figure 6.2: Underlying elements taken to be the seismic signal. The decomposition of
J076 by (using statsmodels seasonal_decomposition) following an altered version of [5].
The trend and manually selected element of the residual representing inhomogenous af-
terslip are summed to form the ‘ground truth’. The plots are displayed on different scales
for better readability.

Results

As shown in Figure 6.2, the trend is the main component of the ground truth for the seis-

mic signal, with an added component from the residual around the 11th of March 2011.

The residual component was subjectively identified when I examined the seasonality and

residual signals around the time of the mainshock, indicated by the step function in the

trend. Around the time of the mainshock, I located a shape in the residual that may corre-

spond to afterslip.

Table 6.1 presents the SI-SDR values comparing the estimated underlying seismic

source to its ground truth, estimated using a seasonal decomposition of the GNSS data.

Among the evaluated methods, PyFastICA is the least robust, as it underperformed com-

pared to FastICA and DistCorr in terms of mean values, except for the G119 Restart case,

where it outperformed the distance correlation method. The distance correlation method

showed strong performance, producing means comparable to the baseline FastICA, al-
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though it fell slightly short, particularly in the J076/G119 case. This underperformance

in the closer case may indicate that distance correlation methods struggle compared to

negentropy-based approaches when dealing with ill-posed problems, as discussed in the

previous chapter. However, the slightly higher SI-SDR values seen in the J076/G025

case may result from a slight offset between the GNSS signals, leading to more distinct

mixtures. Figure 6.3 shows this offset.

Figure 6.3: MIDAS detrended easterly GNSS time series for the J076 (black), G119 (red
upper) and G025 (red lower) sites. The time series have been centred for comparison
purposes.

It is important to note that the actual SI-SDR values may vary slightly due to the

assumptions made while producing the ground-truth seismic signal for the SI-SDR com-

putations.

Referring to Table 6.1, for the case documented as G119, the Restart method per-

formed worse than the Original method when using distance correlation. I found that

reducing the distance correlation past a certain low threshold, to what seems to be the

best local minimum, resulted in a slight decrease in SI-SDR, which explains this under-

performance.

The corresponding waveforms of seismic and non-seismic signals for the J076/G119
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Method Input FastICA PyFastICA DistCorr
Original G119 28.2±0.0 19.3±9.1 26.0±0.0
Original G025 30.0±0.0 17.4±8.1 29.9±0.0

Best of 10 G119 28.2±0.0 20.8±3.8 25.7±0.2
Best of 10 G025 30.0±0.0 22.8±5.6 29.9±0.0
Top 10% G119 28.2±0.0 22.2±3.7 25.6±0.1
Top 10% G025 30.0±0.0 24.8±5.3 29.8±0.0
Restart G119 28.2±0.0 27.3±1.8 25.8±0.2
Restart G025 30.0±0.0 23.7±1.4 29.9±0.0

Table 6.1: Means and standard deviations of SI-SDRs between the average ground truth
of the J076 and second site, produced by the by trend plus afterslip. The J076/G119 and
J076/G025 are the closer and further sites, respectively.

Method Input PyFastICA DistCorr
Pearson G119 0.686 0.972
Pearson G025 0.775 0.931

Table 6.2: The Pearson correlation between the final epoch loss and the average SI-SDR
of the outputted and ground truth signals, calculated over 100 repetitions.

and J076/G025 examples can be seen in Figures 6.4 and 6.5, respectively, for the distance

correlation, FastICA and PyFastICA methods.

As shown in Table 6.2, the Pearson correlation between the distance correlation losses

and the SI-SDR values between the outputted and ground truth sources exceeded 0.9 in

the cases of G119 and G025. This strong correlation suggests that the Restart algorithm

would likely provide higher final SI-SDR values in most instances when compared to the

Original method, though the Original method performed well in these test cases. Ad-

ditionally, distance correlation is shown to be an effective and explainable approach for

source separation.

In Table 6.1, the results from PyFastICA for the G119 case outperform those from

distance correlation in the Restart method. However, the lower Pearson correlation shown

in Table 6.2 indicates that this discrepancy is likely a result of variability in the runs

themselves, rather than the Restart method consistently identifying good local minima.
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Figure 6.4: Seismic (left) and non-seismic (right) time series extracted using FastICA,
PyFastICA, and distance correlation methods with a linear layer for the latter two methods
for the J076/G119 station case.

Figure 6.5: Seismic (left) and non-seismic (right) time series extracted using FastICA,
PyFastICA, and distance correlation methods with a linear layer for the latter two methods
for the J076/G025 station case.
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6.3 BSS of GNSS data in SoCal

Since GNSS problems lack ground truths, the best Reconstruction architecture identified

for the synthetic dataset in Chapter 5, using a distance correlation-based loss, will be

compared with the sources produced by the Variational Bayesian ICA method. I used

40 IGS14 GNSS stations with three components, representing the east, north, and up

directions, with latitudes between 32 and 36.5 and longitudes between -112 and -118.

The longitudes and latitudes align with the case study provided with the code for vbICA,

and contain a subset of the 125 stations used in [3].

In my work, I have selected the number of sources to extract based on a method I in-

troduced in Appendix C, which is based on the percentage of variance explained by each

principal components in PCA, but adapted for Independent Components. This method

identifies directions that describe the highest distance variance instead of variance. The

extraction of the sources using an ICA version of PCA is also described in this Appendix.

However, a limitation of this approach is that it results in a higher-dimensional distance

space, necessitating a decision on how to reduce dimensions. This is particularly im-

portant when ensuring, for example, that the linearity of unmixing is maintained, as the

vectors representing the distances are not unique.

Consequently, I concluded that while this method is interesting, using distance cor-

relation as a loss function is superior, as a neural network can be constrained by prior

knowledge. The source separation by minimising distance correlation is unique within

the limitations of ICA for the synthetic problem (see Appendix B).

Nevertheless, the PCA-ICA method has advantages, as it offers insight into the num-

ber of sources a user might want to consider. When a user analyses the cumulative per-

centage of distance variance explained by various sources, they will receive an indication

of how many Independent Components are necessary to achieve a specified level of inde-

pendence.

In [3], the daily displacement-time series used were generated by the Jet Propulsion

Laboratory. These time series were cleaned and MIDAS detrended, with corrections for

long-term linear trend and event offsets, both seismic and otherwise, using PCA around

the offset to determine the step. The number of ICs, 12, was selected using the automatic

relevance determination (ARD) approach proposed for a Bayesian framework in [56].
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As vbICA is based on finding the best weights for given data, different pre-processing

steps on the inputted GNSS data can provide vastly different underlying independent com-

ponents. Therefore, I will use the MIDAS detrended GNSS signals for the same region

as the case study in the IGS14 reference frame, including event steps and outliers. The

outliers present in the GNSS dataset are extreme data points that do not accurately rep-

resent the dataset’s probability distribution function. These outliers enable the testing of

the robustness of various methods for extreme data points. I have not removed the step

functions to assess how effectively seismic signals can be distinguished from other un-

derlying sources within the GNSS displacement-time series. Additionally, I aim to deter-

mine whether these signals can be classified solely as seismic signals. If successful, step

functions may enable clearer labelling of signals as originating from seismic activity, po-

tentially enhancing the scalability of GNSS data in both semi-supervised and supervised

machine learning contexts.

I used GNSS data from the University of Nevada Geodetic Laboratory to maintain

consistency with my previous GNSS work that employed distance correlation, as seen

in this chapter and Chapter 5. As mentioned previously, the pre-processing in this case

has been limited to MIDAS detrending. Figure 4.1 showed the cumulative distance co-

variance explained by the number of independent components. In PCA, the percentage of

variance explained helps users decide how many sources to extract, relying on eigenvalues

that indicate the amount of variance associated with each eigenvector. Similarly, in ICA,

distance covariance can be used. Instead of the covariance matrix, the squared distance

covariance eigenvalues help identify both linear and non-linear relationships. The eigen-

values represent the amount of distance variance explained by the eigenvectors, indicating

how many sources to retain. I have selected 10 as the number of ICs to extract because it

accounts for approximately 60% of the explained distance variance. Increasing the num-

ber of components beyond this point only marginally affects the explained percentage. It

is worth noting that in [3], 12 sources were extracted.

As seen in the previous sections, architectures and whitening, as well as the inputted

data, can alter the outputted independent components of the GNSS signal. The Recon-

struction method, both with and without whitening, offers flexibility in selecting the num-

ber of mixtures and sources. Thus, the Reconstruction method has been chosen to address
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the GNSS problem.

One of the seismic components, IC9 from [3] or the Brawley swarm deformation, is

not extracted in this case study by the vbICA or distance correlation method. An earth-

quake swarm is a sequence of seismic events that occur in a small region, such as near

Brawley in California, which do not follow a mainshock-aftershock sequence. The swarm

signal component is prominent in both stations, P506 and P499. However, only P499 is

included in this case study. As a result, the swarm signal is absent from the source sep-

aration process. This observation reveals a limitation in the data used for the case study

and emphasises the importance of the input data for analysing seismic activity. Having a

higher density of stations used within the Brawley region is likely to produce more ICs

representing the seismic processes in this region. It is important to note that the three

seismic sources extracted from the JPL case study data for the L=12 scenario are also

extracted in the L=10 case. This suggests that the reduction in the number of sources is

unlikely to significantly and negatively affect the results presented in this chapter.

To understand Figure 6.6 and subsequent source figures, it is important to note that

they consist of two components, with the temporal component located on the top and the

spatial extent displayed below. On the top, you will find a normalised time series plotted

over the years, with blue dashed vertical lines indicating the dates of known earthquakes.

The bottom part of the figure shows the latitude and longitude of known stations, along

with the direction and magnitude of each source.

Because I scale each source to unit variance, the y-axis is unitless, and the mixing

coefficients carry all amplitude information. Moreover, the overall sign is arbitrary. The

map in the bottom shows the mixing weights reshaped into a three-component vector

(wE ,wN ,wU ) at each of the 40 stations’ latitudes / longitudes. Horizontal movements

(east/north) appear as arrows whose orientation and length encode (wE ,wN); the Up com-

ponent (wU ) is shown via a colour bar. Together, these vectors depict how strongly and in

which direction each GNSS station contributes to that source. These figures were created

using GeoPandas. Note that for the uncertainties associated with the time series, both the

residual-based standard error estimator, I used for the distance correlation methods, and

the variational Bayesian ICA approximation treat the inferred mixing/unmixing parame-

ters as fixed, attributing all variability to residual noise or the mean-field posterior respec-
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tively. As a result, they both systematically underestimate the true uncertainty of source

estimates. To address this, one should run the algorithm using various initial parameters

to discover alternative local minima and evaluate the robustness of the results. This ap-

proach acknowledges that each extraction relies on hidden, unenumerated optimisation

choices. The outputs from the distance correlation method included in this document

reflect the best gradient-descent optimisation achieved through multiple random initiali-

sations. However, increased runs may enhance our understanding of the uncertainties and

minima involved, and potentially lead to a better optimised solution.

Figure 6.6 illustrates three sources that may have a geodetic origin, generated using

the vbICA method applied to JPL data. Figures 6.7 and 6.8 show four sources with poten-

tial geodetic origins identified through the use of the vbICA method on UNR data. Fig-

ures 6.11 to 6.15 present the results from the use of the Reconstruction method, applied to

the UNR data. I employed a distance correlation loss and the sources were initialised ran-

domly. Meanwhile, Figures 6.16 to 6.19 display the results of the Reconstruction method

using distance correlation, but with principal components used for source initialisation. I

set up each method to produce ten sources.

Moreover, combining different initialisation schemes, PCA, random or others, into an

ensemble yields multiple local minima and diverse source extractions. This diversity is

valuable in applications like hazard prediction or weather forecasting, since it generates a

spread of plausible scenarios, but it does not guarantee the single best separation. Ensem-

ble aggregation reduces variance and often improves stability and generalisation, even if

it sacrifices the most independent or interpretable components.

Bootstrapping time-series data by sampling with replacement creates several training

sets; you train a separate model on each, then average or vote to produce a final prediction.

This approach mitigates overfitting and lets you derive confidence intervals, but it will not

smooth out a non-convex loss landscape. One can tune voting weights, using, for example,

distance correlation, to favour the most reliable models. However, those weights hinge on

how well each segment’s statistic reflects the full signal: a brief burst of correlated noise

can exhibit artificially high distance correlation compared to the overall series, become

overweighted, and thus skew the ensemble’s results.

Neither ensemble modelling nor bootstrapping changes the underlying gradient-based
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optimisation: every base learner still relies on gradient descent.

In this case of the Reconstruction method, I applied only the Reconstruction loss for

the first 50,000 epochs out of a total of 500,000 epochs and then introduced the distance

correlation element. Given the large number of computations required for calculating

pairs of distance correlations, I computed the average distance correlation for a random

sample of seven pairs of sources every epoch.

From Figure 6.8, it is evident that Source 6 exhibits a step function corresponding to

the magnitude 5.4 earthquake that occurred on August 26, 2012. This source could illus-

trate the relative fault movement that triggered the earthquake. The map of the epicentre,

shown in Figure 6.9, provides additional context. However, while Source 6 is included in

the IGS14 GNSS dataset, it is absent from the cleaned JPL data. This absence suggests

that Source 6 represents an offset removed during the JPL data cleaning process, as dis-

cussed in Section 6.3. Similarly, Source 2 also displays a significant step function at the

time of the 2012 earthquake.

In the UNR case, the lack of outlier removal has posed a challenge for the vbICA

model, as its parameters are tailored to specific data sets. However, this situation has also

highlighted the sensitivity of vbICA, as demonstrated by Source 1 in Figure 6.10. The

outlier in the time series suggests that the data should be cleaned. The stations with the

highest spatial extent are linked to those with GNSS time series that contain the outlier,

which involved two main stations. The findings related to the outlier highlight the in-

creased necessity for data cleaning in the vbICA method compared to the Reconstruction

method.

For the distance correlation case, I chose to ignore the noise element of the signal,

instead of learning white noise as in the case of vbICA, and assumed it to be explained

by an error in the reconstruction of each mixture. For the random initialisation case,

Figures 6.11 and 6.12 show two outputs from the distance correlation run, potentially

representing afterslip and viscoelastic post-seismic deformation, respectively.

In my work, I used two source initialisation methods. First, I applied the first n prin-

cipal components from PCA to capture the most variance, since they are uncorrelated.

Second, I initialised data randomly to explore a larger search space and potentially avoid

suboptimal training.
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Figure 6.6: Of the 10 outputted sources, both the temporal and spatial components, from
the vbICA method using the data provided by Gualandi from JPL, 3 sources of potential
seismic origin are shown that correspond to those from [3]. The sparsity of the data in the
test case likely has led to one of the sources not being picked up from [3].
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Figure 6.7: Of the 10 outputted sources, both the temporal and spatial components, from
the vbICA method using IGS14 GNSS data provided by the University of Reno Nevada,
the first 2 of 4 sources of potential seismic origin are shown. The only processing step for
the GNSS data was being MIDAS detrended.
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Figure 6.8: Of the 10 outputted sources, both the temporal and spatial components, from
the vbICA method using IGS14 GNSS data provided by the University of Reno Nevada,
the second 2 of 4 sources of potential seismic origin are shown. The only processing step
for the GNSS data was being MIDAS detrended.
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Figure 6.9: Map of the area surrounding the 2012 Brawley earthquake’s epicenter (star).
The contours indicate the Modified Mercalli Intensity and the red lines indicate US Faults
and Tectonic Plates. Data was provided by the Caltech/USGS Southern California Seis-
mic Network (SCSN), doi:10.7914/SN/CI, operated by the Caltech Seismological Labo-
ratory and USGS, which is archived at the Southern California Earthquake Data Center
(SCEDC), doi:10.7909/C3WD3xH1

Combining these initialisation strategies or others through an ensemble method with

various base and weak learners can yield different minima and varied source extractions.

Ensemble modelling with different initial parameters is helpful for hazard predictions and

weather forecasts, as it provides diverse scenario probabilities, though not guaranteed ro-

bustness. While ensemble methods can improve robustness by aggregating predictions

and reducing variance, their aim is not always to find the single best separation but rather

a more stable and generalised solution, which may not be the most independent or mean-

ingful sources.

Additionally, bootstrapping can create different batches in time series data, enhancing

training and reducing overfitting while offering confidence intervals. However, it may not

address the complex loss landscape effectively. Bootstrapping generates multiple training

datasets by randomly sampling the original dataset with replacement; the neural network

is then trained independently for each of the bootstrapped datasets, and finally, the results

are averaged or voted on for a final, more stable prediction. However, it may be possible to

determine the best weighting parameters for voting. The bootstrap method with the lowest

distance correlation could be sufficient. However, the dependence on these parameters
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Figure 6.10: In the case of vbICA, its first source, when the data is not cleaned, is sensitive
to outliers.

may vary based on the content of that segment. Therefore, one must make assumptions

regarding whether it is representative of the overall joint distribution of each pair within

the signal.

In Figure 6.7, the components more clearly identifiable as products of geodetic pro-

cesses in the vbICA case exhibit a step function related to the 2012 earthquake. However,

this does not apply to the distance correlation case, as demonstrated in Figures 6.13, 6.14,

and 6.15. Keep in mind that such offsets are absent in the JPL data due to the offset

removal process.

Both Figures 6.14 and 6.15 contain steps and produce a spatial representation of the

2012 Earthquake. However, they do not have an obvious sole geological meaning, with

the latter potentially even having a tropospheric element.

Repeating the Reconstruction method but initializing with the top 10 PCs produced

sources that could be representative of viscoelastic post-seismic deformation, post-seismic

deformation, afterslip, and Brawley swarm deformation in Figures 6.16, 6.17, 6.18 and

6.19, respectively.

In the Reconstruction case with PC initialisation, the step functions are found in

sources that may represent seismic signals. However, similar to the case of vbICA, these

step functions are not present in just one of the extracted sources.
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Figure 6.11: The second source of ten extracted from 40 GNSS stations in the SoCal
region, with random source initialisation. This source appears to be representative of
afterslip.

The task of distinguishing a meaningful seismic or geodetic signal from a noise signal

is more successful in Section 5.4.2 than attempting to isolate all underlying signals with

the anticipation that one would represent a seismic signal. The seismic step function

has been observed in various sources, making extracting a single earthquake source that

includes the mainshock for straightforward dataset labelling impractical. As a result,

automating the labelling of these sources is unfeasible using the method outlined in this

chapter.

6.4 Conclusion

In this chapter, I evaluated the effectiveness of distance correlation for the BSS of GNSS

time series, using real data without synthetic known signals, to obtain temporally inde-

pendent components.

When non-parametric PCA-ICA was introduced, it did not perform as well as the

Restart method because it did not strictly enforce linear separation, as a linear layer en-

coder does. Therefore, its results can be found in Appendix C. However, PCA-ICA pro-

vided a technique that could help users determine how many sources to extract.

I compared FastICA, PyFastICA, and distance correlation methods for extracting seis-
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Figure 6.12: The second source of ten extracted from 40 GNSS stations in the SoCal
region, with random source initialisation. This source potentially could represent vis-
coelastic post-seismic deformation.

mic and non-seismic signals from two pairs of GNSS signals, one set positioned closer

together and the other set farther apart. The distance correlation method was able to ex-

tract a decent seismic signal. Still, it slightly underperformed compared to the ground

truth provided by FastICA, particularly in the case of the closer J076/G119 pair. While

distance correlation demonstrates competitive potential, further research is needed to as-

sess its performance against FastICA on GNSS data thoroughly. Since the ground truth is

synthesised, readers should interpret these findings cautiously. However, distance correla-

tion showed poorer performance in the closer station example, consistent with the results

from the previous chapter.

Additionally, I utilised the Reconstruction method with a distance correlation loss and

the vbICA method on the UNR data to extract 10 sources from 120 GNSS time series. In

both scenarios, the step function associated with the 2012 earthquake appeared in multiple

independent components. Thus, while it is possible that I extracted geodetic signals, the

use of the step function to potentially identify an earthquake source was not successful.
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Figure 6.13: The seventh source of ten extracted from 40 GNSS stations in the SoCal
region, with random source initialisation. This source could partly be representative of
the Brawley storm deformation.

Figure 6.14: The eighth source of ten extracted from 40 GNSS stations in the SoCal
region, with random source initialisation. This source has elements similar to post-seismic
deformation.
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Figure 6.15: The tenth source of ten extracted from 40 GNSS stations in the SoCal re-
gion, with random source initialisation. This source has elements similar to post-seismic
deformation, along with an element with an annual periodicity.

Figure 6.16: The fifth source of ten extracted from 40 GNSS stations in the SoCal region,
with PC source initialisation. This source potentially could represent viscoelastic post-
seismic deformation.
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Figure 6.17: The sixth source of ten extracted from 40 GNSS stations in the SoCal region,
with PC source initialisation. This source could partly represent post-seismic deforma-
tion.

Figure 6.18: The seventh source of ten extracted from 40 GNSS stations in the SoCal
region, with PC source initialisation. This source could represent afterslip.
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Figure 6.19: The ninth source of ten extracted from 40 GNSS stations in the SoCal region,
with PC source initialisation. This source appears to partly represent the Brawley swarm
deformation.
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CHAPTER 7

Distance correlation for machine learning applications

7.1 Introduction

This chapter focuses on using distance correlation as both an evaluation metric and a loss

function for the well-established auditory BSS and disentanglement machine learning

tasks. ICA has been used extensively for many such tasks, including disentanglement

[18] [116], image classification [161] [162] [163], and time series analysis [164] [165].

Therefore, I will use ICA and disentanglement problems to test distance correlation as a

loss function.

Distance correlation, as proposed in [152], provides a non-parametric test for the inde-

pendence of two or more variables based on relationships established through inter-point

distances, as defined in Section 2.3.2. Distance correlation is formulated in a closed form,

which has been examined for non-parametric tests in Chapter 3 and for BSS tasks in

Chapters 5 and 6, but not for well-established machine learning tasks. This chapter aims

to remedy this.

For the BSS task, I chose the Libri2Mix audio source separation dataset [17], utilis-

ing the state-of-the-art pre-trained SpeechBrain-SepFormer method [166]. Moreover, a

small synthetic case, where I separated three linearly combined LibriSpeech signals, was
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investigated.

Moving away from blind source separation, I will introduce disentanglement. Disen-

tangled representation learning focuses on creating a representation of the given data that

captures distinct factors of variation, ensuring each factor has its own individual compo-

nent within the representation. One of the tasks I explored is the unsupervised non-linear

disentanglement of underlying factors in videos, using the KITTI-Masks dataset [18] as an

example. This dataset includes pedestrian segmentation masks derived from the KITTI-

MOTS videos, which serve as a benchmark for evaluating vision systems in autonomous

driving. Positive pairs of frames from the videos are defined based on a user-specified

time interval, denoted as ∆t. For the disentanglement process involving KITTI-Masks,

the most advanced loss function utilised is the contrastive InfoNCE loss. This loss func-

tion aims to increase the mutual information between positive pairs while increasing the

distance between negative pairs.

The other dataset examined for disentanglement is CIFAR-10 [87]. This dataset was

used to introduce whitening for representation learning [4], a technique aimed at scatter-

ing the data and bringing positive samples closer together. In this chapter, I have expanded

this whitening technique to incorporate distance correlation. While whitening-based con-

trastive representation learning has been explored in [4], the InfoNCE loss remains the

gold standard for the KITTI-Masks (see Section 2.5.3) disentanglement task.

Linking this work back to geodetic data, blind-source separation of the time-domain

Libri2Mix dataset parallels decomposing GNSS displacement series, with spatial mea-

surements potentially playing the role of frequency-domain inputs. Though, Libri2Mix

dataset is labelled, unlike geodetic data. I introduced CIFAR-10 primarily as a baseline

for disentanglement using W-MSE and related losses. Nevertheless, its labelled spatial

patterns also serve as a proof of concept for classifying geospatial structures. The KITTI-

Mask dataset, chosen for its natural scene transitions, mirrors the abrupt shifts observed in

geodetic data, such as SAR, due to seismic events. Broadly speaking, the representation

learning of CIFAR-10 and KITTI-Masks can be seen as an extension of source separation,

operating in a learned latent space.
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7.1.1 Contributions

This chapter explores the application of distance correlation loss to well-established ma-

chine learning tasks related to audio speech separation and representation learning. My

specific contributions are outlined below:

• I applied the distance correlation loss to the KITTI-Masks non-linear disentangle-

ment task. This included an adaptation of W-MSE with distance correlation, de-

noted as WDistCorr, as well as an implementation of InfoNCE using double-centred

distances. I discovered that the InfoNCE with double-centred distance outper-

formed the state-of-the-art methods and improved the MCC scores for sparse re-

sults. This is demonstrated by the Uniform and Laplace results.

• I compared different combinations of whitening loss functions for use on the CIFAR-

10 dataset.

• I investigated the use of distance correlation to fine-tune auditory source separation

on the Libri2Mix dataset, utilising the pre-trained SpeechBrain SepFormer model.

7.2 Distance correlation test for independence

In Section 5.2.2, I introduced self-supervised contrastive learning. It utilises a whitening

process, which was based on the work in [4], eliminating the requirement for negative

samples. The key aspects of contrastive learning, as introduced in Section 5.2.2, involve

ensuring the closeness of features from positive pairs and maintaining a uniform distribu-

tion of the normalised features on the hypersphere, as highlighted in [105]. The whitening

process helps to enforce these properties. In my investigation, I will explore several loss

functions aimed at decreasing the distance between positive pairs. These include distance

correlation and multiple equivalent mean squared error losses, which can be found in

Equations 5.4 (reiterated in Equation 7.1) and 7.2.

MSE(A,B) = 2−2R2
n(X,Y) (7.1)
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MSE(X,Y) = 2(1− r(X,Y)) (7.2)

Implementation of loss functions

Distance correlation is a robust metric, capturing both linear and non-linear relationships

in the data, making it valuable for assessing independence between random variables. The

complexity of computing distance correlation increases with the square of the dimension.

Therefore, for a sample size n, the computational complexity is n2, which makes it quite

expensive in terms of computation. To address this issue, I explore methods to segment

the data in order to reduce this complexity.

The optimisation for the Libri2Mix synthetic problem involves two main steps. The

first step is whitening, which helps to scatter the data on a hypersphere. After that, the

objective is to maximise 2(1−R2
n), which minimises distance correlation.

Given the complexity of the distance calculation, which increases with the length of

the squared signal, three resampling methods were examined:

• Average Method: In this approach, distance correlation is calculated for every seg-

ment of 1,000 samples from the signal. If the total number of samples is not divisi-

ble by 1,000, the distance correlation for the remaining data points is also included.

The distance correlation values are then averaged.

• Alternating Method: In this approach, the 1,000 sample segments are randomly

ordered every epoch to compare the distance correlation between the samples. This

loss term is combined with the loss calculated using the Average method to form the

overall loss function. The weight assigned to the intersample distance correlation

is 0.05, while the loss from the previous method carries a weight of 0.95. Since the

intersample loss is noisy, relying on it alone can cause issues during training.

• Resample Method: This method involves sampling at regular intervals by selecting

one data point for every six samples in the overall signal. The starting point for this

sampling is chosen randomly at every epoch. The length of the resampled signal is

defined such that their lengths remain constant each epoch.
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These methods aim to enhance efficiency while maintaining the accuracy of the opti-

misation process.

In representation learning for the CIFAR-10 dataset, I compare the traditional whiten-

ing mean squared error (W-MSE) loss with various alternative whitening loss functions.

In these alternatives, the mean squared error (MSE) term is defined in different ways,

including its dot product definition (Dot); a definition based on the cosine function (Cos)

and a definition based on the Pearson correlation coefficient as seen in Equation 7.2. Ad-

ditionally, I applied the whitened distance correlation method (WDistCorr) to the CIFAR-10

task. This method utilises whitening to spread the data on a hypersphere, while distance

correlation is employed to reduce the distance between positive pairs.

The W-MSE and WDistCorr were both applied to the KITTI-Masks dataset. The gold-

standard InfoNCE loss serves as the baseline for this dataset. Additionally, I modified

the InfoNCE loss to incorporate double-centred distances as input, using it as a proxy for

distance correlation. The intuition for using this came from Equations 7.1 and 7.2.

7.3 Experimental set-up

7.3.1 Source Separation

For a synthetic problem, I linearly mixed three ground-truth sources from the Libri2Mix

\ LibriSpeech dataset to create a straightforward source separation case. This synthetic

audio source separation problem utilised the mixing matrix from the previous synthetic

example, as defined in Equation 4.7.

Additionally, to add complexity, I selected the clean Libri2Mix supervised speech sep-

aration task, as it presents a more challenging scenario compared to the synthetic problem.

The Libri2Mix dataset, described in Section 2.5.2, was selected as it represents a natu-

ral progression from the blind source separation task to a well-established example in

machine learning.

For the simple synthetic problem, the architecture is a single linear layer, which suf-

fices for linear unmixing. I employed three different segmentation techniques in order to

deal with the complexity of the distance correlation. See Section 7.2 for details.

In each case, the Restart Algorithm was used for the Separation Architecture with
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ZCA whitening. I investigated two signal lengths: 30,000 points and 25,000 points, to

examine the effect of silence on the signal. In the 25,000-point scenario, I removed 5,000

points of leading silence. Due to the complexity mentioned earlier, various segmentation

methods were used to partition the overall audio signal. However, in some cases, this

segmentation can result in distance correlation being calculated between segments of data

that contain only silence, combined with some noise from the recording. The distance

correlation calculated for silence would be nearly 0, with any variations attributed to

the recording noise. As a result, the perceived dependence of the signal may appear

artificially high in these segments, which would increase the average distance correlation

and influence the outcomes of the distance correlation minimisation process.

The second Libri2Mix task involves a more complex challenge of separating two

overlapping speech signals. This work is based on the pre-trained SepFormer archi-

tecture [166]. It includes a comparison between fine-tuning using SI-SNR and distance

correlation. Both SI-SNR and distance correlation are utilised for fine-tuning as well as

for comparing the outputted signals. This approach ensures that neither loss function is

favoured by using it as both an optimisation function and an evaluation metric.

7.3.2 Representation Learning

The CIFAR-10 dataset [87] consists of 60,000 colour images, each measuring 32x32

pixels, distributed across ten classes. The dataset’s representations are learned through

self-supervised learning techniques, such as the W-MSE loss introduced in [4], with a

ResNet-18 architecture, with four positive samples extracted from each image. This loss

function organises the representations onto a sphere through whitening and aligns positive

pairs using an MSE, or equivalent, loss.

The other representation learning task utilises the KITTI-Masks dataset [18]. This

dataset contains 2120 sequences of binary masks of pedestrians, with varying sequence

lengths. In this experiment, I used a randomly initialised custom ConvNet encoder with

ReLU activation, followed by a linear projection, as in the implementation of [116], rather

than ResNet-18 architecture mentioned in their paper. Once disentanglement training is

complete, following [116], I compute the Mean Correlation Coefficient (MCC) to evaluate

performance. To calculate the MCC, you first compute the correlation between each latent
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Method Length Signal 1 Signal 2 Signal 3
Average 25,000 47.1±13.4 32.3±10.4 43.4±4.6

Alternating 25,000 45.8±13.0 34.0±12.3 42.3±5.9
Resample 25,000 41.1±0.9 29.6±0.3 38.5±1.2
Average 30,000 43.4±14.7 39.0±14.7 39.1±4.5

Alternating 30,000 43.6±14.0 38.9±14.6 39.7±4.7
Resample 30,000 39.1±1.2 30.2±0.5 38.1±0.9

Table 7.1: Mean and standard deviation SI-SDR values for 10 repeats of the audio source
separation problem, using a variety of resampling methods and signal lengths.

dimension and every ground-truth factor across all samples. For each factor, you then

select the highest correlation among the latent dimensions and average these values to

produce the final MCC score. As noted in my notation, the distance between time frames

within a KITTI-Masks pair is ∆t, the maximum of this distance being a hyperparameter.

In related works, the maximum distance is not used when referring to results; rather, the

mean, ∆t, is used. A maximum value of 1s or 5s relates to a ∆t of 0.05s and 0.15s,

respectively. Further details can be found in Section 2.5.3.

7.4 Results

This section presents results for speech separation from the LibriSpeech synthetic exam-

ple, the Libri2Mix separation task, and representation learning outcomes for the CIFAR-

10 and KITTI-Masks datasets.

7.4.1 Source Separation

The synthetic auditory source separation task involves isolating three ground-truth sources

from the LibriSpeech dataset, which I combined to form three mixtures. In Table 7.1, I

compared various sampling methods in relation to the three-mixture and three-source sep-

aration problem. The shorter lengths of the samples contained reduced amounts of silence

at the beginning of the auditory signal. The SI-SDR values for the different sampling

methods and the three signals are presented in Table 7.1, with examples of the outputted

30,000-point signals shown in Figure 7.1.

The Resample method exhibits the lowest standard deviation among the evaluated
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Figure 7.1: Examples of the three outputted 30,000-point audio signals from the synthetic
LibriSpeech problem. The first row represents the ground truth, followed by the outputs
associated with the three resampling methods defined in Section 7.2. These results corre-
spond to the SI-SDR values presented in Table 7.1.
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techniques. By resampling at every 6th point within the signal, the resulting resampled

signals are likely to retain more shared information compared to randomly selected sec-

tions of data. This leads to reduced noise during the training phase. Additionally, the

average SI-SDR values were nearly identical for the 25,000- and 30,000-point cases for

the Resample method. This indicates that silence has a low impact, which is consistent

with how the Resample technique reduces the sparsity of the sample. As a result, silence

has less influence, and the resampled signal provides a more accurate representation of

the overall signal.

I investigated how different segmentation lengths affect the distance correlation using

the synthetic problem. The results show that the distance correlation seems to plateau

at a segment length of around 1,000 and with a slight increase for the segment of length

10,000, as depicted in Figure 7.2. The variation in distance correlation calculation is not

only influenced by the signal within the segment but also by aspects of the inputted signal.

This understanding is crucial in interpreting the results and their implications.

Figure 7.3 illustrates the run time in relation to segment length. The complexity of

distance correlation is n2. When averaging over segments, the complexity reduces to

n2/m, where m represents the number of segments.

For the speech separation task using the Libri2Mix dataset, I employed an SI-SNR

pretrained SepFormer model, which was subsequently fine-tuned on Libri2Mix dataset

with either SI-SNR or distance correlation as the optimisation metric.

As shown in Table 7.2, fine-tuning with either SI-SNR or distance correlation im-

proved separation performance as indicated by the metric used for fine-tuning, while neg-

atively impacting the other metric. This demonstrates that while distance correlation and

SI-SNR can complement each other during training, they do not yield equivalent results.

Following standard practice, below I also report SI-SNRi, that is, the difference be-

tween the SI-SNR of the extracted sources and targets, and the SI-SNR of the mixtures

and targets. In our experiments, the SI-SNRi (and SDRi in brackets) results are as follows:

17.0dB (17.5dB) for no fine-tuning, 17.6dB (18.1dB) for SI-SNR fine-tuning, and 13.4dB

(13.7dB) for distance correlation fine-tuning. For context, SI-SNRi values of 12.2dB,

16.5dB, 16.6dB, and 22.0dB correspond to the Conv-TasNet [93], SepFormer [103],

WaveSplit [167], and SepReformer-M systems [168], respectively. The results indicate
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Figure 7.2: The average pairwise distance correlation among the underlying three Lib-
riSpeech signals is analysed across all segments of varying lengths, with the segment
length displayed on the x-axis. The dotted line indicates the average distance correlations
for segment lengths of 1,000 and greater.

Finetuning
Metric

SDR SI-SNR DistCorr

None 17.7 17.0 0.4332
SI-SNR 18.3 (+0.6) 17.6 (+0.6) 0.4308 (-0.0014)
DistCorr 13.8 (-3.9) 13.4 (-3.6) 0.4603 (+0.0281)

Table 7.2: Two different loss functions (SI-SNR) and (DistCorr) for the fine-tuning of the
pre-trained SepFormer model used on the Libri2Mix dataset. SDR, SI-SNR and DistCorr
are used as the evaluation metric, with bracketed numbers giving the change from the case
without finetuning.
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Figure 7.3: Segment length vs time required for calculation.

that the proposed distance correlation method achieves a reasonable trade-off of fidelity

for independence. In fact, the fidelity measured by SI-SNRi still surpasses the least effec-

tive of the comparator methods, though potentially in large part due to the pretraining.

Although SI-SNRi normalises performance by subtracting the mixture baseline, mak-

ing it ideal for comparing models across varying input conditions, my experiments use

a constant test set with consistent mixture SI-SNR. In this scenario, absolute SI-SNR di-

rectly reflects each model’s output fidelity without extra baseline correction, simplifying

evaluation and focusing squarely on final signal quality.

7.4.2 Representation Learning

This section presents the results for the CIFAR-10 dataset, which illustrates the whiten-

ing mean squared error (W-MSE) contrastive learning method. Additionally, the sec-

tion includes the KITTI-Masks pedestrian segmentation task to compare the whitening

contrastive methods with the more traditional InfoNCE contrastive method, described in

Section 2.6.2, which when minimised maximises to the lower bound of the mutual infor-

mation between random variables.
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From Table 7.5, one can see equivalent whitening MSE methods. They aim to achieve

better uniformity, whilst reducing the distance between positive pairs using mean squared

error (MSE), or equivalent metric. The WMSE methods yielded similar accuracy results of

approximately 91.2%.

The distance correlation method, WDistCorr, I proposed to compare with WMSE per-

formed 2.4% worse than the best MSE results. As shown in Tables 7.4, 7.6 and 7.7,

the WDistCorr method is less resilient to extreme learning rates, specifically when I chose

learning rates of 3e−5 and 3e−2. Under these conditions, the chosen hyperparameters re-

sult in the network learning a poor representation that is not positive definite, either due

to divergence or convergence to a suboptimal local minimum. The Cholesky decomposi-

tion is a differentiable method for decomposing a Hermitian positive definite matrix into

the product of a lower triangular matrix and its conjugate transpose. Consequently, by

definition, the Cholesky decomposition fails during training under these circumstances.

Two approaches were investigated to determine whether the results of Cholesky whiten-

ing could be improved. Firstly, the covariance matrix LLT was regularised to ensure that

it is positive definite. In this regularised form, LLT is expressed as (1− eps)LLT + eps I,

where eps is a user-defined variable, is the lower triangular matrix, and I is the identity

matrix. This regularisation allows the Cholesky whitening process to work on a weighted

average of the learned matrix and the identity matrix, with the latter being inherently pos-

itive definite. Consequently, there exists a value for eps (specifically eps = 1) at which

the Cholesky whitening will always succeed without failure. I conducted several trials.

However, they did not produce good representations of the data.

Secondly, I substituted the Cholesky whitening step with ZCA whitening. ZCA whiten-

ing eliminates the requirement for the input to be positive definite, which allows training

to proceed even for representations that may be inadequate for continued training using

Cholesky whitening.

When using a small diagonal element for numerical stability in the Cholesky decom-

position or replacing that decomposition with ZCA whitening, I found that the resulting

representations far underperformed Cholesky whitened representation, without signifi-

cant alterations to the network. The same can be said for altering the nature of whitening.

These methods seem only to produce poor representations instead of enhancing the out-
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Figure 7.4: Comparison between Top 1 and Top 5 accuracies and the 5 Nearest Neigh-
bours classifiers for the W-MSE methods, described in Section 7.3.1, and related distance
correlation method. The task in this case was CIFAR-10 and 250 epochs were used in
each case.
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Figure 7.5: Top 1 accuracy of a linear classifier for the CIFAR-10 dataset regarding the
impact of learning rate on various whitening methods. Note ‘-’ represents a null result
due to a poor representation that was not positive definite being learned.

puts or producing good representations.

From Figures 7.4, 7.6 and 7.7 it can be observed that the WDistCorr method is more

prone to learning poor representations due to getting stuck in local minima or diverging,

compared to the WMSE methods. However, Table 7.8 shows that, across different learning

rate ranges, the Top 1, Top 5, and 5-nn metrics yield similar values to those of the WMSE

methods. It is important to note that the WMSE was scaled by a factor of 64 compared

to the equivalent losses (evident in Table 7.5), causing its optimal learning rate to be an

order of magnitude different to the other losses. For a learning rate of 3e−2, this method

results in a positive definite representation that is inferior compared to other learning rates

used, with Top 1, Top 5, and 5-nn values being 0.6716, 0.9749, and 0.6543, respectively.

The MSE methods demonstrate a broader range of outcomes than the distance correlation

method. Thus, while MSE methods are generally easier to train, they can yield worse

representations compared to those produced by the distance correlation method.

The whitening representation learning methods are now applied to a new dataset, the
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Figure 7.6: Top 5 accuracy of a linear classifier for the CIFAR-10 dataset regarding the
impact of learning rate on various whitening methods. Note ‘-’ represents a null result
due to a poor representation that was not positive definite being learned.
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Figure 7.7: 5-Nearest Neighbours classifier accuracy for the CIFAR-10 dataset regarding
the impact of learning rate on various whitening methods. Note ‘-’ represents a null result
due to a poor representation that was not positive definite being learned.
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Figure 7.8: Top 1 and 5 of a linear classifier and 5-Nearest Neighbours accuracies for
the CIFAR-10 dataset regarding the impact of a smaller range of learning rates on the
WDistCorr method.
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KITTI-Masks dataset, and compared to the more traditional contrastive learning InfoNCE

loss. Moreover, I created an updated version of the InfoNCE loss that uses the double-

centred pairwise distances of the random variables as the input rather than the random

variables themselves, as a proxy for distance correlation. InfoNCE (DC) builds on the

work in [116], which demonstrated that a carefully selected contrastive loss on convex

bodies corresponds to the cross-entropy between the ground-truth conditional distribution

and the inferred latent distribution.

For the KITTI-Masks dataset, [18] found that the transition between ground truth la-

tents was sparse. The transition distributions are related to the conditional distributions.

Two sampling methods were utilised to compare a transition that agrees with the knowl-

edge from [18] that the transitions are sparse (a Laplace conditional distribution) or not (a

Uniform conditional distribution).

The Laplace distribution takes advantage of the sparsity in transitions between the

ground truth latent states across nearby frames [116] [18]. This distribution features a

sharper peak and heavier tails compared to a Gaussian or Uniform distribution, favouring

zero as a result.

An overview of the sampling methods as outlined in [18] is provided below for the

different conditional distributions:

• Uniform: The work of [18] builds upon the creation of uniform datasets described

in [169]. In [169], the authors explain that they sample from discrete, independent

factors of variation based on the ground-truth generative model in order to create

data (see [169] for more details). K independent factors of variation are sampled

to enable denser changes, ensuring that the two images do not share these factors.

The coordinates are then resampled to generate new factors of variation. Exactly k

factors change as stated in [18], with the new factors of variation sampled uniformly.

As an aside, note that a uniform transition does not describe natural transitions well,

such as in the case of KITTI-Masks [18].

• Laplace: To produce pairs of images, for every ground truth factor, the first value

in the pair is selected from a uniform distribution across all possible values in the

latent space. The second value is chosen by weighting nearby values in the latent
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∆t Conditional distribution Model Space Loss MCC (%)
0.05 Laplace Unbounded InfoNCE 77.1±1.0
0.05 Laplace Box InfoNCE 74.1±4.4
0.05 Laplace Unbounded InfoNCE (DC) 77.2±5.3
0.05 Laplace Box InfoNCE (DC) 74.4±4.7
0.05 Laplace Unbounded WMSE 65.1±6.3
0.05 Laplace Box WMSE 72.2±3.5
0.05 Laplace Unbounded WDistCorr 59.2±4.5
0.05 Laplace Box WDistCorr 67.0±4.5
0.15 Laplace Unbounded InfoNCE 79.4±1.9
0.15 Laplace Box InfoNCE 80.9±3.8
0.15 Laplace Unbounded InfoNCE (DC) 81.5±2.7
0.15 Laplace Box InfoNCE (DC) 78.4±5.6
0.15 Laplace Unbounded WMSE 63.9±6.2
0.15 Laplace Box WMSE 63.2±2.9
0.15 Laplace Unbounded WDistCorr 57.0±4.1
0.15 Laplace Box WDistCorr 60.7±2.5

Table 7.3: Mean ± standard deviation MCC scores are presented for whitening-based
and InfoNCE-based representation learning techniques. A sparse Laplacian conditional
distribution is employed in all cases. ∆t represents the average temporal distance of the
frames utilised.

space using probabilities that follow a Laplacian distribution. This approach aligns

naturally with the sparsity of the KITTI-Masks transitions identified in [18].

From Tables 7.3 and 7.4, the whitening methods underperform compared to the tra-

ditional contrastive learning method InfoNCE in the Laplace case but can outperform In-

foNCE in the Uniform case. However, as previously mentioned, the Uniform conditional

does not represent the transition between the frames in the KITTI-Masks dataset. This is

exemplified by the MCC scores of the InfoNCE method with a Laplace underperforming

with this conditional distribution.

The sparseness of the Uniform case reduces the advantages that the traditional In-

foNCE method has over the whitening techniques observed in the Laplace example. In

the whitening methods, the similar MCC scores for both the Uniform and Laplace cases

suggest that scattering, rather than learned uniformity, may not be adequate for the KITTI-

Masks case.

Regarding the whitening methods themselves, similar MCC scores for the Uniform

and Laplace cases suggest that scattering through whitening, rather than learned unifor-
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∆t Conditional Model Space Loss MCC (%)
0.05 Uniform Unbounded InfoNCE 58.3±5.4
0.05 Uniform Box InfoNCE 59.9±5.5
0.05 Uniform Unbounded InfoNCE (DC) 74.9±2.9
0.05 Uniform Box InfoNCE (DC) 76.4±3.0
0.05 Uniform Unbounded WMSE 66.2±7.5
0.05 Uniform Box WMSE 72.1±5.0
0.05 Uniform Unbounded WDistCorr 57.1±6.7
0.05 Uniform Box WDistCorr 65.6±4.3
0.15 Uniform Unbounded InfoNCE 60.2±8.7
0.15 Uniform Box InfoNCE 68.4±6.7
0.15 Uniform Unbounded InfoNCE (DC) 76.0±1.7
0.15 Uniform Box InfoNCE (DC) 79.0±4.7
0.15 Uniform Unbounded WMSE 65.5±4.4
0.15 Uniform Box WMSE 63.6±3.3
0.15 Uniform Unbounded WDistCorr 58.7±5.0
0.15 Uniform Box WDistCorr 62.3±2.9

Table 7.4: Mean± standard deviation MCC scores are presented for whitening-based and
InfoNCE-based representation learning techniques. A Uniform conditional distribution is
employed in all cases. ∆t represents the average temporal distance of the frames utilised.

mity, may not be adequate for the KITTI-Masks case. I believe that that the performance

ceiling of WMSE and WDCorr on the KITTI-Masks dataset stems from their assumption of

a continuous whitened latent space, which misrepresents the inherently binary nature of

the KITTI-Masks data and leads to poor compatibility between the model and the latent

space geometry.

[116] demonstrate that encoders trained with InfoNCE effectively invert the data-

generating process, utilising the box normalisation on the latent representations for KITTI-

Masks in specific experiments. By selecting a latent geometry that reflected the hyper-

rectangle vertices of the binary mask inputs and without degrading the quality of the

representations, the assumed latent geometry was empirically validated. Indeed, the L2

normalisation of WMSE imposes by definition a spherical geometry, distorting inter-mask-

representation distances. However, an L∞ normalisation focuses on the largest coordinate,

making the contrastive objective sensitive to important, infrequent, large-magnitude rep-

resentation values that binary mask inputs and sparse, heavy-tailed latents are likely to

produce [170].
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Similarly to the results of [116], the InfoNCE results with a ∆t of 0.15 slightly out-

perform frames taken from closer time-steps. However both InfoNCE methods, unlike

SlowVAE [116], do not see a degradation in performance due to the limited expressive-

ness of the decoder and therefore do not appear to have as marked a decrease for similar

frames, i.e. those closer by ∆t = 0.05.

As previously mentioned, the Laplace model outperforms the Uniform model in the

KITTI-Masks dataset as the transition between the latents of nearby frames is sparse,

allowing for the Laplacian distribution to describe it better. The best average MCC score

is 81.5% and is related to the updated version of InfoNCE that I introduced which used an

inputted double-centered matrix. This method exceeds the Box InfoNCE Laplace version

by 0.6%.

Moreover, it was observed that the double-centered InfoNCE (DC) loss function yielded

a higher MCC score compared to the other loss functions when using the Uniform model.

This indicates that the double-centering in the InfoNCE (DC) loss makes the inputted rep-

resentation sparse, even when the Uniform model is used for the conditional distribution.

To reiterate, there are two significant points. Firstly, the best MCC score is related

to the InfoNCE (DC) loss function that was introduced in this thesis. Secondly, that the

double-centering step adds an element of sparesness in the KITTI-Masks case, which

reduces the difference in results between the Laplace and the Uniform cases, caused by

the inherent sparseness of the transitions between nearby frames.

7.5 Conclusions

In this chapter, the use of distance correlation has been introduced for use in established

machine learning tasks, such as fine-tuning a SepFormer model for the separation of audio

data in the Libri2Mix dataset and for representation learning in the CIFAR-10 and KITTI-

Masks datasets examples.

The results from various test cases offer insights into the performance of distance

correlation across different scenarios. These insights are crucial for advancing machine

learning and signal processing, as they can help to select appropriate methods for specific

tasks.
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In the synthetic problem involving the mixing of three underlying audio signals from

the LibriSpeech dataset using a known mixing matrix, the average SI-SDR values for

each signal were found to be above 29 dB, which is considered a good result. The effec-

tiveness of source separation using different signal lengths and sampling methods varied.

The Resampling method, which better preserves the information contained within each of

the three signals during the sampling process, yielded the best results in terms of robust-

ness. This finding opens new avenues for future applications of distance correlation in the

source separation of longer signals.

In a study where SI-SNR and distance correlation were utilised to fine-tune a pre-

trained SepFormer model for separating underlying speech signals from the Libri2Mix

dataset, it was observed that using the SI-SNR value as an objective function for fine-

tuning did not improve the performance of distance correlation compared to the initial

pre-trained model. Conversely, employing distance correlation as an objective function

also did not enhance SI-SNR.

In the CIFAR-10 case, the distance correlation method with whitening exhibited no-

ticeable underperformance compared to state-of-the-art techniques, with a difference of

around 2.4%. This result highlights the necessity for further research and improvements

in applying distance correlation. The MSE whitening methods are more likely to yield

imperfect representations when the learning rate hyperparameter is varied, leading to ei-

ther divergence or convergence to a poor local minimum. The distance correlation loss

is particularly susceptible to settling in bad local minima due to its complex data repre-

sentation, causing training to fail. Although this is suboptimal and can result in training

failures, it was observed that using a narrower range of learning rates allowed the clas-

sifiers to achieve a better performance with less deviation in values. This indicates that

while distance correlation can be challenging to train, successful training can lead to iden-

tifying worthwhile data representations.

In the KITTI-Masks case, the InfoNCE (DC) loss with double centring, serving as

a proxy for distance correlation, showed promise by outperforming the leading InfoNCE

loss (Laplace Unbounded model) by 0.6%. It is important to note that the means of the In-

foNCE and InfoNCE (DC) methods are within one standard deviation of each other. This

suggests that a degree of caution should be taken with respect to the representativeness
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of the sample, and the mean of InfoNCE (DC) outperforming the original InfoNCE 1. In

comparing the Laplace and Uniform conditional distributions, it was observed that the In-

foNCE (DC) model introduced an element of sparsity, which reduced the difference in the

MCC score between the two distributions. This finding indicates the potential advantages

of using distance correlation-based metrics for analysing non-sparse data.

1The one-tailed two-sample t-test to determine if 81.5 ± 2.7 is significantly greater than 80.9 ± 3.8,
with 10 samples, produces a one-tailed p-value of 0.3447. This suggests that 81.5 ± 2.7 is not significantly
greater than 80.9 ± 3.8.
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CHAPTER 8

Conclusions

In this chapter, I will provide an overview of the work contained within this thesis, fol-

lowed by the conclusions relating to each research chapter, overall thoughts, and thoughts

on future work.

8.1 Overview

In recent years, the volume of GNSS data has grown significantly, opening up new av-

enues for research that leverage big data to solve geodetic problems.

This thesis aimed to investigate how to separate geodetic signals from GNSS dis-

placement time series, which record pseudorange data instead of the actual position of

a receiver station. To address the challenge of geodetic signals being obscured by non-

geodetic signals that are of a much higher magnitude, I have defined the problem of

extracting geodetic signals as a blind source separation problem. In this work, I assume

that the underlying components of the GNSS pseudorange are independent.

Several independence metrics, such as mutual information-based MINE, negentropy-

based FastICA and distance correlation-based methods, were investigated to determine

whether they would be suitable loss functions for machine learning-based source separa-
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tion or representation learning. This problem was split into two problems:

• Is the metric capable of effectively describing the independence of sources?

• How well can it optimise to good extrema?

In terms of my original aims and objectives (Section 1.3), I will provide an overview

of my results and how they follow from my aim:

1. To compare distance correlation, non-Gaussianity and mutual information as

measures of independence, especially regarding their suitability as loss func-

tions: In Chapter 3, I addressed these tasks using the non-parametric BPSK over an

AWGN channel, which is well-established in communication theory. An investiga-

tion was conducted on the use of distance correlation applied to different colours

of noise. This study also examined the independence of a binary signal and the

average of multiple binary signals. It was observed that as the number of signals

included in the average increased, the combined signal tended towards white noise.

The BPSK problem over an AWGN signal addressed the first problem. It was found

that both the negentropy and the distance correlation were highly correlated to the

ground truth mutual information, identifying for this task that each metric describes

independence well.

In the context of BPSK over an AWGN channel, it was observed that as the variance

increased, the negentropy tended to approach zero. Despite this, a linear relation-

ship was still evident. In this particular scenario, the distance correlation did not

approach zero, indicating that it might provide better description of source inde-

pendence. Additionally, when considering coloured noise examples, the distance

correlation exhibited a steeper gradient at higher variances compared to negen-

tropy. Higher variances were used as an approximation for independence, as the

noise component of the signal becomes dominant. Consequently, it was suggested

that distance correlation might offer improved optimisation for gradient descent in

such cases.

2. To investigate the relationship between natural signal whitening procedures

and independence as determined by distance correlation: In Chapter 4, I exam-
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ined five natural forms of whitening. In this task, no form of whitening was found

to optimise distance correlation in source separation problems specifically. While

not unexpected, this finding provided an element of verification for my research. It

was also not surprising to find that no single whitening method emerged as supe-

rior; independence demands stricter conditions than decorrelation, considering both

linear and non-linear relationships. However, in most instances, the best distance

correlation between the input and its whitened equivalent was with one of the forms

of ZCA whitening.

Regarding where in the pipeline whitening should be applied, it was tested as a pre-

processing step and a step after the separation of sources. I found that whitening

as a pre-processing step before separation limited the information explained by a

given number of sources. Therefore, whitening should be implemented before the

loss calculation after unmixing the mixtures into their underlying sources.

3. Assess the performance of these methods regarding the separation of a syn-

thetic earthquake signal embedded in a known GNSS signal, and then on blind

source separation of an actual seismic event (without a known ground truth):

In Chapter 5, the Synthetic problem and hybrid GNSS and InSAR problems were

used to compare distance correlation, mutual information computed by MINE, and

negentropy as measures of signal independence. For the Synthetic problem, using

a linear layer as an unmixing function, distance correlation gave the best results

on average, with SI-SDR values of 19.3±0.1, 57.4±3.0 and 19.1±0.2, for the sine,

square and sawtooth waves, respectively. The SI-SDR values for the gold-standard

baseline FastICA method were 21.9± 0.0, 30.9± 0.0, and 21.6± 0.0 for the sine,

square, and sawtooth waves. Thus, this thesis proposes that distance correlation as

a loss function may be at least as effective as the widely used FastICA method and

can be more easily integrated into a machine learning context, opening an exciting

new avenue for research.

When a mixing matrix in the form of a linear layer was applied to learned parametrised

sources, it produced outputs that were trained to be as close as possible to the known

mixtures by minimising a reconstruction loss between the known and outputted
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mixtures. A Restart algorithm was employed to identify optimal extrema results for

distance correlation and reconstruction loss, focusing on minimising reconstruction

loss. This prioritisation is crucial because it constrains the possible values of the

outputted sources. For instance, while three white noise signals can be indepen-

dent, they are unlikely to reconstruct the known mixtures. I found the best SI-SDR

values for the mixing method to be 13.2±1.1, 31.0±0.5, and 14.6±1.6 for sine,

square, and sawtooth waves, respectively. It is important to note that the Recon-

struction method underperformed the Separation method, highlighting the trade-

offs involved. However, the mixing method offers greater flexibility in real-world

GNSS scenarios when the number of sources varies from the number of mixtures.

In Chapter 6, blind source separation using distance correlation was applied to a

standard 2-mix-2-source GNSS problem on data from the G119 and G025 stations.

As there was no known ground truth, I used a proxy ground truth by taking an

element of the trend and its residual at the time of a known seismic event instead.

The SI-SDRs were 26.0±0.0 and 29.9±0.0 for distance correlation and 28.2±0.0

and 30.0± 0.0 for FastICA, making the latter the apparent best method. I note,

however, that the SI-SDR values are close, and the ground truth is a proxy. Both

methods were found to be promising. The slight differences in the SI-SDR may be

related to the method used to determine the ground-truth seismic signal; thus, the

results should be taken cautiously, but with a sense of optimism for the potential of

both methods.

The Reconstruction algorithm using a distance correlation objective function was

applied to a blind source separation case study for a region in Southern Califor-

nia. Ten underlying sources were extracted using the reconstruction method with

a distance correlation loss and the benchmark Variational Bayesian ICA. Though

the most obvious conclusion is that vbICA is less robust to outliers, the geodetic

meanings of the underlying signals are more subjective. In the distance correlation

and the vbICA case, afterslip and post-seismic deformation could describe some of

the extracted sources. The reconstruction method with Principal Component ini-

tialisation also extracted a source potentially representative of the Brawley swarm

deformation. However, I was unable to separate the step function that represents
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a seismic event into a single source. This limitation restricted the use of source

separation as a preprocessing step, preventing the creation of a single input time

series that contains the seismic information for training an earthquake prediction

algorithm.

4. To determine the applicability of a distance correlation-based loss on other

machine learning tasks (fine-tuning the source separation of the Libri2Mix

dataset; whitening for self-supervised representation learning; and the disen-

tanglement task using the KITTI-masks dataset): In Chapter 7, I applied dis-

tance correlation to several established machine learning tasks and enhanced a form

of representation learning by incorporating elements of distance correlation. For the

CIFAR-10 representation task, I modified the W-MSE algorithm to include distance

correlation instead of MSE. The Top 1 accuracy achieved with distance correlation

was 88.82%. However, this distance correlation version underperformed compared

to the original whitening MSE method, which had a Top 1 accuracy of 91.2%. As

discussed previously, the WDistCorr method, whilst more challenging to train, did

have a smaller range of accuracy scores, suggesting it is more likely to produce

better representations consistently, when training is successful.

In the disentanglement of the KITTI-Masks dataset, the previously mentioned whiten-

ing representation methods did not perform well. Nevertheless, when I updated

the InfoNCE loss (Laplace, Unbounded) using double-centered inputs, drawing on

principles from the distance correlation calculation, the state-of-the-art MCC score

improved by 0.6%.

Some principles of distance correlation can also be applied to other machine learn-

ing tasks, such as representation learning. However, distance correlation and the

related work are particularly well-suited for source separation tasks because of their

connection to independence.
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8.2 Discussions

On concluding the research chapters, it is important to note that this work was not without

its challenges. The overarching research objectives were to compare distance correlation

to other measures of independence and assess its suitability as a loss function for blind

source separation. I have found that the extrema of distance correlation describes indepen-

dence between variables well. However, the optimisation for these extrema proved to be

a complex task, often leading to suboptimal local minima. This highlights the complexity

of the research process.

My research has uncovered both new insights and potential applications. For instance,

when it comes to separating known synthetic signals, a simple neural network with a

distance correlation loss performed well against the gold-standard FastICA algorithm.

This finding opens up new possibilities for practical applications in the field. When the

reconstruction method was applied to the SoCal case study, it was found that both it and

the vbICA method extracted the step function representing a seismic event into multiple

signals. This decreases their applicability in separating one source that can then be used to

train for ‘mainshock’ events. However, in the synthetic data problem a ‘seismic’ and ‘non-

seismic’ signal were able to be extracted, which could be used in a binary representation

learning task.

In the final task, distance correlation was applied to benchmark representation tasks.

In the case of CIFAR-10, the baseline WMSE outperformed its distance correlation coun-

terpart. This underperformance indicates that, while distance correlation is a powerful

loss function, it may not be the most appropriate optimisation function for representation

learning, as it inherently describes independence. According to [158], a tighter bound on

mutual information between positive samples can lead to worse learned representations

in contrastive representation learning.

For the KITTI-Masks representation learning task, the whitening representation learn-

ing methods developed on the CIFAR-10 task performed worse than the state-of-the-art

loss function for this specific task, InfoNCE. When double-centered distances of the latent

space random variables were used as input for the InfoNCE loss instead of the random

variable itself, the MCC score improved by 0.6% for the Laplace model. Furthermore,

double-centered InfoNCE effectively managed the sparsity of the features, enhancing the
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MCC score in the Uniform case compared to other loss functions. Therefore, although

distance correlation with whitening may not yield the best results, due to the nature of the

dataset, the foundational concepts behind distance correlation can still provide valuable

insights for representation learning.

8.3 Future work

In the future, an interesting research avenue could involve using temporal GANs (Gener-

ative Adversarial Networks) to impute missing data in GNSS time series. In this context,

a conditional GAN trained with the station’s location data would be particularly relevant,

as different faults exhibit distinct seismic features.

After employing a temporal conditional GAN to impute the data, predicting seismic

events before they occur can be framed as a binary classification problem. This can utilise

data from the UNR master step file [2], which includes information about when historical

seismic events happened. By shifting the event label to a time before the actual event, the

neural network may learn to predict when seismic events are likely to occur.

However, seismic events are infrequent and do not always produce well-defined step

functions, even if the station is within a certain radius of a significant event. Therefore,

exploring a GAN-based anomaly detection method instead of relying solely on supervised

binary classification or event-timing anomaly detection could be a promising direction for

future research.

In [135], the chaotic behaviour of slow earthquakes, that produce little slip and there-

fore can repeatedly occur over a relatively short period, were studied. Deterministic chaos

is a process governed by deterministic laws but highly sensitive to initial conditions [135].

The analysis revealed a low-dimensional, non-linear chaotic system rather than a stochas-

tic system. Therefore, the machine learning problem can be reduced to a local area with

slow slip events, such as the Cascadia fault in Canada, and the machine learning can learn

the non-linear dynamics to assess its viability. In [135], the onset of significant slip events

can be correctly forecasted by high values of the instantaneous dimension, allowing for a

gold standard for such a comparison.

Regarding future optimisation research, particularly in the context of distance corre-
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lation for the representation learning or source separation of GNSS data, two additional

optimisation techniques should be explored, curriculum learning and meta-learning:

• Curriculum learning can effectively manage a challenging distance-correlation loss

by guiding the model through a sequence of progressively complex feature extrac-

tions. Starting, for example, with synthetic mixtures that allow the network to learn

the fundamental mappings. As one introduces real GNSS or seismic signals with

unknown parameters, the model can utilise its already developed robust feature ex-

tractor to avoid becoming trapped in poor local minima. However, if the easy data

does not accurately reflect the actual underlying statistics of the features, such as

labquake representations that fail to generalise to real seismic measurements, the

network may overfit to simple tasks and struggle with the GNSS signals.

• Meta-learning, particularly the optimisation of hyperparameters, provides an ef-

fective approach to navigating complex loss landscapes by leveraging experience

across various tasks for quicker adaptation. In this process, a meta-learner is trained

on a diverse set of problems with different parameters. This training helps the meta-

learner develop an initialisation or hyperparameter policy that enables rapid tuning

of the model for new separation tasks using minimal data. This automated tuning

process enhances the robustness of the pipeline to unfamiliar mixing scenarios and

decreases the reliance on manual trial-and-error methods. However, meta-learning

can be computationally demanding, as it often involves nested loops of task sam-

pling and adaptation. Furthermore, its effectiveness depends heavily on the diver-

sity and representativeness of the tasks used for meta-training. If these tasks do not

adequately cover a range of real-world conditions, the meta-learner may struggle

when faced with highly novel or noisy data.

Meta-learning and curriculum learning offer complementary ways to tame complex

GNSS representation tasks. With meta-learning, one trains across many station scenar-

ios, varying noise levels, environmental loading, fault proximity, so the model learns an

initialisation or hyperparameter policy that adapts instantly to a new site with only a few

samples. Curriculum learning, by contrast, orders training from simple displacement pat-

terns (e.g. pure tectonic drift) to seasonal cycles and finally to full-complexity time series,
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smoothing the highly non-convex loss surface and reducing gradient noise. Together, they

can yield faster convergence, more robust feature extractors across stations, and deeper

insights into which signal components drive generalisable GNSS representations. Future

research could include whether and how their implementation improves machine learning

training that uses GNSS, or other geodetic, datasets.

In addition, by collaborating with seismologists, we could integrate high-resolution

waveform recordings, seismometer and GNSS measurements, and plate-motion rates (prox-

ies for fault energy buildup) into a unified ML pipeline. Moreover, fusing GNSS displace-

ment data with SAR/InSAR and optical imagery could yield rich, multimodal feature sets

for blind-source separation or representation learning of surface deformations. In these

instances, applying graph neural networks over the spatial network of stations could be

investigated, as it can exploit geospatial adjacency and tectonic feature information.

Creating ground-truth catalogues, which include magnitude, depth, focal mechanism,

and locations, could then enable us to benchmark extracted sources against physics-based

rupture models, potentially predicting event occurrence with categorical labels or step-

function station displacements as a function of distance from the epicentre. Moreover,

physics-informed and hybrid frameworks could embed core constraints (mass conserva-

tion, elastic dislocation theory, plate-boundary stress accumulation) directly into network

architectures or loss functions, ensuring data-driven insights remain geophysically sound.

Unlike mature domains such as medical AI, geological datasets lack standardised

benchmarks and uniform usage. Establishing an open suite that combines seismic wave-

forms, GNSS, InSAR, and agreed-upon evaluation protocols (SI-SDRi, MCC, event la-

bels) would accelerate AI/ machine learning progress in the field of geodesy. By in-

tegrating expertise from seismology, geospatial AI, earth-system modelling, and hazard

management, we can refine core algorithms and fast-track their translation into societally

relevant applications.
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APPENDIX A

Additional colours of noise

In this appendix, various colours of noise added to the BPSK signal are explored as an

extension to Section 3.3.

Pink noise is a signal with a power per frequency interval that is inversely proportional

to its frequency. The colourednoise Python module is used to generate the coloured noise,

which is based on the algorithm in [143]. In the pink noise case, the exponent is 1. Figure

A.1 shows the distance correlation and negentropy for transmission of a binary signal

through a pink noise channel.

Blue noise has a power law spectrum with an exponent of -1, in relation to Equa-

tion 3.6. In this case the PSDgenerator function was used in this case to produce a random

signal with the necessary power signal of -1. The distance correlation and negentropy for

the transmission of a binary signal through an added blue noise channel can be seen in

Figure A.2.

Violet noise is a signal with a frequency spectrum with a power per frequency interval

that is proportional to f 2 of the signal over a finite range. In this case the PSDgenerator

function was used in this case to produce a random signal with the necessary power signal

of -2.
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Figure A.1: Distance correlation and negentropy for transmission of a binary signal
through an added pink noise channel, with assorted variances of the added noise sig-
nal.

Figure A.2: Distance correlation and negentropy for transmission of a binary signal
through an added blue noise channel, with assorted variances of the added noise signal.
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Figure A.3: Distance correlation and negentropy for transmission of a binary signal
through an added violet noise channel, with assorted variances of the added noise sig-
nal.
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APPENDIX B

A detailed analysis of the synthetic problem

This appendix contains work that is separate from the main thesis to preserve the narrative

flow of the main text. In this section, I examine the small synthetic example, used in the

main text, to determine whether machine learning, using a distance correlation loss func-

tion, effectively addresses BSS problems. This example features a limited set of simple

signals that may have less complex content compared to real-world data. The results in

this appendix are designed to provide evidence to answer several research questions on

the effectiveness of distance correlation as a loss function in source separation.

I formulated several specific questions based on the findings from the chapters in the

main text to explore fundamental aspects of distance correlation as a loss function, such as

its capacity to describe independence and its optimisation. This appendix aims to handle

these questions systematically. The four questions handled are:

1. Does the initial distance correlation correlate with the final distance correlation?

2. Does minimising distance correlation lead to the extraction of better sources?

3. Are the results of source separation using a distance correlation loss consistent?

4. What impact does whitening have on the training of the machine learning model?

180



To investigate these questions, I will use the 3-mix-3-source synthetic problem de-

scribed in Section 4.2.1. I conducted an experiment to separate a sine, a square and a

sawtooth wave from three mixtures using the Separation architecture (Figure 5.2a) and

the average pairwise distance correlation as the loss function.

I did not use the Restart Algorithm (Algorithm 1) because it would not allow for

an accurate evaluation of how well the loss function optimises for a simple problem.

The Restart Algorithm compares the distance correlation for random initialisations with

gradient descent to escape local minima. As a result, the number of times the global

minimum is reached would be distorted and not reflective of training conducted without

additional assistance.

The linear layer architecture used random weight initialisations for each repeat and

was trained over 2,000 epochs with a learning rate of 0.001. This process was repeated

5,000 times, each time using a different random initialisation. The training was conducted

under two scenarios: with and without ZCA whitening. In the first scenario, the whitening

transformation was applied to the outputs generated by the linear layer architecture.

While this experiment is simple, the analysis of distance correlation as a loss func-

tion is thorough. Although it may not represent larger architectures or more complex

problems, it enables an investigation into the behaviour of distance correlation as a loss

function. The relationship between the previous questions and the behaviour of distance

correlation as a loss function will be discussed in the following sections.

B.0.1 Correlation between initial and final distance correlations

In addressing Question 1, I examined whether there is a correlation between the initial

and final distance correlation. Hypothetically, if the initial and final average distance

correlations are strongly positively correlated, achieving global minima is only feasible

if the initial source separation is sufficiently good. This analysis would reveal a limited

ability of gradient descent to learn effective source separations when randomly initialised.

To examine the relationship between the initial distance correlation at epoch zero and

the final distance correlation at the last epoch for a specific random weight initialisation,

I created scatter plots illustrating the relationship between initial and final distance corre-

lations. These can be found in Figure B.1, without (left) and with whitening (right).
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Although the non-whitened and whitened plots in the appendix are often displayed

side by side, examining these cases to understand the effects of whitening will be ad-

dressed later, specifically when tackling Question 4 in Section B.0.3.

Figure B.1: Scatter plot of the initial vs final distance correlation values without (left)
and with (right) the whitening step.

To address the first research question, one should refer to Figure B.1. In both the

non-whitened and whitened examples, a low final distance correlation does not necessar-

ily indicate that the initial distance correlation was also low. The correlation between the

average initial and final distance correlations for the non-whitened examples was 0.131,

while for the whitened examples, it was 0.0418. It is important to note that the final

distance correlation is always lower than the initial distance correlation due to the optimi-

sation step involved in the loss function.

Upon examining Figure B.1, it is evident that there is no positive slope in the data,

indicating a lack of positive correlation between the initial and final distance correlations

in both the whitened and non-whitened cases. This suggests that lower initial distance

correlation values do not necessarily result in achieving the global minimum.

In Figure B.1, both the whitened and non-whitened scatter plots reveal the presence

of clusters. The reader will observe this phenomenon in the whitened scatter plot due to

its smaller range of final distance correlation values. There are several final distance cor-

relation values associated with a wide variety of initial distance correlation values, which

can be most clearly observed from the broader horizontal range for a limited number of

final distance correlation values. These groupings will be referred to as clusters and will

be discussed in more detail in the next section.
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The only certainty is that the loss will decrease due to the optimisation definition (un-

less divergence occurs). Therefore, if the initial loss is below the second-lowest cluster’s

value, it is likely that training will reach the global minimum.

This complexity highlights the nature of the loss landscape, indicating that multiple

runs of an algorithm (or the application of the Restart algorithm - Algorithm 1) may be

necessary to reach the global minimum effectively.

To explore the relationship between initial and final distance correlations more thor-

oughly, I will introduce HiPlots, a visualisation method that creates parallel plots to rep-

resent high-dimensional data. I used HiPlots to analyse if the elements of the unmixing

matrix at the first epoch (when randomly initialised) and at the final epoch (after training

was completed) exhibited a clear relationship with the final distance correlation value.

This study was mainly focused on the lowest cluster case (the global minimum). In Fig-

ure B.1, the reader can see that the lowest cluster value, present in both the non-whitened

and whitened cases, occurs just below 0.005 (their related extracted time series are in Fig-

ures B.8 and B.14). I will create a HiPlot to analyse the final distance correlation values

of this range. This analysis will help me to more effectively compare the patterns in the

initial and final weights of the linear layer and the initial distance correlation associated

with the global minimum. The cluster below 0.005 is the global minimum achieved across

5,000 repetitions of this experiment. If distance correlation is a valid metric, the extracted

sources should be a sine, square, and sawtooth wave at the global minimum—similar to

the known underlying signals. This extraction can occur with inversions, scaling, and

changes in sign affecting the sources, with an equivalently permuted, scaled and sign-

inverted unmixing matrix. If I normalise the sources and include the scaling factor in the

unmixing matrix, there are 12 possible formulations for this matrix. Suppose the HiPlot

displays repeated final weight values for every third component, or their negative counter-

parts, to represent permutations and sign changes. Specifically, there are six permutations

of source order (3! = 6) and two possible sign values. This convergence would imply that

the distance correlation solution is unique at the global maximum.

The four cases presented are the non-whitened case for all final distance correlation

losses, those below 0.005 (representing the global minimum) and the same two sets of

final distance correlations in the whitened case. The results can be seen in Figures B.2,
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B.3, B.4, and B.5, respectively. If the reader wishes to view the outputted sources for

the lowest cluster case, jump ahead to Figures B.8 and B.14 for the not whitened and the

whitened source outputs.

Figure B.2: HiPlot of the initial and final weights and the initial and final distance corre-
lations for the case without whitening and for all final distance correlations.

Figure B.3: HiPlot of the initial and final weights and the initial and final distance correla-
tions for the case without whitening and for the range of final distance correlations below
0.005. This HiPlot displays the weight data for 179 initial random weight configurations.
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Figure B.4: HiPlot of the initial and final weights and the initial and final distance corre-
lations for the whitened case and for all final distance correlations.

Figure B.5: HiPlot of the initial and final weights and the initial and final distance corre-
lations for the whitened case and for the range of final distance correlations below 0.005.
This HiPlot displays the weight data for 1,292 initial random weight configurations.

When comparing the initial and final average distance correlation weights shown in

Figure B.3 and Figure B.5, there is no clear pattern of weight initialisations that corre-

sponds to the lowest range group of the final average distance correlation. This lack of

correlation is expected, as these initial weights relate to the initial average distance corre-

lation loss, which does not align well with the final distance correlation loss.

The final weights associated with the lowest loss converge on a single solution when

accounting for mirroring and permutation of the outputted sources. For instance, in Fig-

ure B.5, consider the weights W1_ f inal, W4_ f inal and W7_ f inal, whose values are

around 0.5, 2.2, and 3 in each instance. The three weight values allowed for the different
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positions in the unmixing matrix to correspond to the various permutations of the out-

putted sources. The negative equivalents of these weights are included, as they indicate

the possibility of mirroring of the outputted sources. Therefore, Figure B.5 addresses the

uniqueness of the unmixing matrix at the global minimum. It suggests that the underlying

sources are equivalent if scaling, mirroring, and permutations are considered. The find-

ings indicate that the training converges on a single solution within the limitations of ICA

methods. Next, I will assess whether the optimal distance correlation, used as an inde-

pendence metric, at the global minimum accurately reflects the underlying sine, square,

and sawtooth waves.

The relationship between the initial and final weights and how they correspond to the

data associated with the lowest final distance correlation in both the non-whitened and

whitened examples will be further explored in Sections B.0.2 and B.0.3.

To conclude this section, there was no correlation between the initial and final distance

correlation values. This finding could simplify the training process by allowing users

to select the lowest initial distance correlation. Additionally, if the initial weights are

generally close to one of the final weight solutions for the lowest cluster, the training tends

to converge to the global minimum, even though these weights are not known in advance.

Hence, the benefit of the Restart Algorithm is to escape local minima. Furthermore, the

final weights for the lowest cluster of distance correlations represent one set of output

sources within the limitations of ICA.

B.0.2 Effectiveness of distance correlation in source separation

In this section, I will discuss Question 2. I aim to determine whether optimising a loss

function based on distance correlation, used as a measure of pairwise source indepen-

dence, results in sources that are also closer to the ground-truth sine, square, or sawtooth

waves. To investigate this, I will use a test bed consisting of the small, known case to

assess the effectiveness of distance correlation as a loss function for independent source

separation.

As briefly mentioned in Section B.0.1 and illustrated in Figure B.1, the data clus-

ters around several different final distance correlation values in both the non-whitened

and whitened cases. These clusters display a range of initial distance correlation values.
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By comparing the outputted sources at the end of training among these clusters, given

that many data points correspond to only a few final distance correlations, I can explore

whether a lower distance correlation associated with a cluster corresponds to weights that

are closer to the inverse of the mixing matrix, measured using Amari distance. The Amari

distance serves as a measure for how well the outputted sources align with the ground

truth.

For the remaining questions, I will refer to the samples from the outputted sources

grouped by similar final distance correlation values to facilitate interpretation. The selec-

tion of clusters was somewhat arbitrary, yet it was guided by kernel density estimation

(KDE) plots.

These plots were generated using the scipy.stats.kde.gaussian_kde function for both

whitened and non-whitened outputted source versions. Gaussian KDE is a technique to

estimate the probability density function of a random variable by employing Gaussian

probability distributions. In this context, the gaussian_kde function from the scipy.stat

module offers a method for performing KDE using Gaussian kernels.

Figure B.6: Non-Whitened (left) and whitened (right) KDE plots of the initial (upper)
and final (lower) probability densities for the average distance correlation between the
three outputted sources. Note that the probability density has been scaled by the reciprocal
of the standard deviation of the distance correlation data to allow for easier viewing.
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There are two important observations to make from the left-hand side of Figure B.6.

First, in the whitened case, the initial distance correlation has a smaller range, with most

values being less than 0.05, when compared to the non-whitened case. Second, there are

four distinct clusters of final distance correlations. Consequently, the five output sample’s

sources provided for comparison in the whitened case will be drawn from these four

clusters. In the non-whitened case, the number of clusters is less clear; therefore, four

clusters are selected for values below 0.05 to align with the whitened case, while an

additional higher cluster is chosen for values above 0.05 based on the KDE plot.

The five selected cluster ranges are represented in a replot of the left-hand side of

Figure B.1 as coloured bands. The replot is displayed in Figure B.7. It is important to

note that the outputted sources are colour-coded according to their respective ranges, and

these colours were chosen to resemble those associated with the final losses in the Hiplot,

depicted in Figure B.2.

The five randomly selected output trios of sources for the non-whitened case with final

distance correlation values less than 0.005 or final distance correlation ranges of 0.013 to

0.015, 0.019 to 0.023, 0.031 to 0.034 and 0.21 to 0.24 are shown in Figures B.8, B.9,

B.10, B.11 and B.12, respectively.

Figure B.7: Scatter plot depicting the initial vs final distance correlation values without
a whitening step. The left side displays the complete range of final distance correlation
values, while the right focuses on the lower range highlighted in the red box.
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Figure B.8: Example of 5 out of 179 outputs for the synthetic problem, where the sources
have not been whitened. This represents the outputs from the lowest plateau in the data
data as seen in B.7. The range of output distance correlations were less than 0.005.

Figure B.9: Example of 5 out of 682 outputs for the synthetic problem, where the sources
have not been whitened. This represents the outputs from the second lowest plateau in the
data data as seen in B.7. The range of output distance correlations were between 0.013
and 0.015.
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Figure B.10: Example of 5 out of 1,887 outputs for the synthetic problem, where the
sources have not been whitened. This represents the outputs from the third lowest plateau
in the data data as seen in B.7. The range of output distance correlations were between
0.019 and 0.023.

Figure B.11: Example of 5 out of 328 outputs for the synthetic problem, where the sources
have not been whitened. This represents the outputs from the second highest plateau in
the data data as seen in B.7. The range of output distance correlations were between
0.031 and 0.034.
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Figure B.12: Example of 5 out of 85 outputs for the synthetic problem, where the sources
have not been whitened. This represents the outputs from the highest plateau in the data
data as seen in B.7. The range of output distance correlations were between 0.21 and
0.23.

Furthermore, five randomly selected examples of three extracted sources in the ZCA

whitened case are displayed for four ranges represented by Figure B.1: less than 0.005 in

Figure B.14, 0.013 to 0.015 in Figure B.15, 0.015 to 0.017 in Figure B.16, and 0.019 to

0.021 in Figure B.17.

Figure B.13 is a replot of the right side of Figure B.1, featuring coloured bands linked

to the colours in the Hiplot shown in Figure B.4. The colours of these bands are used as

plot colours for the outputted source time series.
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Figure B.13: Scatter plot of the initial vs final distance correlation values for the example
where ZCA whitening is applied to the sources at each epoch.

Figure B.14: Example of 5 out of 1,292 outputs for the synthetic problem, where the
sources have been whitened. This represents the outputs from the lowest cluster of data
as seen in B.13. The range of output distance correlations were less than 0.005.
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Figure B.15: Example of 5 out of 274 outputs for the synthetic problem, where the sources
have been whitened. This represents the outputs from the second lowest cluster of data as
seen in B.13. The range of output distance correlations were between 0.013 and 0.015.

Figure B.16: Example of 5 out of 1,982 outputs for the synthetic problem, where the
sources have been whitened. This represents the outputs from the second highest cluster
of data as seen in B.13. The range of output distance correlations were between 0.016
and 0.018.
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Figure B.17: Example of 5 out of 1,400 outputs for the synthetic problem, where the
sources have been whitened. This represents the outputs from the highest cluster of data
as seen in B.13. The range of output distance correlations were between 0.019 and 0.021.

As a reminder, the second research question investigates whether reducing the distance

correlation will yield better sources when compared to the known input sources in this

test case. It is evident that the five examples with the lowest final distance correlation, in

both the whitened and non-whitened cases, produce results that are closest to the true sine,

square, and sawtooth waves. Therefore, identifying the lowest distance correlation, which

indicates the most independent sources, optimises source separation in this test case.

I will use a quantitative approach by employing the Amari distance, which measures

the similarity between two invertible matrices. This metric is valuable for comparing

different ICA solutions and determining how sufficiently an algorithm converges. The

Amari distance was introduced as a performance measure for BSS in [41].

The Amari distance serves as a reflection- and permutation-invariant method to quan-

titatively assess how closely the unmixing matrix approximates the inverse of the true

mixing matrix. A smaller distance indicates that the unmixing matrix is closer to its opti-

mal value.

For the case without whitening but using normalisation, the Amari distances, ordered

from the lowest to the highest final distance correlation range, are as follows:

Distance correlation <0.005 0.013-0.015 0.019-0.023 0.031-0.034 0.21-0.23

Amari distance 0.09±0.02 0.42±0.04 0.9±0.1 0.80±0.04 10±50
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In the case of the whitened version, the Amari distances are as follows:

Distance correlation <0.005 0.013-0.015 0.016-0.018 0.019-0.021

Amari distance 0.056±0.006 0.43±0.01 0.8±0.2 0.855±0.006

In both cases, the mean Amari distance increases as the final average distance correla-

tion increases, with one exception. The exception involves the middle and second-highest

clusters in the non-whitened example. This suggests that, although not always, finding a

better local minimum usually leads to a superior set of output sources, or at least a closer

unmixing matrix to the ground truth, compared to clusters with higher final average dis-

tance correlation values.

I want to discuss a detail of the time series extraction. A square wave is identified for

the lowest and second-lowest final distance correlation for the whitened and non-whitened

cases and the highest distance correlation for the non-whitened example.

First, focus on the non-whitened case with the highest distance correlation (see Fig-

ure B.12 for its related time series). In this scenario, the absolute correlations between

the square wave and the other two extracted waves were 0.49 ± 0.05 and 0.46 ± 0.05.

The correlation is higher than between the ground truth square signal and the sine and

sawtooth, of which the absolute correlation between the ground truth square wave and

the sine or sawtooth waves were 0.0860 and 0.0496, respectively. The correlations being

further from 0 for the local minimum indicate that some characteristics of the square wave

can be identified in the other two separated waves, resulting in higher mutual information

for this separation. The non-zero correlation also explains why a similar solution does not

exist in the whitened case; decorrelation through whitening precludes this possibility.

Next, in the case of the second-lowest distance correlation range for the non-whitened

case (whose time series are represented by Figures B.9), the distance correlations for the

pairs of sources containing the square wave are 0.003 ± 0.001 or 0.0047 ± 0.0006 (com-

paring the furthest left and the furthest right sources to the square wave, respectively). In

contrast, the distance correlation for the pairing that excludes the square wave is 0.036 ±

0.002.

The ground truth distance correlations between the sine and square waves, the sine and

sawtooth waves, and the sawtooth and square waves are 0.00945, 0.0132, and 0.00309,
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Sin-Sq Sin-Saw Sq-Saw
MI regression 0.015 0.123 0.015

MINE 0.009±0.002 0.074±0.018 0.003±0.001
Distance correlation 0.088 0.103 0.065

Table B.1: Pairwise comparison of independence metrics computed on the ground truth
signals from the synthetic source separation example. The MINE computation is an aver-
age over the final 100 mutual information estimates out of a total of 1000 epochs.

respectively. Note that the pairing of the sine and sawtooth waves has the highest ground

truth distance correlation.

Hlynsson et al. [149] adopted this synthetic problem to determine how effective blind

source separation using MINE was. If one looks at Table B.1, for a number of metrics,

the pairs of sources show forms of dependence.

In both the second-lowest case and the ground truth distance correlations, the fact that

the distance correlations are lower when a square wave is involved when compared to the

sine-sawtooth pairing suggests that the distance correlation loss is influenced by the pairs

that include square waves, as these waves exhibit lower entropy compared to the sine

or sawtooth waves. Consequently, this lower entropy is due to the square wave being a

slim-peaked bimodal distribution exhibiting minimal uncertainty. The low entropy makes

it more likely that including a square wave would reduce mutual information (I(X ;Y ) =

H(X)+H(Y )−H(X ,Y ), where H is the entropy and I is the mutual information), and be

extracted during pairwise source separation.

Additionally, in the case of the second lowest plateau distance correlation case, at least

one of the wave pairings must become more dependent on the other signals to lower the

average distance correlations.

In Section B.0.1, I determined that the sources generated at the global minimum,

corresponding to the lowest final distance correlation cluster, were equivalent when con-

sidering the limitations of ICA. In this section, I explored whether the sources obtained at

this minimum are related to the underlying sources used to create the mixtures in the syn-

thetic problem. I have concluded that, for this synthetic problem, the sources identified at

the global minimum are the best separated. Visual inspections of Figures B.8 and B.14,

along with their corresponding Amari scores, support this conclusion.
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B.0.3 Consistency and the effect of whitening

The third question assesses the consistency of the results of source separation using dis-

tance correlation. Specifically, it explores the similarity of the outputted source signals in

both local and global minima.

To answer this question, one can first visually compare the five examples from each

specific cluster of final distance correlations, see Figures B.8-B.12 and B.14-B.17. In all

nine cases, the five outputted example’s sources, coming from the same cluster represent-

ing either a local or global minimum, look very similar. Additionally, using the quanti-

tative Amari distance, in most instances, the standard deviations are low, suggesting that

the source separation results for the selected cluster are consistent.

Framing the third question slightly differently, I want to explore the likelihood that the

results converge to the same minimum when multiple random initialisations are employed

and whether the predominantly chosen minimum is the global minimum.

In the non-whitened case, convergence to the global minimum occurred 179 times

(3.58%). In the whitened case, convergence to the global minimum occurred 1,292 times

(25.84%). However, this does not reflect the highest number of cluster occurrences. In the

non-whitened scenario, the only cluster with fewer occurrences than the global minimum

was the 0.21 to 0.23 cluster. Only the 0.013 to 0.015 cluster had fewer occurrences in

the whitened case. Therefore, the random initialisations do not primarily converge on the

global minimum. Additionally, as indicated by the counts for each case in the captions of

the respective output figures, there is no minimum where a majority convergences occur.

Finally, the fourth question is concerned with the effect of whitening, which here was

applied after the linear layer but before calculating the distance correlation loss. To in-

vestigate this question, I will compare the results of the ZCA-whitened and non-whitened

cases.

It is important to note that the whitening transformation, which decorrelates the data,

affects the distance correlation. At epoch 0, the distance correlation is lower with whiten-

ing than without. As illustrated in Figure B.6, the initial distance correlation without

whitening can reach values as high as 1.0, while the initial distance correlation with

whitening falls below 0.4.

In both cases, the lowest distance correlation cluster range is below 0.005, indicating
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that both whitened and non-whitened methods ultimately minimise to the same global

minimum in the best-case scenario, also compare Figures B.8 and B.14.

Whitening increases the number of distinct local minima and removes the highest

final distance correlation minimum, seen in Section B.0.2 to produce outputted sources

with linear relationships. However, in both the whitened and non-whitened cases, most

initialisations fail to reach the global minimum, requiring multiple runs for each approach.

The whitened method is more likely to converge to the global minimum than the non-

whitened method (25.84% to 3.58%). Nonetheless, as previously noted, when the global

minimum of distance correlation is reached, the resulting source separation, aimed at

achieving independence, yields the best-outputted sources compared to the ground truth.

In conclusion, the outputs from each cluster are consistent with one another. The in-

troduction of whitening reduced the number of minima by eliminating one that had linear

relationships among its outputs. Whitening also increases the likelihood that training will

converge on the global minimum.

B.0.4 Discussion

This appendix systematically outlines the fundamentals of using distance correlation as

a loss function. From the data analysis, considering both the weight and the comparison

between the initial and final distance correlation, it is evident that the loss landscape, even

for this straightforward problem, is quite complex. This complexity means there isn’t

a clear subset of weights that can be used to initialise a run to converge on the global

minimum reliably without a priori knowledge.

However, once a local minimum is reached, the outputs are consistent. Furthermore,

the global minimum aligns with the best source separation when assessed through visual

inspection and Amari distance in relation to the ground truths.

Additionally, while whitening was found to be unnecessary, it does help mitigate some

of the more extreme local minima and enhance the convergence rate toward the global

minimum.

To conclude, all of the experimental results from this appendix indicate that employ-

ing distance correlation as a loss function for independent component analysis through

machine learning is a promising approach. The main limitation is that it presents a com-
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plex loss landscape, diminishing the chances of successfully converging on the global

minimum. Although whitening improves convergence toward the global minimum, this

appendix also highlights the rationale for utilising the Restart Algorithm (Algorithm 1).

This method’s comparison of learned and reinitialised weights helps gradient descent es-

cape local minima.
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APPENDIX C

PCA-ICA approach

In PCA, the eigenvectors of the dataset’s covariance matrix are chosen based on their

eigenvalues. The goal is to select eigenvectors, or principal components, that account for

as much variance in the data as possible.

In contrast, I have modified the approach for ICA to utilise distance covariance instead

of the traditional covariance matrix. This adjustment allows the eigenvectors to represent

independent components rather than principal components. As a result, projecting the

dataset onto these independent components can help extract the underlying independent

sources.

I found that the MSE between the double-centred distances, A and B, corresponds the

distance correlation squared of their underlying vectors, X and Y. The distance covariance

matrix is equivalent to the covariance matrix used in the PCA context. The two methods

are illustrated by Equations 5.8 for the PCA case and 5.4 for the ICA case.

Algorithm 2 outlines a detailed explanation of the ICA version of PCA proposed, or

the PCA-ICA method, using an inputted n× k matrix X, where each row represents a

k-dimensional mixture.

The PCA-ICA method can be used to calculate the percentage of distance variance

described by different numbers of sources. This adaptation was applied to two source
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Algorithm 2 Temporal algorithm
1: Input: An n×k matrix X consists of rows representing k-dimensional random vectors

X1,X2, . . . ,Xn, which each correspond to a mixture.
2: Calculate the n×n matrix C with elements the pairwise distance correlations between

the rows of X:

C =


R2

n(X1,X1) R2
n(X1,X2) ... R2

n(X1,Xn)
R2

n(X2,X1) R2
n(X2,X2) ... R2

n(X2,Xn)
... ... ... ...

R2
n(Xn,X1) R2

n(Xn,X2) ... R2
n(Xn,Xn)


The matrix C is an equivalent of the covariance matrix in PCA, where instead of
covariance one has distance covariance.

3: Calculate the eigenvalues λi, and the eigenvectors vi of C. For an appropriately chosen
n′ ≤ n, let C′ be the n′×n matrix with rows the eigenvectors vi corresponding to the
highest eigenvalues, i.e. the principal directions of C. The eigenvalues are then used
to compute the percentage of distance variance described by each direction.

4: For each mixture Xi, consider the double centered distance covariance matrices Ai in
Eq. 2.15, flatten them into 1× k2 matrices, and concatenate them into a n× k2 matrix
D.

5: Project the flattened double centered distance covariance matrices onto the principal
directions of C, by computing the n′× k2 matrix C′D.

6: Output: Finally, one uses PCA to project the n′× k2 matrix C′D, onto a lower di-
mensional subspace of dimension n′× k.

201



Mixtures DistCov(%) DistCov(%) DistCov(%) DistCov(%) Total of top 3 (%)
3 38.0 33.1 28.9 - 100
4 39.6 26.6 21.9 11.8 88.2

Table C.1: The percentage of the distance covariance accounted for by each IC, highest to
lowest from left to right, for the 4- and 3-mix cases with 3 underlying sources. The total
distance covariance described by the top 3 ICs is also given.

Fourth signal DistCov(%) DistCov(%) DistCov(%) DistCov(%) Total of top 3 (%)
Sine 41.3 25.2 24.1 9.4 90.6

Square 39.8 26.3 20.7 13.3 86.7
Sawtooth 45.5 25.9 23.8 4.7 95.3

Table C.2: The percentage of the distance covariance accounted for by each IC, highest
to lowest from left to right, for the 4-mix-4-source cases, with the fourth signal a scaled
version of one of the other 3 underlying sources. The total distance covariance described
by the top 3 ICs is also given.

separation tasks, the 3-mix-3-source problem, described in Section 4.2, and with a 4-mix-

3-source problem, created by linearly combining a sine, square and sawtooth wave using

the mixing matrix:


1 1 1 1

0.5 2 1 2

1.5 1 2 0.5

2 2 1 1.5


and adding white noise.

From Table C.1, it can be observed that when the number of mixtures is three, the to-

tal percentage of dependence shown by the distance correlation squared of ZCA whitened

vectors accounts for 100% (which it will by definition), with each source describing ap-

proximately a third of total percentage of distance variance. In contrast, in the four-

mixture case, the total distance variance described by 3 sources was 88.2%. Although the

value is lower in the four-mixture scenario, three sources still explain most of the distance

covariance. If an appropriate threshold is chosen, this could effectively guide the user in

selecting the optimal number of sources to extract.

Moreover, I investigated a scenario where the PCA-ICA method was tasked with a
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Sine Square Sawtooth
Restart 19.3±0.1 57.4±3.0 19.1±0.2
PCA 1.2±0.0 2.1±0.0 -2.6 ±0.0

PCA-ICA 6.3±0.0 9.1±0.0 7.7±0.0

Table C.3: Comparison of parametric Restart method compared to the results of PCA and
the PCA-ICA version.

Figure C.1: Comparison of the underlying sine, square, and sawtooth signals with the
results of the Restart algorithm using a linear layer neural network and distance correlation
loss, applying PCA and implementing the PCA-ICA method.

four-mixture, four-source problem, including one source that was a scaled version of one

of the other underlying sources. This was a test of the method’s ability to distinguish be-

tween identical underlying sources. As shown in Table C.2, the total for the top three dis-

tance covariances, with sine, square, and sawtooth waves duplicated, were 90.6%, 86.7%,

and 95.3%, respectively. These results suggest a promising potential of the method in

accounting for duplicated underlying sources.

This serves as a good illustration of how to count the potential number of underly-

ing sources using the percentage of distance covariance represented by the independent

components (ICs). However, it is important to note that this illustration relies solely on

a synthetic problem and is not exhaustive, though this method has been implemented to

identify the number of sources to extract from the GNSS data in Chapter 4.

Now, I will provide an example of PCA-ICA being implemented on the synthetic

problem. Table C.3 shows the average SI-SDR values over ten repeats for the best distance
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correlation method, the Restart method, along with PCA-ICA.The parametric method

far outperforms the non-parametric techniques and that the PCA-ICA method slightly

outperforms PCA. In Fig. C.1, I show the Restart results for the synthetic problem with

distance correlation as the objective function and a linear layer architecture, along with

the PCA-ICA method and the ground-truth signals. In this case, it can be seen that the

Restart method outperforms the PCA-ICA methods, agreeing with the quantitative results

from Table C.3.

It is important to note that, according to Algorithm 2, the distance matrix projected

onto the dimensions that capture the most significant dependence, as defined by distance

correlation, requires a dimension reduction step. This step is necessary to obtain vectors

representing the given pairwise distances of the projected data.

First, dimension reduction may not preserve the pairwise distances in the projected

data. Even in cases where the distances are preserved, the resulting vectors may not com-

bine linearly to form the known mixtures. The synthetic problem assumes that the known

mixtures are linear combinations of the underlying sources. Therefore, the PCA-ICA

method may not be the most effective approach since the linear constraint is not strongly

enforced and PCA dimension reduction does not strictly preserve pairwise distances.

A more effective strategy for enforcing linearity is using distance correlation as a loss

function for a neural network that incorporates a linear layer. In this context, the PCA-

ICA variant performs worse than methods that impose a strict linearity constraint.
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