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Abstract: The early universe provides a high energy lab for particle physics phe-
nomenology, with messengers such as gravitational waves providing an insight into
the events of that era. Mysteries at the dawn of time include the origin of the Baryon
Asymmetry of the Universe (BAU), and the nature of the electroweak phase trans-
ition (EWPT). A first order EWPT could provide the out-of-equilibrium conditions
necessary for baryogenesis, and is a natural consequence of many Standard Model
extensions. An alternative source of out-of-equilibrium conditions are the decays
of heavy right handed neutrinos in the early universe, as defines the leptogenesis
scenario. However, vanilla leptogenesis requires fine tuning in the Higgs and neutrino
sectors in order to generate the BAU. We present a model of ‘Hot Leptogenesis’,
where a hot sector provides a factor ~ 50 enhancement in the BAU, resulting in
a novel model that does not demand fine tuning. We proceed to investigate the
EWPT in the Two Higgs Doublet Model (2HDM), in light of the reported 95 GeV
di-tau and di-gamma excess. Using a dimensional reduction method to calculate
the thermal potential at 1-loop with 2-loop matching, we find regions of parameter
space with a first order EWPT. However, the strongest signal-to-noise ratios for the

LISA experiment are too weak to provide a detection.
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Chapter 1

Introduction

The voices of the Ainur, like unto harps and lutes, and pipes and trumpets, and
viols and organs, and like unto countless choirs singing with words, began to
fashion the theme of Iluvatar to a great music; and a sound arose of endless
interchanging melodies woven in harmony that passed beyond hearing into the

depths and into the heights...

from Ainulindalé by J.R.R. Tolkien

Particle physics is at a crossroads; with the discovery of the Higgs boson in 2012 [4, 5]
finalising the Standard Model as our ‘theory of most things’, the attention of the
community was turned to physics at the TeV scale (which is 10x higher in energy
than the Higgs mass). Yet the Large Hadron Collider (LHC), after years of upgrades
and runs, has turned up empty handed. Beyond some minor discrepancies with the

Standard Model, no new fundamental particles have been discovered at the LHC.

1.1 Paradigms and Revolutions

The philosopher of science Thomas S. Kuhn characterised scientific progress as
episodic, taking place in periods of time where there is a reigning, hegemonic,

paradigm [6]. This paradigm is the framework accepted by the scientific community,
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and all scientific progress within that era is done incrementally, developing that
framework further. For example, in the 17th, 18th, and 19th centuries, the frame-
work for fundamental physics was classical mechanics, formed by principles such
as Galilean relativity [7], Newton’s laws of motion [8], and eventually Maxwell’s

equations for electromagnetism [9]. These theories are all:

o deterministic, meaning that initial conditions and the principle of least action

can in principle determine precisely the future evolution of the system,

o definite, meaning that the fields and particles are in a specific state at any

given time.

Yet, as we are well aware, these principles once thought to be fundamental were
soon found out to be merely emerging macroscopic approximations of underlying
fundamental laws. In the Kuhnian view, discrepancies accumulate under a reigning
paradigm until that paradigm is made untenable. A crisis occurs, which sparks a re-
volution and the creation of a new paradigm that is able to resolve those discrepancies.
This happened at the turn of the 20th century with the quantum revolution [10,11],

and led to the development of the Standard Model as we know it today.

1.2 The Crisis

Now we are at a new crisis point, and the paradigm of the Standard Model is reaching

its limits. Some discrepancies that exist are:

o We have not probed energies higher than /s = 13.6 GeV at particle colliders,
so presumably there are particles with higher mass than this that may be
coupled to the Higgs. Why then is the Higgs mass at a much lower scale than

those particles, leading to a hierarchy problem?

« Galactic rotation curves [12] and cosmological observations show that there is
a mysterious ‘dark matter’ that exists. Yet no particle in the Standard Model

can account for this. What is the nature of dark matter?
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o If we wish to describe physics at small scales and high energies, we need to unify
quantum mechanics and general relativity. Yet efforts to create a quantum
field theory of gravity have proven futile. What is the language of quantum

gravity and the ‘theory of everything’?

e Why does the universe have more matter than antimatter? As the overwhelm-
ing majority of matter in the universe is made up of baryons (bound particles
made up of three quarks), we will instead refer to a baryon asymmetry of the

universe, and baryogenesis as the process which created it.

We will elaborate on these issues and more in Section 2.7, but for now let’s turn
to a solution that hoped to resolve these issues: supersymmetry [13]. The idea
was that each boson (or fermion) in the Standard Model would have a fermionic
(bosonic) ‘superpartner’. The contributions to the Higgs mass from these partners
could cancel out leaving the Higgs mass stable at the electroweak scale and resolving
the hierarchy problem [14]. Supersymmetry also provided the community with the
‘WIMP’ miracle, the idea that weakly interacting massive particles predicted by
supersymmetry could be a perfect dark matter candidate [15]. Supersymmetry is
also a low energy consequence of superstring theory, which is a popular candidate
for a theory of everything. Finally, the extra particles in supersymmetry modify
the Higgs potential, such that a first order phase transition is made possible where
there can be a departure from equilibrium dynamics, spawning more baryons than

anti-baryons [16].

This all sounds very promising. Yet, as aforementioned, no supersymmetric partners
have been discovered at the LHC [17]. The WIMP never showed up [18]. The particle
physics community bet heavily on supersymmetry, and has now been left with more

questions than answers. Where do we go now for new fundamental physics?
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1.3 The Early Universe

Many issues raised with the Standard Model relate to high energy phenomena. One
way to tackle these is to recreate these conditions in the lab, such as in particle
colliders. However, it seems like the LHC, and the upcoming high luminosity (HL-
LHC) upgrade [19], is unlikely to find any new physics; the best use of colliders
for now might be precision studies of known physics [20]. But what if we could
gain information from a part of the universe where these conditions exist naturally?

What if we turned the hot early universe into our lab?

This may point towards a solution to the crisis. Through gravitational wave ex-
periments such as the European Space Agency’s LISA [21,22], we could measure
gravitational waves originating from the early universe [23-25], enlightening us on
many high energy particle physics conundrums. The electroweak phase transition
could be a source of these gravitational waves, if it were first order. Observing this
signal would mean that the out-of-equilibrium requirement for the baryon asym-
metry is satisfied, thus helping us to answer questions despite the roadblock on the
collider front. However, the Standard Model Higgs potential only provides a smooth
phase transition, not a first order one [26-28]. Therefore, any hope for a first order

electroweak phase transition rests on physics beyond the Standard Model.

An alternative source of non-equilibrium dynamics for baryogenesis are the out-of-
equilibrium decays of heavy particles that are hypothesised to exist in the early uni-
verse. A popular model for this is leptogenesis, the idea that the out-of-equilibrium
decays of heavy neutrinos created a lepton asymmetry, which was then subsequently
converted into a baryon asymmetry [29]. Vanilla leptogenesis models however re-
quire the heavy neutrinos to have incredibly large masses, such that they lead to a

hierarchy problem for the Higgs boson [30].

In this thesis, we will explore these tangentially related early universe phenom-
ena through well motivated models. We begin with the theoretical background in

Chapters 2 and 3. In Chapter 2, we will summarise the Standard Model: its quantum
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field theoretic language, its particle content, forces, and symmetries. We will briefly
review the techniques used to calculate observables, such as perturbation theory
and renormalisation. The chapter concludes with a discussion on physics beyond
the Standard Model, and neutrino masses. In Chapter 3, we review early universe
physics and cosmology. We briefly summarise general relativity and the ACDM
model of cosmology, as well as a rough timeline of the early universe until recom-
bination. We review quantum thermal statistics, which is important background
for the introductions to baryogenesis and leptogenesis which follow after. We finish
the chapter by reviewing finite temperature techniques for calculating the thermal

effective potential, as well as gravitational waves from first order phase transitions.

In Chapter 4, we introduce a model of ‘Hot Leptogenesis’ [1], which aims to resolve
fine-tuning issues in vanilla leptogenesis such as the aforementioned hierarchy prob-
lem. We outline the model’s origin from inflaton decay, its particle content, the
conditions necessary for chemical and/or kinetic equilibrium to be maintained, and

an exploration of its parameter space.

In Chapter 5, we investigate the nature of an electroweak phase transition in a model
with an extra Higgs-like particle that has a mass of 95GeV [2]. This is motivated
by reported excesses in final states with two photons vy and two taus 77 at the
LHC. A new scalar in the Type I Two Higgs Doublet Model (2HDM) is seen as
the most promising candidates compatible with constraints. We summarise these
constraints, and outline our approach to calculating the phase transition parameters,
before presenting scans in the Type I 2HDM parameter space. We explore whether
or not first order phase transitions in this model could be detectable by the LISA

experiment.

Finally, we conclude this thesis in Chapter 6.
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A Quick Note on Convention

Throughout this thesis, we make use of natural units where h = ¢ = 1, and typically
refer to particle masses and energy scales in units of eV. The gravitational constant

G is usually written explicitly.



Chapter 2

The Standard Model

They saw with amazement the coming of the Children of Ilivatar, and the
habitation that was prepared for them; and they perceived that they themselves in
the labour of their music had been busy with the preparation of this dwelling, and

yet knew not that it had any purpose beyond its own beauty.

from Ainulindalé by J.R.R. Tolkien

The Standard Model of Particle Physics is the current hegemonic theory of High
Energy Physics. With the discovery of the Higgs Boson in 2012 [4,5], the Standard
Model was considered ‘completed’ as its most major outstanding prediction was
confirmed by experiment [31]. Despite the successes of the Standard Model, we are
also aware of its shortcomings and inability to explain observations such as neutrino

oscillations [32] and dark matter [12].

In this chapter, we will break down and discuss the language and components of
the Standard Model (summarised in Fig. 2.1), and finish by briefly discussing open
questions on physics beyond the Standard Model. Much of this review can be found
in textbooks such as by Schwartz [34] and Peskin and Schroeder [35]. A basic

understanding of Quantum Field Theory is presumed.
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Figure 2.1: The particles of the Standard Model, with mass values
given to 3 s.f. and taken from Ref. [33]. Neutrino masses
are given with bounds; see Section 2.7.1.

2.1 QFT and Symmetries

The Standard Model has a Quantum Field Theoretic description, where fundamental
particles are described by fields that are irreducible unitary representations of the

Poincaré Group (the isometry group of flat, Minkowski spacetime).

The irreducibility of the representation corresponds to the fundamental nature of the
fields, and the unitarity requirement arises from the desire to ensure that the inner
product is preserved by the group transformations. Inner products on the Hilbert
space of quantum states correspond to physical quantities, which should remain the

same regardless of the reference frame they are computed in.

Therefore, it is clear that irreducible unitary representations of the Poincaré Group
represent the types of fields, and thus the types of fundamental particles, that can

exist in the SM.

According to Wigner’s classification [36,37], these representations are infinite dimen-
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sional and are thus best described by fields. These fields can be uniquely classified

by a non-negative mass m and non-negative half-integer spin J.

It is because of this quantisation of spin, as well as the spin-statistics theorem, that
fields in the SM can be classified as bosons (integer spin) or fermions (half-integer
spin). They are further classified by their representations in the Standard Model
gauge group, SU(3), x SU(2);, x U(1)y, with SU(3). corresponding to the strong
interaction and SU(2); x U(1)y corresponding to the electroweak interaction. A
field’s representation under the SM gauge group is often written as (R, R3)y where
R, and Rj refer to the SU(2);, and SU(3), representations respectively, and Y refers

to the U(1)y charge.

2.2 Fermions

The SM fermions are fundamental particles with half-integer spin, sometimes inform-
ally referred to as ‘matter particles’ They are described by Weyl spinors, which
are chiral projections of the Dirac spinor, due to the evidenced chiral nature of the

electroweak force [38].

2.2.1 Fermionic Masses
If Dirac spinors are used instead of Weyl spinors, it is natural to include a mass term
mi1) in the Lagrangian.

A Dirac spinor can be decomposed using the chiral projection operators P,z on ¢

as
Y=Y+ g = Pribp + Ppig, (2.2.1)

as it is also true that Pp pir,p = ¥ r. Noting that P; = Pp, we find

=Y, Pr+YrPyp. (2.2.2)
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Therefore, by noting that Pg,;¢;/r = 0, the mass term becomes

m = m(y Pr + VpPy)(Ppibp + Privg) = m(Yrbr + Urty) (2.2.3)

which would be the mass term in the Weyl spinor representation. Here, we run into
a problem. The mass term necessitates the mixing of left and right handed Weyl
spinors, which means they are unable to evolve independently in compliance with

observations of the chiral nature of the electroweak force.

Thus, in the SM, fermions are described by massless Weyl spinors, meaning it has a
chiral symmetry. This symmetry is generally composed of a vector symmetry, which
acts on the spinors equally, and a U(1) axial symmetry which corresponds to a phase

rotation of the left and right handed components in opposing directions:

by — e Yy (2.2.4)

= g (2.2.5)

However, this axial symmetry is broken in the SM by quantum corrections, which
we do not discuss further here. Later, we will describe how fermions acquire mass

through the Higgs mechanism.

2.2.2 Quarks

Quarks are fermions that are charged under the strong interaction (a property

referred to as ‘colour’), and also under the electroweak interaction.
Left-handed quarks are written as electroweak doublets

Uy,

Qr = : (2.2.6)
dr,

and are in the (2,3);/s representation. The up-type and down-type right-handed
quarks are electroweak singlets ugr and dp and have the (1,3)y/3 and (1,3)_y/3

representations respectively.
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There are three generations of the up-type and down-type quarks. For up-type, we
have the up (u), charm (c), and top (t) quarks, and for the down-type we have down

(d), strange (s), and bottom (b) quarks. The generations differ only in their mass.

Thus the quark kinetic contribution to the SM Lagrangian, for one generation, is

L3iQ.DQ; + iupPup + idrPdpy, . (2.2.7)

where ) = 7D, is the covariant derivative of the quarks summed with the Dirac

madtrices.

2.2.3 Leptons

Leptons are fermions that are not charged under the strong interaction, but are
under the electroweak interaction. Left-handed leptons can be written as electroweak

doublets

L= : (2.2.8)

in the (2,1)_y/, representation. Right-handed leptons are written as electroweak
singlets e in the (1,1)_; representation. The leptons are divided into the electro-
magnetically neutral neutrinos v, which only exist as left-handed Weyl spinors in
the SM, and the electromagnetically charged leptons of type e r. There are three
generations of leptons, referred to as the electron (e), muon (u), and tau (7), and

their associated neutrinos.

Thus the leptonic kinetic contribution to the SM Lagrangian, for one generation, is

L3 iL DL, + ieglep, . (2.2.9)

2.3 Gauge bosons

A gauge symmetry is a localised symmetry of the Lagrangian, i.e. it depends

on spacetime position x*, as opposed to a global symmetry which is independent
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of position. As mentioned previously, the SM gauge group is the product group
SU(3)C X SU(Z)L X U(l)y

Under the gauge group, the covariant derivative for a field is written as

D, =0, —ig,G\T" —igWir* —igB,Y , (2.3.1)

where G, = G;, T, W, = W;T* and B, refer to the gauge vector fields of SU(3),,
SU(2); and U(1)y respectively. 7% = 1X* and 7° = 5 represent the SU(3), and

SU(2), generators respectively, with A representing the Gell-Mann matrices and

c” representing the Pauli matrices.

An N-dimensional special unitary group SU(N) has N — 1 generators. Thus, the
SU(3). vector field G* has 8 degrees of freedom, representing the 8 gluons (g) of the
strong force. W* has 3 degrees of freedom. Their associated groups are non-Abelian,

meaning their elements do not commute.

B" has 1 degree of freedom. The 4 degrees of freedom of the electroweak interaction,
after Spontaneous Symmetry Breaking (SSB), correspond to the weak force bosons

W#*, Z, and the photon Y.

The field strength tensor for a generic gauge group with gauge vector A, = A7t

and covariant derivative D, = 0, — igA,, is written as [39]

F,, = DyA, = D,A, — D,A,, (2.3.2)

7%

which can be expanded as

F,=0,A,-0,A,—ig[A, A (2.3.3)

= 0,A, — 0,A, + gf AL A" (2.3.4)

where ¢ are the structure constants of the relevant Lie group.

Terms that are permitted under the gauge symmetry include the trace of the gauge

field strength tensors, written as

—; Tr(F“”FW) — —iF“”’“F“

nv

(2.3.5)
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Thus, the gauge kinetic term of the Lagrangian is written as,

1 1 1
£33 Tr(G* G ) — 5 Te(W"'W,,) - 18" B, (2.3.6)
where G, W,, and B, refer to the SU(3)., SU(2), and U(1)y field strength

tensors respectively.

2.3.1 Gauge couplings

The interactions between the gauge bosons and other fields arise from the covariant
derivative in (2.3.1). For example, L; is an electroweak doublet, not charged under
the strong force, with a hypercharge of Y = —1/2. This means that the first term
of the covariant derivative (corresponding to the SU(3), symmetry) will not apply
to it, while the other two terms will. Therefore, the covariant derivatives in the
‘kinetic’ terms actually introduce interactions between the gauge bosons and the

fermions/Higgs boson, which are the force interactions.

2.4 Higgs sector

Finally, to finish the SM, we must include a complex spin 0 (scalar) boson called
the Higgs boson, which was introduced in the 1960s [40-42] to account for fermion
and vector boson masses. The Higgs sector contributes to the SM Lagrangian the

following terms for the Higgs doublet ®:
1
L£>(D,®)'D,®+ 1’0'd — §>\(<I>T<I>)2 : (2.4.1)

where ;1 represents the mass of the field, and A is the quartic Higgs coupling. The

Higgs exists in the (2, 1) /o representation.
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2.4.1 Yukawa couplings

Yukawa couplings are couplings between scalars and spinors of the type gou) for

scalars and ig@yy°y for pseudoscalars.

In the SM, Yukawa couplings between fermions and the Higgs are permitted, and

they take the form

Yy, PR + hec.) (2.4.2)

which is the only term allowed that preserves SU(2);, x U(1)y symmetry. This can
be seen by the fact that in the SM, left-handed fermions exist as SU(2); doublets
and transform as ¢; — M1y, whereas right-handed fermions are SU(2);, singlets.

Thus the Yukawa term transforms as
Ur@Pg — €2 MM POy = b Dy, (2.4.3)

and is electroweak invariant.

Lepton Yukawa Terms

Looking at the lepton sector, generically there are 3 x 3 x 2 = 18 free parameters
in the Yukawa matrix due to the mixings between the three generations and the
complex nature of the Yukawa couplings. The Yukawa terms take the form,
L5 =3 (yLi®Ly + (i) LadILY) (2.4.4)
a,b

where a and b are lepton generation labels.

However, a complex matrix 4 can be multiplied by two unitary matrices U;, and
Ug such that Uzyl Ug is real and diagonal. Thus the lepton basis can be rotated and
we can write the Yukawa terms as a diagonalised sum,

L=yl (LioL)+ LioiL]) (2.4.5)
f

where f = e, u, 7 is the fermion generation label.
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Quark Yukawa Terms

For quarks, the Yukawa terms for the down-type quarks follow a similar form to those
of the leptons. However, for up type quarks, ® does not have the right hypercharge
for a similarly constructed term to be electroweak invariant. This is because up type
and down type quarks have different hypercharges in order to arrive at the correct
electric charges after SSB. Thus, the Yukawa terms have to be structured differently

in order to have invariant terms for both quark types.

We introduce the doublet ® = i, ®*, which is in the (2,1)_; /2 representation of the
SM group. This doublet is used in place of ® for the up type quark Yukawa terms.

Thus, we arrive at the quark Yukawa terms
L35 (v Qiddy + (yi") dr®' QY + yi' QL Puk + (vi) uRD'QL) . (2.4.6)
a,b

where a, b are quark generation labels.

Flavour Mixing

Performing a similar diagonalisation procedure for leptons, we can transform the
quarks into their flavour basis,

L3 = yh (QL@d, +dR0'QL) = Yyl (QLPuf +ud'QL) . (24.7)
f f

where f is the flavour label. However, as up and down type quarks are rotated

differently,

ufsr = Y Uil rUL/R (2.4.8)
b

dijr — Y Uir/rdisn, (2.4.9)
b

all terms in the SM Lagrangian remain invariant except the quark kinetic term
iQIPQ ;. Specifically, after spontaneous symmetry breaking (which we elaborate on

in Section 2.4.2), the W coupling terms that emerge from the quark kinetic term
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transform as

iQr QL > — \% > (@ Wl df + diy' W, uf) (2.4.10)
f

9 N~ (- . .
ARG S (uVE Wi d] + & (Vi) Woul)  (2410)
fg

where g is the weak gauge coupling, and Vg = U;L Uz is the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. Thus the weak interaction, specifically the W= bosons
can change quark flavour, and the non-zero off-diagonal entries of the CKM matrix

describe the mixing strength of the quark flavours.

2.4.2 Spontaneous Symmetry Breaking

The Higgs mechanism was introduced to explain how massless fermions and vector
bosons can acquire mass while retaining the chiral nature of the weak force [40-42].
The structure of the zero temperature Higgs potential illustrates this; for positive u
in

V(®) = —p*0'd + ;(@@)2 : (2.4.12)
we find that the minima exists for field values that satisfy ®'® = 12 /A, thus there is
a ring of minima in this so-called ‘Mexican hat potential’, as shown in Fig. 2.2. The

Higgs doublet ® can be parametrised as,

1 0

(@) = N1 (2.4.13)

where v = \/211° /A & 246 GeV is the Higgs Vacuum Expectation Value (vev)', and

h is a real field: the physical Higgs boson.
Thus, when the Higgs takes this vev, using the covariant derivative of the Higgs with
Y =1/2as

D@ = 0,8~ igWir"® — g/ B,® (2.4.14)

INote that sometimes there is a convention that the V/2 factor is absorbed into the definition of
v, i.e v 246/\/? GeV =~ 174 GeV. In this thesis we will make clear when this convention is being
used instead.
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Figure 2.2: The ‘Mexican hat’ potential of the Higgs after SSB.
The Higgs mode is shown as the massive oscillations
around the broken phase radially outwards from the ori-
gin, whereas the massless Goldstone mode is the motion
around the brim of the hat.

we can rewrite the Higgs kinetic term as

1
(D,®)'D,® =50,h0"h (2.4.15)
, 2
2 Wi+<B, Wy—iw2| (o
+ %(v + h)? <0 1) “1 g ;‘ ‘; ot (2.4.16)
Wy +iWi Wi-<B,| (1
1 g2 . ) g/
=50uh0"h + (v + h)? ((Wj +iWH (W —iW2) + (W? — EB)2 :
(2.4.17)

We see here that there are mass terms for the gauge fields which can be re-defined

in the mass basis as

1
Wy = %(W; +iW7) (2.4.18)
1
2= ———(gW,/ — ¢'B,), (2.4.19)
9 +y

such that the mass terms are

gu\ 2 0P
£ (-) WiEW g

5 (¢°+97) 2,2" (2.4.20)
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where the masses can be read off as my = gv/2 and my = v\/¢g* + ¢*/2.

In this basis, we find that we can define the weak mixing angle

cos(Oy) = W = 9 (2.4.21)

and parametrise the the Z mode as Z,, = cos(fy )W,) —sin(0y) B,. Similarly, we can

define the massless mode perpendicular to this as A, = cos(fy )5, + sin(GW)WS ,

which we identify as the photon of quantum electrodynamics.

This allows us to rewrite the gauge derivative in Eq. 2.4.14 as [34]

D, = 0,® +ig cos(fy)(7° + Y)A, (2.4.22)
+ (g cos(fy)T° — ¢’ sin(0w)Y) Z, (2.4.23)
i (Wt W), (2.4.24)

V2

* The gauge coupling of the photon, e = ¢’ cos(fy), can be

where 75 = 7! £ 477,
defined as the electromagnetic coupling strength. Q = 7° + Y is the unbroken
generator of the residual symmetry group, which is U(1)gy. The massless degree of

freedom associated with this residual symmetry group is the photon.

We can think of motion around the three-dimensional ‘brim’ of the Mexican hat (see
Fig. 2.2) as representing massless degrees of freedom. These are the three Goldstone

bosons that are subsequently absorbed by the W and Z bosons, giving them mass.

Thus, the SM has undergone spontaneous symmetry breaking of the form,

which is also referred to as electroweak symmetry breaking (EWSB).

The cosmological event associated with this symmetry breaking is the electroweak

phase transition, which is discussed further in Chapter 3.
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2.4.3 Fermionic Masses Revisited

SSB transforms the Yukawa terms. Focusing on the lepton Yukawa terms in Eq.

2.4.5, for one generation, we see that they transform into

Y 0 _ VL 1 _ _
ﬁ <VL 6L> erp t+eéer (O U) — ﬁQlU(@LeR + eReL) . (2426)

v er,

Here, we see that we have arrived at the Weyl fermion mass term in Eq. 2.2.3, with
the lepton mass m; = yv/ V2. The derivation follows analogously for the quark
masses. We see here also that the neutrinos v; drop out of the Yukawa terms and

are left massless, as in the SM they do not have a right-handed partner.

Thus, with the Higgs mechanism, we are able to construct a theory that is compatible
with the evidenced chiral nature of fermions at high energy [38], while also ensuring

that fermions are massive at low energy.

2.5 The Standard Model Lagrangian

We finally arrive at the full Standard Model Lagrangian, which is given by

1

1 1
£==5Te(G" G ) = 5 T (W W) = (B B (2.5.1)
1
+(D,®)'D,® + 1 * o0 — 5)\(@*(1))2 (2.5.2)
+iY (QuPQr + tplug + dpPdy + L PLy + éxlper) (2.5.3)
f
= >yl (Li®Lf + LEo'L]) (2.5.4)

f
= > (v QL PdR + (i) dR2TQL + yi' QL Ouk + (i) urd'QL)  (2.5.5)
a,b

where 2.5.1 refers to the gauge kinetic terms, 2.5.2 refers to the Higgs sector, 2.5.3
has the fermion kinetic terms, and 2.5.4 and 2.5.5 are the lepton and quark Yukawa

terms respectively.

The SM obeys the discrete CPT symmetry, which is made up of:
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« Charge conjugation (C), e.g. e~ — e*,

o Parity (P), or mirror inversion defined by z/ — —z" for the spatial indices

n=1.2,3,

o Time (T), defined by t — —t.

C, P, and T symmetries can be individually violated in the SM. A source of CP

asymmetry is found in the complex phases of the CKM matrix.

The SM has 19 free parameters, given by the 3 gauge couplings g, ¢, gg, the Higgs
mass p°, the Higgs quartic coupling A, the 3 lepton Yukawa couplings ylf , 10 paramet-
ers in the quark Yukawa matrices y,, and the strong CP angle §. They have been
experimentally measured and the theory has withstood rigorous testing. Examples
of SM precision tests include the anomalous magnetic moment of the electron, which
has been measured to an accuracy of 1 part in 10 billion [43] and agrees with the

theoretical prediction to at least 10 significant figures [44].

2.6 Calculations in the SM

2.6.1 Perturbation Theory

Calculating precision observables in the SM requires the use of perturbation theory,
which is valid for weakly interacting theories. The basic idea is that the theory can be
treated as a free theory to first order, and higher order corrections from interaction
can be treated as perturbations to the free theory. Here, we briefly outline the loop
expansion form of perturbation theory, where the leading order (LO) contribution
is given at ‘tree level’, and a diagram with n loops contributes at next to leading

order (N™LO).

As a model theory to illustrate the loop expansion, we use a ¢* theory,

1 1 1
L= 3 L, PO" B + §m2¢2 — a/\ 4 (2.6.1)
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e

) Tree level, LO contribution s-like channel, 1-loop NLO
) t-like channel, 1-loop NLO ) u-like channel, 1-loop NLO

Figure 2.3: Feynman diagrams of the ¢4 theory contributing to the
matrix element up to NLO.

which is similar to the Higgs Lagrangian in Eq. 2.4.1.

The scattering amplitude between the initial state of a system |i) and a final state
|f) is given by (f| S]i), where S is defined as the scattering matrix. By taking S
as a perturbation around the free theory, defined by the identity matrix, we find

S =1+ 4T where T is the transfer matrix and encodes the results of interactions.

Thus, with explicit momentum conservation we find

(Il = (z pz) (262)

where M is referred to as the matrix element. It is calculated perturbatively,
requiring couplings that are small enough such that the loop expansion converges.
We can draw Feynman diagrams of all possible ways an interaction can happen
which are then summed together at a certain order in the loop expansion. Feynman
rules provide the factors that need to be put together for a given theory, such that

a Feynman diagram gives a well-defined contribution to M.

As an example, we provide the 1-loop expansion for 2-2 scattering in the ¢* theory

in Fig. 2.3. All diagrams are summed over. The Feynman rules for this theory are
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as follows

— i) = Dy(p) (2.6.3)

where Dy(p) is the tree-level propagator, and the Feynman ie prescription is a tool
to perform Euclidean momenta integrals which we will not discuss further here.
Momenta are conserved at the vertices, and any undetermined momenta ¢ in loops

are integrated over with [ d*q/(2n)*, which we compute in Section 2.6.2.

Some measurable quantities that can be computed with M in a general theory include
the decay width of a particle, I', and the cross section ¢ of a 2 — n scattering. The

formula for the decay rate of a particle of mass m is given by

_ i 2 n
F=o— zf:/ | M| dIT (2.6.4)

where we sum over all final possible states f of the decay, and dII" is the phase space

element. The partial decay width, I';, is the width for a single decay process.

The cross section of a 2 — n scattering is given by

1 2 n
o= 2/|M| dTl (2.6.5)

4\/(]91 -p2)2 - m%mg

where p;, m; are the 4-momenta and masses of the particle . The Lorentz-invariant
phase space element for n particles is given by
dIT" = (27)*6™ (%2 p-> 11 I (2.6.6)
7 j=1 27T3(2Ej) -
where p; is the 3-momentum for outgoing particle j. The sum in the delta function
goes to n + 2 as we sum over incoming and outgoing momenta to ensure momentum

conservation.

A complete set of Feynman rules for the SM can be found in Ref. [45].
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2.6.2 Renormalisation

We turn our attention to the undetermined momenta in the 1-loop diagrams. These
involve integrating over all possible values of the loop momentum ¢, up to infinite
momentum. Thus, the integrals are of the form [ d4q/ ¢*, and they diverge logarith-

mically. The way to handle these divergences is the process of renormalisation.

We start off by redefining the quantities in the Lagrangian in Eq. 2.6.1 as the ‘bare’

quantities with labels ¢, mp, Ag. We can rewrite the Lagrangian as

1 1 1
1 1 1
=5 L ORO" OR — Em%zﬁﬁz - J)‘Rgb%% (2.6.8)
1 1 1
+0, (50,600"08) = 0 (ko) = (hesh) . (269)

where we defined the renormalised field ¢ = ¢p/ \/7 , mass mr = mp/\/Zpy,
and quartic coupling A\ = Ag/Z,. The counterterms are given by d, = (Z, — 1),
Om = (ZyZy — 1), 65 = (Z(?)Z,\ — 1) and are calculated such that they cancel out
the divergences that emerge at higher loop order. In effect, this means that one can
use the tree-level Feynman rules with the renormalised fields, masses, and couplings
in order to calculate quantities, as the loop effects are already baked in to those

quantities. Thus renormalisation is a powerful tool for QFT calculations.

To illustrate the calculation of the renormalised quantities, we compute the 1-loop

expansion of the propagator D(p)

Dp)= — + Q - 3
’ (2.6.10)
- @ +

where the first diagram gives the tree-level Dy(p), the second gives the 1-loop con-

tribution, and the third and fourth diagrams are the 2-loop contributions.
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We can rewrite the propagator using the self-energy ¢, which is the sum of all
1 Particle Irreducible (1PI) diagrams. These diagrams are ones that cannot be
separated by making a single cut through a line. For example, the fourth diagram can
be cut between the two loops, meaning that as it can be made from two copies of the 1-
loop contribution, it does not provide any new information about the renormalisation
of the propagator and is not 1PI. The third diagram is a 1PI contribution at 2-loop,

and is included in the self energy 3.

A propagator can thus be formed by chaining together the 1PI diagrams with the

tree-level propagator connecting between them, such that

D(p) = Dy(p) + Do(p)(i%) Do(p) + Do(p)(i%) Do(p)(i%) Do(p) + - - - (2.6.11)
= Dy(p) 3 D))" 26.12)

which gives a finite result if perturbativity applies,

Do(p) _ i
1—iXDy(p) p*—m?*+3%’

D(p) = (2.6.13)

Thus, we see that the higher order effects are all captured by the self-energy 3. At
1-loop, we can use the ¢* Feynman rules on the second diagram in Eq. 2.6.10 to

calculate the self-energy contribution

— —m/ , (2.6.14)
27r q —m?

which we already know has a divergence. One way to get around the divergence is
to use dimensional regularisation, where we perform our calculation in D =4 — ¢
dimensions, where € is a perturbation away from the 4D, and write the dimensionless
coupling A = p”*\ = 1\ as \ acquires dimension when D # 4. Here, we have

introduced an arbitrary mass scale p.

Our self-energy integral is now

- —z,u€>\/ . (2.6.15)

q—m

and we can perform a Wick rotation to imaginary time (¢ — i7) and we end up with
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the Euclidean integral

. o~ [ dPq )
iy = —ip /\/ (%)’;‘; p— (2.6.16)
px e dg _
_ (%)D/O p +Em2q§ 1/dQD (2.6.17)

where we have transformed to spherical coordinates with radius qg, and d€1p is the

surface area of a D-sphere, given by

o D/2
oY -

r(z)

In the Euclidean Lagrangian, the potential has a positive sign, which is why the

dQp = (2.6.18)

sign for the m? term has become positive. It is straightforward to now evaluate the

radial integral, to find
Am? [2 m?
Ym=t—s |—-+1+Indr)—vg—In|{— ||, 2.6.19
1677 L 4m) =7 (lf)] (2649)
where v is the Euler-Mascheroni constant. We can see clearly that there is a

divergent part o< 1/e, a logarithmic term dependent on the renormalisation mass

scale i, and a finite part.

We can finally write down the propagator, using the renormalised theory such that

p*— (1+ 5¢)p2, m?® — (1 + 6,,)m%, and X\ — \p to give us

_ Apm2 [2 2
D@ = (148,08 — (14 6)mk+ 222 |2 41 4 ar) — 4 — In (mRﬂ '
167 | € W
(2.6.20)

A finite propagator requires that the counterterms cancel out the divergences. In

this specific case, this requires that
-+c, (2.6.21)

where ¢ is a finite constant which we are free to choose, and d, = 0 as there
are no divergences proportional to p®. In the Minimal Subtraction (MS) scheme

¢ = 0, whereas in the modified MS scheme (MS) ¢ absorbs the term proportional to

(In(47) — 7p).
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Therefore, as Z, = 1 and thus mgr = mp/y/1 + ,,, we can expand the renormalised

mass around the coupling Ag to find
XR 2 32
mp=mg |1 — —E ( 4+ In(4r) — VE) oo . (2.6.22)
3217 \€

This relation allows for the divergence to be absorbed into the bare mass m, and for

mpg to remain finite. Thus we have renormalised our theory.

One issue is that, even after taking ¢ — 0, there is a logarithmic dependence of
the self-energy on the scale . Thus our renormalised theory and the quantities
{br, mh, Ar} have a scale dependence. We must ensure that the bare parameters

{¢é5, m%, A\g} are scale invariant, which results in the condition

d{ﬁbBamB,)\B} _

. 2.6.2
T 0 (2.6.23)

This uniquely determines the dependence of the renormalised parameters on the

renormalisation scale

d{¢R7 m?%? )‘R} Yo Tm
=< —= — 2.6.24

bR’ mpg
giving us the Renormalisation Group Equations (RGEs) at 1-loop. The beta func-
tion' is defined as the RGE for the coupling ), and the anomalous dimensions are Yo
and 7,,. The pre-factors ensure that 3\, s, 7, have the same dimensionality. The
RGEs can be solved with reference to an input scale g to determine how couplings
and masses vary at different energy scales. This is especially vital for this work, as
in Chapter 5 we input masses measured at p = my (the Z-pole) which is common

for electroweak parameters, and use the beta functions/RGEs to run the parameters

up to the relevant energy scale (labelled as py for our calculations).

!Sometimes, the term ‘beta functions’ is used interchangeably with RGEs, although strictly
they are defined for couplings only.
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2.7 Beyond the Standard Model

While the SM has proven itself as a remarkably accurate and precise theory, there
are many open questions left in fundamental physics. Some point to solutions that
may extend the SM framework and continue to use the language of QFT, while
other problems seem intractable with a QFT approach and require something new
entirely. We summarise an inexhaustive list of open questions here, some of which

are explored in this thesis.

Do the electroweak and strong forces unify at higher scales? Extensions to
the SM such as supersymmetry, where SM fermions have bosonic supersymmetric
partners and vice versa, lead to gg, g, and ¢’ beta functions that run them to the
same value at a ‘Grand Unified Theory’ (GUT) scale of T ~ 10'° GeV, in the case of
the Minimally Supersymmetric Standard Model (MSSM). A simple Lie group such
as SU(5) or SO(10) could provide the gauge symmetry of the GUT, which then
undergoes SSB to the SM gauge group. Yet the non-discovery of supersymmetric

particles at the LHC brings doubt to the motivation behind GUTs.

Do all four fundamental forces unify in a theory of everything? At the
Planck scale, T ~ Mp, ~ 10" GeV, it is predicted that quantum effects from gravity
become significant and a ‘theory of everything’ that places gravity in the same
framework as the strong and electroweak forces becomes necessary. Efforts to form
a theory of quantum gravity in QFT frameworks have proven futile due to the

non-renormalisability of a spin 2 gauge tensor field [46], which is required for gravity.

What is dark matter? Cosmological and astrophysical observations make clear
that most of the matter in the universe is not baryonic, does not interact electro-
magnetically, and through its gravitational attraction keeps galaxies together [12].
No particle in the SM accounts for this ‘dark matter’, yet some models suggest that
it could be explained through composite objects such as primordial black holes. Fun-

damental particle solutions such as WIMPs [15] and axions [47] have been proposed.

What is dark energy? The expansion of the universe is accelerating [48,49], and
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there is a vacuum energy that is driving this expansion which cannot be explained
by the SM (in fact, attempts to explain this through SM vacuum energy calculations
have provided an infamous result that is wrong by 120 orders of magnitude). This
dark energy A accounts for ~ 70% of the mass-energy in the universe [50] and

remains a mystery to this day.

What caused inflation? A model of rapid expansion in the very early universe,
known as inflation, is required to explain cosmological observations that we explain
further in Section 3.3.1. This is not explained through the SM and requires a

hypothesised BSM particle called the ‘inflaton’.

Is the Higgs vacuum metastable? The Higgs quartic coupling, A, is predicted
to run to a negative value for values of the Higgs scalar field h > 10" GeV [51,52].
This could mean that the current Higgs vacuum is metastable and there could be a

phase transition to the true vacuum of the theory in the deep future.

Why is there more matter than antimatter? Visible matter in the universe
is baryonic and seemingly not anti-baryonic. If these were originally created in the
same quantities then they would annihilate and lead to no matter in the universe.

We explore this question further in Section 3.5.

Why do neutrinos have masses? Solar neutrinos are predicted to be electron
neutrinos, yet only 3 of the neutrino flux has been observed to be v, [32]. The rest
are the muon and tau neutrinos v, v,. Thus neutrinos change their flavour as they
travel, in a phenomenon known as neutrino mixing. This means that they must
experience time, and thus must have mass. As neutrino masses are relevant for this

work, we provide a brief summary below.

2.7.1 Neutrino Masses

Accounting for neutrino masses involves a minimal extension to the SM where

either a Dirac-like mass term (from EWSB) or a Majorana mass term can be added.
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Majorana fermions are described by the relation )¢ = C¢)” = 1, where C refers to the

charge conjugation operation. Thus, Majorana fermions are their own antiparticles.

If we include both types of terms, our SM Lagrangian is modified with

1 1
E S — 5&2MLI/L — iﬂ;{MRVR — ljRMDl/L + h.c. (271)
1
= —§DCMI/—|—h.C. (2.7.2)

where the first two terms are Majorana mass terms and we have introduced the
right-handed neutrinos vi. M, Mr are Majorana mass matrices and Mp is the
Dirac mass matrix. In the illustrative case of one neutrino flavour, we write the

vector v = (v, vg) and find the neutrino mass matrix

myp Mmp

M = , (2.7.3)

mp Mg

where mp is the Dirac mass that comes from EWSB, and m[ g p are scalars that

have taken the place of the matrices M}, p p. Diagonalising M results in the matrix

| 3Omeme) = 53 my = mg)? o+ 4 0

0 %(mL‘FmR)WL%\/(mL—mR)ZﬂL‘lm%
= diag(my, my),

(2.7.4)
resulting in us being left with two Majorana fermions after diagonalisation. For
my, = 0, which ensures that lepton number conservation cannot be violated by the
left-handed Majorana mass term, and for mp > mp, we find that m; ~ m% /Mg,
and my =~ mp. Thus we have ended up with a situation where m; < m, and is
driven to be extremely light by the large mass of a RHN. As the bound on the sum
of the neutrino masses requires them to be very light >, m,; < 0.12eV [50, 53],1 this
result provides motivation for the Seesaw mechanism which we explore further in

Section 3.6.

'Note that this upper bound comes from cosmological (CMB) observations. Terrestrial exper-
iments provide a lower bound on the mass sum of 3, m,; 2 0.06 (0.1) eV for normal (inverted)
ordering of the neutrino mass eigenstates [54, 55].
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The diagonalisation procedure can be expressed through a matrix, U, by relating
vy =Y, Uyv;. This relates the mass basis v;, with i = 1,2, 3 to the flavour basis v}
with o = e, p, 7. It is referred to as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix and can be parametrised as [53]

1 0 0 iz 0 se V[ g sy O) (€™ 0 0
U =10 Co3 S93 0 1 0 —S19 Cqi9 0 0 6in2 0 ’
0 —S893 (o3 —513€i6 0 Ci3 0 O 1 0 0 1

where 4 is the C'P-violation phase, 7, and 7, are Majorana phases, and s;; = sin 6,,

c;j = cos 0;; where 0,; are real angles.



Chapter 3

Early Universe Cosmology

Ed! Let these things Be! And I will send forth into the Void the Flame

Imperishable, and it shall be at the heart of the World, and the World shall Be.

from Ainulindalé by J.R.R. Tolkien

The early universe is an enigmatic time in our universe’s history. As we go further
back in time towards the Big Bang, the temperature starts to increase T ~ a ',
where a is the scale factor of the universe (to be introduced later). With the universe
getting hotter and smaller, high energy physics starts to gain an equal footing

with cosmology, and it becomes imperative at energies approaching the Planck

temperature Tp; = Mp; ~ 1.22 x 10" GeV to utilise a theory of quantum gravity.

This work, fortunately, involves physics at temperatures far below Tp;. Yet, despite
not requiring a quantum theory of gravity at these scales, there is still much we don’t
know about: where dark matter emerged from, the exact nature of the electroweak
phase transition, and why there are more baryons than anti-baryons, to list a few
unanswered questions. The research in this thesis touches on the latter two topics.
Thus, this chapter aims to set the stage for these events: the early universe leading

up to recombination.



60 Chapter 3. Early Universe Cosmology

3.1 General Relativity

The language that is used to describe cosmology is that of General Relativity [56].
Spacetime is described by a Riemannian manifold with metric g,,. A useful quant-
ity is the Riemann curvature tensor R’,,, which describes the effect of parallel

transporting a vector around a manifold, quantifying the curvature of the manifold.

The Riemann curvature tensor is given by

R’y = 0,10, — 0,10, + 0., — T0,T, (3.1.1)

Qo

where the Christoffel symbols F;\w are defined as

1

A A

F;W = ig P (augl/p + augpu - apg;w) . (312)
The Ricci curvature tensor is defined through the contraction R, = R’,,,, and the

Ricci scalar R = R,‘j.

We can then relate these quantities to the stress-energy tensor 7}, through the
Einstein equation

G

w =

1
=R, — §RgW = 81GT,, , (3.1.3)
which determines the dynamics of a manifold'. Here, G, is referred to as the
Einstein tensor, and G is the gravitational constant.

It is possible to insert a cosmological constant A if the universe’s expansion is
accelerating, such that

G + Nguy = 87GT,, . (3.1.4)

3.2 Standard Model (of Cosmology)

Our Standard Model of Cosmology is the ACDM model, which describes the universe

as having cold dark matter and dark energy A [58,59]. It assumes that:

"Wheeler summarised this equation as “Spacetime tells matter how to move; matter tells
spacetime how to curve.” [57], as T}, involves the energy density and affects the dynamics of the
manifold.
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e The universe is homogeneous and isotropic, expanding in the same manner in

all directions. This assumption is also known as the cosmological principle.
« Einstein’s equation applies.

e The content of the universe can be approximated as a perfect fluid.

The perfect fluid assumption results in the stress energy tensor taking the form
T = (p+P)UU, + DG » (3.2.1)

where p is the energy density, p is the pressure, and U, is the fluid velocity.

Spacetime is described by a manifold with the Friedmann-Lemaitre-Robertson-

Walker (FLRW) metric, given by

dr?

1 — kr?

ds® = g, datdz” = dt* — a(t)’ ( + r2dQ2> (3.2.2)

where a(t) is the scale factor, which increases monotonically with ¢, k is a curvature
constant, and dQ? indicates the line element of a 2-sphere. As experiment has
confirmed that the expansion of the universe is presently accelerating [48,49], the

cosmological constant A is non-zero in this model and in Eq. 3.1.3.

We define the Hubble factor as
H(t) = g (3.2.3)

The Hubble factor in the present day is denoted H,. Observations of the CMB
(under the ACDM assumption) by the Planck collaboration resulted in a value of
Hy ~ 67.440.5kms 'Mpc™* [50], whereas the use of Type Ia supernovae as standard
candles leads to a measurement independent of the ACDM model by the SHyES
collaboration of Hy ~ 73.04 & 1.04kms~'Mpc ™' [60]. The incompatibility of these
results is referred to as the Hubble tension and is an open question in cosmology,

which we will not discuss further here.

By inserting the perfect fluid form of T}, and the FLRW metric into the Eq. 3.1.3,
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Energy Type w p(a) a(t)
Radiation % xa ' xt
Matter 0 xa? ot
Dark energy —1 constant e

Table 3.1: EOS parameter w, energy density p(a) and scale factor
a(t) scaling for various types of energy.

we arrive at the Friedmann equations,

G k A
H*=""p_— = 4+ — 3.2.4
3 P 22 + 3 ( )

47 A
-—= —— 3 —. 3.2.5
=Tt (325)

The conservation of stress energy V, 7" = 0,! assuming a perfect fluid form of T,

as in Eq. 3.2.1, can be re-expressed as the conservation of comoving energy,
p=—-3H(p+p)=-3Hp(1+ w) (3.2.6)

where w = p/p is the equation of state (EOS) parameter.

We can solve Eq. 3.2.6 to find

poc a0 (3.2.7)

For the time evolution of the scale factor a(t), we can now solve Eq. 3.2.4 to find
alt) o ¢35 . (3.2.8)

In Table 3.1 we list how the energy density and scale factor scale with respect to
each other, and ¢, for various types of energy. Radiation is defined as any relativistic

mass-energy, whereas matter is specifically non-relativistic matter.

Using the Eq.3.2.4, we can define the critical density (when k& = 0 and A = 0) to be,

3H?>

_ o1 3.2.9
Pe= g (3.2.9)

1V, refers to the covariant derivative on the manifold, A\TH = 9\ TH + Ly Tov + K TH.
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which allows us to define a fractional energy density parameter
Q=" (3.2.10)
Pe
for different types of energy density p;. Thus, we can define €2, = € — 1, where €,
is the adjustment to the energy density fraction taking into account the curvature

constant k.

With cosmological observations, we find that, today,
Qyor = ) + Qp + Q) + Q. (3.2.11)

where the energy density of radiation is €, ~ 5 x 107", the energy density of matter
is ©,, ~ 0.3, the energy density of dark energy is 2, ~ 0.7 and €2, ~ 0 indicating
a flat universe [61]. Thus most of the energy content today is that of dark energy,

meaning that the expansion of the universe is accelerating exponentially.

As the energy density relationships in Table 3.1 show, it is evident that earlier in
the universe we had a period of matter domination, and at very early times we had
the era of radiation domination. As a result, the radiation domination assumption is
used throughout this thesis to define the Hubble parameter, energy density evolution,

and temperature evolution.

Observations find that the baryon density fraction €, ~ 0.05 < €,,,, implying that
the majority of the matter energy density is unaccounted for. The remaining energy
density is referred to as ‘cold dark matter’, with cold referring to the fact that it is

non-relativistic. Thus we complete our brief review of the ACDM model.

3.3 Timeline of the Early Universe

Under our current understanding, the universe began with a hot Big Bang, expanding
rapidly in all directions. For the purposes of this thesis, it is not necessary to discuss
the early part of the Planck epoch, when quantum gravitational effects dominated.

We skip forward to the period of inflation.
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3.3.1 Inflation

Inflation was first proposed by Guth [62] to tackle the horizon and flatness problems
in standard cosmology. Much of this review can be found in the inflation section of

Ref. [33].

Horizon problem

The horizon problem stemmed from the fact that the Hubble horizon at the time
of recombination' H(t,.)”' was much smaller than we would otherwise assume
by rescaling our Hubble horizon today. Using the redshift z = ag/a — 1 where
ao is the scale factor today, we arrive at Hy' /Zee Which is the size of the present
day observable universe rescaled to the time of recombination using the Hubble

expansion.

Taking the ratio of the circumference of our observable universe scaled to t,., to
the diameter of the actual observable universe at t..., we arrive at a value of ~ 100,
meaning there were 100 causally disconnected zones at that surface of last scattering.
This would imply that these regions would not be able to thermalise, yet the Cosmic
Microwave Background (CMB) that was emitted at recombination is isotropic to 1
part in 10° [33]. Thus we arrive at the horizon problem: how was the universe able

to thermalise across these seemingly disconnected zones?

Flatness problem

As the contribution of curvature to the energy density of the universe can be expressed
as €1, we can also give it an effective EOS parameter which we can calculate as
w = —1/3. With this, we see that the energy density of curvature scales as a2
Referring to Table 3.1, this would imply that an era of curvature domination would

appear after matter domination, and before the current era of dark energy domination.

1See Section 3.3.4 for more detail.
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Yet by looking at our cosmological history and through observation, we find that k

is so close to zero that this period never occurred.

We can quantify this fine tuning problem by rearranging and differentiating Eq. 3.2.4
to give us,
Qtot(Qtot B 1)

thot
— =1+ 3w)—————= 3.3.1
S = (14 Bu) e (3:3.1)

which describes the evolution of the total fractional energy density Q.. If Qo (t =
0) =1, then Q,; would remain at that value until today. If it is larger, then due to
the period of radiation and matter domination resulting in w > —1/3, €, would be
driven up. If it is smaller, then €, would be driven to 0. What this means is that a
small variance |pyo; — p.| > 0 results in the universe either exponentially expanding

or collapsing, and the universe no longer being flat with k£ = 0.

For the universe to appear flat, at least until today, requires this initial variance
to have an upper bound of (1 — Qu(t = 0)) < 107%; a remarkable degree of fine

tuning [63]. This is the flatness problem.

Slow roll inflation

We assume a scalar field known as the inflaton o drives inflation, with a potential
V(o) [33]. The equation of motion for a scalar field in an expanding flat universe is
given by

G+ 33& + V(o) =0. (3.3.2)

The energy density and pressure are given by

1

Po = 5(72 +V(o), (3.3.3)
1

pr = 50" = V(0), (3.3.4)

and thus the first Friedmann equation gives

o 8rG (1 9

= (50 +V(o—)) . (3.3.5)
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slow-roll
o—

\ /
@
reheating

Figure 3.1: The inflaton in its potential, slowly rolling towards the
minimum. At the minimum, it behaves like a simple
harmonic oscillator and this results in the reheating of
the universe.

We see that if V(o) > #%, then p, ~ —p, and thus the EOS parameter for the
inflaton is w ~ —1, just like dark energy. Thus, as shown in Table 3.1, the inflaton
would cause exponential expansion of the universe while these assumptions remained
valid. Further, Eq. 3.3.1 shows us that as a universe filled with the inflaton would
have (1 + 3w) < 0, resulting in Qy,; being driven towards unity, and thus inflation

would act to ‘flatten’ the universe.

Thus we make the slow roll approximation, assuming that the field o is in a region
where the potential is close to flat, thus it is ‘slowly rolling’ (as shown in Fig. 3.1)
and we can assume ¢ ~ 0 and ¢ < V(o). The slow roll approximation remains valid

when the slow roll parameters ||, || < 1, where

V//
0= mbir (3.3.6)
2 I\ 2
v
e:f?<v>, (3.3.7)

where mp, = (87G)~Y/? is the reduced Planck mass.! We find that Egs. 3.3.2 and

3.3.5 now give

3Ho ~ —V'(0), (3.3.8)

Tn this thesis, we use the capitalised Mp; = G~/2 to refer to the normal Planck mass.
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8rG
~——V
3

H? (o). (3.3.9)

We can integrate the first Friedmann equation to find

a~ el Hit = e (3.3.10)

where H ~ /871G V(0)/3, and N is the number of e-foldings. We see here that, as
pr o< a2, inflation aggressively dilutes away the curvature as predicted, solving the
flatness problem. The horizon problem is also solved as it explains that seemingly
causally disconnected regions of spacetime were in fact causally connected. It is

estimated that these issues could be solved with inflation lasting for N ~ 60 e-

folds [33].

Inflation also provides answers for other questions. The phase transitions of Grand
Unified Theories (GUTs), which unify the strong and electroweak forces, are predicted
to give rise to a high density of magnetic monopoles in the universe [53,64,65]. The
GUT phase transition taking place prior to inflation would mean that these magnetic

monopoles are aggressively diluted away, explaining why we do not see them today.

Inflation also gifts us an explanation for large scale structure. Our observable universe
seems to have galaxies clustering in superclusters, like how our own galaxy, the Milky
Way, is situated with other galaxies in the Laniakea supercluster [66]. Conversely,
regions with a relative underdensity of galaxies such as the Bootes Void exist [67].
Quantum fluctuations in the inflaton field could have been magnified by inflation,

seeding the large scale structure that we observe in the universe today [68].

Reheating

If inflation causes a rapid exponential expansion of the universe, driving p, — 0,
then what about matter and radiation which should also be diluted away? How do

we end up in a universe that has something rather than nothing?

This is answered by reheating, which signifies the end of inflation. As the inflaton

field o approaches the minimum of the potential V (o), 6 becomes too large causing
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the slow roll approximation to no longer hold. Instead, we can ignore the 3H¢ term
in Eq. 3.3.2 to find 6 ~ —V’(¢), which means that the inflaton field behaves like
a simple harmonic oscillator around the minimum of the potential, as depicted in

Fig. 3.1.

The energy of these oscillations is eventually dumped into the SM (or BSM) sector(s)
of the universe, due to model-dependent couplings of the inflaton to SM (BSM) fields.
Thus, the universe is filled with matter and radiation once again through inflaton
decay. Couplings between these fields can result in elastic scattering and number
changing interactions, giving rise to a universe filled with a SM (BSM) sector(s) at

a reheating temperature Th.

Reheating can only occur when the Hubble expansion rate drops below the inflaton
decay rate I'.  The first Friedmann equation tells us that H ~ /p/Mp. During
radiation domination, p « a %, and T o« a . Thus, we find that the reheating

temperature is given by

TR ~ \/FMPI' (3311)

3.3.2 Electroweak Phase Transition

After inflation, the universe undergoes a phase transition where the Higgs takes a
vev, fermions acquire mass, and the electroweak symmetry is broken from SU(2);, x
U(l)y — U(1)gm. This transition is known as the electroweak phase transition
(EWPT). The events pertaining to this work take place in the period between
reheating and the end of the EWPT.

Lattice calculations suggest that in the SM, the EWPT is a crossover [26,27] that
takes place at T' ~ 160 GeV [28]. A crossover is a smooth transition with no
discontinuities in the order parameter which quantifies the state the system is in.
For the EWPT, we use the Higgs vev (®) as the order parameter, and thus (®)(7', z")

is a continuous thermal function of spacetime.

This contrasts with a first order phase transition, where there are discontinuities
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in (®)(T,2"). BSM additions such as an extra singlet [69-75] or a second Higgs

doublet [76-79] open up regions of parameter space with first order phase transitions.

Study of a potential first order EWPT is motivated by a variety of factors: it
could provide the out of equilibrium conditions for baryogenesis, which we discuss in
Section 3.5, and it could result in a gravitational wave signal that could be detected

by space based interferometers such as LISA, which we discuss in Section 3.8.

The EWPT is then followed by the QCD phase transition at 7" ~ 200 MeV, when
quarks and gluons become confined in mesons and baryons (such as protons and

neutrons).

3.3.3 Big Bang Nucleosynthesis

After QCD confinement, and at around 7' ~ 0.1 MeV, protons (referred to as p, or
sometimes in this context as 'H) and neutrons n fuse together to form nuclei of
deuterium d (or 2H), *He, and "Li in appreciable quantities. This process is referred

to as Big Bang Nucleosynthesis (BBN).

In order for the heavier nuclei to form, deuterons are a vital ingredient which can

only exist via the reaction [80]
p+n—d+r, (3.3.12)

which is initially in equilibrium. The equilibrium abundance of deuterons depends
on the abundance of high energy photons. If they have more energy than the binding
energy of the deuterons, which is E; ~ 2.2 MeV [81], they can photodisintegrate the

deuterons back into protons and neutrons.

Using the Maxwell-Boltzmann distribution, we can approximate the number of

proportion of photons that have £ > E; as
Ngyysp, = ne 5T (3.3.13)

where n., is the number density of photons. As, in equilibrium, ngn, = n,n,,, the

P
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ratio of deuterons to all nucleons is thus ng/ng « np eFal T where

ng = 2. (3.3.14)
My

Here, np refers to the number density of baryons/nucleons, thus 7z is the baryon

to photon ratio, a parameter of vital relevance to this thesis, as we will see in

Section 3.5.

Thus, BBN can only proceed once the temperature drops enough such that these
high energy photons are not abundant, and the deuteron abundance can become

significant, which happens at 7" ~ 0.1 MeV.

Through this, we see that the BBN-produced abundances of the Hydrogen, Helium
and Lithium nuclei depend on the parameter ng. In order for these abundances to
line up with observation, ng ~ O(107) [80]. The current BBN based measurement
of the BAU is ng = (6.07732 4 0.15070) x 10~ [82].

3.3.4 Recombination

The period known as the early universe is typically held to end at recombination,
when the universe cooled down enough to allow nuclei and electrons to coalesce and
form neutral atoms. Prior to this, the universe was opaque to light due to photons
Compton scattering with the free electrons and nuclei. The sudden transparency at

the onset of recombination allowed for photons to finally travel freely.

The recombination reaction is
p+e — H+7. (3.3.15)

A rough calculation of the recombination temperature 7, is presented as follows:
as with the deuteron production reaction in Section 3.3.3, we require the proportion
of high energy photons with £ > E|,, where E, = 13.6 €V is the Hydrogen ionisation

energy, to fall sufficiently. Thus, using the equilibrium condition n,n. = ngn., and
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the Boltzmann distribution to approximate the photon density, we find

2
Le

14+ =z,

~ (n, +ny) 'n,e P (3.3.16)

where z, = n./(n, + ny) is the free electron fraction. As protons form the majority
of baryons in the universe, we can take (n, + ny) ~ np and thus
e
14+,

~ ngte B/l (3.3.17)

Solving for a free electron fraction of z, = 0.5 and taking n ~ O(107) gives us

Tree ~ Eo/(101In(10)) ~ 0.6 €V, close to the observed T, ~ 0.26¢V [33].

This signal, released at a relatively late time of ¢ &~ 380, 000 years, is the furthest we
can look back into our universe’s history through optical means. It is known as the
Cosmic Microwave Background (CMB), due to the redshifting of the light into the

microwave spectrum in the present day.

The CMB provides us with an independent measurement of ng as the vast majority
of free photons in the universe are CMB photons. The temperature of the CMB
is 2.7K, which gives us the number density of photons n,. We can then calculate
ng = (6.12 4 0.04) x 107'° [53], which is in remarkable agreement with the BBN

based estimate.

While the electromagnetic spectrum can only provide the CMB as the earliest signal,
the gravitational spectrum may provide us a glimpse far beyond the opaque fog
that exists at recombination. Gravitational waves, which may have travelled from
the electroweak era at T' 2 100 GeV and are practically unaffected by the opaque
plasma, may be detectable with gravitational wave interferometers and tell us a lot

about our early universe. We expand on this in Section 3.8.

3.4 Thermal Statistics

Before we proceed to discuss baryogenesis and leptogenesis, we give a brief summary

of core concepts in thermal statistical mechanics.
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When a sector (a group of particles) is able to exchange energy quickly, it can be
described by a single temperature 7. Fast energy exchange depends on the elastic
scattering interaction rate I'g > H. In this scenario, the sector is referred to as being

in kinetic equilibrium.

If the sector also has fast number-changing interactions I'yy > H, and thus is able

to freely adjust the number of particles, then it also is in chemical equilibrium.

The combination of kinetic and chemical equilibrium is referred to in the literature
as thermal equilibrium. We can define a phase space distribution for a sector in

thermal equilibrium as

1
feaP) = “E0

el (3.4.1)

where for fermions the Fermi-Dirac distribution is given by the plus sign, and for

bosons the Bose-Einstein distribution is given by the minus sign. The chemical

potential p can be neglected in the early universe as |u| << 71" [83]. The energy of a

particle is given by E(p) = \/m” + p°.

If chemical equilibrium doesn’t hold and there is only kinetic equilibrium, then the

phase space distribution is modified by

Fp) = = fealp) (3.4.2)

where n is the actual number density, and ne, is the equilibrium number density.

The number density, energy density, and pressure of a particle species i is given

by [63],
= g ] ). (3.4.3)
pi = (2;)3 / E(p)fi(p)d’p, (3.4.4)
9i |P|2

pi = fi(p) ’p, (3.4.5)

(2n)* ) 3E(p)

where g; are the number of degrees of freedom. The entropy for a particle species is
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given by,
§=—, (3.4.6)

whereas the Hubble rate is derived from Eq. 3.2.4 to be
8tG
Hzﬂ%?p (3.4.7)

3.4.1 Relativistic Dynamics

In the relativistic limit, where T' > m, we find that the number densities are given
by:

&) g, 18 (bosons) ,
n;=14 (3.4.8)

(%) %giT?’ (fermions) ,
the energy densities are given by:

2

= 4
2591 (bosons) ,
(g) % g;T*  (fermions) ,

and the pressures are given by p; = p;/3 as the EOS parameter is w = 1/3 for

radiation.

3.4.2 Non-Relativistic Dynamics

In the non-relativistic limit, where 7" < m, the exponential part of f,,(p) dominates

over the 1 term, giving us the Maxwell-Boltzmann distribution
fup(p) = e FOIT (3.4.10)

which neglects quantum statistics. This gives the non-relativistic limits of [63]

T 3/2
m:%(g;> e~mi/T (3.4.11)
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During the era of radiation domination, which is the era that the work in this thesis
is set in, the non-relativistic contributions to the Hubble expansion in Eq. 3.4.7 can

be neglected.

The contribution of the relativistic degrees of freedom to the Hubble expansion in

this era allows us to define the effective relativistic degrees of freedom,

. 7
g :Zgﬁngf, (3.4.14)
b f

where we sum over b bosons and f fermions that are relativistic. When all particles
in the SM are relativistic, ¢g* = 106.75, and this drops as degrees of freedom become

non-relativistic.

3.5 Baryogenesis

We turn our attention to ng, the baryon-to-photon ratio which we have discussed
in previous sections. However, we did not discuss the fate of the anti-baryons, or

antimatter more generally. What happened to the antimatter in the universe?

Observations in our solar system show that antimatter cannot exist in the present
day in appreciable quantities [84]1 as they would annihilate with the solar wind and
provide a gamma ray signal. If entire stellar systems are composed of antimatter,
their fraction in our galaxy must be less than 10™* [84-87]. If large scale regions in
the universe existed that consisted entirely of antimatter, we would see gamma rays
being emitted at the domain walls separating these region. The constraints on these
observations show that these regions would have to be as large as the observable
universe [85,88,89]. Thus, the evidence points to there existing a baryon asymmetry
of the universe (BAU); the process that creates this asymmetry is referred to as
baryogenesis. As inflation is likely to dilute away any baryon asymmetry, we know

that baryogenesis must occur after inflation.

!Except from those that form in trace amounts from various astrophysical events.
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Due to the approximate C' symmetry of the SM, we can assume that baryons and anti-
baryons were produced in almost equal quantities at the beginning of the universe.
The baryons and anti-baryons would then annihilate, producing copious quantities

of photons, until only the surplus baryons are left in the universe.

Thus, the BAU is given by

np = 2B (3.5.1)
n"/

where these quantities refer to the number densities of the baryons and anti-baryons.
As anti-baryons have not survived until today, this corresponds to the present baryon-
to-photon ratio we discussed in the previous section, which is why we employ the

same notation.

3.5.1 Sakharov Conditions

As the surplus baryons make up the non-dark matter content of the universe today,
the BAU is responsible for the very existence of humanity and also the large scale
structure of the universe. This significance motivates us to explore the question of
its origin. Sakharov’s conditions are necessary and sufficient to give rise to a BAU,
and they are given by [90]:
1. Baryon number (B) violation, i.e. processes such as
X —+B+Y (3.5.2)
exist,

2. C' and CP violation, i.e. the rates

X - B+Y)£AT(X = B+Y), (3.5.3)

3. Out-of-equilibrium conditions, such that

X —>B+Y)#I'(B+Y — X). (3.5.4)
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3.5.2 Electroweak Baryogenesis

B violation exists in the SM through sphaleron processes, which we will elaborate
on in a moment. C' and CP violation also exist in the minimally extended SM as
there is a small amount of C'P violation sourced by the CKM and PMNS matrices.

Combined with the P violation in the weak interaction, this leads to a C' violation.

Departure from equilibrium is trickier. While equilibrium conditions are violated
through the expansion of the universe, this departure seems to be too weak to source
a BAU [85]. This motivates study of a first order phase transition (see Section 3.8)
as it could provide the out-of-equilibrium conditions at the bubble walls that are
necessary for the BAU to be produced. Such models are referred to as electroweak

baryogenesis, as the Sakharov conditions are satisfied at the electroweak scale.

Sphalerons

We return now to sphalerons. We see that we can define a global U(1)z symmetry
that rotates the phases of all quarks in the SM, as Q) — et/ *Qr.' We can define a
similar U(1); symmetry for the leptons. Associated with these symmetries are the
classically conserved currents j% and j7. The baryonic current is [91-95],

. 1 ~ _ -

it =52 (@@L + ufyuh + diy"df) . (3.5.5)

f

where f is a sum over all the generations. As the current is conserved, 8Mj]’§ =

0

,.Jr, = 0. However, this doesn’t hold at the quantum level. Due to loop corrections,

we find that [85,95]

g L B T/ HV 2 nlg
Oulls = 071 = 31 (—20° Te(W,, W*) + g F,, ") (3.5.6)

where ny = 3 is the number of quark generations, WHY = hvab W5, and likewise for
.

For the bosonic electroweak sector, there are infinite field configurations (vacua)

!The 1/3 factor in the exponential is present as a quark contributes 1/3 of baryon number.
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that minimise the energy functional. These vacua are distinguished by the Chern-
Simons number N¢g [85]. As the fermionic energy of a configuration depends on the
bosonic background through coupling, the change of Ngg results in the creation of
fermions out of the background fields. Thus, processes that change baryon number
are made possible by the transitions between these vacua [96,97]. These vacua have
barriers between them, characterised by the sphaleron energy Eg,, ~ my /ay,. The
sphaleron is defined as the field configuration that gives the maximal energy along
the path of least action between the two vacua, or in simple terms, the point at the

‘top of the hill’ between the valleys [85,98].

As we see that 0,(jz — jr) = 0, the sphaleron processes preserve B — L but violate
B+ L. B (and L the lepton number) are also violated individually. This violation
can be quantified by [99]

A(B+ L) =2N;ANcg, (3.5.7)

where AN¢g is the change in Ngg across different vacua. As ¢’ = gtan(fy), ¢ < g,
sphaleron processes only involve SU(2); doublets at leading order. This means that

AB = AL = 3 processes such as
DEDMDT — uLdeLCLdeLtLbLbL (358)

are possible [94]. By balancing the chemical potentials of ingoing and outgoing
particles for a rapid sphaleron process, we can derive a relation between the B

asymmetry and the B — L asymmetry, given by [100]

Snf + 4nh

- STk (B 3.5.9
22nf+13nh( ) (3:5.9)

where n; is once again the number of quark/lepton generations, and n, is the number
of Higgs doublets. For the Standard Model with ny = 3 and n, = 1, we arrive at
a sphaleron conversion factor of ag,, = 28/79. Sphaleron transitions occur at a
rate [94]

Typn o e PornM/T (3.5.10)
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which is only larger than the Hubble expansion prior to EWSB. Thus, sphalerons are
exponentially suppressed and effectively shut off after the EWPT. This means that
the B violation condition is no longer satisfied afterwards, and models of baryogenesis

that depend on this must source the BAU prior to or during the EWPT.

3.6 Leptogenesis

As sphaleron processes active above the EWPT can convert a lepton asymmetry
into a baryon asymmetry, it is possible to transform the question of ‘where does
the baryon asymmetry come from?’ to ‘where does the lepton asymmetry come
from?’. Motivation for this comes from the fact that the C'P violation in the CKM
matrix alone is too weak to source the BAU [94,101], incentivising a study of the
PMNS matrix and the lepton sector as a source for sufficient C'P violation. Such
models are referred to as leptogenesis models, and were first proposed by Fukugita

and Yanagida [29].

In leptogenesis, a heavy Majorana right handed neutrino (RHN) decays out of
equilibrium into the Higgs and a light left handed neutrino. This out of equilibrium
decay seeds a lepton asymmetry (specifically a B — L asymmetry) that is then

converted to a baryon asymmetry through sphaleron processes [102-104].

3.6.1 Type I Seesaw

The model used for this interaction is typically the Type I Seesaw mechanism,
which was introduced as a model for why the SM neutrinos are so light [105-108].
Incidentally, the GUT scale RHNs and their C'P violating interactions introduced

by the model naturally lead to leptogenesis.

The Type I Seesaw Lagrangian supplements the SM with the terms that we provide
later in Eq. 4.1.1. We find the Yukawa term sources the decays N — &+ L (® + L).

Individually, these are C'P-violating as they are AL = 1(—1) processes. If these
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decays happen at different rates and leptons are created more than anti-leptons, and
if the decays happen out of equilibrium such that the inverse decays are slower than

the decays, then we can seed a lepton asymmetry.

The seesaw formula provides the relation between the RHN mass matrix My and

the light neutrino mass matrix M, at tree level,
M, =~ v*YTMZ'Y , (3.6.1)

where Y is the Yukawa matrix in Eq. 4.1.1 and v is the Higgs vev. Thus, we see
the origin of the moniker of this model; just like with a seesaw, the heaviness of My
makes M, much lighter. Leptogenesis therefore provides an elegant solution to the

BAU as well as light neutrino masses.

3.6.2 Boltzmann Equations

In the Casas-Ibarra parametrisation of the Yukawa matrix [109], Y = %U VM, RT\/My,
where v = 174 GéV is the vacuum expectation value of the Higgs,! U is the leptonic
mixing matrix, M, (My) is the diagonal light (heavy) neutrino mass matrix and R

is a complex, orthogonal matrix given by

1 0 0 coswy 0 sinw, cosws sinws 0
R=[0 cosw, sinw, 0 1 0 —sinw;y coswy 0, (3.6.2)
0 —sinw; cosw; —sinwy 0 cosws 0 0 1

where the w; = z; + 1y; are complex angles. We see that typically a heavier RHN
gives a heavier Yukawa coupling with the SM sector. This means that, assuming a
mass hierarchy where my,, my, > my,, the heavier RHNs would be coupled more
strongly to the SM and thus their decays would not deviate from equilibrium as
much as N;. Thus in vanilla leptogenesis models the dominant contribution to the
B — L asymmetry comes from the out-of-equilibrium decays of the lightest RHN,

Ny. These typically decay around a temperature of T ~ my; .

INote that this definition has absorbed the 1/4/2 into v.
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To illustrate vanilla leptogenesis, we derive differential equations to track the number
densities of the system, known as Boltzmann equations, for a simplified scenario
where only N; decays and neutrino flavour effects are ignored. This can be described

by:

dN _ _
M — _D(N, = L®)Ny — (N, — LO)Ny
dt 1 1 (3.6.3)

+T(L® — N;{)N,Ng + (L& — N,)N;Ng
where Ny , Np and Ng are normalised number densities for heavy neutrinos, leptons
and Higgs and vice versa for the antiparticle densities. Conventionally, these are
normalised such that they represent the particle numbers in a comoving volume

containing a single photon at the start of the evolution.

We assume:

1. A thermal averaging over the statistical distributions of each incoming particle

3
P] .
(2m)*2E,,

1, by integrating over the phase space distribution [

2. A Maxwell-Boltzmann distribution f, oc exp(—Ew /T) instead of quantum

statistics.

3. Kinetic equilibrium conditions, i.e. fy /f5 & Ny, /Ny, where N is the

number density of NV; at equilibrium.

CPT invariance allows us to equate |[M(N; — L®)]> = [M(L® — N,)>. The

exponential form of the Maxwell-Boltzmann distribution gives fy! = f7"f5'.
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, . o1
Using these relations, we can derive,

dNy,
dt

= —I['(N — L®)Ny, — I'(N; — L®)Ny,
+T(L® — N,)N'Ng? + T(L® — N,) N Ng!

= —I(N; = L®)Ny, — [(N; = L®)Ny,

(3.6.4)
+T(N; — LO)NJ + (N, — LO)N
= — (T(N; = L®) + (N, — L®)) (Ny, — N
- _FDl(NNl - Nﬁ/%) .
where
Ki(z=my /T)
0 0o M1 N,
Ip (z) =Th (mn, /En,) =T, Roole = . /T) (3.6.5)
is the thermally averaged decay rate of the RHN, and
0 = 7 m%m?v
['p, =T(Ny = L®) +T'(N, — L®) = < > (3.6.6)
(0
is the rest frame RHN decay rate [110]. Here,
(YY) o’
my = —=4 (3.6.7)
my

1

is referred to as the effective neutrino mass.

The functions K, K, are the modified Bessel functions of the second kind, and arise
from the thermal averaging of a Maxwell-Boltzmann distribution. It is useful to

rewrite this Boltzmann equation with respect to the scale factor a as

dNy .
=2 = - (2) (Nw, = N3 - (3.6.8)

The Feynman diagrams that contribute to the 1-loop decay rate N; — L® are
shown in Fig. 3.2. Interference between the tree-level amplitudes and the 1-loop

amplitudes results in C'P-violation in the RHN decays.

!Note that the SM particles are generally assumed to be in thermal equilibrium.
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Ly,

N; \
@ \\\ EL @ \\\
(a) Tree-level (b) 1-loop (self-energy correction)

(c) 1-loop (vertex correction)

Figure 3.2: Feynman diagrams of the ¢* theory contributing to the
matrix element up to NLO.

We can derive a similar Bolzmann equation for the B — L asymmetry,

dNp_p,

H
“ da

= —,T'p,(2) (NNl — N§} ) — W,Np_; (3.6.9)

where the C'P asymmetry parameter is given by

(N, — L®) — T(N, — L®)
(N, = L®) +T(N;, — L®)’

(3.6.10)

€1 =
and W, is the ‘washout’ rate that can reduce the B — L asymmetry. The main
process that contributes to the washout is inverse decays [111], however decays and
lepton-number-violating scatterings also contribute [94].

3.6.3 Washout regimes

We can calculate the washout rate, assuming inverse decays as the only contributor,

as [111]
I'p, Ny,
Wi=—"F—"%txK 3.6.11
1 9 qu X ) ( )
where the ‘washout parameter’ K is given by
Y m
K = b (3.6.12)

H(T =my,) m,’
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Here, m, is the equilibrium neutrino mass given by [110]

B 167>/ (TR

m, = ——Y""" ~1.08x 10726V 3.6.13
3v/5 Mp ( )

Weak washout

For K < 1, we are considered to be in the weak washout regime, where there is a
strong dependence on the initial conditions [110]. Leptogenesis typically makes use
of either the vanishing initial condition, where the initial N}Vl = 0, or the thermal
initial condition, where N]i\,l = Nf\,ql. For the vanishing initial condition, the inverse
decay rate is not fast enough to quickly populate the N; sector, and thus it takes a
longer time for Ny, to reach the equilibrium number density - well after the comoving
equilibrium number density has started falling, and the heavy neutrinos have become

non-relativistic.

Strong washout

In strong washout regimes, K > 1, the couplings are strong enough that the inverse
decays can quickly populate the IN; sector in the case of a vanishing initial condition,
prior to decays and while NNy is still relativistic (1" 2 my, ). Thus the dependence on

initial conditions disappears.

The question of initial conditions depends on the UV origin of a leptogenesis model.
The vanishing initial condition is used when there is no reason for the RHNs to be
already populated prior to leptogenesis. If there is inflaton decay into the RHNs
and thus they are populated at the reheating temperature, then they could exist in
thermal equilibrium prior to leptogenesis. This thermal equilibrium would require
fast elastic scattering and number-changing interactions, which we expand on in

Chapter 4.



84 Chapter 3. Early Universe Cosmology

3.6.4 Flavour effects

A full treatment of leptogenesis will involve the heavier RHN, as well as the flavour
effects that impact on the dynamics of the number densities and Ng_y [100,111-115].
Sources of flavour effects include interactions that depend on charged lepton Yukawa
couplings [116] which can modify the BAU by an order of magnitude [111,117,118],
and differences in the heavy neutrino Yukawa couplings [119-122] that lead to an
inequitable seeding of the individual lepton flavour numbers L., L,, L.. These are

relevant to calculating B — L as the sphaleron processes preserve

individually [111]. In Eq. 4.4.4 we provide a full expression for the flavour contribu-

tions to the B — L asymmetry.

3.6.5 Calculating np

The baryon asymmetry is based on the final value of the B — L asymmetry at the

end of leptogenesis, N éf s SO
(3.6.14)

where ag,, = 28/79 is the factor for sphaleron conversion from B — L to B [100],
and N;* is the photon number density at recombination, to account for the change

between the end of leptogenesis and the recombination era.

3.6.6 Naturalness and Resonant Leptogenesis

Models of vanilla leptogenesis result in the Davidson-Ibarra bound on the minimum
mass of the Ny, my, 2 1072 GeV [123], in order to generate a sufficiently high
np that matches observation. However, this comes into tension with naturalness
constraints such as the Vissani bound [30], which requires the 1-loop correction to

the Higgs mass arising from the heavy neutrinos to not be ‘too large’
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Figure 3.3: 1-loop correction to the Higgs propagator in the Type
I Seesaw mechanism.

Fig. 3.3 presents the Feynman diagram for the 1-loop correction to the Higgs mass
arising from the Type I Seesaw mechanism. The Higgs hierarchy problem is that, if
there exist Higgs-coupled particles with masses Tewsp < m < Tgyr, where Toyr
is the energy scale of the Grand Unified Theory which is expected to supersede the
SM, then those heavy particles will have a tendency to pull the Higgs mass up to
scales higher than that of EWSB, yet this is not observed. The loop contributions
will have at least a quadratic dependence on the mass of the new particles, based
on a Higgs portal coupling similar to ®*¢? where ¢ is a new heavy particle. As the
Higgs mass is not at a higher energy scale, then the tree-level mass must be almost
as large as the loop correction du, such that they finely cancel out and leave the

Higgs mass at the EWSB scale my ~ O(10* GeV).

This is an example of a fine-tuning problem, and the precise boundary between
what is considered to be finely-tuned or not is arbitrary. In App. 4.5 we quantify
fine-tuning using defined measures in order to make comparisons between benchmark

points in different models.

However, in Ref. [30] the fine-tuning limit is taken to be one order of magnitude

higher than the EWSB, at about 1TeV,

3
Sp2 ~ 1n< a ) < (1TeV)? (3.6.15)

2mv mpy,

leading to the Vissani bound of my, < 107 GeV. We see that this is incompatible
with the Davidson-Ibarra bound, meaning that vanilla leptogenesis is a finely-tuned

model.

Resonant leptogenesis [124] was introduced as a specific regime of leptogenesis that
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alleviates this specific fine-tuning issue. This is based on the observation that for
RHN mass splitting comparable to the decay widths, [my, —my,| ~ F%m, the C'P-
violation sourced from the self-energy contribution to the RHN decay (Fig. 3.2(b))
can be significantly enhanced [125-127]. This results in the observed BAU being
able to be produced for lower RHN masses of around my, ~ 10°77 GeV, thus giving
us a model of leptogenesis compatible with naturalness constraints from the Higgs
sector. However, this imposes a strong constraint on the degeneracy of the neutrino

masses and limits the parameter space available for leptogenesis.

3.7 Effective Potential

The quantity most relevant for phase transitions is the effective potential, which
defines the potential energy of a field configuration in a given theory, taking loop
corrections into account. The effective potential is defined with respect to the

generating functional
Z[J] = eV = / Dep S d'2 @) (3.7.1)

where J(z) is a source current coupled to the field ¢(x), and [ D¢ is a functional
integral over the space of field configurations. A Legendre transform of W gives the

effective action

Lloe(x)]

WiJ] - / &2 J (2)6,(z), (3.7.2)

where ¢.(z) = (0] #(x) |0) is referred to as the classical field. If we assume that ¢, is

a constant ‘background field’, we can write

D(6.) = = [ d'aVia(6.) = ~WVealoo) (3.7.3)

where V g(¢.) is the effective potential.

We find that the functional derivative of the effective action gives us

oT[¢.]
06c()

— —J(z), (3.7.4)
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and in a vacuum with vanishing source J(x) = 0, we find

5F[¢C] _ avzeff _

0¢c(r)  Dpe

0. (3.7.5)

Thus the vacua of the theory are given by the minimum of the potential V g, making
it a powerful tool for studying phase transitions. From now on, we will generally
drop the subscript ¢ on the background classical field and just refer to the effective

potential as V(¢).

3.7.1 Zero Temperature
The effective potential at 1-loop is given by
V= ‘/tree + Vvl—loop ) (376>

where V,, . is the tree-level potential. The calculation of the 1-loop contribution
requires the summation of all 1-loop diagrams with zero external momenta; this is
because the constant background field results in vanishing of the spatial derivatives
of ¢ (and thus the external momenta). As an example, the 1-loop contribution for

the scalar ¢* theory can be expressed diagrammatically as

Vitoop >® +>Q<+#><+... (3.7.7)

where we neglect the bubble vacuum diagrams as they are constant with respect to
the field configuration ¢, thus leading to a constant shift in the potential that does

not affect the dynamics.

With the ¢* Feynman rules, we can calculate the 1-loop contribution as

> d'q [ (=iNe® \"
‘/1—100}) - n;l 2” . 2TL / (27_(_)4 (qQ _ m2 + Z-E (378>
i dq 1 Ap?
. n(1—--—-"" 3.7.9
2./ (2m)! n( 2q> —m?® +ie ( )

. A 2 i
_ % / U 1, <QE . V“‘ee(‘ﬁ)) 4 / dS (3.7.10)
0

qj25+m2
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where the symmetry factors 1/2n and 1/2" arise due to the permutation of vertices
and the interchangeability of external legs at each vertex respectively [128]. We have
summed over the infinite sum, and then Wick rotated into the Euclidean spherical
integral as in Section 2.6.2. We have then introduced an ultraviolet cutoff A for
the momentum integral, as an alternative method of renormalisation to that of
dimensional regularisation. For illustrative purposes, we can take the massless case

such that the 1-loop potential evaluates to [129]

A¢? A¢?
Viloop = 641%2 {A¢2A2 + ff [ln (27;2 —~ ;)]} . (3.7.11)

We see that this is divergent in two senses: it has a UV divergence due to A, and
an IR divergence due to the logarithmic term. We can introduce counterterms to

handle the divergences

V($) = Vireo(®) + Vitoop(9) — Im*¢* — 6A0". (3.7.12)

We can impose a renormalisation condition that ensures that the effective potential

gives the tree-level mass in its vacuum, such that

&>V
— =m’=0. (3.7.13)
do $=0
This results in the counterterm
AAZ

A similar condition cannot be applied for the quartic counterterm due to the IR

divergence in the logarithmic term. We instead choose a mass scale pu so we can

impose
d*v
d¢ P=p
from which we can find
22 A? 2
N = — 5 |In|{— | — —5 . (3.7.16)
2567 1 6

giving us the renormalised form of the 1-loop effective potential for the massless ¢*
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theory

A N’ >\ 25
V(g) = Iqu‘ trg2 [m (;’;) — 6] o, (3.7.17)

where the renormalised 1-loop contribution is the Coleman-Weinberg potential. A
similar method can be used to calculate the effective potential in theories with gauge
bosons, fermions, and scalars as well. For the SM Higgs background ¢, the finite
part of the Coleman-Weinberg potential is [130]

Vow(d) = Zgimﬂqb) [ln (m?(;b)) - 011 : (3.7.18)

i

where g; are the d.o.f. of Higgs interacting particles, m;(¢) = 97V (¢) are the Higgs

field-dependent mass terms, and

[« ]e]

(vector bosons)
C, = . (3.7.19)

(scalars + fermions)

N

3.7.2 Matsubara Formalism

At finite temperature, interactions with particles in the thermal bath induce thermal
corrections at higher loop order that must be taken into account. The energy of a
system is given by the Hamiltonian H= Ss, which is the spatial sum of kinetic and
potential energy of a system, and is identical to the Euclidean action in 3D. Wick
rotating t — i7, and integrating 7 € [0, 5) where = 1/T is the inverse temperature,

we find for the generating functional
Z[0] = e = eSS = oPH (3.7.20)

We denote Z[0] = Z from now on and refer to it as the partition function, in analogy
with the partition function from statistical physics. Thus, the thermal expectation

value of an operator O is given by the thermally averaged sum over states

1

Z

> (n] e PO |n) = ;Tr (675g0> : (3.7.21)

n

(0) =
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Reproducing the derivation in Ref. [128], the thermal 2-point correlator function is

given by,
(e300, 3)) = 5 T (P o(t, x)(0, ) (3.7.22)
_ ;Tr (e (2, 3) 1D (—i8, y)e10P)) (3.7.23)
= T (P08, )01, %)) (3.7.24)
= (=B, 3 () [(—iB, ¥ (E, %) (3.7.25)

(0(t, x)p(=if, y)|(t, x)¢(=iB,y)) ¢ is a boson,

— (U(t, x)¢(=iB, y)[¥(t,x)(=iB,y)) ¢ is a fermion,
(3.7.26)

where we use the quantum time evolution ¥ (t) = eiﬁ%(O)e—im. This is the Kubo-
Martin-Schwinger (KMS) relation, and after the Wick rotation it shows that the
field ¥ (0,x) = 9 (5, x) and thus is periodic in inverse temperature. Here, we see

clearly that the imaginary time 7 is identified with the inverse temperature .

The frequency of these periodic modes is referred to as the Matsubara frequency [131],

2nm’T cyclic, for bosons,

Wy, = (3.7.27)
(2n+ 1)7T  anti-cyclic, for fermions,

which provides an energy contribution to the Euclidean square momentum p3 =
w2 + p? due to oscillations in the time component of the field. Any 4D momentum

integral can now be converted to a sum over Matsubara modes through the relation

/f(qg) diq = 2m'TZ/d3q Fl—q? — w?). (3.7.28)

We reproduce the 1-loop, ¢-dependent contribution to the effective potential for a

general case [130],

_ i d'q ¢’ —m;(9)
‘/l—loop - 5 zzzgz/ (2’/T)4 In <q2 — m?(O) + ZG) (3729)
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gz Z / 24wl +m(@) — In (g + wd +m(0))]

(3.7.30)
3 Z ; gz/ o) In (a® +wp +mi(9)) . (3.7.31)

where we disregard the ¢-independent contribution in the final line, as it would
provide a constant shift for the potential. In the 7" — 0 limit, the spacing between
Matsubara modes goes to zero. Thus, the sum of modes becomes an integral over
frequencies, just like in the Coleman-Weinberg case. Therefore, the temperature
independent part of this simply leads to the Coleman-Weinberg potential, whereas

the temperature dependent part is [130]

iT4 o _ 2 m2 2
Vi = Z 927r2 /0 dq ¢’ In (1 T e VI Imi@/T > (3.7.32)
ng4 ng4 m2(¢)
_ J , 3.7.33
2o () S (). o

where the minus sign is used for bosons, and the plus sign for fermions. In the final
line we have split up the sum into bosonic and fermionic parts, and have made an

implicit definition of the thermal bosonic and fermionic functions Jg(x) and Jp(z).

In the high temperature limit (m/7 < 1), we find the expansion of Jg(x) gives
s [132]

T (m;(f)> = —g; + 214 (m;(f)) = 1; (m;(f)f +0 (W) . (3.7.34)

whereas the expansion of Jx(x) results in

Jp <m2(¢)> __ 1 <m2(¢)> +0O <m4(¢>> . (3.7.35)

T? 8x90 48 \ T2 T

Therefore, we see that the bosonic thermal function provides a cubic mass term that
the fermionic thermal function does not. In the SM, we know that the field-dependent
masses of the gauge bosons and fermions are linearly dependent on the Higgs field
(which is why the masses are m o< v in Sec. 2.4.2). These two results mean that only

bosonic contributions provide a cubic field correction, at high temperature, to the
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thermal potential. It is trivial to see that a cubic term corresponds to the creation
of a thermal barrier between minima in a potential [132]. Thus, a thermal barrier
can be enhanced with heavier bosonic particles coupling to a scalar undergoing a

phase transition. Finally, our total thermal potential at 1-loop is given by
V = Vigee + Vow + V. (3.7.36)

We finish this subsection by defining Debye masses as thermal mass corrections,
which arise due to interactions with the thermal bath. These can be calculated
perturbatively by modifying the integrations over loop momenta using the Matsubara
formalism. The Debye mass for the scalar ¢ can be calculated simply via

OVr

o (3.7.37)

2
mp =

Gauge bosons and fermions also acquire Debye masses, and in the next section we
will see that the gauge boson Debye masses are crucial for the calculation of the
Higgs effective potential. The Debye mass is acquired by the zeroeth component of
the gauge boson, as it oscillates with 7 = § in Euclidean space, and acts as a scalar.
Thus, in the literature, the Debye masses for gauge bosons are also referred to as

‘temporal scalar masses’.

3.7.3 Daisy Resummation

Studying Eq. 3.7.32 for when T > m}(¢), we see that the logarithmic part of the

bosonic function

In <1 - e_\/‘?> — In(0), (3.7.38)

thus Jg(x) diverges at low energy. This means that perturbation theory breaks down
for the low momentum (or long distance) modes of bosons at high temperatures, as
they become highly occupied. This is Linde’s infrared problem [133,134]. The source
of this in the bosonic thermal function is the existence of the ‘soft’ zero modes with

Matsubara frequency wy, = 0, which do not exist for the fermions as their lowest
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mode is wy = 277", thus there is no IR divergence.

To investigate this further, we can split up the m? 1-loop correction in the scalar ¢*

= m%—loop + sz ) (3739)

where m%_loop denotes the temperature independent part of the correction, and the

theory as

m?% denotes the Debye mass, i.e. the contribution from the Matsubara modes. This
is also referred to as the hard thermal loop contribution. The hard thermal loop
scales as m3, o« AT? to leading order (135, 136], which comes from the zero mode
contribution at high temperature. As the Debye mass contribution can be negative,
it can cancel out with the zero-temperature contribution at a certain temperature.
This effect is associated with phase transitions, as it results in the high temperature
restoration of a vacuum at the origin [134]. For the #* theory, the associated
‘critical temperature’ is roughly given by solving m?*(T) = m* — XT& = 0 to give
To ~m/ V.

However, for ‘daisy’ diagrams that have N-loops around the central loop, the leading

order scaling in temperature is [136]

(3.7.40)

where m is the tree-level mass of the theory. Near the critical temperature of a phase

transition, we find that as To ~ m/v/,

T2
A~ 1, (3.7.41)
m

)\NTQ N_%
PN oc( 3 ) A
o m

and the daisy diagrams provide a contribution independent of the number of outer

such that

N

T? ~ A2T?, (3.7.42)

loops (or ‘petals’) N. This is an example of the breakdown of perturbation theory
outlined at the beginning of this section. The origin of this is in the soft bosonic

zero-modes that run in the central loop, which are ‘screened’ by the ‘hard’ non-
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zero Matsubara modes running in the outer loops which then dominate at high

temperature.

One way to tackle this problem is through daisy resummation, which aims to find a
converging infinite sum of all N-petal daisy contributions to the effective potential.
To outline this, we follow the procedure in Ref. [134] and start by splitting up the

1-loop contribution for the effective potential (Eq. 3.7.31) as
Visloop = Z Z 9i / s (@’ +wh + mi(e)) (3.7.43)
H(0) + Zgz b / P+ w +mi(9))

n=—oo

(3.7.44)

Veor ({3 (0)}) + Viara({mi (0)}) (3.7.45)

where we have separated the bosonic zero mode into a soft contribution. This
is in contrast to before where we split it up into the zero-temperature Coleman-
Weinberg part and the temperature-dependent part, as both contributions here are

temperature dependent.

By replacing the tree-level field-dependent masses with thermal masses ({m;(¢)} —

{m?(¢) + m%}), we find that the soft contribution is resummed such that

Veor({mi (9)}) = Vasi ™™ ({mi (9)}) - (3.7.46)

Next, the 1-loop daisy contribution is provided by the difference between the re-

summed and soft contributions,
‘/dalsy ‘/slgefiummed - ‘/;oft (3747)

such that we can write the Arnold-Espinosa thermal effective potential at 1-loop [135]
as

V= Vvtree + VCW + VT + V:iaisy . (3748)

The subtraction of the soft contribution counteracts the one provided by Vow + Vp =

Vot + Viara such that the only soft contribution that remains is the daisy resummed
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one [134].

3.7.4 Dimensional Reduction

The perturbative method with daisy resummation is conventionally used in numerous
phase transition studies. However, this method results in significant theoretical
uncertainties, primarily due to the choice of renormalisation scale [134]. It has been
shown that dimensional reduction (DR), initially devised in Refs. [137-143], is an
alternative method that provides a significant reduction in theoretical uncertainties
[134]. The method involves perturbative calculations in a 3D effective theory of the

bosonic zero-mode fields.

To motivate this, we consider first the Euclidean Lagrangian of a generic theory in

the Matsubara formalism, using the notation in Ref. [144],
L=L(p,A,,1,S,5), (3.7.49)

where ¢ are scalars, A, are gauge bosons and ¢ are fermions. The scalar fields S
and s refer to the heavy (non-zero Matsubara) and soft (zero) modes respectively,

which acquire an effective mass

mg ox w1 (3.7.50)

gl gauge bosons
mg o (3.7.51)

VAT scalar bosons
respectively where g represents a gauge coupling. These masses are effective masses of
these modes, and can be thought of as corresponding to the energy of the oscillations
in the imaginary time direction 7 € [0, 5). At high temperatures, the heavy modes
(from n # 0 bosons and all fermions) can be integrated out as they correspond to
small distance physical effects, which are less relevant for long distance phenomena

across the potential (such as phase transitions), to give the dimensionally reduced
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Lagrangian

L3 = 30450, AP 43D 3D (3.7.52)

Thus the low energy EFT can be constructed as one purely in the spatial dimensions,
as we are left with zero modes that do not oscillate in the imaginary time direction.
AP are the purely spatial gauge field modes, A" are the gauge temporal scalars,

¢3 and s3 are the scalars and soft scalars in 3D respectively.

A lower scale, called the ultrasoft scale at ~ ¢*T /7, further separates the ultra-low-
energy spatial modes A" from the temporal scalars A3” with Debye masses on the
order of the soft scale. The soft scalar s°" is also separated from those spatial modes.

Integrating out those modes leaves us with the ultrasoft Lagrangian,
L£PP = L3, AP) | (3.7.53)

which encapsulates the long distance physics. Thus, DR is well motivated for the
separation of scales

2
Y7« g < T, (3.7.54)
T

The temperature dependence of the theory is absorbed into the mass and coupling
parameters of the soft and ultrasoft theories. These parameters are obtained through
matching the 3D (soft /ultrasoft) parameters to the 4D ones, such that the correlation
functions of both theories give the same result. A detailed procedure for obtaining
the matching relations has been outlined in Refs. [141-143], and a demonstration

can be found in Ref. [145].

After performing loop corrections for the effective potential in the 3D theory, the

4D thermal effective potential can be calculated via the relation

Vi(6,T) = TV (%T) , (3.7.55)

where the temperature dependence of the 3D theory is found in the 3D parameters.
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3.8 Gravitational Waves from FOPTs

In Section 5.4, we describe how to calculate phase transition parameters &, 3 /H, from
an effective potential, as well as the gravitational wave power spectrum nghQ( f)-
In this section we provide more detail about gravitational waves, first order phase
transitions as a GW source, and how the space-based interferometer LISA could

detect them.

3.8.1 Gravitational Waves

We know that, in GR, ¢ the speed of light is the speed limit of causality; any effects
on the curvature of space from changes in 7}, are not instantaneous. Thus, the idea
of perturbations in spacetime travelling as a wave naturally emerges. These waves
are gravitational waves, which were first predicted shortly after the formulation of

GR, and were first observed a century later by LIGO in 2015 [146].

Gravitational waves can be described by small perturbations around flat Minkowski
spacetime, g, () = 1, +h,,(x), where, by dropping terms of order h? or greater, we
can linearise the Einstein equation to find a perturbative solution for gravitational
waves. We wish to find the solution of gravitational waves travelling through a
vacuum (i.e. 7,,=0), where we assume that the contribution of the gravitational
waves to the stress-energy tensor are small enough to neglect. We can insert this
metric into the vacuum Einstein equation, and for simplicity define the trace-reversed
perturbation as EW = hy — %nw,ho‘a. Then, using the Lorentz gauge 8JL’“’ =0, we

find that the solution is given by [147]
h,, =0, (3.8.1)
which is simply a wave equation. Thus

By = Re (e,,e"") | (3.8.2)

where £, is a wavevector, and €, is an ansatz tensor. There is still enough redund-
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ancy in the degrees of freedom that we can impose an additional gauge condition;
the transverse-traceless gauge, where the perturbation can be chosen to be purely

spatial and traceless such that ho; = h;y = h*, = 0 [147]. This means that h,,, = l_zm,.

We find that this gauge condition imposes €y = €,y = €', = 0, as well as ke =
This last result shows us that gravitational waves are transverse to the direction of

propagation.

For a gravitational wave with energy E travelling in the z direction such that

k' = (F,0,0,FE), we can write the metric perturbation as [128]

0 O 0 O
0 € € 0
By = e cos(E(t — 2)), (3.8.3)
O €12 —€11 0
0 O 0 O

which reveals the existence of two polarisation states (+-type and x-type) that make

up € = €11 P, + €19 P, given by

00 0 0 0000
01 0 0 0010
P, = , P, = (3.8.4)
00 —10 0100
00 0 0 0000

The energy density fraction of gravitational waves is defined as with other cosmolo-

gical parameters:

Qpo(f) = ppgw , (3.8.5)

which is a function of the gravitational wave frequency f, typically in units of Hz,
given by f = FE/h. Redshifting due to the expansion of the universe reduces this
energy between a GW source and receiver. ,,,h*(f) is also referred to as the

amplitude of the gravitational wave.
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Figure 3.4: An illustration of bubbles of a new phase nucleating and
expanding in a volume of the old phase. The bubbles
can collide, inducing anisotropic stress in spacetime, and
thus producing gravitational waves.

3.8.2 First Order Phase Transitions

An effective thermal potential V (¢, T') will have a vacuum at ¢, typically when the
field configuration ¢y = 0, at high temperature. As the temperature falls down, a
new vacuum with V'(¢1,T) = 0, V"(¢1,T) > 0 could emerge, which at first would be
a false vacuum, with a higher potential energy V (¢, T) > V(¢y, T). At the critical
temperature T, defined by V (¢, Tc) = V(¢g, T¢), the vacua become degenerate.
As the temperature drops further, the current vacuum that the system is in may

become the false vacuum.

If a potential barrier exists between the true and false vacuum, then this would
result in a First Order Phase Transition (FOPT). The field configuration would
either have to quantum tunnel through the barrier or thermally fluctuate above the
barrier to nucleate a volume that exists in the new phase,’ conventionally referred
to as a ‘bubble’, as shown in Fig. 3.4. Thermal fluctuations are the most important
effect at high temperatures, so we neglect nucleation by quantum tunnelling when

discussing early universe phase transitions. In Section 5.4.1, we discuss in detail how

INote that it is conventional in the literature to use ‘phase’, ‘vacuum’, and ‘minimum’ inter-
changeably in the phase transition context.
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to calculate the nucleation of a bubble. The temperature at which the first bubble
nucleates is the nucleation temperature, T, whereas the percolation temperature
is defined as the temperature 7, at which a fraction of 1/e of a Hubble volume is

populated by the new phase.

3.8.3 Gravitational Wave Sources and Spectra

The bubbles of the new phase typically expand, collide, and merge with each other.
As they expand, they cause pressure waves in the plasma; shock waves for sub-
sonic bubble wall velocities, i.e. vy < 1/ /3, and rarefaction waves for supersonic
vy > 1/ V3. The collisions, sound waves, and subsequent magnetohydrodynamic
turbulence of the plasma provide three sources of gravitational waves from the FOPT.

Gravitational waves produced through bubble collisions are illustrated in Fig. 3.4

Each source ¢ of gravitational waves provides a spectrum of the following shape for

a source i [24,128]

~1/3 3\
QihQ(f):Q?Ai(lgd‘o) Ko (5) s, (;) (3.8.6)

where Q) is a prefactor, A; is a velocity factor, K is the fraction of phase transition
energy given to that source, S;(f/f;) is the spectral shape of the source and f;
is its peak frequency. The numbers a and b vary depending on the source. The
parameters are calculated by fitting to the results of numerical hydrodynamical
simulations for each of the three sources. We provide full formulas for the three

sources in Section 5.4.3.

3.8.4 LISA

While gravitational waves from compact binary mergers have been detected at LIGO,
its peak sensitivity being at around f ~ 100 Hz means that it is unable to detect
gravitational waves from early universe sources, which are expected to be in the mHz

range. The space-based LISA (Laser Interferometer Space Antenna) experiment will
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be particularly sensitive to this part of the frequency spectrum [23-25, 148, 149],
taking advantage of an arm length of 5 million km and 6 laser beams to detect
low frequency gravitational waves from extreme mass ratio inspirals (EMRIs) [150],
compact binary star systems in the Milky Way [151, 152], supermassive black hole
binary systems [153], and the stochastic gravitational wave background (SGWB)

from the early universe.

Just like LIGO, LISA depends on laser interferometry: the measurement of inter-
ference between two coherent light rays. As gravitational waves pass through the
arms of LISA, the path length L of the photons emitted between them changes.
The interference of the photons measured at the master satellite reveals changes
in the relative AL/L between two arms, i.e. the characteristic strain. Studying
oscillations in different frequency domains allows for the detection of gravitational
wave signals, separated from noise that exists at different characteristic frequencies

(such as annual variations due to the eccentric orbital pattern).

LISA has received the go ahead for launch in 2035 [152], and will be placed 20°

behind Earth in its solar orbit [22].






Chapter 4

Hot Leptogenesis

I am a servant of the Secret Fire, wielder of the flame of Anor. You cannot pass.
The dark fire will not avail you, flame of Udin! Go back to the Shadow. You

cannot pass!

from The Lord of the Rings by J.R.R. Tolkien

4.1 Introduction

The observed neutrino masses can elegantly be explained by the seesaw mechanism,
as we covered in Sections 2.7.1 and 3.6. To recap, in the Type-I Seesaw mechanism
[105-108], at least two Majorana right-handed neutrinos (RHNs) are added to the

Standard Model (SM):
_ 1 _ I

where i () denotes RHN generational (lepton flavour) indices and are summed over,
the Yukawa matrix is given by Y and the leptonic and Higgs doublets are given
by L' = (v1,1]) and ®, respectively, with ® = io,®. Once the Higgs acquires a

vacuum expectation value, the light neutrino masses are generated.

Besides providing a simple explanation for light neutrino masses, the Type-I Seesaw
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mechanism can also account for the observed baryon asymmetry via thermal leptogen-
esis [29]. In this scenario, a lepton asymmetry is produced through out-of-equilibrium
and C P-violating decays of the RHNs [102-104]. This lepton asymmetry is then
converted into a baryon asymmetry via electroweak sphalerons. Most leptogenesis
calculations assume that the N; particles are in kinetic equilibrium with the Standard
Model bath and inherit a thermal distribution with temperature Tgy;. For parameter
choices which reproduce the observed neutrino masses, the heavier right-handed

neutrinos, Ny and Nj, are typically in both kinetic and chemical equilibrium with

the SM thermal bath [154].

As explained in Section 3.6, while vanilla leptogenesis can successfully generate
neutrino masses consistent with data along with the observed baryon asymmetry,
it typically leads to a tension [155] between the Davidson-Ibarra bound [123] and
the Vissani bound [30]. Furthermore, successful leptogenesis comes at the cost
of an accidental cancellation between the tree and one-loop contributions to the
light neutrino mass matrix [156]. Resonant leptogenesis [124], characterised by
significantly lighter RHNs with a highly degenerate mass spectrum that enhances
C' P asymmetry during their decays, provides a way to lower the leptogenesis scale

while addressing fine-tuning issues in both the Higgs and neutrino mass matrices.

In this chapter, we present an alternative solution to these tensions, where N has
a higher temperature, Tl , than the SM particles. This leads to a larger number
density of N, particles, which generate a larger baryon asymmetry after they decay.
This scenario has previously been considered in Ref. [154], where an enhancement
of up to ~ 50 times the standard leptogenesis baryon asymmetry can be obtained.'
Ref. [154] requires a connection to thermal dark matter and concludes that resonant
leptogenesis is still required to produce the observed baryon asymmetry. In this work,
we drop the connection to dark matter and show that non-resonant leptogenesis can

produce the observed baryon asymmetry while remaining natural. Schematically,

!This maximum exists because, above some temperature, the N; particles dominate the energy
density of the universe.
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Tsm ) = = [ TN,
L,®PN;
SM | K.E. and C.E. NeN N; | K.E. or K.E. and C.E.
Nos | K.E. and C.E. PN N; ¢ | K.E.and C.E.

Figure 4.1: Field content and the temperatures of the sectors in hot
leptogenesis, along with whether they are in kinetic and
chemical equilibrium (K.E. and C.E.) or only kinetic
equilibrium (K.E.) around the time of N; decay. The
dominant coupling connecting the two sectors is taken to
be the one responsible for N; decay. The scalar field ¢,
which keeps V; in kinetic equilibrium, may also mediate
a coupling between N; and Ny 3 (and also between N;
and the SM Higgs, not shown). Particles of the scalar
field ¢ may or may not be present at the time of N;
decay, depending on whether m, is much greater than
T or not.

1
the scenario is depicted in Fig. 4.1. We will be interested in Tgy < Tl,, and take the
dominant coupling between the two sectors to be the one responsible for N; decay.
Additional particles are needed to realise equilibrium within the hot sector. We
quantitatively demonstrate that this can be realised by introducing a new scalar, ¢,
which is primarily responsible for mediating the self-interactions of N;. Within this
setup, we consider two regimes. In the first, NV; is only in kinetic equilibrium during
N, decay (so N; particles can exchange energy between themselves, but there are no
number-changing processes that are sufficiently fast to realise chemical equilibrium).
In the second, N; is in both kinetic and chemical equilibrium with itself and ¢
(similar to the regime considered in Ref. [154]). That is, they are both in thermal

equilibrium in the hot sector during N; decay.

In Section 4.2 we first motivate this setup, showing that it can be a consequence of
inflaton decays. In Section 4.3 we determine the regions of parameter space in our
toy model where the two scenarios (N, in kinetic or kinetic and chemical equilibrium)
are realised and discuss the cosmological constraints on the ¢ particle. In Section 4.4
we derive the relevant Boltzmann equations to track the evolution of the sectors
and compute the resulting baryon asymmetry. We present and discuss our results

in Section 4.6 and conclude in Section 4.7.
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4.2 Hot Leptogenesis from Inflaton Decays

While the mechanism of inflation is not yet determined, as a proof of principle we
discuss here one plausible scenario. The origin of two sectors with similar, but
different, temperatures could be explained by an inflaton that couples with different
strengths to the particles within each sector. Assuming perturbative reheating, the

reheating temperature in each sector is approximately,’

Ty ~ /T Mp, , (4.2.1)

where I' is the inflaton decay rate to particles within that sector and Mp; ~ 1.22 x
10" GeV is the Planck mass. The decay rate of an inflaton o, with mass m,, to

decay to particle species i, with mass m;, is approximately

Yy ms
2 87T Y

(4.2.2)

for m; < m, and where y is the coupling of the inflaton to the particle. For an
inflaton mass m, ~ 10" GeV, the reheating temperature is then Tx ~ y x 10'° GeV,

and the ratio of temperatures between the two sectors is

Ile YN

~ , (4.2.3)
Tsm Ism  Ysm

where yy, (ysum) is the largest coupling of the inflaton to particles in the hot (SM)
sector. As long as the two sectors cannot efficiently exchange energy, yq < yn, will
typically lead to Tgy < Tl,. While other factors can impact the precise value of &,
such as the spin of the daughter particles or other degrees of freedom with smaller
couplings to o, the fact that yy, and ygy are not constrained by experiment mean

that a wide range of values of x is plausible.

If there is only a weak coupling between the two sectors, they will not thermalise

before the hot N; particles decay into particles in the SM sector. A weak coupling

INote that for efficient parametric resonance reheating, the relation is more complicated. Para-
metric resonance reheating occurs due to the resonant oscillation of the inflaton around the min-
imum, leading to an extremely rapid energy transfer to bosons. This is suppressed for inflaton
decays to fermions due to the Pauli exclusion principle [157].
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M Ny, N
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L L;  sm SM

(a) (b)

Figure 4.2: Feynman diagrams showing the (a) Higgs- and (b)
inflaton-mediated processes which could thermalise the
hot and SM sectors. All Standard Model particles are
denoted simply by SM.

means that leptogenesis will operate in the weak washout regime and ensures that
scattering processes (such as those shown in Fig. 4.2 (a)') are out-of-equilibrium
before N; decays. In the case of strong washout, there are rapid interactions between
the N, particles and the SM sectors which would cause the two sectors to thermalise.
It is also important that the inflaton itself does not thermalise the hot and SM
sectors through the process shown in Fig. 4.2 (b). To avoid this, we require the
scattering rate between SM particles and N; particles to be slower than the Hubble

rate. Taking a simple Yukawa coupling between the inflaton and Ny,
1 \TC
E D §yN1 O'NlNl y (424)

and assuming that the dominant inflaton-SM coupling is a universal Yukawa coupling

to all SM fermions,

LDysmo Z Efwfv (4.2.5)

FeSM

we require the interaction rate to be

I n, smon, sm = max(ny , ngu)(ov) < H , (4.2.6)

where ny, and ngy are the relevant number densities and (ov) is the thermally

averaged elastic cross-section between N; and the SM fermions via an inflaton medi-

'In this chapter and the relevant appendices A and 4.5, we use H to denote the physical Higgs.
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ator.! When the inflaton decays, the SM particles quickly reach thermal equilibrium
so ngy = ngy(Tsy). We assume that some unspecified UV particles also allow N;
to reach thermal equilibrium with itself around the reheating temperature, so that
ny, = 3((3)gN1T§,1/47r2 where gy, = 2 is the number of degrees of freedom of Vi,
but that these reactions rates fall below the Hubble rate before N; starts to decay
(see Section 4.4). The cross-section for inflaton-mediated N;—SM scatterings is

[s <2mi — 4m?vl + s) -2 <2m?vl — mi) (mg + 3) log ( gn%, )] ,

my + 8
(4.2.7)

o — ngszvl
4 s? (m?, + s)

where s denotes the centre-of-mass energy, my, the mass of N; and we have assumed
my < mpy,, m,. The thermal averaging for this process is discussed in Appendix A.1.
For a universe consisting of two decoupled relativistic sectors with temperature ratio
k, the Hubble rate is given by

87T3 * * 4 TSQM

where g3y and gy, denote the effective number of degrees of freedom in the Standard
Model and hot sectors, respectively. The relative sizes of ggy and gy, k" determine
which sector dominates the energy density of the Universe. For energies above the
electroweak scale, with ggy = 106.75 4 4 and assuming gy, = 2, the SM sector
dominates the Universe’s energy density for £ < 2.7, while the hot sector dominates

for 2.7 < k.

Given Egs. (4.2.6) to (4.2.8), we can determine the maximum value of yg\iyy, that
ensures that the inflaton does not thermalise the two sectors. For a given &, this gives
an upper bound on the reheating temperature of the hot sector. For chaotic inflation?,
which fixes m, ~ 10" GeV.?, and using m N, = 107 GeV as our benchmark value, the

white region of Fig. 4.3 shows the viable reheating temperatures of the hot sector as

Not to be confused with the Higgs vev v. The v that appears always in (ov) is a velocity,
typically either the relativistic relative velocity of the interacting particles, or the Mgller velocity.
See Ref. [158] for detailed discussion.

2Chaotic inflation is a model of inflation that avoids finely-tuned conditions in the early uni-
verse [159].

3This result is due to the constraints from Cosmic Background Explorer (COBE) data [160].
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Figure 4.3: Upper bound on the reheating temperature in the
hot sector from the requirement that inflaton-mediated
elastic scattering does not realise kinetic equilibrium
between the hot and SM sectors. In this plot we take
my, = 10" GeV and m, = 10"’ GeV.

a function of k. In the blue region, inflaton-mediated interactions will thermalise the
two sectors, so that Tgy ~ Ty, and standard leptogenesis would proceed. We find
that for the two sectors to remain decoupled, we require Th < 10'" GeV, with a slight
reduction when £ < 3.8 (where ngy S ny,). We will be interested in N; masses
around 107 GeV, motivated by the Vissani bound limiting m N, S T4 X 10" GeV for
the Higgs mass correction du* to remain below 1TeV? [30]. Thus, the reheating

temperature in the hot sector can be well above the right-handed neutrino masses.

As mentioned above, the inflaton couplings to the different sectors are experimentally
unconstrained. As such, x can in principle take a wide range of values. Some limiting

scenarios often studied in the literature are:

1. The inflaton decays exclusively to N; [161-166], corresponding to an initial
ngy = 0 and Kk — oo. Such a scenario is typically studied in the context of non-
thermal leptogenesis, where the assumption is that Tr < my, and that the NV
decay happens immediately after the inflaton decay. For example, Ref. [162]
assumes that perturbative inflaton decay is kinematically forbidden, i.e., m, <
2my, so that the only relevant decays are through strong parametric resonance

(overcoming the Pauli blocking of fermions). Ref. [163] studies perturbative
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inflaton decay into N;, but with 1007, <

Y

my, such that the NN, particles
are always out of kinetic and chemical equilibrium, making leptogenesis non-
thermal. In this latter scenario, IN; and the inflaton have similar masses, which
is somewhat of a coincidence of scales. The inflaton decaying exclusively to
N, was first studied away from the limit T < my, in Ref. [166]. Without
a self-interaction in the hot sector, the N; distribution after inflaton decay
is non-thermal, and the Universe becomes radiation-dominated only after N;
decay, complicating numerical analysis. In our work, we will assume my, < Ty
and the presence of an N; self-interaction, so the N; particles rapidly achieve

a thermal distribution.

. The inflaton decay leads to kK &~ 1. When we take the case that N; are in kinetic

and chemical equilibrium with themselves in Section 4.3.1, our calculations
with kK = 1 are comparable to the standard leptogenesis scenario with a thermal

initial condition.

. The inflaton decays only to the SM, corresponding to x — 0. This scenario

corresponds to standard leptogenesis with a vanishing initial abundance of
Nj. Since we are interested in increasing the baryon asymmetry compared to
standard leptogenesis by increasing the number density of N; particles in a

sector that is hotter than the SM sector, we will not study x < 1.

In summary, we see that it is plausible for a simple model of inflation to lead

to two decoupled sectors at a similar but different temperature, with a reheating

temperature that is significantly above the right-handed neutrino masses. In what

follows, we will take this as a starting point and we will study two different scenarios

in the regime 1 < k.
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4.3 A Model of Hot Leptogenesis

While there are many possible realisations of the scenario we discuss, for concreteness
we study a toy model consisting of the SM plus N, and N3 at temperature T and a
hot sector containing N; and a real scalar ¢ at temperature Ty, . The lightest right-
handed neutrino, N;, will decay to produce a lepton asymmetry which ultimately
produces the baryon asymmetry, while ¢ will mediate interactions in the hot sector.
We will consider two cases: that around the time of N; decay either N; is only in
kinetic equilibrium with itself, or V; is in both kinetic and chemical equilibrium with
itself. In this section, we find the regions of parameter space which exhibit these

two cases.

The relevant interaction Lagrangian terms in our toy model are,

E o — Yal_za(iNZ + h.C.

2
i e m A3m A
— Yo NP N — ¢ — =26 — T (43.1)

where ¢ € {1,2,3} and « € {e,u,7}. The Yukawa matrix, Y,,, is parametrised
using the Casas-Ibarra parameterisation [109], Y = v U \/MRT\/M_N as in Section
3.6.2, where v = 174 GeV is the vacuum expectation value of the Higgs !, U is the
leptonic mixing matrix, M, (My) is the diagonal light (heavy) neutrino mass matrix
and R is the complex, orthogonal matrix given in Section 3.6.2. We discuss our
specific choice of benchmark point for Y,,; in Section 4.6. We assume that the ¢°
term is small enough that ¢ does not obtain a vacuum expectation value (mé >0
and A3 < \/3_)\) In principle, the scalar ¢ could generate the RHN masses, which is
natural with diagonal couplings to the RHN mass eigenstates. However, we make
the assumption that ¢ does not obtain a vev as we do not wish to restrict our
attention to a particular mass generation mechanism and instead pursue a more
general analysis of hot leptogenesis. Sizeable non-diagonal couplings between ¢ and

the RHN generations could result in premature thermalisation of the two sectors,

n this chapter, we use the convention that the 1/4/2 factor is absorbed into the Higgs vev v.
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but we do not investigate this here. While in principle there can also be cubic and
quartic couplings with the SM Higgs, ¢|®|* and ¢?|®|*, we assume that these are
small enough to keep the two sectors out of thermal contact. Although the inflaton
could potentially play the role of ¢, we do not study this possibility and instead
introduce a new scalar particle. As noted in the introduction, standard leptogenesis
leads to fine-tuning in the SM Higgs mass [30, 155] and/or in the light neutrino
masses [156]. The relevant expressions can be found in these references and the

fine-tuning measures we use are given in Section 4.5.

4.3.1 Kinetic and Chemical Equilibria

We first consider the expected phase space distribution of N; in different regions of
the parameter space of this model. As stated in Section 3.4, when [V, is in kinetic and
chemical equilibrium, it will have a Fermi-Dirac phase space distribution function,
with zero chemical potential. When N; is only in kinetic equilibrium, its phase
space distribution assumes the same form but will be normalised so that the number

density of particles, ny,, is not fixed to the equilibrium number density,

fr, = N e (4.3.2)

1 n%ll
Another possibility is that N; may have been in kinetic equilibrium at some point
after inflaton decay but came out of kinetic equilibrium sometime before N; decay.
We do not analyse this case in detail, which would require the tracking of individual
momentum modes, but we briefly discuss the expected applicability of our results
to this scenario. Finally, if the N; particles were never in kinetic equilibrium, their
momentum would be spiked around half the inflaton mass. We will not consider this

case here.

There are a variety of processes to consider to determine which particles are in
kinetic or chemical equilibria with themselves or each other. The two sectors are

necessarily coupled by the Lagrangian term responsible for N; decay, and potentially
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also by ¢ mediated processes. The new scalar ¢ can keep N; in kinetic equilibrium
with itself through s-, t— and wu-channel scattering processes, and if ¢ is not too
much heavier than N;, number-changing interactions could also keep N; in chemical
equilibrium with itself. We now find the regions of parameter space where the

following conditions hold:

1. All elastic scattering processes between the hot and SM sectors are slower than

the Hubble expansion rate.

2. Elastic N\ N; <+ N; N, scattering processes are faster than the Hubble expan-

sion rate.

3. Number changing processes of both N; and ¢ are faster than the Hubble

expansion rate.

Condition 1 ensures that the two sectors are decoupled, allowing each sector to
maintain independent temperatures. Condition 2 ensures that N; is in kinetic
equilibrium with itself, resulting in a Fermi-Dirac-shaped phase space distribution
function. In our analyses, we will ensure that these two conditions always hold.
If Condition 3 is satisfied, N; will be in both kinetic and chemical equilibrium,
achieving an equilibrium number density. It is important to note that chemical
equilibrium requires processes that can independently change the comoving number

densities of N; and ¢; for example, the process 2N, <+ 2¢ alone is not sufficient.

The Hubble rate in this model is given by

1 72
"= V3M, \/%ng(TSM)TgM +ON, PN, PNyt Py (4.3.3)
pl

where for N; and ¢

p= a9 pay (m) : (4.3.4)
n
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Figure 4.4: Feynman diagrams showing the processes which may
put N, into kinetic equilibrium with itself ((a) with
i =1, (b) and (c)) and with the SM bath ((a) with
i € {2,3}), which would set Tgy = Ty,

where

00 52 §2 + 22
Ji(2) = / de—>V , (4.3.5)
0 exp[\/fz—i—zﬂ +1
with a plus sign for fermion, a negative sign for bosons and where § = |p|/T},. For
N, and Ns, which have a vanishing initial condition but approach their equilibrium
energy densities throughout the evolution, and for computational simplicity, we
approximate their contribution to the energy density as relativistic fermions in
thermal equilibrium for my, , < Tgy and we neglect their contribution otherwise.

We have checked that this approximation does not affect our final results.

Condition 1 — Two Decoupled Sectors

For the hot sector to remain thermally decoupled from the SM sector, we require that
the decay rate of V; to SM particles is slower than the Hubble rate at Ty, 2 my, . For
mpy, & 107 GeV this gives Y,; < 107°. This condition ensures leptogenesis proceeds
in the weak washout regime and that the two sectors do not thermalise via inverse
decays, N;SM — N;SM scatterings [115, 167] or processes like N;SM — SM SM
before N; decays [154]. This also ensures that other processes involving Y, such
as N7 and N, 3 thermalisation via the Higgs, are slower than the Hubble rate, due

to the extra couplings and phase space suppression factors involved.

Beyond the direct coupling of N; with the SM plasma, it is possible that the ¢-

mediated coupling between N; and the heavier N, and N3 (which will be thermally
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produced in the SM sector) may thermalise the two sectors via the scattering process
shown in Fig. 4.4 (a) with ¢ € {2,3}. We need to check that the interaction rate per
N, particle and per N, 3 particle is slower than the Hubble rate. For ny, =~ n;‘}l we
will have nn,, <Ny, since my, < my,, and Tg\; < Ty, so the rate per N; particle
is slower than the rate per N3 particle. We therefore only need to check the rate

per NN, 3 particle. The two sectors will then not thermalise as long as

NN ATV N Ny 5N N,y < H (4.3.6)

where the cross-section is given in Eq. (A.1.1), the thermal averaging is given in
Eq. (A.2.5) and the Hubble rate is given in Eq. (4.3.3). Here, and for the remaining
rate calculations, in this section we approximate n?\‘}l ~ ny,. In principle, this
could be modified when chemical equilibrium does not hold. This would lead to
a proportional shift in the rates calculated here. Thus, our conclusions should be
taken as a guide rather than precise statements for the kinetic equilibrium-only
scenario. However, it is a good approximation for the kinetic equilibrium-only cases

we consider.

We may expect the N; — ¢ Yukawa coupling yé to be a similar order to yi and
yf; since the right-handed neutrino masses are all at a similar scale (although note
that we do not discuss the origin of the right-handed neutrino masses here and do
not assume that ¢ is a Majoron). The blue region above the dashed blue contour
in Fig. 4.5 shows where the rate of this process is greater than the Hubble rate at
the time of N, decay assuming yé = yg,. That is, where condition 1 is not satisfied.
However, this bound can be relaxed, without affecting any other phenomenology, by
taking yi < yé Throughout this chapter, we consider the parameter space where
the Ny Ny 5 <+ N1 N, 5 scattering rate is less than the Hubble expansion rate to ensure

the two sectors do not thermalise with each other.

There are also interactions between the ¢ and the Higgs that are induced at loop
level via the coupling to the heavier RHN generations N, 3, which typically have a

larger Yukawa coupling to the Higgs than N;. We computed the ¢ H H interaction
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rate at one-loop level and found an interaction rate much smaller than the Hubble
rate H ~ T2 /M, for the scenarios we consider. Thus these interactions do not

thermalise the two sectors.

Condition 2 — Kinetic Equilibrium within the Hot Sector

The processes shown in Fig. 4.4 (a) and (b) along with an extra s-channel process,

Fig. 4.4 (c), will keep N; in kinetic equilibrium with itself if condition 2 is satisfied,
ny, (OV)an, on, > H (4.3.7)

where the cross-section in given in Eq. (A.1.2) and the thermal averaging is given
by Eq. (A.2.1). The green region in Fig. 4.5 shows where condition 2, or Eq. (4.3.7),
is satisfied. We see that there is a minimum value of y;, for a given mg/my, . When
2my, < my there is a resonant enhancement as the ¢ propagator in Fig. 4.4 (c) can

go on-shell.

Condition 3 — Chemical Equilibrium Within the Hot Sector

If there are fast number-changing interactions, such as those shown in Fig. 4.6, N,
could also be in chemical equilibrium in the hot sector. Chemical equilibrium requires
processes which can increase (or decrease) both the comoving number densities of N;
and ¢ at the same time. This could, for instance, be a combination of 2/NV; <+ ¢ and
2N, < 2¢, or either of those along with 2¢ <+ 3¢. If these processes are faster than
the Hubble rate we may assume that ny, is simply given by n?&l, which simplifies the
analysis. This is a version of the scenario considered in [154] (see, e.g., their Eq. 2.19),
where the hot sector was populated by the decay of dark matter. If only one of these
processes is faster than the Hubble rate, neither N; nor ¢ can be assumed to be in

chemical equilibrium and their abundances should be tracked dynamically.

N; and ¢ also both need to be in chemical equilibrium in the hot sector, so we

technically need to check the rate per N; particle and the rate per ¢ particle. However,
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Minimal value of yé such that the various interaction
rates are greater than Hubble around the time of decay,
Ty, =mpy, = 107 GeV. We have assumed that Hubble
is dominated by the SM as it is right after the decays and
that A = 0.8. Assuming yé, = yg,, the scattering process
N; Ny <+ N{ N, will thermalise the SM and hot sectors
in the blue region above the dashed blue contour. To
the right of the black line the ¢ abundance will deplete
with the N; abundance; the region to the right of it is
excluded. The region outside of the green area is where
the kinetic equilibrium assumption breaks down, and
our analysis no longer holds. To the left of the blue line
(labelled “cannibal ¢”) the cannibal process 2¢ <> 3¢
is effective. The pink (green) stars indicate example
points in the toy model parameter space where kinetic
and chemical (only kinetic) equilibrium can be achieved,
where open stars require yi, yg < yé. The white star
shows a point where the cosmology of ¢ would need to
be carefully considered.

Feynman diagrams showing processes which could keep
N; in chemical equilibrium with the hot sector.
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since ng! < ny, at Ty, = my, for all ¢ masses, we only need to check the rate per
N, particle. The purple region in Fig. 4.5 shows where ¢ <+ 2N; decays and inverse

decays, Fig. 4.6 (a), occur faster than the Hubble rate,

ng! Ki(my, /T,) ng'
r,ooo e Ty > H e
< ¢_>2N1>n?\cfll ¢—>2N1 KQ(le /TNI) n?\(fll ) ( )

where the ¢ — 2N, decay rate is given in Eq. (A.1.3) and K; and K, are modified
Bessel functions of the second kind. We see that in the range 2my, < my S 10my,
this rate is faster than the Hubble rate if 107* < ydl,, and for larger ydl, this process

can be relevant up to mg =~ 30my; .

Next, we consider the process 2¢ <+ 3¢, which is independent of the coupling yé
Choosing a representative A = 0.8 and A3 = 0.57v/3)\,' we find that the region left

of the blue vertical line satisfies
n5(ov)3p 509 > H | (4.3.9)

where we take the thermally averaged cross-section from Ref. [169]. We see that, for
these parameters, this process is faster than Hubble for my < 5my, . In what follows,
when we assume chemical equilibrium we will work in regions of parameter space

where 2N, <> 2N, ¢ <> 2N, and 2¢ < 3¢ are all faster than Hubble. However, we

now briefly consider some other processes that could potentially be relevant.

The orange region in Fig. 4.5 shows where the 2V, <+ 2¢ processes, Fig. 4.6 (b) and

(c), are faster than the Hubble rate,
an <O'U>2N1_>2¢ > H, (4310)

where the cross-section is given in Eq. (A.1.4) and the thermal averaging is given in
Eq. (A.2.1). For m, < my, this process is faster than Hubble if 1072 < ydl), while

for heavier ¢ particles a larger coupling is required.

The process 2N; <+ 3¢ can occur either via t-channel-like diagrams, where the cross-

!This value, which is not the result of spontaneous symmetry breaking [168], is chosen to
maximise the cross section.
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section is proportional to (yé)6 or via an s-channel type diagram, Fig. 4.6 (d), whose
cross-section is proportional (yé)Q)\? Since we are mostly interested in the region
y;s < A = 1, where the t-channel processes will be suppressed, we show in red in

Fig. 4.5 the region where the s-channel process is faster than Hubble,
an <O'U>2N14)3¢ > H. (4311)

The cross-section for this process is given by Eq. (A.1.5) and the thermal averaging
is done using Eq. (A.2.1). We see that this process is only faster than Hubble when
2N, < 2¢ and 2¢ <> 3¢ are both faster than Hubble, so it does not create any
new regions where chemical equilibrium for N; can be established (assuming similar

values of A3 and A to those chosen here).

Another number-changing process that could be relevant is 2¢ — 4¢. However, for

an n-body massless particle, the phase space factor goes as

n 1
P =1 (4.3.12)

In comparison to the 2¢ — 3¢ cross-section, there is a phase space suppression factor

of 1/(1927%). Therefore the ratio of the cross-sections goes as

2
Tap1o N (4.3.13)
O'2¢_>3¢ 1927’(’2)\3

This implies that the 2¢ — 4¢ process is subdominant to 2¢ — 3¢ as long as
A K V19275 & 44 ).

4.3.2 Cosmology of the Scalar ¢

We finish this section with a discussion of the cosmology of the new scalar ¢. If
mg < 2my;,, the hot sector will not deplete during /V; decay and there will be a
non-negligible abundance of ¢, which will freeze out relativistically. While the scalar
¢ is not stable, its four-body decay (via two off-shell N; particles) is suppressed by

YA If ¢ couples to all three RHNs, we find that Y,; is typically large enough such
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that the decay can be expected to deplete the sector before BBN. However, this will
cause a large entropy dump which will wash out the generated asymmetry to some
extent. If ¢ only couples to Ny, the smallness of Y,; implies that ¢ is stable on a
cosmological timescale. Because it freezes out relativistically, its large abundance
will either give rise to a large contribution to AN.g — the number of relativistic
degrees of freedom at BBN — or an overproduction of (dark) matter, depending on

its mass. We conclude that in our current model my needs to be larger than 2my, !

4.3.3 Summary

In summary, we see that there are many relevant processes and different possible
regimes which can realise kinetic or kinetic and chemical equilibrium in the hot
sector, even for our simple toy model. To ensure the SM and hot sectors remain
decoupled we require that leptogenesis occurs in the weak washout regime, effectively
limiting the size of the Yukawa coupling. From Fig. 4.5 we see that, for A = 0.8
and A3 ~ V3, we can assume that N, is in kinetic and chemical equilibrium with
the hot sector around the time of N; decays if 2my, < my < dmy,, 107* < yé
and yi’g < 1072 For A < 1 chemical equilibrium could be established through
¢ <> 2N; and 2N; <> 2¢ (which requires yé > 1072 and typically require y;’?’ < yé)
When 30my, < m, and y;’g <1072 < iy we can assume that Ny is only in kinetic
equilibrium. Both cases can also be realised for my < 2my,, but in that case an
entropy dump and/or washout would need to be carefully considered. We indicate
with pink, green and white stars the regions where these conditions hold (see caption

of Fig. 4.5 for details).

LAn alternative possibility is the existence of an additional portal coupling (for example a
coupling to the SM Higgs) through which the ¢ abundance can deplete. In this scenario, the
washout effect from this decay needs to be carefully considered.



4.4. Tracking the Evolution of the Hot and SM Sectors 121

4.4 'Tracking the Evolution of the Hot and SM

Sectors

In the simplest formulation, the leptogenesis kinetic equations operate in the one-
flavoured regime, accounting for only a single flavour of charged lepton. This is a
good approximation at very high temperatures (T > 10" GeV) when charged lepton
Yukawa coupling processes are out of thermal equilibrium, resulting in a coherent

superposition of the three flavour eigenstates.

However, at lower temperatures (10° GeV <« T < 10" GeV), the interaction rates
proportional to the tau Yukawa couplings come into thermal equilibrium and can
cause decoherence, necessitating a description in terms of two flavour eigenstates.
In our case, leptogenesis occurs at even lower temperatures (T < 10° GeV), where
interactions mediated by the muon have equilibrated. In these regimes, a density
matrix formalism [116,170-173] provides a more comprehensive description than
semiclassical Boltzmann equations, which do not include flavour oscillations in the
lepton asymmetry. For this reason, we solve the density matrix equations which
capture the time evolution of the RHN number densities in the hot and SM sectors,

and the lepton asymmetry number density (which is promoted to a density matrix,

N.j).

As discussed in Section 4.2, the Hubble expansion rate depends on the energy
densities of both the hot and SM sectors. Since we track the energy density of both
sectors, it will be convenient to evolve the density matrix equation as a function of

the scale factor, a, which is then

dNy, .
aH da = _FD1(ZN1)NN1 + FD1 (ZSM)N]\/% s (441)
dNy, .
aH— "2 = —Tp,(zy,) (NN2 - N]\g) , (4.4.2)
dNy .
aH =2 = ~T'p (2, (N, = N3t (4.4.3)
oy Wz _ ) (FD (zx )Ny —Tp (ZSM)NfV‘l) - 1Wl {P(l) n}
da ap 1 1 1 1 1 2 S ap
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+ 23: esl'p,(2n,) (N, = N3t ) = ;VVi {PO, N}

i=2 af
(100) (100 1
-Afl0ooO0OO0],|]|lOO0O][|,N
\ooo) [\ooo 1.,
(o00) {000 I
—A, o1 o0],]]010[N : (4.4.4)
\ooo) [\ooo 1.,

where ¢ is a generation index, «, 3 are lepton flavour indices, Ny, and N,z are the
comoving number density of N; and the B — L asymmetry for lepton flavour indices
a, 3, respectively, I'p = F%i (my,/Ey,) are the thermally averaged decay rates of NV;

where we assume Maxwell-Boltzmann statistics with (my. /Ey,) = Ki(2y,)/Ka(2n,)-

For the N; decay, we thermally average over the hot sector using the variable
zn, = my, /Ty, while for the Ny inverse decays from the SM, and for N, and Nj, we
thermally average over the Standard Model sector using the variables zgn = my, /Tou

and zy,, = my,, /Tsn respectively.

The equilibrium abundance of N; is denoted as N;® and the initial abundance of
Ny is Ny, o x>, The initial abundance for N, and N are assumed to be vanishing,
which is an arbitrary choice for our computation as N, and N5 are both in the
strong washout regime so reach a thermal abundance before the N, particles decay.
Thus, their initial abundance (whether thermal or vanishing) has an insignificant
effect on the final results. The washout terms, which remove the lepton asymmetry
produced by decays of N; in the hot sector, are denoted by W;. We remind the
reader that when the hot and visible sectors remain decoupled before N; decays, the
washout is weak. The decay asymmetry (between RHNs decaying to leptons and
the Higgs doublet, compared to the C' P-conjugate process) generated by the decays
of Nj; is given by the C'P-asymmetry matrix e(of% [102,171,173,174]. A, (A,) denote
the thermal widths of the tau (muon) charged leptons, which is obtained from the

imaginary part of the self-energy correction to the lepton propagator in the plasma.
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Finally, ng = (;aCip Where ¢, = Y,;/1/(YY),, denote projection matrices which

describe how a given flavour of lepton is washed out.

We note that this equation describes both the decays of N; from the hot sector into
the SM and the possible inverse decays from the SM into the hot sector, as well as
the SM washout processes. We note that while we include the evolution of the RHNs
N, and Nj for completeness, their contribution to the lepton asymmetry compared
to N is small. To compute the final lepton asymmetry one solves the coupled system
for zy, > 1 and takes the trace of the N,z matrix, NJJ;?L =Tr {Na } Finally, to
calculate the baryon asymmetry (as previously shown in Section 3.6), we multiply
N éf 1 by the sphaleron conversion factor and divide by the photon number density,
to account for the change between the end of the leptogenesis era and recombination,

Np = aenNp_ 1 /N where agy, = 28/79 [100].

4.4.1 N; in Kinetic and Chemical Equilibrium

Having established the density matrix equations which determine the matter-antimatter
asymmetry in our setup, we now consider how the temperatures of the two sectors
evolve with time, assuming that kinetic and chemical equilibrium can be maintained
within the hot sector while N; decays (pink stars in Fig. 4.5). We first consider the

SM temperature, Tgy;, and then the hot sector temperature, Ty, .

Before N; starts to decay around Ty, ~ my,, its comoving number density Ny, will
remain constant, T, will drop as a™!, and the two sectors will remain decoupled.
When N; starts to decay, the hot sector transfers energy (Qy,) to the SM sector at

a rate

dQy dQsm 0 eq
e :—mMWbXNM—NM), (4.4.5)

where we normalise using the volume that contains one photon when we begin

tracking the abundances, V' = 1/n (e = 1). Note that this is exact since the

thermally averaged energy transfer rate is <F0D1m N En /En) =m NlF%l.
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As the SM sector is in thermodynamic equilibrium, we can apply the second law of

thermodynamics to calculate the change in total entropy of the Standard Model,

d
dSsy = s , (4.4.6)
Tsm
and use this to find the evolution of Tgy with a. First we write
dSsm _ d(ssma’V)
= 4.4.7
da da ’ ( )
where sqy; is the SM sector entropy density, which becomes
1 d dsgy dT
L dGsu = Py IS OIS 3a°Vsg (4.4.8)

TSM da dTSM da

when we use Eq. (4.4.6) and differentiate the right-hand side. The rate of change of

the SM sector entropy density sqy with respect to its temperature is

dssy 2 2?3 dg.(Tsu)

= g (T Té + ——T.
ATy, 159( sm)Tsm + A5 LsM ATy

(4.4.9)

where numerically we neglect the second term which only has a small change due to

N, and Nj. Finally, using Eqgs. (4.4.5), (4.4.8) and (4.4.9), we find that

dT gy my, 0 Tam
= T Ny — Ny ) — —==. 4.4.10
da 3a'Hsqy ( M Nl) a ( )

Next, we show how we determine the evolution of Ty,. When IV, is in kinetic and
chemical equilibrium, the solution to Eq. (4.4.1) is the equilibrium comoving number

density, which is

eq _ 3 eqvr _ 31,9IN; 3 my,
]VN1 =a anv =a V27T2TN1]+ (TNl ) , (4.4.11)

where ny, is the (non-comoving) number density of N;. We account for the quantum
statistics of N; using

¢2
exp (\/52 + 212\;1) +1

where § = |py,|/Tn,. Thus, for a fixed my, there is then a one-to-one relationship

I(ey) = /OOO de (4.4.12)

between Ny, = Nﬁ% and Ty, so solving Eq. (4.4.1) tells us how T, evolves with
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a. Equations (4.4.1) to (4.4.4), (4.4.10) and (4.4.11) then provide a set of coupled
differential equations which we solve using the numerical framework of ULYSSES
[175,176]. Once we fix an initial Tgy, & = Ty, /Tsu and the comoving number
densities, we can use these equations to track Ny, T, , Tsym and N, as a function of
a, which allows us to compute the final baryon asymmetry ng. As the scalar ¢ remains
in kinetic and chemical equilibrium with N;, the hot sector depletes completely as
N; decays. We do not include the contribution from ¢ in the computation of the
asymmetry, since for 2my, < my its abundance will be Boltzmann suppressed at
the time of N; decay. The ¢ population will both mildly increase the generated
asymmetry by producing N;’s as it decays, and mildly decrease it as it dumps entropy

into the SM sector.

4.4.2 N; in Kinetic Equilibrium Only

We will now explore regions of the parameter space where number-changing inter-
actions are slower than the Hubble rate, so the assumption of chemical equilibrium
no longer holds (green stars in Fig. 4.5). In this case, the density matrix equations,
Egs. (4.4.1) to (4.4.4), and the SM temperature derivative d7Tgy/da, Eq. (4.4.10),
remain the same as in the previous section. However, the evolution of the tem-
perature of the hot sector, Ty (a), is no longer given by Eq. (4.4.11), as the lack
of number-changing interactions leads to a departure from the equilibrium number
density.

The phase space distribution function for Ny is fy, = (an /n%) N where fyl is

the Fermi-Dirac distribution. Neglecting quantum statistics by utilising the Maxwell-

Boltzmann distribution instead, the energy density p and pressure p of N; become

n (E]

py, = ( g;) P (4.4.13)
an
n (&

PN, = <]Yf> Py, - (4.4.14)
ny,

We can now calculate the evolution of Ty, using the second law of thermodynamics
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and comoving energy conservation. First, we use the second law of thermodynamics,

d
5y, = ;?N17 (4.4.15)
Nl
to equate
dSy  dsy a’V
T 4.4.16
da da ( )
d le +pN1 3
B G 4417
da < Ty, “ ( )
3
a’V (dpn dpn dTn sn. Ty
- 1 " L4 3 4.4.18
TN1 ( da " da N da + a ’ ( )
with
1 dQNl m Vv 0 0 e
Ty da Ty (Th, Ny, =T, Vi) - (4.4.19)

1 1
We see that we now require expressions for the rate of change of the energy density

of Ny, dpn,/da, and for the rate of change of the pressure of Ny, dpy, /da.

To find an expression for dpy, /da we can use the conservation of total comoving

energy density,

dpro
a% + 3(pt0t +pt0t) = 07 (4420)

where p;; and p;,; are the total energy density and pressure, respectively. We see

that the derivatives of the energy densities in the two sectors are related by

dpsm

= —=3(Prot + Prot) — @ : (4.4.21)

a dpn,
da

da

For the rate of change of the pressure, dpy, /da, we differentiate Eq. (4.4.14) with

respect to a to write dpy, /da in terms of dT'y, /da and dny, /da,

del _ ny, dp??l n anl p%ll o p?\(fll dn?\cfll (4 4 22)

da  ny da da ny, — ny da o
— (an dp‘;\(/':ll _ pﬁ\(}l dn?\(i) dTNl anl p?\([ll

ny dTy,  ny dTy, ) da da ny.

(4.4.23)

Together, Eqs. (4.4.18), (4.4.19), (4.4.21) and (4.4.23) give an expression for d1y, /da

in terms of quantities we can compute or track. This, in combination with the
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density matrix equations, Eqgs. (4.4.1) to (4.4.4), and the Tgy; evolution equation
in the previous section, Eq. (4.4.10), can be solved with the appropriate initial
conditions to find the resulting baryon asymmetry. The initial conditions we take
for our benchmark point are that N; has an equilibrium abundance while N, and

N3 have vanishing initial abundance.

This is motivated by the possibility that ¢ (or another particle) mediated sufficiently
fast number changing rates for N; at higher temperatures, but that it no longer can
at Ty, ~ my,. In the case where N; is only in kinetic equilibrium with itself around
its decay, the ¢ abundance is heavily suppressed and does not contribute to the

asymmetry generation (beyond maintaining kinetic equilibrium in the hot sector).

4.5 Fine-Tuning

To quantify the degree of fine-tuning present in the neutrino sector, we will adopt a
fine-tuning measure that is the inverse of that used in [156]. The matrix of physical

light neutrino masses M, is
M, = M + Moor (4.5.1)

where M contains the tree-level Lagrangian neutrino masses and M} is the
one-loop contribution (which is always negative) [156]. The fine-tuning can be

measured using,

>>ie1 SVD[M,];
S SVD[M ),

, (4.5.2)

where SVD is the Singular Value Decomposition of the matrix, i.e., SVD[M]; is the
square root of the i-th (real and positive) eigenvalue of M*M. If the eigenvalues of
M are real and positive, then the singular value decomposition of M simply gives
the eigenvalues. Fine-tuning of A, ~ 1% corresponds to, e.g., M\ ~ 100M, and

MY°P ~ 1000, so the tree- and loop-level masses would cancel to one part in 100.
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Analogously for the Higgs sector, we will have

ph =~ () = 10p?], (4.5.3)

tree

where pug = % = 88 GeV is the effective Higgs mass parameter, pz = is the Lag-
rangian Higgs parameter and du? is the one-loop correction to the Higgs mass

parameter [155],
1
0% ~ =5 Tr [Y MR YT] (4.5.4)
4dr

The degree of fine-tuning in the mass parameters (not the mass squared parameters)

can be measured with

A, | 16 %J i (455)
s +1op?)  \ 1op?]

tree

where we have assumed 3 < (%)%, |64%|. Fine-tuning of Ay = 10 % corresponds

to |ou| = 10pug = 880 GeV.

4.6 Results

Standard non-resonant leptogenesis, which can produce a baryon asymmetry consist-
ent with observations using RHN masses around 10°-10” GeV, requires fine-tuning
of the light neutrino masses [156] and the SM Higgs mass [30, 155]. The neutrino
mass fine-tuning occurs because the tree and one-loop contributions to the light
neutrino mass matrix have opposing signs [177] and standard leptogenesis requires
them to be separately large, and then largely cancel, to give an overall small neutrino
mass consistent with observation. Fine-tuned solutions are favoured because the
specific structure of the R-matrix reduces effective Yukawa couplings, which in turn
decreases washout effects and leads to successful leptogenesis, while also enabling
this critical cancellation between the tree-level and one-loop contributions, keeping
the light neutrino masses within experimental bounds. The SM Higgs mass is also

fine-tuned as the RHNs contribute at the one-loop level, with lower RHN masses
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Benchmark S; S, Sy S Sy, S; S S, Our Benchmark

A% 02 03 02 06 07 04 02 05 855
Ap[% 008 002 0004 03 006 0.1 0.001 0.007 10.4

Table 4.1: Degree of fine-tuning for the best-fit points found in
Ref. [156] and for our benchmark point (see Table 4.2),
using the fine-tuning measures given in Section 4.5. Smal-
ler numbers indicate a larger degree of fine-tuning, with
some degree of fine-tuning for numbers smaller than
~ 10%.

giving a smaller loop level contribution but also reducing the amount of baryon

asymmetry produced.

Using the measures defined in Section 4.5, the degree of fine-tuning for both the
light neutrino mass and the SM Higgs required for successful standard leptogenesis
with my, ~ 10°° GeV is given in Table 4.1, based on benchmarks from Ref. [156].
These benchmarks, S; (S;) for i = 1,2,3, 4, correspond to normal (inverted) ordering
with the PMNS matrix parameters set to their best-fit values based on global data
[178]. The remaining Casas-Ibarra parameters are fixed to ensure a viable baryon
asymmetry. From Table 4.1, we see that the fine-tuning is worse than 1% for both
the light neutrino mass and the SM Higgs. We present these benchmarks and their

associated fine-tuning measures to evaluate how effectively hot leptogenesis can

reduce fine-tuning while still producing the observed baryon asymmetry.

Here we explore two distinct scenarios of hot leptogenesis which alleviate this fine-
tuning: one in which N; is only in kinetic equilibrium with itself before decay
and one in which chemical equilibrium is also established. The parameters that
determine whether chemical and kinetic equilibrium are established are different
to those that determine the baryon asymmetry (except that they determine the
manner of evolution of our model — these scenarios evolve under a different set of
evolution equations as described in the previous section). The parameters related

to the baryon asymmetry are given in Table 4.2.

We will focus on a benchmark scenario for the neutrino parameters, where we use

the Casas-Ibarra parametrisation to construct the Yukawa matrix Y [109]. The
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Parameter Unit | Benchmark point
) [°] 270
Qg [°] 50
31 ] 120
Oas [°] 49.1
019 [°] 33.41
013 [°] 8.54
xq [°] 7
" ¥ 15
T ] 1
Yo ] 2
3 ] 4
Ys ] 3
my [eV] 0
logg le/[GeV] [1] 7
logyo (M, /[GeV] 1] 7.006
logyo (M, /[GeV] 1] 74
K 1] 10

Table 4.2: Input parameters in the Casas-Ibarra parametrisation
for our benchmark point, see text for details.

constrained light neutrino parameters 0, 6,5, 613 and 6y3 are fixed at their best-
fit value from recent global fit data [179] where we assume normally ordered light
neutrino masses and for simplicity assume the lightest neutrino mass m; = 0eV.
While we fix the Majorana phases to be 50° and 120°, they do not significantly affect
the resulting baryon asymmetry. For the right-handed neutrino masses, we choose
an intermediate-mass scale my, ~ 107 GeV, commensurate with the standard case

studied in Ref. [156].

We fix my, and my, to reduce the Higgs fine-tuning measure while ensuring that
leptogenesis occurs well beyond the resonant regime (the decay widths of Ny, N,
and N are approximately 107° GeV, 107° GeV and 1072 GeV, respectively, which
are much smaller than the N,—N, mass splitting of approximately 10° GeV). The
remaining Casas-Ibarra parameters, x; and y;, are chosen to provide a reduced fine-
tuning to the light neutrino masses. Finally, the benchmark has an initial ratio of
temperatures of x = Ty, /Ty = 10, which gives approximately the maximum achiev-

able baryon asymmetry. We note that if we assumed standard thermal leptogenesis,
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lgglo(TSM)

9 8 7 5 4 3 2 1
101
K
— Ny/Ny(a=1)
81 — |np| x 10
.
61| \/
4<
2<
0.0 25 5.0 75 10.0 12,5 15.0 17.5

In(a)

Figure 4.7: Evolution of |ng|, Ny, and  for initial x;, = 10 when
Nj is only in kinetic equilibrium in the hot sector, for
our benchmark point. When the number density ap-
proaches zero, k is set to 1 (dashed line). The green
band indicates the baryon-to-photon ratio at the 3o
level.

in the absence of a hot sector, this benchmark point significantly under-produces the
baryon asymmetry. We now numerically integrate the evolution equations, show the
evolution of various quantities for this benchmark point and investigate the impact

of varying one or two parameters at a time on the final baryon asymmetry.

4.6.1 N; in Kinetic Equilibrium Only

We first focus on the case where N; is only in kinetic equilibrium with itself. Note that

the scenario differs from that considered by Ref. [154], where N, is in equilibrium.

In Fig. 4.7 we show the evolution of the temperature ratio s (red), the number density
of the lightest right-handed neutrino Ny, (blue), and the baryon asymmetry np
(green) as a function of In a (where we set a = 1 at the beginning of our simulation) for
the benchmark point in Table 4.2. We also show the corresponding SM temperature

on the top axis.
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We see that at early times before N, has started to decay, at Tgy > 107 GeV and

Tn, 2 10® GeV, the temperature ratio, the N, comoving number density and the
baryon asymmetry remain constant. When the N; population starts to decay, at
Ty ~ 10" GeV and Ty, ~ 10® GeV, the decay starts to put the two sectors into
kinetic equilibrium and the temperature ratio x begins to fall. The baryon asymmetry
immediately starts rising and overshoots the observed value around halfway through
the decay. It then reduces slightly due to the effect of the washout terms. The
temperature ratio approaches x = 1 as the hot sector is depleted, and at some
point the N; abundance goes below the numerical accuracy of our computation. At
this point, we set k = 1 (dashed red line) so the system can evolve while avoiding
numerical errors. This procedure does not affect the final baryon asymmetry 7ng as
almost all N; particles have decayed by this time. Note, however, that even though

the two sectors are technically in kinetic equilibrium, the hot sector is essentially

empty since almost all N; particles have decayed.

We see that our benchmark point produces a baryon asymmetry within the observed
30 band. For these parameters we find A, ~ 855% (indicating that the tree-level
mass is O(10) times larger than the loop level mass) and Ay ~ 10.4% (indicating
that the loop level contribution is ~ TeV) so there is no fine-tuning in the light

neutrino masses and very mild fine-tuning in the Higgs mass.

In Fig. 4.8 (blue curve) we show the final baryon asymmetry as a function of the

initial temperature ratio x for our benchmark point.

We see that |np| is far below the observed asymmetry for x ~ 1 and first increases
with k. The rate of increase reaches a maximum of around x = 2.7, where the
energy densities of the SM and N; are approximately equal. After this point, the
baryon asymmetry begins to level off and reaches a maximum around x ~ 7. For
1 < k < 7 the initial number density of Ny in the hot sector is larger than for
t = 1, which enhances the final asymmetry. For 2.7 < x the hot sector dominates

the energy density of the universe, and so the Hubble expansion rate (Eq. (4.3.3)),

which counteracts the increased asymmetry. Essentially, the energy dump from the
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— my, = 10%°GeV, Amy; = 0.006

1.0 —— mn, = 107°GeV, Amy; = 0.004

—— my, = 107°GeV, Amy; = 0.006

——= my, = 107°GeV, Ama; = 0.006, f = 2
------ mx, = 1079GeV, Ama; = 0.006, f = 5
0.81 mmm oy

Figure 4.8: The final baryon asymmetry |ng| as a function of the ini-
tial temperature ratio sy, = Ty, /Tsy at @ = 1. The blue
line indicates the benchmark point. In the burgundy
and orange curves we vary the RHN mass scale and split-
tings (see text for details), while the dashed (dotted)
blue curves indicate non-equilibrium initial abundances
of Ny, f = <nN1/n§\(}l)m
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hot sector dilutes the baryon asymmetry. In Fig. 4.8 we also show the impact of

varying important parameters.

We see that reducing the RHN masses by setting my, = 10%° GeV and keeping the
mass splittings fixed (burgundy curve) significantly reduces the generated asymmetry,
as is typical in leptogenesis since the Yukawa matrix Y o My. The N,—N, mass
splitting is defined as Amy; = log,o(my,/[GeV]) — log,,(my, /[GeV]), with Amy,
defined analogously and preserved at 0.4. Reducing the right-handed neutrino masses
reduces the fine-tuning to Ay = 58%, which is a bit better than our benchmark

point, but does not reproduce the observed baryon asymmetry.

We also see that a smaller mass splitting between N; and N, (orange curve) enhances
the asymmetry. This also very slightly decreases the amount of fine-tuning needed
in the Higgs sector to Ay = 10.4 %, because the N, state is lighter. When fitting the
light neutrino masses, the smaller N; — N, mass splitting leads to a larger Y,; and
Y, and a smaller Y, (with the other Yukawas remaining approximately constant).
Since the Y,; couplings have the largest impact on the generated asymmetry, this
leads to an overall increase. If one wanted to find the minimal fine-tuning possible
in this scenario, this could potentially be achieved by reducing the mass splitting
further (while remaining out of the resonant leptogenesis regime), which boosts the
asymmetry, while reducing the overall RHN mass scale, which reduces the asymmetry

and would further improve the fine-tuning in the SM Higgs sector.

In the dashed and dotted blue lines, we show the impact of changing the initial Ny
abundance to 2 and 5 times its equilibrium abundance. We see that as the initial
abundance increases, the asymmetry increases faster and levels off around a similar
maximum value, but at a lower x;,. Increasing the initial abundance is in many
ways similar to increasing the hot sector temperature, as both lead to a higher initial
number density of N; and an increased energy density in the hot sector. While the
number and energy densities scale differently with temperature, this does not lead
to an increased final asymmetry at large k;,. In fact, for a higher initial abundance,

the asymmetry drops slowly at large x;,.
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Figure 4.9: Values of np for standard leptogenesis (left) and hot
leptogenesis (right) for k;, = 10 produced with the
RHN in kinetic equilibrium only. The green dashed
contours corresponding to ng produced at (5.8 — 6.3) x
107" [53,180] and the red cross indicates our benchmark
point. The greyed-out region represents when the non-
thermalisation assumption no longer holds, such that
hot leptogenesis may not be viable. Ay ~ 10.4 % and
A, ~ 855 % throughout the plot.
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Finally, in Fig. 4.9 we show the baryon asymmetry in y, and ys, chosen for their
impact on the baryon asymmetry. On the left, we show the standard leptogenesis
case where Ty, = Tgy and the N; are in chemical equilibrium with themselves, while
on the right we show the results for hot leptogenesis with an initial x = 10 and where
N, particles are only in kinetic equilibrium with themselves. The benchmark point
is indicated by a red cross. In the left panel, we see that in this region of parameter
space standard leptogenesis under-produces the baryon asymmetry by more than an

order of magnitude.

In the right panel, we see that ng is enhanced by a factor of ~ 50 compared to the
standard case and the observed baryon asymmetry can be produced in this parameter
space (the dashed green contours give the 30 range). Importantly, this is away from
the regime in the top-right where Higgs-mediated N,¢ — N/ and lepton-mediated
NiH — N;H elastic scattering processes equilibrate the SM and the hot sector,
indicated by the greyed-out ‘Thermalisation’ region. The fine-tuning in both the
Higgs mass and the neutrino masses do not depend strongly on the parameters 5

and y3; so remain approximately equal to those of the benchmark point.

4.6.2 NN; in Kinetic and Chemical Equilibrium

We now briefly turn to the scenario where the hot sector is in both kinetic and
chemical equilibrium with itself. As described above, in this scenario we assume
ny, = ni‘}l throughout and use this relation to find the evolution of the hot sector

temperature Ty, .

Even though we are in a different region of parameter space, pink stars in Fig. 4.5,
these parameters do not strongly impact the N; evolution and baryon asymmetry
generation, which depend on the parameters in Table 4.2. Taking the initial /V;
abundance to be N]e\g and using the benchmark parameters in Table 4.2, we find
that the x, Ny, and np evolution is virtually identical to Fig. 4.7. For this reason,

we do not show it, but instead just show the results of a parameter scan in y, and
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Figure 4.10: Values of np for standard leptogenesis (left) and hot
leptogenesis (right) for x;,, = 10 produced with the
RHN in kinetic and chemical equilibrium. The green
dashed contours corresponding to np produced at
(5.8 — 6.3) x 107'% [53,180] and the red cross indic-
ates our benchmark point. The greyed out region rep-
resents when the non-thermalisation assumption no
longer holds, such that hot leptogenesis may not be
viable. Ay ~ 10.4% and A, ~ 855% throughout the
plot.
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ys3 in Fig. 4.10. We see that the difference with Fig. 4.9 is very small: at most a
factor 4 in the baryon asymmetry near the thermalisation region, but at the percent
level in the region where the observed ng is produced. The thermalisation region
has moved slightly to the left, indicating that it is easier for the hot sector to come
into kinetic equilibrium with the SM sector in this scenario. The fine-tuning, in this

case, is identical to that in Section 4.6.1.

Overall, we see that phenomenologically it does not make a significant difference
whether only kinetic equilibrium, or both kinetic and chemical equilibrium, are
maintained during N; decay. Both scenarios can produce the observed baryon

asymmetry while avoiding fine-tuning of the neutrino masses or the SM Higgs mass.

4.6.3 Further Scenarios

We now briefly comment on two possible alternative scenarios. First, kinetic equilib-
rium could be established after inflaton decay but not maintained in the hot sector
while N; decays. This could, for example, occur if a heavy mediator realises fast
2N; — 2N, scattering shortly after inflaton decay, but is too heavy to maintain it
at Ty, ~ my,. In this scenario, one in principle has to compute the evolution for
the full set of momentum modes. However, in the absence of additional processes
affecting the sector, the assumption of a thermal distribution may be reasonable
until the V; start to decay. As was shown in Ref. [181], in vanilla leptogenesis the
assumption of kinetic equilibrium when it is not realised underestimates the final
baryon asymmetry by a tiny amount, because low momentum Ny particles are more
efficiently produced than accounted for in a thermal distribution. In our present
scenario, we may expect that large momentum N; particles decay earlier, and thus
the produced asymmetry is overestimated by a small amount if kinetic equilibrium

is assumed.

Second, there is the possibility of N, and N3 starting with temperature at or around

T, and with an approximately equilibrium abundance, but where all three particles
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are weakly coupled and do not establish kinetic equilibrium with the SM. While
Ref. [154] shows that the observed light neutrino masses mean that, in a Type
I Seesaw scenario, the decay rate of N, and N3 must be larger than Hubble at
temperatures around their masses, we find that they do not have enough time to
fully equilibrate before decay. It is therefore possible that this scenario may lead to
an asymmetry which is larger by up to a factor of three compared to the results we

find here, further reducing the required fine-tuning.

4.7 Conclusions

In this chapter, we have studied a class of leptogenesis scenarios in which the sector
containing the lightest right-handed neutrino (N;) establishes kinetic equilibrium
with itself at a temperature higher than that of the Standard Model (SM) sector.
We have motivated this setup by considering the decay of the inflaton, which can
lead to two sectors with similar but distinct temperatures. Higher temperatures
in the N; sector enhance the number density of N; particles and can lead to an
enhanced baryon asymmetry. With this setup, the observed baryon asymmetry
can be generated without the significant fine-tuning of the light neutrino masses
and the SM Higgs boson mass present in standard leptogenesis. We have checked
that inflaton-mediated energy exchange between the sectors is not fast enough to

equilibrate them after inflation.

In Section 4.3 we described a toy model that can realise such a scenario of hot lepto-
genesis, introducing a new scalar field ¢ responsible for mediating self-interactions
of N; and maintaining its kinetic equilibrium. We explore two regimes: one where
the hot sector containing N; is only in kinetic equilibrium with itself and another
where it is in both kinetic and chemical equilibrium. We derived the relevant evol-
ution equations to track the relevant quantities and compute the resulting baryon

asymmetry in both of these scenarios.

Our numerical analysis reveals that both scenarios can produce the observed baryon
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asymmetry with minimal fine-tuning. As expected, the enhancement of the baryon
asymmetry can be up to a factor of around 50, and the observed asymmetry can then
be achieved for smaller right-handed neutrino masses and couplings. These scenarios
therefore reduce the fine-tuning required in both the Higgs and neutrino sectors
compared to the standard leptogenesis scenario. This confirms that non-resonant
leptogenesis is viable and efficient in producing the observed baryon asymmetry

under our model assumptions.

Comparing the numerical results in the two cases, we find that the results for kinetic
only and kinetic and chemical equilibrium are similar. This can be understood from
the fact that we assume ny, = njyl as an initial condition for the former case, which
is preserved until 7' ~ my , right before the decays happen. Thus, we expect that
chemical equilibrium can be a reasonable approximation in the case where it is not

realised or maintained.

We finally note that our computations are also likely to be a good approximation to
the case where Ny are not in kinetic equilibrium with themselves when they decay
and that it may be possible that Ny and N3 are present in the hot sector and could

lead to an enhanced baryon asymmetry.



Chapter 5

Phase Transition Phenomenology
of the 95 GeV Resonance in the

Two Higgs Doublet Model

For the world is changing: I feel it in the water, I feel it in the earth, and I smell

it in the air.

from The Lord of the Rings by J.R.R. Tolkien

5.1 Introduction

Following the discovery of the Higgs boson [4,5], searches at the Large Hadron Col-
lider (LHC) have increasingly focused on exploring the structure of the Higgs sector.
Motivated by numerous Beyond the Standard Model (BSM) scenarios featuring ex-
tended scalar sectors, the CMS collaboration extended its Higgs-like particle searches
to include invariant masses below 110 GeV. While CMS reported an excess near
95 GeV in the diphoton channel (two photons in the final state) by combining data
from 8 and 13 TeV runs with a local significance of 2.80 [182], recently, this result

was updated using the full 13 TeV dataset. The latter shifted the excess to 95.4 GeV
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with a local significance of 2.9 [183]. The presence of a neutral scalar decaying into

two photons around 95 GeV remains compatible with the latest ATLAS results [184].

A resonance of a similar mass has also been reported by CMS in 77 final state
searches at around 100 GeV [185], and around 98 GeV in bb final state searches at
the Large Electron-Positron (LEP) collider in 2006 [186].

Due to the limited resolution of the CMS and LEP measurements, these measure-
ments seem to be compatible and could point to a new scalar particle at a mass
of around 95 GeV. The possibility of a lighter Higgs-like particle explaining these

excesses has been explored in numerous models [187-208].

A model that has been studied extensively in the context of new Higgs-like particles is
the Two Higgs Doublet Model (2HDM), a minimal extension to the Standard Model
that requires the addition of an extra Higgs doublet [189,190,192,202,204—208]. This
model predicts additional scalar particles, which may account for a 95 GeV resonance.
Although phenomenological investigations of the 2HDM in this context have largely
focused on collider observables [189,208]. the existence of new scalars coupled to

the Higgs can also alter the dynamics of cosmological evolution.

In this chapter, we explore the possibility of a first-order electroweak phase transition
(EWPT) in the Type I 2HDM model, identifying the 95 GeV excess with an additional
pseudoscalar state. Employing state-of-the-art dimensional reduction to a three-

dimensional effective field theory (3D EFT) [141, 142], we perform a broad finite

temperature scan over the parameter region compatible with current collider limits.

Previous studies have explored the EWPT in the 2HDM using both perturbative and
non-perturbative approaches. Early work using one-loop finite-temperature effective
potentials (e.g. Refs. [77,78,209-213]) showed that a strong first-order EWPT is
possible in Type I and Type I 2HDMs, typically requiring sizeable mass splittings
among the scalar states to enhance thermal barriers generated by gauge bosons or

scalar loops ' (e.g. Refs. [78,209]). These studies often focused on parameter regions

'We explain why this is the case in Section 3.7.2.
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with heavy new scalars with mass m 2 300 GeV, motivated by electroweak precision

tests [214-218] and Higgs signal strength measurements.

More recently, non-perturbative studies of the dimensionally reduced 3D EFT have
been employed to assess the nature of the electroweak phase transition more reli-
ably." The model has also been studied perturbatively, including in its inert doublet

realisation [225-227].%

These studies have demonstrated that certain regions of 2HDM parameter space
can indeed support a strong first-order electroweak phase transition, particularly
when thermally induced cubic terms in the potential are sufficiently enhanced. How-
ever, such analyses typically do not account for the presence of a light scalar or

pseudoscalar near 95 GeV, nor the associated phenomenological constraints.

The potential existence of such a light state can substantially alter the structure of
the finite-temperature potential. In particular, it can introduce new phase transition
pathways or weaken the strength of the transition by reducing the need for large

mass splittings.

We find that unlike in the Standard Model, where the EWPT is a crossover [26-28,
228,229], the transition is first order in the majority of the constrained parameter
space. Moreover, depending on the parameters in the 2HDM Lagrangian, the trans-
ition can occur in a single or in two steps. * We find that the transition strength

remains modest across the viable parameter space, with the order parameter not

exceeding |v./Te| < 1.3

A strong first-order phase transition can leave behind a stochastic gravitational
wave (GW) background, as explained in Section 3.8. However, due to the relatively

modest values of the order parameter in the 2HDM, the resulting GW signal lies well

1See Refs. [79,219-221] for recent analyses, or Refs. [222-224] for earlier foundational work.

2The inert doublet model is a limit of the 2HDM where the extra doublet has no couplings to
SM fermions.

3See Ref. [230] for a non-perturbative analysis of two-step transitions in the triplet extension of
the SM.

“Here, v, is the field space distance between the phases.
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below the projected sensitivity of LISA [21,24,25] and other planned (space-based)

observatories [231-233]."

Furthermore, the moderate strength of the transition also appears insufficient to sup-
port electroweak baryogenesis (see Section 3.5). Achieving successful baryogenesis
would likely require additional model ingredients, such as tree-level barriers in the
effective potential, to sufficiently enhance the strength of the transition and realise
a sharp turn-off of the electroweak sphaleron rates inside the bubbles of true va-
cuum. We discuss possible extensions, including singlet scalars or higher-dimensional

operators, that could enhance the transition.

5.2 The Two Higgs Doublet Model

The real two-Higgs-doublet model (2HDM) Type I is particularly well suited to
accommodating a new ~ 95 GeV state while respecting existing flavour and collider
bounds. In Type I, all fermions couple directly to the same Higgs doublet. In Type
ITI, X and Y, both doublets directly couple to all charged fermions. These induce
flavour-changing neutral currents (FCNCs) at tree level [220], which are undesirable
due to the observed suppression of such interactions.> In Type II, where one doublet
couples to the up-type quarks and the other couples to the down-type quarks and
leptons (or the Flipped model with the up- and down-type quarks swapped), there are
enhancements in the b — sy decay rate. This is due to the constructive interference
between SM diagrams, and 2HDM-II diagrams that have the charged Higgs running
in the loop in place of W* (240, 241]. The stringent constraints on the b — s7
decay rate [201,241] force the charged Higgs above a few hundred GeV in Type
IT/Flipped models. These constraints are much weaker for the 2HDM-I as the
diagrams destructively interfere instead — allowing m + ~ 150 — 350 GeV alongside

a light neutral scalar or pseudoscalar. Moreover, imposing the alignment limit

1See Refs. [234-238] for recent discussions of GW prospects in the 2HDM context.
2FCNCs are interactions that change a fermion’s flavour without changing its electric charge.
These do not exist in the SM at tree level and are tightly constrained by data [239].
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|cos(B — a)| < 1 keeps the 125 GeV Higgs SM-like, while still permitting a new
state at 95 GeV with suppressed couplings to heavy gauge bosons V'V and enhanced

loop-induced couplings to vy and 77.

In this chapter, we explore the scenario in which the pseudoscalar A is identified
with the new 95 GeV resonance. This assignment provides a better fit to existing
collider data compared to associating the scalar H with the resonance. The reason
is as follows: In the mpy = 95 GeV scenario, the C'P-even scalar H couples to
electroweak vector bosons at tree level. However, these couplings are constrained by
the Higgs signal-strength sum rule' and by global fits to Higgs data (see e.g. [204])
which restrict the scalar mixing via | cos(8 — «)| < 0.2. This suppression limits both
the production cross section and the branching ratio into v+, making it difficult to
account for either the LEP excess in the bb channel [186] or the diphoton excess
observed by CMS [204].

The Higgs sector of the 2HDM consists of two SU(2); doublets, ®; and ®,, with
opposite charge under a Z, symmetry and hypercharge Y = 1/2. All right-handed
SM fermions are taken to be even under the Z,, while ®; is conventionally chosen to
be odd, making it a fermiophobic® doublet. Thus the resulting Yukawa terms in the
2HDM remain the same as in the SM, except with ®, taking the place of the SM
Higgs doublet and coupling to the fermions. After electroweak symmetry breaking,
the Higgs doublets can be parametrised in terms of the physical scalar degrees of

freedom as follows [242]:

—H"sin 8+ G cos 3
o, = , (5.2.1)

%(Ucosﬁ — hsina + H cos o — iAsin 8 + iG° cos 3)

1As we will see later, the two neutral Higgs will have vector boson couplings that follow the
sum rule (cf)? + (c)? = 1, meaning they must combine to reproduce the SM Higgs coupling. If
the Higgs signal strength is close to 1, and h is designated as the SM Higgs, this tightly constrains
the coupling of H to V.

2That is, it has substantially weaker couplings to fermions as they are only induced at loop

level.
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H" cos 3+ G sin
%(Usinﬁ + hcosa+ Hsina + iAcos f + iG° sin 3)

Here, h denotes the SM-like Higgs boson and is a C'P-even scalar, accompanied by
the conventionally heavier C'P-even state H. The field A is the neutral C'P-odd

pseudoscalar, which we later associate with the 95 GeV resonance.

The H* are a pair of charged Higgs bosons, while G* and G° are the Goldstone
bosons. The SM Higgs vev is v = 246 GeV. The vevs of the two doublets, v; and
vy, are constrained by the requirement that v? + v2 = v?, and the angle 3 is defined
via tan § = vy/v;. The angle o diagonalises the C'P-even scalar mass matrix and

determines the physical mass eigenstates [243].

We can define a new angle 6 =  —a — /2 to relate the tree-level couplings between

the physical resonances and the fermions,

COS & sin & gy Ssina cosd A

h . A
cy Sin 3 cos tan 3’ cy Sin sin tan 3’ c, . = cot 3,
(5.2.3)
as well as gauge bosons,
= sin (8 —a) =sind, cf =cos(B—a)=—sind (5.2.4)

where V =W, Z.

The couplings of the light Higgs boson h approach their SM values (C? — 1) in the
limit @« — 0 and § — 7/2. In contrast, the heavier scalar H does not couple to
fermions at o = 0, and decouples from gauge bosons when o = 3 + 7/2. The latter
condition corresponds to cos(f — a) = 0, known as the alignment limit of the model.
In this limit, the light Higgs h has the same tree-level couplings to the gauge bosons
as in the SM.

The tree-level potential for the Type I 2HDM is as follows:

Vig = mi @ @1 + m3®hdy — mby (@], + hic.) + Ay (9] @y)? (5.2.5)
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A
+ A (D] D5)° + Ay (D] 1) (D)D) + Ay (D] D) (D)D) + ?5 {(@J{‘I%)Q + h-C-} ;
(5.2.6)

where m;; and maq, are the masses of the doublets, m, is the mixing parameter,
and Ay ..., \5 are quartic couplings. A fuller treatment of the potential would allow

for the additional terms
Vir O (A6®]®; + A 0{d,) [, + hec., (5.2.7)

however, these terms would not be permitted in the Z, symmetry, setting \g, Ay = 0.
This softly broken symmetry is desired as the non-observation of FCNCs requires
that the fermions be coupled to a single Higgs doublet only, as mentioned before.
This is only possible with the doublets and the fermions being charged under the
Z, symmetry, thus forbidding the A, \; terms [244-247]. mi, is permitted to be

non-zero, softly breaking the Z, symmetry [244,247].!

In the 2HDM, the background fields ¢; are identified as the second, real components

of the two Higgs doublets respectively,

1 0
D, —» — 1, (5.2.8)
V2 |y,

After the two Higgs doublets take these background field values, we arrive at the

IThis determines the difference between the inert doublet model and the 2HDM-I, as the inert
doublet model has Zy as an exact symmetry of the theory.



Chapter 5. Phase Transition Phenomenology of the 95 GeV Resonance
148 in the Two Higgs Doublet Model

scalar mass matrix for the heavy bosons {W, Z, H, A, H* h,G°, G*}:

Mi 0 0 0 Mi O 0 0

0 M3 0O 0 0 Mk 0 0

0 0 MiZ 0O 0 0 Mk 0
VP 0O 0 0 My 0 0 0 Mgy (529)

M 0O 0 0O Mx O 0 0O

0 My O 0 0 Mg 0 0

0O 0 Mi 0O 0 0 Mk O

0 0 0 Mg 0 0 0 Mg
where,

Mp =mi + 2(2/\1<Z51 +A¢3), M3, =mi, + 2(2)\1¢1 + A303) (5.2.10)
M3y =mi, + = (6)\1¢1 + 03, M3y = Ms,, (5.2.11)
M35 = mj, + 2(2/\2¢2 +A¢1), Mgs = m3, + 2(2)\2% + A30%) (5.2.12)
Mz, = mby + = (6)\2% + A1), Mgy = Mg, (5.2.13)
Mis = —miy + As¢1 ¢, Mis = —miy + = 5 (/\4 + A5) 0102, (5.2.14)
Mi; = —miy + Ay 162, My = M3y, (5.2.15)

and where we used the abbreviation AL = A3 + A\, £ 5. To obtain the final mass
eigenvalues, the diagonalisation of the mass matrix in Eq. (5.2.9) is conducted as
in [220,221].

In practice, we wish to calculate the Lagrangian parameters mi;, mas, mis, Ay - .., As
from the physical mass inputs {my,,my,m4, m =}, along with the input model
angles a, f and the input parameter m,. Appendix B.2 in Ref. [221] features
the tree-level relations to calculate the Lagrangian parameters, however for a more
accurate analysis the one-loop renormalised parameters should be utilised instead.

We describe the procedure of vacuum renormalisation in detail in Section 5.4.5 below

and the Appendix B.2.
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5.3 Thermal Potential

To compute the temperature-dependent effective potential for the Type I 2HDM, we
make use of high-temperature dimensional reduction, which we reviewed in Section
3.7.4 and which we recap briefly here. In the context of Lorentz scalar-driven
transitions, this approach is well-suited for the high-temperature regime relevant to
the transitions we study. As mentioned previously, this method features reduced
theoretical uncertainties; in particular, it allows for a consistent inclusion of all large
thermal corrections including two-loop thermal masses essential for renormalisation
scale independence [134,248,249] which in turn is essential for theoretical consistency

and ensuring physically meaningful results, but commonly not achieved.

As mentioned in Section 3.7.4, dimensional reduction utilises the thermal hierarchy
of scales

2
L7« gT < T, (5.3.1)
T

with g representing a gauge coupling. The scale |p| ~ 7T corresponds to the hard
non-zero bosonic (fermionic) Matsubara modes [131], |p| ~ g7 ~ mp to the soft
Debye screening modes, and [p| ~ ¢*T to the non-perturbative ultrasoft modes in
the infrared (IR) [133]. By successively integrating out ultraviolet (UV) modes—see
e.g. [250]— one obtains a sequence of dimensionally reduced EFTs. The final step
yields a 3D EFT at the scale of bubble nucleation corresponding to ¢*T /7 < |p| <
gT [251], the so-called softer scale [249,252], since, in practice, the mass of the phase
transition undergoing scalar will be parametrically larger than the ultrasoft scale.
In this final EFT?, the long-distance dynamics of the transition is encoded in three

spatial dimensions.

To compute the thermodynamics of a phase transition, one typically makes use of the
effective potential at finite temperature. This potential is then computed in the final
3D EFT at the softer scale. To obtain the potential and the 3D EFT Lagrangian

in practice, we utilise the thermal EFT matching software DRalgo [253], which we

!In Appendix B.1, we discuss the choice of the scale for fizys which defines the softer scale.
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cross-check via further in-house software in FORM [254], and apply qgraph [255] for

diagram generation.

5.3.1 The Dimensionally Reduced Effective Potential

The starting point for our analysis is the effective potential up to two-loop level in the
softer 3D EFT. This corresponds to the functionalities of DRalgo v1.2.0. Since we
are interested in tracking the phases in multi-field space, we refrain from integrating
out further, potentially heavy vector fields [252]. By keeping the matching relations
(which relate Lagrangian parameters between the hard, soft, and softer theories) at
two-loop level, the options to compute the effective potential amount to its different

loop orders, labelled via

[3D@NLO V53@LO]: two-loop EFT matching, one-loop effective potential ,

(5.3.2)

[3DGNLO V53@NLO]: two-loop EFT matching, two-loop effective potential.

(5.3.3)

Here, we will focus on the former, namely [3D@NLO V3@LO]. The reason for this
is that the direct computation of the two-loop effective potential contains scalar
contributions that, for some parts of the parameter space, should be counted as
higher-order in comparison to the heavy vector contributions [256,257]. An artefact of
this setup is the presence of logarithmically divergent terms in the two-loop potential,
which are the result of negative mass eigenvalues in the logarithms coming mostly
from sunset diagrams. The divergences lead to numerical issues when calculating the
transitions; unphysical vacua are identified due to sharp discontinuous local minima,
leading to unphysical phase transition parameters (such as bubble walls moving
super-luminously; vy > 1). To avoid such issues we follow [258] and compute the
one-loop potential with two loop matching relations.! In the following, we refer to

the setup in Eq. (5.3.2) as the two-loop improved one-loop potential.

1See Ref. [249] for a similar application.
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The final effective potential at the transition scale, is a function of the 3D effective

fields @™ = {470, p3°}' and the temperature 7.

The 4D effective thermal potential, V;, can be calculated from the 3D potential via
Vi(¢,T) = TVs(¢™, T) (5.3.4)

using the relation between field values in three- and four-dimensions ¢*° — ¢/ VT.

Henceforth, we suppress the 3D superscript for the fields in the 3D EFT.

5.3.2 Higher Orders in the Effective Potential

In the effective potential at the softer scale, we utilise the NLO matching relations
from DRalgo directly, based on the example file 2hdm.m.? Similar matching relations
can also be found in [221].> For the corresponding vacuum renormalisation, see

Sections 5.4.5 and B.2.

Up to two-loop order, the 3D effective potential is

Vo =Vos+Vig+Vas, (5.3.5)

Vig = Z”z J3 (m?(gb, T)) ; (5.3.6)

where d = 3—2¢, V{ 3(¢, T) is the three-dimensional version of the tree-level potential
Eq. (5.2.5) [220,221], and the degrees of freedom, n;, are d-dependent. The corres-
ponding mass eigenvalues 7; of the dynamical fields i € {W, Z, H, A, H £ h,G°, Gi}
in the 3D EFT depend on the background fields for the two Higgs doublets, whose
4D analogues are seen in Eq. (5.2.1). We discussed the calculation of the mass

eigenvalues from the mass matrix in Section 5.2.

Similarly to the 4D vacuum case and the corresponding Coleman-Weinberg poten-

!These background fields are the 3D analogues of the background fields defined in Eq. (5.2.8).

2See the DRalgo GitHub, https://github.com/DR-algo/DRalgo/blob/main/examples/2hdm.
m.

3In comparison with the matching relations of [221], scalar masses in our softer-scale matching
relations are counted as higher-order inside of logarithmic terms for e.g. m3,. Also, in Eq. (3.15)
of [221], Ny should be the number of fermions and not the number of families.


https://github.com/DR-algo/DRalgo/blob/main/examples/2hdm.m
https://github.com/DR-algo/DRalgo/blob/main/examples/2hdm.m
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tial [259], the one-loop 3D EFT potential, V; 3, takes a closed form. The correspond-

ing integrals are UV-finite and three-dimensional

Nl

Ty (m?) = /p In(p? +m?) 2 — L (n2)E (5.3.7)

12

N | —

where [ = Jd*p/((2m)*2E(p)). The two-loop contributions, Vi3, to the poten-
tial (5.3.5), as well as the two-loop 3D EFT matching relations, are directly adopted
from DRalgo [253] and can also be taken from [260]. The parameters of this final
3D EFT are evolved to the 3D renormalisation group (RG) scale, ji3, which we set to
it = T in our analysis. The RG evolution and vacuum renormalisation procedures

are detailed in Section 5.4.5 and Appendix B.2.

In Section 5.3.1, we argued that directly employing the two-loop effective potential,
without integrating out heavy vector and temporal modes to induce the transition,
can lead to pathological behaviour for some benchmark points along the transition
path in the multi-dimensional field space. Since the preferred approach is therefore
to use the [3DONLO V,@LO] prescription Eq. (5.3.2), one may wonder about the
importance of omitting two-loop corrections in the effective potential while keeping
them in the matching. These effects have been studied in [249,258], which concluded
that the dominant uncertainties are associated with higher-order corrections in the
matching. To investigate this and support our choice of using the setup Egs. (5.3.3)
for our scan, in Section 5.5 we examine a few benchmark points to assess the
magnitude of uncertainty introduced by neglecting higher-order terms in the effective

potential. These benchmark points are summarised in Table 5.2.

5.4 Phase Transition and GW signature

To find the phases, calculate phase transition properties and gravitational wave
spectra from our 4D (DR) potential, we make use of the PhaseTracer2 package for
C++ [261,262]. The package automates the pipeline from a 4D thermal potential to

the gravitational wave spectrum parameters and signal-to-noise ratios (SNRs) for
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proposed gravitational wave interferometers, such as LISA [21,22] and Taiji [233]. In

this section, we provide a brief review of the computation performed by the package.

5.4.1 Bubble Nucleation

First, it is important to identify the phases of the thermal potential. The phases
are traced while the temperature T' is adjusted for a defined temperature range,
giving the full phase structure of the model. Thermal potentials which feature phase
transitions will typically see a single minimum at high temperature, which represents
the initial phase and the true vacuum at that temperature. As the universe cools,
a second minimum will appear, initially with a higher potential value than the first

phase.

The critical temperature, T, is defined as the temperature at which two phases are
degenerate. Below this temperature, the new phase becomes the ‘true vacuum’, or
the stable phase, whereas the initial phase becomes the false vacuum, or metastable
phase. If a potential barrier exists between the false vacuum and the true vacuum,
the phase transition will be first order, which requires bubbles of the new phase
to nucleate via the tunnelling of the field configuration through the barrier, or via
thermal fluctuations giving enough energy to the field to overcome the barrier. The
nucleation and expansion of new bubbles of the true vacuum occur during the phase

transition, which is considered to have ended when percolation has occurred.

Euclidean Action of the Transition Path

Bubbles can only nucleate when there is a viable transition path between the minima
with a low enough action. After switching to Euclidean space, with ¢t — —i7, the
transition path can be parametrised as ¢;(p) and ¢o(p) with p = /7> + x° being a

radial parameter in space, indicating a spherically symmetric bubble.



Chapter 5. Phase Transition Phenomenology of the 95 GeV Resonance
154 in the Two Higgs Doublet Model

Figure 5.1: Ilustration of an upturned potential showing the true
vacuum ¢', the false vacuum ¢’, and the ‘release’ of the
classical particle at an initial position ¢.

The associated Euclidean action can be written as

Silon () = s [T 60+ 8N + VoL en T do, ()

with d being the number of dimensions of the O(d)-symmetric field configuration,
and €2, being the surface area of an n-dimensional sphere. While d = 4 for nucleation

by quantum tunnelling, d = 3 for nucleation by thermal fluctuations.

The Euler-Lagrange equation provides the saddle point of this action, known as the

bounce equation, given by [263]

i} d—1.
®i(p) + T@(P) 8@

Vi, 92, 7). (5.4.2)

This equation is solved with the boundary conditions ¢;(0) = ¢;(p — o) = 0,
and ¢;(p — o0) = gblf , where gblf is the value of the fields at the false vacuum
(see [94,264] for a discussion of the appropriate boundary conditions for tunnelling).
It is equivalent to the solution of a classical particle in an upturned potential, being
released at an initial position ¢} near the true vacuum (as shown in Fig. 5.1), until
it comes to a rest exactly at the crest of the hill where the false vacuum resides.
For a 1D field configuration calculating this solution requires the utilisation of the
‘shooting method’. An initial guess for ¢° = #(0) is made, which is then evolved
towards the false vacuum using the bounce equation. If the particle comes to rest at

the crest of that hill, the bounce solution has been calculated. Otherwise, if it goes
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beyond the crest of the hill, it overshot and the initial guess for ¢, was too close to
the true vacuum. If it doesn’t make it to the crest of the hill, it has undershot and

the initial guess was too close to the bottom of the valley in the upturned potential.

A generalisation of this method for the multi-field case is used in the ‘path deform-
ation’ algorithm, first utilised in the CosmoTransitions package [265] and then in
PhaseTracer2 [262]. Here, the transition path may no longer be a trivial straight
line path between the two minima, so the path must be perturbed in the direction
that minimises the action, to find the path of least action at temperature 7. Then,
the action is calculated and checked against the nucleation/percolation criteria (see
Section 5.4.1) to determine the temperature at which the a bubble has nucleated or

the phase transition has percolated.

To examine how the path deformation works, we reparametrise the path ¢(p) =
{01(p), P2(p), . .. } as ¢(x) [265], where = z(p) and x is defined such that |d¢/dz| =
1 as in Ref. [262]. Next, we define d¢/dx = é,(x) as the unit tangent vector of the

path.

This results in the splitting of the bounce equation 5.4.2 into parallel and perpen-

dicular parts,

d’r d—1ldx d
T dp (é(x) V)V(e,T) = %V(@ T), (5.4.3)
d 2 d2
(dﬁ) d;; =V.V(o,T), (5.4.4)

where V| indicates the perpendicular components of the gradient in field space’.

Through the second equation, we see that we can quantify how far off a path guess

is from the bounce solution using the normal force, defined as

F,(z) = (dx>2 dzj) -V, V(e,T), (5.4.5)

and where this vanishes, the perpendicular part of the bounce equation is satisfied.

Thus, a solution to Eq. 5.4.3 with a vanishing normal force is a solution to the

'"We use the notation V(¢,T) instead of V(¢1,p2,T) when referring to a generic multi-field
potential.
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bounce equation, and the path of least action has been found.

To conclude, the path deformation proceeds as follows:

1. An initial guess for the path ¢(z) is made, typically a straight line connecting

the minima in field space.

2. Next, the one dimensional shooting method is utilised to iteratively solve Eq.

5.4.3 to calculate a solution for z(p).

3. The normal force F), is calculated along the path using Eq. 5.4.4 to determine
in what how much and in what direction the path needs to be perturbed

towards the bounce solution.

4. A perturbed path is fed into Step 2 and then 3, until we calculate a path with

vanishing F,, given some tolerance and a bounce solution has been found.

The action Sy4(T") is then calculated for the bounce solution at temperature 7.

As mentioned before, S, is used to calculate nucleation via quantum tunnelling,
which is the most important effect at zero temperature. For the EWPT which
happens at high temperature, we thus use S; instead to calculate nucleation by

thermal fluctuations.

Nucleation Criteria

We define the onset of the phase transition through the following nucleation criterion

(25,266, 267]

Sy A Ty 3
Sl o | —4ln(——a ) -1 5.4.6
Ty o (Tjé) ! (100 Ge\/> ! <1OOH*> ’ (5.4.6)

where Ty is the nucleation temperature, considered to be the onset of the phase

transition. 3/H, is the inverse of the time taken for the phase transition to 'complete’,
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where H, refers to the Hubble constant at the time of GW production. For the

EWPT, In(A/T") ~ —14 [268] "

While this condition is phrased in terms of the Euclidean action, it is derived from
the requirement that the nucleation rate per unit volume becomes significant in
an expanding universe. More precisely, it approximates the point at which the
probability of bubble nucleation in a Hubble volume becomes order unity. The full
percolation criterion requires integrating the nucleation rate over spacetime to track
the volume fraction of the false vacuum (see e.g. [132]). This criterion, which allows

for the calculation of the percolation temperature, 7}, is provided by [271]

Sy A T, 5
28 1314l 2] 4l (2 ) — 4 (2 ) 431 4.
7, =BT n(Tﬁ) n(lOOGeV) n(mom) +3lw),  (547)

where we use an ansatz for 3 /H, = 10*, justified in Section 5.5 and the bubble wall
velocity vy, = 0.63 justified in Section 5.4.3. The ansatzes are used as we can only
calculate these quantities a posteriori. A more thorough calculation will iteratively
solve for a self consistent percolation temperature and gravitational wave spectrum,

however this approximation should be appropriate for our purposes.

To summarise, as the temperature 7' is lowered, a bounce solution is found and its
action calculated, which is then compared to the nucleation/percolation criteria until

they are met and the Ty and/or T, are found.

5.4.2 Phase Transition Parameters

The phase transition can be characterised by the transition strength parameter, a,
and the inverse time of transition, 5/H,, which are vital for the computation of the

gravitational wave spectrum. We use this notation to differentiate these parameters

from the 2HDM model angles «, 5.

In practice, the nucleation rate receives higher-order corrections from fluctuations around the
bounce solution, modifying the prefactor A(T") and the interpretation of S3, and have recently
been studied in detail using functional determinant methods [251,269]. Public tools such as
bubbleDet [270] enable the automated inclusion of these corrections, providing a more accurate
estimate of the nucleation rate.
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The trace anomaly difference of the energy-momentum tensor is

)

where T, is the gravitational wave production temperature, typically identified with

&y

L9 , (5.4.8)

Al = <V(¢, L) =75V (0T

¢,

the percolation temperature of the phase transition 7),. Af quantifies the amount of
energy available for conversion to spacetime shear stress, which is represented by the
off-diagonal components of the stress-energy tensor 7", and is responsible for the
generation of gravitational waves [272-274]. This is taken in the relativistic plasma
limit and in practice receives further corrections if the broken-phase speed of sound

squared differs from ¢2 = 1/3 [275,276].

The ratio of the trace anomaly difference to the energy density in the plasma (ap-
proximated by the radiation energy density at the GW production temperature
Py = 7r29*T1;l /30), quantifies the energy available for gravitational wave production,
and thus characterises the strength of the phase transition:'

AY
pr

o

(5.4.9)

Several alternative definitions of a exist in the literature. A commonly used one
defines it as the ratio of vacuum energy difference to the radiation energy density,
a = AV g/p,, which neglects thermal effects [24]. Another popular definition comes
from hydrodynamics, where & = Ap/(p + p) describes the energy injected into the
plasma relative to its enthalpy [277]. A third definition is based on the pseudo trace
anomaly definition [275], which approximates the energy available for shear stress

using a simplified thermal treatment.

The definition used in this chapter includes both vacuum and thermal contributions
and is particularly appropriate for models like the 2HDM, where no tree-level barrier

is present and thermal corrections are essential for realizing a FOPT.

Next, 3 /H,, is derived from the truncated first order Taylor expansion of the bubble

1As above, we use barred notation for this parameter to differentiate it from the Lagrangian
parameters in the 2HDM.
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nucleation rate around t,, the characteristic time of the GW production, [21,262,278]:

Ty = Ae 5/T xDy(t =t,)e Pt (5.4.10)
where (3 clearly characterises the inverse time scale of the transition. Under the
adiabatic assumption for the expansion of the universe, dT'/dt = —HT with H being

the Hubble parameter [21]. Thus we can derive 3/H, through [262]

d(S3/T)

dt

_ d(Ss/T)
= H.T. = . (5.4.11)

t=t, T=T,

B =

As before, t, = 1, as it is typically associated with the time of percolation rather

than nucleation.

5.4.3 Gravitational Wave Spectrum
Early universe FOPTs give three main sources of gravitational waves:

o Sound waves induced by the expansion of bubbles into the surrounding plasma,
« Bubble collisions creating anisotropic stress directly [279],

o Turbulence in the plasma caused by bubble collision energy [23,280].

Typically, the GW contribution from these three sources can be calculated from
knowledge of the thermal parameters &, /H, and vy, which is the bubble wall
velocity. A thorough calculation of vy, can be achieved through hydrodynamical
simulations of the phase transition, as in Refs. [281,282], however these are time
consuming and vy is typically supplied as an input parameter [262,283|. A general
perturbative determination of vy, requires including out-of-equilibrium effects [284]

as recently automated in Ref. [285].

It has been argued by Steinhardt [286] that vy can be approximated by the Chapman-

Jouguet velocity, typically used to describe explosive detonations:

1 2
UW ~ UCJ = 1—’_707 (Cs + 6[2 + Of) (5412)
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where we take the speed of sound in the plasma to be ¢, =1/ V/3. For the strongest
transitions we find in Section 5.5 (which have @ ~ 4 x 10~?) the Chapman-Jouguet
velocity gives vy = 0.63, justifying the ansatz used in Section 5.4.1, and the use of
this value as an input to Eq. (5.4.7) in our numerical studies. However, Eq. (5.4.12)
is valid only in a restricted regime. As noted in Refs. [283,287], the assumptions un-
derlying the Chapman-Jouguet condition do not strictly apply to cosmological phase
transitions due to the differences between chemical combustion and cosmological
phase transitions. More accurate treatments bracket the true value of vy, between two
physical limits: a ballistic limit, representing minimal interaction between the bubble
wall and plasma [283], and a Local Thermal Equilibrium (LTE) limit, which assumes
local entropy conservation and requires detailed thermodynamic input [283,288,289].
The LTE expression has been shown to match well with numerical simulations [290],
but is computationally prohibitive for parameter scans. For simplicity, we adopt the

Chapman-Jouguet approximation in this chapter.

The characteristic frequency of the GW spectrum f, can be naively estimated by
multiplying the redshift factor (from the time of GW production to today) with
H,. This rests on the approximation that the wavelength of the signal is set by the

horizon scale at time of production.

In the following sections, we will discuss the fitting formulas for the three sources of

gravitational waves that have been derived from numerical simulations.

Sound waves

Numerical simulations indicate that sound waves are typically the dominant source
of GWs from FOPTs [291,292]'. Two length scales dictate the bounds of the power
spectrum of the acoustic GW contribution, which are the mean distance between
the bubbles,

R, = (87)3uy /13, (5.4.13)

IThis is indeed the case across the parameter space of this work, however see [293] for examples
of exceptions.
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and the thickness of the expanding sound shell in the plasma outside the bubble of
the new phase,

AR, = r 1w =l (5.4.14)

Cs
The sound shell thickness AR, dictates the position of the peak of the power spectrum
[294]. Hindmarsh et al derived an analytic fitting formula for the acoustic GW
contribution [25,292,294], which we write here in the form used by PhaseTracer?2
[262],

Quh*(f) = 2.061F,, oT2U$ Sg (f)Quh® x min(H, R, /Us, 1)(H,R,), (5.4.15)

where min(H, R, /U;,1)(H,R,) accounts for the finite lifetime of the shear stress

induced by the sound waves [292], and

1/3
Flpo=357%x107" (1900) / : (5.4.16)
f 5 7/2
sun- (L) () s
w/ \4+3 ()
Jow 26 (ZP> (T> (‘%)1/6. (5.4.18)
1pHz — H,R, \10/ \100GeV/ \ 100

Here, f,, is the peak frequency of the sound waves and S, (f) is the spectral shape.
" is the ratio of enthalpy to the energy density of the plasma, taken to be 4/3 for
the early universe, U ¢ is the enthalpy weighted root mean square fluid velocity of
the plasma, and z, ~ 10 and ng ~ 0.012 are parameters informed by the numerical

simulations.

Thus, we see that FUJ? = K, is the ratio of kinetic energy in the fluid to its energy

density. We can write this as
—_— (5.4.19)

where kg, is an efficiency factor for the conversion of the latent energy of the phase

transition into the acoustic kinetic energy of the fluid.

PhaseTracer2 employs the following fitting formula for s, when the wall velocity
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is taken to be the Chapman-Jouguet velocity:

K = \/5
0135+ /098 +a

(5.4.20)

Bubble Collisions

Similar numerical simulations are used to inform fitting formulas for the GW con-
tribution from bubble collisions. The envelope approximation [295], where bubble
wall thicknesses are considered to be infinitesimal and are treated as non-existent
in regions of overlap, is often employed to simplify these computations [295-299].

Here, we quote the fitting formulas used by PhaseTracer2 [262] based on the work

in Ref. [300]:
envy 2 -5 g\ (B -~ 2 f
QENR2(F) = 1.67 x 1075A <100> <H> K25, <f> L (5421)
where ,
1+ 503212?1 Bogy (5.4.22)
As with the sound waves,
K. = fio‘a (5.4.23)

represents the fraction of latent phase transition energy converting to kinetic energy

in the fluid from collisions, where

1 4 3«
= ——— | 07150+ —/ — 5.4.24
g 1+0.715@( T 2) (5.4.24)
is the efficiency factor [298].
The spectral shape is given by
Sene(r) = (0.0647~° + 0.456r " + 0.48r) ", (5.4.25)

and the peak collisional frequency is given by

o (£) () () (i) oo
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where
0.35

T 14 0.069vy + 0.690%

(5.4.27)

=T

Turbulence

Simulation based fitting formulas for the contribution from magnetohydrodynamic
turbulence in the plasma, calculated in Refs. [23,149], are used as follows in PhaseTracer?2
[262]:

3

3\ ! -1/3
Qe (f) = 3.35 x 10~ % <ﬁ> K32 (9) r 7

(5.4.28)
where
g« \/° ( T. )
H,=16.5 ——— | uH 5.4.29
° (100) 100 Gev ) 177 (5.4.29)
is the redshifted Hubble rate at the GW production temperature 7, and
’Qturb@
K. . = 5.4.30
turb 1+a ) ( )

is the fraction of phase transition energy transferred to turbulence in the plasma. The

efficiency factor £, can be taken to be in the range 0.05 < Kiup/Fsw < 0.1 [292].

The variable r = f/ fi,, with peak frequency

27 B [ 9. )1/6( T, >
= 2L ). 4.31
Jrust ow H, (100 100 GeV (5-4.31)

Total Spectrum

Finally, we arrive at the total gravitational wave spectrum which is the sum of these

three contributions,
Quh®(f) = Queh®(f) + Qe P2 (f) + Quarh(f) - (5.4.32)

For high GW production temperatures 7T, > 10 GeV, the contribution from bubble
collisions is neglected in PhaseTracer2 [262] due to the sound wave contribution

being significantly larger.
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5.4.4 LISA signal to noise ratios

The signal to noise ratios (SNRs) for LISA can be calculated through [25,301]

o e (2D
N = 7 [ o)) )

where 7T is the length of time for data collection, and h*Qu(f) is the frequency

dependent sensitivity of the experiment. It is given by [301]

2 _ 477T2 3
h Qsens(f) - SHgf Sh(f) (5434)

where the S;,(f) is the inverse noise weighted sensitivity to the spectral density,

Su(f) =~ 20v2 ( Silf) SH(f)> (1 + <3f>2) . (5.4.35)

3 (27Tf)4 4f*

For LISA, the term involving

Si(f) =5.76 x 107* (1 + ("}) ) Hz* (5.4.36)

where f; = 0.4mHz, gives the acceleration noise associated with spurious forces on
the test masses, for example those that occur due to the build up of electrostatic

charge [302].

The term involving

Si(f)=36x10""Hz " (5.4.37)

corresponds to the noise from optical path length fluctuations. The characteristic
LISA frequency f, = ¢/(2wL), where L = 2.5 x 10°km and ¢ is the speed of light,

relates to the distance that light travels between LISA sensors.

Useful quantities that can be taken from nghz include the frequency f,,, for which
the amplitude is greatest (the ‘peak frequency’), and the peak amplitude ngh2( Jaw)

at that frequency.
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5.4.5 From the Effective Potential to Gravitational Waves

In the previous two sections, we have described our calculation of the 2HDM thermal
potential and the dynamics of the first order phase transition with a light degree of

freedom. We summarise the calculation pipeline with the following steps:
1. First, we take the physical input parameters {my,, my, m4, my+, tan(3), cos( — ), mya}
defined at the input RG scale Ag = m.

2. Next, we use these physical input parameters to calculate the one-loop renorm-

alised 4D Lagrangian input parameters {m%l, Mg, Mia, N,y N5, Uss G2, G5, gg}.l

3. Next, we use the beta functions (provided in Appendix B.1) to RG evolve these
renormalised 4D Lagrangian parameters to the matching scale ji, = 4mwe™ 2T,

SUCh that we have {m%b m%% m%Qa 5\1a B 5\57 gta g%a g%? g%}
4. Using the soft 3D matching relations, we calculate the soft parameters
{(miD)? (m32)?, (m3z)%, A0, A2 wd, ()%, (957)%, (637)) (5.4.38)

at the scale ji; = T. In the soft theory, \i?; arise from integrating out the

non-zero Matsubara modes, despite our model having as input \s_; = 0.
5. Using the softer matching relations, we calculate the softer parameters
{(mi?)?, (m32)?, (mi3)*, A0, A, 80, (300, (82°)% (g50)°) (5.4.39)
at the softer matching scale ji3yg = fis3-

6. The softer parameters serve as input to construct the 3D effective potential,
Va(3P, 43P, T). As mentioned previously, we find the 4D effective potential

Vi(¢1, ¢o, T) through Eq. 5.3.4.

7. Through V,(¢q, ¢o,T), we can then,

!Note that in this chapter and Appendix B we use the notation g; = ¢, go = g, and g3 = gs.
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Figure 5.2: Computed phase transitions with a light pseudoscalar

(a)

(b)

m = 95 GeV in the region seen in Fig. 5 of Ref. [204].
We have fixed my = 160 GeV and cos(f — «a) = —0.2,
with the other fixed values as in Table 5.1.

Find the minima of the potential, identifying when they co-exist and

finding possible critical temperatures 7.

Find possible transition paths between the minima and calculate the
action S along the paths, comparing S/T to the percolation criterion in

Eq. 5.4.7. This allows us to calculate the percolation temperature(s) 7,.

Calculate the transition parameters a, 3/H,, and then the peak gravit-
ational wave frequencies and amplitudes associated with the transitions.
From this, the signal-to-noise ratios (SNRs) for LISA or other experiments

can be calculated.

5.5 Results

As explained previously, we work in the real 2HDM Type I, associating the 95 GeV

resonance with the pseudoscalar A. The model features eight free parameters, of

which we fix six to benchmark values informed by theoretical and experimental

constraints (Table 5.1).
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In particular, we fix tan $ to be within the range necessary to fit both the diphoton
signal and the ditau signal (see e.g. Ref. [204]). Interestingly, we have confirmed
that the value of tan(f) chosen here also optimises the strength of the EWPT as
can be seen in Fig. 5.2. In this figure, we show the transition strength parameter a
in the parameter space allowed by current constraints [204], fixing my = 160 GeV
and cos(f — a) = —0.2 which will be motivated a posteriori. From this result it is
seen that the value of tan(f) chosen to fit both collider signals also leads to stronger

phase transitions, when m + ~ 290 GeV. This also partially alleviates the tensions

H

with flavour physics (b — s7).

Lastly, we find little sensitivity to m;, below my ~ 10 GeV, and fix it at an arbitrary
value of m5 = 1 GeV to represent that entire range. A preliminary scan in my up
to 10? GeV showed that & was strongest for my ~ 10" GeV. An analysis with m,
fixed to this value showed no qualitative and only minor quantitative differences

from the conclusions presented below (maximum SNR at LISA was found to be

O(107%).

For supercooled transitions, it is also important to check that volume of space that
is in the false vacuum is decreasing, along with checking the percolation condition
in Eq. (5.4.7). This is because the condition can be met and yet the progression
of the transition could be reversed. Since supercooling as quantified by the relative
difference of dgc = (T — Tiv) /T is never larger than ~ 20% across the parameter
space, the transitions are not strongly supercooled. Due to the absence of such large
supercooling, the condition of shrinking false vacuum is also met for the investigated
parameter space and no subsequent thermal inflation is observed [303,304]. The
observed mild values of supercooling result also in relatively small field values and
no large separation of temperature scales in contrast to classically conformal models,
where supercooling is large and one needs to utilise a more refined framework [305-
307]. In turn, this gives credence to the validity of the high-temperature expansion
for computing both the transition timescale and the strength within the 3D EFT

framework.
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Parameter Value Motivation
mpy 95 GeV  Resonance mass
my, 125 GeV  SM-like Higgs
m o+ 290 GeV  Alleviate b — s7 tension
tan g 1.57 Fit vy and 77 excesses
m%Q 1 Gev?  Minimal impact on EWPT strength

v = \/v% + v% 246 GeV  Electroweak vev

Table 5.1: Fixed inputs for our scan identifying A, H with the res-
onance respectively.

The remaining two parameters are varied as
cos(f —a) € [-0.3, 0.3], my € [130, 300] GeV. (5.5.1)

We vary the temperature T" between 300 and 20 GeV when finding the phases and
identifying transitions. As we shall see, we do not expect that allowing for smaller

my in our scan leads to different vacuum structures or stronger transitions.

These ranges are fully compatible with electroweak precision fits: by keeping mpy €
[130,300] GeV (with near degenerate A and HT) and |cos(8 — a)| < 0.3, the S
and T parameters lie within the 20 allowed region of global fits. Moreover, the
implied quartic couplings in the scalar potential remain O(1), well below the treelevel
unitarity bounds (and safely perturbative), so all 2 — 2 scalar-scalar amplitudes

satisfy |ag| < %, where qq is the s-wave amplitude of the 2 — 2 scattering.’

We show the results of our scan in Fig. 5.3. We find that the vacuum structure as a

function of temperature depends on cos(f — «) and my as follows:

For small my < 200 GeV and large cos(f — «) 2 —0.1, the first vacuum away from
the origin to appear does not give the SM-like resonance h a vev. The further,
SM-like vacuum only appears later, and EWSB thus occurs through a two-step
transition. Either of these transitions is weaker than the immediate transition to the
SM-like vacuum, which occurs for a band of smaller cos(3 — «). This is because in

this range, the electroweak gauge bosons couple more strongly to the SM-like state.

IThis condition is a result of the imposition of unitarity on the Legendre expansion of the
scattering matrix, where a; is the coefficient of the j-th Legendre polynomial P;(cos()), and ag is
real for a tree-level process. See Ref. [34] for a derivation of this constraint.
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Figure 5.3: Top Left Panel: First order phase transitions in the
my - cos(f — «) plane, with the colour showing the
value of the largest |v./T¢| for that parameter point.
Regions of two step (2S) and one step (1S) first order
phase transitions are labelled, along with the region
that has crossovers. Top Right Panel: As for top
left, showing the peak amplitude ngh2( faw) instead.
Bottom Left Panel: As for top left, showing the peak
frequency f,, instead. Bottom Right Panel: Com-
puted phase transitions for different parameter points
plotted against transition parameters & and 3 /H,. Only
a randomly sampled selection (1 in 4) is chosen to be
shown on the plot to make the trends clear. The value
of cos(8 — «) for each point is shown by the colour,
whereas the value of mpy is shown by the size of the
circle. We show LISA SNR curves for an ansatz trans-
ition temperature of 160 GeV, and an ansatz vy, = 0.63.
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BM mpy cos(B—a) Oqjeep  Qoloop Brror
2S 130 0 0.0017  0.0035 51%
1S 200 -0.2 0.00015 0.00019 21%

Table 5.2: The transition strength parameter & and relative errors
for Benchmarks 2S and 1S at (2-loop improved) 1-loop
[3DONLO V3@LO] and 2-loop [3D@NLO V3@NLO]. Other
parameters are fixed according to Table 5.1.

For lower cos(5 — a) the transition again occurs in two steps. For large my and

cos(f8 — «v), no barriers are created and EWSB occurs via a crossover.

In the second and third panel, we show the peak amplitude and frequency for
the GW spectrum resulting from strongest transition. As expected, the largest
amplitudes are found in the band where the transition occurs directly. However, the
amplitudes throughout this parameter space are lower than can be probed by the
anticipated GW experiments in the next decades. Moreover, the peak frequencies
are typically outside of the range of space-based interferometers, reflecting the large

[/ H, parameters found in our scan.

This is explicitly demonstrated in the last panel of Fig. 5.3, in which we show the
predicted latent heat parameter & and inverse duration parameter 3 /H, for the range
of models we scan over. We show contours of fixed SNR for the LISA experiment
(calculated through Eq. 5.4.33) with dashed contours, where we assumed a transition
temperature of 160 GeV which we found to be characteristic, and a wall speed of

vy = 0.63. No models in our scan reach SNR unity.

Finally, we attempt to quantify the error introduced by our use of the two-loop
improved one-loop potential instead of the two-loop potential.'. We evaluate two
benchmark points which are representative of the two step region (2S) and the one
step region (1S), at both one and two loop, making use of the two loop matching

relations in both cases.

The results of these benchmark points are found in Table 5.2. We find that the

!The two-loop result was not used for our parameter scan due to the issues discussed in Sec-
tion 5.3.1



5.5. Results

171

a4

N
1/

(a) Benchmark 2S showing

a 2-step transition at
both 1- and 2-loop.

D /.
L] N

1/

(b) Benchmark 1S @ 1-

loop, showing a dir-
ect transition labelled
2. A weaker transition
1’ (with a lower 7)) is
also calculated.

éD”f
1/
N

L/

\

(c¢) Benchmark 1S @ 2-loop,

showing a direct trans-
ition labelled 1°. This is
followed by a crossover
to the zero-temperature
minimum.

Figure 5.4: Illustrative phase diagrams for the benchmark points
1S and 2S in Table 5.2, with regions that contain 1S
and 2S shown in Fig. 5.3.

differences in percolation temperatures are in agreement with the differences between
the 1-loop and 2-loop calculations in Ref. [79], and that the differences in & are of
order O(0.1 — 1). This means that while the 2-loop potential provides important
quantitative contributions, the transition strengths are within the same order of
magnitude, resulting in similarly weak SNRs. For benchmark 2S, the interim phase
appears earlier than the SM-like vacuum, resulting in the 2-step transition (Fig.
5.4a). For benchmark 1S at 1-loop, the single step occurs directly from the origin to
the SM-like vacuum (Fig. 5.4b), as the interim phase appears at a colder temperature
than the SM-like vacuum, and disappears quickly. For the same benchmark at 2-loop,
the interim phase and the further SM-like vacuum are not distinct and instead there
is a crossover between them. Thus the transition happens to the field space location
of the interim phase, and then the phase migrates to the location of the SM-like
vacuum (Fig. 5.4c. As higher order corrections are known to change the type of
phase transition [308], this is a source of the difference between the 1-loop and 2-loop

results. We illustrate this phase structure in Fig. 5.4.

For benchmark 1S at 1-loop, we provide the & of transition 1’ in Fig. 5.4b in the
table, rather than the stronger transition 2’. This provides a more direct comparison

to the 17 transition of 1S at 2-loop (see Fig. 5.4c).
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5.6 Conclusions

In this chapter, we identified the available parameter space for the implementation of
the 95 GeV resonance into the real Type I 2HDM based on previous work, ensuring a
simultaneous best fit for the b — s+ branching ratio, and the v+ and 77 resonances.
The constraints leave my and cos(f — a) as the parameters that are most free to
change. After fixing the rest of the parameters in the model, we use the dimensionally
reduced thermal effective potential to compute the transition parameters & and 3/H, .
We also compute the gravitational wave spectrum nghQ( [), its peak frequency fy

and peak amplitude Qg h°(fon)-

We find that in the my — cos(8 — «) parameter space, there are regions of crossovers,
one step, and two step first order transitions. The region with one step transitions
predictably provides the strongest transitions, with a ~ 0.0035. These correspond to
peak amplitudes of ~ 10™'* and Jaw ~ 107", resulting in the strongest SNRs for the
LISA experiment being around 10~", which are much weaker than the conventionally
desired thresholds of SNR ~ 10. We conclude that a model that simultaneously
seeks to explain the vy, 77 and LEP excesses in the 2HDM could only result in
FOPTs that are too weak to be detected by LISA, and would require interferometers

with much greater sensitivity to the cHz frequency band.

The modest strength of the EWPT observed in our scan can be attributed to
the radiative origin of the barrier separating the vacua. In the parameter space
compatible with identifying the 95 GeV excess as a light pseudoscalar, the scalar
mass spectrum is relatively compressed, limiting the enhancement of thermal cubic
terms that typically arise from large mass splittings. As a result, the barrier is
primarily generated by gauge boson loops, similar to the Standard Model. The
light pseudoscalar itself contributes only weakly to the thermal potential at high
temperatures, and does not induce a significant enhancement of the barrier. This
scenario contrasts with regions of the 2HDM where heavier scalars can radiatively

strengthen the transition or where tree-level terms provide a barrier already at zero
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temperature. In particular, previous studies have shown that large mass splittings,
especially between the pseudoscalar and the heavy scalar or charged Higgs, can
amplify scalar contributions to the thermal potential and lead to a strong first-order
transition. Consequently, while the transition is generically first-order in our setup, it
is not sufficiently strong to produce observable gravitational wave signals or support

electroweak baryogenesis without additional model ingredients.

Another possibility for generating a large barrier via significant mass splitting is to
treat the second, heavier scalar as a UV degree of freedom in the final EFT, and
integrate it out during dimensional reduction. However, implementing this approach
would require dynamically switching between different EFT hierarchies throughout
the parameter scan [252]. We have therefore chosen to focus on the thermal mass
hierarchy as outlined in our analysis, and defer the exploration of more intricate

EFT hierarchies to future work.

Lastly, we comment on how additional degrees of freedom could alter the thermal
history and potentially enhance the strength of the phase transition. In the 2HDM we
discussed, the barrier between the high temperature and the low temperature vacuum
is generated radiatively. A coupling of the Higgs sector to a scalar gauge singlet can
introduce a tree-level barrier in the potential. Alternatively, fermionic extensions or
higher-dimensional operators (e.g. (H'H)?/A?) in the UV of the 4D theory [134] can
enable viable electroweak baryogenesis. Additionally, higher-dimensional operators
in the UV of the 3D EFT theory [309-311] can modify the shape of the potential at
finite temperature, and thus the strength of the transition. These extensions may
also shift the transition dynamics into a more strongly supercooled regime, lowering
the percolation temperature and thus pushing the GW signal into the most sensitive
frequency band of space-based interferometers. A systematic exploration of such
scenarios within the dimensional reduction framework, including complementary
constraints from colliders and electroweak precision studies (e.g. [278,312]) is a

promising direction for future work.






Chapter 6

Conclusion

Well, here at last, dear friends, on the shores of the Sea comes the end of our

fellowship in Middle-earth.

from The Lord of the Rings by J.R.R. Tolkien

In this thesis, we have explored theoretical early universe phenomena tangentially
connected by a link to the baryon asymmetry of the universe. These are: Hot Lepto-
genesis, and a first order electroweak phase transition in the Type I 2HDM. Particle
physics at this scale requires finite temperature considerations, for example thermal
statistics/thermodynamics in the analysis of hot leptogenesis, and dimensional re-
duction to calculate the thermal potential for the Type I 2HDM. We reviewed the
Standard Model, cosmological, and finite temperature theoretical background in

Chapters 2 and 3.

In Chapter 4, we discussed how the desire for naturalness in the Higgs sector imposes
the Vissani bound on the lightest right-handed neutrino, such that my, < 10" GeV.
This conflicts with the Davidson-Ibarra bound, the lower bound for sufficient baryon
asymmetry generation, which generally requires my, 2 10"® GeV. Hot Leptogenesis
is introduced as a model that can resolve these tensions with a hot sector filled with

Ny, the lightest right-handed neutrino, and ¢ a scalar particle that keeps the sector

in kinetic equilibrium. The hot sector is identified as a natural consequence of
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inequitable inflaton couplings to the hot sector vs the SM. The parameter space for
the mass and Yukawa couplings of ¢ are scanned over such that we clearly define
regions of kinetic and chemical equilibrium in the hot sector, while ensuring no
thermal contact with the SM sector. We elucidate the new Boltzmann equations for
this setup, and calculate the baryon asymmetry np over part of the Casas-Ibarra
parameter space. We demonstrate a factor ~ 50 enhancement in the generated
baryon asymmetry due to our model, and that there exist regions of the parameter
space that provide the BAU without being finely-tuned. For a benchmark point, we
find that we can produce the BAU with a Higgs sector fine-tuning of Ay =~ 10.4%,
and neutrino sector fine-tuning of A, & 855%, which is a substantial improvement

on the finely-tuned parameter space for vanilla leptogenesis.

In Chapter 5, we investigate the electroweak phase transition in the real Type I
2HDM, where the physical degree of freedom A is identified with the reported 95 GeV
di-gamma and di-tau excess. We define the constraints on the parameter space such
that the most free parameters are my and cos( — «), which is the coupling of H
to the gauge bosons. In order to calculate the 1-loop thermal potential (improved
with 2-loop matching), we make use of the dimensional reduction method, which has
been shown to have significantly reduced uncertainties in comparison to the more
commonly used 4D methods with daisy resummation. The Mathematica package
DRAlgo is used to compute the dimensionally reduced potential. This is then fed into
a C++ script, and the PhaseTracer?2 package is used to find the vacua, calculate the
percolation temperature 7),, and calculate phase transition parameters & and 3 /H.,.
The gravitational wave spectrum nghQ( f) is also computed, along with signal-to-
noise ratios for the LISA experiment. We present this data as a parameter scan of the
my — cos(f — «) plane, which shows regions with one-step and two-step first order
phase transitions, as well as a crossover. We find that the highest signal-to-noise
ratios are of order ~ 107°, and thus conclude that it is unlikely that the 95 GeV
resonance explained by the 2HDM could provide a first order phase transition that

is detectable by experiments in the near future.



Appendix A

Cross-Sections, Decay Rates and

Thermal Averaging

In this appendix, we give details of the cross-sections, decay rates and thermal

averaging we use in our computations.

A.1 Cross-Sections and Decay Rates

In Section 4.3 we examine a number of processes that contribute to energy ex-
change (via elastic scattering) or particle number exchange (via number-changing
processes). Here, we give the relevant cross-sections which we calculated with the

help of FeynCalc [313].

The Feynman diagrams for the elastic scattering processes NNy 3 — NiNy 3 are

given in Fig. 4.4 (a) and (b), and the cross-section is

2,3
] o) - W GEY
N N. Ny N. -
1Ng 3= N1 Nj 3 47Tm3)82 (mi + S)

S (47”?\71 (4m?\;2’3 — mi) + mi (2mé — 4m?\f2’3 + s))

2
+ Qmi (mzﬁ + S) (mé —2 (m?\h + mifzs)) log (mgi s) - (ALD)
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where s is the squared centre-of-mass energy. This process is relevant for considering

whether the SM and hot sectors come into equilibrium via elastic scattering.

Figure 4.4 (a), (b) and (c) contribute to the elastic scattering process Ny N; — Ny Ny,

leading to the cross-section

(5)"
~ 16ms*mi(m3 — 5)*(md + s)(2m} + )

Tan, 2w, (5) mg(mg—s")(24miy, (s—2m¢”)

2
+ 16miy, (5s” + 2mis — 4mj) + 16my — 8mys — 5m3s”) log (m;j_ s)

+ s(2m} + 5)(16m}1\,1 (6my — 9Imis + 5s”) — 8miy, (4mg — Imgs + Tm3s%)

+8my — 12mgs + 3mys® + 3m3s®) | . (A.1.2)

This process can maintain kinetic equilibrium in the hot sector.

Now we will consider number-changing processes that can maintain chemical equi-
librium. The decay rate for ¢ — 2N; shown in Fig. 4.6 (a) in the ¢ rest frame is

given by
1N2/ 2 2 \2

FO o (y¢) (m¢ - 4mN1)2
¢—2N; —

A13
87rmi ( )

The cross-section for 2N; — 2¢ shown in Fig. 4.6 (b) and (c) is

— Yo [_ 2\/% (16mzzlv1 +2mj, (s — 8m35) + Smé)
64ms (s — 4m?v1) m?vl m + m;l,

(5 — 4m3s + 6mg — 32m, + 16m4, (s —m3))
(3 — Qmi)
\/(s _ 4m%\h> (s — 4mé) — 2m%¢ + s

V(s = 4m3,) (s — am2) +2m3 — s

O-2N1~>2d>(8)

+

log

(A.1.4)
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The cross-section for the s-channel process 2N; — 3¢ shown in Fig. 4.6 (d) is [314]

_ NmR,ys s(3my — V/3)
61447% 5% (g — \/5)2(mg + /5)**\ s — 4miy,

02N1—>3¢(5)

(my +V/5)(3mg + s)E(mg, s) — (my —v/5)%)(3my + V/s) F(mg, ) |
(A.15)

where E(m,, s) is defined as

E(my,s) = E | arcsin 1 (3m¢ _ \/g) (m¢ ™ \/§>3 16m3/s
3 4 m?ﬁ\/g 7 <3m¢ — \/g) <m¢ n \/§>3
(A.1.6)

and E(z,y) is the incomplete elliptic integral of the second kind, and similarly for

F(mg,s) where F'(z,y) is the incomplete elliptic integral of the first kind and the

arguments are related in the same way.

A.2 Thermal Averaging

For the rates considered in Section 4.3.1 we need the thermally averaged cross-
sections for the initial states 2/V; and N; N, 3, where N; and N, 3 are at different

temperatures.

The thermal averaged cross-section for two identical incoming N; particles is given

in Ref. [315],

(ov) = ! ) AOC; dsa(s)(s — 4m¥, )V/sK, (f) , (A.2.1)

m
8m?V1TN1K22 (:,ﬂ]\]Nl1 Ny Ny
where K, and K, are modified Bessel functions of the first and second kind, respect-

ively.

For two incoming particles of different masses and different temperatures, we gener-

alise the results in Refs. [158,315,316]. For the case of the initial state Ny Ny, the



180 Appendix A. Cross-Sections, Decay Rates and Thermal Averaging

thermal average is given by

(0T) = f<777f1\71JCNQCingNlalsPN2

A.2.2
/ le fNQd?’PN1 d?’pN2 ( )

where v is the Mgller velocity. We then neglect quantum statistics and take the
approximation that fy, and fy, are given by Maxwell-Boltzmann distributions. This
assumption lets us perform the integrals analytically and introduces minimal errors

in our results. We first compute the denominator,

m m
/lefN2d3PN1d3pN2 = 167T2TN1TSMm%V1m%V2K2 ( Nl) K, ( N2> ) (A.2.3)
Tn, Tsm

where we have used the fact that E'dFE = |p|d|p| to rewrite the integral. For the

numerator we follow the computation in [317]. We change coordinates from Ey, and

E
Ey, to xy = f—]\’z + ng, where the upper limit of the x_ integration is

max

miy, Téuz, + \/(m?\/1 — )" Tsu (m?vl (T, — Tsm) + Tsm (T, Toma? — 3))

[ 5
my, Tem(Tom — Ty, ) + T,
(A.2.4)
Integration over z_ and z, then leads to
_ o0 C .
(o0) =D ,dso(s) = (AL + 2)e™ + CVBK(2)) (A.2.5)
(my, +mn,) B
where
A= m?vlTSQM — m?VQTJ%;I (A.2.6)
B =mi,Tn,(Tn, — Tsm) + m, Tom(Tsm — Ty,) + 5Tn, Tou (A.2.7)
C =/(s— (mn, — mNQ)Q)(s — (my, + mN2)2) (A.2.8)
D = 8m% m3, K, (mN> K, <mN2> , (A.2.9)
TN, Tsm
VB
L A.2.10
T'n,Tsm ( )

The thermally averaged cross-section for initial states /Ny N3 is given by replacing N,
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Renormalisation of the 2HDM

B.1 Running and g-functions

Electroweak resonances are typically measured at the Z-pole, meaning that the
physical mass inputs will exist at an energy scale ;4 = my. Through the one-loop
renormalisation relations, we can relate this input to Lagrangian parameters that also
exist at the same energy scale. Next, we can RG evolve the Lagrangian parameters
via the beta functions to the 4D scale u = fi4 of our theory, where they can then act

as input for our model.

The renormalisation group equations listed below are associated with the parameters
of the 2HDM and encode their running with respect to the four-dimensional MS

renormalisation scale ji4 via the S-functions. To this end, we use
t=1Injy, (B.1.1)

where ji? = 4we™ 7212 ? and find at one-loop level:

7
digi = =91, (B.1.2)
8
3
0193 = ———=02 (B.1.3)
8

2This relates the MS scale with that of the MS scheme.
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g3 = —87293, (B.1.4)
m

By = 19;2% (—17g7 — 2795 — 9693 + 5447) ) (B.1.5)

Oty = o (=3mii(gf + 35 — 8M1) + 4m3(20s + Ay)) (B.1.6)

Bym3y = 321”2 (—3maa(gt + 395 — 497 — 8Xs) +4AmT1 (23 + \4)) (B.1.7)

dym?, 3217T2m12 (=397 — 995 + 637 + 4(As + 204 +3Xs)) (B.1.8)

I\ = R (391 +9g5 + 647 (g5 — 4X\1) — 7205\ (B.1.9)

+ 8(24A7 + 203 + 205\ + AT + A%)) : (B.1.10)

Ny = 12; (391 + 995 + 647 (g5 — 4Xs) — 7295\, (B.1.11)

06X (42 + 22y) + 8(—6yl + 202 + 20\, + A2 + Ag)) , (B.1.12)

0% = —— (3! + 994 — 369N — 6973 + 2, (B.1.13)

1 8(A(352 + 6(A1 + Aa) + 2Ag) + 2001 + Ao)Ag + A2 + A§)> . (B.L14)

O = o <3g1( Z ) 4962 + 6y, (B.1.15)

AN Ag 20 A+ 8A§) , (B.1.16)

O = ——As (=367 — 995 + 657 + 40\ + Ao+ 2X5 +3Ny)) (B.1.17)

167

The renormalisation scale of the thermal transition is chosen as ji, = 4mwe 2T,

which lies close to the thermal scale and suppresses its contribution to the thermal

logarithms. The scales of the soft and ultrasoft EFTs are set to s = sy = BT,

and for simplicity we choose B = 1. We refer to this choice of the fi3yg scale as the

‘softer’ scale. In practice, the choice of i3 can be made more rigorous by applying

the principle of minimal sensitivity [318].

This principle entails minimising the

dependence of i3 or fisyg, for example, in the effective potential, to determine an

optimal scale [i,y, as discussed in [319-321].
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B.2 Relations between MS-parameters and

physical observables

The physical observables map to the MS-parameters of the Lagrangian as,

(mim mHi>mH> my, COS(ﬂ - Oé), tan(ﬂ)a My, Mz, My, Gfa Ols)
7 (B.2.1)
(m%b m%?a m%?a )‘17 )‘27 )‘37 )‘4a )‘57 g1, 92, 93, yt) .

The physical observables, along with m,, serve as input parameters measured at
the Z-pole, = my. We define the shorthand notation ¢ = 4v/2G fm%/y for the

tree-level coupling.

At tree-level, the vacuum relations for the gauge couplings are,

my \ 2 @2/ my\2
gi = g5 » g = g§(<z) - 1) : g = °(t> . (B.2.2)
myy 2 \my

For the other Lagrangian parameters, we list the tree level relations given in Appendix

B.2 of Ref. [221]:

mi = miagts — ; (qu + (mh — mir)cs_a(Coa + Sﬂ—atﬂ)> ; (B.2.3)
mi, = mfgt/gl - ; (m%{ + (my — m¥)cs_al(Csa — sﬁ,atgl)) , (B.2.4)
V2N = ;<m%{ + Q%3 — (m3 — mE) (1 — (Sp_a + cﬂ_atgl)Q) t%) : (B.2.5)
V2 Ny = ;<m§{ + QP57 — (my — miy) (1 — (80 — cﬂ_at5)2> t52> , (B.2.6)

VA3 = 2mp s + Q° — mi — (mi — mi) (1 + (Spoa + Coals ) (S0 — cﬂ_atﬁ)) ,

(B.2.7)
v\ =mh — 2m = + mi —Q?, (B.2.8)
VA = mi —m4 — Q2 (B.2.9)

where we have defined Q2 = m% —m?,(tan(5)+tan(8) ") as in Ref. [221] !, and we use

Note that there is a difference in sign between our m?, and the one defined in that reference.
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the notation cg_, = cos(f — «) (and likewise for the other trigonometric functions
and angles). In Appendix A of [79], the one-loop MS renormalised expressions are
provided with reference to the self-energies for the gauge bosons, top quark, and
the scalars h, H, H* and A. We make use of the self energies calculated by the
authors of [79], which have analytic expressions too unwieldy to quote here. Explicit
expressions for the self energies can be found in [322]. The one-loop renormalised
Lagrangian parameters are also defined at ;1 = m, like the input physical observables.

We then use the beta functions to run them to the thermal scale.



Appendix C

Integration of the DR EFT into

PhaseTracer?2

The output of DRAlgo can be incredibly long and impractical for computation. With
increasing loop orders, the number of binary operations in a single expression for

the potential becomes too high for some compilers to parse and optimise.

Fortunately, techniques exist to optimise the expressions prior to inserting into
code. In Mathematica, after running the dimensional reduction in DRAlgo, the
Experimental ¢ OptimizeExpression function can simplify expressions by identi-
fying common sub-expressions and creating new ‘Compile’ variables to save on
evaluation time. The subsequent expression that is composed of Compile variables

is subsequently far shorter and can be parsed by compilers.

Additionally, the CForm function can allow for the conversion of this optimised ex-
pression into C code, with the StringReplace function allowing for the manipulation
of the subsequent code strings so that they can be adapted for use in Python, C++,
or any other programming language. Thus, a function can be created that com-
pounds these operations together such that DRAlgo output can readily be used in a

programme.

When interfacing the dimensionally reduced output with PhaseTracer2, particular

care must be taken so that the package can handle divergences at low temperatures,
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as this is beyond the validity of the EFT (we remind the reader that the vacuum
structure is encoded in the Lagrangian parameters through the vacuum renormal-
isation of sec. B.2). The set_t_low and set_t_high functions in the PhaseFinder
module allows for the temperature bounds to be set, such that phases are only

identified between those temperatures and numerical issues can be avoided.

Finally, regarding the parameter scans: PhaseTracer2 does not come with an
interface to set them up. However, it is relatively straightforward to wrap the
PhaseTracer2 objects in a class that can be instantiated with the a new set of
parameters. Parallelisation of the scan across multiple threads allows for increased

efficiency when computing results, particularly on machines with numerous cores.
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