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Abstract: The early universe provides a high energy lab for particle physics phe-

nomenology, with messengers such as gravitational waves providing an insight into

the events of that era. Mysteries at the dawn of time include the origin of the Baryon

Asymmetry of the Universe (BAU), and the nature of the electroweak phase trans-

ition (EWPT). A first order EWPT could provide the out-of-equilibrium conditions

necessary for baryogenesis, and is a natural consequence of many Standard Model

extensions. An alternative source of out-of-equilibrium conditions are the decays

of heavy right handed neutrinos in the early universe, as defines the leptogenesis

scenario. However, vanilla leptogenesis requires fine tuning in the Higgs and neutrino

sectors in order to generate the BAU. We present a model of ‘Hot Leptogenesis’,

where a hot sector provides a factor ∼ 50 enhancement in the BAU, resulting in

a novel model that does not demand fine tuning. We proceed to investigate the

EWPT in the Two Higgs Doublet Model (2HDM), in light of the reported 95 GeV

di-tau and di-gamma excess. Using a dimensional reduction method to calculate

the thermal potential at 1-loop with 2-loop matching, we find regions of parameter

space with a first order EWPT. However, the strongest signal-to-noise ratios for the

LISA experiment are too weak to provide a detection.
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Chapter 1

Introduction

The voices of the Ainur, like unto harps and lutes, and pipes and trumpets, and

viols and organs, and like unto countless choirs singing with words, began to

fashion the theme of Ilúvatar to a great music; and a sound arose of endless

interchanging melodies woven in harmony that passed beyond hearing into the

depths and into the heights...

from Ainulindalë by J.R.R. Tolkien

Particle physics is at a crossroads; with the discovery of the Higgs boson in 2012 [4,5]

finalising the Standard Model as our ‘theory of most things’, the attention of the

community was turned to physics at the TeV scale (which is 10x higher in energy

than the Higgs mass). Yet the Large Hadron Collider (LHC), after years of upgrades

and runs, has turned up empty handed. Beyond some minor discrepancies with the

Standard Model, no new fundamental particles have been discovered at the LHC.

1.1 Paradigms and Revolutions

The philosopher of science Thomas S. Kuhn characterised scientific progress as

episodic, taking place in periods of time where there is a reigning, hegemonic,

paradigm [6]. This paradigm is the framework accepted by the scientific community,
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and all scientific progress within that era is done incrementally, developing that

framework further. For example, in the 17th, 18th, and 19th centuries, the frame-

work for fundamental physics was classical mechanics, formed by principles such

as Galilean relativity [7], Newton’s laws of motion [8], and eventually Maxwell’s

equations for electromagnetism [9]. These theories are all:

• deterministic, meaning that initial conditions and the principle of least action

can in principle determine precisely the future evolution of the system,

• definite, meaning that the fields and particles are in a specific state at any

given time.

Yet, as we are well aware, these principles once thought to be fundamental were

soon found out to be merely emerging macroscopic approximations of underlying

fundamental laws. In the Kuhnian view, discrepancies accumulate under a reigning

paradigm until that paradigm is made untenable. A crisis occurs, which sparks a re-

volution and the creation of a new paradigm that is able to resolve those discrepancies.

This happened at the turn of the 20th century with the quantum revolution [10,11],

and led to the development of the Standard Model as we know it today.

1.2 The Crisis

Now we are at a new crisis point, and the paradigm of the Standard Model is reaching

its limits. Some discrepancies that exist are:

• We have not probed energies higher than
√
s = 13.6 GeV at particle colliders,

so presumably there are particles with higher mass than this that may be

coupled to the Higgs. Why then is the Higgs mass at a much lower scale than

those particles, leading to a hierarchy problem?

• Galactic rotation curves [12] and cosmological observations show that there is

a mysterious ‘dark matter’ that exists. Yet no particle in the Standard Model

can account for this. What is the nature of dark matter?
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• If we wish to describe physics at small scales and high energies, we need to unify

quantum mechanics and general relativity. Yet efforts to create a quantum

field theory of gravity have proven futile. What is the language of quantum

gravity and the ‘theory of everything’?

• Why does the universe have more matter than antimatter? As the overwhelm-

ing majority of matter in the universe is made up of baryons (bound particles

made up of three quarks), we will instead refer to a baryon asymmetry of the

universe, and baryogenesis as the process which created it.

We will elaborate on these issues and more in Section 2.7, but for now let’s turn

to a solution that hoped to resolve these issues: supersymmetry [13]. The idea

was that each boson (or fermion) in the Standard Model would have a fermionic

(bosonic) ‘superpartner’. The contributions to the Higgs mass from these partners

could cancel out leaving the Higgs mass stable at the electroweak scale and resolving

the hierarchy problem [14]. Supersymmetry also provided the community with the

‘WIMP’ miracle, the idea that weakly interacting massive particles predicted by

supersymmetry could be a perfect dark matter candidate [15]. Supersymmetry is

also a low energy consequence of superstring theory, which is a popular candidate

for a theory of everything. Finally, the extra particles in supersymmetry modify

the Higgs potential, such that a first order phase transition is made possible where

there can be a departure from equilibrium dynamics, spawning more baryons than

anti-baryons [16].

This all sounds very promising. Yet, as aforementioned, no supersymmetric partners

have been discovered at the LHC [17]. The WIMP never showed up [18]. The particle

physics community bet heavily on supersymmetry, and has now been left with more

questions than answers. Where do we go now for new fundamental physics?
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1.3 The Early Universe

Many issues raised with the Standard Model relate to high energy phenomena. One

way to tackle these is to recreate these conditions in the lab, such as in particle

colliders. However, it seems like the LHC, and the upcoming high luminosity (HL-

LHC) upgrade [19], is unlikely to find any new physics; the best use of colliders

for now might be precision studies of known physics [20]. But what if we could

gain information from a part of the universe where these conditions exist naturally?

What if we turned the hot early universe into our lab?

This may point towards a solution to the crisis. Through gravitational wave ex-

periments such as the European Space Agency’s LISA [21, 22], we could measure

gravitational waves originating from the early universe [23–25], enlightening us on

many high energy particle physics conundrums. The electroweak phase transition

could be a source of these gravitational waves, if it were first order. Observing this

signal would mean that the out-of-equilibrium requirement for the baryon asym-

metry is satisfied, thus helping us to answer questions despite the roadblock on the

collider front. However, the Standard Model Higgs potential only provides a smooth

phase transition, not a first order one [26–28]. Therefore, any hope for a first order

electroweak phase transition rests on physics beyond the Standard Model.

An alternative source of non-equilibrium dynamics for baryogenesis are the out-of-

equilibrium decays of heavy particles that are hypothesised to exist in the early uni-

verse. A popular model for this is leptogenesis, the idea that the out-of-equilibrium

decays of heavy neutrinos created a lepton asymmetry, which was then subsequently

converted into a baryon asymmetry [29]. Vanilla leptogenesis models however re-

quire the heavy neutrinos to have incredibly large masses, such that they lead to a

hierarchy problem for the Higgs boson [30].

In this thesis, we will explore these tangentially related early universe phenom-

ena through well motivated models. We begin with the theoretical background in

Chapters 2 and 3. In Chapter 2, we will summarise the Standard Model: its quantum
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field theoretic language, its particle content, forces, and symmetries. We will briefly

review the techniques used to calculate observables, such as perturbation theory

and renormalisation. The chapter concludes with a discussion on physics beyond

the Standard Model, and neutrino masses. In Chapter 3, we review early universe

physics and cosmology. We briefly summarise general relativity and the ΛCDM

model of cosmology, as well as a rough timeline of the early universe until recom-

bination. We review quantum thermal statistics, which is important background

for the introductions to baryogenesis and leptogenesis which follow after. We finish

the chapter by reviewing finite temperature techniques for calculating the thermal

effective potential, as well as gravitational waves from first order phase transitions.

In Chapter 4, we introduce a model of ‘Hot Leptogenesis’ [1], which aims to resolve

fine-tuning issues in vanilla leptogenesis such as the aforementioned hierarchy prob-

lem. We outline the model’s origin from inflaton decay, its particle content, the

conditions necessary for chemical and/or kinetic equilibrium to be maintained, and

an exploration of its parameter space.

In Chapter 5, we investigate the nature of an electroweak phase transition in a model

with an extra Higgs-like particle that has a mass of 95GeV [2]. This is motivated

by reported excesses in final states with two photons γγ and two taus ττ at the

LHC. A new scalar in the Type I Two Higgs Doublet Model (2HDM) is seen as

the most promising candidates compatible with constraints. We summarise these

constraints, and outline our approach to calculating the phase transition parameters,

before presenting scans in the Type I 2HDM parameter space. We explore whether

or not first order phase transitions in this model could be detectable by the LISA

experiment.

Finally, we conclude this thesis in Chapter 6.
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A Quick Note on Convention

Throughout this thesis, we make use of natural units where ~ = c = 1, and typically

refer to particle masses and energy scales in units of eV. The gravitational constant

G is usually written explicitly.



Chapter 2

The Standard Model

They saw with amazement the coming of the Children of Ilúvatar, and the

habitation that was prepared for them; and they perceived that they themselves in

the labour of their music had been busy with the preparation of this dwelling, and

yet knew not that it had any purpose beyond its own beauty.

from Ainulindalë by J.R.R. Tolkien

The Standard Model of Particle Physics is the current hegemonic theory of High

Energy Physics. With the discovery of the Higgs Boson in 2012 [4, 5], the Standard

Model was considered ‘completed’ as its most major outstanding prediction was

confirmed by experiment [31]. Despite the successes of the Standard Model, we are

also aware of its shortcomings and inability to explain observations such as neutrino

oscillations [32] and dark matter [12].

In this chapter, we will break down and discuss the language and components of

the Standard Model (summarised in Fig. 2.1), and finish by briefly discussing open

questions on physics beyond the Standard Model. Much of this review can be found

in textbooks such as by Schwartz [34] and Peskin and Schroeder [35]. A basic

understanding of Quantum Field Theory is presumed.
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Figure 2.1: The particles of the Standard Model, with mass values
given to 3 s.f. and taken from Ref. [33]. Neutrino masses
are given with bounds; see Section 2.7.1.

2.1 QFT and Symmetries

The Standard Model has a Quantum Field Theoretic description, where fundamental

particles are described by fields that are irreducible unitary representations of the

Poincaré Group (the isometry group of flat, Minkowski spacetime).

The irreducibility of the representation corresponds to the fundamental nature of the

fields, and the unitarity requirement arises from the desire to ensure that the inner

product is preserved by the group transformations. Inner products on the Hilbert

space of quantum states correspond to physical quantities, which should remain the

same regardless of the reference frame they are computed in.

Therefore, it is clear that irreducible unitary representations of the Poincaré Group

represent the types of fields, and thus the types of fundamental particles, that can

exist in the SM.

According to Wigner’s classification [36,37], these representations are infinite dimen-
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sional and are thus best described by fields. These fields can be uniquely classified

by a non-negative mass m and non-negative half-integer spin J .

It is because of this quantisation of spin, as well as the spin-statistics theorem, that

fields in the SM can be classified as bosons (integer spin) or fermions (half-integer

spin). They are further classified by their representations in the Standard Model

gauge group, SU(3)c × SU(2)L × U(1)Y , with SU(3)c corresponding to the strong

interaction and SU(2)L × U(1)Y corresponding to the electroweak interaction. A

field’s representation under the SM gauge group is often written as (R2, R3)Y where

R2 and R3 refer to the SU(2)L and SU(3)c representations respectively, and Y refers

to the U(1)Y charge.

2.2 Fermions

The SM fermions are fundamental particles with half-integer spin, sometimes inform-

ally referred to as ‘matter particles’. They are described by Weyl spinors, which

are chiral projections of the Dirac spinor, due to the evidenced chiral nature of the

electroweak force [38].

2.2.1 Fermionic Masses

If Dirac spinors are used instead of Weyl spinors, it is natural to include a mass term

mψ̄ψ in the Lagrangian.

A Dirac spinor can be decomposed using the chiral projection operators PL/R on ψ

as

ψ = ψL + ψR = PLψL + PRψR , (2.2.1)

as it is also true that PL/RψL/R = ψL/R. Noting that P̄L = PR, we find

ψ̄ = ψ̄LPR + ψ̄RPL . (2.2.2)
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Therefore, by noting that PR/LψL/R = 0, the mass term becomes

mψ̄ψ = m(ψ̄LPR + ψ̄RPL)(PLψL + PRψR) = m(ψ̄LψR + ψ̄RψL) (2.2.3)

which would be the mass term in the Weyl spinor representation. Here, we run into

a problem. The mass term necessitates the mixing of left and right handed Weyl

spinors, which means they are unable to evolve independently in compliance with

observations of the chiral nature of the electroweak force.

Thus, in the SM, fermions are described by massless Weyl spinors, meaning it has a

chiral symmetry. This symmetry is generally composed of a vector symmetry, which

acts on the spinors equally, and a U(1) axial symmetry which corresponds to a phase

rotation of the left and right handed components in opposing directions:

ψL → e−iθψL (2.2.4)

ψR → eiθψR . (2.2.5)

However, this axial symmetry is broken in the SM by quantum corrections, which

we do not discuss further here. Later, we will describe how fermions acquire mass

through the Higgs mechanism.

2.2.2 Quarks

Quarks are fermions that are charged under the strong interaction (a property

referred to as ‘colour’), and also under the electroweak interaction.

Left-handed quarks are written as electroweak doublets

QL =

uL
dL

 , (2.2.6)

and are in the (2, 3)1/6 representation. The up-type and down-type right-handed

quarks are electroweak singlets uR and dR and have the (1, 3)2/3 and (1, 3)−1/3

representations respectively.



2.3. Gauge bosons 39

There are three generations of the up-type and down-type quarks. For up-type, we

have the up (u), charm (c), and top (t) quarks, and for the down-type we have down

(d), strange (s), and bottom (b) quarks. The generations differ only in their mass.

Thus the quark kinetic contribution to the SM Lagrangian, for one generation, is

L 3 iQ̄L /DQL + iūR /DuR + id̄R /DdR . (2.2.7)

where /D = γµDµ is the covariant derivative of the quarks summed with the Dirac

matrices.

2.2.3 Leptons

Leptons are fermions that are not charged under the strong interaction, but are

under the electroweak interaction. Left-handed leptons can be written as electroweak

doublets

LL =

νL
eL

 , (2.2.8)

in the (2, 1)−1/2 representation. Right-handed leptons are written as electroweak

singlets eR in the (1, 1)−1 representation. The leptons are divided into the electro-

magnetically neutral neutrinos νL, which only exist as left-handed Weyl spinors in

the SM, and the electromagnetically charged leptons of type eL/R. There are three

generations of leptons, referred to as the electron (e), muon (µ), and tau (τ), and

their associated neutrinos.

Thus the leptonic kinetic contribution to the SM Lagrangian, for one generation, is

L 3 iL̄L /DLL + iēR /DeR . (2.2.9)

2.3 Gauge bosons

A gauge symmetry is a localised symmetry of the Lagrangian, i.e. it depends

on spacetime position xµ, as opposed to a global symmetry which is independent
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of position. As mentioned previously, the SM gauge group is the product group

SU(3)c × SU(2)L × U(1)Y .

Under the gauge group, the covariant derivative for a field is written as

Dµ = ∂µ − igsG
a
µT

a − igW a
µ τ

a − ig′BµY , (2.3.1)

where Gµ = Ga
µT

a, Wµ = W a
µ τ

a and Bµ refer to the gauge vector fields of SU(3)c,

SU(2)L and U(1)Y respectively. T a = 1
2λ

a and τa = 1
2σ

a represent the SU(3)c and

SU(2)L generators respectively, with λa representing the Gell-Mann matrices and

σa representing the Pauli matrices.

An N -dimensional special unitary group SU(N) has N2 − 1 generators. Thus, the

SU(3)c vector field Gµ has 8 degrees of freedom, representing the 8 gluons (g) of the

strong force. W µ has 3 degrees of freedom. Their associated groups are non-Abelian,

meaning their elements do not commute.

Bµ has 1 degree of freedom. The 4 degrees of freedom of the electroweak interaction,

after Spontaneous Symmetry Breaking (SSB), correspond to the weak force bosons

W±, Z, and the photon γ.

The field strength tensor for a generic gauge group with gauge vector Aµ = Aaµt
a

and covariant derivative Dµ = ∂µ − igAµ is written as [39]

Fµν = D[µAν] = DµAν −DνAµ , (2.3.2)

which can be expanded as

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (2.3.3)

= ∂µAν − ∂νAµ + gfabcAbµA
c
µt
a , (2.3.4)

where fabc are the structure constants of the relevant Lie group.

Terms that are permitted under the gauge symmetry include the trace of the gauge

field strength tensors, written as

−1
2 Tr

(
F µνFµν

)
= −1

4F
µν,aF a

µν , (2.3.5)
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Thus, the gauge kinetic term of the Lagrangian is written as,

L 3 −1
2 Tr

(
GµνGµν

)
− 1

2 Tr
(
W µνWµν

)
− 1

4B
µνBµν (2.3.6)

where Gµν , Wµν and Bµν refer to the SU(3)c, SU(2)L and U(1)Y field strength

tensors respectively.

2.3.1 Gauge couplings

The interactions between the gauge bosons and other fields arise from the covariant

derivative in (2.3.1). For example, LL is an electroweak doublet, not charged under

the strong force, with a hypercharge of Y = −1/2. This means that the first term

of the covariant derivative (corresponding to the SU(3)c symmetry) will not apply

to it, while the other two terms will. Therefore, the covariant derivatives in the

‘kinetic’ terms actually introduce interactions between the gauge bosons and the

fermions/Higgs boson, which are the force interactions.

2.4 Higgs sector

Finally, to finish the SM, we must include a complex spin 0 (scalar) boson called

the Higgs boson, which was introduced in the 1960s [40–42] to account for fermion

and vector boson masses. The Higgs sector contributes to the SM Lagrangian the

following terms for the Higgs doublet Φ:

L 3 (DµΦ)†DµΦ + µ2Φ†Φ − 1
2λ(Φ†Φ)2 , (2.4.1)

where µ represents the mass of the field, and λ is the quartic Higgs coupling. The

Higgs exists in the (2, 1)1/2 representation.
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2.4.1 Yukawa couplings

Yukawa couplings are couplings between scalars and spinors of the type gφψ̄ψ for

scalars and igφψ̄γ5ψ for pseudoscalars.

In the SM, Yukawa couplings between fermions and the Higgs are permitted, and

they take the form

y(ψ̄LΦψR + h.c.) (2.4.2)

which is the only term allowed that preserves SU(2)L × U(1)Y symmetry. This can

be seen by the fact that in the SM, left-handed fermions exist as SU(2)L doublets

and transform as ψL → MψL, whereas right-handed fermions are SU(2)L singlets.

Thus the Yukawa term transforms as

ψ̄LΦψR → eiθ/2ψ̄LM
†Meiθ/2Φe−iθψR = ψ̄LΦψR , (2.4.3)

and is electroweak invariant.

Lepton Yukawa Terms

Looking at the lepton sector, generically there are 3 × 3 × 2 = 18 free parameters

in the Yukawa matrix due to the mixings between the three generations and the

complex nature of the Yukawa couplings. The Yukawa terms take the form,

L 3 −
∑
a,b

(
yabl L̄

a
LΦLbR + (yabl )∗L̄bRΦ†LaL

)
, (2.4.4)

where a and b are lepton generation labels.

However, a complex matrix yabl can be multiplied by two unitary matrices UL and

UR such that U †
LylUR is real and diagonal. Thus the lepton basis can be rotated and

we can write the Yukawa terms as a diagonalised sum,

L 3 −
∑
f

yfl
(
L̄fLΦLfR + L̄fRΦ†LfL

)
, (2.4.5)

where f = e, µ, τ is the fermion generation label.
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Quark Yukawa Terms

For quarks, the Yukawa terms for the down-type quarks follow a similar form to those

of the leptons. However, for up type quarks, Φ does not have the right hypercharge

for a similarly constructed term to be electroweak invariant. This is because up type

and down type quarks have different hypercharges in order to arrive at the correct

electric charges after SSB. Thus, the Yukawa terms have to be structured differently

in order to have invariant terms for both quark types.

We introduce the doublet Φ̃ = iσ2Φ∗, which is in the (2, 1)−1/2 representation of the

SM group. This doublet is used in place of Φ for the up type quark Yukawa terms.

Thus, we arrive at the quark Yukawa terms

L 3 −
∑
a,b

(
yabd Q̄

a
LΦdbR + (yabd )∗d̄bRΦ†Qa

L + yabu Q̄
a
LΦ̃ubR + (yabu )∗ūbRΦ̃†Qa

L

)
, (2.4.6)

where a, b are quark generation labels.

Flavour Mixing

Performing a similar diagonalisation procedure for leptons, we can transform the

quarks into their flavour basis,

L 3 −
∑
f

yfd
(
Q̄f
LΦdfR + d̄fRΦ†Qf

L

)
−
∑
f

yfu
(
Q̄f
LΦ̃ufR + ūfRΦ̃†Qf

L

)
, (2.4.7)

where f is the flavour label. However, as up and down type quarks are rotated

differently,

uaL/R →
∑
b

Uab
u,L/Ru

b
L/R (2.4.8)

daL/R →
∑
b

Uab
d,L/Rd

b
L/R , (2.4.9)

all terms in the SM Lagrangian remain invariant except the quark kinetic term

iQ̄L /DQL. Specifically, after spontaneous symmetry breaking (which we elaborate on

in Section 2.4.2), the W± coupling terms that emerge from the quark kinetic term
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transform as

iQ̄L /DQL 3 − g√
2
∑
f

(
ūfLγ

µW+
µ d

f
L + d̄fLγ

µW−
µ u

f
L

)
(2.4.10)

→ − g√
2
∑
f,g

(
ūfLV

fg
CKMγ

µW+
µ d

g
L + d̄gL(V †

CKM)gfγµW−
µ u

f
L

)
(2.4.11)

where g is the weak gauge coupling, and VCKM = U †
u,LUd,L is the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. Thus the weak interaction, specifically the W± bosons

can change quark flavour, and the non-zero off-diagonal entries of the CKM matrix

describe the mixing strength of the quark flavours.

2.4.2 Spontaneous Symmetry Breaking

The Higgs mechanism was introduced to explain how massless fermions and vector

bosons can acquire mass while retaining the chiral nature of the weak force [40–42].

The structure of the zero temperature Higgs potential illustrates this; for positive µ

in

V (Φ) = −µ2Φ†Φ + 1
2(Φ†Φ)2 , (2.4.12)

we find that the minima exists for field values that satisfy Φ†Φ = µ2/λ, thus there is

a ring of minima in this so-called ‘Mexican hat potential’, as shown in Fig. 2.2. The

Higgs doublet Φ can be parametrised as,

〈Φ〉 = 1√
2

 0

v + h

 (2.4.13)

where v =
√

2µ2/λ ≈ 246 GeV is the Higgs Vacuum Expectation Value (vev)1, and

h is a real field: the physical Higgs boson.

Thus, when the Higgs takes this vev, using the covariant derivative of the Higgs with

Y = 1/2 as

DµΦ = ∂µΦ − igW a
µ τ

aΦ − i

2g
′BµΦ (2.4.14)

1Note that sometimes there is a convention that the
√

2 factor is absorbed into the definition of
v, i.e. v ≈ 246/

√
2 GeV ≈ 174 GeV. In this thesis we will make clear when this convention is being

used instead.
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Figure 2.2: The ‘Mexican hat’ potential of the Higgs after SSB.
The Higgs mode is shown as the massive oscillations
around the broken phase radially outwards from the ori-
gin, whereas the massless Goldstone mode is the motion
around the brim of the hat.

we can rewrite the Higgs kinetic term as

(DµΦ)†DµΦ =1
2∂µh∂

µh (2.4.15)

+ g2

8 (v + h)2
(

0 1
)W

3
µ + g

′

g
Bµ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ W 3
µ − g

′

g
Bµ


20

1

 (2.4.16)

=1
2∂µh∂

µh+ g2

8 (v + h)2
(

(W 1
µ + iW 2

µ)(W 1
µ − iW 2

µ) + (W 3 − g′

g
B)2

)
.

(2.4.17)

We see here that there are mass terms for the gauge fields which can be re-defined

in the mass basis as

W±
µ ≡ 1√

2
(W 1

µ ± iW 2
µ) (2.4.18)

Zµ ≡ 1√
g2 + g′2

(gW 3
µ − g′Bµ) , (2.4.19)

such that the mass terms are

L 3
(
gv

2

)2
W+
µ W

−µ + v2

8
(
g2 + g′2

)
ZµZ

µ (2.4.20)
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where the masses can be read off as mW = gv/2 and mZ = v
√
g2 + g′2/2.

In this basis, we find that we can define the weak mixing angle

cos(θW ) = mW

mZ

= g√
g2 + g′2

, (2.4.21)

and parametrise the the Z mode as Zµ = cos(θW )W 3
µ − sin(θW )Bµ. Similarly, we can

define the massless mode perpendicular to this as Aµ = cos(θW )Bµ + sin(θW )W 3
µ ,

which we identify as the photon of quantum electrodynamics.

This allows us to rewrite the gauge derivative in Eq. 2.4.14 as [34]

Dµ = ∂µΦ + ig′ cos(θW )(τ 3 + Y )Aµ (2.4.22)

+ i(g cos(θW )τ 3 − g′ sin(θW )Y )Zµ (2.4.23)

+ i
g√
2

(W+
µ τ

+ +W−
µ τ

−) , (2.4.24)

where τ± = τ 1 ± iτ 2. The gauge coupling of the photon, e = g′ cos(θW ), can be

defined as the electromagnetic coupling strength. Q = τ 3 + Y is the unbroken

generator of the residual symmetry group, which is U(1)EM. The massless degree of

freedom associated with this residual symmetry group is the photon.

We can think of motion around the three-dimensional ‘brim’ of the Mexican hat (see

Fig. 2.2) as representing massless degrees of freedom. These are the three Goldstone

bosons that are subsequently absorbed by the W and Z bosons, giving them mass.

Thus, the SM has undergone spontaneous symmetry breaking of the form,

SU(2)L × U(1)Y → U(1)EM , (2.4.25)

which is also referred to as electroweak symmetry breaking (EWSB).

The cosmological event associated with this symmetry breaking is the electroweak

phase transition, which is discussed further in Chapter 3.
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2.4.3 Fermionic Masses Revisited

SSB transforms the Yukawa terms. Focusing on the lepton Yukawa terms in Eq.

2.4.5, for one generation, we see that they transform into

yl√
2

(ν̄L ēL

)0

v

 eR + ēR

(
0 v

)νL
eL


 = 1√

2
ylv(ēLeR + ēReL) . (2.4.26)

Here, we see that we have arrived at the Weyl fermion mass term in Eq. 2.2.3, with

the lepton mass ml = ylv/
√

2. The derivation follows analogously for the quark

masses. We see here also that the neutrinos νl drop out of the Yukawa terms and

are left massless, as in the SM they do not have a right-handed partner.

Thus, with the Higgs mechanism, we are able to construct a theory that is compatible

with the evidenced chiral nature of fermions at high energy [38], while also ensuring

that fermions are massive at low energy.

2.5 The Standard Model Lagrangian

We finally arrive at the full Standard Model Lagrangian, which is given by

L = − 1
2 Tr

(
GµνGµν

)
− 1

2 Tr
(
W µνWµν

)
− 1

4B
µνBµν (2.5.1)

+ (DµΦ)†DµΦ + µ2Φ†Φ − 1
2λ(Φ†Φ)2 (2.5.2)

+ i
∑
f

(
Q̄L /DQL + ūR /DuR + d̄R /DdR + L̄L /DLL + ēR /DeR

)
(2.5.3)

−
∑
f

yfl
(
L̄fLΦLfR + L̄fRΦ†LfL

)
(2.5.4)

−
∑
a,b

(
yabd Q̄

a
LΦdbR + (yabd )∗d̄bRΦ†Qa

L + yabu Q̄
a
LΦ̃ubR + (yabu )∗ūbRΦ̃†Qa

L

)
(2.5.5)

where 2.5.1 refers to the gauge kinetic terms, 2.5.2 refers to the Higgs sector, 2.5.3

has the fermion kinetic terms, and 2.5.4 and 2.5.5 are the lepton and quark Yukawa

terms respectively.

The SM obeys the discrete CPT symmetry, which is made up of:
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• Charge conjugation (C), e.g. e− → e+,

• Parity (P), or mirror inversion defined by xµ → −xµ for the spatial indices

µ = 1, 2, 3,

• Time (T), defined by t → −t.

C, P, and T symmetries can be individually violated in the SM. A source of CP

asymmetry is found in the complex phases of the CKM matrix.

The SM has 19 free parameters, given by the 3 gauge couplings g, g′, gS, the Higgs

mass µ2, the Higgs quartic coupling λ, the 3 lepton Yukawa couplings yfl , 10 paramet-

ers in the quark Yukawa matrices yd,u and the strong CP angle θ. They have been

experimentally measured and the theory has withstood rigorous testing. Examples

of SM precision tests include the anomalous magnetic moment of the electron, which

has been measured to an accuracy of 1 part in 10 billion [43] and agrees with the

theoretical prediction to at least 10 significant figures [44].

2.6 Calculations in the SM

2.6.1 Perturbation Theory

Calculating precision observables in the SM requires the use of perturbation theory,

which is valid for weakly interacting theories. The basic idea is that the theory can be

treated as a free theory to first order, and higher order corrections from interaction

can be treated as perturbations to the free theory. Here, we briefly outline the loop

expansion form of perturbation theory, where the leading order (LO) contribution

is given at ‘tree level’, and a diagram with n loops contributes at next to leading

order (N(n)LO).

As a model theory to illustrate the loop expansion, we use a φ4 theory,

L = 1
2∂µφ∂

µφ+ 1
2m

2φ2 − 1
4!λφ

4 , (2.6.1)
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(a) Tree level, LO contribution (b) s-like channel, 1-loop NLO

(c) t-like channel, 1-loop NLO (d) u-like channel, 1-loop NLO

Figure 2.3: Feynman diagrams of the φ4 theory contributing to the
matrix element up to NLO.

which is similar to the Higgs Lagrangian in Eq. 2.4.1.

The scattering amplitude between the initial state of a system |i〉 and a final state

|f〉 is given by 〈f | Ŝ |i〉, where Ŝ is defined as the scattering matrix. By taking Ŝ

as a perturbation around the free theory, defined by the identity matrix, we find

Ŝ = 1 + iT̂ where T̂ is the transfer matrix and encodes the results of interactions.

Thus, with explicit momentum conservation we find

〈f | T̂ |i〉 = (2π)4δ(4)
(∑

i

pi

)
M (2.6.2)

where M is referred to as the matrix element. It is calculated perturbatively,

requiring couplings that are small enough such that the loop expansion converges.

We can draw Feynman diagrams of all possible ways an interaction can happen

which are then summed together at a certain order in the loop expansion. Feynman

rules provide the factors that need to be put together for a given theory, such that

a Feynman diagram gives a well-defined contribution to M.

As an example, we provide the 1-loop expansion for 2-2 scattering in the φ4 theory

in Fig. 2.3. All diagrams are summed over. The Feynman rules for this theory are
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as follows

= −iλ
p

= D0(p) = i

p2 −m2 + iε
(2.6.3)

where D0(p) is the tree-level propagator, and the Feynman iε prescription is a tool

to perform Euclidean momenta integrals which we will not discuss further here.

Momenta are conserved at the vertices, and any undetermined momenta q in loops

are integrated over with
∫
d4q/(2π)4, which we compute in Section 2.6.2.

Some measurable quantities that can be computed with M in a general theory include

the decay width of a particle, Γ, and the cross section σ of a 2 → n scattering. The

formula for the decay rate of a particle of mass m is given by

Γ = 1
2m

∑
f

∫
|Mf |2 dΠn (2.6.4)

where we sum over all final possible states f of the decay, and dΠn is the phase space

element. The partial decay width, Γi, is the width for a single decay process.

The cross section of a 2 → n scattering is given by

σ = 1
4
√

(p1 · p2)2 −m2
1m

2
2

∫
|M|2 dΠn (2.6.5)

where pi,mi are the 4-momenta and masses of the particle i. The Lorentz-invariant

phase space element for n particles is given by

dΠn = (2π)4δ(4)
(
n+2∑
i

pi

)
n∏
j=1

d3pj
2π3(2Ej)

(2.6.6)

where pj is the 3-momentum for outgoing particle j. The sum in the delta function

goes to n+ 2 as we sum over incoming and outgoing momenta to ensure momentum

conservation.

A complete set of Feynman rules for the SM can be found in Ref. [45].
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2.6.2 Renormalisation

We turn our attention to the undetermined momenta in the 1-loop diagrams. These

involve integrating over all possible values of the loop momentum q, up to infinite

momentum. Thus, the integrals are of the form
∫
d4q/q4, and they diverge logarith-

mically. The way to handle these divergences is the process of renormalisation.

We start off by redefining the quantities in the Lagrangian in Eq. 2.6.1 as the ‘bare’

quantities with labels φB,mB, λB. We can rewrite the Lagrangian as

L =1
2Zφ∂µφR∂

µφR − 1
2ZφZmm

2
Rφ

2
R − 1

4!Z
2
φZλλRφ

4
R (2.6.7)

=1
2∂µφR∂

µφR − 1
2m

2
Rφ

2
R − 1

4!λRφ
4
R (2.6.8)

+ δφ

(1
2∂µφR∂

µφR

)
− δm

(1
2m

2
Rφ

2
R

)
− δλ

( 1
4!λRφ

4
R

)
, (2.6.9)

where we defined the renormalised field φR = φB/
√
Zφ, mass mR = mB/

√
Zm,

and quartic coupling λR = λB/Zλ. The counterterms are given by δφ = (Zφ − 1),

δm = (ZφZm − 1), δλ = (Z2
φZλ − 1) and are calculated such that they cancel out

the divergences that emerge at higher loop order. In effect, this means that one can

use the tree-level Feynman rules with the renormalised fields, masses, and couplings

in order to calculate quantities, as the loop effects are already baked in to those

quantities. Thus renormalisation is a powerful tool for QFT calculations.

To illustrate the calculation of the renormalised quantities, we compute the 1-loop

expansion of the propagator D(p)

D(p) = + +

+ + · · ·

(2.6.10)

where the first diagram gives the tree-level D0(p), the second gives the 1-loop con-

tribution, and the third and fourth diagrams are the 2-loop contributions.
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We can rewrite the propagator using the self-energy iΣ, which is the sum of all

1 Particle Irreducible (1PI) diagrams. These diagrams are ones that cannot be

separated by making a single cut through a line. For example, the fourth diagram can

be cut between the two loops, meaning that as it can be made from two copies of the 1-

loop contribution, it does not provide any new information about the renormalisation

of the propagator and is not 1PI. The third diagram is a 1PI contribution at 2-loop,

and is included in the self energy iΣ.

A propagator can thus be formed by chaining together the 1PI diagrams with the

tree-level propagator connecting between them, such that

D(p) = D0(p) +D0(p)(iΣ)D0(p) +D0(p)(iΣ)D0(p)(iΣ)D0(p) + · · · (2.6.11)

= D0(p)
∞∑
n=0

[iΣD0(p)]n (2.6.12)

which gives a finite result if perturbativity applies,

D(p) = D0(p)
1 − iΣD0(p)

= i

p2 −m2 + Σ
. (2.6.13)

Thus, we see that the higher order effects are all captured by the self-energy Σ. At

1-loop, we can use the φ4 Feynman rules on the second diagram in Eq. 2.6.10 to

calculate the self-energy contribution

iΣ = −iλ
∫ d4q

(2π)4
i

q2 −m2 , (2.6.14)

which we already know has a divergence. One way to get around the divergence is

to use dimensional regularisation, where we perform our calculation in D = 4 − ε

dimensions, where ε is a perturbation away from the 4D, and write the dimensionless

coupling λ̄ = µD−4λ = µ−ελ as λ acquires dimension when D 6= 4. Here, we have

introduced an arbitrary mass scale µ.

Our self-energy integral is now

iΣ = −iµελ̄
∫ dDq

(2π)D
i

q2 −m2 , (2.6.15)

and we can perform a Wick rotation to imaginary time (t → iτ) and we end up with
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the Euclidean integral

iΣ = −iµελ̄
∫ dDqE

(2π)D
i

q2
E +m2 (2.6.16)

= µελ̄

(2π)D
∫ ∞

0

dqE
q2
E +m2 q

D−1
E

∫
dΩD (2.6.17)

where we have transformed to spherical coordinates with radius qE, and dΩD is the

surface area of a D-sphere, given by

dΩD = 2πD/2

Γ
(
D
2

) . (2.6.18)

In the Euclidean Lagrangian, the potential has a positive sign, which is why the

sign for the m2 term has become positive. It is straightforward to now evaluate the

radial integral, to find

iΣ = i
λ̄m2

16π2

[
2
ε

+ 1 + ln(4π) − γE − ln
(
m2

µ2

)]
, (2.6.19)

where γE is the Euler-Mascheroni constant. We can see clearly that there is a

divergent part ∝ 1/ε, a logarithmic term dependent on the renormalisation mass

scale µ, and a finite part.

We can finally write down the propagator, using the renormalised theory such that

p2 → (1 + δφ)p2, m2 → (1 + δm)m2
R, and λ̄ → λ̄R to give us

i [D(p)]−1 = (1 + δφ)p2 − (1 + δm)m2
R + λ̄Rm

2
R

16π2

[
2
ε

+ 1 + ln(4π) − γE − ln
(
m2
R

µ2

)]
.

(2.6.20)

A finite propagator requires that the counterterms cancel out the divergences. In

this specific case, this requires that

δm = λ̄R
8π2

1
ε

+ c , (2.6.21)

where c is a finite constant which we are free to choose, and δφ = 0 as there

are no divergences proportional to p2. In the Minimal Subtraction (MS) scheme

c = 0, whereas in the modified MS scheme (MS) c absorbs the term proportional to

(ln(4π) − γE).
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Therefore, as Zφ = 1 and thus mR = mB/
√

1 + δm, we can expand the renormalised

mass around the coupling λ̄R to find

mR = mB

[
1 − λ̄R

32π2

(2
ε

+ ln(4π) − γE

)
+ O(λ̄2

R)
]
. (2.6.22)

This relation allows for the divergence to be absorbed into the bare mass m, and for

mR to remain finite. Thus we have renormalised our theory.

One issue is that, even after taking ε → 0, there is a logarithmic dependence of

the self-energy on the scale µ. Thus our renormalised theory and the quantities

{φR,m2
R, λR} have a scale dependence. We must ensure that the bare parameters

{φB,m2
B, λB} are scale invariant, which results in the condition

d{φB,mB, λB}
d lnµ = 0 . (2.6.23)

This uniquely determines the dependence of the renormalised parameters on the

renormalisation scale

d{φR,m2
R, λR}

d lnµ =
{
γφ
φR
,
γm
m2
R

, βλ

}
, (2.6.24)

giving us the Renormalisation Group Equations (RGEs) at 1-loop. The beta func-

tion1 is defined as the RGE for the coupling λ, and the anomalous dimensions are γφ

and γm. The pre-factors ensure that βλ, γφ, γm have the same dimensionality. The

RGEs can be solved with reference to an input scale µ̄ to determine how couplings

and masses vary at different energy scales. This is especially vital for this work, as

in Chapter 5 we input masses measured at µ = mZ (the Z-pole) which is common

for electroweak parameters, and use the beta functions/RGEs to run the parameters

up to the relevant energy scale (labelled as µ4 for our calculations).

1Sometimes, the term ‘beta functions’ is used interchangeably with RGEs, although strictly
they are defined for couplings only.
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2.7 Beyond the Standard Model

While the SM has proven itself as a remarkably accurate and precise theory, there

are many open questions left in fundamental physics. Some point to solutions that

may extend the SM framework and continue to use the language of QFT, while

other problems seem intractable with a QFT approach and require something new

entirely. We summarise an inexhaustive list of open questions here, some of which

are explored in this thesis.

Do the electroweak and strong forces unify at higher scales? Extensions to

the SM such as supersymmetry, where SM fermions have bosonic supersymmetric

partners and vice versa, lead to gS, g, and g′ beta functions that run them to the

same value at a ‘Grand Unified Theory’ (GUT) scale of T ∼ 1016 GeV, in the case of

the Minimally Supersymmetric Standard Model (MSSM). A simple Lie group such

as SU(5) or SO(10) could provide the gauge symmetry of the GUT, which then

undergoes SSB to the SM gauge group. Yet the non-discovery of supersymmetric

particles at the LHC brings doubt to the motivation behind GUTs.

Do all four fundamental forces unify in a theory of everything? At the

Planck scale, T ∼ MPl ∼ 1019 GeV, it is predicted that quantum effects from gravity

become significant and a ‘theory of everything’ that places gravity in the same

framework as the strong and electroweak forces becomes necessary. Efforts to form

a theory of quantum gravity in QFT frameworks have proven futile due to the

non-renormalisability of a spin 2 gauge tensor field [46], which is required for gravity.

What is dark matter? Cosmological and astrophysical observations make clear

that most of the matter in the universe is not baryonic, does not interact electro-

magnetically, and through its gravitational attraction keeps galaxies together [12].

No particle in the SM accounts for this ‘dark matter’, yet some models suggest that

it could be explained through composite objects such as primordial black holes. Fun-

damental particle solutions such as WIMPs [15] and axions [47] have been proposed.

What is dark energy? The expansion of the universe is accelerating [48,49], and
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there is a vacuum energy that is driving this expansion which cannot be explained

by the SM (in fact, attempts to explain this through SM vacuum energy calculations

have provided an infamous result that is wrong by 120 orders of magnitude). This

dark energy Λ accounts for ∼ 70% of the mass-energy in the universe [50] and

remains a mystery to this day.

What caused inflation? A model of rapid expansion in the very early universe,

known as inflation, is required to explain cosmological observations that we explain

further in Section 3.3.1. This is not explained through the SM and requires a

hypothesised BSM particle called the ‘inflaton’.

Is the Higgs vacuum metastable? The Higgs quartic coupling, λ, is predicted

to run to a negative value for values of the Higgs scalar field h > 1011 GeV [51, 52].

This could mean that the current Higgs vacuum is metastable and there could be a

phase transition to the true vacuum of the theory in the deep future.

Why is there more matter than antimatter? Visible matter in the universe

is baryonic and seemingly not anti-baryonic. If these were originally created in the

same quantities then they would annihilate and lead to no matter in the universe.

We explore this question further in Section 3.5.

Why do neutrinos have masses? Solar neutrinos are predicted to be electron

neutrinos, yet only 1
3 of the neutrino flux has been observed to be νe [32]. The rest

are the muon and tau neutrinos νµ, ντ . Thus neutrinos change their flavour as they

travel, in a phenomenon known as neutrino mixing. This means that they must

experience time, and thus must have mass. As neutrino masses are relevant for this

work, we provide a brief summary below.

2.7.1 Neutrino Masses

Accounting for neutrino masses involves a minimal extension to the SM where

either a Dirac-like mass term (from EWSB) or a Majorana mass term can be added.
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Majorana fermions are described by the relation ψc = Cψ̄T = ψ, where C refers to the

charge conjugation operation. Thus, Majorana fermions are their own antiparticles.

If we include both types of terms, our SM Lagrangian is modified with

L 3 − 1
2 ν̄

c
LMLνL − 1

2 ν̄
c
RMRνR − ν̄RMDνL + h.c. (2.7.1)

= −1
2 ν̄

cMν + h.c. (2.7.2)

where the first two terms are Majorana mass terms and we have introduced the

right-handed neutrinos νR. ML,MR are Majorana mass matrices and MD is the

Dirac mass matrix. In the illustrative case of one neutrino flavour, we write the

vector ν = (νL, νcR) and find the neutrino mass matrix

M =

mL mD

mD mR

 , (2.7.3)

where mD is the Dirac mass that comes from EWSB, and mL,R,D are scalars that

have taken the place of the matrices ML,R,D. Diagonalising M results in the matrix

M ′ =

1
2(mL +mR) − 1

2

√
(mL −mR)2 + 4m2

D 0

0 1
2(mL +mR) + 1

2

√
(mL −mR)2 + 4m2

D


= diag(m1,m2) ,

(2.7.4)

resulting in us being left with two Majorana fermions after diagonalisation. For

mL = 0, which ensures that lepton number conservation cannot be violated by the

left-handed Majorana mass term, and for mR � mD, we find that m1 ≈ m2
D/mR,

and m2 ≈ mR. Thus we have ended up with a situation where m1 � m2 and is

driven to be extremely light by the large mass of a RHN. As the bound on the sum

of the neutrino masses requires them to be very light ∑imν,i ≤ 0.12 eV [50,53],1 this

result provides motivation for the Seesaw mechanism which we explore further in

Section 3.6.
1Note that this upper bound comes from cosmological (CMB) observations. Terrestrial exper-

iments provide a lower bound on the mass sum of
∑

i mν,i & 0.06 (0.1) eV for normal (inverted)
ordering of the neutrino mass eigenstates [54,55].
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The diagonalisation procedure can be expressed through a matrix, U , by relating

ναL = ∑
i Uαiνi. This relates the mass basis νi, with i = 1, 2, 3 to the flavour basis ναL

with α = e, µ, τ . It is referred to as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix and can be parametrised as [53]

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1




eiη1 0 0

0 eiη2 0

0 0 1

 ,

(2.7.5)

where δ is the CP -violation phase, η1 and η2 are Majorana phases, and sij = sin θij,

cij = cos θij where θij are real angles.



Chapter 3

Early Universe Cosmology

Eä! Let these things Be! And I will send forth into the Void the Flame

Imperishable, and it shall be at the heart of the World, and the World shall Be.

from Ainulindalë by J.R.R. Tolkien

The early universe is an enigmatic time in our universe’s history. As we go further

back in time towards the Big Bang, the temperature starts to increase T ∼ a−1,

where a is the scale factor of the universe (to be introduced later). With the universe

getting hotter and smaller, high energy physics starts to gain an equal footing

with cosmology, and it becomes imperative at energies approaching the Planck

temperature TPl = MPl ≈ 1.22 × 1019 GeV to utilise a theory of quantum gravity.

This work, fortunately, involves physics at temperatures far below TPl. Yet, despite

not requiring a quantum theory of gravity at these scales, there is still much we don’t

know about: where dark matter emerged from, the exact nature of the electroweak

phase transition, and why there are more baryons than anti-baryons, to list a few

unanswered questions. The research in this thesis touches on the latter two topics.

Thus, this chapter aims to set the stage for these events: the early universe leading

up to recombination.



60 Chapter 3. Early Universe Cosmology

3.1 General Relativity

The language that is used to describe cosmology is that of General Relativity [56].

Spacetime is described by a Riemannian manifold with metric gµν . A useful quant-

ity is the Riemann curvature tensor Rρ
σµν which describes the effect of parallel

transporting a vector around a manifold, quantifying the curvature of the manifold.

The Riemann curvature tensor is given by

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ , (3.1.1)

where the Christoffel symbols Γλµν are defined as

Γλµν = 1
2g

λρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
. (3.1.2)

The Ricci curvature tensor is defined through the contraction Rµν = Rρ
µρν , and the

Ricci scalar R = Rµ
µ.

We can then relate these quantities to the stress-energy tensor Tµν through the

Einstein equation

Gµν ≡ Rµν − 1
2Rgµν = 8πGTµν , (3.1.3)

which determines the dynamics of a manifold1. Here, Gµν is referred to as the

Einstein tensor, and G is the gravitational constant.

It is possible to insert a cosmological constant Λ if the universe’s expansion is

accelerating, such that

Gµν + Λgµν = 8πGTµν . (3.1.4)

3.2 Standard Model (of Cosmology)

Our Standard Model of Cosmology is the ΛCDM model, which describes the universe

as having cold dark matter and dark energy Λ [58,59]. It assumes that:

1Wheeler summarised this equation as “Spacetime tells matter how to move; matter tells
spacetime how to curve.” [57], as Tµν involves the energy density and affects the dynamics of the
manifold.
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• The universe is homogeneous and isotropic, expanding in the same manner in

all directions. This assumption is also known as the cosmological principle.

• Einstein’s equation applies.

• The content of the universe can be approximated as a perfect fluid.

The perfect fluid assumption results in the stress energy tensor taking the form

Tµν = (ρ+ p)UµUν + pgµν , (3.2.1)

where ρ is the energy density, p is the pressure, and Uµ is the fluid velocity.

Spacetime is described by a manifold with the Friedmann-Lemaître-Robertson-

Walker (FLRW) metric, given by

ds2 = gµνdx
µdxν = dt2 − a(t)2

(
dr2

1 − kr2 + r2dΩ2
)

(3.2.2)

where a(t) is the scale factor, which increases monotonically with t, k is a curvature

constant, and dΩ2 indicates the line element of a 2-sphere. As experiment has

confirmed that the expansion of the universe is presently accelerating [48, 49], the

cosmological constant Λ is non-zero in this model and in Eq. 3.1.3.

We define the Hubble factor as

H(t) = ȧ

a
. (3.2.3)

The Hubble factor in the present day is denoted H0. Observations of the CMB

(under the ΛCDM assumption) by the Planck collaboration resulted in a value of

H0 ∼ 67.4±0.5 km s−1Mpc−1 [50], whereas the use of Type Ia supernovae as standard

candles leads to a measurement independent of the ΛCDM model by the SH0ES

collaboration of H0 ∼ 73.04 ± 1.04 km s−1Mpc−1 [60]. The incompatibility of these

results is referred to as the Hubble tension and is an open question in cosmology,

which we will not discuss further here.

By inserting the perfect fluid form of Tµν and the FLRW metric into the Eq. 3.1.3,
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Energy Type w ρ(a) a(t)

Radiation 1
3 ∝ a−4 ∝ t

1
2

Matter 0 ∝ a−3 ∝ t
2
3

Dark energy −1 constant eHt

Table 3.1: EOS parameter w, energy density ρ(a) and scale factor
a(t) scaling for various types of energy.

we arrive at the Friedmann equations,

H2 = 8πG
3 ρ− k

a2 + Λ
3 , (3.2.4)

ä

a
= −4π

3 (ρ+ 3p) + Λ
3 . (3.2.5)

The conservation of stress energy ∇µT
µν = 0,1 assuming a perfect fluid form of Tµν

as in Eq. 3.2.1, can be re-expressed as the conservation of comoving energy,

ρ̇ = −3H(ρ+ p) = −3Hρ(1 + w) (3.2.6)

where w = p/ρ is the equation of state (EOS) parameter.

We can solve Eq. 3.2.6 to find

ρ ∝ a−3(1+w) . (3.2.7)

For the time evolution of the scale factor a(t), we can now solve Eq. 3.2.4 to find

a(t) ∝ t
2

3(1+w) . (3.2.8)

In Table 3.1 we list how the energy density and scale factor scale with respect to

each other, and t, for various types of energy. Radiation is defined as any relativistic

mass-energy, whereas matter is specifically non-relativistic matter.

Using the Eq.3.2.4, we can define the critical density (when k = 0 and Λ = 0) to be,

ρc = 3H2

8πG , (3.2.9)

1∇µ refers to the covariant derivative on the manifold, ∆λT µν = ∂λT µν + Γµ
λσT σν + Γν

λσT µσ.
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which allows us to define a fractional energy density parameter

Ωi = ρi
ρc

(3.2.10)

for different types of energy density ρi. Thus, we can define Ωk = Ωtot − 1, where Ωk

is the adjustment to the energy density fraction taking into account the curvature

constant k.

With cosmological observations, we find that, today,

Ωtot = Ωγ + Ωm + ΩΛ + Ωk , (3.2.11)

where the energy density of radiation is Ωγ ∼ 5 × 10−5, the energy density of matter

is Ωm ∼ 0.3, the energy density of dark energy is ΩΛ ∼ 0.7 and Ωk ∼ 0 indicating

a flat universe [61]. Thus most of the energy content today is that of dark energy,

meaning that the expansion of the universe is accelerating exponentially.

As the energy density relationships in Table 3.1 show, it is evident that earlier in

the universe we had a period of matter domination, and at very early times we had

the era of radiation domination. As a result, the radiation domination assumption is

used throughout this thesis to define the Hubble parameter, energy density evolution,

and temperature evolution.

Observations find that the baryon density fraction Ωb ∼ 0.05 < Ωm, implying that

the majority of the matter energy density is unaccounted for. The remaining energy

density is referred to as ‘cold dark matter’, with cold referring to the fact that it is

non-relativistic. Thus we complete our brief review of the ΛCDM model.

3.3 Timeline of the Early Universe

Under our current understanding, the universe began with a hot Big Bang, expanding

rapidly in all directions. For the purposes of this thesis, it is not necessary to discuss

the early part of the Planck epoch, when quantum gravitational effects dominated.

We skip forward to the period of inflation.
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3.3.1 Inflation

Inflation was first proposed by Guth [62] to tackle the horizon and flatness problems

in standard cosmology. Much of this review can be found in the inflation section of

Ref. [33].

Horizon problem

The horizon problem stemmed from the fact that the Hubble horizon at the time

of recombination1 H(trec)−1 was much smaller than we would otherwise assume

by rescaling our Hubble horizon today. Using the redshift z = a0/a − 1 where

a0 is the scale factor today, we arrive at H−1
0 /zrec which is the size of the present

day observable universe rescaled to the time of recombination using the Hubble

expansion.

Taking the ratio of the circumference of our observable universe scaled to trec, to

the diameter of the actual observable universe at trec, we arrive at a value of ∼ 100,

meaning there were 100 causally disconnected zones at that surface of last scattering.

This would imply that these regions would not be able to thermalise, yet the Cosmic

Microwave Background (CMB) that was emitted at recombination is isotropic to 1

part in 105 [33]. Thus we arrive at the horizon problem: how was the universe able

to thermalise across these seemingly disconnected zones?

Flatness problem

As the contribution of curvature to the energy density of the universe can be expressed

as Ωk, we can also give it an effective EOS parameter which we can calculate as

w = −1/3. With this, we see that the energy density of curvature scales as a−2.

Referring to Table 3.1, this would imply that an era of curvature domination would

appear after matter domination, and before the current era of dark energy domination.

1See Section 3.3.4 for more detail.
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Yet by looking at our cosmological history and through observation, we find that k

is so close to zero that this period never occurred.

We can quantify this fine tuning problem by rearranging and differentiating Eq. 3.2.4

to give us,
dΩtot

da
= (1 + 3w)Ωtot(Ωtot − 1)

a
, (3.3.1)

which describes the evolution of the total fractional energy density Ωtot. If Ωtot(t =

0) = 1, then Ωtot would remain at that value until today. If it is larger, then due to

the period of radiation and matter domination resulting in w > −1/3, Ωtot would be

driven up. If it is smaller, then Ωtot would be driven to 0. What this means is that a

small variance |ρtot − ρc| > 0 results in the universe either exponentially expanding

or collapsing, and the universe no longer being flat with k = 0.

For the universe to appear flat, at least until today, requires this initial variance

to have an upper bound of (1 − Ωtot(t = 0)) < 10−60; a remarkable degree of fine

tuning [63]. This is the flatness problem.

Slow roll inflation

We assume a scalar field known as the inflaton σ drives inflation, with a potential

V (σ) [33]. The equation of motion for a scalar field in an expanding flat universe is

given by

σ̈ + 3 ȧ
a
σ̇ + V ′(σ) = 0 . (3.3.2)

The energy density and pressure are given by

ρσ = 1
2 σ̇

2 + V (σ) , (3.3.3)

pσ = 1
2 σ̇

2 − V (σ) , (3.3.4)

and thus the first Friedmann equation gives

H2 = 8πG
3

(1
2 σ̇

2 + V (σ)
)
. (3.3.5)
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slow-roll

reheating

Figure 3.1: The inflaton in its potential, slowly rolling towards the
minimum. At the minimum, it behaves like a simple
harmonic oscillator and this results in the reheating of
the universe.

We see that if V (σ) � φ̇2, then pσ ≈ −pσ and thus the EOS parameter for the

inflaton is w ≈ −1, just like dark energy. Thus, as shown in Table 3.1, the inflaton

would cause exponential expansion of the universe while these assumptions remained

valid. Further, Eq. 3.3.1 shows us that as a universe filled with the inflaton would

have (1 + 3w) < 0, resulting in Ωtot being driven towards unity, and thus inflation

would act to ‘flatten’ the universe.

Thus we make the slow roll approximation, assuming that the field σ is in a region

where the potential is close to flat, thus it is ‘slowly rolling’ (as shown in Fig. 3.1)

and we can assume σ̈ ≈ 0 and σ̇ � V (σ). The slow roll approximation remains valid

when the slow roll parameters |η|, |ε| � 1, where

η = m2
Pl
V ′′

V
, (3.3.6)

ε = m2
Pl

2

(
V ′

V

)2

, (3.3.7)

where mPl = (8πG)−1/2 is the reduced Planck mass.1 We find that Eqs. 3.3.2 and

3.3.5 now give

3Hσ̇ ≈ −V ′(σ) , (3.3.8)

1In this thesis, we use the capitalised MPl = G−1/2 to refer to the normal Planck mass.
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H2 ≈ 8πG
3 V (σ) . (3.3.9)

We can integrate the first Friedmann equation to find

a ∼ e
∫
Hdt = eN , (3.3.10)

where H ≈
√

8πGV (σ)/3, and N is the number of e-foldings. We see here that, as

ρk ∝ a−2, inflation aggressively dilutes away the curvature as predicted, solving the

flatness problem. The horizon problem is also solved as it explains that seemingly

causally disconnected regions of spacetime were in fact causally connected. It is

estimated that these issues could be solved with inflation lasting for N ∼ 60 e-

folds [33].

Inflation also provides answers for other questions. The phase transitions of Grand

Unified Theories (GUTs), which unify the strong and electroweak forces, are predicted

to give rise to a high density of magnetic monopoles in the universe [53,64,65]. The

GUT phase transition taking place prior to inflation would mean that these magnetic

monopoles are aggressively diluted away, explaining why we do not see them today.

Inflation also gifts us an explanation for large scale structure. Our observable universe

seems to have galaxies clustering in superclusters, like how our own galaxy, the Milky

Way, is situated with other galaxies in the Laniakea supercluster [66]. Conversely,

regions with a relative underdensity of galaxies such as the Boötes Void exist [67].

Quantum fluctuations in the inflaton field could have been magnified by inflation,

seeding the large scale structure that we observe in the universe today [68].

Reheating

If inflation causes a rapid exponential expansion of the universe, driving ρk → 0,

then what about matter and radiation which should also be diluted away? How do

we end up in a universe that has something rather than nothing?

This is answered by reheating, which signifies the end of inflation. As the inflaton

field σ approaches the minimum of the potential V (σ), σ̈ becomes too large causing
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the slow roll approximation to no longer hold. Instead, we can ignore the 3Hσ̇ term

in Eq. 3.3.2 to find σ̈ ≈ −V ′(σ), which means that the inflaton field behaves like

a simple harmonic oscillator around the minimum of the potential, as depicted in

Fig. 3.1.

The energy of these oscillations is eventually dumped into the SM (or BSM) sector(s)

of the universe, due to model-dependent couplings of the inflaton to SM (BSM) fields.

Thus, the universe is filled with matter and radiation once again through inflaton

decay. Couplings between these fields can result in elastic scattering and number

changing interactions, giving rise to a universe filled with a SM (BSM) sector(s) at

a reheating temperature TR.

Reheating can only occur when the Hubble expansion rate drops below the inflaton

decay rate Γ. The first Friedmann equation tells us that H ∼ √
ρ/MPl. During

radiation domination, ρ ∝ a−4, and T ∝ a−1. Thus, we find that the reheating

temperature is given by

TR ≈
√

ΓMPl . (3.3.11)

3.3.2 Electroweak Phase Transition

After inflation, the universe undergoes a phase transition where the Higgs takes a

vev, fermions acquire mass, and the electroweak symmetry is broken from SU(2)L ×

U(1)Y → U(1)EM. This transition is known as the electroweak phase transition

(EWPT). The events pertaining to this work take place in the period between

reheating and the end of the EWPT.

Lattice calculations suggest that in the SM, the EWPT is a crossover [26, 27] that

takes place at T ≈ 160 GeV [28]. A crossover is a smooth transition with no

discontinuities in the order parameter which quantifies the state the system is in.

For the EWPT, we use the Higgs vev 〈Φ〉 as the order parameter, and thus 〈Φ〉(T, xµ)

is a continuous thermal function of spacetime.

This contrasts with a first order phase transition, where there are discontinuities
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in 〈Φ〉(T, xµ). BSM additions such as an extra singlet [69–75] or a second Higgs

doublet [76–79] open up regions of parameter space with first order phase transitions.

Study of a potential first order EWPT is motivated by a variety of factors: it

could provide the out of equilibrium conditions for baryogenesis, which we discuss in

Section 3.5, and it could result in a gravitational wave signal that could be detected

by space based interferometers such as LISA, which we discuss in Section 3.8.

The EWPT is then followed by the QCD phase transition at T ∼ 200 MeV, when

quarks and gluons become confined in mesons and baryons (such as protons and

neutrons).

3.3.3 Big Bang Nucleosynthesis

After QCD confinement, and at around T ∼ 0.1 MeV, protons (referred to as p, or

sometimes in this context as 1H) and neutrons n fuse together to form nuclei of

deuterium d (or 2H), 4He, and 7Li in appreciable quantities. This process is referred

to as Big Bang Nucleosynthesis (BBN).

In order for the heavier nuclei to form, deuterons are a vital ingredient which can

only exist via the reaction [80]

p+ n → d+ γ , (3.3.12)

which is initially in equilibrium. The equilibrium abundance of deuterons depends

on the abundance of high energy photons. If they have more energy than the binding

energy of the deuterons, which is Ed ≈ 2.2 MeV [81], they can photodisintegrate the

deuterons back into protons and neutrons.

Using the Maxwell-Boltzmann distribution, we can approximate the number of

proportion of photons that have E > Ed as

NE(γ)>Ed = nγe
−Ed/T (3.3.13)

where nγ is the number density of photons. As, in equilibrium, ndnγ = npnn, the
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ratio of deuterons to all nucleons is thus nd/nB ∝ ηB e
Ed/T , where

ηB = nB
nγ

. (3.3.14)

Here, nB refers to the number density of baryons/nucleons, thus ηB is the baryon

to photon ratio, a parameter of vital relevance to this thesis, as we will see in

Section 3.5.

Thus, BBN can only proceed once the temperature drops enough such that these

high energy photons are not abundant, and the deuteron abundance can become

significant, which happens at T ∼ 0.1 MeV.

Through this, we see that the BBN-produced abundances of the Hydrogen, Helium

and Lithium nuclei depend on the parameter ηB. In order for these abundances to

line up with observation, ηB ∼ O(10−10) [80]. The current BBN based measurement

of the BAU is ηB = (6.07732 ± 0.15070) × 10−10 [82].

3.3.4 Recombination

The period known as the early universe is typically held to end at recombination,

when the universe cooled down enough to allow nuclei and electrons to coalesce and

form neutral atoms. Prior to this, the universe was opaque to light due to photons

Compton scattering with the free electrons and nuclei. The sudden transparency at

the onset of recombination allowed for photons to finally travel freely.

The recombination reaction is

p+ e− → H + γ . (3.3.15)

A rough calculation of the recombination temperature Trec is presented as follows:

as with the deuteron production reaction in Section 3.3.3, we require the proportion

of high energy photons with E > E0, where E0 = 13.6 eV is the Hydrogen ionisation

energy, to fall sufficiently. Thus, using the equilibrium condition npne = nHnγ, and
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the Boltzmann distribution to approximate the photon density, we find

x2
e

1 + xe
≈ (np + nH)−1nγe

−E0/T , (3.3.16)

where xe = ne/(np + nH) is the free electron fraction. As protons form the majority

of baryons in the universe, we can take (np + nH) ≈ nB and thus

x2
e

1 + xe
≈ η−1

B e−E0/T . (3.3.17)

Solving for a free electron fraction of xe = 0.5 and taking η ∼ O(10−10) gives us

Trec ∼ E0/(10 ln(10)) ≈ 0.6 eV, close to the observed Trec ≈ 0.26 eV [33].

This signal, released at a relatively late time of t ≈ 380, 000 years, is the furthest we

can look back into our universe’s history through optical means. It is known as the

Cosmic Microwave Background (CMB), due to the redshifting of the light into the

microwave spectrum in the present day.

The CMB provides us with an independent measurement of ηB as the vast majority

of free photons in the universe are CMB photons. The temperature of the CMB

is 2.7 K, which gives us the number density of photons nγ. We can then calculate

ηB = (6.12 ± 0.04) × 10−10 [53], which is in remarkable agreement with the BBN

based estimate.

While the electromagnetic spectrum can only provide the CMB as the earliest signal,

the gravitational spectrum may provide us a glimpse far beyond the opaque fog

that exists at recombination. Gravitational waves, which may have travelled from

the electroweak era at T & 100 GeV and are practically unaffected by the opaque

plasma, may be detectable with gravitational wave interferometers and tell us a lot

about our early universe. We expand on this in Section 3.8.

3.4 Thermal Statistics

Before we proceed to discuss baryogenesis and leptogenesis, we give a brief summary

of core concepts in thermal statistical mechanics.
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When a sector (a group of particles) is able to exchange energy quickly, it can be

described by a single temperature T . Fast energy exchange depends on the elastic

scattering interaction rate ΓS > H. In this scenario, the sector is referred to as being

in kinetic equilibrium.

If the sector also has fast number-changing interactions Γ∆N > H, and thus is able

to freely adjust the number of particles, then it also is in chemical equilibrium.

The combination of kinetic and chemical equilibrium is referred to in the literature

as thermal equilibrium. We can define a phase space distribution for a sector in

thermal equilibrium as

feq(p) = 1
e(E(p)−µ)/T ± 1

, (3.4.1)

where for fermions the Fermi-Dirac distribution is given by the plus sign, and for

bosons the Bose-Einstein distribution is given by the minus sign. The chemical

potential µ can be neglected in the early universe as |µ| � T [83]. The energy of a

particle is given by E(p) =
√
m2 + p2.

If chemical equilibrium doesn’t hold and there is only kinetic equilibrium, then the

phase space distribution is modified by

f(p) = n

neq
feq(p) , (3.4.2)

where n is the actual number density, and neq is the equilibrium number density.

The number density, energy density, and pressure of a particle species i is given

by [63],

ni = gi
(2π)3

∫
fi(p) d3p , (3.4.3)

ρi = gi
(2π)3

∫
E(p)fi(p) d3p , (3.4.4)

pi = gi
(2π)3

∫ |p|2

3E(p)fi(p) d3p , (3.4.5)

where gi are the number of degrees of freedom. The entropy for a particle species is
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given by,

s = ρ+ p

T
, (3.4.6)

whereas the Hubble rate is derived from Eq. 3.2.4 to be

H =
√

8πG
3 ρ . (3.4.7)

3.4.1 Relativistic Dynamics

In the relativistic limit, where T � m, we find that the number densities are given

by:

ni =


ζ(3)
π

2 giT
3 (bosons) ,(

3
4

)
ζ(3)
π

2 giT
3 (fermions) ,

(3.4.8)

the energy densities are given by:

ρi =


π

2

30giT
4 (bosons) ,(

7
8

)
π

2

30giT
4 (fermions) ,

(3.4.9)

and the pressures are given by pi = ρi/3 as the EOS parameter is w = 1/3 for

radiation.

3.4.2 Non-Relativistic Dynamics

In the non-relativistic limit, where T � m, the exponential part of feq(p) dominates

over the ±1 term, giving us the Maxwell-Boltzmann distribution

fMB(p) = e−E(p)/T , (3.4.10)

which neglects quantum statistics. This gives the non-relativistic limits of [63]

ni = gi

(
miT

2π

)3/2
e−mi/T , (3.4.11)

ρi = mini , (3.4.12)

pi = niT � ρi . (3.4.13)
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During the era of radiation domination, which is the era that the work in this thesis

is set in, the non-relativistic contributions to the Hubble expansion in Eq. 3.4.7 can

be neglected.

The contribution of the relativistic degrees of freedom to the Hubble expansion in

this era allows us to define the effective relativistic degrees of freedom,

g∗ =
∑

b
gb + 7

8
∑

f
gf , (3.4.14)

where we sum over b bosons and f fermions that are relativistic. When all particles

in the SM are relativistic, g∗ = 106.75, and this drops as degrees of freedom become

non-relativistic.

3.5 Baryogenesis

We turn our attention to ηB, the baryon-to-photon ratio which we have discussed

in previous sections. However, we did not discuss the fate of the anti-baryons, or

antimatter more generally. What happened to the antimatter in the universe?

Observations in our solar system show that antimatter cannot exist in the present

day in appreciable quantities [84]1 as they would annihilate with the solar wind and

provide a gamma ray signal. If entire stellar systems are composed of antimatter,

their fraction in our galaxy must be less than 10−4 [84–87]. If large scale regions in

the universe existed that consisted entirely of antimatter, we would see gamma rays

being emitted at the domain walls separating these region. The constraints on these

observations show that these regions would have to be as large as the observable

universe [85,88,89]. Thus, the evidence points to there existing a baryon asymmetry

of the universe (BAU); the process that creates this asymmetry is referred to as

baryogenesis. As inflation is likely to dilute away any baryon asymmetry, we know

that baryogenesis must occur after inflation.

1Except from those that form in trace amounts from various astrophysical events.
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Due to the approximate C symmetry of the SM, we can assume that baryons and anti-

baryons were produced in almost equal quantities at the beginning of the universe.

The baryons and anti-baryons would then annihilate, producing copious quantities

of photons, until only the surplus baryons are left in the universe.

Thus, the BAU is given by

ηB = nB − nB̄
nγ

, (3.5.1)

where these quantities refer to the number densities of the baryons and anti-baryons.

As anti-baryons have not survived until today, this corresponds to the present baryon-

to-photon ratio we discussed in the previous section, which is why we employ the

same notation.

3.5.1 Sakharov Conditions

As the surplus baryons make up the non-dark matter content of the universe today,

the BAU is responsible for the very existence of humanity and also the large scale

structure of the universe. This significance motivates us to explore the question of

its origin. Sakharov’s conditions are necessary and sufficient to give rise to a BAU,

and they are given by [90]:

1. Baryon number (B) violation, i.e. processes such as

X → B + Y (3.5.2)

exist,

2. C and CP violation, i.e. the rates

Γ(X → B + Y ) 6= Γ(X̄ → B̄ + Ȳ ) , (3.5.3)

3. Out-of-equilibrium conditions, such that

Γ(X → B + Y ) 6= Γ(B + Y → X) . (3.5.4)
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3.5.2 Electroweak Baryogenesis

B violation exists in the SM through sphaleron processes, which we will elaborate

on in a moment. C and CP violation also exist in the minimally extended SM as

there is a small amount of CP violation sourced by the CKM and PMNS matrices.

Combined with the P violation in the weak interaction, this leads to a C violation.

Departure from equilibrium is trickier. While equilibrium conditions are violated

through the expansion of the universe, this departure seems to be too weak to source

a BAU [85]. This motivates study of a first order phase transition (see Section 3.8)

as it could provide the out-of-equilibrium conditions at the bubble walls that are

necessary for the BAU to be produced. Such models are referred to as electroweak

baryogenesis, as the Sakharov conditions are satisfied at the electroweak scale.

Sphalerons

We return now to sphalerons. We see that we can define a global U(1)B symmetry

that rotates the phases of all quarks in the SM, as QL → eiθ/3QL.1 We can define a

similar U(1)L symmetry for the leptons. Associated with these symmetries are the

classically conserved currents jµB and jµL. The baryonic current is [91–95],

jµB = 1
3
∑
f

(
Q̄f
Lγ

µQf
L + ūfRγ

µufR + d̄fRγ
µdfR

)
, (3.5.5)

where f is a sum over all the generations. As the current is conserved, ∂µjµB =

∂µj
µ
L = 0. However, this doesn’t hold at the quantum level. Due to loop corrections,

we find that [85,95]

∂µj
µ
B = ∂µj

µ
L = nf

32π2

(
−2g2 Tr

(
WµνW̃

µν
)

+ g′2FµνF̃
µν
)

(3.5.6)

where nf = 3 is the number of quark generations, W̃ µν = εµναβWαβ, and likewise for

F̃ µν .

For the bosonic electroweak sector, there are infinite field configurations (vacua)

1The 1/3 factor in the exponential is present as a quark contributes 1/3 of baryon number.



3.5. Baryogenesis 77

that minimise the energy functional. These vacua are distinguished by the Chern-

Simons number NCS [85]. As the fermionic energy of a configuration depends on the

bosonic background through coupling, the change of NCS results in the creation of

fermions out of the background fields. Thus, processes that change baryon number

are made possible by the transitions between these vacua [96,97]. These vacua have

barriers between them, characterised by the sphaleron energy Esph ∼ mW/αW . The

sphaleron is defined as the field configuration that gives the maximal energy along

the path of least action between the two vacua, or in simple terms, the point at the

‘top of the hill’ between the valleys [85,98].

As we see that ∂µ(jµB − jµL) = 0, the sphaleron processes preserve B − L but violate

B + L. B (and L the lepton number) are also violated individually. This violation

can be quantified by [99]

∆(B + L) = 2Nf∆NCS , (3.5.7)

where ∆NCS is the change in NCS across different vacua. As g′ = g tan(θW ), g′ � g,

sphaleron processes only involve SU(2)L doublets at leading order. This means that

∆B = ∆L = 3 processes such as

ν̄eν̄µν̄τ → uLdLdLcLbLdLtLbLbL (3.5.8)

are possible [94]. By balancing the chemical potentials of ingoing and outgoing

particles for a rapid sphaleron process, we can derive a relation between the B

asymmetry and the B − L asymmetry, given by [100]

B = 8nf + 4nh
22nf + 13nh

(B − L), (3.5.9)

where nf is once again the number of quark/lepton generations, and nh is the number

of Higgs doublets. For the Standard Model with nf = 3 and nh = 1, we arrive at

a sphaleron conversion factor of asph = 28/79. Sphaleron transitions occur at a

rate [94]

Γsph ∝ e−Esph(T )/T , (3.5.10)
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which is only larger than the Hubble expansion prior to EWSB. Thus, sphalerons are

exponentially suppressed and effectively shut off after the EWPT. This means that

the B violation condition is no longer satisfied afterwards, and models of baryogenesis

that depend on this must source the BAU prior to or during the EWPT.

3.6 Leptogenesis

As sphaleron processes active above the EWPT can convert a lepton asymmetry

into a baryon asymmetry, it is possible to transform the question of ‘where does

the baryon asymmetry come from?’ to ‘where does the lepton asymmetry come

from?’. Motivation for this comes from the fact that the CP violation in the CKM

matrix alone is too weak to source the BAU [94, 101], incentivising a study of the

PMNS matrix and the lepton sector as a source for sufficient CP violation. Such

models are referred to as leptogenesis models, and were first proposed by Fukugita

and Yanagida [29].

In leptogenesis, a heavy Majorana right handed neutrino (RHN) decays out of

equilibrium into the Higgs and a light left handed neutrino. This out of equilibrium

decay seeds a lepton asymmetry (specifically a B − L asymmetry) that is then

converted to a baryon asymmetry through sphaleron processes [102–104].

3.6.1 Type I Seesaw

The model used for this interaction is typically the Type I Seesaw mechanism,

which was introduced as a model for why the SM neutrinos are so light [105–108].

Incidentally, the GUT scale RHNs and their CP violating interactions introduced

by the model naturally lead to leptogenesis.

The Type I Seesaw Lagrangian supplements the SM with the terms that we provide

later in Eq. 4.1.1. We find the Yukawa term sources the decays N → Φ̄ +L (Φ + L̄).

Individually, these are CP -violating as they are ∆L = 1 (−1) processes. If these



3.6. Leptogenesis 79

decays happen at different rates and leptons are created more than anti-leptons, and

if the decays happen out of equilibrium such that the inverse decays are slower than

the decays, then we can seed a lepton asymmetry.

The seesaw formula provides the relation between the RHN mass matrix MN and

the light neutrino mass matrix Mν at tree level,

Mν ≈ v2Y TM−1
N Y , (3.6.1)

where Y is the Yukawa matrix in Eq. 4.1.1 and v is the Higgs vev. Thus, we see

the origin of the moniker of this model; just like with a seesaw, the heaviness of MN

makes Mν much lighter. Leptogenesis therefore provides an elegant solution to the

BAU as well as light neutrino masses.

3.6.2 Boltzmann Equations

In the Casas-Ibarra parametrisation of the Yukawa matrix [109], Y = 1
v
U

√
MνR

T√
MN ,

where v = 174 GeV is the vacuum expectation value of the Higgs,1 U is the leptonic

mixing matrix, Mν (MN) is the diagonal light (heavy) neutrino mass matrix and R

is a complex, orthogonal matrix given by

R =


1 0 0

0 cosω1 sinω1

0 − sinω1 cosω1




cosω2 0 sinω2

0 1 0

− sinω2 0 cosω2




cosω3 sinω3 0

− sinω3 cosω3 0

0 0 1

 , (3.6.2)

where the ωi = xi + iyi are complex angles. We see that typically a heavier RHN

gives a heavier Yukawa coupling with the SM sector. This means that, assuming a

mass hierarchy where mN2 ,mN3 � mN1 , the heavier RHNs would be coupled more

strongly to the SM and thus their decays would not deviate from equilibrium as

much as N1. Thus in vanilla leptogenesis models the dominant contribution to the

B − L asymmetry comes from the out-of-equilibrium decays of the lightest RHN,

N1. These typically decay around a temperature of T ∼ mN1 .

1Note that this definition has absorbed the 1/
√

2 into v.
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To illustrate vanilla leptogenesis, we derive differential equations to track the number

densities of the system, known as Boltzmann equations, for a simplified scenario

where only N1 decays and neutrino flavour effects are ignored. This can be described

by:
dNN1

dt
= −Γ(N1 → LΦ̄)NN1 − Γ(N1 → L̄Φ)NN1

+ Γ(LΦ̄ → N1)NLNΦ̄ + Γ(L̄Φ → N1)NL̄NΦ

(3.6.3)

where NN1 , NL and NΦ are normalised number densities for heavy neutrinos, leptons

and Higgs and vice versa for the antiparticle densities. Conventionally, these are

normalised such that they represent the particle numbers in a comoving volume

containing a single photon at the start of the evolution.

We assume:

1. A thermal averaging over the statistical distributions of each incoming particle

ψ, by integrating over the phase space distribution
∫ d

3pψ
(2π)22Eψ

.

2. A Maxwell-Boltzmann distribution fψ ∝ exp
(
−Eψ/T

)
instead of quantum

statistics.

3. Kinetic equilibrium conditions, i.e. fN1/f
eq
N1

≈ NN1/N
eq
N1

, where N eq
N1

is the

number density of N1 at equilibrium.

CPT invariance allows us to equate |M(N1 → LΦ̄)|2 = |M(L̄Φ → N1)|2. The

exponential form of the Maxwell-Boltzmann distribution gives f eq
N1

= f eq
L f

eq
Φ .
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Using these relations, we can derive,1

dNN1

dt
= −Γ(N → LΦ̄)NN1 − Γ(N1 → L̄Φ)NN1

+ Γ(LΦ̄ → N1)N eq
L N

eq

Φ̄ + Γ(L̄Φ → N1)N eq

L̄
N eq

Φ

= −Γ(N1 → LΦ̄)NN1 − Γ(N1 → L̄Φ)NN1

+ Γ(N1 → LΦ̄)N eq
N1

+ Γ(N1 → L̄Φ)N eq
N1

= −
(
Γ(N1 → LΦ̄) + Γ(N1 → L̄Φ)

)
(NN1 −N eq

N1
)

= −ΓD1(NN1 −N eq
N1

) .

(3.6.4)

where

ΓD1(z) = Γ0
D1〈mN1/EN1〉 = Γ0

D1

K1(z = mN1/T )
K2(z = mN1/T ) (3.6.5)

is the thermally averaged decay rate of the RHN, and

Γ0
D1 = Γ(N1 → LΦ̄) + Γ(N1 → L̄Φ) =

m̃2
1m

2
N1

8πv2 (3.6.6)

is the rest frame RHN decay rate [110]. Here,

m̃1 =

(
Y †Y

)
11
v2

mN1

(3.6.7)

is referred to as the effective neutrino mass.

The functions K1, K2 are the modified Bessel functions of the second kind, and arise

from the thermal averaging of a Maxwell-Boltzmann distribution. It is useful to

rewrite this Boltzmann equation with respect to the scale factor a as

aH
dNN1

da
= −ΓD1(z)

(
NN1 −N eq

N1

)
. (3.6.8)

The Feynman diagrams that contribute to the 1-loop decay rate N1 → LΦ̄ are

shown in Fig. 3.2. Interference between the tree-level amplitudes and the 1-loop

amplitudes results in CP -violation in the RHN decays.

1Note that the SM particles are generally assumed to be in thermal equilibrium.
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Ni

Φ

L̄L

(a) Tree-level

Ni

Φ

L̄L Φ

L̄L

(b) 1-loop (self-energy correction)

Ni

L̄L

Φ

Φ L̄L

Ni

(c) 1-loop (vertex correction)

Figure 3.2: Feynman diagrams of the φ4 theory contributing to the
matrix element up to NLO.

We can derive a similar Bolzmann equation for the B − L asymmetry,

aH
dNB−L

da
= −ε1ΓD1(z)

(
NN1 −N eq

N1

)
−W1NB−L (3.6.9)

where the CP asymmetry parameter is given by

ε1 = Γ(N1 → LΦ̄) − Γ(N1 → L̄Φ)
Γ(N1 → LΦ̄) + Γ(N1 → L̄Φ)

, (3.6.10)

and W1 is the ‘washout’ rate that can reduce the B − L asymmetry. The main

process that contributes to the washout is inverse decays [111], however decays and

lepton-number-violating scatterings also contribute [94].

3.6.3 Washout regimes

We can calculate the washout rate, assuming inverse decays as the only contributor,

as [111]

W1 =
ΓD1

2
N eq
N1

N eq
L

∝ K , (3.6.11)

where the ‘washout parameter’ K is given by

K =
Γ0
D1

H(T = mN1) = m̃1

m∗
. (3.6.12)
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Here, m∗ is the equilibrium neutrino mass given by [110]

m∗ =
16π5/2√g∗v

2

3
√

5MPl
≈ 1.08 × 10−3 eV . (3.6.13)

Weak washout

For K � 1, we are considered to be in the weak washout regime, where there is a

strong dependence on the initial conditions [110]. Leptogenesis typically makes use

of either the vanishing initial condition, where the initial N i
N1 = 0, or the thermal

initial condition, where N i
N1 = N eq

N1
. For the vanishing initial condition, the inverse

decay rate is not fast enough to quickly populate the N1 sector, and thus it takes a

longer time for NN1 to reach the equilibrium number density - well after the comoving

equilibrium number density has started falling, and the heavy neutrinos have become

non-relativistic.

Strong washout

In strong washout regimes, K � 1, the couplings are strong enough that the inverse

decays can quickly populate the N1 sector in the case of a vanishing initial condition,

prior to decays and while N1 is still relativistic (T & mN1). Thus the dependence on

initial conditions disappears.

The question of initial conditions depends on the UV origin of a leptogenesis model.

The vanishing initial condition is used when there is no reason for the RHNs to be

already populated prior to leptogenesis. If there is inflaton decay into the RHNs

and thus they are populated at the reheating temperature, then they could exist in

thermal equilibrium prior to leptogenesis. This thermal equilibrium would require

fast elastic scattering and number-changing interactions, which we expand on in

Chapter 4.
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3.6.4 Flavour effects

A full treatment of leptogenesis will involve the heavier RHN, as well as the flavour

effects that impact on the dynamics of the number densities and NB−L [100,111–115].

Sources of flavour effects include interactions that depend on charged lepton Yukawa

couplings [116] which can modify the BAU by an order of magnitude [111,117,118],

and differences in the heavy neutrino Yukawa couplings [119–122] that lead to an

inequitable seeding of the individual lepton flavour numbers Le, Lµ, Lτ . These are

relevant to calculating B − L as the sphaleron processes preserve

1
3B − Le,µ,τ

individually [111]. In Eq. 4.4.4 we provide a full expression for the flavour contribu-

tions to the B − L asymmetry.

3.6.5 Calculating ηB

The baryon asymmetry is based on the final value of the B − L asymmetry at the

end of leptogenesis, N f
B−L, so

ηB = asph
N f
B−L
N rec
γ

(3.6.14)

where asph = 28/79 is the factor for sphaleron conversion from B − L to B [100],

and N rec
γ is the photon number density at recombination, to account for the change

between the end of leptogenesis and the recombination era.

3.6.6 Naturalness and Resonant Leptogenesis

Models of vanilla leptogenesis result in the Davidson-Ibarra bound on the minimum

mass of the N1, mN1 & 107−8 GeV [123], in order to generate a sufficiently high

ηB that matches observation. However, this comes into tension with naturalness

constraints such as the Vissani bound [30], which requires the 1-loop correction to

the Higgs mass arising from the heavy neutrinos to not be ‘too large’.
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Φ
Ni

L̄L

Φ

Figure 3.3: 1-loop correction to the Higgs propagator in the Type
I Seesaw mechanism.

Fig. 3.3 presents the Feynman diagram for the 1-loop correction to the Higgs mass

arising from the Type I Seesaw mechanism. The Higgs hierarchy problem is that, if

there exist Higgs-coupled particles with masses TEWSB � m � TGUT, where TGUT

is the energy scale of the Grand Unified Theory which is expected to supersede the

SM, then those heavy particles will have a tendency to pull the Higgs mass up to

scales higher than that of EWSB, yet this is not observed. The loop contributions

will have at least a quadratic dependence on the mass of the new particles, based

on a Higgs portal coupling similar to Φ2φ2 where φ is a new heavy particle. As the

Higgs mass is not at a higher energy scale, then the tree-level mass must be almost

as large as the loop correction δµ, such that they finely cancel out and leave the

Higgs mass at the EWSB scale mH ∼ O(102 GeV).

This is an example of a fine-tuning problem, and the precise boundary between

what is considered to be finely-tuned or not is arbitrary. In App. 4.5 we quantify

fine-tuning using defined measures in order to make comparisons between benchmark

points in different models.

However, in Ref. [30] the fine-tuning limit is taken to be one order of magnitude

higher than the EWSB, at about 1 TeV,

δµ2 ≈
mνm

3
N1

2πv2 ln
(

q

mN1

)
< (1 TeV)2 (3.6.15)

leading to the Vissani bound of mN1 . 107 GeV. We see that this is incompatible

with the Davidson-Ibarra bound, meaning that vanilla leptogenesis is a finely-tuned

model.

Resonant leptogenesis [124] was introduced as a specific regime of leptogenesis that
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alleviates this specific fine-tuning issue. This is based on the observation that for

RHN mass splitting comparable to the decay widths, |mN1 −mN2| ∼ Γ0
D1,2 , the CP -

violation sourced from the self-energy contribution to the RHN decay (Fig. 3.2(b))

can be significantly enhanced [125–127]. This results in the observed BAU being

able to be produced for lower RHN masses of around mN1 ∼ 106−7 GeV, thus giving

us a model of leptogenesis compatible with naturalness constraints from the Higgs

sector. However, this imposes a strong constraint on the degeneracy of the neutrino

masses and limits the parameter space available for leptogenesis.

3.7 Effective Potential

The quantity most relevant for phase transitions is the effective potential, which

defines the potential energy of a field configuration in a given theory, taking loop

corrections into account. The effective potential is defined with respect to the

generating functional

Z[J ] = eiW [J ] =
∫

Dφ eiS[φ]+
∫
d

4
xJ(x)φ(x) , (3.7.1)

where J(x) is a source current coupled to the field φ(x), and
∫

Dφ is a functional

integral over the space of field configurations. A Legendre transform of W gives the

effective action

Γ[φc(x)] ≡ W [J ] −
∫
d4xJ(x)φc(x) , (3.7.2)

where φc(x) = 〈0|φ(x) |0〉 is referred to as the classical field. If we assume that φc is

a constant ‘background field’, we can write

Γ(φc) = −
∫
d4xVeff(φc) = −VVeff(φc) , (3.7.3)

where Veff(φc) is the effective potential.

We find that the functional derivative of the effective action gives us

δΓ[φc]
δφc(x) = −J(x) , (3.7.4)
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and in a vacuum with vanishing source J(x) = 0, we find

δΓ[φc]
δφc(x) = ∂Veff

∂φc
= 0 . (3.7.5)

Thus the vacua of the theory are given by the minimum of the potential Veff, making

it a powerful tool for studying phase transitions. From now on, we will generally

drop the subscript c on the background classical field and just refer to the effective

potential as V (φ).

3.7.1 Zero Temperature

The effective potential at 1-loop is given by

V = Vtree + V1-loop , (3.7.6)

where Vtree is the tree-level potential. The calculation of the 1-loop contribution

requires the summation of all 1-loop diagrams with zero external momenta; this is

because the constant background field results in vanishing of the spatial derivatives

of φ (and thus the external momenta). As an example, the 1-loop contribution for

the scalar φ4 theory can be expressed diagrammatically as

V1-loop = + + + · · · (3.7.7)

where we neglect the bubble vacuum diagrams as they are constant with respect to

the field configuration φ, thus leading to a constant shift in the potential that does

not affect the dynamics.

With the φ4 Feynman rules, we can calculate the 1-loop contribution as

V1-loop =
∞∑
n=1

i

2n · 2n
∫ d4q

(2π)4

(
(−iλ)φ2

q2 −m2 + iε

)n
(3.7.8)

= i

2

∫ d4q

(2π)4 ln
(

1 − 1
2

λφ2

q2 −m2 + iε

)
(3.7.9)

= i

2

∫ Λ

0

dqE
(2π)4 ln

(
q2
E + V ′′

tree(φ)
q2
E +m2

)
q3
E

∫
dΩ3 (3.7.10)
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where the symmetry factors 1/2n and 1/2n arise due to the permutation of vertices

and the interchangeability of external legs at each vertex respectively [128]. We have

summed over the infinite sum, and then Wick rotated into the Euclidean spherical

integral as in Section 2.6.2. We have then introduced an ultraviolet cutoff Λ for

the momentum integral, as an alternative method of renormalisation to that of

dimensional regularisation. For illustrative purposes, we can take the massless case

such that the 1-loop potential evaluates to [129]

V1-loop = 1
64π2

{
λφ2Λ2 + λφ2

4

[
ln
(
λφ2

2Λ2 − 1
2

)]}
. (3.7.11)

We see that this is divergent in two senses: it has a UV divergence due to Λ, and

an IR divergence due to the logarithmic term. We can introduce counterterms to

handle the divergences

V (φ) = Vtree(φ) + V1-loop(φ) − δm2φ2 − δλφ4 . (3.7.12)

We can impose a renormalisation condition that ensures that the effective potential

gives the tree-level mass in its vacuum, such that

d2V

dφ2

∣∣∣∣∣
φ=0

= m2 = 0 . (3.7.13)

This results in the counterterm

δm2 = λΛ2

64π2 . (3.7.14)

A similar condition cannot be applied for the quartic counterterm due to the IR

divergence in the logarithmic term. We instead choose a mass scale µ so we can

impose
d4V

dφ4

∣∣∣∣∣
φ=µ

= λ , (3.7.15)

from which we can find

δλ = − λ2

256π2

[
ln
(

Λ2

µ2

)
− 25

6

]
. (3.7.16)

giving us the renormalised form of the 1-loop effective potential for the massless φ4
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theory

V (φ) = λ

4!φ
4 + λ2

256π2

[
ln
(
φ2

µ2

)
− 25

6

]
φ4 , (3.7.17)

where the renormalised 1-loop contribution is the Coleman-Weinberg potential. A

similar method can be used to calculate the effective potential in theories with gauge

bosons, fermions, and scalars as well. For the SM Higgs background φ, the finite

part of the Coleman-Weinberg potential is [130]

VCW(φ) =
∑
i

gi
m4
i (φ)

64π2

[
ln
(
m2
i (φ)
µ2

)
− Ci

]
, (3.7.18)

where gi are the d.o.f. of Higgs interacting particles, m2
i (φ) = ∂2

i V (φ) are the Higgs

field-dependent mass terms, and

Ci =


5
6 (vector bosons)

3
2 (scalars + fermions)

. (3.7.19)

3.7.2 Matsubara Formalism

At finite temperature, interactions with particles in the thermal bath induce thermal

corrections at higher loop order that must be taken into account. The energy of a

system is given by the Hamiltonian Ĥ = S3, which is the spatial sum of kinetic and

potential energy of a system, and is identical to the Euclidean action in 3D. Wick

rotating t → iτ , and integrating τ ∈ [0, β) where β = 1/T is the inverse temperature,

we find for the generating functional

Z[0] = eiS = e−
∫
dτS3 = e−βĤ . (3.7.20)

We denote Z[0] = Z from now on and refer to it as the partition function, in analogy

with the partition function from statistical physics. Thus, the thermal expectation

value of an operator O is given by the thermally averaged sum over states

〈O〉 = 1
Z

∑
n

〈n| e−βĤO |n〉 = 1
Z

Tr
(
e−βĤO

)
. (3.7.21)
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Reproducing the derivation in Ref. [128], the thermal 2-point correlator function is

given by,

〈ψ(t,x)ψ(0,y)〉 = 1
Z

Tr
(
e−βĤψ(t,x)ψ(0,y)

)
(3.7.22)

= 1
Z

Tr
(
e−βĤψ(t,x)eiĤ(iβ)ψ(−iβ,y)e−iĤ(iβ)

)
(3.7.23)

= 1
Z

Tr
(
e−βĤψ(iβ,y)ψ(t,x)

)
(3.7.24)

= 〈ψ(−iβ,y)ψ(t,x)|ψ(−iβ,y)ψ(t,x)〉 (3.7.25)

=


〈ψ(t,x)ψ(−iβ,y)|ψ(t,x)ψ(−iβ,y)〉 ψ is a boson,

− 〈ψ(t,x)ψ(−iβ,y)|ψ(t,x)ψ(−iβ,y)〉 ψ is a fermion,
,

(3.7.26)

where we use the quantum time evolution ψ(t) = eiĤtψ(0)e−iĤt. This is the Kubo-

Martin-Schwinger (KMS) relation, and after the Wick rotation it shows that the

field ψ(0,x) = ±ψ(β,x) and thus is periodic in inverse temperature. Here, we see

clearly that the imaginary time τ is identified with the inverse temperature β.

The frequency of these periodic modes is referred to as the Matsubara frequency [131],

ωn =


2nπT cyclic, for bosons,

(2n+ 1)πT anti-cyclic, for fermions,
(3.7.27)

which provides an energy contribution to the Euclidean square momentum p2
E =

ω2
n + p2 due to oscillations in the time component of the field. Any 4D momentum

integral can now be converted to a sum over Matsubara modes through the relation

∫
f(q2) d4q = 2πiT

∑
n

∫
d3q f(−q2 − ω2

n) . (3.7.28)

We reproduce the 1-loop, φ-dependent contribution to the effective potential for a

general case [130],

V1-loop = i

2
∑
i

gi

∫ d4q

(2π)4 ln
(

q2 −m2
i (φ)

q2 −m2
i (0) + iε

)
(3.7.29)
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= T

2
∑
i

n=∞∑
n=−∞

gi

∫ d3q
(2π)3

[
ln
(
q2 + ω2

n +m2
i (φ)

)
− ln

(
q2 + ω2

n +m2
i (0)

)]
(3.7.30)

→ T

2
∑
i

n=∞∑
n=−∞

gi

∫ d3q
(2π)3 ln

(
q2 + ω2

n +m2
i (φ)

)
, (3.7.31)

where we disregard the φ-independent contribution in the final line, as it would

provide a constant shift for the potential. In the T → 0 limit, the spacing between

Matsubara modes goes to zero. Thus, the sum of modes becomes an integral over

frequencies, just like in the Coleman-Weinberg case. Therefore, the temperature

independent part of this simply leads to the Coleman-Weinberg potential, whereas

the temperature dependent part is [130]

VT =
∑
i

giT
4

2π2

∫ ∞

0
dq q2 ln

(
1 ∓ e−

√
q

2+m2
i (φ)/T 2

)
(3.7.32)

=
∑

b

gbT
4

2π2 JB

(
m2
b(φ)
T 2

)
+
∑

f

gfT
4

2π2 JF

(
m2
f (φ)
T 2

)
, (3.7.33)

where the minus sign is used for bosons, and the plus sign for fermions. In the final

line we have split up the sum into bosonic and fermionic parts, and have made an

implicit definition of the thermal bosonic and fermionic functions JB(x) and JF (x).

In the high temperature limit (m/T � 1), we find the expansion of JB(x) gives

us [132]

JB

(
m2(φ)
T 2

)
= −π2

90 + 1
24

(
m2(φ)
T 2

)
− 1

12π

(
m2(φ)
T 2

) 3
2

+ O
(
m4(φ)
T 4

)
, (3.7.34)

whereas the expansion of JF (x) results in

JF

(
m2(φ)
T 2

)
= − 7π2

8 × 90 + 1
48

(
m2(φ)
T 2

)
+ O

(
m4(φ)
T 4

)
. (3.7.35)

Therefore, we see that the bosonic thermal function provides a cubic mass term that

the fermionic thermal function does not. In the SM, we know that the field-dependent

masses of the gauge bosons and fermions are linearly dependent on the Higgs field

(which is why the masses are m ∝ v in Sec. 2.4.2). These two results mean that only

bosonic contributions provide a cubic field correction, at high temperature, to the
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thermal potential. It is trivial to see that a cubic term corresponds to the creation

of a thermal barrier between minima in a potential [132]. Thus, a thermal barrier

can be enhanced with heavier bosonic particles coupling to a scalar undergoing a

phase transition. Finally, our total thermal potential at 1-loop is given by

V = Vtree + VCW + VT . (3.7.36)

We finish this subsection by defining Debye masses as thermal mass corrections,

which arise due to interactions with the thermal bath. These can be calculated

perturbatively by modifying the integrations over loop momenta using the Matsubara

formalism. The Debye mass for the scalar φ can be calculated simply via

m2
D = ∂2VT

∂φ2 . (3.7.37)

Gauge bosons and fermions also acquire Debye masses, and in the next section we

will see that the gauge boson Debye masses are crucial for the calculation of the

Higgs effective potential. The Debye mass is acquired by the zeroeth component of

the gauge boson, as it oscillates with τ = β in Euclidean space, and acts as a scalar.

Thus, in the literature, the Debye masses for gauge bosons are also referred to as

‘temporal scalar masses’.

3.7.3 Daisy Resummation

Studying Eq. 3.7.32 for when T � m2
i (φ), we see that the logarithmic part of the

bosonic function

ln
(

1 − e−
√
q

2
)

→ ln(0) , (3.7.38)

thus JB(x) diverges at low energy. This means that perturbation theory breaks down

for the low momentum (or long distance) modes of bosons at high temperatures, as

they become highly occupied. This is Linde’s infrared problem [133,134]. The source

of this in the bosonic thermal function is the existence of the ‘soft’ zero modes with

Matsubara frequency ω0 = 0, which do not exist for the fermions as their lowest
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mode is ω0 = 2πT , thus there is no IR divergence.

To investigate this further, we can split up the m2 1-loop correction in the scalar φ4

theory as

= m2
1-loop +m2

D , (3.7.39)

where m2
1-loop denotes the temperature independent part of the correction, and the

m2
D denotes the Debye mass, i.e. the contribution from the Matsubara modes. This

is also referred to as the hard thermal loop contribution. The hard thermal loop

scales as m2
D ∝ λT 2 to leading order [135, 136], which comes from the zero mode

contribution at high temperature. As the Debye mass contribution can be negative,

it can cancel out with the zero-temperature contribution at a certain temperature.

This effect is associated with phase transitions, as it results in the high temperature

restoration of a vacuum at the origin [134]. For the φ4 theory, the associated

‘critical temperature’ is roughly given by solving m2(TC) = m2 − λT 2
C = 0 to give

TC ∼ m/
√
λ.

However, for ‘daisy’ diagrams that have N -loops around the central loop, the leading

order scaling in temperature is [136]

··· N
∝ λNT 2N−1

m2N−3 n ≥ 2 , (3.7.40)

where m is the tree-level mass of the theory. Near the critical temperature of a phase

transition, we find that as TC ∼ m/
√
λ,

λ
T 2

m2 ∼ 1 , (3.7.41)

such that

··· N
∝
(
λNT 2

m2

)N− 3
2

λ
3
2T 2 ∼ λ

3
2T 2 , (3.7.42)

and the daisy diagrams provide a contribution independent of the number of outer

loops (or ‘petals’) N . This is an example of the breakdown of perturbation theory

outlined at the beginning of this section. The origin of this is in the soft bosonic

zero-modes that run in the central loop, which are ‘screened’ by the ‘hard’ non-
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zero Matsubara modes running in the outer loops which then dominate at high

temperature.

One way to tackle this problem is through daisy resummation, which aims to find a

converging infinite sum of all N -petal daisy contributions to the effective potential.

To outline this, we follow the procedure in Ref. [134] and start by splitting up the

1-loop contribution for the effective potential (Eq. 3.7.31) as

V1-loop = T

2
∑
i

n=∞∑
n=−∞

gi

∫ d3q
(2π)3 ln

(
q2 + ω2

n +m2
i (φ)

)
(3.7.43)

= T

2
∑
i

gi

∫ d3q
(2π)3 ln

(
q2 +m2

i (φ)
)

+ T

2
∑
i

gi

n=∞∑
n=−∞

∫ d3q
(2π)3 ln

(
q2 + ω2

n +m2
i (φ)

)
(3.7.44)

= Vsoft({m2
i (φ)}) + Vhard({m2

i (φ)}) , (3.7.45)

where we have separated the bosonic zero mode into a soft contribution. This

is in contrast to before where we split it up into the zero-temperature Coleman-

Weinberg part and the temperature-dependent part, as both contributions here are

temperature dependent.

By replacing the tree-level field-dependent masses with thermal masses ({m2
i (φ)} →

{m2
i (φ) +m2

D}), we find that the soft contribution is resummed such that

Vsoft({m2
i (φ)}) → V resummed

soft ({m2
i (φ)}) . (3.7.46)

Next, the 1-loop daisy contribution is provided by the difference between the re-

summed and soft contributions,

Vdaisy = V resummed
soft − Vsoft (3.7.47)

such that we can write the Arnold-Espinosa thermal effective potential at 1-loop [135]

as

V = Vtree + VCW + VT + Vdaisy . (3.7.48)

The subtraction of the soft contribution counteracts the one provided by VCW +VT =

Vsoft +Vhard such that the only soft contribution that remains is the daisy resummed
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one [134].

3.7.4 Dimensional Reduction

The perturbative method with daisy resummation is conventionally used in numerous

phase transition studies. However, this method results in significant theoretical

uncertainties, primarily due to the choice of renormalisation scale [134]. It has been

shown that dimensional reduction (DR), initially devised in Refs. [137–143], is an

alternative method that provides a significant reduction in theoretical uncertainties

[134]. The method involves perturbative calculations in a 3D effective theory of the

bosonic zero-mode fields.

To motivate this, we consider first the Euclidean Lagrangian of a generic theory in

the Matsubara formalism, using the notation in Ref. [144],

L = L(φ,Aµ, ψ, S, s) , (3.7.49)

where φ are scalars, Aµ are gauge bosons and ψ are fermions. The scalar fields S

and s refer to the heavy (non-zero Matsubara) and soft (zero) modes respectively,

which acquire an effective mass

mS ∝ πT (3.7.50)

ms ∝


gT gauge bosons
√
λT scalar bosons

(3.7.51)

respectively where g represents a gauge coupling. These masses are effective masses of

these modes, and can be thought of as corresponding to the energy of the oscillations

in the imaginary time direction τ ∈ [0, β). At high temperatures, the heavy modes

(from n 6= 0 bosons and all fermions) can be integrated out as they correspond to

small distance physical effects, which are less relevant for long distance phenomena

across the potential (such as phase transitions), to give the dimensionally reduced
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Lagrangian

L3D = L3D(φ3D, A3D
i , A3D

0 , s3D) . (3.7.52)

Thus the low energy EFT can be constructed as one purely in the spatial dimensions,

as we are left with zero modes that do not oscillate in the imaginary time direction.

A3D
i are the purely spatial gauge field modes, A3D

0 are the gauge temporal scalars,

φ3 and s3 are the scalars and soft scalars in 3D respectively.

A lower scale, called the ultrasoft scale at ∼ g2T/π, further separates the ultra-low-

energy spatial modes A3D
i from the temporal scalars A3D

0 with Debye masses on the

order of the soft scale. The soft scalar s3D is also separated from those spatial modes.

Integrating out those modes leaves us with the ultrasoft Lagrangian,

L̄3D = L̄3D(φ̄3D, Ā3D
i ) , (3.7.53)

which encapsulates the long distance physics. Thus, DR is well motivated for the

separation of scales
g2

π
T � gT � πT . (3.7.54)

The temperature dependence of the theory is absorbed into the mass and coupling

parameters of the soft and ultrasoft theories. These parameters are obtained through

matching the 3D (soft/ultrasoft) parameters to the 4D ones, such that the correlation

functions of both theories give the same result. A detailed procedure for obtaining

the matching relations has been outlined in Refs. [141–143], and a demonstration

can be found in Ref. [145].

After performing loop corrections for the effective potential in the 3D theory, the

4D thermal effective potential can be calculated via the relation

V4(φ, T ) = TV3

(
φ√
T
, T

)
, (3.7.55)

where the temperature dependence of the 3D theory is found in the 3D parameters.
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3.8 Gravitational Waves from FOPTs

In Section 5.4, we describe how to calculate phase transition parameters ᾱ, β̄/H∗ from

an effective potential, as well as the gravitational wave power spectrum Ωgwh
2(f).

In this section we provide more detail about gravitational waves, first order phase

transitions as a GW source, and how the space-based interferometer LISA could

detect them.

3.8.1 Gravitational Waves

We know that, in GR, c the speed of light is the speed limit of causality; any effects

on the curvature of space from changes in Tµν are not instantaneous. Thus, the idea

of perturbations in spacetime travelling as a wave naturally emerges. These waves

are gravitational waves, which were first predicted shortly after the formulation of

GR, and were first observed a century later by LIGO in 2015 [146].

Gravitational waves can be described by small perturbations around flat Minkowski

spacetime, gµν(x) = ηµν+hµν(x), where, by dropping terms of order h2 or greater, we

can linearise the Einstein equation to find a perturbative solution for gravitational

waves. We wish to find the solution of gravitational waves travelling through a

vacuum (i.e. Tµν=0), where we assume that the contribution of the gravitational

waves to the stress-energy tensor are small enough to neglect. We can insert this

metric into the vacuum Einstein equation, and for simplicity define the trace-reversed

perturbation as h̄µν = hµν − 1
2ηµνh

α
α. Then, using the Lorentz gauge ∂µh̄µν = 0, we

find that the solution is given by [147]

∂2h̄µν = 0 , (3.8.1)

which is simply a wave equation. Thus

h̄µν = Re
(
εµνe

ikσx
σ)

, (3.8.2)

where kµ is a wavevector, and εµν is an ansatz tensor. There is still enough redund-
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ancy in the degrees of freedom that we can impose an additional gauge condition;

the transverse-traceless gauge, where the perturbation can be chosen to be purely

spatial and traceless such that h0i = hi0 = hµµ = 0 [147]. This means that hµν = h̄µν .

We find that this gauge condition imposes ε0i = εi0 = εµµ = 0, as well as kiεij = 0.

This last result shows us that gravitational waves are transverse to the direction of

propagation.

For a gravitational wave with energy E travelling in the z direction such that

kµ = (E, 0, 0, E), we can write the metric perturbation as [128]

hµν =



0 0 0 0

0 ε11 ε12 0

0 ε12 −ε11 0

0 0 0 0


cos(E(t− z)) , (3.8.3)

which reveals the existence of two polarisation states (+-type and ×-type) that make

up ε = ε11P+ + ε12P× given by

P+ =



0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


, P× =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


. (3.8.4)

The energy density fraction of gravitational waves is defined as with other cosmolo-

gical parameters:

Ωgw(f) = ρgw

ρc
, (3.8.5)

which is a function of the gravitational wave frequency f , typically in units of Hz,

given by f = E/h. Redshifting due to the expansion of the universe reduces this

energy between a GW source and receiver. Ωgwh
2(f) is also referred to as the

amplitude of the gravitational wave.
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true 
vacuum

false
vacuum

Figure 3.4: An illustration of bubbles of a new phase nucleating and
expanding in a volume of the old phase. The bubbles
can collide, inducing anisotropic stress in spacetime, and
thus producing gravitational waves.

3.8.2 First Order Phase Transitions

An effective thermal potential V (φ, T ) will have a vacuum at φ0, typically when the

field configuration φ0 = 0, at high temperature. As the temperature falls down, a

new vacuum with V ′(φ1, T ) = 0, V ′′(φ1, T ) > 0 could emerge, which at first would be

a false vacuum, with a higher potential energy V (φ1, T ) > V (φ0, T ). At the critical

temperature TC , defined by V (φ1, TC) = V (φ0, TC), the vacua become degenerate.

As the temperature drops further, the current vacuum that the system is in may

become the false vacuum.

If a potential barrier exists between the true and false vacuum, then this would

result in a First Order Phase Transition (FOPT). The field configuration would

either have to quantum tunnel through the barrier or thermally fluctuate above the

barrier to nucleate a volume that exists in the new phase,1 conventionally referred

to as a ‘bubble’, as shown in Fig. 3.4. Thermal fluctuations are the most important

effect at high temperatures, so we neglect nucleation by quantum tunnelling when

discussing early universe phase transitions. In Section 5.4.1, we discuss in detail how

1Note that it is conventional in the literature to use ‘phase’, ‘vacuum’, and ‘minimum’ inter-
changeably in the phase transition context.
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to calculate the nucleation of a bubble. The temperature at which the first bubble

nucleates is the nucleation temperature, TN , whereas the percolation temperature

is defined as the temperature Tp at which a fraction of 1/e of a Hubble volume is

populated by the new phase.

3.8.3 Gravitational Wave Sources and Spectra

The bubbles of the new phase typically expand, collide, and merge with each other.

As they expand, they cause pressure waves in the plasma; shock waves for sub-

sonic bubble wall velocities, i.e. vW < 1/
√

3, and rarefaction waves for supersonic

vW > 1/
√

3. The collisions, sound waves, and subsequent magnetohydrodynamic

turbulence of the plasma provide three sources of gravitational waves from the FOPT.

Gravitational waves produced through bubble collisions are illustrated in Fig. 3.4

Each source i of gravitational waves provides a spectrum of the following shape for

a source i [24, 128]

Ωih
2(f) = Ω0

i∆i

(
g∗

100

)−1/3
Ka
i

(
β̄

H∗

)−b

Si

(
f

fi

)
, (3.8.6)

where Ω0
i is a prefactor, ∆i is a velocity factor, Ki is the fraction of phase transition

energy given to that source, Si(f/fi) is the spectral shape of the source and fi

is its peak frequency. The numbers a and b vary depending on the source. The

parameters are calculated by fitting to the results of numerical hydrodynamical

simulations for each of the three sources. We provide full formulas for the three

sources in Section 5.4.3.

3.8.4 LISA

While gravitational waves from compact binary mergers have been detected at LIGO,

its peak sensitivity being at around f ∼ 100 Hz means that it is unable to detect

gravitational waves from early universe sources, which are expected to be in the mHz

range. The space-based LISA (Laser Interferometer Space Antenna) experiment will
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be particularly sensitive to this part of the frequency spectrum [23–25, 148, 149],

taking advantage of an arm length of 5 million km and 6 laser beams to detect

low frequency gravitational waves from extreme mass ratio inspirals (EMRIs) [150],

compact binary star systems in the Milky Way [151, 152], supermassive black hole

binary systems [153], and the stochastic gravitational wave background (SGWB)

from the early universe.

Just like LIGO, LISA depends on laser interferometry: the measurement of inter-

ference between two coherent light rays. As gravitational waves pass through the

arms of LISA, the path length L of the photons emitted between them changes.

The interference of the photons measured at the master satellite reveals changes

in the relative ∆L/L between two arms, i.e. the characteristic strain. Studying

oscillations in different frequency domains allows for the detection of gravitational

wave signals, separated from noise that exists at different characteristic frequencies

(such as annual variations due to the eccentric orbital pattern).

LISA has received the go ahead for launch in 2035 [152], and will be placed 20◦

behind Earth in its solar orbit [22].





Chapter 4

Hot Leptogenesis

I am a servant of the Secret Fire, wielder of the flame of Anor. You cannot pass.

The dark fire will not avail you, flame of Udûn! Go back to the Shadow. You

cannot pass!

from The Lord of the Rings by J.R.R. Tolkien

4.1 Introduction

The observed neutrino masses can elegantly be explained by the seesaw mechanism,

as we covered in Sections 2.7.1 and 3.6. To recap, in the Type-I Seesaw mechanism

[105–108], at least two Majorana right-handed neutrinos (RHNs) are added to the

Standard Model (SM):

L ⊃ iN̄i/∂Ni − 1
2mNi

N̄ c
iNi − YαiL̄αΦ̃Ni + h.c. , (4.1.1)

where i (α) denotes RHN generational (lepton flavour) indices and are summed over,

the Yukawa matrix is given by Y and the leptonic and Higgs doublets are given

by LT = (νTL , lTL) and Φ, respectively, with Φ̃ = iσ2Φ. Once the Higgs acquires a

vacuum expectation value, the light neutrino masses are generated.

Besides providing a simple explanation for light neutrino masses, the Type-I Seesaw
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mechanism can also account for the observed baryon asymmetry via thermal leptogen-

esis [29]. In this scenario, a lepton asymmetry is produced through out-of-equilibrium

and CP -violating decays of the RHNs [102–104]. This lepton asymmetry is then

converted into a baryon asymmetry via electroweak sphalerons. Most leptogenesis

calculations assume that the N1 particles are in kinetic equilibrium with the Standard

Model bath and inherit a thermal distribution with temperature TSM. For parameter

choices which reproduce the observed neutrino masses, the heavier right-handed

neutrinos, N2 and N3, are typically in both kinetic and chemical equilibrium with

the SM thermal bath [154].

As explained in Section 3.6, while vanilla leptogenesis can successfully generate

neutrino masses consistent with data along with the observed baryon asymmetry,

it typically leads to a tension [155] between the Davidson-Ibarra bound [123] and

the Vissani bound [30]. Furthermore, successful leptogenesis comes at the cost

of an accidental cancellation between the tree and one-loop contributions to the

light neutrino mass matrix [156]. Resonant leptogenesis [124], characterised by

significantly lighter RHNs with a highly degenerate mass spectrum that enhances

CP asymmetry during their decays, provides a way to lower the leptogenesis scale

while addressing fine-tuning issues in both the Higgs and neutrino mass matrices.

In this chapter, we present an alternative solution to these tensions, where N1 has

a higher temperature, TN1 , than the SM particles. This leads to a larger number

density of N1 particles, which generate a larger baryon asymmetry after they decay.

This scenario has previously been considered in Ref. [154], where an enhancement

of up to ∼ 50 times the standard leptogenesis baryon asymmetry can be obtained.1

Ref. [154] requires a connection to thermal dark matter and concludes that resonant

leptogenesis is still required to produce the observed baryon asymmetry. In this work,

we drop the connection to dark matter and show that non-resonant leptogenesis can

produce the observed baryon asymmetry while remaining natural. Schematically,

1This maximum exists because, above some temperature, the N1 particles dominate the energy
density of the universe.
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TSM

SM K.E. and C.E.
N2,3 K.E. and C.E.

TN1

N1 K.E. or K.E. and C.E.
ϕ K.E. and C.E.

L̄αΦ̃N1

ϕN̄ c
i Ni

Figure 4.1: Field content and the temperatures of the sectors in hot
leptogenesis, along with whether they are in kinetic and
chemical equilibrium (K.E. and C.E.) or only kinetic
equilibrium (K.E.) around the time of N1 decay. The
dominant coupling connecting the two sectors is taken to
be the one responsible for N1 decay. The scalar field φ,
which keeps N1 in kinetic equilibrium, may also mediate
a coupling between N1 and N2,3 (and also between N1
and the SM Higgs, not shown). Particles of the scalar
field φ may or may not be present at the time of N1
decay, depending on whether mφ is much greater than
TN1 or not.

the scenario is depicted in Fig. 4.1. We will be interested in TSM < TN1 , and take the

dominant coupling between the two sectors to be the one responsible for N1 decay.

Additional particles are needed to realise equilibrium within the hot sector. We

quantitatively demonstrate that this can be realised by introducing a new scalar, φ,

which is primarily responsible for mediating the self-interactions of N1. Within this

setup, we consider two regimes. In the first, N1 is only in kinetic equilibrium during

N1 decay (so N1 particles can exchange energy between themselves, but there are no

number-changing processes that are sufficiently fast to realise chemical equilibrium).

In the second, N1 is in both kinetic and chemical equilibrium with itself and φ

(similar to the regime considered in Ref. [154]). That is, they are both in thermal

equilibrium in the hot sector during N1 decay.

In Section 4.2 we first motivate this setup, showing that it can be a consequence of

inflaton decays. In Section 4.3 we determine the regions of parameter space in our

toy model where the two scenarios (N1 in kinetic or kinetic and chemical equilibrium)

are realised and discuss the cosmological constraints on the φ particle. In Section 4.4

we derive the relevant Boltzmann equations to track the evolution of the sectors

and compute the resulting baryon asymmetry. We present and discuss our results

in Section 4.6 and conclude in Section 4.7.
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4.2 Hot Leptogenesis from Inflaton Decays

While the mechanism of inflation is not yet determined, as a proof of principle we

discuss here one plausible scenario. The origin of two sectors with similar, but

different, temperatures could be explained by an inflaton that couples with different

strengths to the particles within each sector. Assuming perturbative reheating, the

reheating temperature in each sector is approximately,1

TR ≈
√

ΓMPl , (4.2.1)

where Γ is the inflaton decay rate to particles within that sector and MPl ≈ 1.22 ×

1019 GeV is the Planck mass. The decay rate of an inflaton σ, with mass mσ, to

decay to particle species i, with mass mi, is approximately

Γi ≈ y2mσ

8π , (4.2.2)

for mi � mσ and where y is the coupling of the inflaton to the particle. For an

inflaton mass mσ ∼ 1013 GeV, the reheating temperature is then TR ∼ y× 1015 GeV,

and the ratio of temperatures between the two sectors is

κ ≡
TN1

TSM
≈
√

ΓN1

ΓSM
≈
yN1

ySM
, (4.2.3)

where yN1 (ySM) is the largest coupling of the inflaton to particles in the hot (SM)

sector. As long as the two sectors cannot efficiently exchange energy, ySM < yN1 will

typically lead to TSM < TN1 . While other factors can impact the precise value of κ,

such as the spin of the daughter particles or other degrees of freedom with smaller

couplings to σ, the fact that yN1 and ySM are not constrained by experiment mean

that a wide range of values of κ is plausible.

If there is only a weak coupling between the two sectors, they will not thermalise

before the hot N1 particles decay into particles in the SM sector. A weak coupling

1Note that for efficient parametric resonance reheating, the relation is more complicated. Para-
metric resonance reheating occurs due to the resonant oscillation of the inflaton around the min-
imum, leading to an extremely rapid energy transfer to bosons. This is suppressed for inflaton
decays to fermions due to the Pauli exclusion principle [157].
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H

Li

N1

Lj

N1

σ

SM

N1

SM

N1

(a) (b)

Figure 4.2: Feynman diagrams showing the (a) Higgs- and (b)
inflaton-mediated processes which could thermalise the
hot and SM sectors. All Standard Model particles are
denoted simply by SM.

means that leptogenesis will operate in the weak washout regime and ensures that

scattering processes (such as those shown in Fig. 4.2 (a)1) are out-of-equilibrium

before N1 decays. In the case of strong washout, there are rapid interactions between

the N1 particles and the SM sectors which would cause the two sectors to thermalise.

It is also important that the inflaton itself does not thermalise the hot and SM

sectors through the process shown in Fig. 4.2 (b). To avoid this, we require the

scattering rate between SM particles and N1 particles to be slower than the Hubble

rate. Taking a simple Yukawa coupling between the inflaton and N1,

L ⊃ 1
2yN1 σN̄

c
1N1 , (4.2.4)

and assuming that the dominant inflaton-SM coupling is a universal Yukawa coupling

to all SM fermions,

L ⊃ ySM σ
∑
f∈SM

ψfψf , (4.2.5)

we require the interaction rate to be

ΓN1 SM→N1 SM = max(nN1 , nSM)〈σv〉 < H , (4.2.6)

where nN1 and nSM are the relevant number densities and 〈σv〉 is the thermally

averaged elastic cross-section between N1 and the SM fermions via an inflaton medi-

1In this chapter and the relevant appendices A and 4.5, we use H to denote the physical Higgs.
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ator.1 When the inflaton decays, the SM particles quickly reach thermal equilibrium

so nSM = neq
SM(TSM). We assume that some unspecified UV particles also allow N1

to reach thermal equilibrium with itself around the reheating temperature, so that

nN1 = 3ζ(3)gN1T
3
N1/4π

2 where gN1 = 2 is the number of degrees of freedom of N1,

but that these reactions rates fall below the Hubble rate before N1 starts to decay

(see Section 4.4). The cross-section for inflaton-mediated N1–SM scatterings is

σ =
y2

SMy
2
N1

4πs2
(
m2
σ + s

) [s (2m2
σ − 4m2

N1 + s
)

− 2
(
2m2

N1 −m2
σ

) (
m2
σ + s

)
log

(
m2
σ

m2
σ + s

)]
,

(4.2.7)

where s denotes the centre-of-mass energy, mN1 the mass of N1 and we have assumed

mf � mN1 ,mσ. The thermal averaging for this process is discussed in Appendix A.1.

For a universe consisting of two decoupled relativistic sectors with temperature ratio

κ, the Hubble rate is given by

H =
√

8π3

90
(
g∗

SM + g∗
N1κ

4
)T 2

SM

MPl
, (4.2.8)

where g∗
SM and g∗

N1 denote the effective number of degrees of freedom in the Standard

Model and hot sectors, respectively. The relative sizes of g∗
SM and g∗

N1κ
4 determine

which sector dominates the energy density of the Universe. For energies above the

electroweak scale, with g∗
SM = 106.75 + 4 and assuming g∗

N1 = 2, the SM sector

dominates the Universe’s energy density for κ . 2.7, while the hot sector dominates

for 2.7 . κ.

Given Eqs. (4.2.6) to (4.2.8), we can determine the maximum value of ySMyN1 that

ensures that the inflaton does not thermalise the two sectors. For a given κ, this gives

an upper bound on the reheating temperature of the hot sector. For chaotic inflation2,

which fixes mσ ≈ 1013 GeV.3, and using mN1 = 107 GeV as our benchmark value, the

white region of Fig. 4.3 shows the viable reheating temperatures of the hot sector as

1Not to be confused with the Higgs vev v. The v that appears always in 〈σv〉 is a velocity,
typically either the relativistic relative velocity of the interacting particles, or the Møller velocity.
See Ref. [158] for detailed discussion.

2Chaotic inflation is a model of inflation that avoids finely-tuned conditions in the early uni-
verse [159].

3This result is due to the constraints from Cosmic Background Explorer (COBE) data [160].
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Figure 4.3: Upper bound on the reheating temperature in the
hot sector from the requirement that inflaton-mediated
elastic scattering does not realise kinetic equilibrium
between the hot and SM sectors. In this plot we take
mN1 = 107 GeV and mσ = 1013 GeV.

a function of κ. In the blue region, inflaton-mediated interactions will thermalise the

two sectors, so that TSM ≈ TN1 and standard leptogenesis would proceed. We find

that for the two sectors to remain decoupled, we require TR . 1017 GeV, with a slight

reduction when κ . 3.8 (where nSM . nN1). We will be interested in N1 masses

around 107 GeV, motivated by the Vissani bound limiting mN1 . 7.4 × 107 GeV for

the Higgs mass correction δµ2 to remain below 1 TeV2 [30]. Thus, the reheating

temperature in the hot sector can be well above the right-handed neutrino masses.

As mentioned above, the inflaton couplings to the different sectors are experimentally

unconstrained. As such, κ can in principle take a wide range of values. Some limiting

scenarios often studied in the literature are:

1. The inflaton decays exclusively to N1 [161–166], corresponding to an initial

nSM = 0 and κ → ∞. Such a scenario is typically studied in the context of non-

thermal leptogenesis, where the assumption is that TR � mN1 and that the N1

decay happens immediately after the inflaton decay. For example, Ref. [162]

assumes that perturbative inflaton decay is kinematically forbidden, i.e., mσ <

2mN1 so that the only relevant decays are through strong parametric resonance

(overcoming the Pauli blocking of fermions). Ref. [163] studies perturbative
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inflaton decay into N1, but with 100TR . mN1 such that the N1 particles

are always out of kinetic and chemical equilibrium, making leptogenesis non-

thermal. In this latter scenario, N1 and the inflaton have similar masses, which

is somewhat of a coincidence of scales. The inflaton decaying exclusively to

N1 was first studied away from the limit TR � mN1 in Ref. [166]. Without

a self-interaction in the hot sector, the N1 distribution after inflaton decay

is non-thermal, and the Universe becomes radiation-dominated only after N1

decay, complicating numerical analysis. In our work, we will assume mNi
� TR

and the presence of an N1 self-interaction, so the N1 particles rapidly achieve

a thermal distribution.

2. The inflaton decay leads to κ ≈ 1. When we take the case that N1 are in kinetic

and chemical equilibrium with themselves in Section 4.3.1, our calculations

with κ = 1 are comparable to the standard leptogenesis scenario with a thermal

initial condition.

3. The inflaton decays only to the SM, corresponding to κ → 0. This scenario

corresponds to standard leptogenesis with a vanishing initial abundance of

N1. Since we are interested in increasing the baryon asymmetry compared to

standard leptogenesis by increasing the number density of N1 particles in a

sector that is hotter than the SM sector, we will not study κ < 1.

In summary, we see that it is plausible for a simple model of inflation to lead

to two decoupled sectors at a similar but different temperature, with a reheating

temperature that is significantly above the right-handed neutrino masses. In what

follows, we will take this as a starting point and we will study two different scenarios

in the regime 1 . κ.
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4.3 A Model of Hot Leptogenesis

While there are many possible realisations of the scenario we discuss, for concreteness

we study a toy model consisting of the SM plus N2 and N3 at temperature TSM and a

hot sector containing N1 and a real scalar φ at temperature TN1 . The lightest right-

handed neutrino, N1, will decay to produce a lepton asymmetry which ultimately

produces the baryon asymmetry, while φ will mediate interactions in the hot sector.

We will consider two cases: that around the time of N1 decay either N1 is only in

kinetic equilibrium with itself, or N1 is in both kinetic and chemical equilibrium with

itself. In this section, we find the regions of parameter space which exhibit these

two cases.

The relevant interaction Lagrangian terms in our toy model are,

L ⊃ − YαiL̄αΦ̃Ni + h.c.

− yiφφN̄
c
iNi − m2

φ

2 φ2 − λ3mφ

3! φ3 − λ

4!φ
4 , (4.3.1)

where i ∈ {1, 2, 3} and α ∈ {e, µ, τ}. The Yukawa matrix, Yαi, is parametrised

using the Casas-Ibarra parameterisation [109], Y = v−1U
√
MνR

T√
MN as in Section

3.6.2, where v = 174 GeV is the vacuum expectation value of the Higgs 1, U is the

leptonic mixing matrix, Mν (MN) is the diagonal light (heavy) neutrino mass matrix

and R is the complex, orthogonal matrix given in Section 3.6.2. We discuss our

specific choice of benchmark point for Yαi in Section 4.6. We assume that the φ3

term is small enough that φ does not obtain a vacuum expectation value (m2
φ > 0

and λ3 <
√

3λ). In principle, the scalar φ could generate the RHN masses, which is

natural with diagonal couplings to the RHN mass eigenstates. However, we make

the assumption that φ does not obtain a vev as we do not wish to restrict our

attention to a particular mass generation mechanism and instead pursue a more

general analysis of hot leptogenesis. Sizeable non-diagonal couplings between φ and

the RHN generations could result in premature thermalisation of the two sectors,

1In this chapter, we use the convention that the 1/
√

2 factor is absorbed into the Higgs vev v.
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but we do not investigate this here. While in principle there can also be cubic and

quartic couplings with the SM Higgs, φ|Φ|2 and φ2|Φ|2, we assume that these are

small enough to keep the two sectors out of thermal contact. Although the inflaton

could potentially play the role of φ, we do not study this possibility and instead

introduce a new scalar particle. As noted in the introduction, standard leptogenesis

leads to fine-tuning in the SM Higgs mass [30, 155] and/or in the light neutrino

masses [156]. The relevant expressions can be found in these references and the

fine-tuning measures we use are given in Section 4.5.

4.3.1 Kinetic and Chemical Equilibria

We first consider the expected phase space distribution of N1 in different regions of

the parameter space of this model. As stated in Section 3.4, when N1 is in kinetic and

chemical equilibrium, it will have a Fermi-Dirac phase space distribution function,

with zero chemical potential. When N1 is only in kinetic equilibrium, its phase

space distribution assumes the same form but will be normalised so that the number

density of particles, nN1 , is not fixed to the equilibrium number density,

fN1 =
nN1

neq
N1

f eq
N1
. (4.3.2)

Another possibility is that N1 may have been in kinetic equilibrium at some point

after inflaton decay but came out of kinetic equilibrium sometime before N1 decay.

We do not analyse this case in detail, which would require the tracking of individual

momentum modes, but we briefly discuss the expected applicability of our results

to this scenario. Finally, if the N1 particles were never in kinetic equilibrium, their

momentum would be spiked around half the inflaton mass. We will not consider this

case here.

There are a variety of processes to consider to determine which particles are in

kinetic or chemical equilibria with themselves or each other. The two sectors are

necessarily coupled by the Lagrangian term responsible for N1 decay, and potentially
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also by φ mediated processes. The new scalar φ can keep N1 in kinetic equilibrium

with itself through s-, t− and u-channel scattering processes, and if φ is not too

much heavier than N1, number-changing interactions could also keep N1 in chemical

equilibrium with itself. We now find the regions of parameter space where the

following conditions hold:

1. All elastic scattering processes between the hot and SM sectors are slower than

the Hubble expansion rate.

2. Elastic N1N1 ↔ N1N1 scattering processes are faster than the Hubble expan-

sion rate.

3. Number changing processes of both N1 and φ are faster than the Hubble

expansion rate.

Condition 1 ensures that the two sectors are decoupled, allowing each sector to

maintain independent temperatures. Condition 2 ensures that N1 is in kinetic

equilibrium with itself, resulting in a Fermi-Dirac-shaped phase space distribution

function. In our analyses, we will ensure that these two conditions always hold.

If Condition 3 is satisfied, N1 will be in both kinetic and chemical equilibrium,

achieving an equilibrium number density. It is important to note that chemical

equilibrium requires processes that can independently change the comoving number

densities of N1 and φ; for example, the process 2N1 ↔ 2φ alone is not sufficient.

The Hubble rate in this model is given by

H = 1√
3Mpl

√
π2

30g
SM
∗ (TSM)T 4

SM + ρN1 + ρN2 + ρN3 + ρφ , (4.3.3)

where for Ni and φ

ρ = n

neqρ
eq = n

neq
g

2π2T
4J±

(
m

T

)
, (4.3.4)
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Figure 4.4: Feynman diagrams showing the processes which may
put N1 into kinetic equilibrium with itself ((a) with
i = 1, (b) and (c)) and with the SM bath ((a) with
i ∈ {2, 3}), which would set TSM = TN1 .

where

J±(z) =
∫ ∞

0
dξ

ξ2
√
ξ2 + z2

exp
[√

ξ2 + z2
]

± 1
, (4.3.5)

with a plus sign for fermion, a negative sign for bosons and where ξ = |p|/TN1 . For

N2 and N3, which have a vanishing initial condition but approach their equilibrium

energy densities throughout the evolution, and for computational simplicity, we

approximate their contribution to the energy density as relativistic fermions in

thermal equilibrium for mN2,3 < TSM and we neglect their contribution otherwise.

We have checked that this approximation does not affect our final results.

Condition 1 – Two Decoupled Sectors

For the hot sector to remain thermally decoupled from the SM sector, we require that

the decay rate of N1 to SM particles is slower than the Hubble rate at TN1 & mN1 . For

mN1 ≈ 107 GeV this gives Yα1 . 10−5. This condition ensures leptogenesis proceeds

in the weak washout regime and that the two sectors do not thermalise via inverse

decays, N1SM → N1SM scatterings [115, 167] or processes like N1SM → SM SM

before N1 decays [154]. This also ensures that other processes involving Yα1, such

as N1 and N2,3 thermalisation via the Higgs, are slower than the Hubble rate, due

to the extra couplings and phase space suppression factors involved.

Beyond the direct coupling of N1 with the SM plasma, it is possible that the φ-

mediated coupling between N1 and the heavier N2 and N3 (which will be thermally
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produced in the SM sector) may thermalise the two sectors via the scattering process

shown in Fig. 4.4 (a) with i ∈ {2, 3}. We need to check that the interaction rate per

N1 particle and per N2,3 particle is slower than the Hubble rate. For nN1 ≈ neq
N1

we

will have nN2,3 < nN1 since mN1 < mN2,3 and TSM < TN1 , so the rate per N1 particle

is slower than the rate per N2,3 particle. We therefore only need to check the rate

per N2,3 particle. The two sectors will then not thermalise as long as

nN1〈σv〉N1N2,3→N1N2,3 < H , (4.3.6)

where the cross-section is given in Eq. (A.1.1), the thermal averaging is given in

Eq. (A.2.5) and the Hubble rate is given in Eq. (4.3.3). Here, and for the remaining

rate calculations, in this section we approximate neq
N1

≈ nN1 . In principle, this

could be modified when chemical equilibrium does not hold. This would lead to

a proportional shift in the rates calculated here. Thus, our conclusions should be

taken as a guide rather than precise statements for the kinetic equilibrium-only

scenario. However, it is a good approximation for the kinetic equilibrium-only cases

we consider.

We may expect the N1 − φ Yukawa coupling y1
φ to be a similar order to y2

φ and

y3
φ since the right-handed neutrino masses are all at a similar scale (although note

that we do not discuss the origin of the right-handed neutrino masses here and do

not assume that φ is a Majoron). The blue region above the dashed blue contour

in Fig. 4.5 shows where the rate of this process is greater than the Hubble rate at

the time of N1 decay assuming y1
φ = y2

φ. That is, where condition 1 is not satisfied.

However, this bound can be relaxed, without affecting any other phenomenology, by

taking y2
φ � y1

φ. Throughout this chapter, we consider the parameter space where

the N1N2,3 ↔ N1N2,3 scattering rate is less than the Hubble expansion rate to ensure

the two sectors do not thermalise with each other.

There are also interactions between the φ and the Higgs that are induced at loop

level via the coupling to the heavier RHN generations N2,3, which typically have a

larger Yukawa coupling to the Higgs than N1. We computed the φHH interaction
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rate at one-loop level and found an interaction rate much smaller than the Hubble

rate H ∼ T 2/Mp for the scenarios we consider. Thus these interactions do not

thermalise the two sectors.

Condition 2 – Kinetic Equilibrium within the Hot Sector

The processes shown in Fig. 4.4 (a) and (b) along with an extra s-channel process,

Fig. 4.4 (c), will keep N1 in kinetic equilibrium with itself if condition 2 is satisfied,

nN1〈σv〉2N1→2N1 > H , (4.3.7)

where the cross-section in given in Eq. (A.1.2) and the thermal averaging is given

by Eq. (A.2.1). The green region in Fig. 4.5 shows where condition 2, or Eq. (4.3.7),

is satisfied. We see that there is a minimum value of y1
φ for a given mφ/mN1 . When

2mN1 . mφ there is a resonant enhancement as the φ propagator in Fig. 4.4 (c) can

go on-shell.

Condition 3 – Chemical Equilibrium Within the Hot Sector

If there are fast number-changing interactions, such as those shown in Fig. 4.6, N1

could also be in chemical equilibrium in the hot sector. Chemical equilibrium requires

processes which can increase (or decrease) both the comoving number densities of N1

and φ at the same time. This could, for instance, be a combination of 2N1 ↔ φ and

2N1 ↔ 2φ, or either of those along with 2φ ↔ 3φ. If these processes are faster than

the Hubble rate we may assume that nN1 is simply given by neq
N1

, which simplifies the

analysis. This is a version of the scenario considered in [154] (see, e.g., their Eq. 2.19),

where the hot sector was populated by the decay of dark matter. If only one of these

processes is faster than the Hubble rate, neither N1 nor φ can be assumed to be in

chemical equilibrium and their abundances should be tracked dynamically.

N1 and φ also both need to be in chemical equilibrium in the hot sector, so we

technically need to check the rate perN1 particle and the rate per φ particle. However,
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Figure 4.5: Minimal value of y1
φ such that the various interaction

rates are greater than Hubble around the time of decay,
TN1 = mN1 = 107 GeV. We have assumed that Hubble
is dominated by the SM as it is right after the decays and
that λ = 0.8. Assuming y1

φ = y2
φ, the scattering process

N1N2 ↔ N1N2 will thermalise the SM and hot sectors
in the blue region above the dashed blue contour. To
the right of the black line the φ abundance will deplete
with the N1 abundance; the region to the right of it is
excluded. The region outside of the green area is where
the kinetic equilibrium assumption breaks down, and
our analysis no longer holds. To the left of the blue line
(labelled “cannibal φ”) the cannibal process 2φ ↔ 3φ
is effective. The pink (green) stars indicate example
points in the toy model parameter space where kinetic
and chemical (only kinetic) equilibrium can be achieved,
where open stars require y2

φ, y
3
φ � y1

φ. The white star
shows a point where the cosmology of φ would need to
be carefully considered.
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Figure 4.6: Feynman diagrams showing processes which could keep
N1 in chemical equilibrium with the hot sector.
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since neq
φ < neq

N1
at TN1 = mN1 for all φ masses, we only need to check the rate per

N1 particle. The purple region in Fig. 4.5 shows where φ ↔ 2N1 decays and inverse

decays, Fig. 4.6 (a), occur faster than the Hubble rate,

〈Γφ→2N1〉
neq
φ

neq
N1

= Γφ→2N1

K1(mN1/TN1)
K2(mN1/TN1)

neq
φ

neq
N1

> H , (4.3.8)

where the φ → 2N1 decay rate is given in Eq. (A.1.3) and K1 and K2 are modified

Bessel functions of the second kind. We see that in the range 2mN1 . mφ . 10mN1

this rate is faster than the Hubble rate if 10−4 . y1
φ, and for larger y1

φ this process

can be relevant up to mφ ≈ 30mN1 .

Next, we consider the process 2φ ↔ 3φ, which is independent of the coupling y1
φ.

Choosing a representative λ = 0.8 and λ3 = 0.57
√

3λ,1 we find that the region left

of the blue vertical line satisfies

n2
φ〈σv2〉3φ→2φ > H , (4.3.9)

where we take the thermally averaged cross-section from Ref. [169]. We see that, for

these parameters, this process is faster than Hubble for mφ < 5mN1 . In what follows,

when we assume chemical equilibrium we will work in regions of parameter space

where 2N1 ↔ 2N1, φ ↔ 2N1 and 2φ ↔ 3φ are all faster than Hubble. However, we

now briefly consider some other processes that could potentially be relevant.

The orange region in Fig. 4.5 shows where the 2N1 ↔ 2φ processes, Fig. 4.6 (b) and

(c), are faster than the Hubble rate,

nN1〈σv〉2N1→2φ > H , (4.3.10)

where the cross-section is given in Eq. (A.1.4) and the thermal averaging is given in

Eq. (A.2.1). For mφ . mN1 this process is faster than Hubble if 10−2 . y1
φ, while

for heavier φ particles a larger coupling is required.

The process 2N1 ↔ 3φ can occur either via t-channel-like diagrams, where the cross-

1This value, which is not the result of spontaneous symmetry breaking [168], is chosen to
maximise the cross section.
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section is proportional to (y1
φ)6 or via an s-channel type diagram, Fig. 4.6 (d), whose

cross-section is proportional (y1
φ)2λ2. Since we are mostly interested in the region

y1
φ � λ ≈ 1, where the t-channel processes will be suppressed, we show in red in

Fig. 4.5 the region where the s-channel process is faster than Hubble,

nN1〈σv〉2N1→3φ > H . (4.3.11)

The cross-section for this process is given by Eq. (A.1.5) and the thermal averaging

is done using Eq. (A.2.1). We see that this process is only faster than Hubble when

2N1 ↔ 2φ and 2φ ↔ 3φ are both faster than Hubble, so it does not create any

new regions where chemical equilibrium for N1 can be established (assuming similar

values of λ3 and λ to those chosen here).

Another number-changing process that could be relevant is 2φ → 4φ. However, for

an n-body massless particle, the phase space factor goes as

Πn ∼ 1
2(4π)2n−3Γ(n)Γ(n− 1)

. (4.3.12)

In comparison to the 2φ → 3φ cross-section, there is a phase space suppression factor

of 1/(192π2). Therefore the ratio of the cross-sections goes as

σ2φ→4φ

σ2φ→3φ
∼ λ2

192π2λ2
3
. (4.3.13)

This implies that the 2φ → 4φ process is subdominant to 2φ → 3φ as long as

λ �
√

192πλ3 ≈ 44λ3.

4.3.2 Cosmology of the Scalar φ

We finish this section with a discussion of the cosmology of the new scalar φ. If

mφ < 2mN1 , the hot sector will not deplete during N1 decay and there will be a

non-negligible abundance of φ, which will freeze out relativistically. While the scalar

φ is not stable, its four-body decay (via two off-shell N1 particles) is suppressed by

Y 4
αi. If φ couples to all three RHNs, we find that Yαi is typically large enough such
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that the decay can be expected to deplete the sector before BBN. However, this will

cause a large entropy dump which will wash out the generated asymmetry to some

extent. If φ only couples to N1, the smallness of Yαi implies that φ is stable on a

cosmological timescale. Because it freezes out relativistically, its large abundance

will either give rise to a large contribution to ∆Neff – the number of relativistic

degrees of freedom at BBN – or an overproduction of (dark) matter, depending on

its mass. We conclude that in our current model mφ needs to be larger than 2mN1 .1

4.3.3 Summary

In summary, we see that there are many relevant processes and different possible

regimes which can realise kinetic or kinetic and chemical equilibrium in the hot

sector, even for our simple toy model. To ensure the SM and hot sectors remain

decoupled we require that leptogenesis occurs in the weak washout regime, effectively

limiting the size of the Yukawa coupling. From Fig. 4.5 we see that, for λ = 0.8

and λ3 ∼
√

3λ, we can assume that N1 is in kinetic and chemical equilibrium with

the hot sector around the time of N1 decays if 2mN1 < mφ < 5mN1 , 10−4 . y1
φ

and y2,3
φ . 10−2. For λ � 1 chemical equilibrium could be established through

φ ↔ 2N1 and 2N1 ↔ 2φ (which requires y1
φ & 10−2 and typically require y2,3

φ � y1
φ).

When 30mN1 . mφ and y2,3
φ . 10−2 . y1

φ we can assume that N1 is only in kinetic

equilibrium. Both cases can also be realised for mφ < 2mN1 , but in that case an

entropy dump and/or washout would need to be carefully considered. We indicate

with pink, green and white stars the regions where these conditions hold (see caption

of Fig. 4.5 for details).

1An alternative possibility is the existence of an additional portal coupling (for example a
coupling to the SM Higgs) through which the φ abundance can deplete. In this scenario, the
washout effect from this decay needs to be carefully considered.
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4.4 Tracking the Evolution of the Hot and SM

Sectors

In the simplest formulation, the leptogenesis kinetic equations operate in the one-

flavoured regime, accounting for only a single flavour of charged lepton. This is a

good approximation at very high temperatures (T � 1012 GeV) when charged lepton

Yukawa coupling processes are out of thermal equilibrium, resulting in a coherent

superposition of the three flavour eigenstates.

However, at lower temperatures (109 GeV � T � 1012 GeV), the interaction rates

proportional to the tau Yukawa couplings come into thermal equilibrium and can

cause decoherence, necessitating a description in terms of two flavour eigenstates.

In our case, leptogenesis occurs at even lower temperatures (T < 109 GeV), where

interactions mediated by the muon have equilibrated. In these regimes, a density

matrix formalism [116, 170–173] provides a more comprehensive description than

semiclassical Boltzmann equations, which do not include flavour oscillations in the

lepton asymmetry. For this reason, we solve the density matrix equations which

capture the time evolution of the RHN number densities in the hot and SM sectors,

and the lepton asymmetry number density (which is promoted to a density matrix,

Nαβ).

As discussed in Section 4.2, the Hubble expansion rate depends on the energy

densities of both the hot and SM sectors. Since we track the energy density of both

sectors, it will be convenient to evolve the density matrix equation as a function of

the scale factor, a, which is then

aH
dNN1

da
= −ΓD1(zN1)NN1 + ΓD1(zSM)N eq

N1
, (4.4.1)

aH
dNN2

da
= −ΓD2(zN2)

(
NN2 −N eq

N2

)
, (4.4.2)

aH
dNN3

da
= −ΓD3(zN3)

(
NN3 −N eq

N3

)
, (4.4.3)

aH
dNαβ

da
= ε

(1)
αβ

(
ΓD1(zN1)NN1 − ΓD1(zSM)N eq

N1

)
− 1

2W1

{
P (1), n

}
αβ
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+
3∑
i=2

ε
(i)
αβΓDi(zNi)

(
NNi

−N eq
Ni

)
− 1

2Wi

{
P (i), N

}
αβ

− Λτ




1 0 0

0 0 0

0 0 0

 ,



1 0 0

0 0 0

0 0 0

 , N



αβ

− Λµ




0 0 0

0 1 0

0 0 0

 ,



0 0 0

0 1 0

0 0 0

 , N



αβ

, (4.4.4)

where i is a generation index, α, β are lepton flavour indices, NNi
and Nαβ are the

comoving number density of Ni and the B −L asymmetry for lepton flavour indices

α, β, respectively, ΓDi = Γ0
Di

〈mNi
/ENi〉 are the thermally averaged decay rates of Ni

where we assume Maxwell-Boltzmann statistics with 〈mNi
/ENi〉 = K1(zNi)/K2(zNi).

For the N1 decay, we thermally average over the hot sector using the variable

zN1 = mN1/TN1 while for the N1 inverse decays from the SM, and for N2 and N3, we

thermally average over the Standard Model sector using the variables zSM = mN1/TSM

and zN2,3 = mN2,3/TSM respectively.

The equilibrium abundance of Ni is denoted as N eq
i and the initial abundance of

N1 is NN1 ∝ κ3. The initial abundance for N2 and N3 are assumed to be vanishing,

which is an arbitrary choice for our computation as N2 and N3 are both in the

strong washout regime so reach a thermal abundance before the N1 particles decay.

Thus, their initial abundance (whether thermal or vanishing) has an insignificant

effect on the final results. The washout terms, which remove the lepton asymmetry

produced by decays of N1 in the hot sector, are denoted by Wi. We remind the

reader that when the hot and visible sectors remain decoupled before N1 decays, the

washout is weak. The decay asymmetry (between RHNs decaying to leptons and

the Higgs doublet, compared to the CP -conjugate process) generated by the decays

of Ni is given by the CP -asymmetry matrix ε(i)
αβ [102,171,173,174]. Λτ (Λµ) denote

the thermal widths of the tau (muon) charged leptons, which is obtained from the

imaginary part of the self-energy correction to the lepton propagator in the plasma.
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Finally, P (i)
αβ ≡ ciαc

∗
iβ where ciα = Yαi/

√
(Y Y )ii denote projection matrices which

describe how a given flavour of lepton is washed out.

We note that this equation describes both the decays of N1 from the hot sector into

the SM and the possible inverse decays from the SM into the hot sector, as well as

the SM washout processes. We note that while we include the evolution of the RHNs

N2 and N3 for completeness, their contribution to the lepton asymmetry compared

to N1 is small. To compute the final lepton asymmetry one solves the coupled system

for zN1 � 1 and takes the trace of the Nαβ matrix, N f
B−L = Tr

[
Nαβ

]
. Finally, to

calculate the baryon asymmetry (as previously shown in Section 3.6), we multiply

N f
B−L by the sphaleron conversion factor and divide by the photon number density,

to account for the change between the end of the leptogenesis era and recombination,

ηB = asphN
f
B−L/N

rec
γ where asph = 28/79 [100].

4.4.1 N1 in Kinetic and Chemical Equilibrium

Having established the density matrix equations which determine the matter-antimatter

asymmetry in our setup, we now consider how the temperatures of the two sectors

evolve with time, assuming that kinetic and chemical equilibrium can be maintained

within the hot sector while N1 decays (pink stars in Fig. 4.5). We first consider the

SM temperature, TSM, and then the hot sector temperature, TN1 .

Before N1 starts to decay around TN1 ∼ mN1 , its comoving number density NN1 will

remain constant, TN1 will drop as a−1, and the two sectors will remain decoupled.

When N1 starts to decay, the hot sector transfers energy (QN1) to the SM sector at

a rate

dQN1

dt
= −dQSM

dt
= −mN1V Γ0

D1

(
NN1 −N eq

N1

)
, (4.4.5)

where we normalise using the volume that contains one photon when we begin

tracking the abundances, V = 1/neqγ (a = 1). Note that this is exact since the

thermally averaged energy transfer rate is 〈Γ0
D1mN1EN1/EN1〉 = mN1Γ0

D1 .
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As the SM sector is in thermodynamic equilibrium, we can apply the second law of

thermodynamics to calculate the change in total entropy of the Standard Model,

dSSM = dQSM

TSM
, (4.4.6)

and use this to find the evolution of TSM with a. First we write

dSSM

da
= d(sSMa

3V )
da

, (4.4.7)

where sSM is the SM sector entropy density, which becomes

1
TSM

dQSM

da
= a3V

dsSM

dTSM

dTSM

da
+ 3a2V sSM , (4.4.8)

when we use Eq. (4.4.6) and differentiate the right-hand side. The rate of change of

the SM sector entropy density sSM with respect to its temperature is

dsSM

dTSM
= 2π2

15 g∗(TSM)T 2
SM + 2π2

45 T
3
SM
dg∗(TSM)
dTSM

, (4.4.9)

where numerically we neglect the second term which only has a small change due to

N2 and N3. Finally, using Eqs. (4.4.5), (4.4.8) and (4.4.9), we find that

dTSM

da
=

mN1

3a4HsSM
Γ0
D1

(
NN1 −N eq

N1

)
− TSM

a
. (4.4.10)

Next, we show how we determine the evolution of TN1 . When N1 is in kinetic and

chemical equilibrium, the solution to Eq. (4.4.1) is the equilibrium comoving number

density, which is

N eq
N1

= a3neq
N1
V = a3V

gN1

2π2T
3
N1I+

(
mN1

TN1

)
, (4.4.11)

where nN1 is the (non-comoving) number density of N1. We account for the quantum

statistics of N1 using

I+(zN1) =
∫ ∞

0
dξ

ξ2

exp
(√

ξ2 + z2
N1

)
+ 1

, (4.4.12)

where ξ = |pN1 |/TN1 . Thus, for a fixed mN1 there is then a one-to-one relationship

between NN1 = N eq
N1

and TN1 , so solving Eq. (4.4.1) tells us how TN1 evolves with
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a. Equations (4.4.1) to (4.4.4), (4.4.10) and (4.4.11) then provide a set of coupled

differential equations which we solve using the numerical framework of ULYSSES

[175, 176]. Once we fix an initial TSM, κ = TN1/TSM and the comoving number

densities, we can use these equations to track NNi
, TN1 , TSM and Nαβ as a function of

a, which allows us to compute the final baryon asymmetry ηB. As the scalar φ remains

in kinetic and chemical equilibrium with N1, the hot sector depletes completely as

N1 decays. We do not include the contribution from φ in the computation of the

asymmetry, since for 2mN1 < mφ its abundance will be Boltzmann suppressed at

the time of N1 decay. The φ population will both mildly increase the generated

asymmetry by producing N1’s as it decays, and mildly decrease it as it dumps entropy

into the SM sector.

4.4.2 N1 in Kinetic Equilibrium Only

We will now explore regions of the parameter space where number-changing inter-

actions are slower than the Hubble rate, so the assumption of chemical equilibrium

no longer holds (green stars in Fig. 4.5). In this case, the density matrix equations,

Eqs. (4.4.1) to (4.4.4), and the SM temperature derivative dTSM/da, Eq. (4.4.10),

remain the same as in the previous section. However, the evolution of the tem-

perature of the hot sector, TN1(a), is no longer given by Eq. (4.4.11), as the lack

of number-changing interactions leads to a departure from the equilibrium number

density.

The phase space distribution function for N1 is fN1 =
(
nN1/n

eq
N1

)
f eq
N1

where f eq
N1

is

the Fermi-Dirac distribution. Neglecting quantum statistics by utilising the Maxwell-

Boltzmann distribution instead, the energy density ρ and pressure p of N1 become

ρN1 =
(
nN1

neq
N1

)
ρeq
N1
, (4.4.13)

pN1 =
(
nN1

neq
N1

)
peq
N1
. (4.4.14)

We can now calculate the evolution of TN1 using the second law of thermodynamics
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and comoving energy conservation. First, we use the second law of thermodynamics,

dSN1 =
dQN1

TN1

, (4.4.15)

to equate

dSN1

da
=
dsN1a

3V

da
(4.4.16)

= d

da

(
ρN1 + pN1

TN1

a3V

)
(4.4.17)

= a3V

TN1

(
dρN1

da
+
dpN1

da
− sN1

dTN1

da
+ 3

sN1TN1

a

)
, (4.4.18)

with

1
TN1

dQN1

da
= −

mN1V

TN1

(
Γ0
D1NN1 − Γ0

D1N
eq
N1

)
. (4.4.19)

We see that we now require expressions for the rate of change of the energy density

of N1, dρN1/da, and for the rate of change of the pressure of N1, dpN1/da.

To find an expression for dρN1/da we can use the conservation of total comoving

energy density,

a
dρtot

da
+ 3(ρtot + ptot) = 0 , (4.4.20)

where ρtot and ptot are the total energy density and pressure, respectively. We see

that the derivatives of the energy densities in the two sectors are related by

a
dρN1

da
= −3(ρtot + ptot) − a

dρSM

da
. (4.4.21)

For the rate of change of the pressure, dpN1/da, we differentiate Eq. (4.4.14) with

respect to a to write dpN1/da in terms of dTN1/da and dnN1/da,

dpN1

da
=
nN1

neq
N1

dpeq
N1

da
+
dnN1

da

peq
N1

neq
N1

−
peq
N1

neq
N1

dneq
N1

da
(4.4.22)

=
(
nN1

neq
N1

dpeq
N1

dTN1

−
peq
N1

neq
N1

dneq
N1

dTN1

)
dTN1

da
+
dnN1

da

peq
N1

neq
N1

. (4.4.23)

Together, Eqs. (4.4.18), (4.4.19), (4.4.21) and (4.4.23) give an expression for dTN1/da

in terms of quantities we can compute or track. This, in combination with the
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density matrix equations, Eqs. (4.4.1) to (4.4.4), and the TSM evolution equation

in the previous section, Eq. (4.4.10), can be solved with the appropriate initial

conditions to find the resulting baryon asymmetry. The initial conditions we take

for our benchmark point are that N1 has an equilibrium abundance while N2 and

N3 have vanishing initial abundance.

This is motivated by the possibility that φ (or another particle) mediated sufficiently

fast number changing rates for N1 at higher temperatures, but that it no longer can

at TN1 ∼ mN1 . In the case where N1 is only in kinetic equilibrium with itself around

its decay, the φ abundance is heavily suppressed and does not contribute to the

asymmetry generation (beyond maintaining kinetic equilibrium in the hot sector).

4.5 Fine-Tuning

To quantify the degree of fine-tuning present in the neutrino sector, we will adopt a

fine-tuning measure that is the inverse of that used in [156]. The matrix of physical

light neutrino masses Mν is

Mν = M tree
ν +M1-loop

ν , (4.5.1)

where M tree
ν contains the tree-level Lagrangian neutrino masses and M1-loop

ν is the

one-loop contribution (which is always negative) [156]. The fine-tuning can be

measured using,

∆ν =
∑3
i=1 SVD[Mν ]i∑3

i=1 SVD[M1-loop
ν ]i

, (4.5.2)

where SVD is the Singular Value Decomposition of the matrix, i.e., SVD[M ]i is the

square root of the i-th (real and positive) eigenvalue of M∗M . If the eigenvalues of

M are real and positive, then the singular value decomposition of M simply gives

the eigenvalues. Fine-tuning of ∆ν ≈ 1 % corresponds to, e.g., M tree
ν ≈ 100Mν and

M1-loop
ν ≈ 100Mν , so the tree- and loop-level masses would cancel to one part in 100.
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Analogously for the Higgs sector, we will have

µ2
H ≈ (µtree

H )2 − |δµ2| , (4.5.3)

where µH = mh√
2 = 88 GeV is the effective Higgs mass parameter, µtree

H is the Lag-

rangian Higgs parameter and δµ2 is the one-loop correction to the Higgs mass

parameter [155],

|δµ2| ≈ 1
4π2 Tr

[
YM2

NY
†
]
. (4.5.4)

The degree of fine-tuning in the mass parameters (not the mass squared parameters)

can be measured with

∆H =

√√√√ (µtree
H )2 − |δµ2|

1
2((µtree

H )2 + |δµ2|)
≈

√√√√ µ2
H

|δµ2|
, (4.5.5)

where we have assumed µ2
H � (µtree

H )2, |δµ2|. Fine-tuning of ∆H = 10 % corresponds

to |δµ| = 10µH = 880 GeV.

4.6 Results

Standard non-resonant leptogenesis, which can produce a baryon asymmetry consist-

ent with observations using RHN masses around 106–107 GeV, requires fine-tuning

of the light neutrino masses [156] and the SM Higgs mass [30, 155]. The neutrino

mass fine-tuning occurs because the tree and one-loop contributions to the light

neutrino mass matrix have opposing signs [177] and standard leptogenesis requires

them to be separately large, and then largely cancel, to give an overall small neutrino

mass consistent with observation. Fine-tuned solutions are favoured because the

specific structure of the R-matrix reduces effective Yukawa couplings, which in turn

decreases washout effects and leads to successful leptogenesis, while also enabling

this critical cancellation between the tree-level and one-loop contributions, keeping

the light neutrino masses within experimental bounds. The SM Higgs mass is also

fine-tuned as the RHNs contribute at the one-loop level, with lower RHN masses
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Benchmark S1 S2 S3 S1 S2 S3 S4 S4 Our Benchmark
∆ν [%] 0.2 0.3 0.2 0.6 0.7 0.4 0.2 0.5 855
∆H [%] 0.08 0.02 0.004 0.3 0.06 0.1 0.001 0.007 10.4

Table 4.1: Degree of fine-tuning for the best-fit points found in
Ref. [156] and for our benchmark point (see Table 4.2),
using the fine-tuning measures given in Section 4.5. Smal-
ler numbers indicate a larger degree of fine-tuning, with
some degree of fine-tuning for numbers smaller than
∼ 10%.

giving a smaller loop level contribution but also reducing the amount of baryon

asymmetry produced.

Using the measures defined in Section 4.5, the degree of fine-tuning for both the

light neutrino mass and the SM Higgs required for successful standard leptogenesis

with mN1 ∼ 106.5 GeV is given in Table 4.1, based on benchmarks from Ref. [156].

These benchmarks, Si (Si) for i = 1, 2, 3, 4, correspond to normal (inverted) ordering

with the PMNS matrix parameters set to their best-fit values based on global data

[178]. The remaining Casas-Ibarra parameters are fixed to ensure a viable baryon

asymmetry. From Table 4.1, we see that the fine-tuning is worse than 1 % for both

the light neutrino mass and the SM Higgs. We present these benchmarks and their

associated fine-tuning measures to evaluate how effectively hot leptogenesis can

reduce fine-tuning while still producing the observed baryon asymmetry.

Here we explore two distinct scenarios of hot leptogenesis which alleviate this fine-

tuning: one in which N1 is only in kinetic equilibrium with itself before decay

and one in which chemical equilibrium is also established. The parameters that

determine whether chemical and kinetic equilibrium are established are different

to those that determine the baryon asymmetry (except that they determine the

manner of evolution of our model – these scenarios evolve under a different set of

evolution equations as described in the previous section). The parameters related

to the baryon asymmetry are given in Table 4.2.

We will focus on a benchmark scenario for the neutrino parameters, where we use

the Casas-Ibarra parametrisation to construct the Yukawa matrix Y [109]. The
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Parameter Unit Benchmark point
δ [◦] 270
α21 [◦] 50
α31 [◦] 120
θ23 [◦] 49.1
θ12 [◦] 33.41
θ13 [◦] 8.54
x1 [◦] 7
y1 [◦] 15
x2 [◦] 1
y2 [◦] 2
x3 [◦] 4
y3 [◦] 3
m1 [eV] 0

log10

(
mN1/[GeV]

)
[1] 7

log10

(
mN2/[GeV]

)
[1] 7.006

log10

(
mN3/[GeV]

)
[1] 7.4

κ [1] 10

Table 4.2: Input parameters in the Casas-Ibarra parametrisation
for our benchmark point, see text for details.

constrained light neutrino parameters δ, θ12, θ13 and θ23 are fixed at their best-

fit value from recent global fit data [179] where we assume normally ordered light

neutrino masses and for simplicity assume the lightest neutrino mass m1 = 0 eV.

While we fix the Majorana phases to be 50◦ and 120◦, they do not significantly affect

the resulting baryon asymmetry. For the right-handed neutrino masses, we choose

an intermediate-mass scale mN1 ∼ 107 GeV, commensurate with the standard case

studied in Ref. [156].

We fix mN2 and mN3 to reduce the Higgs fine-tuning measure while ensuring that

leptogenesis occurs well beyond the resonant regime (the decay widths of N1, N2

and N3 are approximately 10−5 GeV, 10−3 GeV and 10−2 GeV, respectively, which

are much smaller than the N1–N2 mass splitting of approximately 105 GeV). The

remaining Casas-Ibarra parameters, xi and yi, are chosen to provide a reduced fine-

tuning to the light neutrino masses. Finally, the benchmark has an initial ratio of

temperatures of κ = TN1/TSM = 10, which gives approximately the maximum achiev-

able baryon asymmetry. We note that if we assumed standard thermal leptogenesis,
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Figure 4.7: Evolution of |ηB|, NN1 and κ for initial κin = 10 when
N1 is only in kinetic equilibrium in the hot sector, for
our benchmark point. When the number density ap-
proaches zero, κ is set to 1 (dashed line). The green
band indicates the baryon-to-photon ratio at the 3σ
level.

in the absence of a hot sector, this benchmark point significantly under-produces the

baryon asymmetry. We now numerically integrate the evolution equations, show the

evolution of various quantities for this benchmark point and investigate the impact

of varying one or two parameters at a time on the final baryon asymmetry.

4.6.1 N1 in Kinetic Equilibrium Only

We first focus on the case whereN1 is only in kinetic equilibrium with itself. Note that

the scenario differs from that considered by Ref. [154], where N1 is in equilibrium.

In Fig. 4.7 we show the evolution of the temperature ratio κ (red), the number density

of the lightest right-handed neutrino NN1 (blue), and the baryon asymmetry ηB

(green) as a function of ln a (where we set a = 1 at the beginning of our simulation) for

the benchmark point in Table 4.2. We also show the corresponding SM temperature

on the top axis.
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We see that at early times before N1 has started to decay, at TSM & 107 GeV and

TN1 & 108 GeV, the temperature ratio, the N1 comoving number density and the

baryon asymmetry remain constant. When the N1 population starts to decay, at

TSM ∼ 107 GeV and TN1 ∼ 108 GeV, the decay starts to put the two sectors into

kinetic equilibrium and the temperature ratio κ begins to fall. The baryon asymmetry

immediately starts rising and overshoots the observed value around halfway through

the decay. It then reduces slightly due to the effect of the washout terms. The

temperature ratio approaches κ = 1 as the hot sector is depleted, and at some

point the N1 abundance goes below the numerical accuracy of our computation. At

this point, we set κ = 1 (dashed red line) so the system can evolve while avoiding

numerical errors. This procedure does not affect the final baryon asymmetry ηB as

almost all N1 particles have decayed by this time. Note, however, that even though

the two sectors are technically in kinetic equilibrium, the hot sector is essentially

empty since almost all N1 particles have decayed.

We see that our benchmark point produces a baryon asymmetry within the observed

3σ band. For these parameters we find ∆η ≈ 855% (indicating that the tree-level

mass is O(10) times larger than the loop level mass) and ∆H ≈ 10.4% (indicating

that the loop level contribution is ∼ TeV) so there is no fine-tuning in the light

neutrino masses and very mild fine-tuning in the Higgs mass.

In Fig. 4.8 (blue curve) we show the final baryon asymmetry as a function of the

initial temperature ratio κ for our benchmark point.

We see that |ηB| is far below the observed asymmetry for κ ∼ 1 and first increases

with κ. The rate of increase reaches a maximum of around κ = 2.7, where the

energy densities of the SM and N1 are approximately equal. After this point, the

baryon asymmetry begins to level off and reaches a maximum around κ ∼ 7. For

1 . κ . 7 the initial number density of N1 in the hot sector is larger than for

κ = 1, which enhances the final asymmetry. For 2.7 < κ the hot sector dominates

the energy density of the universe, and so the Hubble expansion rate (Eq. (4.3.3)),

which counteracts the increased asymmetry. Essentially, the energy dump from the
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Figure 4.8: The final baryon asymmetry |ηB| as a function of the ini-
tial temperature ratio κin = TN1/TSM at a = 1. The blue
line indicates the benchmark point. In the burgundy
and orange curves we vary the RHN mass scale and split-
tings (see text for details), while the dashed (dotted)
blue curves indicate non-equilibrium initial abundances
of N1, f ≡

(
nN1/n

eq
N1

)
in

.
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hot sector dilutes the baryon asymmetry. In Fig. 4.8 we also show the impact of

varying important parameters.

We see that reducing the RHN masses by setting mN1 = 106.5 GeV and keeping the

mass splittings fixed (burgundy curve) significantly reduces the generated asymmetry,

as is typical in leptogenesis since the Yukawa matrix Y ∝ MN . The N1–N2 mass

splitting is defined as ∆m21 = log10(mN2/[GeV]) − log10(mN1/[GeV]), with ∆m31

defined analogously and preserved at 0.4. Reducing the right-handed neutrino masses

reduces the fine-tuning to ∆H = 58%, which is a bit better than our benchmark

point, but does not reproduce the observed baryon asymmetry.

We also see that a smaller mass splitting between N1 and N2 (orange curve) enhances

the asymmetry. This also very slightly decreases the amount of fine-tuning needed

in the Higgs sector to ∆H = 10.4 %, because the N2 state is lighter. When fitting the

light neutrino masses, the smaller N1 – N2 mass splitting leads to a larger Yµ1 and

Yµ3 and a smaller Yµ2 (with the other Yukawas remaining approximately constant).

Since the Yα1 couplings have the largest impact on the generated asymmetry, this

leads to an overall increase. If one wanted to find the minimal fine-tuning possible

in this scenario, this could potentially be achieved by reducing the mass splitting

further (while remaining out of the resonant leptogenesis regime), which boosts the

asymmetry, while reducing the overall RHN mass scale, which reduces the asymmetry

and would further improve the fine-tuning in the SM Higgs sector.

In the dashed and dotted blue lines, we show the impact of changing the initial N1

abundance to 2 and 5 times its equilibrium abundance. We see that as the initial

abundance increases, the asymmetry increases faster and levels off around a similar

maximum value, but at a lower κin. Increasing the initial abundance is in many

ways similar to increasing the hot sector temperature, as both lead to a higher initial

number density of N1 and an increased energy density in the hot sector. While the

number and energy densities scale differently with temperature, this does not lead

to an increased final asymmetry at large κin. In fact, for a higher initial abundance,

the asymmetry drops slowly at large κin.
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Figure 4.9: Values of ηB for standard leptogenesis (left) and hot
leptogenesis (right) for κin = 10 produced with the
RHN in kinetic equilibrium only. The green dashed
contours corresponding to ηB produced at (5.8 − 6.3) ×
10−10 [53,180] and the red cross indicates our benchmark
point. The greyed-out region represents when the non-
thermalisation assumption no longer holds, such that
hot leptogenesis may not be viable. ∆H ∼ 10.4 % and
∆ν ∼ 855 % throughout the plot.
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Finally, in Fig. 4.9 we show the baryon asymmetry in y2 and y3, chosen for their

impact on the baryon asymmetry. On the left, we show the standard leptogenesis

case where TN1 = TSM and the N1 are in chemical equilibrium with themselves, while

on the right we show the results for hot leptogenesis with an initial κ = 10 and where

N1 particles are only in kinetic equilibrium with themselves. The benchmark point

is indicated by a red cross. In the left panel, we see that in this region of parameter

space standard leptogenesis under-produces the baryon asymmetry by more than an

order of magnitude.

In the right panel, we see that ηB is enhanced by a factor of ∼ 50 compared to the

standard case and the observed baryon asymmetry can be produced in this parameter

space (the dashed green contours give the 3σ range). Importantly, this is away from

the regime in the top-right where Higgs-mediated N1` → N1` and lepton-mediated

N1H → N1H elastic scattering processes equilibrate the SM and the hot sector,

indicated by the greyed-out ‘Thermalisation’ region. The fine-tuning in both the

Higgs mass and the neutrino masses do not depend strongly on the parameters y2

and y3 so remain approximately equal to those of the benchmark point.

4.6.2 N1 in Kinetic and Chemical Equilibrium

We now briefly turn to the scenario where the hot sector is in both kinetic and

chemical equilibrium with itself. As described above, in this scenario we assume

nN1 = neq
N1

throughout and use this relation to find the evolution of the hot sector

temperature TN1 .

Even though we are in a different region of parameter space, pink stars in Fig. 4.5,

these parameters do not strongly impact the N1 evolution and baryon asymmetry

generation, which depend on the parameters in Table 4.2. Taking the initial N1

abundance to be N eq
N1

and using the benchmark parameters in Table 4.2, we find

that the κ, NN1 and ηB evolution is virtually identical to Fig. 4.7. For this reason,

we do not show it, but instead just show the results of a parameter scan in y2 and
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Figure 4.10: Values of ηB for standard leptogenesis (left) and hot
leptogenesis (right) for κin = 10 produced with the
RHN in kinetic and chemical equilibrium. The green
dashed contours corresponding to ηB produced at
(5.8 − 6.3) × 10−10 [53, 180] and the red cross indic-
ates our benchmark point. The greyed out region rep-
resents when the non-thermalisation assumption no
longer holds, such that hot leptogenesis may not be
viable. ∆H ∼ 10.4 % and ∆ν ∼ 855 % throughout the
plot.
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y3 in Fig. 4.10. We see that the difference with Fig. 4.9 is very small: at most a

factor 4 in the baryon asymmetry near the thermalisation region, but at the percent

level in the region where the observed ηB is produced. The thermalisation region

has moved slightly to the left, indicating that it is easier for the hot sector to come

into kinetic equilibrium with the SM sector in this scenario. The fine-tuning, in this

case, is identical to that in Section 4.6.1.

Overall, we see that phenomenologically it does not make a significant difference

whether only kinetic equilibrium, or both kinetic and chemical equilibrium, are

maintained during N1 decay. Both scenarios can produce the observed baryon

asymmetry while avoiding fine-tuning of the neutrino masses or the SM Higgs mass.

4.6.3 Further Scenarios

We now briefly comment on two possible alternative scenarios. First, kinetic equilib-

rium could be established after inflaton decay but not maintained in the hot sector

while N1 decays. This could, for example, occur if a heavy mediator realises fast

2N1 → 2N1 scattering shortly after inflaton decay, but is too heavy to maintain it

at TN1 ∼ mN1 . In this scenario, one in principle has to compute the evolution for

the full set of momentum modes. However, in the absence of additional processes

affecting the sector, the assumption of a thermal distribution may be reasonable

until the N1 start to decay. As was shown in Ref. [181], in vanilla leptogenesis the

assumption of kinetic equilibrium when it is not realised underestimates the final

baryon asymmetry by a tiny amount, because low momentum N1 particles are more

efficiently produced than accounted for in a thermal distribution. In our present

scenario, we may expect that large momentum N1 particles decay earlier, and thus

the produced asymmetry is overestimated by a small amount if kinetic equilibrium

is assumed.

Second, there is the possibility of N2 and N3 starting with temperature at or around

TN1 and with an approximately equilibrium abundance, but where all three particles



4.7. Conclusions 139

are weakly coupled and do not establish kinetic equilibrium with the SM. While

Ref. [154] shows that the observed light neutrino masses mean that, in a Type

I Seesaw scenario, the decay rate of N2 and N3 must be larger than Hubble at

temperatures around their masses, we find that they do not have enough time to

fully equilibrate before decay. It is therefore possible that this scenario may lead to

an asymmetry which is larger by up to a factor of three compared to the results we

find here, further reducing the required fine-tuning.

4.7 Conclusions

In this chapter, we have studied a class of leptogenesis scenarios in which the sector

containing the lightest right-handed neutrino (N1) establishes kinetic equilibrium

with itself at a temperature higher than that of the Standard Model (SM) sector.

We have motivated this setup by considering the decay of the inflaton, which can

lead to two sectors with similar but distinct temperatures. Higher temperatures

in the N1 sector enhance the number density of N1 particles and can lead to an

enhanced baryon asymmetry. With this setup, the observed baryon asymmetry

can be generated without the significant fine-tuning of the light neutrino masses

and the SM Higgs boson mass present in standard leptogenesis. We have checked

that inflaton-mediated energy exchange between the sectors is not fast enough to

equilibrate them after inflation.

In Section 4.3 we described a toy model that can realise such a scenario of hot lepto-

genesis, introducing a new scalar field φ responsible for mediating self-interactions

of N1 and maintaining its kinetic equilibrium. We explore two regimes: one where

the hot sector containing N1 is only in kinetic equilibrium with itself and another

where it is in both kinetic and chemical equilibrium. We derived the relevant evol-

ution equations to track the relevant quantities and compute the resulting baryon

asymmetry in both of these scenarios.

Our numerical analysis reveals that both scenarios can produce the observed baryon
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asymmetry with minimal fine-tuning. As expected, the enhancement of the baryon

asymmetry can be up to a factor of around 50, and the observed asymmetry can then

be achieved for smaller right-handed neutrino masses and couplings. These scenarios

therefore reduce the fine-tuning required in both the Higgs and neutrino sectors

compared to the standard leptogenesis scenario. This confirms that non-resonant

leptogenesis is viable and efficient in producing the observed baryon asymmetry

under our model assumptions.

Comparing the numerical results in the two cases, we find that the results for kinetic

only and kinetic and chemical equilibrium are similar. This can be understood from

the fact that we assume nN1 = neq
N1

as an initial condition for the former case, which

is preserved until T ∼ mN1 , right before the decays happen. Thus, we expect that

chemical equilibrium can be a reasonable approximation in the case where it is not

realised or maintained.

We finally note that our computations are also likely to be a good approximation to

the case where N1 are not in kinetic equilibrium with themselves when they decay

and that it may be possible that N2 and N3 are present in the hot sector and could

lead to an enhanced baryon asymmetry.



Chapter 5

Phase Transition Phenomenology

of the 95 GeV Resonance in the

Two Higgs Doublet Model

For the world is changing: I feel it in the water, I feel it in the earth, and I smell

it in the air.

from The Lord of the Rings by J.R.R. Tolkien

5.1 Introduction

Following the discovery of the Higgs boson [4, 5], searches at the Large Hadron Col-

lider (LHC) have increasingly focused on exploring the structure of the Higgs sector.

Motivated by numerous Beyond the Standard Model (BSM) scenarios featuring ex-

tended scalar sectors, the CMS collaboration extended its Higgs-like particle searches

to include invariant masses below 110 GeV. While CMS reported an excess near

95 GeV in the diphoton channel (two photons in the final state) by combining data

from 8 and 13 TeV runs with a local significance of 2.8σ [182], recently, this result

was updated using the full 13 TeV dataset. The latter shifted the excess to 95.4 GeV
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with a local significance of 2.9σ [183]. The presence of a neutral scalar decaying into

two photons around 95 GeV remains compatible with the latest ATLAS results [184].

A resonance of a similar mass has also been reported by CMS in ττ final state

searches at around 100 GeV [185], and around 98 GeV in bb̄ final state searches at

the Large Electron-Positron (LEP) collider in 2006 [186].

Due to the limited resolution of the CMS and LEP measurements, these measure-

ments seem to be compatible and could point to a new scalar particle at a mass

of around 95 GeV. The possibility of a lighter Higgs-like particle explaining these

excesses has been explored in numerous models [187–208].

A model that has been studied extensively in the context of new Higgs-like particles is

the Two Higgs Doublet Model (2HDM), a minimal extension to the Standard Model

that requires the addition of an extra Higgs doublet [189,190,192,202,204–208]. This

model predicts additional scalar particles, which may account for a 95 GeV resonance.

Although phenomenological investigations of the 2HDM in this context have largely

focused on collider observables [189, 208]. the existence of new scalars coupled to

the Higgs can also alter the dynamics of cosmological evolution.

In this chapter, we explore the possibility of a first-order electroweak phase transition

(EWPT) in the Type I 2HDM model, identifying the 95 GeV excess with an additional

pseudoscalar state. Employing state-of-the-art dimensional reduction to a three-

dimensional effective field theory (3D EFT) [141, 142], we perform a broad finite

temperature scan over the parameter region compatible with current collider limits.

Previous studies have explored the EWPT in the 2HDM using both perturbative and

non-perturbative approaches. Early work using one-loop finite-temperature effective

potentials (e.g. Refs. [77, 78, 209–213]) showed that a strong first-order EWPT is

possible in Type I and Type II 2HDMs, typically requiring sizeable mass splittings

among the scalar states to enhance thermal barriers generated by gauge bosons or

scalar loops 1 (e.g. Refs. [78,209]). These studies often focused on parameter regions

1We explain why this is the case in Section 3.7.2.
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with heavy new scalars with mass m & 300 GeV, motivated by electroweak precision

tests [214–218] and Higgs signal strength measurements.

More recently, non-perturbative studies of the dimensionally reduced 3D EFT have

been employed to assess the nature of the electroweak phase transition more reli-

ably.1 The model has also been studied perturbatively, including in its inert doublet

realisation [225–227].2

These studies have demonstrated that certain regions of 2HDM parameter space

can indeed support a strong first-order electroweak phase transition, particularly

when thermally induced cubic terms in the potential are sufficiently enhanced. How-

ever, such analyses typically do not account for the presence of a light scalar or

pseudoscalar near 95 GeV, nor the associated phenomenological constraints.

The potential existence of such a light state can substantially alter the structure of

the finite-temperature potential. In particular, it can introduce new phase transition

pathways or weaken the strength of the transition by reducing the need for large

mass splittings.

We find that unlike in the Standard Model, where the EWPT is a crossover [26–28,

228, 229], the transition is first order in the majority of the constrained parameter

space. Moreover, depending on the parameters in the 2HDM Lagrangian, the trans-

ition can occur in a single or in two steps. 3 We find that the transition strength

remains modest across the viable parameter space, with the order parameter not

exceeding |vc/TC | . 1.3.4

A strong first-order phase transition can leave behind a stochastic gravitational

wave (GW) background, as explained in Section 3.8. However, due to the relatively

modest values of the order parameter in the 2HDM, the resulting GW signal lies well

1See Refs. [79, 219–221] for recent analyses, or Refs. [222–224] for earlier foundational work.
2The inert doublet model is a limit of the 2HDM where the extra doublet has no couplings to

SM fermions.
3See Ref. [230] for a non-perturbative analysis of two-step transitions in the triplet extension of

the SM.
4Here, vc is the field space distance between the phases.
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below the projected sensitivity of LISA [21,24,25] and other planned (space-based)

observatories [231–233].1

Furthermore, the moderate strength of the transition also appears insufficient to sup-

port electroweak baryogenesis (see Section 3.5). Achieving successful baryogenesis

would likely require additional model ingredients, such as tree-level barriers in the

effective potential, to sufficiently enhance the strength of the transition and realise

a sharp turn-off of the electroweak sphaleron rates inside the bubbles of true va-

cuum. We discuss possible extensions, including singlet scalars or higher-dimensional

operators, that could enhance the transition.

5.2 The Two Higgs Doublet Model

The real two-Higgs-doublet model (2HDM) Type I is particularly well suited to

accommodating a new ∼ 95 GeV state while respecting existing flavour and collider

bounds. In Type I, all fermions couple directly to the same Higgs doublet. In Type

III, X and Y, both doublets directly couple to all charged fermions. These induce

flavour-changing neutral currents (FCNCs) at tree level [220], which are undesirable

due to the observed suppression of such interactions.2 In Type II, where one doublet

couples to the up-type quarks and the other couples to the down-type quarks and

leptons (or the Flipped model with the up- and down-type quarks swapped), there are

enhancements in the b → sγ decay rate. This is due to the constructive interference

between SM diagrams, and 2HDM-II diagrams that have the charged Higgs running

in the loop in place of W± [240, 241]. The stringent constraints on the b → sγ

decay rate [201, 241] force the charged Higgs above a few hundred GeV in Type

II/Flipped models. These constraints are much weaker for the 2HDM-I as the

diagrams destructively interfere instead – allowing m
H

± ∼ 150 − 350 GeV alongside

a light neutral scalar or pseudoscalar. Moreover, imposing the alignment limit

1See Refs. [234–238] for recent discussions of GW prospects in the 2HDM context.
2FCNCs are interactions that change a fermion’s flavour without changing its electric charge.

These do not exist in the SM at tree level and are tightly constrained by data [239].
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| cos(β − α)| � 1 keeps the 125 GeV Higgs SM-like, while still permitting a new

state at 95 GeV with suppressed couplings to heavy gauge bosons V V and enhanced

loop-induced couplings to γγ and ττ .

In this chapter, we explore the scenario in which the pseudoscalar A is identified

with the new 95 GeV resonance. This assignment provides a better fit to existing

collider data compared to associating the scalar H with the resonance. The reason

is as follows: In the mH = 95 GeV scenario, the CP -even scalar H couples to

electroweak vector bosons at tree level. However, these couplings are constrained by

the Higgs signal-strength sum rule1 and by global fits to Higgs data (see e.g. [204])

which restrict the scalar mixing via | cos(β − α)| . 0.2. This suppression limits both

the production cross section and the branching ratio into γγ, making it difficult to

account for either the LEP excess in the bb̄ channel [186] or the diphoton excess

observed by CMS [204].

The Higgs sector of the 2HDM consists of two SU(2)L doublets, Φ1 and Φ2, with

opposite charge under a Z2 symmetry and hypercharge Y = 1/2. All right-handed

SM fermions are taken to be even under the Z2, while Φ1 is conventionally chosen to

be odd, making it a fermiophobic2 doublet. Thus the resulting Yukawa terms in the

2HDM remain the same as in the SM, except with Φ2 taking the place of the SM

Higgs doublet and coupling to the fermions. After electroweak symmetry breaking,

the Higgs doublets can be parametrised in terms of the physical scalar degrees of

freedom as follows [242]:

Φ1 =

 −H+ sin β +G+ cos β
1√
2(v cos β − h sinα +H cosα− iA sin β + iG0 cos β)

 , (5.2.1)

1As we will see later, the two neutral Higgs will have vector boson couplings that follow the
sum rule (ch

V )2 + (cH
V )2 = 1, meaning they must combine to reproduce the SM Higgs coupling. If

the Higgs signal strength is close to 1, and h is designated as the SM Higgs, this tightly constrains
the coupling of H to V .

2That is, it has substantially weaker couplings to fermions as they are only induced at loop
level.
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Φ2 =

 H+ cos β +G+ sin β
1√
2(v sin β + h cosα +H sinα + iA cos β + iG0 sin β)

 . (5.2.2)

Here, h denotes the SM-like Higgs boson and is a CP -even scalar, accompanied by

the conventionally heavier CP -even state H. The field A is the neutral CP -odd

pseudoscalar, which we later associate with the 95 GeV resonance.

The H± are a pair of charged Higgs bosons, while G± and G0 are the Goldstone

bosons. The SM Higgs vev is v = 246 GeV. The vevs of the two doublets, v1 and

v2, are constrained by the requirement that v2
1 + v2

2 = v2, and the angle β is defined

via tan β = v2/v1. The angle α diagonalises the CP -even scalar mass matrix and

determines the physical mass eigenstates [243].

We can define a new angle δ = β−α−π/2 to relate the tree-level couplings between

the physical resonances and the fermions,

chf = cosα
sin β = cos δ − sin δ

tan β , cHf = sinα
sin β = − sin δ − cos δ

tan β , cAu = −cAd,L = cot β ,

(5.2.3)

as well as gauge bosons,

chV = sin (β − α) = sin δ , cHV = cos (β − α) = − sin δ (5.2.4)

where V = W,Z.

The couplings of the light Higgs boson h approach their SM values (chf → 1) in the

limit α → 0 and β → π/2. In contrast, the heavier scalar H does not couple to

fermions at α = 0, and decouples from gauge bosons when α = β ± π/2. The latter

condition corresponds to cos(β − α) = 0, known as the alignment limit of the model.

In this limit, the light Higgs h has the same tree-level couplings to the gauge bosons

as in the SM.

The tree-level potential for the Type I 2HDM is as follows:

VH = m2
11Φ†

1Φ1 +m2
22Φ†

2Φ2 −m2
12

(
Φ†

1Φ2 + h.c.
)

+ λ1(Φ†
1Φ1)2 (5.2.5)
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+ λ2(Φ†
2Φ2)2 + λ3(Φ†

1Φ1)(Φ†
2Φ2) + λ4(Φ†

1Φ2)(Φ†
2Φ1) + λ5

2
[
(Φ†

1Φ2)2 + h.c.
]
,

(5.2.6)

where m11 and m22 are the masses of the doublets, m12 is the mixing parameter,

and λ1 . . . , λ5 are quartic couplings. A fuller treatment of the potential would allow

for the additional terms

VH ⊃
(
λ6Φ†

1Φ1 + λ7Φ†
2Φ2

)
Φ†

1Φ2 + h.c. , (5.2.7)

however, these terms would not be permitted in the Z2 symmetry, setting λ6, λ7 = 0.

This softly broken symmetry is desired as the non-observation of FCNCs requires

that the fermions be coupled to a single Higgs doublet only, as mentioned before.

This is only possible with the doublets and the fermions being charged under the

Z2 symmetry, thus forbidding the λ6, λ7 terms [244–247]. m2
12 is permitted to be

non-zero, softly breaking the Z2 symmetry [244,247].1

In the 2HDM, the background fields φi are identified as the second, real components

of the two Higgs doublets respectively,

Φi → 1√
2

 0

φi

+ Φi . (5.2.8)

After the two Higgs doublets take these background field values, we arrive at the

1This determines the difference between the inert doublet model and the 2HDM-I, as the inert
doublet model has Z2 as an exact symmetry of the theory.



148
Chapter 5. Phase Transition Phenomenology of the 95 GeV Resonance

in the Two Higgs Doublet Model

scalar mass matrix for the heavy bosons {W,Z,H,A,H±, h,G0, G±}:

M2 =



M2
11 0 0 0 M2

15 0 0 0

0 M2
22 0 0 0 M2

26 0 0

0 0 M2
33 0 0 0 M2

37 0

0 0 0 M2
44 0 0 0 M2

48

M2
15 0 0 0 M2

55 0 0 0

0 M2
26 0 0 0 M2

66 0 0

0 0 M2
37 0 0 0 M2

77 0

0 0 0 M2
48 0 0 0 M2

88



, (5.2.9)

where,

M2
11 = m2

11 + 1
2(2λ1φ

2
1 + λ−φ

2
2) , M2

22 = m2
11 + 1

2(2λ1φ
2
1 + λ3φ

2
2) , (5.2.10)

M2
33 = m2

11 + 1
2(6λ1φ

2
1 + λ+φ

2
2) , M2

44 = M2
22 , (5.2.11)

M2
55 = m2

22 + 1
2(2λ2φ

2
2 + λ−φ

2
1) , M2

66 = m2
22 + 1

2(2λ2φ
2
2 + λ3φ

2
1) , (5.2.12)

M2
77 = m2

22 + 1
2(6λ2φ

2
2 + λ+φ

2
1) , M2

88 = M2
66 , (5.2.13)

M2
15 = −m2

12 + λ5φ1φ2 , M2
26 = −m2

12 + 1
2(λ4 + λ5)φ1φ2 , (5.2.14)

M2
37 = −m2

12 + λ+φ1φ2 , M2
48 = M2

26 , (5.2.15)

and where we used the abbreviation λ± = λ3 + λ4 ± λ5. To obtain the final mass

eigenvalues, the diagonalisation of the mass matrix in Eq. (5.2.9) is conducted as

in [220,221].

In practice, we wish to calculate the Lagrangian parameters m2
11,m

2
22,m

2
12, λ1 . . . , λ5

from the physical mass inputs {mh,mH ,mA,mH
±}, along with the input model

angles α, β and the input parameter m12. Appendix B.2 in Ref. [221] features

the tree-level relations to calculate the Lagrangian parameters, however for a more

accurate analysis the one-loop renormalised parameters should be utilised instead.

We describe the procedure of vacuum renormalisation in detail in Section 5.4.5 below

and the Appendix B.2.
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5.3 Thermal Potential

To compute the temperature-dependent effective potential for the Type I 2HDM, we

make use of high-temperature dimensional reduction, which we reviewed in Section

3.7.4 and which we recap briefly here. In the context of Lorentz scalar-driven

transitions, this approach is well-suited for the high-temperature regime relevant to

the transitions we study. As mentioned previously, this method features reduced

theoretical uncertainties; in particular, it allows for a consistent inclusion of all large

thermal corrections including two-loop thermal masses essential for renormalisation

scale independence [134,248,249] which in turn is essential for theoretical consistency

and ensuring physically meaningful results, but commonly not achieved.

As mentioned in Section 3.7.4, dimensional reduction utilises the thermal hierarchy

of scales
g2

π
T � gT � πT , (5.3.1)

with g representing a gauge coupling. The scale |p| ∼ πT corresponds to the hard

non-zero bosonic (fermionic) Matsubara modes [131], |p| ∼ gT ∼ mD to the soft

Debye screening modes, and |p| ∼ g2T to the non-perturbative ultrasoft modes in

the infrared (IR) [133]. By successively integrating out ultraviolet (UV) modes—see

e.g. [250]— one obtains a sequence of dimensionally reduced EFTs. The final step

yields a 3D EFT at the scale of bubble nucleation corresponding to g2T/π � |p| �

gT [251], the so-called softer scale [249,252], since, in practice, the mass of the phase

transition undergoing scalar will be parametrically larger than the ultrasoft scale.

In this final EFT1, the long-distance dynamics of the transition is encoded in three

spatial dimensions.

To compute the thermodynamics of a phase transition, one typically makes use of the

effective potential at finite temperature. This potential is then computed in the final

3D EFT at the softer scale. To obtain the potential and the 3D EFT Lagrangian

in practice, we utilise the thermal EFT matching software DRalgo [253], which we

1In Appendix B.1, we discuss the choice of the scale for µ̄3US which defines the softer scale.
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cross-check via further in-house software in FORM [254], and apply qgraph [255] for

diagram generation.

5.3.1 The Dimensionally Reduced Effective Potential

The starting point for our analysis is the effective potential up to two-loop level in the

softer 3D EFT. This corresponds to the functionalities of DRalgo v1.2.0. Since we

are interested in tracking the phases in multi-field space, we refrain from integrating

out further, potentially heavy vector fields [252]. By keeping the matching relations

(which relate Lagrangian parameters between the hard, soft, and softer theories) at

two-loop level, the options to compute the effective potential amount to its different

loop orders, labelled via

[3D@NLO V3@LO]: two-loop EFT matching, one-loop effective potential ,

(5.3.2)

[3D@NLO V3@NLO]: two-loop EFT matching, two-loop effective potential .

(5.3.3)

Here, we will focus on the former, namely [3D@NLO V3@LO]. The reason for this

is that the direct computation of the two-loop effective potential contains scalar

contributions that, for some parts of the parameter space, should be counted as

higher-order in comparison to the heavy vector contributions [256,257]. An artefact of

this setup is the presence of logarithmically divergent terms in the two-loop potential,

which are the result of negative mass eigenvalues in the logarithms coming mostly

from sunset diagrams. The divergences lead to numerical issues when calculating the

transitions; unphysical vacua are identified due to sharp discontinuous local minima,

leading to unphysical phase transition parameters (such as bubble walls moving

super-luminously; vW > 1). To avoid such issues we follow [258] and compute the

one-loop potential with two loop matching relations.1 In the following, we refer to

the setup in Eq. (5.3.2) as the two-loop improved one-loop potential.

1See Ref. [249] for a similar application.
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The final effective potential at the transition scale, is a function of the 3D effective

fields φ3D = {φ3D
1 , φ3D

2 }1 and the temperature T .

The 4D effective thermal potential, V4, can be calculated from the 3D potential via

V4(φ, T ) = TV3(φ3D, T ) (5.3.4)

using the relation between field values in three- and four-dimensions φ3D → φ/
√
T .

Henceforth, we suppress the 3D superscript for the fields in the 3D EFT.

5.3.2 Higher Orders in the Effective Potential

In the effective potential at the softer scale, we utilise the NLO matching relations

from DRalgo directly, based on the example file 2hdm.m.2 Similar matching relations

can also be found in [221].3 For the corresponding vacuum renormalisation, see

Sections 5.4.5 and B.2.

Up to two-loop order, the 3D effective potential is

V3 = V0,3 + V1,3 + V2,3 , (5.3.5)

V1,3 =
∑
i

ni J3

(
m2
i (φ, T )

)
, (5.3.6)

where d = 3−2ε, V0,3(φ, T ) is the three-dimensional version of the tree-level potential

Eq. (5.2.5) [220,221], and the degrees of freedom, ni, are d-dependent. The corres-

ponding mass eigenvalues mi of the dynamical fields i ∈ {W,Z,H,A,H±, h,G0, G±}

in the 3D EFT depend on the background fields for the two Higgs doublets, whose

4D analogues are seen in Eq. (5.2.1). We discussed the calculation of the mass

eigenvalues from the mass matrix in Section 5.2.

Similarly to the 4D vacuum case and the corresponding Coleman-Weinberg poten-

1These background fields are the 3D analogues of the background fields defined in Eq. (5.2.8).
2See the DRalgo GitHub, https://github.com/DR-algo/DRalgo/blob/main/examples/2hdm.

m.
3In comparison with the matching relations of [221], scalar masses in our softer-scale matching

relations are counted as higher-order inside of logarithmic terms for e.g. m2
11. Also, in Eq. (3.15)

of [221], Nf should be the number of fermions and not the number of families.

https://github.com/DR-algo/DRalgo/blob/main/examples/2hdm.m
https://github.com/DR-algo/DRalgo/blob/main/examples/2hdm.m
https://github.com/DR-algo/DRalgo/blob/main/examples/2hdm.m
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tial [259], the one-loop 3D EFT potential, V1,3, takes a closed form. The correspond-

ing integrals are UV-finite and three-dimensional

J3(m2) = 1
2

∫
p

ln
(
p2 +m2

)
d=3−2ε= − 1

12π (m2)
3
2 , (5.3.7)

where
∫

p =
∫
d3p/((2π)3 2E(p)). The two-loop contributions, V2,3, to the poten-

tial (5.3.5), as well as the two-loop 3D EFT matching relations, are directly adopted

from DRalgo [253] and can also be taken from [260]. The parameters of this final

3D EFT are evolved to the 3D renormalisation group (RG) scale, µ̄3, which we set to

µ̄3 = T in our analysis. The RG evolution and vacuum renormalisation procedures

are detailed in Section 5.4.5 and Appendix B.2.

In Section 5.3.1, we argued that directly employing the two-loop effective potential,

without integrating out heavy vector and temporal modes to induce the transition,

can lead to pathological behaviour for some benchmark points along the transition

path in the multi-dimensional field space. Since the preferred approach is therefore

to use the [3D@NLO Veff@LO] prescription Eq. (5.3.2), one may wonder about the

importance of omitting two-loop corrections in the effective potential while keeping

them in the matching. These effects have been studied in [249,258], which concluded

that the dominant uncertainties are associated with higher-order corrections in the

matching. To investigate this and support our choice of using the setup Eqs. (5.3.3)

for our scan, in Section 5.5 we examine a few benchmark points to assess the

magnitude of uncertainty introduced by neglecting higher-order terms in the effective

potential. These benchmark points are summarised in Table 5.2.

5.4 Phase Transition and GW signature

To find the phases, calculate phase transition properties and gravitational wave

spectra from our 4D (DR) potential, we make use of the PhaseTracer2 package for

C++ [261,262]. The package automates the pipeline from a 4D thermal potential to

the gravitational wave spectrum parameters and signal-to-noise ratios (SNRs) for
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proposed gravitational wave interferometers, such as LISA [21,22] and Taiji [233]. In

this section, we provide a brief review of the computation performed by the package.

5.4.1 Bubble Nucleation

First, it is important to identify the phases of the thermal potential. The phases

are traced while the temperature T is adjusted for a defined temperature range,

giving the full phase structure of the model. Thermal potentials which feature phase

transitions will typically see a single minimum at high temperature, which represents

the initial phase and the true vacuum at that temperature. As the universe cools,

a second minimum will appear, initially with a higher potential value than the first

phase.

The critical temperature, TC , is defined as the temperature at which two phases are

degenerate. Below this temperature, the new phase becomes the ‘true vacuum’, or

the stable phase, whereas the initial phase becomes the false vacuum, or metastable

phase. If a potential barrier exists between the false vacuum and the true vacuum,

the phase transition will be first order, which requires bubbles of the new phase

to nucleate via the tunnelling of the field configuration through the barrier, or via

thermal fluctuations giving enough energy to the field to overcome the barrier. The

nucleation and expansion of new bubbles of the true vacuum occur during the phase

transition, which is considered to have ended when percolation has occurred.

Euclidean Action of the Transition Path

Bubbles can only nucleate when there is a viable transition path between the minima

with a low enough action. After switching to Euclidean space, with t → −iτ , the

transition path can be parametrised as φ1(ρ) and φ2(ρ) with ρ =
√
τ 2 + x2 being a

radial parameter in space, indicating a spherically symmetric bubble.
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ϕt

ϕf ϕ0

Figure 5.1: Illustration of an upturned potential showing the true
vacuum φt, the false vacuum φf , and the ‘release’ of the
classical particle at an initial position φ0.

The associated Euclidean action can be written as

Sd[φ1, φ2](T ) = Ωd−1

∫ ∞

0
ρd−1

{1
2(φ̇1

2 + φ̇2
2) + V (φ1, φ2, T )

}
dρ , (5.4.1)

with d being the number of dimensions of the O(d)-symmetric field configuration,

and Ωn being the surface area of an n-dimensional sphere. While d = 4 for nucleation

by quantum tunnelling, d = 3 for nucleation by thermal fluctuations.

The Euler-Lagrange equation provides the saddle point of this action, known as the

bounce equation, given by [263]

φ̈i(ρ) + d− 1
ρ

φ̇i(ρ) = ∂

∂φi
V (φ1, φ2, T ) . (5.4.2)

This equation is solved with the boundary conditions φ̇i(0) = φ̇i(ρ → ∞) = 0,

and φi(ρ → ∞) = φfi , where φfi is the value of the fields at the false vacuum

(see [94, 264] for a discussion of the appropriate boundary conditions for tunnelling).

It is equivalent to the solution of a classical particle in an upturned potential, being

released at an initial position φ0
i near the true vacuum (as shown in Fig. 5.1), until

it comes to a rest exactly at the crest of the hill where the false vacuum resides.

For a 1D field configuration calculating this solution requires the utilisation of the

‘shooting method’. An initial guess for φ0 = φ(0) is made, which is then evolved

towards the false vacuum using the bounce equation. If the particle comes to rest at

the crest of that hill, the bounce solution has been calculated. Otherwise, if it goes
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beyond the crest of the hill, it overshot and the initial guess for φ0 was too close to

the true vacuum. If it doesn’t make it to the crest of the hill, it has undershot and

the initial guess was too close to the bottom of the valley in the upturned potential.

A generalisation of this method for the multi-field case is used in the ‘path deform-

ation’ algorithm, first utilised in the CosmoTransitions package [265] and then in

PhaseTracer2 [262]. Here, the transition path may no longer be a trivial straight

line path between the two minima, so the path must be perturbed in the direction

that minimises the action, to find the path of least action at temperature T . Then,

the action is calculated and checked against the nucleation/percolation criteria (see

Section 5.4.1) to determine the temperature at which the a bubble has nucleated or

the phase transition has percolated.

To examine how the path deformation works, we reparametrise the path φ(ρ) =

{φ1(ρ), φ2(ρ), . . . } as φ(x) [265], where x = x(ρ) and x is defined such that |dφ/dx| =

1 as in Ref. [262]. Next, we define dφ/dx = êt(x) as the unit tangent vector of the

path.

This results in the splitting of the bounce equation 5.4.2 into parallel and perpen-

dicular parts,

d2x

dρ2 + d− 1
ρ

dx

dρ
= (êt(x) · ∇)V (φ, T ) = d

dx
V (φ, T ) , (5.4.3)(

dx

dρ

)2
d2φ

dx2 = ∇⊥V (φ, T ) , (5.4.4)

where ∇⊥ indicates the perpendicular components of the gradient in field space1.

Through the second equation, we see that we can quantify how far off a path guess

is from the bounce solution using the normal force, defined as

Fn(x) =
(
dx

dρ

)2
d2φ

dx2 − ∇⊥V (φ, T ) , (5.4.5)

and where this vanishes, the perpendicular part of the bounce equation is satisfied.

Thus, a solution to Eq. 5.4.3 with a vanishing normal force is a solution to the

1We use the notation V (φ, T ) instead of V (φ1, φ2, T ) when referring to a generic multi-field
potential.
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bounce equation, and the path of least action has been found.

To conclude, the path deformation proceeds as follows:

1. An initial guess for the path φ(x) is made, typically a straight line connecting

the minima in field space.

2. Next, the one dimensional shooting method is utilised to iteratively solve Eq.

5.4.3 to calculate a solution for x(ρ).

3. The normal force Fn is calculated along the path using Eq. 5.4.4 to determine

in what how much and in what direction the path needs to be perturbed

towards the bounce solution.

4. A perturbed path is fed into Step 2 and then 3, until we calculate a path with

vanishing Fn given some tolerance and a bounce solution has been found.

The action Sd(T ) is then calculated for the bounce solution at temperature T .

As mentioned before, S4 is used to calculate nucleation via quantum tunnelling,

which is the most important effect at zero temperature. For the EWPT which

happens at high temperature, we thus use S3 instead to calculate nucleation by

thermal fluctuations.

Nucleation Criteria

We define the onset of the phase transition through the following nucleation criterion

[25,266,267]

S3

TN
' 141 + ln

(
A

T 4
N

)
− 4 ln

(
TN

100 GeV

)
− ln

(
β̄

100H∗

)
, (5.4.6)

where TN is the nucleation temperature, considered to be the onset of the phase

transition. β̄/H∗ is the inverse of the time taken for the phase transition to ’complete’,
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where H∗ refers to the Hubble constant at the time of GW production. For the

EWPT, ln
(
A/T 4

)
' −14 [268].1

While this condition is phrased in terms of the Euclidean action, it is derived from

the requirement that the nucleation rate per unit volume becomes significant in

an expanding universe. More precisely, it approximates the point at which the

probability of bubble nucleation in a Hubble volume becomes order unity. The full

percolation criterion requires integrating the nucleation rate over spacetime to track

the volume fraction of the false vacuum (see e.g. [132]). This criterion, which allows

for the calculation of the percolation temperature, Tp, is provided by [271]

S3

Tp
' 131 + ln

(
A

T 4
p

)
− 4 ln

(
Tp

100 GeV

)
− 4 ln

(
β̄

100H∗

)
+ 3 ln(vW ) , (5.4.7)

where we use an ansatz for β̄/H∗ = 104, justified in Section 5.5 and the bubble wall

velocity vW = 0.63 justified in Section 5.4.3. The ansatzes are used as we can only

calculate these quantities a posteriori. A more thorough calculation will iteratively

solve for a self consistent percolation temperature and gravitational wave spectrum,

however this approximation should be appropriate for our purposes.

To summarise, as the temperature T is lowered, a bounce solution is found and its

action calculated, which is then compared to the nucleation/percolation criteria until

they are met and the TN and/or Tp are found.

5.4.2 Phase Transition Parameters

The phase transition can be characterised by the transition strength parameter, ᾱ,

and the inverse time of transition, β̄/H∗, which are vital for the computation of the

gravitational wave spectrum. We use this notation to differentiate these parameters

from the 2HDM model angles α, β.

1In practice, the nucleation rate receives higher-order corrections from fluctuations around the
bounce solution, modifying the prefactor A(T ) and the interpretation of S3, and have recently
been studied in detail using functional determinant methods [251, 269]. Public tools such as
bubbleDet [270] enable the automated inclusion of these corrections, providing a more accurate
estimate of the nucleation rate.
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The trace anomaly difference of the energy-momentum tensor is

∆θ =
(
V (φ, T∗) − T∗

4
∂

∂T
V (φ, T )|T∗

)∣∣∣∣∣
φ
f

φ
t

, (5.4.8)

where T∗ is the gravitational wave production temperature, typically identified with

the percolation temperature of the phase transition Tp. ∆θ quantifies the amount of

energy available for conversion to spacetime shear stress, which is represented by the

off-diagonal components of the stress-energy tensor T µν , and is responsible for the

generation of gravitational waves [272–274]. This is taken in the relativistic plasma

limit and in practice receives further corrections if the broken-phase speed of sound

squared differs from c2
s = 1/3 [275,276].

The ratio of the trace anomaly difference to the energy density in the plasma (ap-

proximated by the radiation energy density at the GW production temperature

ρr = π2g∗T
4
p /30), quantifies the energy available for gravitational wave production,

and thus characterises the strength of the phase transition:1

ᾱ ≡ ∆θ
ρr

. (5.4.9)

Several alternative definitions of ᾱ exist in the literature. A commonly used one

defines it as the ratio of vacuum energy difference to the radiation energy density,

ᾱ = ∆Veff/ρr, which neglects thermal effects [24]. Another popular definition comes

from hydrodynamics, where ᾱ = ∆ρ/(ρ+ p) describes the energy injected into the

plasma relative to its enthalpy [277]. A third definition is based on the pseudo trace

anomaly definition [275], which approximates the energy available for shear stress

using a simplified thermal treatment.

The definition used in this chapter includes both vacuum and thermal contributions

and is particularly appropriate for models like the 2HDM, where no tree-level barrier

is present and thermal corrections are essential for realizing a FOPT.

Next, β̄/H∗, is derived from the truncated first order Taylor expansion of the bubble

1As above, we use barred notation for this parameter to differentiate it from the Lagrangian
parameters in the 2HDM.
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nucleation rate around t∗, the characteristic time of the GW production, [21,262,278]:

ΓN = Ae−S3/T ≈ ΓN(t = tp)e−β̄(t−tp) , (5.4.10)

where β̄ clearly characterises the inverse time scale of the transition. Under the

adiabatic assumption for the expansion of the universe, dT/dt = −HT with H being

the Hubble parameter [21]. Thus we can derive β̄/H∗ through [262]

β̄ = d(S3/T )
dt

∣∣∣∣∣
t=t∗

= H∗T∗
d(S3/T )
dT

∣∣∣∣∣
T=T∗

. (5.4.11)

As before, t∗ = tp as it is typically associated with the time of percolation rather

than nucleation.

5.4.3 Gravitational Wave Spectrum

Early universe FOPTs give three main sources of gravitational waves:

• Sound waves induced by the expansion of bubbles into the surrounding plasma,

• Bubble collisions creating anisotropic stress directly [279],

• Turbulence in the plasma caused by bubble collision energy [23,280].

Typically, the GW contribution from these three sources can be calculated from

knowledge of the thermal parameters ᾱ, β̄/H∗ and vW which is the bubble wall

velocity. A thorough calculation of vW can be achieved through hydrodynamical

simulations of the phase transition, as in Refs. [281, 282], however these are time

consuming and vW is typically supplied as an input parameter [262,283]. A general

perturbative determination of vW requires including out-of-equilibrium effects [284]

as recently automated in Ref. [285].

It has been argued by Steinhardt [286] that vW can be approximated by the Chapman-

Jouguet velocity, typically used to describe explosive detonations:

vW ≈ vCJ = 1
1 + ᾱ

cs +
√
ᾱ2 + 2

3 ᾱ
 (5.4.12)
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where we take the speed of sound in the plasma to be cs = 1/
√

3. For the strongest

transitions we find in Section 5.5 (which have ᾱ ≈ 4 × 10−3) the Chapman-Jouguet

velocity gives vW ≈ 0.63, justifying the ansatz used in Section 5.4.1, and the use of

this value as an input to Eq. (5.4.7) in our numerical studies. However, Eq. (5.4.12)

is valid only in a restricted regime. As noted in Refs. [283,287], the assumptions un-

derlying the Chapman-Jouguet condition do not strictly apply to cosmological phase

transitions due to the differences between chemical combustion and cosmological

phase transitions. More accurate treatments bracket the true value of vW between two

physical limits: a ballistic limit, representing minimal interaction between the bubble

wall and plasma [283], and a Local Thermal Equilibrium (LTE) limit, which assumes

local entropy conservation and requires detailed thermodynamic input [283,288,289].

The LTE expression has been shown to match well with numerical simulations [290],

but is computationally prohibitive for parameter scans. For simplicity, we adopt the

Chapman-Jouguet approximation in this chapter.

The characteristic frequency of the GW spectrum f∗ can be naively estimated by

multiplying the redshift factor (from the time of GW production to today) with

H∗. This rests on the approximation that the wavelength of the signal is set by the

horizon scale at time of production.

In the following sections, we will discuss the fitting formulas for the three sources of

gravitational waves that have been derived from numerical simulations.

Sound waves

Numerical simulations indicate that sound waves are typically the dominant source

of GWs from FOPTs [291,292]1. Two length scales dictate the bounds of the power

spectrum of the acoustic GW contribution, which are the mean distance between

the bubbles,

R∗ = (8π)1/3vW/β̄ , (5.4.13)

1This is indeed the case across the parameter space of this work, however see [293] for examples
of exceptions.
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and the thickness of the expanding sound shell in the plasma outside the bubble of

the new phase,

∆R∗ = R∗
|vW − cs|

cs
. (5.4.14)

The sound shell thickness ∆R∗ dictates the position of the peak of the power spectrum

[294]. Hindmarsh et al derived an analytic fitting formula for the acoustic GW

contribution [25, 292, 294], which we write here in the form used by PhaseTracer2

[262],

Ωswh
2(f) = 2.061Fgw,0Γ2Ū4

fSsw(f)Ω̃gwh
2 × min(H∗R∗/Ūf , 1)(H∗R∗) , (5.4.15)

where min(H∗R∗/Ūf , 1)(H∗R∗) accounts for the finite lifetime of the shear stress

induced by the sound waves [292], and

Fgw,0 = 3.57 × 10−5
(

100
g∗

)1/3

, (5.4.16)

Ssw(f) =
(
f

fsw

)3
 7

4 + 3
(
f
fsw

)2


7/2

, (5.4.17)

fsw

1µHz = 2.6
H∗R∗

(
zp
10

)(
T∗

100 GeV

)(
g∗

100

)1/6
. (5.4.18)

Here, fsw is the peak frequency of the sound waves and Ssw(f) is the spectral shape.

Γ is the ratio of enthalpy to the energy density of the plasma, taken to be 4/3 for

the early universe, Ūf is the enthalpy weighted root mean square fluid velocity of

the plasma, and zp ∼ 10 and Ω̃gw ∼ 0.012 are parameters informed by the numerical

simulations.

Thus, we see that ΓŪ2
f = Ksw is the ratio of kinetic energy in the fluid to its energy

density. We can write this as

ΓŪ2
f = Ksw = κswᾱ

1 + ᾱ
, (5.4.19)

where κsw is an efficiency factor for the conversion of the latent energy of the phase

transition into the acoustic kinetic energy of the fluid.

PhaseTracer2 employs the following fitting formula for κsw when the wall velocity



162
Chapter 5. Phase Transition Phenomenology of the 95 GeV Resonance

in the Two Higgs Doublet Model

is taken to be the Chapman-Jouguet velocity:

κsw =
√
ᾱ

0.135 +
√

0.98 + ᾱ
. (5.4.20)

Bubble Collisions

Similar numerical simulations are used to inform fitting formulas for the GW con-

tribution from bubble collisions. The envelope approximation [295], where bubble

wall thicknesses are considered to be infinitesimal and are treated as non-existent

in regions of overlap, is often employed to simplify these computations [295–299].

Here, we quote the fitting formulas used by PhaseTracer2 [262] based on the work

in Ref. [300]:

Ωenv
col h

2(f) = 1.67 × 10−5∆
(
g∗

100

)−1/3
(
β̄

H∗

)−2

K2
colSenv

(
f

fenv

)
, (5.4.21)

where

∆ = 0.48v3
W

1 + 5.3v2
W + 5v4

W

. (5.4.22)

As with the sound waves,

Kcol = κφᾱ

1 + ᾱ
(5.4.23)

represents the fraction of latent phase transition energy converting to kinetic energy

in the fluid from collisions, where

κφ = 1
1 + 0.715ᾱ

0.715ᾱ + 4
27

√
3ᾱ
2

 (5.4.24)

is the efficiency factor [298].

The spectral shape is given by

Senv(r) = (0.064r−3 + 0.456r−1 + 0.48r)−1 , (5.4.25)

and the peak collisional frequency is given by

fenv

1µHz = 16.5
(
f∗

β̄

)(
g∗

100

)1/6
(
β̄

H∗

)(
T∗

100 GeV

)
(5.4.26)
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where
f∗

β̄
= 0.35

1 + 0.069vW + 0.69v4
W

. (5.4.27)

Turbulence

Simulation based fitting formulas for the contribution from magnetohydrodynamic

turbulence in the plasma, calculated in Refs. [23,149], are used as follows in PhaseTracer2

[262]:

Ωturbh
2(f) = 3.35 × 10−4vW

(
β̄

H∗

)−1

K
3/2
turb

(
g∗

100

)−1/3 r3

(1 + r)11/3(1 + 8πf/H0)
,

(5.4.28)

where

H0 = 16.5
(
g∗

100

)1/6 ( T∗

100 GeV

)
µHz (5.4.29)

is the redshifted Hubble rate at the GW production temperature T∗, and

Kturb = κturbᾱ

1 + ᾱ
, (5.4.30)

is the fraction of phase transition energy transferred to turbulence in the plasma. The

efficiency factor κturb can be taken to be in the range 0.05 . κturb/κsw . 0.1 [292].

The variable r = f/fturb with peak frequency

fturb = 27
vW

β̄

H∗

(
g∗

100

)1/6 ( T∗

100 GeV

)
. (5.4.31)

Total Spectrum

Finally, we arrive at the total gravitational wave spectrum which is the sum of these

three contributions,

Ωgwh
2(f) = Ωswh

2(f) + Ωenv
col h

2(f) + Ωturbh
2(f) . (5.4.32)

For high GW production temperatures T∗ > 10 GeV, the contribution from bubble

collisions is neglected in PhaseTracer2 [262] due to the sound wave contribution

being significantly larger.
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5.4.4 LISA signal to noise ratios

The signal to noise ratios (SNRs) for LISA can be calculated through [25,301]

SNRLISA =

√√√√T
∫ fmax

fmin

df

(
h2Ωgw(f)
h2Ωsens(f)

)2

, (5.4.33)

where T is the length of time for data collection, and h2Ωsens(f) is the frequency

dependent sensitivity of the experiment. It is given by [301]

h2Ωsens(f) = 4π2

3H2
0
f 3Sh(f) (5.4.34)

where the Sh(f) is the inverse noise weighted sensitivity to the spectral density,

Sh(f) ' 20
√

2
3

(
SI(f)
(2πf)4 + SII(f)

)1 +
(

3f
4f∗

)2
 . (5.4.35)

For LISA, the term involving

SI(f) = 5.76 × 10−48

1 +
(
f1

f

)2
 Hz3 (5.4.36)

where f1 = 0.4 mHz, gives the acceleration noise associated with spurious forces on

the test masses, for example those that occur due to the build up of electrostatic

charge [302].

The term involving

SII(f) = 3.6 × 10−41 Hz−1 (5.4.37)

corresponds to the noise from optical path length fluctuations. The characteristic

LISA frequency f∗ = c/(2πL), where L = 2.5 × 106 km and c is the speed of light,

relates to the distance that light travels between LISA sensors.

Useful quantities that can be taken from Ωgwh
2 include the frequency fgw for which

the amplitude is greatest (the ‘peak frequency’), and the peak amplitude Ωgwh
2(fgw)

at that frequency.
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5.4.5 From the Effective Potential to Gravitational Waves

In the previous two sections, we have described our calculation of the 2HDM thermal

potential and the dynamics of the first order phase transition with a light degree of

freedom. We summarise the calculation pipeline with the following steps:

1. First, we take the physical input parameters {mh,mH ,mA,mH
± , tan(β), cos(β − α),m12}

defined at the input RG scale Λ0 = mZ .

2. Next, we use these physical input parameters to calculate the one-loop renorm-

alised 4D Lagrangian input parameters {m2
11,m

2
22,m

2
12, λ1, . . . , λ5, yt, g

2
1, g

2
2, g

2
3}.1

3. Next, we use the beta functions (provided in Appendix B.1) to RG evolve these

renormalised 4D Lagrangian parameters to the matching scale µ̄4 = 4πe−γET ,

such that we have {m̄2
11, m̄

2
22, m̄

2
12, λ̄1, . . . , λ̄5, ȳt, ḡ

2
1, ḡ

2
2, ḡ

2
3}.

4. Using the soft 3D matching relations, we calculate the soft parameters

{(m3D
11 )2, (m3D

22 )2, (m3D
12 )2, λ3D

1 , . . . , λ3D
7 , y3D

t , (g3D
1 )2, (g3D

2 )2, (g3D
3 )2} (5.4.38)

at the scale µ̄3 = T . In the soft theory, λ3D
6−7 arise from integrating out the

non-zero Matsubara modes, despite our model having as input λ6−7 = 0.

5. Using the softer matching relations, we calculate the softer parameters

{(m̄3D
11 )2, (m̄3D

22 )2, (m̄3D
12 )2, λ̄3D

1 , . . . , λ̄3D
7 , ȳ3D

t , (ḡ3D
1 )2, (ḡ3D

2 )2, (ḡ3D
3 )2} (5.4.39)

at the softer matching scale µ̄3US = µ̄3.

6. The softer parameters serve as input to construct the 3D effective potential,

V3(φ3D
1 , φ3D

2 , T ). As mentioned previously, we find the 4D effective potential

V4(φ1, φ2, T ) through Eq. 5.3.4.

7. Through V4(φ1, φ2, T ), we can then,

1Note that in this chapter and Appendix B we use the notation g1 = g′, g2 = g, and g3 = gs.
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Figure 5.2: Computed phase transitions with a light pseudoscalar
mA = 95 GeV in the region seen in Fig. 5 of Ref. [204].
We have fixed mH = 160 GeV and cos(β − α) = −0.2,
with the other fixed values as in Table 5.1.

(a) Find the minima of the potential, identifying when they co-exist and

finding possible critical temperatures TC .

(b) Find possible transition paths between the minima and calculate the

action S along the paths, comparing S/T to the percolation criterion in

Eq. 5.4.7. This allows us to calculate the percolation temperature(s) Tp.

(c) Calculate the transition parameters ᾱ, β̄/H∗, and then the peak gravit-

ational wave frequencies and amplitudes associated with the transitions.

From this, the signal-to-noise ratios (SNRs) for LISA or other experiments

can be calculated.

5.5 Results

As explained previously, we work in the real 2HDM Type I, associating the 95 GeV

resonance with the pseudoscalar A. The model features eight free parameters, of

which we fix six to benchmark values informed by theoretical and experimental

constraints (Table 5.1).
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In particular, we fix tan β to be within the range necessary to fit both the diphoton

signal and the ditau signal (see e.g. Ref. [204]). Interestingly, we have confirmed

that the value of tan(β) chosen here also optimises the strength of the EWPT as

can be seen in Fig. 5.2. In this figure, we show the transition strength parameter ᾱ

in the parameter space allowed by current constraints [204], fixing mH = 160 GeV

and cos(β − α) = −0.2 which will be motivated a posteriori. From this result it is

seen that the value of tan(β) chosen to fit both collider signals also leads to stronger

phase transitions, when m
H

± ≈ 290 GeV. This also partially alleviates the tensions

with flavour physics (b → sγ).

Lastly, we find little sensitivity to m12 below m12 ∼ 10 GeV, and fix it at an arbitrary

value of m12 = 1 GeV to represent that entire range. A preliminary scan in m12 up

to 102 GeV showed that ᾱ was strongest for m12 ≈ 101.35 GeV. An analysis with m12

fixed to this value showed no qualitative and only minor quantitative differences

from the conclusions presented below (maximum SNR at LISA was found to be

O(10−6)).

For supercooled transitions, it is also important to check that volume of space that

is in the false vacuum is decreasing, along with checking the percolation condition

in Eq. (5.4.7). This is because the condition can be met and yet the progression

of the transition could be reversed. Since supercooling as quantified by the relative

difference of δSC = (TC − TN)/TN is never larger than ∼ 20% across the parameter

space, the transitions are not strongly supercooled. Due to the absence of such large

supercooling, the condition of shrinking false vacuum is also met for the investigated

parameter space and no subsequent thermal inflation is observed [303, 304]. The

observed mild values of supercooling result also in relatively small field values and

no large separation of temperature scales in contrast to classically conformal models,

where supercooling is large and one needs to utilise a more refined framework [305–

307]. In turn, this gives credence to the validity of the high-temperature expansion

for computing both the transition timescale and the strength within the 3D EFT

framework.
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Parameter Value Motivation
mA 95 GeV Resonance mass
mh 125 GeV SM-like Higgs
m
H

± 290 GeV Alleviate b → sγ tension
tan β 1.57 Fit γγ and ττ excesses
m2

12 1 GeV2 Minimal impact on EWPT strength
v =

√
v2

1 + v2
2 246 GeV Electroweak vev

Table 5.1: Fixed inputs for our scan identifying A,H with the res-
onance respectively.

The remaining two parameters are varied as

cos(β − α) ∈ [−0.3, 0.3], mH ∈ [130, 300] GeV. (5.5.1)

We vary the temperature T between 300 and 20 GeV when finding the phases and

identifying transitions. As we shall see, we do not expect that allowing for smaller

mH in our scan leads to different vacuum structures or stronger transitions.

These ranges are fully compatible with electroweak precision fits: by keeping mH ∈

[130, 300] GeV (with near degenerate A and H±) and | cos(β − α)| ≤ 0.3, the S

and T parameters lie within the 2σ allowed region of global fits. Moreover, the

implied quartic couplings in the scalar potential remain O(1), well below the treelevel

unitarity bounds (and safely perturbative), so all 2 → 2 scalar-scalar amplitudes

satisfy |a0| < 1
2 , where a0 is the s-wave amplitude of the 2 → 2 scattering.1

We show the results of our scan in Fig. 5.3. We find that the vacuum structure as a

function of temperature depends on cos(β − α) and mH as follows:

For small mH . 200 GeV and large cos(β − α) & −0.1, the first vacuum away from

the origin to appear does not give the SM-like resonance h a vev. The further,

SM-like vacuum only appears later, and EWSB thus occurs through a two-step

transition. Either of these transitions is weaker than the immediate transition to the

SM-like vacuum, which occurs for a band of smaller cos(β − α). This is because in

this range, the electroweak gauge bosons couple more strongly to the SM-like state.

1This condition is a result of the imposition of unitarity on the Legendre expansion of the
scattering matrix, where aj is the coefficient of the j-th Legendre polynomial Pj(cos(θ)), and a0 is
real for a tree-level process. See Ref. [34] for a derivation of this constraint.
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Figure 5.3: Top Left Panel: First order phase transitions in the
mH - cos(β − α) plane, with the colour showing the
value of the largest |vc/TC | for that parameter point.
Regions of two step (2S) and one step (1S) first order
phase transitions are labelled, along with the region
that has crossovers. Top Right Panel: As for top
left, showing the peak amplitude Ωgwh

2(fgw) instead.
Bottom Left Panel: As for top left, showing the peak
frequency fgw instead. Bottom Right Panel: Com-
puted phase transitions for different parameter points
plotted against transition parameters ᾱ and β̄/H∗. Only
a randomly sampled selection (1 in 4) is chosen to be
shown on the plot to make the trends clear. The value
of cos(β − α) for each point is shown by the colour,
whereas the value of mH is shown by the size of the
circle. We show LISA SNR curves for an ansatz trans-
ition temperature of 160 GeV, and an ansatz vW = 0.63.
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BM mH cos(β − α) ᾱ1-loop ᾱ2-loop Error
2S 130 0 0.0017 0.0035 51%
1S 200 -0.2 0.00015 0.00019 21%

Table 5.2: The transition strength parameter ᾱ and relative errors
for Benchmarks 2S and 1S at (2-loop improved) 1-loop
[3D@NLO V3@LO] and 2-loop [3D@NLO V3@NLO]. Other
parameters are fixed according to Table 5.1.

For lower cos(β − α) the transition again occurs in two steps. For large mH and

cos(β − α), no barriers are created and EWSB occurs via a crossover.

In the second and third panel, we show the peak amplitude and frequency for

the GW spectrum resulting from strongest transition. As expected, the largest

amplitudes are found in the band where the transition occurs directly. However, the

amplitudes throughout this parameter space are lower than can be probed by the

anticipated GW experiments in the next decades. Moreover, the peak frequencies

are typically outside of the range of space-based interferometers, reflecting the large

β̄/H∗ parameters found in our scan.

This is explicitly demonstrated in the last panel of Fig. 5.3, in which we show the

predicted latent heat parameter ᾱ and inverse duration parameter β̄/H∗ for the range

of models we scan over. We show contours of fixed SNR for the LISA experiment

(calculated through Eq. 5.4.33) with dashed contours, where we assumed a transition

temperature of 160 GeV which we found to be characteristic, and a wall speed of

vW = 0.63. No models in our scan reach SNR unity.

Finally, we attempt to quantify the error introduced by our use of the two-loop

improved one-loop potential instead of the two-loop potential.1. We evaluate two

benchmark points which are representative of the two step region (2S) and the one

step region (1S), at both one and two loop, making use of the two loop matching

relations in both cases.

The results of these benchmark points are found in Table 5.2. We find that the

1The two-loop result was not used for our parameter scan due to the issues discussed in Sec-
tion 5.3.1
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(a) Benchmark 2S showing
a 2-step transition at
both 1- and 2-loop.

(b) Benchmark 1S @ 1-
loop, showing a dir-
ect transition labelled
2’. A weaker transition
1’ (with a lower Tp) is
also calculated.

(c) Benchmark 1S @ 2-loop,
showing a direct trans-
ition labelled 1’. This is
followed by a crossover
to the zero-temperature
minimum.

Figure 5.4: Illustrative phase diagrams for the benchmark points
1S and 2S in Table 5.2, with regions that contain 1S
and 2S shown in Fig. 5.3.

differences in percolation temperatures are in agreement with the differences between

the 1-loop and 2-loop calculations in Ref. [79], and that the differences in ᾱ are of

order O(0.1 − 1). This means that while the 2-loop potential provides important

quantitative contributions, the transition strengths are within the same order of

magnitude, resulting in similarly weak SNRs. For benchmark 2S, the interim phase

appears earlier than the SM-like vacuum, resulting in the 2-step transition (Fig.

5.4a). For benchmark 1S at 1-loop, the single step occurs directly from the origin to

the SM-like vacuum (Fig. 5.4b), as the interim phase appears at a colder temperature

than the SM-like vacuum, and disappears quickly. For the same benchmark at 2-loop,

the interim phase and the further SM-like vacuum are not distinct and instead there

is a crossover between them. Thus the transition happens to the field space location

of the interim phase, and then the phase migrates to the location of the SM-like

vacuum (Fig. 5.4c. As higher order corrections are known to change the type of

phase transition [308], this is a source of the difference between the 1-loop and 2-loop

results. We illustrate this phase structure in Fig. 5.4.

For benchmark 1S at 1-loop, we provide the ᾱ of transition 1’ in Fig. 5.4b in the

table, rather than the stronger transition 2’. This provides a more direct comparison

to the 1’ transition of 1S at 2-loop (see Fig. 5.4c).
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5.6 Conclusions

In this chapter, we identified the available parameter space for the implementation of

the 95 GeV resonance into the real Type I 2HDM based on previous work, ensuring a

simultaneous best fit for the b → sγ branching ratio, and the γγ and ττ resonances.

The constraints leave mH and cos(β − α) as the parameters that are most free to

change. After fixing the rest of the parameters in the model, we use the dimensionally

reduced thermal effective potential to compute the transition parameters ᾱ and β̄/H∗.

We also compute the gravitational wave spectrum Ωgwh
2(f), its peak frequency fgw

and peak amplitude Ωgwh
2(fgw).

We find that in the mH −cos(β − α) parameter space, there are regions of crossovers,

one step, and two step first order transitions. The region with one step transitions

predictably provides the strongest transitions, with ᾱ ∼ 0.0035. These correspond to

peak amplitudes of ∼ 10−18 and fgw ∼ 10−1.5, resulting in the strongest SNRs for the

LISA experiment being around 10−7, which are much weaker than the conventionally

desired thresholds of SNR ∼ 10. We conclude that a model that simultaneously

seeks to explain the γγ, ττ and LEP excesses in the 2HDM could only result in

FOPTs that are too weak to be detected by LISA, and would require interferometers

with much greater sensitivity to the cHz frequency band.

The modest strength of the EWPT observed in our scan can be attributed to

the radiative origin of the barrier separating the vacua. In the parameter space

compatible with identifying the 95 GeV excess as a light pseudoscalar, the scalar

mass spectrum is relatively compressed, limiting the enhancement of thermal cubic

terms that typically arise from large mass splittings. As a result, the barrier is

primarily generated by gauge boson loops, similar to the Standard Model. The

light pseudoscalar itself contributes only weakly to the thermal potential at high

temperatures, and does not induce a significant enhancement of the barrier. This

scenario contrasts with regions of the 2HDM where heavier scalars can radiatively

strengthen the transition or where tree-level terms provide a barrier already at zero
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temperature. In particular, previous studies have shown that large mass splittings,

especially between the pseudoscalar and the heavy scalar or charged Higgs, can

amplify scalar contributions to the thermal potential and lead to a strong first-order

transition. Consequently, while the transition is generically first-order in our setup, it

is not sufficiently strong to produce observable gravitational wave signals or support

electroweak baryogenesis without additional model ingredients.

Another possibility for generating a large barrier via significant mass splitting is to

treat the second, heavier scalar as a UV degree of freedom in the final EFT, and

integrate it out during dimensional reduction. However, implementing this approach

would require dynamically switching between different EFT hierarchies throughout

the parameter scan [252]. We have therefore chosen to focus on the thermal mass

hierarchy as outlined in our analysis, and defer the exploration of more intricate

EFT hierarchies to future work.

Lastly, we comment on how additional degrees of freedom could alter the thermal

history and potentially enhance the strength of the phase transition. In the 2HDM we

discussed, the barrier between the high temperature and the low temperature vacuum

is generated radiatively. A coupling of the Higgs sector to a scalar gauge singlet can

introduce a tree-level barrier in the potential. Alternatively, fermionic extensions or

higher-dimensional operators (e.g. (H†H)3/Λ2) in the UV of the 4D theory [134] can

enable viable electroweak baryogenesis. Additionally, higher-dimensional operators

in the UV of the 3D EFT theory [309–311] can modify the shape of the potential at

finite temperature, and thus the strength of the transition. These extensions may

also shift the transition dynamics into a more strongly supercooled regime, lowering

the percolation temperature and thus pushing the GW signal into the most sensitive

frequency band of space-based interferometers. A systematic exploration of such

scenarios within the dimensional reduction framework, including complementary

constraints from colliders and electroweak precision studies (e.g. [278, 312]) is a

promising direction for future work.





Chapter 6

Conclusion

Well, here at last, dear friends, on the shores of the Sea comes the end of our

fellowship in Middle-earth.

from The Lord of the Rings by J.R.R. Tolkien

In this thesis, we have explored theoretical early universe phenomena tangentially

connected by a link to the baryon asymmetry of the universe. These are: Hot Lepto-

genesis, and a first order electroweak phase transition in the Type I 2HDM. Particle

physics at this scale requires finite temperature considerations, for example thermal

statistics/thermodynamics in the analysis of hot leptogenesis, and dimensional re-

duction to calculate the thermal potential for the Type I 2HDM. We reviewed the

Standard Model, cosmological, and finite temperature theoretical background in

Chapters 2 and 3.

In Chapter 4, we discussed how the desire for naturalness in the Higgs sector imposes

the Vissani bound on the lightest right-handed neutrino, such that mN1 . 107 GeV.

This conflicts with the Davidson-Ibarra bound, the lower bound for sufficient baryon

asymmetry generation, which generally requires mN1 & 107−8 GeV. Hot Leptogenesis

is introduced as a model that can resolve these tensions with a hot sector filled with

N1, the lightest right-handed neutrino, and φ a scalar particle that keeps the sector

in kinetic equilibrium. The hot sector is identified as a natural consequence of



176 Chapter 6. Conclusion

inequitable inflaton couplings to the hot sector vs the SM. The parameter space for

the mass and Yukawa couplings of φ are scanned over such that we clearly define

regions of kinetic and chemical equilibrium in the hot sector, while ensuring no

thermal contact with the SM sector. We elucidate the new Boltzmann equations for

this setup, and calculate the baryon asymmetry ηB over part of the Casas-Ibarra

parameter space. We demonstrate a factor ∼ 50 enhancement in the generated

baryon asymmetry due to our model, and that there exist regions of the parameter

space that provide the BAU without being finely-tuned. For a benchmark point, we

find that we can produce the BAU with a Higgs sector fine-tuning of ∆H ≈ 10.4%,

and neutrino sector fine-tuning of ∆ν ≈ 855%, which is a substantial improvement

on the finely-tuned parameter space for vanilla leptogenesis.

In Chapter 5, we investigate the electroweak phase transition in the real Type I

2HDM, where the physical degree of freedom A is identified with the reported 95 GeV

di-gamma and di-tau excess. We define the constraints on the parameter space such

that the most free parameters are mH and cos(β − α), which is the coupling of H

to the gauge bosons. In order to calculate the 1-loop thermal potential (improved

with 2-loop matching), we make use of the dimensional reduction method, which has

been shown to have significantly reduced uncertainties in comparison to the more

commonly used 4D methods with daisy resummation. The Mathematica package

DRAlgo is used to compute the dimensionally reduced potential. This is then fed into

a C++ script, and the PhaseTracer2 package is used to find the vacua, calculate the

percolation temperature Tp, and calculate phase transition parameters ᾱ and β̄/H∗.

The gravitational wave spectrum Ωgwh
2(f) is also computed, along with signal-to-

noise ratios for the LISA experiment. We present this data as a parameter scan of the

mH − cos(β − α) plane, which shows regions with one-step and two-step first order

phase transitions, as well as a crossover. We find that the highest signal-to-noise

ratios are of order ∼ 10−6, and thus conclude that it is unlikely that the 95 GeV

resonance explained by the 2HDM could provide a first order phase transition that

is detectable by experiments in the near future.



Appendix A

Cross-Sections, Decay Rates and

Thermal Averaging

In this appendix, we give details of the cross-sections, decay rates and thermal

averaging we use in our computations.

A.1 Cross-Sections and Decay Rates

In Section 4.3 we examine a number of processes that contribute to energy ex-

change (via elastic scattering) or particle number exchange (via number-changing

processes). Here, we give the relevant cross-sections which we calculated with the

help of FeynCalc [313].

The Feynman diagrams for the elastic scattering processes N1N2,3 → N1N2,3 are

given in Fig. 4.4 (a) and (b), and the cross-section is

σN1N2,3→N1N2,3(s) =
(y1
φ)2(y2,3

φ )2

4πm2
φs

2
(
m2
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)
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(
m2
φ

m2
φ + s

) , (A.1.1)
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where s is the squared centre-of-mass energy. This process is relevant for considering

whether the SM and hot sectors come into equilibrium via elastic scattering.

Figure 4.4 (a), (b) and (c) contribute to the elastic scattering process N1N1 → N1N1,

leading to the cross-section

σ2N1→2N1(s) = (y1
φ)4

16πs2m2
φ(m2

φ − s)2(m2
φ + s)(2m2

φ + s)
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This process can maintain kinetic equilibrium in the hot sector.

Now we will consider number-changing processes that can maintain chemical equi-

librium. The decay rate for φ → 2N1 shown in Fig. 4.6 (a) in the φ rest frame is

given by

Γ0
φ→2N1 =

(y1
φ)2(m2

φ − 4m2
N1)

3
2

8πm2
φ

. (A.1.3)

The cross-section for 2N1 → 2φ shown in Fig. 4.6 (b) and (c) is

σ2N1→2φ(s) = y4
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The cross-section for the s-channel process 2N1 → 3φ shown in Fig. 4.6 (d) is [314]

σ2N1→3φ(s) =
λ2m2

N1y
2
φ

6144π2s2(mφ −
√
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where Ẽ(mφ, s) is defined as
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and E(x, y) is the incomplete elliptic integral of the second kind, and similarly for

F̃ (mφ, s) where F (x, y) is the incomplete elliptic integral of the first kind and the

arguments are related in the same way.

A.2 Thermal Averaging

For the rates considered in Section 4.3.1 we need the thermally averaged cross-

sections for the initial states 2N1 and N1N2,3, where N1 and N2,3 are at different

temperatures.

The thermal averaged cross-section for two identical incoming N1 particles is given

in Ref. [315],

〈σv〉 = 1

8m4
N1TN1K

2
2

(
mN1
TN1

) ∫ ∞

4m2
N1

ds σ(s)(s− 4m2
N1)

√
sK1

(√
s

TN1

)
, (A.2.1)

where K1 and K2 are modified Bessel functions of the first and second kind, respect-

ively.

For two incoming particles of different masses and different temperatures, we gener-

alise the results in Refs. [158, 315, 316]. For the case of the initial state N1N2, the
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thermal average is given by

〈σv̄〉 =
∫
σv̄fN1fN2d

3pN1d
3pN2∫

fN1fN2d
3pN1d

3pN2

(A.2.2)

where v̄ is the Møller velocity. We then neglect quantum statistics and take the

approximation that fN1 and fN2 are given by Maxwell-Boltzmann distributions. This

assumption lets us perform the integrals analytically and introduces minimal errors

in our results. We first compute the denominator,
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where we have used the fact that E dE = |p| d|p| to rewrite the integral. For the

numerator we follow the computation in [317]. We change coordinates from EN1 and

EN2 to x± = EN
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Integration over x− and x+ then leads to
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The thermally averaged cross-section for initial states N1N3 is given by replacing N2

with N3.
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Renormalisation of the 2HDM

B.1 Running and β-functions

Electroweak resonances are typically measured at the Z-pole, meaning that the

physical mass inputs will exist at an energy scale µ = mZ . Through the one-loop

renormalisation relations, we can relate this input to Lagrangian parameters that also

exist at the same energy scale. Next, we can RG evolve the Lagrangian parameters

via the beta functions to the 4D scale µ = µ̄4 of our theory, where they can then act

as input for our model.

The renormalisation group equations listed below are associated with the parameters

of the 2HDM and encode their running with respect to the four-dimensional MS

renormalisation scale µ̄4 via the β-functions. To this end, we use

t ≡ ln µ̄4 , (B.1.1)

where µ̄2
4 ≡ 4πe−γEµ2,2 and find at one-loop level:

∂tg
2
1 = 7

8π2 g
4
1 , (B.1.2)

∂tg
2
2 = − 3

8π2 g
4
2 , (B.1.3)

2This relates the MS scale with that of the MS scheme.
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∂tg
2
3 = − 7

8π2 g
4
3 , (B.1.4)

∂tyt = 1
192π2yt

(
−17g2

1 − 27g2
2 − 96g2

3 + 54y2
t )
)
, (B.1.5)

∂tm
2
11 = 1

32π2

(
−3m2

11(g2
1 + 3g2

2 − 8λ1) + 4m2
22(2λ3 + λ4)

)
, (B.1.6)

∂tm
2
22 = 1

32π2

(
−3m2

22(g2
1 + 3g2

2 − 4y2
t − 8λ2) + 4m2

11(2λ3 + λ4)
)
, (B.1.7)

∂tm
2
12 = 1

32π2m
2
12

(
−3g2

1 − 9g2
2 + 6y2

t + 4(λ3 + 2λ4 + 3λ5)
)
, (B.1.8)

∂tλ1 = 1
128π2

(
3g4

1 + 9g4
2 + 6g2

1(g2
2 − 4λ1) − 72g2

2λ1 (B.1.9)

+ 8(24λ2
1 + 2λ2

3 + 2λ3λ4 + λ2
4 + λ2

5)
)
, (B.1.10)

∂tλ2 = 1
128π2

(
3g4

1 + 9g4
2 + 6g2

1(g2
2 − 4λ2) − 72g2

2λ2 (B.1.11)

+ 96λ2(y2
t + 2λ2) + 8(−6y4

t + 2λ2
3 + 2λ3λ4 + λ2

4 + λ2
5)
)
, (B.1.12)

∂tλ3 = 1
64π2

(
3g4

1 + 9g4
2 − 36g2

2λ3 − 6g2
1(g2

2 + 2λ3) (B.1.13)

+ 8(λ3(3y2
t + 6(λ1 + λ2) + 2λ3) + 2(λ1 + λ2)λ4 + λ2

4 + λ2
5)
)
, (B.1.14)

∂tλ4 = 1
16π2

(
3g2

1(g2
2 − λ4) + 9g2

2λ4 + 6y2
t λ4 (B.1.15)

+ 4λ4(λ1 + λ2 + 2λ3 + λ4) + 8λ2
5

)
, (B.1.16)

∂tλ5 = 1
16π2λ5

(
−3g2

1 − 9g2
2 + 6y2

t + 4(λ1 + λ2 + 2λ3 + 3λ4)
)
, (B.1.17)

The renormalisation scale of the thermal transition is chosen as µ̄4 = 4πe−γET ,

which lies close to the thermal scale and suppresses its contribution to the thermal

logarithms. The scales of the soft and ultrasoft EFTs are set to µ̄3 = µ̄3US = BT ,

and for simplicity we choose B = 1. We refer to this choice of the µ̄3US scale as the

‘softer’ scale. In practice, the choice of µ̄3 can be made more rigorous by applying

the principle of minimal sensitivity [318]. This principle entails minimising the

dependence of µ̄3 or µ̄3US, for example, in the effective potential, to determine an

optimal scale µ̄opt, as discussed in [319–321].
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B.2 Relations between MS-parameters and

physical observables

The physical observables map to the MS-parameters of the Lagrangian as,

(mh,mH
± ,mH ,mA, cos(β − α), tan(β),mW ,mZ ,mt, Gf , αs)

↧

(m2
11,m

2
22,m

2
12, λ1, λ2, λ3, λ4, λ5, g1, g2, g3, yt) .

(B.2.1)

The physical observables, along with m12, serve as input parameters measured at

the Z-pole, µ = mZ . We define the shorthand notation g2
0 = 4

√
2Gfm

2
W for the

tree-level coupling.

At tree-level, the vacuum relations for the gauge couplings are,

g2
1 = g2

0 , g2
2 = g2

0

((
mZ

mW

)2
− 1

)
, g2

3 = g2
0

2

(
mt

mW

)2
. (B.2.2)

For the other Lagrangian parameters, we list the tree level relations given in Appendix

B.2 of Ref. [221]:

m2
11 = m2

12tβ − 1
2
(
m2
H + (m2

H −m2
H)cβ−α(cβ−α + sβ−αtβ)

)
, (B.2.3)

m2
22 = m2

12t
−1
β − 1

2
(
m2
H + (m2

H −m2
H)cβ−α(cβ−α − sβ−αt

−1
β )

)
, (B.2.4)

v2λ1 = 1
2

(
m2
H + Ω2t2β − (m2

H −m2
H)
(
1 − (sβ−α + cβ−αt

−1
β )2

)
t2β

)
, (B.2.5)

v2λ2 = 1
2

(
m2
H + Ω2t−2

β − (m2
H −m2

H)
(
1 − (sβ−α − cβ−αtβ)2

)
t−2
β

)
, (B.2.6)

v2λ3 = 2m
H

± + Ω2 −m2
H − (m2

H −m2
H)
(
1 + (sβ−α + cβ−αt

−1
β )(sβ−α − cβ−αtβ)

)
,

(B.2.7)

v2λ4 = m2
A − 2m

H
± +m2

H − Ω2 , (B.2.8)

v2λ5 = m2
H −m2

A − Ω2 , (B.2.9)

where we have defined Ω2 ≡ m2
H−m2

12(tan(β)+tan(β)−1) as in Ref. [221] 1, and we use

1Note that there is a difference in sign between our m2
12 and the one defined in that reference.
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the notation cβ−α = cos(β − α) (and likewise for the other trigonometric functions

and angles). In Appendix A of [79], the one-loop MS renormalised expressions are

provided with reference to the self-energies for the gauge bosons, top quark, and

the scalars h, H, H± and A. We make use of the self energies calculated by the

authors of [79], which have analytic expressions too unwieldy to quote here. Explicit

expressions for the self energies can be found in [322]. The one-loop renormalised

Lagrangian parameters are also defined at µ = mZ , like the input physical observables.

We then use the beta functions to run them to the thermal scale.



Appendix C

Integration of the DR EFT into

PhaseTracer2

The output of DRAlgo can be incredibly long and impractical for computation. With

increasing loop orders, the number of binary operations in a single expression for

the potential becomes too high for some compilers to parse and optimise.

Fortunately, techniques exist to optimise the expressions prior to inserting into

code. In Mathematica, after running the dimensional reduction in DRAlgo, the

Experimental‘ OptimizeExpression function can simplify expressions by identi-

fying common sub-expressions and creating new ‘Compile’ variables to save on

evaluation time. The subsequent expression that is composed of Compile variables

is subsequently far shorter and can be parsed by compilers.

Additionally, the CForm function can allow for the conversion of this optimised ex-

pression into C code, with the StringReplace function allowing for the manipulation

of the subsequent code strings so that they can be adapted for use in Python, C++,

or any other programming language. Thus, a function can be created that com-

pounds these operations together such that DRAlgo output can readily be used in a

programme.

When interfacing the dimensionally reduced output with PhaseTracer2, particular

care must be taken so that the package can handle divergences at low temperatures,
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as this is beyond the validity of the EFT (we remind the reader that the vacuum

structure is encoded in the Lagrangian parameters through the vacuum renormal-

isation of sec. B.2). The set_t_low and set_t_high functions in the PhaseFinder

module allows for the temperature bounds to be set, such that phases are only

identified between those temperatures and numerical issues can be avoided.

Finally, regarding the parameter scans: PhaseTracer2 does not come with an

interface to set them up. However, it is relatively straightforward to wrap the

PhaseTracer2 objects in a class that can be instantiated with the a new set of

parameters. Parallelisation of the scan across multiple threads allows for increased

efficiency when computing results, particularly on machines with numerous cores.
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