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Abstract

This thesis dissects dynamic risk transmission within and across three critical interconnected
markets—real estate and carbon trading in China and the global Al-energy nexus—
employing advanced econometric and network methodologies. These markets represent
critical sectors undergoing significant structural transitions, where understanding risk
propagation mechanisms has become essential for financial stability and policy formulation.
Despite extensive research on individual market risks, the complex, state-dependent, and
potentially non-linear patterns of risk transmission across these sectors remain inadequately
explored.

The first study examines China’s real estate market (2006-2023) through a state-
dependent vine copula network approach. The analysis reveals a persistent center-periphery
structure where top-tier cities function as central risk nodes. During high-risk periods, risk
contagion intensifies significantly, with network connectivity increasing by approximately
15%. Macroeconomic factors—particularly GDP growth and inflation—substantially
influence risk state transitions, with deteriorating fundamentals increasing the probability
of entering high-risk regimes and reshaping network topologies.

The second study investigates the impact of China’s 2021 national carbon market
unification through a multi-layer network framework incorporating both copula-based
dependencies and Diebold-Yilmaz spillovers. Following unification, market information
efficiency improved substantially (transfer rate increased from 0.432 to 0.516), and the
national market emerged as a central coordinator. Regional market roles underwent
significant transformations, with Tianjin notably shifting from a primary risk receiver (net
spillover —21.5%) to a significant transmitter (net spillover +26.1%), demonstrating how
institutional reforms can fundamentally reshape risk transmission patterns.

The third study examines how the artificial intelligence expansion influences global
energy market risk under extreme conditions. Using time-varying copulas and spillover
indices, the research finds that Al exhibits relatively weak dependence on fossil fuels and
carbon prices but significantly stronger connections with clean energy sectors, particularly
photovoltaic. These technological sector linkages intensified markedly following the Chat-
GPT release (tail dependence increasing from 0.32 to 0.52), highlighting how technological
breakthroughs can reshape market interdependencies beyond traditional energy-industrial

relationships.
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Chapter 1

Introduction



This thesis examines dynamic risk transmission(defined here as the propagation of finan-
cial shocks and volatility across interconnected markets) mechanisms across three pivotal
and interconnected markets within China’s rapidly evolving economy: the established real
estate sector, the policy-driven carbon trading market, and the emerging Al-energy nexus.
These markets, while distinct in nature, are intertwined through complex economic and
financial linkages. Real estate development decisions directly influence carbon emissions
through construction materials selection and subsequent energy consumption patterns.
Carbon market pricing mechanisms increasingly affect both property valuations and the
economic viability of energy-intensive Al operations. Al systems’ electricity demand
continues to shape energy investment and carbon reduction trajectories. The shared policy
frameworks and their collective impact on China’s growth trajectory and sustainability
goals make studying them in concert a unique lens into the systemic vulnerabilities and op-
portunities arising during China’s complex economic transition, which balances traditional
growth engines, environmental mandates, and technological frontiers.

The real estate sector has long been a cornerstone of China’s economic development,
contributing significantly to GDP growth and household wealth. According to official
data, the direct value-added of the real estate industry accounted for about 6-7% of
GDP in recent years, while including related industries such as construction and building
materials raises the share to roughly 13-14% (National Bureau of Statistics of China,
2023). Beyond these official figures, recent academic estimates suggest that when upstream
and downstream linkages are incorporated using China’s input—output matrix, the real
estate sector contributes to over 25% of aggregate demand, underscoring its systemic
importance to China’s growth model (Rogoff and Yang, 2024). However, its substantial
size, leverage, and deep connections with the financial system have persistently raised
concerns regarding systemic risk. Understanding precisely how risks propagate within this
market, particularly across the hierarchical structure of different city tiers, remains crucial
for maintaining financial stability. This study addresses fundamental questions about
how risk contagion within China’s real estate market varies across different city tiers and
distinct market regimes, such as high-risk versus low-risk states. Of particular interest is
the specific role that first-tier and key second-tier cities play within the risk transmission
network—whether they function as central hubs that amplify risks or as peripheral nodes
that absorb shocks. Furthermore, the research investigates how key macroeconomic factors,
particularly GDP growth and inflation, influence the probability of risk state transitions
and dynamically shape the structure of the contagion network.

Simultaneously, as the world’s largest carbon emitter, China has implemented significant
measures in establishing carbon markets to address pressing climate change concerns.
The transition from regional pilot markets to a unified national carbon trading system
in 2021 represents a significant milestone in China’s environmental policy landscape.

This structural transformation inevitably reshapes risk transmission pathways within the



carbon market itself and alters its integration with international counterparts, not only
influencing carbon price formation mechanisms but potentially impacting the operational
cost structures of energy-intensive industries, including real estate and Al computing
facilities. These complex interdependencies demand rigorous empirical investigation. The
second study in this thesis explores how the unification of China’s national carbon market
has fundamentally altered the pathways and intensity of risk transmission among the
pre-existing regional carbon markets. It identifies which specific regions or markets have
emerged as key nodes for risk propagation within the newly unified structure, characterizes
the nature and strength of risk transmission mechanisms between China’s unified national
carbon market and the established EU Emissions Trading System, and assesses the extent
to which the degree and pattern of integration between China’s carbon market and
international markets have changed following national unification.

More recently, the artificial intelligence industry has emerged as a key driver of the
digital economy, its applications expanding at an exponential rate. Unlike conventional
energy-intensive industries that rely on direct fossil fuel combustion, the Al sector’s primary
energy input is electricity, powering substantial computational demands. This creates a
unique and increasingly significant Al-energy nexus, linking Al development directly to
power generation methods, grid stability, and consequently to both clean energy sources and
the carbon footprint of electricity production. In particular, in regions with concentrated
data centres, Al computational demands can constitute significant electrical loads, which
can subsequently influence regional energy planning decisions and carbon reduction pathway
choices. The surge in Al development, particularly following breakthroughs such as
ChatGPT, raises critical questions concerning its financial interconnections and risk
relationships with clean energy markets, fossil fuels, and carbon pricing mechanisms,
especially under volatile conditions. The third study investigates whether, during periods
of extreme market volatility, the Al industry exhibits financial "decoupling" from traditional
fossil fuel and carbon prices compared to traditional energy-intensive sectors. It examines
how major policy shifts or significant technological shocks influence the tail dependence
structure between Al-related assets and clean energy sectors, and explores whether, under
specific extreme scenarios such as abrupt cuts in clean energy subsidies or sharp increases
in carbon taxes, the direction of volatility spillover between clean energy and Al reverses,
potentially leading to positively correlated downturns.

These three markets, operating under different mechanisms and development stages,
share common exposures to network effects, policy sensitivities, and evolving risk trans-
mission patterns. By examining them collectively using advanced methodologies, this
thesis aims to develop a comprehensive and nuanced understanding of how risks prop-
agate across interconnected market systems in a major, rapidly transforming economy.
Beyond these specific inquiries, the overarching objective is to synthesize findings across

these diverse but increasingly interdependent markets to identify common patterns and



unique characteristics of risk transmission within China’s rapidly evolving economic land-
scape. Through this comprehensive analysis, the research aims to provide a more holistic
understanding of systemic vulnerabilities and the efficacy of network-based analysis in
capturing cross-market risk transmission chains, thereby offering an empirical foundation
for macro-prudential supervision.

This thesis employs a range of sophisticated econometric and network analysis tech-
niques specifically chosen to unravel the complex risk transmission mechanisms operating
within and between the target markets. This diverse toolkit is necessary because the
intricate dynamics—characterized by non-linear dependencies, tail risks, regime shifts,
and complex network effects—cannot be adequately captured by traditional linear models.
Across the three studies, several advanced methodological approaches are consistently
applied to ensure comparability and rigour. GARCH models are utilized to capture the
time-varying volatility dynamics inherent in financial and economic time series and to filter
returns, providing standardized residuals suitable for subsequent dependence modelling.
Copula functions are employed extensively to model complex, potentially non-linear and
asymmetric dependence structures, with a particular focus on capturing tail dependencies,
which are critical for risk analysis. Network analysis is applied systematically to visualize,
quantify, and interpret the structure of risk transmission pathways, identifying central
nodes, community structures, and overall network density and efficiency. Regime-specific
and event-driven analysis is incorporated where appropriate to distinguish between different
market conditions or key structural shifts, acknowledging that risk dynamics are often
context-specific. These methods can capture the impact of non-continuous market state
changes on the topological structure of risk propagation.

Each study then adapts and combines these core approaches to address its specific
research questions effectively. The first study on real estate integrates Markov regime-
switching with state-dependent vine copula network analysis to examine how risk contagion
structures change across different market states and identify the influence of macroeco-
nomic drivers. This approach is particularly suited to capturing non-linear dynamics
and threshold effects in real estate markets, building on financial contagion theory and
spatial econometrics. The second study on carbon markets develops a multi-layer network
framework, combining copula-based dependence measures with Diebold-Yilmaz spillover
indices to provide a comprehensive view of risk transmission changes following market
unification. This integrated framework overcomes limitations of traditional linear correla-
tion analysis and single-layer network models, enabling the simultaneous capture of linear
and non-linear dependencies between markets. The third study on Al-energy linkages
utilises time-varying Copula models, specifically dynamic t-Copulas, to capture evolving
tail dependencies and complements this with the Diebold-Yilmaz approach to analyse
directional volatility spillovers under extreme conditions and around major technological

events. This dual approach reveals how financial markets price the uncertain connections



between emerging technologies and energy transitions. This synergistic methodological
strategy allows for both deep dives into the unique features of each market and poten-
tial cross-study comparisons regarding the nature of risk transmission in interconnected
systems.

The remainder of this thesis is organized as follows. Chapter 2 presents the first study;,
focusing on dynamic risk contagion in China’s real estate market. It examines how risks
propagate across different city tiers under varying market conditions and macroeconomic
influences, utilizing a state-dependent network framework. Chapter 3 contains the second
study, which analyses the risk transmission mechanisms in China’s carbon market. It
specifically investigates the impact of the national market unification on risk dynamics
within China and on its integration with international markets, employing a multi-layer
network approach. Chapter 4 comprises the third study, investigating whether the recent
AT boom has reshaped energy market risk patterns. It places particular emphasis on
extreme market conditions and tail dependencies between Al, clean energy, fossil fuels, and
carbon markets, using time-varying Copulas and spillover analysis. Chapter 5 synthesizes
the key findings from the three empirical studies. It discusses their collective implications
for understanding risk transmission in interconnected markets within a transitioning
economy like China, offers policy recommendations based on the empirical evidence, and
suggests avenues for future research.

This thesis makes several significant contributions to the academic literature on risk
transmission, network analysis, and financial econometrics, as well as offering practical
insights for policymakers and market participants. It provides a granular and comparative
analysis of risk contagion across three uniquely important and interconnected sectors
within China’s economy, offering novel insights into their distinct dynamics and shared
vulnerabilities. This integrated cross-sector research framework provides an unprecedented
perspective for understanding risk spillover mechanisms between different market sys-
tems, transcending traditional single-market risk assessment approaches. The research
demonstrates the synergistic power of integrating advanced econometric and network tech-
niques—including state-dependent models, various copula families, multi-layer networks,
and spillover indices—to capture the complex, non-linear, and time-varying nature of risk
transmission mechanisms more effectively than traditional methods. It furnishes empirical
evidence on how significant structural changes, such as market unification in the carbon
market or major technological disruptions like the Al boom, can fundamentally reshape
risk transmission patterns and market interconnectedness. Finally, it offers policy-relevant,
empirically grounded insights for designing more targeted and adaptive strategies for
managing systemic risk across interconnected market systems. This includes identifying
key nodes for intervention, understanding state-dependent risks, and anticipating the
cross-market effects of policy decisions, with implications for financial stability, carbon

market design, and sustainable energy policy. The findings of this research have practical



application value for regulatory authorities designing macro-prudential policies and for
investors developing cross-market risk hedging strategies. By examining these three diverse
yet increasingly linked markets through a unified methodological lens focusing on dynamic
risk transmission, this thesis contributes to a deeper and more nuanced understanding of
risk dynamics in complex economic systems, offering lessons that may extend beyond the

specific markets or the Chinese context studied herein.



Chapter 2

Dynamic Risk Contagion in China’s
Real Estate Market: A State-Dependent
Network Analysis with Macroeconomic

Influences



2.1 Introduction

The Chinese housing market has undergone a remarkable transformation since the 1998
housing reform, transitioning from a state-allocated system to a market-oriented system.
This shift has led to substantial improvements in living conditions and rapid housing price
appreciation, particularly in economically dynamic regions (Fang et al., 2016a; Glaeser
et al., 2017). However, this rapid growth has also raised concerns regarding housing
affordability, potential price bubbles, and systemic risks. As China’s financial and real
estate sectors become increasingly interconnected, understanding the mechanisms through
which housing market risks propagate across cities is of paramount importance. Such
understanding is not only crucial for evaluating the stability of the broader economy and
financial system, but also for developing effective, targeted policy interventions.

Existing research has provided valuable insights into housing price dependencies and
regional spillovers in China and other markets. Prior studies often rely on static frameworks
to measure comovement and contagion, using methods such as spatial econometrics or
simple pairwise correlations (Wu et al., 2014; Gong et al., 2016; Mao and Shen, 2019).
While these approaches have enriched our understanding, they generally assume stable
relationships over time and do not explicitly capture how risk contagion patterns may
change in different market regimes. As the housing market can shift between tranquil
(low-risk) periods and turbulent (high-risk) periods, ignoring regime-dependent dynamics
could lead to an incomplete picture of how risks propagate. Furthermore, existing work
often focuses on pairwise linkages or linear dependencies, potentially overlooking nonlinear,
tail-dependent, and hierarchical relationships that may become prominent during market
stress. Another critical gap in the literature concerns the role of macroeconomic conditions.
While there is evidence that economic factors such as GDP growth, inflation, or credit
conditions influence housing prices, few studies have integrated these variables directly into
a framework that not only models multivariate housing market linkages but also allows
state transitions and network structures to be endogenously affected by macroeconomic
dynamics (Brueckner et al., 2017; Duan et al., 2023; Hu and Fan, 2022).

In addition, China’s multi-tiered urban system, characterised by distinct city classes
(e.g., first-tier, second-tier, and third-tier cities), presents unique complexity in risk
contagion. Higher-tier cities typically have more mature markets, stronger economic
fundamentals, and deeper financial linkages, possibly making them central hubs for risk
transmission. Lower-tier cities, in contrast, may be peripheral and respond differently to
economic shocks or policy interventions (Fang et al., 2016a; Wu et al., 2014; Zhang and
Fan, 2019). Accounting for this hierarchical urban structure is essential for disentangling
how housing market risks spread through the network, how central and peripheral cities
differ in their risk propagation roles, and how this structure changes between high-risk

and low-risk states.



This study aims to address these research gaps by providing a dynamic, state-dependent
characterization of housing market risk contagion across 70 major Chinese cities from
2006 to 2023. We propose a novel methodological framework that integrates a Markov
regime-switching model with a vine copula-based network analysis. First, we employ a
Markov regime-switching model to identify and distinguish between high-risk and low-risk
states. This approach explicitly recognizes that risk transmission mechanisms may differ
between tranquil and turbulent periods. Second, we utilize vine copulas, a flexible tool
that enables the modelling of complex, high-dimensional dependence structures with
nonlinearity and tail dependence, to construct city-level risk contagion networks for each
regime. Vine copulas enable us to decompose multivariate dependencies into a cascade
of bivariate copulas, capturing intricate relationships that may not be well-described by
simpler multivariate models (Aas et al., 2009; Bedford and Cooke, 2002). Third, we
incorporate macroeconomic indicators, such as GDP growth and inflation, into the regime-
switching probabilities to analyse how changes in the economic environment influence the
likelihood of transitioning between high-risk and low-risk states, and how these conditions
reshape the network structure of housing market contagion.

By integrating these components, this study contributes to the literature on multiple
fronts. The combination of Markov regime-switching and vine copula techniques allows
us to capture the state-dependent, time-varying, and non-linear features of housing risk
transmission. Our analysis also sheds light on the hierarchical role of city tiers: we
hypothesize that first-tier and key second-tier cities function as central nodes in the
risk contagion network, especially under high-risk conditions. The multi-tier structure
likely induces a center-periphery pattern, where changes in a few influential markets
can reverberate through the network. Furthermore, by modelling macroeconomic factors
within transition probabilities, we can directly assess how economic downturns, inflationary
pressures, or other macro-shocks influence the tightness and connectivity of the risk network.
This approach offers a deeper understanding of the interplay between macro-level conditions
and the micro-level structure of city-level risk linkages.

In line with these objectives, we propose three main hypotheses. First, we hypothesize
that the housing market risk contagion network exhibits a pronounced center-periphery
configuration, with first-tier and strategically important second-tier cities acting as pivotal
hubs for risk transmission. Second, we expect that during high-risk states the intensity of
risk contagion increases, resulting in a tighter, more interconnected network. In contrast,
in low-risk states the network becomes looser, reflecting weaker contagion forces. Third,
we hypothesize that macroeconomic factors such as GDP growth and inflation significantly
influence state transitions and network structures, with tighter networks emerging during
periods of economic slowdown or inflationary pressure. By testing these hypotheses,
we enhance the understanding of how macroeconomic conditions shape state-dependent

housing market risk dynamics.
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This study’s findings have important theoretical and practical implications. Theo-
retically, it shows that risk contagion in housing markets is neither static nor uniformly
distributed, but depends critically on prevailing market states and economic conditions. It
also highlights the complexity introduced by hierarchical urban systems, where city-level
heterogeneity matters for the overall structure and evolution of risk networks. Practically,
these results can inform policymakers and regulators who seek to maintain housing market
stability. Understanding which cities are central transmitters of risk and how this structure
changes under different market conditions can guide targeted macroprudential policies.
For example, during periods of economic stress, interventions could focus on core cities
identified as key hubs of transmission. By anticipating how macroeconomic shifts alter
the state of the market and the configuration of the contagion network, policymakers can
design more timely and effective strategies for preventing the spread of systemic risk.

The remainder of this paper is structured as follows. Section 2.2 provides a detailed
review of related literature, tracing how our research framework addresses identified gaps.
Section 2.3 outlines the methodological design, including the Markov regime-switching
model and the vine copula network construction. Section 2.4 introduces the dataset,
presents descriptive statistics, and reports the empirical findings. Section 6 conducts
robustness checks to confirm the consistency and reliability of our results. Finally, Section
7 concludes with theoretical implications, policy recommendations, and suggestions for

future research.
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2.2 Literature Review

The study of risk contagion in real estate markets has gained significant attention in recent
years, particularly in the context of China’s rapidly evolving housing market. This section
provides a comprehensive review of the existing literature, focusing on the development of
risk measurement methodologies, the application of network analysis in real estate studies,

and the unique characteristics of China’s tiered urban housing markets.

2.2.1 Housing Market Risk Contagion: Concepts and Measure-

ment

The concept of risk contagion in housing markets refers to the propagation of financial
distress or price volatility from one market to another (Miao et al., 2011; Brady, 2011;
Cotter et al., 2015). Early studies on housing market risks primarily focused on individual
markets, employing traditional time series analysis and volatility models (Yang et al.,
2021; Cotter et al., 2015). However, these approaches often failed to capture the complex
interdependencies between different housing markets.

The development of copula theory has significantly advanced the modeling of dependen-
cies in financial and real estate markets. Copulas provide a flexible framework for modeling
the joint distribution of random variables, independent of their marginal distributions
(Sklar, 1959; Nelson, 1991). Zimmer (2012) pioneered the application of copulas in housing
market analysis, demonstrating their effectiveness in capturing nonlinear and asymmetric
dependencies between housing returns.

Building upon this, (Zimmer, 2015; Heinen et al., 2022) extended the use of copulas
to analyze comovements in housing prices across multiple U.S. markets. Their findings
highlighted the importance of tail dependence in housing market risk, particularly during
periods of market stress. This work laid the foundation for more sophisticated analyses of
risk contagion in housing markets.

The introduction of vine copulas by (Aas et al., 2009) and (Bedford and Cooke,
2002) further enhanced the toolkit for modeling high-dimensional dependencies. Vine
copulas decompose a multivariate copula into a cascade of bivariate copulas, allowing for
greater flexibility in capturing complex dependence structures. This methodology has
been increasingly adopted in housing market studies, enabling researchers to model the

intricate web of relationships between multiple housing markets simultaneously.

2.2.2 Network Analysis in Real Estate Research

The application of network analysis to real estate markets represents a significant method-

ological advancement in understanding risk contagion. Network theory provides a powerful
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framework for visualizing and quantifying the complex relationships between different
housing markets.

Gong et al. (2016) were among the first to apply network analysis to study spatial
interrelations in Chinese housing markets. Their research revealed the presence of strong
spatial dependencies and hierarchical structures in the Chinese real estate sector. Building
on this, Zhang et al. (2014) employed network techniques to investigate regional spillover
effects and rising connectedness in China’s urban housing prices. Their findings underscored
the importance of considering network effects in housing policy design and risk management.

The integration of network analysis with econometric models has opened new avenues
for research. Mao and Shen (2019) combined spatial econometrics with network analysis
to study housing price bubbles in Chinese cities, demonstrating how network structures
can influence the formation and propagation of price bubbles. This approach has proven
particularly useful in capturing the dynamic and nonlinear nature of risk contagion in

housing markets.

2.2.3 China’s Tiered Urban Housing Markets and Risk Trans-
mission

The unique characteristics of China’s urban system, with its distinct tier classification
of cities, add an additional layer of complexity to the study of housing market risk
contagion. Fang et al. (2016a) provided a comprehensive analysis of China’s housing
boom, highlighting the significant heterogeneity across different tiers of cities. They found
that the price-to-income ratios in first-tier cities far exceeded those in lower-tier cities,
suggesting different risk profiles and potential contagion patterns.

Wu et al. (2014) further explored the implications of China’s tiered urban system on
housing price dynamics. Their research revealed that price movements in higher-tier cities
often lead to those in lower-tier cities, indicating a potential top-down transmission of
market trends and risks. This hierarchical structure of risk transmission has important
implications for both investors and policymakers.

The role of economic and policy factors in shaping risk contagion patterns across city
tiers has been a focus of recent research. Glaeser et al. (2017) examined the influence of
credit conditions and local government policies on housing price growth across Chinese
cities. They found that the sensitivity of housing prices to credit conditions varied

significantly across city tiers, suggesting differentiated risk transmission mechanisms.

2.2.4 Macroeconomic Factors and Housing Market Risks

The selection of macroeconomic variables is grounded in both theoretical models and
empirical findings from leading studies on China’s housing market. First, real economic

activity is a fundamental driver of housing price dynamics, as GDP growth and income
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have been shown to explain substantial variation in housing prices across Chinese cities
(Fang et al., 2016b; Wang and Zhang, 2014). Second, monetary conditions play a central
role: empirical evidence indicates that interest rate shocks, captured by the one-year
benchmark lending rate or the Loan Prime Rate (LPR), exert significant and time-varying
effects on housing prices (Lu et al., 2023). Finally, inflation (CPI) influences the housing
market both by altering the real return to housing investment and by shaping monetary
policy responses, consistent with evidence that house prices and inflation are strongly
linked in the Chinese context (Kuang and Liu, 2015).

The interaction between macroeconomic factors and housing market risks has been
extensively studied, with particular attention paid to the Chinese context. Brueckner et al.
(2017); Miles and Zhu (2023) investigated the impact of monetary policy on housing prices
in China, finding significant but heterogeneous effects across different regions and city
tiers. Their research highlighted the importance of considering macroeconomic influences
in models of housing market risk.

Lu et al. (2023) explored the spillover effects of China’s monetary policy on the real
estate market, employing a time-varying parameter vector autoregression model. Their
findings revealed complex and time-varying relationships between monetary policy actions
and housing market dynamics, underscoring the need for dynamic modeling approaches in
studying risk contagion.

The global financial crisis of 2008 sparked renewed interest in the role of economic
shocks in propagating housing market risks. Glaeser et al. (2017); Garriga and Hedlund
(2020) examined how the transmission of housing market shocks evolved during and after
the crisis, finding evidence of increased interconnectedness and vulnerability to contagion

in the post-crisis period.

2.2.5 Methodological Innovations and Future Directions

Recent years have seen a trend towards integrating multiple methodological approaches
to capture the complex dynamics of housing market risk contagion. The combination
of copula-based dependency modeling, network analysis, and regime-switching models
represents a promising direction for future research.

Hu and Fan (2022) employed a combination of spatial analysis and copula modeling to
study risk contagion across regional housing markets in China. Their approach allowed
for the simultaneous consideration of spatial dependencies and non-linear associations
between markets. Similarly, (Duan et al., 2023) developed a network-based contagion
model that incorporates both direct and indirect transmission channels, providing a more
comprehensive view of risk propagation in interconnected housing markets.

Despite these advancements, several gaps remain in the literature. First, there is a

need for more dynamic models that can capture the time-varying nature of risk contagion
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patterns, especially in the context of rapidly evolving markets like China’s. Second, the
incorporation of microeconomic factors, such as household behaviours and expectations,
into macro-level risk contagion models remains underdeveloped. Ultimately, the impact of
policy interventions on risk contagion networks, particularly in multi-tiered urban systems,
warrants further investigation.

In conclusion, this review has highlighted the significant progress made in understanding
and modelling housing market risk contagion, particularly in the context of China’s unique
urban system. The integration of advanced statistical techniques, network analysis,
and economic theory has provided valuable insights into the complex dynamics of risk
transmission. However, there remains ample scope for further research, especially in
developing more comprehensive, dynamic, and policy-relevant models of housing market
risk contagion. This study aims to address some of these gaps by proposing a novel
methodological framework that combines state-dependent vine copula models with network
analysis, offering a more nuanced understanding of the dynamic risk contagion mechanisms

in China’s tiered housing markets.
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2.3 Methodology

This section introduces a comprehensive and rigorously grounded methodological framework
to investigate dynamic risk contagion mechanisms in China’s housing market. Our approach
integrates four key components: (i) marginal modelling of city-level housing returns using
AR-GARCH specifications; (ii) the application of vine copulas to capture high-dimensional,
non-linear, and potentially asymmetric dependencies; (iii) a Markov regime-switching
model that distinguishes between high-risk and low-risk states, enabling state-dependent
network characterization; and (iv) the incorporation of macroeconomic variables into the
transition probabilities to link economic fundamentals with shifts in market conditions and
consequent changes in the risk contagion network. Each method is chosen and combined
based on both theoretical considerations and existing empirical literature, ensuring that
our framework is well-suited to the complexities and unique features of China’s real estate
market.

A growing literature emphasizes the importance of non-linear dependence structures,
regime shifts, and macroeconomic influences in understanding housing price co-movements
and systemic risks (Fang et al., 2016a; Wu et al., 2014; Gong et al., 2016; Mao and
Shen, 2019; Hu and Fan, 2022). Copula-based models, especially vine copulas, have
been employed successfully to capture intricate tail dependencies and asymmetries in
various financial markets (Aas et al., 2009; Bedford and Cooke, 2002; Heinen et al., 2022),
while Markov regime-switching techniques have a long tradition in detecting nonlinear
dynamics and structural breaks (Fink et al., 2017). Integrating macroeconomic variables
into regime transitions follows recent advances in linking housing risk dynamics to economic
fundamentals (Brueckner et al., 2017; Glaeser et al., 2017; Duan et al., 2023). By drawing
on these methods, our framework provides a nuanced and flexible toolset to explore how
city-level interactions, regime changes, and macroeconomic conditions collectively shape

systemic risk in China’s housing market.

2.3.1 DMarginal Distributions: AR-GARCH Modeling of City-

Level Returns

Our analysis begins by focusing on the marginal dynamics of the housing price series for
N major Chinese cities. Let F;; denote the housing price index of city 7 at time ¢. We
define the log-return as:

rit =100 x (In Py —In P, ;). (2.1)

Housing returns often exhibit autocorrelation, volatility clustering, and heavy tails
(Cotter et al., 2015). To capture these features, we adopt an AR(p)-GARCH(q, p) model
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with skewed Student-t innovations:

P
Tit = Mi + Z Qi kTit—k + Eits (2.2)
k=1
Eit = OitZit, (2-3)
q P
Ui2,t =wi+ Z Oﬁﬁ‘%%t—k + Z ﬁi,zgit_l, (2.4)
k=1 =1

where z;; ~ Skew-Student-t(v;, \;), capturing asymmetric heavy-tailed behavior. The
parameters (w;, o k, 5;;) are estimated via maximum likelihood. Once fitted, we extract

standardized residuals:

Zig = =, (2.5)

Oit
and transform them into u;; = F,(Z; ;) using the empirical distribution function F%,. These
u;+ variables, now approximately U(0,1) distributed, serve as the input to our copula
modeling (Nelson, 1991).

The choice of a skewed Student-¢ distribution for the innovations (z;;) is motivated by
the empirical properties of the city-level return series, which consistently exhibit excess
kurtosis (fat tails) and non-zero skewness . This realistic distributional assumption is
essential for the subsequent copula analysis, as it ensures that the dependence structure is
estimated from residuals that accurately reflect the underlying data-generating process,
thereby preventing misspecification of the marginals from distorting the measurement of

dependence.

2.3.2 High-Dimensional Dependence Structure: Vine Copulas

Traditional correlation measures may fail to capture nonlinear and tail-dependent relation-
ships among multiple housing markets, especially during stress episodes. Copula theory
provides a flexible tool to model joint distributions independently of marginal distributions
(Sklar, 1959). By Sklar’s theorem, for N random variables Uy, ..., Uy with continuous

marginals F, ..., Fy:
Flun, .. ux) = C(Fy(w), .., Fy(ux)), (2.6)

where C' is the N-dimensional copula. The copula captures the dependence structure,
separate from the marginals.
For high-dimensional settings, vine copulas (Bedford and Cooke, 2002; Aas et al., 2009)

decompose the joint density into a product of bivariate copulas (pair-copulas). A C-vine
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decomposition, for instance, factors as:

N—1N—j
C<u17 e >UN) = Cv;,z'+j\1,...,z'—1(F(Ui\ul, e 7%‘71), F(ui+j‘u17 e ,Uiq)), (2-7)

where ¢; ;4 1, ;-1 are conditional bivariate copula densities. We select suitable copula
families (e.g., Gaussian, t, Clayton, Gumbel, Frank) for each pair-copula using informa-
tion criteria (AIC, BIC), allowing for rich and flexible dependence structures including
asymmetry and tail dependence.

Parameters are estimated by pseudo-maximum likelihood, treating the transformed
u;; as observations. This process yields an estimated vine copula structure and pairwise
dependence parameters. From these, we compute pairwise Kendall’'s 7 to gauge the

strength and direction of dependence:
11
Tij = 4/ / C’ij(u, v)dC’ij(u, ’U) — 1. (28)
0o Jo

2.3.3 Network Representation of Copula Dependencies

We construct a weighted network representation of risk contagion by mapping cities to
nodes and defining the edge weight between cities ¢ and j as the Kendall’s 7 dependence
measure 7;;. This graph-theoretic approach bridges copula-derived dependence structures
with established systemic risk analysis frameworks (?Mao and Shen, 2019). Formally, the

adjacency matrix A is defined as:
Aij = Tij for 1 7é j, and Au =0. (29)

To characterize the network topology, we compute six canonical metrics informed by
spatial econometrics and financial network literature (Gong et al., 2016; Zhang et al.,
2014). Degree centrality Cp(i) = >_; A;; identifies highly connected risk transmitters.
Betweenness centrality Cp(i) = >°; ; 0jx(i)/0k, where 04 (i) denotes the number of shortest
paths between j and k traversing i, quantifies brokerage influence. Eigenvector centrality
Cg(1), derived from the dominant eigenvector solution to ACg = ACE, captures recursive
influence propagation. Network density Density = 2M/[N(N — 1)] with M edges and
N nodes measures connection intensity. Average path length L = [N(N —1)]7' 3., dy;,
where d;; is the shortest-path distance, assesses systemic efficiency. Finally, modularity
optimization detects community structures.

Collectively, these metrics elucidate risk distribution patterns, identify contagion hubs,
and evaluate network complexity through three analytical dimensions: nodal centrality,

global connectivity, and community organization.
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2.3.4 State-Dependent Analysis: Markov Regime-Switching Model

Empirical evidence suggests that housing markets exhibit distinct regimes, alternating
between tranquil periods and episodes of heightened turbulence (Fang et al., 2016a; Glaeser
et al., 2017). To capture such nonlinear dynamics, we employ a Markov regime-switching
model (Hamilton, 1989).

We assume two latent states S; € {1, 2}, representing high-risk and low-risk regimes.

State transitions follow:
P(St = j|St_1 = Z) = pija Z,j € {1,2} (210)

The model is estimated via maximum likelihood or EM algorithms, yielding filtered
and smoothed probabilities of being in each regime at each time. We can then condition

our vine copula on the state:

N

F(r Sy = k) = c®(Fy(r1y), ..., Fn(ray)) 11 fi(rie), (2.11)

i=1

where ¢*) is the state-specific copula density. Re-estimating the vine copula and construct-
ing networks separately for each regime reveals how dependence patterns and network
topologies differ between high-risk and low-risk states. This approach aligns with the
literature that finds stronger correlations and contagion effects during market stress (Cotter
et al., 2015; Heinen et al., 2022).

2.3.5 Macroeconomic Determinants of Regime Transitions

The selection of macroeconomic variables is grounded in both theoretical models and
empirical findings from the literature on China’s housing market. Following (Glaeser
et al., 2017), who found that GDP growth is a primary driver of housing price variance
in Chinese cities, we include it to capture the influence of real economic activity. To
account for monetary conditions, we include the one-year loan rate, as (Hu and Fan, 2022)
demonstrated its significant and time-varying impact on housing market dynamics. Finally,
inflation (CPI) is included as it affects both the real return on housing investment and
the likelihood of counteracting monetary policy, consistent with the framework used by
Brueckner et al. (2017).

To incorporate economic drivers into our state transitions, we parameterize p;;; as a

function of macro variables X;:

exp(ai; + (1 X¢)
1 + exp(a;; + 1{th>’

i,je{1,2}, i#j. (2.12)

Diji =

Here, X; may include GDP growth, inflation, credit spreads, or other relevant indicators.
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By linking transition probabilities to economic conditions, our model endogenizes regime
shifts. Deteriorating fundamentals raise the probability of entering a high-risk regime,

thereby tightening dependencies and centralizing the network.

2.3.6 Hierarchical Urban Structures and Cross-Tier Analysis

China’s multi-tiered urban system suggests that first-tier cities may serve as “hubs” for
risk transmission, while lower-tier cities are more peripheral (Fang et al., 2016a; Wu et al.,
2014). To examine this hierarchy, we classify cities into tiers and investigate intra-tier and

cross-tier dependencies. Vine copulas can be structured hierarchically:

K
C(“la s 7UN) = Cinter-tier(- . ) X H Cintra-tier k( . ~)7 (213)

k=1
Where K is the number of tiers, comparing tier-level dependence under different regimes
and macroeconomic conditions reveals whether top-tier cities exert a disproportionate

influence on the network, especially during stress periods.

2.3.7 Robustness and Model Validation

To ensure the reliability and credibility of our findings, we conduct comprehensive ro-
bustness checks and formal goodness-of-fit tests across four critical dimensions of model
specification.

Model specification robustness is evaluated through sensitivity analyses of core
modeling choices. We consider alternative copula families (Gaussian, Student’s ¢, Clayton,
Gumbel, and Frank) and vine decompositions (C-vine, D-vine, and R-vine structures),
with model selection guided by information criteria (AIC/BIC) and statistical fit tests
(Genest et al., 2009b). Further, we examine the stability of results to variations in lag
structures for AR-GARCH processes and alternative macroeconomic variable specifications,
including substitutions of GDP growth with credit-based indicators.

Predictive validity is assessed via out-of-sample testing: We partition the dataset to
evaluate the forecast accuracy of state transition probabilities and network topology metrics,
thereby ensuring identified contagion patterns are not artifacts of sample overfitting.

Formal specification testing follows the methodological frameworks of Genest et al.
(2009a) and Joe (2005) to verify dependence structure adequacy. This includes hypothesis
tests of the form:

Hy : Comp = C (2.14)

where Cemp denotes the empirical copula and C; the parametrically estimated copula.
Significant deviations from Hj indicate misspecification requiring structural adjustments.

Comparative model performance is benchmarked against simplified alternatives,
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including static correlation networks and single-regime copula specifications. The superior
fit and predictive accuracy of our regime-switching vine copula framework, quantified

through likelihood ratio tests and forecasting error metrics, justify its added complexity.

2.3.8 Integrated Methodological Framework

Our analytical framework integrates six complementary methodological components to
comprehensively model housing market risk contagion. First, AR-GARCH specifications
capture city-level return dynamics while generating uniform marginal distributions required
for copula analysis. Second, vine copula constructions flexibly estimate high-dimensional
dependence structures, accommodating potential nonlinearities and tail dependencies
across urban housing markets. Third, Markov regime-switching mechanisms identify and
characterize distinct market states—particularly discriminating between high-risk and
low-risk regimes—thereby capturing temporal variations in systemic vulnerability.

Fourth, transition probabilities parametrized by macroeconomic fundamentals provide
structural interpretations of regime shifts, elucidating how economic shocks propagate
through the housing system. Fifth, a hierarchical modelling perspective incorporates
China’s tiered urban structure, empirically testing whether top-tier cities function as con-
tagion hubs. Sixth, comprehensive robustness checks and formal goodness-of-fit procedures
ensure the statistical validity and stability of our inferences.

This integrated approach offers three principal analytical advantages. First, it jointly
models city-level interactions, regime transitions, and macroeconomic linkages within a
unified framework, enabling simultaneous examination of multiple dimensions of housing
market dynamics. Second, it accommodates complex dependence patterns through vine
copulas while maintaining interpretability via regime-specific network representations,
thereby balancing methodological sophistication with empirical transparency. Third, it
establishes causal pathways from economic fundamentals to contagion dynamics through
parametrized transition probabilities, providing explicit mechanisms linking underlying
economic conditions to observable market phenomena. Grounded in rigorous econometric
theory and validated through extensive sensitivity analyses, this framework provides a
robust foundation for both policy formulation and scholarly advancement in urban housing

market research.
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2.4 Empirical Analysis

2.4.1 Data Description and Preliminary Analysis

This study utilizes monthly housing price index data for 70 major Chinese cities from
January 2006 to November 2023, sourced from the National Bureau of Statistics of China
(NBSC).To account for the hierarchical nature of China’s urban system, the 70 sample cities
are categorized into three tiers. This classification is based on the framework outlined in
the China City Statistical Yearbook. Tier 1 comprises Beijing, Shanghai, Guangzhou, and
Shenzhen. Tier 2 includes 31 major provincial capitals and developed coastal cities. The
remaining 35 cities are classified as Tier 3. Additionally, we incorporate macroeconomic
data obtained from the People’s Bank of China, including variables such as M2 money
supply, loan interest rates, GDP growth, unemployment rates, and inflation indicators.
This comprehensive dataset allows for a nuanced examination of housing market dynamics
and their relationship with broader economic trends.

Our analysis encompasses 215 monthly observations for each city, providing a robust
time series for investigating housing price dynamics. The housing price data is transformed
into monthly returns, calculated as R, = 100 x (InP;, — InP,_;), where P, denotes the
housing price index at time ¢. This transformation ensures stationarity and facilitates
meaningful comparisons across cities and time periods.

Descriptive statistics reveal considerable variation in housing price returns across the
sampled cities. For instance, Sanya exhibits the highest volatility with a standard deviation
of 1.7583, while Shanghai shows the lowest at 0.5236. Interestingly, most cities have a
median return of 0, indicating a balanced distribution of positive and negative returns over
the study period. Taiyuan stands out with the highest average monthly return (0.0162%),
while Luzhou records the lowest (-0.0166%). This disparity underscores the heterogeneity

in housing market performance across different Chinese cities.

Table 2.1: Distributional Properties of Monthly Housing Price Returns for Selected Chinese
Cities, 2006-2023

City Mean Std. Dev. Min Max Q: Median Qs
Beijing -0.0056 0.6225  -4.1855  2.3577 -0.2987 0.0000 0.2004
Shanghai 0.0033 0.5236  -2.6511  3.6790 -0.1958 0.0000 0.1998
Guangzhou -0.0116 0.7943  -3.5411  3.4486 -0.3010 0.0000 0.2023
Shenzhen -0.0093 0.8900  -4.7237  4.7011 -0.2992 0.0000 0.3011
Sanya -0.0065 1.7583 -16.4543 15.4830 -0.2987 0.0000 0.3011

Notes: This table reports the summary statistics of monthly housing price returns (in per-
centages) for selected cities in China from January 2006 to November 2023. The returns are
calculated as R; = 100 x (In P, — In P,_1), where P, is the housing price index at time ¢t. Q
and Qs represent the first and third quartiles, respectively. Standard deviation (Std. Dev.)
measures the volatility of returns over the sample period.
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Time series analysis of the housing price indices reveals distinct patterns and trends
across different cities. First-tier cities like Beijing and Shanghai generally exhibit steeper
growth trajectories compared to lower-tier cities. Notably, there are periods of accelerated
growth, particularly evident in the years following 2015, as well as episodes of price
corrections or stagnation.

To ensure the validity of our subsequent analyses, we conducted Augmented Dickey-
Fuller (ADF) tests to examine the stationarity of the housing price return series for each
city. The results indicate that all city return series are stationary (p-value < 0.05), allowing
for the direct application of various time series modeling techniques without the need for
differencing or other transformations.

The macroeconomic variables included in our study show considerable variation over
the observed period. For instance, GDP growth rates range from -6.90% to 18.70%,
reflecting periods of rapid economic expansion as well as contractions, likely including
the impact of global events such as the 2008 financial crisis and the COVID-19 pandemic.
Similarly, M2 growth rates fluctuate between 8.00% and 29.74%, indicating significant

changes in monetary policy over the study period.

Table 2.2: Descriptive Statistics of Macroeconomic Indicators in China, 2006-2023

Variable Min Q: Median Mean Q; Max
M2 Growth (%) 8.00 10.10 1290  13.77 16.66 29.74
GDP Growth (%) -6.90  6.82 7.57 8.01 10.31 18.70
CPI (%) -1.80 1.44 2.10 241  3.00 8.70

Fixed Asset Investment Growth (%) -24.50  6.55 16.50 15.66 25.35 35.00

Notes: This table presents the summary statistics of key macroeconomic variables that potentially
influence housing market dynamics in China from January 2006 to November 2023. M2 Growth
represents the growth rate of the broad money supply. GDP Growth indicates the real GDP growth
rate. CPI measures the Consumer Price Index inflation rate. Fixed Asset Investment Growth
captures the year-over-year change in fixed asset investments.

To account for the hierarchical nature of China’s urban system, we categorize the 70
cities into three tiers based on their economic development and administrative importance.
This classification reveals distinct patterns in housing price dynamics across city tiers.
Tier 1 cities (Beijing, Shanghai, Guangzhou, and Shenzhen) show the highest average
price index (100.499), followed by Tier 2 cities (100.381), and Tier 3 cities (100.280). This
tiered structure underscores the hierarchical nature of China’s urban housing markets and
suggests potential differences in risk transmission patterns across tiers.

Our preliminary analysis reveals significant heterogeneity in housing market perfor-
mance across Chinese cities, with varying degrees of volatility and growth patterns. The
observed stationarity of housing price returns facilitates further time series analysis without
the need for complex transformations. Moreover, the substantial fluctuations in macroe-

conomic variables suggest complex influences on housing market dynamics. The tiered
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structure of Chinese cities is reflected in their housing price indices, with higher-tier cities
generally showing higher and potentially more volatile price levels.

These initial findings set the stage for our subsequent in-depth analysis of risk conta-
gion mechanisms in China’s housing market. The observed heterogeneity and complex
relationships among cities and macroeconomic factors underscore the importance of a
nuanced, multi-faceted approach to understanding housing market risks in China. Our
study aims to provide a comprehensive examination of these dynamics, contributing to a
deeper understanding of the mechanisms driving housing market risks and their potential

implications for economic policy and urban development in China.

2.4.2 Structural Characteristics of the Risk Contagion Network
in China’s Real Estate Market

This section presents a comprehensive analysis of the structural characteristics of the
risk contagion network in China’s real estate market. We employ a vine copula model
to construct the network and utilize various network metrics to elucidate its topological
features, identify key cities, and examine the patterns of risk transmission. This approach
allows us to uncover the complex interdependencies in the Chinese real estate market and

provides valuable insights for risk management and policy formulation.

Overall Network Topology

The risk contagion network, derived from the first generating tree of the vine copula model,
comprises 70 nodes representing major Chinese cities and 69 edges representing significant
risk linkages. This network exhibits several distinctive topological features that provide
insights into the structure of risk transmission in China’s real estate market.

Figure 2.1 presents a visualization of the risk contagion network, where nodes represent
cities and edges represent significant risk transmission channels. The size of the nodes is
proportional to their degree centrality, while the color intensity of the edges reflects the
strength of the risk transmission relationship as measured by Kendall’s 7.

The network demonstrates a relatively sparse structure with a density of 0.0286, indi-
cating that only about 2.86% of all possible connections are realized. This sparsity suggests
that risk transmission in China’s real estate market is selective rather than ubiquitous,
with risks primarily propagating through specific channels rather than indiscriminately
across all city pairs. This finding has important implications for risk management, as it
suggests that targeted interventions focusing on key transmission channels may be more
effective than broad-based measures.

The network exhibits a short average path length of 2.70, coupled with a diameter of
5.67. These metrics indicate that despite its sparsity, the network is relatively compact,

facilitating rapid risk transmission across the system. On average, a risk shock originating
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Edge Weights (Tau)

Very Low (0.31)
Low (0.54)
—— Medium (0.59)
— High (0.63)
—— Very High (0.74)

Figure 2.1: High-Risk State Network Structure of Housing Price Risk Contagion in Chinese
Cities (2006-2023). Node size represents degree centrality, edge thickness indicates strength
of dependence (Kendall’s 7), and node color designates community membership. Key
central nodes include Fuzhou (53), Luoyang (43), and Guangzhou (30), which display
heightened betweenness centrality and serve as critical risk transmission hubs during
market stress periods.
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in one city can reach any other city in fewer than three steps, underscoring the potential
for swift contagion effects in the Chinese real estate market. This observation highlights
the need for prompt and coordinated responses to localized market disturbances, as their
effects can quickly propagate throughout the system.

A particularly interesting feature of the network is its high modularity score of 0.746,
with the community detection algorithm identifying nine distinct communities. This
community structure suggests that the risk contagion network is characterized by clusters
of cities with stronger within-group connections and weaker between-group linkages. Such a
structure may reflect regional or economic similarities among cities within each community,
potentially due to shared economic fundamentals, policy environments, or geographical
proximity. This finding has significant implications for both risk assessment and policy
design, suggesting that risk mitigation strategies may need to be tailored to specific city
clusters rather than applied uniformly across the national market.

The network’s structure, characterized by its tree-like nature, provides a clear repre-
sentation of the most critical risk transmission pathways in the Chinese real estate market.
While this approach necessarily simplifies some aspects of the market’s complex dynamics,
it offers a powerful tool for identifying the primary channels through which risks are likely
to propagate. This information is invaluable for policymakers and market participants

seeking to monitor and manage systemic risks in the real estate sector.

Identification of Key Cities and Their Roles in Risk Transmission

To identify the pivotal cities in the risk contagion network, we employ various centrality
measures. Table 2.3 presents the top five cities for each centrality metric.

The centrality analysis reveals several key insights with significant implications for
understanding risk transmission in China’s real estate market:

1) Wuhan, Nanning, Xuzhou, and Yantai consistently rank among the top cities
across all centrality measures, indicating their crucial roles in the risk contagion network.
These cities serve as major hubs for risk transmission, potentially due to their economic
importance or strategic positions in regional networks. The prominence of these cities,
which are not typically classified as first-tier, suggests that the dynamics of risk transmission
in the Chinese real estate market are more complex than a simple hierarchy based on city
tiers.

2) Nanning exhibits the highest betweenness and closeness centrality, suggesting its
critical role as an intermediary in risk transmission pathways and its ability to quickly
influence or be influenced by other cities in the network. This finding underscores the
importance of considering not only the size or economic output of a city, but also its
position in the network of market relationships when evaluating its systemic significance.

3) The high betweenness centrality of cities like Yantai and Xuzhou indicates their

crucial role in bridging different parts of the network. These cities may act as conduits for
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Table 2.3: Top Five Cities by Centrality Measures in China’s Real Estate Risk
Contagion Network (2006-2023)

Centrality Measure City Rankings
1st 2nd 3rd 4th 5th

Degree Centrality

Cities Wuhan Nanning Xuzhou Yantai Xining

Values 6 6 6 6 5
Betweenness Centrality

Cities Nanning Yantai Xuzhou Wuhan Fuzhou

Values 1,693 1,301 1,032 942 728
Closeness Centrality

Cities Nanning  Yantai ~ Wuhan Xuzhou Ningbo

Values 0.00917  0.00846  0.00798 0.00788 0.00728

Note: This table presents the top five cities ranked by three centrality measures in
China’s real estate risk contagion network. Degree centrality indicates the number of
direct connections. Betweenness centrality measures a city’s role as an intermediary
in risk transmission paths. Closeness centrality reflects the speed of risk propagation
from a city to all others in the network. Higher values indicate greater systemic
importance in the risk contagion network.

risk transmission between different regional clusters, suggesting that they could be key
points for monitoring and intervening in the spread of market risks.
The vine copula results provide additional insights into the strongest pairwise depen-

dencies in the network, as shown in Table 2.4.

Table 2.4: Strongest Risk Transmission Channels: Key Pairwise Dependen-
cies from the Vine Copula Model

City Pair Copula Kendall’s 7 Dependence Structure
Shanghai-Hangzhou Gaussian 0.55 Symmetric dependence
Nanning-Xuzhou Frank 0.56 Weak tail dependence
Nanjing—-Shanghai Gumbel 0.54 Upper tail dependence
Wuhan-Zhengzhou Gumbel 0.53 Upper tail dependence
Yantai—Nanning Frank 0.51 Weak tail dependence

Note: Kendall’s 7 € [0,1] measures the ordinal association between city pairs, with
values closer to 1 indicating stronger dependence. Copula families: Gumbel—captures
asymmetric upper tail dependence, relevant for modeling co-movements during market
booms; Gaussian—models symmetric dependence without tail emphasis; Frank—captures
symmetric dependence with weak tail behavior, suitable for moderate co-movements.

These strong pairwise connections often link economically significant cities or cities
within the same region, highlighting the importance of both economic ties and geographical
proximity in shaping the risk contagion structure. The variety of copula families used

to model these dependencies (Gaussian, Gumbel, Frank) suggests complex and diverse
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relationships between city pairs, potentially reflecting different underlying economic linkages
or market dynamics.

A particularly noteworthy finding is the emergence of non-first-tier cities like Fuzhou
and Luoyang as central nodes in the risk network. Their prominence is not explained
by economic scale alone but by their structural roles within the risk network. Fuzhou’s
high betweenness centrality (1,375 in the high-risk state) suggests it acts as a critical
intermediary. This may stem from its unique position as the core city of the Haixi Economic
Zone, where real estate market dynamics are influenced by a distinct mix of national
policies and cross-strait investment flows, creating a unique risk transmission pathway.
Luoyang’s centrality, while more surprising, may reflect its role as a major industrial base
whose real estate market is highly sensitive to national industrial policies and commodity
price cycles, thus propagating these specific shocks throughout the network.

The identification of these key cities and strong pairwise dependencies provides valuable
information for both policymakers and market participants. For policymakers, it suggests
that monitoring and intervention strategies should focus not only on the largest or
most economically prominent cities but also on those that play crucial roles in the risk
transmission network. For market participants, understanding these network dynamics can
inform investment strategies and risk management practices, allowing for more nuanced
approaches to diversification and risk assessment.

In conclusion, our analysis reveals a complex and nuanced structure of risk contagion in
China’s real estate market. The network is characterized by sparse yet efficient connections,
a strong community structure, and a risk transmission dynamic that does not strictly
adhere to conventional notions of city importance. These findings provide valuable insights
for risk assessment, policy formulation, and further research into the dynamics of China’s
real estate market. By identifying key transmission nodes and pathways, this network
analysis offers a powerful tool for understanding and managing systemic risks in this

crucial sector of the Chinese economy.

2.4.3 Dynamic Characteristics of Risk Contagion Networks un-
der High-Risk and Low-Risk States

This section examines the structural and dynamic characteristics of risk contagion networks
in China’s real estate market under different risk regimes. We employ a Markov regime-
switching model in conjunction with our vine copula approach to identify distinct market

states and analyze the corresponding network structures.
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Identification of Market Regimes and Dynamic Characteristics of Risk State

Transitions

We begin by estimating a two-state Markov switching model to identify high-risk and
low-risk regimes in China’s real estate market. Table 2.5 presents the results of this
analysis.

Table 2.5: Two-State Markov Regime-Switching Model Results for China’s Housing
Market

Parameter State 1 State 2
(High-Risk Regime) (Low-Risk Regime)

Model Parameters

Intercept (o) 0.2740 0.6144

Standard deviation (o;) 0.1060 0.1073
Transition Probability Matrix

Py 0.9260 —

Py 0.0740 —

Py — 0.0304

Py — 0.9696
Regime Characteristics

Expected duration (months) 13.51 32.89

Unconditional probability 0.2913 0.7087

Note: Estimation results from a two-state Markov regime-switching model applied to China’s
housing market returns (2006-2023). State 1 represents a high-risk regime with lower expected
returns; State 2 represents a low-risk regime with higher expected returns. F;; denotes the
probability of transitioning from state j to state i. Expected duration = (1—P;;)~!. Unconditional
probabilities represent the long-run proportion of time spent in each regime.

The expected duration for each regime, which reflects the persistence of market
conditions, is computed as E[D;] = 1/(1 — Py;), where P;; is the probability of remaining
in regime 7. This measure indicates how long, on average, the system tends to stay
in a given state before switching. Based on the estimates, the high-risk regime has an
expected duration of approximately 13.5 months, suggesting relatively frequent shifts away
from unstable market conditions. In contrast, the low-risk regime is considerably more
persistent, with an expected duration of nearly 33 months, implying that stable periods
dominate the long-run dynamics of China’s housing market.

The model identifies two distinct regimes: a high-risk state (State 1) characterized by
lower returns and higher volatility, and a low-risk state (State 2) with higher returns and
slightly lower volatility. The analysis of risk state transitions reveals several important

dynamic features:

1. Persistence of States: Both states exhibit high persistence, with P(High|High) =
0.9260 and P(Low|Low) = 0.9696, indicating that both high-risk and low-risk

regimes tend to persist once established.
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2. Asymmetric Transition Patterns: The probability of transitioning from low-risk to
high-risk (P(High|Low) = 0.0304) is lower than the probability of transitioning
from high-risk to low-risk (P(Low|High) = 0.0740), suggesting a slight tendency for

the market to revert to a low-risk state.

3. Expected Duration of States: Based on the transition probabilities, the expected
duration of the high-risk state is approximately 13.5 months, while the low-risk state
has an expected duration of about 32.9 months, indicating longer periods of stability

interrupted by shorter periods of market stress.

Figure 2.2 illustrates the smoothed probabilities of high-risk and low-risk states over
the sample period, highlighting the temporal dynamics of risk regimes in China’s real

estate market.
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Figure 2.2: Regime Identification in China’s Housing Market (2006-2023): Smoothed

Probabilities of High-Risk and Low-Risk States
Note: This figure displays the smoothed probabilities of the two-state Markov regime-
switching model estimated for China’s real estate market. The blue shaded areas represent
the probability of being in the high-risk state (State 1), characterized by lower returns
and potentially stronger risk contagion between cities.

Network Characteristics in High-Risk State

In the high-risk state, the risk contagion network exhibits several distinctive features:

1. Network Connectivity: While maintaining the same number of edges (69) as the overall

network, the high-risk state displays significantly different connectivity patterns.

2. Stronger Pairwise Dependencies: The high-risk state is characterized by generally
stronger pairwise dependencies. For instance, the connection between Xi’an and

Sanya exhibits a Kendall’s 7 of 0.58, compared to 0.36 in the low-risk state.
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3. Emergence of New Central Nodes: Cities such as Fuzhou (53), Luoyang (43), and
Guangzhou (30) gain prominence in the high-risk network, suggesting a shift in risk

transmission pathways during market stress.

4. Increased Average Path Length: The average path length increases to 6.67, indicating

that risk transmission becomes more complex and indirect during high-risk periods.

Table 2.6 presents the top 5 cities by centrality measures in the high-risk state.

Table 2.6: Central Nodes in Risk Contagion Network During High-Risk State

Centrality Measure Top Five Cities (Ranked)
1st 2nd 3rd 4th 5th

Degree Centrality (number of direct connections)

Cities Fuzhou* Luoyang! Guangzhou Chengdu Zhanjiang

Values 10 6 6 5 )
Betweenness Centrality (intermediary role in risk paths)

Cities Fuzhou*  Wuhan! Beihai Taiyuan' Luoyang!

Values 1,375 1,373 1,337 1,215 1,115
Closeness Centrality (speed of risk propagation)

Cities Wuhan'  Taiyuan' Fuzhou* Beihai Anqing

Values 0.003,30  0.003,26 0.003,19 0.003,17  0.002,95

Note: Network structure during high-risk states (State 1 from the Markov regime-switching model). * indicates

that Fuzhou appears in all three centrality rankings, demonstrating its systemic importance during market stress.
 denotes cities appearing in multiple centrality measures. The concentration of high centrality values suggests a
more hierarchical network structure during crisis periods.

Network Characteristics in Low-Risk State

The low-risk state network demonstrates markedly different characteristics:

1. Shift in Central Nodes: Cities such as Nanning (12), Xi’an (58), and Harbin (18)

become more central in the low-risk state.

2. Weaker Pairwise Dependencies: The low-risk state generally shows weaker dependen-
cies between cities. For instance, the strongest connection (Shanghai-Nanjing) has a
Kendall’s 7 of 0.54, lower than many of the strongest connections in the high-risk

state.

3. Decreased Average Path Length: The average path length decreases to 6.40, suggesting

more direct risk transmission pathways in stable market conditions.

Table 2.7 presents the top 5 cities by centrality measures in the low-risk state.
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Table 2.7: Central Nodes in Risk Contagion Network During Low-Risk State

Centrality Measure Top Five Cities (Ranked)
1st 2nd 3rd 4th 5th

Degree Centrality (number of direct connections)

Cities Xi'an  Xuzhou* Harbin  Yantai* Zhengzhou

Values 6 ) 5 ) 4
Betweenness Centrality (intermediary role in risk paths)

Cities Nanning Fuzhou Huizhou Xuzhou*  Yantai*

Values 1,511 1,424 1,245 1,014 925
Closeness Centrality (speed of risk propagation)

Cities Nanning Huizhou Fuzhou Xuzhou* Yantai*

Values 0.003,68 0.003,62 0.003,50 0.003,29  0.003,25

*

Note: Network structure during low-risk states (State 2 from the Markov regime-switching model). * indicates

cities that appear in all three centrality rankings, suggesting their robust importance across different network
perspectives. Low-risk periods are characterized by more dispersed network connectivity compared to high-risk
states.

Comparative Analysis of Network Structures

The comparison between high-risk and low-risk states reveals significant structural shifts,
which are visually represented in Figures 2.3 and 2.4.
As evident from these network visualizations, there are notable differences in the risk

transmission structures between the two states:

1. Network Connectivity: While both networks maintain the same number of edges (69),
the high-risk state (Figure 2.3) shows denser connections among certain city clusters,
particularly around central nodes like Fuzhou (53) and Wuhan (39). In contrast, the

low-risk state (Figure 2.4) exhibits a more distributed connectivity pattern.

2. Centrality Shifts: Different cities emerge as central nodes in each state. In the
high-risk state, Fuzhou (53), Luoyang (43), and Guangzhou (30) play crucial roles,
as evidenced by their central positions and numerous connections. The low-risk state

sees Xi'an (58), Xuzhou (31), and Nanning (12) taking more central positions.

3. Cluster Formation: The high-risk network shows more pronounced clustering, with
tighter groups of interconnected cities. This is particularly noticeable around nodes
like Fuzhou (53) and Wuhan (39). The low-risk network, while still showing some

clustering, has a more dispersed structure.

4. FEdge Strength: The thickness of edges in the high-risk network generally appears
greater, indicating stronger pairwise dependencies. This aligns with our earlier
observation of more frequent use of t-copulas and Gumbel copulas in the high-risk

state, suggesting stronger tail dependencies and asymmetric risk transmission.
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Figure 2.3: Risk Contagion Network Structure During High-Risk State (2006—2023)
Note: This figure visualizes the risk contagion network during high-risk periods in China’s
housing market. Node size represents degree centrality, edge thickness indicates strength
of risk transmission (Kendall’s 7), and node color represents city tier (red = first-tier,
blue = second-tier, green = third-tier). The network exhibits a higher density (0.0355)
and more pronounced clustering around key nodes like Fuzhou (53), Wuhan (39), and
Guangzhou (30), reflecting intensified risk transmission channels during market stress.
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Figure 2.4: Risk Contagion Network Structure During Low-Risk State (2006-2023)
Note: This figure depicts the risk contagion network during low-risk periods. Compared
to the high-risk state, this network exhibits lower density (0.0307) and a more distributed
structure with different cities (Xi’an (58), Nanning (12), Xuzhou (31)) emerging as central
nodes. The weaker connections and more dispersed arrangement suggest more localized
and contained risk transmission during stable market conditions. This structural shift
highlights the state-dependent nature of housing market risk contagion in China.

33



34

5. Periphery Structure: The high-risk network has fewer isolated or peripheral nodes,
suggesting that more cities become integral to the risk transmission process during
turbulent periods. In contrast, the low-risk network shows more cities in peripheral

positions, indicating a more localized risk transmission pattern during stable periods.

These structural differences underscore the need for adaptive risk management strategies
that can respond to the evolving network topology as market conditions change. The
shift in central nodes and the varying intensity of connections between states suggest
that policymakers and market participants should be prepared to adjust their focus and
strategies as the market transitions between high-risk and low-risk regimes.

Furthermore, the more pronounced clustering in the high-risk state implies that targeted
interventions in key cities or city clusters could potentially have a significant impact on
mitigating systemic risk during turbulent periods. Conversely, the more distributed
structure in the low-risk state suggests that broader, market-wide policies may be more
appropriate during stable periods.

In conclusion, our analysis reveals that the risk contagion network in China’s real
estate market undergoes substantial structural changes as it transitions between high-risk
and low-risk states. These changes are characterized by shifts in central nodes, varying
connection strengths, and differing cluster formations. Understanding these dynamic
network characteristics is crucial for developing effective, state-dependent strategies for risk

management and policy formulation in China’s complex and evolving real estate market.

2.4.4 State-Dependent Impact of Macroeconomic Factors on
Housing Market Risk

This section examines how macroeconomic factors influence risk state transitions in
China’s real estate market and their implications for the risk contagion network structure.
We employ a Markov switching model with time-varying transition probabilities and
conduct complex network analysis to elucidate the dynamic relationship between economic

conditions and housing market risks.

Regime Identification and Transition Dynamics

Our Markov switching model identifies two distinct regimes in China’s housing market:
a high-risk state (Regime 1) and a low-risk state (Regime 2). Figure 2.5 illustrates the
smoothed probabilities of these states over the sample period.

The estimated transition probabilities (P(Regime 1 | Regime 1) = 0.8537, P(Regime
2 | Regime 2) = 0.8720) indicate high persistence in both regimes, with slightly higher
persistence in the low-risk state. This suggests that both high-risk and low-risk conditions

in the Chinese housing market tend to persist once established.
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Figure 2.5: Time-Varying Smoothed Probabilities of Risk Regimes in China’s Housing
Market (2006-2023). This figure displays the estimated probabilities from the two-state
Markov regime-switching model. The high-risk state (State 1) is characterized by lower
returns and higher volatility, while the low-risk state (State 2) exhibits higher returns and
slightly lower volatility.

Asymmetric Effects of Macroeconomic Factors Across Regimes

Table 2.8 presents the estimation results of our Markov switching model, revealing signifi-
cant heterogeneity in the impact of macroeconomic factors across the two regimes.

In the high-risk regime, monetary policy (one-year loan rate) exhibits a strong negative
effect (-0.2377, p < 0.001) on housing prices, suggesting that tighter monetary conditions
exert downward pressure during market stress. Unemployment demonstrates a substantial
negative effect (-0.5863, p < 0.01), underscoring the critical role of labor market stability.
Conversely, fixed asset investment (0.0183, p < 0.01) and Manufacturing PMI (0.0381,
p < 0.01) show positive effects, indicating their role in supporting housing prices even
during turbulent periods.

In the low-risk regime, fewer macroeconomic factors show significant impacts. Notably,
the one-year loan rate exhibits a positive effect (0.0571, p < 0.05), contrary to its
impact in the high-risk regime. This suggests that during stable periods, higher interest
rates may reflect overall economic strength. Industrial value added (0.0048, p < 0.05)
and Manufacturing PMI (0.0120, p < 0.001) maintain positive effects, highlighting the

consistent influence of industrial performance on housing prices.

Evolving Network Structure Under Different Risk Regimes

Complex network analysis reveals distinct patterns in the risk contagion network structure
under high-risk and low-risk states. Figures 2.6 and 2.7 illustrate these structural differences.
Table 2.9 summarizes key network metrics for both states.

In the high-risk state, the network exhibits higher connectivity (average degree: 2.45)



Table 2.8: State-Dependent Effects of Macroeconomic Factors on
Housing Market Dynamics

High-Risk Regime Low-Risk Regime

Variable Coef. SE Coef. SE
Intercept 2.0432*  1.0963 0.3819 0.3665
Monetary Policy

M2 Growth (%) —0.0074 0.0078 0.0020 0.0042
Loan Rate, 1y (%) —0.2377*%* 0.0466 0.0571* 0.0254
Bond Yield, 10y (%) 0.0150 0.0194 0.0022 0.0095
Real Economy

GDP Growth (%) —0.0185*  0.0090 0.0003 0.0042
Unemployment (%) —0.5863** 0.2182 —0.1914*  0.0861
Industrial VA (%) —0.0083 0.0049 0.0048*  0.0023
Manufacturing PMI 0.0381** 0.0139 0.0120*** 0.0034
Investment

Fixed Asset Inv. (%) 0.0183** 0.0066 —0.0016 0.0027
Real Estate Inv. (%) 0.0068 0.0044 —0.0024 0.0020
Prices

CPI (%) 0.0193 0.0162 —0.0149 0.0091
PPT (%) —0.0153***0.0045 —0.0089*  0.0044

Observations: 216  Log-likelihood: —142.76  AIC: 337.52

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. High-risk periods are characterized by strong
negative responses to monetary tightening and economic slowdown, while low-risk periods show
fundamentally different transmission mechanisms with positive loan rate effects suggesting
normal market functioning.

Table 2.9: Structural Changes in Risk Contagion Networks Across Market Regimes

Network Measure High-Risk State Low-Risk State Change (%)
Connectivity Measures
Average degree 2.45 2.12 +15.6
Network density 0.0355 0.0307 +15.6
Average path length 6.67 6.40 +4.2
Community Structure
Number of communities 7 9 —22.2
Modularity 0.6823 0.7124 —4.2

Note: Network topology measures calculated from the estimated risk contagion networks in
each market regime. The high-risk state shows increased connectivity (+15.6% in both degree
and density) but fewer, less distinct communities. The lower modularity during high-risk periods
indicates stronger cross-regional spillovers, consistent with systemic risk amplification during market
stress.
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Figure 2.6: Macroeconomic-Driven Risk Contagion Network in Chinese Housing Market
(High-Risk State)
Note: This figure visualizes the risk contagion network structure during high-risk periods
when accounting for macroeconomic factors. Nodes represent cities with size proportional
to betweenness centrality, and edges indicate significant risk transmission channels with
thickness reflecting dependence strength. The network exhibits increased density (0.0355)
and stronger interconnections, with cities like Fuzhou (53), Wuhan (39), and Beijing (8)
emerging as key transmission hubs. This pattern suggests that during economic downturns,

risk contagion intensifies and becomes more concentrated through specific metropolitan
centers.
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Figure 2.7: Macroeconomic-Driven Risk Contagion Network in Chinese Housing Market
(Low-Risk State)

Note: This figure presents the risk contagion network during low-risk periods with macroe-
conomic influences incorporated. Compared to the high-risk network, this structure shows
lower density (0.0307), more dispersed connections, and different central nodes (Nanchang
(13), Nanning (12), Qingdao (69)). The more fragmented community structure (modu-
larity 0.7124) reflects regional segmentation of housing markets during stable economic
conditions, when local factors tend to dominate over system-wide influences, resulting in
more contained risk transmission channels.
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and a longer average path length (6.67), suggesting more complex risk transmission
pathways. Cities like Fuzhou (53), Wuhan (39), and Beijing (8) emerge as central nodes, as
evidenced by their high betweenness centrality scores (1446, 1400, and 1375, respectively).

Conversely, the low-risk state network demonstrates a more distributed structure with
lower connectivity (average degree: 2.12) and shorter average path length (6.40). Cities
such as Nanchang (13), Nanning (12), and Qingdao (69) gain prominence, with betweenness
centrality scores of 1697, 1369, and 1160, respectively.

The shift in central nodes between regimes indicates that risk transmission channels
change with macroeconomic conditions. The higher modularity in the low-risk state (0.7124
vs 0.6823) suggests more distinct community structures during stable periods, potentially
reflecting regional economic clusters.

These findings highlight the complex interplay between macroeconomic factors, risk
states, and the structure of risk contagion in China’s housing market. They provide
evidence for the necessity of state-dependent policy approaches that consider both prevailing
economic conditions and the changing dynamics of risk transmission across cities. Future
research could further explore the mechanisms through which macroeconomic factors
influence network structure and the potential for targeted interventions in key cities to

mitigate systemic risk during periods of market stress.
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2.5 Robustness Checks

To validate the reliability and stability of our main results, we conduct a comprehensive
analysis by city tiers, considering the hierarchical nature of the Chinese urban system.
This robustness check examines whether risk contagion patterns differ significantly across
different tiers of cities and how these patterns evolve under various market conditions.

Following the official classification criteria of the National Bureau of Statistics of China,
we categorize the 70 sample cities into three tiers based on their economic development
level, population size, and other socioeconomic factors: 4 first-tier cities, 31 second-tier
cities, and 35 third-tier cities. This classification allows us to investigate the heterogeneity
in housing price dynamics and risk contagion patterns across the urban hierarchy.

We begin by examining the heterogeneity in housing price growth rates across city
tiers. Figure 2.8 presents the box plots and time series of monthly housing price growth

rates for each city tier.

Box Plot of Monthly Growth Rate by City Tier Monthly Growth Rate of Housing Price Index in Chinese Cities
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Figure 2.8: Heterogeneity in Housing Price Dynamics Across China’s Tiered Urban System
Note: This figure illustrates the heterogeneous patterns in housing price dynamics across China’s
tiered urban system. Panel (a) shows that first-tier cities exhibit higher median growth rates and
larger interquartile ranges, indicating both higher returns and greater volatility. Second-tier and
third-tier cities demonstrate more moderate growth rates with narrower distributions. Panel (b)
reveals that first-tier cities experience more pronounced fluctuations over time, suggesting greater
sensitivity to macroeconomic shocks and policy changes, while lower-tier cities show relatively
smoother growth trajectories. This hierarchical pattern in market volatility corresponds to the
differentiated risk transmission roles observed in the network analysis.

The analysis reveals distinct patterns across city tiers. First-tier cities exhibit higher
median growth rates and larger interquartile ranges, indicating both higher returns and
greater volatility. Second-tier and third-tier cities generally experience lower median
growth rates with narrower interquartile ranges, suggesting more stable but modest price
appreciation. The time series plot further illustrates that first-tier cities demonstrate

more pronounced fluctuations over time, potentially reflecting greater sensitivity to market
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shocks and policy changes. In contrast, lower-tier cities show relatively smoother growth
patterns, indicating higher resilience to external disturbances.

To examine the risk contagion patterns across city tiers, we employ hierarchical copula
models. Table 2.10 presents the Equidependence Gaussian Copula estimates for each city

tier.

Table 2.10: Intra-tier Dependence Structure: Gaussian Copula Parameter Estimates

City Tier

Parameter First-tier Second-tier Third-tier

p 0.4463 0.2847 0.2080
(0.0330)  (0.0130)  (0.0130)

Notes: This table reports the Gaussian copula correlation parameter (p) estimates for
each city tier. Standard errors are reported in parentheses. The significantly higher
correlation parameter for first-tier cities indicates stronger market integration and
potential for rapid risk transmission compared to lower-tier cities.

The results indicate the strongest intra-tier correlation in first-tier cities (p = 0.4463),
suggesting high market integration and potential for rapid risk transmission. Second-tier
(p = 0.2847) and third-tier (p = 0.2080) cities exhibit weaker intra-tier correlations,
indicating more fragmented housing market structures.

To capture the cross-tier risk contagion dynamics, we employ vine copula models
for full-sample, high-risk, and low-risk periods. Tables 2.11, 2.12, and 2.13 present the

estimation results for these periods, respectively.

Table 2.11: Cross-Tier Risk Contagion: Vine Copula Estimation Results for Full Sample
Period

Tree Edge Copula Family  Parameter (f) Kendall’s 7
1 (Tier 1, Tier 2) Clayton 0.11 0.05
1 (Tier 2, Tier 3) Rotated Clayton 0.09 -0.04
2 (Tier 1, Tier 3|Tier 2) Gaussian -0.05 -0.03

Notes: This table presents the estimated parameters of the vine copula model for the
entire sample period (2006-2023). Tier 1 includes 4 first-tier cities, Tier 2 includes 31
second-tier cities, and Tier 3 includes 35 third-tier cities. Positive values of Kendall’s
7 indicate positive dependence between tiers, while negative values indicate negative
dependence.

The vine copula analysis reveals several key findings. In the full sample, we observe
weak but significant upper tail co-movements between first and second-tier cities (7 = 0.05),
while the negative tail dependence between second and third-tier cities (7 = —0.04) suggests
potential risk diversification benefits. During high-risk periods, the tail dependence between
adjacent tiers intensifies dramatically, with 7 reaching 0.62 for the first-second tier pair

and 0.85 for the second-third tier pair. This indicates rapid risk propagation through the
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Table 2.12: Cross-Tier Risk Contagion: Vine Copula Estimation Results for High-Risk
State

Edge Copula Family  Parameter () Kendall’s 7
(Tier 1, Tier 2) Gaussian 0.83 0.62
(Tier 2, Tier 3) Gaussian 0.97 0.85
(Tier 1, Tier 3|Tier 2) Rotated Gumbel -1.54 -0.35

Notes: This table presents the estimated parameters of the vine copula model during
high-risk periods identified by the Markov regime-switching model. The substantial
increase in Kendall’s 7 values compared to the full sample estimates indicates stronger
risk contagion across city tiers during market stress.

Table 2.13: Cross-Tier Risk Contagion: Vine Copula Estimation Results for Low-Risk
State

Edge Copula Family  Parameter (f) Kendall’s 7
(Tier 1, Tier 2) Survival Gumbel 2.68 0.63
(Tier 2, Tier 3) Gaussian 0.98 0.86
(Tier 1, Tier 3|Tier 2) Rotated Gumbel -1.71 -0.42

Notes: This table presents the estimated parameters of the vine copula model during
low-risk periods identified by the Markov regime-switching model. While Kendall’s 7
values remain high, the change in copula families (particularly for the Tier 1-Tier 2
relationship) suggests different dependence structures compared to high-risk periods.

urban hierarchy under stressed market conditions. The asymmetric pattern underscores
the nonlinear and state-dependent nature of housing price risk contagion across city tiers.

To visualize these complex risk contagion patterns, we construct a cross-tier risk
contagion network based on the vine copula results. Figure 2.9 presents the network
structure derived from the full-sample estimation.

The network analysis reveals the stability of the hierarchical structure of risk contagion
(Tierl — Tier2 — Tier3) across different risk states. The connections between tiers illustrate
the potential pathways for risk transmission, with the strength of connections varying
according to market conditions. This visualization provides an intuitive understanding of
the complex interdependencies in China’s tiered urban housing markets.

These findings confirm and extend our main results, highlighting the crucial role of
the hierarchical structure of the Chinese urban system in housing market risk contagion.
The analysis demonstrates significant heterogeneity in risk contagion patterns across city
tiers, with first-tier cities showing stronger market integration and potential for rapid
risk transmission. While the intensity of risk linkages varies between high- and low-risk
periods, the fundamental cross-tier risk transmission mechanism remains relatively stable.

This robustness check underscores the importance of adopting a system-wide perspective
in monitoring and assessing housing market risks, considering the interdependence and

potential spillovers among city tiers. Policy measures aimed at mitigating risk contagion
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Figure 2.9: Hierarchical Risk Contagion Network in China’s Real Estate Market
Notes: This network visualization represents the risk transmission structure across China’s tiered
urban housing markets. Nodes represent city tiers (Tier 1: first-tier cities; Tier 2: second-tier
cities; Tier 3: third-tier cities), while edges indicate significant risk linkages estimated from the
vine copula model. Edge thickness corresponds to the strength of dependence (Kendall’s 7),
with thicker edges indicating stronger risk transmission channels. The hierarchical structure
(Tier 1-Tier 2-Tier 3) remains stable across different market regimes, though the intensity of
connections varies according to market conditions. This visualization illustrates the complex
interdependencies in China’s urban housing system and potential pathways for risk propagation.

should consider both the stable interdependence properties of the urban hierarchy and the
time-varying intensity of risk linkages. Our analysis not only validates the robustness of
our main findings but also provides deeper insights into the complex dynamics of housing

market risk contagion in China’s hierarchical urban system.
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2.6 Conclusion

This study offers a comprehensive and dynamic characterization of risk contagion in
China’s housing market by integrating advanced copula-based dependency modeling,
Markov regime-switching frameworks, and complex network analysis. Drawing on monthly
data for 70 major Chinese cities from 2006 to 2023, our approach provides granular insights
into how housing market risk is transmitted, how these patterns shift across different
market regimes, and how macroeconomic conditions shape these dynamics.

Our empirical findings are quantitatively robust and multifaceted. First, we document
that the housing market risk transmission network, while sparse (with an average network
density of about 2.9%), still enables rapid contagion due to a short average path length of
roughly 2.70. This metric indicates that even when fewer than 3% of all possible city pairs
are directly connected, a shock originating in one city can propagate to others in fewer
than three steps. Moreover, we find strong evidence of state dependence: during high-risk
regimes, the network’s average degree centrality rises from approximately 2.12 to 2.45,
and the average path length increases from 6.40 to 6.67. Cities such as Fuzhou, Luoyang,
and Guangzhou emerge as central hubs in turbulent periods, supplanting the influence
of other nodes that dominate in low-risk states. Tail dependencies also intensify in these
high-risk conditions: for instance, Kendall’s 7 between certain city pairs increases by more
than 0.20 when shifting from tranquil to stressed regimes, underscoring the nonlinear and
asymmetric nature of contagion.

Second, our Markov regime-switching analysis reveals that transitions into high-risk
states, while initially low in probability (around 3% from a low-risk regime), become more
likely under deteriorating macroeconomic fundamentals. The integration of macroeconomic
variables into transition probabilities shows that a one-percentage-point decline in GDP
growth or a tightening of monetary policy (e.g., higher one-year loan rates) significantly
elevates the probability of entering a high-risk state. These macroeconomic shifts not only
raise the systemic vulnerability but also reshape the network: average Kendall’s 7 between
key city pairs increases by up to 0.10- 0.20 during periods of economic slowdown, and
previously peripheral nodes gain prominence as intermediaries of contagion.

Third, the hierarchical structure of China’s urban system has substantial implications
for risk transmission. Contrary to conventional assumptions, centrality metrics consistently
identify not only top-tier cities but also select second- and third-tier cities (e.g., Nanning,
Xuzhou, Yantai) as pivotal transmission hubs. For instance, the betweenness centrality of
Nanning reaches as high as 1697 in the low-risk state and remains elevated in turbulent
periods, indicating its stable role as a conduit of shocks. Such findings highlight the
need for broader risk surveillance that moves beyond a narrow focus on first-tier cities,
recognizing that systemic vulnerabilities can arise in unexpected locales under certain

regime conditions.
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These quantitative insights yield meaningful policy implications. Regulators and market
participants must adopt a state-contingent perspective when implementing macroprudential
measures. For example, during macroeconomic downturns or in anticipation of weaker
industrial activity, targeted oversight in cities identified as high centrality nodes could
mitigate systemic spillovers. Because tail dependencies and clustering intensify under
stress, policies that enhance market resilience—such as improved liquidity channels or
targeted credit controls—could be deployed preemptively in cities that exhibit sharp
increases in network connectivity or centrality measures when entering a high-risk state.

While our study advances the understanding of regime-dependent, macro-driven risk
transmission, it also invites further research. Future work might utilize micro-level
transaction data to disentangle household behaviors or explore cross-national comparisons
to determine how institutional differences moderate network resilience. Additionally,
evaluating the effectiveness of specific policy interventions in reducing network density or
weakening tail dependencies during high-risk episodes would provide actionable guidance
for regulators.

In sum, by integrating detailed quantitative evidence with sophisticated empirical
methods, this study offers a richer, data-driven perspective on how risk propagates through
China’s urban housing markets, how macroeconomic conditions influence these contagion
patterns, and which cities serve as critical nodes in different states. Our findings underscore
that housing market risk is inherently dynamic and hierarchical, necessitating nuanced,

evidence-based strategies for monitoring and managing systemic vulnerabilities.
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3.1 Introduction

Carbon markets have emerged as a crucial policy instrument for addressing climate change
through market-based mechanisms to control and reduce greenhouse gas emissions. Oper-
ating on the "polluter pays" principle, these markets internalize the negative externalities of
emissions while providing flexibility in achieving the reduction target (Mansanet-Bataller
and Pardo, 2008). As of January 2024, 28 carbon trading systems are operational world-
wide, with more than 20 additional systems under development. These markets now
encompass approximately 17% of global greenhouse gas emissions and 55% of global GDP,
demonstrating their growing importance in global climate action (ICAP, 2022).

China, as the world’s largest carbon emitter, plays a pivotal role in global climate change
mitigation efforts(Liu et al., 2015; Dargusch, 2017).China has demonstrated significant
progress in this arena, beginning with the establishment of seven regional pilot markets—
Betjing, Shanghai, Tianjin, Chongqing, Guangdong, Shenzhen, and Hubei—which were
launched between 2013 and 2014. A subsequent pilot in Fujian was introduced in late 2016,
bringing the total to eight regional markets prior to the initiation of the national ETS. The
country achieved a major milestone with the launch of its national carbon market on July
16, 2021, initially incorporating 2,162 power generation enterprises and covering over 4.5
billion tons of emissions in its first year(Jia et al., 2024). By December 2023, the national
market had facilitated cumulative transactions of 442 million tons of carbon emission
allowances, with a total transaction value of 24.919 billion yuan, establishing China as
a significant player in global carbon trading and marking a new phase in market-based
climate action (Xin-gang et al., 2023).

Despite the importance of this transition, current research falls short in several key
areas. While extensive literature exists on established markets like the European Union
ETS (EU ETS) (Ellerman et al., 2010; Mansanet-Bataller et al., 2007), the unique
characteristics of China’s evolving carbon market remain inadequately explored. Recent
studies examining the initial impact of China’s unified carbon market (Wu et al., 2023)have
provided preliminary evidence of market integration effects(Wu et al., 2023). However,
these studies primarily focus on price convergence, leaving the complex dynamics of risk
transmission and network effects unexplored. The potential for both linear and non-linear
dependencies and complex network effects in risk transmission has been largely overlooked
in the context of emerging carbon markets. Moreover, the application of network theory to
understand systemic risk in carbon markets remains limited, despite its proven utility in
analyzing financial market interconnections (Acemoglu et al., 2015; Hautsch et al., 2015).

To address these critical gaps, this paper investigates the evolution of risk transmission
mechanisms within China’s carbon market and between China and international markets,
particularly after the unification of China’s national carbon market in 2021. Based

on market integration theory and previous empirical evidence, we propose three main
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hypotheses: First, market unification should significantly affect risk spillover intensity
among regional markets due to enhanced interconnectedness. Second, the national market
is expected to play a significant role in the risk transmission network, given its position as
a unified trading platform. Third, international market integration should evolve while
maintaining distinct domestic market characteristics due to regulatory differences.

Our investigation focuses on four interconnected research questions that test these
hypotheses: (1) How has the national market unification altered risk transmission pathways
and intensities among regional markets? (2) Which regions have emerged as key nodes in
risk transmission within the unified structure? (3) What is the nature of risk transmission
mechanisms between China’s national market and the EU ETS? (4) To what extent
has the integration between China’s carbon market and international markets changed
post-unification?

Our empirical analysis reveals significant changes in risk transmission pathways following
the unification of China’s carbon market. We find that after national market unification,
the average risk spillover intensity between regional markets decreased by 5.60% (from
3.517 to 3.320), indicating evolving market dynamics. The national market emerged as
a risk absorber with a net spillover of -3.013%, while maintaining moderate centrality
(eigenvector centrality 0.412). In the international context, the EU ETS shifted from being
a net risk receiver (-4.773%) to a net transmitter (15.828%), with strengthened linkages
particularly with Beijing (0.077) and Guangdong (0.067) markets.

This study contributes to the literature in several ways. Theoretically, we extend the
application of multi-layer network analysis to emerging carbon markets, building on the
work of (Wu et al., 2022) to provide a novel framework for understanding complex risk
dynamics in these evolving systems. Methodologically, we integrate multiple economet-
ric techniques into a unified analytical framework, addressing the challenges of market
heterogeneity and evolving trading relationships identified in recent studies (Yang et al.,
2024). Empirically, we provide the first comprehensive evidence on the changing nature
of risk transmission in China’s transitioning carbon market, contributing to the broader
literature on market structure and systemic risk in emerging financial systems.

The evidence suggests that market unification has led to significant structural changes.
Shanghai maintained its position as a major risk transmitter (net spillover 21.582%), while
Tianjin transformed from a net receiver (-21.502%) to a major transmitter (26.115%).
Information transfer efficiency improved from 0.432 to 0.516, indicating enhanced market
responsiveness. These findings have important implications for market regulation and risk
management strategies.

The remainder of this paper is structured as follows. Section 2 reviews the relevant
literature on carbon markets and risk transmission, highlighting the current gaps in
understanding China’s unified market. Section 3 details our data sources and presents our

multi-layer network methodological framework. Section 4 presents our empirical results,
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analyzing changes in risk transmission patterns before and after market unification. Section
5 discusses the implications of our findings for policymakers, market participants, and
international market integration. Section 6 concludes with policy recommendations and

suggestions for future research.
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3.2 Literature Review

To comprehensively situate this study, this literature review synthesizes insights from four
critical and interconnected domains. We begin by charting the evolution of carbon markets,
both globally and within China, to establish the institutional context and identify the
unique challenges posed by the recent national unification. Building on this context, we
then introduce foundational concepts from financial risk theory, which provide the essential
tools for measuring and interpreting risk propagation. Subsequently, we examine market
integration theory, which offers a lens through which to understand how the unification
process is expected to alter these risk dynamics. Finally, we review recent advancements
in network analysis, the primary methodological framework used in this study to visualize
and quantify the complex, evolving web of relationships within and beyond China’s carbon
market. This structured review progressively builds the theoretical and methodological
foundation, culminating in the identification of the specific research gaps this chapter aims

to address.

3.2.1 Evolution of Carbon Markets and Emerging Challenges

The development of carbon markets has been a pivotal strategy in global efforts to mitigate
climate change. Early theoretical work laid the foundation for market-based environmental
policies. Stavins (1995)analyzed the application of market mechanisms in environmental
policy, highlighting the efficiency gains from tradable permits over traditional regulatory
approaches. Tietenberg (2010) further explored the design and implementation of emissions
trading systems, emphasizing allocation methods, compliance mechanisms, and market
oversight.

The European Union Emissions Trading System (EU ETS), established in 2005, serves
as a benchmark for cap-and-trade systems worldwide. Kruger and Pizer (2004)examined
the early phases of carbon emissions trading in Europe, identifying critical factors in-
fluencing market performance, such as allocation methods and regulatory frameworks.
Schmalensee and Stavins (2017) provided an in-depth assessment of the EU ETS, evaluat-
ing its environmental effectiveness and economic efficiency, and underscored the need for
continuous policy adjustments to enhance market performance.

Building on these insights, empirical research has focused on price formation mecha-
nisms, market efficiency, and factors influencing carbon price volatility. Chevallier (2009)
analyzed the relationship between macroeconomic conditions and carbon price volatility
in the EU ETS, suggesting that carbon markets are influenced by a complex interplay of
environmental policies and broader economic factors.

In emerging markets, carbon price formation exhibits distinct characteristics. Cong

and Lo (2017) demonstrated that these markets show heightened sensitivity to policy
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interventions and reduced responsiveness to market fundamentals. Chang et al. (2018); Zhu
et al. (2020) identified regulatory uncertainty, market liquidity constraints, and industrial
transitions as key determinants of carbon price volatility in developing markets. These
findings underscore the unique challenges faced by emerging carbon markets in establishing
efficient price discovery mechanisms.

China’s carbon market development has been characterized by gradual experimentation
and regional pilots since 2011 (Zhang and Hao, 2017). Chang et al. (2018) analyzed
trading patterns across these pilot markets, revealing significant heterogeneity in market
liquidity and price discovery efficiency.Zhang et al. (2019) emphasized the importance
of standardized rules and monitoring systems by examining how regulatory differences
influence market performance.

More recent studies have focused on the initial performance of China’s national
carbon market. Xiao et al. (2022); Sun et al. (2022) investigated the impact of market
unification on trading volumes and price stability, finding that while unification has
improved infrastructure, challenges such as uneven regional participation persist. Zhao
et al. (2022) analyzed the role of government policies in shaping market expectations,
highlighting the influence of regulatory signals on market behavior. These studies indicate
that while progress has been made, issues like regional disparities and regulatory influence
remain critical areas for further study.

Having established the unique institutional context of China’s evolving carbon market,
understanding the transmission of shocks within this system requires a robust theoretical
toolkit. Therefore, we now turn to financial risk theory to define the core concepts of risk

propagation central to our analysis.

3.2.2 Financial Risk Theory Applied to Carbon Markets

Understanding risk transmission mechanisms is essential for analyzing emerging markets,
and financial risk theory offers valuable frameworks in this regard. Tobias and Brunnermeier
(2016) developed methodologies for measuring market risk through CoVaR, emphasizing
the importance of distinguishing between systemic and individual risks.Antonakakis et al.
(2020) advanced the application of time-varying parameter vector autoregression models,
providing insights into evolving market structures and dynamic connectedness.

Systemic risk measurement and transmission channels in interconnected markets have
been focal points in recent studies. Diebold and Yilmaz (2014) proposed a framework for
analyzing connectedness in networked financial systems, highlighting how market structure
influences shock transmission. Elliott et al. (2014)extended this analysis to financial
networks, demonstrating how contagion mechanisms operate in interconnected systems.

Applying financial risk theory to carbon markets reveals unique challenges. Balcilar

et al. (2016) examined risk spillovers across energy and carbon markets, highlighting the
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significant impact of market interactions and volatility transmission. Zhang and Sun (2016)
documented how energy price volatility affects carbon markets, indicating interconnections
with other commodity markets.

In China’s carbon market, risk transmission exhibits distinctive patterns. Zhu et al.
(2020) showed stronger interconnectedness between regional pilot markets, with significant
risk spillover effects. This emphasizes the critical role of market integration in risk
management. Recent studies by Zhao et al. (2022) employed advanced volatility models
to capture the dynamic interactions between stock, commodity, and carbon markets in
China, suggesting that extreme event shocks significantly influence market behavior. Wen
et al. (2020) further documented the asymmetric relationship between carbon emission
trading and stock markets in China, indicating that traditional models may not fully
capture the market’s unique risk profile. Therefore, integrating advanced risk assessment
techniques tailored to China’s specific context is crucial for accurate analysis and effective
risk management.

With these risk measurement frameworks in mind, the central event of this study—the
national market unification—can be understood through the lens of market integration
theory. The next subsection explores how this theory predicts structural changes in risk

and information flow following such a consolidation.

3.2.3 Market Integration Theory in the Context of Carbon Mar-
kets

Market integration theory provides insights into how interconnected markets influence risk
transmission.Diebold and Yilmaz (2014) established that increased integration enhances
information flow and capital allocation efficiency but may amplify systemic risk exposure.
This framework is pertinent for carbon markets, where integration efforts must balance
efficiency gains with stability concerns.

Research on carbon trading systems has expanded our understanding of integration
dynamics. Jia et al. (2024) analyzed drivers of market integration in international carbon
markets, identifying regulatory harmonization and infrastructure development as key
facilitators. Their findings suggest that technical compatibility and institutional alignment
are crucial for successful integration.

Challenges in linking international carbon markets have been extensively studied.
Zhang and Hao (2017) identified quota allocation and efficiency principles as crucial
factors affecting market integration. Mehling et al. (2018) examined the evolving chal-
lenges, emphasizing political economy factors and institutional capacity in determining
outcomes.Xiao et al. (2022) examined the time-varying spillovers among pilot markets,
emphasizing market maturity and institutional development in determining outcomes.

In China’s context, market integration faces unique hurdles due to regional heterogene-
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ity.Chang et al. (2018) documented how variations in market liquidity and price dynamics
across provinces affect integration potential. Shen (2015) documented how variations in
abatement costs and market readiness across provinces affect integration potential. Wang
et al. (2019) observed gradual convergence in trading patterns post-unification but noted
persistent barriers, including regional policy differences and varying market maturity levels.

Recent research by Chen et al. (2022) explored the volatility connectedness between car-
bon markets. They identified significant interactions between markets but also highlighted
challenges related to market efficiency and risk transmission. These findings emphasize
that understanding market connectedness and addressing regional disparities are essential
steps toward achieving effective integration and risk mitigation in China’s carbon market.

The theories of market integration highlight the need for a methodology that can
capture this complex web of interdependencies. Network analysis provides precisely such a

framework, setting the stage for the multi-layer network approach employed in this study.

3.2.4 Advancements in Network Analysis for Carbon Markets

Network analysis has evolved as a powerful tool for understanding complex market inter-
actions. Early studies by Mantegna (1999); Haldane and May (2011) utilized single-layer
network models to analyze asset correlations and credit exposures, effectively identifying
systemically important entities and potential contagion paths.

Recognizing the complexity of modern financial systems, recent advancements have
introduced multi-layer network analysis. Kiveld et al. (2014) established theoretical
foundations for this approach, enabling simultaneous capture of multiple interaction
dimensions. Battiston et al. (2016) applied it to financial systems, illustrating how
different market relationships interact to create complex risk transmission channels.

Applying multi-layer network theory to financial risk analysis has yielded significant
insights.Poledna et al. (2015) showed that traditional analyses might underestimate
systemic risk, while Montagna and Kok (2016) demonstrated amplification of financial
instability through interacting network layers.Billio et al. (2012) showed the importance of
interconnectedness measures in systemic risk assessment, while Diebold and Yilmaz (2015)
demonstrated the evolution of volatility connectedness between financial institutions.

In carbon markets, network analysis is emerging as a valuable approach. Chen et al.
(2022)Chen et al. (2022) applied quantile connectedness analysis to examine relationships
between energy, metal, and carbon markets, highlighting the necessity of considering
multiple dependencies. Their findings suggest that price formation and risk transmission
operate through interconnected channels, requiring comprehensive analysis.

Recent studies on China’s carbon market have begun to employ network analysis. Zhu
et al. (2020)examined risk spillover effects among pilot markets, identifying patterns of

market interconnectedness. Their work revealed how market structure shapes risk trans-
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mission dynamics.Xiao et al. (2022) utilized time-varying spillover analysis to examine the
evolution of China’s pilot carbon markets, finding that market maturity can significantly
alter connectivity patterns. These studies demonstrate that considering market intercon-
nectedness is essential for accurately assessing risk transmission and market behavior in

China’s unique regulatory environment.

3.2.5 Identified Research Gaps and Study Contributions

Despite extensive research on carbon markets, several critical gaps remain in understanding
risk transmission, particularly in the context of China’s evolving market structure. One
significant gap is the limited integration of foundational theories and practical insights
from seminal works into analyses of China’s carbon market. Incorporating perspectives
from established studies on market-based environmental policies and emissions trading
systems can enrich our understanding of China’s unique context and provide a more robust
theoretical foundation.

Furthermore, the application of advanced risk analysis techniques to China’s carbon
market has been insufficient. Existing models often fail to capture unique characteristics
such as policy uncertainty and market fragmentation. This indicates a need for method-
ologies tailored to China’s specific conditions, as conventional models may not adequately
reflect the complexities of its market dynamics and risk profiles.

Another area that warrants attention is the scarcity of empirical analyses on China’s
market unification process. The significant structural changes resulting from the transition
from regional pilots to a unified national system have far-reaching implications for risk
transmission. However, systematic studies employing advanced analytical frameworks to
examine this transition are limited, leaving a gap in our understanding of how unification
affects market behavior and risk mechanisms.

In addition, there is a lack of exploration into multi-layer network structures when
analyzing China’s carbon market. Most existing studies focus on single-layer networks or
isolated market aspects, potentially oversimplifying the complex interdependencies inherent
in the market. A comprehensive approach that considers multiple layers of interaction
is essential to accurately capture the nuances of risk transmission and market dynamics
within China’s carbon trading system.

Lastly, the mechanisms of cross-border risk transmission in the context of international
integration of China’s carbon market remain inadequately understood. This limitation
hampers our comprehension of global carbon pricing and the potential for market inte-
gration, which are crucial for developing coordinated international climate policies and
strategies.

Addressing these gaps is essential for advancing both theoretical and practical under-

standing of China’s carbon market. Our study aims to bridge these gaps by integrating
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foundational theories with analytical methods tailored to China’s specific conditions. By
applying multi-layer network analysis and exploring international linkages, we seek to
provide a nuanced understanding of risk dynamics. This approach not only enhances
the academic discourse but also offers valuable insights for policymakers and market

participants navigating the complexities of China’s evolving carbon trading environment.
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3.3 Methodology

This study employs a comprehensive methodological framework to analyze risk transmission
and inter-dependencies among China’s carbon markets, integrating advanced econometric
techniques with network analysis. Figure 3.1 presents our analytical framework, which
combines GARCH modeling, Copula analysis, and the Diebold-Yilmaz spillover index to
construct a multi-layer risk network. This approach facilitates a nuanced understanding of
both linear and non-linear risk dependencies within domestic carbon markets and between

domestic and international markets.

Data Collection
Regional Markets & EU ETS

{Pre/Post Unification)

'

Data Preprocessing

Returns Calculation
Stationanty Tests

Standardized Residuals

Returns Data

Volatility Modeling Dependency Analysis Spillover Analysis
GARCH Models Copula Functions Diebold-Yilmaz Method
. - p s - - -
MultHaver Network

1. Dependency Laver
2. Spillover Layer
3. Main Channel Layer

'

Network Analysis

Centrality Measures
Clustening Coefficients

'

Integration Analvsis

Pre/Post Unification
Market Structure Comparisen

Figure 3.1: Methodological Framework for Multi-layer Network Analysis of Carbon Markets
Note: This framework illustrates our four-stage analytical approach: (1) Data processing of
pre/post-unification market data from regional and international carbon markets, (2) Core
analysis components including volatility analysis through GARCH modeling, dependency
analysis using Copula functions, and spillover analysis based on the Diebold-Yilmaz index,
(3) Construction of three network layers capturing different aspects of market relationships:
dependency network, risk transfer network, and main channel network, and (4) Integration
analysis examining the evolution of market structure and integration patterns. The arrows
indicate the flow of analysis and the interconnections between different stages.
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The framework consists of four main stages. First, we process the data from both pre-
and post-unification periods of China’s carbon market, including regional pilot markets
and international markets. Second, we employ three core analytical components: GARCH
modeling for volatility dynamics, Copula analysis for market dependencies, and the Diebold-
Yilmaz approach for spillover effects. Third, we construct a three-layer network structure,
where each layer captures different aspects of market relationships. Finally, we integrate

these analyses to examine the evolution of market structure and integration patterns.

3.3.1 Data and Preliminary Analysis

Data Description and Rationale

We utilize daily carbon emission allowance (EA) prices from multiple Chinese carbon
trading markets, including the eight regional pilot markets (Beijing, Chongqing, Fujian,
Guangdong, Hubei, Shanghai, Shenzhen, and Tianjin), the national unified market, and
the European Union Emissions Trading System (EU ETS) as an international benchmark.
The sample period spans from July 16, 2018, to July 16, 2024, covering three years before
and after the unification of China’s national carbon market on July 16, 2021. This period
selection allows for a thorough comparative analysis of risk transmission dynamics before
and after the market unification.

Data are sourced from official exchanges and databases, including the China Emissions
Exchange for domestic markets and the European Energy Exchange (EEX) for the EU
ETS. Utilizing official data sources ensures accuracy and enhances the transparency and

reproducibility of our research.

Data Preprocessing

To ensure a continuous time series, we address missing data points arising from non-
overlapping trading holidays using the Last Observation Carried Forward (LOCF) method.
This technique replaces a missing value with the most recent available observation (P, is
replaced by P;;_1). This choice is justified for high-frequency financial price data as prices
often exhibit high persistence, making the previous day’s price the best predictor in the
absence of new information. This simple yet robust method avoids introducing artificial
volatility and minimizes potential distortions(Tsay, 2005).

We compute the daily logarithmic returns for each market to stabilize variance and

normalize the data:

P,
710 = 100 x In <t> : (3.1)

it—1

where 7+ is the return of market ¢ on day ¢, and P;; is the closing price.



o8

The Augmented Dickey-Fuller (ADF) test is applied to each return series to verify
stationarity. All series are found to be stationary at the 1% significance level, consistent
with the properties of financial return data (Dickey and Fuller, 1979). Descriptive statistics,
including mean, standard deviation, skewness, and kurtosis, are computed to understand
the distributional properties of the return series.

Pairwise Pearson correlation coefficients among the markets are calculated to assess
the degree of linear relationships. High correlations are observed between certain markets,
reflecting potential interconnectedness. However, we retain all markets in our analysis to
preserve the integrity of the network structure, acknowledging that high correlations will

be addressed in the modeling process.

3.3.2 GARCH Modeling of Volatility Dynamics

To capture the volatility clustering and heteroscedasticity inherent in financial time series,
we employ univariate GARCH(1,1) models for each market’s return series (Bollerslev,
1987). The GARCH(1,1) model is specified as:

Tit = Wi + Eit, (3.2)
Ui2,t = wi + aig?,tfl + ﬁiaztflv (3.3)

Where 7;; is the return of market 7 at time ¢, y; is the mean return, ¢;, is the error
term assumed to follow a standardized Student’s t-distribution to account for leptokurtosis
(Bollerslev, 1987), and o7, is the conditional variance. Parameters w;, g, and §; are
estimated, with constraints w; > 0, a; > 0, 5; > 0, and «; + 3; < 1 to ensure stationarity
and positive variance.

We estimate the GARCH models using Maximum Likelihood Estimation (MLE).
Diagnostic checks, including the Ljung-Box Q-test and Engle’s ARCH test, are performed on
the standardized residuals and squared standardized residuals to ensure that autocorrelation
and ARCH effects have been adequately captured.

After fitting the GARCH models, we extract the standardized residuals:

Eit

Zit = . (34)

Oit

These standardized residuals, representing the shocks to market ¢ at time ¢ adjusted for
time-varying volatility, are used in the subsequent Copula analysis to model dependencies

independent of individual market volatility dynamics.
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3.3.3 Copula Analysis for Non-linear Dependencies

To capture complex, potentially non-linear dependencies between different carbon markets,
we employ Copula functions. Copulas allow for modeling the joint distribution of random
variables by separating the marginal distributions from the dependence structure (Sklar,
1959).

We select the Student’s t-Copula for our analysis due to its ability to model symmetric
tail dependence, which is crucial for capturing extreme co-movements during periods of
market stress (Demarta and McNeil, 2005). The t-Copula is particularly suitable for
financial data where joint extreme events are of interest. Alternative Copula families,
including the Gaussian Copula and Archimedean Copulas (Clayton, Gumbel), are also
considered to assess the robustness of our results.

Based on Sklar’s Theorem, the joint distribution of the standardized residuals can be

expressed as:

F(z1,29,...,2n) = C(Fi(21), F5(22), ..., Fu(2n)), (3.5)

Where Fj(z;) are the marginal cumulative distribution functions (CDFs) of the stan-
dardized residuals, and C(-) is the Copula function capturing the dependence structure.

For the t-Copula, the density function is:

T (vt R-1q\ 2"
c(ug, ... uy) = ( 2 ) (1+ d q) , (3.6)
I (5) (mo)/2(RJ1/2 v
where u; = Fj(z;;) are the uniform transformed variables, q = (¢, (u1),..., ¢, (u,)),

v is the degrees of freedom parameter, R is the correlation matrix, and I'(-) is the gamma,
function.

Parameters are estimated using the Inference Functions for Margins (IFM) method
(Joe, 1997). Goodness-of-fit tests, such as the Cramér-von Mises and Kolmogorov-Smirnov
tests, are conducted to assess the adequacy of the Copula models. The Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) are used for model selection
among different Copula families(Akaike, 1974; Schwarz, 1978).

3.3.4 Diebold-Yilmaz Method for Linear Risk Spillovers

To quantify linear risk spillovers between markets, we employ the Diebold-Yilmaz spillover
index methodology, which is based on forecast error variance decomposition (FEVD) from
vector autoregression (VAR) models (Diebold and Yilmaz, 2009, 2012, 2023).Intuitively,
the Diebold-Yilmaz (DY) approach answers a simple question: When a particular market
experiences an unexpected shock, what percentage of the future price uncertainty in other

markets can be explained by this shock? By decomposing the forecast error variance from
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a Vector Autoregression (VAR) model, the DY index measures how much of the error
in forecasting a market’s volatility comes from its own shocks versus shocks from others.
This allows us to identify systemic “net transmitters” and “net receivers” of risk, providing
a comprehensive map of the risk transmission network.

We specify a VAR(p) model for the vector of returns:

p
ry = Z Akrt_k + E¢, (37)

k=1

Where r; is the vector of returns at time t, A are coefficient matrices, and g; is the
vector of error terms, assumed to be serially uncorrelated with covariance matrix 3.

The optimal lag order p is determined using information criteria, including the Akaike
Information Criterion (AIC), Schwarz Bayesian Criterion (SBC), and the Hannan-Quinn
Criterion (HQC). Residual diagnostic tests are conducted to ensure that the VAR model
adequately captures the dynamics of the data(Akaike, 1974; Schwarz, 1978).

We compute the generalized forecast error variance decomposition (GFEVD), which
allows for correlated shocks without requiring orthogonalization via Cholesky decomposi-
tion, thus avoiding sensitivity to variable ordering (Koop et al., 1996; Pesaran and Shin,
1998). The GFEVD is given by:

0;j1 ZhH:’Ol (eﬂ)hEej)Q
Yl (ei@y X e;)

0,;(H) = (3.8)

where ®;, are the moving average coefficient matrices, e; is a selection vector with one
in the ¢-th position and zeros elsewhere, and o;; is the standard deviation of the error
term for market j.

We set the forecast horizon H to 10 days, balancing the trade-off between capturing
medium-term dynamics and maintaining estimation accuracy (Diebold and Yilmaz, 2012).
Sensitivity analysis is conducted by varying H to ensure the robustness of the results.

Using the GFEVD, we compute the total spillover index, directional spillover indices,
and net spillover index, which help identify markets that are net transmitters or receivers

of spillovers, providing insights into the directional risk transmission among markets.

3.3.5 Construction of the Multi-layer Risk Network

To comprehensively capture the risk transmission characteristics among China’s carbon
markets, we construct a multi-layer network consisting of three layers, each representing a
different type of dependency. The multi-layer network framework allows us to simultane-
ously consider multiple types of interactions between markets, capturing the complexity of

risk transmission mechanisms (Kiveld et al., 2014).
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Layer 1: Non-linear Dependency Layer (Copula Layer)

This layer represents the non-linear dependencies and tail co-movements between markets,
as captured by the Copula analysis. The adjacency matrix for this layer is defined as:
V[/i(;opula _ ﬁgopula’ (39)
~Copula

where p;; is the estimated dependence parameter between markets ¢ and j from

the Copula model.

Layer 2: Linear Spillover Layer (Diebold-Yilmaz Layer)

This layer captures the linear risk spillovers between markets, as quantified by the Diebold-

Yilmaz spillover indices. The adjacency matrix for this layer is defined as:

WY = 0;(H), (3.10)

where 6,;(H) is the GFEVD-based spillover from market j to market 7.

Layer 3: Primary Transmission Path Layer

This layer highlights the most significant risk transmission paths, focusing on the strongest

connections. The adjacency matrix for this layer is defined as:

. 1, lfQ,LH = Imax Zez H,
py Primary _ i(H) ki Oir(H) (3.11)
0, otherwise.
By analyzing these layers collectively, we gain a comprehensive understanding of the

risk structure and can identify markets that are central across multiple dimensions.

Network Metrics and Analysis

For each layer, we compute various centrality measures to assess the importance and
influence of each market within the network, including degree centrality, closeness centrality,
betweenness centrality, and eigenvector centrality. These metrics provide insights into the
roles of individual markets in the network, such as identifying key risk transmitters or
receivers.

We apply the Louvain algorithm for community detection, which optimizes modularity
to identify clusters of markets with stronger internal connections (Blondel et al., 2008).
Community detection helps identify subgroups within the network that may share common

characteristics or be subject to similar risks.
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3.3.6 Analysis and Robustness Checks

We conduct the analysis for two distinct periods: pre-unification (July 16, 2018, to July
15, 2021) and post-unification (July 16, 2021, to July 16, 2024). This allows us to assess
the impact of the national carbon market unification on risk transmission and network
structure.

Furthermore, we perform analyses under two scenarios: domestic markets only (in-
cluding the eight regional pilot markets and the national unified market) and all markets
(including domestic markets and the EU ETS). By comparing these scenarios, we evaluate
the degree of international integration and its effect on domestic risk dynamics.

To ensure the reliability of our results, we conduct several robustness checks. Alternative
Copula specifications, such as the Gaussian Copula and Archimedean Copulas, are used
to test the sensitivity of our results to the choice of Copula family(Demarta and McNeil,
2005). We vary the lag order p in the VAR models and test different forecast horizons
H to assess the stability of the spillover indices over different time horizons(Diebold and
Yilmaz, 2014).

A bootstrap resampling procedure is employed to estimate confidence intervals for
the network metrics and spillover indices (Efron and Tibshirani, 1994). This allows us to
assess the statistical significance of our findings and account for sampling variability. We
also perform a rolling window analysis with a fixed window size (e.g., 250 trading days) to

examine the dynamic evolution of the network structure and risk transmission over time.
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3.4 Empirical Analysis

In the preceding sections, we have explored the theoretical foundations of carbon markets,
the existing literature on China’s carbon market development, and the potential implica-
tions of market unification on risk transmission mechanisms. To empirically validate our
hypotheses, this section employs the methodological framework outlined earlier to analyze
the impact of China’s carbon market unification on market dependence structures, risk
spillover effects, network characteristics, and overall market efficiency and international
integration. Specifically, we conduct a comparative analysis of pre- and post-unification

periods to uncover the structural changes and their economic implications.

3.4.1 Data Description and Preliminary Analysis

This study investigates the dynamic risk transmission mechanisms in China’s carbon
markets surrounding the implementation of the national unified carbon market. We utilize
daily carbon emission allowance (CEA) prices from ten markets: eight regional pilot
markets in China (Beijing, Chongqing, Fujian, Guangdong, Hubei, Shanghai, Shenzhen,
and Tianjin), the national CEA market, and the European Union Emissions Trading System
(EU ETS). The sample period spans from July 1, 2017, to July 31, 2024, encompassing
1,857 trading days. We divide the sample into pre-unification (July 1, 2017, to July 15,
2021) and post-unification (July 16, 2021, to July 31, 2024) periods.

Tables 3.1 and 3.2 present the descriptive statistics of daily returns for the pre- and

post-unification periods, respectively.

Table 3.1: Statistical Properties of Daily Carbon Market Returns Before National Market
Unification (July 2018 - July 2021)

Carbon Market Mean (%) Std. Dev. (%) Skewness Excess Kurtosis

Shenzhen (SZ) —0.152 40.136 0.071 10.906
Shanghai (SH) 0.007 5.099 0.160 9.229
Beijing (BJ) ~0.019 7189 —0.301 8.712
Guangdong (GD) 0.147 25.263 —0.412 26.456
Tianjin (TJ) 0.118 3.074 1.357 38.631
Hubei (HB) 0.065 4.581 0.107 5.375
Chongging (CQ) 0.304 6539  —0.194 3.854
Fujian (FJ) —0.095 8.516 0.453 29.415
EU ETS (EUA) 0.164 3.071 —0.678 7.426

Notes: This table reports summary statistics for the daily logarithmic returns of eight
regional Chinese carbon markets and the European Union Emissions Trading System
(EU ETS) before the implementation of China’s national unified carbon market. The
sample period spans from July 16, 2018, to July 15, 2021, covering 783 trading days.
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Table 3.2: Statistical Properties of Daily Carbon Market Returns After National Market
Unification (July 2021 - July 2024)

Carbon Market Mean (%) Std. Dev. (%) Skewness Excess Kurtosis

National CEA 0.072 1.865 0.275 9.206
Shenzhen (SZ) 0.245 27.506 1.173 59.255
Shanghai (SH) 0.083 2.308 —0.094 8.415
Beijing (BJ) 0.058 7.865 —0.187 6.000
Guangdong (GD) 0.014 8.435 —0.017 76.623
Tianjin (TJ) 0.022 7.045 —0.036 149.396
Hubei (HB) 0.033 2543 —0.092 8.311
Chongging (CQ) 0.033 3.444 —0.127 6.205
Fujian (FJ) 0.163 16.814 —1.335 35.636
EU ETS (EUA) 0.031 2.833 —0.473 8.196

Notes: This table presents summary statistics for the daily logarithmic returns of
China’s national carbon market (CEA), eight regional Chinese carbon markets, and
the European Union Emissions Trading System (EU ETS) after the implementation of
China’s national unified carbon market. The sample period spans from July 16, 2021,
to July 16, 2024, covering 784 trading days.

Before unification, the markets exhibited considerable heterogeneity in their return
distributions. Mean daily returns range from —0.152% (Shenzhen) to 0.304% (Chongqing).
Six out of nine markets show positive average returns, indicating generally positive market
performance in this period. Volatility levels vary significantly, with Shenzhen exhibiting
the highest volatility (standard deviation of 40.136%), suggesting high uncertainty and
possible market immaturity. In contrast, Tianjin shows the lowest volatility (3.074%),
indicating more stable market conditions.

Skewness and kurtosis values reveal asymmetries and fat tails in the return distributions,
indicative of potential extreme movements. For instance, Tianjin displays high positive
skewness (1.357) and kurtosis (38.631), suggesting a higher probability of extreme positive
returns.

Post-unification, notable changes are observed. The national CEA market exhibits the
lowest volatility (1.865%), indicating increased market stability, possibly due to centralized
regulation and increased liquidity. Mean returns across markets become predominantly
positive, suggesting improved market sentiment following unification.

However, some markets display increased volatility and extreme movements. For
example, Shenzhen’s standard deviation remains high at 27.506%, and its kurtosis increases
to 59.255, indicating persistent high volatility and a higher probability of extreme returns.
Tianjin’s kurtosis dramatically increases to 149.396, highlighting significant changes in
return distribution tails.

Changes in skewness indicate shifts in the asymmetry of return distributions. Fujian’s

skewness shifts from positive (0.453) to strong negative (—1.335), suggesting a higher



65

likelihood of extreme negative returns in the post-unification period.

These observations suggest that while market unification has generally led to increased
stability and positive returns, heterogeneity remains across regional markets. The varying
volatility and higher moments indicate that regional factors continue to influence market

dynamics.

3.4.2 Volatility Modeling

To capture the volatility dynamics of the carbon markets and facilitate the analysis of risk
transmission mechanisms, we estimate univariate GARCH(1,1) models for each market’s
return series in both pre- and post-unification periods. The estimated parameters are

presented in Table 3.3.

Table 3.3: Estimated GARCH(1,1) Parameters

Pre-Unification Post-Unification

w Q 15} w « 153
Shenzhen 0.469 0.095 0.859 48.424 0.982 0.017
Shanghai 0.000 0.899 0.019 0.000 0.773 0.008

Market

Beijing 0.000 0.957 0.009 0.000 0.623 0.018
Guangdong 0.000 0.619 0.379 0.842 0.611 0.388
Tianjin 0.000 0.862 0.012 0.000 0.963 0.001
Hubei 9.871 0.637 0.362 6.848 0.926 0.073
Chongging  0.000 0.947 0.047 0.079 0.388 0.611
Fujian 0.000 0.788 0.211 0.014 0.265 0.734
CEA — — — 0.000 0.773 0.008
EUA 61.393 0.381 0.618 0.182 0.071 0.907

Note: The GARCH(1,1) model is specified as r; = pu+ &, & = 204, 02 = w + aer_; + Boi_q,
where 7; is the return at time ¢, y is the mean return, ; is the error term, o? is the conditional
variance, w is the constant term, « captures the news impact (ARCH effect), 5 captures the
volatility persistence (GARCH effect), and z; is an i.i.d. error term.

In the pre-unification period, the estimated « coefficients, representing the sensitivity
to new information, are relatively high for markets such as Beijing (o = 0.957), Chongqing
(v = 0.947), and Shanghai (o = 0.899), indicating strong reactions to market shocks. The
B coefficients, reflecting the persistence of volatility, are low for these markets, suggesting
that volatility shocks have a short-lived effect. Shenzhen and Hubei display higher
coefficients (8 = 0.859 and 8 = 0.362, respectively), implying that past volatility has a
more persistent influence on current volatility in these markets. The sum « + 3 is close to
one for most markets, indicating high overall volatility persistence.

In the post-unification period, significant shifts in volatility dynamics are observed.
Shenzhen’s « increases dramatically from 0.095 to 0.982, while § decreases from 0.859
to 0.017, suggesting that volatility is now almost entirely driven by new information,

with minimal persistence from past volatility. This change may reflect enhanced market
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efficiency and responsiveness to information post-unification.

Conversely, Chongqing experiences a decrease in « from 0.947 to 0.388 and an increase
in 8 from 0.047 to 0.611, indicating a shift towards greater volatility persistence and
reduced immediate sensitivity to new shocks. The national CEA market, introduced in
the post-unification period, exhibits a high « of 0.773 and a low 3 of 0.008, indicating
that volatility is predominantly influenced by recent news, consistent with its status as a
newly established market where historical volatility patterns are still developing.

For the EU ETS, the « coefficient decreases from 0.381 to 0.071, and (3 increases from
0.618 to 0.907, reflecting decreased sensitivity to new information and increased volatility
persistence, characteristic of a mature and stable market.

These findings suggest that market unification has led to heterogeneous changes in the
volatility structure of China’s carbon markets. Some markets have become more reactive
to new information, while others exhibit increased volatility persistence. The varying
responses underscore the complexity of the markets and the influence of regional factors.

Figure 3.2 illustrates the estimated conditional volatilities for selected markets over
the sample period. The national CEA market has demonstrated low and stable volatility
since its inception, while regional markets like Shenzhen and Guangdong show periods of
heightened volatility, especially post-unification, indicating increased market activity and

sensitivity to news.

Conditional Volatility - All Markets

Conditional Volatiity

Date

Figure 3.2: Temporal Evolution of Conditional Volatility in Chinese and European Carbon
Markets (2018-2024)
Notes: This figure illustrates the estimated conditional volatility from GARCH(1,1) models
for selected carbon markets over the full sample period (July 2018 to July 2024). The
vertical dashed line indicates the implementation of China’s national carbon market on July
16, 2021.

These results have important implications for understanding risk transmission in China’s

carbon markets. The changes in volatility dynamics highlight the evolving nature of the
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markets and the potential impact of unification on market efficiency and integration. The
observed heterogeneity suggests that regional characteristics continue to play a significant

role, necessitating a nuanced approach in analyzing risk transmission mechanisms.

3.4.3 Market Dependence Structure Analysis

Understanding the changes in market dependence structures is crucial for assessing how
market unification affects information transmission and price co-movement among regional
carbon markets. This subsection examines the dependence structures before and after
the unification, providing insights into the first hypothesis regarding increased market

interconnectedness.

Pre-unification Dependence Structure

Using a copula-based dependence analysis, we find that the interconnections among regional
carbon markets prior to unification were relatively weak. Table 3.4 presents the matrix of

dependence parameters.

Table 3.4: Copula Dependence Parameters Matrix: Pre-unification Period

Market SZ SH BJ GD TJ HB CcQ FJ
Shenzhen (SZ) 1.000 0.040 —-0.043 -0.019 —-0.051 0.001 —0.015 0.034
Shanghai (SH) 0.040 1.000 0.069 —0.017 0.030 —0.040 —-0.065 —0.008
Beijing (BJ) —0.043 0.069 1.000 —0.042 0.018 0.027 —0.007 —0.044
Guangdong (GD) —0.019 —0.017 —0.042 1.000 0.010 0.029 0.024 0.051
Tianjin (TJ) —0.051 0.030 0.018 0.010 1.000 0.046 —0.006 0.002
Hubei (HB) 0.001 —0.040 0.027 0.029 0.046 1.000 —0.024 0.002
Chongging (CQ) —0.015 —0.065 —0.007 0.024 —-0.006 —0.024 1.000 —-0.017
Fujian (FJ) 0.034 —0.008 —0.044 0.051 0.002 0.002 —0.017 1.000

Notes: This table presents the estimated dependence parameters from Student’s t-copula
models for pairs of Chinese regional carbon markets before the unification of China’s national
carbon market (July 2018 to July 2021). The parameters measure the strength and direction
of dependency between markets, with values ranging from -1 (perfect negative dependence)
to 1 (perfect positive dependence), and 0 indicating independence.

The dependence parameters range from —0.065 to 0.069, with a mean of 0.0004 and
a standard deviation of 0.0331, indicating generally weak market integration. Notable
dependency pairs include:

Several notable dependency pairs emerge from the analysis. The Shanghai-Beijing pair
exhibits the strongest positive dependence (0.069), which may reflect their similar levels of
economic development and carbon market policies. Conversely, Shanghai and Chongqing
show the strongest negative dependence (—0.065), potentially due to differences in industrial
structure and development stages. Guangdong and Fujian have a moderate positive

dependence (0.051), possibly stemming from geographical proximity and similar industrial
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compositions. Additionally, the negative dependence between Shenzhen and Tianjin
(—0.051) suggests divergent market characteristics and policy frameworks.

Overall, the low dependence levels suggest that, prior to unification, regional carbon
markets operated largely independently, with limited price co-movement and information
transmission. This fragmentation likely reflects differences in regional policy frameworks,

market maturity, and industrial structures.

Post-unification Dependence Structure

Following the introduction of the national carbon market (CEA), the market dependence
structure exhibited notable changes. Table 3.5 presents the dependence parameters matrix

for the post-unification period.

Table 3.5: Copula Dependence Parameters Matrix: Post-unification Period

Market CEA SZ SH BJ GD TJ HB CQ FJ
CEA 1.000 0.025 0.048 0.029 0.011 0.003 0.053 0.003 —0.020
Shenzhen (SZ) 0.025 1.000 0.022 0.016 0.042 0.006 0.021 0.006 0.111
Shanghai (SH) 0.048 0.022 1.000 -0.038 -0.035 —0.036 —0.003 0.039 —0.035
Beijing (BJ) 0.029 0.016 —0.038 1.000 0.003 0.010 -0.022 —0.029 0.014
Guangdong (GD) 0.011 0.042 —-0.035 0.003 1.000 0.007 —0.017 —-0.075 0.033
Tianjin (TJ) 0.003 0.006 —0.036 0.010 0.007 1.000 —0.043 —0.042 0.009
Hubei (HB) 0.053 0.021 -0.003 -0.022 —-0.017 —0.043 1.000 -0.014 —0.025
Chongging (CQ) 0.003 0.006 0.039 —-0.029 -0.075 —-0.042 —-0.014 1.000 —0.024
Fujian (FJ) —0.020 0.111 —-0.035 0.014 0.033 0.009 —-0.025 —0.024 1.000

Notes: This table presents the estimated dependence parameters from Student’s t-copula
models for pairs of Chinese carbon markets after the implementation of the national unified
carbon market (July 2021 to July 2024).

The post-unification period exhibits several significant changes in market dependencies.
The CEA shows the strongest positive dependence with Hubei (0.053) and Shanghai (0.048),
and most regional markets display positive but modest dependence with the CEA. Notably,
only Fujian shows a negative dependence (—0.020) with the CEA. Among regional markets,
the dependence between Shenzhen and Fujian increases significantly to 0.111, making it
the strongest dependency pair in the post-unification period. The Guangdong-Chongqing
pair shows the strongest negative dependence (—0.075). Additionally, the relationship
between Shanghai and Beijing reverses from positive (0.069) to negative (—0.038).

The dependence parameters now range from —0.075 to 0.111, with a mean dependence of
0.0014 and a standard deviation of 0.0356. These changes suggest a significant transfor-
mation in market integration patterns following unification. The emergence of stronger
dependencies, both positive and negative, indicates more complex market interactions and

potentially improved information transmission mechanisms.
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Discussion

Comparing the pre- and post-unification dependence structures reveals significant changes
in market integration patterns, providing evidence relevant to our first hypothesis regarding
increased market interconnectedness. Table 3.6 summarizes the statistics of dependence

parameters before and after unification.

Table 3.6: Evolution of Market Integration Following Unification: Comparative Analysis
of Dependency Parameters (2018-2024)

Statistical Indicator Pre-Unification Post-Unification
Minimum Dependency Value —0.065 —0.075
Maximum Dependency Value 0.069 0.111

Mean Dependency 0.0004 0.0014
Standard Deviation 0.0331 0.0356
Number of Strong Dependencies (|p| > 0.04) 5 8
Percentage of Positive Dependencies 33.3% 56.3%

Notes: This table presents a comparative analysis of Student’s t-copula dependence
parameters before unification (July 2018 to July 2021) and after unification (July 2021 to
July 2024) of China’s carbon market. The data reveals substantial structural changes in
market integration patterns following unification.

Key structural changes include an increase in the range and strength of dependencies. The
range of dependence parameters widened from [—0.065, 0.069] to [—0.075, 0.111], and the
average dependence strength increased by 250% (from 0.0004 to 0.0014). The number of
significant dependencies (absolute value greater than 0.04) increased from 5 to 8, and the
proportion of positive dependencies rose from 33.3% to 56.3%.

These findings provide strong support for our first hypothesis (H1) regarding increased
market interconnectedness following unification. The quantitative evidence, including the
increase in mean dependence and the growth in significant dependencies, indicates stronger
overall market integration. Qualitative changes, such as a more balanced distribution of
positive and negative dependencies and the emergence of stronger regional market clusters,
further support this conclusion. Statistical tests, including the Wilcoxon signed-rank test

(p-value < 0.05) and F-test (p-value < 0.10), confirm the significance of these changes.

3.4.4 Risk Spillover Effect Analysis

While the dependence structure analysis provides insights into the co-movement of markets,
it is essential to examine whether these changes have affected the way risk is transmitted
across markets. Building on the findings from the previous subsection, we now analyze
the risk spillover effects before and after market unification to understand the evolution of

risk transmission mechanisms.
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Pre-unification Spillover Effects

Prior to market unification, the risk spillover patterns revealed significant asymmetries in
the transmission of market shocks. Table 3.7 presents the variance decomposition matrix

for this period.

Table 3.7: Variance Decomposition Matrix: Pre-unification Period (%)

From/To SZ SH BJ GD TJ HB CQ FJ
Shenzhen 96.665 0.233 0.628 0.534 0.195 0.181 0.434 1.122
Shanghai 0.649 97473 0.285 0.605 0.246 0.226  0.371 0.145
Beijing 0.182 0.351 97.395 0.348 1.050 0.146  0.253 0.275
Guangdong  0.661 2277  0.297 93.874 1.219 0.174 0.734 0.766
Tianjin 0.174  2.209  0.441 1.680 94.475 0.239  0.117 0.022
Hubei 0.859 0.524 0.605 0.341 0.344 96.031 0.351 0.365
Chongqing 0.446  0.647 0.261 0968 0.086 0.019 97.134 0.439
Fujian 0.539 0.184 0.705 0.329 0.038 0.231  0.335 97.629

Notes: This table presents the generalized forecast error variance decomposition matrix
based on the Diebold-Yilmaz methodology for China’s regional carbon markets before
national market unification (July 2018 to July 2021). Values are expressed as percentages.
Each element (i, j) represents the contribution of market j to the forecast error variance
of market i. The diagonal elements (highlighted in bold) represent own-market effects,
indicating the percentage of price movements explained by the market’s own shocks. The
off-diagonal elements reveal cross-market spillover effects.

Table 3.8 provides the directional and net spillover effects. Key findings from the pre-
unification period include Shanghai emerging as the primary source of risk transmission,
with a net spillover of 48.834%, and Hubei showing the highest net risk absorption at
—27.251%. The high diagonal elements in Table 3.7 (ranging from 93.874% to 97.629%)
indicate strong own-market effects and limited cross-market spillovers, which are mostly
below 1%. These patterns suggest a fragmented market structure with limited risk-sharing

mechanisms and hierarchical relationships in risk transmission.

Post-unification Spillover Effects

Following the introduction of the national carbon market, the risk transmission landscape
underwent significant changes. Tables 3.9 and 3.10 present the variance decomposition
matrix and directional spillover effects for the post-unification period.

Key changes in the post-unification period include the CEA’s role as a moderate risk
absorber (net spillover: —3.013%) and the emergence of more balanced risk transmission
roles among regional markets. Shanghai’s dominance as a risk transmitter has moderated,
with its net spillover decreasing from 48.834% to 21.582%. Tianjin transformed from a
major receiver to a significant transmitter (net spillover increased by 49.617 percentage
points). Hubei maintained its position as a primary risk receiver.

These findings suggest that market unification has led to more efficient risk-sharing
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Table 3.8: Risk Transmission Roles Before Market Unification: Directional and Net
Spillover Effects (2018-2021)

Market To Others (%) From Others (%) Net Spillover (%)
Shanghai (SH) 80.417 31.584 148.834
Fujian (FJ) 39.172 29.631 +9.541
Beijing (BJ) 40.266 32.564 +7.702
Shenzhen (SZ) 43.878 41.686 +2.192
Chongging (CQ) 32.660 35.825 —3.164
Guangdong (GD) 64.320 68.388 —4.068
Tianjin (TJ) 37.737 61.239 —23.502
Hubei (HB) 15.295 42.545 —27.251

Notes: This table presents the directional and net spillover effects among China’s regional
carbon markets before national market unification (July 2018 to July 2021), based on
the Diebold-Yilmaz spillover index derived from generalized forecast error variance de-
composition. Markets are sorted by net spillover position, with net transmitters in the
upper section and net receivers in the lower section. The "To Others" column quantifies
each market’s influence on other markets, while the "From Others" column measures its
susceptibility to external shocks. The "Net Spillover" column (difference between "To
Others" and "From Others") identifies whether a market predominantly transmits risk
(positive values) or absorbs risk (negative values).

Table 3.9: Risk Transmission Network After Market Unification: Generalized Variance
Decomposition Matrix (2021-2024)

From / To CEA SZ SH BJ GD TJ HB CQ FJ

National CEA 95.506 0.075 0.043 0.074 0.128 0.137 0.063 0.012  0.099
Shenzhen (SZ) 1.358 96.154 0.172 0.354 0.043 0.023 0.507 0.831 0.268
Shanghai (SH) 0.529  0.115 97.221 0.445 0.209 0.011  0.125 0.211  0.516

Beijing (BJ) 0.193 0.297 1.032 95565 0.250 1.079 0.353 0.610  0.425
Guangdong (GD) 0.501  0.319  0.547 0.089 97.829 0.122 0.159 0.031 0.120
Tianjin (TJ) 0.184 0.035 0.049 0.509 0.047 97.982 0.624 0.182 0.035
Hubei (HB) 0.446 1.348 0.748 0.268 0.368 1.298 93.443 0.461 0.756
Chongqing (CQ)  0.442 0.203 1.010 0.648 0.551 0.476 0.438 95.632 0.348
Fujian (FJ) 0.155 0.220 0.236 0.278 0370 0.175 0318 0.257 97.636

Notes: This table presents the generalized forecast error variance decomposition matrix
following the Diebold-Yilmaz methodology for China’s carbon markets after national
market unification (July 2021 to July 2024). Values are expressed as percentages. Each
element (7, j) represents the contribution of market j to the forecast error variance of
market 7. Diagonal elements indicate the percentage of price movements explained by each
market’s own shocks.
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Table 3.10: Transformation of Market Roles After Unification: Directional and Net
Spillover Effects (2021-2024)

Market To Others (%) From Others (%) Net Spillover (%)
Tianjin (TJ) 46.296 20.181 +26.115
Shanghai (SH) 49.372 27.790 421,582
Fujian (FJ) 38.353 23.638 +14.715
Guangdong (GD) 24.949 21.709 +3.240
National CEA 42.071 45.084 —3.013
Shenzhen (SZ) 33.027 38.456 —5.429
Beijing (BJ) 34.043 44.345 —10.302
Chongging (CQ) 32.158 43.678 —11.520
Hubei (HB) 38.139 65.569 ~27.430

Notes: This table presents the directional and net spillover effects among China’s car-
bon markets after national market unification (July 2021 to July 2024), based on the
Diebold-Yilmaz spillover index. Markets are sorted by net spillover position, with net risk
transmitters in the upper section and net risk receivers in the lower section.

mechanisms, better-organized risk transmission channels, enhanced market stability, and a

more balanced distribution of market influence.

Analysis of Market Roles

The comparison of pre- and post-unification periods reveals substantial transformations in
market roles and risk transmission mechanisms, providing evidence relevant to our second

and third hypotheses. Table 3.11 summarizes the evolution of market roles.

Table 3.11: Evolution of Market Roles: Pre- vs. Post-unification

Market Net Spillover (%)  Change Role Evolution

Pre Post
CEA - =3.013 — New Risk Coordinator
Shanghai 48.834 21.582 —27.252 Moderated Transmitter
Tianjin —23.502 26.115 +449.617 Receiver to Transmitter
Hubei —27.251 —27.430 —0.179 Consistent Receiver
Fujian 9.541 14.715  +5.174 Enhanced Transmitter
Guangdong  —4.068 3.240  +7.308 Receiver to Transmitter
Beijing 7.702 —10.302 —18.004 Transmitter to Receiver
Shenzhen 2192 —5429 —7.621 Transmitter to Receiver

The CEA has emerged as a central coordinator with balanced spillovers, supporting our
second hypothesis regarding the central role of the national market. The transformation
of regional market roles, such as Tianjin’s shift from a risk receiver to a transmitter and
Shanghai’s moderated transmission role, provides evidence for our third hypothesis on

regional market integration.
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3.4.5 Network Characteristics Analysis

The preceding analysis highlights the changes in dependence structures and risk spillover
effects. To gain a more comprehensive understanding of how market unification has
restructured the overall market architecture, we now examine the evolution of network
characteristics using the multi-layer network framework.
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Figure 3.3: Multi-layer Network Structure of China’s Carbon Market

Note: This figure illustrates the multi-layer network framework used to analyze the complex
risk transmission mechanisms in China’s carbon market. The visualization comprises
three distinct but interconnected analytical layers that capture different aspects of market
relationships: (1) The upper layer (Market Dependency Network) represents bilateral market
relationships derived from Student’s t-copula analysis, revealing non-linear dependencies
and tail co-movements between markets; (2) The middle layer (Risk Transfer Network)
illustrates directed risk transmission pathways based on Diebold-Yilmaz spillover indices,
with edge weights indicating the magnitude of volatility spillovers; (3) The bottom layer
(Primary Transmission Channels) highlights the most significant pathways for information
and risk flow, identifying the primary channels through which shocks propagate.

Figure 3.3 presents the multilayer network structure of China’s carbon market. The
visualisation comprises three distinct but interconnected layers, each capturing different
aspects of market relationships and risk transmission patterns. The top layer represents
market dependencies derived from Copula analysis, showing the strength and nature
of bilateral market relationships. The middle layer illustrates the risk transfer network
based on the Diebold-Yilmaz spillover index, with directed edges indicating the flow and
magnitude of risk transmission. The bottom layer highlights the primary transmission
channels, identifying the most significant pathways for information and risk flow. The
dotted vertical lines connecting the corresponding nodes across layers demonstrate the
integrated nature of these market relationships and facilitate the analysis of cross-layer

interactions.
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Market Integration and Network Evolution

This paper examines how the integration of China’s carbon market affects market ar-
chitecture and risk transmission through network analysis. We construct a multilayer
network framework to decompose and analyse market relationships. Our empirical findings
demonstrate that market integration significantly reshapes network topology and alters

risk transmission patterns.

Network Architecture Evolution We characterize market architecture through three
distinct but interconnected network layers: the dependency structure layer capturing
bilateral market relationships, the risk transfer layer measuring risk transmission patterns,
and the main channel layer identifying critical transmission pathways. For each layer, we
compute standard network metrics including density, weighted degree, path length, and

clustering coefficients.

Table 3.12: Network Architecture Evolution

Panel A: Pre-integration Network Metrics

Layer Network Average Average Clustering Maximum
Density ~ Weighted Degree Path Length Coefficient =~ Weight
Dependency 1.000 0.195 1.000 1.000 0.069
Risk Transfer 1.000 0.070 1.000 1.000 0.023
Main Channel  0.143 0.025 2.700 0.000 0.023
Panel B: Post-integration Network Metrics
Dependency 1.000 0.215 1.000 1.000 0.111
Risk Transfer 1.000 0.066 1.000 1.000 0.014
Main Channel  0.125 0.018 2.857 0.000 0.014
Panel C: Changes in Key Metrics (%)
Dependency 0.00 +10.3 0.00 0.00 +60.9
Risk Transfer 0.00 -5.7 0.00 0.00 -39.1
Main Channel -12.6 -28.0 +5.8 0.00 -39.1

Note: This table reports network metrics before and after market integration. Network
density measures the ratio of actual to possible connections. Average weighted degree
captures the mean strength of connections. Average path length represents the mean number
of steps between any two markets. The clustering coefficient measures the degree of market
clustering. Maximum weight indicates the strongest individual connection in each layer.

The empirical evidence reveals substantial changes in network architecture following
market integration. As shown in Panels A and B of Table 1, the dependency layer exhibits
increased connectivity strength, with the average weighted degree rising from 0.195 to 0.215.
More striking is the 60.9% increase in maximum dependency weight from 0.069 to 0.111,
suggesting significantly strengthened bilateral market relationships. The preservation of
unity network density and clustering coefficients indicates maintained complete market

connectivity.
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The risk transfer layer presents a different pattern. Panel B shows that the average
weighted degree decreases from 0.070 to 0.066, while the maximum weight drops by 39.1%
from 0.023 to 0.014. This concurrent decline in both metrics, while maintaining complete
network connectivity, suggests a more distributed risk transfer structure post-integration.

The main channel layer demonstrates the most dramatic structural changes. Panel C
reveals that network density falls from 0.143 to 0.125, accompanied by a 28.0% decrease in
average weighted degree. These substantial reductions, combined with a 5.8% increase in
average path length (from 2.700 to 2.857), indicate a fundamental restructuring of primary

transmission channels.

Market Role Transformation To understand how integration affects individual market
behavior, we analyze changes in market roles through risk transfer patterns and external

dependencies. Tables 3.13 quantify these transformations through detailed market-level

metrics.
Table 3.13: Market Role Evolution

Panel A: Pre-integration Market Characteristics

Market Outward Inward Net Transfer External
Transfer (%) Reception (%) (%) Dependency

Shanghai 80.417 31.584 +48.834 0.040
Beijing 40.266 32.564 +7.702 -0.043
Guangdong 60.230 76.581 -16.351 -0.019
Tianjin 39.737 61.240 -21.502 -0.051
Hubei 15.295 42.545 -27.251 0.001

Panel B: Post-integration Market Characteristics
CEA 42.071 45.084 -3.013 0.025
Shanghai 49.372 27.790 +21.582 0.048
Beijing 34.043 44.345 -10.302 0.029
Tianjin 46.296 20.181 +26.115 0.003
Hubei 38.139 65.569 -27.430 0.053

Note: This table presents market-level metrics before and after integration. Outward
Transfer and Inward Reception represent the percentage of risk transmitted to and received
from other markets, respectively. Net Transfer is the difference between outward and inward
flows. External Dependency measures the correlation with external markets based on Copula
parameters.

Panel A of Tables 3.13 reveals significant heterogeneity in pre-integration market roles.
Shanghai dominates as a risk transmitter with a net transfer position of +48.834%, while
Hubei serves as the primary risk receiver with -27.251%. Panel B documents substantial
changes post-integration. Shanghai’s net transfer position moderates to +21.582%, while
Tianjin transforms from a significant risk receiver (-21.502%) to a major risk transmitter
(+26.115%). The newly established national market (CEA) emerges with a relatively

balanced profile, showing a modest net receiver position of -3.013



76

External dependencies also exhibit notable changes. Beijing’s dependency shifts from
-0.043 to 40.029, while Shanghai strengthens its positive dependency from 0.040 to 0.048.
CEA’s moderate positive external dependency (0.025) suggests measured integration with
external markets. These changes in market roles and dependencies indicate a fundamental
transformation in market structure, though longer-term data would be necessary to assess

the persistence of these changes.

Risk Transmission Mechanism Analysis

In this section, we examine how market integration affects risk transmission patterns within
China’s carbon market network. We analyze both domestic risk transmission structures

and their evolution following the introduction of the national market (CEA).

Domestic Risk Network Evolution Table 3.14 presents the risk transfer matrices
before and after market integration, documenting significant changes in risk transmission

patterns among domestic markets.

Table 3.14: Domestic Risk Transfer Evolution

Panel A: Pre-integration Risk Transfer Matrix (%)
From/To Shanghai  Beijing Guangdong Hubei Shenzhen

Shanghai 97.473 0.285 0.605 0.226 0.233
Beijing 0.351 97.395 0.348 0.146 0.628
Guangdong 2.277 0.297 93.874 0.174 0.534
Hubei 0.524 0.605 0.341 96.596 0.184
Shenzhen 0.233 0.628 0.534 0.184 96.665
Panel B: Post-integration Risk Transfer Matrix (%)
From/To CEA Shanghai Beijing Hubei Shenzhen
CEA 95.506 0.043 0.074 0.063 0.075
Shanghai 0.529 97.221 0.445 0.125 0.172
Beijing 0.193 1.032 95.565 0.353 0.297
Hubei 0.446 0.748 0.268 93.443 1.348
Shenzhen 1.358 0.172 0.354 0.507 96.154

Note: This table reports the percentage of risk transferred between markets. Each element
(i,j) represents the percentage of risk transmitted from market i to market j. Diagonal
elements show the proportion of risk retained within each market. Values are computed
using the Diebold-Yilmaz methodology based on variance decomposition.

Panel A documents substantial heterogeneity in pre-integration risk retention, with
self-risk retention rates ranging from 93.874% (Guangdong) to 97.473% (Shanghai). The off-
diagonal elements reveal asymmetric risk transmission patterns, with Shanghai exhibiting
the strongest outward spillover to Guangdong (2.277%).

Post-integration patterns in Panel B show notable changes. The newly established

CEA demonstrates strong risk absorption capacity with 95.506% self-risk retention. Mean-
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while, bilateral risk transmission patterns evolve significantly. For instance, Shenzhen’s
risk spillover to Hubei increases from 0.184% to 1.348%, while Shanghai’s influence on
Guangdong diminishes.

To further analyze these changes, we examine the net risk transfer positions and their

evolution in Tables 3.15.

Table 3.15: Risk Transfer Directional Analysis

Panel A: Pre-integration Directional Effects

Market TO  FROM Net Directional Pairwise  Self
Others Others Transfer  Spillover  Spillover Effect
Shanghai 80.417 31.584  48.834 3.385 2277  97.473
Beijing 40.266  32.564 7.702 1.815 0.628  97.395
Guangdong 60.230 76.581 -16.351 3.282 2.277 93.874
Hubei 15.295 42.545 -27.251 1.654 0.605  96.596
Shenzhen 43.878 41.686 2.192 1.579 0.628  96.665
Panel B: Post-integration Directional Effects
CEA 42.071 45.084  -3.013 0.255 1.358  95.506
Shanghai 49.372  27.790  21.582 2.492 1.032 97.221
Beijing 34.043 44.345 -10.302 1.141 0.445 95.565
Hubei 38.139 65.569  -27.430 2.810 1.348  93.443
Shenzhen 33.027 38.456  -5.429 2.391 1.358  96.154

Note: This table reports directional risk transfer metrics. TO Others and FROM Others
represent total risk transmitted to and received from other markets, respectively. Net
Transfer is the difference between TO and FROM measures. Directional Spillover quantifies
the strength of unidirectional risk transmission. Pairwise Spillover shows the maximum
bilateral risk transmission. Self-Effect represents risk retained within each market.

The directional analysis reveals several key findings. First, market integration leads to
more balanced risk transfer patterns, evidenced by the reduction in extreme net transfer
positions. Shanghai’s dominant position moderates substantially, with its net transfer
declining from 48.834% to 21.582%. Second, the introduction of CEA creates a new
equilibrium in risk distribution, manifested in its modest net receiver position (-3.013%)
and balanced directional spillover effects (0.255%).

Particularly noteworthy is the evolution of pairwise spillover effects. The maximum bi-
lateral spillover decreases from 2.277% (Shanghai-Guangdong) in the pre-integration period
to 1.358% (Shenzhen-CEA) post-integration, suggesting more dispersed risk transmission
channels. This structural change is accompanied by an overall decrease in directional

spillover intensity, as evidenced by the generally lower spillover metrics in Panel B.

International Risk Integration Patterns This section examines how domestic market
integration affects risk transmission between China’s carbon market and the EU Emissions

Trading System (EUA). Table 3.16 presents the evolution of cross-border risk relationships.



78

Table 3.16: International Risk Network Analysis

Panel A: Pre-integration EUA Relationships

Market Dependency Risk TO Risk FROM Net Maximum
Parameter EUA (%) EUA (%)  Transfer Spillover
Shanghai -0.053 0.668 0.780 -0.112 0.780
Beijing -0.045 0.589 0.063 +0.526 0.589
Guangdong 0.022 0.069 0.994 -0.925 0.994
Hubei -0.021 0.540 0.292 +0.248 0.540
Shenzhen -0.036 0.057 0.057 0.000 0.057
Panel B: Post-integration EUA Relationships
CEA 0.012 0.262 0.037 +0.225 0.262
Shanghai -0.031 0.617 0.719 -0.102 0.719
Beijing 0.077 0.195 0.739 -0.544 0.739
Guangdong 0.067 0.284 0.528 -0.244 0.528
Hubei -0.005 0.864 0.665 +0.199 0.864
Shenzhen 0.001 0.289 0.020 +0.269 0.289

Note: This table reports metrics characterizing relationships with the EU carbon market
(EUA). The Dependency Parameter is estimated using the Gaussian Copula. Risk TO and
FROM EUA represent directional risk transmission percentages. Net Transfer indicates the
net risk transmission position relative to EUA. Maximum Spillover shows the larger of the
bilateral spillover effects.

The empirical evidence reveals significant changes in international risk integration
patterns following domestic market unification. In the pre-integration period, Panel A
shows predominantly negative dependency parameters with EUA, ranging from -0.053
(Shanghai) to -0.021 (Hubei), with Guangdong as the notable exception (0.022). Risk
transmission patterns were similarly heterogeneous, with net transfer positions varying
from -0.925% (Guangdong) to +0.526% (Beijing).

Post-integration data in Panel B documents a fundamental shift in these relationships.
Most notably, dependency parameters turn predominantly positive, with Beijing (0.077)
and Guangdong (0.067) showing the strongest positive dependencies with EUA. The newly
established CEA exhibits a moderate positive dependency (0.012), suggesting measured
integration with international markets.

To further analyze these evolving relationships, we examine the detailed risk transmis-
sion structure in Tables 3.17.

The cross-border risk transfer matrices reveal several key developments. First, EUA’s
risk retention rate shows a modest decline from 96.505% to 96.097%, suggesting slightly
increased interaction with Chinese markets. Second, the pattern of risk spillovers becomes
more balanced post-integration. For instance, the maximum risk spillover from EUA to
Chinese markets decreases from 0.994% (to Guangdong) to 0.739% (to Beijing), while
spillovers from Chinese markets to EUA show less extreme variation.

The introduction of CEA appears to play a stabilizing role in international risk
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Table 3.17: Cross-border Risk Transfer Matrix

Panel A: Pre-integration Cross-border Transfer (%)
From/To EUA  Shanghai Beijing Guangdong Hubei Shenzhen

EUA 96.505 0.780 0.063 0.994 0.292 0.057
Shanghai 0.668 97.473 0.285 0.605 0.196 0.233
Beijing 0.589 0.371 97.395 0.348 0.146 0.628
Guangdong  0.069 2.277 0.297 93.874 0.179 0.534
Hubei 0.540 0.524 0.605 0.341 96.596 0.184
Shenzhen 0.057 0.233 0.628 0.537 0.184 96.665

Panel B: Post-integration Cross-border Transfer (%)
From/To EUA CEA Shanghai Beijing Hubei Shenzhen

EUA 96.097 0.037 0.719 0.739 0.665 0.020
CEA 0.262 95.506 0.043 0.074 0.063 0.075
Shanghai 0.617 0.529 97.221 0.445 0.125 0.172
Beijing 0.195 0.193 1.032 95.565 0.353 0.297
Hubei 0.864 0.446 0.748 0.268 93.443 1.348
Shenzhen 0.289 1.358 0.172 0.354 0.507 96.154

Note: This table presents the percentage of risk transferred between the EUA and Chinese
markets. Each element (i,j) represents the percentage of risk transmitted from market i to
market j. Values are computed using the Diebold-Yilmaz methodology based on generalized
variance decomposition.

transmission. Its moderate bilateral spillovers with EUA (0.262% outward, 0.037% inward)
and balanced risk profile suggest it functions as a measured intermediary in international
risk transmission. This is consistent with its modest positive dependency parameter (0.012)
and balanced net transfer position (+0.225%).

Network Efficiency Analysis

Layer-specific Performance Evolution We analyze the evolution of network efficiency
through a detailed examination of layer-specific performance metrics. Table 3.18 presents
the comprehensive analysis of network structure changes across different layers.

The layer-specific analysis reveals distinct evolutionary patterns across network layers.
In the dependency layer, while network density remains constant at 1.000, we observe a
substantial increase in maximum weight (460.87%) accompanied by increased standard
deviation (+15.79%). These changes suggest greater differentiation in bilateral market
relationships while maintaining comprehensive market connectivity.

To further examine the structural changes, we analyze the inter-layer relationship
patterns in Tables 3.19.

The inter-layer analysis shows evolving relationships between network layers following
market integration. The correlation between Layers 1 and 2 strengthens modestly (Pearson

correlation increasing from 0.078 to 0.098), while the strong correlation between Layers 2



80

Table 3.18: Layer-specific Network Evolution

Panel A: Dependency Layer Metrics

Period Network Average Maximum Minimum Standard
Density ~ Weight Weight Weight  Deviation
Pre-integration 1.000 0.028 0.069 0.001 0.019
Post-integration 1.000 0.027 0.111 0.001 0.022
Change (%) 0.00 -3.57 +60.87 0.00 +15.79
Panel B: Risk Transfer Layer Metrics
Pre-integration 1.000 0.005 0.023 0.000 0.005
Post-integration ~ 1.000 0.004 0.014 0.000 0.003
Change (%) 0.00 -20.00 -39.13 0.00 -40.00
Panel C: Main Channel Layer Metrics
Pre-integration 0.143 0.012 0.023 0.006 0.006
Post-integration ~ 0.125 0.009 0.014 0.004 0.004
Change (%) -12.59 -25.00 -39.13 -33.33 -33.33

Note: This table reports layer-specific network metrics before and after market integration.
Network Density measures the ratio of actual to possible connections. Weights represent
connection strengths. Standard Deviation captures the dispersion of connection strengths
within each layer.

Table 3.19: Inter-layer Correlation Analysis

Panel A: Pre-integration Layer Correlations

Layer Pair Pearson Spearman Cosine Layerl  Layer2
Correlation Correlation Similarity Density Density
Layerl-Layer2 0.078 0.339 0.572 1.000 1.000
Layerl-Layer3 -0.027 0.016 0.231 1.000 0.143
Layer2-Layer3 0.783 0.532 0.757 1.000 0.143
Panel B: Post-integration Layer Correlations
Layerl-Layer2 0.098 0.330 0.588 1.000 1.000
Layerl-Layer3 -0.002 0.120 0.229 1.000 0.125
Layer2-Layer3 0.655 0.457 0.652 1.000 0.125

Note: This table presents correlation metrics between network layers. Pearson and Spearman
correlations measure linear and rank-based relationships, respectively. Cosine similarity
captures the angular similarity of layer structures. Layer densities are reported for reference.
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and 3 moderates (decreasing from 0.783 to 0.655).
To examine the efficiency implications of these structural changes, we analyze the

layer-specific transmission patterns in Tables 3.20 .

Table 3.20: Layer-specific Transmission Analysis

Panel A: Pre-integration Transmission Metrics

Layer Average Direct Indirect Self Cross-layer
Path Length Effect Effect Retention  Spillover
Dependency 1.000 0.195  0.028 0.964 0.435
Risk Transfer 1.000 0.070 0.005 0.783 0.331
Main Channel 2.700 0.025 0.012 0.572 0.143
Panel B: Post-integration Transmission Metrics
Dependency 1.000 0.215 0.027 0.956 0.397
Risk Transfer 1.000 0.066  0.004 0.655 0.356
Main Channel 2.857 0.018  0.009 0.588 0.125

Note: This table reports transmission-related metrics for each network layer. Average Path
Length measures the mean steps between markets. Direct and Indirect Effects capture
immediate and mediated transmission impacts. Self-retention represents the proportion of
effects retained within the layer. Cross-layer Spillover measures transmission effects across
layers.

The transmission analysis reveals significant changes in network efficiency characteristics.
The dependency layer shows increased direct effects (0.195 to 0.215) while maintaining
stable indirect effects. In contrast, the risk transfer layer exhibits reduced transmission
intensities across both direct (0.070 to 0.066) and indirect (0.005 to 0.004) effects. The
main channel layer shows the most substantial changes, with decreased direct effects (0.025
to 0.018) and modified transmission paths (average path length increasing from 2.700 to
2.857).

Market Structure Effectiveness

We examine the economic implications of market integration through a detailed analysis
of structural changes and their effects on market functioning. Table 3.21 presents key
structural effectiveness metrics before and after integration.

The empirical evidence reveals substantial changes in market structure following
integration. Most notably, while maintaining complete network connectivity (density =
1.000), bilateral market relationships strengthen significantly, as evidenced by the 60.87%
increase in maximum dependency. Simultaneously, the risk transfer rate moderates from
0.070 to 0.066, suggesting more balanced risk distribution patterns.

To examine the implications for market stability, we analyze the evolution of risk
concentration patterns in Tables 3.22 .

The risk concentration analysis reveals significant structural improvements in market
stability. The reduction in maximum spillover effects (from 2.277% to 1.358%) and the
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Table 3.21: Market Structure Effectiveness Metrics

Panel A: Network Structure Indicators

Metric Pre-integration Post-integration Change (%)
Network Density 1.000 1.000 0.00
Maximum Dependency 0.069 0.111 +60.87
Risk Transfer Rate 0.070 0.066 -5.71
Average Path Length 2.700 2.857 +5.81
Panel B: Market Position Analysis
Maximum Net Transfer 48.834 26.115 -46.52
Average External Dependency -0.027 0.020 -
Cross-market Dispersion 0.019 0.022 +15.79
Risk Retention (Mean) 96.401 95.578 -0.85

Note: This table reports key metrics characterizing market structure effectiveness. Network
metrics are calculated from the multi-layer network analysis. Market position metrics are
derived from risk transfer and dependency analyses. All changes are computed relative to
pre-integration values.

Table 3.22: Risk Concentration Evolution

Panel A: Pre-integration Risk Distribution

Market Risk Maximum Net Risk  Self Spillover
Retention  Spillover  Position Effect Concentration
Shanghai 97.473 2.277 +48.834  0.195 0.069
Beijing 97.395 0.628 +7.702  0.070 0.023
Guangdong  93.874 2.277 -16.351  0.025 0.023
Panel B: Post-integration Risk Distribution
CEA 95.506 1.358 -3.013  0.215 0.111
Shanghai 97.221 1.032 +21.582  0.066 0.014
Beijing 95.565 0.739 -10.302  0.018 0.014

Note: This table examines the evolution of risk concentration patterns. Risk Retention
represents the percentage of risk retained within each market. Maximum Spillover shows the
largest risk transmission to any single market. Net Risk Position indicates the balance of
risk inflows and outflows. Spillover Concentration measures the degree of risk transmission
concentration.
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moderation of extreme net risk positions (maximum absolute position decreasing from
48.834% to 21.582%) suggest more balanced risk distribution patterns post-integration.
To quantify the implications for market efficiency, we examine the evolution of network

transmission characteristics in Tables 3.23.

Table 3.23: Network Transmission Efficiency

Transmission Metric Pre-integration Post-integration Change (%)

Direct Effects 0.195 0.215 +10.26
Path Length 2.700 2.857 +5.81
Network Density 0.143 0.125 -12.59
Layer Correlation 0.078 0.098 +25.64
Cross-layer Effect 0.435 0.397 -8.74

Note: This table presents metrics related to network transmission efficiency. All metrics are
derived directly from the network analysis. Changes are computed relative to pre-integration
values.

The evidence suggests several key economic implications:

1. Enhanced Market Integration - Stronger bilateral market relationships (maxi-
mum dependency +60.87%) - More balanced risk distribution (risk transfer rate -5.71%) -
Improved cross-market coordination (layer correlation +25.64%)

2. Improved Market Stability - Reduced maximum risk spillovers (2.277% to
1.358%) - More moderate net risk positions (48.834% to 21.582%) - Maintained high risk
retention rates (95.578% mean)

3. Evolution of Market Structure - Optimized transmission paths (average path
length +5.81%) - More focused network structure (density 0.143 to 0.125) - Enhanced
layer synchronization (correlation 0.078 to 0.098)

These structural changes suggest that market integration has effectively enhanced
both market stability and efficiency, though through different channels than initially
hypothesized in the literature. Rather than reducing market fragmentation through
uniformly increased connectivity, the integration process has led to more differentiated
but stable market relationships, with optimized risk transmission channels and improved

cross-market coordination mechanisms.

3.4.6 Economic and Policy Implications

In this section, we analyze the economic implications of our empirical findings and discuss
corresponding policy recommendations. The integration of China’s regional carbon markets
into a unified national market has significantly influenced market efficiency, risk distribution,
and international linkages. By referencing specific results from our analysis, we provide

insights into these developments and their broader economic impact.
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Economic Implications

Our empirical analysis demonstrates that market unification has enhanced market efficiency
through strengthened market integration. Asindicated in Table 3.6, the average dependence
parameter increased by 250% from 0.0004 to 0.0014 post-unification, and the number
of significant dependencies (absolute value greater than 0.04) rose from 5 to 8. This
heightened interconnectivity suggests improved information transmission and price co-
movement among regional markets, leading to more efficient price discovery mechanisms.
The increased proportion of positive dependencies, from 33.3% to 56.3%, indicates a shift
towards more cohesive market movements, which is essential for effective carbon pricing
and resource allocation.

Furthermore, the risk spillover analysis reveals a more balanced distribution of risk
among markets after unification. As shown in Table 3.11, the maximum net spillover
decreased from 48.834% (Shanghai pre-unification) to 26.115% (Tianjin post-unification),
and the average risk retention rate slightly declined from 96.401% to 95.578% (Table 3.21).
These changes suggest that markets are now more interconnected in absorbing and
transmitting risk, enhancing overall market stability. The diversification of risk across a
unified market mitigates the impact of idiosyncratic shocks on individual markets, fostering
a more resilient trading environment.

The optimized network structure, as evidenced by the network analysis, contributes to
transmission efficiency and stability. The maximum dependency weight in the dependency
layer increased by 60.9% from 0.069 to 0.111 (Table 3.12), indicating stronger bilateral
relationships. Simultaneously, the average path length in the main channel layer increased
by 5.8%, reflecting a restructuring of primary transmission channels. These developments
enhance the speed and reliability of information dissemination, reduce transaction costs,
and facilitate coordinated market behavior, which can improve liquidity and deepen the
market.

Moreover, the dependency parameters between China’s carbon markets and the Eu-
ropean Union Allowance (EUA) market shifted from predominantly negative to positive
post-unification, as seen in Table 3.16. For example, Beijing’s dependency parameter
changed from —0.045 to 0.077, indicating increased co-movement with international
markets. This enhanced international integration has significant economic implications,
including attracting foreign investment, facilitating technology and knowledge transfer,
and promoting policy harmonization. However, it also necessitates robust risk management

to mitigate potential adverse effects from global market volatility.

Policy Implications

The empirical findings underscore the need for targeted policy interventions that are directly

linked to the structural changes observed after market unification. First, strengthening
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market coordination is essential to build on the documented efficiency gains. Our results
show that the overall information transfer rate increased markedly from 0.432 to 0.516,
highlighting that a more integrated system facilitates faster and more accurate information
transmission. To capitalize on this, policymakers should mandate a single, standardized
Monitoring, Reporting, and Verification (MRV) system and establish a centralized, real-
time national data platform to ensure consistency and transparency across regions.

Second, the analysis reveals a dramatic role reversal in certain regional markets, most
notably Tianjin, which shifted from a net receiver of risk (—21.5%) to a net transmitter
(+26.1%). This dynamic transformation demonstrates the importance of adaptive reg-
ulatory oversight. Regulators should implement a “Spillover Watchlist,” based on the
Diebold-Yilmaz index, to monitor sudden shifts in systemic importance. In addition, the
creation of a national Market Stability Reserve (MSR), analogous to that used in the
EU ETS, would provide a buffer mechanism to address excessive volatility and mitigate
contagion risks.

Finally, promoting international integration remains a key forward-looking priority.
Given the growing interdependence between China’s market and global climate policy,
China should initiate a formal joint feasibility study on a potential future linkage with the
EU ETS. At the same time, proactive engagement with the European Union on the Carbon
Border Adjustment Mechanism (CBAM) would help mitigate external trade frictions while
aligning domestic carbon pricing with emerging international norms. These steps would
enhance China’s influence in global carbon governance and strengthen the resilience of its

national emissions trading system.

Conclusions

Our empirical study demonstrates that the unification of China’s carbon markets has led
to significant enhancements in market integration, risk distribution, and network efficiency.
These developments have positive economic implications, including improved market
efficiency, increased stability, and stronger international linkages. Policymakers should
build upon these advancements by implementing coordinated strategies that reinforce
market mechanisms and address emerging challenges.

This research contributes to the literature by providing quantitative evidence on the
impacts of market unification using a multi-layer network analysis framework. By linking
structural changes to economic outcomes, we offer valuable insights for both academia
and policymakers involved in carbon market development. However, the findings are
constrained by the limited post-unification data period. Future research should extend the
analysis over a longer timeframe to assess the persistence and long-term effects of market
unification. Additionally, exploring micro-level impacts on individual firms and sectors
could provide a more granular understanding of the mechanisms at play.

Overall, our study underscores the importance of strategic policy interventions to enhance
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the functioning of carbon markets, which are vital tools in the global effort to mitigate

climate change.
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3.5 Conclusions

This study has investigated the evolution of risk transmission mechanisms and international
integration in China’s carbon market following the unification of the national carbon
market in 2021. Utilizing a multi-layer network analysis that integrates GARCH models,
Copula functions, and the Diebold-Yilmaz spillover index, we have uncovered significant
transformations in market dynamics, efficiency, and risk distribution.

Firstly, our findings indicate a notable improvement in market efficiency post-unification.
The information transfer rate increased from 0.432 to 0.516, reflecting enhanced information
dissemination and price discovery among regional markets. This improvement suggests
that the unified market structure has facilitated more efficient capital allocation and
reduced informational asymmetries, contributing to a more robust trading environment.

Secondly, the national carbon market has emerged as a central coordinator within the
risk transmission network. With an eigenvector centrality of 0.412, the national market
plays a pivotal role in connecting regional markets, thereby streamlining risk transmission
pathways. The roles of regional markets have also evolved substantially. For instance,
Tianjin transformed from a major risk receiver with a net spillover of —21.502% to a
significant risk transmitter with a net spillover of 26.115%. This shift underscores the
dynamic adjustments within the unified market and highlights the adaptability of regional
markets to the new market structure.

Thirdly, integration with international markets, particularly the European Union
Emissions Trading System (EU ETS), has strengthened moderately. The positive change
in dependency parameters between China’s carbon markets and the EU ETS signifies
increased co-movement and potential for greater international collaboration. However,
the maintenance of distinct domestic characteristics suggests that while international
integration is progressing, China’s carbon market retains unique features influenced by
regional policies and market conditions.

These developments carry significant policy implications. Policymakers should capital-
ize on the enhanced market integration by promoting further harmonization of trading
rules, reporting standards, and verification processes across regional markets. Strengthen-
ing market coordination can reduce residual fragmentation and enhance overall market
efficiency. Additionally, there is a need to bolster risk management mechanisms. Imple-
menting advanced monitoring systems to detect emerging vulnerabilities and encouraging
the development of financial instruments for hedging can enhance market resilience and
stability.

The study contributes to the existing literature by providing empirical evidence on
the impacts of market unification using a comprehensive multi-layer network framework.
By linking structural changes in the market to economic outcomes, it offers valuable

insights for both academics and practitioners involved in carbon market development and
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regulation.

However, the research is subject to certain limitations. The limited post-unification
data period restricts the ability to assess the long-term effects and the persistence of
observed changes. Future research should extend the analysis over a longer timeframe to
evaluate the enduring impacts of market unification. Additionally, exploring micro-level
impacts on individual firms and sectors could provide a more granular understanding of
the mechanisms at play and inform more targeted policy interventions.

In conclusion, the unification of China’s carbon market has led to significant enhance-
ments in market efficiency, stability, and international integration. These positive outcomes
underscore the importance of strategic policy interventions to reinforce the benefits of
unification and address emerging challenges. By strengthening market mechanisms and
risk management systems, China can further leverage its carbon market as a vital tool in

the global effort to mitigate climate change.
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4.1 Introduction

The artificial intelligence (AI) industry has emerged as a key driver of the digital economy,
with its application scope expanding rapidly in computer vision, natural language process-
ing, intelligent manufacturing, and other domains. Unlike conventional energy-intensive
industries (e.g., petrochemicals, steel, and cement), which directly consume fossil fuels, the
AT sector predominantly relies on electricity to meet its substantial computing demands.
According to recent reports by the International Energy Agency (IEA), data centers
could account for up to 8% of global electricity consumption by 2030, with a considerable
portion of this growth attributable to the rapid expansion of Al model training and cloud
computing (International Energy Agency, 2023, 2024). These projections indicate that
the escalating computational power of Al and its associated electricity consumption will
soon significantly influence global energy systems and carbon emissions.

At the same time, governments and industries worldwide are accelerating the transition
to low-carbon energy. Clean energy technologies (e.g., photovoltaic power, wind power,
energy storage) and carbon trading systems (e.g., the EU Emissions Trading System)
have expanded substantially, supported by large-scale policy initiatives. For instance, the
European Union’s "Green Deal" aims to exceed a 40% share of renewable power generation
by 2030 (European Commission, 2019), complemented by carbon pricing and taxation
mechanisms designed to facilitate the shift from fossil fuels to cleaner energy sources.
Against this backdrop, an urgent question arises: how can we accommodate the surging
demand for Al-driven computing while simultaneously pursuing a green and low-carbon
enerqgy transition?

In contrast to industries with direct fossil fuel combustion and substantial sensitivity
to oil, gas, and carbon price fluctuations, the Al industry’s reliance on electricity as
the principal energy input implies a different level of exposure to these markets. When
electricity supply is dominated by renewable sources and carbon tax systems are well
established, the Al industry may be relatively insulated from volatility in fossil fuel markets.
By contrast, in regions relying primarily on coal or natural gas generation, expanding
AT computing demand can indirectly boost oil and gas consumption or drive up carbon
prices. Notably, since the release of large-scale models such as ChatGPT in late 2022, Al
has attracted unprecedented investment attention, which may generate "resonance effects"
(positive or negative) with the clean energy sector. Prior research shows that financial
markets often regard "Al + clean energy" as a long-term growth theme; however, under
extreme scenarios (e.g., policy subsidy cuts, geopolitical conflicts, or hikes in carbon taxes),
these sectors could experience concurrent sharp fluctuations, intensifying risks in their
lower-tail dependence (Bartram et al., 2022; Péstor et al., 2022).

These considerations underscore the importance of understanding the financial linkage

and risk transmission mechanisms between the Al industry and the clean energy, carbon
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pricing, and oil and gas markets, particularly under extreme market conditions or major
shock events. From both policy-making and investment management perspectives, clar-
ifying these dynamics is crucial for designing effective carbon pricing strategies, energy
transition policies, and cross-market risk management tools. This study examines the
financial linkages between the Al industry—representing "digital energy-intensive" (DEI)
sectors—and clean energy, fossil energy, and carbon pricing markets, with a particular
focus on tail dependence and volatility spillover effects under market conditions or major
policy and technological shocks.

Specifically, we investigate three core research questions. First, during extreme market
conditions, does the Al industry exhibit decoupling from oil, gas, and carbon prices?
Traditional energy-intensive sectors that directly combust fossil fuels tend to display
strong sensitivity to oil, gas, and carbon price fluctuations. We examine whether the
electricity-driven Al industry, by contrast, demonstrates weaker tail dependence on these
prices during severe market downturns or upturns, and how non-linear approaches (e.g.,
Copula models) can capture this behaviour. Second, how do major policy or technological
shocks (such as the release of ChatGPT) influence the tail linkages between Al and clean
energy? We investigate whether financial markets are prone to attributing higher valuations
and increased attention to AI at critical turning points, causing speculative capital to
simultaneously flow into the clean energy sector. Under extreme market conditions, we
assess whether there is evidence that upper or lower tail linkages become significantly
amplified. Third, under extreme scenarios (e.g., subsidy cuts or carbon tax hikes), does
volatility spillover from clean energy to Al reverse? During typical market conditions,
AT and clean energy are often positively correlated, both perceived as high-beta sectors.
Yet in periods of subsidy reductions or heightened market panic, we examine whether
negative shocks in clean energy could amplify losses in Al, leading both to exhibit resonant
downturns.

By addressing these questions, this research provides a more holistic view of the financial
coupling and risk transmission pathways between DEI industries and energy—carbon
markets. Such insights furnish empirical evidence for policy-making (e.g., optimizing
data center energy efficiency standards, carbon tax designs, or clean energy subsidies)
and inform investors’ cross-market risk management strategies. This study advances
the literature through four significant contributions spanning theoretical, methodological,
empirical, and policy dimensions.

Our theoretical innovation extends the Energy Conversion Hierarchy (ECH) framework
to establish Digital Energy-Intensive (DEI) sectors as a distinct analytical category. We
demonstrate how computing requirements and electricity dependence differentiate DEI
sectors from traditional energy-intensive industries, providing novel insights into Al’s differ-
ential sensitivity to fossil fuel volatility and carbon pricing mechanisms. Methodologically,

we advance the field by combining time-varying Copula modeling with Diebold-Yilmaz
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spillover index analysis to simultaneously capture non-linear tail dependencies and direc-
tional risk transmissions. This integrated approach enables: (1) quantification of asym-
metric upper- and lower-tail linkages, and (2) decomposition of net directional spillovers
across interconnected markets, addressing critical limitations in existing energy-finance
literature.

Our empirical novelty derives from a comprehensive event-focused analysis of daily
data (2020-2024) covering Al, renewable energy (wind/photovoltaics), fossil fuels, and EU
carbon allowances (EUA). We establish the late-2022 ChatGPT release as a structural
breakpoint, examining market co-movements through multiple shocks including COVID-19,
geopolitical conflicts, and carbon policy reforms, providing unprecedented evidence on
technology-energy-carbon nexus dynamics. The policy relevance of our findings emerges
from our discovery that Al exhibits asymmetric tail dependence: weak correlation with
fossil fuels during extremes but synchronized amplification with clean energy following
technological shocks. Crucially, spillover analysis reveals negative transmission channels
where renewable subsidy cuts propagate losses to Al markets. These insights directly
inform carbon taxation design, green electricity mandates, and cross-market hedging
strategies for "Al + clean energy" investment portfolios.

The remainder of this paper proceeds as follows. Section 2 establishes the theoretical
foundation through a comprehensive literature review, introducing the novel conceptual
frameworks of Digital Energy-Intensive (DEI) sectors and Energy Conversion Hierarchy
(ECH), while deriving four empirically testable hypotheses regarding Al-energy-carbon
market interdependencies. Section 3 details the econometric methodology, including data
curation procedures, variable construction, and implementation of the three-stage analytical
approach: GARCH filtering for volatility extraction, Copula modeling for dependence
estimation, and Diebold-Yilmaz spillover indices for network transmission analysis. Section
4 presents empirical findings through integrated interpretation of static and time-varying
Copula results with dynamic spillover metrics, quantitatively characterizing tail dependence
and volatility transmission mechanisms between Al and energy-carbon markets, with
particular attention to structural breaks following the ChatGPT launch and during extreme
market events. Section 5 concludes by synthesizing policy implications for carbon taxation,
renewable energy mandates, and efficiency standards, alongside practical hedging strategies
for cross-market risk management, while identifying promising research trajectories at the
digitalization-decarbonization nexus. This integrated approach delivers evidence-based

guidance for reconciling digital economic expansion with accelerated low-carbon transitions.
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4.2 Literature Review and Theoretical Framework

4.2.1 Literature Review

The accelerating global trends of digitalization and decarbonization converge at a critical
nexus: the energy footprint of artificial intelligence (AI). While a growing body of research
explores the intersection of Al, energy, and carbon markets, substantial gaps remain
regarding the tail risk and volatility spillover connections between them. This review
synthesizes existing research to build a coherent framework, positioning AI not merely
as another technology sector, but as a unique economic category with a fundamentally
distinct energy risk profile.

Our argument begins with AI’s defining characteristic: its exclusive and immense
reliance on electricity, a processed energy carrier. This immediately distinguishes it from
traditional energy-intensive industries like petroleum, steel, and cement, which
depend on the direct combustion of fossil fuels and are thus highly sensitive to their price
fluctuations (Sadorsky, 2012; Niu, 2021). This distinction introduces the concept of an
Energy Conversion Hierarchy. Positioned downstream from primary energy sources,
Al is buffered from the direct volatility of oil and gas prices by the complex dynamics of
the electricity grid (Patterson et al., 2021). While prior studies confirm strong tail-risk
dependence between traditional industries and fossil fuel prices during extreme events (Tan
and Lin, 2018; Hanif et al., 2021), the electricity "buffer layer" suggests Al should exhibit
a fundamentally weaker and more indirect financial linkage to these primary commodities.

However, this contrast is insufficient, as Al also differs significantly from other high-
tech industries. While sectors like semiconductors or internet platforms are energy-
intensive, their power consumption typically scales linearly or sub-linearly with output
(Masanet et al., 2020; Lin and Tan, 2017). In stark contrast, the rapid emergence of large
Al models like ChatGPT implies super-linear or even exponential growth in computational
workloads (Strubell et al., 2020). This voracious appetite for computation makes Al
exceptionally sensitive to both the cost and stability of electricity supply, justifying its
classification as a novel category: Digital Energy-Intensive (DEI) industries. During
periods of tight electricity supply or carbon price surges, Al operations face elevated cost
pressures that can trigger broader market volatility (Khosravi et al., 2024).

This unique DEI characteristic translates into a distinct set of financial interdependen-
cies with clean energy and carbon markets. Because Al’s primary operational risk
is electricity cost and its primary long-term constraint is sustainable energy supply, its
financial fate is deeply intertwined with the pace of grid decarbonization. Consequently,
AT’s market performance is logically linked to the clean energy sectors that enable its
sustainable growth (Bolton and Kacperczyk, 2021; Bartram et al., 2022), and to carbon
prices (like the EU ETS), which directly influence electricity costs in many regions (Hanif
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et al., 2021; Niu, 2021). Investor narratives increasingly bundle "Al and Green Energy" as
a unified growth theme, suggesting the potential for strong, policy-driven co-movements
and correlated sell-offs during periods of risk aversion (Hong et al., 2019).

Despite these clear logical connections, the academic literature has yet to systematically
quantify these emergent risk pathways. The financial relationship between DEI sectors
and energy markets—shaped by indirect electricity exposure, technological narratives, and
policy shocks—remains critically under-explored. Furthermore, existing analyses often rely
on simple linear correlations, which are ill-suited to capture the asymmetric upper-tail
and lower-tail dependencies that characterize systemic risk in extreme market conditions
(Patton, 2006). Advanced methods like the Diebold-Yilmaz spillover index have been
applied to energy markets, but studies focusing on Al’s growing role within this nexus
are still limited (Diebold and Yilmaz, 2012; Tiwari et al., 2021). This study aims to fill
this crucial gap by providing the first comprehensive econometric investigation of the

non-linear risk transmission mechanisms connecting Al to the broader energy ecosystem.

4.2.2 Conceptual Framework and Hypotheses

We develop a theoretical framework that conceptualizes artificial intelligence as the
archetypal representative of “Digital Energy-Intensive” (DEI) industries—a new category
of economic sectors characterized by rapidly scaling computational demands that trans-
late into substantial electricity consumption while maintaining minimal direct fossil fuel
dependencies. This framework provides the analytical foundation for understanding how
DEI sectors interact with traditional energy markets under extreme financial conditions
and technological disruptions.

The theoretical foundation of our analysis rests on three core mechanisms that dis-
tinguish DEI industries from conventional energy-intensive sectors. First, the Energy
Conversion Hierarchy Mechanism recognizes that DEI industries operate at a different level
within the energy value chain compared to traditional heavy industries. While sectors such
as steel, cement, and petrochemicals rely on direct combustion of fossil fuels for their core
production processes, DEI industries consume energy exclusively in the form of electricity
(International Energy Agency, 2024). This distinction is crucial because electricity serves as
an intermediate energy carrier that can be generated from diverse primary sources—fossil
fuels, nuclear, hydroelectric, wind, solar, or other renewables. Recent empirical evidence
demonstrates that this electricity intermediation provides substantial volatility buffering
effects, reducing direct fossil fuel price volatility transmission by 20-65% compared to direct
exposure (Navia Simon and Diaz Anadon, 2025; Luccioni et al., 2024). The hierarchical
positioning of DEI industries thus creates a “buffer layer” between their operational costs
and direct fossil fuel price volatility, as electricity prices reflect a complex aggregation

of generation costs, transmission expenses, regulatory frameworks, and long-term supply
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contracts rather than immediate commodity price fluctuations.

Second, the Policy Transmission Mechanism operates through the regulatory and
policy environment that governs both energy markets and digital infrastructure. Carbon
pricing policies, renewable portfolio standards, and data center efficiency regulations create
indirect linkages between DEI industries and various energy market segments. Unlike
traditional energy-intensive industries that face direct exposure to carbon taxes through
their fuel consumption, DEI industries experience carbon policy impacts primarily through
electricity pricing mechanisms. Research demonstrates that economic policy uncertainty
positively affects renewable energy innovation for at least three years, with higher economic
globalization and financial development reducing renewable energy costs (Feng and Zheng,
2022; Ma et al., 2022). This indirect exposure means that the magnitude and timing
of policy effects depend critically on the carbon intensity of the local electricity grid,
the presence of renewable energy certificates markets, and the ability of large electricity
consumers to negotiate direct power purchase agreements with renewable generators.
Consequently, policy shocks may generate asymmetric effects across different electricity
markets and create time-varying correlations between DEI industries and specific energy
subsectors.

Third, the Financial Market Perception Mechanism reflects how investment decisions
and asset pricing respond to evolving narratives about technological convergence and sec-
toral synergies. Financial markets may price DEI industries and clean energy technologies
as complementary components within a broader “technology-enabled energy transition”
theme, particularly following major technological breakthroughs that heighten investor
attention to these sectors. Technology-policy synergy theories demonstrate multiplicative
rather than additive effects in clean energy finance markets, where combined effects exceed
individual component sums (Alamaren et al., 2024). This mechanism operates through
portfolio allocation decisions, thematic investment strategies, and the formation of risk
premiums that reflect perceived correlations between technological adoption rates and
clean energy deployment. Event-driven amplification mechanisms show that technological
breakthroughs create disproportionate financial market responses, with high levels of total
connectedness during technological breakthrough periods, as technology and energy assets
exhibit significant volatility spillovers (Mensi et al., 2024). However, the same mechanism
that generates positive correlations during periods of optimism can amplify negative corre-
lations during risk-off episodes, when high-beta sectors experience synchronized sell-offs
regardless of their fundamental economic relationships.

These three mechanisms interact to generate distinct patterns of financial co-movement
between DEI industries and energy markets that evolve dynamically in response to
technological innovations and policy developments. The interaction between the Energy
Conversion Hierarchy and Policy Transmission mechanisms suggests that DEI industries

should exhibit relatively stable, low correlations with fossil fuel prices and carbon allowances
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under normal market conditions, as electricity markets provide both physical and financial
insulation from direct commodity price shocks. Empirical evidence supports this theoretical
prediction, showing that merit order effects provide natural buffering with substantial
dampening of fossil fuel price transmission (Navia Simon and Diaz Anadon, 2025). However,
during extreme market stress or significant policy regime changes, these correlations may
intensify if electricity market disruptions create direct pass-through effects or if regulatory
uncertainty affects both sectors simultaneously.

The interaction between the Policy Transmission and Financial Market Perception
mechanisms generates time-varying correlations between DEI industries and clean energy
markets that depend critically on the policy environment and investor sentiment. When
renewable energy policies are perceived as stable and supportive, financial markets may
price DEI industries and clean energy technologies as beneficiaries of the same underlying
trends toward grid decarbonization and technological innovation. Conversely, policy
uncertainty or adverse regulatory developments may trigger correlated negative price
movements across both sectors, particularly if investors view them as sharing similar
regulatory risk exposures or growth dependencies on government support.

The interaction between the Energy Conversion Hierarchy and Financial Market
Perception mechanisms creates heterogeneous relationships between DEI industries and
different clean energy subsectors. Solar photovoltaic technology, characterized by rapid
cost declines, high policy sensitivity, and strong technological narratives, may exhibit
particularly strong financial linkages with DEI industries through investor perceptions of
complementarity. Research demonstrates that clean energy subsectors exhibit pronounced
heterogeneity in their responses to technological innovations, with solar technologies
typically showing higher responsiveness compared to wind and bioenergy sectors (Alamaren
et al., 2024). Wind energy, with more mature technology and different cost structures, may
show weaker financial correlations despite potentially similar physical relationships through
electricity markets. Bioenergy, facing distinct feedstock cost pressures and regulatory
frameworks, may demonstrate even more attenuated financial linkages with DEI industries.

Major technological breakthroughs, such as the emergence of large-scale generative Al
models, can fundamentally alter the operation of these mechanisms by reshaping market
expectations about future energy demand patterns, technological adoption rates, and policy
priorities. Al/digital industries demonstrate fundamentally different energy consumption
patterns compared to traditional energy-intensive sectors, characterized by 100% electricity
dependence with no direct fossil fuel combustion, with current global baseline consumption
reaching 415 TWh (1.5% of global electricity), growing at 15% annually (International
Energy Agency, 2024). Such events may trigger structural breaks in financial correlations
by intensifying the salience of perceived synergies between DEI industries and clean
energy technologies while simultaneously increasing the volatility of these relationships.

Event studies demonstrate technology-energy correlation increases following breakthrough
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announcements, with effects persisting for extended periods post-breakthrough (Xu et al.,
2024; Alamaren et al., 2024). The magnitude of these effects depends on the perceived
significance of technological advancement, its implications for future energy consumption
patterns, and its interaction with existing policy frameworks and market structures.

From this theoretical foundation, we derive four testable hypotheses that capture the

key predictions of our conceptual framework. The first hypothesis emerges directly from
the Energy Conversion Hierarchy Mechanism and predicts that DEI industries should
exhibit fundamentally different financial relationships with fossil fuel and carbon markets
compared to traditional energy-intensive sectors. This prediction reflects the theoretical
expectation that electricity markets provide a buffer against direct fossil fuel price shocks,
even under conditions of extreme market stress when correlations typically intensify across
asset classes.
Hypothesis 1 (Energy Hierarchy Hypothesis): Due to its reliance on electricity
rather than direct fossil fuel combustion, the Al sector exhibits relatively weak financial tail
dependence with oil, gas, and carbon prices during extreme market conditions compared to
traditional energy-intensive industries.

The second hypothesis derives from the interaction between all three mechanisms and
addresses the heterogeneous nature of clean energy technologies and their differential rela-
tionships with DEI industries. This prediction recognizes that financial market perceptions
of complementarity between DEI industries and specific clean energy technologies depend
not only on physical energy relationships but also on growth dynamics, policy frameworks,
and investor narratives that may vary significantly across clean energy subsectors.
Hypothesis 2 (Clean Energy Heterogeneity Hypothesis): Within the clean energy
complex, subsectors with higher growth potential, greater policy sensitivity, or stronger
alignment with technology narratives exhibit stronger extreme financial linkages with the
Al sector compared to other clean energy segments.

The third hypothesis captures the dynamic nature of these relationships and the role of

technological breakthroughs in reshaping market perceptions. This prediction reflects the
theoretical expectation that the Financial Market Perception Mechanism becomes more
pronounced following events that heighten investor attention to sectoral relationships and
perceived synergies.
Hypothesis 3 (Dynamic Dependence Hypothesis): Major technological advance-
ments or policy shifts perceived as significant by financial markets amplify the tail depen-
dence and volatility spillovers between the Al sector and clean energy markets, particularly
in the upper tail during bullish periods or the lower tail during risk-off episodes.

The fourth hypothesis addresses the bidirectional nature of risk transmission and
the potential for asymmetric spillover effects under different market conditions. This
prediction emerges from the interaction between the Policy Transmission and Financial

Market Perception mechanisms, which suggests that shared policy risk exposures and
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high-beta characteristics can create bidirectional contagion effects that intensify during
periods of market stress. Bidirectional risk transmission between technology and energy
sectors shows significant interconnectedness, with spillover analysis revealing substantial
total connectedness, where technology sectors often act as net risk transmitters to energy
sectors (Xu et al., 2024; Alamaren et al., 2024).

Hypothesis 4 (Asymmetric Spillover Hypothesis): While AI might be a net trans-
mitter of volatility to clean energy during normal or bullish periods, under conditions
of significant market stress or negative policy shocks impacting the clean energy sector,
the directionality can reverse, with clean energy becoming a significant source of negative
volatility spillovers to the Al sector.

These four hypotheses collectively provide a comprehensive framework for empirically
testing the key predictions of our theoretical model while capturing the complex, time-
varying, and potentially asymmetric nature of financial relationships between DEI industries
and energy markets. The hypotheses are designed to be tested using the advanced
econometric methods described in our empirical methodology, particularly copula models
that can capture nonlinear tail dependencies and spillover analysis that can identify the

direction and magnitude of volatility transmission across markets.
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4.3 Data and Methodology

4.3.1 Overview and Methodological Framework

This section develops an integrated econometric framework to examine the evolving interde-
pendencies between artificial intelligence (AI) technology firms and energy markets under
extreme market conditions. Our methodological contribution lies in three key dimensions.
First, we employ a dynamic t-copula specification that captures time-varying tail depen-
dence while accounting for the heavy-tailed nature of financial returns, a critical feature
often overlooked in the Al-energy nexus literature. Second, we complement the copula
analysis with the Diebold-Yilmaz spillover framework to quantify directional volatility
transmissions, providing a comprehensive view of both contemporaneous dependencies and
lead-lag relationships. Third, our event-study design allows for structural break analysis
around major technological and policy shifts, offering insights into how exogenous shocks
reshape cross-market linkages.

The choice of this particular methodological combination is motivated by the unique
characteristics of Al and energy markets. While traditional correlation measures fail
to capture asymmetric dependencies during market stress, our copula-based approach
reveals how extreme movements in Al valuations translate into energy market disruptions.
Moreover, the integration of GARCH filtering ensures that we isolate genuine cross-
market dependencies from univariate volatility clustering, a distinction crucial for policy

implications.

4.3.2 Data Structure and Preliminary Transformations

Data Collection and Quality Control

Our analysis employs daily closing prices for three distinct market segments spanning from
January 2, 2020 to June 30, 2024, encompassing 1,129 trading days. The dataset
includes leading Al technology firms specializing in machine learning and computational
infrastructure, clean energy indices capturing renewable energy producers and technology
providers, and fossil fuel markets including oil, natural gas, and carbon emission certificates.

Let P,;; denote the closing price of asset i at time ¢, where ¢ € {1,2,..., N} indexes
the assets and ¢ € {1,2,...,T} indexes time. We implement comprehensive data cleaning
procedures to ensure the integrity of our statistical inference. Non-numeric entries and
missing observations are identified and removed to maintain temporal alignment across all
series. For outlier detection, we apply the Rousseeuw and Leroy (1993) robust estimation

method, flagging observations where:

Pi>Q3+3xIQR or P;<Q—3xIQR, (4.1)
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where (01 and (03 denote the first and third quartiles, and Q) R represents the interquartile
range. To address non-synchronous trading across international markets, we align all series

to a common trading calendar, forward-filling prices for market holidays.

Return Calculation and Properties

Following standard practice in financial econometrics, we transform raw prices into loga-

rithmic returns:

P;
rig = In(F) —In(Fi—1) = In <t> , (4.2)
Py
fort =2,...,7 and F;; > 0. The use of log returns ensures temporal additivity and

provides approximate normality for small price changes while treating positive and negative
movements symmetrically.

In the context of Al-energy market interactions, these returns capture the instantaneous
rate of value creation or destruction. During periods of technological breakthrough, such
as major Al model releases, we observe heightened volatility in Al firm returns transmitted
to energy markets through increased computational demand, shifting investor preferences

toward sustainable energy sources, and speculative capital flows between sectors.

4.3.3 Univariate Volatility Modeling: GARCH Framework

Model Specification and Estimation

Before examining cross-market dependencies, we must filter out the well-documented
volatility clustering in financial returns. For each asset i, we specify a GARCH(1,1) model

with the conditional mean equation:

p
Tt = i + Z GijTit—j + Eit (4.3)

j=1
where p; represents the unconditional mean return, ¢;; are autoregressive coefficients
capturing any predictable dynamics, and ¢;; is the innovation term. The lag order p is
determined via the Bayesian Information Criterion (BIC) to maintain model parsimony.

The conditional variance follows:
Uz'z,t = Var(e;; | Fi1) = wi + O‘igit—l + 5#72'2,15—17 (4.4)

where F;_; denotes the information set available at time ¢ — 1. The parameter restrictions
w; >0,a; >0, 5; >0, and a; + B; < 1 ensure covariance stationarity.

Parameters ©; = {i;, ¢i1,- .., ¢ip, wi, 4, B;} are estimated via quasi-maximum likeli-
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hood (QML):
T
@i = arg r%axza,t(@z), (45)

b=l

Where the log-likelihood contribution is:

1 g2
Ui (©;) = —3 In(27) + In(o7,) + L (4.6)

2
Ot

The standardized residuals are then computed as:

G
Zit = X

Oit

(4.7)
which should exhibit no serial correlation under correct model specification.

Volatility Dynamics Interpretation

The GARCH parameters reveal distinct volatility patterns across markets. The innovation
response parameter «; measures immediate reactions to market shocks, while the persistence
parameter [3; captures volatility inertia. Our empirical results show that Al firms exhibit
significantly higher a; values (averaging 0.15) compared to energy markets (averaging 0.08),
indicating stronger sensitivity to news and innovation shocks. Conversely, energy markets
display higher persistence with (; approaching 0.90, reflecting the stability of physical
infrastructure and long-term supply contracts. The sum «; + 3; measures overall volatility
persistence, with values near unity indicating that volatility shocks have long-lasting

effects.

4.3.4 Multivariate Dependence Modeling via Copulas

Theoretical Foundation

Sklar’s (1959) theorem provides the foundation for separating marginal distributions from
dependence structures. For bivariate random variables (X,Y) with joint distribution
Fxy(z,y) and marginals Fx(z), Fy(y), there exists a unique copula C : [0,1]* — [0, 1]
such that:

Fxy(x,y) = C(Fx(x), Fy(y)). (4.8)

This decomposition proves particularly valuable when marginal behaviors differ fun-
damentally from dependence structures, as is the case with AI and energy markets,
where univariate volatility patterns reflect sector-specific dynamics while cross-market

dependencies capture systemic risks.
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Empirical Implementation

We transform standardized residuals to uniform marginals via the empirical distribution
function:

Uie = F. (21) ~ ra;lfl'f) (4.9)
where the denominator ensures u;; € (0,1). This non-parametric approach avoids distri-
butional assumptions while preserving the dependence structure.

For initial exploration, we estimate static copula parameters by maximizing the log-

likelihood:
T

0;; = argmax 3 Inc(uiy, u;s;0), (4.10)

t=1
where ¢(, -; @) denotes the copula density.

We consider four copula families with distinct dependence characteristics. The Gaussian
copula C%*(uy, ug; p) = ®,(®~1(uy), @~ (uz)) serves as a symmetric benchmark with no
tail dependence. The Student-t copula C*(uy, us; p,v) = t,,(t; ' (u1), ¢,  (uz)) introduces
symmetric tail dependence through the degrees of freedom parameter v. The Clayton
copula C(uy, ug;0) = (up? +uy? — 1)71/? emphasizes lower tail dependence, capturing
joint crashes. The Gumbel copula C%"(uy,uy;0) = exp{—[(—Inu;)? + (—Inuy)?)/?}
focuses on upper tail dependence, relevant for joint booms. Model selection employs

information criteria and goodness-of-fit tests based on the empirical copula process.

Time-Varying Dependence Analysis

Static copulas may obscure important temporal variations in market linkages. We imple-
ment rolling window estimation with window length w:

95;1)2 = arg max zt: Inc(u; s, ujs0), (4.11)

’ O =i w1 T

for t = w,w+1,...,T. The choice of w = 250 trading days (approximately one year)
balances temporal resolution against estimation precision. These rolling estimates reveal
pronounced variation in dependence parameters, with correlations doubling during crisis
periods and tail dependence coefficients showing even more dramatic shifts.

To capture the time-varying nature of these dependencies, we employ a rolling window
estimation. To make an informed choice, we conducted a preliminary analysis comparing
window lengths of 50, 100, and 250 days. The 100-day window was selected as it minimized
the Mean Squared Error (MSE) of one-step-ahead out-of-sample correlation forecasts,
thereby providing the best balance between capturing significant temporal dynamics and

avoiding excessive noise from short-term market fluctuations.
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4.3.5 Dynamic t-Copula Specification

Model Development

Building on the evidence of time-varying dependence, we specify a dynamic ¢-copula where
parameters evolve smoothly according to observation-driven dynamics. This approach
combines the flexibility of time variation with the parsimony of parametric evolution
equations, avoiding the discreteness inherent in rolling window methods.

The correlation parameter p, € (—1,1) is modeled through a transformed process

ensuring proper bounds:

exp(¢y) — 1

- —— = tanh(1,/2), 4.12
Pt oxp(n) + 1 nh(y,;/2) ( )

where the latent process 1, follows:
Y =w+a- f(tig1,ujp—1) + B - 1, (4.13)

with stationarity ensured by |a| + |3] < 1.

The forcing variable captures how past extremes influence current dependence:
fugg, ) = (I)_l(ui,t) : ‘I)_l(uj,t)> (4.14)

where ®1(+) is the standard normal quantile function. This specification ensures that joint
tail events (both variables simultaneously in their extremes) have the strongest impact on
future correlation.

Likelihood and Estimation

The complete dynamic t-copula density at time ¢ is:

_ Jew(t (wig), t,  (wse); pr)
Feo(@ (wig)) - fro(t (ue)

ce(Wir, g5 ) (4.15)
where f:, (-, ; p:) denotes the bivariate Student-¢ density with correlation p; and v degrees
of freedom.
The parameter vector 2 = {w, a, B, v} is estimated by maximizing:
A T

Q) = arg mgxgln ce(wig, ujp; ), (4.16)
using a two-step procedure that initializes with static estimates before optimizing the full
dynamic specification.

The estimation results reveal strong evidence of contagion effects. The responsiveness
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parameter « is significantly positive, indicating that extreme co-movements increase
future dependence. The persistence parameter [ exceeds 0.9, suggesting that shifts in
market integration are highly persistent. The degrees of freedom parameter v averages 6.5,
confirming substantial tail dependence beyond Gaussian specifications. These dynamics
imply that Al and energy markets become more tightly linked precisely when diversification

benefits are most valuable.

4.3.6 Systemic Risk Assessment: Diebold-Yilmaz Framework

VAR-Based Spillover Methodology

While copulas capture contemporaneous dependencies, understanding directional volatility
transmission requires examining lead-lag relationships. The Diebold-Yilmaz spillover
framework, based on forecast error variance decompositions from vector autoregressions,

provides precisely this directional perspective.

We specify a p-th order VAR for the return vector r; = [r14, 794, ..., 7Ny
p
ry =c+ Z @irt_i + &4, (417)
i=1

where c is the intercept vector, ®; are coefficient matrices, and e, ~ N (0,X). The lag
order p is selected by minimizing information criteria while ensuring residual whiteness.
Generalized Variance Decomposition

To avoid dependence on variable ordering, we employ the generalized variance decomposi-
tion of Pesaran and Shin (1998). The H-step-ahead forecast error variance of variable i

due to innovations in variable j is:

Q(H) Z (e \IlhEe])

) , 4.18
“ Z o (el 2 e;) (4.18)
where W, represents impulse responses and e; denotes selection vectors.
After row normalization to ensure unit sums:
~(H) o)
gy = —4Y (4.19)
1) N (H) Y
2j=16s;
We construct the total spillover index
1 N N )
= Z Z 6" x 100. (4.20)
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Directional and Net Spillovers

Directional spillovers identify transmission patterns. Spillovers received by market ¢ from

all others: N
S =326 x 100, (4.21)

=1

i

and transmitted from market ¢ to all others:

N
SHL =376 % 100. (4.22)
=1
i
The net spillover position:
S = s — s, (4.23)

identifies net transmitters (SZ-(H) > () versus receivers (Si(H) < 0).

Our empirical results reveal that AI markets consistently act as net volatility transmit-
ters, with average net spillovers of +15% to clean energy and +10% to fossil fuel markets.
This asymmetric transmission pattern intensifies during periods of technological innovation
or regulatory uncertainty, confirming that AI market shocks propagate systematically
through energy sectors. The total spillover index averages 45% but exceeds 70% during
crisis periods, highlighting elevated systemic risks when market stress coincides across

sectors.

4.3.7 Event Study Design and Structural Break Analysis

Event Identification and Classification

To examine how exogenous shocks reshape Al-energy market linkages, we implement a
comprehensive event study framework. We identify major events across four categories:
technological breakthroughs (GPT model releases, quantum computing advances), regu-
latory shifts (Al governance frameworks, energy transition policies), market disruptions
(semiconductor shortages, energy crises), and macroeconomic shocks (monetary policy
changes, geopolitical tensions).

For each event at date 7, we define pre- and post-event windows:

Pre-event: Tpe ={t:7—-120<t <7} (4.24)
Post-event: Tpost = {t : 7 <t < 7+ 120} (4.25)

using 120 trading days (approximately 6 months) to balance sample size with parameter
stability.
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Comparative Statistical Analysis

We conduct parallel analyses on pre- and post-event samples to identify structural changes.
For marginal distributions, we re-estimate GARCH models and test for parameter shifts
using Andrews (1993) supremum tests. For dependence structures, we compare static

copula parameters via likelihood ratio tests:
LR = Q[K(éPOSt) + e(épre) - é(épooled)]a (426)

which follows x? distribution under the null of parameter stability.
For spillover dynamics, we test whether directional patterns shift significantly:

AS; = sH - gt) (4.27)

1,post 1,pre’

With bootstrap confidence intervals accounting for parameter uncertainty:
Clio(AS) = [AS; £ g7 5 - 5¢"(AS)] (4.28)

where ¢ denotes bootstrap quantiles from 1,000 replications.

The event analysis reveals pronounced structural breaks coinciding with major Al
developments. The GPT-3 release triggered a 40% increase in Al-energy correlations and
doubled tail dependence coefficients. The European Al Act proposal led to significant
spillover reversals, with regulatory uncertainty transmitting from Al to clean energy
valuations. These findings underscore that static risk models calibrated on historical data

systematically underestimate tail risks during periods of rapid technological change.

4.3.8 Robustness Checks and Model Validation

To ensure our findings are not artifacts of specific modeling choices, we conduct an
extensive robustness analysis. Alternative GARCH specifications, including EGARCH
and GJR-GARCH, confirm the main volatility patterns while revealing that AI markets
exhibit stronger leverage effects—negative returns increase volatility more than positive
returns of equal magnitude. This asymmetry aligns with the growth-oriented nature of Al
investments, where disappointments trigger larger volatility spikes than positive surprises.

For dependence modeling, we explore vine copulas for higher-dimensional structures
and regime-switching copulas allowing discrete state changes. The key finding of time-
varying tail dependence with contagion effects during market stress proves robust across
all specifications. Similarly, time-varying parameter VARs and quantile-based spillover
analysis confirm directional transmission from Al to energy markets, with effects most
pronounced in tail quantiles where systemic risks concentrate.

Model diagnostics include Ljung-Box tests on standardized residuals confirming the
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absence of serial correlation, ARCH-LM tests verifying complete volatility filtering, and
Cramér-von Mises tests based on the empirical copula process validating dependence speci-
fications. Out-of-sample analysis reserves the final 20% of observations, demonstrating that
dynamic copula models significantly outperform static alternatives in density forecasting.
The economic value appears clearly in portfolio applications where strategies incorporating
time-varying dependencies achieve superior risk-adjusted returns, with the largest gains

during market stress when accurate modeling matters most.

4.3.9 Summary and Methodological Contributions

This section has presented a comprehensive econometric framework for analyzing extreme
risk transmission between Al and energy markets. Our integrated approach, combining
GARCH-filtered copula modeling with directional spillover analysis, provides new insights
into the complex dependencies characterizing these critical sectors. The dynamic t-copula
specification captures time-varying tail dependence essential for understanding crisis
transmission, while the spillover framework reveals asymmetric volatility propagation from
Al to energy markets.

The methodological innovations extend existing approaches in three dimensions. First,
we demonstrate that static dependence measures dramatically understate tail risks during
technological disruptions. Second, we show that Al markets act as systematic volatility
transmitters, challenging traditional views of technology and energy as diversifying asset
classes. Third, our event study design reveals that major Al breakthroughs trigger persis-
tent structural breaks in cross-market linkages, necessitating adaptive risk management
frameworks.

These findings have immediate implications for portfolio construction, risk manage-
ment, and financial stability policy. As AI continues to reshape the global economy,
understanding these transmission mechanisms becomes essential for managing systemic
risks at the intersection of technology and critical infrastructure. The framework devel-
oped here provides the analytical tools needed to monitor and manage these evolving

interdependencies in real time.
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4.4 Empirical Results

This section presents our empirical investigation of the evolving financial relationships
between artificial intelligence (AI) and energy markets, guided by the four hypotheses
developed in Section 2.2. We first establish our methodological foundation through
data preprocessing and GARCH filtering, then systematically test each hypothesis using
integrated evidence from copula dependence analysis, volatility spillover decomposition, and
dynamic correlation evolution. Our approach synthesizes multiple econometric techniques
to provide comprehensive evidence on the complex, time-varying nature of Al-energy

financial linkages.

4.4.1 Data and Methodology Implementation

Descriptive Statistics and Preliminary Patterns

Our analysis employs daily data spanning January 2020 through June 2024, strategically
encompassing both the COVID-19 market disruption and the generative Al breakthrough
period following ChatGPT’s release in November 2022. Table 4.1 details our carefully
selected financial instruments, chosen to capture the breadth of Al industry exposure and
energy market segments while maintaining data quality and market representativeness.

The distributional characteristics of our return series, presented in Table 4.2, reveal
several patterns crucial for our subsequent analysis. All series exhibit significant depar-
tures from normality, as confirmed by Jarque-Bera test statistics with p-values below
0.05, justifying our use of heavy-tailed copula specifications. Notably, the Al ETF and
Solar indices display relatively high volatility (standard deviations of 2.73% and 3.62%,
respectively), reflecting the high-beta nature of growth-oriented technology and renewable
energy sectors. The pronounced excess kurtosis across all series (ranging from 3.22 to
5.01) indicates fat-tailed distributions with elevated probabilities of extreme movements,
motivating our focus on tail dependence analysis.

Figure 4.1 illustrates the temporal evolution of return volatility across our key variables,
with the vertical dashed line marking the ChatGPT release date that serves as our primary
event study demarcation. Visual inspection reveals several notable patterns: heightened
volatility clustering during the early 2020 COVID-19 period, elevated clean energy volatility
during the 2021-2022 policy uncertainty phase, and apparent co-movement intensification
between Al and solar returns in the post-ChatGPT period. These preliminary observations
provide initial support for our hypothesis regarding structural changes following major

technological breakthroughs.
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Table 4.1: Financial Assets and Indices Used in Analysis of Al-Energy Market Linkages

Asset /Index Market Repre- Economic Significance Data Source
sentation
GlobalX Robotics Al indus- Partially reflects market capi- Bloomberg
& Al ETF (Al try/robotics talization performance of global (2020/01-
ETF) ETF Al/robotics-related companies 2024/06)
SPGTCLEN.SPI  Comprehensive  Overall trends across clean energy  Wind (2020/01—
(CleanEn) clean energy sectors (wind, solar, bioenergy, 2024/06)
index etc.)
GRNSOLAR (So- Solar energy sec- Primarily composed of photo- Bloomberg
lar) tor index voltaic industry components, sig- (2020/01-
nificantly influenced by technol- 2024/06)
ogy and subsidy policies
GRNBIO (BioEn- Bioenergy sector Bioenergy companies affected by Wind (2020/01—
ergy) index raw material supply and environ- 2024,/06)
mental regulations
GRNWIND Wind energy sec- Wind power-related listed compa- Wind (2020/01—
(Wind) tor index nies; volatility influenced by in- 2024/06)
dustry cycles
WTI crude oil WTIcrude oil fu- Representative of fossil energy EIA /Investing
(Oil) tures prices prices, highly sensitive to geopoli- (2020/01—
tics 2024/06)
EU Emission Al- EU carbon emis- Key instrument in EU ETS, af- ICE  (2020/01-
lowances (EUA) sion allowance fected by policy and geopolitical 2024/06)
prices conflicts

Note: This table presents the financial instruments used to analyze the linkages between
digital energy-intensive (DEI) sectors like AI and various energy market segments. All
price series were converted to daily log returns for analysis. The sample period spans
January 2020 through June 2024, with the November 30, 2022, release of ChatGPT serving
as the event demarcation point for pre-event and post-event analysis.
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Asset/Index Mean Std Skewness Kurtosis JB Stat JB p-val
(%) (%)
AT ETF (GlobalX Robotics) 0.089 2.73 —-0.14 4.76 21.53 0.000
Clean Energy (SPGTCLEN.SPI) 0.075 2.15 0.32 3.82 15.48 0.000
Solar (GRNSOLAR) 0.092 3.62 0.09 5.01 29.17 0.000
Bioenergy (GRNBIO) 0.066 3.05 —0.25 3.96 12.65 0.002
Wind (GRNWIND) 0.061 2.87 —0.45 4.02 19.36 0.000
Oil (WTT) 0.018 3.98 0.51 3.47 10.03 0.007
EUA (EU Emission Allowances) 0.029 4.10 0.62 3.22 9.71 0.008

Notes: This table presents summary statistics for daily logarithmic returns of seven financial assets
from January 2020 to June 2024. Mean and standard deviation are expressed as percentages. Skew-
ness measures distributional asymmetry, with positive values indicating right-skewed distributions.
Kurtosis values exceeding 3 indicate leptokurtic (fat-tailed) distributions. The Jarque-Bera (JB) test
evaluates the null hypothesis of normality; all p-values below 0.05 confirm significant non-normality for
all series. The presence of non-normal distributions with excess kurtosis justifies our methodological
choice of Student-t copulas for tail dependence analysis.

Comparison of time series of log returns on core variables
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Notes: This figure illustrates the temporal evolution of return volatility across Al, clean energy, fossil
fuel, and carbon market indices from January 2020 to June 2024. The vertical dashed line marks
November 30, 2022 (ChatGPT release date), which serves as the event demarcation point for
examining structural changes in cross-market dependence structures. The chart shows six key
variables: Dow Jones Conventional Electricity (brown), Dow Jones U.S. Alternative Electricity
(vellow), EU Emission Allowances (blue), GlobalX Robotics AI ETF (red), SPGTCLEN.SPI Clean
Energy Index (green), and WTT crude oil (purple). Notable patterns include volatility clustering
during COVID-19 (early 2020), elevated clean energy volatility during 2021- 2022 policy uncertainty,
and apparent co-movement intensification between Al and clean energy returns post-ChatGPT.

Figure 4.1: Daily Logarithmic Return Time Series of Key Financial Assets
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GARCH Filtering and Standardized Residuals

To isolate the cross-asset dependence structure from individual volatility dynamics, we
implement AR(1)-GARCH(1,1) filtering for each return series following standard practice
in financial econometrics (Bollerslev, 1986). This two-step approach first models the
conditional mean and variance of each asset individually, then analyzes the dependence
structure among the resulting standardized residuals, ensuring that our copula-based tail
dependence measures reflect true cross-market linkages rather than spurious correlations
induced by heteroskedasticity.

Table 4.3 presents parameter estimates for the pre-event period, revealing substantial
volatility persistence across all assets as evidenced by the high values of oy + 31 approaching
unity. The AT ETF exhibits particularly strong volatility persistence (a; + 81 = 0.9937),
consistent with the behavioral finance literature on growth stock momentum and reversal
patterns. Similarly, the fossil fuel and carbon markets display strong GARCH effects,

reflecting their sensitivity to geopolitical events and policy announcements.

Table 4.3: AR(1)-GARCH(1,1) Parameter Estimates

Asset, " 10) w a1 51
(x1073) (x1079)

AT ETF (GlobalX Robotics) 1.230 0.076 0.119  0.029 0.965

Solar (GRNSOLAR) 0.872 0.014 0.285  0.052 0.939

Wind (GRNWIND) 0.978 —0.002  0.391 0.086 0.906

Oil (WTT) 0.370 0.043 0.254  0.045 0.951

EUA (EU Emission Allowances)  1.140 0.009 0.205  0.062 0.921

Notes: This table presents parameter estimates for AR(1)-GARCH(1,1) models fitted to
each return series prior to the ChatGPT release event (pre-event sample: January 2020-
November 2022). The parameters are defined as follows: p is the constant term in the
mean equation, ¢ is the autoregressive coefficient, w is the constant term in the variance
equation, while a; and (5 represent the ARCH and GARCH effects, respectively. The
high values of a1 + (1 (close to unity) indicate substantial volatility persistence across
all assets. These models were used to filter out conditional heteroskedasticity before
estimating copula dependencies.

Diagnostic tests confirm the adequacy of our GARCH specifications. Ljung-Box
Q-statistics for the standardized residuals show no significant autocorrelation, while
ARCH-LM tests on squared standardized residuals indicate successful removal of het-
eroskedasticity. These results validate our filtering approach and ensure that subsequent
copula analysis captures genuine cross-market dependence rather than residual conditional

heteroskedasticity.
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4.4.2 Empirical Evidence for the Four Hypotheses

Having established our methodological foundation, we now present integrated evidence
testing our four core hypotheses. Each subsection synthesizes static and dynamic copula
analysis, spillover transmission patterns, and temporal evolution evidence to evaluate
specific theoretical predictions while building toward a comprehensive understanding of

Al-energy financial linkages.

Financial Decoupling: AI versus Energy Market Segments (H1)

Our Energy Conversion Hierarchy hypothesis predicts that Al’s electricity dependence
creates a financial buffer against direct fossil fuel price shocks, leading to systematically
weaker linkages with oil and gas compared to clean energy sectors. We test this prediction
using multiple dependence measures across various market conditions and time horizons.

Static copula analysis provides our foundational evidence, presented in Table 4.4.
The results demonstrate a clear pattern supporting H1: Al exhibits consistently weak
dependence on fossil fuel and carbon markets across both time periods. In the pre-
event period, Kendall’s 7 coefficients between Al and fossil fuel markets remain minimal
(0.015 with Gas, 0.046 with EUA), substantially lower than AI’s relationship with clean
energy segments (0.32 with Solar, 0.42 with BioEnergy). This pattern persists and even
strengthens in the post-event period, where AI-Gas dependence increases marginally to
0.07 while AI-EUA dependence turns slightly negative (-0.015).

Table 4.4: Static Copula Estimation Results: Pre-Event and Post-Event Comparison

Pre-Event Post-Event

Asset Pair Kendall’s Parameters Copula  Kendall’s  Parameters Copula

T (pary, parsy) Family T (pary, parsy) Family
Al-Solar 0.320 (0.48, 10.20)  Student-t 0.520 (0.73, 12.58)  Student-t
AT-Wind 0.233 (0.36, 6.36)  Student-t 0.246 (0.37, —) Gaussian
Al-Bioenergy 0.420 (0.60, —)  Gaussian 0.230 (0.36, —) Gaussian
AI-Gas 0.015  (1.06,0.02) Clayton  0.070  (0.12,0.01)  Clayton
AI-EUA 0.046 (0.08, —)  Gaussian  —0.015  (—0.03, 9.09) Student-t
Gas-EUA 0.047 (0.09, —)  Gaussian 0.043 (0.09, —) Gaussian

Notes: This table presents optimal copula models for key asset pairs across pre-event (January
2020-November 2022) and post-event (December 2022-June 2024) periods, with the ChatGPT release
(November 30, 2022) as the demarcation point. Parameter values represent: for Student-t copula
(correlation, degrees of freedom); for Gaussian copula (correlation parameter only); for Clayton
copula (dependence parameter, scale parameter). Dashes (—) indicate parameters not applicable to
the specific copula family. The pronounced increase in AI-Solar dependence contrasts sharply with
the persistently weak Al—fossil fuel relationships, providing strong support for Hypothesis 1.

The contrast becomes even more pronounced when examining the evolution of these
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relationships over time. Figure 4.2 displays rolling window estimates of Kendall’s 7
for representative Al-energy pairs, revealing striking temporal patterns that strongly
support our Energy Conversion Hierarchy mechanism. The AI-Gas correlation (Panel b)
remains consistently near zero throughout the entire sample period, with values rarely
exceeding 0.1 and showing no systematic response to major market events or policy changes.
This stability contrasts sharply with the AI-Solar relationship (Panel a), which exhibits

substantial time variation and a marked structural break following the ChatGPT release.

Rolling Copula Tail & Tau - z_Al_ret_vs_z_GRNSOLAR_ret

Value

202311
Date

(a) AI vs. Solar Correlation Evolution (b) AI vs. Gas Correlation Evolution

Notes: These plots illustrate the time-varying nonlinear correlations between standardized residual
series following GARCH(1,1) filtering, using a 100-day rolling window. The vertical dashed line marks
the ChatGPT release (November 30, 2022). Panel (a) reveals a marked increase in AI-Solar correlation
after early 2023, rising from approximately 0.3 to peaks near 0.5, consistent with Hypothesis 3 regarding
strengthened linkages following technological breakthroughs. In contrast, Panel (b) demonstrates
persistently low correlation between AI and natural gas throughout the entire sample period, with
values rarely exceeding 0.1, supporting Hypothesis 1 on Al’s relative decoupling from fossil energy
markets.

Figure 4.2: Temporal Evolution of Rank Dependencies: Rolling Window Kendall’s 7

Dynamic copula analysis, summarized in Tables 4.5 and 4.6, provides additional
granular evidence supporting H1. The parameter estimates reveal fundamental differences
in how Al relates to fossil fuel versus clean energy markets. For AI-Gas pairs, the estimated
parameters consistently indicate weak, unstable relationships: high sensitivity to short-
term shocks (o = 0.7143 pre-event, 0.8840 post-event) combined with zero persistence
(8 = 0.0000 in both periods), suggesting that any temporary correlations dissipate rapidly
without creating lasting dependence structures.

The degrees of freedom parameter (v) provides particularly compelling evidence for H1.
Al-Gas and AI-EUA relationships consistently show v values at or near the estimation
boundary (30.0), indicating thin-tailed dependence structures with low probabilities of joint
extreme movements. This contrasts markedly with Al-clean energy relationships, where v
values are substantially lower (particularly Al-Clean Energy with v = 4.94 post-event),
indicating fat-tailed joint distributions characteristic of sectors with genuine economic
linkages.

Volatility spillover analysis, presented in Table 4.7, provides a complementary per-
spective on directional risk transmission that further supports H1. The spillover matrix

reveals minimal transmission from fossil fuel markets to Al: Oil contributes only 0.16%



Table 4.5: Dynamic ¢-Copula Model Parameter Estimates(Pre-Event Period)

Asset Pair @ I6; v v Y0 —LogLik Conv.
Al-Clean Energy 0.000 0.000 3.000  10.528 1.546 133.702  Yes
Al-Solar 0.011 0.979 3.000  12.368 2.000  68.993 Yes
Al-Bioenergy 0.046 0.846 —3.000 17.576 2.000 106.707  Yes
ATl-Wind 0.000 0.623  1.940 6.366  0.763  37.362 Yes
AI-Oil 0.034 0.957 3.000 10.604 1.190  8.381 No
Al-Gas 0.714 0.000 2.315 30.000* 0.067  0.732 Yes
AI-EUA 0.042 0.948 —0.212 30.000* 0.705 1.225 No

Notes: This table presents parameter estimates for Patton’s (2006) dynamic ¢-copula
model during the pre-ChatGPT period (January 2020-November 2022). Parameters
include: « (sensitivity to new information), 8 (persistence in correlation), v (transformed
correlation parameter), v (degrees of freedom, with smaller values indicating heavier
tails), and vy (long-run mean level). Conv. indicates convergence status (Yes =
successful convergence, No = boundary solution or convergence issues). *Values at the
upper estimation boundary (30), suggesting relatively thin tails compared to other asset
pairs.

Table 4.6: Dynamic t-Copula Model Parameter Estimates (Post-Event Period)

Asset Pair @ I3 5 v Yo —LogLik Conv.
ATl-Clean Energy 0.138 0.495  3.000 4.940 2.000 96.350 Yes
Al-Solar 0.079 0.000 3.000  12.670  2.000  141.000 Yes
Al-Bioenergy 0.666 0.000 —2.174 30.000*  2.000 19.220 Yes
AIl-Wind 0.000 0.018 —0.469 30.000*  0.793 27.450 Yes
Al-Gas 0.884 0.000 —0.797 30.000* 1.970 2.610 Yes
AT-EUA 0.000 0.880 1.536 9.100  —0.048 1.670 Yes

Notes: This table presents parameter estimates for the dynamic ¢-copula model during
the post-ChatGPT period (December 2022-June 2024). Parameter definitions match
those in Table 4.5. *Values at the upper estimation boundary (30), suggesting relatively
thin tails in these pairs. Key structural changes after the ChatGPT release include: (1)
substantially lower v for AI-Clean Energy (4.94 vs. 10.53 pre-event), indicating much
heavier tails and greater probability of joint extreme movements; (2) higher o and lower
0 values for most pairs, suggesting stronger influence of short-term shocks and reduced
persistence in correlations.
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to AT’s forecast error variance, while the Al sector contributes an even smaller 0.80% to
Oil’s variance. These negligible spillover effects confirm that fossil fuel price shocks do not

substantially affect Al sector volatility, consistent with our Energy Conversion Hierarchy

mechanism.
Table 4.7: Diebold-Yilmaz Volatility Spillover Matrix

From — To Al Clean Energy  Oil  EUA ‘ From (%)
Al 72.11 1.76 0.16  25.97 27.89
Clean Energy  1.83 93.63 029 425 6.37
Oil 0.80 2.43 95.64 1.13 4.36
EUA 0.69 4.04 1.43 93.84 6.16
To (%) 3.32 8.23 1.88  31.35 | TSI = 14.80%
Net (%) —24.57 1.86 —2.48 25.19

Notes: This table presents the Diebold—Yilmaz spillover analysis results with
forecast horizon H = 10. Diagonal elements represent own-variance contribu-
tions, while off-diagonal elements indicate cross-market spillovers (all values
in percentages). The “From” column shows total spillover received by each
market, while the “To” row displays total spillover transmitted to others. “Net”
is calculated as To minus From, with positive values indicating net transmitters
and negative values indicating net receivers. The Total Spillover Index (TSI)
represents system-wide interconnectedness. The minimal spillovers between Al
and Oil (0.16% and 0.80%) provide strong support for Hypothesis 1’s prediction
of Al-fossil fuel decoupling.

Importantly, the EUA spillover to Al (25.97%) appears substantial but actually supports
rather than contradicts H1. This spillover operates through policy transmission channels
affecting electricity markets rather than direct fossil fuel exposure, consistent with our
Digital Energy Intensive (DEI) framework. Carbon pricing policies influence electricity
generation costs and renewable energy incentives, creating indirect linkages that differ
fundamentally from the direct fuel cost exposures facing traditional energy-intensive
industries.

The convergent evidence from static copulas, dynamic correlation evolution, and
volatility spillovers provides robust support for Hypothesis 1. AT’s electricity dependence
creates a systematic financial buffer against direct fossil fuel price volatility, fundamentally
distinguishing the sector from traditional energy-intensive industries. This finding has
important implications for portfolio construction, risk management, and policy design in

the context of digital economy growth within energy transition frameworks.

Technology Breakthrough Effects: Pre-Post ChatGPT Analysis (H3)

Our Dynamic Dependence hypothesis predicts that major technological breakthroughs
amplify financial linkages between Al and clean energy markets, particularly in extreme

market conditions. We test this prediction by examining structural changes around
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the November 30, 2022, release of ChatGPT, treating this event as an exogenous shock
that fundamentally altered market perceptions of Al’s commercial viability and energy
implications.

The static copula comparison in Table 4.4 provides striking initial evidence for H3. The
Al-Solar relationship exhibits the most dramatic structural change: Kendall’s 7 increases
by 62.5% from 0.32 to 0.52, while maintaining the heavy-tailed Student-t copula family
in both periods but with evolving parameters (correlation parameter rising from 0.48 to
0.73, degrees of freedom increasing from 10.20 to 12.58). This represents not merely a
quantitative intensification but a qualitative transformation in the dependence structure,
suggesting that the ChatGPT breakthrough fundamentally altered how financial markets
perceive the Al-clean energy nexus.

Visual confirmation of this structural break appears clearly in Figure 4.2, where the
rolling window analysis reveals a sharp inflection point immediately following the ChatGPT
release. The Al-Solar correlation exhibits a decisive upward shift beginning in early 2023,
rising from fluctuations around 0.3 to sustained levels above 0.4, with occasional peaks
near 0.5. The timing precision of this shift—occurring within weeks of the ChatGPT
release rather than gradually over months—suggests a genuine event-driven structural
break rather than gradual market evolution.

Figure 4.3 provides a comprehensive view of the cross-market dependence transfor-
mation, displaying Kendall’s 7 correlation matrices for both time periods. The visual
comparison dramatically illustrates the intensification of Al-Solar linkages (upper-left
quadrant) while confirming the stability of other relationships. Notably, the post-event
matrix shows deepened correlations not just for Al-Solar but across several clean en-
ergy subsectors, suggesting that the ChatGPT event triggered broader reassessment of
technology-energy synergies rather than isolated pair-specific effects.

The dynamic copula parameter evolution provides deeper insights into the mechanism
driving these changes. Comparing Tables 4.5 and 4.6, the Al-Clean Energy pair exhibits
dramatic parameter shifts that illuminate the nature of the structural break. The degrees
of freedom parameter plummets from 10.53 to 4.94, indicating a fundamental shift toward
heavier-tailed joint distributions with substantially higher probabilities of extreme co-
movements. Simultaneously, the sensitivity parameter («) increases from 0.0000 to 0.1380
while persistence () rises from 0.0000 to 0.4950, suggesting that the post-event period is
characterized by both greater responsiveness to shocks and more persistent correlation
patterns.

This parameter configuration indicates that the ChatGPT breakthrough created a new
regime characterized by: (1) increased baseline correlation levels, (2) higher sensitivity to
new information flows, (3) greater persistence of correlation changes, and (4) substantially
elevated tail dependence. These changes represent precisely the type of "amplification

effects" predicted by H3, where technological breakthroughs intensify financial market
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Notes: These heatmaps visualize pairwise rank correlations between Al, clean energy, fossil fuel,
and carbon market indices before and after ChatGPT release. Panel (a) shows the pre-event period
(January 2020-November 2022), while Panel (b) shows the post-event period (December 2022-June
2024). Darker shades indicate stronger dependencies. Key observations include: (1) the intensification
of AT-Solar correlation in the post-event period (upper-left quadrant), (2) the relatively stable low
correlations between AT and fossil/carbon assets (middle rows), and (3) the persistent correlation
between clean energy sub-sectors. These visual patterns complement the numerical findings in
Table 4.4 and support Hypothesis 3 regarding strengthened Al—clean energy linkages following major
technological breakthroughs.

Figure 4.3: Evolution of Nonlinear Dependence Structures: Kendall’s 7 Correlation
Matrices

linkages through enhanced investor attention and narrative formation around sectoral
synergies.

Figure 4.4 presents the estimated time-varying correlation parameters from our dynamic
t-copula models, providing granular evidence of the temporal evolution. The AI-Solar
correlation (Panels a and b) shows a clear regime shift: pre-event correlations fluctuate
between 0.2 and 0.4 with high volatility, while post-event correlations stabilize at higher
levels (0.4-0.6) with reduced volatility, suggesting that the new equilibrium relationship is
both stronger and more stable than the pre-event pattern.

The contrast with AI-Gas correlations (Panels ¢ and d) is particularly instructive: these
relationships show no systematic response to the ChatGPT event, remaining consistently
near zero throughout both periods. This stability confirms that the structural break was
specifically related to Al-clean energy linkages rather than representing a general increase
in AD’s correlation with all energy sectors, supporting our hypothesis that technological
breakthroughs operate through specific narrative channels rather than broad-based risk
factor changes.

Cross-validation using alternative Al proxies, presented in Table 4.8, confirms that
the ChatGPT effect is robust across different representations of the Al sector. Every Al
proxy examined—from individual tech giants like NVIDIA and Microsoft to composite

indices of Asian technology companies—shows strengthened correlation with clean energy
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Notes: This figure presents the estimated correlation parameter (p;) from Patton’s (2006) dynamic
t-copula model for key asset pairs across both time periods. Panels (a) and (b) compare AI-Solar
correlation before and after the ChatGPT release, while Panels (c¢) and (d) show AI-Gas correlation
for the same periods. Several important patterns emerge: (1) Al-Solar correlation exhibits a marked
increase in the post-event period, rising to consistently higher levels above 0.4 after early 2023, compared
to fluctuations mostly between 0.2-0.4 pre-event; (2) AI-Gas correlation remains consistently low in
both periods, rarely exceeding 0.1; (3) the post-event AI-Solar series shows greater responsiveness to
market conditions, consistent with the higher a and lower 5 values reported in Table 4.6.

Figure 4.4: Time-Varying Correlation Dynamics from Dynamic ¢-Copula Estimation
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(particularly solar) post-ChatGPT. The effect magnitude varies across proxies, with
NVIDIA showing the largest increase (A7 = 40.225 for solar) and Asian Tech companies
showing smaller but still positive changes (A7 = +0.150 for solar), suggesting that
the structural break reflects genuine market-wide reassessment rather than idiosyncratic
movements in specific securities.

The evidence for H3 is particularly compelling because it demonstrates both statistical
significance and economic meaningfulness. The 62.5% increase in Al-Solar correlation
represents a substantial structural shift that would have important implications for portfolio
diversification, risk management, and investment strategy. Moreover, the precision timing
of this shift around the ChatGPT release, combined with its persistence through the
subsequent 18-month period, suggests that the technological breakthrough created a new
equilibrium rather than temporary market excitement.

These findings support our theoretical prediction that major technological break-
throughs can fundamentally alter financial market perceptions of sectoral relationships,
creating new correlation regimes that persist well beyond the initial event. The ChatGPT
release appears to have crystallized investor recognition of potential synergies between Al
advancement and clean energy deployment, translating abstract technological possibilities

into concrete financial market relationships.

Clean Energy Heterogeneity and Solar Dominance (H2)

Our Clean Energy Heterogeneity hypothesis predicts systematic differences in Al linkages
across clean energy subsectors, with solar photovoltaics expected to exhibit the strongest
relationships due to higher growth potential, greater policy sensitivity, and stronger
alignment with technology narratives. We test this prediction by examining cross-sectional
variation in dependence measures and their differential evolution following the ChatGPT
breakthrough.

The static copula results in Table 4.4 provide clear evidence for sectoral heterogeneity
within clean energy. In the pre-event period, Al relationships with different clean energy
subsectors vary substantially: Solar exhibits moderate dependence (7 = 0.32), BioEnergy
shows the highest initial dependence (7 = 0.42), and Wind demonstrates intermediate
levels (7 = 0.233). However, the post-event evolution reveals dramatic divergence, with
Solar experiencing the largest increase (A7 = +0.20), Wind showing minimal change
(AT = +0.013), and BioEnergy actually declining (A7 = —0.19).

This pattern strongly supports H2’s prediction of solar dominance in Al linkages,
but also reveals the importance of distinguishing between baseline relationships and
dynamic responsiveness to technological breakthroughs. While BioEnergy initially showed
strong Al correlation, this relationship proved unstable and actually weakened following
the ChatGPT event. In contrast, Solar’s relationship with AI not only strengthened

substantially but also maintained the heavy-tailed Student-t copula structure, indicating
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robust tail dependence under extreme market conditions.

The degrees of freedom parameters provide additional insights into sectoral differences
in extreme risk sharing. Post-event, the Al-Solar relationship maintains meaningful tail
dependence (v = 12.67), while AI-Wind and Al-BioEnergy relationships show v values at
or near the estimation boundary (30.0), indicating thin-tailed dependence structures with
minimal joint extreme movement probabilities. This pattern suggests that Solar uniquely
shares both normal and extreme market conditions with AI, while other clean energy
subsectors show limited extreme risk coupling.

Figure 4.4 Panel (a) reveals that Solar’s dominance emerges through superior respon-
siveness to the ChatGPT breakthrough rather than consistently higher baseline correlation.
Throughout 2020-2022, Solar correlation with Al fluctuates around 0.3, similar to other
clean energy subsectors. However, beginning in early 2023, Solar correlation exhibits a
sustained upward shift to levels consistently above 0.4, reaching peaks near 0.5. This
timing precision suggests that Solar’s financial relationship with Al intensified specifically
due to market perceptions of technological synergies rather than fundamental changes in
business operations or energy consumption patterns.

The dynamic copula parameter evolution illuminates the mechanisms driving Solar’s
emergence as the dominant Al-linked clean energy subsector. Comparing the AI-Solar
parameters across periods (Tables 4.5 and 4.6), we observe a shift from high persistence, low
sensitivity (8 = 0.9794, a = 0.0106) to zero persistence, moderate sensitivity (8 = 0.0000,
a = 0.0790). This parameter configuration suggests that post-ChatGPT, the Al-Solar
relationship became more reactive to short-term information flows while maintaining
elevated baseline correlation levels.

This dynamic pattern contrasts sharply with other clean energy subsectors. AI-Wind
maintains very low sensitivity and persistence throughout both periods (o = 0, g ~ 0.02),
indicating a fundamentally stable but weak relationship unresponsive to technological
breakthroughs. AI-BioEnergy shows high post-event sensitivity (o = 0.6660) but zero
persistence (f = 0.0000), suggesting temporary reactivity without lasting correlation
increases—precisely the pattern observed in the declining static correlation.

The evidence strongly supports Hypothesis 2’s prediction of clean energy heterogeneity,
with solar photovoltaics emerging as uniquely linked to Al sector dynamics through
multiple channels operating at both normal and extreme market conditions. This finding
refines our understanding of DEI-energy relationships beyond simple "clean versus fossil"
distinctions toward more granular sectoral analysis based on technological, regulatory, and

financial market characteristics.

Risk Transmission Dynamics and Directional Spillovers (H4)

Our Asymmetric Spillover hypothesis examines the bidirectional nature of volatility

transmission between Al and energy markets, predicting that while AI may typically
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transmit volatility to clean energy during normal periods, this directionality can reverse
during market stress when clean energy becomes a source of negative spillovers to AI. We
test this prediction using the Diebold-Yilmaz spillover framework and complementary
evidence from dynamic copula tail behavior.

The spillover matrix in Table 4.7 reveals a complex pattern of risk transmission that
provides partial support for H4 while highlighting important nuances in the directional
flow of shocks. The Al sector emerges as a substantial net receiver of volatility (NET
= -24.57%), receiving 27.89% of its forecast error variance from other markets while
transmitting only 3.32% to other sectors. This pattern contradicts the simple narrative
of Al as a pure volatility transmitter and suggests instead that Al sector volatility is
significantly influenced by external energy market conditions.

The most striking finding is the dominance of EUA (carbon allowances) as a volatility
transmitter to Al, contributing 25.97% of Al’s forecast error variance while receiving
only 0.69% from AI. This asymmetric relationship supports our theoretical framework by
demonstrating that policy-related energy market shocks—operating through carbon pricing
mechanisms that affect electricity costs—can significantly impact Al sector volatility. The
magnitude of this spillover (25.97%) exceeds the contribution from any other individual
sector, highlighting the importance of regulatory transmission channels in DEI-energy
relationships.

Clean energy markets show a more moderate but still notable pattern: transmitting
1.83% of variance to Al while receiving 1.76% from AI. This near-balance in normal
spillovers masks potentially important asymmetries during stress periods, which requires
examination of dynamic spillover evolution and extreme market conditions to fully evaluate
H4’s predictions about directional reversal.

The degrees of freedom parameters from our dynamic copula analysis provide comple-
mentary evidence on tail risk transmission that supports H4’s emphasis on asymmetric
effects during extreme conditions. The post-event AI-Clean Energy relationship shows
substantially lower degrees of freedom (v = 4.94) compared to the pre-event period
(v = 10.53), indicating a fundamental shift toward heavier-tailed joint distributions with
elevated probabilities of simultaneous extreme movements in both directions.

Evidence for stress-period spillover reversal comes from examining specific episodes
within our sample period. During the March 2023 banking sector concerns that particularly
affected high-beta technology and clean energy stocks, the correlation patterns suggest
intensified clean energy to Al transmission. The rolling window analysis shows correlation
peaks precisely during this stress period, followed by elevated but more stable correlation
levels, consistent with stress-induced spillover intensification predicted by H4.

The implications for H4 evaluation are nuanced. The hypothesis receives strong support
regarding the existence of bidirectional transmission mechanisms and the potential for

spillover reversal during stress periods. The heavy-tailed dependence structures, enhanced
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sensitivity parameters, and observed correlation intensification during stress episodes all
support the theoretical predictions. However, our sample period limits definitive testing of
full spillover reversal, as it contains relatively few major clean energy-specific stress events
independent of broader market downturns.

The risk transmission analysis reveals a sophisticated pattern of interconnection that
transcends simple sender-receiver classifications. Al operates within a complex network
of energy market relationships characterized by policy-mediated transmission channels,
technology-driven correlation amplification, and stress-dependent directional effects. These
findings have important implications for portfolio construction, risk management, and

regulatory oversight of financial stability in the digital energy economy.

4.4.3 Robustness and Sensitivity Analysis

To ensure the reliability and generalizability of our findings, we conduct comprehensive
robustness tests examining sensitivity to alternative variable definitions, methodological
specifications, and sample period choices. These tests confirm that our core conclusions
regarding DEI-energy financial linkages remain stable across various analytical approaches

while providing additional insights into the mechanisms driving these relationships.

Alternative AI Sector Proxies

Table 4.8 presents correlation changes across six different Al sector representations, con-
firming that our findings are not dependent on the specific choice of the GlobalX Robotics
& AT ETF as our primary proxy. The consistency of results across diverse Al representa-
tions—from broad technology indices to specialized Al firms—provides strong evidence for
the robustness of our core findings.

NVIDIA shows the most pronounced responses to the ChatGPT breakthrough, with
Solar correlation increasing by 0.225 (66% increase) and Clean Energy correlation rising
by 0.121 (34% increase). This heightened sensitivity likely reflects NVIDIA’s role as a
primary enabler of AI computational infrastructure, making it particularly responsive to
AT adoption narratives. Microsoft, as a major OpenAl investor, shows substantial but
more moderate increases (Solar A7 = +0.172, Clean Energy A7 = +0.049), consistent
with its broader business portfolio beyond Al.

Importantly, the robustness testing reveals that H1’s prediction of weak fossil fuel
linkages holds universally across Al proxies. Every Al representation shows minimal
correlation with Oil (all A7 < +0.030), confirming that electricity-mediated buffering from
fossil fuel price shocks characterizes the entire Al ecosystem rather than specific subsets of

companies.
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Table 4.8: Comparison of Kendall’s 7 Between Al Proxies and Energy Markets

Al P
Energy Market Period roxy

Original AT Al Core NVIDIA Microsoft Asian Tech  C3.ai

Pre-event 0.324 0.307 0.351 0.293 0.278 0.312

Clean Energy  Post-event 0.412 0.395 0.472 0.342 0.321 0.386
A +0.088 +0.088 +0.121 +0.049 +0.043 +0.074

Pre-event 0.320 0.305 0.342 0.271 0.262 0.306

Solar Post-event 0.519 0.492 0.567 0.443 0.412 0.473
A +0.199 +0.187 +0.225 +0.172 +0.150 +0.167

Pre-event 0.233 0.219 0.247 0.201 0.183 0.242

Wind Post-event 0.246 0.235 0.268 0.231 0.198 0.268
A +0.013 +0.016 +0.021 +0.030 +0.015 +0.026

Pre-event 0.046 0.043 0.059 0.037 0.051 0.073

Oil (WTT) Post-event 0.070 0.063 0.089 0.052 0.052 0.092
A +0.024 +0.020 +0.030 +0.015 +0.001 +0.019

Pre-event 0.015 0.011 0.023 —0.005 —0.018 0.037

EU Allowances Post-event —0.015 —0.021 —0.008 —0.013 —0.032 0.046
A —0.030 —0.032 —0.031 —0.008 —0.014 +0.009

Notes: This table presents Kendall’s 7 correlation coefficients between different Al sector proxies and energy
market variables before and after ChatGPT release. Pre-event period: January 2020-November 2022;
post-event period: December 2022-June 2024. Original AI is the GlobalX Robotics & Al ETF used in
the main analysis; Al Core represents the composite index of Al-focused ETFs; NVIDIA and Microsoft
are individual representatives from the Tech Giants category; Asian Tech is the composite index of Asian
technology companies; and C3.ai represents a specialized Al firm. A shows the change in correlation between
post-event and pre-event periods.
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Electricity Market Linkages

Table 4.9 examines correlations with conventional electricity indices to test whether
our results reflect genuine energy market relationships or spurious technological sector
correlations. The analysis reveals fascinating heterogeneity that both supports and extends
our main findings.

Western technology giants exhibit a striking pattern of decoupling from conventional
electricity prices post-ChatGPT, with NVIDIA showing the most dramatic reduction
(AT = —0.141) and the Tech Giant composite index declining substantially (A7 = —0.198).
This pattern likely reflects these companies’ superior bargaining power in electricity
procurement, increasing adoption of direct renewable energy purchase agreements, and
operational scale advantages that reduce sensitivity to conventional electricity price
movements.

Conversely, Asian technology companies show emerging positive correlations with
conventional electricity prices, with Baidu and Alibaba registering increases of +0.103 and
+0.122, respectively. This divergence may reflect regional differences in energy market
structure, regulatory environments, or the pace of Al capability integration into core

business operations.

4.4.4 Synthesis: Hypothesis Validation and Theoretical Implica-

tions

Our comprehensive empirical analysis provides systematic evidence evaluating the four
core hypotheses derived from our Digital Energy Intensive (DEI) theoretical framework.
Table 4.10 summarizes the evidence and support levels for each hypothesis.

Hypothesis 1 receives strong empirical support across all analytical dimensions. The
consistently low correlations (7 < 0.07) between Al and fossil fuel markets, minimal
volatility spillovers (< 1%), and stability of these patterns across alternative Al proxies
and methodological specifications provide compelling evidence for our Energy Conversion
Hierarchy mechanism. This finding validates our theoretical prediction that electricity
intermediation creates systematic financial buffering against direct fossil fuel price shocks,
fundamentally distinguishing DEI sectors from traditional energy-intensive industries.

Hypothesis 2 receives robust support through a clear demonstration of clean energy
subsector heterogeneity in Al relationships. Solar photovoltaics emerge as uniquely
correlated with Al (A7 = +0.199), while wind shows minimal responsiveness (A7 =
+0.013) and bioenergy actually declines (A7 = —0.007). The solar-specific tail dependence
and superior responsiveness to technological breakthroughs confirm our prediction of
technology-policy synergy effects operating heterogeneously across clean energy segments.

Hypothesis 3 receives strong support through multiple complementary pieces of

evidence. The precise timing of structural breaks around the ChatGPT release, substantial
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Table 4.9: Correlation Changes with Dow Jones Conven-
tional Electricity Index

Variable Pre-Event 7 Post-Event 7 AT

AI Core Components

Al Core ETF1 0.175 0.119 —0.056
AT Core ETF?2 0.198 0.212 +0.014
Al Core ETF3 0.130 0.193 +0.063
Al Core ETF4 0.176 0.203 +0.027
Al Core ETF5 0.179 0.136 —0.043
AT Core Index 0.175 0.181 +0.006
Tech Giants

NVIDIA 0.141 — —0.141
Microsoft 0.235 0.131 —0.104
Meta 0.164 0.067 —0.097
Google 0.220 0.127 —0.093
Amazon 0.156 0.134 —0.022
Tech Giant Index 0.198 — —0.198
Asian Tech

Baidu — 0.103 +0.103
Alibaba — 0.122 +0.122
Tencent — — —
Asian Tech Index — 0.107 +0.107
Other Components

ASML 0.177 0.107 —0.070
C3.ai 0.071 0.160 +0.089
Clean Energy 0.189 0.300 +0.111
Original Al 0.192 0.148 —0.044

Notes: This table presents Kendall’s 7 rank correlations be-
tween the Dow Jones Conventional Electricity Index and vari-
ous Al and technology components before and after ChatGPT
release. Pre-event period: January 2020-November 2022; post-
event period: December 2022-June 2024. Dashes (—) indicate
statistically insignificant correlations (|7| < 0.1). At is calcu-
lated as post-event minus pre-event correlation. The divergent
patterns between Western tech giants (generally decreasing cor-
relations) and Asian tech companies (increasing correlations)
suggest regional differences in energy sourcing strategies and
AT integration approaches.
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Table 4.10: Hypothesis Testing Summary: Evidence and Theoretical Contributions

Hypothesis Support  Key Evidence Theoretical Contribution
H1: Energy Con- Strong Low 7 (< 0.07) for Al-fossil Validates electricity layer
version Hierarchy pairs; minimal spillovers (<  buffering mechanism; dis-
Mechanism 1%); stable relationships tinguishes direct energy in-
across all proxies vestment sectors
H2: Clean Energy Strong Solar 7 increase (40.199) Reveals clean energy inter-
Heterogeneity vs.  Wind (40.013) and nal heterogeneity; identi-
Bioenergy (—0.007); Solar- fies technology—policy syn-
specific tail dependence ergies
H3: Dynamic De- Strong Al-Solar 7 jump from Quantifies technological
pendencies 0.32 — 0.52; structural breakthrough financial
break at ChatGPT; param- impact mechanisms
eter regime shift (v |, a 1)
H4: Asymmetric Partial AT as net receiver (Net = Corrects unidirectional

Spillover Effects

—24.57%); heavy tails post-
event (v = 4.94); stress-
period intensification

spillover assumptions; iden-
tifies policy transmission
channels

Notes: This table summarizes the empirical support for our four core hypotheses, highlighting
key evidence and theoretical contributions. Support levels: Strong = robust evidence across
multiple methods and specifications; Partial = directional support with some limitations or
mixed evidence. DEI = Direct Energy Investment.

correlation increases (Al-Solar 7: 0.32 — 0.52), dynamic parameter regime shifts (v |, o T,
£ 1), and robustness across alternative Al proxies provide compelling evidence that major
technological breakthroughs can fundamentally alter financial market relationships.

Hypothesis 4 receives partial support with important qualifications. Evidence for
bidirectional transmission mechanisms is strong: Al emerges as a net volatility receiver
rather than pure transmitter, heavy-tailed post-event dependence structures create pre-
conditions for spillover reversal, and stress-period correlation intensification occurs as
predicted. However, our sample period contains limited major clean energy-specific stress
events for definitive testing of full spillover directional reversal.

The empirical validation of our DEI theoretical framework establishes a foundation for
future research on digital economy-energy transition financial linkages and provides impor-
tant insights for policy coordination and investment strategy in the emerging technology-

energy nexus.
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4.5 Conclusions and Implications

4.5.1 Main Findings

This paper examines the tail dependence and spillover mechanisms between the artificial
intelligence (AI) industry and energy markets using daily data from 2020 to 2024. Ap-
plying GARCH-filtered returns with time-varying copula models and the Diebold-Yilmaz
spillover framework, we analyze interconnections among Al equities, clean energy sectors
(photovoltaic, wind, bioenergy), fossil fuel markets (oil, natural gas), and European Union
Allowances (EUAs). Our analysis yields four principal findings.

First, Al firms exhibit relatively weak tail dependence with oil, gas, and carbon prices,
with correlation coefficients remaining below 0.15 during extreme market conditions. This
limited connection stems from electricity supply chains that buffer Al firms from direct
fossil fuel price shocks. Unlike traditional energy-intensive industries with direct fuel
exposure, digital energy-intensive sectors demonstrate reduced sensitivity to commodity
price fluctuations due to their indirect energy consumption pathways through the electrical
grid.

Second, major technological breakthroughs substantially amplify extreme co-movements
between Al and clean energy sectors. Time-varying copula analysis reveals that following
events such as the ChatGPT release, upper-tail dependence between Al and clean energy
assets (particularly photovoltaic and wind) increased from approximately 0.20 to over 0.45,
suggesting that investor perceptions of technological and environmental synergies intensify
during periods of innovation-driven optimism. These assets exhibit synchronized extreme
movements, both positive and negative.

Third, spillover effects between these sectors display asymmetric and time-varying
characteristics. The Diebold-Yilmaz framework demonstrates that during periods of clean
energy subsidy reductions or carbon policy relaxation, clean energy sectors transmit
significant negative shocks to Al equities, with spillover indices increasing by up to 30
percentage points. This reveals bidirectional risk transmission channels: while technological
optimism can boost both sectors simultaneously, policy-driven pessimism in clean energy
markets can adversely affect Al valuations.

Fourth, disaggregated analysis within clean energy subsectors reveals heterogeneous
coupling patterns with Al. Photovoltaic firms demonstrate the strongest linkages, with
time-varying correlations reaching 0.65 during peak periods, compared to 0.45 for wind and
0.30 for bioenergy. This heightened interconnection likely reflects shared characteristics
including high policy sensitivity, strong market visibility, rapid cost reduction trajectories,

and similar high-beta profiles in capital markets.
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4.5.2 Theoretical Contributions and Policy Implications

This study contributes to several strands of literature. We extend the understanding of
cross-market dependencies by documenting an emergent asset class linkage between digital
technology and clean energy sectors. Our findings reveal how technological innovation
events can fundamentally restructure market dependencies, challenging traditional cat-
egorizations of sectoral risk exposures. The identified regime shifts following major Al
developments suggest that conventional risk models based on historical correlations may
systematically underestimate tail dependencies in technology-driven markets.

From a policy perspective, our results carry important implications for the coordination
of digital transformation and decarbonization objectives. The growing electricity demands
of Al infrastructure create new channels through which carbon policies affect industrial
competitiveness. While Al firms show limited direct exposure to carbon prices, their strong
connections to clean energy equities imply that power sector decarbonization policies may
have amplified effects on digital industries.

Governments should therefore enhance coordination between data center efficiency
standards, renewable portfolio requirements, and carbon pricing mechanisms. In regions
where electrical grids remain fossil-fuel dependent, the rapid expansion of Al computing
risks creating localized carbon emission rebounds that undermine climate objectives.
Policymakers should encourage Al firms to engage in direct renewable energy procurement
while accelerating grid decarbonization to ensure alignment between digital growth and
emission reduction targets.

The high sensitivity of clean energy sectors to policy changes, combined with their
spillover effects on Al valuations, necessitates careful design of subsidy phase-outs and
carbon price adjustments. Our findings support the implementation of graduated transi-
tion periods and volatility-dampening mechanisms to prevent destabilizing speculation.
Regional initiatives such as direct power purchase agreements and energy storage incentives
may help stabilize the emerging synergies between Al and clean energy sectors.

Regulatory authorities should develop cross-market monitoring systems that account
for the intensified linkages following technological breakthroughs. The documented increase
in tail dependencies during innovation cycles suggests elevated systemic risk potential
that traditional sector-based oversight may miss. Facilitating deeper derivatives markets
for these sectors could provide additional risk management tools while improving price

discovery.

4.5.3 Investment Implications

The empirical evidence also provides concrete guidance for investment practice. From a
portfolio construction perspective, Al equities demonstrate diversification potential against

fossil fuel price shocks. However, the strong lower-tail dependence identified between Al
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and solar energy prices suggests that these assets should not be treated as independent
investment themes. Holding both simultaneously may amplify downside risk through
concentrated exposure to extreme events, particularly during periods of technological or
policy stress.

Dynamic hedging strategies are therefore crucial. Our spillover analysis shows that
EUA volatility acts as a significant transmitter to Al, implying that carbon allowance
markets can be used as a hedging tool for Al-related exposures. Specifically, short positions
in EUA futures offer a means to offset portfolio losses in Al equities during periods of
adverse climate policy shocks. Moreover, the increased lower-tail dependence detected in
our copula estimates suggests that out-of-the-money put options on clean energy exchange-
traded funds (ETFs) can provide effective tail-risk protection for Al-heavy portfolios,
particularly in downturn regimes.

Finally, for ESG-oriented investors, the findings highlight the need to prioritize funda-
mental due diligence over thematic association. Narrative-driven strategies that link Al
with clean energy may underestimate the risk of correlated downturns. Instead, invest-
ment selection should focus on verifiable and quantifiable indicators such as long-term
Power Purchase Agreements (PPAs), improvements in computing energy efficiency, and
credible carbon accounting practices. Such a disciplined approach can distinguish genuine
technological resilience from speculative correlation, thereby improving both risk-adjusted

returns and sustainability outcomes.

4.5.4 Limitations and Future Research Directions

Several limitations of our analysis point toward productive future research directions. First,
our reliance on equity market data may not fully capture real-economy linkages between Al
computing demand and energy consumption. Future research incorporating high-frequency
electricity consumption data from data centers, detailed grid mix compositions, and actual
carbon allowance transactions could provide more direct evidence of physical market
connections and potential causality.

Second, while we disaggregate clean energy into photovoltaic, wind, and bioenergy
sectors, emerging technologies warrant investigation. Hydrogen energy, battery storage
systems, and grid infrastructure modernization represent potentially important compo-
nents of the Al-energy nexus that remain unexplored. Cross-regional variations in these
relationships, particularly given divergent policy frameworks across China, the European
Union, and the United States, merit systematic comparison.

Third, our sample period coincides with extraordinary monetary and fiscal interventions
that may have influenced cross-market relationships. Extended analysis across different
policy regimes and market cycles would strengthen the external validity of our findings.

The application of high-dimensional vine copula specifications could better capture the
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complex dependency structures across multiple regions and sectors simultaneously.

Fourth, structural modeling approaches offer promising avenues for policy analysis.
Incorporating Al technology shocks and carbon policy interventions into structural VAR or
DSGE frameworks would enable counterfactual simulations and more precise quantitative
guidance for policymakers. Such models could address questions about optimal carbon
pricing in the presence of rapidly growing digital energy demands or the welfare implications
of different renewable energy support mechanisms.

In conclusion, our analysis reveals that the intersection of artificial intelligence and
energy markets represents a new frontier in financial interconnectedness. As global digital-
ization and decarbonization trends accelerate, understanding these evolving relationships
becomes crucial for effective risk management, investment strategy, and policy design. The
documented emergence of extreme tail dependencies between seemingly distinct sectors
underscores the need for adaptive analytical frameworks that can capture the dynamic

nature of technology-driven market transformations.



Chapter 5

Synthesis and Conclusions

This chapter synthesizes the key findings from the three empirical studies presented in
this thesis, identifies cross-cutting themes and implications, offers policy recommendations,
acknowledges limitations, and suggests directions for future research. By examining
risk transmission mechanisms across real estate, carbon trading, and Al-energy markets
through a unified methodological lens, this thesis contributes to a deeper understanding of

systemic risk in China’s evolving economy.
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5.1 Summary of Key Findings

The analysis of China’s real estate market revealed that risk contagion networks exhibit a
significant center-periphery structure, with first-tier and key second-tier cities occupying
central positions. This structure becomes more pronounced during high-risk states, where
the intensity of risk contagion increases substantially, with network degree centrality rising
from approximately 2.12 to 2.45 and average path length increasing from 6.40 to 6.67.
Macroeconomic factors, particularly GDP growth and inflation, were found to significantly
influence risk state transitions and network structures, with tighter networks observed
during periods of economic slowdown or rising inflation. These findings underscore the
inherent structural vulnerability of the housing market to macroeconomic shifts and the
disproportionate role of major urban centers in propagating systemic risk.

The investigation of China’s carbon market demonstrated that market unification in
2021 led to significant changes in risk transmission patterns. Market efficiency improved
substantially post-unification, with the information transfer rate increasing from 0.432 to
0.516. The national carbon market emerged as a central coordinator in the risk network,
achieving an eigenvector centrality of 0.412. Regional markets experienced considerable role
transformations, most notably Tianjin’s transition from a major risk receiver (net spillover
of -23.502%) to a significant risk transmitter (net spillover of 26.115%). Integration with
the European Union Emissions Trading System (EU ETS) was moderately strengthened,
although distinct domestic characteristics persisted. These transformations highlight
how institutional reforms can fundamentally reshape risk networks, redistributing risk
transmission roles while enhancing overall system efficiency.

The examination of linkages between the Al industry and energy markets revealed
that Al exhibits relatively weak connections with fossil fuels and carbon prices, reflecting
the electricity-related risk buffering inherent in digital energy-intensive sectors. Following
major technological breakthroughs, such as ChatGPT, upper-tail dependence between
AT and certain clean energy segments, particularly photovoltaics, increased significantly
(Kendall’s 7 rising from 0.32 to 0.52). The analysis uncovered substantial heterogeneity
across clean energy sub-sectors, with photovoltaics displaying unique dynamics in its
linkage with AI compared to wind and bioenergy. Evidence also suggested potential
for negative volatility spillovers from clean energy to Al during market stress. These
findings demonstrate how technological shifts can create new market interdependencies
that traditional energy-industrial relationships cannot capture, with implications for both

investment strategies and energy transition pathways.
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5.2 Cross-Cutting Themes and Implications

The synthesis of findings across these diverse markets reveals several common patterns
and unique characteristics that collectively deepen our understanding of risk dynamics
in complex economic systems. Most prominently, all three markets exhibit non-random
network structures with identifiable central nodes that play crucial roles in risk transmission.
In the real estate market, first-tier cities serve as central hubs; in the carbon market, the
national market coordinates regional interactions; and in the Al-energy nexus, certain clean
energy segments (notably photovoltaics) show stronger connections with AI. These findings
suggest that risk in modern economic systems is fundamentally hierarchical rather than
evenly distributed, with certain nodes wielding disproportionate influence over system-wide
stability.

The differences in the nature of these central nodes—geographical entities (cities) in
real estate, institutional constructs (national markets) in carbon trading, and technological
segments (photovoltaics) in the Al-energy nexus—reflect the distinct organizing principles
of each market. Yet their common structural significance underscores a universal pattern
of concentrated influence points in networked risk transmission. This has profound
implications for regulatory approaches, suggesting that targeted interventions at key nodes
may yield greater systemic benefits than broad-based policies.

Risk transmission patterns in all three markets vary significantly depending on mar-
ket conditions or structural changes, revealing state-dependent dynamics that challenge
traditional risk modeling approaches. The real estate market shows distinct behaviors
in high-risk versus low-risk states; the carbon market demonstrates different dynamics
pre- and post-unification; and the Al-energy relationship intensifies following technological
breakthroughs. This state dependence indicates that risk relationships are not static
but evolve dynamically in response to changing contexts. The drivers of these state
transitions differ across markets—macroeconomic shifts in real estate, institutional reforms
in carbon markets, and technological innovations in the Al-energy nexus—yet the resulting
transformation in risk transmission patterns follows similar principles. This reveals a
fundamental characteristic of modern markets: they function as complex adaptive systems
whose behavior cannot be understood through time-invariant models.

The implications are significant for both risk monitoring and management strategies.
Traditional approaches that assume stable correlations or linear transmission mechanisms
are inadequate for capturing the changing nature of systemic risk. Instead, continu-
ous reassessment and adaptive regulatory frameworks that can respond to shifting risk
landscapes are essential. Furthermore, all three markets display significant sensitivity
to policy changes and regulatory frameworks, reflecting the embedded nature of these
markets within broader institutional contexts and the powerful role of policy as both

a risk driver and potential mitigator. The varying mechanisms through which policy
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impacts manifest—through credit conditions and monetary policy in real estate, through
market design and allocation methods in carbon trading, and through subsidies and
technological standards in the Al-energy nexus—highlight the need for domain-specific
policy tools. However, the universal presence of policy sensitivity across these diverse
markets underscores a broader truth: in a state-influenced economy like China’s, policy
instruments remain powerful levers for systemic risk management.

The presence of significant tail dependencies across all three markets highlights the
importance of focusing on extreme risk scenarios rather than average correlations. This is
particularly evident in the Al-energy study, where tail dependencies reveal patterns that
are not captured by conventional correlation measures. The asymmetric nature of these
tail dependencies—with upper and lower tails often exhibiting different strengths of asso-
ciation—further complicates risk assessment. This common feature suggests that extreme
market conditions reveal interconnections that remain dormant during normal periods.
Such nonlinear risk amplification challenges traditional risk management approaches based
on normal distributions and linear dependencies. Instead, stress testing frameworks that
specifically incorporate tail events and contagion mechanisms are essential for capturing
the full spectrum of systemic vulnerabilities.

Collectively, these cross-cutting themes reveal that risk in modern interconnected
markets is: (1) networked and hierarchical rather than uniform or random; (2) dynamic
and state-dependent rather than static; (3) highly responsive to policy and institutional
changes; and (4) characterized by nonlinear amplification during extreme events. These
properties demand a fundamental rethinking of risk monitoring, modeling, and management

approaches.

5.3 Policy Recommendations

Building on the empirical findings and cross-cutting themes identified above, several
specific policy recommendations emerge for enhancing systemic risk management across
these interconnected markets. Given the identified importance of central nodes in risk
transmission networks, regulatory authorities should implement differentiated supervision
and intervention strategies focused on systemically important entities or regions. For the
real estate market, this implies enhanced macroprudential measures specifically designed
for first-tier and key second-tier cities, such as stricter loan-to-value ratios and more
frequent stress testing for financial institutions with high exposure to these markets.
As demonstrated in Chapter 2, these cities function as principal conduits of risk (with
betweenness centrality measures up to 1375 in high-risk states), making them critical
intervention points.

In the carbon market, the creation of the national market has established a critical

central coordinator (eigenvector centrality of 0.412), requiring robust oversight mechanisms.
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Given that Chapter 3 identified post-unification shifts in key regional markets (e.g.,
Tianjin’s transition to a major risk transmitter), monitoring these evolving roles should be
prioritized. Specifically, enhanced liquidity provision mechanisms during periods of market
stress should target those regions with high net spillover potential. For the Al-energy
nexus, our findings in Chapter 4 suggest that photovoltaic segments within clean energy
exhibit the strongest coupling with AT (7 increasing from 0.32 to 0.52 post-ChatGPT).
This calls for targeted coordination between digital infrastructure planning and renewable
energy development, particularly for data center projects with significant AI computational
loads.

The observed state-dependent dynamics across all three markets necessitate adaptive
regulatory frameworks that can respond to changing risk environments. For the real
estate market, our findings in Chapter 2 demonstrated that risk transmission intensifies
during high-risk states, with network degree centrality increasing by approximately 15%.
This suggests implementing automatic stabilizers that activate during periods of detected
heightened risk, such as counter-cyclical capital buffers that increase during periods of
rapid price appreciation or high market volatility. For carbon markets, Chapter 3 revealed
significant structural changes following market unification, with information transfer rates
increasing by 19.4%. This suggests the need for transition-sensitive regulation during
major market reforms, with temporary liquidity enhancement mechanisms and more
intensive monitoring during structural transitions. Specifically, establishing predefined
market intervention thresholds based on volatility measures and spillover indices would
provide a systematic framework for state-contingent intervention.

In the Al-energy relationship, Chapter 4 demonstrated amplified dependencies fol-
lowing major technological breakthroughs (as evidenced by increased tail dependence
post-ChatGPT). This suggests implementing technology-sensitive policy adjustment mech-
anisms, such as graduated clean energy subsidies or grid integration priorities that evolve
with Al computational demand forecasts. The interconnected nature of these markets
necessitates coordination across regulatory domains. Establishing a dedicated cross-market
risk monitoring body would enhance systemic risk management by tracking transmission
channels between real estate, carbon markets, and energy /technology sectors. This body
should conduct regular integrated risk assessments, focusing on potential domino effects
across these interconnected markets.

Specific coordination mechanisms should include: (1) joint stress testing exercises that
simulate cascading failures across markets; (2) coordinated policy responses to major
external shocks, with explicit consideration of cross-market spillovers; and (3) integrated
data sharing platforms that enable real-time monitoring of cross-market risk indicators.
Given our findings on the significant role of central nodes and state-dependent dynamics,
these mechanisms should prioritize key transmission hubs and adapt to changing market

conditions. Traditional risk monitoring approaches that focus on average correlations or
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central tendencies are inadequate for capturing the significant tail dependencies identified
across all three markets. Regulatory authorities should implement advanced monitoring
systems specifically designed to detect and respond to extreme co-movements and tail risks.
This could include: developing early warning systems based on dynamic copula-derived
tail dependence measures, with thresholds calibrated to the specific characteristics of each
market as identified in Chapters 2-4; incorporating extreme risk scenarios in mandatory
stress testing frameworks for financial institutions with exposure to multiple markets; and
establishing contingency planning requirements for systemically important institutions
that explicitly address tail risk events. These measures would address the nonlinear
risk amplification documented above, ensuring that regulatory frameworks are robust to

extreme events rather than optimized only for normal market conditions.

5.4 Limitations and Future Research Directions

While this thesis provides valuable insights into risk transmission mechanisms across three
important markets, several limitations should be acknowledged, pointing to directions for
future research. Each study faced specific data constraints that could be addressed in
future research. The real estate analysis relied on monthly housing price indices, which
may not fully capture the granularity of market movements. Future work could incorporate
transaction-level data, including property characteristics and buyer profiles, to provide
more nuanced insights into risk transmission channels. The carbon market study was
limited by the relatively short history of China’s carbon markets, particularly the national
market. As more data becomes available, longer-term studies could examine how risk
transmission patterns evolve through multiple policy cycles and economic environments.
The Al-energy analysis encountered challenges in precisely measuring Al industry activities
and energy consumption patterns. Future research would benefit from more granular data
on actual computational loads, electricity consumption of Al operations, and the energy
mix supplying these operations.

The network-based approaches employed in this thesis primarily capture associations
rather than causal relationships, a limitation common to many studies of complex systems.
Future research could strengthen causal identification through several approaches: exploit-
ing natural experiments or policy discontinuities (e.g., staggered implementation of housing
restrictions across cities, phased introduction of carbon market sectors); developing struc-
tural models that incorporate theoretical mechanisms of risk transmission; and employing
instrumental variable approaches where suitable instruments can be identified. These
methodological advances would help move from identifying risk transmission patterns
to understanding their underlying causal mechanisms, thereby providing more robust
foundations for policy interventions.

While this thesis focuses on three important markets, expanding the analysis to
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include other sectors would provide a more comprehensive picture of risk transmission in
the Chinese economy. Future research could incorporate conventional financial markets
(banking, equity, and bond markets), additional commodity markets beyond energy,
and international trade and supply chain networks. A more comprehensive mapping of
interconnections across these additional dimensions would enhance our understanding of
systemic risk in a highly integrated economy.

Future research could explore alternative methodological approaches that complement
the techniques employed in this thesis. Machine learning methods for early warning signal
detection could enhance the identification of impending regime shifts in risk transmission
networks. Agent-based modeling could simulate how micro-level interactions between
market participants generate the observed macro-level risk patterns, which is particularly
useful for testing the impact of alternative policy interventions. Additionally, time-varying
parameter structural vector autoregression (TVP-SVAR) models could further elucidate the
evolving relationships between macroeconomic variables and market-specific risk indicators.

The studies in this thesis primarily focus on relatively short-term risk transmission.
Extending the analysis to examine long-term structural changes would provide additional
insights into how risk dynamics evolve through major economic transitions, technological
paradigm shifts, and policy regime changes. This could include investigating how risk
transmission networks reorganize during fundamental economic transformations, such
as China’s ongoing transition toward a more consumption-driven, innovation-led growth
model. The aforementioned data limitations directly impact our ability to conduct robust
long-term analyses. As longer time series become available, particularly for newer markets
like carbon trading and AI, more sophisticated investigations of structural changes and

evolutionary dynamics will become feasible.

5.5 Concluding Remarks

This thesis has demonstrated the value of applying advanced network analysis and econo-
metric techniques to understand risk transmission across interconnected markets. By
examining real estate, carbon trading, and Al-energy linkages in China, it has provided
insights into how risks propagate within and across these sectors, how structural changes
reshape risk transmission patterns, and how policy interventions might mitigate systemic
risks.

The findings highlight the complex, state-dependent nature of risk contagion in modern
economies and underscore the importance of considering network structures, tail depen-
dencies, and cross-market linkages in both academic research and policy design. The
identification of central transmission nodes, the documentation of regime-dependent risk
dynamics, the evidence of policy sensitivity, and the characterization of tail dependencies

collectively advance our understanding of systemic risk beyond traditional approaches
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based on linear correlations or standalone market analyses.

As China continues to navigate its complex economic transformation—balancing growth
objectives with stability concerns, environmental sustainability with technological advance-
ment, and domestic priorities with global integration—a sophisticated understanding
of risk transmission mechanisms becomes increasingly valuable. The integrated, multi-
method approach developed in this thesis offers a framework for detecting vulnerabilities,
anticipating contagion channels, and designing targeted interventions across diverse but
interconnected market systems.

By contributing to this understanding, this thesis aims to inform more effective
regulatory approaches and risk management strategies, not only for China but potentially
for other complex economies facing similar challenges in an era of increasing market
interconnectedness, technological disruption, and environmental transition. The interplay
between traditional economic sectors, emerging markets for environmental assets, and
technology-driven transformations represents a frontier in systemic risk research—one
where continued methodological innovation and empirical investigation can yield valuable

insights for building more resilient economic systems.
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A.1 Appendix

A.1.1 Copula Models Specification

Overview of Copula Theory

Copulas provide a flexible framework for modeling multivariate dependencies independent
of the marginal distributions. According to Sklar’s theorem (Sklar, 1959), any multivariate
joint distribution function F' with continuous marginals Fi, Fy, ..., F, can be uniquely

expressed as:

F(zy,29,...,2,) = C(Fi(x1), Fo(x2), ..., Fy(z,)) (A.1)

Where C': [0,1]™ — [0, 1] is the copula function that captures the dependence structure

among variables, this separation of marginal behavior from dependence structure makes
copulas particularly suitable for our analysis of housing market risk contagion.

Bivariate Copula Families

Our study employs several copula families to capture various dependency structures
between city pairs. Each copula family offers distinct features in terms of symmetry, tail

dependence, and flexibility in modeling dependence patterns.

Gaussian Copula The Gaussian copula is derived from the multivariate normal distri-

bution and is defined as:

Gyt (u,v) = @, (@7 (u), @7 (v)) (A-2)
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Where @, is the standardized bivariate normal distribution with correlation parameter
p € (—1,1), and @' is the inverse of the standard normal cumulative distribution
function. The Gaussian copula exhibits symmetrical dependence and lacks tail dependence,
making it suitable for modeling linear correlations between housing markets with similar
behavior in both tails. In our analysis, the Gaussian copula was predominantly selected
for modeling dependencies between economically similar cities with stable relationships,
such as Shanghai-Hangzhou, where the correlation parameter was estimated at p = 0.73,

corresponding to Kendall’'s 7 = 0.55.

Student’s t-Copula The t-copula is derived from the multivariate Student’s t-distribution

and is defined as:

Cho(u,v) =ty (" (u), 1, (v)) (A.3)

Where t,, is the standardized bivariate Student’s t-distribution with correlation
parameter p € (—1,1) and degrees of freedom v > 0, and ¢! is the inverse of the univariate
Student’s t-distribution function. The t-copula allows for symmetric tail dependence, with
smaller v values resulting in stronger tail dependence. This copula was particularly useful
for modeling dependencies between cities that exhibit strong co-movements during extreme
market conditions. For example, Beijing-Tianjin showed strong tail dependence with

parameters p = 0.68 and v = 4.2, indicating substantial risk of joint extreme movements.

Clayton Copula The Clayton copula is an asymmetric copula with strong lower tail

dependence, defined as:

Cy """ (u,v) = max{(u™’ + v~ = 1)71/%, 0} (A4)

where 6 > 0 is the dependence parameter. As 6 increases, the strength of dependence
increases, particularly in the lower tail. This makes the Clayton copula suitable for
modeling dependencies between housing markets that tend to experience simultaneous
downturns. In our analysis, the Clayton copula was selected for several city pairs, including
Shanghai-Suzhou with # = 0.11 (corresponding to Kendall’'s 7 = 0.05), indicating modest

joint risk during market downturns.

Gumbel Copula The Gumbel copula is an asymmetric copula with upper tail depen-

dence, defined as:

Gy (u,v) = exp{~[((~ Inw)’ + (— Inw)")]"/"} (A.5)

where 6 > 1 is the dependence parameter. As  increases, the strength of dependence

increases, particularly in the upper tail. This makes the Gumbel copula suitable for
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modeling dependencies between housing markets that tend to experience simultaneous
booms. In our study, the Gumbel copula was frequently selected for rapidly developing
city pairs, such as Wuhan-Zhengzhou with = 2.26 (corresponding to Kendall’s 7 = 0.53),

indicating strong joint movements during market upturns.

Frank Copula The Frank copula is a symmetric copula with no tail dependence, defined

as:

1 (e7% —1)(e7? —1)
Oy ek =—-In{1 A6
e (A6)
where § € R\ {0} is the dependence parameter. The Frank copula is particularly useful
for modeling dependencies that are strongest in the center of the distribution. In our
analysis, it was selected for several city pairs with moderate dependence but limited tail

behavior, such as Nanning-Xuzhou with 6 = 6.32 (corresponding to Kendall’s 7 = 0.56).

Rotated Copulas To capture a wider range of dependence patterns, we also employed
rotated versions of the Clayton and Gumbel copulas. The 180-degree rotated (or survival)

copula is given by:

Cigoe(u,v) =u+v—14+C(1 —u,1 —v) (A.7)

For the Clayton copula, this rotation creates upper tail dependence, while for the
Gumbel copula, it creates lower tail dependence. The 90-degree and 270-degree rotations,
which create negative dependence, are defined similarly. In our analysis, the rotated
Clayton copula was selected for several city pairs, including Guangzhou-Kunming with

0 = 0.09 (corresponding to Kendall’s 7 = —0.04), indicating negative dependence.
Vine Copula Construction
For modeling high-dimensional dependencies among multiple cities, we employed vine

copulas, which decompose a multivariate distribution into a cascade of bivariate copulas.

Vine Structures We considered three main vine structures:

o C-vine (Canonical vine): In a C-vine, each tree has a unique node that connects
to all other nodes. This structure is particularly suitable when there is a key variable
that explains the dependence on all others. The density function for an n-dimensional

C-vine is given by:
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n—1n—

f({['l,... X ) H X; XH HC]7]+Z|17 = 1 (l’j|l‘1,...,ZL‘j_l),F(Ij+i|3?1,...,Ij_l))

=1 =1 11=1

(A.8)

o D-vine (Drawable vine): In a D-vine, each node is connected to at most two
others, forming a path. This structure is suitable when there is a natural ordering of

variables. The density function for an n-dimensional D-vine is given by:

n—1n—

f(xlw'-;xn) H XH chz—l—j|z+1 ..... i+j— 1( (l’i’xzﬂrl;--‘7$i+j71)7F(Ii+j’xi+la---

=1 7j=11=1

(A.9)

e R-vine (Regular vine): An R-vine is a more general structure that includes
C-vines and D-vines as special cases. It allows for more flexible modeling of complex
dependence structures. The density function for an n-dimensional R-vine is a gener-
alization of the C-vine and D-vine densities, with pair-copulas arranged according to

a specified R-vine structure.

Based on likelihood ratio tests and information criteria, we selected the R-vine structure
for our analysis, as it provided the most flexible and suitable representation of the complex

dependencies among the 70 cities in our sample.

Pair-copula Construction The pair-copula construction involves decomposing the
multivariate density into a product of bivariate copulas and conditional marginal den-
sities. This decomposition proceeds tree by tree, with each tree representing a level of
conditioning. For an n-dimensional distribution, there are n — 1 trees, with the first tree
capturing unconditional pairwise dependencies, and subsequent trees capturing conditional
dependencies.

For each pair of variables in each tree, we selected the most appropriate copula family
from our candidate set (Gaussian, t, Clayton, Gumbel, Frank, and their rotations) based
on the Akaike Information Criterion (AIC). The parameters of each pair-copula were

estimated using maximum likelihood estimation.

Model Selection and Fitting

Information Criteria We employed the AIC and BIC for copula selection, defined as:

) 13z‘+j—1))
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AIC = —2In L + 2k (A.10)
BIC = —2In L + k1In(n) (A.11)

where In L is the log-likelihood of the fitted model, k is the number of parameters, and
n is the sample size. For each pair of cities, we selected the copula family with the lowest
AIC value, unless the difference in AIC between two models was less than 2, in which case

we chose the simpler model (i.e., the one with fewer parameters).

Parameter Estimation We employed a sequential approach for estimating the parame-

ters of the vine copula:

1. We first fitted appropriate marginal distributions to each city’s housing price returns
using AR-GARCH models with skewed Student’s t innovations.

2. We transformed these standardized residuals to uniform variates using the probability

integral transform.

3. We estimated the parameters of the first tree of the vine using maximum likelihood

estimation.

4. For subsequent trees, we calculated the conditional distributions required for pair-
copula estimation using the previously estimated copulas, and then estimated the

parameters of the pair-copulas in the current tree.

Goodness-of-Fit Tests We employed several goodness-of-fit tests to validate our copula

selections, including:

e Cramér-von Mises Test: This test evaluates the distance between the empirical

copula and the fitted copula:

S, = /[07”2[071(% v) — Cy(u, 0)]2dC (u, ) (A.12)

where C,, is the empirical copula and Cj is the fitted parametric copula.

« Kendall’s Tau Test: This test compares the empirical Kendall’s tau with the
theoretical Kendall’s tau implied by the fitted copula. For most of our city pairs, the
p-values from these tests were greater than 0.05, indicating no significant evidence

against our copula selections.
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B.1 Appendix

B.1.1 Detailed Methodological Explanations

GARCH Model Specification and Estimation

The GARCH(1,1) model used in this study is specified as follows:

Tig = i + Eigy (B.1)
Eit = ZitOigt, (B.2)
03 = wit+ cigly g + Biot, (B.3)

where 7;; is the return of market 7 at time ¢, p; is the mean return, ¢, is the error term,
07, is the conditional variance, and z;; follows a standardized Student’s ¢-distribution to
account for the leptokurtosis commonly observed in financial time series.

The parameters w;, «;, and (; are estimated using Maximum Likelihood Estimation
(MLE). The log-likelihood function for the Student’s ¢-distribution is given by:

InL(6) =) [lnr (”‘2”) —InT (;) — ;ln[ﬂ(l/—Q)] — ;lnaf — I/;lln <1+(y_€t22)0t2>] :

o (B.4)

where 6 represents the set of parameters to be estimated, v is the degrees of freedom

parameter for the Student’s ¢-distribution, and I'(+) is the gamma function.
Following the estimation, we extract the standardized residuals z;; = ?—’i, which are

?y

then used in the subsequent Copula analysis.
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Copula Estimation Procedure

To capture the complex dependency structures between carbon markets, we employ the
Student’s t-Copula. The estimation follows the Inference Functions for Margins (IFM)

approach, which is a two-step procedure:

1. Estimate the parameters of the marginal distributions for each market’s standardized

residuals.

2. Estimate the parameters of the Copula function using the probability integral

transforms of the standardized residuals.

For the Student’s t-Copula, the density function is:

r (") 1 (R
) = 14 2 4 , B.5
c(ug, ..., up) r (%) (ﬂ.y)n/2|R‘l/2 ( + v ) (B.5)
where u; = Fj(z;,;) are the uniform transformed variables, ¢ = (¢, (u1), ..., ¢, (u,)), v

is the degrees of freedom parameter, R is the correlation matrix, and I'(+) is the gamma
function.

The log-likelihood function for the Student’s ¢t-Copula is:
T
InLo(R,v) =Y Ine(Fi(z14), -, Fulzng); Rov), (B.6)
t=1

where ¢(-) is the density function of the Student’s t-Copula, and Fj(z;¢) are the empirical

cumulative distribution functions of the standardized residuals.

Diebold-Yilmaz Spillover Index Methodology

The Diebold-Yilmaz spillover index is based on forecast error variance decomposition
(FEVD) from vector autoregression (VAR) models. We specify a VAR(p) model for the

vector of returns:

p
ry = Z Akrt,k + &4, (B?)
k=1

where r; is the vector of returns at time ¢, A are coefficient matrices, and €, is the vector
of error terms with covariance matrix X.

The VAR model can be rewritten in moving average representation as:

r= > ®hein, (B.9)
h=0
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where ®;, are the moving average coefficient matrices, which can be computed recursively
as ®, =>0_| A;j®;_;, with &y =T and ®;, = 0 for i <0.

The generalized forecast error variance decomposition (GFEVD), which allows for
correlated shocks, is given by:
055 Yhio (€;®rZe;)’

0,:(H) = -2 ,
) =S e, S,

(B.9)

where ¢; is a selection vector with one in the i-th position and zeros elsewhere, and o;; is
the standard deviation of the error term for market j.

The total spillover index is computed as:

_ it 2,z 0 (H)
?:1 Z?:l 9ij<H)

S(H) x 100, (B.10)
which measures the percentage of forecast error variance in all markets that comes from
spillovers.

The directional spillover indices are calculated as:

no .QH(H)
SFROM () — ZI=Lizt W2 5100, B.11
(H) i1 0i(H) (B11)
S 05i(H)
STO(H) = Z=Li#i D x 100, B.12
(H) i1 05i(H) (B.12)

which measure the spillovers received by market ¢ from all other markets and the spillovers
transmitted from market ¢ to all other markets, respectively.

The net spillover index for market 7 is then:
SNET(H) = S7O(H) — SFROM(H), (B.13)
which identifies whether a market is a net transmitter or receiver of spillovers.

Multi-layer Network Construction

The multi-layer network framework consists of three layers, each capturing a different

aspect of market relationships:

1. Layer 1 (Dependency Layer): This layer represents the non-linear dependencies
and tail co-movements between markets, as captured by the Copula analysis. The
adjacency matrix for this layer is defined as:

m(;opula _ IaCOpula (B14)

ij 9
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where ﬁ?fpula is the estimated dependence parameter between markets ¢ and j from

the Copula model.

2. Layer 2 (Risk Transfer Layer): This layer captures the linear risk spillovers be-
tween markets, as quantified by the Diebold-Yilmaz spillover indices. The adjacency

matrix for this layer is defined as:
W)Y =6;(H), (B.15)

where 6;;(H) is the GFEVD-based spillover from market j to market q.

3. Layer 3 (Primary Transmission Path Layer): This layer highlights the most
significant risk transmission paths, focusing on the strongest connections. The

adjacency matrix for this layer is defined as:

. 1, 1f01 H) = max ZGZ H 3
py Primary _ () it buc(H) (B.16)
0, otherwise.

B.1.2 Regulatory Background

Timeline of China’s Carbon Market Development

Table B.1 presents a detailed timeline of key policy developments in China’s carbon market.
The timeline highlights the gradual and deliberate approach to carbon market devel-
opment in China, from the establishment of regional pilot markets to the launch and

subsequent expansion of the national trading system.

Comparative Regulatory Framework Analysis

Table B.2 presents a comparative analysis of the regulatory frameworks across different
carbon markets.

The comparative analysis shows that China’s carbon market has moved towards greater
alignment with international standards following unification, particularly in areas such as
monitoring, reporting, and verification (MRV) standards and the development of secondary
markets and financial products. However, differences persist in key areas such as allocation

methods and the scope of covered sectors.
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Table B.1: Timeline of China’s Carbon Market Development

Date Policy Development

2011-10-29 National Development and Reform Commission (NDRC) announces pilot carbon
markets in seven provinces and cities

2013-06-18  Shenzhen launches first pilot carbon market

2013-11-26  Beijing launches pilot carbon market

2013-11-28 Shanghai launches pilot carbon market

2013-12-19 Guangdong launches pilot carbon market

2014-01-02 Tianjin launches pilot carbon market

2014-04-02 Hubei launches pilot carbon market

2014-06-19 Chongqing launches pilot carbon market

2016-09-19 Fujian launches pilot carbon market

2017-12-19 NDRC announces national emissions trading system work plan

2020-12-30 Ministry of Ecology and Environment releases final allocation plan for
the power sector

2021-01-05 Administrative measures for national carbon market trading released

2021-07-16 National carbon emissions trading market officially launched

2022-02-10 First carbon emission allowance futures contract introduced

2022-09-18 Announcement of expansion to include aluminum sector

2023-04-25 Updated carbon neutrality policy framework released

2023-12-15 Announcement of plans to expand national market to cover additional

industrial sectors by 2025

Table B.2: Comparative Analysis of Carbon Market Regulatory Frameworks

Regulatory Feature

China (Pre) China (Post) EU ETS

Scope (Sectors)
Allocation Method
Price Containment
Compliance Period
MRV Standards
Offset Usage
Banking Provisions
Secondary Markets
Financial Products

Varied by pilot
Primarily free
Price floors/ceilings
Annual
Regional standards
Limited (CCER)
Varied by pilot
Limited
Very limited

Power, expanding Multiple sectors
Primarily BM-based Auction and BM
Intervention mechanism Market Stability Reserve
Annual Annual
National standards Unified framework
Limited (CCER) Limited (international)
Yes, with restrictions Yes
Expanding Well-developed
Futures introduced Multiple instruments
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C.1 Appendix
C.1.1 Complete Dynamic Copula Estimation Results

This appendix presents the dynamic Copula estimation results that could not be fully
displayed in the main text due to space constraints. It includes estimation parameters,
degrees of freedom v, log-likelihood values, and convergence information for all asset
pairs during both the pre-event period (2020/01-2022/11)Table C.1 and post-event period
(2022/12-2024/06) Table C.2 .

Complete Results for the Pre-event Period (2020/01-2022/11)

Complete Results for the Post-event Period (2022/12-2024/06)
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Table C.1: Dynamic Copula Model Estimation Results (Pre-event Period)

Asset Pair o} B y v Y0 negLL, Conv.
Al vs Clean Energy 0.0000 0.0000  3.0000 10.5280 1.5460 -133.7016 0
AT vs Solar 0.0106 0.9794 3.0000 12.3680 2.0000  -68.9931 1
Al vs Bioenergy 0.0462 0.8463 -3.0000 17.5760 2.0000 -106.7069 0
AT vs Wind 0.0000 0.6233 1.9400 6.3658 0.7634  -37.3616 0
AT vs Oil 0.0335 0.9565 3.0000 10.6040 1.1903 -8.3805 1
Al vs Gas 0.7143 0.0000 2.3150 30.0000 0.0671 -0.7321 0
AT vs Carbon 0.0420 0.9479 -0.2120 30.0000 0.7048 -1.2247 1
Clean Energy vs Solar 0.0026 0.9874 1.8630  7.0387 1.5619 -101.7189 1
Clean Energy vs Bioenergy 0.0110 0.9635 -3.0000 11.9320 1.8756  -98.4517 0
Clean Energy vs Wind 0.1800 0.1781  3.0000 24.4660 2.0000 -145.8233 0
Clean Energy vs Oil 0.2510 0.7369 2.0090 13.6850  2.0000 -2.3704 0
Clean Energy vs Gas 0.1354 0.8301 -3.0000 30.0000  0.5217 -1.1755 0
Clean Energy vs Carbon 0.9657 0.0000 -1.1170 30.0000  2.0000 -1.2386 0
Solar vs Bioenergy 0.0202 0.9698 3.0000 30.0000 2.0000 -41.3432 0
Solar vs Wind 0.6591 0.0000 2.1270 15.6620 2.0000 -32.2679 0
Solar vs Oil 0.1574 0.8223 3.0000 29.1010  2.0000 -5.7597 0
Solar vs Gas 0.9843 0.0016 1.8030 30.0000  2.0000 -1.1972 0
Solar vs Carbon 0.0459 0.9441 2.6830 30.0000 0.5005 -1.1994 1
Bioenergy vs Wind 0.6467 0.0000 0.9770 14.1530 1.6702 -22.8174 0
Bioenergy vs Oil 0.0917 0.8352 -3.0000 10.7910 1.3726  -21.2823 0
Bioenergy vs Gas 0.3135 0.6612 -3.0000 13.7500 1.3519 -2.2880 0
Bioenergy vs Carbon 0.0176 0.9724  3.0000 30.0000 0.6360 -5.2458 1
Wind vs Oil 0.2108 0.2331  3.0000 30.0000 -0.0200 -0.2356 0
Wind vs Gas 0.2726 0.7123 -3.0000 30.0000  2.0000 -2.9450 0
Wind vs Carbon 0.9325 0.0000 -2.2860 30.0000  2.0000 -4.0092 0
Oil vs Gas 0.9046 0.0000  0.9900 30.0000 1.1131 -1.0118 0
Oil vs Carbon 0.2177 0.7630  3.0000 30.0000  2.0000 -5.9666 0
Gas vs Carbon 0.1601 0.8023 3.0000 22.2580  0.5805 -1.7292 0

Notes: (1) Conv. = 0/1 indicates convergence status (O=successful, 1=failed or boundary stagnation);
(2) v = 30.0000 indicates that the degrees of freedom reached the upper limit; (3) 70 < 0 may suggest
initial negative correlation.
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Table C.2: Dynamic Copula Model Estimation Results (Post-event Period)

Asset Pair « I3 ~y v Y0 negLL, Conv.
Al vs Clean Energy 0.1380 0.4950  3.0000  4.9400 2.0000  -96.3500 0
AT vs Solar 0.0790 0.0000 3.0000 12.6700 2.0000 -141.0000 0
Al vs BioEnergy 0.6660 0.0000 -2.1740 30.0000 2.0000  -19.2200 0
AT vs Wind 0.0000 0.0180 -0.4690 30.0000 0.7930  -27.4500 0
Al vs Gas 0.8840 0.0000 -0.7970 30.0000  1.9700 -2.6100 0
AT vs Carbon 0.0000 0.8800 1.5360  9.1000 -0.0480 -1.6700 0
Clean Energy vs Solar 0.0030 0.9860 1.8650  5.7700  2.0000 -141.9200 1
Clean Energy vs BioEnergy 0.3550 0.1720 -3.0000 30.0000 2.0000  -53.2600 0
Clean Energy vs Wind 0.2800 0.0000 3.0000  9.1700  2.0000  -96.7700 0
Clean Energy vs Gas 0.9190 0.0000  0.1990 30.0000  2.0000 -2.3100 0
Clean Energy vs Carbon 0.9900 0.0000 -0.4900 30.0000 0.1370 0.2800 1
Solar vs BioEnergy 0.3810 0.4430 -3.0000 30.0000  2.0000  -17.8200 0
Solar vs Wind 0.0000 0.0000 3.0000 30.0000 0.8300 -30.1100 0
Solar vs Gas 0.8420 0.1120 -0.3820 30.0000  1.8100 -1.2700 0
Solar vs Carbon 0.2400 0.7440 -0.2230 16.3400  2.0000 -2.8700 0
BioEnergy vs Wind 0.3790 0.0000 3.0000  9.2800  1.0010  -21.3400 0
BioEnergy vs Gas 0.2980 0.6860 1.8430  6.8800  0.0880 -1.0200 0
BioEnergy vs Carbon 0.9820 0.0000 -0.6650 30.0000  2.0000 -1.8400 0
Wind vs Gas 0.8730 0.0000 0.4290 30.0000 1.6370 -1.6800 0
Wind vs Carbon 0.7090 0.1750 -2.8040 30.0000 1.1310 -2.2700 0
Gas vs Carbon 0.9480 0.0000 -0.8450 30.0000  2.0000 -2.1400 0

Notes: (1) Conv. = 0/1 as above; (2) v = 30.0000 indicates upper limit was reached; (3) Some pairs
(Conv. = 1) were excluded in robustness tests.
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