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Abstract

This thesis introduces Nonparametric Predictive Inference (NPI) for selection and

ranking, based on a single future observation from each group, and focuses on two

main contributions. First, the development of NPI procedures for various selection

and ranking events. Secondly, the application of different loss functions to quantify

the loss incurred from non-optimal selection and ranking decisions.

Initially, NPI is applied to rank the best groups within subsets. A selected subset

refers to one or more independent groups that are better than the rest, where better

means that all future observations from the groups in the selected subset exceed

all the future observations from the non-selected groups. The ’independent group’

means that information about the random quantities for one group does not provide

any information about the random quantities for another group. Two special cases

are considered: selecting a ranked subset of the two best groups and the three best

groups. For the subset consisting of two groups, the exact NPI lower and upper

probabilities are derived for the event that these are the two best groups, while for

the subset consisting of three groups, approximate NPI lower and upper probabilities

are derived for the event that these are the three best groups.

The thesis further explores a more general case of selection and ranking, address-

ing how to rank buckets containing one or more independent groups. Here, ’bucket’

refers to a cluster or grouping of independent groups. This approach tackles two

key questions: how to allocate groups to buckets, and how to determine the opti-

mal number of buckets—defined as the allocation that maximises or minimises the
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NPI lower and upper probabilities for a given event. Various allocation methods are

evaluated, including those based on measures such as the median. Additionally, the

NPI-Bootstrap method is used to estimate probabilities, to approximate the prob-

ability of the event of interest itself, rather than its lower and upper probabilities.

Throughout the thesis, data from the literature illustrate and support the methods.

In this thesis, the NPI method is applied across various selection and ranking

events, using different loss functions to quantify the loss incurred from non-optimal

selection and ranking decisions. Uncertainty is quantified by calculating the NPI

lower and upper expected losses for the events corresponding to these scenarios.

In the selection scenario, zero-one, linear, and quadratic loss functions are used in

both pairwise and multiple comparisons. Several selection events are considered,

including selecting the best group, selecting the subset of best groups, and selecting

the subset that includes the best group. In ranking scenarios, zero-one and gen-

eral multi-level loss functions are applied to ranked subsets of best groups. The

zero-one loss function provides a binary measure of whether the ranking is correct,

while the general multi-level loss function allows for a more nuanced evaluation by

assigning penalties based on the specific ranking of groups according to the next

future observation per group. For the general event of selection and ranking, linear

and quadratic loss functions are used to evaluate the ranking of groups assigned to

different buckets. The effect of the use of different loss functions on the selection

and ranking decisions is illustrated by examples.
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Chapter 1

Introduction

1.1 Motivation

When comparing multiple populations, it is often important to decide which per-

forms better. For example, in medical trials where several treatments are tested,

decision makers may wish to identify the most effective treatment, the safest option,

or the one with the fewest side effects.

The objective of selection is to identify the best population, a subset of the best

populations, or a subset that includes the best population. In addition, there are

situations where the goal is not to select the best populations but to rank them based

on a specific performance measure. For example, in medical trials where multiple

treatments are tested, it may be important not only to identify the best performing

treatments, but also to rank them based on their effectiveness. This helps decision

makers determine which treatments should be prioritised for further investigation.

The origins of statistical theory for solving selection and ranking problems trace

back to the 1950s, particularly in fields like agriculture and clinical studies, where

testing the homogeneity of multiple populations was common [63]. Homogeneity

implies that the means, variances, or other statistical properties of the populations

are the same. When statistical tests indicated differences in their means, that is, so

homogeneity of the means was rejected statistically, natural questions emerged: How

can the uncertainty about being the best be quantified, and which one is the best?

For example, when selecting the best drug among several options, the homogeneity

1
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test can only indicate if the drugs are not equivalent, not which one is the best, where

best, for example, could refer to the safest, most effective or having the fewest side

effects. Homogeneity tests are insufficient to resolve the issue of selecting the best

population. Therefore, selection and ranking procedures have been developed to

solve these challenges for decision makers [31].

The term best is defined according to the problem at hand and may vary in

different applications. For example, in some cases, the best result could indicate a

smaller number of fatalities in a drug experiment. In contrast, in other scenarios, it

might refer to drugs that induce a higher reduction in tumor size.

Selection and ranking procedures are appropriate for answering questions such

as: Which of the different drugs produces the best response? Which subgroup of

different drugs produces a better response than a placebo? Which two of multiple

types of advertising media reach the highest proportion of potential buyers of a

particular product? Which of the different learning techniques produces the best

comprehension? How do a group of multiple candidates for a certain political office

rank in popularity at a specific point in time? Which of the different types of ski

bindings has the lowest accident rate? [31]

Historical applications of selection and ranking procedures include areas such as

poultry science, drug studies, selection of advertising medium, investment of stocks,

and selection of laboratory kit suppliers, demonstrating their importance in various

fields for making informed and effective decisions [31].

In this thesis, the focus is on developing NPI for different selection and ranking

problems. NPI is a statistical framework based on Hill’s assumption [46, 47]. In

the NPI approach, the uncertainty is quantified via lower and upper probabilities

for events of interest. Due to its ease of implementation and minimal assumptions,

NPI has been applied in various areas of statistics and reliability [10, 13, 19].

Coolen [9] introduced the NPI method to compare two independent groups and

identify the best group that is most likely to provide the largest future observation.

Then, Coolen and van der Laan [18] extended the NPI method to compare multiple

independent groups by identifying both the best group and a subset that contains

best multiple groups, but without considering the ranking within that subset. The

October 6, 2025
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approach considered in this thesis is different from that of Coolen and van der Laan

[18], as it focuses on ranking the best groups within the subset, providing more

detailed insights into how they compare to each other.

The thesis employs the well-known concept of a loss function to measure the

loss incurred from non-optimal selection and ranking. This loss function guides

the selection and ranking of future observations within a ranked subset of the best

groups, reflecting the quality of the decision-making process. In the context of

selection, zero-one, linear, and quadratic loss functions are used to quantify the

severity of making a non-optimal choice. Similarly, in the context of ranking, a loss

function quantifies the severity of an incorrect ranking, with zero-one and general

multi-level loss functions used for evaluation.

This chapter provides a review of the main ideas and concepts used in the thesis.

Section 1.2 delves into the literature on selection and ranking from a classical statis-

tics perspective. Section 1.3 offers an overview of statistical decision theory, while

Section 1.4 briefly introduces the concept of NPI. Section 1.5 examines selection and

ranking from an NPI perspective, and Section 1.6 outlines the thesis’s structure.

1.2 Statistical selection and ranking procedures

Over the past seventy years, research in the statistical literature has been devoted to

various theoretical aspects of many types of selection and ranking procedures. A pi-

oneer in the field of selection and ranking problems is Bechhofer [3] who contributed

to the early development of methods for comparing and selecting the best popu-

lation among multiple populations based on ranking means of Normal populations

with known variances. The focus then shifted to the area of subset selection proce-

dures initiated by Gupta [37]. In various practical scenarios, it is often necessary to

select multiple best populations rather than just one. Gupta [37] discussed the pro-

cess of selecting a subset that includes the best population with specific parametric

distributions. Gupta and others have contributed to the field by exploring subset

selection approaches across various distributions, such as Normal distribution and

Binomial distribution. For the Normal distribution, the best population is defined

October 6, 2025
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as the one with the largest mean, while in the Binomial distribution, it is defined as

the one with the highest probability of success [37, 39, 43].

An interesting aspect of the selection and ranking problem discussed in the lit-

erature is the determination of the subset size. In some cases, selecting only one

population from a set may not be ideal. For example, if there are two similarly ex-

treme options in the positive direction, it might be preferable to select both rather

than just one. The size of the selected subset can be either random or fixed, but

in this thesis, it is assumed to be fixed, so this distinction does not matter for our

method. This flexibility in subset selection, where the subset size is random, can

be advantageous for certain types of problem. The subset size is determined by

the observed data using specific procedures and formulas available in the literature

[37, 39, 43]. However, there are some situations where having a subset of a fixed

size is preferred [24]. This ensures that the number of populations in the subset

remains constant rather than varying. The decision to use a fixed or random subset

size depends on the experimenter’s objectives. If the experimenter prefers a fixed

size of subset, promoting the benefits of a procedure with a random subset size does

not offer an advantage [31].

Selecting a subset of random size from Normal distributions that contains the

best population with respect to means and a common known variance was presented

by Gupta [37, 38]. Similarly, for the case of a common unknown variance proposed

by Gupta [37], Gupta and Sobel [42]. A subset selection problem for Binomial

distributions is addressed in Gupta and Sobel [43]. Many tables applied for subset

selection problems associated with Binomial distribution are presented by Gupta et

al. [39].

However, selecting a subset of fixed size of Normal distributions with respect to

means with a common known variance is proposed by Desu and Sobel [24]. Desu and

Sobel’s research is connected to earlier work by Mahamunulu [59], where the interest

is centred on populations that have large values of the ranking parameter. Typically,

the populations with the largest values of the ranking parameters are referred to as

the best populations. Mahamunulu [59] considered a problem of selecting a fixed

size of subset, from a given set of all populations, which contains a subset of the

October 6, 2025
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best populations.

For subset selection problems involving Normal distributions with unknown and

possibly unequal variances, Dudewicz and Dalal [27] proposed a two stage procedure

to select the population with the largest mean. In the first stage, a small sample

of observations is taken from each population, and the mean of these observations

is calculated for each population. In the second stage, additional observations are

collected from each population. Subsequently, a new weighted mean is calculated

using all the observations, ensuring that the weights assigned to the initial and addi-

tional observations are consistent. Finally, the population with the largest weighted

mean from the second stage is selected as the best. However, this method is not

considered in this thesis.

Furthermore, Bechhofer et al. [4] have extensively investigated sequential pro-

cedures related to the selection of a subset of best multiple populations, addressing

both ranked and unranked scenarios. In another paper, Sobel [70] explored the

problem of selecting a subset of multiple populations and confirming that at least

one of them belongs to the best multiple populations. Moreover, Sobel [69] consid-

ered the problem of selecting the best multiple populations out of the k populations,

each characterized by a cumulative distribution function Fi for i = 1, . . . , k. The

selection of these best multiple populations is based on a specific criterion, which

is the population with the largest q-quantile, where q is a given number such that

0 < q < 1.

Sobel [69] developed nonparametric procedures similar to those discussed by

Rizvi and Sobel [64], based on n independent observations from each of the k popu-

lations. Desu and Sobel [25] addressed the nonparametric version of selecting a fixed

size of subset that includes the population with the largest q-quantile. More recently,

Kumar and Grover [54] proposed a nonparametric subset selection procedure for lo-

cation parameters that does not rely on specific distributional assumptions. Their

method, based on U-statistics, preserves important properties such as monotonic-

ity and subset-inclusion, and performs well under various simulated settings. In a

related study, Kumar [53] introduced a general class of subset selection procedures

applicable to both location and scale parameters.

October 6, 2025
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Designing an experiment in statistics requires specifying the characteristics in

advance. This is not directly relevant to this thesis, as the method used here,

NPI, works differently and will be discussed later in Section 1.4. Some methods

in the literature, such as those by Tong [71] and Bechhofer [3], explicitly focus on

experimental design.

Tong [71] addressed the scenario of selecting populations that are better than a

control or standard. Tong [71] described a treatment control experiment, which is a

common design used in various research and experimentation scenarios. This design

applies to the situation in which each of the k treatments is compared to a single

control or standard treatment. The number of treatments in this type of experiment

is k treatment and a single control or standard treatment.

In selection and ranking problems, the objectives can extend to complete ranking

of all k populations based on their parameter values. For example, in the evaluation

of k competing consumer or product goods, there might be a need to rank these goods

concerning their means. The problem of completely ranking three populations based

on their corresponding variances was presented in Bechhofer [3]. A contribution

to completely ranking k populations according to their mean values was made by

Carroll and Gupta [8]. The Gupta and Carroll method is suitable for larger sample

sizes while Freeman et al. [30] are suitable for smaller sample sizes. In addition,

the complete ranking of the variances of the Normal distribution was introduced

by Schafer [66]. Finally, Bayesian methods were applied to the complete ranking

problem by Govindarajulu and Harvey [35]. However, the main interest in this thesis

lies in ranking a subset of the best groups.

The next two sections briefly review the indifference zone approach for ranking

means of Normal populations and the subset selection approach.

1.2.1 Indifference zone approach

The indifference zone approach was introduced by Bechhofer [3]. The main objective

is to select the best Normal distribution out of k independent Normal distributions.

The best population here means the population with the largest mean. Let µi and σ2
i

denote the mean and variance of the i’th population and the Normal distributions are

October 6, 2025
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denoted as Xi ∼ N (µi, σ
2
i ), for i = 1, 2, ..., k. In this case, the variance was assumed

to be common and known, σ2
1 = σ2

2 = . . . = σ2
k = σ2. The mean values µ1, µ2, . . . , µk

are arranged in ascending order, then, the ordered means can be written as

µ[1] ≤ µ[2] ≤ . . . ≤ µ[k] (1.1)

It is assumed that it is not known which population is associated with µ[i], where

i = 1, . . . , k − 1. It is also assumed that the best and second best populations here

are the populations with the largest and second largest means respectively. The

inference based on sample means, and the k ranked sample means are obtained as

follows

x̄[1] ≤ x̄[2] ≤ . . . ≤ x̄[k] (1.2)

Bechhofer [3] proposed designing an experiment to identify the best population

in such a way that under specific conditions the probability of making a correct

selection and ranking, P (CSR), is at least a preassigned value, P (CSR) ≥ P ∗. The

number of observations n required depends on the probability of making a correct

selection and ranking. Note that the higher the probability of correct selection and

ranking P ∗, the greater the required sample size n.

In order to apply Bechhofer’s method [3], the following steps are followed: Take

ni observations from the i’th population, the sample size of all populations is as-

sumed to be common ni = n. Next, compute the sample means x̄[1], . . . , x̄[k]. Make

the ranking of the sample means as in Equation (1.2). Finally, the populations asso-

ciated with x̄[k] and x̄[k−1] are identified as the largest and second largest populations

respectively.

The specific condition mentioned in the previous paragraph, P (CSR), states the

distance between the largest and the second largest mean is at least a specified value

δ∗ as expressed by

µ[k] − µ[k−1] ≥ δ∗ (1.3)

this condition here is referred to as the least favourable configuration of the proba-

bility of population means.

October 6, 2025
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For a specified P ∗, the minimum required sample size n for each population is

the smallest integer that is greater than or equal to the value of n calculated as

n =
(dσ
δ∗

)2

(1.4)

if the right hand side of Equation (1.4) is not an integer, then round up to the next

larger integer to determine n. Here, d is the multivariate Normal quantile constant

needed to achieve the desired confidence P ∗ in Bechhofer’s method.

When the d value in Equation (1.4) for a given P ∗ is unknown, linear interpo-

lation on natural logarithmic values can be applied to estimate it. Three steps are

followed to find it: First, the two closest values below and above the unknown d

and its corresponding P ∗ values are identified. The natural logarithms of the cor-

responding values of d and 1 − P ∗ are then taken, since this transformation makes

the relationship nearly linear. Linear interpolation is performed between these nat-

ural logarithmic values to determine the missing d. Finally, an antilogarithm of this

result is taken to obtain d in its original scale.

1.2.2 Subset selection approach

There are many methods presented in the literature to select a subset of the best

populations, but their objectives are not directly relevant to the method presented

in this thesis. This is because the approach in Gupta [38] focuses on selecting the

best populations without considering their ranking, whereas the method presented

in this thesis is concerned with ranking the best populations. Gupta [38] presented

a subset selection procedure aimed at selecting a subset of Normal populations with

a common known variance that includes the best Normal population.

In the subset selection procedure, Gupta [38] designed an experiment to deter-

mine the common sample size n required per population, for specified numbers δ∗, P ∗

and k populations from Normal distributions which is overviewed in Section 1.2.1.

The minimum required sample size n for each population is the smallest integer that

is greater than or equal to the value of n calculated as

n =
(λσ
δ∗

)2

(1.5)

October 6, 2025
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Here, λ is the critical cutoff constant to ensure that the subset contains the best

population with probability at least P ∗. The value of λ was obtained by the same

method that are suggested for interpolation to find d in Equation (1.4). However,

better results can be obtained using a different transformation as presented in [31].

To perform Gupta procedure, the k ordered sample means are obtained as follows

x̄[1] ≤ x̄[2] ≤ . . . ≤ x̄[k] (1.6)

Then, the selection rule for any i = 1, 2, . . . , k, the ith population is included in

the selected subset if and only if its corresponding sample mean, x̄[i], is at least as

large as a certain quantity, which is

x̄[i] ≥ x̄[k] −
σ√
n
λ (1.7)

Subsequently, in Section 2.6, a comparative analysis is conducted between Bech-

hofer, Gupta and the method presented in Chapter 2.

1.3 Statistical decision theory

This section offers an overview of statistical decision theory and explores different

types of loss function, as discussed in existing literature. Decision theory focuses

on the problem of making decisions, while statistical decision theory specifically

addresses decision making in the presence of statistical knowledge, which is the

information derived from data that helps to shed light on uncertainties in decision

problems.

Wald [73] introduced statistical decision theory to guide decision making in the

presence of uncertainty. It is assumed that these uncertainties can be considered

unknown numerical quantities, represented by θ, which can be any parameter of

interest, such as a mean or variance. The aim is to estimate or make decisions

about θ. This theory shifts the focus from statistical inference, drawing conclusions

from data, to making decisions under uncertainty. Traditionally, classical statistics

focuses mainly on using sample information for inferences about a parameter θ, often

without considering how these inferences will be used, which is based on incomplete

information. Incomplete information in this context means that inferences about
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the parameter θ are derived from just a sample of the population, rather than the

entire population. Because only a part of the total data is available, the information

used to make inferences is incomplete. In contrast, in decision theory the goal

is to combine sample information with other relevant aspects of the problem to

make optimal decisions. Subsequently, statistical decision theory is centred around

the problem of statistical decision rather than inference. It involves deciding on a

sensible course of decision based on incomplete information.

An important aspect is understanding the possible consequences of decisions.

This can be quantified by determining the loss incurred for each possible decision.

The incorporation of loss functions into statistical analysis was extensively studied

by Wald [73] . When making a decision, the parameter θ is unknown or uncertain at

the time of decision making. To handle this uncertainty, one common use of decision

theory is to evaluate decisions based on their expected loss (risk) and then select

the best decision that minimises this expected loss.

The risk of making a wrong decision can often be reduced by taking enough ob-

servations. However, experiments usually incur costs. The risk function introduced

by Wald [73] depends on both the cost of experimentation and the cost of mak-

ing a wrong decision, with estimates of these costs provided by the experimenter.

Calculating the expected total loss requires knowledge of the prior probabilities of

the possible values of unknown quantities θ that are related to different decisions

and the populations studied in the experiment. This type of information is hard to

obtain.

A valuable source of non-sample information is prior information. Information

about θ is obtained from sources outside of the statistical investigation, such as past

experiences with similar situations, as refined by Savage [65].

As an example of making a decision, imagine a drug company deciding whether

to launch a new pain reliever. Key factors in this decision include the drug’s effec-

tiveness for patients and its market potential, which are generally unknown but can

be studied through experiments. This decision making process is part of decision

theory, with the aim of determining whether to market the drug and quantifying the

loss incurred from incorrect decisions. The losses involved in deciding whether to
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market the drug include the risk of underestimating or overestimating its effective-

ness. Underestimating the effectiveness of the drug could make the product appear

less effective than it really is, while overestimating it could result in penalties for

misleading advertising [5].

In the drug example, prior information about effectiveness and market share

can be derived from other pain relievers. This prior information can enhance the

decision making process by providing an informed basis for estimating the drug’s

effectiveness for patients and its market potential. However, this approach is not

utilized in this thesis.

Commonly utilised loss functions include zero-one, linear, and quadratic losses,

which are essential concepts in decision-making. Additionally, entropy serves as a

valuable inference loss, offering quantitative assessments of uncertainty or errors

when drawing conclusions from a statistical model. Good [34] found loss function

called "Quasi-utilities", which provides a more flexible method for decision making

under uncertainty than other methods, allowing decision makers to indicate their

preferences when complete information is lacking. The different types of loss func-

tions used in the selection and ranking problems are discussed in Chapters 3 and

4.

Shafer [67] explored how decision makers can combine various decision theory

problems rather than considering them independently. However, the need to com-

bine problems can present challenges for decision makers when constructing loss

functions. Lehmann et al. [57] and Ferguson [28] illustrated that frequentist and

Bayesian inference measures can also be formally interpreted as risk or Bayesian

expected loss. However, these approaches are not utilized in this thesis. Rather

than addressing general loss functions, the focus here is on those specifically related

to subset selection, as discussed in Chapter 3.

1.4 Nonparametric Predictive Inference (NPI)

Imprecise probability, introduced by Boole [7], measures the uncertainties associated

with events using intervals rather than single values, as seen in classical probability
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[11]. In recent years, several alternative methods for quantifying uncertainty have

emerged, such as Walley’s imprecise probability theory [74] and Weichselberger’s

interval probability theory [75], which use lower and upper probabilities instead of

fixed probabilities. These probabilities form the basis of a statistical framework

called Nonparametric Predictive Inference (NPI).

Nonparametric Predictive Inference (NPI) [1, 12] is a statistical framework based

on Hill’s assumption A(n) [46, 47] which provides direct probabilities for future ob-

servation given n observations of related random quantities. Inferences derived from

this assumption are predictive and nonparametric, and seem suitable if there is

hardly any knowledge about the random quantities of interest, or it may be more

realistic in situations where one does not want to utilize such information, e.g. when

studying the effects of additional assumptions in other statistical methods.

To introduce the assumption A(n), suppose that X1, X2, . . . , Xn+1 are continuous

and exchangeable random quantities. The ordered observations of X1, X2, . . . , Xn

are x1 < x2 < . . . < xn. Let x0 = −∞ and xn+1 = ∞. Note that xn+1 does not

denote an observed value for Xn+1. These n observations divide the real line into

n+ 1 intervals Ij = (xj−1, xj), where j = 1, . . . , n+ 1. The assumption A(n) is that

the probability for the future observation Xn+1 to fall in the open interval Ij is equal

for all Ij, which is

P (Xn+1 ∈ Ij) =
1

n+ 1
for each j = 1, . . . , n+ 1 (1.8)

Throughout this thesis, it is assumed that there are no tied observations. How-

ever, to deal with tied observations, one can either assign the probability mass to

the closed intervals [xj−1, xj] instead of the open interval, or tied observations can

be dealt with by assuming that such observations differ by a very small amount [48].

A(n) does not assume anything else, and can be considered to be a post-data

assumption related to exchangeability [22]. The assumption A(n) alone does not yield

precise probabilities for various events of interest [47]. However, it provides bounds

for probabilities for all events of interest involving Xn+1, by what is essentially an

application of De Finetti’s fundamental theorem of probability [22]. These bounds

are called lower and upper probabilities in imprecise probability theory [74] and

interval probability [76]. The NPI lower probability for an event A is denoted by
October 6, 2025
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P (A), the NPI upper probability for the same event is denoted by P (A). The NPI

lower probability can be interpreted as a maximum lower bound for the precise

probability for A, and the NPI upper probability can be interpreted as a minimum

upper bound for the precise probability for A [12]. Therefore, the uncertainty is

quantified by the NPI lower and upper probabilities for the event of interest based

on the assumption A(n). Augustin and Coolen [1] introduced the NPI lower and

upper probabilities for the event Xn+1 ∈ B given the past n data observations

where B ⊂ R, as follows

P (Xn+1 ∈ B) =
1

n+ 1

n+1∑
j=1

1{Ij ⊆ B} (1.9)

P (Xn+1 ∈ B) =
1

n+ 1

n+1∑
j=1

1{Ij ∩B 6= ∅} (1.10)

where 1{A} is an indicator function which is equal to 1 if event A occurs and 0

else. The NPI lower probability is defined by summing only the probability masses

assigned to intervals Ij that are necessarily within B, while the NPI upper proba-

bility is defined by summing all the probability masses that can be in B, which is

the case for the probability masses per interval Ij if the intersection of Ij and B is

not empty.

Augustin and Coolen [1] provided properties for the NPI lower and upper prob-

abilities. First, the conjugacy property P (A) = 1 − P (Ac) holds, where Ac is the

complement of an event A. Secondly, 0 ≤ P (A) ≤ P (A) ≤ 1, when P (A) = P (A),

this represents a precise classical probability. The case in which P (A) = 0 and

P (A) = 1 represents a complete lack of information about the event A. Moreover,

4(A) = P (A)− P (A) is called imprecision [11].

1.5 NPI for selection and ranking

This section outlines the NPI procedure as developed for selection and ranking

problems in the literature. As these methods form the basis of this work, both are

briefly reviewed, starting with selection and then ranking applications.

NPI for pairwise comparisons has been developed for real-valued observations
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[9]. Coolen [9] proposed a comparison method within the NPI framework for two

independent groups of real-valued data, involving a single future observation for each

group, and then selecting the group based on the NPI lower and upper probabilities

for the event that a group will have the largest future observation. Suppose that

X1, . . . , Xnx , Xnx+1 and Y1, . . . , Yny , Yny+1 are real-valued, absolutely continuous, and

exchangeable random quantities from X and Y , respectively. Let their ordered

observed values be x1 < x2 < · · · < xnx and y1 < y2 < · · · < yny , with x0 = y0 = −∞

and xnx+1 = yny+1 =∞ defined for ease of notation.

The derivation of the NPI lower and upper probabilities for the event Xf > Y f

involves considering the extreme positions of the probability mass for each random

quantity, Xf and Y f , within their respective intervals, which minimise the NPI

lower probability and maximise the NPI upper probability. The NPI lower and

upper probabilities for the event Xf > Y f are

P (Xf > Y f ) =
1

(nx + 1)(ny + 1)

nx+1∑
i=1

ny+1∑
j=1

1{xi−1 > yj} (1.11)

P (Xf > Y f ) =
1

(nx + 1)(ny + 1)

nx+1∑
i=1

ny+1∑
j=1

1{xi > yj−1} (1.12)

The method is applied to derive predictive inferences to compare two future

observations, Xf and Y f . The method for deriving the NPI lower and upper proba-

bilities serves as a starting point for deriving the NPI lower and upper probabilities

relevant to this thesis.

Subsequently, the NPI method has been extended to multiple comparisons for

k ≥ 2 independent groups and developed for different types of data, which have

been applied to various inferences. These include group selection when dealing with

real-valued observations for three different events of interest based on a single future

observation for each group, which are the selection of the best group, the subset of

the best groups, and the subset that includes the best group [18].

Suppose there are k ≥ 2 groups and nj + 1 random quantities from group j

denoted by Xj,ij where j = 1, 2, . . . , k and ij = 1, 2, . . . , nj + 1 and their ordered

observation values are xj,1 < xj,2 < . . . < xj,nj
with xj,0 = −∞ and xj,nj+1 =
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∞ defined for ease of notation. Then, an inference is considered based on Hill’s

assumption A(nj) for each group.

First, select the best group with a specific future observation Xf
` which is the

maximum for all future observations Xf
j , j = 1, 2, . . . , k, i.e., Xf

` ≥ max
j 6=`

Xf
j . The

NPI lower and upper probabilities for the event Xf
` ≥ max

j 6=`
Xf
j are

P (Xf
` ≥ max

j 6=`
Xf
j ) =

1∏k
j=1(nj + 1)

n`+1∑
i`=1

k∏
j=1

nj+1∑
ij=1

1{x`,i`−1 ≥ max
` 6=j

(xj,ij)} (1.13)

P (Xf
` ≥ max

j 6=`
Xf
j ) =

1∏k
j=1(nj + 1)

n`+1∑
i`=1

k∏
j=1

nj+1∑
ij=1

1{x`,i` ≥ max
`6=j

(xj,ij−1)} (1.14)

The second event is to select a subset of the best groups. Let S = {`1, `2, . . . , `w} ⊂

{1, 2, . . . , k} be the subset of w groups, and let NS = {1, 2, . . . , k}\S, so NS is the

set of k − w non-selected groups. All future observations belonging to the sub-

set S exceed all future observations that belong to the non-selected groups NS,

i.e. min
`∈S

Xf
` ≥ max

j∈NS
Xf
j . The NPI lower and upper probabilities for the event

min
`∈S

Xf
` ≥ max

j∈NS
Xf
j are

P (min
`∈S

Xf
` ≥ max

j∈NS
Xf
j ) =

1∏k
j=1(nj + 1)

n`+1∑
i`=1

k∏
j=1

nj+1∑
ij=1

1{min
`∈S

(x`,i`−1) ≥ max
j∈NS

(xj,ij)}

(1.15)

P (min
`∈S

Xf
` ≥ max

j∈NS
Xf
j ) =

1∏k
j=1(nj + 1)

n`+1∑
i`=1

k∏
j=1

nj+1∑
ij=1

1{min
`∈S

(x`,i`) ≥ max
j∈NS

(xj,ij−1)}

(1.16)

where
n`+1∑
i`=1

is used for w sums
n`+1∑
i`1=1

. . .
n`+1∑
i`w=1

.

Finally, the third event is to select the subset S that contains the best group.

The future observation of at least one of the selected groups in S is greater than the

future observation of each group in NS, that is, max
`∈S

Xf
` ≥ max

j∈NS
Xf
j .

P (max
`∈S

Xf
` ≥ max

j∈NS
Xf
j ) =

1∏k
j=1(nj + 1)

n`+1∑
i`=1

k∏
j=1

nj+1∑
ij=1

1{max
`∈S

(x`,i`−1) ≥ max
j∈NS

(xj,ij)}

(1.17)
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P (max
`∈S

Xf
` ≥ max

j∈NS
Xf
j ) =

1∏k
j=1(nj + 1)

n`+1∑
i`=1

k∏
j=1

nj+1∑
ij=1

1{max
`∈S

(x`,i`) ≥ max
j∈NS

(xj,ij−1)}

(1.18)

Then, NPI has also been developed for other types of data and has been applied

to various inference problems. Maturi et al. [61] introduced the NPI method for

comparing future observations from two groups of real-valued data, where the tails

of the data may have been terminated. The selection of the optimal group in the

Bernoulli trials was introduced by Coolen and Coolen-Schrijner [16]. Lastly, Coolen

et al. [15] introduced the Nonparametric Predictive Inference (NPI) method for

pairwise comparison that specifically focuses on future order statistics. However,

these are not relevant to this thesis.

In addition, selecting the optimal group in the context of Bernoulli data was

introduced by Coolen and Coolen-Schrijner [17], while Baker [2] explored selecting

the best category within the multinomial data. Maturi [60] also introduced the

application of multiple comparisons for right-censored observations. Furthermore,

Coolen et al. [15] developed the NPI method for multiple comparisons, specifically

focusing on future order statistics. In all these studies, multiple comparisons were

applied for k ≥ 2 populations, focusing on the three different events of interest

described above.

In many situations, one may want not just to compare between groups, but

rather to rank the groups from the best to the worst. For example, this occurs when

evaluating the effectiveness of various treatments and determining if they follow a

specific order in which they are effective. Ranking multiple groups based on the

NPI method is introduced in the literature. Coolen-Maturi [20] presented NPI for

the ranking of real-valued future observations for three and more than three groups,

resulting in a more complex optimisation process.

To derive the NPI lower and upper probabilities for the event Xnx+1 < Yny+1 <

Znz+1, the probability masses for Xnx+1 and Znz+1 are assigned to the extreme

positions within their respective intervals, which minimise the NPI lower probability

and maximise the NPI upper probability. For the group in the middle, Yny+1, an

optimization is performed by assigning the probability mass for Yny+1 within each
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interval (yj−1, yj) in a way that minimises the NPI lower probability and maximise

the NPI upper probability.

To derive the NPI lower and upper probabilities for the event Xnx+1 < Wnw+1 <

Yny+1 < Znz+1, similarly to the method used for the event Xnx+1 < Yny+1 < Znz+1,

the probability masses for Xnx+1 and Znz+1 are again assigned at the extreme ends of

their intervals. Then, the complexity arises from the need to simultaneously assign

probability masses for the remaining groups, Wnw+1 and Yny+1. The approximate

NPI lower and upper probabilities calculation requires simultaneously considering

all possible ways to assign probability masses for Wnw+1 and Yny+1. This simultane-

ous consideration is necessary to minimise the NPI lower probability and maximise

the NPI upper probability, especially with large and overlapping datasets, so that

bounds have been introduced to avoid this computational complexity.

1.6 Outline of the thesis

This thesis presents the NPI method for a range of selection and ranking problems.

It also quantifies the loss from making suboptimal decisions using various loss func-

tions, which not only measure performance but also guide the selection and ranking

of future observations within a chosen subset of the best groups. The structure of

the thesis is as follows: Chapter 2 introduces the ranking of future observations of

a subset of best groups, considering various scenarios. Within these subsets, the

partial ranking of a subset of the best groups is investigated. Finally, a compar-

ative analysis is conducted between the proposed method and the methods in the

literature to investigate their performance.

In Chapter 3, the loss incurred in certain NPI selection problems is measured

using three types of loss functions: zero-one, linear, and quadratic loss functions.

Then, the NPI lower and upper expected zero-one, linear and quadratic losses quan-

tify the uncertainty associated with the loss of making non-optimal selections and

guide the selection of the best groups, reflecting the quality of the selection.

Chapter 4 develops NPI decision theory for ranking a subset of the best groups,

using both the zero-one loss function and a general multi-level loss function. The
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multi-level loss function assigns penalties based on the severity of ranking errors,

allowing each ordering mistake to be weighted according to the investigator’s prior-

ities.

Chapter 5 extends the methodology to the general case of ranking buckets, where

independent groups are assigned to buckets such that each group belongs to exactly

one bucket and each bucket contains at least one group. Linear and quadratic loss

functions are used to quantify the loss from incorrect bucket rankings and to guide

the ranking process, reflecting the quality of the resulting decisions.

Finally, some remarks and conclusions are provided in Chapter 6. Calculations

were performed using R, and the R code is available from the author upon request.
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Chapter 2

NPI for selecting a ranked subset

2.1 Introduction

In many scenarios, the key objective is to select a subset of groups and rank the best

groups within that subset. For example, in medical trials where multiple treatments

are tested, it is crucial not only to identify the best treatments but also to rank them

according to their effectiveness. This allows decision-makers to prioritize treatments

for further investigation. Selecting subsets of the best groups and ranking the groups

is an important problem, particularly in fields such as medicine, industry and eco-

nomics. Although Coolen and van der Laan [18] introduced a method for selecting a

subset containing multiple best groups, their approach did not account for ranking

of groups within the subset. The method developed in this thesis differs by focusing

on ranking the best groups within the subset.

This chapter presents a methodology for selecting a ranked subset of best groups,

based on one future observation from each group. First, the general scenario is con-

sidered, in which multiple groups are included in the subset. The necessary notations

and probability formulas for this case are defined and introduced. Then, two special

cases are examined, focusing on subsets containing two and three groups. These

cases are crucial as they demonstrate how the NPI lower and upper probabilities are

derived differently depending on the number of groups in the subset. Finally, one

may wish to rank future observations within a partially ranked subset, where the

ranked groups are nested within a larger selected subset of the best groups.

19
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This chapter is organised as follows. Section 2.2 introduces the methodology

for selecting a ranked subset of the best groups, based on one future observation

from each group. Sections 2.3 and 2.4 focus on special cases where the subset con-

tains two and three groups, respectively. Section 2.5 provides a brief illustration of

partial ranking within subset groups. A comparison with alternative methods from

the literature is presented in Section 2.6. Finally, Section 2.7 presents concluding

remarks.

2.2 Selecting a ranked subset of the best groups

This section introduces the NPI-based method for selecting a ranked subset of the

best groups, based on one future observation from each group. This section is

important because it presents the general event of selecting a ranked subset of the

best groups, providing a foundation for the next two sections, which derive special

cases when the ranked subset has two and three groups. First, the notation is

introduced, followed by the NPI lower and upper probabilities for this event. In

some cases, computing these probabilities can be demanding, especially when data

overlap occurs, so lower and upper bounds on these NPI probabilities are introduced.

For simplicity of notation, the next future observation is referred to as Xf in-

stead of Xnx+1. Suppose that there are k independent groups, where ’indepen-

dent’ means that information about the random quantities for one group does not

provide any information about the random quantities for another group. In addi-

tion, consider a subset of all groups, consisting of w groups, with 1 ≤ w ≤ k − 1.

Let S = {`1, `2, . . . , `w} ⊂ {1, 2, . . . , k} be the subset of w groups, and let NS =

{1, 2, . . . , k}\S, so NS is the set of k − w non-selected groups.

Suppose that the event of interest is max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
, mean-

ing that all non-selected groups have smaller future observations than the selected

groups, where the selected groups are ranked. Therefore, the objective is to select

the ranked subset S of the best w groups.
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2.2.1 Lower and upper probabilities

Coolen and van der Laan [18] introduced NPI lower and upper probabilities for the

event max
j∈NS

Xf
j < min

`∈S
Xf
` , where the future observation of each group in S is greater

than all future observations belonging to NS. An overview of how to derive the

NPI lower and upper probabilities for the event max
j∈NS

Xf
j < min

`∈S
Xf
` was provided in

Section 1.5. The methodology for deriving the NPI lower and upper probabilities is

now extended to the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
, drawing similarities

to the earlier case of max
jz∈NS

Xf
jz
and Xf

`1
, as discussed in Section 1.5. In this thesis, we

assume that there are no tied observations. To introduce the NPI lower and upper

probabilities for the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
, Hill’s assumption A(n)

is applied per group. Let the ordered observations of group `i, `i ∈ S, be denoted

by x`i,1 < x`i,2 < . . . < x`i,n`i
for ease of notation x`i,0 = −∞ and x`i,n`i

+1 =

∞. Let n`i be the number of observations from group `i, these divide the real

line into n`i + 1 intervals denoted by {I1, . . . , In`i
+1}. A(n`i

) partially specifies a

probability distribution for the next future observation of group `i by P (Xf
`i
∈

(x`i,u`i−1, x`i,u`i )) =
1

n`i + 1
, where u`i = 1, 2, . . . , n`i + 1.

The ordered observations from group jz, jz ∈ NS, be denoted by xjz ,1 <

xjz ,2 < . . . < xjz ,njz
with ease of notation xjz ,0 = −∞ and xjz ,njz+1 = ∞. Let

njz be the number of observations related to non-selected groups jz and these di-

vide the real line into njz + 1 intervals, denoted by {I1, . . . , Injz+1}. The max
jz∈NS

xjz

represents the maximum observation that belongs to NS. A(njz ) partially spec-

ifies a probability distribution of the next future observation per group Xf
jz

by

P (Xf
jz
∈ (xjz ,vjz−1, xjz ,vjz )) =

1

njz + 1
, where vjz = 1, 2, . . . , njz + 1.

The NPI lower probability for the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
can

be derived as follows: the probability mass for group `1 assigns to the left endpoint

of the intervals (x`1,u`1−1, x`1,u`1 ), while the probability masses for all jz ∈ NS groups

assign to the right endpoint of the intervals (xjz ,vjz−1, xjz ,vjz ), where z = 1, . . . , k−w.

In contrast, for the NPI upper probability, the probability mass for group `1 is

assigned to the right endpoint per interval, while the probability masses for all

groups jz ∈ NS are assigned to the left endpoint per interval. Hence, the NPI lower
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probability for the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
is

P

(
max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`1
+1∑

u`1=1

njz+1∑
vjz=1
jz∈NS

P

(
max
jz∈NS

xjz ,vjz < Xf
`w
< . . . < Xf

`2
< x`1,u`1−1

∣∣∣D)

(2.1)

where D = {Xf
`i
∈ (x`i,u`i−1, x`i,u`i ), i = 2, . . . , w} and the notation

njz+1∑
vjz=1
jz∈NS

is used for

k − w sums
nj1

+1∑
vj1=1

nj2
+1∑

vj2=1

. . .
njk−w

+1∑
vjk−w

=1

.

The NPI upper probability for the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
is

P

(
max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`1
+1∑

u`1=1

njz+1∑
vjz=1
jz∈NS

P

(
max
jz∈NS

xjz ,vjz−1 < Xf
`w
< . . . < Xf

`2
< x`1,u`1

∣∣∣D)

(2.2)

We have shown above how the probability masses are assigned to the groups

`1 and jz ∈ NS. However, for the remaining middle groups `2, . . . , `w, it is not

straightforward how to allocate their probability masses within each interval to de-

rive the NPI lower and upper probabilities. Coolen-Maturi [20] presented a proposal

that involves performing optimisation for one group at a time. For the remaining

groups, their corresponding probability masses are allocated at either the left or

right endpoint of each interval (x`i,u`i−1, x`i,u`i ), where i = 2, . . . , w. Following this

optimisation, which will be briefly discussed in Sections 2.3 and 2.4, the NPI lower

and upper probabilities are derived. Examples illustrating the optimisation process

for selecting a ranked subset of the two best groups, as well as for three or more

best groups, will also be provided.

2.2.2 Bounds for the NPI lower and upper probabilities

Since calculating the NPI lower and upper probabilities involves optimisation which

requires going through different sub-intervals to assign the probability mass of each
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group, the calculation process becomes cumbersome. Therefore, considering lower

and upper bounds for the NPI lower and upper probabilities allows for easier calcu-

lation. First, consider the lower bound for the NPI lower probability for the event

max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
, which is denoted by PL. It can be derived by re-

quiring the total separation for the intervals (x`i,u`i−1, x`i,u`i ), where i = 1, 2, . . . , w

and u`i = 1, 2, . . . , n`i + 1, and (xjz ,vjz−1, xjz ,vjz ), where z = 1, 2, . . . , k − w and

vjz = 1, 2, . . . , njz + 1. In other words, the lower bound for the NPI lower probabil-

ity counts all the intervals that have to be totally separated. I(A) is an indicator

function that is equal to one if the event A occurs and zero otherwise. The lower

bound for the NPI lower probability for the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1

is

PL

(
max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

I

{(
max
jz∈NS

xjz ,vjz < x`w,u`w−1

)
∧
w−1⋂
i=1

{
x`w−i+1, u`w−i+1

< x`w−i, u`w−i
−1

)}
(2.3)

where
n`i

+1∑
u`i=1
`i∈S

is used for w sum
n`1

+1∑
u`1=1

n`2
+1∑

u`2=1

· · ·
n`w+1∑
u`w=1

. The lower bound for the NPI lower

probability for the event max
jz∈NS

Xf
jz
< . . . < Xf

`2
< Xf

`1
is derived as follows

P

(
max
jz∈NS

Xf
jz
< . . . < Xf

`2
< Xf

`1

)
=

n`1
+1∑

u`1=1

P

(
max
jz∈NS

Xf
jz
< . . . < Xf

`1

∣∣∣Xf
`1
∈ (x`1,u`1−1, x`1,u`1 )

)
× P

(
Xf
`1
∈ (x`1,u`1−1, x`1,u`1 )

)
≥ 1

(n`1 + 1)

n`1
+1∑

u`1=1

P

(
max
jz∈NS

Xf
jz
< . . . < Xf

`2
< x`1,u`1−1

)

=
1

(n`1 + 1)

n`1
+1∑

u`1=1

P

( ⋂
jz∈NS

{
Xf
jz
< . . . < Xf

`2
< x`1,u`1−1

}
|Xf

jz
∈ (xjz ,vjz−1, xjz ,vjz )

)

× P
(
Xf
jz
∈ (xjz ,vjz−1, xjz ,vjz )

)
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≥ 1

(n`1 + 1)
∏k−w

z=1 (njz + 1)

n`1
+1∑

u`1=1

njz+1∑
vjz=1
jz∈NS

P

(
max
jz∈NS

xjz ,vjz < . . . < Xf
`2
< x`1,u`1−1

)

≥ 1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

I

{(
max
jz∈NS

xjz ,vjz < x`w,u`w−1

)
∧
w−1⋂
i=1

{
x`w−i+1, u`w−i+1

< x`w−i, u`w−i
−1

)}
The upper bound for the NPI lower probability can be derived by assigning the

probability mass for group `1 to the left endpoint per interval and the probability

masses for the non-selected groups jz to the right endpoint per interval. The middle

groups `i, i = 2, . . . , w, can be assigned to either the left or the right endpoint per

interval, as they have no influence on the upper bound result. An explanation for

the absence of an effect on how the probability masses of the middle groups are

placed is that if the probability masses for the middle groups `2, . . . , `w are assigned

to the left endpoints, this implies that the lower limit of the first interval would be

−∞. When comparing −∞ with any other observations in group `1, the indicator

function max
jz∈NS

xjz ,vjz < . . . < x`1,u`1−1 is required to hold. It will not affect the

calculation, as −∞ represents a bound and no values in group `1 can be smaller

than it. The same scenario can occur when the probability masses for the middle

groups `2, . . . , `w are assigned to the right endpoints and the upper limit of the last

interval ∞ added to the data. Since ∞ represents an upper bound, no observations

in group `1 can be greater than it. The upper bound for the NPI lower probability

for the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
is

PU

(
max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

I

(
max
jz∈NS

xjz ,vjz < x`w,u`w < x`w−1,u`w−1
< . . . < x`1,u`1−1

)
(2.4)

The lower bound for the NPI upper probability for the event max
jz∈NS

Xf
jz
< Xf

`w
<

. . . < Xf
`2
< Xf

`1
is derived in a manner similar to that of the upper bound for the

NPI lower probability. However, there is a difference in how the probability masses

are assigned for the lower bound for the NPI upper probability. The probability
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mass associated with group `1 is assigned to the right endpoint of the interval. On

the other hand, the probability masses for the groups jz are assigned to the left

endpoint of the interval. Thus, the lower bound for the NPI upper probability for

the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
is

P
L
(

max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

I

(
max
jz∈NS

xjz ,vjz−1 < x`w,u`w < x`w−1,u`w−1
< . . . < x`1,u`1

)
(2.5)

Finally, the upper bound for the NPI upper probability for the event max
jz∈NS

Xf
jz
<

Xf
`w
< . . . < Xf

`2
< Xf

`1
can be derived by checking all possible combinations of the

intervals (x`i,u`i−1, x`i,u`i ) and (xjz ,vjz−1, xjz ,vjz ) and counting all the intervals that

could overlap, or in other words, by finding all the intervals whose intersections have

common points. Thus, the upper bound for the NPI upper probability for the event

max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
is

P
U
(

max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

w⋂
i=1

I
{

max
jz∈NS

xjz ,vjz−1 < x`i,u`i

}
∧

w⋂
i=2

i−1⋂
a=1

I
{
x`i,u`i−1 < x`a,u`a

}
(2.6)

These bounds will be used in applications later in this chapter and in Chapter

5.

2.2.3 Special case for perfectly ordered data

A special scenario arises when the data are perfectly ordered without any over-

lap between the data from different groups, which means that the groups are well

separated. To clarify, all data observations related to `1 are larger than all data

observations related to the second largest group `2. Similarly, all observations in the

second largest group `2 are larger than those in the third largest group `3, and so

on. The letter s here is added as a subscript for all the bounds of these probabilities

to indicate this special case. Equations (2.3), (2.4), (2.5) and (2.6) are reduced to
October 6, 2025



2.3. Selecting a ranked subset of two best groups 26

the following equations respectively.

PL
s ( max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`1
) =

1∏k
t=1(nt + 1)

k−w∏
z=1

njzn`1

w∏
i=2

(n`i − 1) (2.7)

PU
s ( max

jz∈NS
Xf
jz
< Xf

`w
< . . . < Xf

`1
) =

1∏k
t=1(nt + 1)

k−w∏
z=1

njz

w∏
i=1

n`i (2.8)

P
L

s ( max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`1
) =

1∏k
t=1(nt + 1)

k−w∏
z=1

(njz + 1)(n`1 + 1)
w∏
i=2

n`i

(2.9)

P
U

s ( max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`1
) =

1∏k
t=1(nt + 1)

k−w∏
z=1

(njz + 1)
w∏
i=1

(n`i + 1) (2.10)

These equations offer a straightforward way to calculate the bounds. While this

is an extreme and rarely encountered case, it is included to illustrate how the bounds

behave when data are perfectly ordered and fully separated.

The next two sections will present two special cases for subsets containing two

and three groups. These cases are crucial as they demonstrate how the NPI lower

and upper probabilities are derived differently depending on the number of groups

in the subset.

2.3 Selecting a ranked subset of two best groups

This section presents the NPI method for selecting a ranked subset of the two

best groups in terms of a single future observation from each group. Generally,

in Section 2.2, the event of interest was max
jz∈NS

Xf
jz
< Xf

`w
< . . . < Xf

`2
< Xf

`1
.

A special case occurs when the subset is of size two, w = 2, thus the event is

max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
. The first case to be derived is when the subset S contains

two groups. The case where S consists of only one group is not of interest here, as it

has already been considered in the literature [20]. Therefore, the focus is on scenarios

where S includes at least two groups. Hill’s assumption A(n) is applied to each group,

as presented in Section 2.2, to derive the NPI lower and upper probabilities for the

event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
, where `i = {`1, `2} ⊂ {1, . . . , k}. Section 2.2.1 presents

the derivation of the NPI lower (upper) probability. The probability mass of the

best group `1 is assigned to the left (right) endpoint of the interval (x`1,u`1−1, x`1,u`1 ),
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while the probability masses of all jz ∈ NS groups are assigned to the right (left)

endpoint of the interval (xjz ,vjz−1, xjz ,vjz ). However, as mentioned in Section 2.2.1,

the main question is how to assign the probability mass
1

n`2 + 1
for the middle group

`2 over each interval (x`2,u`2−1, x`2,u`2 ), where u`2 = 1, 2, . . . , n`2 +1. The answer will

be presented by the following steps for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
. To obtain

the exact NPI lower probability, the following optimisation procedure should be

applied.

1. Determine the sub-intervals created by the observations from group `1 ∈ S

and jz ∈ NS, for z = 1, . . . , k − 2 within (x`2,u`2−1, x`2,u`2 ) . The number of

sub-intervals created is n`1 +
∑k−2

z=1 njz + 1.

2. Let St
u`2
min
x`1

represent the number of assigned probability mass 1
n`1

+1
to the left

endpoints of each interval. Also, let St
u`2
min
xjz represent the number of assigned

probability masses 1
njz+1

to the right endpoints of each interval. The probabil-

ity mass for group `2 assigns to any value tu`2 , where tu`2 is a single point (as-

sumed to be the midpoint) belonging to a sub-interval within (x`2,u`2−1, x`2,u`2 ).

3. The NPI lower probability can then be obtained by minimising St
u`2
min
x`1
× St

u`2
min
xjz

over all these sub-intervals.

To derive the exact NPI upper probability for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1

1. Determine the sub-intervals created by the observations from group `1 and jz

within (x`2,u`2−1, x`2,u`2 ).

2. Let St
u`2
min
x`1

represent the number of assigned probability mass 1
n`1

+1
to the right

endpoints of each interval. Also, let St
u`2
min
xjz represent the number of assigned

probability masses 1
njz+1

to the left endpoints of each interval. The probability

mass for group `2 assigns to any value tu`2 , where tu`2 is a single point (assumed

to be the midpoint) belonging to a sub-interval within (x`2,u`2−1, x`2,u`2 ). .

3. The NPI upper probability can then be obtained by maximising St
u`2
max
x`1
× St

u`2
max
xjz

over all these sub-intervals.
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Figure 2.1: Data of Example 2.3.1

The exact NPI lower and upper probabilities for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1

are

P ( max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
) =

1∏k
t=1(nt + 1)

n`2
+1∑

u`2=1

S
t
u`2
min
x`1
× St

u`2
min
xjz (2.11)

P ( max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
) =

1∏k
t=1(nt + 1)

n`2
+1∑

u`2=1

St
u`2
max
x`1
× St

u`2
max
xjz

(2.12)

In addition, one may wish to avoid the detailed optimisation described ear-

lier, because the optimisation becomes more demanding, especially as the num-

ber of intervals for group `2 increases. Consequently, the number of sub-intervals

within (x`2,u`2−1, x`2,u`2 ) also increases, each of which requires a detailed examina-

tion. Therefore, the lower and upper bounds for the NPI lower and upper proba-

bilities in Equations (2.3), (2.4), (2.5) and (2.6) with w = 2, offer a straightforward

alternative.

Example 2.3.1 illustrates the method presented in Section 2.3 for selecting a

ranked subset of the two best groups out of four groups with small sample sizes.

Example 2.3.1 Consider a dataset with k = 4 groups and sample sizes n1 = 4,

n2 = 5, n3 = 5 and n4 = 6. The dataset is provided in Figure 2.1. Let S consist of

the dataset that belongs to `1 and `2, and the non-selected groups, NS consist of j1

and j2 [20]. The event of interest is max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
. There are 12 different

possible combinations for selecting a ranked subset of the two best groups out of

four groups, as presented in Table 2.1. Starting with the first case, it is assumed

that the groups in the subset are 1 as the best group and 2 as the second best group,

and the groups 3 and 4 belong to NS.
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To obtain the exact NPI lower probability for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
,

the probability mass corresponding to group 1 should be assigned to the left endpoint

per interval, while the probability masses corresponding to groups 3 and 4 should

be assigned to the right endpoint per interval.

With regard to group 2, its corresponding probability mass can be assigned to

any point tu`2 , where u`2 = 1, . . . , 6, that belongs to specific sub-intervals within

each (x2,u2−1, x2,u2), in order to minimise the probability. Consider all possible com-

binations of the sub-intervals that lie within group 2 intervals. Then select the

sub-intervals in each (x2,u2−1, x2,u2), interval that minimises the probability. There

are six intervals for group 2: (−∞, 4), (4, 8), (8, 10), (10, 12), (12, 15) and (15,∞).

For the first interval (−∞, 4), there are four possible sub-intervals where the

probability mass for group 2 can be assigned: (−∞, 1), (1, 2), (2, 3) and (3, 4).

These sub-intervals are created by the observations from group 1, which belongs to

S, and groups 3 and 4, which belong to NS. Let t1min be any point belonging to

the sub-interval (−∞, 3), which is the sub-interval that minimises the probability,

implying that no probability mass to the left of this sub-interval is assigned from

groups 3 and 4. Therefore, St
1
min

(3,4) = 0. On the other hand, the number of probability

mass corresponding to group 1 to the right of this sub-interval is equal to 4, denoted

as St
1
min

1 = 4. Thus, St
1
min

(3,4) × S
t1min
1 = 0.

Moving on to the second interval (4, 8), the sub-interval (4, 5) is the best choice

as it helps minimise the probability for the event of interest. Let t2min belong to

(4, 5), where the number of the probability mass of groups 3 and 4 assigned to the

left of the sub-interval (4, 5) is 1, and the number of the probability mass of group

1 assigned to the right of the same sub-interval is 3. Therefore, St
2
min

(3,4) × S
t2min
1 = 3.

For the third interval (8, 10), there are two sub-intervals: (8, 9) and (9, 10). The

sub-interval (8, 9) is the best choice, therefore, t3min belonging to (8, 9) results in 6

probability masses to groups 1, 3 and 4 observations. Similarly, the fourth and fifth

sub-intervals, (11, 12) and (12, 13) respectively, yield the same number of probability

masses as the third sub-interval.

Finally, for the last sub-interval (16,∞), the number of probability mass assigned

by group 1 to the right of this sub-interval is 0. Hence, (16,∞) is the sub-interval
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that minimises the probability with 0 probability mass. The exact NPI lower prob-

ability is

P (max(Xf
3 , X

f
4 ) < Xf

2 < Xf
1 ) =

1∏4
t=1(nt + 1)

6∑
u`2=1

S
t
u`2
min

(3,4) × S
t
u`2
min

1

=
1

1260
(21) = 0.0167

To derive the exact NPI upper probability, apply the same strategy as mentioned

earlier. The selected sub-interval provides the exact NPI upper probability as fol-

lows: (3, 4) with 16 probability masses, (7, 8) with 24 probability masses, (9, 10)

with 36 probability masses, (10, 11) with 36 probability masses, (14, 15) with 40

probability masses, and (20,∞) with 41 probability masses. The exact NPI upper

probability is

P (max(Xf
3 , X

f
4 ) < Xf

2 < Xf
1 ) =

1∏4
t=1(nt + 1)

6∑
u`2=1

St
u`2
max

(3,4) × S
t
u`2
max

1

=
1

1260
(194) = 0.1539

The lower and upper bounds for the exact NPI lower and upper probabilities are

given by Equations (2.3), (2.4), (2.5) and (2.6) for w = 2. Specifically, the lower

and upper bounds for the NPI lower probability are given by[
PL, PU

]
(max(Xf

3 , X
f
4 ) < Xf

2 < Xf
1 ) =

[
0.0158, 0.0309

]
The lower and upper bounds for the NPI upper probability is given by[

P
L
, P

U
]
(max(Xf

3 , X
f
4 ) < Xf

2 < Xf
1 ) =

[
0.1111, 0.1754

]
In this example, the exact NPI lower probability, which is 0.0167 in this case,

lies between its corresponding lower and upper bounds. The exact NPI upper prob-

ability, which is 0.1539 in this example, lies between its lower and upper bounds.

Furthermore, the exact NPI lower probability is closer to its corresponding lower

bound, 0.0158, and the exact NPI upper probability is closer to its corresponding

upper bound, 0.1754.

Table 2.1 displays the exact NPI lower and upper probabilities associated with

selecting a ranked subset of the two best groups for all 12 possible combinations.
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`1 `2 P P

1 2 0.0167 0.1539

2 1 0.0063 0.1317

1 3 0.0071 0.1889

3 1 0.0278 0.2302

1 4 0.0032 0.1484

4 1 0.0151 0.1913

2 3 0.0103 0.1921

3 2 0.0508 0.2881

2 4 0.0079 0.1500

4 2 0.0269 0.2071

3 4 0.0413 0.2794

4 3 0.0286 0.2698

Table 2.1: The exact NPI lower and upper probabilities for all group selections

categories for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
for Example 2.3.1

Choosing group 3 as the best group and 2 as the second best group results in giving

the event of interest, as it yields the highest exact NPI lower and upper probabilities.

Additionally, selecting group 3 as the best and group 4 as the second best results

in second highest exact NPI lower and upper probabilities. However, the exact NPI

lower and upper probabilities are very small, with the imprecision ranging from

0.1254 to 0.2381.

The lowest exact NPI lower probability occurs when selecting group 1 as the

best and 4 as the second best. In addition, the lowest exact NPI upper probability

arises when choosing group 2 as the best and 1 as the second best.

�

The following example illustrates the NPI method for selecting a ranked subset

of the two best groups using simulated data from the Normal distribution for further

investigation of the method’s performance.
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Example 2.3.2 This example investigates the method for selecting a ranked sub-

set of the two best groups among four groups via simulation. A simulation was

conducted using Normal distribution. Each group is represented as follows: X1 ∼

N(0, 1), X2 ∼ N(0.1, 1), X3 ∼ N(0.2, 1) and X4 ∼ N(0.3, 1), with a common sample

size n = 25 for all groups.

In Table 2.2, the exact NPI lower and upper probabilities are presented for 12

different combinations of group selection involving four groups. Table 2.2 presents

the results of simulation studies under different numbers of simulation replications

1, 1000 and 10, 000, where the number of simulation replications is denoted by h.

The objective is to examine how the number of simulation replications influences

the selection of the two best groups.

The results in Table 2.2 show that increasing the number of simulation replica-

tions from 1 to 1000 and 10, 000 leads to consistent conclusions. Selecting group 4 as

the best and group 3 as the second best is supported by the highest exact NPI lower

and upper probabilities across all replication levels. In contrast, choosing group 1

as the best and group 2 as the second , making it the least favorable combination.

The changes between the exact NPI lower and upper probability values are min-

imal, and most combinations differ only in the third decimal place when the number

of replications is 1000 and 10000. However, some combinations, such as the exact

NPI lower probability of selecting group 2 as the best and group 3 as the second

best, and the exact NPI upper probability of selecting group 1 as the best and group

3 as the second best, show slightly larger variations. Overall, increasing the number

of replications from 1 to 1, 000 and then to 10, 000 results in only minor changes in

the exact NPI lower and upper probabilities.

Finally, the impression, the difference between the exact NPI lower and upper

probabilities remains stable as the number of simulations increases from 1 to 10, 000.

�

Based on the preceding examples, some conclusions can be drawn. In order

to improve the computation of the exact NPI lower and upper probabilities, the

first sub-interval within the first interval is likely to provide the minimum exact

NPI lower probability, as no probability mass is assigned to the right of such a
October 6, 2025



2.3. Selecting a ranked subset of two best groups 33

1 simulation 1000 simulation 10000 simulation

`1 `2 P P P P P P

1 2 0.0323 0.0653 0.0456 0.0814 0.0454 0.0812

2 1 0.0333 0.0663 0.0474 0.0838 0.0488 0.0857

1 3 0.0345 0.0657 0.0521 0.0911 0.0504 0.0889

3 1 0.0369 0.0693 0.0589 0.1002 0.0580 0.0987

1 4 0.0550 0.0969 0.0565 0.0981 0.0557 0.0970

4 1 0.0666 0.1116 0.0697 0.1151 0.0695 0.1147

2 3 0.0591 0.1015 0.0585 0.1004 0.0600 0.1023

3 2 0.0520 0.0904 0.0651 0.1087 0.0645 0.1081

2 4 0.0851 0.1406 0.0645 0.1091 0.0665 0.1119

4 2 0.1079 0.1657 0.0765 0.1244 0.0773 0.1257

3 4 0.0854 0.1393 0.0798 0.1299 0.0789 0.1287

4 3 0.1097 0.1669 0.0859 0.1378 0.0856 0.1366

Table 2.2: The exact NPI lower and upper probabilities for all group selections

combinations for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
for Example 2.3.2

sub-interval. Similarly, the last sub-interval within the last interval yields the same

result. However, for the intervals in between, the minimum number of probability

masses is placed to the right and left of the initial sub-interval in each interval.

Conversely, for the exact NPI upper probability, the last sub-interval within

the first interval is likely to provide the maximum exact NPI upper probability.

Similarly, the last sub-interval within the last interval also yields the same result.

However, for the intervals in between, the maximum number of probability masses

is placed to the right and left of the ending sub-intervals in each interval.

To derive the exact NPI lower and upper probabilities when the data are perfectly

ordered without any overlap, Equations (2.7), (2.8), (2.9), and (2.10) are used to

derive the lower and upper bounds for the exact NPI lower and upper probabilities

for w = 2. This approach shows that the exact NPI lower probability matches

its lower bound for the NPI lower probability, denoted by P = PL
s . Similarly, the
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exact NPI upper probability matches its upper bound for the NPI upper probability,

denoted by P = P
U

s .

2.4 Selecting a ranked subset of three best groups

Section 2.3 presented the NPI lower and upper probabilities for a ranked subset

of the two best groups. This section considers the selection and ranking of future

observations within a subset of the three best groups. Therefore, the event of in-

terest is max
jz∈NS

Xf
jz
< Xf

`3
< Xf

`2
< Xf

`1
. This representation implies that the future

observation for each group that belongs to S is greater than that for each group not

belonging to S, where the future observations for groups in S are ranked from the

smallest Xf
`3

to the largest Xf
`1
.

Now, with two or more groups in the middle, denoted by `2 and `3, it becomes

challenging to find the exact NPI lower and upper probabilities especially for large

data sets with much overlap between groups. An optimisation is proposed for each

group independently [20]. The goal is to find optimal sub-intervals for each group

independently, and then derive the approximate NPI lower and upper probabilities

based on this optimisation process over the sub-intervals. To derive the approxima-

tion of the NPI lower and upper probabilities, Hill’s assumption A(n) per group is

applied. With regard to the best group and the groups in NS, it was explained in

Section 2.2.1 where their corresponding probability masses in each interval should

be assigned. For the middle groups `3 and `2, the main question is how to as-

sign their corresponding probability masses
1

n`3 + 1
and

1

n`2 + 1
over each interval

(x`3,u`3−1, x`3,u`3 ) and (x`2,u`2−1, x`2,u`2 ) , respectively. In order to solve this, a heuris-

tic algorithm is proposed to provide approximations for the NPI lower and upper

probabilities. To derive approximate NPI lower and upper probabilities for a ranked

subset of the three best groups, optimisation using Equations (2.1) and (2.2) in

Section 2.2.1, for w = 3 is required.

First, the optimisation will focus on the group represented by `3. For the other

group, `2, it is irrelevant whether the probability mass is assigned to the left or right

endpoint of each interval; therefore, it will be neglected for now.
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Pmin `3

(
max
jz∈NS

Xf
jz
< Xf

`3
< Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

P

(
max
jz∈NS

xjz ,vjz < Xf
`3
< x`2,u`2

∣∣∣Xf
`3
∈ (x`3,u`3−1, x`3,u`3 )

)
× I

(
x`2,u`2 < x`1,u`1−1

)
(2.13)

where
n`i

+1∑
u`i=1
`i∈S

is used for 3 sums
n`1

+1∑
u`1=1

n`2
+1∑

u`2=1

n`3
+1∑

u`3=1

.

P
max `3

(
max
jz∈NS

Xf
jz
< Xf

`3
< Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

P

(
max
jz∈NS

xjz ,vjz−1 < Xf
`3
< x`2,u`2

∣∣∣Xf
`3
∈ (x`3,u`3−1, x`3,u`3 )

)
× I

(
x`2,u`2 < x`1,u`1

)
(2.14)

To minimise Equation (2.13) for the lower probability over group `3, assign the

probability mass 1
n`3

+1
to a sub-interval that minimises the probability. Then select

the combination of sub-intervals within all (x`3,u`3−1, x`3,u`3 ) intervals that minimises

the probability. In contrast, to maximise Equation (2.14) for the upper probability

over group `3, assign the probability mass 1
n`3

+1
to a sub-interval that maximises the

probability. Then select the combination of sub-intervals within all (x`3,u`3−1, x`3,u`3 )

intervals that maximise the probability.

Secondly, to optimise over group `2, apply the same procedure to group `3, but a

modification to the intervals is needed. Instead of using the intervals (x`3,u`3−1, x`3,u`3 )

as before, the intervals (x`2,u`2−1, x`2,u`2 ) will be used now. Then

Pmin `2

(
max
jz∈NS

Xf
jz
< Xf

`3
< Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

P
(
x`3,u`3 < Xf

`2
< x`1,u`1−1 | Xf

`2
∈ (x`2,u`2−1, x`2,u`2 )

)
× I

(
max
jz∈NS

xjz ,vjz < x`3,u`3

)
(2.15)
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Figure 2.2: Fish weights across treatment levels for Example 2.4.1

P
max `2

(
max
jz∈NS

Xf
jz
< Xf

`3
< Xf

`2
< Xf

`1

)
=

1∏k
t=1(nt + 1)

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

P
(
x`3,u`3 < Xf

`2
< x`1,u`1 | X

f
`2
∈ (x`2,u`2−1, x`2,u`2 )

)
× I

(
max
jz∈NS

xjz ,vjz−1 < x`3,u`3

)
(2.16)

Finally, determine the approximation of the NPI lower probability by selecting

the lowest of the two NPI lower probabilities over `2 and `3, denoted as Pmin `2

and Pmin `3 respectively. Similarly, determine the approximation of the NPI upper

probability by selecting the largest of the two NPI upper probabilities over `2 and

`3, denoted as Pmax `2 and Pmax `3 respectively.

By following the same reasoning and principles outlined in Section 2.2, lower and

upper bounds for the NPI lower and upper probabilities in Equations (2.3), (2.4),

(2.5) and (2.6) with w = 3, offer a straightforward alternative.

The following example illustrates the method for selecting a ranked subset of the

three best groups.

Example 2.4.1 The lengthWeight dataset in the StatCharme Package in R con-

tains variables which are: The chemical concentration, the fish were exposed to 6

levels of treatments {1, 2, 3, 4, 5, 6} and weight of the fish. In this example, a small

dataset is used instead of a large one, as the smaller dataset helps to explain each

sub-interval and identify the optimal one for the event max
jz∈NS

Xf
jz
< Xf

`3
< Xf

`2
< Xf

`1
.

Therefore, 5 datasets are created for the weight variable corresponding to 5 lev-
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els of treatments. The weight of the fish in three subset groups 1, 2 and 3 that

correspond to treatment levels 1, 2 and 3, respectively, are {109, 127, 146, 153, 161},

{67, 90, 115, 117, 144} and {59, 83, 84, 104, 111}. The two groups that belong to NS

are group 4, which consists of fish with treatment 4 and weights {50, 65, 71, 76, 89},

and group 5, which consists of fish with treatment 5 and weights {72, 86, 95, 98, 103}.

The dataset is provided in Figure 2.2.

The optimisation over middle groups that are 2 and 3 should be performed. First,

the process will start with group 2 and try to find the approximate NPI lower prob-

ability. With regard to group 3, its corresponding probability mass can be assigned

to either the left or to the right endpoint per interval. However, the probability mass

for group 2 should be assigned to certain sub-intervals. The combination of those

sub-intervals in each (x2,u2−1, x2,u2) interval should minimise Equation (2.15). In

this case, there are six intervals: (−∞, 67), (67, 90), (90, 115), (115, 117), (117, 144)

and (144,∞).

For the first interval, which is (−∞, 67), there are no max(x4,v4 , x5,v5) values

that satisfy the data. What the data mean here is the first indicator function

I(x3,u3 < x∗2,1 < x1,u1−1) × I(max(x4,v4 , x5,v5) < x3,u3). In other words, the number

of observations that satisfy this indicator function within this interval, (−∞, 67),

is zero. Therefore, the probability mass corresponding to group 2,
1

n2 + 1
can

be assigned to any point within this interval, suppose 66. For the second inter-

val (67, 90), there are also no values of max(x4,v4 , x5,v5) satisfying the indicator

function I(x3,u3 < x∗2,2 < x1,u1−1) × I(max(x4,v4 , x5,v5) < x3,u3) in a specific sub-

interval (67, 83). The probability mass for group 2 is assigned to 75. For the

third interval (90, 115), (90, 104) is the optimal sub-interval that gives the mini-

mum number of assigned probability mass, which leads to minimise the probabil-

ity. There are 40 observations for which the indicator function I(x3,u3 < x∗2,3 <

x1,u1−1)× I(max(x4,v4 , x5,v5) < x3,u3) is required to hold. In this situation, the prob-

ability mass that belongs to group 2 is assigned to a chosen point, which is 97. For

the fourth interval (115, 117), the number of assigned probability mass for which the

indicator function I(x3,u3 < x∗2,4 < x1,u1−1)× I(max(x4,v4 , x5,v5) < x3,u3) is required

to hold within this interval is 232. Therefore, the probability mass belonging to
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group 2 is assigned to 116. (117, 144) is the fifth interval, the sub-interval that helps

us to minimise the probability is (127, 144) with the number of observations 174.

The chosen point to which the probability mass can be assigned for group 2 is 135.5.

Finally, for the last interval (144,∞), there are no observations satisfying the indi-

cator I(x3,u3 < x∗2,6 < x1,u1−1) × I(max(x4,v4 , x5,v5) < x3,u3) within the sub-interval

(161,∞). Therefore, the probability mass
1

n2 + 1
should be allocated to any point

within this sub-interval, suppose 170.

Pmin 2(max(Xf
4 , X

f
5 ) < Xf

3 < Xf
2 < Xf

1 ) = 0.0574

For group 2, its corresponding probability mass should be assigned to a certain

sub-interval that maximises Equation (2.16). Likewise, the probability mass corre-

sponding to group 3 can be assigned to the left or right endpoint per interval. The

probability mass corresponding to group 2 for the intervals (x2,0, x2,1), (x2,1, x2,2),

(x2,2, x2,3), (x2,3, x2,4), (x2,4, x2,5), (x2,5, x2,6) is allocated to the following subinter-

vals, respectively: (60, 67), (85, 90), (112, 115), (115, 117), (117, 126), and (144, 145),

with the corresponding points of interest being 66, 87.5, 113.5, 116, 121.5, and 144.5,

respectively. The number of observations that satisfy the data for these sub-intervals

was 12, 132, 470, 470, 470, and 376. Therefore, the NPI upper probability over group

2 is

P
max 2

(max(Xf
4 , X

f
5 ) < Xf

3 < Xf
2 < Xf

1 ) = 0.2482

Secondly, the optimisation process over group 3, similar to the optimisation pro-

cess over group 2, begins by allocating 1
n2+1

to either the left or right endpoint per

interval. To minimise Equation (2.13) and maximise Equation (2.14), the probabil-

ity mass of group 3 is assigned to specific sub-intervals within each (x3,u3−1, x3,u3)

interval, then

Pmin 3(max(Xf
4 , X

f
5 ) < Xf

3 < Xf
2 < Xf

1 ) = 0.0518

where x∗3,1 = (−∞, 59), x∗3,2 = (59, 72), x∗3,3 = (83, 84), x∗3,4 = (84, 86), x∗3,5 =

(104, 111), and x∗3,6 = (144,∞).
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P
max 3

(max(Xf
4 , X

f
5 ) < Xf

3 < Xf
2 < Xf

1 ) = 0.2526

where x∗3,1 = (51, 59), x∗3,2 = (77, 83), x∗3,3 = (83, 84), x∗3,4 = (103, 104), x∗3,5 =

(104, 111), and x∗3,6 = (111, 114).

Consequently, a heuristic algorithm is proposed to provide the approximate NPI

lower and upper probabilities. The approximate NPI lower probability derived as

the minimum value of Pmin 2 = 0.0574 and Pmin 3 = 0.0518. Thus, the approximate

NPI lower probability is 0.0518. Similarly, the approximate NPI upper probability

is derived as the maximum value of Pmax 2
= 0.2482 and P

max 3
= 0.2526. Hence,

the approximate NPI upper probability is 0.2526.

In this example, a notable improvement in the optimisation process can be

achieved by observing that each sub-interval contributing to the minimisation of

the approximate NPI lower probability is primarily positioned at the beginning of

its corresponding interval. It is worth noting that, for the last interval, the sub-

interval that minimises the approximate NPI lower probability is placed at the end

of its corresponding interval.

However, for the maximisation of the approximate NPI upper probability, each

sub-interval is strategically positioned at the end of its corresponding interval. For

the last interval, the sub-interval that contributes to the maximisation of the upper

probability is placed at the beginning of the interval.

For the same reasons mentioned earlier in Section 2.2, the lower and upper

bounds for the NPI lower and upper probabilities can be calculated. The lower and

upper bounds for the NPI lower probability are

PL(max(Xf
4 , X

f
5 ) < Xf

3 < Xf
2 < Xf

1 ) = 0.0318

PU(max(Xf
4 , X

f
5 ) < Xf

3 < Xf
2 < Xf

1 ) = 0.0872

The lower and upper bounds for the NPI upper probability are

P
L
(max(Xf

4 , X
f
5 ) < Xf

3 < Xf
2 < Xf

1 ) = 0.1876

P
U

(max(Xf
4 , X

f
5 ) < Xf

3 < Xf
2 < Xf

1 ) = 0.3645
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The approximate NPI lower and upper probabilities should be nested between

their corresponding bounds. For the approximate NPI lower probability, PL ≤ P ≤

PU equal to 0.0318 < 0.0518 < 0.0872, it is obvious that the approximate NPI lower

probability is closer to its corresponding lower bound, which is equal to 0.0318.

However, for the approximate NPI upper probability, which is 0.2526, is between its

corresponding lower bound 0.1876 and upper bound 0.3645 respectively.

Previously, a detailed explanation was provided on how the approximate NPI

lower and upper probabilities were found for the event max(X4, X5)f < Xf
3 < Xf

2 <

Xf
1 . Next, the same calculations need to be performed for all possible group combi-

nations that would result in 60 cases. Since this number is very large, the process is

simplified by fixing the groups that belong to NS, which are 4 and 5, and focusing

only on the different combinations of the three groups that belong to S, which are

1, 2 and 3. In Table 2.3, the approximate NPI lower and upper probabilities for

different ranked subset of the three best groups are presented. There are a total of 6

combinations formed by these groups, with each combination representing different

approximate NPI lower and upper probabilities.

Table 2.3 shows that predicting that group 1 to provide the largest future obser-

vation, followed by group 2 for the second largest future observation and group 3 for

the smallest future observation, leads to make a good decision. The corresponding

approximate NPI lower and upper probabilities are the highest compared to the

rest, with values of 0.0518 and 0.2526, respectively. In contrast, predicting group 2

to provide the largest future observation, followed by group 3 for the second largest

future observation and group 1 for the smallest future observation, leads to a poor

decision. Its corresponding approximate NPI lower and upper probabilities are the

lowest compared to the rest, with values of 0.0000 and 0.0417, respectively. This is

because the data corresponding to groups 1 and 2 are slightly larger than the oth-

ers, which is visualized in Figure 2.2. It is observed that combinations suggesting

that groups 1 and 2 provide the smallest future observation generally result in low

approximate NPI lower and upper probabilities.

�
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`1 `2 `3

1 2 3 Pmin 2 P
max 2

Pmin 3 P
max 3

P P

0.0574 0.2482 0.0518 0.2526 0.0518 0.2526

2 1 3 Pmin 1 P
max 1

Pmin 3 P
max 3

P P

0.0075 0.1386 0.0073 0.1227 0.0073 0.1386

2 3 1 Pmin 1 P
max 1

Pmin 3 P
max 3

P P

0.0000 0.0309 0.0000 0.0417 0.0000 0.0417

3 1 2 Pmin 1 P
max 1

Pmin 2 P
max 2

P P

0.0000 0.0864 0.0000 0.0949 0.0000 0.0949

1 3 2 Pmin 2 P
max 2

Pmin 3 P
max 3

P P

0.0000 0.0809 0.0051 0.0968 0.0000 0.0968

3 2 1 Pmin 1 P
max 1

Pmin 2 P
max 2

P P

0.0000 0.0324 0.0000 0.0463 0.0000 0.0463

Table 2.3: Approximate NPI lower and upper probabilities for the event

max(Xf
4 , X

f
5 ) < Xf

`3
< Xf

`2
< Xf

`1
for Example 2.4.1

2.5 Selecting a partially ranked subset

Selecting a partially ranked subset may be of interest in statistics when there is a

need to compare or rank groups based on certain criteria, but a complete ranking

is not meaningful or necessary. The partially ranked subset is more practical than

complete ranking in such cases. For example, in drug development, researchers

may select a subset of the most effective treatments without ranking all of them.

Instead, only the top treatments within this subset are ranked, while the rest remain

unranked.

This section introduces the notation and formulas for this scenario. Let S be a

selected subset, and let S∗ ⊆ S be a partially ranked subset, where some groups are

ranked. Let w = |S| be the total number of groups in S, and let w∗ = |S∗| be the

number of ranked groups, so 1 ≤ w∗ ≤ w. Xf
`i∗

denotes all future observations that

are in a partially ranked subset. The aim here is to compute the NPI lower and upper
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probabilities for the event of interest ( max
jz∈NS

Xf
jz
< min

`i∈S\S∗
Xf
`i

)∧ ( max
`i∈S\S∗

Xf
`i
< Xf

`w∗ <

. . . < Xf
`1∗

), where i∗ ⊂ {1, 2, . . . , w∗}. However, obtaining the NPI lower and upper

probabilities for the above event is computationally demanding and cumbersome,

as highlighted by Coolen-Maturi [20]. To this end, bounds for the NPI lower and

upper probabilities are provided, with their derivations explained in Section 2.2.2.

The lower bound for the NPI lower probability for the event ( max
jz∈NS

Xf
jz
< min

`i∈S\S∗
Xf
`i

)∧

( max
`i∈S\S∗

Xf
`i
< Xf

`w∗ < . . . < Xf
`1∗

) is

PL

((
max
jz∈NS

Xf
jz
< min

`i∈S\S∗
Xf
`i

)
∧
(

max
`i∈S\S∗

Xf
`i
< Xf

`w∗ < . . . < Xf
`1∗

))
=

1∏k
t=1(nt + 1)

n`i∗ +1∑
u`i∗ =1

`i∗∈S∗

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

I

((
max
jz∈NS

xjz ,vjz < min
`i∈S\S∗

x`i,u`i−1

)

∧
(

max
`i∈S\S∗

x`i,u`i < x`w∗ ,u`w∗−1

)
∧
w∗−1⋂
i=1

{
x`w∗−i+1,u`w∗−i+1

< x`w∗−i,u`w∗−i
−1

})
(2.17)

where the notations
njz+1∑
vjz=1
jz∈NS

is used for k−w sums
nj1

+1∑
vj1=1

nj2
+1∑

vj2=1

. . .
njk−w

+1∑
vjk−w

=1

,
n`i

+1∑
u`i=1

`i∈S\S∗

is used

for w sums
n`1

+1∑
u`1=1

n`2
+1∑

u`2=1

. . .
n`w+1∑
u`w=1

, and
n`i∗ +1∑
u`i∗ =1

`i∗∈S∗

is used for w∗ sums
n`1∗ +1∑
u`1∗ =1

n`2∗ +1∑
u`2∗ =1

. . .
n`w∗ +1∑
u`w∗ =1

.

The upper bound for the NPI upper probability for the event ( max
jz∈NS

Xf
jz
<

min
`i∈S\S∗

Xf
`i

) ∧ ( max
`i∈S\S∗

Xf
`i
< Xf

`w∗ < . . . < Xf
`1∗

) is

P
U
((

max
jz∈NS

Xf
jz
< min

`i∈S\S∗
Xf
`i

)
∧
(

max
`i∈S\S∗

Xf
`i
< Xf

`w∗ < . . . < Xf
`1∗

))
=

1∏k
t=1(nt + 1)

n`i∗ +1∑
u`i∗ =1

`i∗∈S∗

n`i
+1∑

u`i=1
`i∈S

njz+1∑
vjz=1
jz∈NS

I

((
max
jz∈NS

xjz ,vjz−1 < min
`i∈S\S∗

x`i,u`i

)

∧
w∗⋂
i∗=1

(
max
jz∈NS

xjz ,vjz−1 < x`i∗ ,u`i∗

)
∧

w∗⋂
i∗=1

(
min

`i∈S\S∗
x`i,u`i−1 < x`i∗ ,u`i∗

)

∧
w∗⋂
i∗=2

i∗−1⋂
a=1

(
x`i∗ ,u`i∗−1 < x`a,u`a

))
(2.18)
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means for δ∗ = 0.2 means for δ∗ = 0.4 means for δ∗ = 0.6

µ1 = 0.0 µ1 = 0.0 µ1 = 0.0

µ2 = 0.2 µ2 = 0.4 µ2 = 0.6

µ3 = 0.4 µ3 = 0.8 µ3 = 1.2

µ4 = 0.6 µ4 = 1.2 µ4 = 1.8

Table 2.4: Simulated mean values of a Normal distribution for δ∗ = 0.2, 0.4 and 0.6

δ∗ P ∗ n x̄1 x̄2 x̄3 x̄4

0.2 0.95 237 0.1947 0.2492 0.3387 0.5208

0.2 0.90 174 0.2155 0.2899 0.5458 0.4013

0.2 0.75 90 0.1737 0.1180 0.2311 0.5620

0.4 0.95 59 0.02373 0.1064 0.4203 0.5523

0.4 0.90 43 −0.0770 −0.0784 0.4915 0.4367

0.4 0.75 22 −0.0618 0.0437 0.4417 0.5927

0.6 0.95 26 0.1086 0.2106 1.0626 1.0225

0.6 0.90 19 0.5011 0.1545 1.2626 0.9839

0.6 0.75 10 0.0952 −0.3054 0.7606 1.1078

Table 2.5: Sample sizes and means for four populations, based on simulated data

from Normal distributions with standard deviation σ = 1. Results are shown for

varying values of δ∗ and P ∗ according to Bechhofer’s method

2.6 Application

This section compares three methods for selecting a ranked subset of the two best

groups: the indifference zone procedure in Section 1.2.1, Gupta’s subset selection

procedure in Section 1.2.2, and the NPI method introduced in Section 2.3. The

objective is to evaluate their performance in predictive inference and determine

whether they select the same subset and the same ranking within that subset.

This section presents a simulated study with sampling from Normal distribu-

tions, assuming k = 4 populations with a common standard deviation σ = 1. In
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δ∗ P ∗ n x̄1 x̄2 x̄3 x̄4

0.2 0.95 98 0.1574 0.1362 0.3554 0.7858

0.2 0.90 59 −0.0446 0.5234 0.1905 0.9711

0.4 0.95 25 0.0494 0.2908 1.1190 1.4147

0.4 0.90 15 −0.1052 0.4655 0.5221 0.5386

0.6 0.95 11 0.2052 0.5526 1.2051 1.7232

0.6 0.90 7 −0.2244 0.6951 0.4595 1.6051

Table 2.6: Sample sizes and means for four populations, based on simulated data

from Normal distributions with standard deviation σ = 1. Results are shown for

varying values of δ∗ and P ∗ according to Gupta’s method

order to apply Bechhofer’s method, the following steps are followed: Take n obser-

vations from each population. Then, compute the sample means for each population

x̄[1], . . . , x̄[4]. Note that x̄[1] denotes the smallest sample mean after ranking, while x̄1

refers to the sample mean of the first population. Rank the sample means as in Equa-

tion (1.2) from the smallest to the largest sample mean. Finally, the populations

associated with x̄[4] and x̄[3] are the best and second best populations, respectively.

The probability of making a correct selection of a ranked subset of the two best

populations depends on n. Therefore, Bechhofer proposed designing an experiment

in such a way that the distance between the best and second best populations means

µ[4]−µ[3] ≥ δ∗ as in Equation (1.3). The probability of making a correct selection of

a ranked subset of the two best populations is greater than or equal to a preassigned

value P ∗.

This section uses three values of P ∗ : (0.95, 0.90, 0.75) representing the minimum

probability of correctly selecting a ranked subset of two populations, and three

corresponding values of δ∗ : (0.2, 0.4, 0.6) indicating the minimum difference between

the means of the best and second best populations, as shown in Table 2.4.

Table 2.4 shows the mean population values corresponding to the three specified

values of δ∗: 0.2, 0.4 and 0.6. The mean values in the table were chosen arbitrarily,

with the primary consideration being to ensure that the distance between the largest

and second largest means matches the assumed δ∗. The mean values were used in
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P ∗ = 0.95, λ = 2.9162 R.H.S of Equation (1.7) Selected sample means within subset

n = 98 x̄[4] = 0.7858 0.4912 x̄4

n = 25 x̄[4] = 1.4147 0.8315 x̄3, x̄4

n = 11 x̄[4] = 1.7232 0.8439 x̄3, x̄4

P ∗ = 0.90, λ = 2.4516

n = 59 x̄[4] = 0.9711 0.6519 x̄4

n = 15 x̄[4] = 0.5386 −0.0944 x̄2, x̄3, x̄4

n = 7 x̄[4] = 1.6051 0.6788 x̄4

Table 2.7: λ values are given from tables provided by Gupta in [31], n values from

and x̄4 from Table 2.6. The last column shows which sample means are greater than

the corresponding R.H.S values of Equation (1.7)

the simulation study, where data were sampled from Normal distributions with these

means and a standard deviation of σ = 1.

Using Equation (1.4) nine different sample sizes n are calculated as presented

in Table 2.5. Table 2.5 provides the sample means and sample sizes of four pop-

ulations calculated using simulated data generated from Normal distributions with

nine different sample sizes n. Case 1 is defined by a case with n = 237, P ∗ = 0.95

and δ∗ = 0.2. Case 2 is defined by a case with n = 174, P ∗ = 0.90 and δ∗ = 0.2, and

so on until Case 9 with n = 10, P ∗ = 0.75 and δ∗ = 0.6. According to Bechhofer’s

method, the sample means are ranked as in Equation (1.2) for all cases. First, in

Case 1 the probability P ∗ = 0.95 was specified. This means that the probability of

a correct selection of a ranked subset of the two best populations is at least 0.95

whenever the true difference between µ[4]− µ[3] is at least 0.2, and in order to make

a correct selection of the ranked subset of the two best populations, the required

sample size is n = 237. Then, the sample means for this case are: 0.1947 for popu-

lation 1, 0.2492 for population 2, 0.3387 for population 3, and 0.5208 for population

4. Using the Bechhofer method, the populations associated with x̄[4] and x̄[3] are

the best and second best populations, respectively. Therefore, it can be concluded

that there is 95% confidence in selecting population 4 as the best and population 3

as the second best in the ranked subset. For the rest of the cases, Table 2.5 shows
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`1 `2

Case 1 Case 2 Case 3

P P P P P P

1 2 0.0555 0.0577 0.0590 0.0621 0.0542 0.0598

2 1 0.0592 0.0615 0.0563 0.0593 0.0515 0.0571

1 3 0.0611 0.0635 0.0739 0.0778 0.0569 0.0630

3 1 0.0677 0.0701 0.0893 0.0930 0.0647 0.0710

1 4 0.0705 0.0733 0.0695 0.0730 0.0750 0.0830

4 1 0.0916 0.0945 0.0706 0.0740 0.1158 0.1242

2 3 0.0759 0.0786 0.0783 0.0823 0.0542 0.0602

3 2 0.0786 0.0812 0.0989 0.1030 0.0617 0.0677

2 4 0.0876 0.0906 0.0729 0.0765 0.0712 0.0790

4 2 0.1067 0.1098 0.0791 0.0828 0.1118 0.1199

3 4 0.0998 0.1031 0.1152 0.1198 0.0868 0.0952

4 3 0.1174 0.1207 0.0985 0.1029 0.1232 0.1320

Table 2.8: The NPI lower and upper probabilities for all population selections com-

binations for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
, based on simulated data from Normal

distributions with a common δ∗ = 0.2 and σ = 1. In Case 1, P ∗ = 0.95 and n = 237;

in Case 2, P ∗ = 0.90 and n = 174; and in Case 3, P ∗ = 0.75 and n = 90.

that the population 4 is associated with the largest sample mean and the population

3 is associated with the second largest sample mean for cases 1, 3, 4, 6 and 9. In

addition, population 3 is associated with the largest sample mean and population

4 is associated with the second largest sample mean for cases 2, 5, 7 and 8. The

conclusion is not consistent across cases because random variation in the generated

samples can lead to different sample means. Also, small sample sizes usually result

in more variability in sample means, which may not match the true ranking of the

population means.

Gupta [38] introduced a methodology for selecting a subset that contains the best

populations. The goal is to select a subset that includes the populations with the

largest sample means, regardless of their specific order. Gupta’s method is applied

to the same scenarios mentioned earlier by specifying the same values of P ∗, δ∗, and
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`1 `2

Case 4 Case 5 Case 6

P P P P P P

1 2 0.0526 0.0603 0.0228 0.0306 0.0259 0.0536

2 1 0.0285 0.0353 0.0337 0.0417 0.0368 0.0537

1 3 0.0640 0.0739 0.0431 0.0567 0.0326 0.0546

3 1 0.0541 0.0629 0.0817 0.0959 0.0642 0.0873

1 4 0.0602 0.0708 0.0391 0.0516 0.0479 0.0523

4 1 0.0730 0.0829 0.0672 0.0802 0.0949 0.1223

2 3 0.0687 0.0794 0.0666 0.0820 0.0459 0.0708

3 2 0.0847 0.0955 0.0915 0.1064 0.0623 0.0861

2 4 0.0606 0.0718 0.0621 0.0766 0.0403 0.0671

4 2 0.1045 0.1164 0.0674 0.0805 0.0970 0.1261

3 4 0.1058 0.1198 0.1457 0.1675 0.0786 0.1120

4 3 0.1343 0.1489 0.1319 0.1532 0.1154 0.1514

Table 2.9: The NPI lower and upper probabilities for all population selections com-

binations for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
, based on simulated data from Normal

distributions with a common δ∗ = 0.4 and σ = 1. In Case 4, P ∗ = 0.95 and n = 59;

in Case 5, P ∗ = 0.90 and n = 43; and in Case 6, P ∗ = 0.75 and n = 22.

σ as considered in Bechhofer’s method. However, the tables provided in [31] do not

include information for P ∗ = 0.75, which was considered in Bechhofer’s method;

thus, no conclusions can be drawn for this case.

Using Equation (1.5) six different sample sizes n are calculated as presented in

Table 2.6. According to Gupta’s procedure, populations with sample means x̄[i]

greater than or equal to x̄[4] − λ√
n
are selected, as stated in Equation (1.7). Table

2.7 shows that populations 3 and 4 are included in the selected subset when the

sample sizes are 25 and 11. Furthermore, populations 2, 3, and 4 are included in the

selected subset when the sample size is 15. The selected subset contains only one

population, which is 4 with the largest mean when the sample sizes are 98, 59, and

7. In conclusion, Gupta’s method does not always yield the same selected subset as

Bechhofer’s method.
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`1 `2

Case 7 Case 8 Case 9

P P P P P P

1 2 0.0109 0.0184 0.0089 0.0189 0.0022 0.0155

2 1 0.0088 0.0162 0.0079 0.0198 0.0064 0.0228

1 3 0.0370 0.0588 0.0546 0.0881 0.0265 0.0669

3 1 0.0536 0.0722 0.0750 0.1093 0.0265 0.0663

1 4 0.0343 0.0547 0.0370 0.0636 0.0212 0.0771

4 1 0.0504 0.0690 0.0425 0.0697 0.0766 0.1359

2 3 0.0238 0.0445 0.0269 0.0541 0.0141 0.0455

3 2 0.0783 0.1016 0.0606 0.0872 0.0152 0.0445

2 4 0.0316 0.0522 0.0205 0.0419 0.0113 0.0589

4 2 0.0660 0.0882 0.0283 0.0482 0.0367 0.0751

3 4 0.2026 0.2463 0.1779 0.2309 0.1073 0.1948

4 3 0.1726 0.2135 0.1580 0.2104 0.1546 0.2457

Table 2.10: The NPI lower and upper probabilities for all population selections

combinations for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
, based on simulated data from

Normal distributions with a common δ∗ = 0.6 and σ = 1. In Case 7, P ∗ = 0.95 and

n = 26; in Case 8, P ∗ = 0.90 and n = 19; and in Case 9, P ∗ = 0.75 and n = 10.

Now, the NPI method for selecting a ranked subset of the best two populations

applies for the same sample sizes presented in Table 2.5 and mean values presented

in Table 2.4. Also, the data were generated from Normal distributions and nine

different cases are considered.

Tables 2.8, 2.9 and 2.10 show the NPI lower and upper probabilities for twelve

combinations of selecting a ranked subset of two populations out of four. Generally,

the NPI lower and upper probabilities were found to be small. When the sample size

is large, n = 237, the lowest NPI lower probability corresponding to the selection of

population 1 as the best and population 2 as the second best is 0.0555. Meanwhile,

the highest NPI upper probability associated with selecting population 4 as the best

and population 3 as the second best is 0.1207. In contrast, when the sample size is

small, n = 10, the lowest NPI lower probability, related to selecting population 1 as
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`1 `2

Case 1 Case 2 Case 3

#P #P #P #P #P #P

1 2 0 0 0 0 0 0

2 1 0 0 0 0 0 0

1 3 0 0 0 0 0 0

3 1 0 0 0 0 0 0

1 4 0 0 0 0 0 0

4 1 0 0 0 2 9 12

2 3 0 0 0 0 0 0

3 2 0 0 0 0 1 4

2 4 0 0 0 0 8 4

4 2 39 37 72 85 127 116

3 4 102 113 133 129 176 170

4 3 859 850 795 784 679 694

Table 2.11: Frequency of the NPI lower and upper probabilities for all population

selections combinations for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
after repeating the

simulation 1000 times with a common δ∗ = 0.2 and σ = 1. In Case 1, P ∗ = 0.95 and

n = 237; in Case 2, P ∗ = 0.90 and n = 174; and in Case 3, P ∗ = 0.75 and n = 90

the best and population 2 as the second best, is 0.0022, and the highest NPI upper

probability, related to selecting population 4 as the best and population 3 as the

second best, is 0.2457. This shows that imprecision, which is defined as the difference

between the NPI lower and upper probabilities across all tables, is influenced by the

sample size. When the sample size is small, the imprecision is larger. In contrast,

when the sample size is large, the imprecision is small.

Generally, selecting either population 3 as the best and population 4 as the

second best, or population 4 as the best and population 3 as the second best, results

in a good selection. Across all cases, these combinations consistently have the largest

or second largest NPI lower and upper probabilities. In contrast, selecting either

population 1 as the best and population 2 as the second best, or population 2 as

the best and population 1 as the second best, results in a poor selection. Across all
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`1 `2

Case 4 Case 5 Case 6

#P #P #P #P #P #P

1 2 0 0 0 0 0 0

2 1 0 0 0 0 0 0

1 3 0 0 0 0 0 0

3 1 0 0 0 0 0 0

1 4 0 0 0 0 0 1

4 1 0 0 3 0 2 5

2 3 0 0 0 0 0 0

3 2 0 0 0 0 0 0

2 4 0 0 1 0 0 1

4 2 37 36 62 54 99 102

3 4 59 72 102 119 155 176

4 3 904 892 832 827 744 715

Table 2.12: Frequency of the lower and upper probabilities for all population selec-

tions combinations for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
after repeating the simulation

1000 times with a common δ∗ = 0.4 and σ = 1. In Case 4, P ∗ = 0.95 and n = 59;

in Case 5, P ∗ = 0.90 and n = 43; and in Case 6, P ∗ = 0.75 and n = 22

cases, these combinations consistently have the lowest or second lowest NPI lower

and upper probabilities. This is because, by the design of the simulation study,

populations 1 and 2 have smaller means compared to populations 3 and 4, as shown

in Table 2.4.

It should be noted that in Bechhofer’s method, P ∗ is the desired probability of

correct selection, this value is specified by the experiment, and it determines the

value of d. The constant d is then used to calculate the required sample size. In

contrast, NPI does not require specifying P ∗ in advance. Instead, NPI provides lower

and upper probabilities for the events of interest, the uncertainty found directly from

the data.

Tables 2.11, 2.12 and 2.13 display the frequencies of the NPI lower and upper

probabilities for all possible combinations across 1000 simulation repetitions. Re-
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`1 `2

Case 7 Case 8 Case 9

#P #P #P #P #P #P

1 2 0 0 0 0 0 0

2 1 0 0 0 0 0 0

1 3 0 0 0 0 0 0

3 1 0 0 0 0 0 0

1 4 0 0 0 0 0 0

4 1 0 1 0 0 4 4

2 3 0 0 0 0 0 0

3 2 0 0 0 0 1 0

2 4 0 0 0 1 5 5

4 2 26 23 49 46 95 81

3 4 44 44 66 71 128 124

4 3 930 932 885 882 767 786

Table 2.13: Frequency of the lower and upper probabilities for all population selec-

tions combinations for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
after repeating the simulation

1000 times with a common δ∗ = 0.6 and σ = 1. In Case 7, P ∗ = 0.95 and n = 26;

in Case 8, P ∗ = 0.90 and n = 19; and in Case 9, P ∗ = 0.75 and n = 10

peating this simulation thousands of times for all combinations ensures that the

method works well in different situations presented in Tables 2.11, 2.12 and 2.13.

Once again, the findings confirm the previous conclusion, clearly indicating that

population 4 is selected as the best, followed by population 3 as the second best

across all tables. For example, for Case 1 in Table 2.11, these two populations

appear with frequencies of 859 out of 1000 for the NPI lower probability, and 850

out of 1000 for the NPI upper probability. In addition, it was observed that as the

sample sizes increased, the variability in the selected combinations decreased within

each table. Specifically, Case 3 shows a greater variation compared to Cases 1 and

2 in Table 2.11; similarly, Case 6 has more variation than Cases 4 and 5 in Table

2.12, and this pattern continues in Table 2.13. Larger sample sizes result in more

consistent selection, reducing variation among less frequently selected combinations.
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Most of these combinations have frequencies of zero, indicating that they are never

selected.

In conclusion, the indifference zone approach introduced by Bechhofer and the

NPI method for selecting a ranked subset of the two best populations yield both

the same selected subset and the same ranking within the subset. However, Gupta’s

method does not always yields the same selected subset as Bechhofer’s method or

the NPI method when selecting a ranked subset of the two best populations.

2.7 Concluding remarks

This chapter has presented a method for selecting a ranked subset of future ob-

servations, resulting in exact and approximate NPI lower and upper probabilities.

There are many scenarios of interest. In the first scenario, when selecting a ranked

subset of the two best groups, an optimisation is performed, and the exact NPI

lower and upper probabilities are derived. In this scenario, determining the exact

NPI lower and upper probabilities becomes easy as there is only one group in the

middle. Even with large and overlapping observations, obtaining exact NPI lower

and upper probabilities remains possible.

In addition, lower and upper bounds for the NPI lower and upper probabilities

are derived to simplify the calculations. A real-valued dataset demonstrates that

the exact NPI lower and upper probabilities lie within their respective lower and

upper bounds. The example shows that the exact NPI lower probability is close to

its corresponding lower bound, and the exact NPI upper probability is close to its

upper bound.

For further investigation of the NPI method for the selection of a ranked subset

of the two best groups, a simulation study was conducted where the means were

assumed and arranged from smallest to largest. The results from the simulation

study conclude that selecting the group with the largest mean as the best and

selecting the groups with the smallest means as the worst is a good decision.

Some findings were made to help improve this method and reduce the compu-

tational burden of calculating the exact NPI lower and upper probabilities. It is
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evident that the first sub-interval within the first interval is most likely to yield the

minimum NPI lower probability, as it often has zero assigned probability mass. Sim-

ilarly, the last sub-interval within the last interval tends to produce the same result.

However, for the intervals in between, the minimum number of assigned probability

mas typically comes from the initial sub-interval of each interval. On the other hand,

regarding the NPI upper probability, the last sub-interval within the first interval is

most likely to yield the maximum NPI upper probability, as it contains the highest

number of assigned probability mass. Similarly, the first sub-interval within the last

interval tends to produce the same result. However, for the intervals in between,

the maximum number of assigned probability mass mostly comes from the ending

sub-intervals of each interval.

The second scenario arises when the number of best groups within a subset is

three or more. In this case, it is computationally expensive to optimise over all

groups at the same time. Therefore, an optimisation process and a heuristic algo-

rithm should be performed for each group in the middle independently, and then

approximate NPI lower and upper probabilities are obtained. The approximate NPI

lower probability is calculated as the smallest value among the NPI lower proba-

bilities for the middle groups in the ranked subset. Likewise, the approximate NPI

upper probability is obtained as the largest value among the NPI upper probabilities

for those same groups. In addition, the lower and upper bounds for the NPI lower

and upper probabilities are derived to avoid the calculation being cumbersome.

Moreover, a partial ranking within subset groups is presented in this chapter.

Partial ranking is a simpler and more practical approach when comparing or ranking

groups based on multiple criteria, especially when a complete ranking is difficult or

unnecessary. In this section, a brief overview is provided, focusing on the formulas

of the bounds for the NPI lower and upper probabilities.

Finally, a comparison was made between the NPI method for selecting a ranked

subset of the two best groups, the Bechhofer and Gupta methods from the litera-

ture. The Bechhofer and NPI methods for selecting a ranked subset of the two best

populations yield both the same selected subset and the same ranking within the

subset. However, Gupta’s method does not always yield the same selected subset as
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Bechhofer’s method or the NPI method when selecting a ranked subset of the two

best populations.
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Chapter 3

NPI for selection using loss functions

3.1 Introduction

Decision theory provides a systematic approach to guide decision makers when faced

with uncertainty by quantifying potential losses based on the outcomes of the se-

lected groups. A loss function represents the penalty incurred when selecting sub-

optimal groups instead of the best possible ones. The worse the decision, the higher

the loss. A decision should aim to minimise the expected loss to improve the quality

of the decision. A brief overview of statistical decision theory is provided in Section

1.3.

In classical statistics, a loss function is used for parameter estimation by spec-

ifying the penalty as a function of the difference between the estimated and true

parameters [72]. Loss functions can be applied in many areas, each with its own

specific interpretation. In the context of classification, a loss function measures mis-

classification, for example, assigning a value of 0 for correct classifications and 1 for

incorrect ones. In economics, loss functions are applied to evaluate point forecasts of

financial returns [49]. In actuarial science, loss functions are used to quantify risk and

guide decisions about premiums and reserves in insurance [21]. In optimal control,

loss functions are used to quantify the penalty for failing to achieve a desired value.

Finally, in process safety assessment, the loss functions describe the relationship

between process deviations and system loss [45]. Whether it is minimising shipping

costs, making medical diagnoses, or optimising financial investments, understanding
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the potential losses allows informed decision-making. The use of loss functions is

fundamental in decision-making and statistical modeling, providing a quantitative

measure of the consequences associated with different choices or predictions.

In the literature, many loss functions have been used. A commonly used loss

function in classification is the zero-one loss function. Although simple and intuitive,

this loss function treats all misclassifications equally, regardless of the degree of er-

ror. In some situations, the zero-one loss function is replaced with alternatives such

as hinge loss, which provides a smoother transition between correct and incorrect

predictions. More complex loss functions, such as the quadratic loss function, mea-

sure the squared difference between predicted and actual values, penalising larger

errors more severely [72].

This chapter considers the use of loss functions in NPI for selection. Section

3.2 reviews the loss functions used in subset selection as presented in the literature.

Section 3.3 introduces NPI decision theory, with the NPI lower and upper expected

losses as the key components for making decisions. Section 3.4 presents pairwise

comparisons based on loss functions. Section 3.5 introduces multiple comparisons

using loss functions and includes two illustrative examples, one with real-valued and

another with simulated data to demonstrate their application. Finally, Section 3.6

presents some concluding remarks.

3.2 Loss functions in selection

In the context of selection, a loss function measures the penalty associated with

selecting suboptimal groups in the selection process. The goal is to minimise the

expected loss associated with the selection of suboptimal groups. This section pro-

vides an overview of loss functions commonly used in the subset selection literature,

while the primary focus of this thesis is developing the NPI approach for selection

and ranking problems using such loss functions.

Various methodologies have explored the application of loss functions in sub-

set selection. Gupta’s subset selection rule, originally proposed by Gupta and Pan-

chapakesan [41], serves as a foundational approach. It defines decision rules and eval-
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uates their performance using loss functions, with an emphasis on minimising losses

associated with incorrect selection. Another consideration in subset selection is the

minimax criterion, investigated by Berger and Gupta [6]. Berger and Gupta propose

a selection rule that minimises the maximum risk, which corresponds to maximising

the minimum probability that the selected subset includes the best population. Hsu

[50] introduced an alternative approach specifically tailored for location parameter

families. This method not only provides confidence intervals, but also simultane-

ously addresses all distances from the best population. It compares each population

with the best and uses confidence intervals for the differences between the mean of

each population and the best mean. These intervals help determine which popu-

lations are not significantly worse than the best and which ones can be excluded

from the set of the best population. The works of Hsu [51, 52] and Finner and Giani

[29] further support this alternative perspective by establishing connections between

multiple comparisons and simultaneous confidence intervals and by extending multi-

ple comparison procedures to more complex settings such as block designs. The loss

functions mentioned above are not relevant to this thesis, but could be considered

for future work.

In addition, various loss functions can be employed in the selection process, in-

cluding zero-one loss, linear and quadratic loss functions. The choice of a particular

loss function depends on the nature of the decision problem and the available infor-

mation. Below is a brief overview of several loss functions discussed in the literature.

3.2.1 Zero-one loss function

In the context of subset selection procedures for comparing k populations, each

assumed to follow a specific parametric distribution, the zero-one loss function is

denoted as L{0,1}(S, µ∗). Here, µ∗ represents the true vector of parameter values as-

sociated with the k populations, and S is the selected subset of the best populations,

where S ⊆ {1, . . . , k}.

For simplicity, we assume that each population is characterized by a one-dimensional

parameter µi, such that for Normally distributed populations Xi ∼ N(µi, σ
2), the

variance σ2 is not considered in the loss function. The true vector of the parameters
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is given by µ∗ = {µ[1], . . . , µ[k]}, where µ[1] ≤ µ[2] ≤ . . . ≤ µ[k]. Specifically, µ[k] is the

largest parameter. A subset S is selected based on a predefined selection rule. The

parameter µ[q] is the parameter of the q-th population included in S, where q indexes

the position of that population in the ordered list, and q refers to any population in

S. Since the true ranking of populations is unknown in practice, selection methods

rely on observed data to approximate the ranking and determine S.

Deely and Gupta [23] introduced the zero-one loss function for selecting a subset

that contains the best population, which is defined as

L{0,1}(S, µ
∗) =

0 if µ[k] is in S

1 if otherwise
(3.1)

This loss function quantifies the penalty incurred when the selected subset S does

not include the population with the largest parameter µ[k], given the true parameter

vector µ∗.

3.2.2 Linear loss function

The linear loss function is a common choice in decision theory. It assumes that the

cost of selecting suboptimal populations is represented by a linear function of the

difference between the largest population parameter µ[k] and the parameter of each

selected population in S µ[q] [23]. The linear loss function is given by

Ll(S, µ
∗) =

∑
q∈S

cq(µ[k] − µ[q]) (3.2)

where cq > 0 serves as a constant that indicates the penalty weight to include

population q in the selected subset. This loss function is used to quantify the loss

associated with selecting a subset S that does not contain the largest population

parameter µ[k].

3.2.3 Quadratic loss function

The quadratic loss function [32], also known as the squared loss, is defined by

LQ(S, µ∗) =
∑
q∈S

cq(µ[k] − µ[q])
2 (3.3)
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This loss function is employed to measure the quadratic loss incurred by selecting a

subset S that does not contain the largest population parameter, µ[k].

The quadratic loss function can be seen as an extension of the linear loss function,

as it introduces a squared term. Linear and quadratic loss functions often lead to

similar conclusions [5]. Therefore, the aim is to investigate whether all three loss

functions zero-one, linear and quadratic lead to the same or different conclusions.

3.2.4 Other loss functions

The average loss function quantifies the impact of selecting suboptimal populations

and helps guide the selection of the subset of the best populations [23].

La(S, µ
∗) =

1

|S|
∑
q∈S

(µ[k] − µ[q]) (3.4)

where |S| denotes the number of populations in the subset S. This loss function

represents the average loss for each population in the subset S. Specifically, it calcu-

lates the difference between the largest parameter µ[k] and each selected parameter

of the q-th population and then divides this difference by the size of the subset |S|.

Goel and Rubin [33] introduced a linear loss function that combines two essential

components. First, it considers the size of the selected subset |S|, denoted as

Lc1(S, µ
∗) = c|S|

where c is a fixed number, c > 0. Second, it incorporates the difference between the

largest true parameter value µ[k] and the largest parameter value within the selected

subset S. This component is expressed as

Lc2(S, µ
∗) = µ[k] −max

q∈S
(µ[q])

This loss ensures that only positive differences contribute to the loss, penalising the

selection of a subset that does not include the best possible result represented by

µ[k]. The general linear loss function is given by

Lc3(S, µ
∗) = c|S|+ µ[k] −max

q∈S
(µ[q])
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This formulation captures the trade-off between the size of the selected subset

and the difference between the best population and the best within the selected

subset.

Gupta and Miescke [40] utilized another combined loss function with two varia-

tions, denoted L1 and L2, each designed to address different considerations. L1(S, µ∗)

encourages the inclusion of all populations with the largest parameters. It is defined

as

L1(S, µ∗) = c|S| −
∑
q∈S

I{µ[k]}(µ[q]),

where the summation ensures that the indicator function is evaluated for all selected

populations in S. The indicator function I{µ[k]}(µ[q]) checks whether the parameter

µ[q] of a selected population q is equal to the largest population parameter µ[k]. If it

is, it contributes 1 to the sum; otherwise, it contributes 0.

In contrast, L2(S, µ∗) rewards the inclusion of at least one population with the

largest parameter. It is defined as

L2(S, µ∗) = c|S| − I{µ[k]}
(

max
q∈S

(µ[q])
)
,

where the maximum is taken over the selected subset S.

L2 is a modified version of L1 that accounts for the number of populations that

are tied for the best. The loss L2 combines the zero-one loss for including the best

population with the loss of including other populations. Note that the inclusion of

a single best population is penalised under L1, when there is more than one best

population, but not under L2.

Lehmann [55, 56] introduced an additive loss function. In subset selection, pop-

ulations are classified into selected populations in S and non-selected populations

in NS, and the loss is defined as

Ld(S, µ
∗) =

∑
q∈S

LA(S, µ∗)INS(q) +
∑
q∈S

LB(S, µ∗)IS(q) (3.5)

where INS(q) is an indicator function that equals 1 if population q belongs to the

non-selected population NS, and 0 otherwise, while IS(q) is an indicator function

that equals 1 if population q belongs to the selected population S, and 0 otherwise.
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LA(S, µ∗) represents the loss of not selecting population q when it has one of the

largest parameter values, while LB(S, µ∗) represents the loss of selecting population

q when it does not have a large parameter value

3.2.5 Expected loss function

The risk function of a decision, also known as the expected loss function [73], is

introduced to evaluate the quality of decisions under uncertainty. Loss functions

quantify the consequences of a decision in a given situation, providing a measure of

its effectiveness. Risk functions serve multiple purposes. Primarily, they guide the

minimisation of expected loss, aiming to identify decision rules that, on average, lead

to the least negative outcomes. Additionally, risk functions enable the comparison

of different decision strategies, which is crucial since certain strategies may perform

well in some contexts but poorly in others.

Consider the scenario where the aim is to predict an outcome based on available

data. Assume that L(µ∗, d) ∈ R is the loss function, measuring the penalty for

choosing the decision d when the true vector of parameters is µ∗. The expected loss

is given by

R(µ∗, d) = E [L(µ∗, d(X))] =
∑
X

L(µ∗, d(X))P (X | µ∗) (3.6)

here, R denotes a risk function, L(µ∗, d(X)) The loss incurred by applying the

decision d to the data X, and P (X | µ∗) is the probability density function of

observing X given µ∗.

3.3 NPI decision theory

After introducing expected loss functions from the literature, it is important to

explain how these ideas are specifically applied within the NPI framework. Un-

derstanding decision theory in the context of NPI provides valuable insights into

evaluating decisions based on future observations.

NPI decision theory is introduced using the NPI lower and upper expected losses,

which quantify the impact of selecting suboptimal groups and guide the selection of
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the best groups.

Assume that L(Xf , d) ∈ R represents the loss associated with a decision d and

a future observation Xf . Let Xf denote a single future observation from group

X. Suppose that X1, . . . , Xnx , Xnx+1 are real-valued, continuous, and exchangeable

random quantities from X. Let its ordered observed values be x1 < x2 < · · · < xnx ,

with x0 = −∞ and xnx+1 = ∞ defined for ease of notation. These nx observations

divide the real line into nx+1 intervals Ii = (xi−1, xi), where i = 1, 2, . . . , nx+1. The

NPI lower expected loss E(L(Xf , d)) for the future observation Xf and a decision

d is defined as

E(L(Xf , d)) = inf
Xf∈Ii

nx+1∑
i=1

L(xi, d)P (Xf ∈ Ii) (3.7)

where Xf ∈ Ii is defined by assigning the probability mass 1
nx+1

to each interval Ii.

Then, inf
Xf∈Ii

is taken over each interval Ii. The use of the infimum guarantees that

the calculation accounts for the minimum expected loss across all intervals Ii.

The NPI upper expected loss for the future observation Xf and a decision d is

defined as

E(L(Xf , d)) = sup
Xf∈Ii

nx+1∑
i=1

L(xi, d)P (Xf ∈ Ii) (3.8)

This equation is determined by assigning the probability mass
1

nx + 1
to each in-

terval Ii. Then, the supremum takes over each interval Ii. The use of the supremum

guarantees that the calculation accounts for the maximum expected loss across all

intervals Ii.

The NPI lower and upper expected losses are calculated for pairwise and multiple

comparisons in Sections 3.4 and 3.5, respectively.

3.4 Pairwise comparisons based on loss functions

Suppose there are two groups X and Y and the goal is to select the best group

and quantify the impact of choosing a suboptimal group. Let group X have nx

observations, and group Y have ny observations. Let Xf denote a single future

observation from group X, and let Y f denote a single future observation from group
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Y . Assume that groups X and Y are independent, which means that the data from

group X does not provide any information about the data from group Y . Suppose

the event of interest is Xf ≥ Y f , where the objective is to compare Xf and Y f

using loss functions and to select either group X or Y based on which yields the

minimum expected loss.

In the following sections, pairwise comparisons are conducted using three loss

functions—zero-one, linear, and quadratic—to examine whether they lead to the

same decision during the selection process.

3.4.1 Zero-one loss function

In the literature, the common loss function for selection has been the zero–one loss

function [58]. The zero-one loss function for the pairwise comparison for the event

Xf ≥ Y f is considered as follows:

L{0,1}(X
f , Y f ) =

0 if Xf ≥ Y f

1 if Xf < Y f

(3.9)

Suppose X1, . . . , Xnx+1 and Y1, . . . , Yny+1 are real-valued, exchangeable, and con-

tinuous random quantities of X and Y , respectively. Let group X have nx obser-

vations and group Y have ny observations. Their ordered observed values are given

by lx < x1 < · · · < xnx < rx and ly < y1 < · · · < yny < ry, where x0 = lx, xnx+1 = rx

are defined for ease of notation, and y0 = ly, yny+1 = ry. Inference is based on the

A(nx) assumption for Xf and on the A(ny) assumption for Y f . This is combined with

the zero-one loss function to quantify the loss by comparing the future observation

from group X with that from group Y . In other words, the zero-one loss function

only penalises when Xf < Y f .

The expected loss is defined as the sum of all possible losses, each multiplied by

its corresponding probability mass. The expected value of the loss function used to

compare groups X and Y is denoted by E(L(Xf , Y f )). This expected loss is

E(L(Xf , Y f )) =
nx+1∑
i=1

ny+1∑
j=1

L(Xf , Y f )P (Xf ∈ (xi−1, xi))P (Y f ∈ (yj−1, yj)) (3.10)

October 6, 2025



3.4. Pairwise comparisons based on loss functions 64

A(n) is not sufficient to derive a precise expected loss for many events of interest,

but optimal bounds based on A(n) can be derived for all events of interest. Therefore,

the NPI lower and upper expected losses should be derived. The maximum lower

bound for the expected value of the zero-one loss, as given by Equation (3.11), is

derived by summing the probabilities based on A(nx) and A(ny) for which xi < yj−1.

This results from assigning the probability mass of X to the right endpoint per

interval and of Y to the left endpoint per interval to minimise the NPI lower expected

zero-one loss. The NPI lower expected zero-one loss is

E(L{0,1}(X
f , Y f )) =

1

(nx + 1)

1

(ny + 1)

nx+1∑
i=1

ny+1∑
j=1

L{0,1}(xi, yj−1) (3.11)

where L{0,1}(xi, yj−1) is obtained from Equation (3.9).

The minimum upper bound for the expected value of the zero-one loss, as given

by Equation (3.12), is derived by summing the probabilities based on A(nx) and A(ny)

for which xi−1 < yj. This results from assigning the probability mass of X to the

left endpoint per interval and of Y to the right endpoint per interval, to maximise

the NPI expected zero-one loss. The NPI upper expected zero-one loss is

E(L{0,1}(X
f , Y f )) =

1

(nx + 1)

1

(ny + 1)

nx+1∑
i=1

ny+1∑
j=1

L{0,1}(xi−1, yj) (3.12)

A direct relationship exists between the NPI lower and upper expected zero-

one losses and the NPI lower and upper probabilities. Specifically, the NPI lower

expected zero-one loss for the event Xf ≥ Y f is equal to the NPI lower probability

of the complementary event Xf < Y f .

E(L{0,1}(X
f , Y f )) = P (Xf < Y f ) = 1− P (Xf ≥ Y f ) (3.13)

Also, the NPI upper expected zero-one loss for the event Xf ≥ Y f is equal to

the NPI upper probability of the complementary event Xf < Y f .

E(L{0,1}(X
f , Y f )) = P (Xf < Y f ) = 1− P (Xf ≥ Y f ) (3.14)

Proof : Using the conjugacy property, P (Ac) = 1 − P (A), for an event A and

its complement event Ac. The proof showing that the NPI lower expected zero-one
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loss for the event Xf ≥ Y f is equal to the NPI lower probability of the complement

event Xf < Y f is as follows.

By applying the definition of the zero-one loss function, we have

E(L{0,1}(X
f , Y f )) = (L{0,1}(X

f , Y f ) | Xf ≥ Y f )P (Xf ≥ Y f )

+ (L{0,1}(X
f , Y f ) | Xf < Y f )P (Xf < Y f )

Since the zero-one loss function takes the value 0 when Xf ≥ Y f , and 1 when

Xf < Y f , the expected loss simplifies to the probability that Xf < Y f :

E(L{0,1}(X
f , Y f )) = P (Xf < Y f )

The proof of the NPI upper expected zero-one loss follows the same reasoning

as that of the NPI lower expected zero-one loss, with the NPI lower expected zero-

one loss and NPI lower probability replaced by their upper counterparts. To avoid

repetition, the proof is omitted. 2

3.4.2 Linear loss function

In this section, the linear loss function is considered for the event Xf ≥ Y f , as

discussed in Section 3.4. The linear loss function in pairwise comparison is defined

as

Ll(X
f , Y f ) =

0 ifXf ≥ Y f

Y f −Xf ifXf < Y f

(3.15)

The NPI lower expected linear loss is derived by assigning the probability mass

of Xf to the right endpoint per interval, and the probability mass of Y f to the

left endpoint per interval. For each pair, the NPI lower expected linear loss is

then computed as the difference yj−1 − xi whenever xi < yj−1, and zero otherwise.

Similarly, the NPI upper expected linear loss is obtained by assigning the probability

mass of Xf to the left endpoint per interval, while the probability mass of Y f is

assigned to the right endpoint per interval. For each pair, the NPI upper expected

linear loss is then computed as the difference yj − xi−1 whenever xi−1 < yj. The
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NPI lower and upper expected linear losses are given by

E(Ll(X
f , Y f )) =

1

(nx + 1)

1

(ny + 1)

nx+1∑
i=1

ny+1∑
j=1

Ll(xi, yj−1) (3.16)

E(Ll(X
f , Y f )) =

1

(nx + 1)

1

(ny + 1)

nx+1∑
i=1

ny+1∑
j=1

Ll(xi−1, yj) (3.17)

When considering the linear loss function, the assumption is made that Xf and

Y f have a finite range. The presence of infinite lower and upper bounds, such as

x0 = −∞ or xn+1 = ∞, can affect the calculation of the NPI lower and upper

expected linear losses. For clarity, the presence of an infinite value will overpower

the sum, leading to an overall expected loss that is infinite and thus not meaningful

for decision-making.

3.4.3 Quadratic loss function

Another commonly used loss function is the quadratic loss function [73]. The

quadratic loss function is defined as a measure of the deviation between future

observations from groups X and Y . The definition of the quadratic loss function in

pairwise comparison is

Lq(X
f , Y f ) =

0 ifXf ≥ Y f

(Y f −Xf )2 ifXf < Y f

(3.18)

Based on assumptions A(nx) for Xf and A(ny) for Y f , the NPI lower and upper

expected quadratic losses are

E(Lq(X
f , Y f )) =

1

(nx + 1)

1

(ny + 1)

nx+1∑
i=1

ny+1∑
j=1

Lq(xi, yj−1) (3.19)

E(Lq(X
f , Y f )) =

1

(nx + 1)

1

(ny + 1)

nx+1∑
i=1

ny+1∑
j=1

Lq(xi−1, yj) (3.20)

Regarding the earlier assumption that the future observations are bounded in

the linear loss function, this consideration is extended to the quadratic loss function

as well.
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Group Data

B 2625 2628 2795 2847 2925 2968

2975 3163 3176 3292 3421 3473

G 2412 2539 2729 2754 2817 2875

2935 2991 3126 3210 3231 3317

Table 3.1: Birth weights (g) for Example 3.4.1.

Example 3.4.1 To illustrate the NPI lower and upper expected losses for pairwise

comparison based on different loss functions, the dataset on the birth weights of 12

males (B) and 12 females (G) is used [26]. The original data also included estimated

gestational ages, a known influential factor in birth weight. The dataset is presented

in Table 3.1.

When making decisions about the selection of the best group, the loss incurred

is measured in the event that the weight of the next baby boy, Bf , is greater

than the weight of the next baby girl, Gf . When considering the zero-one loss

function, the NPI lower and upper expected zero-one losses can be calculated di-

rectly from Equations (3.11) and (3.12), which yield E(L{0,1}(B
f , Gf )) = 0.3432

and E(L{0,1}(B
f , Gf )) = 0.4911. For the complement event (Bf ≥ Gf )c, the weight

of the next baby boy is less than the weight of the next baby girl. Then, the NPI

lower and upper expected zero-one losses for the complement event (Bf ≥ Gf )c are

E(L{0,1}(B
f , Gf )) = 0.5090 and E(L{0,1}(B

f , Gf )) = 0.6570.

The results show that the NPI lower and upper expected zero-one losses for

the complement event (Bf ≥ Gf )c are higher than those for the event Bf ≥ Gf .

Therefore, claiming that Bf < Gf is more likely to result in an incorrect pairwise

comparison.

For the linear and quadratic loss functions, it is assumed that future observations

are bounded by l and r. Since the observed values range from 2412 to 3473 grams,

we set l = 2400 and r = 3500 to define the lower and upper bounds for future

observations.

The NPI lower and upper expected linear losses associated with predicting that

the weight of the next baby boy Bf is greater than that of the next baby girl Gf are
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89.6864 and 166.3018, respectively. In contrast, for the prediction of Bf < Gf , the

NPI lower and upper expected linear losses are 185.6864 and 278.3018, respectively.

Since the smallest loss values indicate better decisions, favouring the prediction that

the weight of the next baby boy is greater than the weight of the next baby girl

leads to a more optimal decision.

Similarly, the NPI lower and upper expected quadratic losses can be calculated

using Equations (3.19) and (3.20) leading to the following results: The NPI lower

and upper expected quadratic losses for the event Bf ≥ Gf are E(Lq(B
f , Gf )) =

35213.07 and E(Lq(B
f , Gf )) = 87403.39. The NPI lower and upper expected

quadratic losses for the complement event (Bf ≥ Gf )c are 100126.8 and 169917.1

respectively. The NPI lower and upper expected quadratic losses for Bf ≥ Gf im-

plies a more optimistic scenario with less deviation compared to the complement

event, because its corresponding NPI lower and upper expected quadratic losses are

low compared to the complement event. Therefore, the weight of the next baby boy

is expected to be higher than that of the next baby girl.

In conclusion, after employing zero-one, linear, and quadratic loss functions to

evaluate the prediction of the weight of the next baby boy relative to the next baby

girl, all methods consistently support the same optimal decision. Regardless of the

loss function used, the prediction that the weight of the next baby boy will be larger

than that of the next baby girl emerges as the optimal choice.

�

3.5 Multiple comparisons based on loss functions

In this section, the comparison is extended to multiple comparisons based on loss

functions for k ≥ 2 independent groups. Multiple comparisons involve three different

types of events, namely, selecting the best group, selecting the subset of the best

groups, and selecting the subset that includes the best group as presented by Coolen

and van der Laan [18], also reviewed in Section 1.5.

Suppose there are k ≥ 2 groups and nj + 1 random quantities from group j

denoted by Xj,ij where j = 1, 2, . . . , k and ij = 1, 2, . . . , nj + 1 and their ordered
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observation values are xj,1 < xj,2 < . . . < xj,nj
where xj,0 = lj and xj,nj+1 = rj are

defined for ease of notation. Then, inference is based on Hill’s assumption A(nj) for

each group. In the following three sections, the impact of selecting a suboptimal

groups is measured using zero-one, linear, and quadratic loss functions.

3.5.1 Zero-one loss function

First, selecting the best group is considered. This means that the focus is on the

event that a specific future observation Xf
` is the maximum of all future observations

Xf
j , where j = 1, 2, . . . , k. The definition of the zero-one loss for the event Xf

` ≥

max
j 6=`

Xf
j is

L{0,1}(X
f
` ,max

j 6=`
Xf
j ) =


0 if Xf

` ≥ max
j 6=`

Xf
j

1 if Xf
` < max

j 6=`
Xf
j

(3.21)

The penalty is zero for making the correct selection, selecting the best future

observation Xf
` , and one otherwise.

The NPI lower (upper) expected zero-one loss for the event Xf
` ≥ max

j 6=`
Xf
j is

equal to the NPI lower (upper) probability for the complementary event, which

is Xf
` < max

j 6=`
Xf
j , as discussed in Section 3.4.1. Hence, the NPI lower and upper

expected zero-one losses, respectively, are

E(L{0,1}(X
f
` ,max

j 6=`
Xf
j )) = P (Xf

` < max
j 6=`

Xf
j ) = 1− P (Xf

` ≥ max
j 6=`

Xf
j ) (3.22)

E(L{0,1}(X
f
` ,max

j 6=`
Xf
j )) = P (Xf

` < max
j 6=`

Xf
j ) = 1− P (Xf

` ≥ max
j 6=`

Xf
j ) (3.23)

Second, the focus is on the selection of a subset of the best groups. In other

words, all future observations belonging to the subset S are considered greater than

all future observations belonging to the non-selected groups, NS, min
`∈S

Xf
` ≥ max

j∈NS
Xf
j .

We consider a subset of the k independent groups containing the w best groups,

where 1 ≤ w ≤ k − 1, noting that w = 1 corresponds to selecting the best group

case presented earlier in this section. Let S = {`1, . . . , `w} ⊂ {1, . . . , k} denote

the indices of these w groups, and let NS = {1, . . . , k} \ S denote the indices of
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the remaining k − w groups not included S. Let L{0,1} be a zero-one loss function

designed to penalise incorrect selections, which occur when choosing the non-selected

groups, NS, as the best.

L{0,1}(min
`∈S

Xf
` ,max

j∈NS
Xf
j ) =


0 if min

`∈S
Xf
` ≥ max

j∈NS
Xf
j

1 if min
`∈S

Xf
` < max

j∈NS
Xf
j

(3.24)

The NPI lower (upper) expected zero-one loss for the event min
`∈S

Xf
` ≥ max

j∈NS
Xf
j

gives the same result as the NPI lower (upper) probability for the complement event

min
`∈S

Xf
` < max

j∈NS
Xf
j . Therefore, the NPI lower and upper expected zero-one losses,

respectively, are

E(L{0,1}(min
`∈S

Xf
` ,max

j∈NS
Xf
j )) = P (min

`∈S
Xf
` < max

j∈NS
Xf
j ) (3.25)

E(L{0,1}(min
`∈S

Xf
` ,max

j∈NS
Xf
j )) = P (min

`∈S
Xf
` < max

j∈NS
Xf
j ) (3.26)

Finally, the selection of at least one future observation that belongs to S is

greater than all future observations that belong to NS. The zero-one loss function

L{0,1} is used here to select a subset to include the best groups, ` ∈ S. It assigns

one for an incorrect selection, selecting j ∈ NS.

L{0,1}(max
`∈S

Xf
` ,max

j∈NS
Xf
j ) =


0 if max

`∈S
Xf
` ≥ max

j∈NS
Xf
j

1 if max
`∈S

Xf
` < max

j∈NS
Xf
j

(3.27)

The NPI lower (upper) expected zero-one loss for the event max
`∈S

Xf
` ≥ max

j∈NS
Xf
j

gives the same result as the NPI lower (upper) probability but for the complement

event max
`∈S

Xf
` < max

j∈NS
Xf
j . Consequently, the NPI lower and upper expected zero-one

losses, respectively, are

E(L{0,1}(max
`∈S

Xf
` ,max

j∈NS
Xf
j )) = P (max

`∈S
Xf
` < max

j∈NS
Xf
j ) (3.28)

E(L{0,1}(max
`∈S

Xf
` ,max

j∈NS
Xf
j )) = P (max

`∈S
Xf
` < max

j∈NS
Xf
j ) (3.29)
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3.5.2 Linear loss function

In this section, the linear loss function is considered, focusing on the same events

previously discussed under the zero-one loss function. The penalty incurred is cal-

culated based on the deviation of the selected groups from the non-selected groups

across three different events. The first scenario involves selecting the best group.

The definition of the linear loss for the event Xf
` ≥ max

j 6=`
Xf
j is

Ll(X
f
` ,max

j 6=`
Xf
j ) =


0 if Xf

` ≥ max
j 6=`

Xf
j

Xf
` −max

j 6=`
Xf
j if Xf

` < max
j 6=`

Xf
j

(3.30)

This loss function quantifies the loss in one direction, specifically when Xf
` <

max
j 6=`

Xf
j , as the linear deviation between the selected group ` and all other non-

selected groups j, where ` 6= j.

Then, the NPI lower expected linear loss is derived by assigning the probability

mass for group ` to the right endpoint per interval and for each group j 6= ` to

the left endpoint per interval. Then, for each pair, the NPI lower expected linear

loss is computed as the difference (x`,i` −max
j 6=`

xj,ij−1) whenever x`,i` < max
j 6=`

xj,ij−1,

and zero otherwise. Similarly, the NPI upper expected linear loss is obtained by

assigning the probability mass for group ` to the left endpoint per interval and for

each group j 6= ` to the right endpoint per interval. Then, for each pair, the NPI

upper expected linear loss is computed as the difference (x`,i`−1−max
j 6=`

xj,ij) whenever

x`,i`−1 < max
j 6=`

xj,ij , and zero otherwise. Therefore, the NPI lower and upper expected

linear losses are

E(Ll(X
f
` ,max

j 6=`
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1

nj+1∑
ij=1
j∈NS

Ll(x`,i` ,max
j 6=`

xj,ij−1) (3.31)

E(Ll(X
f
` ,max

j 6=`
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1

nj+1∑
ij=1
j∈NS

Ll(x`,i`−1,max
j 6=`

xj,ij) (3.32)

The
nj+1∑
ij=1
j∈NS

represents multiple summations over a set of k groups, j = 1, 2, . . . , k,

excluding ` and over all ij from 1 to nj + 1.
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The second scenario involves selecting the subset of the best groups. The defini-

tion of this loss for the event min
`∈S

Xf
` ≥ max

j∈NS
Xf
j is as follows.

Ll(min
`∈S

Xf
` ,max

j∈NS
Xf
j ) =


0 if min

`∈S
Xf
` ≥ max

j∈NS
Xf
j

min
`∈S

Xf
` − max

j∈NS
Xf
j if min

`∈S
Xf
` < max

j∈NS
Xf
j

(3.33)

To derive the NPI lower (upper) expected linear loss for the event min
`∈S

Xf
` ≥

max
j∈NS

Xf
j , the probability mass that corresponds to groups ` ∈ S will be assigned to

the right (left) endpoint per interval, while the probability mass that corresponds

to groups j ∈ NS will be assigned to the left (right) endpoint per interval. For

each pair, the NPI lower (upper) expected linear loss is computed as the difference

(min
`∈S

x`,i` − max
j∈NS

xj,ij−1) ((min
`∈S

x`,i`−1 − max
j∈NS

xj,ij) ) whenever min
`∈S

x`,i` < max
j∈NS

xj,ij−1

(min
`∈S

x`,i`−1 < max
j∈NS

xj,ij), and zero otherwise. Then, the NPI lower and upper ex-

pected linear losses are

E(Ll(min
`∈S

Xf
` ,max

j∈NS
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1
`∈S

nj+1∑
ij=1
j∈NS

Ll(min
`∈S

x`,i` ,max
j∈NS

xj,ij−1) (3.34)

E(Ll(min
`∈S

Xf
` ,max

j∈NS
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1
`∈S

nj+1∑
ij=1
j∈NS

Ll(min
`∈S

x`,i`−1,max
j∈NS

xj,ij) (3.35)

where
n`+1∑
i`=1
`∈S

represents multiple summations over a set of w groups and over all i`

from 1 to n`+ 1, with ` ∈ S. The
nj+1∑
ij=1
j∈NS

is defined under Equations (3.31) and (3.32).

The last scenario appears when selecting the subset that includes the best group,

for the event max
`∈S

Xf
` ≥ max

j∈NS
Xf
j . The definition of the linear loss function for the

event mentioned above is

Ll(max
`∈S

Xf
` ,max

j∈NS
Xf
j ) =


0 if max

`∈S
Xf
` ≥ max

j∈NS
Xf
j

max
`∈S

Xf
` − max

j∈NS
Xf
j if max

`∈S
Xf
` < max

j∈NS
Xf
j

(3.36)

To derive the NPI lower (upper) expected linear loss for the event max
`∈S

Xf
` ≥

max
j∈NS

Xf
j , the probability mass that corresponds to groups ` ∈ S will be assigned to
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the right (left) endpoint per interval, while the probability mass that corresponds

to groups j ∈ NS will be assigned to the left (right) endpoint per interval. For

each pair, the NPI lower (upper) expected linear loss is computed as the difference

(max
`∈S

x`,i`−max
j∈NS

xj,ij−1) ((max
`∈S

x`,i`−1−max
j∈NS

xj,ij) ) whenever max
`∈S

x`,i` < max
j∈NS

xj,ij−1

(max
`∈S

x`,i`−1 < max
j∈NS

xj,ij), and zero otherwise. Then, the NPI lower and upper

expected linear losses are

E(Ll(max
`∈S

Xf
` ,max

j∈NS
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1
`∈S

nj+1∑
ij=1
j∈NS

Ll(max
`∈S

x`,i` ,max
j∈NS

xj,ij−1) (3.37)

E(Ll(max
`∈S

Xf
` ,max

j∈NS
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1
`∈S

nj+1∑
ij=1
j∈NS

Ll(max
`∈S

x`,i`−1,max
j∈NS

xj,ij) (3.38)

These multiple summations
n`+1∑
i`=1
`∈S

and
nj+1∑
ij=1
j∈NS

are defined as above.

3.5.3 Quadratic loss function

Similarly, the same events mentioned above are considered; however, the focus here

is on quantifying the impact of selecting a suboptimal group based on future obser-

vations from the three different events, using the quadratic loss function. The first

case is selecting the best group. The definition of the quadratic loss for the event

Xf
` ≥ max

j 6=`
Xf
j is

Lq(X
f
` ,max

j 6=`
Xf
j ) =


0 if Xf

` ≥ max
j 6=`

Xf
j

(Xf
` −max

j 6=`
Xf
j )2 if Xf

` < max
j 6=`

Xf
j

(3.39)

The NPI lower (upper) expected quadratic loss for the event Xf
` ≥ max

j 6=`
Xf
j is

derived by putting the probability mass per interval at the right (left) endpoint per

interval for group ` and at the left (right) endpoint per interval for all other groups.

Therefore, the NPI lower and upper expected quadratic losses, respectively, are

E(Lq(X
f
` ,max

j 6=`
Xf
j )) =

1∏k
j=1(nj + 1)

n`+1∑
i`=1

nj+1∑
ij=1
j∈NS

Lq(x`,i` ,max
j 6=`

xj,ij−1) (3.40)
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E(Lq(X
f
` ,max

j 6=`
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1

nj+1∑
ij=1
j∈NS

Lq(x`,i`−1,max
j 6=`

xj,ij) (3.41)

The second case is to select the subset that contains the best groups. Again,

the selection of the subset of best groups will be evaluated using the quadratic loss

function. The definition of quadratic loss for the event min
`∈S

Xf
` ≥ max

j∈NS
Xf
j is

Lq(min
`∈S

Xf
` ,max

j∈NS
Xf
j ) =


0 if min

`∈S
Xf
` ≥ max

j∈NS
Xf
j

(min
`∈S

Xf
` − max

j∈NS
Xf
j )2 if min

`∈S
Xf
` < max

j∈NS
Xf
j

(3.42)

For this case, the NPI lower (upper) expected loss for the quadratic loss function

is derived by assigning the probability mass per interval to the right (left) endpoint

for all w groups in the subset and to the left (right) endpoint for the other k − w

groups. The NPI lower and upper expected quadratic losses, respectively, for the

event min
`∈S

Xf
` ≥ max

j∈NS
Xf
j are

E(Lq(min
`∈S

Xf
` ,max

j∈NS
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1
`∈S

nj+1∑
ij=1
j∈NS

Lq(min
`∈S

x`,i` ,max
j∈NS

xj,ij−1) (3.43)

E(Lq(min
`∈S

Xf
` ,max

j∈NS
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1
`∈S

nj+1∑
ij=1
j∈NS

Lq(min
`∈S

x`,i`−1,max
j∈NS

xj,ij) (3.44)

The last case is to select the subset including the best group. The definition of

quadratic loss for the event max
`∈S

Xf
` ≥ max

j∈NS
Xf
j is

Lq(max
`∈S

Xf
` ,max

j∈NS
Xf
j ) =


0 if max

`∈S
Xf
` ≥ max

j∈NS
Xf
j

(max
`∈S

Xf
` − max

j∈NS
Xf
j )2 if max

`∈S
Xf
` < max

j∈NS
Xf
j

(3.45)

In the final case, which involves selecting a subset that includes the best group,

deriving the NPI lower (upper) expected quadratic loss requires assigning the proba-

bility mass per interval to the right (left) endpoints for all the groups that belong to

the subset S and to the left (right) endpoints for the other groups that belong to NS.
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The NPI lower and upper expected quadratic losses for the event max
`∈S

Xf
` ≥ max

j∈NS
Xf
j ,

respectively, are

E(Lq(max
`∈S

Xf
` ,max

j∈NS
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1
`∈S

nj+1∑
ij=1
j∈NS

Lq(max
`∈S

x`,i` ,max
j∈NS

xj,ij−1) (3.46)

E(Lq(max
`∈S

Xf
` ,max

j∈NS
Xf
j )) =

1∏k
t=1(nt + 1)

n`+1∑
i`=1
`∈S

nj+1∑
ij=1
j∈NS

Lq(max
`∈S

x`,i`−1,max
j∈NS

xj,ij) (3.47)

Note: As in pairwise comparisons with linear and quadratic loss, future obser-

vations are bounded by l and r, set below the minimum and above the maximum

observed data points, respectively.

3.5.4 Strong and weak preference

This section extends the analysis by introducing strong and weak preference criteria

based on comparisons of NPI lower and upper expected losses across group combi-

nations. A strong preference occurs when the NPI upper expected loss for event A,

E(L(A)), is less than the NPI lower expected loss for event B, E(L(B)); that is,

E(L(A)) < E(L(B)), indicating that A is clearly preferred over B due to a smaller

NPI upper expected loss. When this condition is not met, a weak preference may

still be established if both the lower and upper expected losses of A are less than

those of B; that is, E(L(A)) < E(L(B)) and E(L(A)) < E(L(B)), suggesting that

A tends to be better than B, albeit with less certainty.

In this section, the events A and B correspond to either selecting the best group,

selecting a subset of the best groups or selecting the subset that includes the best

group. By incorporating strong and weak preference criteria, we not only identify

the best groups, subsets of the best groups and the subset that includes the best

group, but we also determine which groups or subsets are clearly inferior and which

might still be an acceptable alternative.

Additionally, it may be useful to consider all events whose NPI lower and upper

expected losses overlap with the lowest NPI lower and upper expected losses of the

best group, subset of the best groups or the subset that includes the best group.
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This allows for decision-making where a non-optimal but acceptable group or subset

could still be considered a reasonable alternative.

The following example quantifies the loss of making incorrect NPI multiple com-

parisons using zero-one, linear, and quadratic loss functions. Additionally, the re-

sults under each loss function are compared to assess whether they lead to the

selection of the same groups and support consistent conclusions.

Example 3.5.1 Simpson and Margolin [68] presented the dataset shown in Table

3.2. It contains data from an experiment in which six different doses of a chemical,

Acid Red 114, were tested using the Ames test. This test uses the Salmonella strain

TA98 to detect whether the chemical induces mutations. For each dose, the table

lists the number of mutation colonies—an indicator of mutagenic activity. Each row

corresponds to a dose level (Dose 1 to Dose 6), and the values represent replicate

measurements. Higher counts indicate more mutation colonies and may suggest a

stronger mutagenic effect of the chemical.

The aim is to illustrate the NPI multiple comparisons method using the loss

functions introduced in this section, applying it to measure the penalty of selecting

suboptimal groups based on NPI lower and upper expected zero-one, linear, and

quadratic losses across all dose levels. In this example, three events of interest

are considered: selecting the best dose Xf
` ≥ max

j 6=`
Xf
j , selecting a subset of the

best doses min
`∈S

Xf
` ≥ max

j∈NS
Xf
j , and selecting a subset that contains the best dose

max
`∈S

Xf
` ≥ max

j∈NS
Xf
j . It is worth noting that the dataset contains tied observations.

To simplify inference, the ties between observations are broken by adding a very

small amount to each tied observation. This adjustment does not impact their

rankings within each dose or across other doses.

The lower and upper bounds for future observations are defined as l = 7 and

r = 99, where l is smaller than the minimum observed value (8) and r is greater

than the maximum (98). These bounds are used to calculate the NPI lower and

upper expected linear and quadratic losses.

Table 3.3, in the first and second columns , presents the NPI lower and upper

expected zero-one losses for selecting the best dose. Using Equations (3.22) and

(3.23), the best dose in terms of selection is Dose 4, as it has the lowest NPI lower
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Dose Data

1 14.0 16.0 17.0 19.0 22.0 22.1 23.0 23.1 35.0

2 15.0 21.0 23.2 24.0 25.0 27.0 54.0 59.1 60.0

3 17.1 26.0 28.0 31.0 35.1 37.0 50.0 78.0 98.0

4 30.0 37.1 39.0 41.0 43.0 44.0 59.0 60.1 82.0

5 21.1 22.2 23.3 26.1 28.1 30.1 33.0 33.1 44.1

6 8.0 10.0 13.0 16.1 19.1 21.2 23.4 25.1

Table 3.2: Dataset from Ames tests showing the number of mutation colonies of

Salmonella strain TA98 exposed to six different doses of Acid Red 114, used in

Example 3.5.1. These are not the original data, and ties have been broken by

adding 0.1

and upper expected zero-one losses E(L{0,1}) = 0.4304 and E(L{0,1}) = 0.7459.

This is because the observations for Dose 4 are generally higher than those for the

other doses. Values such as 82, 60.1, and 59 are among the highest in the dataset,

indicating better performance compared to the other doses.

On the other hand, the worst doses appear to be Doses 1 and 6. Dose 1 has

the highest NPI lower expected zero-one loss E(L{0,1}) = 0.8932, while Dose 6 has

the highest NPI upper expected zero-one loss E(L{0,1}) = 1.0000. This is because

observations from these doses are generally smaller than other doses. For example,

Dose 1 includes smaller values such as 14 and 16, while Dose 6 includes values such

as 8 and 10, which contribute to their higher losses. Therefore, according to the

zero-one loss function, selecting these doses would be poor decisions.

Table 3.4 presents the NPI lower and upper expected zero-one losses for selecting

a subset of the best groups. The subset {2, 3, 4, 5} has the lowest NPI lower and

upper expected zero-one losses, with E(L{0,1}) = 0.3948 and E(L{0,1}) = 0.7155,

indicating that it is the best selected subset.

Selecting a non-optimal subset means choosing a subset with higher NPI lower

and upper expected zero-one losses, which increases the risk of making a suboptimal

selection decision. However, it may still be reasonable to select a subset that is

not the best but remains an acceptable alternative. For example, consider the
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Zero-one Loss Linear Loss Quadratic Loss

` E(L{0,1}) E(L{0,1}) E(Ll) E(Ll) E(Lq) E(Lq)

{1} 0.8932 0.9983 34.1748 57.1891 1673.339 3879.282

{2} 0.7129 0.8992 22.7565 45.3154 1033.496 2869.519

{3} 0.6216 0.8537 14.0939 35.7977 457.8021 2130.9197

{4} 0.4304 0.7459 10.6018 32.3091 403.8369 1812.2227

{5} 0.8428 0.9780 27.2109 50.1899 1202.542 3162.278

{6} 0.8880 1.0000 37.5337 60.8572 1957.901 4305.504

Table 3.3: NPI lower and upper expected zero-one, linear, and quadratic loss values

for selecting the best group, where the event is defined asXf
` ≥ max

j 6=`
Xf
j , for Example

3.5.1.

subset {3, 4, 5} with E(L{0,1}) = 0.5527 and E(L{0,1}) = 0.8003. Although it does

not perform as well as {2, 3, 4, 5}, it still performs better than many other subsets

because its corresponding NPI lower and upper expected zero-one losses are lower

in comparison. This indicates a smaller expected loss and, therefore, a lower risk of

incorrect selection than that associated with other subsets whose losses are higher.

The range between E(L{0,1}) and E(L{0,1}) represents the uncertainty interval for

each subset. In Table 3.4, the range between E(L{0,1}) and E(L{0,1}) varies across

subsets. For subsets {2, 3, 4, 5}, the range is 0.3207, with low NPI lower and upper

expected zero-one losses. However, for subsets {1, 2, 6}, the range is 0.0056, with

high NPI lower and upper expected zero-one losses.

Tables 3.3, in the third and fourth columns, 3.6, and 3.7 show the NPI lower

and upper expected linear losses for the three events considered above, respectively.

The linear loss function differs from the zero-one loss function because it does not

classify correct and incorrect selections, but measures the distance between them.

Table 3.3, in the third and fourth columns, shows that Dose 6 is the worst selection,

with the highest NPI lower and upper expected linear losses E(Ll) = 37.5337,

E(Ll) = 60.8572. The second worst selection is Dose 1, with the NPI lower and

upper expected linear losses of E(Ll) = 34.1748 and E(Ll) = 57.1891. This differs

from the zero-one loss function, where Dose 1 had the highest NPI lower expected
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zero-one loss and Dose 6 had the highest NPI upper expected zero-one loss. Similarly

to the zero-one loss function, the lowest NPI lower and upper expected linear losses

are associated with the selection of Dose 4 as the best.

To illustrate subset selection, we begin by considering the selection of a subset

containing all the best doses. Table 3.6 presents three cases for selecting a subset of

the best doses: a subset containing two out of six doses, a subset containing three

out of six doses and a subset containing four out of six doses.

In the first case, the NPI lower and upper expected linear losses suggest that

selecting {3, 4}, followed by {2, 4}, as a subset containing the best doses, leads to

good selections. However, the NPI lower and upper expected linear losses indicate

that selecting {1, 6} and {5, 6} would be poor decisions, making it unlikely to yield

the largest future observations.

Moving on to subsets containing three doses out of six, the subset {2, 3, 4} shows

the smallest NPI lower and upper expected linear losses followed by {3, 4, 5}, with

the NPI lower expected linear loss of 5.6885 and 10.3902 respectively, and an NPI

upper expected linear loss of 29.8954 and 33.7647 respectively. The subset of best

groups {2, 3, 4} has the lowest NPI lower and upper expected linear losses, while

the complementary subset {1, 5, 6} has the highest NPI lower and upper expected

linear losses, which would be a poor decision. Based on the results of this example, a

possible conclusion is that when a subset of the best doses leads to a good selection,

its complementary subset is more likely to lead to a poor selection. Moreover, most

of the remaining NPI lower and upper expected linear losses were relatively high,

suggesting an unfavourable decision.

Considering subsets containing four out of six doses, the values E(Ll) = 2.2401

and E(Ll) = 22.0169 corresponding to the subset {2, 3, 4, 5} represent the smallest

NPI lower and upper expected linear losses among all subsets in Table 3.6. This

strongly suggests that selecting this subset would be a good decision. The com-

plement of the subset of {2, 3, 4, 5}, which is {1, 6}, has the highest NPI lower and

upper expected linear losses. Generally, it is evident that all selected subsets includ-

ing doses 6 and 1 lead to high NPI lower and upper expected linear losses, while

subsets including doses 4 and 3 result in low NPI lower and upper expected linear
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losses.

Table 3.7 shows the NPI lower and upper expected linear losses for selecting a

subset that includes the best group. Most of the NPI lower and upper expected linear

losses in this table are lower than those in Table 3.6. In this table, the lowest NPI

lower expected linear loss is almost zero and corresponds to the subset {2, 3, 4, 5}.

The NPI lower and upper expected quadratic losses for the three different selec-

tion cases are presented in Tables 3.3, in the fifth and sixth columns, 3.8 and 3.9,

respectively. The quadratic loss function incurs a penalty of the quadratic deviation

between the selected doses and non-selected doses. A large difference between the

selected doses and non-selected doses is penalised more than a smaller one. For ex-

ample, in Table 3.3, in the fifth and sixth columns, the NPI lower and upper expected

quadratic losses for selecting Dose 6 as the best are E(Lq(X
f
6 ,max

j 6=6
Xf
j )) = 1957.901

and E(Lq(X
f
6 ,max

j 6=6
Xf
j )) = 4305.504, respectively, while penalised less for selecting

Dose 1 as the best with E(Lq(X
f
1 ,max

j 6=1
Xf
j )) = 1673.339 and E(Lq(X

f
1 ,max

j 6=1
Xf
j )) =

3879.282. Selecting Dose 6 as the best is penalised more than selecting Dose 1 and

this is due to the fact that the observations that belong to Dose 6 are smaller than

those of Dose 1. For the rest doses, the results in this table confirm those in Table

3.3, in the third and fourth columns. In conclusion, the selected subsets based on

linear and quadratic loss functions are similar. Specifically, the selected subsets in

Table 3.8 (quadratic loss for a subset of best groups) and Table 3.9 (quadratic loss

for a subset containing the best group) are similar to those in Table 3.6 and Table

3.7 (linear loss function). Furthermore, under the quadratic loss function, selecting

a subset of the best groups in Table 3.8 is similar to selecting a subset including the

best group Table 3.9.

In conclusion, the results of the zero-one loss function differ slightly from those

of the linear and quadratic loss functions. However, the results of the linear and

quadratic loss functions are fairly similar to each other and lead to the same con-

clusions.

This discussion can now be extended by introducing strong and weak preference

criteria, based on comparisons of NPI lower and upper expected losses across differ-

ent group combinations. Since the findings in Table 3.3 for the zero-one, linear, and
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quadratic losses are similar, the discussion of strong and weak preferences will focus

on the first and second columns, which present the NPI lower and upper expected

zero-one losses.

For strong preference, selecting Dose 4 as the best is strongly preferred over

selecting Doses 1, 5, and 6 as the best because the NPI upper expected zero-one loss

for selecting Dose 4 as the best, which is E(L{0,1}) = 0.7459, is less than the NPI

lower expected zero-one loss for selecting Doses 1, 5, and 6, which are 0.8932, 0.8428,

and 0.8880, respectively. Therefore, they are considered inferior alternatives.

For weak preference, for example, a comparison between selecting Dose 4 and

Dose 3 shows that the NPI lower and upper expected zero-one losses for selecting

Dose 4 as the best are both smaller than those for selecting Dose 3 as the best.

Specifically, E(L{0,1}) = 0.4304 for Dose 4 compared with 0.6216 for Dose 3, and

E(L{0,1}) = 0.7459 for Dose 4 compared with 0.8537 for Dose 3. However, since

the NPI lower and upper expected zero-one losses intervals overlap between Doses

4 and 3, Dose 4 is weakly preferred over Dose 3, which means that while Dose 4 is

the better choice, Dose 3 remains a reasonable alternative.

It may be of interest to consider all doses which have the NPI lower and upper

expected zero-one losses overlap with NPI lower and upper expected zero-one losses

of the best dose. Comparing doses 3 and 2 shows that the NPI lower expected loss

is E(L{0,1}) = 0.6216 for dose 3 and E(L{0,1}) = 0.7129 for dose 2, so dose 3 has the

smaller value. Similarly, the NPI upper expected loss is E(L{0,1}) = 0.8537 for dose

3 and E(L{0,1}) = 0.8992 for dose 2. This again suggests a weak preference for Dose

3 over Dose 2, meaning that Dose 3 is more favorable, but Dose 2 is still relatively

competitive. There is a partial overlap between the NPI lower and upper expected

zero-one losses of Dose 4 with NPI lower expected zero-one losses of doses 3 and

2. Therefore, Doses 3 and 2 not strongly worse and still be considered a reasonable

alternative.

To illustrate the concept of strong preference for selecting a subset of the best

doses, we examine a few subsets from Table 3.4, rather than the entire table due

to its length. The lowest NPI lower and upper expected zero-one losses are related

to a select subset {2, 3, 4, 5}, with 0.3948 and 0.7155, respectively. Since the NPI
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upper expected zero-one loss of the subset {2, 3, 4, 5} is less than the NPI lower

expected zero-one loss of multiple other subsets, this indicates a strong preference

for {2, 3, 4, 5} over these subsets. This suggests that selecting {2, 3, 4, 5} results in a

smaller loss compared to these alternatives. Furthermore, the NPI upper expected

zero-one loss for {4, 5, 6} was less than the NPI lower expected zero-one loss for

{1, 5, 6}. Also, the NPI upper expected zero-one loss for {2, 3, 5} was less than the

NPI lower expected zero-one loss for {1, 3, 6}, {1, 2, 6}, and {1, 5, 6}. Therefore, the

subset {4, 5, 6} is strongly preferred over {2, 3, 5} and the subset {2, 3, 5} is strongly

preferred over {1, 3, 6}, {1, 2, 6}, and {1, 5, 6}. These subsets should be excluded

from consideration.

For weak preference, the NPI lower expected zero-one loss for subset {2, 3, 4, 5}

is less than the NPI lower expected zero-one loss for subsets {2, 4}, {3, 4}, {3, 4, 5},

and {2, 3, 4}, and the NPI upper expected zero-one loss for subset {2, 3, 4, 5} is

less than the NPI upper expected zero-one loss for subsets {2, 4}, {3, 4}, {3, 4, 5},

and {2, 3, 4}. Therefore, {2, 3, 4, 5} demonstrates a weak preference over several

other subsets. This suggests that {2, 3, 4, 5} is a preferable selection compared to

these subset alternatives. Unlike strong preference, weak preference allows for some

overlap in NPI lower and upper expected zero-one losses. The NPI lower and upper

expected zero-one losses for {2, 4}, {3, 4}, {3, 4, 5}, and {2, 3, 4} partially overlap

with the NPI lower and upper expected zero-one losses for the subset of the best

groups {2, 3, 4, 5}, meaning they might still be considered in decision-making.

Similar methods are applied to all three events described earlier, using the three

different loss functions. To avoid repetition, only key results and interpretations are

presented.
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S E(L{0,1}) E(L{0,1}) S E(L{0,1}) E(L{0,1})

{1, 2} 0.9657 0.9991 {2, 3, 4} 0.6070 0.8366

{1, 3} 0.9504 0.9975 {2, 3, 5} 0.9090 0.9911

{1, 4} 0.9077 0.9848 {2, 3, 6} 0.9741 1.0000

{1, 5} 0.9777 0.9992 {2, 4, 5} 0.7860 0.9312

{1, 6} 0.9876 1.0000 {2, 4, 6} 0.9504 0.9965

{2, 3} 0.8391 0.9531 {2, 5, 6} 0.9862 1.0000

{2, 4} 0.7031 0.8844 {3, 4, 5} 0.5527 0.8003

{2, 5} 0.9310 0.9890 {3, 4, 6} 0.9029 0.9840

{2, 6} 0.9664 1.0000 {3, 5, 6} 0.9760 1.0000

{3, 4} 0.4989 0.7738 {4, 5, 6} 0.9485 0.9942

{3, 5} 0.8903 0.9823 {1, 2, 3, 4} 0.8340 0.9607

{3, 6} 0.9538 1.0000 {1, 2, 3, 5} 0.9316 0.9994

{4, 5} 0.7538 0.9138 {1, 2, 3, 6} 0.9848 1.0000

{4, 6} 0.9277 0.9980 {1, 2, 4, 5} 0.8709 0.9720

{5, 6} 0.9801 1.0000 {1, 2, 4, 6} 0.9749 0.9984

{1, 2, 3} 0.9687 0.9988 {1, 2, 5, 6} 0.9857 1.0000

{1, 2, 4} 0.9334 0.9891 {1, 3, 4, 5} 0.7761 0.9302

{1, 2, 5} 0.9813 0.9996 {1, 3, 4, 6} 0.9572 0.9954

{1, 2, 6} 0.9944 1.0000 {1, 3, 5, 6} 0.9794 1.0000

{1, 3, 4} 0.8761 0.9699 {1, 4, 5, 6} 0.9653 0.9962

{1, 3, 5} 0.9685 0.9987 {2, 3, 4, 5} 0.3948 0.7155

{1, 3, 6} 0.9916 1.0000 {2, 3, 4, 6} 0.8756 0.9722

{1, 4, 5} 0.9278 0.9857 {2, 3, 5, 6} 0.9562 1.0000

{1, 4, 6} 0.9844 0.9994 {2, 4, 5, 6} 0.9146 0.9843

{1, 5, 6} 0.9949 1.0000 {3, 4, 5, 6} 0.8322 0.9509

Table 3.4: NPI lower and upper expected zero-one losses of selecting the subset of

best groups, where the event is defined as min
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example 3.5.1.
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S E(L{0,1}) E(L{0,1}) S E(L{0,1}) E(L{0,1})

{1, 2} 0.6359 0.8860 {2, 3, 4} 0.0297 0.3312

{1, 3} 0.5543 0.8353 {2, 3, 5} 0.3219 0.6583

{1, 4} 0.3844 0.7141 {2, 3, 6} 0.3557 0.6852

{1, 5} 0.7530 0.9736 {2, 4, 5} 0.1853 0.5076

{1, 6} 0.7932 0.9981 {2, 4, 6} 0.2125 0.5417

{2, 3} 0.4005 0.7202 {2, 5, 6} 0.5269 0.8452

{2, 4} 0.2390 0.5928 {3, 4, 5} 0.1282 0.4353

{2, 5} 0.5933 0.8624 {3, 4, 6} 0.1552 0.4708

{2, 6} 0.6330 0.8866 {3, 5, 6} 0.4566 0.7874

{3, 4} 0.1747 0.5300 {4, 5, 6} 0.3134 0.6438

{3, 5} 0.5140 0.8110 {1, 2, 3, 4} 0.0247 0.2514

{3, 6} 0.5521 0.8354 {1, 2, 3, 5} 0.2861 0.6174

{4, 5} 0.3526 0.6837 {1, 2, 3, 6} 0.3163 0.6474

{4, 6} 0.3826 0.7139 {1, 2, 4, 5} 0.1646 0.4479

{5, 6} 0.7486 0.9753 {1, 2, 4, 6} 0.1890 0.4860

{1, 2, 3} 0.3562 0.6866 {1, 2, 5, 6} 0.4700 0.8253

{1, 2, 4} 0.2126 0.5434 {1, 3, 4, 5} 0.1134 0.3670

{1, 2, 5} 0.5292 0.8448 {1, 3, 4, 6} 0.1376 0.4067

{1, 2, 6} 0.5647 0.8718 {1, 3, 5, 6} 0.4072 0.7610

{1, 3, 4} 0.1548 0.4731 {1, 4, 5, 6} 0.2798 0.5995

{1, 3, 5} 0.4583 0.7875 {2, 3, 4, 5} 0.0019 0.2068

{1, 3, 6} 0.4924 0.8147 {2, 3, 4, 6} 0.0264 0.2470

{1, 4, 5} 0.3148 0.6443 {2, 3, 5, 6} 0.2859 0.6156

{1, 4, 6} 0.3417 0.6781 {2, 4, 5, 6} 0.1647 0.4457

{1, 5, 6} 0.6688 0.9703 {3, 4, 5, 6} 0.1140 0.3641

Table 3.5: NPI lower and upper expected zero-one losses of selecting a subset in-

cluding the best group, where the event is defined as max
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example

3.5.1.
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S E(Ll) E(Ll) S E(Ll) E(Ll)

{1, 2} 34.9477 55.3738 {2, 3, 4} 5.68850 29.8954

{1, 3} 28.7743 51.1647 {2, 3, 5} 22.3451 43.9112

{1, 4} 27.8148 50.7094 {2, 3, 6} 29.3693 48.8225

{1, 5} 37.3066 56.6131 {2, 4, 5} 19.2199 41.2513

{1, 6} 42.4880 60.4514 {2, 4, 6} 27.5179 47.5186

{2, 3} 19.8424 43.7958 {2, 5, 6} 38.4210 55.5623

{2, 4} 17.3581 41.3344 {3, 4, 5} 10.3902 33.7647

{2, 5} 30.3934 51.6082 {3, 4, 6} 19.9305 41.6327

{2, 6} 37.8822 57.8642 {3, 5, 6} 32.5862 51.2700

{3, 4} 8.46740 33.7454 {4, 5, 6} 31.4056 50.5844

{3, 5} 23.0669 46.2162 {1, 2, 3, 4} 8.73640 28.1915

{3, 6} 32.0150 53.9602 {1, 2, 3, 5} 25.9832 43.5788

{4, 5} 21.1008 44.5300 {1, 2, 3, 6} 30.8707 46.1092

{4, 6} 31.3320 53.8619 {1, 2, 4, 5} 22.6324 40.5829

{5, 6} 40.4324 59.2961 {1, 2, 4, 6} 28.9439 44.5852

{1, 2, 3} 26.5165 46.8793 {1, 2, 5, 6} 39.8022 53.6459

{1, 2, 4} 24.4091 45.3344 {1, 3, 4, 5} 13.5886 32.4965

{1, 2, 5} 35.6140 53.5713 {1, 3, 4, 6} 21.3434 37.9693

{1, 2, 6} 40.1856 56.5326 {1, 3, 5, 6} 34.1252 48.9638

{1, 3, 4} 16.5288 39.1716 {1, 4, 5, 6} 32.8671 48.1050

{1, 3, 5} 29.5769 49.1493 {2, 3, 4, 5} 2.24010 22.0169

{1, 3, 6} 34.6561 52.3227 {2, 3, 4, 6} 12.0004 30.0951

{1, 4, 5} 28.1343 48.2002 {2, 3, 5, 6} 28.7625 45.1369

{1, 4, 6} 34.2322 52.2573 {2, 4, 5, 6} 25.7232 42.4603

{1, 5, 6} 42.5934 58.2843 {3, 4, 5, 6} 16.9837 34.6531

Table 3.6: NPI lower and upper expected linear losses of selecting the subset of best

groups, where the event is defined as min
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example 3.5.1.
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S E(Ll) E(Ll) S E(Ll) E(Ll)

{1, 2} 19.3017 40.3889 {2, 3, 4} 0.12450 11.5390

{1, 3} 12.0711 31.4007 {2, 3, 5} 5.53170 20.3509

{1, 4} 9.49290 28.4785 {2, 3, 6} 6.35750 21.5724

{1, 5} 23.7877 45.7575 {2, 4, 5} 5.55900 20.1295

{1, 6} 29.1889 52.3636 {2, 4, 6} 5.69460 20.5044

{2, 3} 7.19010 24.9083 {2, 5, 6} 14.7935 33.7774

{2, 4} 6.40640 23.7837 {3, 4, 5} 1.86360 14.3990

{2, 5} 16.6857 37.0411 {3, 4, 6} 2.01780 14.5894

{2, 6} 19.7847 41.2150 {3, 5, 6} 9.43860 25.9697

{3, 4} 2.27000 17.8944 {4, 5, 6} 8.16920 24.2211

{3, 5} 10.6339 29.2327 {1, 2, 3, 4} 0.10150 8.28640

{3, 6} 12.3014 31.8729 {1, 2, 3, 5} 4.87080 17.0155

{4, 5} 9.19030 27.4469 {1, 2, 3, 6} 5.53990 18.0082

{4, 6} 9.42380 28.6125 {1, 2, 4, 5} 4.98380 16.9224

{5, 6} 24.0498 46.4143 {1, 2, 4, 6} 5.09950 17.1635

{1, 2, 3} 6.25170 21.5808 {1, 2, 5, 6} 13.0028 30.1196

{1, 2, 4} 5.73690 20.7035 {1, 3, 4, 5} 1.66520 11.1756

{1, 2, 5} 14.6588 33.6260 {1, 3, 4, 6} 1.80000 11.2582

{1, 2, 6} 16.9696 36.8722 {1, 3, 5, 6} 8.32760 22.4753

{1, 3, 4} 2.02500 14.8396 {1, 4, 5, 6} 7.32320 20.9291

{1, 3, 5} 9.37900 26.0007 {2, 3, 4, 5} 0.00780 7.99790

{1, 3, 6} 10.6326 27.9503 {2, 3, 4, 6} 0.11060 7.94240

{1, 4, 5} 8.23860 24.4311 {2, 3, 5, 6} 4.91330 16.8239

{1, 4, 6} 8.43820 25.1496 {2, 4, 5, 6} 4.94130 16.6126

{1, 5, 6} 21.0516 42.3873 {3, 4, 5, 6} 1.65650 10.8340

Table 3.7: NPI lower and upper expected linear losses of selecting a subset including

the best group, where the event is defined as max
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example 3.5.1.
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S E(Lq) E(Lq) S E(Lq) E(Lq)

{1, 2} 1708.1740 3762.1080 {2, 3, 4} 80.715900 1911.2216

{1, 3} 1098.1070 3280.4380 {2, 3, 5} 775.34130 2673.2810

{1, 4} 1298.6850 3424.5130 {2, 3, 6} 1139.7230 3075.3430

{1, 5} 1827.8860 3819.7430 {2, 4, 5} 931.67640 2758.7008

{1, 6} 2236.2680 4248.0460 {2, 4, 6} 1321.0080 3221.2300

{2, 3} 673.93840 2733.3166 {2, 5, 6} 1976.0380 3774.8407

{2, 4} 789.77480 2721.4021 {3, 4, 5} 303.27680 2127.8704

{2, 5} 1417.5300 3396.9990 {3, 4, 6} 630.49180 2616.2290

{2, 6} 1941.7330 4039.7240 {3, 5, 6} 1343.3060 3243.9700

{3, 4} 210.24360 2076.2528 {4, 5, 6} 1561.9900 3427.5630

{3, 5} 796.11510 2841.8422 {1, 2, 3, 4} 133.44520 1647.4998

{3, 6} 1316.8800 3561.8270 {1, 2, 3, 5} 961.78160 2532.0795

{4, 5} 940.62030 2884.1461 {1, 2, 3, 6} 1218.7610 2717.4820

{4, 6} 1532.1110 3740.1370 {1, 2, 4, 5} 1122.1620 2647.9050

{5, 6} 2091.5310 4127.7950 {1, 2, 4, 6} 1403.0410 2879.0640

{1, 2, 3} 965.71960 2904.1811 {1, 2, 5, 6} 2078.9120 3520.3440

{1, 2, 4} 1145.8120 3037.9920 {1, 3, 4, 5} 438.50690 1959.0988

{1, 2, 5} 1753.1950 3564.3350 {1, 3, 4, 6} 687.20900 2191.3048

{1, 2, 6} 2088.5720 3863.8690 {1, 3, 5, 6} 1439.8400 2926.5830

{1, 3, 4} 486.43670 2446.0625 {1, 4, 5, 6} 1664.0700 3133.3480

{1, 3, 5} 1140.0590 3044.1850 {2, 3, 4, 5} 22.213900 1433.1765

{1, 3, 6} 1453.7900 3332.7300 {2, 3, 4, 6} 221.38460 1713.0703

{1, 4, 5} 1351.8360 3210.3620 {2, 3, 5, 6} 1126.3560 2649.5620

{1, 4, 6} 1699.6140 3542.5310 {2, 4, 5, 6} 1281.5220 2771.5500

{1, 5, 6} 2245.6750 3986.6030 {3, 4, 5, 6} 559.99190 2058.4025

Table 3.8: NPI lower and upper expected quadratic losses of selecting the subset of

best groups, where the event is defined as min
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example 3.5.1.
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S E(Lq) E(Lq) S E(Lq) E(Lq)

{1, 2} 855.11350 2385.5194 {2, 3, 4} 0.932500 567.97400

{1, 3} 379.96460 1720.7849 {2, 3, 5} 160.6063 996.80800

{1, 4} 361.44270 1498.0677 {2, 3, 6} 188.5693 1075.2337

{1, 5} 1039.6090 2709.2280 {2, 4, 5} 228.0368 991.80170

{1, 6} 1394.0880 3337.8350 {2, 4, 6} 231.2735 1018.7411

{2, 3} 214.09660 1312.9873 {2, 5, 6} 626.4363 1827.0093

{2, 4} 260.18260 1211.3913 {3, 4, 5} 33.90700 686.22080

{2, 5} 707.53340 2087.2030 {3, 4, 6} 36.55530 694.95610

{2, 6} 886.43770 2467.8004 {3, 5, 6} 282.3014 1291.5134

{3, 4} 41.124700 888.76560 {4, 5, 6} 311.6912 1207.1413

{3, 5} 318.43500 1547.6210 {1, 2, 3, 4} 0.768500 404.03420

{3, 6} 392.94940 1765.9009 {1, 2, 3, 5} 141.0007 779.25280

{4, 5} 350.65260 1415.0635 {1, 2, 3, 6} 163.0488 829.58280

{4, 6} 358.96610 1521.0518 {1, 2, 4, 5} 204.6445 814.22470

{5, 6} 1059.0750 2774.1920 {1, 2, 4, 6} 207.3289 826.50180

{1, 2, 3} 184.38720 1075.7943 {1, 2, 5, 6} 547.3704 1543.1618

{1, 2, 4} 233.24500 1027.8210 {1, 3, 4, 5} 30.28680 506.04670

{1, 2, 5} 617.76140 1813.8157 {1, 3, 4, 6} 32.57200 503.55590

{1, 2, 6} 747.07410 2078.7775 {1, 3, 5, 6} 247.1745 1025.0956

{1, 3, 4} 36.643500 708.69460 {1, 4, 5, 6} 279.3515 998.23220

{1, 3, 5} 278.63650 1295.3316 {2, 3, 4, 5} 0.034400 394.91390

{1, 3, 6} 331.89250 1431.6910 {2, 3, 4, 6} 0.828900 385.85250

{1, 4, 5} 314.27040 1218.5646 {2, 3, 5, 6} 142.5876 764.77990

{1, 4, 6} 321.28240 1273.2049 {2, 4, 5, 6} 202.6994 797.09820

{1, 5, 6} 917.48620 2392.2870 {3, 4, 5, 6} 30.13950 486.28550

Table 3.9: NPI lower and upper expected quadratic losses of selecting a subset in-

cluding the best group, where the event is defined as max
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example

3.5.1.

�
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In the next example, simulated data from Normal distributions are used to quan-

tify the loss incurred when suboptimal groups are selected instead of the best possi-

ble ones, based on the NPI lower and upper expected zero-one, linear and quadratic

losses. The objective is to demonstrate how the method performs across various sce-

narios including different sample sizes and loss functions and to determine whether

all three loss functions yield consistent conclusions.

Example 3.5.2 This example illustrates the NPI multiple comparisons method

using zero-one, linear, and quadratic loss functions for four independent groups.

Data are generated from Normal distributions with sample sizes n = 10, 20, 50, and

100, each with a standard deviation of 1. The group distributions are as follows:

X1 ∼ N(0, 1), X2 ∼ N(0.2, 1), X3 ∼ N(0.4, 1), and X4 ∼ N(0.6, 1). To calculate

the NPI lower and upper expected linear and quadratic losses, the lower and upper

bounds for future observations are defined as l = −5 and r = 5.

The NPI lower and upper expected zero-one losses for the same simulated data

mentioned above are not included here to avoid repetition, as they can be directly

derived using the property, known as the NPI lower loss for an event is equal to the

NPI lower probability for the complement event. However, the conclusions drawn

from the zero-one loss function align with those of the linear and quadratic loss

functions.

Tables 3.10, 3.11, and 3.12 present the NPI lower and upper expected linear losses

for three different events: Xf
` ≥ max

j 6=`
Xf
j , min

`∈S
Xf
` ≥ max

j∈NS
Xf
j , and max

`∈S
Xf
` ≥ max

j∈NS
Xf
j ,

while Tables 3.13, 3.14, and 3.15 show the corresponding to the NPI lower and

upper expected quadratic losses for the same three events. Table 3.10 shows that

the smallest NPI lower and upper expected linear losses are consistently associated

with the selection of group 4 as the best across different sample sizes. Moreover,

for sample sizes of n = 10 and n = 50, the second smallest NPI lower and upper

expected linear losses are associated with selecting group 2 as the best, while for

n = 20 and n = 100, the second smallest NPI lower and upper expected linear losses

are associated with selecting group 3 as the best. Interestingly, the deviation between

the NPI lower and upper expected linear losses for each selected group decreases

as the sample size increases; this occurs because larger sample sizes provide more
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information, which may lead to reduced uncertainty. For example, the difference

between the NPI lower and upper expected linear losses for selecting group 4 as the

best is about 1.5 when n = 10, while it is 0.2 when n = 100. However, selecting

group 1 as the best leads to a poor decision because its associated NPI lower and

upper expected linear losses are the largest.

In the context of selecting the subset of the best groups, as presented in Table

3.11, choosing {2, 3, 4} as the best subset consistently leads to a good selection across

all sample sizes. In particular, bad choices are influenced by the varying sample sizes.

In this particular case, the subset {1, 3} is the worst selection when the sample sizes

are 10 and 50, while {1, 2} is the worst selection when the sample sizes are 20 and

100. Furthermore, it is essential to note that the subset {1, 3} results in the largest

NPI upper expected linear loss, which is almost 3 for the smallest sample size n = 10.

Similarly, for Table 3.12, selecting the subset that includes the best group leads

to the same conclusion as in Table 3.11, even though the NPI lower and upper

expected linear losses in this table differ. Moreover, it is evident that for sample

sizes of 50 and 100, all the NPI lower and upper expected linear losses in this table

are less than 1.

Regarding the quadratic loss function, Table 3.13 shows similar results to Table

3.10, where the smallest NPI lower and upper expected quadratic losses are consis-

tently associated with the selection of group 4 as the best across different sample

sizes. Tables 3.14 and 3.15 present the NPI lower and upper expected quadratic

losses for two different cases: selecting the subset of the best groups, and selecting

the subset that includes the best group, respectively. The conclusions drawn from

these tables are identical to those from the corresponding tables using the linear

loss function, although the NPI lower and upper expected quadratic losses differ. In

other words, for the case of selecting the best group, Table 3.10 corresponds to Table

3.13 when comparing the linear and quadratic loss functions, and the conclusions

derived from these tables are similar. This pattern holds for all other cases as well.

From Table 3.10, no strong preference among groups is observed for sample sizes

of 10 and 20, since the NPI upper expected linear loss of any group is not less than

the NPI lower expected linear loss of another group. However, when the sample
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n = 10 n = 20 n = 50 n = 100

` E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll)

{1} 0.9770 2.5165 1.1696 1.9923 1.5728 1.9181 1.2968 1.4727

{2} 0.6992 2.2214 1.0189 1.8331 0.9898 1.3299 1.2472 1.4217

{3} 0.8581 2.3926 0.8132 1.6237 1.1060 1.4486 0.9449 1.1185

{4} 0.4587 1.9691 0.6309 1.4369 0.6251 0.9591 0.9281 1.1007

Table 3.10: NPI lower and upper expected linear losses of selecting best group,

where the event is defined as Xf
` ≥ max

j 6=`
Xf
j for Example 3.5.2.

size increases to n = 50, the NPI upper expected linear loss of group 4, is less than

the NPI lower expected linear loss of groups 1, 2, and 3, meaning that group 4 is

strongly preferred over these groups. For n = 100, the NPI upper expected linear

loss of group 4 is less than the NPI lower expected linear loss of groups 1 and 2, but

not group 3. Therefore, group 4 is strongly preferred over groups 1 and 2 in this

case. Similar findings are observed in Table 3.13.

Table 3.11 shows that for sample sizes n = 10 and n = 20, no strong preference

is observed among the subsets of the best groups. However, when the sample size

increases to n = 50, the NPI upper expected linear loss of the subset {2, 3, 4} is less

than the NPI lower expected linear loss of all other subsets except {2, 4}, indicating

that {2, 3, 4} is strongly preferred over the remaining subsets. Furthermore, for

n = 100, the NPI upper expected linear loss of the subset {2, 3, 4} is less than the

NPI lower expected linear loss of all subsets except {3, 4} and {1, 3, 4}.

To avoid repetition, the same approach is followed for Tables 3.12, 3.14, and

3.15. In conclusion, the results consistently show that group 4 is the best selection

across all sample sizes, with the subset {2, 3, 4} performing best in subset selection

scenarios. The observed reduction in uncertainty with increasing sample size under

both linear and quadratic loss functions.
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n = 10 n = 20 n = 50 n = 100

S E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll)

{1, 2} 1.1285 2.7800 1.3530 2.2240 1.6230 1.9828 1.5832 1.7658

{1, 3} 1.2486 2.8850 1.2065 2.0869 1.7215 2.0789 1.3497 1.5347

{1, 4} 0.9011 2.5687 1.0527 1.9403 1.3444 1.7110 1.3308 1.5161

{2, 3} 1.0394 2.6943 1.0797 1.9662 1.2679 1.6356 1.3046 1.4901

{2, 4} 0.6676 2.3429 0.9153 1.8067 0.8221 1.1935 1.2824 1.4681

{3, 4} 0.8164 2.4894 0.7324 1.6255 0.9352 1.3053 1.0232 1.2102

{1, 2, 3} 1.1306 2.7934 1.1210 2.0213 1.5192 1.8883 1.2689 1.4531

{1, 2, 4} 0.7333 2.3680 0.9404 1.8329 1.0362 1.4008 1.2513 1.4361

{1, 3, 4} 0.8961 2.5361 0.7367 1.6218 1.1531 1.5189 0.9500 1.132

{2, 3, 4} 0.6139 2.2446 0.5823 1.4660 0.5725 0.9284 0.8994 1.0819

Table 3.11: NPI lower and upper expected linear losses of selecting the subset of

best groups, where the event is defined as min
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example 3.5.2.

n = 10 n = 20 n = 50 n = 100

S E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll) E(Ll)

{1, 2} 0.6387 1.5557 0.6603 1.1418 0.6147 0.8099 0.7480 0.8487

{1, 3} 0.4310 1.3045 0.5703 1.0415 0.4597 0.6467 0.5694 0.6649

{1, 4} 0.5245 1.4204 0.2733 0.6921 0.5043 0.6924 0.5065 0.6002

{2, 3} 0.3519 1.1948 0.5826 1.0573 0.3988 0.5811 0.4619 0.5535

{2, 4} 0.4414 1.3068 0.2838 0.7062 0.4365 0.6199 0.4081 0.4979

{3, 4} 0.2852 1.1071 0.2076 0.6197 0.3162 0.4916 0.2786 0.3631

{1, 2, 3} 0.1909 0.6480 0.3484 0.6182 0.2036 0.2994 0.2917 0.3431

{1, 2, 4} 0.2575 0.7482 0.1316 0.3474 0.2317 0.3303 0.2544 0.3039

{1, 3, 4} 0.1011 0.5202 0.0734 0.2745 0.1472 0.2367 0.1478 0.1920

{2, 3, 4} 0.0723 0.4665 0.0797 0.2828 0.1157 0.2014 0.0859 0.1267

Table 3.12: NPI lower and upper expected linear losses of selecting a subset including

the best group, where the event is defined as max
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example 3.5.2.
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n = 10 n = 20 n = 50 n = 100

` E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq)

{1} 1.6189 11.6665 2.2958 7.5086 3.6725 5.9530 2.9658 4.0525

{2} 1.3855 10.8252 1.9332 6.9806 1.9716 3.9797 2.7934 3.8706

{3} 1.6131 11.4092 1.5053 6.2983 2.3729 4.4363 1.9031 2.8982

{4} 0.5717 9.4787 0.9202 5.5084 1.0385 2.8588 1.8822 2.8819

Table 3.13: NPI lower and upper expected quadratic losses of selecting best group,

where the event is defined as Xf
` ≥ max

j 6=`
Xf
j for Example 3.5.2.

n = 10 n = 20 n = 50 n = 100

S E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq)

{1, 2} 2.1833 13.9570 2.6994 8.8263 3.7238 6.2609 3.7977 5.0579

{1, 3} 2.4094 14.3368 2.4340 8.4552 4.1976 6.7605 3.1130 4.3350

{1, 4} 1.3558 12.8326 1.9087 7.8176 2.8229 5.2756 3.0179 4.2371

{2, 3} 2.1765 13.7849 2.0479 7.9678 2.7929 5.2200 2.8549 4.0699

{2, 4} 1.1661 12.1987 1.5124 7.2965 1.4458 3.6976 2.7390 3.9501

{3, 4} 1.4037 12.7230 1.2427 6.8381 1.8701 4.1643 2.0716 3.2323

{1, 2, 3} 2.3397 13.8047 2.1440 8.1053 3.5733 6.0721 2.9244 4.0950

{1, 2, 4} 1.2253 11.7027 1.6444 7.3624 1.9534 4.1984 2.7357 3.9012

{1, 3, 4} 1.5648 12.4727 1.3524 6.7892 2.4675 4.7732 2.0574 3.1407

{2, 3, 4} 1.0848 11.2143 0.8684 6.0858 1.0255 2.9947 1.6915 2.7611

Table 3.14: NPI lower and upper expected quadratic losses of selecting the subset

of best groups, where the event is defined as min
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example 3.5.2.
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n = 10 n = 20 n = 50 n = 100

S E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq) E(Lq)

{1, 2} 0.3938 4.1715 0.8661 2.8738 1.0957 1.9320 1.1206 1.5471

{1, 3} 0.5509 4.5313 0.7630 2.6564 1.2808 2.1484 0.9194 1.3161

{1, 4} 0.2559 3.8141 0.5623 2.3708 0.6008 1.3381 0.8360 1.2262

{2, 3} 0.3383 4.0115 0.5270 2.3215 0.7454 1.4979 0.7213 1.1079

{2, 4} 0.1145 3.4067 0.3496 2.0669 0.2813 0.9274 0.6430 1.0233

{3, 4} 0.1967 3.6460 0.3438 1.9788 0.4032 1.0758 0.5251 0.8803

{1, 2, 3} 0.1640 1.8271 0.2876 1.1253 0.4873 0.8583 0.3712 0.5498

{1, 2, 4} 0.0404 1.5218 0.1826 0.9797 0.1380 0.4448 0.2893 0.4616

{1, 3, 4} 0.0937 1.6636 0.2052 0.9778 0.2432 0.5675 0.2717 0.4364

{2, 3, 4} 0.0303 1.4731 0.0638 0.7754 0.0737 0.3589 0.1127 0.2678

Table 3.15: NPI lower and upper expected quadratic losses of selecting a subset in-

cluding the best group, where the event is defined as max
`∈S

Xf
` ≥ max

j∈NS
Xf
j for Example

3.5.2.

�

3.6 Concluding remarks

A general overview of loss functions was presented, highlighting how they quantify

the impact of selecting suboptimal groups and guide the identification of the best

ones, particularly in selection processes. The discussion also covered how differ-

ent types of loss functions evaluate the consequences of suboptimal choices, and

introduced the NPI lower and upper expected losses.

Two main inferences were considered: pairwise comparison and multiple compar-

isons based on three types of loss functions. For pairwise comparisons, the impact

of selecting suboptimal groups was evaluated using three loss functions: zero-one,

linear, and quadratic loss functions. Through various examples, the conclusions

derived from the zero-one, linear, and quadratic loss functions are consistent. The

linear and quadratic loss functions are more accurate and informative than the zero-
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one loss function. While the zero-one loss simply indicates whether a selection is

correct or not, it does not quantify the exact loss. However, the linear loss function

provides a measure of the amount of the loss, capturing how far off the group that

provides the largest future observation is from the rest. The quadratic loss function

measures the squared difference between correct and incorrect choices. This function

penalises larger and more heavily as it squares the deviation.

The zero-one loss function offers several advantages, primarily its direct rela-

tionship with the NPI lower and upper probabilities, where the NPI lower expected

zero-one loss for an event equals the NPI lower probability of the complement event.

This property simplifies computation, enabling its application to a range of problems

involving NPI lower and upper probabilities. However, the zero-one loss function

only distinguishes between correct and incorrect selections.

Extending the evaluation to multiple comparisons involves three different events:

selecting the best group, selecting a subset of the best groups, and selecting a sub-

set that includes the best group, all based on the loss functions mentioned above.

The examples provided in this chapter cover both real-valued and simulated data,

providing an investigation of how the NPI method performs in various situations.

Once again, our findings show that the zero-one, linear, and quadratic loss functions

generally yield consistent results, though minor variations in selection may occur

depending on the loss function used.

The NPI lower and upper expected losses provide a framework for selecting the

best group, selecting a subset of the best groups, or selecting a subset that includes

the best group. These decisions can be made in terms of strong and weak preference

or by identifying the lowest NPI lower and upper expected losses to determine the

best selection. The event associated with the lowest NPI lower and upper expected

losses is considered the best choice.

Strong preference occurs when the NPI upper expected loss of one event is less

than the NPI lower expected loss of another. In this case, the selected group, a subset

of the best groups, or a subset that include the best group is strongly preferred over

the others. Weak preference occurs when both the NPI lower and upper expected

losses of selecting the best group, the subset of the best groups, or the subset that
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includes the best group are lower than the corresponding losses for another such

selection. This indicates that while one selection is preferred, alternative choices

may still be reasonable.

The zero-one loss function allows unbounded ranges for future observations. In

contrast, linear and quadratic loss functions require bounded ranges, as unbounded

values would affect the calculation of NPI lower and upper expected losses.

Although this work focuses on zero-one, linear, and quadratic loss functions,

future research could extend the analysis by exploring other types of loss function,

which may offer additional insights into the decision-making process. The choice

of loss function may influence which groups are selected, potentially resulting in

different subsets being identified as optimal.
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Chapter 4

NPI for ranking subset using loss

functions

4.1 Introduction

In decision-making, especially when comparing multiple populations, classical sta-

tistical methods like hypothesis testing have limitations. While useful for assessing

population equivalence, they fall short when the objective is to rank populations

such as identifying the largest, second-largest, and so on. In such cases, selecting a

ranked subset of the best groups becomes essential to support informed decisions.

Additionally, concepts such as loss functions can be used to quantify the loss incurred

when the ranking of selected groups deviates from the optimal ranking.

This chapter considers a similar scenario to that in Section 2.2, but extends the

focus beyond selecting a ranked subset of the best groups. The objective is to use a

loss function to guide the ranking of future observations within the selected subset

and to evaluate the quality of that ranking.

Two different loss functions, the zero-one loss function and the general multi-

level loss function, will be applied to scenarios involving the ranking of the future

observations from a ranked subset of three or more best groups. Additionally, a

special case involving the selection of a ranked subset of the two best groups will

be considered. The multi-level loss function will be used to guide their ranking and

assess its quality.
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For the zero-one loss function, the focus is on evaluating whether the groups are

ranked correctly. In contrast, the general multi-level loss function is used to guide

the selection of a ranked subset of the best groups and to assess the quality of the

ranking. The general multi-level loss function provides a fine-grained evaluation by

assigning different penalties for different types of errors, where ranking mistakes can

have different levels of impact. The zero-one loss function can be considered to be

a special case of the general multi-level loss function where there is a single level of

loss, i.e., a binary distinction between correct and incorrect rankings.

4.2 Ranked subset of multiple best groups using

zero-one loss function

The zero-one loss function in this section evaluates whether the groups in the subset

S are correctly ranked based on their future observations in a binary manner: the

loss is L{0,1} = 0 if the ranking is correct, and L{0,1} = 1 if it is not. It assigns a

fixed penalty for any incorrect ranking, without distinguishing between the type of

the error.

Consider a subset of all groups, consisting of w groups out of k independent

groups, with 1 ≤ w ≤ k − 1. Let S = {`1, `2, . . . , `w} ⊂ {1, 2, . . . , k}, and let

NS = {1, 2, . . . , k}\S, so NS is the set of k −w non-selected groups. Suppose that

the event of interest is max
jz∈NS

Xf
jz
< Xf

`w
< · · · < Xf

`1
. The zero-one loss function for

a ranked subset of w groups is

L{0,1}( max
jz∈NS

Xf
jz
, Xf

`w
, Xf

`w−1
, . . . , Xf

`1
) =


0 if max

jz∈NS
Xf
jz
< Xf

`w
< Xf

`w−1
< · · · < Xf

`1

1 if otherwise

(4.1)

The term ’otherwise’ implies that the zero-one loss function assigns a value of one for

all events involving incorrect ranking of future observations within selected subset,

except when max
jz∈NS

Xf
jz
< Xf

`w
< Xf

`w−1
< · · · < Xf

`1
. This exception corresponds to

correct ranking of future observations within the selected subset. The total number

of events for incorrect ranking of the w best groups within subset is (w + 1)! − 1.
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This accounts for all permutations of the groups that belong to S, denoted by `w to

`1 and the maximum future observation that belongs to NS.

As discussed in Section 3.4.1, the NPI lower and upper expected zero-one losses

are directly linked to the NPI lower and upper probabilities. Specifically, the NPI

lower expected zero-one loss for an event is equal to the NPI lower probability of

the complement event. The same holds for the NPI upper expected loss and the

NPI upper probability. This relationship provides a straightforward interpretation

and allows the expected losses to be determined directly from the corresponding

probabilities.

Sections 4.3 and 4.4 present the multi-level loss function for two cases: when the

ranked subset contains two and three groups. These cases are important, as they

demonstrate how the NPI lower and upper expected multi-level losses are derived

differently depending on the subset size. For w = 2, the NPI lower and upper

expected losses are derived, while for w = 3, NPI lower and upper expected losses

are derived.

4.3 Ranked subset of two best groups using multi-

level loss function

The objective of this section is to apply a multi-level loss function to assign graded

penalties for different levels of error in selecting a ranked subset of the two best

groups. The primary difference between the zero-one loss function and the multi-

level loss function is how they penalise incorrect ranking of subset groups. The

number of possible ways to rank two groups that belong to S, denoted by `1 and `2,

together with the maximum future observation among groups in NS is 3!.
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The multi-level loss function for the event of interest, max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
is

LML( max
jz∈NS

Xf
jz
, Xf

`2
, Xf

`1
) =



L0 if max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1

L1 if max
jz∈NS

Xf
jz
< Xf

`1
< Xf

`2

L2 if Xf
`2
< max

jz∈NS
Xf
jz
< Xf

`1

L3 if Xf
`1
< max

jz∈NS
Xf
jz
< Xf

`2

L4 if Xf
`2
< Xf

`1
< max

jz∈NS
Xf
jz

L5 if Xf
`1
< Xf

`2
< max

jz∈NS
Xf
jz

(4.2)

The multi-level loss function LML is more nuanced than the zero-one loss func-

tion, assigning different loss values to various ranking scenarios. It provides graded

penalties for different levels of errors, with zero loss for L0 and specific loss values

from L1 to L5 based on the nature of the error. For example, if max
jz∈NS

Xf
jz
< Xf

`1
<

Xf
`2
, the loss is L1, which could be a smaller penalty compared to Xf

`1
< Xf

`2
<

max
jz∈NS

Xf
jz
, which faces a loss of L5. This allows the evaluation to be more sensitive

to the severity of errors in the ranking of the groups within the subset than the

zero-one loss function. This can be particularly useful if certain selection and rank-

ing errors are more costly than others in a specific application. For example, if the

consequences of predicting Xf
`1
< Xf

`2
< max

jz∈NS
Xf
jz
are worse than those of predicting

max
jz∈NS

Xf
jz
< Xf

`1
< Xf

`2
, one would aim to avoid the mistake associated with the

largest penalty, denoted as L5.

To introduce the NPI lower and upper expected multi-level losses for the event

of interest, max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
, NPI is applied to each group using Hill’s assump-

tion A(n). Note that all the notation used in this section was provided earlier in

Section 2.3. To derive the NPI lower expected multi-level loss, the probability mass

corresponding to `1 is assigned to the right endpoint per interval. The probability

masses corresponding to jz ∈ NS are assigned to the left endpoint per interval.

For the middle group `2, the corresponding probability mass is assigned to a

chosen sub-interval within the `2 intervals, denoted as (x`2,u`2−1, x`2,u`2 ), where u`2 =

1, 2, . . . , n`2 + 1, which minimise the NPI lower expected multi-level loss.

There is a total of
∏k

t=1(nt + 1) combinations of orderings (intervals) of future
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observations from all k groups for the event max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
. For each

combination of orderings, it is necessary to determine which of L0, . . . , L5 is actually

possible, which is the minimum possible loss. The minimum possible loss occurs

when group `1 is as large as possible and each group belonging to NS is as small as

possible. Then, the probability
1∏k

t=1(nt + 1)
is assigned to the actual possible loss

Lc, where c = 0, . . . , 5, the value that minimises the NPI lower expected multi-level

loss. The process iterates over all orderings to determine the minimum possible

losses and, therefore, the NPI lower expected multi-level loss denoted by

E(LML( max
jz∈NS

Xf
jz
, Xf

`2
, Xf

`1
)) =

1∏k
t=1(nt + 1)

∏k
t=1(nt+1)∑
i=1

[
min
c
Lc |Oi

]
(4.3)

where Oi is a specific ordering for which Lc is the minimum possible loss and

c = 0, . . . , 5 and i = 1, . . . ,
k∏
t=1

(nt + 1).

To derive the NPI upper expected multi-level loss, the probability mass corre-

sponding to group `1 is assigned to the left endpoint per interval (x`1,u`1−1, x`1,u`1 ).

The probability mass corresponding to each jz ∈ NS is assigned to the right endpoint

per interval. For the group in the middle `2, the corresponding probability mass is

assigned to a chosen sub-interval within `2 intervals, denoted as (x`2,u`2−1, x`2,u`2 ),

u`2 = 1, 2, . . . , n`2 + 1 that maximises the NPI upper expected multi-level loss.

There is a total of
∏k

t=1(nt + 1) combinations of orderings of future observations

from all k groups. For each combination of orderings, it is necessary to determine

which of L0, . . . , L5 is actually possible, which is the maximum possible loss. The

maximum possible loss occurs when the group `1 is as small as possible and each

group jz ∈ NS is as large as possible. Then, the probability
1∏k

t=1(nt + 1)
is assigned

to the actual possible loss Lc value that maximises the NPI upper expected loss.

Again, the process repeated over all orderings to determine the maximum possible

loss and the NPI upper expected multi-level loss is denoted by

E(LML( max
jz∈NS

Xf
jz
, Xf

`2
, Xf

`1
) =

1∏k
t=1(nt + 1)

∏k
t=1(nt+1)∑
i=1

[
max
c
Lc |Oi

]
(4.4)

Example 4.3.1 illustrates the method using data from the literature, while Ex-

ample 4.3.2 applies the same approach to a large dataset simulated from Normal

distributions.
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`1 `2 E(LML) and E(LML)

1 2
E(L) : 0.1540L0 + 0.0587L1 + 0.1730L2 + 0.1682L3 + 0.2397L4 + 0.2063L5

E(L) : 0.0167L0 + 0.0302L1 + 0.0484L2 + 0.0960L3 + 0.2683L4 + 0.5405L5

2 1
E(L) : 0.1317L0 + 0.0857L1 + 0.1714L2 + 0.1682L3 + 0.2968L4 + 0.1460L5

E(L) : 0.0063L0 + 0.0452L1 + 0.0595L2 + 0.0722L3 + 0.4008L4 + 0.4159L5

1 3
E(L) : 0.1889L0 + 0.1270L1 + 0.1365L2 + 0.2913L3 + 0.1079L4 + 0.1484L5

E(L) : 0.0071L0 + 0.0825L1 + 0.0579L2 + 0.2238L3 + 0.2016L4 + 0.4270L5

3 1
E(L) : 0.2302L0 + 0.0548L1 + 0.3222L2 + 0.0865L3 + 0.1810L4 + 0.1254L5

E(L) : 0.0278L0 + 0.0619L1 + 0.1960L2 + 0.1056L3 + 0.3095L4 + 0.2992L5

1 4
E(L) : 0.1484L0 + 0.0841L1 + 0.1952L2 + 0.2079L3 + 0.2278L4 + 0.1365L5

E(L) : 0.0032L0 + 0.0540L1 + 0.0651L2 + 0.1690L3 + 0.2460L4 + 0.4627L5

4 1
E(L) : 0.1913L0 + 0.0460L1 + 0.2389L2 + 0.1571L3 + 0.2270L4 + 0.1397L5

E(L) : 0.0151L0 + 0.0492L1 + 0.1341L2 + 0.0968L3 + 0.3079L4 + 0.3968L5

2 3
E(L) : 0.1921L0 + 0.1524L1 + 0.1270L2 + 0.2175L3 + 0.2087L4 + 0.1024L5

E(L) : 0.0103L0 + 0.0992L1 + 0.0524L2 + 0.1857L3 + 0.2151L4 + 0.4373L5

3 2
E(L) : 0.2881L0 + 0.0603L1 + 0.2754L2 + 0.0754L3 + 0.1865L4 + 0.1143L5

E(L) : 0.0508L0 + 0.0738L1 + 0.1563L2 + 0.1087L3 + 0.2651L4 + 0.3452L5

2 4
E(L) : 0.1500L0 + 0.1103L1 + 0.1675L2 + 0.1778L3 + 0.2778L4 + 0.1167L5

E(L) : 0.0079L0 + 0.0556L1 + 0.0587L2 + 0.1460L3 + 0.3381L4 + 0.3937L5

4 2
E(L) : 0.2071L0 + 0.0540L1 + 0.2341L2 + 0.1167L3 + 0.1778L4 + 0.2103L5

E(L) : 0.0270L0 + 0.0452L1 + 0.1230L2 + 0.0889L3 + 0.2786L4 + 0.4373L5

3 4
E(L) : 0.2794L0 + 0.1333L1 + 0.2595L2 + 0.1683L3 + 0.1040L4 + 0.0556L5

E(L) : 0.0413L0 + 0.1016L1 + 0.1683L2 + 0.1571L3 + 0.2429L4 + 0.2889L5

4 3
E(L) : 0.2698L0 + 0.1429L1 + 0.1680L2 + 0.2595L3 + 0.0857L4 + 0.0738L5

E(L) : 0.0286L0 + 0.1016L1 + 0.1317L2 + 0.1810L3 + 0.2206L4 + 0.3365L5

Table 4.1: The NPI lower and upper expected multi-level losses for all groups com-

binations for Example 4.3.1

Example 4.3.1 The dataset used here is the same as in Example 2.3.1. The aim

is to illustrate the selection of a ranked subset of the two best groups by using a
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Case 1 Case 2 Case 3

`1 `2 E(LML) E(LML) E(LML) E(LML) E(LML) E(LML)

1 2 0.2900 0.4190 0.5130 0.8234 0.6807 0.8941

2 1 0.2851 0.4063 0.5065 0.8147 0.6721 0.8783

1 3 0.2448 0.3811 0.3729 0.6954 0.5805 0.8321

3 1 0.2310 0.3505 0.3841 0.6548 0.5858 0.8025

1 4 0.2692 0.3989 0.4513 0.7533 0.6487 0.8676

4 1 0.2602 0.3824 0.4435 0.7348 0.6392 0.8478

2 3 0.2406 0.3808 0.3961 0.7070 0.5607 0.8211

3 2 0.2155 0.3499 0.3659 0.6551 0.5383 0.7839

2 4 0.2673 0.3932 0.4645 0.7590 0.6316 0.8587

4 2 0.2635 0.3859 0.4575 0.7438 0.6302 0.8475

3 4 0.1851 0.3325 0.2648 0.5984 0.4721 0.7560

4 3 0.1970 0.3473 0.2767 0.6258 0.4835 0.7771

Table 4.2: The NPI lower and upper expected multi-level losses for different loss

values for Example 4.3.1. Case 1: L0 = 0.00, L1 = 0.10, L2 = 0.20, L3 = 0.30,

L4 = 0.40 and L5 = 0.50; Case 2: L0 = 0.00, L1 = 0.10, L2 = 0.20, L3 = 0.30,

L4 = 0.90, and L5 = 1.00; Case 3: L0 = 0.00, L1 = 0.05, L2 = 0.70, L3 = 0.80,

L4 = 0.90 and L5 = 1.00

multi-level loss function, where the event of interest is max
jz∈NS

Xf
jz
< Xf

`2
< Xf

`1
. In this

example, there are 1260 possible combinations of orderings of future observations

from all 4 groups, and 12 different possible combinations of selecting a ranked subset

of the two best groups. These 12 combinations are presented in Table 4.1. The

purpose is to provide a graded penalty for different levels of mistakes in the selection

of a ranked subset of the two best groups using a multi-level loss function.

To derive the NPI lower expected multi-level loss, it is necessary to go through

each possible combination of orderings of future observations and determine the

minimum possible loss. Starting with the first case, it is assumed that the groups in

the subset are 1 as the best group and 2 as the second best group, and the groups

3 and 4 belong to NS. The minimum loss occurs if the best selected group 1 is as
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Case 4 Case 5 Case 6

`1 `2 E(LML) E(LML) E(LML) E(LML) E(LML) E(LML)

1 2 0.5385 0.7724 0.8460 0.9833 0.7873 0.9532

2 1 0.5211 0.7188 0.8682 0.9937 0.7825 0.9484

1 3 0.4902 0.7210 0.8111 0.9929 0.6841 0.9103

3 1 0.4580 0.6491 0.7698 0.9722 0.7151 0.9103

1 4 0.5070 0.7412 0.8516 0.9968 0.7675 0.9429

4 1 0.4865 0.7034 0.8087 0.9849 0.7627 0.9357

2 3 0.4670 0.7242 0.8079 0.9897 0.6556 0.8905

3 2 0.4230 0.6589 0.7119 0.9492 0.6516 0.8754

2 4 0.4969 0.7065 0.8500 0.9921 0.7397 0.9365

4 2 0.5116 0.7165 0.7929 0.9730 0.7389 0.9278

3 4 0.3972 0.6359 0.7206 0.9587 0.5873 0.8571

4 3 0.4114 0.6655 0.7302 0.9714 0.5873 0.8698

Table 4.3: The NPI lower and upper expected multi-level losses for different loss

values for Example 4.3.1. Case 4: L0 = 0.00, L1 = 0.50, L2 = 0.51, L3 = 0.52,

L4 = 0.53 and L5 = 1.00; Case 5: L0 = 0.00, L1 = 1.00, L2 = 1.00, L3 = 1.00,

L4 = 1.00 and L5 = 1.00; Case 6: L0 = 0.00, L1 = 0.00, L2 = 1.00, L3 = 1.00,

L4 = 1.00 and L5 = 1.00.

large as possible and the non-selected groups 3 and 4 are as small as possible. For

example, for selecting a ranked subset of group 1 as the best group and group 2 as

the second best group, starting with the first interval of each group, the probability

mass of group 1 is assigned to x1,1 = 1, and the probability masses of groups 3 and

4 are assigned to max
jz∈NS

(x3,0, x4,0) = −∞. For group 2, its corresponding probability

mass is assigned to any point (suppose the midpoint), excluding any ties that are

identical to data points in other groups, of a chosen sub-interval that minimises

the NPI lower expected multi-level loss, which is (3, 4). Therefore, for the first

combination of orderings, L1 is the minimum possible loss because the best selected

group 1 is as large as possible and the non-selected groups 3 and 4 are as small as

possible. The probability mass
1

1260
is assigned to L1 for E(LML). For L1, after
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Case 7 Case 8 Case 9

`1 `2 E(LML) E(LML) E(LML) E(LML) E(LML) E(LML)

1 2 0.6142 0.9048 0.4460 0.8087 0.2063 0.5405

2 1 0.6111 0.8889 0.4429 0.8167 0.1460 0.4159

1 3 0.5476 0.8524 0.2563 0.6286 0.1484 0.4270

3 1 0.3929 0.7143 0.3063 0.6087 0.1254 0.2992

1 4 0.5722 0.8778 0.3643 0.7087 0.1365 0.4627

4 1 0.5238 0.8016 0.3667 0.7048 0.1397 0.3968

2 3 0.5286 0.8381 0.3111 0.6524 0.1024 0.4373

3 2 0.3762 0.7190 0.3008 0.6103 0.1143 0.3452

2 4 0.5722 0.8778 0.3944 0.7317 0.1167 0.3937

4 2 0.5048 0.8048 0.3881 0.7159 0.2103 0.4373

3 4 0.3278 0.6889 0.1595 0.5317 0.0556 0.2889

4 3 0.4190 0.7381 0.1595 0.5571 0.0738 0.3365

Table 4.4: The NPI lower and upper expected multi-level losses for different loss

values for Example 4.3.1. Case 7: L0 = 0.00, L1 = 0.00, L2 = 0.00, L3 = 1.00,

L4 = 1.00 and L5 = 1.00. Case 8: L0 = 0.00, L1 = 0.00, L2 = 0.00, L3 = 0.00,

L4 = 1.00 and L5 = 1.00. Case 9: L0 = 0.00, L1 = 0.00, L2 = 0.00, L3 = 0.00,

L4 = 0.00 and L5 = 1.00.

going through 1260 possible combinations of ordering of future observations, the

total number of assigned probability masses is 74. Thus, C1, which is the coefficient

of L1, is
74

1260
= 0.0587 as presented in Table 4.1.

To derive the NPI upper expected multi-level loss, the process is similar, but the

maximum possible loss is considered. The maximum loss occurs if the best selected

group 1 is as small as possible and the non-selected groups 3 and 4 are as large

as possible. For the ranked subset where group 1 is the best and group 2 is the

second best, starting with the first interval of each group, the probability mass of

group 1 is assigned to x1,0 = −∞, and the probability masses for groups 3 and

4 are assigned to max
jz∈NS

(x3,1, x4,1) = 3. For group 2, its corresponding probability

mass is assigned to any point (suppose the midpoint), excluding any ties that are
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identical to data points in other groups, of a chosen sub-interval that maximises

the NPI upper expected multi-level loss, which is (−∞, 3). Therefore, for the first

combination of orderings, L5 is the maximum possible loss. For L5, after going

through 1260 possible combinations of ordering of future observations, the total

number of assigned probability masses is 681. Thus, C5, which is the coefficient of

L5, is
681

1260
= 0.5405 as presented in Table 4.1.

Repeat this process for the rest of ordering combinations of future observations

to get the NPI lower and upper expected multi-level losses for a ranked subset of

selecting group 1 as the best group and group 2 as the second best. Apply the same

process to all 11 remaining combinations of ranking two groups belonging to S.

Table 4.1 presents equations that are a linear combination of loss values and

coefficients to calculate the NPI lower and upper expected multi-level loss values as-

sociated with 12 different combinations. The NPI lower and upper expected losses

presented in this table are calculated using the method described in the two para-

graphs provided earlier. Furthermore, each of these equations involves six coeffi-

cients C0 through C5, corresponding to loss values L0 through L5 respectively. Cc

represents how many times Lc is indeed the actual possible loss.

Several key findings of Table 4.1 can be made, which are: coefficients corre-

sponding to L0 are consistently greater than those associated with L1 for the NPI

lower expected multi-level loss for all different combinations of selecting a ranked

subset of the best two groups. This implies that the loss component represented by

L0 carries more weight in the calculation of the NPI lower expected multi-level loss

compared to L1 across all 12 combinations. Conversely, coefficients corresponding to

L1 are consistently greater than those associated with L0 for the NPI upper expected

multi-level loss. Moreover, for both NPI lower and upper expected multi-level losses,

the sum of coefficients related to L4 and L5 is consistently greater than the sum of

coefficients related to L0 and L1 across all 12 combinations. This suggests that

the combined impact of L4 and L5 is more meaningful in determining the expected

multi-level losses than that of L0 and L1.

For the NPI upper expected multi-level loss in Table 4.1, the coefficients related

to L1 are consistently small. This indicates that the contribution of L1 to the NPI
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upper expected multi-level loss is relatively minor compared to other loss compo-

nents. In addition, the coefficients associated with L4 are consistently greater than

the coefficients associated with L3 for all 12 combinations except selecting group 1

as the best and group 3 as the second best. This indicates that within the group of

higher-loss components L3 and L4, L4 has a more substantial influence on the NPI

upper expected multi-level loss. In summary, the provided findings highlight the

relative importance of different loss components and coefficients in the calculation

of the NPI lower and upper expected multi-level losses, thereby offering valuable

insights into the decision-making process.

In this example, some of these combinations have the same groups but in a

different order, e.g., selecting group 1 as the best and group 2 as the second best

group, while selecting group 2 as the best and group 1 as the second best group,

have the same groups but in a different ranking, so out of the 12 combinations, 6

of them are unique combinations and the other 6 are just the same combinations

with different group rankings within the subset. However, the loss coefficients of

each similar two groups with respect to their ranking, say the coefficient of L0

for selecting group 1 as the best and group 2 as the second best group and the

coefficient of L1 for selecting group 2 as the best and group 1 as the second best

group are not interchangeable since the chosen sub-intervals for the middle group

that minimise the NPI lower expected multi-level loss and maximise the NPI upper

expected multi-level loss are not identical.

To understand the impact of different loss values, nine cases are considered, each

with a unique set of values for the five loss levels, ranging from L0 (no loss, best

case) to L5 (largest loss, worst case). These cases are reported in Tables 4.2, 4.3

and 4.4.

Table 4.2 presents three cases, each of which shows varying loss values. In Case

1, the chances of incurring losses are relatively low less than or equal 0.50. Case

2 demonstrates a higher loss potential in L4 and L5, while Case 3 shows relatively

low loss values for L0 to L1. Table 4.3 presents an additional set of three cases. For

Case 4, the loss values are defined as set at approximately 0.5. The last set of three

cases is presented in Table 4.4. For Case 7, all loss values from L0 to L2 are set to
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0 and the remaining loss values are set to 1. Case 8 sets all loss values from L0 to

L3 to 0, while the rest are set to 1. Lastly, Case 9 explores a scenario in which loss

values from L0 to L4 are set to zero and L5 is set to one.

The chosen cases were assumed to explore various scenarios in which the loss

values change, which range from low losses to higher losses. These values were

arbitrarily chosen, and although many more cases could be considered, these are

sufficient for our purposes. In addition, in some cases, the loss value equals zero, to

show if the absence of loss in specific values affects the overall outcome, providing

comparisons across different loss values.

Tables 4.2, 4.3 and 4.4 show that for each case the NPI lower and upper expected

multi-level losses vary across different combinations of selected ranked groups due

to different loss values. For the first row for Case 1 in Table 4.2, the NPI lower

expected multi-level loss for selecting group 1 as the best and group 2 as the second

best is 0.2900 and the NPI upper expected multi-level loss is 0.4190.

First, Cases 1, 2, 3, 4, 6, 7 and 8 are summarised. Despite the differences in the

NPI lower and upper expected multi-level losses across those cases, the conclusions

drawn from them remain consistent. From the comparisons for those cases, it is

noticed that the combination of group 3 as the best and group 4 as the second best

has the lowest NPI lower and upper expected multi-level losses and the combination

of selecting group 1 as the best and 2 as the second best has the highest NPI lower

and upper expected multi-level losses.

In Case 6, the NPI lower expected multi-level loss for the ranking preferences

of selecting group 3 as the best and 4 as the second best and selecting group 4 as

the best and 3 as the second best are identical. Similarly, the NPI upper expected

multi-level loss for the ranking preferences selecting group 3 as the best and 1 as the

second best and 1 as the best and selecting group 3 as the second best are identical

as well, which are 0.5873 and 0.9103, respectively. Moreover, depending on Cases 1,

2, 3, 4, 6, 7, and 8, it can be said that a stable ranked subset selection is achieved,

but there are some combination results that change.

Table 4.3 presents the NPI lower and upper expected multi-level losses for Case

5. These results are consistent with those shown in Table 2.1, as they follow a
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direct relationship between the NPI lower and upper expected zero-one losses and

the corresponding NPI lower and upper probabilities, as defined by Equations (3.13)

and (3.14). It is evident that the NPI lower and upper expected multi-level losses

when selecting group 3 as the best and 2 as the second best are the smallest. To

clarify, for the NPI lower expected multi-level loss, the the coefficient of L0 for

the previous combination is the highest, also, since L0 = 0 in this case, that term

becomes irrelevant and has no impact on the overall expression. However, selecting

group 2 as the best followed by selecting group 4 as the second best shows higher

NPI lower and upper expected multi-level loss values when compared to selecting

group 1 as the best followed by selecting group 2 as the second best. The NPI lower

and upper expected multi-level losses when group 1 is ranked as the best and group

2 as the second best show a slight deviation from all other NPI lower and upper

expected multi-level losses in the remaining cases. All of them show that the highest

NPI lower and upper expected multi-level losses correspond to the combination of

selecting group 1 as the best, followed by selecting group 2 as the second best.

In Case 7, the NPI lower and upper expected multi-level loss values for both

selecting group 1 as the best and group 4 as the second best and selecting group 2 as

the best and group 4 as the second best are found to be identical, E(LML) = 0.5722

and E(LML) = 0.8778. In Case 8, the combination of selecting group 4 as the best

and group 3 as the second best has the same lower expected multi-level loss as the

combination of selecting group 3 as the best and group 4 as the second best. This

is because the total coefficients of L4 and L5 in Table 4.1 are equal in both cases.

In Case 9, the combination of selecting group 4 as the best and group 2 as

the second best results in the largest NPI lower expected multi-level loss, equal to

0.2103. On the other hand, the combination of selecting group 1 as the best and

group 2 as the second best exhibits the largest NPI upper expected multi-level loss,

which is 0.5405. It is noticeable that the NPI upper expected multi-level loss for

the following ranking preferences: selecting group 2 as the best and group 3 as the

second best, and selecting group 4 as the best and group 2 as the second best are

identical.

In conclusion, the results emphasize that while a consistent ranked subset of the
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two best groups can be selected, specific cases, such as Case 5 and Case 9, may show

variability.

�

Example 4.3.2 This example presents a simulation with four groups, each sampled

from Normal distributions with a standard deviation of 1 and a sample size of

25. The group means are 0.3, 0.2, 0.1, and 0.0, respectively. This study aims to

provide a graded penalty for different levels of mistakes for selection of a ranked

subset of the two best groups by using a multi-level loss function, with the primary

objective of determining whether different conclusions can be drawn across nine

different scenarios.

Table 4.5 presents equations that are a linear combination of loss values and

coefficients to calculate the NPI lower and upper expected multi-level loss values

associated with 12 different combinations. The NPI lower and upper expected losses

presented in this table are calculated using the method described in Example 4.3.1.

Tables 4.6, 4.7 and 4.8 show the NPI lower and upper expected multi-level losses

for nine cases to investigate the impact of different loss values on selecting a ranked

subset of the two best groups. Similar loss values to those given in Example 4.3.1

are given here in this example, as listed in Tables 4.2, 4.3 and 4.4.

Tables 4.6, 4.7 and 4.8 show that the combinations of group selections yielding

the smallest NPI lower and upper expected multi-level losses involve selecting group

2 as the best and group 1 as the second best. This trend is evident across cases,

namely Case 1, 2 and 3. For the group preference when selecting group 1 as the

best and 2 as the second best yields the smallest NPI lower and upper expected

multi-level losses in Cases 6 and 8. For selecting group 2 as the best group and 4 as

the second best group, it is evident that the lowest NPI lower and upper expected

multi-level losses are observed in Case 7. Similarly, in the reverse ranking scenario

where selecting group 4 as the best group and 2 as the second best group, the

corresponding lowest NPI lower and upper expected multi-level losses occur in Case

5. In Case 4, two scenarios are considered: selecting 2 as the best and 1 as the

second best, or selecting 2 as the best and 3 as the second best. The first scenario
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`1 `2 E(LML) and E(LML)

1 2
E(L) : 0.1208L0 + 0.0978L1 + 0.1732L2 + 0.1671L3 + 0.2119L4 + 0.2292L5

E(L) : 0.0743L0 + 0.0928L1 + 0.1472L2 + 0.1620L3 + 0.2340L4 + 0.2896L5

2 1
E(L) : 0.1203L0 + 0.0980L1 + 0.1748L2 + 0.1598L3 + 0.2463L4 + 0.2008L5

E(L) : 0.0740L0 + 0.0920L1 + 0.1487L2 + 0.1561L3 + 0.2742L4 + 0.2549L5

1 3
E(L) : 0.0906L0 + 0.0825L1 + 0.2032L2 + 0.1682L3 + 0.2595L4 + 0.1961L5

E(L) : 0.0502L0 + 0.0797L1 + 0.1708L2 + 0.1636L3 + 0.2775L4 + 0.2582L5

3 1
E(L) : 0.1044L0 + 0.0694L1 + 0.1784L2 + 0.1970L3 + 0.2128L4 + 0.2380L5

E(L) : 0.0613L0 + 0.0660L1 + 0.1517L2 + 0.1820L3 + 0.2367L4 + 0.3022L5

1 4
E(L) : 0.1170L0 + 0.0773L1 + 0.1772L2 + 0.1660L3 + 0.2561L4 + 0.2064L5

E(L) : 0.0734L0 + 0.0735L1 + 0.1489L2 + 0.1613L3 + 0.2807L4 + 0.2623L5

4 1
E(L) : 0.0996L0 + 0.0948L1 + 0.1756L2 + 0.1657L3 + 0.2233L4 + 0.2409L5

E(L) : 0.0554L0 + 0.0917L1 + 0.1480L2 + 0.1564L3 + 0.2478L4 + 0.3008L5

2 3
E(L) : 0.0971L0 + 0.0928L1 + 0.1967L2 + 0.1649L3 + 0.2757L4 + 0.1727L5

E(L) : 0.0545L0 + 0.0859L1 + 0.1692L2 + 0.1498L3 + 0.2986L4 + 0.2422L5

3 2
E(L) : 0.1141L0 + 0.0745L1 + 0.1697L2 + 0.1873L3 + 0.1984L4 + 0.2559L5

E(L) : 0.0688L0 + 0.0723L1 + 0.1433L2 + 0.1764L3 + 0.2154L4 + 0.3237L5

2 4
E(L) : 0.1121L0 + 0.0979L1 + 0.1839L2 + 0.1421L3 + 0.2573L4 + 0.2068L5

E(L) : 0.0686L0 + 0.0923L1 + 0.1549L2 + 0.1379L3 + 0.2809L4 + 0.2654L5

4 2
E(L) : 0.1213L0 + 0.0892L1 + 0.1546L2 + 0.1718L3 + 0.2241L4 + 0.2390L5

E(L) : 0.0746L0 + 0.0861L1 + 0.1294L2 + 0.1639L3 + 0.2442L4 + 0.3018L5

3 4
E(L) : 0.0977L0 + 0.0683L1 + 0.1839L2 + 0.1785L3 + 0.2228L4 + 0.2487L5

E(L) : 0.0589L0 + 0.0648L1 + 0.1538L2 + 0.1676L3 + 0.2488L4 + 0.3061L5

4 3
E(L) : 0.0876L0 + 0.0773L1 + 0.1876L2 + 0.1720L3 + 0.2647L4 + 0.2108L5

E(L) : 0.0479L0 + 0.0748L1 + 0.1562L2 + 0.1647L3 + 0.2841L4 + 0.2723L5

Table 4.5: The NPI lower and upper expected multi-level losses for all groups com-

binations for Example 4.3.2.

yields the smallest NPI upper expected multi-level loss and the second smallest NPI

lower expected multi-level loss, while the second scenario results in the smallest NPI
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Case 1 Case 2 Case 3

`1 `2 E(LML) E(LML) E(LML) E(LML) E(LML) E(LML)

1 2 0.2939 0.3257 0.5144 0.5875 0.6797 0.7375

2 1 0.2916 0.3229 0.5151 0.5874 0.6775 0.7352

1 3 0.3012 0.3313 0.5290 0.5992 0.7105 0.7624

3 1 0.3058 0.3374 0.5313 0.6068 0.7155 0.7704

1 4 0.2986 0.3289 0.5299 0.6005 0.6976 0.7519

4 1 0.3041 0.3352 0.5362 0.6094 0.7022 0.7570

2 3 0.2948 0.3279 0.519 0.5983 0.6951 0.7534

3 2 0.3049 0.3368 0.5320 0.6064 0.7068 0.7626

2 4 0.2955 0.3266 0.5275 0.5998 0.6856 0.7415

4 2 0.3005 0.3322 0.5321 0.6052 0.6908 0.7476

3 4 0.3107 0.3401 0.5464 0.6175 0.7242 0.7750

4 3 0.3081 0.3379 0.5459 0.6161 0.7218 0.7728

Table 4.6: The NPI lower and upper expected multi-level losses for different loss

values for Example 4.3.2

lower expected multi-level loss and the second smallest NPI upper expected multi-

level loss. For selecting 2 as the best and 3 as the second best, this provides the

smallest NPI lower expected multi-level loss in both Cases 4 and 9 and the smallest

NPI upper expected multi-level loss in Case 9.

The combinations of group selections that result in the largest NPI lower and

upper expected multi-level losses consistently involve the selection of group 3 as the

best and 4 as the second best. This trend is consistently observed across multiple

cases, namely Cases 1, 2, 3, 4 and 7. When the combination of 4 and 3, where 4 is

selected as the best and 3 as the second best, this combination yields the following

results: It leads to the highest NPI lower and upper expected multi-level losses in

Case 5, 6 and 8. Lastly, selecting 3 as the best and 2 as the second best selected

group, in Case 4 and 9, it yields the largest NPI upper expected multi-level loss.

In conclusion, the analysis of the nine cases in Example 4.3.2 shows more varia-

tion in the ranked subset of the two best groups, making the selection of the ranked
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Case 4 Case 5 Case 6

`1 `2 E(LML) E(LML) E(LML) E(LML) E(LML) E(LML)

1 2 0.5656 0.6194 0.8792 0.9257 0.7813 0.8328

2 1 0.5526 0.6032 0.8797 0.9259 0.7817 0.8339

1 3 0.5659 0.6173 0.9094 0.9498 0.8269 0.8701

3 1 0.5789 0.6327 0.8956 0.9387 0.8262 0.8727

1 4 0.5575 0.6076 0.8830 0.9266 0.8056 0.8532

4 1 0.5824 0.6347 0.9004 0.9446 0.8056 0.8529

2 3 0.5513 0.6075 0.9029 0.9455 0.8101 0.8597

3 2 0.5823 0.6389 0.8858 0.9312 0.8113 0.8588

2 4 0.5597 0.6111 0.8879 0.9314 0.7900 0.8390

4 2 0.5706 0.6255 0.8787 0.9254 0.7895 0.8393

3 4 0.5876 0.6359 0.9023 0.9411 0.8340 0.8763

4 3 0.5748 0.6256 0.9124 0.9521 0.8351 0.8773

Table 4.7: The NPI lower and upper expected multi-level losses for different loss

values for Example 4.3.2

subset of the two best groups inconsistent compared to the more consistent conclu-

sions observed in Example 4.3.1. This shows how different loss values and scenarios

can affect the ranking of the selected groups.

�

4.4 Ranked subset of multiple best groups using

general multi-level loss function

In this section, a ranked subset of multiple best groups using a general multi-level loss

function will be applied to provide a graded penalty for different levels of mistakes

for ranking w best groups within the subset. The number of possible ways to rank

two groups that belong to S together with the maximum future observation among

groups in NS is (w + 1)!− 1. The definition of the general multi-level loss function
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Case 7 Case 8 Case 9

`1 `2 E(LML) E(LML) E(LML) E(LML) E(LML) E(LML)

1 2 0.6082 0.6856 0.4411 0.5236 0.2292 0.2896

2 1 0.6069 0.6851 0.4470 0.5291 0.2008 0.2549

1 3 0.6237 0.6994 0.4556 0.5358 0.1961 0.2582

3 1 0.6478 0.7210 0.4508 0.5390 0.2380 0.3022

1 4 0.6285 0.7043 0.4625 0.5431 0.2064 0.2623

4 1 0.6300 0.7049 0.4643 0.5485 0.2409 0.3008

2 3 0.6134 0.6905 0.4485 0.5408 0.1727 0.2422

3 2 0.6416 0.7155 0.4543 0.5391 0.2559 0.3237

2 4 0.6062 0.6842 0.4640 0.5463 0.2068 0.2654

4 2 0.6349 0.7099 0.4631 0.5459 0.2390 0.3018

3 4 0.6500 0.7225 0.4715 0.5549 0.2487 0.3061

4 3 0.6475 0.7211 0.4755 0.5564 0.2108 0.2723

Table 4.8: The NPI lower and upper expected multi-level losses for different loss

values for Example 4.3.2

for the event of interest max
jz∈NS

Xf
jz
< Xf

`w
< · · · < Xf

`2
< Xf

`1
is as follows.

LG( max
jz∈NS

Xf
jz
, Xf

`w
, . . . , Xf

`2
, Xf

`1
) =



L0 if max
jz∈NS

Xf
jz
< Xf

`w
< · · · < Xf

`2
< Xf

`1

L1 if max
jz∈NS

Xf
jz
< Xf

`w
< · · · < Xf

`1
< Xf

`2

...
...

...
...

L(w+1)!−1 if Xf
`1
< Xf

`2
< · · · < Xf

`w
< max

jz∈NS
Xf
jz

(4.5)

The general multi-level loss function LG assigns different loss values based on

the ranking of future observations from the w groups in S and the maximum future

observation that belongs to NS. Note that L0 is zero because it is related to the

correct ranking of the w groups that belong to S. For max
jz∈NS

Xf
jz
< Xf

`w
< · · · < Xf

`1
<
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Xf
`2
, the future observation for Xf

`1
is smaller than Xf

`2
, which is an incorrect ranking.

Therefore, the loss value is L1, which is higher than L0. There are (w + 1)! − 2

other intermediate future observations that do not follow the desired ranking. Each

incorrect ranking corresponds to a different loss value, gradually increasing as the

ranking deviates more from the desired ranking. Finally, Xf
`1
< Xf

`2
< · · · < Xf

`w
<

max
jz∈NS

Xf
jz

is the worst scenario in which all future observations from S are smaller

than the maximum future observations from NS. The loss is assumed to be lower

when max
jz∈NS

Xf
jz

is the smallest compared to when max
jz∈NS

Xf
jz

is the second smallest,

continuing in this manner until the worst case scenario where max
jz∈NS

Xf
jz
is the largest.

The loss value L(w+1)!−1 is the highest. The factorial number of possible rankings

((w + 1)! − 1) can become very large, making the assessment process complex to

manage for large w, especially with large and overlapping datasets.

To derive the NPI lower expected general multi-level loss, the probability mass

corresponding to group `1 is assigned to the right endpoint per interval. The proba-

bility masses corresponding to groups jz ∈ NS are assigned to the left endpoint per

interval to determine the minimum possible loss, Lc, where c = 0, . . . , (w + 1)!− 1.

To derive the NPI upper expected general multi-level loss, the probability mass

corresponding to group `1, is assigned to the left endpoint per interval. Mean-

while, the probability masses corresponding to groups jz ∈ NS are assigned to

the right endpoint per interval to determine the maximum possible loss, Lc, where

c = 0, . . . , (w + 1)!− 1.

Now, with two or more groups in the middle, it becomes challenging to find

the exact NPI lower expected general multi-level loss that determines the minimum

possible loss. The number of groups in the middle for the event max
jz∈NS

Xf
jz
< Xf

`w
<

· · · < Xf
`2
< Xf

`1
is w − 1, making the probability mass allocation more complex.

To address this, an independent optimisation process is carried out for each middle

group. For each group X`i , where i = 2, . . . , w, its corresponding probability mass
1

n`i
+1

is assigned to any point (suppose the midpoint) belonging to a sub-interval

within (x`i,u`i−1, x`i,u`i ) that minimises the possible loss. Consequently, apply heuris-

tic algorithm to determine the approximate NPI lower expected general multi-level

loss by selecting the smallest NPI lower expected general multi-level loss as an ap-
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proximate NPI lower expected general multi-level loss.

For the NPI upper expected general multi-level loss, the process is similar but

aims to determine the maximum possible loss. The number of groups in the middle

remains w− 1, and an optimisation process is applied independently to each group.

For each group X`i , where i = 2, . . . , w, its corresponding probability mass 1
n`i

+1

is assigned to a point (suppose the midpoint) belonging to a sub-interval within

(x`i,u`i−1, x`i,u`i ) that maximises the possible loss. Consequently, apply heuristic al-

gorithm to determine the approximate NPI upper expected general multi-level loss

by selecting the largest NPI upper expected general multi-level loss as an approxi-

mate NPI upper expected general multi-level loss.

Then, for the NPI lower expected general multi-level loss, there is a total of∏k
t=1(nt + 1) combinations of orderings of future observations from all k groups (in-

tervals). For each ordering, it is necessary to determine which of L0, . . . , L(w+1)!−1

represents the minimum possible loss. The probability
1∏k

t=1(nt + 1)
is then as-

signed to the actual possible loss Lc, where c = 0, . . . , (w + 1)! − 1, ensuring that

the loss value that minimises the NPI lower expected general multi-level loss is se-

lected. This process iterates over all combinations of orderings to determine the

minimum possible loss. The procedure is repeated w − 1 times for the NPI lower

expected general multi-level loss, and finally, the smallest lower expected loss is cho-

sen as an approximate NPI lower expected general multi-level loss. Therefore, the

approximate NPI lower expected general multi-level loss is denoted by

El(LG( max
jz∈NS

Xf
jz
, . . . , Xf

`1
)) =

1∏k
t=1(nt + 1)

∏k
t=1(nt+1)∑
i=1

[
min
c
Lc |Oi

]
(4.6)

For the NPI upper expected general multi-level loss, among the total of the∏k
t=1(nt + 1) combinations of orderings of future observations from all k groups.

For each ordering, it is necessary to determine which of L0, . . . , L(w+1)!−1 is the

maximum possible loss. The probability is assigned to the actual possible loss Lc,

ensuring that the loss value that maximises the NPI upper expected general multi-

level loss is chosen. This process iterates over all combinations of orderings of future

observations to determine the maximum possible loss. The procedure is repeated

w − 1 times for the NPI upper expected general multi-level loss, and finally, the
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largest NPI upper expected loss is selected as an approximate NPI upper expected

general multi-level loss. The approximate NPI upper expected general multi-level

loss is denoted by

E
u
(LG( max

jz∈NS
Xf
jz
, . . . , Xf

`1
) =

1∏k
t=1(nt + 1)

∏k
t=1(nt+1)∑
i=1

[
max
c
Lc |Oi

]
(4.7)

The following example illustrates the method presented using general multi-level

loss to guide the ranking of future observations in the selection of a ranked subset

of the three best groups and reflects the quality of their ranking.

Example 4.4.1 The dataset used in this example is similar to Example 2.4.1, taken

from the lengthWeight dataset in the StatCharme Package in R contains variables

which are: The chemical concentration, the fish were exposed to 6 levels of treat-

ments and weight of the fish. The dataset is provided in Figure 2.2. Starting

with the first case, it is assumed that the groups that belong to S are 1, 2 and

3, while the two groups that belong to NS are 4 and 5. The event of interest is

max
jz∈NS

(X4, X5)f < Xf
3 < Xf

2 < Xf
1 . The number of possible ways to rank the three

groups that belong to S and two groups that belong to NS except the correct ranked

subset is 24. The aim is to guide the ranking of future observations in the subset of

the three best groups and to reflect on the quality of the ranking. There are a total

of 60 possible combinations of selecting a ranked subset of the three best groups,

since this number is rather large, the process is simplified by fixing the groups that

belong to NS, which are 4 and 5, and focusing only on the different combinations

of rankings of the three groups that belong to S. Therefore, there are 6 different

possible combinations of selecting a ranked subset of the best three groups, when

the groups in NS are 4 and 5, and the rest belong to S as presented in Tables 4.9,

4.10 and 4.11.

In Tables 4.9, 4.10 and 4.11, the approximate NPI lower and upper general ex-

pected multi-level losses for different selection of ranked subsets of the three best

groups are presented. Each table represents a different selection of ranked subsets of

three best groups. For example, as presented in Table 4.9, {4, 5} ≺ 3 ≺ 2 ≺ 1 rep-

resents this event max
jz∈NS

(X4, X5)f < Xf
3 < Xf

2 < Xf
1 , where the best selected group
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is 1, and groups 4 and 5 belong to non-selected groups. The notations El
2(LG)

and Eu
2 (LG) represent the NPI lower and upper general expected multi-level losses

when optimizing over group 2, respectively. Similar notation is defined for all other

groups. Each coefficient loss Cc multiplies by its corresponding loss values Lc, where

c = 0, . . . , 23. Cc represents how many times Lc is indeed the actual possible loss.

The approximate NPI lower general expected multi-level loss shows considerable

variation across all tables. For example, in Table 4.9, for the ranking preference

when selecting group 1 as the best, group 2 as the second best, and group 3 as the

third best, the approximate NPI lower general expected multi-level loss when the

optimisation is performed over the loss coefficient of the group 2 at C0 is 0.2482,

where the number of assigned probability masses to find the loss coefficient of C0 is

1929, while for the ranking preference when selecting group 2 as the best, group 1

as the second best and group 3 as the third best, it is 0.1515, where the number of

assigned probability masses to find the loss coefficient of C0 is 1178. Also, particu-

larly for loss coefficients like C6 and C0, the coefficients can substantially affect the

approximate NPI lower general expected multi-level loss across all tables since their

values are generally large compared with the rest.

On the other hand, the approximate NPI upper general expected multi-level

losses are generally more consistent across different group rankings within the sub-

set, though some differences emerge. For example, in Table 4.11, for the ranking

preference when selecting group 1 as the best, group 3 as the second best and group

2 as the third best, the approximate NPI upper general expected multi-level loss

for the event max
jz∈NS

(X4, X5)f < Xf
2 < Xf

3 < Xf
1 when the optimisation is performed

over group 2 with the loss coefficient at C6 is 0.1538, but it rises slightly to 0.1744

for the ranking preference when selecting group 3 as the best, group 2 as the second

best and group 1 as the third best when optimisation was performed over group 1.

For C6 and C18, the coefficients affect the approximate NPI upper general expected

multi-level loss across all tables due to their generally large values. These varia-

tions suggest that, while the approximate NPI upper general expected multi-level

loss tends to be consistent, higher loss coefficient values can still show differences

depending on the group rankings within the subset.
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Tables 4.9 and 4.11 generally show zero losses under C10, except for C12 and

C14 for the approximate NPI lower general expected multi-level losses. For the

approximate NPI upper general expected multi-level loss, C3 and C13 show zero

across all ranking preferences.
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{4, 5} ≺ 3 ≺ 2 ≺ 1 {4, 5} ≺ 3 ≺ 1 ≺ 2

El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG)

C0 0.2482 0.0574 0.2693 0.0518 0.1515 0.1096 0.2063 0.0615

C1 0.0419 0.0500 0.1319 0.0170 0.1386 0.0075 0.1394 0.0073

C2 0.0478 0.0247 0.0505 0.0064 0.0343 0.0129 0.0849 0.0283

C3 0.0231 0.0000 0.0000 0.0129 0.0324 0.0000 0.0093 0.0064

C4 0.0826 0.0023 0.0027 0.0418 0.0698 0.0000 0.0147 0.0103

C5 0.0185 0.0096 0.0185 0.0000 0.0463 0.0000 0.0185 0.0161

C6 0.2279 0.1201 0.1914 0.1507 0.1471 0.1862 0.1803 0.1507

C7 0.0553 0.0947 0.0995 0.0473 0.1438 0.0118 0.1106 0.0473

C8 0.0972 0.0724 0.1223 0.0521 0.0829 0.0939 0.1157 0.0688

C9 0.0424 0.0073 0.0066 0.0418 0.0459 0.0000 0.0131 0.0251

C10 0.0000 0.0234 0.0000 0.0138 0.0000 0.0234 0.0000 0.0170

C11 0.0000 0.0054 0.0000 0.0122 0.0000 0.0026 0.0000 0.0090

C12 0.0000 0.0862 0.0671 0.0707 0.0671 0.0868 0.0671 0.0707

C13 0.0000 0.0120 0.0000 0.0000 0.0000 0.0109 0.0000 0.0000

C14 0.0401 0.0540 0.0401 0.0862 0.0401 0.0701 0.0401 0.0862

C15 0.0000 0.0310 0.0000 0.0396 0.0000 0.0287 0.0000 0.0396

C16 0.0000 0.0000 0.0000 0.0075 0.0000 0.0075 0.0000 0.0000

C17 0.0000 0.0159 0.0000 0.0113 0.0000 0.0113 0.0000 0.0188

C18 0.0000 0.1160 0.0000 0.1202 0.0000 0.1730 0.0000 0.1245

C19 0.0000 0.0795 0.0000 0.0283 0.0000 0.0207 0.0000 0.0240

C20 0.0000 0.0665 0.0000 0.0637 0.0000 0.0778 0.0000 0.0806

C21 0.0000 0.0424 0.0000 0.0439 0.0000 0.0359 0.0000 0.0523

C22 0.0000 0.0042 0.0000 0.0571 0.0000 0.0157 0.0000 0.0156

C23 0.0000 0.0249 0.0000 0.0238 0.0000 0.0139 0.0000 0.0399

Table 4.9: The approximate NPI lower and upper expected general multi-level losses

for Example 4.4.1, where the events of interest are max
jz∈NS

(X4, X5)f < Xf
3 < Xf

2 < Xf
1 ,

and max
jz∈NS

(X4, X5)f < Xf
3 < Xf

1 < Xf
2
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{4, 5} ≺ 1 ≺ 3 ≺ 2 {4, 5} ≺ 2 ≺ 1 ≺ 3

El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG)

C0 0.1757 0.1021 0.1399 0.0577 0.1878 0.1021 0.2325 0.0970

C1 0.0959 0.0149 0.0761 0.0201 0.0838 0.0190 0.0345 0.0394

C2 0.0316 0.0129 0.0509 0.0129 0.0316 0.0129 0.0575 0.0000

C3 0.0208 0.0000 0.0185 0.0129 0.0401 0.0021 0.0185 0.0000

C4 0.0818 0.0000 0.0671 0.0418 0.0864 0.0000 0.1161 0.0000

C5 0.0579 0.0000 0.0417 0.0000 0.0247 0.0062 0.0139 0.0129

C6 0.1692 0.1744 0.2281 0.1384 0.1803 0.1744 0.2467 0.1538

C7 0.1124 0.0237 0.1415 0.0442 0.0921 0.0360 0.0442 0.0828

C8 0.0764 0.0939 0.0571 0.0598 0.0764 0.0959 0.0829 0.0682

C9 0.0478 0.0000 0.0394 0.0418 0.0432 0.0041 0.0459 0.0064

C10 0.0069 0.0234 0.0000 0.0156 0.0123 0.0131 0.0000 0.0298

C11 0.0023 0.0026 0.0000 0.0135 0.0062 0.0000 0.0000 0.0000

C12 0.0640 0.0868 0.0671 0.0450 0.0610 0.0728 0.0671 0.0643

C13 0.0093 0.0219 0.0000 0.0000 0.0185 0.0273 0.0000 0.0000

C14 0.0386 0.0701 0.0725 0.1042 0.0370 0.0903 0.0401 0.0540

C15 0.0000 0.0177 0.0000 0.0365 0.0000 0.0000 0.0000 0.0473

C16 0.0046 0.0149 0.0000 0.0000 0.0093 0.0087 0.0000 0.0000

C17 0.0000 0.0039 0.0000 0.0203 0.0000 0.0039 0.0000 0.0149

C18 0.0031 0.1737 0.0000 0.1061 0.0062 0.1600 0.0000 0.1386

C19 0.0000 0.0322 0.0000 0.0283 0.0000 0.0473 0.0000 0.0538

C20 0.0000 0.0824 0.0000 0.0778 0.0031 0.1065 0.0000 0.0538

C21 0.0000 0.0237 0.0000 0.0359 0.0000 0.0085 0.0000 0.0581

C22 0.0000 0.0221 0.0000 0.0368 0.0000 0.0057 0.0000 0.0028

C23 0.0000 0.0028 0.0000 0.0505 0.0000 0.0028 0.0000 0.0221

Table 4.10: The approximate NPI lower and upper expected general multi-level

losses for Example 4.4.1, where the events of interest are max
jz∈NS

(X4, X5)f < Xf
1 <

Xf
3 < Xf

2 , and max
jz∈NS

(X4, X5)f < Xf
2 < Xf

1 < Xf
3
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{4, 5} ≺ 2 ≺ 3 ≺ 1 {4, 5} ≺ 1 ≺ 2 ≺ 3

El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG)

C0 0.1651 0.0970 0.1535 0.0601 0.1515 0.1021 0.2325 0.0723

C1 0.0586 0.0394 0.0625 0.0094 0.1386 0.0149 0.0345 0.0351

C2 0.1003 0.0000 0.0509 0.0051 0.0343 0.0129 0.0575 0.0329

C3 0.0278 0.0000 0.0185 0.0129 0.0602 0.0000 0.0185 0.0000

C4 0.0748 0.0000 0.0671 0.0431 0.0698 0.0000 0.1161 0.0031

C5 0.0139 0.0129 0.0417 0.0096 0.0185 0.0000 0.0139 0.0096

C6 0.1921 0.1538 0.2423 0.1425 0.1471 0.1744 0.2467 0.1579

C7 0.0664 0.0828 0.1273 0.0453 0.1438 0.0237 0.0442 0.0710

C8 0.1111 0.0682 0.0571 0.0489 0.0829 0.0939 0.0829 0.0642

C9 0.0502 0.0064 0.0394 0.0502 0.0459 0.0000 0.0459 0.0066

C10 0.0000 0.0298 0.0000 0.0158 0.0000 0.0234 0.0000 0.0234

C11 0.0000 0.0000 0.0000 0.0122 0.0000 0.0026 0.0000 0.0072

C12 0.0594 0.0643 0.0671 0.0547 0.0671 0.0707 0.0671 0.0720

C13 0.0000 0.0129 0.0000 0.0000 0.0000 0.0219 0.0000 0.0000

C14 0.0802 0.0540 0.0725 0.0971 0.0401 0.0862 0.0401 0.0540

C15 0.0000 0.0345 0.0000 0.0376 0.0000 0.0177 0.0000 0.0458

C16 0.0000 0.0000 0.0000 0.0080 0.0000 0.0149 0.0000 0.0000

C17 0.0000 0.0149 0.0000 0.0118 0.0000 0.0039 0.0000 0.0141

C18 0.0000 0.1386 0.0000 0.1132 0.0000 0.1620 0.0000 0.1330

C19 0.0000 0.0687 0.0000 0.024 0.0000 0.0322 0.0000 0.0467

C20 0.0000 0.0538 0.0000 0.0665 0.0000 0.0941 0.0000 0.0665

C21 0.0000 0.0432 0.0000 0.0435 0.0000 0.0237 0.0000 0.0554

C22 0.0000 0.0028 0.0000 0.0608 0.0000 0.0221 0.0000 0.0042

C23 0.0000 0.0221 0.0000 0.0279 0.0000 0.0028 0.0000 0.0249

Table 4.11: The approximate NPI lower and upper expected general multi-level

losses for Example 4.4.1, where the events of interest are max
jz∈NS

(X4, X5)f < Xf
2 <

Xf
3 < Xf

1 , and max
jz∈NS

(X4, X5)f < Xf
1 < Xf

2 < Xf
3
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`1 `2 `3 Approximate

1 2 3 El
2(L) Eu

2 (L) El
3(L) Eu

3 (L) E(L) E(L)

0.4331 0.5415 0.4565 0.5910 0.4331 0.5910

2 1 3 El
1(L) Eu

1 (L) El
3(L) Eu

3 (L) E(L) E(L)

0.5270 0.5723 0.4928 0.5549 0.4928 0.5723

2 3 1 El
1(L) Eu

1 (L) El
3(L) Eu

3 (L) E(L) E(L)

0.5148 0.5821 0.5352 0.5632 0.5148 0.5821

3 1 2 El
1(L) Eu

1 (L) El
2(L) Eu

2 (L) E(L) E(L)

0.5214 0.5625 0.4862 0.5461 0.4862 0.5625

1 3 2 El
2(L) Eu

2 (L) El
3(L) Eu

3 (L) E(L) E(L)

0.4941 0.5453 0.5275 0.5794 0.4941 0.5794

3 2 1 El
1(L) Eu

1 (L) El
2(L) Eu

2 (L) E(L) E(L)

0.5389 0.5747 0.4862 0.5632 0.4862 0.5747

Table 4.12: The approximate NPI lower and upper expected general multi-level

losses for different loss values for Example 4.4.1. Case 1: L0 = 0.00, L1 = 0.89, L2 =

0.52, L3 = 0.45, L4 = 0.55, L5 = 0.32, L6 = 0.88, L7 = 0.57, L8 = 0.28, L9 =

0.95, L10 = 0.69, L11 = 0.94, L12 = 0.45, L13 = 0.88, L14 = 0.24, L15 = 0.95, L16 =

0.89, L17 = 0.78, L18 = 0.99, L19 = 0.04, L20 = 0.64, L21 = 0.04, L22 = 0.67, L23 =

0.10.

Tables 4.12, 4.13, 4.14, 4.15 and 4.16 provide a comparison of the approximate

NPI lower and upper expected general multi-level losses across five different cases,

each using different values of Lc, where c = 0, . . . , 23. These variations in Lc values

result in differences in the approximate NPI lower and upper expected general multi-

level losses for various group rankings within the subset within the subset, allowing

for the evaluation of whether consistent conclusions can be drawn across the different

cases.

In Case 1, the Lc values are randomly generated between 0 and 1, which results in

varying the approximate NPI lower and upper expected general multi-level losses for

the group rankings within the subset within the subset. Case 2 and the rest provide

a scenario where the Lc values are regularly increasing. For Case 2, the Lc values
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`1 `2 `3 Approximate

1 2 3 El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.0821 0.2339 0.0917 0.2449 0.0821 0.2449

2 1 3 El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.1029 0.2333 0.0951 0.2440 0.0951 0.2440

2 3 1 El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.1067 0.2317 0.1140 0.2454 0.1067 0.2454

3 1 2 El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG) E(LG) E(LG)

0.1093 0.2259 0.0994 0.2285 0.0994 0.2285

1 3 2 El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.1101 0.2274 0.1135 0.2453 0.1101 0.2453

3 2 1 El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG) E(LG) E(LG)

0.1048 0.2328 0.0994 0.2306 0.0994 0.2328

Table 4.13: The approximate NPI lower and upper expected general multi-level

losses for different loss values for Example 4.4.1. Case 2: L0 = 0.00, L1 = 0.02, L2 =

0.04, L3 = 0.06, L4 = 0.08, L5 = 0.10, L6 = 0.12, L7 = 0.14, L8 = 0.16, L9 =

0.18, L10 = 0.20, L11 = 0.22, L12 = 0.24, L13 = 0.26, L14 = 0.28, L15 = 0.30, L16 =

0.32, L17 = 0.34, L18 = 0.36, L19 = 0.38, L20 = 0.40, L21 = 0.42, L22 = 0.44, L23 =

0.50.

start small, ranging from 0.00 to 0.50. Case 3 represents an extreme scenario where

all Lc values are 1 except L0 = 0, making it a zero-one loss case which is a special

case of the general multi-level loss. In Case 4, the Lc values are clustered around

0.50, increasing from 0.38 to 0.60. Case 5 further increases these values, ranging

from 0.50 to 1.00, leading to consistently higher approximate NPI lower and upper

expected general multi-level losses across all group rankings within the subset with

the subset. Loss values in these cases chosen arbitrary. These cases help investigate

the NPI method and determine whether they lead to consistent conclusions.

Across the five cases, the smallest approximate NPI lower expected general multi-

level losses usually correspond to the ranking preference of selecting group 1 as the

best, group 2 as the second best and group 3 as the third best. For example, in Case
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`1 `2 `3 Approximate

1 2 3 El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.6768 0.9425 0.7306 0.9483 0.6768 0.9483

2 1 3 El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) E(LG) E(L)

0.8483 0.8906 0.7937 0.9385 0.7937 0.9385

2 3 1 El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) E(LG) E(L)

0.8226 0.8980 0.8600 0.9424 0.8226 0.9424

3 1 2 El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG) E(LG) E(L)

0.8122 0.8975 0.7674 0.9030 0.7674 0.9030

1 3 2 El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.8348 0.9031 0.8464 0.9401 0.8348 0.9401

3 2 1 El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG) E(LG) E(LG)

0.8576 0.8980 0.7674 0.9276 0.7674 0.9276

Table 4.14: The approximate NPI lower and upper expected general multi-level

losses for different loss values for Example 4.4.1. Case 3: L0 = 0.00, L1 = 1.00, L2 =

1.00, L3 = 1.00, L4 = 1.00, L5 = 1.00, L6 = 1.00, L7 = 1.00, L8 = 1.00, L9 =

1.00, L10 = 1.00, L11 = 1.00, L12 = 1.00, L13 = 1.00, L14 = 1.00, L15 = 1.00, L16 =

1.00, L17 = 1.00, L18 = 1.00, L19 = 1.00, L20 = 1.00, L21 = 1.00, L22 = 1.00, L23 =

1.00.

1, the smallest approximate NPI lower expected general multi-level loss is 0.4331

and in Case 2, it is 0.0821. Similarly, in Case 3, it is 0.6768, in Case 4, it is 0.2915,

and in Case 5, it is 0.4166. The smallest approximate NPI upper expected general

multi-level loss corresponds to the ranking preference of selecting group 3 as the

best, group 1 as the second best and group 2 as the third best for Cases 1, 2, 3, 4

and 5, with values of 0.5910, 0.2285, 0.9030, 0.4479 and 0.6792 respectively.

Similarly, the largest approximate NPI lower expected general multi-level loss

typically occurs for the ranking preference of selecting group 1 as the best, group

3 as the second best and group 2 as the third best in all cases except Case 1. In

Case 1, the largest approximate NPI lower expected general multi-level loss is 0.5148

corresponding to the ranking preference of selecting group 2 as the best, group 3
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`1 `2 `3 Approximate

1 2 3 El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.2915 0.4652 0.3162 0.4729 0.2915 0.4729

2 1 3 El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.3653 0.4459 0.3412 0.4685 0.3412 0.4685

2 3 1 El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.3577 0.4481 0.3752 0.4704 0.3577 0.4704

3 1 2 El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG) E(LG) E(LG)

0.3552 0.4450 0.3337 0.4479 0.3337 0.4479

1 3 2 El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.3639 0.4474 0.3699 0.4699 0.3639 0.4699

3 2 1 El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG) E(LG) E(LG)

0.3697 0.4486 0.3337 0.4580 0.3337 0.4580

Table 4.15: The approximate NPI lower and upper expected general multi-level

losses for different loss values for Example 4.4.1. Case 4: L0 = 0.00, L1 = 0.38, L2 =

0.39, L3 = 0.40, L4 = 0.41, L5 = 0.42, L6 = 0.43, L7 = 0.44, L8 = 0.45, L9 =

0.46, L10 = 0.47, L11 = 0.48, L12 = 0.49, L13 = 0.50, L14 = 0.51, L15 = 0.52, L16 =

0.53, L17 = 0.54, L18 = 0.55, L19 = 0.56, L20 = 0.57, L21 = 0.58, L22 = 0.59, L23 =

0.60.

as the second best and group 1 as the third best. The largest approximate NPI

upper expected general multi-level loss follows a similar pattern, with the ranking

preference of selecting group 1 as the best, group 2 as the second best, and group 3

as the third best having the largest value just for Case 3 is 0.9483, Case 4 is 0.4729,

Case 5 is 0.7175, while for Case 2, the largest approximate NPI upper expected

general multi-level loss occurs for selecting group 2 as the best, group 3 as the

second best, and group 1 as the third best.

If the ranking with the lowest approximate NPI lower expected general multi-

level loss is different from the ranking with the lowest approximate NPI upper ex-

pected general multi-level loss, then the choice depends on the decision-maker. For

example, in Case 2, the lowest approximate NPI lower expected general multi-level
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`1 `2 `3 Approximate

1 2 3 El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.4166 0.7036 0.4533 0.7175 0.4166 0.7175

2 1 3 El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.5216 0.6782 0.4870 0.7122 0.4870 0.7122

2 3 1 El
1(LG) Eu

1 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.5134 0.6801 0.5398 0.7149 0.5134 0.7149

3 1 2 El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG) E(LG) E(LG)

0.5106 0.6740 0.4786 0.6792 0.4786 0.6792

1 3 2 El
2(LG) Eu

2 (LG) El
3(LG) Eu

3 (LG) E(LG) E(LG)

0.5223 0.6782 0.5327 0.714 0.5223 0.7140

3 2 1 El
1(LG) Eu

1 (LG) El
2(LG) Eu

2 (LG) E(LG) E(LG)

0.5276 0.6813 0.4786 0.6929 0.4786 0.6929

Table 4.16: The approximate NPI lower and upper expected general multi-level

losses for different loss values for Example 4.4.1. Case 5: L0 = 0.00, L1 = 0.50, L2 =

0.52, L3 = 0.54, L4 = 0.56, L5 = 0.60, L6 = 0.62, L7 = 0.64, L8 = 0.66, L9 =

0.68, L10 = 0.70, L11 = 0.72, L12 = 0.74, L13 = 0.76, L14 = 0.78, L15 = 0.80, L16 =

0.82, L17 = 0.84, L18 = 0.86, L19 = 0.88, L20 = 0.90, L21 = 0.92, L22 = 0.94, L23 =

1.00.

loss corresponds to selecting group 1 as the best, group 2 as the second best, and

group 3 as the third best. In contrast, the lowest approximate NPI upper expected

general multi-level loss corresponds to selecting group 2 as the best, group 3 as the

second best, and group 1 as the third best. A cautious decision-maker, who aims

to minimise the worst-case loss, may focus on the approximate NPI upper expected

general multi-level loss. This choice may be safer, as it leads to the smallest possible

maximum loss. On the other hand, an optimistic decision-maker, who focuses on

the best-case loss, may choose the ranking with the lowest approximate NPI lower

expected general multi-level loss, as this minimises the loss if things go well.

Additionally, it is noticed that in Case 2, the approximate NPI lower and upper

expected general multi-level losses are quite small, with values ranging from 0.0821
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to 0.2454. This occurs because all Lc values are set to small values, less than 0.50.

However, in Case 3, the approximate NPI lower and upper expected general multi-

level losses are substantially larger, ranging from 0.6768 to 0.9483. This suggests

that the loss function in Case 3 shows much higher approximate NPI lower and

upper expected general multi-level losses compared to Case 2. This is because in

Case 3, all the values of Lc are set to 1, which represents an extreme scenario.

It should also be noted that the results from Table 4.14, which are based on

the zero-one loss function, do not exactly match the results from Table 2.3, which

present approximate NPI lower and upper probabilities. This is because the direct

relationship exists between the exact NPI lower and upper probabilities and the NPI

lower and upper expected losses, not with the approximate bounds.

In conclusion, while there are some similarities in the optimal ranked subset of the

three best groups corresponding to the smallest approximate NPI lower and upper

expected multi-level losses. However, the largest approximate NPI lower and upper

expected multi-level losses reveal key differences, particularly in Cases 1 and 2, show

that the different structures of Lc values across cases can lead to different optimal

ranked subset of the three best groups. These cases do not consistently produce the

same ranked subset of the three best groups for the largest approximate NPI lower

and upper expected general multi-level losses.

4.5 Concluding remarks

This chapter introduces NPI for selecting a ranked subset of w best groups, using

both the zero-one loss function and a general multi-level loss function. Two specific

cases are considered: w = 2, representing a ranked subset of the two best groups,

and w = 3, representing a ranked subset of the three best groups.

The zero-one loss function introduced in Section 4.2 is a binary measure, indi-

cating whether the ranking of future observations within a subset of w best groups

is correct or not. It just classifies whether the ranking of subset of best groups is

correct, without any further consideration. The zero-one loss function is a special

case of the general multi-level loss presented in Sections 4.3 and 4.4.
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A general multi-level loss function has been defined to provide a graded penalty

for different levels of mistakes for selecting a ranked subset of w best groups, assign-

ing different penalties to various types of group rankings within the subset within

the subset. This flexibility is useful when certain rankings may have more serious

consequences than others. As previously mentioned, two specific cases are consid-

ered: w = 2 in Section 4.3 and w = 3 in Section 4.4. The reason for presenting

these two cases is as follows. For w = 2, there is only one group in the middle, mak-

ing the optimisation process easier to perform. For w = 3 and beyond, there are

two or more groups in the middle, making the optimisation process more complex

and computationally demanding. Examples of real-valued data from the literature

and simulated data are presented to investigate the performance of the NPI method

for selecting a ranked subset of w best groups by using the NPI lower and upper

expected general multi-level losses.

When the ranked subset contains the two best groups, the multi-level loss func-

tion is introduced as a method to guide the ranking of future observations in this

subset and to reflect the quality of the ranking of groups belong to this subset. It

assigns a range of penalties. An optimisation process is then performed to derive

the NPI lower and upper expected multi-level losses, helping in decision-making

regarding the group rankings within the subset within that subset.

In some cases, the loss values must be predetermined by the problem rather than

derived from the data. The impact of different loss values on the decision-making

process for selecting a ranked subset of the best groups was explored by analysing

various cases with varying loss values. The results of different cases demonstrate

that the multi-level loss function is highly sensitive to these specific loss values,

leading to different conclusions.

The general case of the multi-level loss function for a ranked subset of w best

groups is presented in Section 4.4. This generalisation is necessary because the NPI

lower and upper expected multi-level losses cannot be directly derived when more

than one group lies between the best group in S and the non-selected groups in NS.

Therefore, an optimisation process is required to obtain the approximate NPI lower

and upper expected general multi-level losses. Subsequently, various loss values
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are assigned across different cases to explore how different penalty levels affect the

evaluation of selecting a ranked subset of the best groups. Applying these loss values

reveals varying conclusions in the group ranking evaluations.

An alternative method for defining the general multi-level loss function, which

can be considered in future works, is through grouped losses; instead of assigning

a distinct loss to every possible ranking, rankings can be grouped based on specific

structural patterns, with a common loss assigned to each group. The first group

loss indicates rankings where future observations from NS are smaller than those of

S. The second grouped loss accounts for the ranking in which future observations

from NS are smaller than those from S, except for one group, which is smaller than

all future observations from NS and so on till the last grouped loss represents the

ranking in which future observations from NS exceed those from S. This method

may provide a more structured way to assign losses, reducing the number of distinct

loss values and making the loss function easier to interpret and apply.

Finally, another approach is weighted grouped losses, instead of assigning a

unique loss to every ranking, similar rankings are grouped together and a com-

mon loss value is assigned to each group. The weighted grouped loss is then defined

as the average of the losses within each group. Those methods can reduce the num-

ber of different loss values while still differentiating between correct and incorrect

rankings.
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Chapter 5

5.1 Introduction

Ranking independent groups is a central problem addressed in this thesis, and this

chapter extends that problem by focusing on ranking groups organised into buckets.

Bucketing allows for clustering groups when a complete strict ranking is either un-

necessary or impractical. At one extreme, having one bucket per group corresponds

to a complete ranking as studied by Coolen-Maturi [20]. At the other extreme,

combining all groups into a single bucket makes their relative rank irrelevant. Be-

tween these extremes, the minimal meaningful number of buckets is two. Special

cases involving two buckets have been investigated by Coolen and van der Laan [18],

including selecting the best group, selecting the best subset, and selecting a subset

containing the best group.

Previous sections have examined related cases. Section 2.2 considers scenarios

with w+ 1 buckets, where w buckets each contain a single group and the remaining

groups are placed in one bucket. Sections 2.3 and 2.4 explore cases with three and

four buckets respectively, again with all but one bucket containing a single group.

In contrast, this chapter assumes a fixed number of buckets, selected by the user to

best fit the specific application.

The chapter begins by deriving NPI lower and upper probabilities for the ranking

events of interest in Section 5.2. Section 5.3 addresses how to assign groups to buck-

ets using statistics derived from the data, for example, ranking groups by median

values to guide the allocation. Next, the probabilities of these events of interest are

estimated using the NPI-bootstrap method described in Section 5.4. Their relation-
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ship is illustrated through examples, showing how the bootstrap estimates typically

lie between the NPI bounds.

Section 5.5 then considers how many buckets should be used by evaluating all

possible group-to-bucket assignments, selecting the allocation that either maximises

the lower and upper bounds for the NPI lower and upper probabilities or minimises

NPI lower and upper expected losses. Finally, Section 5.6 applies two different loss

functions to quantify the loss incurred from incorrect rankings of the buckets while

ignoring the ranking of the groups within each bucket.

This chapter thus presents a flexible and practical framework for ranking inde-

pendent groups organised into buckets, addressing both the allocation of groups and

the evaluation of bucket rankings.

5.2 Generalising the event of interest with buckets

Suppose that there are k independent groups, X1, X2, . . . , Xk, and the set of corre-

sponding indices is K = {1, 2, . . . , k}. The number of buckets s is assumed to be

fixed, the number of ways to assign the groups to buckets, neglecting the rank of the

groups within each bucket is k!
k1!k2!...ks!

, where ki is the number of groups assigned to

bucket i, i = 1, 2, . . . , s. Let K1, K2, . . . , Ks be the partition of the set of indices K,

such as Ki ∩Kt = ∅ for i 6= t, ∪si=1Ki = K and Ki 6= ∅ for all i = 1, 2, . . . , s. That

is ki = ||Ki|| and
∑s

i=1 ki = k.

Let Xf
1 , X

f
2 , . . . , X

f
k be the next future observations from the k groups, and let

the generalised event of interest be

{Xf
t }t∈K1 < {X

f
t }t∈K2 < . . . < {Xf

t }t∈Ks (5.1)

which can also be written as{
max
t∈K1

Xf
t < min

t∈K2

Xf
t

}
∧
{

max
t∈K2

Xf
t < min

t∈K3

Xf
t

}
∧ . . . ∧

{
max
t∈Ks−1

Xf
t < min

t∈Ks

Xf
t

}
(5.2)

or in a compact way, the event of interest is

A =
s−1⋂
i=1

{
max
t∈Ki

Xf
t < min

t∈Ki+1

Xf
t

}
(5.3)
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Calculating the NPI lower and upper probabilities for the event A is computa-

tionally intensive and complex. As noted by Coolen-Maturi [20] in the case where

each bucket contains only one group, obtaining exact NPI lower and upper probabil-

ities can be challenging. Therefore, this chapter follows their approach by employing

approximations that serve as a lower bound for the NPI lower probability and an

upper bound for the NPI upper probability.

For each group t (t = 1, 2, . . . , k), let the observed values be ordered as xt,1 <

xt,2 < . . . < xt,nt , and xt,0 = −∞ and xt,nt+1 =∞ defined for ease of notation. The

inference depends on Hill’s assumption A(nt) for each group t. Then the lower bound

for the NPI lower probability and the upper bound for the NPI upper probability

for the event of interest A in Equation (5.3) are

PL(A) =
1∏k

t=1(nt + 1)

n1+1∑
l1=1

n2+1∑
l2=1

. . .

nk+1∑
lk=1

s−1∏
i=1

I
(

max
t∈Ki

(xt,lt) < min
t∈Ki+1

(xt,lt−1)
)

(5.4)

P
U

(A) =
1∏k

t=1(nt + 1)

n1+1∑
l1=1

n2+1∑
l2=1

. . .

nk+1∑
lk=1

s−1∏
i=1

s∏
a=i

I
(

max
t∈Ki

(xt,lt−1) < min
t∈Ka+1

(xt,lt)
)
(5.5)

For the lower bound for the NPI lower probability, total separation is required

for the intervals across buckets. That is, for all possible configurations
∏k

t=1(nt+1),

the number of configurations is counted, such that all intervals in bucket 1 are left of

all intervals in bucket 2, and all intervals in bucket 2 are to the left of all intervals in

bucket 3, and so on. For the upper bound of the NPI upper probability, all possible

configurations of the intervals across buckets are counted for a given configuration.

These bounds are presented in Section 2.2.2 for the event max
jz∈NS

Xf
jz
< Xf

`w
< . . . <

Xf
`2
< Xf

`1
.

5.3 Assigning groups to buckets for defining events

of interest

To address the question of how to allocate groups to buckets and select the event

of interest, as discussed earlier in this chapter, one can use statistics derived from

the data to rank the groups. For example, groups with the smallest medians could
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Groups Data

X 1.2 1.3 0.7 0.5 0.9 0.2 0.2 1.3 1.0 0.8 0.3

1.2 1.3 0.9 0.5 0.9 1.5 9.8 2.1 1.5 4.2 2.1

0.9 0.1 1.1 0.9 7.7 4.7 1.7 1.1 0.3 20.0 0.0

1.0 1.6 0.7 1.2 0.4 3.9 1.5 0.9 3.4 21.0 1.0

4.0 1.1 2.2 12.0 0.5 4.7 3.0 0.1 4.2 0.7 0.9

0.9 4.3 2.7 0.2 2.3 0.7 1.7 0.9

Y 1.4 1.2 1.7 1.6 1.4 0.3 1.4 0.5 1.9 4.1 1.1

0.0 2.6 1.5 0.5 1.1 1.1 0.4 3.3 1.8 2.6 2.2

0.7 0.3 0.1 1.3 1.6 1.7 2.5 1.0 0.7

Table 5.1: Fasting serum growth hormone levels for two groups: middle-aged X and

elderly Y individuals for Example 5.3.1.

be placed in the first bucket, those with the next-smallest medians in the second

bucket, and so on. There are many possible ways to allocate one or more groups

to one or more buckets. However, to keep this section concise, it is assumed that

the number of buckets and the allocation of groups to these buckets depend on the

user’s objective. The median of each group is represented as m`t , where t = 1, . . . , k.

The ranked median will be denoted by

m`1 < m`2 < . . . < m`k (5.6)

It is assumed that each group has an associated median value, where the best

group has the highest median m`k , the second-best has the second-highest median

m`k−1
, and so on. This approach involves placing groups with the smallest medians

in the first bucket, those with the second-smallest medians in the second bucket,

and so on. However, this method does not necessarily yield the highest lower and

upper bounds for the NPI lower and upper probabilities. The following example

illustrates this point.

Example 5.3.1 The data from Hansen [44] examine the response of fasting serum

growth hormone to exercise in individuals with maturity-onset diabetes. The pri-

mary objective was to investigate whether exercise could raise levels of this hormone.
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Table 5.1 presents the observed values for two groups: group X represents middle-

aged individuals, and group Y represents elderly individuals. Each value corresponds

to the fasting serum growth hormone level (in ng/ml) measured after an exercise

session.

The median of group X is 1.1 and the median of group Y is 1.4. It is clear that

mX < mY . Based on that, the event of interest is Xf < Y f , which means that

the future fasting serum growth hormone level of a middle-aged individual after an

exercise session is less than that of an elderly individual, which could be expected to

yield the largest NPI lower and upper probabilities. However, in this example, it was

found that the complementary event, Xf ≥ Y f , actually yields slightly higher NPI

lower and upper probabilities. Specifically, the results are close, but indicate that

Xf is somewhat more likely to be greater than Y f , with PL(Xf ≥ Y f ) = 0.4692,

P
U

(Xf ≥ Y f ) = 0.5151, compared to PL(Xf < Y f ) = 0.4599, and PU
(Xf < Y f ) =

0.5058. Although the difference is small, this example highlights that defining the

event of interest just by ranking the medians does not always correspond to the

highest NPI lower and upper probabilities.

�

5.4 NPI-Bootstrap for estimating the probability of

the event

Deriving the exact NPI lower and upper probabilities for the general event of in-

terest is computationally complex, as discussed in Section 5.2, where we introduced

approximations in the form of bounds. In this section, we focus on a specialised ap-

plication of the NPI-Bootstrap method, as proposed by Coolen and BinHimd [14],

to approximate the probability of the general event of interest itself, rather than its

NPI lower and upper probabilities. We begin with an overview of the NPI-Bootstrap

method, followed by an explanation of how a particular case of this method can be

used to approximate our event of interest. As will be demonstrated, this approach

offers an attractive and computationally efficient alternative for estimating the prob-
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ability of the event. We start by outlining the NPI-B method introduced by Coolen

and BinHimd [14]. This method involves generating n + 1 intervals between the

n observations from the original data and then randomly selecting one of these

intervals.

The real line (−∞,∞) is divided into three parts: the first part is (−∞, x1) or

(0, x1), the second part contains all the intervals between x1 and xn, and the last

interval is (xn,∞). Regarding the second part, which contains n − 1 intervals, one

interval is sampled randomly. Then, sample a future observation uniformly from

that interval, and then this observation is added to the original data, resulting in

n + 1 observations. This results in the formation of a partition comprising n + 2

intervals, from which the second observation is selected.

This method handles the first interval (−∞, x1) and the last interval (xn,∞)

differently using the Normal distribution tails for real-valued data. One future ob-

servation is sampled from the tail of the Normal distribution with mean µ = x1+xn
2

and standard deviation σ = xn−µ
Φ−1( n

n+1
)
, where Φ denotes the standard Normal cumu-

lative distribution function.

The procedure continues until a predetermined number, denoted as m, of future

observations is sampled. This set of m observations forms a single NPI-B sample

(excluding the n original data observations). Repeat all these steps B times, where

B is a chosen integer value, to get a total of NPI-B bootstrap samples.

However, this process is performed only once, as in this thesis the number of

future observations considered is one per group, m = 1. Therefore, one interval is

sampled randomly and then the future observation is sampled either uniformly from

the middle intervals or from a Normal distribution over the first (−∞, x1) or the last

(xn,∞) interval. In NPI-B, all possible orderings of the new observations among

the past observations are equally likely to occur,
1(

n+m
n

) ; in this thesis, that reduces

to
1

n+ 1
. Thus, this NPI-bootstrap sample will be used to estimate the probability

of the event of interest, A =
s−1⋂
i=1

{
max
t∈Ki

Xf
t < min

t∈Ki+1

Xf
t

}
, as follows
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PB(A) =
1∏k

t=1(nt + 1)

n1+1∑
l1=1

n2+1∑
l2=1

. . .

nk+1∑
lk=1

s−1∏
i=1

I
(

max
t∈Ki

(x∗t,lt) < min
t∈Ki+1

(x∗t,lt)
)

(5.7)

where x∗t,lt ∈ (xt,lt−1 , xt,lt) refers to the bootstrap-sampled observation. The sampling

is done with equal probability 1/(nt + 1) across all (nt + 1) intervals defined by the

ordered data. For the middle intervals, those between the first and last observation

values are sampled uniformly. For the first and last intervals, sampling is performed

from assumed Normal tails.

In addition, 1000 bootstrap replications are used, a number commonly adopted in

the literature, especially for hypothesis testing and constructing confidence intervals.

The lower bound for the NPI lower probability and the upper bound for the NPI

upper probability of the event A =
s−1⋂
i=1

{
max
t∈Ki

Xf
t < min

t∈Ki+1

Xf
t

}
are briefly illustrated

in the following example. In this example, these bounds obtained using Equations

(5.4) and (5.5) are compared with the probability of the event estimated using the

NPI-bootstrap method based on Equation (5.7).

Example 5.4.1 The dataset provided in this example is sourced from the literature,

Simpson and Margolin [68]. The data record revertant-colony counts from three

replicate Ames assays on Salmonella TA98 at six dose levels of Acid Red 114. The

number of visible revertant colonies at each dose levels was nine. The classification of

six doses into different buckets based on their medians should be performed first. The

total number of ways to arrange the doses in s buckets can be considered, ensuring

that the first bucket contains the lowest medians and the last bucket contains the

highest medians. In this example, we will consider the following scenario in which

k = 6 doses are divided into s = 3 buckets, k1 = 2, k2 = 2 and k3 = 2, based on their

medians m1 = 22,m2 = 25,m3 = 35,m4 = 43,m5 = 28 and m6 = 16, the ranked

median is m6 < m1 < m2 < m5 < m3 < m4. Therefore, the event of interest is{
max(Xf

6 , X
f
1 ) < min(Xf

2 , X
f
5 )
}
∧
{

max(Xf
2 , X

f
5 ) < min(Xf

3 , X
f
4 )
}
. Note that Xf

t

is the future observation from group t, where t = 1, . . . , 6. The goal is to find lower

and upper bounds for the NPI lower and upper probabilities for the event and then

to find an estimated probability using the NPI-bootstrap method.
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For the lower bound for the NPI lower probability, total separation for the in-

tervals is required across buckets 1, 2 and 3. The lower bound for the NPI lower

probability is

PL
({

max (Xf
6 , X

f
1 ) < min (Xf

2 , X
f
5 )
}
∧
{

max (Xf
2 , X

f
5 ) < min (Xf

3 , X
f
4 )
})

=
1

106

n1+1∑
l1=1

. . .

n6+1∑
l6=1

I
(

max (x6,l6 , x1,l1) < min (x2,l2−1, x5,l5−1)
)

I
(

max (x2,l2 , x5,l5) < min (x3,l3−1, x4,l4−1)
)

= 0.1213

For the upper bound for the NPI upper probability, all possible configurations of

the intervals across buckets 1, 2 and 3 are counted. The upper bound for the NPI

upper probability is

P
U
({

max (Xf
6 , X

f
1 ) < min (Xf

2 , X
f
5 )
}
∧
{

max (Xf
2 , X

f
5 ) < min (Xf

3 , X
f
4 )
})

=
1

106

n1+1∑
l1=1

. . .

n6+1∑
l6=1

I
(

max (x6,l6−1, x1,l1−1) < min (x2,l2 , x5,l5)
)

I
(

max (x6,l6−1, x1,l1−1) < min (x3,l3 , x4,l4)
)

I
(

max (x2,l2−1, x5,l5−1) < min (x3,l3 , x4,l4)
)

= 0.2168

To estimate the probability of this event using the NPI-bootstrap method de-

scribed above, note that the original dataset has endpoints at 8 and 98, as reported

by Simpson and Margolin [68]. Start by randomly sampling one interval from each

dose; then, one future observation is sampled either uniformly from any intervals be-

tween (8, 98) or normally from interval (−∞, 8) or (98,∞). This process is repeated

1000 times to approximate the probability. Using Equation (5.7), the estimated

probability is found to be 0.1500. The estimated probability result clearly lies in be-

tween the lower bound for the NPI lower probability which is 0.1213 and the upper

bound for the NPI upper probability which is 0.2168.

�
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Groups Data

1 49 50 53 57 59 70 71 78 82 85

2 67 75 90 94 97 114 127 130 140 151

3 60 63 66 81 98 110 128 133 144 157

4 89 91 100 104 118 120 123 137 147 149

Table 5.2: Observed values for four groups with ten observations each for Example

5.5.1.

5.5 Selecting the number of buckets

In Section 5.2, it is assumed that the number of buckets is fixed. However, when

it comes to assigning groups into buckets, there are several approaches to consider.

For example, one could consider all possible allocation methods and select one that

meets a specific criterion, such as maximising the lower and upper bounds for the

NPI lower and upper probabilities or minimising the lower and upper bounds for the

NPI lower and upper losses of an event. Alternatively, one could use statistics drawn

from the data to rank the groups, such as putting those with the smallest medians

in the first bucket, those with the second smallest medians in the second bucket, and

so on. Ultimately, the allocation method may depend on the user and the specific

application at hand. When there are many groups and buckets to consider, exploring

all the options to assign groups into buckets can be challenging. However, with a

small number of groups, all possible events of interest can be thoroughly examined.

Next, an example is provided with just four groups which are manageable to

consider all bucket options: 2, 3 and 4. The goal is to investigate how the number

of buckets and the number of groups within the buckets impact the selection and

ranking.

Example 5.5.1 Neuhauser et al. [62] provide an example of four groups with ten

observations each. Table 5.2 shows this dataset. The number of ways to partition

k groups into s ordered, non-empty buckets, where the order of groups within each

bucket does not matter, is given by multiplying s! by the Stirling number of the
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Event PL P
U

PB

Xf
1 < min(Xf

2 , X
f
3 , X

f
4 ) 0.5314 0.8144 0.6870

Xf
2 < min(Xf

1 , X
f
3 , X

f
4 ) 0.0382 0.1700 0.0840

Xf
3 < min(Xf

1 , X
f
2 , X

f
4 ) 0.1134 0.2689 0.2060

Xf
4 < min(Xf

1 , X
f
2 , X

f
3 ) 0.0000 0.1102 0.0170

max(Xf
1 , X

f
2 ) < min(Xf

3 , X
f
4 ) 0.2288 0.3815 0.3330

max(Xf
1 , X

f
3 ) < min(Xf

2 , X
f
4 ) 0.3026 0.4696 0.4050

max(Xf
1 , X

f
4 ) < min(Xf

2 , X
f
3 ) 0.1325 0.2630 0.2070

max(Xf
2 , X

f
3 ) < min(Xf

1 , X
f
4 ) 0.0191 0.0914 0.0380

max(Xf
2 , X

f
4 ) < min(Xf

1 , X
f
3 ) 0.0000 0.0460 0.0030

max(Xf
3 , X

f
4 ) < min(Xf

1 , X
f
2 ) 0.0000 0.0544 0.0070

max(Xf
1 , X

f
2 , X

f
3 ) < Xf

4 0.2759 0.4929 0.4040

max(Xf
1 , X

f
2 , X

f
4 ) < Xf

3 0.2097 0.3908 0.3100

max(Xf
1 , X

f
3 , X

f
4 ) < Xf

2 0.1974 0.3847 0.3160

max(Xf
2 , X

f
3 , X

f
4 ) < Xf

1 0.0000 0.0952 0.0020

Table 5.3: Four groups allocating into two buckets, s = 2 for Example 5.5.1

second kind, S(k, s). The Stirling number S(k, s) counts the number of ways to

partition k labelled groups into s unordered, non-empty buckets, while multiplying

by s! accounts for the ordering of these buckets, converting unordered partitions

into ordered partitions. The number of ordered partitions is given by the formula

s! · S(k, s), with initial values S(0, 0) = 1, and S(k, 0) = S(0, s) = 0 for k, s > 0

[36]. Stirling numbers of the second kind can be efficiently calculated in R using the

stirling2 function from the Brobdingnag package.

When k = 4 groups are partitioned into s buckets, the number of ways to assign

these groups varies with s. When there is only one bucket, s = 1, there is exactly

one way to assign all groups together. For two buckets, s = 2, the total number of

ordered partitions is 14. For three buckets, s = 3, resulting in 36 ways to assign the

groups. Finally, when each group forms its own bucket, s = 4, there are 24 possible

ordered partitions.

From Table 5.2, it is clear that all the observations that belong to group 1 are less
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Event PL P
U

PB

(Xf
1 < Xf

2 ) ∧ (Xf
2 < min(Xf

3 , X
f
4 )) 0.1933 0.2930 0.2510

(Xf
1 < Xf

3 ) ∧ (Xf
3 < min(Xf

2 , X
f
4 )) 0.2056 0.3080 0.2620

(Xf
1 < Xf

4 ) ∧ (Xf
4 < min(Xf

2 , X
f
3 )) 0.1325 0.2126 0.1540

(Xf
2 < Xf

1 ) ∧ (Xf
1 < min(Xf

3 , X
f
4 )) 0.0355 0.1150 0.0860

(Xf
2 < Xf

3 ) ∧ (Xf
3 < min(Xf

1 , X
f
4 )) 0.0027 0.0343 0.0150

(Xf
2 < Xf

4 ) ∧ (Xf
4 < min(Xf

1 , X
f
3 )) 0.0000 0.0200 0.0020

(Xf
3 < Xf

1 ) ∧ (Xf
1 < min(Xf

2 , X
f
4 )) 0.0970 0.1961 0.1400

(Xf
3 < Xf

2 ) ∧ (Xf
2 < min(Xf

1 , X
f
4 )) 0.0164 0.0496 0.0220

(Xf
3 < Xf

4 ) ∧ (Xf
4 < min(Xf

1 , X
f
2 )) 0.0000 0.0225 0.0080

(Xf
4 < Xf

1 ) ∧ (Xf
1 < min(Xf

2 , X
f
3 )) 0.0000 0.0658 0.0090

(Xf
4 < Xf

2 ) ∧ (Xf
2 < min(Xf

1 , X
f
3 )) 0.0000 0.0193 0.0010

(Xf
4 < Xf

3 ) ∧ (Xf
3 < min(Xf

1 , X
f
2 )) 0.0000 0.0245 0.0030

(Xf
1 < min(Xf

2 , X
f
3 )) ∧ (max(Xf

2 , X
f
3 ) < Xf

4 ) 0.1927 0.2802 0.2470

(Xf
1 < min(Xf

2 , X
f
4 )) ∧ (max(Xf

2 , X
f
4 ) < Xf

3 ) 0.1889 0.2796 0.2620

(Xf
1 < min(Xf

3 , X
f
4 )) ∧ (max(Xf

3 , X
f
4 ) < Xf

2 ) 0.1498 0.2330 0.2150

(Xf
2 < min(Xf

1 , X
f
3 )) ∧ (max(Xf

1 , X
f
3 ) < Xf

4 ) 0.0175 0.0705 0.0540

(Xf
2 < min(Xf

1 , X
f
4 )) ∧ (max(Xf

1 , X
f
4 ) < Xf

3 ) 0.0208 0.0590 0.0480

(Xf
2 < min(Xf

3 , X
f
4 )) ∧ (max(Xf

3 , X
f
4 ) < Xf

1 ) 0.0000 0.0300 0.0020

(Xf
3 < min(Xf

1 , X
f
2 )) ∧ (max(Xf

1 , X
f
2 ) < Xf

4 ) 0.0658 0.1242 0.0860

(Xf
3 < min(Xf

1 , X
f
4 )) ∧ (max(Xf

1 , X
f
4 ) < Xf

2 ) 0.0476 0.0941 0.0730

(Xf
3 < min(Xf

2 , X
f
4 )) ∧ (max(Xf

2 , X
f
4 ) < Xf

1 ) 0.0000 0.0387 0.0000

(Xf
4 < min(Xf

1 , X
f
2 )) ∧ (max(Xf

1 , X
f
2 ) < Xf

3 ) 0.0000 0.0380 0.0150

(Xf
4 < min(Xf

1 , X
f
3 )) ∧ (max(Xf

1 , X
f
3 ) < Xf

2 ) 0.0000 0.0421 0.0070

(Xf
4 < min(Xf

2 , X
f
3 )) ∧ (max(Xf

2 , X
f
3 ) < Xf

1 ) 0.0000 0.0220 0.0000

Table 5.4: Four groups allocating into three buckets, s = 3 for Example 5.5.1, part

1

than all the observations that belong to group 4. In addition, Tables 5.3, 5.4, 5.5 and

5.6 present the lower and upper bounds for the NPI lower and upper probabilities

and the estimated probability PB for all possible events considered. It is clear that
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Event PL P
U

PB

(max(Xf
1 , X

f
2 ) < Xf

3 ) ∧ (Xf
3 < Xf

4 ) 0.1018 0.1878 0.1540

(max(Xf
1 , X

f
2 ) < Xf

4 ) ∧ (Xf
4 < Xf

3 ) 0.1270 0.2201 0.2140

(max(Xf
1 , X

f
3 ) < Xf

2 ) ∧ (Xf
2 < Xf

4 ) 0.1550 0.2569 0.2380

(max(Xf
1 , X

f
3 ) < Xf

4 ) ∧ (Xf
4 < Xf

2 ) 0.1475 0.2472 0.1810

(max(Xf
1 , X

f
4 ) < Xf

3 ) ∧ (Xf
3 < Xf

2 ) 0.0499 0.1190 0.1060

(max(Xf
1 , X

f
4 ) < Xf

2 ) ∧ (Xf
2 < Xf

3 ) 0.0826 0.1594 0.1190

(max(Xf
2 , X

f
3 ) < Xf

1 ) ∧ (Xf
1 < Xf

4 ) 0.0191 0.0473 0.0280

(max(Xf
2 , X

f
3 ) < Xf

4 ) ∧ (Xf
4 < Xf

1 ) 0.0000 0.0365 0.0030

(max(Xf
2 , X

f
4 ) < Xf

1 ) ∧ (Xf
1 < Xf

3 ) 0.0000 0.0105 0.0040

(max(Xf
2 , X

f
4 ) < Xf

3 ) ∧ (Xf
3 < Xf

1 ) 0.0000 0.0288 0.0000

(max(Xf
3 , X

f
4 ) < Xf

1 ) ∧ (Xf
1 < Xf

2 ) 0.0000 0.0178 0.0050

(max(Xf
3 , X

f
4 ) < Xf

2 ) ∧ (Xf
2 < Xf

1 ) 0.0000 0.0291 0.0000

Table 5.5: Four groups allocating into three buckets, s = 3 for Example 5.5.1, part

2

the estimated probability is either between the lower and upper bounds for the NPI

lower and upper probabilities or equal to one of them. For example, from Table 5.4

and for the event (Xf
4 < min(Xf

2 , X
f
3 ) ∧ (max(Xf

2 , X
f
3 ) < Xf

1 ), the lower bound for

the NPI lower probability is equal to the estimated probability, which is 0. Also,

in Table 5.6, for the event Xf
3 < Xf

4 < Xf
1 < Xf

2 , the lower bound for the NPI

lower probability, the upper bound for the NPI upper probability and estimated

probabilities have an identical value of 0. Some events result in the lower bound for

the NPI lower probability, the upper bound for the NPI upper probability or the

estimated probability of 0. The reason is that these events consider either group 4

to provide the smallest future observation or group 1 to provide the largest future

observation, such as Xf
4 < min(Xf

1 , X
f
2 , X

f
3 ) and max(Xf

2 , X
f
3 , X

f
4 ) < Xf

1 .

It is also clear that the lower bound for the NPI lower probability and the upper

bound for the NPI upper probability for all bucket options s = 2, s = 3, and s = 4

are mostly small values, except for some events in Table 5.3, where they are around

0.5. For example, the lower bound for the NPI lower probability for the events
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Event PL P
U

PB

Xf
1 < Xf

2 < Xf
3 < Xf

4 0.0870 0.1282 0.1080

Xf
1 < Xf

2 < Xf
4 < Xf

3 0.1063 0.1578 0.1320

Xf
1 < Xf

3 < Xf
2 < Xf

4 0.1057 0.1520 0.1315

Xf
1 < Xf

3 < Xf
4 < Xf

2 0.0999 0.1496 0.1303

Xf
1 < Xf

4 < Xf
2 < Xf

3 0.0826 0.1217 0.1120

Xf
1 < Xf

4 < Xf
3 < Xf

2 0.0499 0.0834 0.0800

Xf
2 < Xf

1 < Xf
3 < Xf

4 0.0148 0.0547 0.0310

Xf
2 < Xf

1 < Xf
4 < Xf

3 0.0208 0.0590 0.0380

Xf
2 < Xf

3 < Xf
1 < Xf

4 0.0027 0.0158 0.0110

Xf
2 < Xf

3 < Xf
4 < Xf

1 0.0000 0.0147 0.0010

Xf
2 < Xf

4 < Xf
1 < Xf

3 0.0000 0.0000 0.0000

Xf
2 < Xf

4 < Xf
3 < Xf

1 0.0000 0.0153 0.0000

Xf
3 < Xf

1 < Xf
2 < Xf

4 0.0494 0.1002 0.0760

Xf
3 < Xf

1 < Xf
4 < Xf

2 0.0476 0.0941 0.0850

Xf
3 < Xf

2 < Xf
1 < Xf

4 0.0164 0.0240 0.0170

Xf
3 < Xf

2 < Xf
4 < Xf

1 0.0000 0.0212 0.0010

Xf
3 < Xf

4 < Xf
1 < Xf

2 0.0000 0.0000 0.0000

Xf
3 < Xf

4 < Xf
2 < Xf

1 0.0000 0.0176 0.0030

Xf
4 < Xf

1 < Xf
2 < Xf

3 0.0000 0.0339 0.0060

Xf
4 < Xf

1 < Xf
3 < Xf

2 0.0000 0.0312 0.0030

Xf
4 < Xf

2 < Xf
1 < Xf

3 0.0000 0.0041 0.0020

Xf
4 < Xf

2 < Xf
3 < Xf

1 0.0000 0.0117 0.0010

Xf
4 < Xf

3 < Xf
1 < Xf

2 0.0000 0.0109 0.0000

Xf
4 < Xf

3 < Xf
2 < Xf

1 0.0000 0.0103 0.0000

Table 5.6: Four groups allocating into four buckets, s = 4 for Example 5.5.1

Xf
1 < min(Xf

2 , X
f
3 , X

f
4 ) and the upper bound for the NPI upper probability for the

events max(Xf
1 , X

f
3 ) < min(Xf

2 , X
f
4 ) are around 0.5 which might be considered a

bit large compared with the rest.

In conclusion, Table 5.3 shows that the number of buckets leading to a good
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decision, defined as those with high values for the lower bound of the NPI lower

probability and the upper bound of the NPI upper probability, is two s = 2. Specif-

ically, one group is in the first bucket and three groups are in the second bucket for

the event Xf
1 < min(Xf

2 , X
f
3 , X

f
4 ). The lower bound for the NPI lower probability

for this event is 0.5314, the upper bound for the NPI upper probability for this event

is 0.8144, and the estimated probability equal to 0.6870. Moreover, for every event

considered, the estimated probability PB always lies between or equal to either the

lower bound for the NPI lower probability PL or the upper bound for the NPI upper

probability PU . Also, many events under s = 3 or s = 4 yield very small NPI lower

and upper probabilities, often zero.

�

5.6 General event of selection and ranking based on

loss functions

In this section, the aim is to measure the penalty associated with the ranking of the

suboptimal buckets and to reflect on the quality of the ranking, without considering

the ranking of the groups within each bucket, using a loss function for the event

A =
s−1⋂
i=1

{
max
t∈Ki

Xf
t < min

t∈Ki+1

Xf
t

}
. The general multi-level loss function considered in

Chapter 4 could be considered in this section. It should be noted that the general

multi-level loss function provides graded penality for different level of ranking errors,

which leads to large number of loss levels. For example, in Example 5.5.1, the num-

ber of loss levels should be 75, each representing a different ordering of the groups.

Therefore, linear and quadratic loss functions are considered as an alternative of a

general multi-level loss function. The linear loss function is considered in Section

5.6.1, while the quadratic loss function is considered in Section 5.6.2. They focus on

penalising the suboptimal ordering of buckets without accounting for the ranking of

groups within each bucket.
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5.6.1 Linear loss function

The linear loss function measures the distance between future observations in the

bucket i and future observations in the bucket i+ 1. The penalty increases linearly

with the difference. This helps to measure the penalty associated with ranking the

suboptimal s buckets in terms of one or more future observations within each bucket.

The linear loss function for the general event A =
s−1⋂
i=1

{
max
t∈Ki

Xf
t < min

t∈Ki+1

Xf
t

}
can be

defined as

Ll

(
s−1⋂
i=1

{
max
t∈Ki

Xf
t , min

t∈Ki+1

Xf
t

})
=

0 if A is true

F otherwise
(5.8)

where F =
s−1∑
i=1

max

{
max
t∈Ki

Xf
t − min

t∈Ki+1

Xf
t , 0

}
. If the condition, which is A is not

satisfied, the loss that is F is defined as the sum of the individual loss between

consecutive buckets.

This loss function measures the penalty associated with the suboptimal rank-

ing of observations in each bucket Ki relative to those in the next bucket Ki+1,

considering all buckets from 1 to s. A lower value of Ll
(s−1∑
i=1

{
max
t∈Ki

Xf
t , min

t∈Ki+1

Xf
t

})
indicates a smaller deviation from the desired ranking between the future observa-

tions in bucket i and the future observations in bucket i + 1, while a larger value

suggests a greater deviation between the future observations in bucket i and the

future observations in bucket i+ 1.

The discussion now turns to the NPI lower and upper expected linear losses.

Calculating the NPI lower and upper expected linear losses for the event A is com-

putationally intensive and complex. Therefore, this chapter employs approximations

that serve as a lower bound for the NPI lower expected linear loss and an upper

bound for the NPI upper expected linear loss.

For each group t (t = 1, 2, . . . , k), let the observed values be ordered as xt,1 <

xt,2 < . . . < xt,nt , and xt,0 = l and xt,nt+1 = r defined for ease of notation. future

observations are bounded by l and r, set below the minimum and above the max-

imum observed data points, respectively. The appearance of −∞ or ∞ affects the

calculation of the lower and upper bounds for the NPI lower and upper expected

linear losses. The inference depends on Hill’s assumption A(nt) for each group t.
October 6, 2025



5.6. General event of selection and ranking based on loss functions 146

For the lower bound for the NPI lower expected linear loss, the sum of the losses

for pairwise comparison across buckets is calculated while the probability mass for

groups belonging to bucket Ki is assigned to the left endpoint per interval, and the

probability mass for groups belonging to bucket Ki+1 is assigned to the right end-

point per interval. For the upper bound of the NPI upper probability, again the sum

of the losses for pairwise comparison across buckets is calculated while the proba-

bility mass for groups belonging to bucket Ki is assigned to the right endpoint per

interval, and the probability mass for groups belonging to bucket Ki+1 is assigned

to the left endpoint per interval. Then, the lower bound for the NPI lower expected

linear loss and the upper bound for the NPI upper expected linear loss for the event

of interest A in Equation (5.3) are

EL(Ll(A)) =
1∏k

t=1(nt + 1)

n1+1∑
l1=1

n2+1∑
l2=1

. . .

nk+1∑
lk=1

s−1∑
i=1

Ll

(
max
t∈Ki

(xt,lt−1) < min
t∈Ki+1

(xt,lt)
)
(5.9)

E
U

(Ll(A)) =
1∏k

t=1(nt + 1)

n1+1∑
l1=1

n2+1∑
l2=1

. . .

nk+1∑
lk=1

s−1∑
i=1

Ll

(
max
t∈Ki

(xt,lt) < min
t∈Ka+1

(xt,lt−1)
)

(5.10)

Next, for further investigation, the quadratic loss function will be presented to

measure the penalty associated with the ranking of the suboptimal s buckets in

terms of one or more future observations within each bucket.

5.6.2 Quadratic loss function

The quadratic loss function for the general event
s−1⋂
i=1

{
max
t∈Ki

Xf
t < min

t∈Ki+1

Xf
t

}
can be

defined as

Lq

(
s−1⋂
i=1

{
max
t∈Ki

Xf
t , min

t∈Ki+1

Xf
t

})
=

0 if A is true

F otherwise
(5.11)

where F =
s−1∑
i=1

{
max

{
max
t∈Ki

Xf
t − min

t∈Ki+1

Xf
t , 0

}}2

.

The quadratic loss function measures the penalty associated with ranking sub-

optimal among consecutive buckets. In other words, the quadratic loss function
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measures the difference between future observations in the bucket i and those in

bucket i+ 1 across s buckets, squaring these differences to penalise larger gaps more

heavily.

Then the lower bound for the NPI lower expected quadratic loss and the upper

bound for the NPI upper expected quadratic loss for the event of interest A

EL(Lq(A)) =
1∏k

t=1(nt + 1)

n1+1∑
l1=1

n2+1∑
l2=1

. . .

nk+1∑
lk=1

s−1∑
i=1

Lq

(
max
t∈Ki

(xt,lt−1) < min
t∈Ki+1

(xt,lt)
)

(5.12)

E
U

(Lq(A)) =
1∏k

t=1(nt + 1)

n1+1∑
l1=1

n2+1∑
l2=1

. . .

nk+1∑
lk=1

s−1∑
i=1

Lq

(
max
t∈Ki

(xt,lt) < min
t∈Ka+1

(xt,lt−1)
)

(5.13)

Next, an example will be provided to illustrate and discuss the general event of

selection and ranking based on the linear and quadratic loss function.

Example 5.6.1 In Example 5.5.1, the goal was to investigate and determine the

optimal number of buckets and the optimal number of groups within buckets for

four groups. Now, in this example, the aim is to measure the penalty associated

with the ranking of suboptimal buckets for all possible number of buckets and the

number of groups within buckets for four groups, and to examine whether the results

align with those obtained in Example 5.5.1. The decision here depends on the lower

and upper bounds of the NPI lower and upper expected linear and quadratic losses

given in Sections 5.6.1 and 5.6.2 respectively.

From Equations (5.8) and (5.11) the loss is only calculated when the buckets do

not follow the desired ranking. In addition, the loss is calculated based on given

penalty values, which are linear and quadratic deviations between two consecutive

buckets. The quadratic penalty penalises larger deviations more heavily, as seen

with some events of interest in Tables 5.7, 5.8, 5.9 and 5.10.

To calculate the lower and upper bounds for the NPI lower and upper linear and

quadratic losses, an assumption is made that the data observations are bounded by

the values 48 and 158, as discussed in Section 3.4.2.

First, it is notable that in Tables 5.8, 5.9, and 5.10, some events of interest have

either the lower bound for the NPI lower linear or quadratic expected losses equal
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Event EL(Ll) EU(Ll) EL(Lq) EU(Lq)

Xf
1 < min(Xf

2 , X
f
3 , X

f
4 ) 2.221 13.255 35.316 804.748

Xf
2 < min(Xf

1 , X
f
3 , X

f
4 ) 39.513 53.898 2474.744 3862.426

Xf
3 < min(Xf

1 , X
f
2 , X

f
4 ) 35.573 49.706 2395.757 3768.141

Xf
4 < min(Xf

1 , X
f
2 , X

f
3 ) 47.889 62.385 3081.985 4546.632

max(Xf
1 , X

f
2 ) < min(Xf

3 , X
f
4 ) 18.567 31.247 955.981 1993.767

max(Xf
1 , X

f
3 ) < min(Xf

2 , X
f
4 ) 15.173 27.365 749.644 1737.983

max(Xf
1 , X

f
4 ) < min(Xf

2 , X
f
3 ) 25.778 39.014 1387.926 2541.986

max(Xf
2 , X

f
3 ) < min(Xf

1 , X
f
4 ) 44.554 59.088 2995.033 4571.409

max(Xf
2 , X

f
4 ) < min(Xf

1 , X
f
3 ) 50.478 63.391 3412.675 4916.874

max(Xf
3 , X

f
4 ) < min(Xf

1 , X
f
2 ) 49.007 63.089 3305.446 4931.718

max(Xf
1 , X

f
2 , X

f
3 ) < Xf

4 14.076 28.190 555.556 1626.071

max(Xf
1 , X

f
2 , X

f
4 ) < Xf

3 26.292 40.953 1551.024 2892.147

max(Xf
1 , X

f
3 , X

f
4 ) < Xf

2 22.152 36.928 1126.253 2369.710

max(Xf
2 , X

f
3 , X

f
4 ) < Xf

1 60.706 76.518 4537.619 6359.053

Table 5.7: Linear and quadratic loss functions for four groups allocating into two

buckets, s = 2 for Example 5.6.1

to zero or both the lower and upper bounds for the NPI lower and upper linear

or quadratic expected losses equal to zero, while this situation does not occur in

Table 5.7. This occurs mainly when future observations related to the group 1 are

less than those related to group 4. Also, These tables clearly present scenarios with

more buckets. As a result, the events of interest imply additional conditions on

the ranking, which leads to smaller values for the lower and upper bounds for the

NPI lower and upper linear and quadratic expected losses. The smallest lower and

upper bounds for the NPI lower and upper linear and quadratic expected losses in

Table 5.7 are related to the event Xf
1 < min(Xf

2 , X
f
3 , X

f
4 ), where EL(Ll) = 2.221,

EU(Ll) = 13.255, EL(Lq) = 35.316, and EU(Lq) = 804.748, this result aligns with

the result shown in Table 5.3, where this event has the highest NPI lower and upper

probabilities to occur. The smallest NPI lower and upper linear and quadratic

expected losses across all cases are associated with the events Xf
3 < Xf

1 < Xf
4 < Xf

2
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Event EL(Ll) EU(Ll) EL(Lq) EU(Lq)

(Xf
1 < Xf

2 ) ∧ (Xf
2 < min(Xf

3 , X
f
4 )) 0.286 5.593 5.186 466.394

(Xf
1 < Xf

3 ) ∧ (Xf
3 < min(Xf

2 , X
f
4 )) 0.038 4.694 0.524 360.501

(Xf
1 < Xf

4 ) ∧ (Xf
4 < min(Xf

2 , X
f
3 )) 0.000 5.850 0.000 526.135

(Xf
2 < Xf

1 ) ∧ (Xf
1 < min(Xf

3 , X
f
4 )) 5.445 16.031 335.222 1200.933

(Xf
2 < Xf

3 ) ∧ (Xf
3 < min(Xf

1 , X
f
4 )) 17.684 28.320 1261.878 2268.915

(Xf
2 < Xf

4 ) ∧ (Xf
4 < min(Xf

1 , X
f
3 )) 21.533 31.798 1582.906 2613.513

(Xf
3 < Xf

1 ) ∧ (Xf
1 < min(Xf

2 , X
f
4 )) 2.140 11.619 137.821 947.729

(Xf
3 < Xf

2 ) ∧ (Xf
2 < min(Xf

1 , X
f
4 )) 21.209 31.940 1615.259 2676.125

(Xf
3 < Xf

4 ) ∧ (Xf
4 < min(Xf

1 , X
f
2 )) 21.120 31.396 1632.086 2671.193

(Xf
4 < Xf

1 ) ∧ (Xf
1 < min(Xf

2 , X
f
3 )) 8.718 20.828 528.525 1538.427

(Xf
4 < Xf

2 ) ∧ (Xf
2 < min(Xf

1 , X
f
3 )) 26.714 37.846 1906.299 2999.489

(Xf
4 < Xf

3 ) ∧ (Xf
3 < min(Xf

1 , X
f
2 )) 22.760 34.040 1638.281 2717.004

(Xf
1 < min(Xf

2 , X
f
3 )) ∧ (max(Xf

2 , X
f
3 ) < Xf

4 ) 4.847 10.937 242.651 986.402

(Xf
1 < min(Xf

2 , X
f
4 )) ∧ (max(Xf

2 , X
f
4 ) < Xf

3 ) 6.068 9.768 410.346 1027.228

(Xf
1 < min(Xf

3 , X
f
4 )) ∧ (max(Xf

3 , X
f
4 ) < Xf

2 ) 6.705 12.166 403.525 1168.968

(Xf
2 < min(Xf

1 , X
f
3 )) ∧ (max(Xf

1 , X
f
3 ) < Xf

4 ) 20.402 40.808 1846.823 4302.378

(Xf
2 < min(Xf

1 , X
f
4 )) ∧ (max(Xf

1 , X
f
4 ) < Xf

3 ) 39.041 59.850 4017.900 6817.316

(Xf
2 < min(Xf

3 , X
f
4 )) ∧ (max(Xf

3 , X
f
4 ) < Xf

1 ) 56.803 68.761 6260.650 7937.445

(Xf
3 < min(Xf

1 , X
f
2 )) ∧ (max(Xf

1 , X
f
2 ) < Xf

4 ) 19.175 38.060 1735.271 4043.018

(Xf
3 < min(Xf

1 , X
f
4 )) ∧ (max(Xf

1 , X
f
4 ) < Xf

2 ) 31.139 50.804 3081.594 5666.770

(Xf
3 < min(Xf

2 , X
f
4 )) ∧ (max(Xf

2 , X
f
4 ) < Xf

1 ) 48.878 58.343 5389.616 6687.953

(Xf
4 < min(Xf

1 , X
f
2 )) ∧ (max(Xf

1 , X
f
2 ) < Xf

3 ) 38.410 61.591 4005.643 7071.520

(Xf
4 < min(Xf

1 , X
f
3 )) ∧ (max(Xf

1 , X
f
3 ) < Xf

2 ) 31.887 55.492 3189.693 6206.252

(Xf
4 < min(Xf

2 , X
f
3 )) ∧ (max(Xf

2 , X
f
3 ) < Xf

1 ) 66.109 81.858 7427.897 9625.469

Table 5.8: Linear and quadratic loss functions for four groups allocating into three

buckets, s = 3 for Example 5.6.1, part 1

and Xf
2 < Xf

1 < Xf
4 < Xf

3 , which are equal to zero. However, the highest lower and

upper bounds for NPI linear and quadratic expected losses for this table occur for the

event max(Xf
2 , X

f
3 , X

f
4 ) < Xf

1 , where EL(Ll) = 60.706, EU(Ll) = 76.518, EL(Lq) =
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Event EL(Ll) EU(Ll) EL(Lq) EU(Lq)

(max(Xf
1 , X

f
2 ) < Xf

3 ) ∧ (Xf
3 < Xf

4 ) 2.056 8.773 89.101 612.815

(max(Xf
1 , X

f
2 ) < Xf

4 ) ∧ (Xf
4 < Xf

3 ) 9.019 18.662 583.764 1446.125

(max(Xf
1 , X

f
3 ) < Xf

2 ) ∧ (Xf
2 < Xf

4 ) 3.502 10.427 163.646 725.799

(max(Xf
1 , X

f
3 ) < Xf

4 ) ∧ (Xf
4 < Xf

2 ) 7.172 15.886 426.192 1163.642

(max(Xf
1 , X

f
4 ) < Xf

3 ) ∧ (Xf
3 < Xf

2 ) 5.181 13.508 283.499 971.810

(max(Xf
1 , X

f
4 ) < Xf

2 ) ∧ (Xf
2 < Xf

3 ) 10.575 20.253 678.641 1551.636

(max(Xf
2 , X

f
3 ) < Xf

1 ) ∧ (Xf
1 < Xf

4 ) 0.000 6.733 0.000 609.901

(max(Xf
2 , X

f
3 ) < Xf

4 ) ∧ (Xf
4 < Xf

1 ) 32.951 47.775 2551.931 4038.842

(max(Xf
2 , X

f
4 ) < Xf

1 ) ∧ (Xf
1 < Xf

3 ) 8.355 16.523 566.728 1340.080

(max(Xf
2 , X

f
4 ) < Xf

3 ) ∧ (Xf
3 < Xf

1 ) 29.390 42.683 2253.864 3614.108

(max(Xf
3 , X

f
4 ) < Xf

1 ) ∧ (Xf
1 < Xf

2 ) 3.653 11.284 237.752 943.668

(max(Xf
3 , X

f
4 ) < Xf

2 ) ∧ (Xf
2 < Xf

1 ) 34.936 48.984 2696.366 4128.334

Table 5.9: Linear and quadratic loss functions for four groups allocating into three

buckets, s = 3 for Example 5.6.1, part 2

4537.619, and EU(Lq) = 6359.053. The reason is that this event considers group 1

more likely to provide the largest future observation, even though all observations

for group 1 are less than those for group 4.

Generally, from Examples 5.5.1 and 5.6.1, events involving either group 4 being

more likely to produce the smallest future observation, group 1 being more likely to

produce the largest future observation, or the event that the future observation for

group 4 exceeds that of group 1 tend to result in high lower and upper bounds for

the NPI lower and upper expected loss values, both linear and quadratic, and low

NPI lower and upper probabilities.

In addition, tables that present scenarios with more buckets tend to lead to

smaller values for the lower and upper bounds of the NPI lower and upper linear

and quadratic expected losses. This is because events of interest imply additional

ranking conditions, which supports better decision-making. Also, the imprecision

cannot be calculated directly, as the results are expressed in terms of lower and upper

bounds for the losses rather than exact NPI lower and upper linear and quadratic
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Event EL(Ll) EU(Ll) EL(Lq) EU(Lq)

Xf
1 < Xf

2 < Xf
3 < Xf

4 0.000 0.737 0.000 62.846

Xf
1 < Xf

2 < Xf
4 < Xf

3 0.000 1.498 0.000 135.712

Xf
1 < Xf

3 < Xf
2 < Xf

4 0.000 0.815 0.000 65.764

Xf
1 < Xf

3 < Xf
4 < Xf

2 0.000 1.174 0.000 97.403

Xf
1 < Xf

4 < Xf
2 < Xf

3 0.000 1.914 0.000 179.771

Xf
1 < Xf

4 < Xf
3 < Xf

2 0.000 1.189 0.000 104.985

Xf
2 < Xf

1 < Xf
3 < Xf

4 0.000 0.788 0.000 63.899

Xf
2 < Xf

1 < Xf
4 < Xf

3 0.000 0.000 0.000 0.000

Xf
2 < Xf

3 < Xf
1 < Xf

4 0.000 2.518 0.000 224.359

Xf
2 < Xf

3 < Xf
4 < Xf

1 3.681 6.825 286.626 587.012

Xf
2 < Xf

4 < Xf
1 < Xf

3 3.120 7.265 221.037 604.278

Xf
2 < Xf

4 < Xf
3 < Xf

1 7.454 12.165 589.633 1046.658

Xf
3 < Xf

1 < Xf
2 < Xf

4 0.000 0.333 0.000 29.348

Xf
3 < Xf

1 < Xf
4 < Xf

2 0.000 0.000 0.000 0.000

Xf
3 < Xf

2 < Xf
1 < Xf

4 0.000 3.019 0.000 284.030

Xf
3 < Xf

2 < Xf
4 < Xf

1 6.239 9.908 504.383 856.285

Xf
3 < Xf

4 < Xf
1 < Xf

2 1.380 4.908 98.008 433.614

Xf
3 < Xf

4 < Xf
2 < Xf

1 8.200 13.103 671.869 1147.608

Xf
4 < Xf

1 < Xf
2 < Xf

3 0.898 1.496 56.344 106.720

Xf
4 < Xf

1 < Xf
3 < Xf

2 0.128 1.090 7.197 84.861

Xf
4 < Xf

2 < Xf
1 < Xf

3 3.129 7.459 216.352 604.266

Xf
4 < Xf

2 < Xf
3 < Xf

1 7.604 11.890 587.259 997.270

Xf
4 < Xf

3 < Xf
1 < Xf

2 0.906 4.235 60.393 355.252

Xf
4 < Xf

3 < Xf
2 < Xf

1 6.272 10.121 485.211 853.674

Table 5.10: Linear and quadratic loss functions for four groups allocating into four

buckets, s = 4 for Example 5.6.1

expected losses.

�
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5.7 Concluding remarks

This chapter introduces NPI for the general event of selection and ranking, A =
s−1⋂
i=1

{
max
t∈Ki

Xf
t < min

t∈Ki+1

Xf
t

}
, which addresses the problem of ranking buckets that

contain one or more independent groups. Each group must be assigned to one and

only one bucket. The focus is on the ranking of the buckets, ignoring the rank of the

groups within each bucket. A predetermined number of buckets s and the number

of groups in each bucket k are assumed. In addition, an estimated probability and

NPI lower and upper probabilities are obtained.

Two main questions are considered and answered: how to assign the groups into

these buckets and how many buckets should be used? Two counterexamples are pro-

vided to illustrate the method and reach conclusions. To answer the first question,

decision-making processes based on median values are performed. The median is

considered because it is often preferred in nonparametric statistics compared to the

mean or mode. The approach involves placing groups with the smallest medians in

the first bucket, those with the second-smallest medians in the second bucket, and

so on. It was found that this approach does not always result in the highest NPI

lower and upper probabilities.

To answer the second question, all possible allocation methods are considered,

and selects the allocation that either maximises the NPI lower and upper prob-

abilities of an event, as detailed in Section 5.5, or minimises the NPI lower and

upper expected losses. When dealing with a large number of groups and a potential

number of buckets, evaluating all possibilities can be challenging. However, with a

smaller number of groups, it is easy to thoroughly examine all potential events of

interest. The findings in the example indicate that the optimal number of buckets

consists of two buckets, s = 2, with one group in the first bucket and three groups

in the second bucket, resulting in the highest NPI lower and upper probabilities.

The bootstrap method is used, which provides an estimated probability for the

general event. Additionally, NPI lower and upper probabilities are derived for this

event. It can be expected that the estimated probability lies between the NPI lower

and upper probabilities, which was indeed confirmed in all the examples provided
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in this chapter.

Finally, in this chapter, two different loss functions are applied to measure the

penalty associated with the ranking of suboptimal s buckets in terms of one or more

future observations within each bucket and to see if these two loss functions lead to

the same conclusion. Additionally, it is examined whether the results obtained based

on the lower and upper bounds for the NPI lower and upper linear and quadratic

expected loss functions align with the results obtained based on the NPI lower and

upper probabilities. The findings indicate that the results based on expected loss

and probabilities are well aligned, leading both to the same conclusion. Furthermore,

it was observed that the results from the lower and upper bounds for the NPI lower

and upper expected linear and quadratic losses are consistent with each other.
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Chapter 6

Conclusions

This chapter offers a concise summary of the main findings of this thesis and high-

lights challenges for future research. The thesis applied Nonparametric Predictive

Inference (NPI) to various selection and ranking problems based on a single future

observation from each group. In Chapter 2, several important findings were pre-

sented on using NPI for selecting and ranking real-valued future observations for

multiple events of interest. The study derived exact NPI lower and upper probabil-

ities for a scenario, which is the first scenario, involving selecting a ranked subset

of the two best groups, an optimisation process was performed, and the exact NPI

lower and upper probabilities were derived. Determining the exact NPI lower and

upper probabilities is straightforward in this case, as there is only one group in the

middle. Even with a large and overlapping number of observations, obtaining exact

NPI lower and upper probabilities remains possible. A simulation study was also

conducted where the means were assumed and arranged from smallest to largest,

with the worst groups having the smallest means and the best group having the

largest mean. The NPI method performed well in this setup, and the simulation

results led to the conclusion that selecting the group with the largest mean as the

best is a well-considered decision.

In the second scenario, when the number of ranked groups within a subset is

three or more, it is not possible to simultaneously optimise all groups. Therefore,

an optimisation process and a heuristic algorithm were performed independently for

each group in the middle, and then the approximate NPI lower and upper proba-
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bilities were obtained. The lower and upper bounds for the NPI probabilities are

derived because calculating the exact (or approximate) NPI lower and upper prob-

abilities is computationally demanding. The results indicate that the approximate

NPI lower and upper probabilities are nearly equal to their respective bounds.

As a result, ways to improve the NPI method for selecting a ranked subset of two

groups, and to reduce the computational effort to calculate the exact lower (upper)

NPI probabilities were identified. The first (last) sub-interval in the first interval

often yields the minimum (maximum) NPI lower (upper) probability, while the last

(first) sub-interval in the last interval does the same. For intervals in between, the

minimum (maximum) number of assigned probability masses comes from the first

(last) sub-interval of each interval.

Additionally, in Chapter 2, the selection of a partially ranked subset is intro-

duced, offering a simpler and more practical approach for comparison, especially

when a fully ranked subset of the best groups is either challenging or unnecessary.

Finally, a comparison was made between the proposed method and Bechhofer’s

and Gupta’s methods from the literature. It was found that the indifference zone

approach introduced by Bechhofer and the NPI method for selecting a ranked sub-

set of the two best populations yield both the same selected subset and the same

ranking within the subset. However, Gupta’s method does not always yields the

same selected subset as Bechhofer’s method or the NPI method.

Chapter 3 explored how to quantify the loss of making incorrect selections by

investigating pairwise and multiple comparisons using three types of loss functions:

zero-one, linear, and quadratic loss functions. Each loss function offered a clear

understanding of the evaluation of the selection process. The zero-one loss function,

simple to calculate, indicated whether a selection was correct or not, directly corre-

lating with imprecise probabilities. The linear loss function provided more detailed

information by measuring the deviation from the best group. The quadratic loss

function further detailed the assessment by penalising larger errors more heavily.

Through various examples, a clear relationship was observed between the con-

clusions drawn from the zero-one, linear, and quadratic loss functions in pairwise

comparisons. In the case of multiple comparisons, the examples used both real-
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valued and simulated data, offering a thorough examination of how the method

performs in different scenarios. The findings across these data types reveal that,

while the zero-one, linear, and quadratic loss functions generally yield consistent re-

sults, slight variations in selection can occur depending on the specific loss function

applied.

In Chapter 4, NPI for ranking a subset of the best w groups using zero-one and

general multi-level loss functions was introduced, focusing on the w = 2 and w = 3

cases. The zero-one loss function provides a basic binary evaluation of whether

the ranked subset of the best w groups is correct, while the general multi-level

loss function offers a more nuanced approach by assigning different penalties for

various incorrect ranked groups within the subset. This approach is useful when

certain ranked groups within the subset have more consequences. Through real

and simulated data examples, the NPI lower and upper expected zero-one and gen-

eral multi-level losses were calculated to quantify the loss across different scenarios

involving a ranked groups within the subset.

For w = 2, the multi-level loss function is introduced as a more advanced method

to evaluate the loss of making a non-optimal ranking of the groups within the subset,

penalties range from L0 to L5. An optimisation process was performed to derive the

NPI lower and upper expected multi-level losses, aiding in decision-making regarding

subset group rankings.

A ranked subset of the best w groups using general multi-level loss function

is presented, and a special case for the ranked subset of the three best groups is

derived. This method is necessary because NPI lower and upper expected losses

cannot be directly calculated when more than one group exists between the non-

selected groups and the largest selected group. In this case, an optimisation process

is required to find the approximate NPI lower and upper expected multi-level losses.

In some cases, the loss values are set by the problem instead of the data. This

helps decision-makers evaluate the consequences and make informed decisions. The

effect of different loss values on various scenarios involving a ranked subset of the

best groups is investigated. The analysis shows differences in conclusions across

various scenarios of subset group ranking.
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In Chapter 5, the focus is on the ranking of the buckets, without considering the

order of the groups within the buckets. Each group is placed in exactly one bucket,

each bucket containing at least one group. A predetermined number of buckets s

and a specific number of groups in each bucket are assumed. In addition, using

NPI-Bootstrap method along with the lower and upper bounds for the NPI lower

and upper probabilities.

Two key questions were addressed: how should the groups be assigned to the

buckets? And how many buckets should be used? Two real-world examples were

provided to illustrate the method and draw conclusions. To answer them, all po-

tential allocation methods were considered and selected the one that aligned with

specific criteria, such as maximising or minimising the probability of a particular

event. Although evaluating all possibilities is challenging with a large number of

groups and buckets, it becomes manageable when dealing with fewer groups. An-

other approach was to use statistics from the data to rank the groups, such as placing

the groups with the smallest medians in the first bucket, the second smallest in the

second bucket, and so on. However, it was found that this method did not always

yield the highest lower and upper bounds for the NPI lower and upper probabilities.

The NPI-bootstrap method was used to provide an estimated probability for

the general event of selection and ranking, and it was found that the estimated

probability consistently fall between the lower and upper bounds for the NPI lower

and upper probabilities, as confirmed in all the examples presented in Chapter 5.

Finally, two different loss functions were applied to quantify the loss from making

non-optimal selection and ranking. Also, a comparison between the results based on

the NPI lower and upper linear and quadratic expected losses and those based on

the lower and upper bounds for the NPI lower and upper probabilities. The findings

indicated that the results of both the expected loss functions and the bounds of

the probabilities were in agreement, leading to the same conclusion. Furthermore,

the NPI lower and upper expected linear and quadratic losses produced consistent

results.

To provide further insight into the proposed NPI method for selection and rank-

ing, simulations of other distributions should be considered. However, in this thesis,
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only data simulated from the Normal distribution were used.

For future research, it will be of interest to apply different loss functions to the

ranking of future observations from subsets of various sizes. Additionally, ranking

future observations from different data types, including ordinal, bivariate data, right-

censored data, or lifetime data, remains interesting for exploration. In addition, an

important topic for future research is to extend the use of NPI in ranking and

selection from one future observation to m future observations and to measure the

loss of making incorrect selections or ranking of groups.
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tion with unequal variances. Sankhyā: The Indian Journal of Statistics, Series

B, 37: 28–78, 1975.

[28] Ferguson, T.S. Mathematical Statistics: A Decision Theoretic Approach. Aca-

demic Press, New York, 1967.

[29] Finner, H. and Giani, G. Duality between multiple testing and selecting. Jour-

nal of Statistical Planning and Inference, 54: 201–227, 1996.
October 6, 2025



BIBLIOGRAPHY 162

[30] Freeman, H. and Kuzmack, A. and Maurice, R. Multivariate t and the ranking

problem. Biometrika, 54: 305–308, 1967.

[31] Gibbons, J.D. and Olkin, I. and Sobel, M. Selecting and Ordering Populations:

A New Statistical Methodology. Society for Industrial and Applied Mathematics,

Philadelphia, 1999.

[32] Girshick, M. A. and Savage, L. J. Quadratic loss functions. In Proceedings

of the Second Berkeley Symposium on Mathematical Statistics and Probability,

pages 53–73, Berkeley, CA, 1950. University of California Press.

[33] Goel, P.K. and Rubin, H. On selecting a subset containing the best population-a

Bayesian approach. The Annals of Statistics, 5: 969–983, 1977.

[34] Good, I.J. Good Thinking: The Foundations of Probability and its Applications.

University of Minnesota Press, Minneapolis, MN, 1983.

[35] Govindarajulu, Z. and Harvey, C. Bayesian procedures for ranking and selection

problems. Annals of the Institute of Statistical Mathematics, 26: 35–53, 1974.

[36] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foun-

dation for Computer Science. Addison-Wesley, Reading, Massachusetts, 1994.

[37] Gupta, S.S. On a Decision Rule for a Problem in Ranking Means. PhD thesis,

University of North Carolina, USA, 1956.

[38] Gupta, S.S. On some multiple decision (selection and ranking) rules. Techno-

metrics, 7: 225–245, 1965.

[39] Gupta, S.S. and Huyett, M.J. and Sobel, M. Selection and ranking with Bi-

nomial populations. Transactions of American Society for Quality Control, 9:

635–644, 1957.

[40] Gupta, S.S. and Miescke, K.J. On the performance of subset selection rules

under normality. Journal of Statistical Planning and Inference, 103: 101–115,

2002.

October 6, 2025



BIBLIOGRAPHY 163

[41] Gupta, S.S. and Panchapakesan, S. Multiple Decision Procedures: Theory and

Methodology of Selecting and Ranking Populations. Society for Industrial and

Applied Mathematics, Philadelphia, 2002.

[42] Gupta, S.S. and Sobel, M. On a statistic which arises in selection and ranking

problems. The Annals of Mathematical Statistics, 28: 957–967, 1957.

[43] Gupta, S.S. and Sobel, M. Selecting a subset containing the best of several

binomial populations. In I. Olkin, H. Hotelling, and J. Wolfowitz, editors,

Contributions to Probability and Statistics, pages 389–413. Stanford University

Press, Stanford, CA, 1960.

[44] Hansen, A.P. Abnormal serum growth hormone response to exercise in

maturity-onset diabetics. Diabetes, 22: 619–628, 1973.

[45] Hashemi, S.J. and Ahmed, S. and Khan, F. Loss functions and their applica-

tions in process safety assessment. Process Safety Progress, 33: 285–291, 2014.

[46] Hill, B.M. Posterior distribution of percentiles: Bayes’ theorem for sampling

from a population. Journal of the American Statistical Association, 63: 677–

691, 1968.

[47] Hill, B.M. De Finetti’s theorem, induction, and An or Bayesian nonparametric

predictive inference (with discussion). In J.M. Bernardo, M.H. DeGroot, D.V.

Lindley, and A.F.M. Smith, editors, Bayesian Statistics, volume 3, pages 211–

241. Oxford University Press, 1988.

[48] Hill, B.M. Parametric models for An: Splitting processes and mixtures. Journal

of the Royal Statistical Society, 55: 423–433, 1993.

[49] Hong, Y. and Lee, T.H. Inference on predictability of foreign exchange rates via

generalized spectrum and nonlinear time series models. Review of Economics

and Statistics, 85: 1048–1062, 2003.

[50] Hsu, J.C. Simultaneous confidence intervals for all distances from the best. The

Annals of Statistics, 9: 1026–1034, 1981.

October 6, 2025



BIBLIOGRAPHY 164

[51] Hsu, J.C. Simultaneous inference with respect to the best treatment in block

designs. Journal of the American Statistical Association, 77: 461–467, 1982.

[52] Hsu, J.C. Multiple Comparisons: Theory and Methods. Chapman and Hall,

London, 1996.

[53] Kumar, N. A general class of subset selection procedures. Journal of Combi-

natorics, Information and System Sciences, 36: 135–158, 2011.

[54] Kumar, N. Nonparametric subset selection procedure for location parameters.

Model Assisted Statistics and Applications, 6: 337–347, 2011.

[55] Lehmann, E.L. A theory of some multiple decision problems. The Annals of

Mathematical Statistics, 28: 547–572, 1957.

[56] Lehmann, E.L. Some model problems of selection. The Annals of Mathematical

Statistics, 32: 990–1012, 1961.

[57] Lehmann, E.L. and Romano, J.P. and Casella, G. Testing Statistical Hypothe-

ses. Springer, New York, 1986.

[58] Liese, F. and Miescke, K.J. Statistical Decision Theory. Estimation, Testing

and Selection. Springer, New York, 2008.

[59] Mahamunulu, D.M. Some fixed-sample ranking and selection problems. The

Annals of Mathematical Statistics, 38: 1079–1091, 1967.

[60] Maturi, T. Nonparametric predictive inference for Multiple Comparisons. PhD

thesis, Durham University, UK, 2010. http://etheses.dur.ac.uk/230/.

[61] Maturi, T. and Coolen-Schrijner, P. and Coolen, F.P.A. Nonparametric pre-

dictive pairwise comparison for real-valued data with terminated tails. Inter-

national Journal of Approximate Reasoning, 51: 141–150, 2009.

[62] Neuhauser, M. and Liu, P.Y. and Hothorn, L. A. Nonparametric tests for trend:

Jonckheere’s test, a modification and a maximum test. Biometrical Journal,

40: 899–909, 1998.

October 6, 2025



BIBLIOGRAPHY 165

[63] Paulson, E. A multiple decision procedure for certain problems in the analysis

of variance. The Annals of Mathematical Statistics, 20: 95–98, 1949.

[64] Rizvi, M.H. and Sobel, M. Nonparametric procedures for selecting a subset con-

taining the population with the largest q-quantile. The Annals of Mathematical

Statistics, 38: 1788–1803, 1967.

[65] Savage, L.J. The Subjective Basis of Statistical Practice. University of Michigan,

Ann Arbor, MI, 1961.

[66] Schafer, R.E. A single-sample complete ordering procedure for certain popu-

lations. In F. Proschan and R. J. Serfling, editors, Reliability and Biometry:

Statistical Analysis of Lifelength, pages 413–427. Society for Industrial and

Applied Mathematics, Philadelphia, Pennsylvania, 1974.

[67] Shafer, G. Constructive decision theory. International Journal of Approximate

Reasoning, 79: 45–62, 2016.

[68] Simpson, D.G. and Margolin, B.H. Recursive nonparametric testing for dose-

response relaflonships subject to downturns at high doses. Biometrika, 73:

589–596, 1986.

[69] Sobel, M. Nonparametric procedures for selecting the t population with the

largest q-quantiles. The Annals of Mathematical Statistics, 38: 1804–1816, 1967.

[70] Sobel, M. Selecting a subset containing at least one of the t best populations.

In P. R. Krishnaiah, editor, Multivariate Analysis II, pages 411–428. Academic

Press, New York, 1969.

[71] Tong, Y.L. On partitioning a set of Normal populations by their locations with

respect to a control using a single-stage, a two-stage and a sequential procedure.

The Annals of Mathematical Statistics, 40: 1300–1324, 1969.

[72] Wald, A. Statistical decision functions. The Annals of Mathematical Statistics,

20: 165–205, 1949.

[73] Wald, A. Statistical Decision Theory. Wiley, New York, 1950.
October 6, 2025



BIBLIOGRAPHY 166

[74] Walley, P. Statistical Reasoning with Imprecise Probabilities. Chapman and

Hall, London, 1991.

[75] Weichselberger, K. The theory of interval-probability as a unifying concept

for uncertainty. International Journal of Approximate Reasoning, 24: 149–170,

2000.

[76] Weichselberger, K. Elementare Grundbegriffe einer Allgemeineren Wahrschein-

lichkeitsrechnung I. Intervallwahrscheinlichkeit als Umfassendes Konzept.

Physika, Heidelberg, 2001.

October 6, 2025


