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ABSTRACT 

The Architecture, Engineering, and Construction (AEC) industry is undergoing a 

significant transformation driven by the convergence of digital technologies and 

sustainability imperatives. However, many AEC firms face challenges in aligning their 

digital transformation initiatives with sustainable business model (SBM) innovation. This 

study investigates the key organisational and technological determinants that enable such 

alignment, with a particular focus on the Hong Kong AEC sector. Drawing on the Triple 

Bottom Line (TBL) framework and integrating the constructs of Entrepreneurial Orientation 

(EO), Sustainability Orientation (SO), and Digital Orientation (DO), the study proposes a 

multidimensional conceptual model. Data were collected from 158 professionals through 

a survey and analysed using Partial Least Squares Structural Equation Modelling (PLS-

SEM). The results reveal that TBL-aligned digital traits significantly influence SBM 

innovation both directly and indirectly through EO and SO. Furthermore, DO was found to 

moderate the relationship between SO and SBM, highlighting the importance of digital 

maturity as a strategic enabler. The study introduces the 3P2SBMI framework, which 

conceptualises purpose (SO), people (EO), and platform (DO) as foundational enablers 

of SBM innovation. A TBL Digital Traits – Organisational Capability Matrix is developed to 

help firms assess their strategic positioning and transformation readiness. The findings 

contribute to theory by linking sustainability and digital transformation through a unified 

model, and offer practical insights for AEC firms, industry leaders, and policymakers. By 

highlighting how digital capabilities and organisational orientations interact to drive 

sustainability-oriented innovation, the insights of this study provide a strategic roadmap 

for advancing digital-sustainability transitions in complex project-based industries. 

 

Keywords: Digital Transformation, Sustainable Business Model Innovation, Triple Bottom 

Line, AEC Industry, Entrepreneurial Orientation, Sustainability Orientation, Digital 

Orientation. 
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INTRODUCTION 

The Architecture, Engineering, and Construction (AEC) industry in Hong Kong has 

typically been one of the least digitally advanced business sectors. The McKinsey's Global 

Institute Industry Digitisation Index identifies the construction sector as the second lowest 

in adopting digital technologies, especially in places like China (McKinsey & Company, 

2017). However, firms increasingly recognise that digital technologies could improve 

productivity, sustainability, and competitiveness within this industry. More recent industry 

reports highlight that a growing number of stakeholders in Hong Kong’s AEC sector begins 

to view digital transformation (DT) as a strategic priority. This shift is driven by rising 

demands for efficiency, increasing costs, and greater pressure to meet sustainability goals. 

Key to this change is using technologies like Building Information Modelling (BIM), which 

the Hong Kong government mandated in 2017 (HKSAR, 2017) for all public works over 

HK$30 million. This mandate has accelerated BIM adoption in both public as well as 

private projects. Beyond BIM, the emergence of Integrated Project Delivery (IPD), 

Augmented Reality (AR), Artificial Intelligence (AI), and the Internet of Things (IoT) enable 

greater connectivity and teamwork across construction. While such technologies enable 

real-time decision-making, better resource distribution, and improved results, many firms 

struggle to adopt them due to weak digital plans, cultural inertia, and skill shortages. 

 

1.1 Digital Transformation in AEC Industry 

The AEC industry in Hong Kong is in a pressing stage of transformation, driven by the 

need for efficiency, productivity, and competitiveness improvements. This reshaping is 

consistent with the more general pattern of DT occurring globally. It is not only a 

technological shift but also a recasting of organisational logic and capability. Recent 

studies have enhanced the understanding of DT beyond mere technology adoption. 

According to Angelopoulos et al. (2023) DT represents a fundamental change in 



 Page 2  

operational logic, enabled by a reversal of agency—from human actors to digital ones. 

This implies that digital technologies are no longer mere supportive tools; they are 

decision-makers. Under this lens, DT is more effectively perceived as a recursive, 

emergent process through which firms iteratively change their structure, roles, and 

capabilities in response to new technologies, affordances, and stakeholder demands. 

Consistent with this understanding, Warner and Wäger (2019) conceptualise DT as 

a continuous strategic renewal process driven by digital technologies to reconfigure the 

business model, collaboration, and culture of a firm. This view strengthens the call for 

firms, particularly in complex project-based markets such as AEC, to initiate DT 

endeavours as an end-to-end strategic commitment rather than a one-off project. 

In the Hong Kong AEC industry, DT goes beyond the implementation of new tools or 

the automation of manual processes. It calls for a shift away from siloed, linear workflows 

to more integrated, collaborative, and data-informed ways of doing business. Given that 

projects in this industry are often highly complex, have tight deadlines, and involve 

integrated stakeholders, the benefits of digital technology in this context come from real-

time communication, interdisciplinary collaboration, and predictive project management. 

An overarching understanding of the adoption of digital technologies in the Hong 

Kong AEC industry is to heighten stakeholder engagement and project delivery. Digital 

tools are increasing transparency, reducing delays, and helping connect the value chain, 

leading to more efficient, durable, and client-centred project outcomes. Moreover, with 

increasingly demanding clients and sustainability as one of the most important 

prerequisites, digital technologies enable firms to better understand and respond to user 

demands, environmental conditions, and lifecycle performance. 

Furthermore, such technologies must be meaningfully included in decision-making 

processes (Struijk et al., 2023). This also involves rethinking governance, accountability, 

and skillsets. DT is not an ‘outcome’ to be "achieved"—it is not a linear matter of eventually 

‘arriving.’ Instead, it is an ongoing process of alignment and adjustment, a mutual co-
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evolution of digital systems and human participants (Angelopoulos et al., 2023; Struijk et 

al., 2023; Vial, 2019). AEC firms need to question their skills, values, and practices to 

position themselves at the forefront of an ever more competitive environment. 

To conclude, DT in Hong Kong’s AEC industry is a journey that is strategic, dynamic, 

and sociotechnical, not a static destination. However, it has the potential to serve as a 

driver of value and perhaps even sector-level transformation and sustainability, if it is 

addressed at an enterprise level, where people, processes, platforms, and cultural change 

meld to sustain productivity. 

 

1.2 Digital Transformation and Sustainability 

A major factor driving the DT of Hong Kong's AEC industry is the need to enhance 

sustainability and reduce environmental impact. DT plays a vital role in this process, 

enabling firms to adopt more sustainable practices and reduce their carbon footprint. 

According to Hong Kong's Climate Action Plan 2050 (HKSAR, 2021), the region strives to 

achieve carbon neutrality by 2050. However, the building and construction industry 

remains a significant source of carbon emissions. One important technology that 

promotes sustainable development is BIM in the AEC sector. Through BIM, architects, 

engineers and contractors can produce digital prototypes of structural or infrastructure 

projects to simulate and investigate the implementation of the project, detect possible 

errors and improve the design and construction workflow. 

Moreover, BIM can be integrated with AI and big data analytics (BDA) to enhance 

construction site safety and security. By analysing vast amounts of real-time data from 

sensors, cameras, and wearable devices, AI algorithms can predict potential hazards, 

monitor compliance with safety protocols, and alert managers to unsafe behaviours, 

thereby reducing accidents and improving operational oversight. A study by the National 

Building Information Modelling Standard of the United States (NBIMS-US) showed that 

the application of BIM can accelerate project delivery by up to 73% and reduce the 
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weather impact of projects by up to 28% (NBIMS-US, 2015). This is because BIM enables 

AEC firms to identify and resolve potential issues before they escalate into major problems, 

reducing costly rework and minimising waste during construction. 

By incorporating digital technologies, AEC firms can significantly improve 

sustainability. As the world works to combat climate change and resource depletion, 

leveraging such technologies can enable more sustainable practices throughout the 

lifecycle of a building project. One of the most impactful technologies is BIM, which allows 

for a comprehensive digital depiction of a building. This technology allows architects and 

engineers to closely review energy consumption, material utilisation, and waste 

generation before construction begins. By visualising the entire project in a virtual 

environment using AR and virtual reality (VR) technology, teams can identify inefficiencies 

and improve designs for greater energy efficiency and sustainability. This proactive 

strategy reduces environmental impact and lowers long-term costs. The IoT also plays a 

key role in sustainability by monitoring building operations in real time. Sensors can track 

energy consumption, water usage, and indoor air quality, providing valuable data to 

develop smart resource management plans. For example, smart building systems can 

automatically calibrate lighting and heating based on occupancy, reducing energy waste. 

Overall, the convergence of DT and sustainability presents a unique opportunity for 

the AEC industry to reimagine its role in addressing environmental challenges. By 

embedding digital technologies into sustainability strategies, firms can achieve greater 

operational efficiency, reduce ecological impact, and contribute meaningfully to Hong 

Kong’s broader climate and development goals. 
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1.3 Misconceptions About Digital Technology Adoption 

There are some common misconceptions about the role of digital technologies in business 

transformation and sustainability. One widespread belief is that DT is just about bringing 

in new technologies into existing business processes. However, this view oversimplifies 

the concept and fails to acknowledge that DT requires more than just technology adoption. 

A study by McKinsey Global Institute emphasises that "digital transformation is not just 

about technology; it's about changing how a company operates, interacts with 

stakeholders, and creates values" (Lamarre et al., 2023). This shows the need to 

understand digital change more deeply, beyond merely developing new tools. 

Another common misconception is that DT is a one-time investment, rather than an 

ongoing journey. This misunderstanding can lead to frustration, as DT requires sustained 

effort and investment over time through many small steps. It is not something that can be 

accomplished through a single project. 

Additionally, many wrongly view the adoption of digital technologies as the end goal 

of DT, rather than a means to achieve broader organisational objectives. While digital 

technologies are key enablers of change, their real purpose lies in creating innovative 

business models, improving customer experiences, and increasing efficiency - all enabled 

by using digital technologies effectively. 

When it comes to sustainability, there is also a common misunderstanding about the 

role of digital technologies. While many see it as a key driver of sustainable practices, this 

is not always true. While digital technologies can support sustainability, their effective use 

requires a nuanced understanding of the complexities involved in DT. By thoughtfully 

applying these technologies and recognising their strategic implications, AEC firms can 

better position themselves to contribute to a more sustainable future. 

 

  



 Page 6  

1.4 Determinants of Digital Transformation 

Examining the factors that drive DT for sustainability and business model innovation (BMI) 

within Hong Kong's AEC industry is vital for tackling the urgent issues of urbanisation and 

environmental sustainability. As the industry faces mounting pressure to adopt eco-

friendly practices, it becomes increasingly important to understand the factors that fuel DT 

(World Green Building Council, 2019). 

Technological factors are key players in this landscape. The perceived advantages 

of digital technologies, such as enhanced efficiency and cost reduction, serve as strong 

motivators for firms to embrace innovation (Rogers et al., 2014). In the AEC sector, tools 

such as BIM and AI/ML hold significant potential to greatly improve project outcomes and 

sustainability initiatives (Eastman, 2011). However, the integration of these technologies 

with existing systems is crucial for their adoption (Na et al., 2023). Firms are more inclined 

to adopt digital technologies that seamlessly fit into their current processes, helping to 

minimise the complexity and time involved in workflow (Chen and Tang, 2019). 

Moreover, the rapid pace of technological advancement has created a skills gap 

among the workforce (Siddiqui et al., 2023). Many professionals lack the training needed 

to effectively use digital tools, which can slow the adoption process (Keung et al., 2023). 

Additionally, the high initial costs associated with implementing digital technologies can 

pose a significant barrier, particularly for smaller firms (Eastman, 2011). 

Organisational factors are equally critical in propelling DT within the AEC industry. 

Strong leadership and a commitment from management are crucial for driving DT 

initiatives forward (World Green Building Council, 2019). Firms that prioritise DT and 

allocate resources wisely tend to see greater success in their efforts (Bhattacharya and 

Momaya, 2021). The skills and expertise of the workforce play a vital role in achieving 

successful DT (Na et al., 2023). Investing in training and development ensures that 

employees are well-equipped to leverage new tools effectively, which can lead to 

improved productivity (Chen and Tang, 2019). Moreover, fostering an organisational 
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culture that encourages experimentation and innovation creates an environment 

conducive to DT (Siddiqui et al., 2023). However, believing that technology alone can 

solve the long-standing challenges faced by the AEC industry misses the point about the 

importance of organisational culture and collaboration. Truly successful DT requires a shift 

in mindset among stakeholders, emphasising continuous learning, adaptability, and 

collaboration (Siddiqui et al., 2023). Many firms struggle to create this culture, resulting in 

fragmented implementations that fail to harness the full potential of advanced digital 

technologies. 

Environmental factors, including customer expectations and government support, 

also play a significant role in shaping the landscape of DT (World Green Building Council, 

2019). The growing demand for sustainable practices from clients and stakeholders 

pushes firms to adopt digital solutions. Understanding customer preferences can guide 

organisations in their DT efforts (Eastman, 2011). Additionally, supportive policies and 

incentives from the Hong Kong government can facilitate this transformation within the 

AEC sector (Bureau, 2018). Regulations that promote sustainability and provide funding 

for innovative projects encourage firms to invest in digital technologies (World Green 

Building Council, 2019). Furthermore, the need to adapt to environmental uncertainties, 

such as climate change and resource scarcity, drives firms to innovate. DT equips firms 

with the necessary tools to navigate these challenges effectively. 

The strategy factor refers to the strategic orientation of a firm, which influences how 

decisions are made and how resources are allocated to support innovation, sustainability, 

and long-term competitiveness. The entrepreneurial ethos of a firm indicates its propensity 

to be innovative, take calculated risks, and act proactively in the face of change (Lumpkin 

and Dess, 1996). It also includes the level of integration of sustainability in strategic 

planning as well as day-to-day operations, known as sustainability culture and practice 

(Claudy et al., 2016). Firms with well-defined strategic direction are better able to ensure 

DT is in line with wider business objectives such as environmental and operational 
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improvement. The digital preparedness of a firm, as well as its strategic intentionality to 

embrace cutting-edge technologies, can also impact the success of DT efforts across the 

board. 

 

1.5 Challenges in the Digital-Sustainability Transition 

DT in Hong Kong’s AEC industry presents several challenges, especially when it comes 

to achieving sustainability goals. While the advantages of digital technologies, such as 

enhanced efficiency, reduced cost improved environmental footprint are well 

acknowledged, several obstacles stand in the way of their effective implementation. 

One of the most significant hurdles is the resistance to change among employees 

(Struijk et al., 2023). Many employees (Struijk et al., 2023) are accustomed to traditional 

ways of working and might feel hesitant to embrace new technologies. This reluctance 

can often stem from a lack of awareness about the benefits of DT or fears about job 

security due to automation. To shift this mindset, firms need to invest in comprehensive 

training and foster a culture that values innovation and continuous improvement. 

Concurrently, the AEC sector in Hong Kong is highly fragmented, involving a diverse 

range of stakeholders including but not limited to architects, engineers, contractors, and 

subcontractors, but also the Government, each working with their own systems and 

standards. This fragmentation makes collaboration and data sharing more complex, both 

of which are crucial for successful DT. Without a unified approach to technology adoption, 

projects can suffer from inefficiencies and miscommunication, ultimately hindering efforts 

towards sustainability. 

Furthermore, the rapid pace of technological advancement has created a notable 

skills gap in the AEC workforce. Many professionals lack the necessary training to 

effectively utilise tools like BIM. They also lack knowledge of the applications of AI, digital 

twins (DTs), and the IoT. This shortage of skilled workers can slow down the adoption of 

such technologies and limit their positive impact on sustainability goals. Bridging this gap 
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requires investment in education and training programs to ensure the workforce is 

equipped for a digital future. 

Implementing digital technologies requires significant upfront investment, which can 

be a barrier for many firms, particularly smaller companies operating on tight budgets. 

Although the Hong Kong Government has support funding for the industry, the costs 

associated with software, hardware, training, and IT support can deter organisations from 

pursuing DT, even when the long-term benefits are clear. This issue is further complicated 

by the low-profit margins commonly found in the AEC industry, making it challenging for 

firms to justify such investments and expenditures. 

Another major challenge is the lack of standardised data formats and communication 

protocols within the AEC industry. This absence of common standards can lead to 

inefficiencies and misalignment among stakeholders. When integrating various digital 

technologies becomes difficult, the potential for collaboration and data sharing is limited. 

Establishing industry-wide standards is essential for facilitating smooth communication 

and maximising the benefits of DT. 

Finally, while in 2017 the Hong Kong SAR Government mandated the use of BIM for 

all public projects over HK$30 million (HKSAR, 2017), this requirement only applies to the 

design phase and not the entire construction value chain. To comply with the regulation, 

many firms have subcontracted 3D modelling services, which have driven up project costs, 

especially for small and medium enterprises. This limited application of BIM has not 

catalysed holistic digital transformation across the industry. 
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1.6 Research Objectives and Contributions 

The primary aim of this study is to explore and conceptualise the key factors that influence 

DT in the AEC industry, with a particular focus on how these factors may enable the 

development of sustainable and innovative business models. The study is guided by the 

following four objectives: 

1. To identify and evaluate technological determinants—such as BIM, AI, IoT, and 

AR/VR—that have the potential to facilitate or hinder DT in the AEC sector, 

particularly in the context of sustainability challenges. 

2. To examine organisational-level factors (e.g., leadership commitment, 

organisational culture, and workforce capabilities) that may influence the 

readiness and implementation of DT initiatives in AEC firms. 

3. To investigate broader strategic factors—including innovation posture, 

sustainability culture and practice, and digital readiness—that may shape how DT 

is aligned with long-term sustainability and competitiveness goals. 

4. To propose a conceptual framework that integrates these key determinants and 

outlines potential pathways through which DT may contribute to sustainable BMI 

within the AEC industry. 

Based on the above objectives, the central research question guiding this study is: 

What are the key organisational and technological determinants of DT that enable 

sustainable BMI in the AEC industry? 

This question encapsulates the study’s intent to uncover the drivers and enablers of 

DT, offering insights into how firms can evolve their business models to meet the demands 

of a more sustainable and digitally integrated future. 

In doing so, this study contributes to the theoretical discourse at the intersection of 

DT, sustainability, and organisational strategy in several ways: 
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• It extends existing DT literature by incorporating sustainability considerations—

such as environmental and social value creation—into models of technological 

adoption in the AEC industry. 

• It proposes a multidimensional conceptual framework that integrates technological, 

organisational, and strategic drivers of DT as enablers of BMI. 

• It enriches the understanding of how organisational context influences the 

translation of digital capabilities into sustainable outcomes, thereby contributing to 

the broader literature on change management and innovation in project-based 

industries. 

From a practical perspective, this research offers insights and tools for AEC 

practitioners, industry leaders, and policymakers: 

• It identifies key internal and external factors that AEC firms should consider when 

planning and implementing DT strategies aligned with sustainability goals. 

• It anticipates providing a roadmap or framework that can assist firms in assessing 

their readiness for DT and identifying critical areas for capability development. 

• It informs policy discussions by highlighting potential barriers and enablers of 

sector-wide DT, in the context of regulatory standards and sustainability mandates. 

These theoretical and practical contributions establish the conceptual foundation of 

the study. Their development and validation are addressed throughout the subsequent 

chapters and further elaborated in the Discussion Chapter, where key empirical 

findings are synthesised and integrated into strategic models and frameworks. In 

doing so, the study bridges the conceptual groundwork presented in this Chapter with 

the evidence-based insights derived from data analysis. 
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1.7 Structure of Thesis 

Following this introduction, the next chapter provides a thorough review of the literature, 

with an emphasis on DT in relation to sustainable BMI. Additionally, it delves into 

organisational practices that intersect with entrepreneurship and sustainability. The aim 

of this chapter is to pinpoint research gaps that merit exploration, while also outlining the 

theoretical framework and hypotheses that guide this study. The Methodology Chapter 

details the methodology, covering aspects such as construct development, measurement 

design, data collection, and analytical techniques. The Analysis and Results Chapter 

presents the results, showcasing measurement validity, evaluating the structural model, 

and discussing findings from the multigroup analysis. Finally, the Discussion Chapter 

delves into the key findings, offering a detailed discussion of their theoretical and practical 

implications. It introduces the 3P2SBMI Framework and wraps up with a reflection on the 

study's limitations and recommendations relating to avenues for future research.  
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LITERATURE REVIEW 

DT serves as a key enabler for novel business model designs within the AEC industry to 

cope with increasing requests for sustainable improvements. Firms in this industry have 

started relying on digital technologies to completely reinvent their operational models. In 

recent years, the convergence of DT, and greening, have significantly transformed the 

global business environment and led to the creation of new competitive opportunities for 

firms around the world. The performance of such initiatives is highly dependent upon 

efficient organisational systems and mechanisms, especially the inclusion of sustainability 

factors in basic operational philosophies. Entrepreneurial culture, seen as a key factor in 

these processes (Javalgi and Todd, 2011) presents a challenge for the success of 

construction projects (Li et al., 2017). This review dissects the complex interlinkages 

between the DT, BMI, sustainability principles, and entrepreneurial mindset, and thus 

offers an in-depth conception of the state of the art in the field. 

If the AEC industry is to succeed in BMI, it must understand the drivers of DT. These 

determinants have not yet been empirically explored, and this contribution investigates 

their role for innovation by shedding light into specific challenges and opportunities of the 

industry. The results seek to contribute to the body of knowledge by providing practical 

suggestions and recommendations for AEC firms to successfully capitalise on digital 

technologies and drive their sustainability efforts. 

A narrative approach was adopted for the presentation of the literature review, as it 

enables a more comprehensive exploration of the issue and incorporates a range of views 

and the findings of different studies. This approach provides flexibility in synthesising 

evidence, able to adjust focus as new knowledge becomes evident, particularly around 

new and emergent themes and issues. Narrative reviews can successfully reconcile the 

literature, highlight gaps in the available literature, and suggest topics for future research, 

particularly on the processes and the context of DT for sustainable innovation success. 
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They also make it possible to contextualise the findings in larger theoretical frameworks, 

digital technologies, other knowledge areas, sustainability theories, and BMI frameworks. 

Additionally, narrative reviews render results in an understandable style for those 

stakeholders concerned with the consequences of digital technologies for the 

sustainability of businesses. In general, a narrative review allows a full understanding of 

the nexus of digital technologies and sustainable BMI. 

A systematic review method was used to search the literature, this includes the 

search in academic databases such as Scopus, Web of Science, Google Scholar, and 

ScienceDirect for specific keywords as presented in Table 2.1. The inclusion criteria 

focused on the peer-reviewed journal articles in which the relationship between DT and 

BMI, with respect to the sustainability aspect in the AEC sector, from 1990 to 2023. More 

than 500 papers were initially found and more than 100 were used to identify essential 

themes. Cross-referencing with other relevant papers and articles was conducted 

throughout the literature review and study period to ensure a comprehensive 

understanding of the topic. This approach helped validate findings, identify gaps, and 

incorporate diverse perspectives into the analysis. 
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Table 2.1 – Domains and Key Words Searching 

Domain Key Words 

Digital Transformation “Digital transformation” 
“Digital transformation” and “Built industry” or “AEC industry” or “Construction” 
“Digital vision” 
“Digital orientation” 
“Digital strategy” 
“Digital leadership” 
“Digitalisation” 
 

AEC Digital Technology “Building information modelling” or “Building information management” or “BIM” 
“Geographic information systems” or “GIS” 
“Artificial Intelligent” and “Built industry” or “AEC industry” or “Construction” 
“Digital twin” and Built industry” or “AEC industry” or “Construction” 
“Blockchain” and Built industry” or “AEC industry” or “construction” 
“Cloud computing” and Built industry” or “AEC industry” or “Construction” 
“3D printing” and Built industry” or “AEC industry” or “Construction” 
“Machine learning” and Built industry” or “AEC industry” or “Construction” 
“AR / VR” and “Built industry” or “AEC industry” or “Construction” 
“Big Data Analytic” and “Built industry” or “AEC industry” or “Construction” 
“IoT” and “Built industry” or “AEC industry” or “Construction” 
 

Sustainability “ESG” 
“Triple bottom line” 
“Sustainable Development Goals” or “SDG” 
“ESG” and “Built industry” or “AEC industry” or “Construction” 
“Sustainability” and “Built industry” or “AEC industry” or “Construction” 
“Sustainability” and “Digital transformation” 
 

Business Model “Business model” 
“Business model innovation” 
“Business model canvas” 
“Sustainable business model” or “Sustainable business model innovation” 
“Business model” and “Built industry” or “AEC industry” or “Construction” 
 

Corporate culture “Corporate entrepreneurship” 
“Corporate entrepreneurship” and “Digital transformation” 
“Entrepreneurial orientation” and “Digital transformation” 
“Entrepreneurial orientation” and “Business model” 
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2.1 Digital Transformation 

2.1.1 Concept and Strategic Foundations 

DT is defined as the fundamental and systemic reorganisation of business models, 

processes, and activities through digitalisation (Mergel et al., 2019). It includes embracing 

all sorts of digital technologies, such as data analytics, cloud, and AI (Manzoor et al., 2021). 

The process of transformation is assumed to follow a phased approach: digitisation 

(shifting analogue data into digital form), digitalisation (applying digital technology to 

existing processes) and digital transformation (a fundamental change to the business logic 

and value creation) (Verhoef et al., 2021). These phases depict a mounting degree of 

organisational transformation which is needed to fully exploit digital technologies. 

Angelopoulos et al. (2023) present a more subtle perspective of DT as a 

“fundamental change in operational logic through the reversal of agency from human to 

digital actors”. In this context, DT is not just about adopting digital technologies but about 

transferring decision rights to them and thereby changing the way firms act, govern and 

create value. This view emphasises the fact that DT is recursive and becomes a moving 

target, with humans and digital agents co-adapting to each other. Similarly, Van Zeebroeck 

et al. (2023), suggest that DT enables firms to create new business models, products, 

services, and improves operational flexibility, and competitive advantage. AlNuaimi et al. 

(2022) highlight that becoming digitally transformed is not just about introducing digital 

technologies, but also about fostering an attitude and mindset, including experimentation, 

risk response, and leadership agility. When digital technologies are embedded across a 

firm it is necessary to re-examine organisational structures, customer engagement 

approaches, and internal capabilities that drive sustainable value. 
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2.1.2 Drivers and Enablers of Digital Transformation 

The forces behind DT are complex, unique to different contexts. Externally, firms face 

technological forces, customer expectations, competitive forces, and policy and regulatory 

influences (Nadkarni and Prügl, 2020). Internally, there is an inherent need for constant 

innovation, operational efficiency and change in business models to stay relevant (Ghosh 

et al., 2022). The COVID-19 pandemic subsequently upended this, and deepening 

adoption of digital technologies as remote operations, electronic commerce, and digital 

service delivery became the new norm for most businesses (Priyono et al., 2020). 

One of the key factors which catalyse DT is a clear digital vision, which is a future 

looking statement identifying the role of digital technologies (Mishra et al., 2023). A 

powerful digital vision not just informs strategic choices but galvanises internal and 

external parties around a cohesive transformation narrative. According to AlNuaimi et al. 

(2022), this vision must be tightly linked to the organisation’s top-level strategy and yet be 

pliable enough to be adapted to developing technologies and changing markets. 

To realise DT, firms need to develop a digital strategy that is holistic (Struijk et al., 

2023). Westerman et al. (2014) and Gurbaxani and Dunkle (2019) stress the importance 

of understanding specific digital capabilities, evaluating the digital context and promoting 

a culture, which facilitates change and innovation. This investment is not just in technology, 

but also in talent and in firms where people are coming together and learning from each 

other. DT is facilitated by leadership and successful digital leaders also need to be agile, 

have vision, and be open to experimentation and risk (Fernandez-Vidal et al., 2022). They 

are also balancing short-term performance targets with long-term investments in capability 

change. 

Importantly, Angelopoulos et al. (2023), for instance, argue that a precondition for 

transformation is the capacity of a firm to absorb evolving agency dynamics — in which 

digital technologies progressively automate actions. This calls for new governance, ethics 

and digital accountability leadership competencies. In parallel, Struijk et al. (2023), 
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suggest information quality management as being an under-investigated yet crucial 

enabler for successful DT. Their research indicates that when firms establish a strategy to 

manage the access, accuracy and relevance of data, business transformation becomes 

more grounded in real operational scenarios and needs from stakeholders.  

Combined, these insights highlight that DT is driven not only by external pressures 

or digital tools, but also by internal capabilities, strategic clarity, adaptive leadership, and 

high-quality information ecosystems that can support evolving digital agency. 

 

2.1.3 Adoption and Challenges in the AEC Sector 

DT in the AEC industry is still in its infancy compared to industries such as manufacturing 

(Adekunle et al., 2021). BIM is increasingly prevalent in AEC, which increases 

construction efficiency and cooperation among involved parties (Bryde et al., 2013). Yet, 

the use of BIM in business is unevenly distributed and varies across firms, in particular, 

Small and Medium-sized Enterprises (SMEs) (Chan et al., 2019). Several studies highlight 

the significance of ISO 19650 (ISO, 2018) for AEC DT. This standard is fundamental for 

digitisation within the AEC sector by promoting integration and collaboration between 

project participants (Davidson et al., 2022). It supports the idea of transition from analogue 

to digital practices to establish a common operational level to facilitate cooperation 

(Godager et al., 2022), and assists in governing digitally created data and establishing 

data-driven cultures (Matthei and Klemt-Albert, 2023). 

The increasing rate of technology developments enables organisations to leverage 

different technologies to keep ahead of the competition (Abioye et al., 2021; Baghalzadeh 

Shishehgarkhaneh et al., 2022). Start-ups for construction technologies are disrupting the 

traditional ways of working and introducing new software-based technologies to enhance 

efficiency and sustainability in construction processes (Sacks et al., 2020). The 

globalisation of business compels firms to expand their operations and include customers 

and suppliers, mainly through digital technologies (Halin et al., 2020). 
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Obstacles and hindrances for the AEC industry in DT are the lack of willingness to 

change, a shortage of qualified labour, and disconnected supply chains (Zhou et al., 2019). 

Mitigating these challenges requires collaboration, training, and a holistic perspective 

(Ozorhon and Karahan, 2017). Supportive policy environments for digital literacy and a 

culture of innovation should also be considered (Lijauco et al., 2020). The transition from 

project-driven to data-driven, with an emphasis on digital skills, open standards, and 

collaboration is critical (Karji et al., 2022). A further challenge is the diversity and 

fragmentation in the AEC sector (Lavikka et al., 2018), thereby demanding standardisation 

and open standards such as Industry Foundation Classes (IFC) in BIM, to enhance 

interoperability and collaboration (Thein, 2011). Having appropriate staff with the right skill 

is also important and firms need to be able to attract and retain talented employees with 

the needed digital competencies for their DT endeavours (Mandičák et al., 2020). 

 

2.1.4 The Role of Digital Collaboration 

DT is very much about collaboration, bringing digital technologies into firms. Digital 

collaboration promotes innovation by giving employees the tools and resources they need 

to work together across teams, departments, and geographies. Firms with a progressive 

digital collaboration culture are more likely to introduce new products and services 

(Orellana, 2017). Open innovation based on collaborations with external actors is in a 

position of co-creating new products and services (Levine and Prietula, 2014). Digital 

collaboration enhances decision-making by offering real-time data and insights. 

Construction platforms such as Autodesk Bim360, Trimble Connect, and Bentley 

Projectwise support real-time collaboration allowing faster and better cross-functional 

decision-making, increasing decision quality (Merschbrock and Munkvold, 2015). DC also 

accelerates organisational agility, which means that organisations can respond swiftly to 

customer requirements and changing markets (Gless et al., 2018).  
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2.1.5 Collaboration Tools, Benefits, and Barriers 

In the AEC sector, collaboration is necessary for project success. BIM solutions facilitate 

cooperation, communication, efficiency, error minimisation, and project quality (Oh et al., 

2015). Collaboration in design work improves the quality of designs and reduces errors 

(Forcael et al., 2020). Cyber tools such as VR and AR enhance cooperation (Wen and 

Gheisari, 2020). Collaboration and project outcomes are also improved under the 

framework of Integrated Project Delivery (IPD) (Kelly, 2012; Kent and Becerik-Gerber, 

2010; Liu et al., 2021). 

 

2.2 Sustainability in AEC Industry 

Sustainability has become a major concern in the AEC industry because of its significant 

environmental and social effects. The building sector accounts for 38% of energy-related 

carbon dioxide emissions worldwide and requires vast amounts of materials and water 

(UNEP, 2023). These environmental issues as well as growing regulatory requirements 

and changing social expectations have brought sustainability to the forefront AEC 

conversation. Notwithstanding these increased levels of understanding, the fragmented 

nature of the AEC industry, which effectively comprises a consortium of parties including 

architects, engineers, contractors, and clients presents challenges to both coherent and 

uniform sustainability practices (Zuo and Zillante, 2005). Mismatched goals and a lack of 

communication invariably lead to waste and lost opportunities to integrate sustainable 

strategies. This has prompted calls for collaborative delivery mechanisms, such as IPD to 

enhance early building stakeholders' engagements and share in the sustainable vision 

(Miller and Lessard, 2001). 
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2.2.1 AEC Sustainable Practices and Tools 

Various tools and techniques have been developed to support the transition to 

sustainability in AEC. BIM is one of them. BIM offers multi-dimensional modelling with 

anticipated identification of sustainable opportunities, optimise resource consumption, 

and minimise construction waste (Eastman, 2011). Its incorporation in the design and 

construction process contributes to the capacity of project teams to achieve environmental 

goals and to achieve better lifecycle performance. 

Simultaneously, green building certifications, such as LEED (Leadership in Energy 

and Environmental Design) and BREEAM (Building Research Establishment 

Environmental Assessment Method) offer a structured approach to implementing and 

benchmarking sustainable practices (Kibert, 2016). These tools focus on energy efficiency, 

indoor environmental quality, and material sustainability which consequently impact 

building performance and occupant health (Hwang and Tan, 2012). 

Lifecycle Assessment (LCA) has also been growing in popularity as an approach for 

assessing environmental impacts of buildings throughout their entire life cycle—from the 

extraction of raw material to ultimate disposal (Finnveden et al., 2009). In the preliminary 

design stage, LCA methods enable better-informed decisions about materials, energy 

systems, and means of construction, leading to potential long-term sustainable benefits 

(Azhar et al., 2011). 

 

2.2.2 Barriers and Facilitators to Sustainability Implementation 

Even though tools and frameworks exist, the development and implementation of 

sustainable practices in AEC is still poor. Critical challenges include low levels of 

professionals’ knowledge and training, high upfront costs, client demand constraints 

(Khan et al., 2014; Ofori, 2000). Furthermore, the lack of common metrics to enable and 

measure environmental and other social performance is still curtailing the integration into 

core corporate policies and practices. On the demand side, policy and regulation have 
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played a growing role. Incentive policy tools, such as a tax credit for green buildings and 

obligatory energy standards for building energy consumption, have been observed to 

promote the popularisation and application of sustainable building (Mao et al., 2015). 

Education and training programms serve also to stimulate the creation of a skilled 

workforce for sustainability. 

 

2.2.3 Sustainability Assessment in Comparative Perspective 

Due to the multidimensional characteristics of sustainability, several theoretical 

approaches have been developed to help apply sustainability principles in the built 

environment. A comparative review across the four main paradigms (Environmental, 

Social, and Governance (ESG), Circular Economy, Doughnut Economics, and the TBL) 

as shown in Table 2.2, considering the strategic and operational scopes, sheds light on 

varying degrees of relevance. 

 

Table 2.2 – Comparison of Major Sustainability Frameworks 

Framework / 
Theory 

Primary 
Focus 

Level of 
Application 

Key Strengths Limitations Reference 

ESG 
(Environmental, 
Social, 
Governance) 

Investment, 
risk and 
performance 

External 
(investment, 
reporting, 
compliance) 

Widely used by 
investors; 
standardised 
metrics 

Compliance-
driven; limited 
internal 
innovation focus 

Eccles et al. 
(2012) 

Circular 
Economy 

Resource 
efficiency; 
waste 
reduction 

Operational 
and systemic 

Emphasises 
lifecycle 
thinking and 
closed-loop 
systems 

Focused on 
material flows; 
less emphasis 
on social factors 

Geissdoerfer 
et al. (2017) 

Doughnut 
Economics 

Sustainable 
development 
within 
planetary 
boundaries 

Macro (policy, 
economics) 

Integrates 
social equity 
and ecological 
ceilings 

Abstract; hard to 
apply at firm or 
project level 

Raworth 
(2017) 

Triple Bottom 
Line (TBL) 

People, 
Planet, Profit 
value 
creation 

Organisational 
(strategic and 
operational) 

Balanced, 
integrative; 
adaptable 
across sectors 

Lacks 
standardised 
metrics for 
implementation 

Elkington 
(1997) 
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2.2.3.1 Environmental, Social and Governance (ESG) 

ESG has established itself as a framework for corporate sustainability reporting, especially 

in the finance and investment industries. It assesses corporate action from 3 perspectives: 

E (e.g., emissions, energy use), S (e.g., labour practices, diversity), and G (e.g., 

leadership, transparency). Investors utilise ESG metrics in order to evaluate risks and 

long-term value creation (Eccles et al., 2012). ESG offers a framework for evaluating 

sustainability performance, but it tends to be outward-facing and rules-based, valuing 

reporting and transparency more than strategic change and making it less suitable for 

informing internal innovation processes. 

 

2.2.3.2 Circular Economy 

The circular economy model is based on a continuous loop system, which aims to “reset 

environmental balance” by reusing/recycling/regenerating and/or reducing waste and 

reducing the pollution production when materials and resources are extracted, processed, 

and disposed (Geissdoerfer et al., 2017). Its concepts have been adopted by industries 

of manufacturing, packaging, and construction, where material efficiency and lifecycle 

thinking are necessary. However, it underestimates social value creation, the style of 

governance, or the differences in the strategic attitude of the companies towards 

sustainability. Thus, it is an appropriate process model but lacks a broader strategic view. 

 

2.2.3.3 Doughnut Economics 

Introduced by Raworth (2017), Doughnut Economics presents a model that envisions the 

fulfilment of human needs to ensure social equality and realisation is achieved within 

ecological limits. The "inner ring" stands for social foundation (e.g., education, equity, 

health), whereas the "outer ring" refers to ecological ceilings (e.g., climate change, 

biodiversity loss). The area between the rings—the “safe and just space for humanity” — 

is where we ought to locate sustainable development. The model is popular in public policy 
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and urban planning, and although macro-level in nature, it is far less applicable to how 

strategies and innovation processes are performed at the firm level. 

 

2.2.3.4 Triple Bottom Line (TBL) 

The TBL concept, launched by Elkington (1997), provides an integrated perspective on 

sustainability by focusing not only on profit but also on three equally important facets: 

people (social value), planet (environmental preservation), and profit (economic viability). 

TBL has been frequently used as an orientation framework in studies of sustainable 

business models (Bocken et al., 2014), innovation and digital transformation (George et 

al., 2021). Its equal footing architecture enables scientists and practitioners to investigate 

combinations of trade-offs, synergies, and capacity building between environmental, 

social, and economic dimensions. 

 

2.2.4 TBL as Strategic Framework 

The lens of the TBL of economic (profit), environmental (planet), and social (people) 

performance is used to illustrate a strategic focus on sustainable value creation within the 

AEC sector (Elkington, 1997). It pushes companies to go beyond compliance and 

integrate sustainability into their businesses. In construction, TBL embraces energy-

conscious design, the use of sustainable materials, and social equity (Bocken et al., 2014). 

TBL adoption may improve business operations, risk mitigation, and stakeholder 

confidence and create a competitive edge in a sustainability-focused market (Epstein and 

Wisner, 2001; Porter and Kramer, 2006). It also serves the global frameworks agenda like 

the UN SDGs (Lubin and Esty, 2010). However, implementation is yet to be fully 

accomplished, with difficulties measuring non-financial results and overcoming well-

entrenched profit-centered cultures still being evident (Bansal and DesJardine, 2014; 

Dyllick and Hockerts, 2002). A successful adoption should include leadership support, 

employee involvement, and incorporate sustainability into long-term strategic objectives. 
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2.3 Business Model Innovation 

The AEC industry encourages collaboration among architects, engineers, contractors, 

subcontractors, and material suppliers. The conventional model of separating the design 

and construction phases (Design-Bid-Build, or DBB) in construction projects may result in 

disputes and wasted resources. In contrast, flat fee contracting models such as 

Construction Management at Risk (CMAR), Design-Build (DB), and IPD (Kelly, 2012) 

have become increasingly common to encourage risk sharing and collaboration, and to 

improve project results. These delivery mechanisms provide a background to more 

general discussions around BMI and sustainability in the industry. 

It must first be established that the intrinsic concept of BMI should be defined first 

and is not to be confused with other established concepts, such as innovation, strategy, 

or business model. BMI defines the recreation, reconfiguring, and realigning of the 

architecture of actors and activities in and across the business value creation chain, i.e., 

that of the shaping, reinitiating, or redirecting of the architecture of how actors understand, 

meet, and collaborate to create, deliver, and capture value. Zott and Amit (2010) describe 

a business model as a “logical cohesive description of the way in which firms do business” 

and more recently Bocken et al. (2015) explain BMI as the creation of a business model 

that provides a fundamentally new value proposition or operational logic as compared to 

existing industry standards. According to Chesbrough and Rosenbloom (2002) the 

necessity to connect products, services, channels, and markets in new ways, to ensure 

sustainable flow of revenue is a critical task. This is representative of an increase in 

demand not just for product or service innovation, but rather for the transformational 

design of business architecture, considering technological, competitive, and 

environmental change. 
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2.3.1 The Business Model Canvas as a Catalyst of Innovation 

Osterwalder and Pigneur (2010) conception of the Business Model Canvas (BMC) was 

developed as a strategic device consisting of nine interdependent building blocks: 

Customer Segments, Value Proposition, Channels, Customer Relationships, Revenue 

Streams, Key Resources, Key Activities, Key Partnerships, and Cost Structure (Figure 

2.1). The BMC helps organisations to visualise, analyse, and understand their business 

model and has shown to offer benefits in recognising opportunities for innovation and 

sustainability (Bocken et al., 2015). 

 
Figure 2.1 – Business Model Canvas 

 
 

The BMC has been useful in supporting organisations to create more sustainable 

business models (Chesbrough and Rosenbloom, 2002) by identifying value creation and 

cost reduction possibilities. The BMC has also benefited startups in recognising and giving 

priority to the key elements of the model at business level and to communicate these ideas 

with the company’s stakeholders (Havemo, 2018). Despite its dominance, the BMC may 

be seen as problematic because it may be seen as problematic because it oversimplifies 

the intricacies of business models, provides little guidance for implementation and 
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execution (Teece, 2000), and it does not reflect the dynamic and iterative nature of BMI 

(Zott et al., 2011). 

There is a strong association between BMI and BMC. BMI requires the invention of 

new business models for creating profits and revenue and redesigning the whole industry 

or market (Zott and Amit, 2010). It needs modification of the major components of the 

BMC. Effective BMI relies on a balance between such internal and external factors as 

strategic vision, market analysis, technology innovation, customer pull and organisational 

resources. It typically includes using digital technologies to create new value and 

transform operations and customer experience. Researchers have identified factors that 

are critical for successful BMI (Osterwalder and Pigneur, 2010; Teece, 2000) Each 

building block of the BMC can be influenced by digital technologies within the AEC 

industry as represented in Table 2.3. 

 
Table 2.3 – Impacts of Digital Technologies on BMC’s Components 

BMC Block Impact From Digital Technologies 

Customer 
Systems 

Digital tools help AEC companies know their customers better, such as to leverage BDA and 
AI to identify the customers’ needs and desires, and to provide customised solutions. 

Value 
Proposition 

AEC companies can employ virtual and augmented reality to provide immersive experiences 
for clients, or BIM to design and build more efficient and sustainable structures. 

Channels AEC firms leverage digital tools to explore innovative customer engagement, using social 
media and online platforms to showcase work and connect with clients. 

Customer 
Relationships 

AEC firms use online platforms and project software to enhance communication, 
collaboration, and real-time updates with clients throughout the project lifecycle. 

Revenue 
Streams 

AEC companies can offer consulting focused on aiding companies in their DT journey or 
develop software products and solutions tailored to the industry or sector. 

Key 
Resources 

Key resources of AEC firms are affected by digital technologies. For example, companies 
must invest in new technologies and digital infrastructure to compete. 

Key Activities Digital technologies are impacting on the key activities of AEC firms. AEC companies need 
to acquire new skills and capabilities in BDA, AL and digital design and construction. 

Key 
Partnerships 

Digital technologies enable new AEC partnerships, fostering innovation and end-to-end 
services through collaboration with tech firms. 

Cost 
Structure 

Digital tech changes AEC cost structures, requiring investment in new tools but boosting 
efficiency and productivity for long-term savings. 
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2.3.2 Critical Assessment for BMI Measurement Concepts 

2.3.2.1 Spieth and Schneider (2016) 

Spieth and Schneider (2016) fill the ongoing gap in BMI research by operationalising and 

validating a formative measurement of BMI. They base their model on three key elements: 

value proposition, value structure, and revenue model novelty. These elements are based 

on the authors' lens on the business model as not just an operational or descriptive tool, 

rather as an innovating system made up of separate albeit interrelated domains that can 

be empirically examined. The study is particularly pertinent because previous efforts at 

organising and evaluating BMI have been mostly typological rather than quantitative or 

lacked the necessary quantitative criteria to make comparative and causal inferences. 

When using a formative approach, every single dimension is said to contribute to the 

overall construct of innovativeness in a non-reciprocal way − i.e., changes in one 

dimension (e.g., revenue model) are not automatically mirrored by changes in another 

dimension (e.g., value architecture). 

One important limitation acknowledged by the authors is the lack of integration with 

sustainability-oriented innovation metrics. It is based only on the physical and metabolic 

aspects of BMI and does not include social and environmental components, restricting the 

model’s use in the context of sustainable business practices. They propose also to include 

these dimensions in the model in the future so that it contributes more to the 

understanding of contemporary strategic challenges. 

 

2.3.2.2 Clauss (2017) 

In contrast, Clauss (2017) develops a reflective measurement scale for BMI, aiming to 

conceptualise BMI as a latent variable and empirically categorise it through the observable 

novel combinations within the business model components of the firm. Drawing on the 

business model canvas (Osterwalder and Pigneur, 2010) and similar streams of literature, 

Clauss (2017) defines BMIs as purposeful changes in the way a firm creates, delivers, 
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and captures value. These shifts are represented in three sub-constructs: value creation 

innovation, value proposition innovation, and value capture innovation. 

This reflective frame also enables a useful diagnosis for researchers and 

practitioners alike – BMI can be modelled as an independent, dependent, or mediating 

construct in wider strategic configurations. Clauss, however, does not examine sector-

specific nuances or moderating factors of such a relationship between the factors, which 

limits the contextual richness of her scale. Moreover, the cross-sectional nature does not 

reflect the potential dynamics and feedback loops of the BMI that develop with time 

following market and technological changes. 

 
2.3.2.3 Comparative Insights 

Despite the significant contribution that both studies make to the operationalisation of BMI, 

they differ in conceptual orientation, measurement philosophy, statistical focus and 

theoretical fit with AEC industry (see Table 2.4).  

 
Table 2.4 – Comparative Analysis of Business Model Innovation 

Aspect Spieth and Schneider (2016) Clauss (2017) 

Measurement 
Approach 

Formative (indicators form the 
construct) 

Reflective (construct causes indicators) 

Business Model 
Domains 

Value offering, value architecture, 
revenue model 

Value creation, value proposition, value 
capture 

Methodology PLS-SEM with expert surveys; 
suitable for modular constructs 

EFA/CFA with two independent samples; 
focused on unidimensional structure 

Performance 
Validation 

Moderately tested relationships with 
innovation and strategy outcomes 

Empirical linkage to firm performance 
(financial and innovation metrics) 

Key Limitations F-F modelling requires large 
sample; lack of ESG 

Lacks industry-specific focus and does not 
capture temporal dynamics 

Theoretical Fit with 
AEC 

Strong alignment with modular, 
project-based AEC innovation logic 

Better suited for general business contexts; 
less tailored to AEC complexity 

Model Flexibility Allows domain-specific analysis and 
structural decomposition 

Treats BMI as a single latent variable, 
limiting diagnostic insights 

Adaptability to 
Small Samples 

R-R structure for valid use in small-
sample exploratory study 

Original structure not ideal for small-
sample exploratory studies 

Relevance to 
Research Aims 

Enables targeted assessment of 
innovation across BMI components. 

Less aligned with objective of analysing 
component-level innovation 
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Neither of these models consider the sustainability nor digital transformation aspects 

that play an increasingly important role in current business model redesign. Spieth and 

Schneider (2016) explicitly refer to this as a limitation and also discuss directions for future 

research, whereas Clauss (2017) is still looking into the performance effects, both 

economic and innovation. The addition of TBL or SBM innovation perspectives would 

improve the applicability of both frameworks in a research context going forward. 

 

2.3.3 Primary Drivers and Enablers for SBM 

SBM Innovation in the AEC operates at the confluence of environmental, social, and 

organisational drivers compelling firms to reconsider the way they create, deliver, and 

capture value. One of the main reasons behind this fact is the environmental effect of 

construction activities which leads to very high CO₂ emissions at a global level, very large 

energy consumption, and massive material waste. This has been stimulating attention for 

carbon-neutral buildings, green infrastructure, and a circular economy (Bocken et al., 

2014). Environmental regulation and client demand are increasingly focused on these 

objectives, adding pressure and opportunity for the AEC sectors to be innovators. 

Economic sustainability has, in the meantime, been joined by social sustainability. 

Topics such as responsible labour and community engagement or city-making are now 

the fundamentals that nobody disputes, and which investors and the public expect to be 

addressed, particularly in public and urban projects. Tools such as the GRI Standards 

(GRI, 2023) and ISSB Standards (IFRS, 2023) offer recommendations to incorporate 

social aspects in business models. 

From an organisational perspective, digital technology and data analysis enable 

companies to measure and optimise sustainability targets. Therefore, SBM is not solely 

pressured externally but is also empowered internally by the capabilities and leadership 

commitment. 
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2.3.4 Status and Challenges in Realising SBM 

Although SBM innovation has many advantages, its practice in the AEC industry 

encounters several difficulties originating from the conservatism of industry culture, the 

inertia of enterprises, and the complexity of its structure. Numerous organisations are 

bound to outdated IT infrastructure, a risk-averse business culture, and misaligned reward 

systems which tend to favour short-term cost minimisation rather than long-term value 

creation (Bocken et al., 2014). Financial and regulatory doubts compound the problems 

so that investing in sustainability may seem risky or not essential. 

To find out how AEC practices can overcome these obstacles, they need to develop 

four critical organisational competencies. Management of change is also critical, 

facilitating firms' ability to negotiate the behavioural and structural shifts necessary to 

engage in SBM innovation (Opoku et al., 2015). Train the workforce broadly rather than 

in a single function area, to ensure that employees comprehend and support sustainability 

objectives. 

Strategic foresight is also essential. Companies which express long-term 

sustainability goals accompanied by performance measures of these goals are more likely 

to embed sustainability principles in ongoing decision-making (Engert et al., 2016). It also 

allows firms to be open to new business models, characterised as a willingness "to 

experiment and take calculated risks" (Covin and Lumpkin, 2011). Both cross-sector 

collaboration and knowledge-sharing platforms can help to narrow the gap between AEC 

firms and those with expertise in sustainability. In the end, SBM innovation will succeed 

not only because of outside forces but through internal flexibility and strategic foresight. 

 

2.3.5 TBL as a Lens for SBM in the Digital Era 

The TBL stands as an appropriate lens to design and assess Sustainable BMI by AEC 

(Elkington, 1997). In this digital age, TBL provides an organised methodology to weigh 

and find harmony between nascent due date from competing impulses for sustainability. 
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Digital transformation enablers such as BIM, IoT, and AI facilitate the practice of SBM 

innovation according to the TBL philosophy. 

For example, environmental performance that is supported by BIM is energy 

modelling and lifecycle analysis, whereas social outcomes are monitored via IoT devices 

for worker safety and indoor air quality (George et al., 2021). They also maximise cost 

structures and operational efficiencies, which leads to economic sustainability. By utilising 

TBL, companies are able to consider the wider impacts of their business models beyond 

the financial bottom line by creating shared value for stakeholders. It encourages 

transparent reporting and alignment with global standards UN SDGs (United Nations, 

2015). 

Crucially, TBL encourages companies to treat sustainability as an opportunity for 

innovation and differentiation instead of just another box to be ticked for compliance. This 

change of mindset is essential for the future of the AEC in a sustainability-driven world. 

 

2.4 Emergent Digital Technologies for AEC Industry 

Several studies have proposed classification frameworks for digital technologies in the 

AEC industry, such as Manzoor et al. (2021) and Dou et al. (2023) including BIM, Cloud 

Computing (CC) Geographic Information Systems (GIS), AI, AR, VR, DT, Big Data Analytic 

(BDA), Blockchain (BC), Sensing and Monitoring Technologies (IoT), and Robotics and 

Automation. 

 

2.4.1 Emergent Digital Technologies 

2.4.1.1 Building Information Modelling (BIM) 

BIM is a digital process that has revolutionised the AEC industry (Bryde et al., 2013). BIM 

utilises 3D computer modelling tools to virtually simulate the graphical, physical, and 

functional aspects of a building (Succar, 2009). Since the model has the knowledge of the 

building's components, systems, and space (Arayici, 2008), BIM supports better decision 
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making as it allows project participants to design, evaluate design alternatives, understand 

impacts, and detect problems earlier. 

It enhances accuracy and eliminates rework / errors by detecting conflicts between 

design elements (Chan et al., 2019). BIM also supports scheduling and building 

construction coordination in real time, with both resources (Mandičák et al., 2020). Each 

modelling element carries graphical and non-graphical information such as manufacturer 

information and costs. Documentation updates automatically with changes. Models 

themselves are open standards-based and, therefore, can be shared / integrated between 

platforms, allowing team collaboration, such as openBIM (buildingSMART, 2013). 

Embedded data also automates quantity take-offs and clash detection between 

objects (Chahrour et al., 2021), which helps in construction coordination and error 

reduction. Useful BIM is data related. There are obstacles in benefit realisation where data 

are incomplete or inaccurate (Mandičák et al., 2020). Coordination and cooperation 

among participants are very important to enhance benefits (Oh et al., 2015). 

BIM is designed to cover the information throughout the lifetime of a project with the 

aim to facilitate single-source facilities management (Eastman, 2011). In short, BIM has 

changed the way we work in an AEC space by making us more efficient and providing 

better decision making, accuracy, collaboration, and lifecycle data management. 

 

2.4.1.2 Cloud Computing (CC) 

CC has emerged as a promising technology that has potential to change the way projects 

are planned, designed, implemented, and operated. A CDE specific for cloud computing 

could enhance communication and collaboration between the different stakeholders in a 

project, minimising errors and time delays due to miscommunications and wrong 

information (Bello et al., 2021). Internet-based tools and cloud-hosted centralised project 

information stores make it possible to collaborate and to connect to up-to-date data from 

mobile devices. 
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CC enables resources to be available on the network and to be accessed with 

standard mechanisms, which provide for design and construction participants transparent 

access from wherever they are in the world (Wang et al., 2020). It reduces capital cost 

and saves time, as well as reduce capital-intensive IT resources and infrastructure 

expenses, which are shared between user organisations. 

 

2.4.1.3 Geographic Information Systems (GIS) 

GIS as a collection of hardware and software that allows capturing, storing, managing and 

processing spatial data. These tasks include location factors, consideration of alternative 

designs and evaluation of impacts. By using several layers of spatial data such as land 

use and land cover, topography, soil and infrastructure, GIS helps to analyse site suitability 

for proposed project. It also enables various stakeholders to collaborate, making it a 

platform for shared decision-making and information sharing (Zhu et al., 2018). 

Gu and London (2010) point out that GIS generates a range of outputs such as from 

maps, spatial queries and 3D project models useful for generating a clear picture of the 

dense urban circumstances. When connected to BIM, GIS provides greater decision 

support system for AEC professionals. The integration permits 3D models to be overlaid 

on site maps, enabling users to perform environmental and energy simulations, and 

ultimately achieve better accuracy, and efficiency in project planning and implementation. 

 

2.4.1.4 Artificial Intelligent (AI) 

AI includes capabilities to apply design model checking, predictive maintenance, quality 

control, safety monitoring, and optimisation of building performance and energy 

efficiencies. By enabling routine work to be streamlined and automated, AEC 

professionals could concentrate on more challenging and creative issues in their 

profession (Pan and Zhang, 2021; Pan and Zhang, 2022). AI is naturally predisposed to 

learning from large data sets and identifying complex patterns. 
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The learning ability enables AI to handle various applications, such as semantic 

segmentation of building components from images / scans, structural condition 

assessment using drones, and predictive analytics for building management with IoT 

sensor data (Plageras et al., 2018). AI also promotes teamwork through chatbots and 

VR/AR interfaces. For example, AI chatbots and virtual assistants can answer user 

questions automatically, cutting down response times. AI-based simulations also enable 

collaboration and decision-making from a distance (Ivanova et al., 2023) 

 

2.4.1.5 Augmented and Virtual Reality (AR/VR) 

As AR/VR offers immersive experience, designers can visualise and traverse through 

three-dimensional designs. The early analysis of design and fabrication-related problems 

by AR/VR may prevent project overruns of cost and schedule (Schiavi et al., 2022; Yan et 

al., 2011). During design and construction phases, AR applications can overlay digital 

information such as schematics, specifications, and notes, for example, directly on a 

user's view of a physical space (Azuma, 1997). 

One of the key features of AR/VR is their ability to imitate actual or theoretical spaces 

and material presences through interactive 3D digital models. This ability in simulation 

enables the engineering / design collaborative domain clash detections, safety planning, 

and spatial coordination. It also facilitates training, and skills transfer through interactive 

simulations and mixed reality serious games (Davila Delgado et al., 2020; Li et al., 2018). 

With AR/VR, stakeholders can have an immersive experience beyond traditional 

media of more complex designs and environments. This increases the understanding of 

end-users and allows them for easy interaction with digital models. By leveraging sensors, 

AR interfaces also support the delivery of location-based and context-aware information, 

such as remote assistance and facilities management (Sabzevar et al., 2023). 
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2.4.1.6 Digital Twins (DTs) 

DTs can support collaborative iterative design processes through enabling architects, 

engineers, and contractors to virtually experiment with various design alternatives and 

construction sequences, providing a real-time test and measure environment to assist in 

identifying and solving issues at an early stage of the DTs. This early warning provides a 

cost-effective and proactive decision support during a project or an asset's lifecycle 

(Salem and Dragomir, 2022; Zhang et al., 2021). 

A distinguishing characteristic of DTs is that they can generate digital representations 

of physical assets, infrastructure systems, or built environments along their life cycle. 

These models are kept synchronised to the physical twin through integration with IoT 

sensors and reporting systems (Ozturk, 2021). 

DTs could provide any time; any place virtual visits is highly important. Coupled with 

AR/VR technologies, they facilitate remote collaboration, virtual commissioning, spatially 

aware asset management, and seamless skills transfer between field and office teams 

(Opoku et al., 2021). 

 

2.4.1.7 Big Data Analytic (BDA) 

BDA is capable of improving project delivery by offering real-time information about the 

pace of construction, revealing possible bottlenecks, and aligning resources as planned 

(Ahmed et al., 2017). 

One of the main applications of BDA is predictive maintenance. BDA understands 

patterns and trends from heterogenous project data including equipment logs, IoT sensors, 

and drone images. With predictive modelling, companies can predict when equipment is 

going to break which means better schedules for upkeep and less of the dreaded 

‘unplanned downtime…’ This evidence-based strategy enhances asset reliability and 

facilitates more effective life cycle cost management (Cheng et al., 2020). Consequently, 

BDA paradigm changes maintenance approach from a reactive one into a proactive one, 
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improving project performance and extending asset life. 

BDA also facilitates scheduling optimisation through enabling real-time monitoring of 

production. By combining project documents, sensors, and administrative systems, 

stakeholders can see, track, and reallocating resource as needed. Methods such as 

process mining and simulation support the anticipation of delays and the improvement of 

decision-making along the project lifecycle (Bilal et al., 2016). This increases accuracy in 

planning, productivity monitoring and reaction to on-site conditions. 

 

2.4.1.8 Blockchain (BC) 

BC gives strong potential as a collaboration tool in AEC industry, especially in large 

projects with numerous contractual parties involved. Also decentralised storage sharing 

and validation of BIM data can be achieved via BC, overcoming the problem of data silos 

and improving the trust in shared information (Li et al., 2020; Mahmudnia et al., 2022). Its 

public ledger provides transparent access to information about construction materials, 

equipment status, payments, and design documents, increasing accountability and 

veracity of data among project stakeholders. 

BC can also integration with sensors, IoT, and AI, which allow for predictive 

maintenance by monitoring equipment usage in real time, machinery remote monitoring, 

and compliance monitoring through the automatic interpretation of measurement data. 

This synchronisation allows data informed decision making and supports a more cost-

efficient operation through the anticipation of issues and the awareness of situations that 

could develop into serious problems, leading to safer, more reliable project execution 

(Mahmudnia et al., 2022). 

 

2.4.1.9 Sensing and monitoring technologies (IoT) 

Sensing and monitoring technologies, also refer to IoT, are employed in a broad range in 

the AEC sector including building performance monitoring, predictive maintenance and 
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energy management. IoT can also use to detect temperature, humidity, and air quality 

inside buildings, and HVAC systems can be adjusted in real-time (Sarkar et al., 2020; 

Tang et al., 2019). 

One major benefit of IoT in the built environment is its capability to gather real-time 

operational data from sensors, drones, wearables and other networked devices. This 

stream of data has been used in different monitoring and analysis applications throughout 

the AEC lifecycle. When combined with the cutting-edge analytics like AI, data from the 

IoT features predictive capabilities such as fault detection, structure health monitoring, 

user behaviour analysis, and prediction of energy consumption (Baghalzadeh 

Shishehgarkhaneh et al., 2022). 

IoT systems can also actuate the physical environment, fulfilling automated reactions 

based on sensed conditions. The ability to do this allows for more intelligently-controlled 

operation – for things like adaptive lighting, self-managing facilities, and the “growing” of 

scaffold systems. Sensing coupled with control via IoT enables safer, greener, smarter 

construction and building operations (Plageras et al., 2018). 

 

2.4.1.10 3D Printing 

3D printing has facilitated the fabrication of complex architectural geometries, components, 

and facade elements which are difficult to fabricate with other existing technologies (El-

Sayegh et al., 2020). It resulted in an enhanced degree of design freedom as compared 

to traditional approaches. This enables building elements that are flexible, performative, 

and visually attractive. 

Projects such as Apis Cor and WinSun have demonstrated the creation of 3D printed 

houses over the course of mere hours. The coupling of robots and 3D printers 

demonstrates a positive transformation of these two technologies in the building industry 

(Xu et al., 2022). 
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3D printing facilitates the iterative design process and prototyping of complex designs. 

Combined with sensors and built-in computational capabilities, it enables hybridisation in 

design, manufacturing, and construction (Singh et al., 2021). 

 

2.4.2 Strategic Alignment of DT with TBL Goals 

Triple Bottom Line framework (Elkington, 1997), argues that organisations should 

simultaneously pursue economic, environmental, and social responsibilities. In AEC 

industry, this entails balancing financial performance, ecological responsibility, and social 

well-being across all phases of the project lifecycle—from early design to operation and 

decommissioning (Opoku and Fortune, 2011; Zuo and Zhao, 2014). 

To systematically evaluate the sustainability contributions of digital technologies, 

relevant organisational and sustainability theories were aligned with each TBL dimension. 

Theories were selected based on their ability to explain the specific value created: for 

economic impacts, value-based theories such as the Knowledge-Based View, Dynamic 

Capabilities, and Lean Principles were applied; for social impacts, theories including the 

Relational View, Human Capital Theory, and High Reliability Theory were used to address 

aspects of collaboration and safety; and for environmental impacts, sustainability-focused 

frameworks such as Eco-Efficiency, Industrial Ecology, and Cradle-to-Cradle informed the 

interpretation of ecological outcomes. As shown in Tables 2.5–2.7, these interrelated 

factors highlight the strategic role of digital innovation in advancing holistic sustainability 

within the built environment. 

 

2.4.2.1 Economic Impacts   

Economic Impacts (Table 2.5): Cloud computing reduces costs through shared 

infrastructure (Wang et al., 2022), while BIM minimises rework and improves accuracy 

(Bryde et al., 2013). 
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Table 2.5 – Profit (Economic Impact) 

Tech Key Benefit Theory Supporting Evidence 

BIM Reduces design 
rework/costs Knowledge-Based View Bryde et al. (2013), Chan et 

al. (2019) 

Cloud Shared infrastructure 
savings Dynamic Capabilities Zhang et al. (2020) 

Big Data Optimises schedules Lean Principles Bilal et al. (2016), Ahmed et 
al. (2017) 

Blockchain Supply chain transparency Dynamic Capabilities Li et al. (2020), Mahmudnia et 
al. (2022) 

3D Printing Cuts material waste Lean Principles El-Sayegh et al. (2020), (Xu 
et al., 2022) 

 

2.4.2.2 Social Advantage 

Social Advantages (Table 2.6): AR/VR enhances safety training (Li et al., 2018), and 

digital twins facilitate remote collaboration (Opoku et al., 2021) 

 

Table 2.6 – People (Social Impact) 

Tech Key Benefit Theory Supporting Evidence 

BIM Stakeholder collaboration Relational View Oh et al. (2015) 

Cloud Centralised team 
repositories Relational View Bello et al. (2021) 

AI/VR Safety training High Reliability Theory Li et al. (2018) 

GIS Shared spatial decisions Relational View Zhu et al. (2018) 

DT Remote collaboration Human Capital Theory Opoku et al. (2021) 

 
 

2.4.2.3 Environmental Benefits  

Environmental Benefits (Table 2.7): BIM-GIS integration enables energy and carbon 

simulations (Gu and London, 2010), and IoT sensors optimise building operations (Tang 

et al., 2019) 
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Table 2.7 – Planet (Environmental Impact) 

Tech Key Benefit Theory Supporting Evidence 

BIM+GIS Energy simulations Eco-Efficiency Gu and London (2010) 

Big Data Predictive maintenance Industrial Ecology Cheng et al. (2020) 

IoT Sensors Real-time energy 
monitoring Industrial Ecology Tang et al. (2019), Sarkar et 

al. (2020) 

3D Printing Localised manufacturing Cradle-to-Cradle Singh et al. (2021) 

DT Asset lifecycle extension Cradle-to-Cradle Ozturk (2021) 

 
 

When strategically implemented, these technologies will support BMI and data-

driven decision-making that are advancing:  

• Financial performance via lean operations as well as dynamic capabilities 

• Environmental stewardship through eco-efficiency and cradle-to-cradle design 

principles 

• Social equity via enhanced collaboration and human capital development  

This alignment fosters innovation pathways where economic incentives support both 

planetary sustainability and community interests. The empirical analysis, focused on these 

relationships, is presented in the coming sections, which explores these connections 

through their theoretical foundations, linking digital transformation to TBL as an anchoring 

principle. 

 

2.4.3 Challenges in Adoption and Future Trends 

Digital technologies adoption in the AEC industry is somehow encountering various 

barriers. The full implementation of BIM also demands substantial investments of time, 

financial resources, and workflow modifications, which make it difficult to be adopted by 

smaller local practices and smaller projects (Zhou et al., 2019). The success of BIM 

depends on accurate and current data, importation of incomplete or inaccurate data based 

data impeding the benefits (Zhang et al., 2020). Coordination and collaboration between 
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the project involved parties are also important to achieve the benefits of BIM (Oh et al., 

2015). Topics like cloud-computing to AR/VR and big data analytics, have numerous other 

issues to deal along with, like data security, privacy and standardisation (Emaminejad et 

al., 2021; Mahamadu et al., 2013; Mantha et al., 2021). 

Prospectively, their destiny will be to grow together even more. With the integration 

of BIM and AR/VR, visualisation will also be enhanced (Schiavi et al., 2022) and AI with 

improved decision support tools (Zhang et al., 2022) will facilitate collaborative, interactive 

design support via simulations such as digital twins (Zhang et al., 2021). The BIM and B 

process links BIM with blockchain to facilitate collaboration (Li et al., 2020). There is a 

tremendous promise for safer, more productive, less wasteful and more sustainable 

construction with advancements in sensors, robotics and 3D printing (Tang et al., 2019; 

Xu et al., 2022). In the end, its increased use, through expanded awareness and 

integration of it into emerging technology, that will help achieve the full benefits of these 

technologies. 

 

2.5 Key Determinants of Successful Initiatives 

The initiatives of DT, BMI, and sustainability development are becoming increasingly 

challenging. Successful enablers include organisational leadership, innovation culture, 

human capital, and vision and strategy. In the AEC sector, DT involves recasting of 

processes, capabilities, and models to extract the value of digital technologies. BMI 

consists in introducing modifications in the organisation's business model or in designing 

new models for the purpose of generating and capturing additional value, with particular 

emphasis on sustainability-based opportunities. Sustainable development aims to protect 

the natural and human resources we depend on for a high quality of life (e.g., carbon 

neutral and circular economy practices; Bocken et al. (2014) and human rights (GRI, 

2023). 
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Several studies have sought to identify the elements that determine the outcome of 

efforts in these domains. Firm-level entrepreneurial traits have been correlated with digital 

transformation and innovation. Firms that have attributes of innovativeness, proactiveness, 

and risk-taking behaviours are more inclined to grab new opportunities and experiment 

with business models (Ciampi et al., 2021). 

Equally significant are organisational culture and a well-defined strategic orientation. 

In the context of sustainability innovation, high-level management subscribers for 

sustainable policies promote employees’ intrinsic motivation toward green ideas (Kim et 

al., 2017; Lozano, 2015). Clear visions for long-term sustainability direct cross-disciplinary 

decisions (Bocken et al., 2014).  

Leadership and communication of the desired objectives are equally vital for digital 

transformation. Previous studies have shown that the lack of support from company top 

management is a typical barrier (Porfírio et al., 2021). Clear digital visions and adoption 

roadmaps enhance the allocation of resources and consumption of change (Hess et al., 

2016). 

 

2.5.1 Entrepreneurial Orientation 

Entrepreneurial Orientation (EO) has often been noted as both influential and important 

to the growth and flourishing of businesses. EO includes the firm's innovation strategy, 

risk-taking strategy, proactive strategy, autonomy strategy, competitive aggressiveness 

strategy, and focus on opportunities strategy. Companies with high levels of EO 

consistently outperform those with low levels. Such as, being proved that EO has an 

underlying positive impact on growth and monetary performance of new ventures 

(Hmieleski and Corbett, 2006) and EO has a correlation with the survival and growth of 

small firms (Wiklund and Shepherd, 2003). The concept of EO was first defined by (Miller, 

2011) as a propensity to engage in higher-risk activities related to the development of new 

products or services and entry into new markets. Covin and Slevin (1989) developed a 
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conceptualisation of EO and suggested that it is based on 3 dimensions: innovation, risk-

taking, and proactiveness. The dimensions of EO were further broadened, making 

autonomy and competitiveness as the additional dimensions. (Covin and Slevin, 1991) 

originally conceptualised EO as a unidimensional construct including innovativeness, risk-

taking, and proactiveness. With subsequent research has extended this dimensionality 

and linked EO to the firm's performance (Hmieleski and Corbett, 2006; Wiklund and 

Shepherd, 2003). 

 

2.5.1.1 Five Dimensions of EO 

Lumpkin and Dess (1996) proposes that EO consists of five dimensions - risk-taking, 

proactiveness, innovativeness, autonomy, and competitive aggressiveness - possess a 

strong impact on digital transformation. EO nurtures an experiment-friendly, innovative, 

and adaptive culture, which helps in an organisation's smooth adoption of digital 

technologies and for innovating business model (Vrontis et al., 2022). 

• Innovativeness, as a key dimension of EO, also contributes to digital transformation 

positively. Evidence also shows that firms with a high degree of innovativeness have 

improved performance (Hughes and Morgan, 2007; Zahra and Covin, 1995). These 

are the companies that are most likely to use digital technologies which have had the 

biggest effect on disruptive innovation (Kraus et al., 2023). They also use digital 

technology to service their customers more efficiently and may adopt specific 

technologies such as BDA (Ciampi et al., 2021). 

• Risk-taking, also helps digital transformation importantly. Companies that are willing 

to take risks are more inclined to carry out digital initiatives, and risk-taking is positively 

related to digital transformation (Hervé et al., 2021). The transition to digital 

technologies entails investment risks, and a tolerance for risk-taking helps 

organisations meet those challenges. 
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• Proactiveness, as a dimension of EO is important in the digital age. Firms who are 

proactive rather than reactive are expected to engage in digital technology adoption 

to secure competitive advantage (Lumpkin and Dess, 1996; Wiklund and Shepherd, 

2003). They understand the critical need for digital adoption to remain competitive and 

have the foresight to embrace digital solutions. 

• Autonomy (the extent of influence in decision-making) is related to better performance 

(Hmieleski and Corbett, 2006; Wiklund and Shepherd, 2003). In the digital age, 

companies must have the autonomy to be more agile to respond swiftly to market 

changes and to be able to take on digital technologies. 

• Competitive aggressiveness, firms that are more competitive also perform at a high 

level (Covin and Slevin, 1989). Competitive aggressiveness verifiably could also be 

correlated with the survival and growth of small enterprises (Wiklund and Shepherd, 

2003). Firms must compete to survive and continue to evolve to meet customer needs 

in the digital age. 

Two important concepts that have been highly emphasised in literature and 

supported by empirical findings are EO and BMI. Several studies have shown a positive 

association between EO and BMI. For example, Hult et al. (2004) indicated that 

organisations high on EO are more likely to be involved in BMI (i.e., new product/service 

introduction, new geographical market entry, new technology adoption). Consistent with 

the present research, Wiklund and Shepherd (2003) reported that high EO firms were 

more likely to engage in business model experimentation which is a key initiator that leads 

to BMI goals ultimately. 

 

2.5.1.2 Correlate EO and BMI 

EO and BMI are positively correlated because a higher level of EO plays a major role for 

firms to take risks and try new things. This risk propensity and willingness to experiment 

are potential drivers for BMI which allow firms to search for new avenues and develop 
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new innovative business models. High-risk-taking propensity firms were also more likely 

to utilise innovation (Covin and Slevin, 1991). Moreover, EO and BMI both share to a 

similar extent strong entrepreneurial attitudes. Firms with high EO are also likely to be 

highly entrepreneurial - the entrepreneurial organ of the company that is focused on value 

creation and value capturing (Covin and Slevin, 1989). The same applies to BMI, as it 

calls for a strong entrepreneurial attitude, given that it “is about how firms create, deliver, 

and capture value” (Foss and Saebi, 2017) – it is about developing new business models 

as well as implementing them. 

EO plays an important role in facilitating the process of BMI (Ciampi et al., 2021). 

High EO firms are expected to have business proactivity, they tend to be proactive and to 

discover new opportunities for BMI. Furthermore, firms with high EO are believed to be 

more opportunistic and can capitalise on their strategic thinking that is important for the 

launching and execution of new business models. They also found high-EO firms to 

engage more in BMI that includes strategies for repositioning and reconfiguration of 

resources. 

Overall, high EO and high collaboration may reinforce each other as the evolution 

and exploitation of entrepreneurial capabilities will help firms develop and utilise their 

entrepreneurial assets, while the EO uncovers and enables taking action at new 

collaboration opportunities (Todeva and Knoke, 2005). Highly EO and collaborative firms 

are expected to be more innovative, flexible, and competitive in this digital time. Regarding 

BMI, since high EO firms are less averse to making decisions in uncertain environments 

and are more innovative than other firms, they are more likely to be engaged in BMI 

activities. Also, EO can promote BMI by supplying resources and the process of strategic 

thinking for firms. Hence, firms that are attempting to motivate BMI should add EO as an 

important component of their strategy, based on the complementarity between EO and 

collaboration. 
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2.5.2 Sustainability Orientation 

Sustainability orientation (SO) as a behavioural dimension refers to the level of 

commitment and the mindset of firms with the idea to pursue environmental, social and 

economic goals in shaping visions, strategies, and operations of organisations (Claudy et 

al., 2016). It influences organisational culture and behaviour to enable an ongoing 

advancement towards sustainability-oriented performance. Embedded in a strong value 

system around sustainability, orientation is both expected to drive innovation with the 

focus on people and planet beyond profits (Jin et al., 2019) well as to help establish a 

long-term vision also ensuring the well-being of future generations (Hockerts, 2015). 

 

2.5.2.1 Drivers, Enablers and Strategic Implications 

SO indicates an organisation’s dedication toward incorporating environmental, social, and 

economic objectives into its strategy and operations. Leadership buy-in is a key driver. 

Top management and CEO policymakers actively pursue and support sustainability 

initiatives and provide strategic guidance and resource allocation to weave these values 

into the organisation’s culture (Eccles et al., 2012). Their engagement generates a sense 

of urgency and contributes to turning such ethical aspirations into concrete policies and 

innovation. 

Eccles et al. (2012) also highlight that employee involvement is a significant driver of 

sustainability initiatives. Staff who internalise sustainability values work collaboratively 

toward green goals. Involvement in decision-making, knowledge sharing, and 

acknowledgment of environmentally friendly actions are identified as key sources of 

intrinsic motivation. However, a common challenge is the gap between the vision at the 

top and daily practices on the ground, underscoring the importance of role models and 

cross-level coordination (Lozano, 2007). This coordination facilitates the co-creation of 

innovative and cost-effective solutions by interdisciplinary teams. Furthermore, the 

formalisation of guiding principles, strategic roadmaps, and measurable indicators—such 
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as carbon reduction targets and compliance with ISO14001 (ISO, 2015) enables the 

measurement and assessment of environmental performance. 

A robust SO enables businesses to de-risk and comply with regulatory demands and 

evolving stakeholder requirements. It builds trust, corporate brand reputation, and bridges 

organisations with the global sustainability agendas such as the UN SDGs (United Nations, 

2015). This is also reinforced by cultural factors, such as common sustainability values, 

time-oriented thinking, and representative governance (Hockerts, 2015). 

SO provides a competitive advantage, theoretically speaking. According to the 

resource-based view theory, sustainability will lead to the creation of distinctive firm 

capabilities, for example, eco-innovation and green supply chains (Cantele and Zardini, 

2018). Stakeholder theory posits that engagement with the interests of stakeholders leads 

to trust and results in access to resources, innovation, and cooperation (Freeman et al., 

2010). 

 

2.5.5.2 Strategic Dimensions of Sustainability Orientation 

Claudy et al. (2016) investigate SO as well as Market Knowledge Competence (MKC) in 

determining the New Product Development (NPD) success. SO is interpreted as a 

strategic resource, underlying the firm’s commitment to the environment and society as 

well as deeply rooted in corporate values and innovation practice. The authors 

conceptualise SO as a second-order reflexive construct consisting of two major 

dimensions: Sustainability Culture and Sustainable Practices. The former represents the 

internal values and beliefs for sustainability; the latter incorporates the management cases 

of those values during the business processes and product development. This 

configuration makes it possible to evaluate the SO as organisational attitude and practice. 

Importantly, Claudy et al. (2016) claim that SO in itself does not guarantee the 

success of NPD. Instead, its value depends on the company’s capacity to integrate 

sustainability with market requirements, pointing out MKC as an essential mediator. 
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Organisations must not only embrace sustainability; they also must have market foresight 

to translate these values into meaningful innovations. 

The study extends existing literature by reframing SO as a strategic resource rather 

than a merely normative position. Firms with sustainability integrated into their DNA—

especially at the top management team level—are expected to be significantly more prone 

to embrace radical innovation (RI) and long-term value creation. This is in line with other 

findings that emphasise the role of leadership and organisation culture for sustainability 

(Eccles et al., 2012). 

In a similar vein, Sung and Park (2018) unravel the nexus of SO and EO. Their study 

upends the common notion that there’s a trade-off between sustainability and 

entrepreneurship. Rather, they indicate that SO and EO are positively related with each 

other, with sustainability-oriented firms being more innovative, proactive, risk-taking, and 

international customers. They also define SO as a multidimensional consideration: ethical 

responsibility, environmental concern, and stakeholder inclusion. This perspective is 

consistent with SO as a proactive, value-oriented orientation (Claudy et al., 2016). They 

contend that SO is synonymous with opportunity recognition and innovation, allowing 

companies to address social and environmental issues while also remaining competitive. 

 

2.5.3 Digital Orientation 

Digital orientation (DO) is the overall philosophy, priorities, and strategic stance of an 

organisation with regard to the adoption and incorporation of digital technologies into its 

operations, value propositions, and customer experiences (Westerman et al., 2014). A 

digital-centric company considers cloud, mobile, analytics, automation, and the Internet 

of Things (IoT) as strategic building blocks to enable digital transformation and secure 

future success. DO is contingent upon two complementary elements: digital vision and 

digital strategy (Hess et al., 2016). 

Digital Vision is the company’s permanent understanding of how digital technologies 
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will change their business model, competition, and client target. It provides a detailed 

analysis of digital innovation to transform current operations and create value for the future. 

A clear digital vision drives shared cognition among leadership and employees and guides 

the organisation in its digital transformation (Hess et al., 2016; Westerman et al., 2014). 

Digital strategy, however, turns this vision into concrete initiatives, investments, and 

organisational shifts. What it does, however, is articulate the precise means by which 

digital will be utilised to fuel innovation, effectiveness, and engage customers. Vision gives 

us the “why” and “what.” Strategy gives us the “how” and “when.” 

Empirical studies show that digital impact increases a company’s capability to 

innovate in business models, which involves reconfiguring means of value creation, 

delivery, and capture in the face of digital disruption (Yoo et al., 2010). In fields such as 

AEC, the digitisation process has been associated with the generation of new revenue 

flows from data-driven services, integrated project delivery platforms, predictive asset 

management models, etc. (Abioye et al., 2021). Successful DO compelling new vision and 

strategy is a fundamental driver of sustained digital transformation and competitive 

revitalisation. 

 

2.6 Research Gaps 

The AEC industry is experiencing a major shift as companies implement sustainability into 

their business practices. This transition prompts examination of the most important drivers 

of sustainable BMI. However, there are still important research gaps considering digital 

transformation and sustainability. Five gaps provide further areas for research (see Table 

2.8), specifically the role of emerging technologies in sustainable innovation, the functions 

of digital strategy, corporate entrepreneurship, and sustainability practices, as well as 

those of architect versus site construction teams in digital transformation. An exploration 

of these gaps would be needed to provide directions for future research and improve 

industry practices in the AEC industry. 
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Table 2.8 – Literature Gap Summary 

Gap 
No. 

Research Gap What the 
Literature 
Addresses 

What Is Missing / 
Underexplored 

How This Study 
Responds 

1 Role of emerging 
technologies in 
Sustainable BMI in 
AEC 

Focus on individual 
technologies' 
efficiency and 
environmental 
benefits 

Lack of integrated 
understanding of how 
digital technologies 
enable SBM aligned with 
TBL 

Develops framework 
linking TBL-aligned 
digital traits to SBM in 
AEC 

2 Interplay between 
digital strategy, 
corporate 
entrepreneurship, and 
sustainability practices 

Elements studied 
independently in 
AEC or business 
strategy literature 

Limited empirical 
research on their 
interdependence in 
driving SBM 

Investigates joint 
effects of DO, EO, 
and SO on SBM 

3 Differences between 
architects and 
construction teams in 
DT and SBM 

General AEC-level 
digital adoption 
studies 

Insufficient comparative 
analysis of roles and 
practices between 
architects and site teams 

Proposes 
differentiated analysis 
of digital maturity and 
innovation behaviour 
across roles 

4 Integration of SO with 
EO and DO to drive 
SBM 

SO and EO studied 
separately; limited 
integration 

Lack of empirical models 
examining interaction 
among these orientations 
in innovative outcomes 

Develops a 
conceptual framework 
linking SO, EO, and 
DO with SBM 

5 Lack of a 
comprehensive 
framework for TBL-
aligned DT in AEC 

Existing fragmented 
models (e.g. BMC, 
TBL, RBV) 

No unified model 
capturing systemic links 
between digital traits, 
orientations, and 
sustainability outcomes 

Proposes Figure 2.2 
– Research 
Framework 
integrating TBL, DO, 
EO, SO, and SBM 

 

There is a clear research gap at the intersection of emerging technologies and 

sustainable BMI in the AEC sector. While there is an increasing amount of literature 

explaining how innovative technologies shape the greening of the built environment, only 

a small number of studies focus on how these technologies in particular lead to the 

development of innovative sustainable business models. Moreover, current studies lack 

considerations of the strategic implementation of these technologies within sustainability-

oriented business models. Empirical investigations into how these technologies’ particular 

characteristics – related to technological potentiality – contribute to innovation towards 

sustainability are scarce. 
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The challenges that the AEC sector faces as a complex and dynamic industry 

interacting with both stakeholders’ interests and regulatory imperatives support the need 

for more insight into how emerging technologies can be deployed in the quest for 

sustainability. This is a void that highlights a call for specific research to explore the 

characteristics of these technologies and how they might engage business models in an 

evolution towards sustainability. Closing this gap might offer lessons to practitioners and 

policymakers interested in introducing innovative solutions in the AEC industry. 

Another important gap is the roles of a company’s digital strategy, corporate 

entrepreneurship, as well as sustainability practices for driving sustainable business 

model innovativeness. Although there is an increasing amount of research on these 

factors separately, there is little research on their interdependence and their holistic impact 

on promoting sustainable innovation in business model development. Being digital is 

critical when it comes to using technology to increase operational effectiveness and 

customer interaction, but its role in advancing sustainability in construction is less well 

understood. Corporate entrepreneurship also fosters creativity and flexibility; the linkage 

between corporate entrepreneurship with digital strategies and sustainable practices to 

create sustainable business models needs to be empirically explored. Furthermore, 

sustainable practices are acknowledged increasingly as necessary for long-term survival, 

their impact in relation to digital initiatives and entrepreneurial activeness is often 

underestimated.  

By examining how these three elements interact, we may gain valuable insight into 

forging comprehensive growth strategies that are designed to move the needle on 

innovation while also being in sync with sustainable ideals. Filling this gap in the literature 

is imperative for organisations seeking to operate effectively in the increasingly complex 

world of business. The knowledge obtained may be used by practitioners and 

policymakers to meaningfully combine digital strategies, entrepreneurial undertakings, 

and sustainability efforts in a manner that facilitates the design of durable and innovative 
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business models. 

A research gap exists on the difference between the practices of architects and site 

construction as regards their DT and sustainable BMI in AEC. There is considerable 

material available on DT and the transformation benefits for the AEC domain; however, 

little attention has been paid to articulating the specific roles and working methods of 

architects and construction teams within this context. Most architects work in designing 

and planning, using digital applications to assist with creativity and sustainability. Themed 

as practical, however, onsite construction (in construction teams) increasingly employs 

both digital tools for project management, resource distribution, and site efficiency. These 

disconnects in practice raise the question about how each group embeds DT in their 

practices and whether these embed impact the development of sustainable BMI. 

Although there is an initial interest in measuring SO and EO separately, there is still 

little knowledge regarding how SO combines with EO and DO to influence innovation in 

sustainable business models. Claudy et al. (2016) and Sung and Park (2018) have primed 

this work by considering SO as a strategic resource and value-based mindset, though 

little is known about how these orientations combine empirically to shape innovation 

outcomes. As sustainability challenges are becoming more complex, there is a need to 

explore how strategic orientations reinforce or contradict each other when pursuing SBM 

innovation, especially in dynamic, project-based industries such as AEC. 

Finally, TBL-aligned businesses use DT for achieving their TBL goals which results 

in some specific requirements that are not addressed in any DT framework for aligning 

itself with the TBL goals of the organisation. There seems to be a clear absence of a 

holistic conceptual framework that incorporates TBL principles and DT, entrepreneurial 

culture, and SO in the AEC industry. Current models tend to centre on disconnected issues 

like BMI or digital maturity without grasping the systemic links between digital 

characteristics, strategic stances and sustainability results. There is a need for a model to 

map TBL-aligned digital traits to strategic drivers such as EO, DO and SO to inform 
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theoretical inquiry and practical applications. An offering of this type could enable 

organisations to discern key levers of potential regarding innovation in complex project 

environments. 

 

2.7 Hypotheses 

The proposed five research gaps provide a perspective on the determinants of DT toward 

sustainable BMI for the AEC industry. Closing the aforementioned gaps can potentially 

enrich a comprehensive framework on the interplay between DT, sustainability, business 

culture and practices, and BMI. 

 

2.7.1 Digital Features Foster Sustainability Business Model Innovation 

Emergent technologies have unique characteristics that companies need to leverage to 

reconfigure their business models. These attributes can be contrasted with the TBL 

concept—with its pillars: Profit, Planet, and People. Firms adopting TBL-based tools are 

more likely to develop innovative and sustainable business models, benefiting AEC 

companies that support social and environmental goals. This approach provides true end-

to-end value and serves as a valid response to today’s business challenges. 

 
H1: TBL positively affects SBM Innovation 

 

2.7.2 Emergent Technologies and Organisational Capability 

Organisational Capability (OC) refers to the synergy between EO and SO, highlighting 

their mutual influence in driving a firm’s success (Sung and Park, 2018). EO enables 

organisations to proactively identify opportunities, while SO ensures these actions align 

with sustainable practices that address environmental and social challenges. Together, 

they form a dynamic capability that not only fosters entrepreneurial intentions and profit 

generation but also supports long-term competitive advantage and firm survival. 
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TBL-oriented digital technology adoption has a strong impact on SO by encouraging 

organisations to adopt a holistic mindset that considers economic, environmental, and 

social factors. These technologies enable the capture and analysis of large quantities of 

sustainability data, which, in turn, facilitates decision-making and progress monitoring. 

Technologies such as BC and BDA can further increase transparency in supply chains 

and sustainability reporting, thereby enhancing accountabilities for all parties involved in 

the supply chain. 

Additionally, it becomes more convenient for designers to incorporate TBL-aligned 

characteristics into new projects. Such tools also facilitate a new level of stakeholder 

participation, enabling more consistent communication and involvement in sustainability 

projects. Furthermore, advancements such as 3D printing and sustainable design 

software inform the creation of green, innovative products and services. Organisations 

that align their digital strategies with TBL principles can nurture a strong culture of 

sustainability with long-term advantages for the organisation and its stakeholders. 

 
H2: TBL has a positive and direct impact on SO. 

 
Characteristics of digital technology can have a substantial impact on EO by enabling 

innovation and agility. BIM, digital twins, data analytics, AI, 3D printing, etc., all enable 

quick experimentation, allowing companies to innovate new products and services quickly, 

making them more responsive to market demand. This agility promotes a spirit of 

entrepreneurship, wherein companies can respond rapidly to changes in the market that 

present new opportunities. Furthermore, the availability of real-time information allows 

leaders to make informed decisions, reducing the level of uncertainty and supporting risk-

taking behaviour. Digital technologies also enable enhanced collaboration and networking, 

facilitating knowledge sharing and co-creation. 

In addition, tools that facilitate direct engagement between clients and tenants, like 

BIM and AR/VR, provide clearer insights into project status and performance, leading to 
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greener buildings. Lastly, digital technologies streamline resources and maximise 

allocation, enabling businesses to concentrate efforts on entrepreneurial strategic 

endeavours. All these conditions contribute to creating a strong EO in organisations. 

 
H3: TBL has a positive and direct impact on EO. 

 

2.7.3 Corporate Focus and Sustainable Business Model Innovation 

Organisations oriented towards sustainability (SO) are committed to sustainability 

practices and long-term value creation, motivating them to reconfigure their business 

models to improve environmental, social, and economic performance. TBL-enabling 

characteristics provide a lens through which decision-making may be realised, and 

sustainable TBL factors may be included in BMI. Moreover, SO creates a culture of 

innovation that promotes experimenting with new ideas aligned with sustainability targets. 

It also enhances stakeholder engagement, as companies become more attuned to 

sustainability-related expectations, encouraging BMI. Furthermore, SO results in a greater 

allocation of resources toward sustainable efforts, which, in turn, supports BMI. SO not 

only directly affects SBM but also plays a role in the relationship between TBL-compatible 

characteristics and effective BMI, leading to long-term success for the company. 

 
H4:  SO mediates the positive effect of TBL on SBM Innovation 

 
Businesses are capable of innovating, developing, and creating value for society. EO 

comprises elements such as satisfying consumers, innovating, and pursuing proactive 

interests, all of which are crucial to sustain and catalyse eco-social business models. 

Firms with high EO are more likely to adopt traits that align with the TBL, as they 

understand the significance of profit, planet, and people in the strategies they follow. 

Furthermore, EO promotes a climate of experimentation and agility that allows firms to 

rapidly make strategic shifts in response to market changes and stakeholder demands for 

sustainability. This flexibility is important for embedding TBL principles into business 
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processes and developing creative practices to improve sustainability performance. EO 

also enhances resource allocation by motivating organisations to consider investing in 

sustainable activities, thus reinforcing the relevance of TBL characteristics within SBM. 

In addition, firms with a high level of EO are often more engaged with stakeholders, 

so cooperation with them can become a source of innovative contributions that can be 

applied to resolve sustainability problems. This kind of stakeholder engagement also 

heightens the mediating effect of EO, as it assists firms in configuring their business 

models to support the TBL. Ultimately, such EO not only has a direct effect on SBM 

innovation but also acts as a mediator in the relationship between the TBL BMI, leading 

to long-term success and sustainability. 

 
H5: EO mediates the positive effect of TBL on SBM Innovation 

 
Innovativeness, risk-taking, and proactiveness are part of the EO needed to create 

SBM. However, it is strengthened by a positive SO that, in turn, leverages sustainability 

into the strategy and aligns entrepreneurial initiatives with environmental and social 

objectives. EO pushes innovation, and SO ensures these innovations are compatible with 

the three dimensions: Profit, People, and Planet. 

SO also promotes stakeholder participation and collaboration necessary for 

successful SBM, as it considers different points of view in the innovations. It serves as the 

linkage between EO and SBM, converting entrepreneurial momentum into sustainable 

activities. This alignment allows companies to invest in innovations that are powerful and 

well-received. Lastly, EO fosters innovation, and SO directs it toward sustainable actions, 

enhancing the relationship between EO and SBM and contributing to long-term value 

creation. 

 
H6: The relationship between EO and SBM Innovation will be mediated by SO. 
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2.7.4 The Role of Digital Orientation 

DO represents the digital vision, strategy, and practices within an enterprise that lead to 

DT. Furthermore, it enhances the capability of organisations to implement TBL 

characteristics (Muñoz-Pascual et al., 2019), such as efficiency, innovation, quality, and 

others, more efficiently and effectively through digital means across the value system at 

economic, social, and ecological levels. Additionally, DO strengthens the effect of SO on 

SBM by enabling more data-based decision-making, allowing firms to detect new 

opportunities for improvement and continuously monitor sustainability developments. By 

moderating the relationship between EO and SBM, DO provides the strategic intent and 

technological expertise required for experimentation and rapid innovation, enabling firms 

to respond to market changes with agility. It also facilitates engagement among involved 

parties, ensuring that new ideas meet their requirements. Ultimately, DO fosters an 

informed decision-making culture, aligning TBL principles with sustainability and 

entrepreneurial efforts to advance SBM, thereby achieving more impactful and 

sustainable outcomes. 

 
H7:  DO positively affect SBM Innovation. 

H7a:  DO moderates the relationship between TBL and SBM Innovation. 

H7b: DO moderates the relationship between EO and SO.  

H7c: DO moderates the relationship between SO and SBM Innovation. 

 

2.8 Concluding Remark 

This Chapter has offered an integrative review of the extant literature in the context of DT, 

SO, EO, and BMI in the AEC sector. It emphasises the growing convergence of digital 

technologies and sustainability imperatives and how their strategic integration transforms 

business models and triggers long-term value creation. 

The Chapter also highlights the factors (including digital vision, digital strategy, and 
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new technologies) that are the biggest catalysts driving changes in the way businesses 

operate across various layers of an organisation. It raises the issues of EO and SO as 

organisational and strategic drivers that support a proactive, innovative, and responsible 

approach to value creation. Analytical perspectives employed to analyse how companies 

create, deliver, and capture value while satisfying environmental and social objectives 

include instruments like the BMC and the TBL. 

Despite increased attention from both academics and practitioners, the literature 

provides only a fragmented understanding of how these factors interrelate in a systematic 

fashion. To fill this gap, we suggest, in this chapter, a holistic research framework that 

consolidates TBL, EO, DO, SO, and SBM. The model outlines the direct and indirect 

stages in the linkages between technology, strategy, and sustainability and their impact 

on innovation outcomes. 

The research framework, shown in Figure 2.2, illustrates the theoretical links 

between focal constructs and lays the groundwork for the empirical research presented in 

later chapters. The framework contributes to theory development in the areas of DT, 

sustainable innovation, and strategic entrepreneurship, while also offering practical 

implications for AEC firms aiming to succeed in an environment of dynamic change and 

sustainability. 

 
Figure 2.2 – Research Framework 

  



 Page 60  

METHODOLOGY 

This Chapter describes the methodology used to empirically model the relationships 

between TBL and SBM for the AEC industry. It also analyses the mediating effects of SO 

and EO, as well as the moderating effect of DO. The research design is grounded in the 

theories and research gaps identified in the Literature Review chapter, especially the lack 

of exploration of how emerging digital technologies, converged with TBL principles, shape 

sustainability innovation strategies in digitally transforming firms. 

 

3.1 Research Design 

This study adopts a positivist, quantitative research design to test the hypothesised 

relationships among DT, corporate orientation, and sustainable BMI in the AEC sector. 

The design is guided by a deductive approach (Zimbardo, 1973), translating theoretical 

constructs into observable variables for empirical testing (Bell et al., 2022). Data were 

collected using a single-administration, cross-sectional survey design, which allows for 

efficient data capture from a broad and heterogeneous group of industry professionals at 

a single point in time. It is important to note that while this design is effective for identifying 

significant associations, its cross-sectional nature means that the hypothesised causal 

pathways are tested for statistical plausibility rather than definitive causal proof. 

The research model (see Figure 2.2) contextualises and investigates the direct 

effects of TBL and SBM innovation, along with moderation and mediation effects. DO also 

moderates the relationships between TBL and SBM, EO and SBM, and SO and SBM. 

These relationships were proposed in Section 2.7 following the gaps revealed in Section 

2.6. 

The survey instrument was designed to align closely with the operational definitions 

of the constructs, as detailed in Section 3.3. A methodology was employed to facilitate 

standardised responses among a heterogeneous group of AEC practitioners. Data 
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analysis was conducted by means of Partial Least Squares Structural Equation Modelling 

(PLS-SEM), an appropriate variance-based technique for complex models, including 

hierarchical constructs and small to medium samples (Hair et al., 2023). Preliminary 

analyses were performed with SPSS, and structural modelling was conducted with 

SmartPLS 4.0. 

 

3.2 Construct Development and Operationalisation 

The establishment of valid and reliable measurement constructs is the foundation of 

quantitative research and reflects the ability to translate consistent theoretical constructs 

into observable empirical constructs (Hinkin, 1998). In this research it is investigated not 

only the direct effect of TBL principles on SBM, but also it investigates how the SO and 

EO mediate this relationship and how this process is influenced by the DO. Every 

construct in question was systematically called out by way of well-considered 

operationalisations that balance theoretical grounding and strong empirical validation 

approaches. 

 

3.2.1 Higher-Order Construct Structures 

This study uses a stringent process to illustrate the hierarchical nature of theoretical 

constructs, combining higher-order models with a structured methodology for a 

multidimensional framework. Higher-order constructs (HOCs) of structural equation 

modelling (SEM) provide a powerful technique to account for multidimensionality in data. 

Figure 3.1 classifies four types of HOC: they describe the relationships between the first-

order dimensions and the second-order HOC, as well as between the indicators and their 

corresponding dimensions. These have been used to guide the operationalisation of 

HOCs. This approach avoids the over-determination of the relative location of the 

placodes and provides an effective representation of complex relationships while keeping 

them theoretically consistent. 
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Figure 3.1 – Higher-Order Construct Classification 

  

 

a) Reflective-Reflective (Type I):  

• Reflective first-order dimensions (indicators reflect dimensions) combine into a 

reflective higher-order construct (dimensions reflect the HOC).  

• Used when first-order dimensions are interchangeable indicators of the higher-

order construct (Jarvis et al., 2003). 

b) Reflective-Formative (Type II):  

• Formative first-order dimensions (indicators define dimensions) combine to form a 

reflective higher-order construct (dimensions reflect the HOC).  

• Suitable when first-order dimensions are distinct yet collectively represent the 

higher-order construct (Diamantopoulos and Winklhofer, 2001). 

c) Formative-Reflective (Type III): 

• Reflective first-order dimensions combine into a formative higher-order construct. 

• Applied when first-order dimensions are independent building blocks of the HOC 

(MacKenzie et al., 2005). 

d) Formative-Formative (Type IV): 

• Both indicators and dimensions function as composite indices in formative 

relationships. 

• Used when neither dimensions nor indicators are interchangeable (Coltman 

(Coltman et al., 2008). 
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HOCs provide an efficient way of modelling the abstract concepts where the 

hierarchy can be maintained on the indicators for the super concept (Becker et al., 2012). 

This method sounds complex in its construction while keeping the theoretic richness of 

what it is constructed with. The HOC categories in the study are based on the theoretical 

concepts described in Chapter Literature Review. For example, TBL is conceptualised as 

a formative construct formed by three relatively independent dimensions—Profit, People, 

and Planet—and each of these driven by digital traits that are theoretically sound (see 

Section 2.4.2 and Tables 2.5–2.7). The HOC structure of each construct and the HOC 

relationship types used in this study are summarised in Table 3.1. 

 

Table 3.1 – Higher-Order Construct Used 

Type FO → HO Relationship Construct Used 

Reflective-Reflective FO: Reflective → HO: Reflective EO, SO, DO, SBM 

Reflective-Formative FO: Formative → HO: Reflective TBL 

Formative-Reflective FO: Reflective → HO: Formative Not Applicable 

Formative-Formative FO: Formative → HO: Formative Not Applicable 

 

3.2.2 Construct Operationalisation 

3.2.2.1 Triple-Bottom Line (TBL) 

The TBL is a reflective-formative second-order construct with three formative first-order 

dimensions (Profit, People, Planet), each of which is measured by three reflective digital 

features (refer to Section 2.4.2). This model demonstrates digital technology applications 

for sustainable performance in AEC companies. Its theoretical roots are anchored within 

the TBL framework of (Elkington, 1997); however, it is also underpinned by knowledge-

based, lean, and ecological theories (Bryde et al., 2013; Kibert, 2016). TBL involves three 

primary-order dimensions consisting of Profit, People, and Planet that constitute the 

economic, social, and environmental pillars of sustainability. These dimensions are 

distinct in concept (e.g., social performance is not environmental performance), but they 
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collectively define the construct. Any of the dimensions neglected would change them in 

a categorical manner (Bocken et al., 2014). Whereas the first-order factors are formative 

(cause) effect, the second-order TBL concept is a reflective, representing the firm’s overall 

alignment with sustainability. 

 

3.2.2.2 Sustainable Business Model Innovation 

SBM Innovation is modelled from Spieth and Schneider (2016) (refer to Section 2.3.2). 

Although the initial model was a formative–formative, the reflective-reflective specification 

is preferred between constructs for reasons of theoretical consistency and methodological 

consistency as in the case of small-sample and exploratory research. Formative–

formative models are adequate when integrating different, non-substitutable dimensions 

into a higher-order construct, but the sample size needs to be large to obtain model 

stability and reliable in PLS-SEM (Hair et al., 2021). Due to the exploratory nature of this 

study and the relatively small sample size, this approach is prone to risks such as 

estimation bias and model identification problems. On the contrary, the reflective–

reflective specification considers SBM innovation as an unobserved variable manifested 

to its manifest sub-dimensions—value proposition, value network, and revenue logic—

that have a common factor (or shared influence). 

Such approach is theoretically justifiable and analytically feasible with smaller 

samples given the availability of Confirmatory Factor Analysis (CFA) and robust latent 

variable modelling (Kline, 2023). Consistent with Jarvis et al. (2003), choice of construct 

specification ought to be contingent upon the research context and the limitations of data. 

Therefore, the reflective–reflective model is a theoretically justified and a parsimonious 

alternative that is appropriate to the purpose of this study.  
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3.2.2.3 Entrepreneurial Orientation (EO) 

EO is operationalised as a reflective–reflective second-order construct, capturing a firm’s 

entrepreneurial posture through three core dimensions: Innovativeness, Risk-Taking, and 

Proactiveness (Covin and Slevin, 1989; Hughes and Morgan, 2007). These dimensions 

are conceptually distinct but empirically correlated, justifying a higher-order reflective 

model. Innovativeness reflects a firm’s tendency to support creativity and experimentation. 

Risk-taking captures the willingness to commit resources to uncertain ventures, while 

proactiveness reflects forward-looking, opportunity-seeking behaviour. Together, they 

represent the organisational mindset that enables firms to explore, experiment with, and 

adopt new business models, particularly those aligned with sustainability objectives (see 

Section 2.5.1). 

 

3.2.2.4 Sustainability Orientation (SO) 

SO is designed as a reflective–reflective higher-order construct, based on the framework 

developed by Claudy et al. (2016). It comprises two interrelated subdimensions: 

Sustainability Culture and Sustainable Practices. Sustainability Culture reflects the 

internalised values, beliefs, and long-term commitment to environmental and social 

responsibility. Sustainable Practices refer to the operationalisation of these values through 

actual business activities and processes. The model assumes that a strong sustainability 

culture drives the implementation of sustainable practices. This structure captures both 

the attitudinal and behavioural components of organisational sustainability and reflects a 

firm’s capacity to integrate sustainability into strategic and operational decision-making 

(refer to Section 2.5.2). 

 
3.2.2.5 Digital Orientation (DO) 

DO is conceptualised as a reflective–reflective construct, drawing from the DT literature 

(Hess et al., 2016) and grounded in Dynamic Capabilities and Paradox Theory (Nambisan 

et al., 2019; Verhoef et al., 2021; Westerman et al., 2014). It includes two key 
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subdimensions: Digital Vision and Digital Strategy. Digital Vision refers to a forward-

looking, organisation-wide understanding of the role of digital technologies in reshaping 

the business model. Digital Strategy translates that vision into actionable investments, 

priorities, and initiatives. Together, these dimensions reflect the strategic intent and 

readiness to leverage digital technologies. DO also functions as a moderator, influencing 

how digital traits and orientations impact sustainable BMI (refer to Section 2.5.3). 

 

3.3 Measurement Scale Development 

The development of robust measurement scales is critical for ensuring the validity and 

reliability of empirical findings in structural equation modelling (Hair et al., 2019). This 

section details the systematic process of operationalising the study's key constructs, 

distinguishing between: (1) newly developed instruments for emerging theoretical 

domains (TBL, DO), and (2) modified establishing scales that were adapted for the digital 

and sustainability context (EO, SO, SBM). All scales underwent rigorous validation 

procedures including expert reviews, and psychometric evaluation to ensure they meet 

established standards for construct measurement (Netemeyer et al., 2003). The 

development approach carefully balanced theoretical fidelity with practical measurement 

considerations, contextualising existing scales where appropriate while creating novel 

measures for constructs lacking prior instrumentation. 

 

3.3.1 Triple Bottom Line (TBL) Measurement Scale 

Within the overarching research framework, the TBL construct stands as a 

multidimensional antecedent impacting the SO, the EO, and the SBM within the broader 

research stream. As a construct of interest, the specific operationalisation of the TBL 

construct will need both theoretical richness and empirical detail, especially in the AEC 

industry. Unlike SO, EO, and SBM—whose measurement scales are adapted from 
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existing literature, the TBL construct was newly developed to the specific, sustainability-

aligned effects of digital technologies in AEC context. 

 

3.3.1.1 Construct Conceptualisation 

The TBL construct is considered more than just a sustainability performance result, but 

also as a strategic capability that represents the way digital technologies create economic 

(Profit), social (People), and environmental (Planet) value. The construction of an 

empirically supported and soundly based TBL measurement scale is therefore key to 

evaluate the degree of sustainability embedded in DT strategies inside AEC companies. 

Building on Elkington (1997) framework, the TBL construct in this study is defined as the 

degree to which digital technologies in AEC projects produce measurable impacts across 

three interrelated dimensions: 

• Profit: Economic performance enhancements such as cost reductions, resource 

utilisation efficiency, and material waste minimisation. 

• People: Social performance improvements, including stakeholder collaboration, 

safety outcomes, and workforce development. 

• Planet: Environmental performance advancements such as energy efficiency, 

responsible resource consumption, and lifecycle sustainability. 

This conceptualisation aligns with contemporary literature that positions TBL as a 

dynamic organisational ability shaped by technological innovation and transformation 

processes (Klewitz and Hansen, 2014; Schaltegger et al., 2016). 

3.3.1.2 Methodological Approach to Scale Development 

The TBL measurement scale was developed using a deductive, theory-informed approach, 

following established best practices in construct development (Churchill Jr, 1979; 

MacKenzie et al., 2011). The development process consisted of four key stages: 
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a) Extensive Literature Review 

A systematic literature review was conducted to identify how emerging digital technologies, 

such as BIM, AI/ML, IoT, DTs, and 3D printing, contribute to sustainability outcomes in 

AEC. (refer to Section 2.4). 

 

b) Item Generation 

Initially, fifteen candidate items were generated—five for each TBL dimension—through 

thematic coding of the literature (refer to Section 2.4.2). These items encapsulated a 

spectrum of digital traits linked to sustainability outcomes. Following iterative refinement, 

the items were distilled into three representative indicators per dimension, resulting in a 

final nine-item scale. 

 

c) Theoretical Anchoring 

Each item was mapped to a relevant theoretical framework to ensure conceptual clarity 

and measurement validity. Theories applied include the Knowledge-Based View, Dynamic 

Capabilities Theory, Lean Principles, Relational View, High Reliability Theory, Human 

Capital Theory, Eco-Efficiency, Industrial Ecology, and Cradle-to-Cradle Design. This 

multi-theoretical foundation enhances the explanatory power of the scale and ensures 

alignment with sustainability and innovation scholarship (refer to Table 2.5 – 2.7). 

 

d) Contextualisation to AEC 

For industry relevance and content validity, each measurement item was contextualised 

to the digital practices and sustainability challenges that are particular to the AEC sector. 

Technologies were chosen applicable to AEC practices, and item wording was modified 

to reflect language used in the sector, as well as operational imperatives. Emphasis was 

placed on question development in order to avoid leading and suggestive wording, and 

thereby to minimise response bias and increase the objective nature of reports. This 
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increases the face validity and interpretability of the measure for respondents who work 

in a variety of roles within the AEC industry. 

 

3.3.1.3 Scale Specification 

The TBL measurement model uses a reflective-formative structure: nine reflective first-

order items (7-point Likert scale) form three formative second-order dimensions (Profit, 

People, Planet). As shown in Tables 3.2-3.4, each reflective item captures specific 

manifestations (1='Not at All', 7='To a Great Extent'), while the composite dimensions 

formatively combine these indicators. This approach recognises reflective measurement 

at the item level and formative aggregation at the dimension level. 

 
Table 3.2 – TBL Digital Traits (TBL-DT) Measurement – Profit 

Item 
Code Description Theoretical 

Anchor 

Key 
Technology 
Examples 

TBL-
Profit1 

Design Process Change: The extent to which 
BIM and AI technologies modify design accuracy 
and reduce rework frequency 

Knowledge-Based 
View 

BIM, AI 

TBL-
Profit2 

Resource Allocation Effects: The degree to 
which BIM and BDA transform resource 
utilisation efficiency 

Dynamic Capabilities BDA, CC 

TBL-
Profit3 

Production Waste Patterns: How significantly 3D 
printing technology alters material waste levels 
in manufacturing processes 

Lean Principles 3D Printing 

 
 
Table 3.3 – TBL Digital Traits (TBL-DT) Measurement – People 

Item 
Code Description Theoretical 

Anchor 

Key 
Technology 
Examples 

TBL-
People1 

Stakeholder Coordination: The extent to which 
digital platforms improve collaboration among 
project stakeholders 

Relational View CC, Digital 
Platforms 

TBL-
People2 

Safety Performance: How VR/AR and ML 
technologies impact safety incident rates and 
hazard identification 

High Reliability 
Theory 

VR/AR, ML 

TBL-
People3 

Workforce Capability: The extent to which digital 
skills development programs enhance employee 
competencies 

Human Capital 
Theory 

Training 
Platforms 
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Table 3.4 – TBL Digital Traits (TBL-DT) Measurement – Planet 

Item 
Code Description Theoretical 

Anchor 

Key 
Technology 
Examples 

TBL-
Planet1 

Design Environmental Effects: How energy 
simulation tools influence the environmental 
footprint of project designs 

Eco-Efficiency BIM-GIS 
Integration 

TBL-
Planet2 

Resource Consumption Changes: The extent to 
which BIM, IoT sensors, and digital twins impact 
energy and material usage 

Industrial Ecology IoT, Sensors 

TBL-
Planet3 

Asset Lifecycle Alteration: How digital asset 
management systems influence the operational 
lifespan of building components 

Cradle-to-Cradle DTs 

 

3.3.2 Digital Orientation (DO) Measurement Scale 

DO is the strategic stance and preparedness of an organisation for DT, which is the 

integrated application of digital technologies to transform business models, operational 

processes, and value delivery systems, as well as to develop digital capabilities across 

the business and its ecosystem of customers and partners (Mergel et al., 2019). Informed 

by Verhoef et al. (2021) triphasic model—digitisation, digitalisation, and DT—it is 

particularly relevant in the AEC industry as its levels of digital maturity are heterogeneous 

(Adekunle et al., 2021). 

To overcome the lack of studies of the DO, it is considered a reflective-reflective 

second order construction and formed by two dimensions: Digital Vision and Digital 

Strategy (Hess et al., 2016). These dimensions are consistent with theoretical frameworks 

related to the topic, such as Dynamic Capabilities Theory, Institutional Theory, and 

Paradox Theory, providing micro- and macro-level explanatory strength. 

 

3.3.2.1 Dimensions of Digital Orientation 

a) Digital Vision: It reflects an organisation’s ability to formulate and communicate a 

coherent, long-term digital roadmap. In AEC, this dimension addresses key challenges 

such as project fragmentation and multi-stakeholder complexity by: 
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• Aligning digital objectives across project life cycles and teams 

• Establishing a common language for digital goals 

• Guiding investment in future-ready technologies and standards 

This aligns with (Table 3.5): 

• Dynamic Capabilities Theory: Enables opportunity sensing (Teece, 2018) 

• Institutional Theory: Supports standardisation (DiMaggio and Powell, 1983) 

• Paradox Theory: Balances long-term innovation with short-term delivery (Smith 

and Lewis, 2011). 

 

b) Digital Strategy: It operationalises the vision through tangible investments, processes, 

and capabilities. Within AEC contexts, it enables: 

• Institutionalisation of collaborative digital workflows 

• Investment in digital talent and training 

• Pilot testing and scaling of emerging technologies (e.g., AI, IoT, DTs) 

Theoretical foundations include (Table 3.5): 

• Dynamic Capabilities: Resource orchestration for digital adoption 

• Institutional Theory: Compliance with industry standards (e.g., ISO 19650) 

• Paradox Theory: Managing experimentation alongside execution 

 

Table 3.5 – Theoretical Foundations of Digital Orientation Dimensions 

Theory Vision Role Strategy Role AEC Manifestation 

Dynamic Capabilities Opportunity sensing Talent/resource allocation Cross-project BIM 
deployment 

Institutional Theory Standard setting Best practice adoption ISO 19650 implementation 

Paradox Theory Long-term investment Short-term execution DTs pilot scaling 
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3.3.2.2 Measurement Framework 

The DO measurement scale was constructed through tightly controlled theory-to-item 

mapping to establish construct validity and contextual accuracy in the AEC environment. 

Each concept item is grounded in thought and an illustration of the unique nature of DO 

in this industry. 

• Dimensional Synergy: The dimension scales vision (vision–strategy) and strategy 

(strategy–vision) distinguish between strategic direction and tactical execution, 

thus offering a more detailed examination of digital maturity trajectories within an 

AEC firm context (Table 3.5).  

• Sector Specific Focus: Outcomes are specifically targeted to tackle AEC sectoral 

challenges including project fragmentation, planning regulation complexity, and 

digital skills gaps (Figure 3.2). 

• Theoretical Rigor: This scale combines the micro and macro theoretical levels, 

increasing its theoretical vigour in empirical modelling and hypothesis testing 

(Table 3.6). 

 
Figure 3.2 – Theory-to-Item Mapping 

 

 
Table 3.6 – DO Measurement Scale Specification 

Dimension Item Code Theoretical Anchor AEC Contextualisation 

Digital 
Vision 

DO-Vision1 Strategic fit (Westerman et al., 2014) BIM roadmap alignment 

DO-Vision2 Isomorphism (DiMaggio and Powell, 1983) ISO 19650 communication 

DO-Vision3 Paradox resolution (Smith and Lewis, 2011) Digital champion roles 

Digital 
Strategy 

DO-Strat1 NRBV pollution prevention (Hart, 1995) Energy-efficient BIM 

DO-Strat2 Capability reconfiguration (Teece, 2018) IoT skills development 

DO-Strat3 Exploration ambidexterity (O'Reilly III and 
Tushman, 2013) DTs pilots 

Dynamic 
Capabilies

Institution 
Theory

Paradox   
Theory

Vision: 
Strategic 
Alignment

Strategy: 
Talent 

Development

Vision: 
Standard 

Communication

Strategy: 
Sustainable 
Practices

Vision: 
Champion 

Roles

Strategy: 
Innovation 

Culture
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3.3.2.3 Measurement Scale 

Building from Dynamic Capabilities, Institutional Theory, and Paradox Theory, we created 

each measurement item to represent specific dimensions of strategic intent (Digital Vision) 

and implementation capability (Digital Strategy). The item wording was slightly amended 

to better correspond to AEC terminology, digital workflows, and organisation structures to 

ensure a fit for context. To further reduce the response bias and to improve the face validity, 

leading or suggestive questions were also minimised. 

The sub-dimension Digital Vision was assessed with a scale of 7-point Likert scale 

(1=Strongly Disagree to 7=Strongly Agree) and scales the degree to which an 

organisation's digital roadmap is clearly formalised and communicated. Instead, the 

Digital Strategy utilised a 7-point frequency/effectiveness scale (1=Not at All to 7=To a 

Great Extent) that gauged the extent to which digital is implemented through practices 

such as talent development and sustainable workflows. The resulting items are shown in 

Table 3.7. 

 
Table 3.7 – DO Measurement Scale 

Dimension Item Code Item Wording 

Digital 
Vision 

DO-Vision1 Strategic alignment - Our company digital transformation roadmap aligns with 
long-term business strategy 

DO-Vision2 Stakeholder communication - Our company digital goals are clearly 
communicated to all project partners 

DO-Vision3 Leadership - Our company has dedicated digital champions to drive digital 
initiatives 

Digital 
Strategy 

DO-Strat1 Sustainable practices - We enforce green digital standards (e.g., cloud-based 
BIM collaboration) 

DO-Strat2 Talent development - We invest in continuous upskilling for emerging AEC 
technologies 

 DO-Strat3 Innovation culture - We cultivate innovation and transformation culture 
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3.3.3 Sustainable Business Model (SBM) Measurement Scale 

The SBM measurement scales was transferred from Spieth and Schneider (2016) BMI 

model by using sustainability transition theory (Geissdoerfer et al., 2017) and the Triple 

Bottom Line approach (Elkington, 1997). This adaptation grounds sustainability indicators 

but maintains the original three domain structure (Table 3.8). With four guiding principles 

in place – the explicit integration of environmental and social value creation, industry-

specific operationalisation for AEC contexts, original construct boundaries, and 7-point 

Likert scales for comparability – the measurement scales capture these adaptations in 

actionable scale items. These scales also measure the trade-off between theoretical 

robustness and practical applicability to sustainable practices in AEC sector (Table 3.9). 

 

Table 3.8 – Sustainable Business Model Adaptations 

Domain Original Indicator Modified Indicator Adaptation Level 

Value 
Offering 

Target customers 
changed Target sustainability-focused clients Contextual 

Product/service 
changed 

Redesign to reduce environmental/social 
impacts Substantial 

Market positioning 
changed 

Reposition as sustainable solutions 
provider Moderate 

Value 
Architecture 

Core competences 
changed 

Develop sustainability innovation 
expertise 

Substantial 

Internal operations 
changed 

Optimise operations for sustainability 
gains 

Enhanced 

Partner roles changed Establish green technology partnerships Substantial 

Distribution changed Implement sustainable procurement 
criteria 

Added 

Revenue 
Model 

Revenue mechanisms 
changed 

Diversify revenue through sustainable 
offerings 

Contextual 

Cost mechanisms 
changed 

Adopt resource-efficient cost structures Enhanced 
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Table 3.9 – SBM Measurement Scale 

Dimension Item Code Item Wording 

Value 
Offering 

SBM-Valueoff1 Our customer base prioritises sustainability-focused projects 

SBM-Valueoff2 We have transformed offerings to reduce environmental/social impacts 

SBM-Valueoff3 We are recognised as a sustainable solutions leader 

Value 
Architecture 

SBM-ValueArch1 We have developed specialised sustainability innovation capabilities 

SBM-ValueArch2 We continuously optimise operations for sustainability performance 

SBM-ValueArch3 We co-develop solutions through green technology partnerships 

SBM-ValueArch4 We mandate sustainability certification for suppliers 

Revenue 
Model 

SBM-Revenue1 We generate significant revenue from sustainable offerings 

SBM-Revenue2 Our cost structures emphasise long-term resource efficiency 

 
 
3.3.4 Entrepreneurial Orientation (EO) Measurement Scale 

This analysis uses an integrated EO measure combining Miller (1983) and Covin and 

Slevin (1989) three-dimensional structure with Hughes and Morgan (2007) psychometric 

refinements (Table 3.10). This hybrid model was employed for two important reasons. First, 

the original three-part structure (innovativeness, proactiveness, risk-taking) more 

accurately measures sustainability and digital oriented entrepreneurship by focusing on 

sustainable product innovation processes, organisational responsiveness to sustainability 

opportunities, and risk appraisal towards sustainability investments, while omitting less 

pertinent dimensions such as market aggressiveness and autonomy from Hughes and 

Morgan's deviated model. Second, Hughes and Morgan's items offer better measurement 

properties in digital sustainability contexts, primarily due to: i) innovativeness items 

focusing on technology deployment ("We actively introduce improvements and 

innovations in our business"), ii) proactiveness items reflecting digital-enabled opportunity 

identification ("We always try to take the initiative in every situation"), and iii) a revised 

risk-taking version to accommodate modern market insecurities. 
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Table 3.10 – EO Scale Adaptation Rationale 

Dimension 

Original 
Conceptualisation 
(Covin and Slevin 
1989) 

Adapted Measurement 
(Hughes and Morgan 
2007) 

Sustainability 
Relevance 

Innovativeness Product/service 
leadership focus 

Market-driven 
innovation emphasis 

Digital sustainable 
product R&D 

Proactiveness First-mover 
competitive advantage 

Opportunity 
identification capability 

Early adoption of 
green tech 

Risk-taking Large project 
investment willingness 

Strategic boldness in 
decision-making 

Sustainable 
investment gambles 

 

The final measurement instrument comprises nine items across three dimensions, 

measured on a 7-point Likert scale (1 = Strongly Disagree to 7 = Strongly Agree) are 

shown in Table 3.11. This measurement approach preserves the original EO nomological 

network while enhancing relevance for sustainability research contexts, as recommended 

by recent methodological reviews (Vrontis et al., 2022). The modifications were reviewed 

and approved by three entrepreneurship scholars to ensure theoretical consistency. 

 

Table 3.11 – EO Measurement Scale 

Dimension Item Code Item 

Risk-taking EO-Risk1 The term “risk taker” is considered a positive attribute for people in our 
business 

 EO-Risk2 People in our business are encouraged to take calculated risks with 
new ideas 

 EO-Risk3 Our business emphasises both exploration and experimentation for 
opportunities 

Innovativeness EO-Inno1 We actively introduce improvements and innovations in our business 

 EO-Inno2 Our business is creative in its methods of operation 

 EO-Inno3 Our business seeks out new ways to do things 

Proactiveness EO-Pro1 We always try to take the initiative in every situation (e.g., against 
competitors, in projects when working with others) 

 EO-Pro2 Our business is creative in its methods of achieving sustainability goals 

 EO-Pro3 We seek out new ways to integrate sustainability into our operations 
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3.3.5 Sustainability Orientation (SO) Measurement Scale 

The SO construct was adapted from Claudy et al. (2016) original scales, with four key 

modifications to enhance measurement precision and contextual relevance for project-

level sustainability assessment in the AEC industry: i) conversion from importance ratings 

to 7-point Likert-type agreement scales for improved parametric analysis (Spector, 1992), 

ii) generalisation from product-specific to project-level applications, iii) addition of 

operational specificity to practice items (e.g., explicit energy tracking metrics), and iv) 

alignment of terminology with contemporary sustainability discourse. The revised 

instrument maintains the original two-dimensional structure (Sustainability Culture and 

Sustainable Practices) while optimising its applicability to AEC contexts (Table 3.12). 

 

Table 3.12 – SO Scale Adaptation Rationale 

Dimension Original 
Formulation 

Key 
Modifications Theoretical Justification 

Culture Importance ratings Agreement scale Better captures normative 
institutionalisation (Hahn et al., 2015) 

 Product focus Project-level focus Fits AEC industry context 

Practices Product development Operational projects Increases generalisability 

 Generic items Specific metrics Enhances measurement precision 

 

The final set of SO measurement items is shown in Table 3.13. This measurement 

approach maintains conceptual alignment with Claudy et al. (2016) original construct while 

improving its applicability to project-based organisational contexts. The modifications 

follow established scale adaptation protocols (Hinkin, 1998) and contemporary 

sustainability measurement standards (Baumgartner and Rauter, 2017). 
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Table 3.13 – SO Measurement Scale 

Dimension Item Code Item 

Culture SO-Culture1 We consider environmental sustainability important 

 SO-Culture2 We consider social sustainability important 

 SO-Culture3 We consider sustainability criteria important for new projects 

 SO-Culture4 We consider measuring new projects’ progress on sustainability 
important 

 SO-Culture5 We value sustainability-type criteria as important for the future 

Practices SO-Practices1 We consider energy consumption and/or carbon emissions in our 
project work 

 SO-Practices2 We include sustainability in our project budget 

 SO-Practices3 We select suppliers and partners based on sustainability criteria 

 SO-Practices4 We use the triple bottom line (environmental, social, and financial 
factors) for project planning 

 

 
3.3.6 Validation Approach for Measurement Scales 

Given the single-administration design, formal psychometric testing, comprising reliability 

analysis (e.g., Cronbach’s α), convergent and discriminant validity, and confirmatory / 

exploratory factor analysis (CFA/EFA) is conducted using the primary dataset (reported in 

Chapter Analysis and Results). This approach is justified by several methodological 

safeguards: 

• Theoretical alignment: All items were derived from theoretically grounded 

constructs defined in Sections 3.2 and 3.3. 

• Adoption of precedent scales: Wherever possible, items were adapted from 

validated instruments in the existing literature. 

• Expert validation: Two domain experts—a Director of a BIM solutions provider and 

a CEO of a BIM consultancy—reviewed the full instrument. Their feedback 

confirmed the clarity of wording, appropriateness of scale types, alignment with 

AEC terminology, and the logical flow of questions. 
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While expert pretesting addressed face and content validity, formal statistical 

validation was deferred to the empirical analysis stage. There, the following steps were 

undertaken: 

• Assessment of internal consistency reliability using Cronbach’s α and composite 

reliability (CR) 

• Evaluation of convergent validity via average variance extracted (AVE) and 

standardised loadings 

• Verification of discriminant validity using cross-loadings and the Fornell-Larcker 

criterion 

• Model fit testing through CFA to confirm one-dimensionality of the constructs 

Preliminary results, presented in Chapter Analysis and Results, indicate satisfactory 

reliability and validity across all constructs, thereby supporting the robustness of the 

measurement model prior to structural model estimation. This approach meets the 

standards of methodological rigor required for PLS-SEM–based hypothesis testing. 

 

3.4 Sampling Design and Data Collection 

3.4.1 Sampling Design and Rationale 

Sampling methodology is a key aspect of research design. It shapes who constitutes the 

participants from a target group. There are two general types of sampling used: probability 

and non-probability (Singleton Jr et al., 1988). 

With probability sampling techniques (e.g., simple random sampling, stratified 

random sampling), all members of the population have an equal and known chance of 

being selected. This methodology enables generalisation of research while reducing 

selection bias. Nonetheless, its application necessitates a well-defined population frame 

and is resource-intensive, which is often not feasible in practical research circumstances. 

Non-probability sampling techniques, on the other hand, lack known probabilities of 

the members of a population being included, which can lead to sampling error and affect 
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result generalisability (Singleton Jr et al., 1988). Some warn that this can lead to the 

overrepresentation of certain subgroups and underrepresentation of others, which could 

bias findings. However, non-probability sampling is still widespread in social and business 

research and is what we can expect under the following conditions: 

• Exploratory Research Objectives: When the study focuses on identifying 

emerging patterns rather than testing established hypotheses. 

• Resource Limitations: When constraints of time, funding, or population 

accessibility preclude probability sampling. 

• Specialised Populations: When studying geographically dispersed or difficult-to-

identify professional groups. 

• Practical Considerations: When research efficiency outweighs strict statistical 

representativeness requirements. 

Given this study's exploratory nature, the challenges in establishing a complete 

population frame, and practical constraints regarding time and access, a non-probability 

sampling strategy was implemented. This decision aligns with established research 

practices in the AEC sector, where professional networks and institutional directories 

commonly serve as recruitment channels. 

 

3.4.2 Data Collection 

To maintain methodological rigor while addressing practical constraints, the study 

employed a multi-faceted recruitment approach combining institutional resources and 

personal networks: 

1. Hong Kong Institute of Architects (HKIA): The survey was distributed to 182 

members through the institute's official email directory, capturing perspectives 

from licensed architects, urban designers, and sustainability consultants. 
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2. Hong Kong Construction Association (HKCA): A total of 306 surveys were 

distributed to HKCA members, representing contractors, project managers, and 

civil engineers across the AEC sector's operational tiers. 

3. Hong Kong Construction Industry Council BIM Managers (HKBIM): Surveys were 

sent to 352 registered BIM managers, targeting professionals with specialised 

expertise in digital construction technologies. 

4. Personal Networks (PER): An additional 75 surveys were distributed through 

professional contacts and referrals, accessing practitioners outside formal 

institutional memberships. 

 

3.4.3 Control Variables and Respondent Characteristics 

Apart from the main variables addressed in this study, several variables were included in 

the survey to control for organisational and respondent-level factors that may be 

correlated with perceptions of DT and SBM innovation. The addition of these variables 

enables segmentation analysis, robustness checks, and further explanation of the specific 

context of the results related to DT in the AEC sector. 

The four control variables included are as follows: 

• C1. Nature of Company: Participants selected the primary focus of their 

organisation: (1) Design and Planning (e.g., architectural design, engineering, 

urban planning, landscape architecture), or (2) Construction and Project 

Management (e.g., general contracting, subcontracting, construction management, 

building inspection). This variable distinguishes between different segments of the 

AEC industry, which may face unique DT challenges and adoption patterns. 

• C2. Company Size: Respondents indicated the size of their organisation by 

selecting one of four brackets: (1) 1–20 employees, (2) 21–100, (3) 101–200, or 
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(4) Over 200. Organisational size is commonly associated with digital capability, 

resource availability, and transformation readiness. 

• C3. Respondent Role: Participants identified their most relevant role within the 

organisation from the following options: (1) CEO/COO/Managing Director, (2) 

Architect, (3) BIM Manager/Engineer/Consultant, or (4) Others. This variable helps 

assess role-based variation in strategic orientation and perception of DT. 

• C4. Perceived Digital Capability for Sustainability: This item measured the 

organisation’s self-reported ability to apply digital technologies towards 

sustainability throughout the project lifecycle. Responses were captured on a five-

point Likert scale ranging from (1) Very poor ability to (5) Exceptional ability. 

These control variables were later used during the data analysis phase to explore 

whether organisational characteristics moderated or influenced the relationships among 

the main constructs in the hypothesised model and to assess the generalisability of the 

findings across different firm types and respondent groups. The complete survey 

questionnaire is provided in Appendix A. 

 

3.4.4 Ethical Considerations 

The research was carried out in accordance with general research ethical 

recommendations. Prior to the survey, the rights of respondents were explained to all 

participants, stating that their participation was voluntary and that they had the right to 

refuse to participate or withdraw at any time during the survey. Data privacy was 

particularly emphasised, and all data were anonymised and saved on cloud servers with 

password protection. These measures ensured that no entity or person could be traced 

when summarising results. In addition, the participants were not asked to provide any 

personal identification, such as their name, email address, or contact number. 
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3.4.5 Survey Deployment and Administration 

The research conducted the online survey using Google Forms, which was preferred due 

to its easy accessibility, low cost, and privacy for respondents. The surveying toolkit 

included an extensive cover letter explaining the study's intentions, the average time 

required to complete the survey, and QR codes and hyperlinks for easy access on multiple 

devices. Distribution modalities included institutional email blasts to members’ lists, postal 

mail for participants for whom an email address of record was not available, and a fill-in-

the-blank referral form for personal networks on the instant messaging platform WhatsApp. 

The distribution statistics and response rates for these four recruitment channels are 

summarised in Table 3.14. 

 

Table 3.14 – Questionnaire Response 

 Sample 
Size 

Response Valid Remark 
N Rate N Rate  

HKIA 182 37 20.33% 36 19.78%  

HKCA 306 30 9.80% 27 8.82%  

HKBIM 352 44 12.50% 44 12.50% 13 responses with personal follow-up 

PER 75 52 69.33% 51 68.00% 29 responses with personal follow-up 

 915 163 17.81% 158 17.20%  

 

 
3.5 Data Analysis Method 

To test the proposed conceptual framework, which contains several latent constructs 

across hierarchical levels and intricate mediation and moderation paths, PLS-SEM is 

adopted. PLS-SEM, a variance-based structural modelling approach, is increasingly used 

in information systems, strategic management, and innovation studies because of its 

potential for construct development and predictive modelling (Hair Jr et al., 2014; Sarstedt 

et al., 2014). It is particularly relevant for exploratory studies, where the emphasis is on 

developing and generating theory, rather than testing an extant theory. 
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3.5.1 Justification for PLS-SEM 

The rationale for using PLS-SEM is supported by the theoretical maturity and exploratory 

nature of the current model, which is a generally accepted criterion for choosing between 

covariance-based and component-based approaches to SEM. PLS-SEM is suitable for a 

range of methodological and analytical needs included in the present study. First, it is 

flexible and can estimate complex models with several constructs, higher-order factors, 

formative and reflective indicators, and interaction effects. Second, PLS-SEM is 

insensitive to data that does not follow a multivariate normal distribution, which is typical 

in behavioural research and organisational studies involving Likert-scale survey data. 

Third, it is suitable for moderate-to-small sample sizes, which is particularly advantageous 

for specialised populations like AEC professionals. 

In contrast, Covariance-Based SEM (CB-SEM) was deemed less suitable for this 

study for several key reasons. Primarily, CB-SEM is a confirmatory method that focuses 

on testing how well a theoretical model fits the data, which contrasts with the predictive 

and theory-building orientation of this research. Furthermore, CB-SEM imposes stricter 

assumptions regarding data, including multivariate normality and the need for larger 

sample sizes (typically >200) to ensure robust estimations. The non-normal distribution of 

the Likert-scale data and the modest sample size (N=158) in this study would challenge 

these requirements. Additionally, the inclusion of a formative construct (TBL) is handled 

more naturally and parsimoniously within the PLS-SEM algorithm, whereas its 

specification in CB-SEM can be more complex. Therefore, the flexibility of PLS-SEM in 

handling complex predictive models with less stringent data assumptions made it the 

superior choice for achieving the research objectives. 

The model proposed in this study comprises second-order constructs, formative 

dimensions, and moderating/mediating paths. These characteristics justify the use of 

PLS-SEM as the analytic tool, rather than covariance-based SEM, which would require 

larger sample sizes and more rigorous assumptions. Thus, the statistical software used 
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to estimate and validate the model will be SmartPLS 4.0. It is the most popular software 

for PLS-SEM and allows users to easily develop, assess, and test PLS-SEM models, run 

bootstrap procedures, assess the significance of loadings, and perform multi-group 

analysis. 

 

3.5.2 Sample Size Considerations 

While PLS-SEM can accommodate relatively small sample sizes, determining the 

appropriate number of observations is critical to ensure sufficient statistical power and 

model reliability. Two complementary approaches were used to establish the minimum 

sample size for this study: 

 

3.5.2.1 The 10-Times Rule 

According to this heuristic, the sample size should be at least ten times the number of 

maximum structural paths pointing to any endogenous construct or the number of 

indicators in the most complex measurement model (Hair et al., 2022; Peng and Lai, 2012). 

For the structural model depicted in Figure 2.2, the most complex construct has five 

incoming paths, resulting in a minimum sample size requirement of 50. 

 

3.5.2.2 Statistical Power Analysis 

To enhance methodological rigor, a formal power analysis was conducted using Cohen 

(2013) guidelines for multiple regression. This analysis considers: 

• A desired statistical power of 80%, 

• A significance level (α) of 0.05, 

• A medium effect size (R² = 0.25), and 

• The maximum number of predictors for any endogenous construct. 
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Based on these parameters, a minimum of 48 observations is required to detect a 

statistically significant relationship. Table 3.15 provides a summary of required sample 

sizes under varying model complexities and R² values. 

 
Table 3.15 – Sample Size in PLS-SEM for Statistical Power of 80% 

 
 

3.5.3 Sample Adequacy and Analytical Robustness 

The resulting sample size for analysis is 158, which fulfils the 10-times rule and Cohen’s 

power criteria (analysis requirements for estimating model parameters and detecting 

medium to large effects, respectively). Furthermore, this sample size complies with the 

bootstrapping operations in SmartPLS 4.0 for the respective path, indirect, and moderator 

effects investigations. The model comprises reflective and formative constructs, as well 

as second-order dimensions. SmartPLS 4.0 is suitable for non-normally distributed data 

and complex models, confirming the reliability of the measurement model, convergent and 

discriminant validity, and the path relationships. 

PLS-SEM and SmartPLS 4.0 contribute to the heuristic and statistical confirmation 

of sample size to ensure methodological stringency. The analytical framework supports 

the study’s aim of establishing a sound theoretical and empirical framework for digital and 

sustainability-driven transformation in the AEC industry. Together, these characteristics 

justify the use of PLS-SEM as both theoretically appropriate and methodologically robust 

for this study. 

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

2 72 26 11 7 90 33 14 8 130 47 10 10

3 83 30 13 8 103 37 16 9 145 53 22 12

4 92 34 15 9 113 41 18 11 158 58 24 14

5 99 37 17 10 122 45 20 12 169 62 26 15

6 106 40 18 12 130 48 21 13 179 66 28 16

7 112 42 20 13 137 51 23 14 188 69 30 18

8 118 45 21 14 144 54 24 15 196 73 32 19

9 124 47 22 15 150 56 26 16 204 76 34 20

10 129 49 24 16 156 59 27 18 212 79 35 21

Maximum Number of 
Arrows Pointing at a 
Construct (Number of 
Independent Variables)

Significance Level

10% 5% 1%

Minimum R2Minimum R2Minimum R2
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3.6 Integration of Constructs into the Hypothesised Model 

In the proposed theoretical structure (see Figure 2.2), the TBL is considered the main 

exogenous construct, affecting both SO and EO, which have, in turn, a positive effect on 

SBM. It mirrors the core assertion of the thesis that digital solutions, with an economic, 

social, and environmental footing can generate AEC strategic orientations and innovation 

outputs. Three major pathways are proposed: 

(a)  Direct Relationship: TBL directly impacts SBM. The sustainability features 

enabled by digital tools directly generate positive outcomes for SBM.  

(b)  Mediation Role: TBL to have indirect effects on SBM via both SO and EO. Also, 

SO might serve as a mediator in the association between EO and SBM, 

establishing a stepwise mediation process, which connects sustainability and 

entrepreneurship to BMI. 

(c)  Moderation of DO: The mechanism is also shown that the effect of TBL on SBM 

and intermediary processes is contingent on the strength of DO. It points to the 

conditional nature of digital maturity in promoting or hindering the transformative 

impact of sustainability-oriented digital technologies on innovation impact. 

Collectively, these pathways highlight the strategic alignment of TBL with the DT and 

innovation logic that forms the basis of the AEC industry’s shift towards sustainable 

business models. 

 

3.7. Study Design Limitations 

3.7.1 Limitations Acknowledged 

This research methodology provides valuable insights into DT but has notable limitations. 

The study's focus on Hong Kong and a small sample size limits the generalisability of 

findings to other regions or the broader AEC industry. Additionally, the non-probability 

sampling approach restricts statistical generalisation beyond the participating firms. 
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Methodologically, the cross-sectional design identifies potential relationships but 

cannot confirm their causal direction or temporal stability, which is significant given the 

complexity of the constructs. This exploratory framework aims to describe associations 

rather than establish definitive causal mechanisms. 

Measurement limitations also arise from the single-administration survey design, 

requiring psychometric validation within the primary dataset (see Section 3.3.6). While 

expert pretesting ensured face validity, reliance on perceptual measures instead of 

objective performance data represents another constraint. These limitations highlight 

areas for caution and further research in applying the findings. 

 

3.7.2 Possible Factors of Mitigation 

These limitations were somewhat offset by several factors. The strong theoretical 

underpinning of the constructs, elaborated in Sections 3.2 and 3.3, created a solid base 

for the research. The content validity of the study was strengthened by the adaptation of 

items from existing scales, as well as by expert review. In addition, the methodology 

chapter provides a clear presentation of all methods used, so that the reader can make 

sound interpretations given the limitations identified here. 

 

3.8 Concluding Remark 

This chapter presented an overview of the methodology employed to examine the 

influence of TBL principles on SBM in the AEC sector. Grounded in a rigorous theoretical 

foundation, the methodology was designed to ensure construct validity, contextual 

relevance, and analytical robustness. A cross-sectional survey design, combined with 

PLS-SEM, was selected to accommodate the complexity and multidimensionality of the 

proposed model. The chapter covered construct development, measurement scale 

development, sampling strategy, data collection procedures, and analytical rationale, as 

well as the validation approach. Particular attention was given to the development of novel 
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constructs (TBL and DO), which were operationalised through theory-driven item 

generation and expert validation. The use of both heuristic and statistical techniques to 

establish the minimum sample size further enhanced methodological rigor. Acknowledged 

limitations, such as the cross-sectional design and non-probability sampling, were 

mitigated through expert review, transparent reporting, and a clearly defined analytical 

strategy. Collectively, the methodological approach laid out in this chapter provides a 

sound foundation for the empirical analyses presented in the next chapter.  
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ANALYSIS AND RESULTS  

The objective of this Chapter is to present the analyses and results obtained from the 

quantitative data, providing insights into the relationships between the variables studied. 

Building on Methodology Chapter, this Chapter systematically presents the findings 

across five sections, employing quantitative techniques and data analysis using 

SmartPLS 4.0. 

 

4.1 Preliminary Analyses 

This Section presents the preliminary analyses conducted using SPSS 26 in preparation 

for data analysis with SmartPLS 4.0. The primary goal is to establish a foundational 

understanding of the dataset through various statistical techniques. It starts with frequency 

analysis to summarise the distribution of key variables, offering insights into the 

characteristics of the sample population. Next, reliability analysis is performed to evaluate 

the consistency of the measurement scales. Additionally, Exploratory Factor Analysis 

(EFA) is utilised to validate underlying relationships among the variables and assess 

construct validity, ensuring that the measurements accurately reflect the intended 

constructs. Together, these preliminary analyses lay the groundwork for more advanced 

modelling and analysis in the subsequent sections of this Chapter. 

 

4.1.1 Frequency Analysis 

In this study, a total of 902 questionnaires were distributed through various channels, 

resulting in 158 valid responses and a response rate of 17.52%. This response rate 

reflects the level of engagement among the targeted participants and serves as a basis 

for interpreting the subsequent analyses. A frequency analysis table is presented in Table 

4.1. In terms of company nature, over 50% of respondents are from "design and planning" 

sectors, including architectural design, engineering, urban planning, and landscape 
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architecture. Additionally, 33.50% represent construction and project management roles, 

such as general contracting, subcontracting, construction management, project 

management, and building inspection. Regarding company size, 53.16% of respondents 

reported a workforce of "21 to 100 people," while only 2.53% indicated having "more than 

200 people". 

 

Table 4.1 – Frequency Analysis 

Items Categories N Percent 
(%) 

Cumulative 
Percent (%) 

Company 
Nature 

Design and Planning (Architectural Design, 
Engineering, Urban Planning, Landscape 
Architecture) 
 

95 60.13  60.13  

Construction and Project Management (General 
Contracting, Subcontracting, Construction 
Management, Project Management, Building 
Inspection) 
 

63 39.87  100.00  

Company Size 

1 to 20 42 26.58  26.58  
21 to 100 84 53.16  79.75  
101 to 200 28 17.72  97.47  
Over 200 
 

4 
 

2.53 
  

100.00  
 

Role / Position 

CEO/COO/MD 14 8.86  8.86  
Architect 53 33.54  42.41  
BIM Manager/Engineering/Consultant 79 50.00  92.41  
Others 
 

12 
 

7.59  
 

100.00  
 

Ability to use 
Digital 
Technologies 
for 
Sustainability       
Applications 

Very poor 14 8.86  8.86  
Poor 26 16.46  25.32  
Moderate 70 44.30  69.62  
Strong 29 18.35  87.97  
Exceptional 
 

19 
 

12.03  
 

100.00  
 

Total 158 100.00  100.00  

 

In terms of job positions, 50.00% identified as "BIM manager / engineer / consultant," 

followed by 33.54% who were "architects." Fourteen respondents held CEO/COO/MD 

roles, accounting for 8.86% of the sample. The high proportion of BIM professionals 

reflects the digital maturity focus of the sample. Finally, when assessing their ability to 

utilise digital technology for sustainable development applications, 44.30% rated their 

ability as "strong," while 18.35% indicated a "medium" ability. 
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4.1.2 Reliability Analysis 

Reliability refers to the stability and consistency of results measured by a scale. Higher 

reliability indicates smaller measurement errors. To assess the internal consistency of the 

survey measurement items, this study employs the Cronbach's alpha coefficient method. 

This involves evaluating both the total scale and its subscales. The analysis includes the 

"corrected item-total correlation (CITC)" and "Cronbach's alpha if item deleted" to refine 

the measurement items. The Cronbach's alpha value ranges from 0 to 1, with values 

closer to 1 indicating higher internal consistency and greater reliability. The minimum 

acceptable Cronbach's alpha for the total scale is 0.7, while for subscales, it is 0.6. The 

CITC value reflects how well an individual item correlates with the total score of other 

items; larger values indicate better internal consistency. During the pre-survey, items with 

a CITC greater than 0.4 are typically retained. The "Cronbach's alpha if item deleted" 

indicates the change in reliability when an item is removed. If this value exceeds the 

original Cronbach's alpha, it may suggest that deleting the item could enhance the overall 

reliability of the scale, making it essential to pay close attention to this metric during 

analysis. 

The reliability results of the survey variables and items are presented in Table 4.2. 

The overall reliability of the survey reached 0.937, which is above the acceptable 

threshold of 0.9. Additionally, the reliability for each variable exceeds 0.8, indicating a high 

level of stability in the data. This suggests that the scale used in this study demonstrates 

excellent reliability. Furthermore, the CITC values for all indicators are higher than 0.4, 

and the "Cronbach's alpha if item deleted" values do not exceed the corresponding 

variable reliability values. As a result, all indicators can be retained for further analysis. 
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Table 4.2 – Reliability Statistics (Cronbach Alpha) 

Variables / 
Items Items 

Corrected 
Item-Total 

Correlation 
(CITC) 

Cronbach's 
Alpha if 

Item 
Deleted 

Cronbach 
α 

Variables 
Cronbach 

α 

Total 
Cronbach 

α 
TBL: TBL-aligned Digital Traits 

 

TBL-Profit 
TBL-Profit1 0.781  0.847  

0.890  

0.903  

TBL-Profit2 0.796  0.834  
TBL-Profit3 0.778  0.850  

TBL-People 
TBL-People1 0.775  0.834  

0.883  TBL-People2 0.799  0.810  
TBL-People3 0.747  0.858  

TBL-Planet 
TBL-Planet1 0.802  0.900  

0.915  TBL-Planet2 0.834  0.874  
TBL-Planet3 0.852  0.860  

       
EO: Entrepreneurial Orientation  

EO-Inno 
EO-Inno1 0.770  0.807  

0.873  

0.877 

0.937 

EO-Inno2 0.750  0.825  
EO-Inno3 0.746  0.829  

EO-Pro 
EO-Pro1 0.807  0.849  

0.898  EO-Pro2 0.774  0.876  
EO-Pro3 0.818  0.838  

EO-Risk 
EO-Risk1 0.738  0.784  

0.854  EO-Risk2 0.716  0.805  
EO-Risk3 0.723  0.798  

      
SO: Sustainability Orientation 

SO-Culture 

SO-Culture1 0.807  0.913  

0.929  

0.928 

SO-Culture2 0.809  0.913  
SO-Culture3 0.810  0.913  
SO-Culture4 0.811  0.913  
SO-Culture5 0.825  0.910  

SO-
Practices 

SO-Practices1 0.816  0.906  

0.925  SO-Practices2 0.836  0.899  
SO-Practices3 0.821  0.904  
SO-Practices4 0.833  0.900  

      
DO: Digital Orientation 

DO-Vision 
DO-Vision1 0.788  0.853 

0.894  

0.899  

DO-Vision2 0.805  0.838 
DO-Vision3 0.784  0.856 

DO-Strat 
DO-Strat1 0.815 0.846  

0.900  DO-Strat2 0.794 0.864  
DO-Strat3 0.797 0.861 

       
SBM: Sustainable Business Model  

SBM-
ValueArch 

SBM-
ValueArch1 0.741  0.818  

0.866  

0.875   

SBM-
ValueArch2 0.710  0.831  

SBM-
ValueArch3 0.697  0.836  

SBM-
ValueArch4 0.715  0.829  

SBM-
Valueoff 

SBM-Valueoff1 0.676  0.779  
0.831  SBM-Valueoff2 0.695  0.763  

SBM-Valueoff3 0.703  0.755  
SBM-
Revenue 

SBM-Revenue1 0.667 - 0.800 SBM-Revenue2 0.667  - 
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4.1.3 Exploratory Factor Analysis 

EFA is a powerful statistical technique that identifies underlying relationships among 

observed variables, revealing latent structures that may not be immediately apparent. By 

reducing dimensionality, EFA simplifies complex datasets, enhancing the clarity of data 

interpretation (Fabrigar et al., 1999). Although EFA is often utilised in questionnaire design 

to identify item clusters and develop reliable scales (DeVellis and Thorpe, 2021), it is also 

valuable for testing construct validity in existing questionnaires. 

In this study, EFA uses to analyse the structure of the constructs measurement scales 

and assess their validity. Construct validity refers to the extent to which theoretical 

concepts can be accurately measured (DeVellis and Thorpe, 2021). The analysis was 

based on the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) value and 

Bartlett's sphericity test results, which determine the suitability of the items for factor 

analysis. A KMO value below 0.5 indicates unsuitability, while values above 0.7 suggest 

that the items have sufficient commonality for factor analysis. Additionally, a significant 

Bartlett's test (p < 0.05) confirms the appropriateness of the analysis. In social science 

research, a cumulative explained variance of over 60% indicates reliable extracted factors, 

while over 50% suggests acceptable results. This paper conducts the factor analysis 

based on the standard of cumulative variance explanation exceeding 50%. 

 

Table 4.3 – KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO)  0.841 

 

Bartlett's Test of Sphericity 

Approx. Chi-Square  5187.073 

df  861 

Sig.  0.000 
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All items after the reliability analysis were subjected to exploratory factor analysis, 

with the results presented in Table 4.3. The KMO value is 0.841, indicating that factor 

analysis is appropriate. Additionally, the significance probability of the Bartlett's sphericity 

test is 0.000, which is below the 0.01 threshold. These results demonstrate a strong 

correlation among the data, confirming that factor analysis can be conducted effectively. 

Moreover, the results show that all communalities were over 0.5. 

In the EFA conducted for this study, the principal component analysis method and 

varimax rotation were employed, with coefficients having absolute values below 0.5 

eliminated. The extraction utilised a fixed number of factors set to 13. This approach was 

chosen to ensure that all variables contributed meaningfully to the analysis, as each 

variable demonstrated loadings exceeding 0.5 on their respective components. This 

indicates a satisfactory level of correlation between the items and the factors, providing a 

solid foundation for subsequent analyses (Field, 2024). 

The total variance explained reached 82.418%, exceeding the minimum threshold of 

50%. This indicates that the extracted factors contain a relatively sufficient amount of 

information and that each item effectively explains its corresponding factor, demonstrating 

good validity (DeVellis and Thorpe, 2021). Notably, the rotation converged in 8 iterations, 

suggesting that the algorithm efficiently found a stable solution (Fabrigar et al., 1999). The 

total variance explained and the rotated component matrix for each variable and item are 

presented in Tables 4.4 and 4.5, respectively. 
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Table 4.4 – Total Variance Explained 

Component Initial Eigenvalues Extraction Sums of Squared 
Loadings 

Rotation Sums of Squared 
Loadings 

  Total % of 
Variance 

Cumulative 
% 

Total % of 
Variance 

Cumulative 
% 

Total % of 
Variance 

Cumulative 
% 

1 12.451 29.644 29.644 12.451 29.644 29.644 4.233 10.079 10.079 
2 4.410 10.501 40.145 4.410 10.501 40.145 3.206 7.634 17.712 
3 3.134 7.461 47.607 3.134 7.461 47.607 2.869 6.832 24.545 
4 2.651 6.311 53.918 2.651 6.311 53.918 2.673 6.365 30.909 
5 2.033 4.841 58.758 2.033 4.841 58.758 2.669 6.354 37.263 
6 1.784 4.247 63.005 1.784 4.247 63.005 2.608 6.209 43.472 
7 1.511 3.597 66.602 1.511 3.597 66.602 2.552 6.076 49.548 
8 1.406 3.348 69.950 1.406 3.348 69.950 2.551 6.074 55.622 
9 1.246 2.967 72.917 1.246 2.967 72.917 2.495 5.940 61.562 
10 1.200 2.857 75.774 1.200 2.857 75.774 2.492 5.933 67.494 
11 0.985 2.345 78.118 0.985 2.345 78.118 2.328 5.542 73.037 
12 0.960 2.286 80.404 0.960 2.286 80.404 2.303 5.484 78.520 
13 0.846 2.014 82.418 0.846 2.014 82.418 1.637 3.898 82.418 
14 0.599 1.426 83.844             
15 0.549 1.308 85.152             
16 0.508 1.209 86.361             
17 0.481 1.144 87.505             
18 0.402 0.956 88.462             
19 0.398 0.949 89.410             
20 0.356 0.847 90.257             
21 0.340 0.811 91.068             
22 0.325 0.775 91.842             
23 0.303 0.720 92.563             
24 0.293 0.699 93.261             
25 0.273 0.650 93.911             
26 0.242 0.575 94.486             
27 0.232 0.552 95.039             
28 0.218 0.519 95.558             
29 0.201 0.478 96.036             
30 0.191 0.455 96.491             
31 0.187 0.446 96.937             
32 0.171 0.408 97.345             
33 0.161 0.384 97.729             
34 0.155 0.370 98.099             
35 0.136 0.323 98.422             
36 0.130 0.309 98.731             
37 0.121 0.289 99.020             
38 0.105 0.249 99.269             
39 0.095 0.226 99.495             
40 0.080 0.190 99.685             
41 0.072 0.172 99.857             
42 0.060 0.143 100.000             
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Table 4.5 – Rotated Component Matrix 

 
Component 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
SBM-Valueoff1                     0.822     
SBM-Valueoff2                     0.774     
SBM-Valueoff3                     0.750     
SBM-
ValueArch1 

    0.753                     

SBM-
ValueArch2 

    0.734                     

SBM-
ValueArch3 

    0.709                     

SBM-
ValueArch4 

    0.722                     

SBM-
Revenue1 

                        0.749 

SBM-
Revenue2 

                        0.803 

TBL-Profit1               0.829           
TBL-Profit2               0.801           
TBL-Profit3               0.814           
TBL-People1             0.841             
TBL-People2             0.811             
TBL-People3             0.761             
TBL-Planet1                   0.776       
TBL-Planet2                   0.796       
TBL-Planet3                   0.844       
EO-Inno1                       0.704   
EO-Inno2                       0.860   
EO-Inno3                       0.759   
EO-Pro1         0.864                 
EO-Pro2         0.876                 
EO-Pro3         0.856                 
EO-Risk1           0.833               
EO-Risk2           0.815               
EO-Risk3           0.817               
SO-Culture1 0.809                         
SO-Culture2 0.840                         
SO-Culture3 0.816                         
SO-Culture4 0.845                         
SO-Culture5 0.779                         
SO-Practices1   0.801                       
SO-Practices2   0.808                       
SO-Practices3   0.825                       
SO-Practices4   0.768                       
DO-Vision1       0.856                   
DO-Vision2       0.867                   
DO-Vision3       0.836                   
DO-Strat1                 0.859         
DO-Strat2                 0.784         
DO-Strat3                 0.862         
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4.2 Measurement Model Assessment 

Following the preliminary analysis, the focus shifts to the utilising SmartPLS 4.0 for model 

assessment. The PLS-SEM results evaluation includes two stages – first stage examines 

measurement model, and second stage examines the structural model (Sarstedt et al., 

2014). This measurement model assessment stage is critical for evaluating the 

relationships among constructs and ensuring that the model accurately reflects the 

theoretical framework. In this study, all constructs are categorised as higher-order 

constructs, with one being a reflective-formative construct and the others classified as 

reflective-reflective constructs. 

The reflective-formative construct will be analysed to assess how its dimensions 

contribute to the overall construct, while the reflective-reflective constructs will be 

examined for their reliability and validity. This analysis will provide insights into the 

measurement properties of the constructs and establish a solid foundation for subsequent 

structural model testing. Utilising SmartPLS 4.0 allows for effective assessment of both 

measurement and structural relationships, enhancing the robustness of the findings.  

The first step involves developing higher-order constructs in the model, which specify 

the relationships between reflective and formative indicators for the reflective-formative 

construct, as well as the reflective-reflective constructs, using SmartPLS 4.0. Indicators 

are assigned to each construct, ensuring that reflective constructs have suitable reflective 

indicators and that the formative construct includes its corresponding dimensions. A two-

layer higher-order model is illustrated in Figure 4.1. 
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Figure 4.1 – Two Layers Higher-order Model 

 

 

 

4.2.1 Reliability and Validity 

The initial path model estimation assessed the relationships among constructs and 

identified any errors or warnings in the model setup. Reliability analysis was conducted 

on reflective constructs, examining Cronbach’s alpha and composite reliability (CR), with 

all values exceeding 0.7, as confirmed in the preliminary analysis. 

Validity analysis focused on convergent validity by evaluating the average variance 

extracted (AVE), which should be greater than 0.5. Convergent validity indicates the 

degree of aggregation of latent variables corresponding to each observed variable and is 

measured through factor loading, CR, and AVE. Factor loadings should ideally exceed 0.7, 

though values between 0.60 and 0.70 are considered acceptable in exploratory research, 

while those between 0.70 and 0.95 are viewed as satisfactory to good (Hair et al., 2022). 

CR should also exceed 0.70, and AVE should be above 0.50. 
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Using SmartPLS 4.0, the analysis showed that the factor loading for all items was 

greater than 0.6, indicating strong explanatory power. CR for all dimensions ranged from 

0.76 to 0.89, demonstrating internal consistency among items within each dimension. The 

minimum AVE value was 0.51, confirming convergent validity for all constructs (Hair et al., 

2022). 

In conclusion, the measurement model exhibits both reliability and validity, 

establishing a solid foundation for further analysis. The results are summarised in Table 

4.6. 

 

Table 4.6 – Convergent Validity 
 

Cronbach's 
alpha 

Composite 
reliability 
(rho_a) 

Composite 
reliability 
(rho_c) 

Average variance 
extracted (AVE) 

DO 0.899 0.900 0.923 0.665 

DO-Strat 0.900 0.901 0.937 0.833 

DO-Vision 0.894 0.894 0.934 0.826 

EO 0.876 0.880 0.901 0.504 

EO-Inno 0.873 0.878 0.922 0.797 

EO-Pro 0.899 0.904 0.937 0.831 

EO-Risk 0.854 0.854 0.911 0.774 

SBM 0.876 0.878 0.901 0.503 

SBM-Revenue 0.800 0.800 0.909 0.834 

SBM-ValueArch 0.866 0.866 0.909 0.713 

SBM-Valueoff 0.832 0.836 0.899 0.748 

SO 0.929 0.930 0.940 0.637 

SO-Culture 0.929 0.930 0.946 0.779 

SO-Practices 0.925 0.926 0.947 0.817 

TBL 0.904 0.905 0.921 0.566 

TBL-People 0.884 0.884 0.928 0.811 

TBL-Planet 0.916 0.916 0.947 0.856 

TBL-Profit 0.890 0.892 0.932 0.820 
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4.2.2 Discriminant Validity 

Discriminant validity is the degree to which a latent variable is distinguished from other 

latent variables. This study uses the methods to detect discriminant validity including 

Heterotrait-Monotrait Ratio (HTMT) (Henseler et al., 2015), Fornell-Larcker Criterion 

(Fornell and Larcker, 1981), and cross loadings and. At this stage, the analysis only 

conducts the first order reflective model. 

 

4.2.2.1 Heterotrait-Monotrait Ratio 

The HTMT is a metric used to evaluate discriminant validity in structural equation 

modelling, particularly in PLS-SEM. It compares average correlations between indicators 

of different constructs to those of the same construct. An HTMT value close to 1 may 

indicate insufficient discriminant validity. Common thresholds for HTMT are 0.85; values 

exceeding these suggest potential issues. Table 4.7 presents the HTMT matrix for this 

study, with the highest recorded value at 0.686, indicating that all constructs are 

sufficiently distinct. This outcome suggests adequate discriminant validity among the 

constructs investigated, reinforcing the validity of the measurement model and instilling 

confidence in the distinctiveness of the constructs used in this study. 

 
Table 4.7 – Heterotrait-Monotrait Ratio Matrix 

  

DO-    
Strat

DO-
Vision

EO-    
Inno

EO-     
Pro

EO-    
Risk

SBM-
Revenue

SBM-
ValueArch

SBM-
Valueoff

SO-
Culture

SO-
Practices

TBL-
People

TBL-
Planet

TBL-
Profit

DO-Strat
DO-Vision 0.673
EO-Inno 0.169 0.075
EO-Pro 0.193 0.108 0.532
EO-Risk 0.086 0.058 0.590 0.391
SBM-Revenue 0.191 0.213 0.374 0.168 0.317
SBM-ValueArch 0.358 0.349 0.438 0.313 0.400 0.687
SBM-Valueoff 0.225 0.200 0.416 0.26 0.186 0.539 0.529
SO-Culture 0.113 0.078 0.364 0.251 0.272 0.426 0.478 0.440
SO-Practices 0.072 0.092 0.354 0.281 0.261 0.406 0.381 0.509 0.643
TBL-People 0.249 0.118 0.304 0.247 0.333 0.392 0.499 0.309 0.384 0.419
TBL-Planet 0.247 0.180 0.360 0.285 0.416 0.390 0.553 0.363 0.361 0.368 0.653
TBL-Profit 0.213 0.113 0.388 0.285 0.329 0.428 0.470 0.303 0.411 0.483 0.528 0.562
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4.2.2.2 Fornell-Larcker Criterion 

The Fornell-Larcker criterion was applied to assess discriminant validity among the 

constructs in this study. According to this criterion, the square root of the AVE for each 

construct must be greater than the correlations between that construct and any other 

construct. The results presented in Table 4.8 indicate that the square root of the AVE for 

each construct exceeds the correlations with other constructs, confirming adequate 

discriminant validity. This outcome supports the validity of the measurement model and 

ensures that the constructs utilised in this study are sufficiently distinct. 

 
Table 4.8 – Fornell-Larcker Criterion 

 

 
4.2.2.3 Cross Loadings Analysis 

Cross loadings evaluate the contribution of each item to its corresponding latent variable, 

requiring that the loading of each item on its latent variable exceeds its loadings on all 

other dimensions. The Fornell-Larcker criterion employs the square root of the AVE for 

this assessment. According to the standards set by Fornell and Larcker, the correlation 

coefficient between each construct should be less than the square root of the AVE, as 

illustrated in the Table 4.9. The bolded values represent the loadings of each item on its 

latent variable, confirming that each dimension's items load more strongly on their 

respective latent variables than on any others, thereby satisfying the cross-loading 

requirements. 

DO-    
Strat

DO-
Vision

EO-    
Inno

EO-     
Pro

EO-    
Risk

SBM-
Revenue

SBM-
ValueArch

SBM-
Valueoff

SO-
Culture

SO-
Practices

TBL-
People

TBL-
Planet

TBL-
Profit

DO-Strat 0.913
DO-Vision 0.605 0.909
EO-Inno 0.149 0.05 0.893
EO-Pro 0.173 0.096 0.476 0.912
EO-Risk 0.072 0.043 0.515 0.345 0.88
SBM-Revenue 0.163 0.179 0.312 0.143 0.262 0.913
SBM-ValueArch 0.316 0.307 0.38 0.277 0.344 0.572 0.845
SBM-Valueoff 0.199 0.177 0.354 0.229 0.156 0.443 0.451 0.865
SO-Culture 0.101 0.034 0.331 0.232 0.244 0.367 0.429 0.389 0.882
SO-Practices 0.014 -0.053 0.321 0.259 0.234 0.351 0.343 0.447 0.598 0.904
TBL-People 0.221 0.102 0.266 0.221 0.29 0.33 0.437 0.269 0.35 0.38 0.901
TBL-Planet 0.225 0.164 0.323 0.261 0.369 0.334 0.492 0.316 0.332 0.339 0.588 0.925

TBL-Profit 0.192 0.101 0.345 0.258 0.287 0.361 0.413 0.26 0.374 0.439 0.469 0.509 0.906
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Table 4.9 – Cross Loadings 

 
 

The analysis of the HTMT and the Fornell-Larcker criterion confirms the discriminant 

validity of the constructs in this study. Furthermore, the cross-loading analysis indicates 

that each item loads more strongly on its corresponding latent variable than on others. 

These findings collectively affirm the reliability and distinctiveness of the constructs 

employed in this study. 

  

DO-    
Strat

DO-
Vision

EO-    
Inno

EO-     
Pro

EO-    
Risk

SBM-
Revenue

SBM-
ValueArch

SBM-
Valueoff

SO-
Culture

SO-
Practices

TBL-
People

TBL-
Planet

TBL-
Profit

DO-Strat1 0.918 0.529 0.108 0.137 0.017 0.102 0.262 0.147 0.147 0.049 0.229 0.213 0.201
DO-Strat2 0.913 0.614 0.214 0.218 0.095 0.178 0.297 0.229 0.065 -0.002 0.143 0.218 0.208
DO-Strat3 0.907 0.509 0.081 0.115 0.084 0.164 0.306 0.167 0.066 -0.009 0.238 0.184 0.115
DO-Vision1 0.56 0.907 0.016 0.1 0.003 0.054 0.246 0.118 -0.019 -0.106 0.069 0.145 0.087
DO-Vision2 0.543 0.915 0.088 0.092 0.032 0.17 0.262 0.18 0.034 -0.069 0.025 0.097 0.072
DO-Vision3 0.546 0.904 0.032 0.069 0.084 0.266 0.331 0.184 0.076 0.032 0.185 0.204 0.117
EO-Inno1 0.08 -0.003 0.908 0.44 0.566 0.265 0.356 0.278 0.338 0.328 0.183 0.259 0.309
EO-Inno2 0.175 0.099 0.88 0.369 0.356 0.284 0.338 0.331 0.241 0.237 0.265 0.251 0.241
EO-Inno3 0.151 0.046 0.89 0.459 0.442 0.287 0.325 0.344 0.301 0.289 0.27 0.353 0.366
EO-Pro1 0.117 0.032 0.429 0.919 0.359 0.095 0.245 0.188 0.223 0.274 0.179 0.221 0.26
EO-Pro2 0.202 0.114 0.374 0.89 0.251 0.128 0.212 0.184 0.163 0.162 0.199 0.196 0.152
EO-Pro3 0.16 0.119 0.49 0.926 0.327 0.167 0.296 0.252 0.242 0.265 0.226 0.291 0.285
EO-Risk1 0.03 0.017 0.418 0.342 0.886 0.169 0.324 0.173 0.225 0.184 0.292 0.383 0.226
EO-Risk2 0.076 0.055 0.461 0.269 0.872 0.231 0.262 0.09 0.187 0.172 0.206 0.273 0.252
EO-Risk3 0.084 0.042 0.481 0.299 0.881 0.291 0.321 0.149 0.231 0.26 0.267 0.316 0.279
SBM-Revenue1 0.154 0.161 0.287 0.107 0.242 0.912 0.547 0.354 0.386 0.323 0.352 0.322 0.314
SBM-Revenue2 0.143 0.167 0.282 0.153 0.237 0.914 0.498 0.454 0.285 0.318 0.251 0.287 0.346
SBM-ValueArch1 0.293 0.283 0.363 0.358 0.295 0.445 0.858 0.364 0.381 0.271 0.309 0.405 0.343
SBM-ValueArch2 0.295 0.272 0.268 0.164 0.196 0.464 0.842 0.414 0.394 0.323 0.36 0.448 0.356
SBM-ValueArch3 0.239 0.214 0.401 0.229 0.329 0.514 0.832 0.358 0.388 0.312 0.353 0.347 0.338
SBM-ValueArch4 0.241 0.269 0.255 0.189 0.343 0.508 0.846 0.388 0.29 0.254 0.451 0.461 0.359
SBM-Valueoff1 0.106 0.055 0.275 0.123 0.166 0.312 0.343 0.845 0.304 0.398 0.161 0.295 0.234
SBM-Valueoff2 0.227 0.21 0.314 0.232 0.169 0.39 0.436 0.874 0.337 0.368 0.298 0.305 0.197
SBM-Valueoff3 0.177 0.182 0.327 0.232 0.074 0.441 0.387 0.876 0.366 0.396 0.23 0.222 0.247
SO-Culture1 0.105 0.127 0.283 0.178 0.179 0.36 0.43 0.378 0.878 0.521 0.28 0.338 0.367
SO-Culture2 0.025 -0.022 0.254 0.261 0.209 0.283 0.355 0.267 0.878 0.497 0.324 0.266 0.332
SO-Culture3 0.085 0.063 0.296 0.183 0.195 0.341 0.374 0.351 0.881 0.516 0.297 0.283 0.323
SO-Culture4 0.113 0.018 0.296 0.181 0.22 0.291 0.312 0.329 0.88 0.498 0.307 0.298 0.283
SO-Culture5 0.116 -0.033 0.331 0.22 0.268 0.342 0.421 0.388 0.894 0.603 0.334 0.282 0.346
SO-Practices1 -0.095 -0.112 0.277 0.279 0.177 0.21 0.242 0.329 0.53 0.897 0.369 0.299 0.368
SO-Practices2 0.029 -0.01 0.286 0.239 0.193 0.371 0.315 0.438 0.527 0.909 0.308 0.31 0.434
SO-Practices3 0.024 -0.066 0.307 0.203 0.201 0.262 0.25 0.389 0.516 0.899 0.297 0.286 0.343
SO-Practices4 0.088 -0.006 0.291 0.217 0.273 0.421 0.427 0.456 0.588 0.91 0.397 0.329 0.438
TBL-People1 0.188 0.151 0.159 0.167 0.241 0.255 0.395 0.229 0.238 0.307 0.899 0.519 0.391
TBL-People2 0.211 0.076 0.265 0.204 0.261 0.328 0.392 0.317 0.318 0.342 0.914 0.528 0.425
TBL-People3 0.198 0.051 0.29 0.225 0.28 0.308 0.393 0.18 0.385 0.377 0.89 0.541 0.451
TBL-Planet1 0.12 0.088 0.365 0.271 0.307 0.288 0.492 0.325 0.334 0.37 0.539 0.911 0.462
TBL-Planet2 0.252 0.19 0.295 0.275 0.35 0.31 0.446 0.285 0.284 0.312 0.562 0.93 0.505
TBL-Planet3 0.251 0.175 0.235 0.177 0.365 0.327 0.429 0.267 0.305 0.259 0.53 0.935 0.442
TBL-Profit1 0.166 0.053 0.285 0.282 0.241 0.341 0.361 0.233 0.351 0.391 0.425 0.428 0.902
TBL-Profit2 0.203 0.095 0.312 0.216 0.251 0.327 0.39 0.245 0.36 0.399 0.447 0.499 0.915
TBL-Profit3 0.151 0.126 0.34 0.206 0.289 0.314 0.371 0.229 0.305 0.403 0.403 0.453 0.9



 Page 104  

4.2.3 Assessment of Higher-order Model 

To assess the higher-order model, a new higher-order measurement model must be 

constructed. The first step is to generate latent variable scores by running the PLS-SEM 

algorithm on the initial model using SmartPLS 4.0 (see Figure 4.1). This process yields 

estimated values for the constructs based on the observed data. Once the latent variable 

scores are obtained, the next step is to export this data file, which includes scores for 

each of the first-order constructs. These scores will then be used as indicators for the new 

higher-order model. In SmartPLS, create a new project and add a higher-order construct, 

incorporating the latent variable scores as items, as shown in Figure 4.2. 

 

Figure 4.2 – Higher-order Model 
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4.2.3.1 Correlation Analysis 

Correlation analysis was performed to investigate the relationships between TBL and SBM, 

EO, SO, and DO. The Pearson correlation coefficient was used to assess the strength of 

these correlations. The results indicate that all relationships between SBM and TBL, EO, 

SO, and DO are statistically significant. The correlation coefficients are as follows: 0.545 

for SBM and TBL, 0.437 for SBM and EO, 0.536 for SBM and SO, and 0.322 for SBM and 

DO. Each of these values is greater than 0, signifying a positive correlation between SBM 

and TBL, EO, SO, and DO. The results of the analysis are presented in Table 4.10. 

 

Table 4.10 – Pearson Correlation Analysis 

 Mean St. Deviation SBM TBL EO SO DO 
SBM 4.274 1.141 1     

TBL 5.163 1.137 0.545** 1    

EO 4.473 1.216 0.437** 0.444** 1   

SO 5.232 1.144 0.536** 0.499** 0.379** 1  

DO 4.621 1.434 0.322** 0.225** 0.138 0.035 1 

* p<0.05 ** p<0.01 

 

 

4.2.3.2 HOC Reflective Model Reliability and Validity 

By running the PLS-SEM algorithm with a factor weighting scheme for the reflective 

variables, all outer loadings, Cronbach's alpha, CR, and AVE exceeded their respective 

thresholds. Specifically, the outer loadings should be greater than 0.70, Cronbach's alpha 

should be above 0.70, CR should also exceed 0.70, and AVE should be greater than 0.50. 

These results indicate that the model demonstrates strong reliability and validity. The 

results are shown in Table 4.11. 
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Table 4.11 – Reliability and Validity of HOC 

Variables Factor Outer 
Loadings 

Cronbach's 
alpha 

Composite 
reliability 
(rho_a) 

Composite 
reliability 
(rho_c) 

Average 
variance 
extracted 
(AVE) 

DO 
DO-Strat 0.898 

0.754 0.754 0.890 0.803 
DO-Vision 0.893 

EO 
EO-Inno 0.868 

0.707 0.731 0.836 0.631 EO-Pro 0.727 
EO-Risk 0.781 

SBM 
SBM-Revenue 0.813 

0.741 0.760 0.852 0.659 SBM-ValueArch 0.862 
SBM-Valueoff 0.756 

SO 
SO-Culture 0.892 

0.749 0.749 0.888 0.799 
SO-Practices 0.896 

 

 

4.2.3.3 HOC Reflective Model Discriminant Validity 

The HTMT and the Fornell-Larcker criterion are used to assess the discriminant validity 

of the HOC measurement model. The HTMT matrix in Table 4.12 shows all values are 

below 0.85, with the highest at 0.731, confirming the distinctiveness of the constructs. 

Additionally, the Fornell-Larcker criterion results in Table 4.13 indicate that the square root 

of the AVE for each construct exceeds the correlations with other constructs, further 

confirming adequate discriminant validity. These findings collectively support the validity 

of the HOC measurement model and ensure sufficient distinctiveness among the 

constructs. 

 

Table 4.12 – HOC Heterotrait-Monotrait Ratio Matrix 

 DO EO SBM SO DO x TBL DO x SO DO x EO 

DO        
EO 0.187       
SBM 0.411 0.586      
SO 0.084 0.523 0.717     
DO x TBL 0.240 0.202 0.149 0.115    
DO x SO 0.221 0.177 0.027 0.043 0.696   
DO x EO 0.172 0.211 0.153 0.166 0.731 0.583  
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Table 4.13 – HOC Fornell-Larcker Criterion 

 DO EO SBM SO 
DO 0.896       
EO 0.134 0.794     
SBM 0.317 0.438 0.812   
SO 0.030 0.385 0.532 0.894 

 

 

4.2.3.4 Higher-order Formative Construct Assessment 

The assessment of formative constructs involves evaluating outer weights, VIF, and p-

values to ensure the reliability and validity of the indicators used in the model. The 

assessment metrics for the TBL formative construct are listed in Table 4.14. 

 

Table 4.14 – Assessment Metrics for the TBL Formative Construct 

Items  Outer Weight VIF p-value 
TBL-People 0.316 1.626 0.014 
TBL-Planet 0.404 1.710 0.002 
TBL-Profit 0.490 1.435 0.000 

 

 

The outer weights of the formative items serve as indicators of their contribution to 

the higher-order construct. The outer weights for TBL-People, TBL-Planet, and TBL-Profit 

are 0.316, 0.404, and 0.490, respectively. According to Jarvis et al. (2003), outer weights 

in formative models should be interpreted as the influence each indicator has on the 

construct. Weights above 0.20 are typically deemed significant (Chin, 1998). TBL-Profit, 

with the highest weight of 0.490, is the most influential indicator, reinforcing its critical role 

in the construct's formation. TBL-Planet and TBL-People also contribute significantly but 

to a lesser extent. 

The VIF values for the indicators—1.626 for TBL-People, 1.71 for TBL-Planet, and 

1.435 for TBL-Profit—indicate low multicollinearity among the items. As a rule of thumb, 

VIF values below 5 are acceptable, with values below 3 considered excellent (Hair et al., 
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2022). The observed VIF values confirm that the indicators are sufficiently independent, 

allowing for accurate assessments of their respective contributions to the HOC. Low 

multicollinearity is essential for formative constructs as it ensures that the indicators 

measure distinct aspects of the construct without overlap (Bagozzi and Heatherton, 1994). 

The statistical significance of the indicators is confirmed through their p-values, which 

are 0.014 for TBL-People, 0.002 for TBL-Planet, and 0.000 for TBL-Profit. All p-values are 

below the critical threshold of 0.05, indicating that each indicator significantly contributes 

to the higher-order construct. According to Hair et al. (2023), statistically significant p-

values validate the relevance of the indicators in capturing the essence of the construct. 

TBL-Profit, with a p-value of 0.000, demonstrates an exceptionally strong significance, 

suggesting it is crucial for the construct's formation. 

The assessment of outer weights, VIF, and p-values collectively supports the validity 

and reliability of the formative constructs in this study. The positive outer weights indicate 

significant contributions, while acceptable VIF values confirm low multicollinearity among 

the indicators. Furthermore, statistically significant p-values reinforce the relevance of the 

indicators in defining the HOC. These findings align with established literature, affirming 

that the indicators effectively encapsulate the intended dimensions of TBL-aligned Digital 

Traits. The rigorous assessment of these metrics enhances the overall robustness of the 

formative model, contributing to the reliability of the research outcomes. 

 

4.3 Structural Model Evaluation 

Having successfully completed the measurement model assessment with favourable 

results; this Section focuses on the structural model assessment of the HOC model. The 

structural model is essential as it delineates the relationships between constructs and 

clarifies the theoretical framework guiding the research. Evaluating the structural model 

aims to confirm the hypothesised paths and their significance, providing insights into how 

the constructs interact. 
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This assessment will involve analysing the VIF values to check for multicollinearity 

among the constructs, ensuring the reliability of the path coefficient estimates. Additionally, 

R² values will be examined to evaluate the model's explanatory power, and Q² values will 

be calculated to assess predictive relevance, indicating how well the constructs can 

forecast outcomes. Path coefficients will also be analysed to determine the strength and 

direction of the relationships among the constructs. Furthermore, potential mediating and 

moderating effects will be explored to gain a deeper understanding of the dynamics within 

the model. Ultimately, the structural model assessment will validate the proposed 

relationships and enhance understanding of their implications in the context of sustainable 

BMI and DT. 

 

4.3.1 Collinearity 

Collinearity is assessed using the VIF values. The outer VIF values for the indicators range 

from 1.316 to 1.710, while the inner VIF matrix for the constructs is presented in Table 

4.15. The results indicate that the tolerance values are well below the VIF threshold of 

3.00 for the predictor constructs, which is considered excellent (Hair et al., 2022), and 

there is no indication of strong common method bias (CMB). 

 
Table 4.15 – Inner Model VIF Matrix 

 DO EO SBM SO TBL 
DO     1.109     
EO     1.334 1.253   
SBM           
SO     1.431     
TBL   1.000 1.571 1.253   
DO x TBL     2.847     
DO x SO     2.015     
DO x EO     2.236     
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4.3.2 Predictive Relevance, Effect Size and Model Fit 

This Section will determine the R2 (coefficient of determination), which measures the 

proportion of variance in the dependent variable explained by the independent variables, 

indicating the model's explanatory power. Furthermore, Q2 (predictive relevance) 

assesses how well the model can predict outcomes, with values greater than zero 

suggesting that the model has predictive capability (Geisser, 1975; Stone, 1974). 

Additionally, 𝑓𝑓2 (effect size) will be examined to evaluate the strength of the relationships 

between constructs, providing insights into the importance of each predictor in the model 

(Cohen, 2013). Together, these metrics offer a comprehensive understanding of the 

model's performance and its ability to explain and predict outcomes. 

 

4.3.2.1 R² Assessment 

R², or the coefficient of determination, indicates the proportion of variance in the 

dependent variable that is predictable from the independent variables. High R² values 

generally signify a better model fit and greater explanatory power (Hair et al., 2023). 

The R² values for the endogenous latent variables—EO, SBM, and SO—provide 

insights into the model's explanatory power and fit. The R² and R² adjusted values are 

shown in Table 4.16. 

 

Table 4.16 – R2 and R2 Adjusted Values 
 

R-square R-square adjusted 
EO 0.202 0.197 
SBM 0.475 0.450 
SO 0.285 0.276 

 

With an R² of 0.205 for EO, approximately 20.5% of the variance in EO is explained 

by the model. Although this is below the common threshold of 0.33 for moderate 

explanatory power (Chin, 1998), it still exceeds the minimum threshold of 0.19, suggesting 
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a degree of influence from the predictors. This finding aligns with Covin and Slevin (1989), 

indicating that EO can be influenced by various contextual factors. 

With an R² of 0.475 for SBM, about 47.5% of the variance in SBM demonstrates 

moderate to strong explanatory power. This suggests that nearly half of the variance in 

SBM can be accounted for by the independent variables in the model, reflecting the 

significance of these predictors in shaping sustainable business practices (Bocken et al., 

2014). 

With an R² of 0.285 for SO, approximately 28.5% of the variance in SO is explained 

by the model. While it exceeds the threshold of 0.19 for weak explanatory power (Hair et 

al., 2023), it remains below the moderate threshold of 0.33. This indicates a fair degree of 

influence, but, similar to EO, it suggests that additional factors may be needed for a more 

comprehensive understanding of sustainability outcomes (Elkington, 1997). 

The R² assessment reveals a mixed performance across the constructs. SBM stands 

out with strong explanatory power, indicating that the predictors effectively capture the 

dynamics of sustainable business practices. In contrast, EO and SO exhibit weaker 

explanatory capabilities. 

The overall Goodness-of-Fit (GOF), calculated as the mean of AVE multiplied by the 

mean of R² and then squared, results in a value of 0.516, which exceeds the threshold of 

0.36. This indicates that the model fits well when considering all constructs collectively, 

despite individual R² values being lower. This suggests that the model can still provide 

valuable insights into the relationships among the constructs, reinforcing the importance 

of sustainable practices in business innovation and strategy (Porter, 2011). 

 

4.3.2.2 Q² Assessment 

In addition to evaluating the R² value, Stone-Geisser’s Q² is used as an indicator of the 

path model’s predictive relevance (Geisser, 1975; Stone, 1974). A Q² value greater than 

zero for a specific endogenous latent variable indicates that the PLS-SEM path model has 
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predictive relevance for that construct (Hair et al., 2023). The Q² value of latent variables 

in the PLS-SEM path model is obtained through the blindfolding procedure. Blindfolding 

is a sample reuse technique that systematically deletes data points to provide estimates 

of their original values. 

For this procedure, an omission distance D is required. Literature recommends a 

value for the omission distance between 5 and 12 (Hair et al., 2023). An omission distance 

of seven (D=7) means that every fifth data point of a latent variable's indicators will be 

eliminated in a single blindfolding round. As the blindfolding procedure necessitates the 

omission and prediction of every data point of the indicators used in the measurement 

model of the selected latent variable, an omission distance of D=7 results in seven 

blindfolding rounds. Consequently, the number of blindfolding rounds always equals the 

omission distance. 

During the first blindfolding round, the procedure starts with first data point and omits 

every D-th data point of a latent variable's indicators. Then, the procedure estimates the 

SmartPLS path model by using the remaining data points. The omitted data represent 

missing values and are treated accordingly (e.g., by mean value replacement or pairwise 

deletion). The PLS-SEM results are then used to predict the omitted data points. The 

difference between the omitted data points and the predicted ones are the prediction error. 

The sum of squared prediction errors is used to calculate the Q² value. Blindfolding is an 

iterative process. In the second blindfolding round, the algorithm starts with the second 

data point, omits every D-th data point and continues as described before. After D 

blindfolding rounds, every data point has been omitted and predicted. 

It is recommended that the omission distance values D should be between 5 and 12 

(Hair et al., 2023). Table 4.17 presents the Q² for each endogenous latent variable using 

an omission distance of 7 (D=7). Q² represents the predictive relevance of the variables, 

with larger values indicating stronger predictive relevance. A Q² value of 1 signifies that 

the model is fully predicted, while a Q² of 0 indicates no difference from replacing it with 
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the average. A Q² value less than 0 suggests that the model has no predictive relevance, 

whereas a Q² greater than 0 indicates that the model possesses some level of 

predictiveness. The path test of the model is conducted using PLS-SEM. The Q² values 

for each variable are shown in the table above, and since all Q² values are greater than 

zero, the model meets the requirements for further analysis. 

 

Table 4.17 – Q2 Sheet 

 SSO  SSE  Q² (=1-SSE/SSO)  
DO  316.000  316.000   

EO  474.000  420.785  0.112  
SBM  474.000  337.719  0.288  
SO  316.000  250.570  0.207  
TBL  474.000  474.000   

 

 
4.3.2.3 Effect Size 

Accessing the 𝑓𝑓2 effect size in SEM helps to understand the strength of the relationships 

between constructs. The 𝑓𝑓2 value indicates how much variance in the dependent variable 

is explained by an independent variable when controlling for other variables. Table 4.18 

shows the 𝑓𝑓2 matrix. The analysis highlights the significant role of TBL in enhancing EO, 

as indicated by a strong 𝑓𝑓2 value (0.253). Both SO and TBL are critical drivers of 

sustainable business innovation, demonstrated by moderate 𝑓𝑓2 values. However, the 

small effect sizes for the relationships between EO and SBM, as well as TBL and SBM, 

suggest limited practical impact, indicating the need for further exploration of additional 

influencing factors. Lastly, the negligible interaction effects involving DO imply that it may 

not be a key driver in improving the effectiveness of TBL, EO, or SO. 
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Table 4.18 – f-Square Matrix 

 EO SBM SO 
DO  0.098  

EO  0.045 0.044 
SBM    

SO  0.142  

TBL 0.253 0.073 0.192 
DO x TBL  0.008  

DO x SO  0.030  

DO x EO  0.000  

 

 

4.3.2.4 Model Fit 

The model fit statistics provide insights into how well the estimated model aligns with the 

saturated model, which represents a perfect fit. The value matrix is presented in Table 

4.19, illustrating key metrics that evaluate the model's performance. 

 
 
Table 4.19 – Model Fit 

 Saturated model Estimated model 
SRMR  0.068 0.070 
d_ULS  0.424 0.451 
d_G  0.216 0.219 
Chi-square  215.375 218.094 
NFI  0.696 0.692 

 

• SRMR (Standardised Root Mean Square Residual) values below 0.08 are generally 

considered acceptable (Hu and Bentler, 1999). Both values indicate that the fit is 

reasonable. 

• d_ULS (Squared Euclidean Distance) indicates that lower values represent a better 

fit. The estimated model shows a slight increase in d_ULS, suggesting a somewhat 

poorer fit compared to the saturated model (Henseler et al., 2015). 
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• d_G (Geodesic Distance) has lower values that indicate better model fit. The values 

are very close, indicating that the estimated model does not deviate significantly 

from the saturated model (Sarstedt et al., 2021). 

• Chi-square values that are higher indicate worse fit; however, the chi-square value 

alone is not sufficient for model evaluation. It is essential to assess it in conjunction 

with degrees of freedom and the associated p-value (Kline, 2023). 

• NFI (Normed Fit Index) values closer to 1 indicate better fit, with values above 0.90 

generally considered acceptable (Bentler and Bonett, 1980). Both values are below 

this threshold, suggesting that improvements are needed for better model fit. 

In summary, while the fit statistics suggest that the estimated model is reasonably 

close to the saturated model, the slight increases in SRMR, d_ULS, and chi-square values 

indicate a marginally poorer fit. The NFI values suggest that the overall model fit could be 

improved. However, the model is still considered acceptable. 

 

4.3.3 Significance and Relevance of Path Coefficients 

Assessing the significance and relevance of the structural model relationships was 

conducted using SmartPLS 4.0, which estimates the structural model relationships (the 

path coefficients) to illustrate the connections between the constructs. Significance was 

determined through bootstrapping. 

PLS-SEM does not assume that the data is normally distributed, which means that 

parametric significance tests (e.g., those used in regression analyses) cannot be applied 

to test the significance of coefficients such as outer weights, outer loadings, and path 

coefficients. Instead, PLS-SEM relies on a nonparametric bootstrap procedure (Davison 

and Hinkley, 1997; Efron and Tibshirani, 1986) to assess the significance of the estimated 

path coefficients. 
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In the bootstrapping process, subsamples are created by randomly drawing 

observations from the original dataset (with replacement). These subsamples are then 

used to estimate the PLS path model. This process is repeated until a large number of 

random subsamples, typically around 5,000, have been generated. 

The parameter estimates (e.g., outer weights, outer loadings, and path coefficients) 

derived from these subsamples are used to calculate standard errors for the estimates. 

With this information, t-values are computed to evaluate the significance of each estimate. 

Table 4.20 presents the results of the path coefficients and structural relationships. Overall, 

these results indicate strong positive relationships among the constructs in the model. 

 

Table 4.20 – Path Coefficients 

 Original sample 
(O) 

Sample mean 
(M) 

Standard 
deviation 
(STDEV) 

T statistics 
(|O/STDEV|) P values 

DO -> SBM 0.239 0.238 0.064 3.730 0.000 

EO -> SBM 0.178 0.179 0.063 2.824 0.002 

EO -> SO 0.198 0.196 0.081 2.441 0.007 

SO -> SBM 0.328 0.322 0.070 4.656 0.000 

TBL -> EO 0.450 0.455 0.084 5.364 0.000 

TBL -> SBM 0.245 0.250 0.079 3.106 0.001 

TBL -> SO 0.415 0.418 0.074 5.607 0.000 

 

• DO has a statistically significant positive effect on SBM, with a standardised 

regression coefficient of 𝛽𝛽=0.239 and a significance test result of 𝑝𝑝<0.001, supporting 

this relationship. 

• EO has a statistically significant positive effect on SBM, with a standardised 

regression coefficient of 𝛽𝛽=0.178 and a significance test result of 𝑝𝑝<0.010, supporting 

this relationship. 

• EO also has a statistically significant positive effect on SO, with a standardised 

regression coefficient of 𝛽𝛽=0.198 and a significance test result of 𝑝𝑝<0.050, which 

supports this path. 
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• SO has a statistically significant positive effect on SBM, with a standardised 

regression coefficient of 𝛽𝛽=0.328 and a significance test result of 𝑝𝑝<0.001, supporting 

this relationship. 

• TBL has a statistically significant positive effect on EO, with a standardised regression 

coefficient of 𝛽𝛽=0.450 and a significance test result of 𝑝𝑝<0.001, supporting this path. 

• TBL has a statistically significant positive effect on SBM, with a standardised 

regression coefficient of 𝛽𝛽=0.245 and a significance test result of 𝑝𝑝<0.010, reinforcing 

this relationship. 

• TBL has a statistically significant positive effect on SO, with a standardised regression 

coefficient of 𝛽𝛽=0.415 and a significance test result of 𝑝𝑝<0.001, supporting this path. 

 

4.3.4 Mediation and Moderation Effects 

This Section examines the mediating roles of individual EO and SO in the relationship 

between TBL and SBM. It also investigates the moderating role of DO in the pathways 

from EO and SO to SBM. Analysing mediation and moderation effects is crucial for 

understanding the dynamics among TBL, EO, SO, DO, and SBM. Mediation refers to how 

an independent variable influences a dependent variable through a mediator, clarifying 

the mechanism of action  (Baron and Kenny, 1986). In contrast, moderation examines 

how the strength or direction of a relationship changes based on a moderator variable 

(Hayes, 2017). Together, these analyses offer valuable insights into the interactions 

among different variables in this study and contribute to a more comprehensive 

understanding of behavioural phenomena. 
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4.3.4.1 Mediation Effect Analysis 

Mediation occurs when a third variable, known as the mediator, intervenes between two 

related constructs. Specifically, a change in the exogenous construct leads to a change 

in the mediator variable, which subsequently results in a change in the endogenous 

construct within the PLS-SEM path model. Thus, the mediator variable influences the 

nature of the relationship between the two constructs, as illustrated in Figure 4.3. 

 

Figure 4.3 – General Mediation Model 

 

 

Analysing the strength of the mediator variable’s relationships with other constructs 

is crucial for understanding the mechanisms underlying the cause-effect relationship 

between an exogenous construct and an endogenous construct. While the analysis can 

focus on a single mediator variable, the path model can also incorporate multiple 

mediators simultaneously. To analyse a mediator model, Zhao et al. (2010) propose a 

framework, illustrated in Figure 4.4, which Hair et al. (2022) recommend for PLS-SEM. 

This framework categorises relationships into two types of non-mediation: "direct-only 

non-mediation," where the direct effect is significant, but the indirect effect is not, and "no-

effect non-mediation," where neither effect is significant. For mediation, "complementary 

mediation" occurs when both effects are significant and point in the same direction, while 

"competitive mediation" has both effects significant but in opposite directions. "Indirect-

only mediation" is characterised by a significant indirect effect with no significant direct 

effect, indicating full mediation. 
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Figure 4.4 – Mediation Analysis Procedure 

 

 

In the research framework depicted in Figure 2.2, the TBL exogenous construct 

influences both the mediator variables EO and SO, which subsequently affect the 

endogenous construct SBM. Specifically, this model illustrates the relationships between 

TBL and EO, TBL and SO, as well as TBL, EO, and SO together impacting SBM. This 

indicates how TBL affects both EO and SO, leading to changes in SBM.  

In line with the methodological approach outlined in Section 3.1, it is crucial to 

interpret these proposed mediating pathways as statistical associations rather than 

proven causal chains. A significant mediation effect in this cross-sectional context 

indicates that the relationship between the independent and dependent variable is 

significantly accounted for by the presence of the mediator, providing support for the 

hypothesised theoretical sequence. 

The analysis calculated the effect size for each mediating effect in the model, with 

the results summarised in Table 4.21. The significance test revealed that EO influences 

SBM through SO with a p-value of less than 0.050, indicating that SO acts as a mediator 

in the relationship between EO and SBM. Additionally, TBL affects SBM through EO, also 

with a significance level of p<0.050, confirming EO's mediating role in this relationship. 
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Furthermore, the significance test for TBL's influence on SBM through both EO and SO 

yielded a p-value of less than 0.05, indicating that both EO and SO serve as mediators in 

this process. Finally, TBL's influence on SBM through SO alone was significant at p<0.001, 

reinforcing SO's role as a mediator in the relationship with TBL. As indicated in Figures 

4.3 and 4.4, all paths P1, P2, and P3 are positive and significant, suggesting that the 

mediation effects are considered complementary (Hair et al., 2023). 

 

Table 4.21 – Specific Indirect Effects 

 Original 
sample (O) 

Sample 
mean (M) 

Standard 
deviation 
(STDEV) 

T statistics 
(|O/STDEV|) P values 

TBL -> EO -> SO -> SBM 0.029 0.029 0.015 1.979 0.024 

TBL -> SO -> SBM 0.136 0.134 0.037 3.644 0.000 
TBL -> EO -> SBM 0.080 0.082 0.034 2.322 0.010 
TBL -> EO -> SO 0.089 0.089 0.04 2.207 0.014 
EO -> SO -> SBM 0.065 0.063 0.03 2.193 0.014 

 

4.3.4.2 Moderating Effect Analysis 

The moderation effect analysis investigates how DO serves as a moderator in the 

relationships between TBL and SBM, EO and SBM, and SO and SBM. This analysis 

identifies the conditions under which TBL, EO, and SO exert varying impacts on SBM. 

The results of the moderating path coefficients are presented in Table 4.22, highlighting 

how the strength or direction of these relationships changes based on the presence of the 

moderator DO (Hayes, 2017). 

 

Table 4.22 – Path Coefficients of Moderating 

 Original sample 
(O) 

Sample mean 
(M) 

Standard 
deviation 
(STDEV) 

T statistics 
(|O/STDEV|) P values 

DO x TBL -> SBM -0.091 -0.088 0.088 1.035 0.150 

DO x EO -> SBM 0.002 -0.004 0.07 0.026 0.490 
DO x SO -> SBM 0.153 0.153 0.078 1.969 0.024 
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The standardised regression coefficient for the interaction term between DO and TBL 

on SBM is 𝛽𝛽 = −0.091, showing no significant regression effect, as evidenced by a 

significance test result of 𝑝𝑝=0.150 (greater than 0.050). Similarly, the standardised 

regression coefficient for the interaction term between DO and EO on SBM is 𝛽𝛽=0.002, 

also indicating no significant regression effect, with a significance test result of 𝑝𝑝=0.490 

(greater than 0.050), which does not support this path either. In contrast, the standardised 

regression coefficient for the interaction term between DO and SO on SBM is 𝛽𝛽=0.153 

indicating a significant positive regression effect, with a significance test result of 𝑝𝑝=0.024 

(less than 0.050), supporting this path. This suggests that DO plays a significant positive 

moderating role in the relationship between SO and SBM, as illustrated in the simple slope 

graph in Figure 4.5. 

 

Figure 4.5 – DO x SO Simple Slope Analysis 

 
 

As illustrated in Figure 4.5, the red line represents the relationship between SO and 

SBM when the mean of DO is low, the blue line corresponds to the mean level of DO, and 

the green line reflects the situation when DO is high. As DO increases from low to high, 

the angle between the lines and the horizontal axis rises, indicating a steeper slope. This 

suggests that the positive relationship between SO and SBM strengthens with increasing 
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levels of DO, demonstrating that the moderating variable enhances the positive 

association between SO and SBM from a weak to a strong effect. 

The structural model assessment evaluates the relationships among constructs, 

confirming their validity through techniques like bootstrapping. Significant paths between 

TBL, EO, SO, and SBM are revealed. The mediating analysis shows that EO and SO 

enhance the impact of TBL on SBM, clarifying the mechanisms involved. Additionally, the 

moderating analysis examines the role of DO, demonstrating that while DO strengthens 

the connection between SO and SBM, it does not significantly affect the relationships 

between TBL and SBM or EO and SBM. Together, these analyses offer a comprehensive 

understanding of the dynamics in sustainable BMI. 

 

4.4 Multigroup Analysis 

In the AEC industry, the effective use of digital technology is vital for driving transformation 

and enhancing value creation. This Section presents a multigroup analysis (MGA) 

conducted using SmartPLS 4.0 to examine the differences between two distinct groups: 

Design and Planning (Design), and Construction and Project Management (Construction).  

The primary objective of this analysis is to test the hypothesis that the Design and 

Planning group utilises digital technology more extensively than the Construction and 

Project Management group. This hypothesis is based on the premise that the Design 

group operates at the forefront of the AEC value chain, uniquely positioning them to create 

value and influence subsequent stages of the project lifecycle. Additionally, this analysis 

will explore the roles of various determinants that contribute to achieving DT within these 

groups. The guidelines for running MGA in PLS-SEM is illustrated in Figure 4.6 (Cheah et 

al., 2020). 
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Figure 4.6 – Guidelines for Running MGA in PLS-SEM 

 

 

4.4.1 Data Preparation by Generating Data Groups 

This Section addresses data preparation and the generation of data groups for MGA. In 

SmartPLS, creating data groups is a simple and efficient process that facilitates the 

segmentation of responses. For this study, we will generate separate data groups for 

Design and Construction, ensuring each group is adequately prepared for further analysis. 

It is essential to first ascertain that the number of observations in each group meets 

the minimum sample size requirements necessary to ensure statistical power. The most 

widely used method for estimating minimum sample size in PLS-SEM is the "10-fold rule" 

approach (Hair et al., 2022; Peng and Lai, 2012). For the model depicted in Figure 4.2, 

applying the 10-fold rule results in a minimum sample size of 30. 

Hair et al. (2022) contend that the 10-fold rule serves as a rough guideline for 

determining minimum sample size. In PLS-SEM, it is vital to evaluate sample size in the 

context of the model and its data characteristics, which should be informed by power 

analyses focusing on the section of the model with the highest number of predictors. They 

also suggest following a rule established by Cohen (2013) that incorporates statistical 
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power analysis for multiple regression models and outer loading values. Table 4.23 

outlines the minimum sample size requirements to detect R² values of 0.1, 0.25, 0.5, and 

0.75 in endogenous constructs within the structural model. This table considers 

significance levels of 1%, 5%, and 10%, with a statistical power of 80% across varying 

levels of PLS-SEM model complexity. For models with a maximum of three independent 

variables, only 45 samples are necessary to achieve 80% statistical power for an R² value 

of at least 0.25 at a 5% significance level. In some cases, 37 samples may also suffice. 

 

Table 4.23 – Sample Size in PLS-SEM for Statistical Power of 80%  

 

 

In this study, the total number of responses is 158, with 95 from Design and Planning 

and 63 from Construction and Project Management. Both groups exceed the necessary 

thresholds of 30 and 37, ensuring adequate statistical power for subsequent analyses. 

Additionally, the dataset does not present any issues with missing values, reliability, or 

validity. 

 

4.4.2 Multigroup Model Assessment 

4.4.2.1 Reliability and Convergent Validity 

The assessment of the measurement model adheres to the criteria outlined in Section 

4.2.3 for both reflective and formative constructs. Table 4.24 presents the evaluation of 

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

2 72 26 11 7 90 33 14 8 130 47 10 10

3 83 30 13 8 103 37 16 9 145 53 22 12

4 92 34 15 9 113 41 18 11 158 58 24 14

5 99 37 17 10 122 45 20 12 169 62 26 15

6 106 40 18 12 130 48 21 13 179 66 28 16

7 112 42 20 13 137 51 23 14 188 69 30 18

8 118 45 21 14 144 54 24 15 196 73 32 19

9 124 47 22 15 150 56 26 16 204 76 34 20

10 129 49 24 16 156 59 27 18 212 79 35 21

Maximum Number of 
Arrows Pointing at a 
Construct (Number of 
Independent Variables)

Significance Level

10% 5% 1%

Minimum R2Minimum R2Minimum R2
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reliability and convergent validity for the reflective constructs. As the complete dataset 

was examined in the previous section, this Section focuses on the assessment of the two 

groups: Design and Construction. 

 
 
Table 4.24 – Multigroup Reliability and Convergent Validity  

Variables Factor Outer 
Loadings 

Cronbach's 
alpha 

Composite 
reliability 
(rho_a) 

Composite 
reliability 
(rho_c) 

Average 
variance 
extracted 
(AVE) 

Complete Data Set 

DO 
DO-Strat 0.898 

0.754 0.754 0.890 0.803 
DO-Vision 0.893 

EO 
EO-Inno 0.868 

0.707 0.731 0.836 0.631 EO-Pro 0.727 
EO-Risk 0.781 

SBM 
SBM-Revenue 0.813 

0.741 0.760 0.852 0.659 SBM-ValueArch 0.862 
SBM-Valueoff 0.756 

SO 
SO-Culture 0.892 

0.749 0.749 0.888 0.799 
SO-Practices 0.896 

Design and Planning (Design) 

DO 
DO-Strat 0.895 

0.793 0.807 0.906 0.827 
DO-Vision 0.925 

EO 
EO-Inno 0.862 

0.694 0.708 0.831 0.622 EO-Pro 0.716 
EO-Risk 0.780 

SBM 
SBM-Revenue 0.794 

0.741 0.752 0.852 0.657 SBM-ValueArch 0.841 
SBM-Valueoff 0.797 

SO 
SO-Culture 0.920 

0.808 0.809 0.912 0.839 
SO-Practices 0.912 

Construction and Project Management (Construction) 

DO 
DO-Strat 0.906 

0.670 0.709 0.856 0.748 
DO-Vision 0.823 

EO 
EO-Inno 0.884 

0.707 0.786 0.832 0.625 EO-Pro 0.702 
EO-Risk 0.775 

SBM 
SBM-Revenue 0.847 

0.742 0.798 0.853 0.662 SBM-ValueArch 0.901 
SBM-Valueoff 0.670 

SO 
SO-Culture 0.922 

0.566 0.567 0.822 0.697 
SO-Practices 0.747 
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For the Design group, all outer loadings, Cronbach's alpha, CR, and AVE exceeded 

their respective thresholds. Specifically, outer loadings should be greater than 0.70, 

Cronbach's alpha should be above 0.70, CR should also exceed 0.70, and AVE should be 

greater than 0.50. These results indicate that the model demonstrates strong reliability 

and validity. 

In contrast, the Construction group has two outer loadings below 0.70, with the lowest 

being 0.67. Additionally, the Cronbach’s alpha for DO is 0.67, and for SO, it is 0.566, both 

below the threshold of 0.70. The CR for SO is 0.567 (rho_a), while the overall CR (rho_c) 

is 0.822, which is considered acceptable. The AVE for all constructs is above the threshold 

of 0.50. 

For outer loadings between 0.40 and 0.70, Hair et al. (2022) recommend examining 

CR and AVE. If the AVE meets the minimum threshold of 0.50, the indicators can be 

retained. Although Cronbach's Alpha is below the acceptable level, the CR (rho_c) for SO 

suggests that the construct may still reliably measure the underlying concept. 

Given that both constructs are crucial to the study, it is advisable to retain them for 

analysis while acknowledging their questionable reliability. These limitations have been 

taken into account when interpreting results related to these constructs. 

 

4.4.2.2 Discriminant Validity  

The assessment method for discriminant validity employed the HTMT. The findings 

indicate in Table 4.25 show that all values are below the threshold of 0.85, confirming that 

both groups exhibit discriminant validity. 

 

  



 Page 127  

Table 4.25 – Multigroup Heterotrait-Monotrait Ratio Matrix 

 DO EO SBM SO DO x TBL DO x SO DO x EO 
Complete Data Set 
DO        

EO 0.187       

SBM 0.411 0.586      

SO 0.084 0.523 0.717     

DO x TBL 0.240 0.202 0.149 0.115    

DO x SO 0.221 0.177 0.027 0.043 0.696   

DO x EO 0.172 0.211 0.153 0.166 0.731 0.583  

Design and Planning (Design) 
DO 

       

EO 0.19 
      

SBM 0.338 0.68 
     

SO 0.086 0.567 0.743 
    

DO x TBL 0.243 0.172 0.152 0.073 
   

DO x SO 0.145 0.181 0.096 0.068 0.748 
  

DO x EO 0.175 0.079 0.08 0.036 0.771 0.604 
 

Construction and Project Management (Construction) 
DO 

       

EO 0.172 
      

SBM 0.569 0.46 
     

SO 0.226 0.38 0.747 
    

DO x TBL 0.249 0.379 0.254 0.349 
   

DO x SO 0.146 0.285 0.286 0.366 0.781 
  

DO x EO 0.227 0.333 0.072 0.151 0.471 0.513 
 

 
 
4.4.2.3 Formative Construct Assessment  

For the formative construct, the assessment metrics for the TBL for both groups and the 

complete dataset are listed in Table 4.26. The outer weights of the formative items indicate 

their contribution to the HOC. Typically, outer weights above 0.20 are considered 

significant (Chin, 1998). However, in the Construction group, the outer weight for TBL-

People is 0.141, which falls below this threshold. This indicates that the contribution of 

TBL-People to the HOC is not considered significant. 
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Table 4.26 – Multigroup Assessment Metrics for the TBL Formative Construct 

 Complete Data Set Design and Planning 
(Design) 

Construction and 
Project Management 

(Construction) 

Items  Outer 
Weight VIF p-

value 
Outer 

Weight VIF p-
value 

Outer 
Weight VIF p-

value 

TBL-People 0.316 1.626 0.014 0.386 1.784 0.002 0.141 1.792 0.382 
TBL-Planet 0.404 1.710 0.002 0.478 1.614 0.000 0.639 2.104 0.103 
TBL-Profit 0.490 1.435 0.000 0.306 1.906 0.011 0.424 1.259 0.094 

 

The VIF values for both the Design and Construction groups suggest low 

multicollinearity among the items. Generally, VIF values below 5 are acceptable, with 

values below 3 deemed excellent (Hair et al., 2022). 

In the Design group, all p-values are below the critical threshold of 0.050, indicating 

that each indicator significantly contributes to the HOC. Conversely, the analysis of the 

Construction group revealed that the p-values for three key items were not significant. 

Although the VIF values for these items are acceptable, indicating no multicollinearity 

concerns, the lack of statistical significance suggests that other factors may be influencing 

the results. A critical limitation is the sample size of the Construction group (n=63), which 

reduces the statistical power of the analysis (Cohen, 2013). Consequently, the non-

significant findings for this subgroup may be attributable to a Type II error, where a true 

underlying effect is not detected due to insufficient data. 

While the findings highlight non-significant relationships for these items, it is essential 

to consider the impact of sample size on the results. Additionally, these non-significant 

results may indicate that the construct does not operate effectively within the Construction 

group or that external factors may be influencing the outcomes (Bagozzi and Yi, 1988; 

Hair et al., 2023). Due to the smaller sample size in the Construction group, interpretation 

of non-significant paths should be made cautiously, as statistical power may be limited. 
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4.4.2.4 Structural Model Collinearity 

The first step involves using the VIF to assess collinearity within the structural model. 

Table 4.27 displays the inner VIF values for the two groups and the complete dataset. The 

results indicate that the tolerance values are significantly below the VIF threshold of 5.00, 

which suggests collinearity among the predictor constructs  Furthermore, most VIF 

values are below 3.00, indicating an excellent level of collinearity (Hair et al., 2022), and 

there is no indication of strong CMB. 

 

Table 4.27 – Multigroup Collinearity (VIF) 

 Complete Data Set Design and Planning 
(Design) 

Construction and Project 
Management (Construction) 

DO -> SBM 1.109 1.102 1.164 

EO -> SBM 1.334 1.517 1.27 

EO -> SO 1.253 1.497 1.071 

SO -> SBM 1.431 1.818 1.195 

TBL -> EO 1.000 1.000 1.000 

TBL -> SBM 1.571 2.322 1.292 

TBL -> SO 1.253 1.497 1.071 

DO x TBL -> SBM 2.847 3.734 3.033 

DO x SO -> SBM 2.015 2.304 3.146 

DO x EO -> SBM 2.236 2.526 1.466 

 

4.4.2.5 R² Assessment 

The R² values provide insights into the proportion of variance in each dependent variable 

that is explained by the independent variables in the model. Table 4.28 shows the R² and 

adjusted R² values for the Design group, Construction group, and the complete dataset. 

 
Table 4.28 – Multigroup R Square 

 
Complete Data Set Design and Planning 

(Design) 
Construction and Project 

Management (Construction) 

R-square R-square 
adjusted R-square R-square 

adjusted R-square R-square 
adjusted 

EO 0.202 0.197 0.332 0.325 0.066 0.051 
SBM 0.475 0.450 0.500 0.460 0.567 0.512 
SO 0.285 0.276 0.438 0.426 0.084 0.054 
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Design Group: 

• The R² of EO is 0.332 that means approximately 33.2% of the variance in EO is 

explained by the independent variables. This indicates a moderate level of 

explanatory power, suggesting that the model captures some key factors influencing 

EO. The adjusted R² is slightly lower, reflecting the number of predictors in the model. 

It suggests that the model remains relevant after adjusting for the number of 

variables. 

• The R² of SBM is 0.500 that explains 50% of the variance in SBM, indicating a strong 

level of explanatory power. This suggests that the independent variables are highly 

relevant in understanding SBM in the Design group. The adjusted R² value indicates 

that the model remains effective after accounting for the number of predictors. 

• The R² of SO is 0.438 that means approximately 43.8% of the variance in SO is 

explained, indicating a good level of explanatory power. The adjusted R² confirms 

the model's effectiveness after accounting for predictors. 

 

Construction Group: 

• The R² of EO is 0.066 meaning only 6.6% of the variance in EO is explained, 

indicating a low level of explanatory power. This suggests that many other factors 

not included in the model may significantly influence EO in this group. The adjusted 

R² further emphasises the limited effectiveness of the model for EO, as it accounts 

for the number of predictors. 

• The R² of SBM is 0.567 that strong value shows that 56.7% of the variance in SBM 

is explained, indicating an effective model for this group. The adjusted R² suggests 

that the model still explains a substantial amount of variance after adjusting for the 

number of predictors. 

• The R² of SO is 0.084 that explains only 8.4% of the variance in SO, indicating a 
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low level of explanatory power. This suggests that many other factors may 

significantly influence SO in this group. The adjusted R² further emphasises the 

limited effectiveness of the model for SO. 

The Design group exhibits strong explanatory power for SBM and SO, while EO 

shows moderate effectiveness. In contrast, the Construction group reveals low 

explanatory power for EO and SO yet demonstrates strong explanatory power for SBM. 

Although the R² values for certain constructs, such as EO and SO in the Construction 

group, are low, this does not exclude the possibility of conducting analysis. MGA path 

analysis can provide insights into how relationships vary between groups, even if some 

constructs account for less variance. Additionally, the smaller sample sizes in the 

Construction group may impact the reliability of the results, especially for constructs with 

low R² values. 

 

4.2.4.6 Q² Assessment 

the Q² values indicate varying levels of predictive relevance across constructs and groups. 

Table 4.29 shows the multigroup Q2 assessment values.  

 
Design Group 

• It shows moderate to strong predictive relevance for EO, SBM, and SO with all 

values are greater than 0.  

 
Construction Group 

• The Construction group exhibits negative predictive relevance for EO and SO, 

indicating the model does not effectively explain their variance. However, SBM 

shows moderate predictive relevance. Despite the low Q² values for EO and SO, 

multigroup path analysis can still reveal insights into how relationships differ 

between groups. Additionally, smaller sample sizes may affect the reliability of 

results, particularly for constructs with low Q² values. 
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Table 4.29 – Multigroup Q2 Sheet 

   

Complete Design Construction 

SSO SSE 
Q²(=1-

SSE/SS
O) 

SSO SSE 
Q² (=1-
SSE/SS

O) 
SSO SSE 

Q² (=1-
SSE/SS

O) 

DO 316 316.000  190 190.000  126 126.000  

EO 474 420.785 0.112 285 230.064 0.193 189 189.414 -0.002 
SBM 474 337.719 0.288 285 206.910 0.274 189 142.035 0.248 
SO 316 250.570 0.207 190 123.561 0.35 126 128.637 -0.021 
TBL 474 474.000  285 285.000  189 189.000  

 

 

4.4.3 Measurement Invariance Test using MICOM 

This step focuses on evaluating measurement invariance in PLS-SEM. Measurement 

invariance, also known as measurement equivalence, confirms that the measurement 

models accurately represent the same attribute under varying conditions (Henseler et al., 

2015). Variations in path coefficients (β values) between latent variables may arise from 

different interpretations by respondents, rather than genuine differences in structural 

relationships. Hult et al. (2008) emphasise that failing to establish invariance can result in 

low statistical power, imprecise estimators, and potentially misleading conclusions. 

Therefore, assessing measurement invariance is essential prior to conducting MGA, as it 

ensures that group differences in model estimates are not influenced by distinct meanings 

attributed to latent variables. 

To enhance the validity of results, Henseler et al. (2015) introduced the Measurement 

Invariance of Composite Models (MICOM) procedure, which aligns with the principles of 

composite modelling in PLS-SEM. The MICOM procedure, illustrated in Figure 4.7, 

consists of three key steps: (i) assessing configural invariance (Step I), (ii) evaluating 

compositional invariance (Step II), and (iii) examining the equality of composite mean 

values and variances across groups (Step III) (see Hair et al. (2023) for detailed 

explanations). 
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Figure 4.7 – The Measurement Invariance of Composite Models Procedure 

 

 

If both configural invariance and compositional invariance are confirmed, partial 

measurement invariance is established, allowing for the comparison of path coefficients 

using MGA. Full measurement invariance is achieved when composites exhibit equal 

means and variances across groups, enabling data pooling and potentially increasing 

statistical power, thus making MGA unnecessary (Henseler et al., 2015). However, if 

partial measurement invariance is confirmed, the researcher can proceed with MGA. 

The MICOM analysis was conducted using the SmartPLS feature. The results are 

detailed under the Quality Criteria → MICOM section, which includes three tabs: Step 2, 

Step 3a (Variances), and Step 3b (Means). 

Step 2 evaluates the stability of the measurement model across groups by examining 

original correlations and permutation means. As shown in Table 4.30, all constructs 

maintain measurement invariance across groups, indicating stable relationships. The high 

original correlations reflect strong relationships within the groups. Additionally, the 

permutation p-values, all exceeding 0.05, suggest that there are no significant 

measurement differences across the groups for any of the constructs. These results 
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confirm measurement invariance, allowing for valid group comparisons. Consequently, 

the results of Step 2 support only partial measurement invariance. 

 

Table 4.30 – MICOM Step 2 Result 

 Original 
correlation 

Correlation 
permutation 

means 
5.00% Permutation 

p value 

DO 0.994 0.989 0.957 0.428 

EO 0.996 0.992 0.975 0.599 

SBM 0.997 0.997 0.991 0.371 

SO 1.000 0.997 0.99 0.721 

TBL 0.979 0.944 0.831 0.683 

 

Table 4.31 presents the results of Step 3a (Variance), which evaluates whether 

significant differences exist in the variances of constructs between groups. For DO, the p-

value (0.023) indicates a significant variance difference, suggesting that responses 

regarding DO vary more widely between groups. Likewise, for SO, the p-value (0.017) 

indicates significant variance differences, meaning perceptions of SO are more variable 

across groups. Conversely, constructs such as EO, SBM, and TBL do not show significant 

variance differences, indicating consistency in perceptions across groups for these 

constructs. 

 

Table 4.31 – MICOM Step 3a (Variance) Results 

 Original 
difference 

Permutation 
mean 

difference 
2.50% 97.50% Permutation 

p value 

DO 0.457 0.005 -0.352 0.382 0.023 

EO 0.102 0.023 -0.382 0.463 0.369 

SBM -0.164 0.011 -0.328 0.375 0.213 

SO 0.556 0.012 -0.376 0.435 0.017 

TBL 0.196 0.016 -0.397 0.459 0.230 
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Step 3b (Means) is presented in Table 4.32. This step assesses whether significant 

differences exist in the means of the constructs between groups. The results indicate that 

for EO, the p-value (0.009) reveals a significant means difference, suggesting differing 

perceptions of EO between the groups. Similarly, for SO, the p-value (0.011) also 

indicates a significant difference. In contrast, other constructs such as DO, SBM, and TBL 

show no significant means differences, as their p-values are above 0.050. 

 
Table 4.32 – MICOM Step 3b (Means) Results 

 Original 
difference 

Permutation 
mean 

difference 
2.50% 97.50% Permutation 

p value 

DO -0.106 0.002 -0.295 0.289 0.261 

EO -0.409 -0.005 -0.295 0.278 0.009 

SBM -0.08 -0.002 -0.272 0.262 0.318 

SO -0.364 -0.001 -0.267 0.288 0.011 

TBL 0.009 -0.005 -0.271 0.274 0.469 

 

Given that the results from Step 3 concluded that not all composite means values 

and variances were equal, only partial measurement invariance is supported. Therefore, 

it is appropriate to confidently compare standardised path coefficients across the groups 

through MGA in PLS-SEM. 

 

4.4.4 Test of MGA Comparisons 

Once partial measurement invariance is established using MICOM, the next step is to 

assess group differences through MGA in SmartPLS. This analysis allows for the 

comparison of parameters such as path coefficients, outer weights, and outer loadings 

between the Design and Planning groups and the Construction and Project Management 

groups. 

SmartPLS offers five different approaches for group comparisons based on 

bootstrapping (Hair et al., 2023): Henseler's Bootstrap-Based MGA (Henseler et al., 2009); 

Parametric Test (Keil et al., 2000); Welch-Satterthwaite Test (Welch, 1947); Permutation 
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Test (Chin and Dibbern, 2009) which can be estimated using the MICOM path coefficient 

option in SmartPLS; Omnibus Test of Group Differences (OTG) (Sarstedt et al., 2021), 

suitable for comparing more than two groups. 

In this study, the MICOM path coefficient method is utilised, and the results from the 

permutation multigroup analysis provide insights into the differences in path coefficients 

between the Design and Construction groups, as shown in Table 4.33. 

 

Table 4.33 – Permutation Multigroup Analysis: Path Coefficients 

 Original 
(Design) 

Original 
(Construction) 

Original 
difference 

Permutation 
mean 

difference 
5.00% 95.00% Permutation 

p value 
DO -> 
SBM 0.168 0.400 -0.232 0.005 -0.218 0.241 0.042 

EO -> 
SBM 0.196 0.185 0.010 0.012 -0.210 0.235 0.507 

EO -> SO 0.064 0.242 -0.178 0.006 -0.291 0.298 0.159 
SO -> 
SBM 0.293 0.424 -0.131 0.005 -0.245 0.258 0.191 

TBL -> EO 0.576 0.258 0.319 -0.006 -0.280 0.298 0.041 
TBL -> 
SBM 0.261 0.278 -0.018 -0.011 -0.295 0.248 0.485 

TBL -> SO 0.623 0.110 0.513 -0.003 -0.242 0.253 0.002 
DO x TBL 
-> SBM -0.152 0.063 -0.215 -0.016 -0.329 0.291 0.151 

DO x EO   
-> SBM 0.041 -0.072 0.114 0.015 -0.237 0.277 0.242 

DO x SO 
-> SBM 0.177 0.131 0.045 0.004 -0.280 0.300 0.404 

 

• DO → SBM: The path coefficient is significantly higher in the Construction group. 

The permutation p-value (0.042) indicates a significant difference, suggesting that 

the impact of DO on SBM is stronger in Construction than in Design. 

• EO → SBM: The difference is minimal (0.010) and not statistically significant (p-

value = 0.507), indicating that EO has a similar impact on SBM across both groups. 

• EO → SO: The significant difference (-0.178) suggests that EO influences SO more 

strongly in Construction, but the p-value (0.159) indicates this difference is not 

statistically significant. 
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• SO → SBM: Although the path coefficient is higher in Construction, the difference (-

0.131) is not statistically significant (p-value = 0.191), indicating similar impacts 

across the groups. 

• TBL → EO: The large positive difference (0.319) coupled with a significant p-value 

(0.041) suggests that the TBL has a stronger influence on EO in the Design group 

compared to Construction. 

• TBL → SBM: The difference is negligible (-0.018) and not statistically significant (p-

value = 0.485), indicating similar influences on SBM. 

• TBL → SO: The significant difference (0.513) and a very low p-value (0.002) indicate 

that the TBL has a much stronger effect on SO in the Design group compared to 

Construction. 

• DO x TBL → SBM: The difference (-0.215) is not statistically significant (p-value = 

0.151), indicating no strong interaction effect between DO and TBL on SBM. 

• DO x EO → SBM: The small difference (0.114) and a p-value of 0.242 suggest no 

significant interaction between DO and EO on SBM. 

• DO x SO → SBM: The negligible difference (0.045) and a p-value of 0.404 indicate 

no significant interaction effect. 

The analysis reveals that there are significant differences in path coefficients 

primarily for DO to SBM and TBL to SO, indicating that these relationships vary 

meaningfully between the Design and Construction groups. Other relationships show 

similar influences across groups, suggesting that while some aspects of digital and 

sustainability strategies differ between groups, others remain consistent. This insight can 

inform targeted strategies for leveraging digital technology and sustainability initiatives 

within each group. 
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4.4.5 Multigroup Path Coefficients 

4.4.5.1 Path Coefficients 

The parameter estimates (e.g., outer weights, outer loadings, and path coefficients) 

derived from these subsamples are used to calculate standard errors for the estimates for 

each group. With this information, t-values are computed to evaluate the significance of 

each estimate. Table 4.34 presents the results of the path coefficients and structural 

relationships. 

 

Table 4.34 – Multigroup Path Coefficients 

 Original sample 
(O) 

Sample mean 
(M) 

Standard 
deviation 
(STDEV) 

T statistics 
(|O/STDEV|) P values 

Complete Data Set  

 DO -> SBM 0.239 0.238 0.064 3.73 0.000 

EO -> SBM 0.178 0.179 0.063 2.824 0.002 

EO -> SO 0.198 0.196 0.081 2.441 0.007 

SO -> SBM 0.328 0.322 0.07 4.656 0.000 

TBL -> EO 0.450 0.455 0.084 5.364 0.000 

TBL -> SBM 0.245 0.250 0.079 3.106 0.001 

TBL -> SO 0.415 0.418 0.074 5.607 0.000 

Design and Planning (Design) 
DO -> SBM 0.167 0.161 0.089 1.883 0.030 

EO -> SBM 0.195 0.195 0.101 1.935 0.027 

EO -> SO 0.064 0.056 0.115 0.554 0.290 

SO -> SBM 0.293 0.274 0.11 2.647 0.004 

TBL -> EO 0.576 0.579 0.085 6.816 0.000 

TBL -> SBM 0.261 0.28 0.136 1.924 0.027 

TBL -> SO 0.623 0.629 0.091 6.838 0.000 
Construction and Project Management (Construction) 

 DO -> SBM 0.398 0.428 0.106 3.743 0.000 

EO -> SBM 0.189 0.169 0.101 1.878 0.030 

EO -> SO 0.242 0.24 0.188 1.287 0.099 

SO -> SBM 0.422 0.432 0.099 4.285 0.000 

TBL -> EO 0.258 0.289 0.184 1.403 0.080 

TBL -> SBM 0.281 0.281 0.157 1.788 0.037 

TBL -> SO 0.110 0.147 0.162 0.678 0.249 
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The analysis reveals distinct path coefficients and significance levels between the 

Design and Construction groups. In the Design group, most relationships are significant, 

particularly the strong influence of TBL on both EO and SO. Key significant paths include 

DO -> SBM, EO -> SBM, and SO -> SBM, demonstrating effective connections among 

these constructs. In contrast, the Construction group shows significant paths for DO -> 

SBM, EO -> SBM, and SO -> SBM, while EO -> SO and TBL -> SO are not significant. 

These findings underscore the varying influences of constructs across the two groups, 

suggesting that strategies for achieving sustainable BMI differ. 

 

4.4.5.2 Mediation Effects 

The mediator effects of EO and SO influences the nature of the relationship between the 

TBL and SBM for each group as shown in Table 4.35.  

 
Table 4.35 – Multigroup Specific Indirect Effects 

 Original 
sample (O) 

Sample 
mean (M) 

Standard 
deviation 
(STDEV) 

T statistics 
(|O/STDEV|) P values 

Complete Data Set  
TBL -> EO -> SO -> SBM 0.029 0.029 0.015 1.979 0.024 
TBL -> SO -> SBM 0.136 0.134 0.037 3.644 0.000 
TBL -> EO -> SBM 0.080 0.082 0.034 2.322 0.010 
TBL -> EO -> SO 0.089 0.089 0.04 2.207 0.014 
EO -> SO -> SBM 0.065 0.063 0.03 2.193 0.014 
Design and Planning (Design) 
TBL -> EO -> SO -> SBM 0.029 0.029 0.015 1.979 0.024 
TBL -> SO -> SBM 0.136 0.134 0.037 3.644 0.000 
TBL -> EO -> SBM 0.080 0.082 0.034 2.322 0.010 
TBL -> EO -> SO 0.089 0.089 0.04 2.207 0.014 
EO -> SO -> SBM 0.065 0.063 0.03 2.193 0.014 
Construction and Project Management (Construction) 
TBL -> EO -> SO -> SBM 0.029 0.029 0.015 1.979 0.024 
TBL -> SO -> SBM 0.136 0.134 0.037 3.644 0.000 
TBL -> EO -> SBM 0.080 0.082 0.034 2.322 0.010 
TBL -> EO -> SO 0.089 0.089 0.04 2.207 0.014 
EO -> SO -> SBM 0.065 0.063 0.03 2.193 0.014 
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In the Design group, significant paths include TBL -> SO -> SBM and TBL -> EO -> 

SBM, indicating meaningful relationships. However, paths involving TBL -> EO -> SO -> 

SBM and EO -> SO -> SBM are not significant. In the Construction group, all paths are 

not significant, suggesting limited predictive power in these relationships. These findings 

highlight the differing influences of constructs between the two groups, indicating that 

strategies may need to be adjusted accordingly. 

 

4.4.5.3 Multigroup Moderating Effect Analysis 

The analysis of the moderating effects for each group is presented in Table 4.36. In the 

Design group, the interaction between DO and SO shows a marginally significant effect 

on SBM, while interactions with TBL and EO are not significant. Conversely, all 

interactions in the Construction group lack significance, indicating limited predictive power. 

These findings suggest some influence in the Design group, whereas the Construction 

group reveals no significant interactions, emphasising the need for tailored strategies in 

each context. 

 
Table 4.36 – Multigroup Path Coefficients of Moderating 

 Original sample 
(O) 

Sample mean 
(M) 

Standard 
deviation 
(STDEV) 

T statistics 
(|O/STDEV|) P values 

Complete Data Set 
DO x TBL -> SBM -0.091 -0.088 0.088 1.035 0.150 
DO x EO -> SBM 0.002 -0.004 0.07 0.026 0.490 
DO x SO -> SBM 0.153 0.153 0.078 1.969 0.024 
Design and Planning (Design) 
DO x TBL -> SBM -0.151 -0.157 0.134 1.126 0.130 
DO x EO -> SBM 0.041 0.034 0.114 0.362 0.359 
DO x SO -> SBM 0.176 0.184 0.131 1.345 0.089 
Construction and Project Management (Construction) 
DO x TBL -> SBM 0.062 0.053 0.183 0.337 0.368 
DO x EO -> SBM -0.071 -0.083 0.149 0.478 0.316 
DO x SO -> SBM 0.132 0.076 0.107 1.238 0.108 
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Notably, the marginally significant interaction between DO and SO in the Design 

group mirrors the pattern observed in the complete dataset (Figure 4.8). As DO increases 

from low to high, the angle between the lines and the horizontal axis rises, indicating a 

steeper slope. This suggests that the positive relationship between SO and SBM 

strengthens with higher levels of DO, demonstrating that the moderating variable 

enhances the association between SO and SBM, shifting it from weak to strong. 

 

Figure 4.8 – Design Group DO x SO Simple Slope Analysis 

 

 

4.5 Concluding Remark 

The structure of this Chapter consists of two major analytical blocks: base model analysis 

and multigroup analysis. The first part examines the overall fit of the research model (first-

order and higher-order) for the measurement and structural models based on reflective 

and formative first order constructs. Among other aspects, discriminant validity as well as 

the collinearity of the model are also confirmed by the analysis. 

Among the others, discriminant validity as well as collinearity of model are also 

confirmed by the analysis. Structural path coefficient analysis provides very strong support 

for most of the study’s hypothesised relationships. 
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The second part of the second section performs a multigroup analysis comparing the 

Design and Planning group (Design) to the Construction and Project Management group 

(Construction). Substantial discrepancies among sustainable BMI appear to be indicated 

between the two groups, however, the rather small sample size in the Construction group 

may lead to the biased results. A more detailed discussion will be presented in Discussion 

Chapter. 

Findings from the Structural model reveal that the positive effect of TBL positively 

influences both EO and SO, which in turn result in SBM Innovation. TBL demonstrates 

direct effects on SO (0.415) and EO (0.450), and both mediators contribute significantly 

to SBM (0.136 for SO and 0.080 for EO). The effects of DO are otherwise, except for the 

interaction of DO x SO also not significantly affecting SBM (0.153). This evidence points 

to the importance of DO in driving the development of sustainable business practices and 

provides grounds for future investigation of the moderating role of DO. Summary of 

hypotheses can be found in Table 4.37. 

 

Table 4.37 – Hypothesis Testing Summary 

Hypothesis Path Coefficient p-value Result 

H1 TBL→SBM 0.245 0.001 Supported 

H2 TBL→SO 0.415 0.000 Supported 

H3 TBL→EO 0.450 0.000 Supported 

H4 TBL→SO→SBM 0.136 0.000 Supported 

H5 TBL→EO→SBM 0.080 0.010 Supported 

H6 EO→SO→SBM 0.065 0.014 Supported 

H7 DO→SBM 0.239 0.000 Supported 

H7a DO×TBL→SBM -0.091 0.150 Not Supported 

H7b DO×EO→SBM 0.002 0.490 Not Supported 

H7c DO×SO→SBM 0.153 0.024 Supported 
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The findings from this chapter confirm the theoretical model developed in the 

Literature Review chapter and lay the groundwork for the practical guidance presented in 

the Discussion chapter. In general, the results highlight the strategic need to combine 

digital capabilities with sustainability to promote innovation and long-term competitiveness 

in the AEC sector.  
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DISCUSSION 

This Chapter synthesises the key empirical findings from the chapter on Analysis and 

Results and interprets them within the context of established theoretical and conceptual 

frameworks. It begins by discussing the core results, focusing on how TBL-aligned digital 

traits influence SBM innovation in the AEC industry. 

 

5.1 Discussion of Key Findings 

This study investigated the impact of TBL traits on SBM, with EO and SO as mediating 

mechanisms, and DO as a moderator. The findings from the structural equation modelling 

and multigroup analysis provide several important insights. 

 

5.1.1 TBL’s Influence on SBM (H1) 

The results confirm that TBL traits have a significant positive effect on SBM (β = 0.245, p 

= 0.001), supporting H1. This supports the proposition that digital technologies such as 

BIM, IoT, and AI—when aligned with sustainability goals—can drive innovation that 

creates value across economic, environmental, and social dimensions (Bocken et al., 

2014; Elkington, 1997). 

 

5.1.2 TBL’s Influence on SO and EO (H2, H3) 

TBL traits positively influenced SO (β = 0.415, p < 0.001) and EO (β = 0.450, p < 0.001), 

confirming H2 and H3. These results suggest that sustainability-aligned digital tools 

cultivate a culture of innovation and stakeholder engagement (Claudy et al., 2016), 

reinforcing the synergy between sustainability and entrepreneurship (Vrontis et al., 2022). 
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5.1.3 Mediation Effects (H4, H5, H6) 

The mediation analyses revealed significant indirect relationships, consistent with the 

proposed theoretical model: 

• TBL → SO → SBM (β = 0.136, p < 0.001) 

• TBL → EO → SBM (β = 0.080, p = 0.010) 

• EO → SO → SBM (β = 0.065, p = 0.014) 

These findings support the layered mediation model, suggesting that the influence of 

TBL-aligned digital traits on SBM is not purely direct. Instead, a significant part of this 

relationship is statistically accounted for by the firm's internal EO and SO. This indicates 

that EO and SO are crucial mechanisms through which the value of digital sustainability 

initiatives is associated with innovative business models. 

 

5.1.4 DO Direct and Moderating Effects (H7, H7a–H7c) 

DO had a significant direct effect on SBM (β = 0.239, p < 0.001), confirming H7. Among 

the moderation effects, only the interaction between DO and SO was significant (β = 0.153, 

p = 0.024), suggesting that digital maturity strengthens the relationship between 

sustainability culture and innovation (Verhoef et al., 2021). 

 

5.1.5 Multigroup Analysis: Design vs. Construction 

Multigroup comparisons revealed functional differences in how digital-sustainability 

strategies manifest: 

• TBL’s influence on EO and SO was significant for the Design group, but the model 

lacked explanatory power for these constructs in the Construction group, indicating 

a fundamental difference in strategic drivers. 

• DO had a stronger effect on SBM in the Construction group 

• Mediation effects were more pronounced among Design professionals, who focus 

more on early-stage innovation. 
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The MGA revealed meaningful differences between design and construction 

professionals. For the Design group, TBL had a pronounced and significant effect on both 

EO and SO, aligning with their strategic role in early-phase innovation. Critically, however, 

the model failed to explain the drivers of EO and SO for the Construction subgroup, 

showing very low R² values and negative Q² values, which indicates a lack of predictive 

relevance. This suggests that for construction professionals, firm-level strategic 

orientations may be overshadowed by more immediate, project-specific operational 

pressures such as budget adherence, scheduling, and site logistics. 

In contrast, DO had a greater effect on SBM in the Construction group; this indicates 

that while broad strategic orientations may be less salient for them, the practical, 

operational integration of digital tools is directly linked to downstream innovation. 

Mediation effects were also stronger for Design professionals, suggesting a more 

integrated link between SO and innovation outcomes in design-led roles. These findings 

highlight the need for tailored transformation strategies across AEC functions and flag the 

specific drivers of strategic orientation within construction firms as a critical area for future 

investigation. 

 

5.2 Theoretical Contributions 

This study makes several meaningful contributions to the theoretical discourse on DT, 

sustainability, and BMI, particularly within the context of the AEC industry. 

First, this study integrates sustainability principles—captured through the TBL 

framework—into the DT academic discourse, where previous studies have often 

separated technological advancement from environmental and social outcomes. By 

empirically validating that digital traits aligned with TBL significantly influence SBM, this 

study addresses a well-documented gap in the literature (e.g., Bocken et al. (2014), 

Verhoef et al. (2021)) 
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Second, the study introduces a novel conceptual model that synthesises five core 

constructs—TBL, EO, SO, DO, and SBM—into an integrated, higher-order structural 

framework. This model enables a holistic understanding of how digital capabilities, 

organisational values, and strategic orientations coalesce to drive sustainable innovation. 

It contributes to the literature by operationalising these constructs using a combination of 

reflective–reflective and reflective–formative measurement models, thus offering a 

scalable and transferable framework for future empirical research. 

Third, by highlighting the mediating roles of EO and SO in translating digital 

sustainability traits into SBM, this study enriches theories related to innovation diffusion, 

dynamic capabilities, and organisational transformation. It empirically demonstrates that 

DT is not only a technological process but also a socio-organisational evolution shaped 

by leadership, culture, and strategic intent. This aligns with and extends existing 

frameworks on organisational readiness and change management (e.g., Teece (2018); 

Claudy et al. (2016)). 

Fourth, this study provides a sector-specific contribution by tailoring its framework to 

the unique challenges of the AEC industry. The use of multigroup analysis (Design vs. 

Construction) reveals that the influence of DO and SO varies significantly across 

professional domains, thereby adding granularity to the understanding of transformation 

processes in this complex, fragmented sector. 

Fifth, this study contributes to the theoretical knowledge by providing a nuanced 

understanding of how digital and sustainability strategies play out across different 

organisational roles in the AEC sector. Contrary to the assumption of homogeneity 

between design professionals (e.g., architects and engineers) and construction 

professionals (e.g., site managers and contractors) in earlier studies, the multigroup 

analysis suggests that the two groups imply different dynamics of DO, sustainability 

engagement, and innovation outcomes. More specifically, TBL had more pronounced 

effects on EO and SO for the design group, but DO exerted more impact on SBM 
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Innovation for the construction group. These results offer new insights to the theories of 

innovation diffusion and digital maturity by demonstrating that professional role mediates 

the internalisation of digital capabilities and the leveraging of digital capabilities for 

sustainable innovation. 

This differentiated perspective contributes to role-based organisational change 

theory and suggests the development of finer-grained frameworks that account for intra-

industry differences in digitalisation paths. 

 

5.3 Practical Implications 

The results of this study provide several practical implications for industrial professional, 

firm leaders, and policymakers who are interested in deploying / scaling DT initiatives for 

sustainability in the AEC context. 

First, the study confirms that aligning digital technologies with sustainability 

objectives significantly enhances BMI. AEC firms can use the validated TBL-aligned digital 

traits—such as BIM-enabled cost reduction, AI-assisted safety improvements, and IoT-

driven energy efficiency—as a strategic blueprint for operationalising sustainable 

transformation. 

Second, the strong mediating effects of EO and SO emphasise the critical role of 

internal culture and leadership in achieving transformation. Firms should cultivate a 

culture that embraces innovation and sustainability by promoting proactive, risk-tolerant 

behaviour (EO), embedding sustainability into strategic planning and daily operations 

(SO), and designating digital champions to lead and support change initiatives (DO). This 

underscores the importance of leadership training and cultural change programs 

alongside technology implementation. 

Third, the findings suggest that the success of DT is significantly moderated by the 

organisation's DO, particularly in how it enhances the SO impact on SBM. Firms should 

invest in: 
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• Continuous digital upskilling programs 

• Cross-functional collaboration platforms 

• Role-specific training in technologies like BIM, digital twins, and AI 

These initiatives not only enhance technical competence but also build the cultural 

readiness necessary for a successful and sustainable DT. 

Fourth, the study also highlights the influence of external factors such as regulatory 

standards (e.g., ISO 19650) and client demand for green buildings. AEC firms can use 

these insights to: 

• Align innovation strategies with evolving compliance requirements 

• Leverage sustainability as a market differentiator 

• Build resilience by anticipating environmental and digital compliance landscapes 

By aligning internal capabilities with external demands, AEC firms can strategically 

position themselves as leaders in the digital sustainability transition. 

Fifth, multigroup analysis shows that design professionals benefit more from TBL-

aligned innovation at the strategic and planning level, while construction professionals rely 

more on executional digital tools. This suggests that transformation strategies should be 

function-specific, with unique metrics, training, and support systems for different roles 

within the value chain. 

 

5.4 The 3P Model 

In response to the increasing demand for integrating sustainability into DT strategies, this 

study introduces a memorable and actionable strategic model—the 3P Model. Based on 

the complex empirical findings, the model distils the essential organisational enablers for 

the successful execution of SBM innovation in the AEC by Schaltegger et al. (2016). The 

3P model (Figure 5.1) aims to be theoretically rigorous, yet informative, providing a 

roadmap for how organisations can address the convergence of DT and sustainability. 
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Figure 5.1 – Visual Representation of the 3P Model 

 

 

5.4.1 Empirical Support 

The findings from pervious Chapter, Analysis and Results provide strong empirical 

support for the 3P model: 

• Sustainability Orientation (Purpose) was found to significantly mediate the 

relationship between TBL and SBM (β = 0.245, p < 0.001), confirming its central 

role as a value-driven enabler of innovation. 

• Entrepreneurial Orientation (People) also significantly influenced SO and SBM, 

suggesting that a culture of innovation feeds into a sustainability mindset (EO → 

SO: β = 0.198, p < 0.050; EO → SBM: β = 0.178, p < 0.010), supporting a 

sequential path from EO to SO to SBM. 

• Digital Orientation (Platform) was found to significantly moderate the relationship 

between SO and SBM (β = 0.328, p < 0.001), reinforcing the role of digital maturity 

in scaling sustainability-driven innovation efforts. 

 

5.4.2 Overview of the 3P Model 

The 3P model identifies three critical enablers that drive SBM Innovation: 

• Purpose — Represented by SO: Purpose reflects the organisation’s long-term 

commitment to environmental and social value creation. It encompasses the 

alignment of corporate values, mission, and operations with sustainability 

principles (Claudy et al., 2016). 

PURPOSE PEOPLE PLATFORM

(Sustainability Orientation) (Entrepreneurial Orientation) (Digital Orientation)

SUSTAINABILE BUSINESS MODEL 
INNOVATION
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• People — Represented by EO: People refer to the internal culture, leadership, and 

capability to initiate and manage innovation. EO reflects a firm’s risk-taking, 

proactiveness, and innovativeness (Covin and Slevin, 1989). 

• Platform — Represented by DO: This model conceptualizes ‘Platform’ not merely 

as technological infrastructure, but as the strategic readiness required to make it 

effective. Therefore, it is represented by DO, which encompasses the vision, 

commitment, and capability to transform disparate technologies such as BIM, AI, 

and IoT into a cohesive, value-generating business asset (Khin and Ho, 2019; Van 

Zeebroeck et al., 2023). 

Together, these three enablers form a pathway toward SBM, where Purpose 

provides direction, People energise and mobilise the organisation, and Platform provides 

the tools and structure for execution. 

These results confirm that organisations with strong sustainability values, 

entrepreneurial cultures, and digital capabilities are significantly more likely to innovate 

their business models in alignment with Triple Bottom Line principles. This model reflects 

a streamlined yet evidence-based pathway, grounded in the outcomes of this study and 

relevant literature. 

 

5.4.3 Strategic Implications 

The 3P2SBMI model offers a clear and actionable framework for AEC firms seeking to 

embed sustainability into DT strategies. The model can be used as a diagnostic tool, 

strategic roadmap, or communication framework, making it highly adaptable across 

organisational levels. 

• For executives and managers, the model provides a lens to assess organisational 

readiness across three critical dimensions. 
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• For change agents and innovation leaders, it highlights where cultural and 

strategic shifts are needed to enable SBM. 

• For policymakers and industry bodies, it offers a foundation for designing 

capability-building programs aligned with national sustainability goals. 

 

5.4.4 Theoretical Contributions 

The 3P model contributes to the literature by integrating organisational orientation theories 

(Covin and Slevin, 1989; Lumpkin and Dess, 1996), SO (Claudy et al., 2016), and dynamic 

capabilities theory (Teece, 2018) into a practical framework for SBM innovation. It 

emphasises that technological tools alone do not drive innovation—they must be 

supported by a shared purpose and empowered people. The 3P model offers a simplified 

and actionable model that synthesises the essential enablers of SBM innovation in the 

AEC context. Grounded in empirical evidence and aligned with contemporary theory, 

provides a valuable guide for organisations seeking to align their DT with sustainability 

imperatives in a coherent, strategic, and human-centric way. 

 

5.5 TBL Digital Traits - Organisational Capability Matrix 

To extend the theoretical contribution and practical relevance of this study, a strategic 

typology through the intersection of two robust dimensions: TBL Digital Traits and 

Organisational Capabilities which is here conceptualised as the combine strategic 

presence of SO and EO. This 2x2 matrix (Figure 5.2) serves as both a diagnostic tool and 

a strategic roadmap for classifying AEC firms based on their readiness to innovate 

business models in support of TBL outcomes. 
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Figure 5.2 – Proposed TBL Digital Traits - Organisational Capability Matrix 
 

 Low TBL Digital Traits  High TBL Digital Traits  
 

High 
Organisational 
Capability 

Sustainability Reformers Sustainable Innovators  

Strong internal capabilities 
but lacking digital 
transformation aligned with 
TBL principles. integration. 

High TBL-aligned digital 
traits and strong 
organisational capabilities. 
Well-positioned for SBM 

 

Low 
Organisational 
Capability 

Conventional Operators Tech-Efficiency Seekers  

Low on both dimensions. 
Minimal readiness for 
sustainability-driven 
innovation. 

Digitally mature in TBL 
terms but lacking the 
strategy and cultural 
orientation for 
sustainability. 

     
 

 
 

Construction of the Matrix: 

• TBL Digital Traits (TBL): Aggregated from DT items reflecting environmental, 

social, and economic sustainability alignment (e.g., smart resource use, carbon 

reduction, social impact). 

• Organisational Capability (OC): Derived by averaging EO and SO scores, 

capturing a firm’s internal culture, strategic orientation, and sustainability practices. 

This typology is grounded in the empirical findings reported in Chapter Analysis and 

Results, where both SO (β = 0.328, p < 0.001) and EO (β = 0.178, p < 0.01) were found 

to be significant direct predictors of SBM innovation. Their individual contributions suggest 

that firms require both a clear sustainability culture and a proactive, risk-taking approach 

to effectively innovate their business models in response to digital and environmental 

pressures. 
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5.5.1 Quadrant Descriptions 

1. Sustainable Innovators (High TBL, High OC) 

Firms scoring high on both TBL and OC. These firms demonstrate integrated 

digital-sustainability strategies and are best positioned for SBM innovation. 

2. Tech-Efficiency Seekers (High TBL, Low OC) 

Firms with strong digital TBL traits but weak internal sustainability cultures. Likely 

to adopt green technologies without embedding sustainability in strategy or values. 

3. Sustainability Reformers (Low TBL, High OC) 

High internal orientation toward sustainability and entrepreneurship, but low TBL 

digital maturity. These firms may lack the digital infrastructure to realise their 

ambitions. 

4. Conventional Operators (Low TBL, Low OC) 

Low on both dimensions. These firms are the least prepared for sustainability 

transitions and may be vulnerable to future regulatory or market shifts. 

 

5.5.2 Strategic Use of the Matrix 

For Practitioners: 

• Self-assessment: Firms can locate themselves in the matrix by evaluating their 

current digital practices (aligned with TBL) and their strategic posture (OC). 

• Roadmap guidance: The matrix can help identify which capability dimension—

digital or strategic—needs development to move toward the “Strategic Innovator” 

position. 

For Researchers: 

• Typological classification: Researchers can segment AEC firms using mean 

scores or composite indices of TBL digital traits and OC. 
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• Comparative analysis: This typology can support comparative testing of SBM, 

innovation performance, or ESG outcomes across strategic firm types. 

 

5.6 The 3P2SBMI Framework 

To translate the conceptual and empirical results in a practical roadmap, this section 

introduces 3P2SBMI Evolutionary Framework (Figure 5,3) as a dynamic four-stage 

process, which supports AEC firms diagnosing, positioning, and realigning their strategic 

capabilities for SBM innovation. A model with the recognition that digital and sustainability 

transformation is neither one-size-fits-all, nor a linear process with a clear starting and end 

point, but as an interactive process.  

DT is widely regarded as a continuous and iterative analysis of endogenous and 

exogenous contingencies (Angelopoulos et al., 2023), and transformation success hinges 

on endogenous indicators such as leadership, information quality, disciplined execution, 

and technology readiness (Struijk et al., 2023). These insights support the underpinning 

of the 3P model (People, Process, and Platform) on which this study is based for capability 

assessment and targeted intervention (see Section 5.4). Therefore, the 3P2SBMI 

framework provides a structured approach through which firms can iteratively develop and 

align their internal systems to support scalable, sustainability-driven innovation. 

 

5.6.1 Four Stages of 3P2SBMI Framework 

The 3P2SBMI evolutionary framework consists of 4 stages, which together make a 

closed-loop learning and improvement cycle customised to the transformation conditions 

in the AEC industry. 
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Figure 5.3 – 3P2SBMI Framework 

 

 

Stage 1: Internal Capability Assessment via the 3P Model 

The process begins with 3P model for a diagnostic of the firm’s people, process and 

platform (3P) capabilities, evaluated in relation to the firm’s strategic orientations — DO, 

SO, and EO. This step identifies whether the foundational capabilities are in place to 

support sustainable innovation. 

• People: Leadership mindset, cross-functional collaboration, and digital literacy. 

• Process: Innovation routines, ESG integration, and strategic agility. 

• Platform: Digital infrastructure, data systems, and technology adaptability. 

This assessment helps firms uncover capability gaps across the internal enablers 

that are critical to effective digital and sustainability transformation. 

 

Stage 2: Strategic Positioning via the TBL - OC Matrix 

In this stage, the firm is positioned on the TBL - OC matrix (see Section 5.5). This 

step evaluates how well internal capabilities are translating into external sustainability 

performance, based on: 

PURPOSE PEOPLE PLATFORM

(Sustainability Orientation) (Entrepreneurial Orientation) (Digital Orientation)

TBL-OC Matrix

STRATEGIC POSITIONING

GAPS IDENTIFICATIONS & 
MISALIGNMENT DIAGNOSIS

CAPABILITY RE-ALIGNMENT

3P Model Interventions
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• The extent to which digital tools and practices are aligned with Triple Bottom Line 

(TBL) goals. 

• The strength of OC operationalised through the combination of SO and EO. 

This matrix classifies firms into one of four strategic profiles (e.g., Strategic 

Innovators, Sustainability Reformers), providing a high-level view of the firm’s 

transformation maturity. 

 

Stage 3: Gap Identification and Misalignment Diagnosis 

This stage compares the outcomes from Stage 1 and Stage 2 to identify 

misalignments between internal capabilities and strategic outcomes. This allows firms to 

diagnose whether performance gaps stem from executional weaknesses, governance 

fragmentation, or lack of strategic alignment. 

 
For example: 

• A firm may have advanced platforms but limited agility in processes or leadership 

support, undermining its ability to deliver TBL value. 

• Conversely, a firm with strong sustainability and entrepreneurial intent may lack 

the digital infrastructure to scale or operationalise its goals. 

This stage is vital for uncovering the root causes of underperformance in 

transformation efforts. 

 

Stage 4: Capability Re-alignment through 3P Interventions 

In the final stage, the 3P model is re-applied as a targeted intervention framework to 

close the gaps identified in Stage 3: 

• Purpose: Redesign workflows to embed ESG criteria, improve innovation routines, 

and enhance coordination. 
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• People: Strengthen leadership, build digital and sustainability competencies, and 

foster a transformation-driven culture. 

• Platform: Upgrade or integrate digital tools to support data-driven sustainability 

tracking, lifecycle analysis, and decision-making. 

This stage reinforces the continuous and adaptive nature of transformation, enabling 

firms to cycle back to Stage 1 and begin a new round of strategic capability development. 

In conclusion, the 3P2SBMI Framework provides a structured, theory-based, and 

action-oriented guideline for AEC enterprises endeavouring to develop the digital and 

sustainability transformation capability. The 3P model is enriched and clarified by its 

synthesis with a dynamic theory of transformation and strategic positioning and offers both 

diagnostic and strategic insights. It enables companies to progress from ad hoc or one-

off initiatives to a structured and scalable approach to SBM innovation. 

 

5.6.2 Implications for Researchers and Policy Makers 

For Researchers: 

• Provides a structured, empirically grounded framework for studying digital and 

sustainability transformation processes. 

• Enables longitudinal and comparative studies across firms, projects, or sectors. 

• Offers a basis for quantitative model testing and mixed-method research on SBM 

innovation and capability alignment. 

• Bridges micro-level (organisational) and macro-level (industry/systemic) 

transformation analysis. 

For Policy Makers: 

• Serves as a diagnostic tool to assess industry readiness for digital sustainability 

transitions. 

• Informs the design of policy interventions targeting human capital, process 

innovation, and digital infrastructure. 
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• Supports national or regional strategies related to net-zero, circular economy, and 

ESG compliance in the AEC industry. 

• Can be applied to public-private partnerships and funding programs aimed at 

capability development. 

 
5.6.3 Theoretical Contributions 

• Conceptualises DT as a continuous, iterative process aligned with Angelopoulos 

et al. (2023).  

• Extends the 3P model (People, Process, Platform) as a practical application of 

enablers. 

• Integrates internal capability assessment with external strategic positioning, 

bridging the gap between organisational readiness and innovation outcomes.  

• Contributes to the SBMI literature by linking strategic orientations (DO, SO, EO) 

to a staged transformation pathway.  

• Provides a scalable, adaptable framework that can inform future research on 

sustainability-driven DT across industries. 

 

5.7 Limitations 

While the theoretical contribution and practical implication of this study are valuable and 

important, there are some limitations of this study. Acknowledging these limitations 

bolsters the transparency, replicability, and trustworthiness of the research and provides 

a foundation for developing future research. 

 

5.7.1 Methodological Limitations 

This study employed a robust quantitative design; however, several methodological 

limitations may affect the validity, reliability, and generalisability of the findings. These 
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limitations pertain to aspects of research design, sampling strategy, measurement 

techniques, and statistical procedures. 

First, a cross-sectional survey design was used in the study, which was conducted 

at one time point. Though this is fine for associating variables, it does not allow 

establishing causality or time-series tracking of organisational transformation. For 

example, although the findings indicate that EO and SO partially mediate the association 

between TBL digital traits and SBM innovation, the causal sequence of such relationships 

cannot be unambiguously established. Longitudinal or panel designs in future studies 

should focus more on how these dynamics evolve and how the dynamics help sustain 

each other over time. 

Second, the dataset was only sampled from AEC practitioners practicing in the most 

densely populated urban economy in Hong Kong with its unique governance regime, 

maturity of technology, and sustainability requirements (e.g. BEAM Plus, ISO 19650). This 

is valuable context which however may reduce the generalisability of findings to other 

sites with divergent institutional, economic, or cultural settings. Digital maturity and SO 

could be very different in other Western developed countries or rural construction markets. 

Hence, further research is required to replicate this framework in other countries to test 

its generalisability. 

Third, the study adopted convenience (purposeful) sampling, focusing on AEC 

professionals with mid to senior-level experience, including architects, construction 

engineers, and predominantly BIM professionals. While this approach enhances 

relevance and data quality, it may introduce selection bias. Respondents are likely more 

aware of sustainability and digitalisation issues than average, which could lead to an 

overestimation of correlations. Moreover, the sample may not sufficiently represent small 

businesses, subcontractors, or other participants with low digital maturity. Employing a 

more stratified or random sampling method could improve external validity. Additionally, 

the use of a single, self-administered questionnaire for all variables at one point in time 
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introduces potential CMB, which can inflate observed correlations and further affect the 

robustness of the findings. 

Fourth, the study is based on self-reported survey data of AEC professionals; thus, 

it is vulnerable to biases such as social desirability bias or recall bias. Respondents may 

unintentionally overstate claims about their organisation’s level of digital maturity or their 

adherence to practices of sustainability to match what they perceive as desirable, biasing 

the findings. Such a subjective perception of performance, instead of objective measuring 

of performances, restricts the ability of the study to verify relationships between constructs. 

A future area for consideration could involve triangulation of findings using objective 

sources (e.g. organisational performance data, case studies) to increase the rigour. 

Fifth, although the Kaiser criterion based on eigenvalues greater than 1 suggested 

the retention of 10 components, this study employed a fixed-factor extraction of 13 

components grounded in a strong theoretical framework. The rotated component matrix 

revealed high factor loadings (primarily above 0.70) with minimal cross-loadings, and each 

construct demonstrated clear empirical distinctiveness. As such, the decision to retain 13 

factors is methodologically defensible (Fabrigar et al., 1999). Nevertheless, such an 

approach should be also acknowledged as a methodological limitation of this study, and 

future research with a larger and more diverse sample is recommended to further validate 

the 13-factor structure and reinforce the model’s empirical foundations. 

Finally, the study lies in the application of a two-stage approach in the PLS-SEM 

analysis, whereby latent variable scores were generated from the initial model and 

subsequently used as indicators to construct higher-order constructs. Although this 

technique is consistent with established guidelines for handling complex hierarchical 

models in PLS-SEM (Hair et al., 2022), it may be interpreted as a form of “second factor 

analysis”. As such, this analytic sequence could introduce a degree of conceptual or 

statistical disconnection between the first-order constructs and their higher-order 

representations. Future research, therefore, could consider extracting and applying factor 
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scores directly from the initial analysis, provided that this aligns with the theoretical 

definition and measurement structure of the constructs involved. 

 

5.7.2 Conceptual Limitations 

Beyond methodological concerns, the study also faces conceptual limitations that relate 

to theoretical assumptions and model design. These limitations highlight potential issues 

in construct alignment, model directionality, and the dynamic nature of contextual 

variables 

First, the multigroup analysis revealed a key limitation. The model’s relatively weak 

predictive power for the smaller Construction subgroup creates ambiguity, making it 

unclear whether this reflects a genuine theoretical misspecification or a statistical artifact 

due to low power. Future research must therefore use larger samples for this group while 

also testing alternative models that account for the project-based drivers unique to the 

construction function. 

Second, another potential limitation concerns the conceptual proximity of the 

independent and dependent constructs, all of which are grounded in the sustainability 

domain— TBL, SO, and SBM innovation. While these constructs were carefully developed 

and validated as theoretically and empirically distinct, their thematic alignment may give 

rise to concerns about potential conceptual circularity. Future research could further 

validate the construct structure and confirm the directionality of relationships. 

Third, the model assumes alignment among the TBL dimensions—Profit, People, 

and Planet—without explicitly addressing real-world trade-offs. In practice, organizations 

may implement digital innovations that improve environmental outcomes but come at a 

financial cost or impact employment. This study does not directly account for such 

tensions, which could limit the model’s practical applicability. Future research could 

examine how firms manage these trade-offs in different strategic or industry contexts. 
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Fourth, the framework assumes that all relationships between constructs are 

unidirectional. Although some constructs were theoretically positioned to minimize 

concerns about reverse causality, many of these relationships are likely to be reciprocal 

in practice. For instance, the outcomes of SBM innovation could potentially reshape 

organizational orientations and TBL traits. These reciprocal dynamics could not be 

captured within the cross-sectional design. Future research could apply longitudinal or 

systems thinking approaches to better capture these dynamic, iterative relationships. 

Finally, while modelled as a contextual factor, DO may itself evolve as a result of 

engaging in sustainability-driven digital innovation. This challenges its independence as 

a moderator and relates to the broader concern that the model assumes one-way causal 

paths, potentially overlooking dynamic feedback effects. Future research could consider 

alternative model structures or longitudinal designs to capture these interdependencies. 

 

5.8 Directions for Future Research 

Based on the present results and the limitations outlined above, several prospects for 

future research are proposed. These directions aim to enhance theoretical understanding, 

improve methodological rigor, and strengthen the practical applicability of the 3P2SBMI 

Framework. 

First, future research should adopt longitudinal designs to capture the temporal 

evolution of digital-sustainability transformation. This would allow scholars to examine 

how firms move across the quadrants of the TBL-OC Matrix, how the 3P enablers develop 

over time, and how SBM outcomes evolve in response to internal and external stimuli. 

Process-based case studies could also uncover the organisational routines, leadership 

decisions, and learning mechanisms that underpin successful transformation. 

Second, while the current study used quantitative methods to validate structural 

relationships, qualitative research can offer richer insights into the "how" and "why" behind 

these relationships. For example, in-depth interviews with AEC leaders might reveal how 
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sustainability values are communicated internally or how digital platforms are integrated 

into everyday workflows. Ethnographic or action research could also be used to track real-

time implementation of SBM initiatives in project settings. 

Third, replicating the study in other geographical regions (e.g., Europe, Southeast 

Asia, Middle East) would test the cultural and institutional robustness of the 3P2SBMI 

framework. Additionally, extending the research to other project-based industries—such 

as infrastructure, oil and gas, or manufacturing—would determine whether the enablers 

and typologies hold in different organisational ecosystems. Such comparative research 

could reveal sector-specific drivers or inhibitors of digital-sustainability integration. 

Fourth, must address the ambiguity in the multigroup analysis. The primary goal is 

to determine if the model's failure for the smaller construction subgroup is a statistical 

artifact or a substantive finding. This requires a dual approach: first, securing a larger 

sample of construction professionals to ensure statistical validity, and second, testing 

alternative models that incorporate the project-level drivers unique to the construction 

function. This will clarify the model's limitations and help build more accurate theories for 

the industry. 

Fifth, while this study focused on EO and SO as mediators and DO as a moderator, 

future research could explore alternative or complementary constructs, such as: 

• Organisational Agility: The ability to rapidly adapt to digital or environmental 

changes. 

• Leadership Commitment: The role of top management advocacy in driving SBM. 

• Collaborative Capabilities: How partnerships across the value chain influence 

transformation. 

• Sustainability Maturity Models: Integrating stage-based models to assess 

progression. 

These variables could deepen the understanding of multi-level influences on SBM 

and refine the predictive power of the model. 
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Finally, future work could focus on translating the 3P2SBMI Framework into practical 

assessment instruments: 

• Organisational self-diagnostic surveys 

• Benchmarking tools for strategic positioning 

• Maturity models for digital-sustainability alignment 

Such instruments would be valuable for both research and industry application, 

particularly if tested across multiple firms and validated statistically. 

 

5.9 Conclusion 

This study set out to explore the determinants of DT for SBM innovation in the AEC 

industry. In response to escalating demands for environmental performance, client value, 

and operational efficiency, the study sought to understand how AEC firms can align digital 

technologies with sustainability goals to reconfigure their business models. The research 

was guided by the overarching question: What are the key organisational and 

technological determinants of DT that enable sustainable BMI in the AEC industry? 

 

5.9.1 Revisiting the Four Key Objectives 

1. To identify and evaluate technological determinants—such as BIM, AI/ML, IoT, 

and VR/AR—that facilitate or hinder DT in the AEC sector, particularly in relation 

to sustainability goals. 

2. To examine key organisational factors, including leadership commitment, 

organisational culture, entrepreneurship, and workforce capabilities, that influence 

the readiness and effectiveness of DT initiatives 

3. To investigate the mechanisms through which DT enables SBM Innovation, with a 

focus on how digital maturity interacts with organisational practices to reshape 

business operations in the AEC context. 
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4. To develop and validate a comprehensive conceptual framework that integrates 

both technological and organisational determinants to guide AEC firms in aligning 

DT with sustainability-driven innovation strategies. 

Through a quantitative research approach, incorporating quantitative data collected 

from 158 mid- to senior-level professionals in Hong Kong’s AEC sector, this research has 

made meaningful progress in addressing the stated objectives. The findings contribute 

valuable empirical insights to the academic literature on DT and sustainable BMI, while 

also offering practical guidance for AEC firms navigating the complexities of technological 

and sustainability-driven change. 

 

5.9.2 Revisiting the Research Gaps 

In addition to achieving the research objectives, this research also directly contributed to 

addressing five specific research gaps identified in Literature Review Chapter. Below 

review each gap and demonstrate how the findings of this study contribute to closing them. 

 

5.9.2.1 Research Gap 1 

Role of Emerging Technologies in Sustainable Business Model Innovation  

This research supported that the digital traits of TBL-aligned technology including BIM, 

IoT and AI/ML and DT contribute to enhancing SBM innovation. Rather than considering 

that digital tools are simply operational enablers, they can be seen to be driving innovation 

that is aligned with TBL values, which benefits the environment, society and economy. 

This contribution recasts emerging technologies as strategic enablers of sustainability-

deepening innovation, not in what they do, but in what they are for. 

 

5.9.2.2 Research Gap 2 

Interplay Between Digital Strategy, Corporate Entrepreneurship, and Sustainability 

Practices 
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The findings offer evidence that DO, EO and SO are not independently active, rather they 

synergistically combine, interact and affect SBM. Independent roles for EO and SO as 

mediators of TBL effects were identified and DO emerge both as a direct determinant of 

SBM and a moderator of the SO → SBM relationship. Such findings contribute toward a 

resource-based view of transformation, suggesting that digital strategies need to be 

embedded within an entrepreneurial culture and value of sustainability to fully stimulate 

innovation. 

 
5.9.2.3 Research Gap 3 

Differences Between Architects and Construction Teams in DT and SBM 

This study, using multi-group analysis, revealed significant differences between Design 

and Construction professionals in their road maps to SBM. Designers showed higher 

mediation through EO and SO, suggesting a larger involvement in strategic and radical 

innovation. In contrast, Construction professionals exhibited relatively higher reliance on 

DO for performance outcomes. These findings highlight the importance of tailoring role-

specific strategies for DT, addressing a gap in the literature that had hitherto considered 

AEC sector as one homogeneous category. 

 

5.9.2.4 Research Gap 4 

Integration of Sustainability Orientation with Entrepreneurial and Digital Orientations  

Although the previous work usually investigated SO and EO separately, this paper 

provides an integrated model that reveals the relationship between them to facilitate SBM. 

The findings verify serial mediation of the relationship of TBL attributes via EO and SO 

and confirm the differences in the strength of the relationships with DO. This integrated 

view provides an enriched view on how values, capabilities and strategies co-evolve to 

foster sustainable innovation, pushing forward theoretical debates on orientation 

interactions in transformation processes. 
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5.9.2.5 Research Gap 5 

Lack of a Comprehensive Framework for TBL-Aligned DT 

This paper introduced and empirically tested a holistic model that connects digital traits 

TBL-oriented with SBM mediated by EO, SO and DO. Through the integration of 

reflective–formative together with higher-order modelling using PLS SEM, the model is 

able to express both the structural complexity and strategic interrelations of DT. This 

integrated framework offers a scalable and transferable approach for future research and 

practice, directly addressing previous calls for systemic thinking in AEC sustainability 

transitions. It advances beyond existing fragmented models by offering a cohesive and 

empirically validated structure. 

 

5.9.3 Strategic and Theoretical Contributions 

The study introduced a simplified yet robust model—the 3P Pathway to SBM—which 

identifies three core enablers: Purpose (SO), People (EO), and Platform (DO). This model 

offers a clear and actionable framework for assessing and enhancing organisational 

readiness for SBM. Additionally, a 2x2 TBL-OC Readiness Matrix was developed to 

classify firms based on their strategic alignment and maturity, offering diagnostic and 

comparative value for both researchers and practitioners. 

These models were further integrated into the 3P2SBMI Framework, which connects 

internal enablers with external strategic positioning. This integrative framework offers a 

comprehensive roadmap for AEC firms seeking to align DT with sustainability outcomes 

in a coherent and phased manner. 

From a theoretical perspective, the study contributes to the literature on dynamic 

capabilities, organisational readiness, and sustainability-oriented innovation by 

demonstrating how digital, entrepreneurial, and sustainability orientations interact to 

produce transformational outcomes. It also advances sector-specific knowledge by 
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contextualising these dynamics within the project-based and multidisciplinary 

environment of the AEC industry. 

 

5.9.4 Implications for Practice and Policy 

The findings offer actionable insights for industry leaders, consultants, and policymakers: 

• AEC firms should assess their current orientation across the 3P dimensions and 

strategically address capability gaps. 

• Function-specific transformation strategies should be developed to reflect the 

differing needs of design and construction roles. 

• Policymakers and industry bodies can use the 3P2SBMI framework to design 

capacity-building initiatives and regulatory incentives that promote digital-

sustainability alignment. 

 

5.9.5 Reflections on Limitations and Future Research 

This study has openly recognised its methodological and conceptual limitations and 

potential sources of bias, such as selection bias, self-reporting, social desirability, CMB, 

and the contextual specificity of Hong Kong’s AEC sector. While purposeful sampling and 

a cross-sectional survey have provided valuable insights, these approaches may limit the 

generalisability and causal interpretation of the results. 

To address these concerns, the research implemented several strategies: engaging 

multiple professional bodies for sampling, ensuring respondent anonymity, using neutral 

and clearly worded questions, varying scale anchors and formats, and applying EFA and 

VIF to assess and minimise CMB. 

Looking ahead, future research should consider longitudinal or mixed-method 

designs, integrate objective performance measures, and expand to broader and more 

diverse samples across different regions and industry segments. By critically reflecting on 

these limitations and setting out clear directions for future inquiry, this study increases 
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transparency and lays a strong groundwork for further validation and extension of the 

3P2SBMI framework in a variety of contexts.  

In addition to methodological considerations, this study has also acknowledged 

several conceptual limitations related to model structure, construct alignment, and 

theoretical assumptions. These include the possibility of conceptual overlap between 

sustainability-oriented constructs, the assumption of unidirectional relationships, and the 

treatment of dynamic constructs like DO as static moderators. Addressing these 

conceptual concerns, future research should explore reciprocal and feedback effects, 

refine construct definitions to reduce thematic redundancy, and test alternative model 

configurations using systems thinking or longitudinal approaches. By doing so, scholars 

can further strengthen the theoretical robustness and practical relevance of the 3P2SBMI 

framework across diverse organisational and sectoral contexts. 

 

5.9.6 Visual Summary of Conclusions 

To consolidate the key research objectives, findings, theoretical contributions, and 

practical implications, the Figure 5.4 conceptual map provides a visual summary of the 

study’s overall contributions. This figure visually summarises the research objectives, 

addressed gaps, key findings, strategic models, and the resulting theoretical and practical 

contributions. It offers a synthesised overview of the study’s scope and outcomes while 

serving as a roadmap for future academic and industry applications. 
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Figure 5.4 – Conceptual Map of Research Conclusions 

 

 

 

 

  

KEY FINDINGS (Chapter 4)   

✓ TBL-aligned digital traits → SBMI   
✓ EO and SO = mediators  
✓ DO = direct + moderating role (SO → SBMI) 
✓ Design vs. Construction = distinct pathways

STRATEGIC FRAMEWORKS (Chapter 5)

✅ 3P Pathway to SBM - Purpose (SO), People (EO), Platform (DO) 
✅ TBL Digital Traits - Organisational Capability Matrix
✅ 3P2SBMI Framework 

THEORETICAL CONTRIBUTIONS 

✓ Integration of sustainability into digital transformation theory 
✓ Validation of EO, SO, DO as dynamic enablers of SBM
✓ Contextualization in the AEC industry 

PRACTICAL IMPLICATIONS

✓ Diagnostic tool for firm readiness (3P model)   
✓ Role-specific strategies for Design vs. Construction 
✓ Policy guidance for digital-sustainability alignment  

RESEARCH OBJECTIVES (Chapter 1)

1. Examine technological determinants (e.g., BIM, AI, IoT)
2. Explore organizational factors (e.g., EO, SO, leadership)
3. Investigate development of sustainable business models
4. Develop an integrated digital-sustainability framework

 ADDRESSED RESEARCH GAPS (Chapter 2)

Gap 1: Role of emergent technologies in SBM
Gap 2: Interaction of digital strategy, EO, and SO
Gap 3: Differences between design and construction practices 
Gap 4: Relationship between SO with EO and DO 
Gap 5: Lack of a Comprehensive Framework

METHODOLOGY OVERVIEW (Chapter 3)

✓ Quantitative, hypothesis-driven research design
✓ Survey of AEC professionals in Hong Kong
✓ Constructs: TBL-Digital Traits, EO, SO, DO, and SBMI 
✓ Analysis: Structural Equation Modeling (SEM) 
✓ Tested direct, mediating, and moderating effects
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5.9.7 Closing Reflection 

This study set out to explore how DT can enable SBM innovation in the AEC industry. 

Grounded in the Hong Kong context, it developed and validated a comprehensive 

framework integrating technological traits (TBL), organisational capabilities (EO and SO), 

and strategic intent (DO). The findings highlight the critical interplay between these factors 

in shaping innovation outcomes and offer a clear roadmap for firms navigating digital-

sustainability transitions. The study contributes to theory and practice by demonstrating 

that DT must be more than a technological upgrade—it must be purpose-driven, people-

enabled, and strategically integrated. The 3P Model, TBL-OC Matrix and 3P2SBMI 

Framework provide actionable models for firms to assess, plan, and implement 

transformation initiatives. As the AEC industry faces increasing pressure to respond to 

climate change, resource constraints, and digital disruption, this study reinforces the 

urgency of aligning sustainability and digital strategies. It also underscores the importance 

of internal capabilities—entrepreneurial mindset, sustainability culture, and digital 

readiness—as levers for long-term value creation. Ultimately, this study advances the 

discourse on SBM innovation within project-based industries and offers a timely, 

evidence-based foundation for future academic inquiry, industry transformation, and 

policy design. In an era where sustainability is no longer optional and digitalisation is 

inevitable, the integration of both is not just a strategic advantage—it is a necessity. 
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APPENDIX A – QUESTIONNAIRE 

Organisational Practices for Digital Transformation and 
Sustainability in the AEC Industry 

 
You are invited to participate in a confidential academic research study conducted 
by a Doctor of Business Administration (DBA) candidate at Durham University 
Business School (www.durham.ac.uk/business), under academic supervision. 

The purpose of this survey is to explore Organisational Practices for Digital 
Transformation and Sustainability in Hong Kong’s Architecture, Engineering, and 
Construction (AEC) sector. There are no right or wrong answers. Please respond honestly 
based on your knowledge and experience. 

Your participation is voluntary, and you may withdraw at any time before submitting the 
survey. Your responses will be treated with the strictest confidentiality and will 
be anonymised and aggregated for analysis. No personally identifiable information (e.g., 
your name, email, or phone number) will be collected, and individual responses will not 
be reported. 

The survey should take approximately 10 to 15 minutes to complete. 

If you have any questions about the research or your rights as a participant, please contact 
the researcher, Mr. Tong, at s.y.tong@durham.ac.uk or call (852) 9388-1383.  

Thank you for your time and valuable contribution to this study. 

 
 
Part A - Digital Practices in Your Organisation 

This section focuses on how your organisation uses digital technologies to support 
environmental, social, and financial goals.  

1. The extent to which BIM and AI technologies modify design accuracy and reduce rework 
frequency. 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

  

https://www.durham.ac.uk/business
mailto:s.y.tong@durham.ac.uk
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2. The degree to which BIM and Big Data analytics transform resource utilisation efficiency. 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
3. How significantly 3D printing technology alters material waste levels in manufacturing 

processes. 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
4. The extent to which digital platforms improve collaboration among project stakeholders. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
5. How VR/AR and ML technologies impact safety incident rates and hazard identification. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
6. The extent to which digital skills development programs enhance employee competencies. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 
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7. How energy simulation tools influence the environmental footprint of project designs. 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
8. The extent to which BIM, IoT sensors, and digital twins impact energy and material usage. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
9. How digital asset management systems influence the operational lifespan of building 

components? 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
 
Part B – Business Model in Your Organisation 

Questions in this section explore how your company develops innovative and sustainable 
ways of doing business.   

1. Our customer base prioritises sustainability-focused projects. 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
2. We have transformed offerings to reduce environmental/social impacts. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 
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3. We are recognised as a sustainable solutions leader. 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
4. We have developed specialised sustainability innovation capabilities. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
5. We continuously optimise operations for sustainability performance. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
6. We co-develop solutions through green technology partnerships. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
7. We mandate sustainability certification for suppliers. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 
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8. We generate significant revenue from sustainable offerings. 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
9. Our cost structures emphasise long-term resource efficiency. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
 
Part C – Entrepreneurial Mindset in Your Company 

These questions focus on how your company encourages innovation, takes risks, and 
identifies new opportunities.   

1. We actively introduce improvements and innovations in our business. 
• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
2. Our business is creative in its methods of operation. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
3. Our business seeks out new ways to do things. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 
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4. We always try to take the initiative in every situation (e.g., against competitors, in projects 
when working with others? 
• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
5. Our business is creative in its methods of achieving sustainability goals. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
6. We seek out new ways to integrate sustainability into our operations. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
7. The term “risk taker” is considered a positive attribute for people in our business. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
8. People in our business are encouraged to take calculated risks with new ideas. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 
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9. Our business emphasises both exploration and experimentation for opportunities. 
• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 

Part D – Sustainability Focus in Your Company 

This section looks at how committed your company is to sustainability and environmentally 
responsible practices.   

1. We consider environmental sustainability important. 
• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
2. We consider social sustainability important. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
3. We consider sustainability criteria important for new projects. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
4. We consider measuring new projects’ progress on sustainability important. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 
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5. We value sustainability-type criteria as important for the future. 
• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
6. We consider energy consumption and/or carbon emissions in our project work. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
7. We include sustainability in our project budget. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
8. We select suppliers and partners based on sustainability criteria. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
9. We use the triple bottom line (environmental, social, and financial factors) for project planning. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 
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Part E – Digital Vision and Strategy   

This section examines how your company plans and executes the use of digital 
technologies.   

1. Our company digital transformation roadmap aligns with long-term business strategy. 
• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
2. Our company digital goals are clearly communicated to all project partners. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
3. Our company has dedicated digital champions to drive digital initiatives. 

• Strongly Agree 
• Agree 
• Somewhat Agree 
• Neutral 
• Somewhat Disagree 
• Disagree 
• Strongly Disagree 

 
4. We enforce green digital standards (e.g., cloud-based BIM collaboration). 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
5. We invest in continuous upskilling for emerging AEC technologies. 

• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 
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6. We cultivate innovation and transformation culture. 
• To a Great Extent 
• To a Significant Extent 
• To a Considerable Extent 
• To a Moderate Extent 
• To a Small Extent 
• To a Minimal Extent 
• Not at All 

 
Part F – General Information 

This section looks basic information about your company 

1. What is the nature of your company’s work? 
• Design and Planning (Architectural Design, Engineering, Urban Planning, Landscape 

Architecture) 
• Construction and Project Management (General Contracting, Subcontracting, 

Construction Management, Project Management, Building Inspection) 
 

2. What is the size of your company?  
• 1 to 20 employees 
• 21 to 100 employees 
• 101 to 200 employees 
• Over 200 employees 

 
3. What is your role in the company?  

• CEO/COO/Managing Director 
• Architect 
• BIM Manager/Engineer/Consultant 
• Other 

 
4. How would you rate your company’s ability to use digital technologies for sustainability 

throughout the project lifecycle?  
• Very poor ability 
• Poor ability 
• Moderate ability 
• Strong ability 
• Exceptional ability 

 
 

Thank You for Your Participation!  

Thank you for taking the time to complete this survey. If you have any questions, feedback, 
or would like to learn more about the findings of this research, please feel free to contact: 

Mr. Tong 
Email: s.y.tong@durham.ac.uk 
Phone: (852) 9388-1383 

Your input is greatly appreciated, and we thank you for your support. 

mailto:s.y.tong@durham.ac.uk
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APPENDIX B – SUPPLEMENTARY DATA ANALYSIS 

FROM SPSS 

Table A1 – Convergent Validity (SPSS) 

 

Factor Title Factor Loading CR AVE
SBM-ValueArch1 0.858
SBM-ValueArch2 0.842
SBM-ValueArch3 0.832
SBM-ValueArch4 0.846
SBM-Valueoff1 0.845
SBM-Valueoff2 0.874
SBM-Valueoff3 0.876
SBM-Revenue1 0.912
SBM-Revenue2 0.914
SBM-ValueArch 0.887
SBM-Valueoff 0.755
SBM-Revenue 0.776

TBL-Profit1 0.902
TBL-Profit2 0.915
TBL-Profit3 0.9

TBL-People1 0.899
TBL-People2 0.914
TBL-People3 0.89
TBL-Planet1 0.911
TBL-Planet2 0.93
TBL-Planet3 0.935
TBL-Profit 0.791

TBL-People 0.827
TBL-Planet 0.858
EO-Inno1 0.908
EO-Inno2 0.88
EO-Inno3 0.89
EO-Pro1 0.919
EO-Pro2 0.89
EO-Pro3 0.926
EO-Risk1 0.886
EO-Risk2 0.872
EO-Risk3 0.881
EO-Inno 0.852
EO-Pro 0.757
EO-Risk 0.771

SO-Culture1 0.878
SO-Culture2 0.878
SO-Culture3 0.881
SO-Culture4 0.88
SO-Culture5 0.894

SO-Practices1 0.897
SO-Practices2 0.909
SO-Practices3 0.899
SO-Practices4 0.91

SO-Culture 0.914
SO-Practices 0.872
DO-Vision1 0.907
DO-Vision2 0.915
DO-Vision3 0.904
DO-Strat1 0.918
DO-Strat2 0.913
DO-Strat3 0.907
DO-Vision 0.895
DO-Strat 0.897

DO-Strat 0.937 0.833

DO 0.923 0.665

SO 0.94 0.637

DO-Vision 0.934 0.826

SO-Culture 0.946 0.779

SO-Practices 0.947 0.817

EO-Risk 0.911 0.774

EO 0.901 0.504

EO-Inno 0.922 0.797

EO-Pro 0.937 0.831

TBL-Planet 0.947 0.856

TBL 0.921 0.566

TBL-Profit 0.932 0.82

TBL-People 0.928 0.811

SBM-Revenue 0.909 0.834

SBM 0.901 0.503

SBM-ValueArch 0.909 0.713

SBM-Valueoff 0.899 0.748
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