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ABSTRACT

The Architecture, Engineering, and Construction (AEC) industry is undergoing a
significant transformation driven by the convergence of digital technologies and
sustainability imperatives. However, many AEC firms face challenges in aligning their
digital transformation initiatives with sustainable business model (SBM) innovation. This
study investigates the key organisational and technological determinants that enable such
alignment, with a particular focus on the Hong Kong AEC sector. Drawing on the Triple
Bottom Line (TBL) framework and integrating the constructs of Entrepreneurial Orientation
(EO), Sustainability Orientation (SO), and Digital Orientation (DO), the study proposes a
multidimensional conceptual model. Data were collected from 158 professionals through
a survey and analysed using Partial Least Squares Structural Equation Modelling (PLS-
SEM). The results reveal that TBL-aligned digital traits significantly influence SBM
innovation both directly and indirectly through EO and SO. Furthermore, DO was found to
moderate the relationship between SO and SBM, highlighting the importance of digital
maturity as a strategic enabler. The study introduces the 3P2SBMI framework, which
conceptualises purpose (SO), people (EO), and platform (DO) as foundational enablers
of SBM innovation. A TBL Digital Traits — Organisational Capability Matrix is developed to
help firms assess their strategic positioning and transformation readiness. The findings
contribute to theory by linking sustainability and digital transformation through a unified
model, and offer practical insights for AEC firms, industry leaders, and policymakers. By
highlighting how digital capabilities and organisational orientations interact to drive
sustainability-oriented innovation, the insights of this study provide a strategic roadmap

for advancing digital-sustainability transitions in complex project-based industries.

Keywords: Digital Transformation, Sustainable Business Model Innovation, Triple Bottom
Line, AEC Industry, Entrepreneurial Orientation, Sustainability Orientation, Digital

Orientation.
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INTRODUCTION

The Architecture, Engineering, and Construction (AEC) industry in Hong Kong has
typically been one of the least digitally advanced business sectors. The McKinsey's Global
Institute Industry Digitisation Index identifies the construction sector as the second lowest
in adopting digital technologies, especially in places like China (McKinsey & Company,
2017). However, firms increasingly recognise that digital technologies could improve
productivity, sustainability, and competitiveness within this industry. More recent industry
reports highlight that a growing number of stakeholders in Hong Kong’s AEC sector begins
to view digital transformation (DT) as a strategic priority. This shift is driven by rising
demands for efficiency, increasing costs, and greater pressure to meet sustainability goals.
Key to this change is using technologies like Building Information Modelling (BIM), which
the Hong Kong government mandated in 2017 (HKSAR, 2017) for all public works over
HK$30 million. This mandate has accelerated BIM adoption in both public as well as
private projects. Beyond BIM, the emergence of Integrated Project Delivery (IPD),
Augmented Reality (AR), Artificial Intelligence (Al), and the Internet of Things (IoT) enable
greater connectivity and teamwork across construction. While such technologies enable
real-time decision-making, better resource distribution, and improved results, many firms

struggle to adopt them due to weak digital plans, cultural inertia, and skill shortages.

1.1 Digital Transformation in AEC Industry

The AEC industry in Hong Kong is in a pressing stage of transformation, driven by the
need for efficiency, productivity, and competitiveness improvements. This reshaping is
consistent with the more general pattern of DT occurring globally. It is not only a
technological shift but also a recasting of organisational logic and capability. Recent
studies have enhanced the understanding of DT beyond mere technology adoption.

According to Angelopoulos et al. (2023) DT represents a fundamental change in
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operational logic, enabled by a reversal of agency—from human actors to digital ones.
This implies that digital technologies are no longer mere supportive tools; they are
decision-makers. Under this lens, DT is more effectively perceived as a recursive,
emergent process through which firms iteratively change their structure, roles, and
capabilities in response to new technologies, affordances, and stakeholder demands.

Consistent with this understanding, Warner and Wager (2019) conceptualise DT as
a continuous strategic renewal process driven by digital technologies to reconfigure the
business model, collaboration, and culture of a firm. This view strengthens the call for
firms, particularly in complex project-based markets such as AEC, to initiate DT
endeavours as an end-to-end strategic commitment rather than a one-off project.

In the Hong Kong AEC industry, DT goes beyond the implementation of new tools or
the automation of manual processes. It calls for a shift away from siloed, linear workflows
to more integrated, collaborative, and data-informed ways of doing business. Given that
projects in this industry are often highly complex, have tight deadlines, and involve
integrated stakeholders, the benefits of digital technology in this context come from real-
time communication, interdisciplinary collaboration, and predictive project management.

An overarching understanding of the adoption of digital technologies in the Hong
Kong AEC industry is to heighten stakeholder engagement and project delivery. Digital
tools are increasing transparency, reducing delays, and helping connect the value chain,
leading to more efficient, durable, and client-centred project outcomes. Moreover, with
increasingly demanding clients and sustainability as one of the most important
prerequisites, digital technologies enable firms to better understand and respond to user
demands, environmental conditions, and lifecycle performance.

Furthermore, such technologies must be meaningfully included in decision-making
processes (Struijk et al., 2023). This also involves rethinking governance, accountability,
and skillsets. DT is not an ‘outcome’ to be "achieved"—it is not a linear matter of eventually

‘arriving.” Instead, it is an ongoing process of alignment and adjustment, a mutual co-
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evolution of digital systems and human participants (Angelopoulos et al., 2023; Struijk et
al., 2023; Vial, 2019). AEC firms need to question their skills, values, and practices to
position themselves at the forefront of an ever more competitive environment.

To conclude, DT in Hong Kong’'s AEC industry is a journey that is strategic, dynamic,
and sociotechnical, not a static destination. However, it has the potential to serve as a
driver of value and perhaps even sector-level transformation and sustainability, if it is
addressed at an enterprise level, where people, processes, platforms, and cultural change

meld to sustain productivity.

1.2 Digital Transformation and Sustainability

A major factor driving the DT of Hong Kong's AEC industry is the need to enhance
sustainability and reduce environmental impact. DT plays a vital role in this process,
enabling firms to adopt more sustainable practices and reduce their carbon footprint.
According to Hong Kong's Climate Action Plan 2050 (HKSAR, 2021), the region strives to
achieve carbon neutrality by 2050. However, the building and construction industry
remains a significant source of carbon emissions. One important technology that
promotes sustainable development is BIM in the AEC sector. Through BIM, architects,
engineers and contractors can produce digital prototypes of structural or infrastructure
projects to simulate and investigate the implementation of the project, detect possible
errors and improve the design and construction workflow.

Moreover, BIM can be integrated with Al and big data analytics (BDA) to enhance
construction site safety and security. By analysing vast amounts of real-time data from
sensors, cameras, and wearable devices, Al algorithms can predict potential hazards,
monitor compliance with safety protocols, and alert managers to unsafe behaviours,
thereby reducing accidents and improving operational oversight. A study by the National
Building Information Modelling Standard of the United States (NBIMS-US) showed that

the application of BIM can accelerate project delivery by up to 73% and reduce the
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weather impact of projects by up to 28% (NBIMS-US, 2015). This is because BIM enables
AEC firms to identify and resolve potential issues before they escalate into major problems,
reducing costly rework and minimising waste during construction.

By incorporating digital technologies, AEC firms can significantly improve
sustainability. As the world works to combat climate change and resource depletion,
leveraging such technologies can enable more sustainable practices throughout the
lifecycle of a building project. One of the most impactful technologies is BIM, which allows
for a comprehensive digital depiction of a building. This technology allows architects and
engineers to closely review energy consumption, material utilisation, and waste
generation before construction begins. By visualising the entire project in a virtual
environment using AR and virtual reality (VR) technology, teams can identify inefficiencies
and improve designs for greater energy efficiency and sustainability. This proactive
strategy reduces environmental impact and lowers long-term costs. The loT also plays a
key role in sustainability by monitoring building operations in real time. Sensors can track
energy consumption, water usage, and indoor air quality, providing valuable data to
develop smart resource management plans. For example, smart building systems can
automatically calibrate lighting and heating based on occupancy, reducing energy waste.

Overall, the convergence of DT and sustainability presents a unique opportunity for
the AEC industry to reimagine its role in addressing environmental challenges. By
embedding digital technologies into sustainability strategies, firms can achieve greater
operational efficiency, reduce ecological impact, and contribute meaningfully to Hong

Kong’s broader climate and development goals.
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1.3 Misconceptions About Digital Technology Adoption

There are some common misconceptions about the role of digital technologies in business
transformation and sustainability. One widespread belief is that DT is just about bringing
in new technologies into existing business processes. However, this view oversimplifies
the concept and fails to acknowledge that DT requires more than just technology adoption.
A study by McKinsey Global Institute emphasises that "digital transformation is not just
about technology; it's about changing how a company operates, interacts with
stakeholders, and creates values" (Lamarre et al., 2023). This shows the need to
understand digital change more deeply, beyond merely developing new tools.

Another common misconception is that DT is a one-time investment, rather than an
ongoing journey. This misunderstanding can lead to frustration, as DT requires sustained
effort and investment over time through many small steps. It is not something that can be
accomplished through a single project.

Additionally, many wrongly view the adoption of digital technologies as the end goal
of DT, rather than a means to achieve broader organisational objectives. While digital
technologies are key enablers of change, their real purpose lies in creating innovative
business models, improving customer experiences, and increasing efficiency - all enabled
by using digital technologies effectively.

When it comes to sustainability, there is also a common misunderstanding about the
role of digital technologies. While many see it as a key driver of sustainable practices, this
is not always true. While digital technologies can support sustainability, their effective use
requires a nuanced understanding of the complexities involved in DT. By thoughtfully
applying these technologies and recognising their strategic implications, AEC firms can

better position themselves to contribute to a more sustainable future.
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1.4 Determinants of Digital Transformation

Examining the factors that drive DT for sustainability and business model innovation (BMI)
within Hong Kong's AEC industry is vital for tackling the urgent issues of urbanisation and
environmental sustainability. As the industry faces mounting pressure to adopt eco-
friendly practices, it becomes increasingly important to understand the factors that fuel DT
(World Green Building Council, 2019).

Technological factors are key players in this landscape. The perceived advantages
of digital technologies, such as enhanced efficiency and cost reduction, serve as strong
motivators for firms to embrace innovation (Rogers et al., 2014). In the AEC sector, tools
such as BIM and Al/ML hold significant potential to greatly improve project outcomes and
sustainability initiatives (Eastman, 2011). However, the integration of these technologies
with existing systems is crucial for their adoption (Na et al., 2023). Firms are more inclined
to adopt digital technologies that seamlessly fit into their current processes, helping to
minimise the complexity and time involved in workflow (Chen and Tang, 2019).

Moreover, the rapid pace of technological advancement has created a skills gap
among the workforce (Siddiqui et al., 2023). Many professionals lack the training needed
to effectively use digital tools, which can slow the adoption process (Keung et al., 2023).
Additionally, the high initial costs associated with implementing digital technologies can
pose a significant barrier, particularly for smaller firms (Eastman, 2011).

Organisational factors are equally critical in propelling DT within the AEC industry.
Strong leadership and a commitment from management are crucial for driving DT
initiatives forward (World Green Building Council, 2019). Firms that prioritise DT and
allocate resources wisely tend to see greater success in their efforts (Bhattacharya and
Momaya, 2021). The skills and expertise of the workforce play a vital role in achieving
successful DT (Na et al., 2023). Investing in training and development ensures that
employees are well-equipped to leverage new tools effectively, which can lead to

improved productivity (Chen and Tang, 2019). Moreover, fostering an organisational
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culture that encourages experimentation and innovation creates an environment
conducive to DT (Siddiqui et al., 2023). However, believing that technology alone can
solve the long-standing challenges faced by the AEC industry misses the point about the
importance of organisational culture and collaboration. Truly successful DT requires a shift
in mindset among stakeholders, emphasising continuous learning, adaptability, and
collaboration (Siddiqui et al., 2023). Many firms struggle to create this culture, resulting in
fragmented implementations that fail to harness the full potential of advanced digital
technologies.

Environmental factors, including customer expectations and government support,
also play a significant role in shaping the landscape of DT (World Green Building Council,
2019). The growing demand for sustainable practices from clients and stakeholders
pushes firms to adopt digital solutions. Understanding customer preferences can guide
organisations in their DT efforts (Eastman, 2011). Additionally, supportive policies and
incentives from the Hong Kong government can facilitate this transformation within the
AEC sector (Bureau, 2018). Regulations that promote sustainability and provide funding
for innovative projects encourage firms to invest in digital technologies (World Green
Building Council, 2019). Furthermore, the need to adapt to environmental uncertainties,
such as climate change and resource scarcity, drives firms to innovate. DT equips firms
with the necessary tools to navigate these challenges effectively.

The strategy factor refers to the strategic orientation of a firm, which influences how
decisions are made and how resources are allocated to support innovation, sustainability,
and long-term competitiveness. The entrepreneurial ethos of a firm indicates its propensity
to be innovative, take calculated risks, and act proactively in the face of change (Lumpkin
and Dess, 1996). It also includes the level of integration of sustainability in strategic
planning as well as day-to-day operations, known as sustainability culture and practice
(Claudy et al., 2016). Firms with well-defined strategic direction are better able to ensure

DT is in line with wider business objectives such as environmental and operational

Page 7



improvement. The digital preparedness of a firm, as well as its strategic intentionality to
embrace cutting-edge technologies, can also impact the success of DT efforts across the

board.

1.5 Challenges in the Digital-Sustainability Transition

DT in Hong Kong’'s AEC industry presents several challenges, especially when it comes
to achieving sustainability goals. While the advantages of digital technologies, such as
enhanced efficiency, reduced cost improved environmental footprint are well
acknowledged, several obstacles stand in the way of their effective implementation.

One of the most significant hurdles is the resistance to change among employees
(Struijk et al., 2023). Many employees (Struijk et al., 2023) are accustomed to traditional
ways of working and might feel hesitant to embrace new technologies. This reluctance
can often stem from a lack of awareness about the benefits of DT or fears about job
security due to automation. To shift this mindset, firms need to invest in comprehensive
training and foster a culture that values innovation and continuous improvement.

Concurrently, the AEC sector in Hong Kong is highly fragmented, involving a diverse
range of stakeholders including but not limited to architects, engineers, contractors, and
subcontractors, but also the Government, each working with their own systems and
standards. This fragmentation makes collaboration and data sharing more complex, both
of which are crucial for successful DT. Without a unified approach to technology adoption,
projects can suffer from inefficiencies and miscommunication, ultimately hindering efforts
towards sustainability.

Furthermore, the rapid pace of technological advancement has created a notable
skills gap in the AEC workforce. Many professionals lack the necessary training to
effectively utilise tools like BIM. They also lack knowledge of the applications of Al, digital
twins (DTs), and the IoT. This shortage of skilled workers can slow down the adoption of

such technologies and limit their positive impact on sustainability goals. Bridging this gap
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requires investment in education and training programs to ensure the workforce is
equipped for a digital future.

Implementing digital technologies requires significant upfront investment, which can
be a barrier for many firms, particularly smaller companies operating on tight budgets.
Although the Hong Kong Government has support funding for the industry, the costs
associated with software, hardware, training, and IT support can deter organisations from
pursuing DT, even when the long-term benefits are clear. This issue is further complicated
by the low-profit margins commonly found in the AEC industry, making it challenging for
firms to justify such investments and expenditures.

Another major challenge is the lack of standardised data formats and communication
protocols within the AEC industry. This absence of common standards can lead to
inefficiencies and misalignment among stakeholders. When integrating various digital
technologies becomes difficult, the potential for collaboration and data sharing is limited.
Establishing industry-wide standards is essential for facilitating smooth communication
and maximising the benefits of DT.

Finally, while in 2017 the Hong Kong SAR Government mandated the use of BIM for
all public projects over HK$30 million (HKSAR, 2017), this requirement only applies to the
design phase and not the entire construction value chain. To comply with the regulation,
many firms have subcontracted 3D modelling services, which have driven up project costs,
especially for small and medium enterprises. This limited application of BIM has not

catalysed holistic digital transformation across the industry.
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1.6

Research Objectives and Contributions

The primary aim of this study is to explore and conceptualise the key factors that influence

DT in the AEC industry, with a particular focus on how these factors may enable the

development of sustainable and innovative business models. The study is guided by the

following four objectives:

1.

To identify and evaluate technological determinants—such as BIM, Al, loT, and
AR/VR—that have the potential to facilitate or hinder DT in the AEC sector,
particularly in the context of sustainability challenges.

To examine organisational-level factors (e.g., leadership commitment,
organisational culture, and workforce capabilities) that may influence the
readiness and implementation of DT initiatives in AEC firms.

To investigate broader strategic factors—including innovation posture,
sustainability culture and practice, and digital readiness—that may shape how DT
is aligned with long-term sustainability and competitiveness goals.

To propose a conceptual framework that integrates these key determinants and
outlines potential pathways through which DT may contribute to sustainable BMI

within the AEC industry.

Based on the above objectives, the central research question guiding this study is:

What are the key organisational and technological determinants of DT that enable

sustainable BMI in the AEC industry?

This question encapsulates the study’s intent to uncover the drivers and enablers of

DT, offering insights into how firms can evolve their business models to meet the demands

of a more sustainable and digitally integrated future.

In doing so, this study contributes to the theoretical discourse at the intersection of

DT, sustainability, and organisational strategy in several ways:
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o |t extends existing DT literature by incorporating sustainability considerations—
such as environmental and social value creation—into models of technological

adoption in the AEC industry.

¢ |t proposes a multidimensional conceptual framework that integrates technological,

organisational, and strategic drivers of DT as enablers of BMI.

e It enriches the understanding of how organisational context influences the
translation of digital capabilities into sustainable outcomes, thereby contributing to
the broader literature on change management and innovation in project-based
industries.

From a practical perspective, this research offers insights and tools for AEC

practitioners, industry leaders, and policymakers:

o ltidentifies key internal and external factors that AEC firms should consider when

planning and implementing DT strategies aligned with sustainability goals.

¢ |t anticipates providing a roadmap or framework that can assist firms in assessing

their readiness for DT and identifying critical areas for capability development.

e |t informs policy discussions by highlighting potential barriers and enablers of

sector-wide DT, in the context of regulatory standards and sustainability mandates.
These theoretical and practical contributions establish the conceptual foundation of
the study. Their development and validation are addressed throughout the subsequent
chapters and further elaborated in the Discussion Chapter, where key empirical
findings are synthesised and integrated into strategic models and frameworks. In
doing so, the study bridges the conceptual groundwork presented in this Chapter with

the evidence-based insights derived from data analysis.
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1.7  Structure of Thesis

Following this introduction, the next chapter provides a thorough review of the literature,
with an emphasis on DT in relation to sustainable BMI. Additionally, it delves into
organisational practices that intersect with entrepreneurship and sustainability. The aim
of this chapter is to pinpoint research gaps that merit exploration, while also outlining the
theoretical framework and hypotheses that guide this study. The Methodology Chapter
details the methodology, covering aspects such as construct development, measurement
design, data collection, and analytical techniques. The Analysis and Results Chapter
presents the results, showcasing measurement validity, evaluating the structural model,
and discussing findings from the multigroup analysis. Finally, the Discussion Chapter
delves into the key findings, offering a detailed discussion of their theoretical and practical
implications. It introduces the 3P2SBMI Framework and wraps up with a reflection on the

study's limitations and recommendations relating to avenues for future research.
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LITERATURE REVIEW

DT serves as a key enabler for novel business model designs within the AEC industry to
cope with increasing requests for sustainable improvements. Firms in this industry have
started relying on digital technologies to completely reinvent their operational models. In
recent years, the convergence of DT, and greening, have significantly transformed the
global business environment and led to the creation of new competitive opportunities for
firms around the world. The performance of such initiatives is highly dependent upon
efficient organisational systems and mechanisms, especially the inclusion of sustainability
factors in basic operational philosophies. Entrepreneurial culture, seen as a key factor in
these processes (Javalgi and Todd, 2011) presents a challenge for the success of
construction projects (Li et al., 2017). This review dissects the complex interlinkages
between the DT, BMI, sustainability principles, and entrepreneurial mindset, and thus
offers an in-depth conception of the state of the art in the field.

If the AEC industry is to succeed in BMI, it must understand the drivers of DT. These
determinants have not yet been empirically explored, and this contribution investigates
their role for innovation by shedding light into specific challenges and opportunities of the
industry. The results seek to contribute to the body of knowledge by providing practical
suggestions and recommendations for AEC firms to successfully capitalise on digital
technologies and drive their sustainability efforts.

A narrative approach was adopted for the presentation of the literature review, as it
enables a more comprehensive exploration of the issue and incorporates a range of views
and the findings of different studies. This approach provides flexibility in synthesising
evidence, able to adjust focus as new knowledge becomes evident, particularly around
new and emergent themes and issues. Narrative reviews can successfully reconcile the
literature, highlight gaps in the available literature, and suggest topics for future research,

particularly on the processes and the context of DT for sustainable innovation success.
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They also make it possible to contextualise the findings in larger theoretical frameworks,
digital technologies, other knowledge areas, sustainability theories, and BMI frameworks.
Additionally, narrative reviews render results in an understandable style for those
stakeholders concerned with the consequences of digital technologies for the
sustainability of businesses. In general, a narrative review allows a full understanding of
the nexus of digital technologies and sustainable BMI.

A systematic review method was used to search the literature, this includes the
search in academic databases such as Scopus, Web of Science, Google Scholar, and
ScienceDirect for specific keywords as presented in Table 2.1. The inclusion criteria
focused on the peer-reviewed journal articles in which the relationship between DT and
BMI, with respect to the sustainability aspect in the AEC sector, from 1990 to 2023. More
than 500 papers were initially found and more than 100 were used to identify essential
themes. Cross-referencing with other relevant papers and articles was conducted
throughout the literature review and study period to ensure a comprehensive
understanding of the topic. This approach helped validate findings, identify gaps, and

incorporate diverse perspectives into the analysis.
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Table 2.1 — Domains and Key Words Searching

Domain

Key Words

Digital Transformation

“Digital transformation”

“Digital transformation” and “Built industry” or “AEC industry” or “Construction”
“Digital vision”

“Digital orientation”

“Digital strategy”

“Digital leadership”

“Digitalisation”

AEC Digital Technology

“Building information modelling” or “Building information management” or “BIM”
“Geographic information systems” or “GIS”

“Artificial Intelligent” and “Built industry” or “AEC industry” or “Construction”
“Digital twin” and Built industry” or “AEC industry” or “Construction”
“Blockchain” and Built industry” or “AEC industry” or “construction”

“Cloud computing” and Built industry” or “AEC industry” or “Construction”
“3D printing” and Built industry” or “AEC industry” or “Construction”
“Machine learning” and Built industry” or “AEC industry” or “Construction”
“AR / VR” and “Built industry” or “AEC industry” or “Construction”

“Big Data Analytic” and “Built industry” or “AEC industry” or “Construction”
“loT” and “Built industry” or “AEC industry” or “Construction”

Sustainability

“‘ESG”

“Triple bottom line”

“Sustainable Development Goals” or “SDG”

“ESG” and “Built industry” or “AEC industry” or “Construction”
“Sustainability” and “Built industry” or “AEC industry” or “Construction”
“Sustainability” and “Digital transformation”

Business Model

“Business model”

“Business model innovation”

“Business model canvas”

“Sustainable business model” or “Sustainable business model innovation”
“Business model” and “Built industry” or “AEC industry” or “Construction”

Corporate culture

“Corporate entrepreneurship”

“Corporate entrepreneurship” and “Digital transformation”
“Entrepreneurial orientation” and “Digital transformation”
“Entrepreneurial orientation” and “Business model”
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2.1 Digital Transformation

2.1.1 Concept and Strategic Foundations
DT is defined as the fundamental and systemic reorganisation of business models,
processes, and activities through digitalisation (Mergel et al., 2019). It includes embracing
all sorts of digital technologies, such as data analytics, cloud, and Al (Manzoor et al., 2021).
The process of transformation is assumed to follow a phased approach: digitisation
(shifting analogue data into digital form), digitalisation (applying digital technology to
existing processes) and digital transformation (a fundamental change to the business logic
and value creation) (Verhoef et al., 2021). These phases depict a mounting degree of
organisational transformation which is needed to fully exploit digital technologies.
Angelopoulos et al. (2023) present a more subtle perspective of DT as a
“fundamental change in operational logic through the reversal of agency from human to
digital actors”. In this context, DT is not just about adopting digital technologies but about
transferring decision rights to them and thereby changing the way firms act, govern and
create value. This view emphasises the fact that DT is recursive and becomes a moving
target, with humans and digital agents co-adapting to each other. Similarly, Van Zeebroeck
et al. (2023), suggest that DT enables firms to create new business models, products,
services, and improves operational flexibility, and competitive advantage. AlNuaimi et al.
(2022) highlight that becoming digitally transformed is not just about introducing digital
technologies, but also about fostering an attitude and mindset, including experimentation,
risk response, and leadership agility. When digital technologies are embedded across a
firm it is necessary to re-examine organisational structures, customer engagement

approaches, and internal capabilities that drive sustainable value.
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2.1.2 Drivers and Enablers of Digital Transformation

The forces behind DT are complex, unique to different contexts. Externally, firms face
technological forces, customer expectations, competitive forces, and policy and regulatory
influences (Nadkarni and Prigl, 2020). Internally, there is an inherent need for constant
innovation, operational efficiency and change in business models to stay relevant (Ghosh
et al., 2022). The COVID-19 pandemic subsequently upended this, and deepening
adoption of digital technologies as remote operations, electronic commerce, and digital
service delivery became the new norm for most businesses (Priyono et al., 2020).

One of the key factors which catalyse DT is a clear digital vision, which is a future
looking statement identifying the role of digital technologies (Mishra et al., 2023). A
powerful digital vision not just informs strategic choices but galvanises internal and
external parties around a cohesive transformation narrative. According to AlNuaimi et al.
(2022), this vision must be tightly linked to the organisation’s top-level strategy and yet be
pliable enough to be adapted to developing technologies and changing markets.

To realise DT, firms need to develop a digital strategy that is holistic (Struijk et al.,
2023). Westerman et al. (2014) and Gurbaxani and Dunkle (2019) stress the importance
of understanding specific digital capabilities, evaluating the digital context and promoting
a culture, which facilitates change and innovation. This investment is not just in technology,
but also in talent and in firms where people are coming together and learning from each
other. DT is facilitated by leadership and successful digital leaders also need to be agile,
have vision, and be open to experimentation and risk (Fernandez-Vidal et al., 2022). They
are also balancing short-term performance targets with long-term investments in capability
change.

Importantly, Angelopoulos et al. (2023), for instance, argue that a precondition for
transformation is the capacity of a firm to absorb evolving agency dynamics — in which
digital technologies progressively automate actions. This calls for new governance, ethics

and digital accountability leadership competencies. In parallel, Struijk et al. (2023),
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suggest information quality management as being an under-investigated yet crucial
enabler for successful DT. Their research indicates that when firms establish a strategy to
manage the access, accuracy and relevance of data, business transformation becomes
more grounded in real operational scenarios and needs from stakeholders.

Combined, these insights highlight that DT is driven not only by external pressures
or digital tools, but also by internal capabilities, strategic clarity, adaptive leadership, and

high-quality information ecosystems that can support evolving digital agency.

2.1.3 Adoption and Challenges in the AEC Sector

DT in the AEC industry is still in its infancy compared to industries such as manufacturing
(Adekunle et al., 2021). BIM is increasingly prevalent in AEC, which increases
construction efficiency and cooperation among involved parties (Bryde et al., 2013). Yet,
the use of BIM in business is unevenly distributed and varies across firms, in particular,
Small and Medium-sized Enterprises (SMEs) (Chan et al., 2019). Several studies highlight
the significance of ISO 19650 (ISO, 2018) for AEC DT. This standard is fundamental for
digitisation within the AEC sector by promoting integration and collaboration between
project participants (Davidson et al., 2022). It supports the idea of transition from analogue
to digital practices to establish a common operational level to facilitate cooperation
(Godager et al., 2022), and assists in governing digitally created data and establishing
data-driven cultures (Matthei and Klemt-Albert, 2023).

The increasing rate of technology developments enables organisations to leverage
different technologies to keep ahead of the competition (Abioye et al., 2021; Baghalzadeh
Shishehgarkhaneh et al., 2022). Start-ups for construction technologies are disrupting the
traditional ways of working and introducing new software-based technologies to enhance
efficiency and sustainability in construction processes (Sacks et al., 2020). The
globalisation of business compels firms to expand their operations and include customers

and suppliers, mainly through digital technologies (Halin et al., 2020).
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Obstacles and hindrances for the AEC industry in DT are the lack of willingness to
change, a shortage of qualified labour, and disconnected supply chains (Zhou et al., 2019).
Mitigating these challenges requires collaboration, training, and a holistic perspective
(Ozorhon and Karahan, 2017). Supportive policy environments for digital literacy and a
culture of innovation should also be considered (Lijauco et al., 2020). The transition from
project-driven to data-driven, with an emphasis on digital skills, open standards, and
collaboration is critical (Karji et al., 2022). A further challenge is the diversity and
fragmentation in the AEC sector (Lavikka et al., 2018), thereby demanding standardisation
and open standards such as Industry Foundation Classes (IFC) in BIM, to enhance
interoperability and collaboration (Thein, 2011). Having appropriate staff with the right skill
is also important and firms need to be able to attract and retain talented employees with

the needed digital competencies for their DT endeavours (Mandi¢ak et al., 2020).

2.1.4 The Role of Digital Collaboration

DT is very much about collaboration, bringing digital technologies into firms. Digital
collaboration promotes innovation by giving employees the tools and resources they need
to work together across teams, departments, and geographies. Firms with a progressive
digital collaboration culture are more likely to introduce new products and services
(Orellana, 2017). Open innovation based on collaborations with external actors is in a
position of co-creating new products and services (Levine and Prietula, 2014). Digital
collaboration enhances decision-making by offering real-time data and insights.
Construction platforms such as Autodesk Bim360, Trimble Connect, and Bentley
Projectwise support real-time collaboration allowing faster and better cross-functional
decision-making, increasing decision quality (Merschbrock and Munkvold, 2015). DC also
accelerates organisational agility, which means that organisations can respond swiftly to

customer requirements and changing markets (Gless et al., 2018).
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2.1.5 Collaboration Tools, Benefits, and Barriers

In the AEC sector, collaboration is necessary for project success. BIM solutions facilitate
cooperation, communication, efficiency, error minimisation, and project quality (Oh et al.,
2015). Collaboration in design work improves the quality of designs and reduces errors
(Forcael et al., 2020). Cyber tools such as VR and AR enhance cooperation (Wen and
Gheisari, 2020). Collaboration and project outcomes are also improved under the
framework of Integrated Project Delivery (IPD) (Kelly, 2012; Kent and Becerik-Gerber,

2010; Liu et al., 2021).

2.2 Sustainability in AEC Industry

Sustainability has become a major concern in the AEC industry because of its significant
environmental and social effects. The building sector accounts for 38% of energy-related
carbon dioxide emissions worldwide and requires vast amounts of materials and water
(UNEP, 2023). These environmental issues as well as growing regulatory requirements
and changing social expectations have brought sustainability to the forefront AEC
conversation. Notwithstanding these increased levels of understanding, the fragmented
nature of the AEC industry, which effectively comprises a consortium of parties including
architects, engineers, contractors, and clients presents challenges to both coherent and
uniform sustainability practices (Zuo and Zillante, 2005). Mismatched goals and a lack of
communication invariably lead to waste and lost opportunities to integrate sustainable
strategies. This has prompted calls for collaborative delivery mechanisms, such as IPD to
enhance early building stakeholders' engagements and share in the sustainable vision

(Miller and Lessard, 2001).
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2.2.1 AEC Sustainable Practices and Tools

Various tools and techniques have been developed to support the transition to
sustainability in AEC. BIM is one of them. BIM offers multi-dimensional modelling with
anticipated identification of sustainable opportunities, optimise resource consumption,
and minimise construction waste (Eastman, 2011). Its incorporation in the design and
construction process contributes to the capacity of project teams to achieve environmental
goals and to achieve better lifecycle performance.

Simultaneously, green building certifications, such as LEED (Leadership in Energy
and Environmental Design) and BREEAM (Building Research Establishment
Environmental Assessment Method) offer a structured approach to implementing and
benchmarking sustainable practices (Kibert, 2016). These tools focus on energy efficiency,
indoor environmental quality, and material sustainability which consequently impact
building performance and occupant health (Hwang and Tan, 2012).

Lifecycle Assessment (LCA) has also been growing in popularity as an approach for
assessing environmental impacts of buildings throughout their entire life cycle—from the
extraction of raw material to ultimate disposal (Finnveden et al., 2009). In the preliminary
design stage, LCA methods enable better-informed decisions about materials, energy
systems, and means of construction, leading to potential long-term sustainable benefits

(Azhar et al., 2011).

2.2.2 Barriers and Facilitators to Sustainability Implementation

Even though tools and frameworks exist, the development and implementation of
sustainable practices in AEC is still poor. Critical challenges include low levels of
professionals’ knowledge and training, high upfront costs, client demand constraints
(Khan et al., 2014; Ofori, 2000). Furthermore, the lack of common metrics to enable and
measure environmental and other social performance is still curtailing the integration into

core corporate policies and practices. On the demand side, policy and regulation have
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played a growing role. Incentive policy tools, such as a tax credit for green buildings and
obligatory energy standards for building energy consumption, have been observed to
promote the popularisation and application of sustainable building (Mao et al., 2015).
Education and training programms serve also to stimulate the creation of a skilled

workforce for sustainability.

2.2.3 Sustainability Assessment in Comparative Perspective

Due to the multidimensional characteristics of sustainability, several theoretical
approaches have been developed to help apply sustainability principles in the built
environment. A comparative review across the four main paradigms (Environmental,
Social, and Governance (ESG), Circular Economy, Doughnut Economics, and the TBL)
as shown in Table 2.2, considering the strategic and operational scopes, sheds light on

varying degrees of relevance.

Table 2.2 — Comparison of Major Sustainability Frameworks

Framework / Primary Level of Key Strengths Limitations Reference
Theory Focus Application
ESG Investment, External Widely used by Compliance- Eccles et al.
(Environmental, risk and (investment, investors; driven; limited (2012)
Social, performance  reporting, standardised internal
Governance) compliance) metrics innovation focus
Circular Resource Operational Emphasises Focused on Geissdoerfer
Economy efficiency; and systemic lifecycle material flows; et al. (2017)
waste thinking and less emphasis
reduction closed-loop on social factors
systems
Doughnut Sustainable Macro (policy, Integrates Abstract; hard to  Raworth
Economics development economics) social equity apply at firm or (2017)
within and ecological  project level
planetary ceilings
boundaries
Triple Bottom People, Organisational Balanced, Lacks Elkington
Line (TBL) Planet, Profit  (strategic and integrative; standardised (1997)
value operational) adaptable metrics for

creation

across sectors

implementation
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2.2.3.1 Environmental, Social and Governance (ESG)

ESG has established itself as a framework for corporate sustainability reporting, especially
in the finance and investment industries. It assesses corporate action from 3 perspectives:
E (e.g., emissions, energy use), S (e.g., labour practices, diversity), and G (e.g.,
leadership, transparency). Investors utilise ESG metrics in order to evaluate risks and
long-term value creation (Eccles et al., 2012). ESG offers a framework for evaluating
sustainability performance, but it tends to be outward-facing and rules-based, valuing
reporting and transparency more than strategic change and making it less suitable for

informing internal innovation processes.

2.2.3.2 Circular Economy

The circular economy model is based on a continuous loop system, which aims to “reset
environmental balance” by reusing/recycling/regenerating and/or reducing waste and
reducing the pollution production when materials and resources are extracted, processed,
and disposed (Geissdoerfer et al., 2017). Its concepts have been adopted by industries
of manufacturing, packaging, and construction, where material efficiency and lifecycle
thinking are necessary. However, it underestimates social value creation, the style of
governance, or the differences in the strategic attitude of the companies towards

sustainability. Thus, it is an appropriate process model but lacks a broader strategic view.

2.2.3.3 Doughnut Economics

Introduced by Raworth (2017), Doughnut Economics presents a model that envisions the
fulfilment of human needs to ensure social equality and realisation is achieved within
ecological limits. The "inner ring" stands for social foundation (e.g., education, equity,
health), whereas the "outer ring" refers to ecological ceilings (e.g., climate change,
biodiversity loss). The area between the rings—the “safe and just space for humanity” —

is where we ought to locate sustainable development. The model is popular in public policy
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and urban planning, and although macro-level in nature, it is far less applicable to how

strategies and innovation processes are performed at the firm level.

2.2.3.4 Triple Bottom Line (TBL)

The TBL concept, launched by Elkington (1997), provides an integrated perspective on
sustainability by focusing not only on profit but also on three equally important facets:
people (social value), planet (environmental preservation), and profit (economic viability).
TBL has been frequently used as an orientation framework in studies of sustainable
business models (Bocken et al., 2014), innovation and digital transformation (George et
al., 2021). Its equal footing architecture enables scientists and practitioners to investigate
combinations of trade-offs, synergies, and capacity building between environmental,

social, and economic dimensions.

2.2.4 TBL as Strategic Framework

The lens of the TBL of economic (profit), environmental (planet), and social (people)
performance is used to illustrate a strategic focus on sustainable value creation within the
AEC sector (Elkington, 1997). It pushes companies to go beyond compliance and
integrate sustainability into their businesses. In construction, TBL embraces energy-
conscious design, the use of sustainable materials, and social equity (Bocken et al., 2014).
TBL adoption may improve business operations, risk mitigation, and stakeholder
confidence and create a competitive edge in a sustainability-focused market (Epstein and
Wisner, 2001; Porter and Kramer, 2006). It also serves the global frameworks agenda like
the UN SDGs (Lubin and Esty, 2010). However, implementation is yet to be fully
accomplished, with difficulties measuring non-financial results and overcoming well-
entrenched profit-centered cultures still being evident (Bansal and DesJardine, 2014;
Dyllick and Hockerts, 2002). A successful adoption should include leadership support,

employee involvement, and incorporate sustainability into long-term strategic objectives.
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2.3 Business Model Innovation

The AEC industry encourages collaboration among architects, engineers, contractors,
subcontractors, and material suppliers. The conventional model of separating the design
and construction phases (Design-Bid-Build, or DBB) in construction projects may result in
disputes and wasted resources. In contrast, flat fee contracting models such as
Construction Management at Risk (CMAR), Design-Build (DB), and IPD (Kelly, 2012)
have become increasingly common to encourage risk sharing and collaboration, and to
improve project results. These delivery mechanisms provide a background to more
general discussions around BMI and sustainability in the industry.

It must first be established that the intrinsic concept of BMI should be defined first
and is not to be confused with other established concepts, such as innovation, strategy,
or business model. BMI defines the recreation, reconfiguring, and realigning of the
architecture of actors and activities in and across the business value creation chain, i.e.,
that of the shaping, reinitiating, or redirecting of the architecture of how actors understand,
meet, and collaborate to create, deliver, and capture value. Zott and Amit (2010) describe
a business model as a “logical cohesive description of the way in which firms do business”
and more recently Bocken et al. (2015) explain BMI as the creation of a business model
that provides a fundamentally new value proposition or operational logic as compared to
existing industry standards. According to Chesbrough and Rosenbloom (2002) the
necessity to connect products, services, channels, and markets in new ways, to ensure
sustainable flow of revenue is a critical task. This is representative of an increase in
demand not just for product or service innovation, but rather for the transformational
design of business architecture, considering technological, competitive, and

environmental change.
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2.3.1 The Business Model Canvas as a Catalyst of Innovation

Osterwalder and Pigneur (2010) conception of the Business Model Canvas (BMC) was
developed as a strategic device consisting of nine interdependent building blocks:
Customer Segments, Value Proposition, Channels, Customer Relationships, Revenue
Streams, Key Resources, Key Activities, Key Partnerships, and Cost Structure (Figure
2.1). The BMC helps organisations to visualise, analyse, and understand their business
model and has shown to offer benefits in recognising opportunities for innovation and

sustainability (Bocken et al., 2015).

Figure 2.1 — Business Model Canvas

Cost Centres Profit Centres

Key Partners

Whom do you need to
work with to produce
and deliver your
solution?

Key Activities

What do you need to do
to produce, market, and
deliver your solution?

What do you need to
have in order to

produce, market and
deliver your solution?

Value Propositions

What problem do you
solve and how do you
solve it?

What are the most important cost inherent in our

Customer Relationships

How do you talk to your
market about your
solution?

Ho do you acquire
customers?

How do you deliver your
solution to customers?

Where can customers
find your solution?

Customer Segments

Who need your
solution?

How many people need
your solution right now?

How many people will
eventually need your
solution?

___________________________________

Revenue Streams

How do we make money? What’s the revenue

business model? Fixed? Variable? model? Pricing tactics?

The BMC has been useful in supporting organisations to create more sustainable
business models (Chesbrough and Rosenbloom, 2002) by identifying value creation and
cost reduction possibilities. The BMC has also benefited startups in recognising and giving
priority to the key elements of the model at business level and to communicate these ideas
with the company’s stakeholders (Havemo, 2018). Despite its dominance, the BMC may

be seen as problematic because it may be seen as problematic because it oversimplifies

the intricacies of business models, provides little guidance for implementation and
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execution (Teece, 2000), and it does not reflect the dynamic and iterative nature of BMI
(Zott et al., 2011).

There is a strong association between BMI and BMC. BMI requires the invention of
new business models for creating profits and revenue and redesigning the whole industry
or market (Zott and Amit, 2010). It needs modification of the major components of the
BMC. Effective BMI relies on a balance between such internal and external factors as
strategic vision, market analysis, technology innovation, customer pull and organisational
resources. It typically includes using digital technologies to create new value and
transform operations and customer experience. Researchers have identified factors that
are critical for successful BMI (Osterwalder and Pigneur, 2010; Teece, 2000) Each

building block of the BMC can be influenced by digital technologies within the AEC

industry as represented in Table 2.3.

Table 2.3 — Impacts of Digital Technologies on BMC’s Components

Relationships

BMC Block Impact From Digital Technologies

Customer Digital tools help AEC companies know their customers better, such as to leverage BDA and

Systems Al to identify the customers’ needs and desires, and to provide customised solutions.

Value AEC companies can employ virtual and augmented reality to provide immersive experiences

Proposition for clients, or BIM to design and build more efficient and sustainable structures.

Channels AEC firms leverage digital tools to explore innovative customer engagement, using social
media and online platforms to showcase work and connect with clients.

Customer AEC firms use online platforms and project software to enhance communication,

collaboration, and real-time updates with clients throughout the project lifecycle.

Partnerships

Revenue AEC companies can offer consulting focused on aiding companies in their DT journey or

Streams develop software products and solutions tailored to the industry or sector.

Key Key resources of AEC firms are affected by digital technologies. For example, companies

Resources must invest in new technologies and digital infrastructure to compete.

Key Activities  Digital technologies are impacting on the key activities of AEC firms. AEC companies need
to acquire new skills and capabilities in BDA, AL and digital design and construction.

Key Digital technologies enable new AEC partnerships, fostering innovation and end-to-end

services through collaboration with tech firms.

Cost
Structure

Digital tech changes AEC cost structures, requiring investment in new tools but boosting
efficiency and productivity for long-term savings.
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2.3.2 Critical Assessment for BMI Measurement Concepts

2.3.2.1 Spieth and Schneider (2016)

Spieth and Schneider (2016) fill the ongoing gap in BMI research by operationalising and
validating a formative measurement of BMI. They base their model on three key elements:
value proposition, value structure, and revenue model novelty. These elements are based
on the authors' lens on the business model as not just an operational or descriptive tool,
rather as an innovating system made up of separate albeit interrelated domains that can
be empirically examined. The study is particularly pertinent because previous efforts at
organising and evaluating BMI have been mostly typological rather than quantitative or
lacked the necessary quantitative criteria to make comparative and causal inferences.

When using a formative approach, every single dimension is said to contribute to the
overall construct of innovativeness in a non-reciprocal way - i.e., changes in one
dimension (e.g., revenue model) are not automatically mirrored by changes in another
dimension (e.g., value architecture).

One important limitation acknowledged by the authors is the lack of integration with
sustainability-oriented innovation metrics. It is based only on the physical and metabolic
aspects of BMI and does not include social and environmental components, restricting the
model’s use in the context of sustainable business practices. They propose also to include
these dimensions in the model in the future so that it contributes more to the

understanding of contemporary strategic challenges.

2.3.2.2 Clauss (2017)

In contrast, Clauss (2017) develops a reflective measurement scale for BMI, aiming to
conceptualise BMI as a latent variable and empirically categorise it through the observable
novel combinations within the business model components of the firm. Drawing on the
business model canvas (Osterwalder and Pigneur, 2010) and similar streams of literature,

Clauss (2017) defines BMIs as purposeful changes in the way a firm creates, delivers,
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and captures value. These shifts are represented in three sub-constructs: value creation
innovation, value proposition innovation, and value capture innovation.

This reflective frame also enables a useful diagnosis for researchers and
practitioners alike — BMI can be modelled as an independent, dependent, or mediating
construct in wider strategic configurations. Clauss, however, does not examine sector-
specific nuances or moderating factors of such a relationship between the factors, which
limits the contextual richness of her scale. Moreover, the cross-sectional nature does not
reflect the potential dynamics and feedback loops of the BMI that develop with time

following market and technological changes.

2.3.2.3 Comparative Insights
Despite the significant contribution that both studies make to the operationalisation of BMI,

they differ in conceptual orientation, measurement philosophy, statistical focus and

theoretical fit with AEC industry (see Table 2.4).

Table 2.4 — Comparative Analysis of Business Model Innovation

Aspect Spieth and Schneider (2016) Clauss (2017)
Measurement Formative (indicators form the Reflective (construct causes indicators)
Approach construct)

Business Model

Value offering, value architecture,

Value creation, value proposition, value

Domains revenue model capture

Methodology PLS-SEM with expert surveys; EFA/CFA with two independent samples;
suitable for modular constructs focused on unidimensional structure

Performance Moderately tested relationships with  Empirical linkage to firm performance

Validation innovation and strategy outcomes (financial and innovation metrics)

Key Limitations

F-F modelling requires large
sample; lack of ESG

Lacks industry-specific focus and does not
capture temporal dynamics

Theoretical Fit with
AEC

Strong alignment with modular,
project-based AEC innovation logic

Better suited for general business contexts;
less tailored to AEC complexity

Model Flexibility

Allows domain-specific analysis and
structural decomposition

Treats BMI as a single latent variable,
limiting diagnostic insights

Adaptability to
Small Samples

R-R structure for valid use in small-
sample exploratory study

Original structure not ideal for small-
sample exploratory studies

Relevance to
Research Aims

Enables targeted assessment of
innovation across BMI components.

Less aligned with objective of analysing
component-level innovation
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Neither of these models consider the sustainability nor digital transformation aspects
that play an increasingly important role in current business model redesign. Spieth and
Schneider (2016) explicitly refer to this as a limitation and also discuss directions for future
research, whereas Clauss (2017) is still looking into the performance effects, both
economic and innovation. The addition of TBL or SBM innovation perspectives would

improve the applicability of both frameworks in a research context going forward.

2.3.3 Primary Drivers and Enablers for SBM
SBM Innovation in the AEC operates at the confluence of environmental, social, and
organisational drivers compelling firms to reconsider the way they create, deliver, and
capture value. One of the main reasons behind this fact is the environmental effect of
construction activities which leads to very high CO, emissions at a global level, very large
energy consumption, and massive material waste. This has been stimulating attention for
carbon-neutral buildings, green infrastructure, and a circular economy (Bocken et al.,
2014). Environmental regulation and client demand are increasingly focused on these
objectives, adding pressure and opportunity for the AEC sectors to be innovators.

Economic sustainability has, in the meantime, been joined by social sustainability.
Topics such as responsible labour and community engagement or city-making are now
the fundamentals that nobody disputes, and which investors and the public expect to be
addressed, particularly in public and urban projects. Tools such as the GRI Standards
(GRI, 2023) and ISSB Standards (IFRS, 2023) offer recommendations to incorporate
social aspects in business models.

From an organisational perspective, digital technology and data analysis enable
companies to measure and optimise sustainability targets. Therefore, SBM is not solely
pressured externally but is also empowered internally by the capabilities and leadership

commitment.
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2.3.4 Status and Challenges in Realising SBM

Although SBM innovation has many advantages, its practice in the AEC industry
encounters several difficulties originating from the conservatism of industry culture, the
inertia of enterprises, and the complexity of its structure. Numerous organisations are
bound to outdated IT infrastructure, a risk-averse business culture, and misaligned reward
systems which tend to favour short-term cost minimisation rather than long-term value
creation (Bocken et al., 2014). Financial and regulatory doubts compound the problems
so that investing in sustainability may seem risky or not essential.

To find out how AEC practices can overcome these obstacles, they need to develop
four critical organisational competencies. Management of change is also critical,
facilitating firms' ability to negotiate the behavioural and structural shifts necessary to
engage in SBM innovation (Opoku et al., 2015). Train the workforce broadly rather than
in a single function area, to ensure that employees comprehend and support sustainability
objectives.

Strategic foresight is also essential. Companies which express long-term
sustainability goals accompanied by performance measures of these goals are more likely
to embed sustainability principles in ongoing decision-making (Engert et al., 2016). It also
allows firms to be open to new business models, characterised as a willingness "to
experiment and take calculated risks" (Covin and Lumpkin, 2011). Both cross-sector
collaboration and knowledge-sharing platforms can help to narrow the gap between AEC
firms and those with expertise in sustainability. In the end, SBM innovation will succeed

not only because of outside forces but through internal flexibility and strategic foresight.

2.3.5 TBL as a Lens for SBM in the Digital Era
The TBL stands as an appropriate lens to design and assess Sustainable BMI by AEC
(Elkington, 1997). In this digital age, TBL provides an organised methodology to weigh

and find harmony between nascent due date from competing impulses for sustainability.
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Digital transformation enablers such as BIM, |oT, and Al facilitate the practice of SBM
innovation according to the TBL philosophy.

For example, environmental performance that is supported by BIM is energy
modelling and lifecycle analysis, whereas social outcomes are monitored via loT devices
for worker safety and indoor air quality (George et al., 2021). They also maximise cost
structures and operational efficiencies, which leads to economic sustainability. By utilising
TBL, companies are able to consider the wider impacts of their business models beyond
the financial bottom line by creating shared value for stakeholders. It encourages
transparent reporting and alignment with global standards UN SDGs (United Nations,
2015).

Crucially, TBL encourages companies to treat sustainability as an opportunity for
innovation and differentiation instead of just another box to be ticked for compliance. This

change of mindset is essential for the future of the AEC in a sustainability-driven world.

2.4 Emergent Digital Technologies for AEC Industry

Several studies have proposed classification frameworks for digital technologies in the
AEC industry, such as Manzoor et al. (2021) and Dou et al. (2023) including BIM, Cloud
Computing (CC) Geographic Information Systems (GIS), Al, AR, VR, DT, Big Data Analytic
(BDA), Blockchain (BC), Sensing and Monitoring Technologies (loT), and Robotics and

Automation.

2.41 Emergent Digital Technologies

2.4.1.1 Building Information Modelling (BIM)

BIM is a digital process that has revolutionised the AEC industry (Bryde et al., 2013). BIM
utilises 3D computer modelling tools to virtually simulate the graphical, physical, and
functional aspects of a building (Succar, 2009). Since the model has the knowledge of the

building's components, systems, and space (Arayici, 2008), BIM supports better decision
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making as it allows project participants to design, evaluate design alternatives, understand
impacts, and detect problems earlier.

It enhances accuracy and eliminates rework / errors by detecting conflicts between
design elements (Chan et al, 2019). BIM also supports scheduling and building
construction coordination in real time, with both resources (Mandicak et al., 2020). Each
modelling element carries graphical and non-graphical information such as manufacturer
information and costs. Documentation updates automatically with changes. Models
themselves are open standards-based and, therefore, can be shared / integrated between
platforms, allowing team collaboration, such as openBIM (buildingSMART, 2013).

Embedded data also automates quantity take-offs and clash detection between
objects (Chahrour et al., 2021), which helps in construction coordination and error
reduction. Useful BIM is data related. There are obstacles in benefit realisation where data
are incomplete or inaccurate (Mandi¢ak et al., 2020). Coordination and cooperation
among participants are very important to enhance benefits (Oh et al., 2015).

BIM is designed to cover the information throughout the lifetime of a project with the
aim to facilitate single-source facilities management (Eastman, 2011). In short, BIM has
changed the way we work in an AEC space by making us more efficient and providing

better decision making, accuracy, collaboration, and lifecycle data management.

2.4.1.2 Cloud Computing (CC)

CC has emerged as a promising technology that has potential to change the way projects
are planned, designed, implemented, and operated. A CDE specific for cloud computing
could enhance communication and collaboration between the different stakeholders in a
project, minimising errors and time delays due to miscommunications and wrong
information (Bello et al., 2021). Internet-based tools and cloud-hosted centralised project
information stores make it possible to collaborate and to connect to up-to-date data from

mobile devices.
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CC enables resources to be available on the network and to be accessed with
standard mechanisms, which provide for design and construction participants transparent
access from wherever they are in the world (Wang et al., 2020). It reduces capital cost
and saves time, as well as reduce capital-intensive IT resources and infrastructure

expenses, which are shared between user organisations.

2.4.1.3 Geographic Information Systems (GIS)

GIS as a collection of hardware and software that allows capturing, storing, managing and
processing spatial data. These tasks include location factors, consideration of alternative
designs and evaluation of impacts. By using several layers of spatial data such as land
use and land cover, topography, soil and infrastructure, GIS helps to analyse site suitability
for proposed project. It also enables various stakeholders to collaborate, making it a
platform for shared decision-making and information sharing (Zhu et al., 2018).

Gu and London (2010) point out that GIS generates a range of outputs such as from
maps, spatial queries and 3D project models useful for generating a clear picture of the
dense urban circumstances. When connected to BIM, GIS provides greater decision
support system for AEC professionals. The integration permits 3D models to be overlaid
on site maps, enabling users to perform environmental and energy simulations, and

ultimately achieve better accuracy, and efficiency in project planning and implementation.

2.4.1.4 Artificial Intelligent (Al)

Al includes capabilities to apply design model checking, predictive maintenance, quality
control, safety monitoring, and optimisation of building performance and energy
efficiencies. By enabling routine work to be streamlined and automated, AEC
professionals could concentrate on more challenging and creative issues in their
profession (Pan and Zhang, 2021; Pan and Zhang, 2022). Al is naturally predisposed to

learning from large data sets and identifying complex patterns.
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The learning ability enables Al to handle various applications, such as semantic
segmentation of building components from images / scans, structural condition
assessment using drones, and predictive analytics for building management with loT
sensor data (Plageras et al., 2018). Al also promotes teamwork through chatbots and
VR/AR interfaces. For example, Al chatbots and virtual assistants can answer user
questions automatically, cutting down response times. Al-based simulations also enable

collaboration and decision-making from a distance (lvanova et al., 2023)

2.4.1.5 Augmented and Virtual Reality (AR/VR)

As AR/VR offers immersive experience, designers can visualise and traverse through
three-dimensional designs. The early analysis of design and fabrication-related problems
by AR/VR may prevent project overruns of cost and schedule (Schiavi et al., 2022; Yan et
al., 2011). During design and construction phases, AR applications can overlay digital
information such as schematics, specifications, and notes, for example, directly on a
user's view of a physical space (Azuma, 1997).

One of the key features of AR/VR is their ability to imitate actual or theoretical spaces
and material presences through interactive 3D digital models. This ability in simulation
enables the engineering / design collaborative domain clash detections, safety planning,
and spatial coordination. It also facilitates training, and skills transfer through interactive
simulations and mixed reality serious games (Davila Delgado et al., 2020; Li et al., 2018).

With AR/VR, stakeholders can have an immersive experience beyond traditional
media of more complex designs and environments. This increases the understanding of
end-users and allows them for easy interaction with digital models. By leveraging sensors,
AR interfaces also support the delivery of location-based and context-aware information,

such as remote assistance and facilities management (Sabzevar et al., 2023).
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2.4.1.6 Digital Twins (DTs)

DTs can support collaborative iterative design processes through enabling architects,
engineers, and contractors to virtually experiment with various design alternatives and
construction sequences, providing a real-time test and measure environment to assist in
identifying and solving issues at an early stage of the DTs. This early warning provides a
cost-effective and proactive decision support during a project or an asset's lifecycle
(Salem and Dragomir, 2022; Zhang et al., 2021).

A distinguishing characteristic of DTs is that they can generate digital representations
of physical assets, infrastructure systems, or built environments along their life cycle.
These models are kept synchronised to the physical twin through integration with loT
sensors and reporting systems (Ozturk, 2021).

DTs could provide any time; any place virtual visits is highly important. Coupled with
AR/VR technologies, they facilitate remote collaboration, virtual commissioning, spatially
aware asset management, and seamless skills transfer between field and office teams

(Opoku et al., 2021).

2.4.1.7 Big Data Analytic (BDA)

BDA is capable of improving project delivery by offering real-time information about the
pace of construction, revealing possible bottlenecks, and aligning resources as planned
(Ahmed et al., 2017).

One of the main applications of BDA is predictive maintenance. BDA understands
patterns and trends from heterogenous project data including equipment logs, loT sensors,
and drone images. With predictive modelling, companies can predict when equipment is
going to break which means better schedules for upkeep and less of the dreaded
‘unplanned downtime...” This evidence-based strategy enhances asset reliability and
facilitates more effective life cycle cost management (Cheng et al., 2020). Consequently,

BDA paradigm changes maintenance approach from a reactive one into a proactive one,
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improving project performance and extending asset life.

BDA also facilitates scheduling optimisation through enabling real-time monitoring of
production. By combining project documents, sensors, and administrative systems,
stakeholders can see, track, and reallocating resource as needed. Methods such as
process mining and simulation support the anticipation of delays and the improvement of
decision-making along the project lifecycle (Bilal et al., 2016). This increases accuracy in

planning, productivity monitoring and reaction to on-site conditions.

2.4.1.8 Blockchain (BC)

BC gives strong potential as a collaboration tool in AEC industry, especially in large
projects with numerous contractual parties involved. Also decentralised storage sharing
and validation of BIM data can be achieved via BC, overcoming the problem of data silos
and improving the trust in shared information (Li et al., 2020; Mahmudnia et al., 2022). Its
public ledger provides transparent access to information about construction materials,
equipment status, payments, and design documents, increasing accountability and
veracity of data among project stakeholders.

BC can also integration with sensors, 0T, and Al, which allow for predictive
maintenance by monitoring equipment usage in real time, machinery remote monitoring,
and compliance monitoring through the automatic interpretation of measurement data.
This synchronisation allows data informed decision making and supports a more cost-
efficient operation through the anticipation of issues and the awareness of situations that
could develop into serious problems, leading to safer, more reliable project execution

(Mahmudnia et al., 2022).

2.4.1.9 Sensing and monitoring technologies (IoT)

Sensing and monitoring technologies, also refer to 10T, are employed in a broad range in

the AEC sector including building performance monitoring, predictive maintenance and
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energy management. loT can also use to detect temperature, humidity, and air quality
inside buildings, and HVAC systems can be adjusted in real-time (Sarkar et al., 2020;
Tang et al., 2019).

One major benefit of 10T in the built environment is its capability to gather real-time
operational data from sensors, drones, wearables and other networked devices. This
stream of data has been used in different monitoring and analysis applications throughout
the AEC lifecycle. When combined with the cutting-edge analytics like Al, data from the
loT features predictive capabilities such as fault detection, structure health monitoring,
user behaviour analysis, and prediction of energy consumption (Baghalzadeh
Shishehgarkhaneh et al., 2022).

IoT systems can also actuate the physical environment, fulfilling automated reactions
based on sensed conditions. The ability to do this allows for more intelligently-controlled
operation — for things like adaptive lighting, self-managing facilities, and the “growing” of
scaffold systems. Sensing coupled with control via 0T enables safer, greener, smarter

construction and building operations (Plageras et al., 2018).

2.4.1.10 3D Printing
3D printing has facilitated the fabrication of complex architectural geometries, components,
and facade elements which are difficult to fabricate with other existing technologies (El-
Sayegh et al., 2020). It resulted in an enhanced degree of design freedom as compared
to traditional approaches. This enables building elements that are flexible, performative,
and visually attractive.

Projects such as Apis Cor and WinSun have demonstrated the creation of 3D printed
houses over the course of mere hours. The coupling of robots and 3D printers
demonstrates a positive transformation of these two technologies in the building industry

(Xu et al., 2022).
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3D printing facilitates the iterative design process and prototyping of complex designs.
Combined with sensors and built-in computational capabilities, it enables hybridisation in

design, manufacturing, and construction (Singh et al., 2021).

2.4.2 Strategic Alignment of DT with TBL Goals

Triple Bottom Line framework (Elkington, 1997), argues that organisations should
simultaneously pursue economic, environmental, and social responsibilities. In AEC
industry, this entails balancing financial performance, ecological responsibility, and social
well-being across all phases of the project lifecycle—from early design to operation and
decommissioning (Opoku and Fortune, 2011; Zuo and Zhao, 2014).

To systematically evaluate the sustainability contributions of digital technologies,
relevant organisational and sustainability theories were aligned with each TBL dimension.
Theories were selected based on their ability to explain the specific value created: for
economic impacts, value-based theories such as the Knowledge-Based View, Dynamic
Capabilities, and Lean Principles were applied; for social impacts, theories including the
Relational View, Human Capital Theory, and High Reliability Theory were used to address
aspects of collaboration and safety; and for environmental impacts, sustainability-focused
frameworks such as Eco-Efficiency, Industrial Ecology, and Cradle-to-Cradle informed the
interpretation of ecological outcomes. As shown in Tables 2.5-2.7, these interrelated
factors highlight the strategic role of digital innovation in advancing holistic sustainability

within the built environment.

2.4.2.1 Economic Impacts
Economic Impacts (Table 2.5): Cloud computing reduces costs through shared
infrastructure (Wang et al., 2022), while BIM minimises rework and improves accuracy

(Bryde et al., 2013).
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Table 2.5 — Profit (Economic Impact)

Tech Key Benefit Theory Supporting Evidence
Reduces design ) Bryde et al. (2013), Chan et
BIM rework/costs Knowledge-Based View al. (2019)
Cloud Shared infrastructure Dynamic Capabilities Zhang et al. (2020)
savings
. . . Bilal et al. (2016), Ahmed et
Big Data Optimises schedules Lean Principles al. (2017)
Blockchain Supply chain transparency Dynamic Capabilities Liet al. (2020), Mahmudnia et
al. (2022)
3D Printing Cuts material waste Lean Principles El-Sayegh et al. (2020), (Xu

et al., 2022)

2.4.2.2 Social Advantage

Social Advantages (Table 2.6): AR/VR enhances safety training (Li et al., 2018), and

digital twins facilitate remote collaboration (Opoku et al., 2021)

Table 2.6 — People (Social Impact)

Tech Key Benefit Theory Supporting Evidence
BIM Stakeholder collaboration Relational View Oh et al. (2015)

Cloud :;i'g;iﬁi team Relational View Bello et al. (2021)

AlI/VR Safety training High Reliability Theory Li et al. (2018)

GIS Shared spatial decisions Relational View Zhu et al. (2018)

DT Remote collaboration Human Capital Theory Opoku et al. (2021)

2.4.2.3 Environmental Benefits

Environmental Benefits (Table 2.7). BIM-GIS integration enables energy and carbon

simulations (Gu and London, 2010), and loT sensors optimise building operations (Tang

et al., 2019)
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Table 2.7 — Planet (Environmental Impact)

Tech Key Benefit Theory Supporting Evidence
BIM+GIS Energy simulations Eco-Efficiency Gu and London (2010)

Big Data Predictive maintenance Industrial Ecology Cheng et al. (2020)

loT Sensors rli((e)ili-tt;rr?:genergy Industrial Ecology :ﬁrg;é;)" (2019), Sarkar et
3D Printing Localised manufacturing Cradle-to-Cradle Singh et al. (2021)

DT Asset lifecycle extension Cradle-to-Cradle Ozturk (2021)

When strategically implemented, these technologies will support BMI and data-
driven decision-making that are advancing:

¢ Financial performance via lean operations as well as dynamic capabilities

¢ Environmental stewardship through eco-efficiency and cradle-to-cradle design

principles

e Social equity via enhanced collaboration and human capital development

This alignment fosters innovation pathways where economic incentives support both
planetary sustainability and community interests. The empirical analysis, focused on these
relationships, is presented in the coming sections, which explores these connections
through their theoretical foundations, linking digital transformation to TBL as an anchoring

principle.

2.4.3 Challenges in Adoption and Future Trends

Digital technologies adoption in the AEC industry is somehow encountering various
barriers. The full implementation of BIM also demands substantial investments of time,
financial resources, and workflow modifications, which make it difficult to be adopted by
smaller local practices and smaller projects (Zhou et al., 2019). The success of BIM
depends on accurate and current data, importation of incomplete or inaccurate data based

data impeding the benefits (Zhang et al., 2020). Coordination and collaboration between
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the project involved parties are also important to achieve the benefits of BIM (Oh et al.,
2015). Topics like cloud-computing to AR/VR and big data analytics, have numerous other
issues to deal along with, like data security, privacy and standardisation (Emaminejad et
al., 2021; Mahamadu et al., 2013; Mantha et al., 2021).

Prospectively, their destiny will be to grow together even more. With the integration
of BIM and AR/VR, visualisation will also be enhanced (Schiavi et al., 2022) and Al with
improved decision support tools (Zhang et al., 2022) will facilitate collaborative, interactive
design support via simulations such as digital twins (Zhang et al., 2021). The BIM and B
process links BIM with blockchain to facilitate collaboration (Li et al., 2020). There is a
tremendous promise for safer, more productive, less wasteful and more sustainable
construction with advancements in sensors, robotics and 3D printing (Tang et al., 2019;
Xu et al, 2022). In the end, its increased use, through expanded awareness and
integration of it into emerging technology, that will help achieve the full benefits of these

technologies.

2.5 Key Determinants of Successful Initiatives

The initiatives of DT, BMI, and sustainability development are becoming increasingly
challenging. Successful enablers include organisational leadership, innovation culture,
human capital, and vision and strategy. In the AEC sector, DT involves recasting of
processes, capabilities, and models to extract the value of digital technologies. BMI
consists in introducing modifications in the organisation's business model or in designing
new models for the purpose of generating and capturing additional value, with particular
emphasis on sustainability-based opportunities. Sustainable development aims to protect
the natural and human resources we depend on for a high quality of life (e.g., carbon
neutral and circular economy practices; Bocken et al. (2014) and human rights (GRI,

2023).

Page 42



Several studies have sought to identify the elements that determine the outcome of
efforts in these domains. Firm-level entrepreneurial traits have been correlated with digital
transformation and innovation. Firms that have attributes of innovativeness, proactiveness,
and risk-taking behaviours are more inclined to grab new opportunities and experiment
with business models (Ciampi et al., 2021).

Equally significant are organisational culture and a well-defined strategic orientation.
In the context of sustainability innovation, high-level management subscribers for
sustainable policies promote employees’ intrinsic motivation toward green ideas (Kim et
al., 2017; Lozano, 2015). Clear visions for long-term sustainability direct cross-disciplinary
decisions (Bocken et al., 2014).

Leadership and communication of the desired objectives are equally vital for digital
transformation. Previous studies have shown that the lack of support from company top
management is a typical barrier (Porfirio et al., 2021). Clear digital visions and adoption
roadmaps enhance the allocation of resources and consumption of change (Hess et al.,

2016).

2.5.1 Entrepreneurial Orientation

Entrepreneurial Orientation (EO) has often been noted as both influential and important
to the growth and flourishing of businesses. EO includes the firm's innovation strategy,
risk-taking strategy, proactive strategy, autonomy strategy, competitive aggressiveness
strategy, and focus on opportunities strategy. Companies with high levels of EO
consistently outperform those with low levels. Such as, being proved that EO has an
underlying positive impact on growth and monetary performance of new ventures
(Hmieleski and Corbett, 2006) and EO has a correlation with the survival and growth of
small firms (Wiklund and Shepherd, 2003). The concept of EO was first defined by (Miller,
2011) as a propensity to engage in higher-risk activities related to the development of new

products or services and entry into new markets. Covin and Slevin (1989) developed a
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conceptualisation of EO and suggested that it is based on 3 dimensions: innovation, risk-
taking, and proactiveness. The dimensions of EO were further broadened, making
autonomy and competitiveness as the additional dimensions. (Covin and Slevin, 1991)
originally conceptualised EO as a unidimensional construct including innovativeness, risk-
taking, and proactiveness. With subsequent research has extended this dimensionality
and linked EO to the firm's performance (Hmieleski and Corbett, 2006; Wiklund and

Shepherd, 2003).

2.5.1.1 Five Dimensions of EO

Lumpkin and Dess (1996) proposes that EO consists of five dimensions - risk-taking,

proactiveness, innovativeness, autonomy, and competitive aggressiveness - possess a

strong impact on digital transformation. EO nurtures an experiment-friendly, innovative,

and adaptive culture, which helps in an organisation's smooth adoption of digital

technologies and for innovating business model (Vrontis et al., 2022).

e Innovativeness, as a key dimension of EO, also contributes to digital transformation
positively. Evidence also shows that firms with a high degree of innovativeness have
improved performance (Hughes and Morgan, 2007; Zahra and Covin, 1995). These
are the companies that are most likely to use digital technologies which have had the
biggest effect on disruptive innovation (Kraus et al., 2023). They also use digital
technology to service their customers more efficiently and may adopt specific

technologies such as BDA (Ciampi et al., 2021).

e Risk-taking, also helps digital transformation importantly. Companies that are willing
to take risks are more inclined to carry out digital initiatives, and risk-taking is positively
related to digital transformation (Hervé et al., 2021). The transition to digital
technologies entails investment risks, and a tolerance for risk-taking helps

organisations meet those challenges.
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e Proactiveness, as a dimension of EO is important in the digital age. Firms who are
proactive rather than reactive are expected to engage in digital technology adoption
to secure competitive advantage (Lumpkin and Dess, 1996; Wiklund and Shepherd,
2003). They understand the critical need for digital adoption to remain competitive and

have the foresight to embrace digital solutions.

o Autonomy (the extent of influence in decision-making) is related to better performance
(Hmieleski and Corbett, 2006; Wiklund and Shepherd, 2003). In the digital age,
companies must have the autonomy to be more agile to respond swiftly to market

changes and to be able to take on digital technologies.

o Competitive aggressiveness, firms that are more competitive also perform at a high
level (Covin and Slevin, 1989). Competitive aggressiveness verifiably could also be
correlated with the survival and growth of small enterprises (Wiklund and Shepherd,
2003). Firms must compete to survive and continue to evolve to meet customer needs
in the digital age.

Two important concepts that have been highly emphasised in literature and
supported by empirical findings are EO and BMI. Several studies have shown a positive
association between EO and BMI. For example, Hult et al. (2004) indicated that
organisations high on EO are more likely to be involved in BMI (i.e., new product/service
introduction, new geographical market entry, new technology adoption). Consistent with
the present research, Wiklund and Shepherd (2003) reported that high EO firms were
more likely to engage in business model experimentation which is a key initiator that leads

to BMI goals ultimately.

2.5.1.2 Correlate EO and BMI
EO and BMI are positively correlated because a higher level of EO plays a major role for
firms to take risks and try new things. This risk propensity and willingness to experiment

are potential drivers for BMI which allow firms to search for new avenues and develop
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new innovative business models. High-risk-taking propensity firms were also more likely
to utilise innovation (Covin and Slevin, 1991). Moreover, EO and BMI both share to a
similar extent strong entrepreneurial attitudes. Firms with high EO are also likely to be
highly entrepreneurial - the entrepreneurial organ of the company that is focused on value
creation and value capturing (Covin and Slevin, 1989). The same applies to BMI, as it
calls for a strong entrepreneurial attitude, given that it “is about how firms create, deliver,
and capture value” (Foss and Saebi, 2017) — it is about developing new business models
as well as implementing them.

EO plays an important role in facilitating the process of BMI (Ciampi et al., 2021).
High EO firms are expected to have business proactivity, they tend to be proactive and to
discover new opportunities for BMI. Furthermore, firms with high EO are believed to be
more opportunistic and can capitalise on their strategic thinking that is important for the
launching and execution of new business models. They also found high-EO firms to
engage more in BMI that includes strategies for repositioning and reconfiguration of
resources.

Overall, high EO and high collaboration may reinforce each other as the evolution
and exploitation of entrepreneurial capabilities will help firms develop and utilise their
entrepreneurial assets, while the EO uncovers and enables taking action at new
collaboration opportunities (Todeva and Knoke, 2005). Highly EO and collaborative firms
are expected to be more innovative, flexible, and competitive in this digital time. Regarding
BMI, since high EO firms are less averse to making decisions in uncertain environments
and are more innovative than other firms, they are more likely to be engaged in BMI
activities. Also, EO can promote BMI by supplying resources and the process of strategic
thinking for firms. Hence, firms that are attempting to motivate BMI should add EO as an
important component of their strategy, based on the complementarity between EO and

collaboration.
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2.5.2 Sustainability Orientation

Sustainability orientation (SO) as a behavioural dimension refers to the level of
commitment and the mindset of firms with the idea to pursue environmental, social and
economic goals in shaping visions, strategies, and operations of organisations (Claudy et
al., 2016). It influences organisational culture and behaviour to enable an ongoing
advancement towards sustainability-oriented performance. Embedded in a strong value
system around sustainability, orientation is both expected to drive innovation with the
focus on people and planet beyond profits (Jin et al., 2019) well as to help establish a

long-term vision also ensuring the well-being of future generations (Hockerts, 2015).

2.5.2.1 Drivers, Enablers and Strategic Implications

SO indicates an organisation’s dedication toward incorporating environmental, social, and
economic objectives into its strategy and operations. Leadership buy-in is a key driver.
Top management and CEO policymakers actively pursue and support sustainability
initiatives and provide strategic guidance and resource allocation to weave these values
into the organisation’s culture (Eccles et al., 2012). Their engagement generates a sense
of urgency and contributes to turning such ethical aspirations into concrete policies and
innovation.

Eccles et al. (2012) also highlight that employee involvement is a significant driver of
sustainability initiatives. Staff who internalise sustainability values work collaboratively
toward green goals. Involvement in decision-making, knowledge sharing, and
acknowledgment of environmentally friendly actions are identified as key sources of
intrinsic motivation. However, a common challenge is the gap between the vision at the
top and daily practices on the ground, underscoring the importance of role models and
cross-level coordination (Lozano, 2007). This coordination facilitates the co-creation of
innovative and cost-effective solutions by interdisciplinary teams. Furthermore, the

formalisation of guiding principles, strategic roadmaps, and measurable indicators—such
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as carbon reduction targets and compliance with 1ISO14001 (ISO, 2015) enables the
measurement and assessment of environmental performance.

A robust SO enables businesses to de-risk and comply with regulatory demands and
evolving stakeholder requirements. It builds trust, corporate brand reputation, and bridges
organisations with the global sustainability agendas such as the UN SDGs (United Nations,
2015). This is also reinforced by cultural factors, such as common sustainability values,
time-oriented thinking, and representative governance (Hockerts, 2015).

SO provides a competitive advantage, theoretically speaking. According to the
resource-based view theory, sustainability will lead to the creation of distinctive firm
capabilities, for example, eco-innovation and green supply chains (Cantele and Zardini,
2018). Stakeholder theory posits that engagement with the interests of stakeholders leads
to trust and results in access to resources, innovation, and cooperation (Freeman et al.,

2010).

2.5.5.2 Strategic Dimensions of Sustainability Orientation
Claudy et al. (2016) investigate SO as well as Market Knowledge Competence (MKC) in
determining the New Product Development (NPD) success. SO is interpreted as a
strategic resource, underlying the firm’s commitment to the environment and society as
well as deeply rooted in corporate values and innovation practice. The authors
conceptualise SO as a second-order reflexive construct consisting of two major
dimensions: Sustainability Culture and Sustainable Practices. The former represents the
internal values and beliefs for sustainability; the latter incorporates the management cases
of those values during the business processes and product development. This
configuration makes it possible to evaluate the SO as organisational attitude and practice.
Importantly, Claudy et al. (2016) claim that SO in itself does not guarantee the
success of NPD. Instead, its value depends on the company’s capacity to integrate

sustainability with market requirements, pointing out MKC as an essential mediator.

Page 48



Organisations must not only embrace sustainability; they also must have market foresight
to translate these values into meaningful innovations.

The study extends existing literature by reframing SO as a strategic resource rather
than a merely normative position. Firms with sustainability integrated into their DNA—
especially at the top management team level—are expected to be significantly more prone
to embrace radical innovation (RI) and long-term value creation. This is in line with other
findings that emphasise the role of leadership and organisation culture for sustainability
(Eccles et al., 2012).

In a similar vein, Sung and Park (2018) unravel the nexus of SO and EO. Their study
upends the common notion that there’'s a trade-off between sustainability and
entrepreneurship. Rather, they indicate that SO and EO are positively related with each
other, with sustainability-oriented firms being more innovative, proactive, risk-taking, and
international customers. They also define SO as a multidimensional consideration: ethical
responsibility, environmental concern, and stakeholder inclusion. This perspective is
consistent with SO as a proactive, value-oriented orientation (Claudy et al., 2016). They
contend that SO is synonymous with opportunity recognition and innovation, allowing

companies to address social and environmental issues while also remaining competitive.

2.5.3 Digital Orientation

Digital orientation (DO) is the overall philosophy, priorities, and strategic stance of an
organisation with regard to the adoption and incorporation of digital technologies into its
operations, value propositions, and customer experiences (Westerman et al., 2014). A
digital-centric company considers cloud, mobile, analytics, automation, and the Internet
of Things (loT) as strategic building blocks to enable digital transformation and secure
future success. DO is contingent upon two complementary elements: digital vision and
digital strategy (Hess et al., 2016).

Digital Vision is the company’s permanent understanding of how digital technologies
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will change their business model, competition, and client target. It provides a detailed
analysis of digital innovation to transform current operations and create value for the future.
A clear digital vision drives shared cognition among leadership and employees and guides
the organisation in its digital transformation (Hess et al., 2016; Westerman et al., 2014).

Digital strategy, however, turns this vision into concrete initiatives, investments, and
organisational shifts. What it does, however, is articulate the precise means by which
digital will be utilised to fuel innovation, effectiveness, and engage customers. Vision gives
us the “why” and “what.” Strategy gives us the “how” and “when.”

Empirical studies show that digital impact increases a company’s capability to
innovate in business models, which involves reconfiguring means of value creation,
delivery, and capture in the face of digital disruption (Yoo et al., 2010). In fields such as
AEC, the digitisation process has been associated with the generation of new revenue
flows from data-driven services, integrated project delivery platforms, predictive asset
management models, etc. (Abioye et al., 2021). Successful DO compelling new vision and
strategy is a fundamental driver of sustained digital transformation and competitive

revitalisation.

2.6 Research Gaps

The AEC industry is experiencing a major shift as companies implement sustainability into
their business practices. This transition prompts examination of the most important drivers
of sustainable BMI. However, there are still important research gaps considering digital
transformation and sustainability. Five gaps provide further areas for research (see Table
2.8), specifically the role of emerging technologies in sustainable innovation, the functions
of digital strategy, corporate entrepreneurship, and sustainability practices, as well as
those of architect versus site construction teams in digital transformation. An exploration
of these gaps would be needed to provide directions for future research and improve

industry practices in the AEC industry.
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Table 2.8 — Literature Gap Summary

Gap Research Gap What the What Is Missing / How This Study
No. Literature Underexplored Responds
Addresses

1 Role of emerging Focus on individual ~ Lack of integrated Develops framework
technologies in technologies' understanding of how linking TBL-aligned
Sustainable BMI in efficiency and digital technologies digital traits to SBM in
AEC environmental enable SBM aligned with  AEC

benefits TBL

2 Interplay between Elements studied Limited empirical Investigates joint
digital strategy, independently in research on their effects of DO, EO,
corporate AEC or business interdependence in and SO on SBM
entrepreneurship, and strategy literature driving SBM
sustainability practices

3 Differences between General AEC-level Insufficient comparative Proposes
architects and digital adoption analysis of roles and differentiated analysis
construction teams in studies practices between of digital maturity and
DT and SBM architects and site teams  innovation behaviour

across roles

4 Integration of SO with SO and EO studied  Lack of empirical models  Develops a
EO and DO to drive separately; limited examining interaction conceptual framework
SBM integration among these orientations  linking SO, EO, and

in innovative outcomes DO with SBM

5 Lack of a Existing fragmented  No unified model Proposes Figure 2.2

comprehensive models (e.g. BMC, capturing systemic links — Research

framework for TBL-
aligned DT in AEC

TBL, RBV)

between digital traits,
orientations, and
sustainability outcomes

Framework
integrating TBL, DO,
EO, SO, and SBM

There is a clear research gap at the intersection of emerging technologies and

sustainable BMI in the AEC sector. While there is an increasing amount of literature

explaining how innovative technologies shape the greening of the built environment, only

a small number of studies focus on how these technologies in particular lead to the

development of innovative sustainable business models. Moreover, current studies lack

considerations of the strategic implementation of these technologies within sustainability-

oriented business models. Empirical investigations into how these technologies’ particular

characteristics — related to technological potentiality — contribute to innovation towards

sustainability are scarce.
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The challenges that the AEC sector faces as a complex and dynamic industry
interacting with both stakeholders’ interests and regulatory imperatives support the need
for more insight into how emerging technologies can be deployed in the quest for
sustainability. This is a void that highlights a call for specific research to explore the
characteristics of these technologies and how they might engage business models in an
evolution towards sustainability. Closing this gap might offer lessons to practitioners and
policymakers interested in introducing innovative solutions in the AEC industry.

Another important gap is the roles of a company’s digital strategy, corporate
entrepreneurship, as well as sustainability practices for driving sustainable business
model innovativeness. Although there is an increasing amount of research on these
factors separately, there is little research on their interdependence and their holistic impact
on promoting sustainable innovation in business model development. Being digital is
critical when it comes to using technology to increase operational effectiveness and
customer interaction, but its role in advancing sustainability in construction is less well
understood. Corporate entrepreneurship also fosters creativity and flexibility; the linkage
between corporate entrepreneurship with digital strategies and sustainable practices to
create sustainable business models needs to be empirically explored. Furthermore,
sustainable practices are acknowledged increasingly as necessary for long-term survival,
their impact in relation to digital initiatives and entrepreneurial activeness is often
underestimated.

By examining how these three elements interact, we may gain valuable insight into
forging comprehensive growth strategies that are designed to move the needle on
innovation while also being in sync with sustainable ideals. Filling this gap in the literature
is imperative for organisations seeking to operate effectively in the increasingly complex
world of business. The knowledge obtained may be used by practitioners and
policymakers to meaningfully combine digital strategies, entrepreneurial undertakings,

and sustainability efforts in a manner that facilitates the design of durable and innovative
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business models.

A research gap exists on the difference between the practices of architects and site
construction as regards their DT and sustainable BMI in AEC. There is considerable
material available on DT and the transformation benefits for the AEC domain; however,
little attention has been paid to articulating the specific roles and working methods of
architects and construction teams within this context. Most architects work in designing
and planning, using digital applications to assist with creativity and sustainability. Themed
as practical, however, onsite construction (in construction teams) increasingly employs
both digital tools for project management, resource distribution, and site efficiency. These
disconnects in practice raise the question about how each group embeds DT in their
practices and whether these embed impact the development of sustainable BMI.

Although there is an initial interest in measuring SO and EO separately, there is still
little knowledge regarding how SO combines with EO and DO to influence innovation in
sustainable business models. Claudy et al. (2016) and Sung and Park (2018) have primed
this work by considering SO as a strategic resource and value-based mindset, though
little is known about how these orientations combine empirically to shape innovation
outcomes. As sustainability challenges are becoming more complex, there is a need to
explore how strategic orientations reinforce or contradict each other when pursuing SBM
innovation, especially in dynamic, project-based industries such as AEC.

Finally, TBL-aligned businesses use DT for achieving their TBL goals which results
in some specific requirements that are not addressed in any DT framework for aligning
itself with the TBL goals of the organisation. There seems to be a clear absence of a
holistic conceptual framework that incorporates TBL principles and DT, entrepreneurial
culture, and SO in the AEC industry. Current models tend to centre on disconnected issues
like BMI or digital maturity without grasping the systemic links between digital
characteristics, strategic stances and sustainability results. There is a need for a model to

map TBL-aligned digital traits to strategic drivers such as EO, DO and SO to inform
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theoretical inquiry and practical applications. An offering of this type could enable
organisations to discern key levers of potential regarding innovation in complex project

environments.

2.7 Hypotheses

The proposed five research gaps provide a perspective on the determinants of DT toward
sustainable BMI for the AEC industry. Closing the aforementioned gaps can potentially
enrich a comprehensive framework on the interplay between DT, sustainability, business

culture and practices, and BMI.

2.7.1 Digital Features Foster Sustainability Business Model Innovation

Emergent technologies have unique characteristics that companies need to leverage to
reconfigure their business models. These attributes can be contrasted with the TBL
concept—with its pillars: Profit, Planet, and People. Firms adopting TBL-based tools are
more likely to develop innovative and sustainable business models, benefiting AEC
companies that support social and environmental goals. This approach provides true end-

to-end value and serves as a valid response to today’s business challenges.

H1: TBL positively affects SBM Innovation

2.7.2 Emergent Technologies and Organisational Capability

Organisational Capability (OC) refers to the synergy between EO and SO, highlighting
their mutual influence in driving a firm’s success (Sung and Park, 2018). EO enables
organisations to proactively identify opportunities, while SO ensures these actions align
with sustainable practices that address environmental and social challenges. Together,
they form a dynamic capability that not only fosters entrepreneurial intentions and profit

generation but also supports long-term competitive advantage and firm survival.
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TBL-oriented digital technology adoption has a strong impact on SO by encouraging
organisations to adopt a holistic mindset that considers economic, environmental, and
social factors. These technologies enable the capture and analysis of large quantities of
sustainability data, which, in turn, facilitates decision-making and progress monitoring.
Technologies such as BC and BDA can further increase transparency in supply chains
and sustainability reporting, thereby enhancing accountabilities for all parties involved in
the supply chain.

Additionally, it becomes more convenient for designers to incorporate TBL-aligned
characteristics into new projects. Such tools also facilitate a new level of stakeholder
participation, enabling more consistent communication and involvement in sustainability
projects. Furthermore, advancements such as 3D printing and sustainable design
software inform the creation of green, innovative products and services. Organisations
that align their digital strategies with TBL principles can nurture a strong culture of

sustainability with long-term advantages for the organisation and its stakeholders.

H2: TBL has a positive and direct impact on SO.

Characteristics of digital technology can have a substantial impact on EO by enabling
innovation and agility. BIM, digital twins, data analytics, Al, 3D printing, etc., all enable
quick experimentation, allowing companies to innovate new products and services quickly,
making them more responsive to market demand. This agility promotes a spirit of
entrepreneurship, wherein companies can respond rapidly to changes in the market that
present new opportunities. Furthermore, the availability of real-time information allows
leaders to make informed decisions, reducing the level of uncertainty and supporting risk-
taking behaviour. Digital technologies also enable enhanced collaboration and networking,
facilitating knowledge sharing and co-creation.

In addition, tools that facilitate direct engagement between clients and tenants, like

BIM and AR/VR, provide clearer insights into project status and performance, leading to
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greener buildings. Lastly, digital technologies streamline resources and maximise
allocation, enabling businesses to concentrate efforts on entrepreneurial strategic

endeavours. All these conditions contribute to creating a strong EO in organisations.

H3: TBL has a positive and direct impact on EO.

2.7.3 Corporate Focus and Sustainable Business Model Innovation

Organisations oriented towards sustainability (SO) are committed to sustainability
practices and long-term value creation, motivating them to reconfigure their business
models to improve environmental, social, and economic performance. TBL-enabling
characteristics provide a lens through which decision-making may be realised, and
sustainable TBL factors may be included in BMI. Moreover, SO creates a culture of
innovation that promotes experimenting with new ideas aligned with sustainability targets.
It also enhances stakeholder engagement, as companies become more attuned to
sustainability-related expectations, encouraging BMI. Furthermore, SO results in a greater
allocation of resources toward sustainable efforts, which, in turn, supports BMI. SO not
only directly affects SBM but also plays a role in the relationship between TBL-compatible

characteristics and effective BMI, leading to long-term success for the company.

H4: SO mediates the positive effect of TBL on SBM Innovation

Businesses are capable of innovating, developing, and creating value for society. EO
comprises elements such as satisfying consumers, innovating, and pursuing proactive
interests, all of which are crucial to sustain and catalyse eco-social business models.
Firms with high EO are more likely to adopt traits that align with the TBL, as they
understand the significance of profit, planet, and people in the strategies they follow.
Furthermore, EO promotes a climate of experimentation and agility that allows firms to
rapidly make strategic shifts in response to market changes and stakeholder demands for

sustainability. This flexibility is important for embedding TBL principles into business
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processes and developing creative practices to improve sustainability performance. EO
also enhances resource allocation by motivating organisations to consider investing in
sustainable activities, thus reinforcing the relevance of TBL characteristics within SBM.
In addition, firms with a high level of EO are often more engaged with stakeholders,
so cooperation with them can become a source of innovative contributions that can be
applied to resolve sustainability problems. This kind of stakeholder engagement also
heightens the mediating effect of EO, as it assists firms in configuring their business
models to support the TBL. Ultimately, such EO not only has a direct effect on SBM
innovation but also acts as a mediator in the relationship between the TBL BMI, leading

to long-term success and sustainability.

H5: EO mediates the positive effect of TBL on SBM Innovation

Innovativeness, risk-taking, and proactiveness are part of the EO needed to create
SBM. However, it is strengthened by a positive SO that, in turn, leverages sustainability
into the strategy and aligns entrepreneurial initiatives with environmental and social
objectives. EO pushes innovation, and SO ensures these innovations are compatible with
the three dimensions: Profit, People, and Planet.

SO also promotes stakeholder participation and collaboration necessary for
successful SBM, as it considers different points of view in the innovations. It serves as the
linkage between EO and SBM, converting entrepreneurial momentum into sustainable
activities. This alignment allows companies to invest in innovations that are powerful and
well-received. Lastly, EO fosters innovation, and SO directs it toward sustainable actions,
enhancing the relationship between EO and SBM and contributing to long-term value

creation.

H6: The relationship between EO and SBM Innovation will be mediated by SO.
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2.7.4 The Role of Digital Orientation

DO represents the digital vision, strategy, and practices within an enterprise that lead to
DT. Furthermore, it enhances the capability of organisations to implement TBL
characteristics (Mufioz-Pascual et al., 2019), such as efficiency, innovation, quality, and
others, more efficiently and effectively through digital means across the value system at
economic, social, and ecological levels. Additionally, DO strengthens the effect of SO on
SBM by enabling more data-based decision-making, allowing firms to detect new
opportunities for improvement and continuously monitor sustainability developments. By
moderating the relationship between EO and SBM, DO provides the strategic intent and
technological expertise required for experimentation and rapid innovation, enabling firms
to respond to market changes with agility. It also facilitates engagement among involved
parties, ensuring that new ideas meet their requirements. Ultimately, DO fosters an
informed decision-making culture, aligning TBL principles with sustainability and
entrepreneurial efforts to advance SBM, thereby achieving more impactful and

sustainable outcomes.

H7: DO positively affect SBM Innovation.
H7a: DO moderates the relationship between TBL and SBM Innovation.
H7b: DO moderates the relationship between EO and SO.

H7c: DO moderates the relationship between SO and SBM Innovation.

2.8 Concluding Remark

This Chapter has offered an integrative review of the extant literature in the context of DT,
SO, EO, and BMI in the AEC sector. It emphasises the growing convergence of digital
technologies and sustainability imperatives and how their strategic integration transforms
business models and triggers long-term value creation.

The Chapter also highlights the factors (including digital vision, digital strategy, and
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new technologies) that are the biggest catalysts driving changes in the way businesses
operate across various layers of an organisation. It raises the issues of EO and SO as
organisational and strategic drivers that support a proactive, innovative, and responsible
approach to value creation. Analytical perspectives employed to analyse how companies
create, deliver, and capture value while satisfying environmental and social objectives
include instruments like the BMC and the TBL.

Despite increased attention from both academics and practitioners, the literature
provides only a fragmented understanding of how these factors interrelate in a systematic
fashion. To fill this gap, we suggest, in this chapter, a holistic research framework that
consolidates TBL, EO, DO, SO, and SBM. The model outlines the direct and indirect
stages in the linkages between technology, strategy, and sustainability and their impact
on innovation outcomes.

The research framework, shown in Figure 2.2, illustrates the theoretical links
between focal constructs and lays the groundwork for the empirical research presented in
later chapters. The framework contributes to theory development in the areas of DT,
sustainable innovation, and strategic entrepreneurship, while also offering practical
implications for AEC firms aiming to succeed in an environment of dynamic change and

sustainability.

Figure 2.2 — Research Framework
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METHODOLOGY

This Chapter describes the methodology used to empirically model the relationships
between TBL and SBM for the AEC industry. It also analyses the mediating effects of SO
and EO, as well as the moderating effect of DO. The research design is grounded in the
theories and research gaps identified in the Literature Review chapter, especially the lack
of exploration of how emerging digital technologies, converged with TBL principles, shape

sustainability innovation strategies in digitally transforming firms.

3.1 Research Design

This study adopts a positivist, quantitative research design to test the hypothesised
relationships among DT, corporate orientation, and sustainable BMI in the AEC sector.
The design is guided by a deductive approach (Zimbardo, 1973), translating theoretical
constructs into observable variables for empirical testing (Bell et al., 2022). Data were
collected using a single-administration, cross-sectional survey design, which allows for
efficient data capture from a broad and heterogeneous group of industry professionals at
a single point in time. It is important to note that while this design is effective for identifying
significant associations, its cross-sectional nature means that the hypothesised causal
pathways are tested for statistical plausibility rather than definitive causal proof.

The research model (see Figure 2.2) contextualises and investigates the direct
effects of TBL and SBM innovation, along with moderation and mediation effects. DO also
moderates the relationships between TBL and SBM, EO and SBM, and SO and SBM.
These relationships were proposed in Section 2.7 following the gaps revealed in Section
2.6.

The survey instrument was designed to align closely with the operational definitions
of the constructs, as detailed in Section 3.3. A methodology was employed to facilitate

standardised responses among a heterogeneous group of AEC practitioners. Data
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analysis was conducted by means of Partial Least Squares Structural Equation Modelling
(PLS-SEM), an appropriate variance-based technique for complex models, including
hierarchical constructs and small to medium samples (Hair et al., 2023). Preliminary
analyses were performed with SPSS, and structural modelling was conducted with

SmartPLS 4.0.

3.2 Construct Development and Operationalisation

The establishment of valid and reliable measurement constructs is the foundation of
quantitative research and reflects the ability to translate consistent theoretical constructs
into observable empirical constructs (Hinkin, 1998). In this research it is investigated not
only the direct effect of TBL principles on SBM, but also it investigates how the SO and
EO mediate this relationship and how this process is influenced by the DO. Every
construct in question was systematically called out by way of well-considered
operationalisations that balance theoretical grounding and strong empirical validation

approaches.

3.2.1 Higher-Order Construct Structures

This study uses a stringent process to illustrate the hierarchical nature of theoretical
constructs, combining higher-order models with a structured methodology for a
multidimensional framework. Higher-order constructs (HOCs) of structural equation
modelling (SEM) provide a powerful technique to account for multidimensionality in data.
Figure 3.1 classifies four types of HOC: they describe the relationships between the first-
order dimensions and the second-order HOC, as well as between the indicators and their
corresponding dimensions. These have been used to guide the operationalisation of
HOCs. This approach avoids the over-determination of the relative location of the
placodes and provides an effective representation of complex relationships while keeping

them theoretically consistent.
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Figure 3.1 — Higher-Order Construct Classification

Type I: Reflective-Reflective Type 1I: Reflective-Formative Type I11: Formative-Reflective Type IV: Formative-Formative

a) Reflective-Reflective (Type I):
o Reflective first-order dimensions (indicators reflect dimensions) combine into a
reflective higher-order construct (dimensions reflect the HOC).
o Used when first-order dimensions are interchangeable indicators of the higher-
order construct (Jarvis et al., 2003).
b) Reflective-Formative (Type Il):
e Formative first-order dimensions (indicators define dimensions) combine to form a
reflective higher-order construct (dimensions reflect the HOC).
e Suitable when first-order dimensions are distinct yet collectively represent the
higher-order construct (Diamantopoulos and Winklhofer, 2001).
c) Formative-Reflective (Type Ill):
o Reflective first-order dimensions combine into a formative higher-order construct.
o Applied when first-order dimensions are independent building blocks of the HOC
(MacKenzie et al., 2005).
d) Formative-Formative (Type IV):
¢ Both indicators and dimensions function as composite indices in formative
relationships.
e Used when neither dimensions nor indicators are interchangeable (Coltman

(Coltman et al., 2008).
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HOCs provide an efficient way of modelling the abstract concepts where the
hierarchy can be maintained on the indicators for the super concept (Becker et al., 2012).
This method sounds complex in its construction while keeping the theoretic richness of
what it is constructed with. The HOC categories in the study are based on the theoretical
concepts described in Chapter Literature Review. For example, TBL is conceptualised as
a formative construct formed by three relatively independent dimensions—~Profit, People,
and Planet—and each of these driven by digital traits that are theoretically sound (see
Section 2.4.2 and Tables 2.5-2.7). The HOC structure of each construct and the HOC

relationship types used in this study are summarised in Table 3.1.

Table 3.1 — Higher-Order Construct Used

Type FO — HO Relationship Construct Used
Reflective-Reflective FO: Reflective — HO: Reflective EO, SO, DO, SBM
Reflective-Formative FO: Formative — HO: Reflective TBL
Formative-Reflective FO: Reflective — HO: Formative Not Applicable
Formative-Formative FO: Formative — HO: Formative Not Applicable

3.2.2 Construct Operationalisation

3.2.2.1 Triple-Bottom Line (TBL)

The TBL is a reflective-formative second-order construct with three formative first-order
dimensions (Profit, People, Planet), each of which is measured by three reflective digital
features (refer to Section 2.4.2). This model demonstrates digital technology applications
for sustainable performance in AEC companies. Its theoretical roots are anchored within
the TBL framework of (Elkington, 1997); however, it is also underpinned by knowledge-
based, lean, and ecological theories (Bryde et al., 2013; Kibert, 2016). TBL involves three
primary-order dimensions consisting of Profit, People, and Planet that constitute the
economic, social, and environmental pillars of sustainability. These dimensions are

distinct in concept (e.g., social performance is not environmental performance), but they
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collectively define the construct. Any of the dimensions neglected would change them in
a categorical manner (Bocken et al., 2014). Whereas the first-order factors are formative
(cause) effect, the second-order TBL concept is a reflective, representing the firm’s overall

alignment with sustainability.

3.2.2.2 Sustainable Business Model Innovation

SBM Innovation is modelled from Spieth and Schneider (2016) (refer to Section 2.3.2).
Although the initial model was a formative—formative, the reflective-reflective specification
is preferred between constructs for reasons of theoretical consistency and methodological
consistency as in the case of small-sample and exploratory research. Formative—
formative models are adequate when integrating different, non-substitutable dimensions
into a higher-order construct, but the sample size needs to be large to obtain model
stability and reliable in PLS-SEM (Hair et al., 2021). Due to the exploratory nature of this
study and the relatively small sample size, this approach is prone to risks such as
estimation bias and model identification problems. On the contrary, the reflective—
reflective specification considers SBM innovation as an unobserved variable manifested
to its manifest sub-dimensions—value proposition, value network, and revenue logic—
that have a common factor (or shared influence).

Such approach is theoretically justifiable and analytically feasible with smaller
samples given the availability of Confirmatory Factor Analysis (CFA) and robust latent
variable modelling (Kline, 2023). Consistent with Jarvis et al. (2003), choice of construct
specification ought to be contingent upon the research context and the limitations of data.
Therefore, the reflective—reflective model is a theoretically justified and a parsimonious

alternative that is appropriate to the purpose of this study.
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3.2.2.3 Entrepreneurial Orientation (EQ)

EO is operationalised as a reflective—reflective second-order construct, capturing a firm’s
entrepreneurial posture through three core dimensions: Innovativeness, Risk-Taking, and
Proactiveness (Covin and Slevin, 1989; Hughes and Morgan, 2007). These dimensions
are conceptually distinct but empirically correlated, justifying a higher-order reflective
model. Innovativeness reflects a firm’s tendency to support creativity and experimentation.
Risk-taking captures the willingness to commit resources to uncertain ventures, while
proactiveness reflects forward-looking, opportunity-seeking behaviour. Together, they
represent the organisational mindset that enables firms to explore, experiment with, and
adopt new business models, particularly those aligned with sustainability objectives (see

Section 2.5.1).

3.2.2.4 Sustainability Orientation (SO)

SO is designed as a reflective—reflective higher-order construct, based on the framework
developed by Claudy et al. (2016). It comprises two interrelated subdimensions:
Sustainability Culture and Sustainable Practices. Sustainability Culture reflects the
internalised values, beliefs, and long-term commitment to environmental and social
responsibility. Sustainable Practices refer to the operationalisation of these values through
actual business activities and processes. The model assumes that a strong sustainability
culture drives the implementation of sustainable practices. This structure captures both
the attitudinal and behavioural components of organisational sustainability and reflects a
firm’s capacity to integrate sustainability into strategic and operational decision-making

(refer to Section 2.5.2).

3.2.2.5 Digital Orientation (DO)
DO is conceptualised as a reflective—reflective construct, drawing from the DT literature
(Hess et al., 2016) and grounded in Dynamic Capabilities and Paradox Theory (Nambisan

et al., 2019; Verhoef et al., 2021; Westerman et al, 2014). It includes two key
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subdimensions: Digital Vision and Digital Strategy. Digital Vision refers to a forward-
looking, organisation-wide understanding of the role of digital technologies in reshaping
the business model. Digital Strategy translates that vision into actionable investments,
priorities, and initiatives. Together, these dimensions reflect the strategic intent and
readiness to leverage digital technologies. DO also functions as a moderator, influencing

how digital traits and orientations impact sustainable BMI (refer to Section 2.5.3).

3.3 Measurement Scale Development

The development of robust measurement scales is critical for ensuring the validity and
reliability of empirical findings in structural equation modelling (Hair et al., 2019). This
section details the systematic process of operationalising the study's key constructs,
distinguishing between: (1) newly developed instruments for emerging theoretical
domains (TBL, DO), and (2) modified establishing scales that were adapted for the digital
and sustainability context (EO, SO, SBM). All scales underwent rigorous validation
procedures including expert reviews, and psychometric evaluation to ensure they meet
established standards for construct measurement (Netemeyer et al, 2003). The
development approach carefully balanced theoretical fidelity with practical measurement
considerations, contextualising existing scales where appropriate while creating novel

measures for constructs lacking prior instrumentation.

3.3.1 Triple Bottom Line (TBL) Measurement Scale

Within the overarching research framework, the TBL construct stands as a
multidimensional antecedent impacting the SO, the EO, and the SBM within the broader
research stream. As a construct of interest, the specific operationalisation of the TBL
construct will need both theoretical richness and empirical detail, especially in the AEC

industry. Unlike SO, EO, and SBM—whose measurement scales are adapted from
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existing literature, the TBL construct was newly developed to the specific, sustainability-

aligned effects of digital technologies in AEC context.

3.3.1.1 Construct Conceptualisation

The TBL construct is considered more than just a sustainability performance result, but
also as a strategic capability that represents the way digital technologies create economic
(Profit), social (People), and environmental (Planet) value. The construction of an
empirically supported and soundly based TBL measurement scale is therefore key to
evaluate the degree of sustainability embedded in DT strategies inside AEC companies.
Building on Elkington (1997) framework, the TBL construct in this study is defined as the
degree to which digital technologies in AEC projects produce measurable impacts across
three interrelated dimensions:

e Profit. Economic performance enhancements such as cost reductions, resource

utilisation efficiency, and material waste minimisation.

e People: Social performance improvements, including stakeholder collaboration,

safety outcomes, and workforce development.

e Planet. Environmental performance advancements such as energy efficiency,

responsible resource consumption, and lifecycle sustainability.

This conceptualisation aligns with contemporary literature that positions TBL as a
dynamic organisational ability shaped by technological innovation and transformation
processes (Klewitz and Hansen, 2014; Schaltegger et al., 2016).
3.3.1.2 Methodological Approach to Scale Development
The TBL measurement scale was developed using a deductive, theory-informed approach,
following established best practices in construct development (Churchill Jr, 1979;

MacKenzie et al., 2011). The development process consisted of four key stages:
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a) Extensive Literature Review
A systematic literature review was conducted to identify how emerging digital technologies,
such as BIM, AI/ML, loT, DTs, and 3D printing, contribute to sustainability outcomes in

AEC. (refer to Section 2.4).

b) Item Generation

Initially, fifteen candidate items were generated—five for each TBL dimension—through
thematic coding of the literature (refer to Section 2.4.2). These items encapsulated a
spectrum of digital traits linked to sustainability outcomes. Following iterative refinement,
the items were distilled into three representative indicators per dimension, resulting in a

final nine-item scale.

¢) Theoretical Anchoring

Each item was mapped to a relevant theoretical framework to ensure conceptual clarity
and measurement validity. Theories applied include the Knowledge-Based View, Dynamic
Capabilities Theory, Lean Principles, Relational View, High Reliability Theory, Human
Capital Theory, Eco-Efficiency, Industrial Ecology, and Cradle-to-Cradle Design. This
multi-theoretical foundation enhances the explanatory power of the scale and ensures

alignment with sustainability and innovation scholarship (refer to Table 2.5 — 2.7).

d) Contextualisation to AEC

For industry relevance and content validity, each measurement item was contextualised
to the digital practices and sustainability challenges that are particular to the AEC sector.
Technologies were chosen applicable to AEC practices, and item wording was modified
to reflect language used in the sector, as well as operational imperatives. Emphasis was
placed on question development in order to avoid leading and suggestive wording, and

thereby to minimise response bias and increase the objective nature of reports. This
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increases the face validity and interpretability of the measure for respondents who work

in a variety of roles within the AEC industry.

3.3.1.3 Scale Specification

The TBL measurement model uses a reflective-formative structure: nine reflective first-
order items (7-point Likert scale) form three formative second-order dimensions (Profit,
People, Planet). As shown in Tables 3.2-3.4, each reflective item captures specific
manifestations (1='"Not at All', 7='"To a Great Extent'), while the composite dimensions
formatively combine these indicators. This approach recognises reflective measurement

at the item level and formative aggregation at the dimension level.

Table 3.2 — TBL Digital Traits (TBL-DT) Measurement — Profit

. Ke
Item Description Theoretical Technglo
Code P Anchor 9y
Examples
TBL- Design Process Change: The extent to which Knowledge-Based BIM, Al
Profit1 BIM and Al technologies modify design accuracy  View
and reduce rework frequency
TBL- Resource Allocation Effects: The degree to Dynamic Capabilities BDA, CC
Profit2 which BIM and BDA transform resource
utilisation efficiency
TBL- Production Waste Patterns: How significantly 3D Lean Principles 3D Printing
Profit3 printing technology alters material waste levels
in manufacturing processes
Table 3.3 — TBL Digital Traits (TBL-DT) Measurement — People
. Ke
Item Description Theoretical Technglo
Code P Anchor 9y
Examples
TBL- Stakeholder Coordination: The extent to which Relational View CC, Digital
People1 digital platforms improve collaboration among Platforms
project stakeholders
TBL- Safety Performance: How VR/AR and ML High Reliability VR/AR, ML
People2 technologies impact safety incident rates and Theory
hazard identification
TBL- Workforce Capability: The extent to which digital Human Capital Training
People3 skills development programs enhance employee  Theory Platforms

competencies
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Table 3.4 — TBL Digital Traits (TBL-DT) Measurement — Planet

. Ke
Item Description Theoretical Technglo
Code P Anchor 9y
Examples
TBL- Design Environmental Effects: How energy Eco-Efficiency BIM-GIS
Planet1 simulation tools influence the environmental Integration
footprint of project designs
TBL- Resource Consumption Changes: The extent to Industrial Ecology loT, Sensors

Planet2 which BIM, loT sensors, and digital twins impact
energy and material usage

TBL- Asset Lifecycle Alteration: How digital asset Cradle-to-Cradle DTs
Planet3 management systems influence the operational
lifespan of building components

3.3.2 Digital Orientation (DO) Measurement Scale

DO is the strategic stance and preparedness of an organisation for DT, which is the
integrated application of digital technologies to transform business models, operational
processes, and value delivery systems, as well as to develop digital capabilities across
the business and its ecosystem of customers and partners (Mergel et al., 2019). Informed
by Verhoef et al. (2021) triphasic model—digitisation, digitalisation, and DT—it is
particularly relevant in the AEC industry as its levels of digital maturity are heterogeneous
(Adekunle et al., 2021).

To overcome the lack of studies of the DO, it is considered a reflective-reflective
second order construction and formed by two dimensions: Digital Vision and Digital
Strategy (Hess et al., 2016). These dimensions are consistent with theoretical frameworks
related to the topic, such as Dynamic Capabilities Theory, Institutional Theory, and

Paradox Theory, providing micro- and macro-level explanatory strength.

3.3.2.1 Dimensions of Digital Orientation
a) Digital Vision: It reflects an organisation’s ability to formulate and communicate a
coherent, long-term digital roadmap. In AEC, this dimension addresses key challenges

such as project fragmentation and multi-stakeholder complexity by:
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¢ Aligning digital objectives across project life cycles and teams
e Establishing a common language for digital goals
e Guiding investment in future-ready technologies and standards
This aligns with (Table 3.5):
e Dynamic Capabilities Theory: Enables opportunity sensing (Teece, 2018)
o Institutional Theory: Supports standardisation (DiMaggio and Powell, 1983)

e Paradox Theory: Balances long-term innovation with short-term delivery (Smith

and Lewis, 2011).

b) Digital Strategy: It operationalises the vision through tangible investments, processes,
and capabilities. Within AEC contexts, it enables:

¢ Institutionalisation of collaborative digital workflows

e Investment in digital talent and training

¢ Pilot testing and scaling of emerging technologies (e.g., Al, loT, DTs)

Theoretical foundations include (Table 3.5):
¢ Dynamic Capabilities: Resource orchestration for digital adoption
¢ Institutional Theory: Compliance with industry standards (e.g., ISO 19650)

o Paradox Theory: Managing experimentation alongside execution

Table 3.5 — Theoretical Foundations of Digital Orientation Dimensions

Theory Vision Role Strategy Role AEC Manifestation

Dynamic Capabilities ~ Opportunity sensing Talent/resource allocation  Cross-project BIM
deployment

Institutional Theory Standard setting Best practice adoption ISO 19650 implementation

Paradox Theory Long-term investment  Short-term execution DTs pilot scaling
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3.3.2.2 Measurement Framework

The DO measurement scale was constructed through tightly controlled theory-to-item

mapping to establish construct validity and contextual accuracy in the AEC environment.

Each concept item is grounded in thought and an illustration of the unique nature of DO

in this industry.

Dimensional Synergy: The dimension scales vision (vision—strategy) and strategy

(strategy—vision) distinguish between strategic direction and tactical execution,

thus offering a more detailed examination of digital maturity trajectories within an

AEC firm context (Table 3.5).

Sector Specific Focus: Outcomes are specifically targeted to tackle AEC sectoral

challenges including project fragmentation, planning regulation complexity, and

digital skills gaps (Figure 3.2).

Theoretical Rigor: This scale combines the micro and macro theoretical levels,

increasing its theoretical vigour in empirical modelling and hypothesis testing

(Table 3.6).

Figure 3.2 — Theory-to-ltem Mapping

/

Dynamic
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Vision: Strategy:
Champion Innovation
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Table 3.6 — DO Measurement Scale Specification

Dimension Item Code

Theoretical Anchor

AEC Contextualisation

DO-Vision1 Strategic fit (Westerman et al., 2014) BIM roadmap alignment
s:gii;anl DO-Vision2 Isomorphism (DiMaggio and Powell, 1983) ISO 19650 communication

DO-Vision3 Paradox resolution (Smith and Lewis, 2011) Digital champion roles

DO-Strat1 NRBYV pollution prevention (Hart, 1995) Energy-efficient BIM
Digital DO-Strat2 Capability reconfiguration (Teece, 2018) loT skills development
Strategy DO-Strat3 Exploration ambidexterity (O'Reilly Il and DTs pilots

Tushman, 2013)
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3.3.2.3 Measurement Scale

Building from Dynamic Capabilities, Institutional Theory, and Paradox Theory, we created
each measurement item to represent specific dimensions of strategic intent (Digital Vision)
and implementation capability (Digital Strategy). The item wording was slightly amended
to better correspond to AEC terminology, digital workflows, and organisation structures to
ensure a fit for context. To further reduce the response bias and to improve the face validity,
leading or suggestive questions were also minimised.

The sub-dimension Digital Vision was assessed with a scale of 7-point Likert scale
(1=Strongly Disagree to 7=Strongly Agree) and scales the degree to which an
organisation's digital roadmap is clearly formalised and communicated. Instead, the
Digital Strategy utilised a 7-point frequency/effectiveness scale (1=Not at All to 7=To a
Great Extent) that gauged the extent to which digital is implemented through practices
such as talent development and sustainable workflows. The resulting items are shown in

Table 3.7.

Table 3.7 — DO Measurement Scale

Dimension Item Code Item Wording
- Strategic alignment - Our company digital transformation roadmap aligns with
DO-Vision1 .
long-term business strategy
Digital . Stakeholder communication - Our company digital goals are clearly
e DO-Vision2 . .
Vision communicated to all project partners
DO-Vision3 !_elgd.ershlp - Our company has dedicated digital champions to drive digital
initiatives
Sustainable practices - We enforce green digital standards (e.g., cloud-based
DO-Strat1 .
Digital BIM collaboration)
Strategy Talent development - We invest in continuous upskilling for emerging AEC
DO-Strat2 .
technologies
DO-Strat3 Innovation culture - We cultivate innovation and transformation culture
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3.3.3 Sustainable Business Model (SBM) Measurement Scale

The SBM measurement scales was transferred from Spieth and Schneider (2016) BMI

model by using sustainability transition theory (Geissdoerfer et al., 2017) and the Triple

Bottom Line approach (Elkington, 1997). This adaptation grounds sustainability indicators

but maintains the original three domain structure (Table 3.8). With four guiding principles

in place — the explicit integration of environmental and social value creation, industry-

specific operationalisation for AEC contexts, original construct boundaries, and 7-point

Likert scales for comparability — the measurement scales capture these adaptations in

actionable scale items. These scales also measure the trade-off between theoretical

robustness and practical applicability to sustainable practices in AEC sector (Table 3.9).

Table 3.8 — Sustainable Business Model Adaptations

Domain Original Indicator Modified Indicator Adaptation Level
Target customers Target sustainability-focused clients Contextual
changed

Value Product/service Redesign to reduce environmental/social .

. . Substantial

Offering changed impacts
Market positioning Rep93|t|on as sustainable solutions Moderate
changed provider
Core competences Develop sustainability innovation Substantial
changed expertise
Internal operations Optimise operations for sustainability Enhanced

Value changed gains

Architecture
Partner roles changed Establish green technology partnerships Substantial
Distribution changed Implement sustainable procurement Added

criteria
Revenue mechanisms Diversify revenue through sustainable Contextual
Revenue changed offerings
Model Cost mechanisms Adopt resource-efficient cost structures Enhanced

changed
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Table 3.9 — SBM Measurement Scale

Dimension Item Code Item Wording
SBM-Valueoff1 Our customer base prioritises sustainability-focused projects

\Cl)?‘;:fing SBM-Valueoff2 We have transformed offerings to reduce environmental/social impacts
SBM-Valueoff3 We are recognised as a sustainable solutions leader

SBM-ValueArch1 We have developed specialised sustainability innovation capabilities
Value SBM-ValueArch2 ~ We continuously optimise operations for sustainability performance
Architecture  gB\-valueArch3  We co-develop solutions through green technology partnerships

SBM-ValueArch4 We mandate sustainability certification for suppliers

Revenue SBM-Revenue1 We generate significant revenue from sustainable offerings

Model SBM-Revenue2 Our cost structures emphasise long-term resource efficiency

3.3.4 Entrepreneurial Orientation (EO) Measurement Scale

This analysis uses an integrated EO measure combining Miller (1983) and Covin and
Slevin (1989) three-dimensional structure with Hughes and Morgan (2007) psychometric
refinements (Table 3.10). This hybrid model was employed for two important reasons. First,
the original three-part structure (innovativeness, proactiveness, risk-taking) more
accurately measures sustainability and digital oriented entrepreneurship by focusing on
sustainable product innovation processes, organisational responsiveness to sustainability
opportunities, and risk appraisal towards sustainability investments, while omitting less
pertinent dimensions such as market aggressiveness and autonomy from Hughes and
Morgan's deviated model. Second, Hughes and Morgan's items offer better measurement
properties in digital sustainability contexts, primarily due to: i) innovativeness items
focusing on technology deployment ("We actively introduce improvements and
innovations in our business"), ii) proactiveness items reflecting digital-enabled opportunity
identification ("We always try to take the initiative in every situation"), and iii) a revised

risk-taking version to accommodate modern market insecurities.
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Table 3.10 — EO Scale Adaptation Rationale

Dimension

Original
Conceptualisation
(Covin and Slevin

Adapted Measurement

(Hughes and Morgan

Sustainability
Relevance

1989)

2007)

Product/service
leadership focus

Innovativeness

Market-driven
innovation emphasis

Digital sustainable
product R&D

First-mover
competitive advantage

Proactiveness

Opportunity
identification capability

Early adoption of
green tech

Risk-taking

Large project
investment willingness

Sustainable
investment gambles

Strategic boldness in
decision-making

The final measurement instrument comprises nine items across three dimensions,

measured on a 7-point Likert scale (1 = Strongly Disagree to 7 = Strongly Agree) are

shown in Table 3.11. This measurement approach preserves the original EO nomological

network while enhancing relevance for sustainability research contexts, as recommended

by recent methodological reviews (Vrontis et al., 2022). The modifications were reviewed

and approved by three entrepreneurship scholars to ensure theoretical consistency.

Table 3.11 — EO Measurement Scale

Dimension Item Code Item
Risk-taking EO-Risk1 The. term “risk taker” is considered a positive attribute for people in our
business
EO-Risk2 People in our business are encouraged to take calculated risks with
new ideas
EO-Risk3 Our bu5|r.1.ess emphasises both exploration and experimentation for
opportunities
Innovativeness EO-Inno1 We actively introduce improvements and innovations in our business
EO-Inno2 Our business is creative in its methods of operation
EO-Inno3 Our business seeks out new ways to do things
Proactiveness EO-Pro1 We alwgys try to ta.ke the initiative !n evey situation (e.g., against
competitors, in projects when working with others)
EO-Pro2 Our business is creative in its methods of achieving sustainability goals
EO-Pro3 We seek out new ways to integrate sustainability into our operations
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3.3.5 Sustainability Orientation (SO) Measurement Scale

The SO construct was adapted from Claudy et al. (2016) original scales, with four key
modifications to enhance measurement precision and contextual relevance for project-
level sustainability assessment in the AEC industry: i) conversion from importance ratings
to 7-point Likert-type agreement scales for improved parametric analysis (Spector, 1992),
i) generalisation from product-specific to project-level applications, iii) addition of
operational specificity to practice items (e.g., explicit energy tracking metrics), and iv)
alignment of terminology with contemporary sustainability discourse. The revised
instrument maintains the original two-dimensional structure (Sustainability Culture and

Sustainable Practices) while optimising its applicability to AEC contexts (Table 3.12).

Table 3.12 — SO Scale Adaptation Rationale

. . Original Ke . e .
Dimension 9 . y e Theoretical Justification
Formulation Modifications
Culture Importance ratings Agreement scale Better captures normative
P 9 9 institutionalisation (Hahn et al., 2015)
Product focus Project-level focus Fits AEC industry context
Practices Product development  Operational projects  Increases generalisability
Generic items Specific metrics Enhances measurement precision

The final set of SO measurement items is shown in Table 3.13. This measurement
approach maintains conceptual alignment with Claudy et al. (2016) original construct while
improving its applicability to project-based organisational contexts. The modifications
follow established scale adaptation protocols (Hinkin, 1998) and contemporary

sustainability measurement standards (Baumgartner and Rauter, 2017).
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Table 3.13 — SO Measurement Scale

Dimension Item Code

Item

Culture SO-Culture1 We consider environmental sustainability important
SO-Culture2 We consider social sustainability important
SO-Culture3 We consider sustainability criteria important for new projects
SO-Culture4 We consider measuring new projects’ progress on sustainability
important
SO-Cultureb We value sustainability-type criteria as important for the future
Practices SO-Practices1 We consider energy consumption and/or carbon emissions in our

SO-Practices2
SO-Practices3
SO-Practices4

project work
We include sustainability in our project budget
We select suppliers and partners based on sustainability criteria

We use the triple bottom line (environmental, social, and financial
factors) for project planning

3.3.6 Validation Approach for Measurement Scales

Given the single-administration design, formal psychometric testing, comprising reliability
analysis (e.g., Cronbach’s a), convergent and discriminant validity, and confirmatory /
exploratory factor analysis (CFA/EFA) is conducted using the primary dataset (reported in

Chapter Analysis and Results). This approach is justified by several methodological

safeguards:

o Theoretical alignment: All items were derived from theoretically grounded

constructs defined in Sections 3.2 and 3.3.

o Adoption of precedent scales: Wherever possible, items were adapted from

validated instruments in the existing literature.

e Expert validation: Two domain experts—a Director of a BIM solutions provider and
a CEO of a BIM consultancy—reviewed the full instrument. Their feedback

confirmed the clarity of wording, appropriateness of scale types, alignment with

AEC terminology, and the logical flow of questions.
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While expert pretesting addressed face and content validity, formal statistical
validation was deferred to the empirical analysis stage. There, the following steps were

undertaken:

Assessment of internal consistency reliability using Cronbach’s a and composite
reliability (CR)
o Evaluation of convergent validity via average variance extracted (AVE) and
standardised loadings
o \Verification of discriminant validity using cross-loadings and the Fornell-Larcker
criterion
¢ Model fit testing through CFA to confirm one-dimensionality of the constructs
Preliminary results, presented in Chapter Analysis and Results, indicate satisfactory
reliability and validity across all constructs, thereby supporting the robustness of the
measurement model prior to structural model estimation. This approach meets the

standards of methodological rigor required for PLS-SEM—based hypothesis testing.

3.4 Sampling Design and Data Collection

3.4.1 Sampling Design and Rationale

Sampling methodology is a key aspect of research design. It shapes who constitutes the
participants from a target group. There are two general types of sampling used: probability
and non-probability (Singleton Jr et al., 1988).

With probability sampling techniques (e.g., simple random sampling, stratified
random sampling), all members of the population have an equal and known chance of
being selected. This methodology enables generalisation of research while reducing
selection bias. Nonetheless, its application necessitates a well-defined population frame
and is resource-intensive, which is often not feasible in practical research circumstances.

Non-probability sampling techniques, on the other hand, lack known probabilities of

the members of a population being included, which can lead to sampling error and affect
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result generalisability (Singleton Jr et al.,, 1988). Some warn that this can lead to the
overrepresentation of certain subgroups and underrepresentation of others, which could
bias findings. However, non-probability sampling is still widespread in social and business
research and is what we can expect under the following conditions:
e Exploratory Research Objectives: When the study focuses on identifying
emerging patterns rather than testing established hypotheses.
e Resource Limitations: When constraints of time, funding, or population
accessibility preclude probability sampling.
e Specialised Populations: When studying geographically dispersed or difficult-to-
identify professional groups.
¢ Practical Considerations: When research efficiency outweighs strict statistical
representativeness requirements.

Given this study's exploratory nature, the challenges in establishing a complete
population frame, and practical constraints regarding time and access, a non-probability
sampling strategy was implemented. This decision aligns with established research
practices in the AEC sector, where professional networks and institutional directories

commonly serve as recruitment channels.

3.4.2 Data Collection
To maintain methodological rigor while addressing practical constraints, the study
employed a multi-faceted recruitment approach combining institutional resources and
personal networks:
1. Hong Kong Institute of Architects (HKIA): The survey was distributed to 182
members through the institute's official email directory, capturing perspectives

from licensed architects, urban designers, and sustainability consultants.
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2. Hong Kong Construction Association (HKCA): A total of 306 surveys were

distributed to HKCA members, representing contractors, project managers, and

civil engineers across the AEC sector's operational tiers.

Hong Kong Construction Industry Council BIM Managers (HKBIM): Surveys were
sent to 352 registered BIM managers, targeting professionals with specialised
expertise in digital construction technologies.

Personal Networks (PER): An additional 75 surveys were distributed through
professional contacts and referrals, accessing practitioners outside formal

institutional memberships.

3.4.3 Control Variables and Respondent Characteristics

Apart from the main variables addressed in this study, several variables were included in

the survey to control for organisational and respondent-level factors that may be

correlated with perceptions of DT and SBM innovation. The addition of these variables

enables segmentation analysis, robustness checks, and further explanation of the specific

context of the results related to DT in the AEC sector.

The four control variables included are as follows:

C1. Nature of Company: Participants selected the primary focus of their
organisation: (1) Design and Planning (e.g., architectural design, engineering,
urban planning, landscape architecture), or (2) Construction and Project
Management (e.g., general contracting, subcontracting, construction management,
building inspection). This variable distinguishes between different segments of the

AEC industry, which may face unique DT challenges and adoption patterns.

C2. Company Size: Respondents indicated the size of their organisation by

selecting one of four brackets: (1) 1-20 employees, (2) 21-100, (3) 101-200, or
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(4) Over 200. Organisational size is commonly associated with digital capability,

resource availability, and transformation readiness.

e C3. Respondent Role: Participants identified their most relevant role within the
organisation from the following options: (1) CEO/COO/Managing Director, (2)
Architect, (3) BIM Manager/Engineer/Consultant, or (4) Others. This variable helps

assess role-based variation in strategic orientation and perception of DT.

e C4. Perceived Digital Capability for Sustainability: This item measured the
organisation’s self-reported ability to apply digital technologies towards
sustainability throughout the project lifecycle. Responses were captured on a five-

point Likert scale ranging from (1) Very poor ability to (5) Exceptional ability.

These control variables were later used during the data analysis phase to explore
whether organisational characteristics moderated or influenced the relationships among
the main constructs in the hypothesised model and to assess the generalisability of the
findings across different firm types and respondent groups. The complete survey

questionnaire is provided in Appendix A.

3.4.4 Ethical Considerations

The research was carried out in accordance with general research ethical
recommendations. Prior to the survey, the rights of respondents were explained to all
participants, stating that their participation was voluntary and that they had the right to
refuse to participate or withdraw at any time during the survey. Data privacy was
particularly emphasised, and all data were anonymised and saved on cloud servers with
password protection. These measures ensured that no entity or person could be traced
when summarising results. In addition, the participants were not asked to provide any

personal identification, such as their name, email address, or contact number.
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3.4.5 Survey Deployment and Administration

The research conducted the online survey using Google Forms, which was preferred due
to its easy accessibility, low cost, and privacy for respondents. The surveying toolkit
included an extensive cover letter explaining the study's intentions, the average time
required to complete the survey, and QR codes and hyperlinks for easy access on multiple
devices. Distribution modalities included institutional email blasts to members’ lists, postal
mail for participants for whom an email address of record was not available, and a fill-in-
the-blank referral form for personal networks on the instant messaging platform WhatsApp.
The distribution statistics and response rates for these four recruitment channels are

summarised in Table 3.14.

Table 3.14 — Questionnaire Response

Sample Response Valid Remark
Size N Rate N Rate
HKIA 182 37 20.33% 36 19.78%
HKCA 306 30 9.80% 27 8.82%
HKBIM 352 44 12.50% 44 12.50% 13 responses with personal follow-up
PER 75 52 69.33% 51 68.00% 29 responses with personal follow-up
915 163 17.81% 158 17.20%

3.5 Data Analysis Method

To test the proposed conceptual framework, which contains several latent constructs
across hierarchical levels and intricate mediation and moderation paths, PLS-SEM is
adopted. PLS-SEM, a variance-based structural modelling approach, is increasingly used
in information systems, strategic management, and innovation studies because of its
potential for construct development and predictive modelling (Hair Jr et al., 2014; Sarstedt
et al., 2014). It is particularly relevant for exploratory studies, where the emphasis is on

developing and generating theory, rather than testing an extant theory.
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3.5.1 Justification for PLS-SEM

The rationale for using PLS-SEM is supported by the theoretical maturity and exploratory
nature of the current model, which is a generally accepted criterion for choosing between
covariance-based and component-based approaches to SEM. PLS-SEM is suitable for a
range of methodological and analytical needs included in the present study. First, it is
flexible and can estimate complex models with several constructs, higher-order factors,
formative and reflective indicators, and interaction effects. Second, PLS-SEM is
insensitive to data that does not follow a multivariate normal distribution, which is typical
in behavioural research and organisational studies involving Likert-scale survey data.
Third, it is suitable for moderate-to-small sample sizes, which is particularly advantageous
for specialised populations like AEC professionals.

In contrast, Covariance-Based SEM (CB-SEM) was deemed less suitable for this
study for several key reasons. Primarily, CB-SEM is a confirmatory method that focuses
on testing how well a theoretical model fits the data, which contrasts with the predictive
and theory-building orientation of this research. Furthermore, CB-SEM imposes stricter
assumptions regarding data, including multivariate normality and the need for larger
sample sizes (typically >200) to ensure robust estimations. The non-normal distribution of
the Likert-scale data and the modest sample size (N=158) in this study would challenge
these requirements. Additionally, the inclusion of a formative construct (TBL) is handled
more naturally and parsimoniously within the PLS-SEM algorithm, whereas its
specification in CB-SEM can be more complex. Therefore, the flexibility of PLS-SEM in
handling complex predictive models with less stringent data assumptions made it the
superior choice for achieving the research objectives.

The model proposed in this study comprises second-order constructs, formative
dimensions, and moderating/mediating paths. These characteristics justify the use of
PLS-SEM as the analytic tool, rather than covariance-based SEM, which would require

larger sample sizes and more rigorous assumptions. Thus, the statistical software used
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to estimate and validate the model will be SmartPLS 4.0. It is the most popular software
for PLS-SEM and allows users to easily develop, assess, and test PLS-SEM models, run
bootstrap procedures, assess the significance of loadings, and perform multi-group

analysis.

3.5.2 Sample Size Considerations

While PLS-SEM can accommodate relatively small sample sizes, determining the
appropriate number of observations is critical to ensure sufficient statistical power and
model reliability. Two complementary approaches were used to establish the minimum

sample size for this study:

3.5.2.1 The 10-Times Rule

According to this heuristic, the sample size should be at least ten times the number of
maximum structural paths pointing to any endogenous construct or the number of
indicators in the most complex measurement model (Hair et al., 2022; Peng and Lai, 2012).
For the structural model depicted in Figure 2.2, the most complex construct has five

incoming paths, resulting in a minimum sample size requirement of 50.

3.5.2.2 Statistical Power Analysis
To enhance methodological rigor, a formal power analysis was conducted using Cohen
(2013) guidelines for multiple regression. This analysis considers:

e Adesired statistical power of 80%,

e Asignificance level (a) of 0.05,

e A medium effect size (R* = 0.25), and

¢ The maximum number of predictors for any endogenous construct.
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Based on these parameters, a minimum of 48 observations is required to detect a
statistically significant relationship. Table 3.15 provides a summary of required sample

sizes under varying model complexities and R? values.

Table 3.15 — Sample Size in PLS-SEM for Statistical Power of 80%

Maximum Number of Significance Level

Arrows Pointing at a 10% 5% 1%

Construct (Number of Minimum R® Minimum R® Minimum R’

Independent Variables) |4 10 T 025 [ 050 | 0.75 | 0.0 | 0.25 | 050 | 0.75 | 0.10 | 0.25 | 0.50 | 0.75
2 72 26 11 7 90 33 14 8 130 47 10 10
3 83 30 13 8 103 37 16 9 145 53 22 12
4 92 34 15 9 113 41 18 11 158 58 24 14
5 99 37 17 10 122 45 20 12 169 62 26 15
6 106 40 18 12 130 48 21 13 179 66 28 16
7 112 42 20 13 137 51 23 14 188 69 30 18
8 118 45 21 14 144 54 24 15 196 73 32 19
9 124 47 22 15 150 56 26 16 204 76 34 20
10 129 49 24 16 156 59 27 18 212 79 35 21

3.5.3 Sample Adequacy and Analytical Robustness

The resulting sample size for analysis is 158, which fulfils the 10-times rule and Cohen’s
power criteria (analysis requirements for estimating model parameters and detecting
medium to large effects, respectively). Furthermore, this sample size complies with the
bootstrapping operations in SmartPLS 4.0 for the respective path, indirect, and moderator
effects investigations. The model comprises reflective and formative constructs, as well
as second-order dimensions. SmartPLS 4.0 is suitable for non-normally distributed data
and complex models, confirming the reliability of the measurement model, convergent and
discriminant validity, and the path relationships.

PLS-SEM and SmartPLS 4.0 contribute to the heuristic and statistical confirmation
of sample size to ensure methodological stringency. The analytical framework supports
the study’s aim of establishing a sound theoretical and empirical framework for digital and
sustainability-driven transformation in the AEC industry. Together, these characteristics
justify the use of PLS-SEM as both theoretically appropriate and methodologically robust

for this study.
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3.6 Integration of Constructs into the Hypothesised Model

In the proposed theoretical structure (see Figure 2.2), the TBL is considered the main
exogenous construct, affecting both SO and EO, which have, in turn, a positive effect on
SBM. It mirrors the core assertion of the thesis that digital solutions, with an economic,
social, and environmental footing can generate AEC strategic orientations and innovation
outputs. Three major pathways are proposed:

(a) Direct Relationship: TBL directly impacts SBM. The sustainability features
enabled by digital tools directly generate positive outcomes for SBM.

(b) Mediation Role: TBL to have indirect effects on SBM via both SO and EO. Also,
SO might serve as a mediator in the association between EO and SBM,
establishing a stepwise mediation process, which connects sustainability and
entrepreneurship to BMI.

(c) Moderation of DO: The mechanism is also shown that the effect of TBL on SBM
and intermediary processes is contingent on the strength of DO. It points to the
conditional nature of digital maturity in promoting or hindering the transformative
impact of sustainability-oriented digital technologies on innovation impact.

Collectively, these pathways highlight the strategic alignment of TBL with the DT and

innovation logic that forms the basis of the AEC industry’s shift towards sustainable

business models.

3.7. Study Design Limitations
3.7.1 Limitations Acknowledged
This research methodology provides valuable insights into DT but has notable limitations.
The study's focus on Hong Kong and a small sample size limits the generalisability of
findings to other regions or the broader AEC industry. Additionally, the non-probability

sampling approach restricts statistical generalisation beyond the participating firms.
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Methodologically, the cross-sectional design identifies potential relationships but
cannot confirm their causal direction or temporal stability, which is significant given the
complexity of the constructs. This exploratory framework aims to describe associations
rather than establish definitive causal mechanisms.

Measurement limitations also arise from the single-administration survey design,
requiring psychometric validation within the primary dataset (see Section 3.3.6). While
expert pretesting ensured face validity, reliance on perceptual measures instead of
objective performance data represents another constraint. These limitations highlight

areas for caution and further research in applying the findings.

3.7.2 Possible Factors of Mitigation

These limitations were somewhat offset by several factors. The strong theoretical
underpinning of the constructs, elaborated in Sections 3.2 and 3.3, created a solid base
for the research. The content validity of the study was strengthened by the adaptation of
items from existing scales, as well as by expert review. In addition, the methodology
chapter provides a clear presentation of all methods used, so that the reader can make

sound interpretations given the limitations identified here.

3.8 Concluding Remark

This chapter presented an overview of the methodology employed to examine the
influence of TBL principles on SBM in the AEC sector. Grounded in a rigorous theoretical
foundation, the methodology was designed to ensure construct validity, contextual
relevance, and analytical robustness. A cross-sectional survey design, combined with
PLS-SEM, was selected to accommodate the complexity and multidimensionality of the
proposed model. The chapter covered construct development, measurement scale
development, sampling strategy, data collection procedures, and analytical rationale, as

well as the validation approach. Particular attention was given to the development of novel
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constructs (TBL and DO), which were operationalised through theory-driven item
generation and expert validation. The use of both heuristic and statistical techniques to
establish the minimum sample size further enhanced methodological rigor. Acknowledged
limitations, such as the cross-sectional design and non-probability sampling, were
mitigated through expert review, transparent reporting, and a clearly defined analytical
strategy. Collectively, the methodological approach laid out in this chapter provides a

sound foundation for the empirical analyses presented in the next chapter.
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ANALYSIS AND RESULTS

The objective of this Chapter is to present the analyses and results obtained from the
quantitative data, providing insights into the relationships between the variables studied.
Building on Methodology Chapter, this Chapter systematically presents the findings
across five sections, employing quantitative techniques and data analysis using

SmartPLS 4.0.

4.1 Preliminary Analyses

This Section presents the preliminary analyses conducted using SPSS 26 in preparation
for data analysis with SmartPLS 4.0. The primary goal is to establish a foundational
understanding of the dataset through various statistical techniques. It starts with frequency
analysis to summarise the distribution of key variables, offering insights into the
characteristics of the sample population. Next, reliability analysis is performed to evaluate
the consistency of the measurement scales. Additionally, Exploratory Factor Analysis
(EFA) is utilised to validate underlying relationships among the variables and assess
construct validity, ensuring that the measurements accurately reflect the intended
constructs. Together, these preliminary analyses lay the groundwork for more advanced

modelling and analysis in the subsequent sections of this Chapter.

411 Frequency Analysis

In this study, a total of 902 questionnaires were distributed through various channels,
resulting in 158 valid responses and a response rate of 17.52%. This response rate
reflects the level of engagement among the targeted participants and serves as a basis
for interpreting the subsequent analyses. A frequency analysis table is presented in Table
4.1. In terms of company nature, over 50% of respondents are from "design and planning"

sectors, including architectural design, engineering, urban planning, and landscape
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architecture. Additionally, 33.50% represent construction and project management roles,
such as general contracting, subcontracting, construction management, project
management, and building inspection. Regarding company size, 53.16% of respondents
reported a workforce of "21 to 100 people," while only 2.53% indicated having "more than

200 people".

Table 4.1 — Frequency Analysis

Percent Cumulative

Items Categories N (%) Percent (%)

Design and Planning (Architectural Design,
Engineering, Urban Planning, Landscape

Architecture) 95 60.13 60.13

ﬁ:{:?eany Construction and Project Management (General
Contracting, Subcontracting, Construction
Management, Project Management, Building 63 39.87 100.00
Inspection)
1to 20 42 26.58 26.58
21 to 100 84 53.16 79.75
Company Size 101 to 200 28 17.72 97.47
Over 200 4 2.53 100.00
CEO/COO/MD 14 8.86 8.86
Architect 53 33.54 42.41
Role / Position  BIM Manager/Engineering/Consultant 79 50.00 92.41
Others 12 7.59 100.00
Ability to use Very poor 14 8.86 8.86
Digital Poor 26 16.46 25.32
Technologies Moderate 70 44.30 69.62
for Strong 29 18.35 87.97
Sustainability  Exceptional 19 12.03 100.00
Applications
Total 158 100.00 100.00

In terms of job positions, 50.00% identified as "BIM manager / engineer / consultant,"
followed by 33.54% who were "architects." Fourteen respondents held CEO/COO/MD
roles, accounting for 8.86% of the sample. The high proportion of BIM professionals
reflects the digital maturity focus of the sample. Finally, when assessing their ability to
utilise digital technology for sustainable development applications, 44.30% rated their

ability as "strong," while 18.35% indicated a "medium" ability.
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4.1.2 Reliability Analysis
Reliability refers to the stability and consistency of results measured by a scale. Higher
reliability indicates smaller measurement errors. To assess the internal consistency of the
survey measurement items, this study employs the Cronbach's alpha coefficient method.
This involves evaluating both the total scale and its subscales. The analysis includes the
"corrected item-total correlation (CITC)" and "Cronbach's alpha if item deleted" to refine
the measurement items. The Cronbach's alpha value ranges from 0 to 1, with values
closer to 1 indicating higher internal consistency and greater reliability. The minimum
acceptable Cronbach's alpha for the total scale is 0.7, while for subscales, it is 0.6. The
CITC value reflects how well an individual item correlates with the total score of other
items; larger values indicate better internal consistency. During the pre-survey, items with
a CITC greater than 0.4 are typically retained. The "Cronbach's alpha if item deleted"
indicates the change in reliability when an item is removed. If this value exceeds the
original Cronbach's alpha, it may suggest that deleting the item could enhance the overall
reliability of the scale, making it essential to pay close attention to this metric during
analysis.

The reliability results of the survey variables and items are presented in Table 4.2.
The overall reliability of the survey reached 0.937, which is above the acceptable
threshold of 0.9. Additionally, the reliability for each variable exceeds 0.8, indicating a high
level of stability in the data. This suggests that the scale used in this study demonstrates
excellent reliability. Furthermore, the CITC values for all indicators are higher than 0.4,
and the "Cronbach's alpha if item deleted" values do not exceed the corresponding

variable reliability values. As a result, all indicators can be retained for further analysis.
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Table 4.2 — Reliability Statistics (Cronbach Alpha)

Corrected Cronbach's Variables Total
Variables / It Item-Total Alpha if Cronbach
ems . Cronbach Cronbach
Items Correlation Item a
(CITC) Deleted a a
TBL: TBL-aligned Digital Traits
TBL-Profit1 0.781 0.847
TBL-Profit TBL-Profit2 0.796 0.834 0.890
TBL-Profit3 0.778 0.850
TBL-People1 0.775 0.834
TBL-People  TBL-People2 0.799 0.810 0.883 0.903
TBL-People3 0.747 0.858
TBL-Planet1 0.802 0.900
TBL-Planet TBL-Planet2 0.834 0.874 0.915
TBL-Planet3 0.852 0.860
EO: Entrepreneurial Orientation
EO-Inno1 0.770 0.807
EO-Inno EO-Inno2 0.750 0.825 0.873
EO-Inno3 0.746 0.829
EO-Pro1 0.807 0.849
EO-Pro EO-Pro2 0.774 0.876 0.898 0.877
EO-Pro3 0.818 0.838
EO-Risk1 0.738 0.784
EO-Risk EO-Risk2 0.716 0.805 0.854
EO-Risk3 0.723 0.798
SO: Sustainability Orientation
SO-Culture1 0.807 0.913
SO-Culture2 0.809 0.913
SO-Culture SO-Culture3 0.810 0.913 0.929 0937
SO-Culture4 0.811 0.913 )
SO-Cultureb 0.825 0.910 0.928
SO-Practices1 0.816 0.906
SO- SO-Practices2 0.836 0.899 0.925
Practices SO-Practices3 0.821 0.904 )
SO-Practices4 0.833 0.900
DO: Digital Orientation
DO-Vision1 0.788 0.853
DO-Vision DO-Vision2 0.805 0.838 0.894
DO-Vision3 0.784 0.856 0.899
DO-Strat1 0.815 0.846 )
DO-Strat DO-Strat2 0.794 0.864 0.900
DO-Strat3 0.797 0.861
SBM: Sustainable Business Model
SBM- 0.741 0.818
ValueArch1 ) )
SBM-
SBM- ValueArch2 0.710 0.831
0.866
ValueArch SBM- 0697 0836
ValueArch3 ’ ’
SBM- 0.875
ValueArcha 0.715 0.829
SBM- SBM-Valueoff1 0.676 0.779
Valueoff SBM-Valueoff2 0.695 0.763 0.831
SBM-Valueoff3 0.703 0.755
SBM- SBM-Revenue1 0.667 - 0.800
Revenue SBM-Revenue2 0.667 - )
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4.1.3 Exploratory Factor Analysis

EFA is a powerful statistical technique that identifies underlying relationships among
observed variables, revealing latent structures that may not be immediately apparent. By
reducing dimensionality, EFA simplifies complex datasets, enhancing the clarity of data
interpretation (Fabrigar et al., 1999). Although EFA is often utilised in questionnaire design
to identify item clusters and develop reliable scales (DeVellis and Thorpe, 2021), it is also
valuable for testing construct validity in existing questionnaires.

In this study, EFA uses to analyse the structure of the constructs measurement scales
and assess their validity. Construct validity refers to the extent to which theoretical
concepts can be accurately measured (DeVellis and Thorpe, 2021). The analysis was
based on the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) value and
Bartlett's sphericity test results, which determine the suitability of the items for factor
analysis. A KMO value below 0.5 indicates unsuitability, while values above 0.7 suggest
that the items have sufficient commonality for factor analysis. Additionally, a significant
Bartlett's test (p < 0.05) confirms the appropriateness of the analysis. In social science
research, a cumulative explained variance of over 60% indicates reliable extracted factors,
while over 50% suggests acceptable results. This paper conducts the factor analysis

based on the standard of cumulative variance explanation exceeding 50%.

Table 4.3 — KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) | 0.841
Approx. Chi-Square 5187.073
df 861
Bartlett's Test of Sphericity
Sig. 0.000
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All items after the reliability analysis were subjected to exploratory factor analysis,
with the results presented in Table 4.3. The KMO value is 0.841, indicating that factor
analysis is appropriate. Additionally, the significance probability of the Bartlett's sphericity
test is 0.000, which is below the 0.01 threshold. These results demonstrate a strong
correlation among the data, confirming that factor analysis can be conducted effectively.
Moreover, the results show that all communalities were over 0.5.

In the EFA conducted for this study, the principal component analysis method and
varimax rotation were employed, with coefficients having absolute values below 0.5
eliminated. The extraction utilised a fixed number of factors set to 13. This approach was
chosen to ensure that all variables contributed meaningfully to the analysis, as each
variable demonstrated loadings exceeding 0.5 on their respective components. This
indicates a satisfactory level of correlation between the items and the factors, providing a
solid foundation for subsequent analyses (Field, 2024).

The total variance explained reached 82.418%, exceeding the minimum threshold of
50%. This indicates that the extracted factors contain a relatively sufficient amount of
information and that each item effectively explains its corresponding factor, demonstrating
good validity (DeVellis and Thorpe, 2021). Notably, the rotation converged in 8 iterations,
suggesting that the algorithm efficiently found a stable solution (Fabrigar et al., 1999). The
total variance explained and the rotated component matrix for each variable and item are

presented in Tables 4.4 and 4.5, respectively.
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Table 4.4 — Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Rotation Sums of Squared
Loadings Loadings
Total % of Cumulative Total % of Cumulative Total % of Cumulative
Variance % Variance % Variance %
1 12.451 29.644 29.644 12.451 29.644 29.644 4.233 10.079 10.079
2 4.410 10.501 40.145 4.410 10.501 40.145 3.206 7.634 17.712
3 3.134 7.461 47.607 3.134 7.461 47.607 2.869 6.832 24.545
4 2.651 6.311 53.918 2.651 6.311 53.918 2.673 6.365 30.909
5 2.033 4.841 58.758 2.033 4.841 58.758 2.669 6.354 37.263
6 1.784 4.247 63.005 1.784 4.247 63.005 2.608 6.209 43.472
7 1.511 3.597 66.602 1.511 3.597 66.602 2.552 6.076 49.548
8 1.406 3.348 69.950 1.406 3.348 69.950 2.551 6.074 55.622
9 1.246 2.967 72.917 1.246 2.967 72.917 2.495 5.940 61.562
10 1.200 2.857 75.774 1.200 2.857 75.774 2.492 5.933 67.494
11 0.985 2.345 78.118 0.985 2.345 78.118 2.328 5.542 73.037
12 0.960 2.286 80.404 0.960 2.286 80.404 2.303 5.484 78.520
13 0.846 2.014 82.418 0.846 2.014 82.418 1.637 3.898 82.418
14 0.599 1.426 83.844
15 0.549 1.308 85.152
16 0.508 1.209 86.361
17 0.481 1.144 87.505
18 0.402 0.956 88.462
19 0.398 0.949 89.410
20 0.356 0.847 90.257
21 0.340 0.811 91.068
22 0.325 0.775 91.842
23 0.303 0.720 92.563
24 0.293 0.699 93.261
25 0.273 0.650 93.911
26 0.242 0.575 94.486
27 0.232 0.552 95.039
28 0.218 0.519 95.558
29 0.201 0.478 96.036
30 0.191 0.455 96.491
31 0.187 0.446 96.937
32 0.171 0.408 97.345
33 0.161 0.384 97.729
34 0.155 0.370 98.099
35 0.136 0.323 98.422
36 0.130 0.309 98.731
37 0.121 0.289 99.020
38 0.105 0.249 99.269
39 0.095 0.226 99.495
40 0.080 0.190 99.685
41 0.072 0.172 99.857
42 0.060 0.143 100.000
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Table 4.5 — Rotated Component Matrix

Component

6 7 8

10 1" 12

13

SBM-Valueoff1
SBM-Valueoff2
SBM-Valueoff3

0.822
0.774
0.750

SBM-
ValueArch1
SBM-
ValueArch2
SBM-
ValueArch3
SBM-
ValueArch4

0.753

0.734

0.709

0.722

SBM-
Revenue1
SBM-
Revenue2

0.749

0.803

TBL-Profit1
TBL-Profit2
TBL-Profit3

0.829
0.801
0.814

TBL-People1
TBL-People2
TBL-People3

0.841
0.811
0.761

TBL-Planet1
TBL-Planet2
TBL-Planet3

0.776
0.796
0.844

EO-Inno1
EO-Inno2
EO-Inno3

0.704
0.860
0.759

EO-Pro1
EO-Pro2
EO-Pro3

EO-Risk1
EO-Risk2
EO-Risk3

0.833
0.815
0.817

SO-Culture1
SO-Culture2
SO-Culture3
SO-Culture4
SO-Culture5

0.809
0.840
0.816
0.845
0.779

SO-Practices1
SO-Practices2
SO-Practices3
SO-Practices4

0.801
0.808
0.825
0.768

DO-Vision1
DO-Vision2
DO-Vision3

0.856
0.867
0.836

DO-Strat1
DO-Strat2
DO-Strat3
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4.2 Measurement Model Assessment

Following the preliminary analysis, the focus shifts to the utilising SmartPLS 4.0 for model
assessment. The PLS-SEM results evaluation includes two stages — first stage examines
measurement model, and second stage examines the structural model (Sarstedt et al.,
2014). This measurement model assessment stage is critical for evaluating the
relationships among constructs and ensuring that the model accurately reflects the
theoretical framework. In this study, all constructs are categorised as higher-order
constructs, with one being a reflective-formative construct and the others classified as
reflective-reflective constructs.

The reflective-formative construct will be analysed to assess how its dimensions
contribute to the overall construct, while the reflective-reflective constructs will be
examined for their reliability and validity. This analysis will provide insights into the
measurement properties of the constructs and establish a solid foundation for subsequent
structural model testing. Utilising SmartPLS 4.0 allows for effective assessment of both
measurement and structural relationships, enhancing the robustness of the findings.

The first step involves developing higher-order constructs in the model, which specify
the relationships between reflective and formative indicators for the reflective-formative
construct, as well as the reflective-reflective constructs, using SmartPLS 4.0. Indicators
are assigned to each construct, ensuring that reflective constructs have suitable reflective
indicators and that the formative construct includes its corresponding dimensions. A two-

layer higher-order model is illustrated in Figure 4.1.
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Figure 4.1 — Two Layers Higher-order Model
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4.2.1 Reliability and Validity

The initial path model estimation assessed the relationships among constructs and
identified any errors or warnings in the model setup. Reliability analysis was conducted
on reflective constructs, examining Cronbach’s alpha and composite reliability (CR), with
all values exceeding 0.7, as confirmed in the preliminary analysis.

Validity analysis focused on convergent validity by evaluating the average variance
extracted (AVE), which should be greater than 0.5. Convergent validity indicates the
degree of aggregation of latent variables corresponding to each observed variable and is
measured through factor loading, CR, and AVE. Factor loadings should ideally exceed 0.7,
though values between 0.60 and 0.70 are considered acceptable in exploratory research,
while those between 0.70 and 0.95 are viewed as satisfactory to good (Hair et al., 2022).

CR should also exceed 0.70, and AVE should be above 0.50.
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Using SmartPLS 4.0, the analysis showed that the factor loading for all items was
greater than 0.6, indicating strong explanatory power. CR for all dimensions ranged from
0.76 to 0.89, demonstrating internal consistency among items within each dimension. The
minimum AVE value was 0.51, confirming convergent validity for all constructs (Hair et al.,
2022).

In conclusion, the measurement model exhibits both reliability and validity,
establishing a solid foundation for further analysis. The results are summarised in Table

4.6.

Table 4.6 — Convergent Validity

Cronbach's Composite Composite Average variance
alpha reliability reliability extracted (AVE)
(rho_a) (rho_c)
DO 0.899 0.900 0.923 0.665
DO-Strat 0.900 0.901 0.937 0.833
DO-Vision 0.894 0.894 0.934 0.826
EO 0.876 0.880 0.901 0.504
EO-Inno 0.873 0.878 0.922 0.797
EO-Pro 0.899 0.904 0.937 0.831
EO-Risk 0.854 0.854 0.9M1 0.774
SBM 0.876 0.878 0.901 0.503
SBM-Revenue 0.800 0.800 0.909 0.834
SBM-ValueArch 0.866 0.866 0.909 0.713
SBM-Valueoff 0.832 0.836 0.899 0.748
SO 0.929 0.930 0.940 0.637
SO-Culture 0.929 0.930 0.946 0.779
SO-Practices 0.925 0.926 0.947 0.817
TBL 0.904 0.905 0.921 0.566
TBL-People 0.884 0.884 0.928 0.811
TBL-Planet 0.916 0.916 0.947 0.856
TBL-Profit 0.890 0.892 0.932 0.820
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4.2.2 Discriminant Validity

Discriminant validity is the degree to which a latent variable is distinguished from other
latent variables. This study uses the methods to detect discriminant validity including
Heterotrait-Monotrait Ratio (HTMT) (Henseler et al., 2015), Fornell-Larcker Criterion
(Fornell and Larcker, 1981), and cross loadings and. At this stage, the analysis only

conducts the first order reflective model.

4.2.2.1 Heterotrait-Monotrait Ratio

The HTMT is a metric used to evaluate discriminant validity in structural equation
modelling, particularly in PLS-SEM. It compares average correlations between indicators
of different constructs to those of the same construct. An HTMT value close to 1 may
indicate insufficient discriminant validity. Common thresholds for HTMT are 0.85; values
exceeding these suggest potential issues. Table 4.7 presents the HTMT matrix for this
study, with the highest recorded value at 0.686, indicating that all constructs are
sufficiently distinct. This outcome suggests adequate discriminant validity among the
constructs investigated, reinforcing the validity of the measurement model and instilling

confidence in the distinctiveness of the constructs used in this study.

Table 4.7 — Heterotrait-Monotrait Ratio Matrix

DO- DO- EO- EO- EO- SBM- SBM- SBM- SO- SO- TBL- TBL- TBL-
Strat  Vision Inno Pro Risk Revenue ValueArch Valueoff Culture Practices People Planet Profit

DO-Strat

DO-Vision 0.673

EO-Inno 0.169 0.075

EO-Pro 0.193 0.108 0.532

EO-Risk 0.086 0.058 0.590 0.391

SBM-Revenue 0.191 0.213 0.374 0.168 0.317

SBM-ValueArch 0.358 0.349 0.438 0.313 0.400 0.687

SBM-Valueoff 0.225 0.200 0.416 0.26 0.186 0.539 0.529

SO-Culture 0.113 0.078 0.364 0.251 0.272 0.426 0.478 0.440

SO-Practices 0.072 0.092 0.354 0.281 0.261 0.406 0.381 0.509 0.643

TBL-People 0.249 0.118 0.304 0.247 0.333 0.392 0.499 0.309 0.384 0.419

TBL-Planet 0.247 0.180 0.360 0.285 0.416 0.390 0.553 0.363 0.361 0.368 0.653

TBL-Profit 0.213 0.113 0.388 0.285 0.329 0.428 0.470 0.303 0.411 0.483 0.528 0.562
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4.2.2.2 Fornell-Larcker Criterion

The Fornell-Larcker criterion was applied to assess discriminant validity among the
constructs in this study. According to this criterion, the square root of the AVE for each
construct must be greater than the correlations between that construct and any other
construct. The results presented in Table 4.8 indicate that the square root of the AVE for
each construct exceeds the correlations with other constructs, confirming adequate
discriminant validity. This outcome supports the validity of the measurement model and

ensures that the constructs utilised in this study are sufficiently distinct.

Table 4.8 — Fornell-Larcker Criterion

DO- DO- EO- EO- EO- SBM- SBM- SBM- SO- SO- TBL- TBL- TBL-
Strat  Vision Inno Pro Risk Revenue ValueArch Valueoff Culture Practices People Planet Profit

DO-Strat 0.913

DO-Vision 0.605 0.909

EO-Inno 0.149 0.05 0.893

EO-Pro 0.173 0.096 0.476 0.912

EO-Risk 0.072 0.043 0.515 0.345 0.88

SBM-Revenue 0.163 0.179 0.312 0.143 0.262 0.913

SBM-ValueArch 0.316 0.307 0.38 0.277 0.344 0.572 0.845

SBM-Valueoff 0.199 0.177 0.354 0.229 0.156 0.443 0.451 0.865

SO-Culture 0.101 0.034 0.331 0.232 0.244 0.367 0.429 0.389 0.882

SO-Practices 0.014 -0.053 0.321 0.259 0.234 0.351 0.343 0.447 0.598 0.904

TBL-People 0.221 0.102 0.266 0.221 0.29 0.33 0.437 0.269 0.35 0.38 0.901

TBL-Planet 0.225 0.164 0.323 0.261 0.369 0.334 0.492 0.316 0.332 0.339 0.588 0.925

TBL-Profit 0.192 0.101 0.345 0.258 0.287 0.361 0.413 0.26 0.374 0.439 0.469 0.509 0.906

4.2.2.3 Cross Loadings Analysis

Cross loadings evaluate the contribution of each item to its corresponding latent variable,
requiring that the loading of each item on its latent variable exceeds its loadings on all
other dimensions. The Fornell-Larcker criterion employs the square root of the AVE for
this assessment. According to the standards set by Fornell and Larcker, the correlation
coefficient between each construct should be less than the square root of the AVE, as
illustrated in the Table 4.9. The bolded values represent the loadings of each item on its
latent variable, confirming that each dimension's items load more strongly on their
respective latent variables than on any others, thereby satisfying the cross-loading

requirements.
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Table 4.9 — Cross Loadings

DO- DO- EO- EO- EO- SBM- SBM- SBM- SO- SO- TBL- TBL- TBL-

Strat Vision Inno Pro Risk Revenue ValueArch Valueoff Culture Practices People Planet Profit
DO-Strat1 0.918 0.529 0.108 0.137 0.017 0.102 0.262 0.147 0.147 0.049 0.229 0.213 0.201
DO-Strat2 0.913 0.614 0.214 0.218 0.095 0.178 0.297 0.229 0.065 -0.002 0.143 0.218 0.208
DO-Strat3 0.907 0.509 0.081 0.115 0.084 0.164 0.306 0.167 0.066 -0.009 0.238 0.184 0.115
DO-Vision1 0.56 0.907 0.016 0.1 0.003 0.054 0.246 0.118 -0.019 -0.106 0.069 0.145 0.087
DO-Vision2 0.543 0.915 0.088 0.092 0.032 0.17 0.262 0.18 0.034 -0.069 0.025 0.097 0.072
DO-Vision3 0.546 0.904 0.032 0.069 0.084 0.266 0.331 0.184 0.076 0.032 0.185 0.204 0.117
EO-Inno1 0.08 -0.003 0.908 0.44 0.566 0.265 0.356 0.278 0.338 0.328 0.183 0.259 0.309
EO-Inno2 0.175 0.099 0.88 0.369 0.356 0.284 0.338 0.331 0.241 0.237 0.265 0.251 0.241
EO-Inno3 0.151 0.046 0.89 0.459 0.442 0.287 0.325 0.344 0.301 0.289 0.27 0.353 0.366
EO-Pro1 0.117 0.032 0.429 0.919 0.359 0.095 0.245 0.188 0.223 0.274 0.179 0.221 0.26
EO-Pro2 0.202 0.114 0.374 0.89 0.251 0.128 0.212 0.184 0.163 0.162 0.199 0.196 0.152
EO-Pro3 0.16 0.119 0.49 0.926 0.327 0.167 0.296 0.252 0.242 0.265 0.226 0.291 0.285
EO-Risk1 0.03 0.017 0.418 0.342 0.886 0.169 0.324 0.173 0.225 0.184 0.292 0.383 0.226
EO-Risk2 0.076 0.055 0.461 0.269 0.872 0.231 0.262 0.09 0.187 0.172 0.206 0.273 0.252
EO-Risk3 0.084 0.042 0.481 0.299 0.881 0.291 0.321 0.149 0.231 0.26 0.267 0.316 0.279
SBM-Revenue1 0.154 0.161 0.287 0.107 0.242 0.912 0.547 0.354 0.386 0.323 0.352 0.322 0.314
SBM-Revenue2 0.143 0.167 0.282 0.153 0.237 0.914 0.498 0.454 0.285 0.318 0.251 0.287 0.346
SBM-ValueArch1 0.293 0.283 0.363 0.358 0.295 0.445 0.858 0.364 0.381 0.271 0.309 0.405 0.343
SBM-ValueArch2 0.295 0.272 0.268 0.164 0.196 0.464 0.842 0.414 0.394 0.323 0.36 0.448 0.356
SBM-ValueArch3 0.239 0.214 0.401 0.229 0.329 0.514 0.832 0.358 0.388 0.312 0.353 0.347 0.338
SBM-ValueArch4 0.241 0.269 0.255 0.189 0.343 0.508 0.846 0.388 0.29 0.254 0.451 0.461 0.359
SBM-Valueoff1 0.106 0.055 0.275 0.123 0.166 0.312 0.343 0.845 0.304 0.398 0.161 0.295 0.234
SBM-Valueoff2 0.227 0.21 0.314 0.232 0.169 0.39 0.436 0.874 0.337 0.368 0.298 0.305 0.197
SBM-Valueoff3 0.177 0.182 0.327 0.232 0.074 0.441 0.387 0.876 0.366 0.396 0.23 0.222 0.247
SO-Culture1 0.105 0.127 0.283 0.178 0.179 0.36 0.43 0.378 0.878 0.521 0.28 0.338 0.367
SO-Culture2 0.025 -0.022 0.254 0.261 0.209 0.283 0.355 0.267 0.878 0.497 0.324 0.266 0.332
SO-Culture3 0.085 0.063 0.296 0.183 0.195 0.341 0.374 0.351 0.881 0.516 0.297 0.283 0.323
SO-Culture4 0.113 0.018 0.296 0.181 0.22 0.291 0.312 0.329 0.88 0.498 0.307 0.298 0.283
SO-Culture5 0.116 -0.033 0.331 0.22 0.268 0.342 0.421 0.388 0.894 0.603 0.334 0.282 0.346
SO-Practices1 -0.095 -0.112 0.277 0.279 0.177 0.21 0.242 0.329 0.53 0.897 0.369 0.299 0.368
SO-Practices2 0.029 -0.01 0.286 0.239 0.193 0.371 0.315 0.438 0.527 0.909 0.308 0.31 0.434
SO-Practices3 0.024 -0.066 0.307 0.203 0.201 0.262 0.25 0.389 0.516 0.899 0.297 0.286 0.343
SO-Practices4 0.088 -0.006 0.291 0.217 0.273 0.421 0.427 0.456 0.588 0.91 0.397 0.329 0.438
TBL-People1 0.188 0.151 0.159 0.167 0.241 0.255 0.395 0.229 0.238 0.307 0.899 0.519 0.391
TBL-People2 0.211 0.076 0.265 0.204 0.261 0.328 0.392 0.317 0.318 0.342 0.914 0.528 0.425
TBL-People3 0.198 0.051 0.29 0.225 0.28 0.308 0.393 0.18 0.385 0.377 0.89 0.541 0.451
TBL-Planet1 0.12 0.088 0.365 0.271 0.307 0.288 0.492 0.325 0.334 0.37 0.539 0.911 0.462
TBL-Planet2 0.252 0.19 0.295 0.275 0.35 0.31 0.446 0.285 0.284 0.312 0.562 0.93 0.505
TBL-Planet3 0.251 0.175 0.235 0.177 0.365 0.327 0.429 0.267 0.305 0.259 0.53 0.935 0.442
TBL-Profit1 0.166 0.053 0.285 0.282 0.241 0.341 0.361 0.233 0.351 0.391 0.425 0.428 0.902
TBL-Profit2 0.203 0.095 0.312 0.216 0.251 0.327 0.39 0.245 0.36 0.399 0.447 0.499 0.915
TBL-Profit3 0.151 0.126 0.34 0.206 0.289 0.314 0.371 0.229 0.305 0.403 0.403 0.453 0.9

The analysis of the HTMT and the Fornell-Larcker criterion confirms the discriminant
validity of the constructs in this study. Furthermore, the cross-loading analysis indicates
that each item loads more strongly on its corresponding latent variable than on others.
These findings collectively affirm the reliability and distinctiveness of the constructs

employed in this study.
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4.2.3 Assessment of Higher-order Model

To assess the higher-order model, a new higher-order measurement model must be
constructed. The first step is to generate latent variable scores by running the PLS-SEM
algorithm on the initial model using SmartPLS 4.0 (see Figure 4.1). This process yields
estimated values for the constructs based on the observed data. Once the latent variable
scores are obtained, the next step is to export this data file, which includes scores for
each of the first-order constructs. These scores will then be used as indicators for the new
higher-order model. In SmartPLS, create a new project and add a higher-order construct,

incorporating the latent variable scores as items, as shown in Figure 4.2.

Figure 4.2 — Higher-order Model

| DO-5trat | { DO-Vision ‘

‘ 50-Culture ‘ ‘ SO-Practices ‘ \ /

TBL-People

TEL-Planet TBL

ot
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4.2.3.1 Correlation Analysis

Correlation analysis was performed to investigate the relationships between TBL and SBM,
EO, SO, and DO. The Pearson correlation coefficient was used to assess the strength of
these correlations. The results indicate that all relationships between SBM and TBL, EO,
SO, and DO are statistically significant. The correlation coefficients are as follows: 0.545
for SBM and TBL, 0.437 for SBM and EO, 0.536 for SBM and SO, and 0.322 for SBM and
DO. Each of these values is greater than 0, signifying a positive correlation between SBM

and TBL, EO, SO, and DO. The results of the analysis are presented in Table 4.10.

Table 4.10 — Pearson Correlation Analysis

Mean St. Deviation SBM TBL EO SO DO
SBM 4.274 1.141 1
TBL 5.163 1.137 0.545** 1
EO 4.473 1.216 0.437** 0.444* 1
SO 5.232 1.144 0.536** 0.499* 0.379* 1
DO 4.621 1.434 0.322** 0.225** 0.138 0.035 1

* p<0.05 ** p<0.01

4.2.3.2 HOC Reflective Model Reliability and Validity

By running the PLS-SEM algorithm with a factor weighting scheme for the reflective
variables, all outer loadings, Cronbach's alpha, CR, and AVE exceeded their respective
thresholds. Specifically, the outer loadings should be greater than 0.70, Cronbach's alpha
should be above 0.70, CR should also exceed 0.70, and AVE should be greater than 0.50.
These results indicate that the model demonstrates strong reliability and validity. The

results are shown in Table 4.11.
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Table 4.11 — Reliability and Validity of HOC

Composite Composite Average
. Outer Cronbach's L o variance
Variables Factor . reliability reliability
Loadings alpha extracted
(rho_a) (rho_c) (AVE)
DO-Strat 0.898
DO . 0.754 0.754 0.890 0.803
DO-Vision 0.893
EO-Inno 0.868
EO EO-Pro 0.727 0.707 0.731 0.836 0.631
EO-Risk 0.781
SBM-Revenue 0.813
SBM SBM-ValueArch 0.862 0.741 0.760 0.852 0.659
SBM-Valueoff 0.756
SO-Culture 0.892
SO ) 0.749 0.749 0.888 0.799
SO-Practices 0.896

4.2.3.3HOC Reflective Model Discriminant Validity

The HTMT and the Fornell-Larcker criterion are used to assess the discriminant validity

of the HOC measurement model. The HTMT matrix in Table 4.12 shows all values are

below 0.85, with the highest at 0.731, confirming the distinctiveness of the constructs.

Additionally, the Fornell-Larcker criterion results in Table 4.13 indicate that the square root

of the AVE for each construct exceeds the correlations with other constructs, further

confirming adequate discriminant validity. These findings collectively support the validity

of the HOC measurement model and ensure sufficient distinctiveness among the

constructs.

Table 4.12 — HOC Heterotrait-Monotrait Ratio Matrix

DO EO SBM SO DOxTBL DOxSO DOXxEO
DO
EO 0.187
SBM 0.411 0.586
SO 0.084 0.523 0.717
DO x TBL 0.240 0.202 0.149 0.115
DO x SO 0.221 0.177 0.027 0.043 0.696
DO x EO 0.172 0.211 0.153 0.166 0.731 0.583
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Table 4.13 — HOC Fornell-Larcker Criterion

DO EO SBM SO
DO 0.896
EO 0.134 0.794
SBM 0.317 0.438 0.812
SO 0.030 0.385 0.532 0.894

4.2.3.4 Higher-order Formative Construct Assessment
The assessment of formative constructs involves evaluating outer weights, VIF, and p-
values to ensure the reliability and validity of the indicators used in the model. The

assessment metrics for the TBL formative construct are listed in Table 4.14.

Table 4.14 — Assessment Metrics for the TBL Formative Construct

Items Outer Weight VIF p-value
TBL-People 0.316 1.626 0.014
TBL-Planet 0.404 1.710 0.002
TBL-Profit 0.490 1.435 0.000

The outer weights of the formative items serve as indicators of their contribution to
the higher-order construct. The outer weights for TBL-People, TBL-Planet, and TBL-Profit
are 0.316, 0.404, and 0.490, respectively. According to Jarvis et al. (2003), outer weights
in formative models should be interpreted as the influence each indicator has on the
construct. Weights above 0.20 are typically deemed significant (Chin, 1998). TBL-Profit,
with the highest weight of 0.490, is the most influential indicator, reinforcing its critical role
in the construct's formation. TBL-Planet and TBL-People also contribute significantly but
to a lesser extent.

The VIF values for the indicators—1.626 for TBL-People, 1.71 for TBL-Planet, and
1.435 for TBL-Profit—indicate low multicollinearity among the items. As a rule of thumb,

VIF values below 5 are acceptable, with values below 3 considered excellent (Hair et al.,
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2022). The observed VIF values confirm that the indicators are sufficiently independent,
allowing for accurate assessments of their respective contributions to the HOC. Low
multicollinearity is essential for formative constructs as it ensures that the indicators
measure distinct aspects of the construct without overlap (Bagozzi and Heatherton, 1994).

The statistical significance of the indicators is confirmed through their p-values, which
are 0.014 for TBL-People, 0.002 for TBL-Planet, and 0.000 for TBL-Profit. All p-values are
below the critical threshold of 0.05, indicating that each indicator significantly contributes
to the higher-order construct. According to Hair et al. (2023), statistically significant p-
values validate the relevance of the indicators in capturing the essence of the construct.
TBL-Profit, with a p-value of 0.000, demonstrates an exceptionally strong significance,
suggesting it is crucial for the construct's formation.

The assessment of outer weights, VIF, and p-values collectively supports the validity
and reliability of the formative constructs in this study. The positive outer weights indicate
significant contributions, while acceptable VIF values confirm low multicollinearity among
the indicators. Furthermore, statistically significant p-values reinforce the relevance of the
indicators in defining the HOC. These findings align with established literature, affirming
that the indicators effectively encapsulate the intended dimensions of TBL-aligned Digital
Traits. The rigorous assessment of these metrics enhances the overall robustness of the

formative model, contributing to the reliability of the research outcomes.

4.3 Structural Model Evaluation

Having successfully completed the measurement model assessment with favourable
results; this Section focuses on the structural model assessment of the HOC model. The
structural model is essential as it delineates the relationships between constructs and
clarifies the theoretical framework guiding the research. Evaluating the structural model
aims to confirm the hypothesised paths and their significance, providing insights into how

the constructs interact.
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This assessment will involve analysing the VIF values to check for multicollinearity
among the constructs, ensuring the reliability of the path coefficient estimates. Additionally,
R? values will be examined to evaluate the model's explanatory power, and Q? values will
be calculated to assess predictive relevance, indicating how well the constructs can
forecast outcomes. Path coefficients will also be analysed to determine the strength and
direction of the relationships among the constructs. Furthermore, potential mediating and
moderating effects will be explored to gain a deeper understanding of the dynamics within
the model. Ultimately, the structural model assessment will validate the proposed
relationships and enhance understanding of their implications in the context of sustainable

BMI and DT.

4.3.1 Collinearity

Collinearity is assessed using the VIF values. The outer VIF values for the indicators range
from 1.316 to 1.710, while the inner VIF matrix for the constructs is presented in Table
4.15. The results indicate that the tolerance values are well below the VIF threshold of
3.00 for the predictor constructs, which is considered excellent (Hair et al., 2022), and

there is no indication of strong common method bias (CMB).

Table 4.15 — Inner Model VIF Matrix

DO EO SBM SO TBL

DO 1.109

EO 1.334 1.253

SBM

SO 1.431

TBL 1.000 1.571 1.253

DO x TBL 2.847

DO x SO 2.015

DO x EO 2.236
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4.3.2 Predictive Relevance, Effect Size and Model Fit

This Section will determine the R? (coefficient of determination), which measures the
proportion of variance in the dependent variable explained by the independent variables,
indicating the model's explanatory power. Furthermore, Q? (predictive relevance)
assesses how well the model can predict outcomes, with values greater than zero
suggesting that the model has predictive capability (Geisser, 1975; Stone, 1974).
Additionally, f2 (effect size) will be examined to evaluate the strength of the relationships
between constructs, providing insights into the importance of each predictor in the model
(Cohen, 2013). Together, these metrics offer a comprehensive understanding of the

model's performance and its ability to explain and predict outcomes.

4.3.2.1 R? Assessment
R?, or the coefficient of determination, indicates the proportion of variance in the
dependent variable that is predictable from the independent variables. High R? values
generally signify a better model fit and greater explanatory power (Hair et al., 2023).

The R? values for the endogenous latent variables—EO, SBM, and SO—provide
insights into the model's explanatory power and fit. The R? and R? adjusted values are

shown in Table 4.16.

Table 4.16 — R? and R? Adjusted Values

R-square R-square adjusted
EO 0.202 0.197
SBM 0.475 0.450
SO 0.285 0.276

With an R? of 0.205 for EO, approximately 20.5% of the variance in EO is explained
by the model. Although this is below the common threshold of 0.33 for moderate

explanatory power (Chin, 1998), it still exceeds the minimum threshold of 0.19, suggesting
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a degree of influence from the predictors. This finding aligns with Covin and Slevin (1989),
indicating that EO can be influenced by various contextual factors.

With an R? of 0.475 for SBM, about 47.5% of the variance in SBM demonstrates
moderate to strong explanatory power. This suggests that nearly half of the variance in
SBM can be accounted for by the independent variables in the model, reflecting the
significance of these predictors in shaping sustainable business practices (Bocken et al.,
2014).

With an R? of 0.285 for SO, approximately 28.5% of the variance in SO is explained
by the model. While it exceeds the threshold of 0.19 for weak explanatory power (Hair et
al., 2023), it remains below the moderate threshold of 0.33. This indicates a fair degree of
influence, but, similar to EO, it suggests that additional factors may be needed for a more
comprehensive understanding of sustainability outcomes (Elkington, 1997).

The R? assessment reveals a mixed performance across the constructs. SBM stands
out with strong explanatory power, indicating that the predictors effectively capture the
dynamics of sustainable business practices. In contrast, EO and SO exhibit weaker
explanatory capabilities.

The overall Goodness-of-Fit (GOF), calculated as the mean of AVE multiplied by the
mean of R? and then squared, results in a value of 0.516, which exceeds the threshold of
0.36. This indicates that the model fits well when considering all constructs collectively,
despite individual R? values being lower. This suggests that the model can still provide
valuable insights into the relationships among the constructs, reinforcing the importance

of sustainable practices in business innovation and strategy (Porter, 2011).

4.3.2.2 Q%2 Assessment
In addition to evaluating the R? value, Stone-Geisser’'s Q? is used as an indicator of the
path model’s predictive relevance (Geisser, 1975; Stone, 1974). A Q? value greater than

zero for a specific endogenous latent variable indicates that the PLS-SEM path model has
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predictive relevance for that construct (Hair et al., 2023). The Q? value of latent variables
in the PLS-SEM path model is obtained through the blindfolding procedure. Blindfolding
is a sample reuse technique that systematically deletes data points to provide estimates
of their original values.

For this procedure, an omission distance D is required. Literature recommends a
value for the omission distance between 5 and 12 (Hair et al., 2023). An omission distance
of seven (D=7) means that every fifth data point of a latent variable's indicators will be
eliminated in a single blindfolding round. As the blindfolding procedure necessitates the
omission and prediction of every data point of the indicators used in the measurement
model of the selected latent variable, an omission distance of D=7 results in seven
blindfolding rounds. Consequently, the number of blindfolding rounds always equals the
omission distance.

During the first blindfolding round, the procedure starts with first data point and omits
every D-th data point of a latent variable's indicators. Then, the procedure estimates the
SmartPLS path model by using the remaining data points. The omitted data represent
missing values and are treated accordingly (e.g., by mean value replacement or pairwise
deletion). The PLS-SEM results are then used to predict the omitted data points. The
difference between the omitted data points and the predicted ones are the prediction error.
The sum of squared prediction errors is used to calculate the Q? value. Blindfolding is an
iterative process. In the second blindfolding round, the algorithm starts with the second
data point, omits every D-th data point and continues as described before. After D
blindfolding rounds, every data point has been omitted and predicted.

It is recommended that the omission distance values D should be between 5 and 12
(Hair et al., 2023). Table 4.17 presents the Q? for each endogenous latent variable using
an omission distance of 7 (D=7). Q? represents the predictive relevance of the variables,
with larger values indicating stronger predictive relevance. A Q? value of 1 signifies that

the model is fully predicted, while a Q? of 0 indicates no difference from replacing it with
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the average. A Q? value less than 0 suggests that the model has no predictive relevance,
whereas a Q? greater than 0 indicates that the model possesses some level of
predictiveness. The path test of the model is conducted using PLS-SEM. The Q? values
for each variable are shown in the table above, and since all Q? values are greater than

zero, the model meets the requirements for further analysis.

Table 4.17 — Q? Sheet

SsO SSE Q? (=1-SSE/SSO0)
DO 316.000 316.000
EO 474.000 420.785 0.112
SBM 474.000 337.719 0.288
SO 316.000 250.570 0.207
TBL 474.000 474.000

4.3.2.3 Effect Size

Accessing the f?2 effect size in SEM helps to understand the strength of the relationships
between constructs. The f? value indicates how much variance in the dependent variable
is explained by an independent variable when controlling for other variables. Table 4.18
shows the f2 matrix. The analysis highlights the significant role of TBL in enhancing EO,
as indicated by a strong f? value (0.253). Both SO and TBL are critical drivers of
sustainable business innovation, demonstrated by moderate f? values. However, the
small effect sizes for the relationships between EO and SBM, as well as TBL and SBM,
suggest limited practical impact, indicating the need for further exploration of additional
influencing factors. Lastly, the negligible interaction effects involving DO imply that it may

not be a key driver in improving the effectiveness of TBL, EO, or SO.
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Table 4.18 — f-Square Matrix

EO SBM SO

DO 0.098

EO 0.045 0.044
SBM

SO 0.142

TBL 0.253 0.073 0.192
DO x TBL 0.008

DO x SO 0.030

DO x EO 0.000

4.3.2.4 Model Fit
The model fit statistics provide insights into how well the estimated model aligns with the
saturated model, which represents a perfect fit. The value matrix is presented in Table

4.19, illustrating key metrics that evaluate the model's performance.

Table 4.19 — Model Fit

Saturated model Estimated model
SRMR 0.068 0.070
d_ULS 0.424 0.451
d_G 0.216 0.219
Chi-square 215.375 218.094
NFI 0.696 0.692

e SRMR (Standardised Root Mean Square Residual) values below 0.08 are generally
considered acceptable (Hu and Bentler, 1999). Both values indicate that the fit is

reasonable.

o d_ULS (Squared Euclidean Distance) indicates that lower values represent a better
fit. The estimated model shows a slight increase in d_ULS, suggesting a somewhat

poorer fit compared to the saturated model (Henseler et al., 2015).
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o d_G (Geodesic Distance) has lower values that indicate better model fit. The values
are very close, indicating that the estimated model does not deviate significantly

from the saturated model (Sarstedt et al., 2021).

o Chi-square values that are higher indicate worse fit; however, the chi-square value
alone is not sufficient for model evaluation. It is essential to assess it in conjunction

with degrees of freedom and the associated p-value (Kline, 2023).

o NFI (Normed Fit Index) values closer to 1 indicate better fit, with values above 0.90
generally considered acceptable (Bentler and Bonett, 1980). Both values are below
this threshold, suggesting that improvements are needed for better model fit.

In summary, while the fit statistics suggest that the estimated model is reasonably
close to the saturated model, the slight increases in SRMR, d_ULS, and chi-square values
indicate a marginally poorer fit. The NFI values suggest that the overall model fit could be

improved. However, the model is still considered acceptable.

4.3.3 Significance and Relevance of Path Coefficients

Assessing the significance and relevance of the structural model relationships was
conducted using SmartPLS 4.0, which estimates the structural model relationships (the
path coefficients) to illustrate the connections between the constructs. Significance was
determined through bootstrapping.

PLS-SEM does not assume that the data is normally distributed, which means that
parametric significance tests (e.g., those used in regression analyses) cannot be applied
to test the significance of coefficients such as outer weights, outer loadings, and path
coefficients. Instead, PLS-SEM relies on a nonparametric bootstrap procedure (Davison
and Hinkley, 1997; Efron and Tibshirani, 1986) to assess the significance of the estimated

path coefficients.
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In the bootstrapping process, subsamples are created by randomly drawing
observations from the original dataset (with replacement). These subsamples are then
used to estimate the PLS path model. This process is repeated until a large number of
random subsamples, typically around 5,000, have been generated.

The parameter estimates (e.g., outer weights, outer loadings, and path coefficients)
derived from these subsamples are used to calculate standard errors for the estimates.
With this information, t-values are computed to evaluate the significance of each estimate.
Table 4.20 presents the results of the path coefficients and structural relationships. Overall,

these results indicate strong positive relationships among the constructs in the model.

Table 4.20 — Path Coefficients

Original sample Sample mean :;?/?:t?org T statistics P values
(0) (M) (STDEV) (|O/STDEV])
DO -> SBM 0.239 0.238 0.064 3.730 0.000
EO -> SBM 0.178 0.179 0.063 2.824 0.002
EO -> SO 0.198 0.196 0.081 2.441 0.007
SO -> SBM 0.328 0.322 0.070 4.656 0.000
TBL -> EO 0.450 0.455 0.084 5.364 0.000
TBL -> SBM 0.245 0.250 0.079 3.106 0.001
TBL -> SO 0.415 0.418 0.074 5.607 0.000

e DO has a statistically significant positive effect on SBM, with a standardised
regression coefficient of $=0.239 and a significance test result of p<0.001, supporting

this relationship.

e EO has a statistically significant positive effect on SBM, with a standardised
regression coefficient of £=0.178 and a significance test result of p<0.010, supporting

this relationship.

e EO also has a statistically significant positive effect on SO, with a standardised
regression coefficient of £=0.198 and a significance test result of p<0.050, which

supports this path.
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e SO has a statistically significant positive effect on SBM, with a standardised
regression coefficient of $=0.328 and a significance test result of p<0.001, supporting

this relationship.

e TBL has a statistically significant positive effect on EO, with a standardised regression

coefficient of $=0.450 and a significance test result of p<0.001, supporting this path.

e TBL has a statistically significant positive effect on SBM, with a standardised
regression coefficient of $=0.245 and a significance test result of p<0.010, reinforcing

this relationship.

e TBL has a statistically significant positive effect on SO, with a standardised regression

coefficient of $=0.415 and a significance test result of p<0.001, supporting this path.

4.3.4 Mediation and Moderation Effects

This Section examines the mediating roles of individual EO and SO in the relationship
between TBL and SBM. It also investigates the moderating role of DO in the pathways
from EO and SO to SBM. Analysing mediation and moderation effects is crucial for
understanding the dynamics among TBL, EO, SO, DO, and SBM. Mediation refers to how
an independent variable influences a dependent variable through a mediator, clarifying
the mechanism of action (Baron and Kenny, 1986). In contrast, moderation examines
how the strength or direction of a relationship changes based on a moderator variable
(Hayes, 2017). Together, these analyses offer valuable insights into the interactions
among different variables in this study and contribute to a more comprehensive

understanding of behavioural phenomena.
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4.3.4.1 Mediation Effect Analysis

Mediation occurs when a third variable, known as the mediator, intervenes between two
related constructs. Specifically, a change in the exogenous construct leads to a change
in the mediator variable, which subsequently results in a change in the endogenous
construct within the PLS-SEM path model. Thus, the mediator variable influences the

nature of the relationship between the two constructs, as illustrated in Figure 4.3.

Figure 4.3 — General Mediation Model

P1 P2

OO,

Analysing the strength of the mediator variable’s relationships with other constructs

is crucial for understanding the mechanisms underlying the cause-effect relationship
between an exogenous construct and an endogenous construct. While the analysis can
focus on a single mediator variable, the path model can also incorporate multiple
mediators simultaneously. To analyse a mediator model, Zhao et al. (2010) propose a
framework, illustrated in Figure 4.4, which Hair et al. (2022) recommend for PLS-SEM.
This framework categorises relationships into two types of non-mediation: "direct-only
non-mediation," where the direct effect is significant, but the indirect effect is not, and "no-
effect non-mediation," where neither effect is significant. For mediation, "complementary
mediation" occurs when both effects are significant and point in the same direction, while
"competitive mediation" has both effects significant but in opposite directions. "Indirect-
only mediation" is characterised by a significant indirect effect with no significant direct

effect, indicating full mediation.
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Figure 4.4 — Mediation Analysis Procedure
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In the research framework depicted in Figure 2.2, the TBL exogenous construct
influences both the mediator variables EO and SO, which subsequently affect the
endogenous construct SBM. Specifically, this model illustrates the relationships between
TBL and EO, TBL and SO, as well as TBL, EO, and SO together impacting SBM. This
indicates how TBL affects both EO and SO, leading to changes in SBM.

In line with the methodological approach outlined in Section 3.1, it is crucial to
interpret these proposed mediating pathways as statistical associations rather than
proven causal chains. A significant mediation effect in this cross-sectional context
indicates that the relationship between the independent and dependent variable is
significantly accounted for by the presence of the mediator, providing support for the
hypothesised theoretical sequence.

The analysis calculated the effect size for each mediating effect in the model, with
the results summarised in Table 4.21. The significance test revealed that EO influences
SBM through SO with a p-value of less than 0.050, indicating that SO acts as a mediator
in the relationship between EO and SBM. Additionally, TBL affects SBM through EO, also

with a significance level of p<0.050, confirming EO's mediating role in this relationship.

Page 119



Furthermore, the significance test for TBL's influence on SBM through both EO and SO
yielded a p-value of less than 0.05, indicating that both EO and SO serve as mediators in
this process. Finally, TBL's influence on SBM through SO alone was significant at p<0.001,
reinforcing SO's role as a mediator in the relationship with TBL. As indicated in Figures
4.3 and 4.4, all paths P1, P2, and P3 are positive and significant, suggesting that the

mediation effects are considered complementary (Hair et al., 2023).

Table 4.21 — Specific Indirect Effects

Standard

Original Sample deviation T statistics P values
sample (O) mean (M) (STDEV) (|O/STDEV|)
TBL -> EO -> SO -> SBM 0.029 0.029 0.015 1.979 0.024
TBL -> SO -> SBM 0.136 0.134 0.037 3.644 0.000
TBL -> EO -> SBM 0.080 0.082 0.034 2.322 0.010
TBL -> EO -> SO 0.089 0.089 0.04 2.207 0.014
EO -> SO -> SBM 0.065 0.063 0.03 2.193 0.014

4.3.4.2 Moderating Effect Analysis

The moderation effect analysis investigates how DO serves as a moderator in the
relationships between TBL and SBM, EO and SBM, and SO and SBM. This analysis
identifies the conditions under which TBL, EO, and SO exert varying impacts on SBM.
The results of the moderating path coefficients are presented in Table 4.22, highlighting
how the strength or direction of these relationships changes based on the presence of the

moderator DO (Hayes, 2017).

Table 4.22 — Path Coefficients of Moderating

Standard

Original sample Sample mean deviation T statistics P values
(0) (M) (STDEV) (|O/STDEV])
DO x TBL -> SBM -0.091 -0.088 0.088 1.035 0.150
DO x EO -> SBM 0.002 -0.004 0.07 0.026 0.490
DO x SO -> SBM 0.153 0.153 0.078 1.969 0.024
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The standardised regression coefficient for the interaction term between DO and TBL
on SBM is g = -0.091, showing no significant regression effect, as evidenced by a
significance test result of p=0.150 (greater than 0.050). Similarly, the standardised
regression coefficient for the interaction term between DO and EO on SBM is =0.002,
also indicating no significant regression effect, with a significance test result of p=0.490
(greater than 0.050), which does not support this path either. In contrast, the standardised
regression coefficient for the interaction term between DO and SO on SBM is $=0.153
indicating a significant positive regression effect, with a significance test result of p=0.024
(less than 0.050), supporting this path. This suggests that DO plays a significant positive
moderating role in the relationship between SO and SBM, as illustrated in the simple slope

graph in Figure 4.5.

Figure 4.5 — DO x SO Simple Slope Analysis
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As illustrated in Figure 4.5, the red line represents the relationship between SO and
SBM when the mean of DO is low, the blue line corresponds to the mean level of DO, and
the green line reflects the situation when DO is high. As DO increases from low to high,
the angle between the lines and the horizontal axis rises, indicating a steeper slope. This

suggests that the positive relationship between SO and SBM strengthens with increasing
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levels of DO, demonstrating that the moderating variable enhances the positive
association between SO and SBM from a weak to a strong effect.

The structural model assessment evaluates the relationships among constructs,
confirming their validity through techniques like bootstrapping. Significant paths between
TBL, EO, SO, and SBM are revealed. The mediating analysis shows that EO and SO
enhance the impact of TBL on SBM, clarifying the mechanisms involved. Additionally, the
moderating analysis examines the role of DO, demonstrating that while DO strengthens
the connection between SO and SBM, it does not significantly affect the relationships
between TBL and SBM or EO and SBM. Together, these analyses offer a comprehensive

understanding of the dynamics in sustainable BMI.

4.4 Multigroup Analysis

In the AEC industry, the effective use of digital technology is vital for driving transformation
and enhancing value creation. This Section presents a multigroup analysis (MGA)
conducted using SmartPLS 4.0 to examine the differences between two distinct groups:
Design and Planning (Design), and Construction and Project Management (Construction).

The primary objective of this analysis is to test the hypothesis that the Design and
Planning group utilises digital technology more extensively than the Construction and
Project Management group. This hypothesis is based on the premise that the Design
group operates at the forefront of the AEC value chain, uniquely positioning them to create
value and influence subsequent stages of the project lifecycle. Additionally, this analysis
will explore the roles of various determinants that contribute to achieving DT within these
groups. The guidelines for running MGA in PLS-SEM is illustrated in Figure 4.6 (Cheah et

al., 2020).

Page 122



Figure 4.6 — Guidelines for Running MGA in PLS-SEM
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4.41 Data Preparation by Generating Data Groups

This Section addresses data preparation and the generation of data groups for MGA. In
SmartPLS, creating data groups is a simple and efficient process that facilitates the
segmentation of responses. For this study, we will generate separate data groups for
Design and Construction, ensuring each group is adequately prepared for further analysis.

It is essential to first ascertain that the number of observations in each group meets
the minimum sample size requirements necessary to ensure statistical power. The most
widely used method for estimating minimum sample size in PLS-SEM is the "10-fold rule"
approach (Hair et al., 2022; Peng and Lai, 2012). For the model depicted in Figure 4.2,
applying the 10-fold rule results in a minimum sample size of 30.

Hair et al. (2022) contend that the 10-fold rule serves as a rough guideline for
determining minimum sample size. In PLS-SEM, it is vital to evaluate sample size in the
context of the model and its data characteristics, which should be informed by power
analyses focusing on the section of the model with the highest number of predictors. They

also suggest following a rule established by Cohen (2013) that incorporates statistical
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power analysis for multiple regression models and outer loading values. Table 4.23
outlines the minimum sample size requirements to detect R? values of 0.1, 0.25, 0.5, and
0.75 in endogenous constructs within the structural model. This table considers
significance levels of 1%, 5%, and 10%, with a statistical power of 80% across varying
levels of PLS-SEM model complexity. For models with a maximum of three independent
variables, only 45 samples are necessary to achieve 80% statistical power for an R? value

of at least 0.25 at a 5% significance level. In some cases, 37 samples may also suffice.

Table 4.23 — Sample Size in PLS-SEM for Statistical Power of 80%

Maximum Number of Significance Level

Arrows Pointing at a 10% 5% 1%

Construct (Number of Minimum R? Minimum R’ Minimum R’

Independent Variables) [ 19 T 925 | 050 | 075 | 0.10 | 025 | 050 | 0.75 | 0.10 | 025 | 0.50 | 0.75
2 72 26 11 7 90 33 14 8 130 | 47 10 10
3 83 30 13 8 103 | 37 16 9 145 | s3 2 12
4 92 34 15 9 13 | M 18 11 | 158 | s8 24 14
5 99 37 17 10 | 122 | 45 20 122 | 169 | 62 26 15
6 106 | 40 18 12 | 130 | 48 21 13 | 179 | 66 28 16
7 112 | 4 20 13 | 137 | s1 23 14 | 188 | 69 30 18
8 118 | 45 21 14 | 144 | 54 24 15 | 196 | 73 32 19
9 124 | 47 2 15 | 150 | 56 26 16 | 204 | 76 34 20
10 129 | 49 24 16 | 156 | 59 27 18 | 212 | 79 35 21

In this study, the total number of responses is 158, with 95 from Design and Planning
and 63 from Construction and Project Management. Both groups exceed the necessary
thresholds of 30 and 37, ensuring adequate statistical power for subsequent analyses.
Additionally, the dataset does not present any issues with missing values, reliability, or

validity.

4.4.2 Multigroup Model Assessment
4.4.2.1 Reliability and Convergent Validity
The assessment of the measurement model adheres to the criteria outlined in Section

4.2.3 for both reflective and formative constructs. Table 4.24 presents the evaluation of
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reliability and convergent validity for the reflective constructs. As the complete dataset
was examined in the previous section, this Section focuses on the assessment of the two

groups: Design and Construction.

Table 4.24 — Multigroup Reliability and Convergent Validity

Composite Composite Average
. Outer Cronbach's L s variance
Variables Factor . reliability reliability
Loadings alpha (rho_a) (rho_c) extracted
- - (AVE)
Complete Data Set
DO-Strat 0.898
DO . 0.754 0.754 0.890 0.803
DO-Vision 0.893
EO-Inno 0.868
EO EO-Pro 0.727 0.707 0.731 0.836 0.631
EO-Risk 0.781
SBM-Revenue 0.813
SBM SBM-ValueArch 0.862 0.741 0.760 0.852 0.659
SBM-Valueoff 0.756
SO-Culture 0.892
SO ) 0.749 0.749 0.888 0.799
SO-Practices 0.896
Design and Planning (Design)
DO-Strat 0.895
DO . 0.793 0.807 0.906 0.827
DO-Vision 0.925
EO-Inno 0.862
EO EO-Pro 0.716 0.694 0.708 0.831 0.622
EO-Risk 0.780
SBM-Revenue 0.794
SBM SBM-ValueArch 0.841 0.741 0.752 0.852 0.657
SBM-Valueoff 0.797
SO-Culture 0.920
SO ) 0.808 0.809 0.912 0.839
SO-Practices 0.912
Construction and Project Management (Construction)
DO-Strat 0.906
DO o 0.670 0.709 0.856 0.748
DO-Vision 0.823
EO-Inno 0.884
EO EO-Pro 0.702 0.707 0.786 0.832 0.625
EO-Risk 0.775
SBM-Revenue 0.847
SBM SBM-ValueArch 0.901 0.742 0.798 0.853 0.662
SBM-Valueoff 0.670
SO-Culture 0.922
SO . 0.566 0.567 0.822 0.697
SO-Practices 0.747

Page 125



For the Design group, all outer loadings, Cronbach's alpha, CR, and AVE exceeded
their respective thresholds. Specifically, outer loadings should be greater than 0.70,
Cronbach's alpha should be above 0.70, CR should also exceed 0.70, and AVE should be
greater than 0.50. These results indicate that the model demonstrates strong reliability
and validity.

In contrast, the Construction group has two outer loadings below 0.70, with the lowest
being 0.67. Additionally, the Cronbach’s alpha for DO is 0.67, and for SO, it is 0.566, both
below the threshold of 0.70. The CR for SO is 0.567 (rho_a), while the overall CR (rho_c)
is 0.822, which is considered acceptable. The AVE for all constructs is above the threshold
of 0.50.

For outer loadings between 0.40 and 0.70, Hair et al. (2022) recommend examining
CR and AVE. If the AVE meets the minimum threshold of 0.50, the indicators can be
retained. Although Cronbach's Alpha is below the acceptable level, the CR (rho_c) for SO
suggests that the construct may still reliably measure the underlying concept.

Given that both constructs are crucial to the study, it is advisable to retain them for
analysis while acknowledging their questionable reliability. These limitations have been

taken into account when interpreting results related to these constructs.

4.4.2.2 Discriminant Validity
The assessment method for discriminant validity employed the HTMT. The findings
indicate in Table 4.25 show that all values are below the threshold of 0.85, confirming that

both groups exhibit discriminant validity.
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Table 4.25 — Multigroup Heterotrait-Monotrait Ratio Matrix

DO EO SBM SO DOxTBL DOxSO DOXxEO
Complete Data Set
DO
EO 0.187
SBM 0.411 0.586
SO 0.084 0.523 0.717
DO x TBL 0.240 0.202 0.149 0.115
DO x SO 0.221 0.177 0.027 0.043 0.696
DO x EO 0.172 0.211 0.153 0.166 0.731 0.583
Design and Planning (Design)
DO
EO 0.19
SBM 0.338 0.68
SO 0.086 0.567 0.743
DO x TBL 0.243 0.172 0.152 0.073
DO x SO 0.145 0.181 0.096 0.068 0.748
DO x EO 0.175 0.079 0.08 0.036 0.771 0.604
Construction and Project Management (Construction)
DO
EO 0.172
SBM 0.569 0.46
SO 0.226 0.38 0.747
DO x TBL 0.249 0.379 0.254 0.349
DO x SO 0.146 0.285 0.286 0.366 0.781
DO x EO 0.227 0.333 0.072 0.151 0.471 0.513

4.4.2.3 Formative Construct Assessment

For the formative construct, the assessment metrics for the TBL for both groups and the
complete dataset are listed in Table 4.26. The outer weights of the formative items indicate
their contribution to the HOC. Typically, outer weights above 0.20 are considered
significant (Chin, 1998). However, in the Construction group, the outer weight for TBL-
People is 0.141, which falls below this threshold. This indicates that the contribution of

TBL-People to the HOC is not considered significant.
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Table 4.26 — Multigroup Assessment Metrics for the TBL Formative Construct

Construction and

Design and Planning Project Management

Complete Data Set

(Design) (Construction)
Outer p- Outer p- Outer p-
Items Weight VIF value  Weight VIF value  Weight VIF value
TBL-People 0.316 1.626 0.014 0.386 1.784 0.002 0.141 1.792  0.382
TBL-Planet 0404 1710 0.002 0478 1614 0000 0639 2104 0.103
TBL-Profit 0490 1.435 0.000 0.306 1906 0.011 0424 1259 0.094

The VIF values for both the Design and Construction groups suggest low
multicollinearity among the items. Generally, VIF values below 5 are acceptable, with
values below 3 deemed excellent (Hair et al., 2022).

In the Design group, all p-values are below the critical threshold of 0.050, indicating
that each indicator significantly contributes to the HOC. Conversely, the analysis of the
Construction group revealed that the p-values for three key items were not significant.
Although the VIF values for these items are acceptable, indicating no multicollinearity
concerns, the lack of statistical significance suggests that other factors may be influencing
the results. A critical limitation is the sample size of the Construction group (n=63), which
reduces the statistical power of the analysis (Cohen, 2013). Consequently, the non-
significant findings for this subgroup may be attributable to a Type Il error, where a true
underlying effect is not detected due to insufficient data.

While the findings highlight non-significant relationships for these items, it is essential
to consider the impact of sample size on the results. Additionally, these non-significant
results may indicate that the construct does not operate effectively within the Construction
group or that external factors may be influencing the outcomes (Bagozzi and Yi, 1988;
Hair et al., 2023). Due to the smaller sample size in the Construction group, interpretation

of non-significant paths should be made cautiously, as statistical power may be limited.
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4.4.2.4 Structural Model Collinearity

The first step involves using the VIF to assess collinearity within the structural model.
Table 4.27 displays the inner VIF values for the two groups and the complete dataset. The
results indicate that the tolerance values are significantly below the VIF threshold of 5.00,
which suggests collinearity among the predictor constructs Furthermore, most VIF
values are below 3.00, indicating an excellent level of collinearity (Hair et al., 2022), and

there is no indication of strong CMB.

Table 4.27 — Multigroup Collinearity (VIF)

Complete Data Set 208100 e agement (Construction)
DO -> SBM 1.109 1.102 1.164
EO -> SBM 1.334 1.517 1.27
EO -> SO 1.253 1.497 1.071
SO -> SBM 1.431 1.818 1.195
TBL -> EO 1.000 1.000 1.000
TBL -> SBM 1.571 2.322 1.292
TBL -> SO 1.253 1.497 1.071
DO x TBL -> SBM 2.847 3.734 3.033
DO x SO -> SBM 2.015 2.304 3.146
DO x EO -> SBM 2.236 2.526 1.466

4.4.2.5 R? Assessment
The R? values provide insights into the proportion of variance in each dependent variable
that is explained by the independent variables in the model. Table 4.28 shows the R? and

adjusted R? values for the Design group, Construction group, and the complete dataset.

Table 4.28 — Multigroup R Square

Design and Planning Construction and Project
Complete Data Set (Design) Management (Construction)
_ R-square ) R-square ) R-square
R-square adjusted R-square adjusted R-square adjusted
EO 0.202 0.197 0.332 0.325 0.066 0.051
SBM 0.475 0.450 0.500 0.460 0.567 0.512
SO 0.285 0.276 0.438 0.426 0.084 0.054
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Design Group:

The R? of EO is 0.332 that means approximately 33.2% of the variance in EO is
explained by the independent variables. This indicates a moderate level of
explanatory power, suggesting that the model captures some key factors influencing
EO. The adjusted R? is slightly lower, reflecting the number of predictors in the model.
It suggests that the model remains relevant after adjusting for the number of

variables.

The R? of SBM is 0.500 that explains 50% of the variance in SBM, indicating a strong
level of explanatory power. This suggests that the independent variables are highly
relevant in understanding SBM in the Design group. The adjusted R? value indicates

that the model remains effective after accounting for the number of predictors.

The R? of SO is 0.438 that means approximately 43.8% of the variance in SO is
explained, indicating a good level of explanatory power. The adjusted R? confirms

the model's effectiveness after accounting for predictors.

Construction Group:

The R? of EO is 0.066 meaning only 6.6% of the variance in EO is explained,
indicating a low level of explanatory power. This suggests that many other factors
not included in the model may significantly influence EO in this group. The adjusted
R? further emphasises the limited effectiveness of the model for EO, as it accounts

for the number of predictors.

The R? of SBM is 0.567 that strong value shows that 56.7% of the variance in SBM
is explained, indicating an effective model for this group. The adjusted R? suggests
that the model still explains a substantial amount of variance after adjusting for the

number of predictors.

The R? of SO is 0.084 that explains only 8.4% of the variance in SO, indicating a
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low level of explanatory power. This suggests that many other factors may
significantly influence SO in this group. The adjusted R? further emphasises the
limited effectiveness of the model for SO.

The Design group exhibits strong explanatory power for SBM and SO, while EO
shows moderate effectiveness. In contrast, the Construction group reveals low
explanatory power for EO and SO yet demonstrates strong explanatory power for SBM.
Although the R? values for certain constructs, such as EO and SO in the Construction
group, are low, this does not exclude the possibility of conducting analysis. MGA path
analysis can provide insights into how relationships vary between groups, even if some
constructs account for less variance. Additionally, the smaller sample sizes in the
Construction group may impact the reliability of the results, especially for constructs with

low R? values.

4.2.4.6 Q%2 Assessment
the Q? values indicate varying levels of predictive relevance across constructs and groups.

Table 4.29 shows the multigroup Q2 assessment values.

Design Group
o It shows moderate to strong predictive relevance for EO, SBM, and SO with all

values are greater than 0.

Construction Group

e The Construction group exhibits negative predictive relevance for EO and SO,
indicating the model does not effectively explain their variance. However, SBM
shows moderate predictive relevance. Despite the low Q? values for EO and SO,
multigroup path analysis can still reveal insights into how relationships differ
between groups. Additionally, smaller sample sizes may affect the reliability of

results, particularly for constructs with low Q? values.
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Table 4.29 — Multigroup Q? Sheet

Complete Design Construction

Q?*(=1- 2 (=1- 2 (=1-
S$SO SSE SSE/SS  SSO SSE SSE/SS  SSO SSE SSE/SS
0) 0) 0)

DO 316 316.000 190 190.000 126 126.000
EO 474 420.785 0.112 285 230.064 0.193 189 189.414 -0.002
SBM 474 337.719 0.288 285 206.910 0.274 189 142.035 0.248
SO 316 250.570 0.207 190 123.561 0.35 126 128.637 -0.021
TBL 474 474.000 285 285.000 189 189.000

4.4.3 Measurement Invariance Test using MICOM

This step focuses on evaluating measurement invariance in PLS-SEM. Measurement
invariance, also known as measurement equivalence, confirms that the measurement
models accurately represent the same attribute under varying conditions (Henseler et al.,
2015). Variations in path coefficients (B values) between latent variables may arise from
different interpretations by respondents, rather than genuine differences in structural
relationships. Hult et al. (2008) emphasise that failing to establish invariance can result in
low statistical power, imprecise estimators, and potentially misleading conclusions.
Therefore, assessing measurement invariance is essential prior to conducting MGA, as it
ensures that group differences in model estimates are not influenced by distinct meanings
attributed to latent variables.

To enhance the validity of results, Henseler et al. (2015) introduced the Measurement
Invariance of Composite Models (MICOM) procedure, which aligns with the principles of
composite modelling in PLS-SEM. The MICOM procedure, illustrated in Figure 4.7,
consists of three key steps: (i) assessing configural invariance (Step 1), (ii) evaluating
compositional invariance (Step Il), and (iii) examining the equality of composite mean
values and variances across groups (Step lll) (see Hair et al. (2023) for detailed

explanations).
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Figure 4.7 — The Measurement Invariance of Composite Models Procedure

Step II

Compositional
Invariance?

Step III (a)

Step I (b)

The composite is
formed differently
across groups

_

The composite does

not exist in all groups no

Partial measurement
No measurement invariance: invariance:

Multigroup analysis is not meaningful Standardised path coefficients invariance

can be compared across groups

Full measurement

If both configural invariance and compositional invariance are confirmed, partial
measurement invariance is established, allowing for the comparison of path coefficients
using MGA. Full measurement invariance is achieved when composites exhibit equal
means and variances across groups, enabling data pooling and potentially increasing
statistical power, thus making MGA unnecessary (Henseler et al., 2015). However, if
partial measurement invariance is confirmed, the researcher can proceed with MGA.

The MICOM analysis was conducted using the SmartPLS feature. The results are
detailed under the Quality Criteria — MICOM section, which includes three tabs: Step 2,
Step 3a (Variances), and Step 3b (Means).

Step 2 evaluates the stability of the measurement model across groups by examining
original correlations and permutation means. As shown in Table 4.30, all constructs
maintain measurement invariance across groups, indicating stable relationships. The high
original correlations reflect strong relationships within the groups. Additionally, the
permutation p-values, all exceeding 0.05, suggest that there are no significant

measurement differences across the groups for any of the constructs. These results
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confirm measurement invariance, allowing for valid group comparisons. Consequently,

the results of Step 2 support only partial measurement invariance.

Table 4.30 — MICOM Step 2 Result

Original Correlation Permutation
- permutation 5.00%
correlation p value
means

DO 0.994 0.989 0.957 0.428
EO 0.996 0.992 0.975 0.599
SBM 0.997 0.997 0.991 0.371
SO 1.000 0.997 0.99 0.721
TBL 0.979 0.944 0.831 0.683

Table 4.31 presents the results of Step 3a (Variance), which evaluates whether
significant differences exist in the variances of constructs between groups. For DO, the p-
value (0.023) indicates a significant variance difference, suggesting that responses
regarding DO vary more widely between groups. Likewise, for SO, the p-value (0.017)
indicates significant variance differences, meaning perceptions of SO are more variable
across groups. Conversely, constructs such as EO, SBM, and TBL do not show significant
variance differences, indicating consistency in perceptions across groups for these

constructs.

Table 4.31 — MICOM Step 3a (Variance) Results

Permutation

ergmal mean 2.50% 97.50% Permutation
difference . p value
difference
DO 0.457 0.005 -0.352 0.382 0.023
EO 0.102 0.023 -0.382 0.463 0.369
SBM -0.164 0.011 -0.328 0.375 0.213
SO 0.556 0.012 -0.376 0.435 0.017
TBL 0.196 0.016 -0.397 0.459 0.230
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Step 3b (Means) is presented in Table 4.32. This step assesses whether significant
differences exist in the means of the constructs between groups. The results indicate that
for EO, the p-value (0.009) reveals a significant means difference, suggesting differing
perceptions of EO between the groups. Similarly, for SO, the p-value (0.011) also
indicates a significant difference. In contrast, other constructs such as DO, SBM, and TBL

show no significant means differences, as their p-values are above 0.050.

Table 4.32 — MICOM Step 3b (Means) Results

Permutation

d%;?::\ﬂe mean 2.50% 97.50% Pe’"\‘,‘:ﬂg”
difference P

DO 0.106 0.002 -0.295 0.289 0.261

EO -0.409 -0.005 -0.295 0.278 0.009

SBM -0.08 -0.002 0.272 0.262 0.318

SO -0.364 -0.001 -0.267 0.288 0.011

TBL 0.009 -0.005 -0.271 0.274 0.469

Given that the results from Step 3 concluded that not all composite means values
and variances were equal, only partial measurement invariance is supported. Therefore,
it is appropriate to confidently compare standardised path coefficients across the groups

through MGA in PLS-SEM.

444 Test of MGA Comparisons
Once partial measurement invariance is established using MICOM, the next step is to
assess group differences through MGA in SmartPLS. This analysis allows for the
comparison of parameters such as path coefficients, outer weights, and outer loadings
between the Design and Planning groups and the Construction and Project Management
groups.

SmartPLS offers five different approaches for group comparisons based on
bootstrapping (Hair et al., 2023): Henseler's Bootstrap-Based MGA (Henseler et al., 2009);

Parametric Test (Keil et al., 2000); Welch-Satterthwaite Test (Welch, 1947); Permutation
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Test (Chin and Dibbern, 2009) which can be estimated using the MICOM path coefficient

option in SmartPLS; Omnibus Test of Group Differences (OTG) (Sarstedt et al., 2021),

suitable for comparing more than two groups.

In this study, the MICOM path coefficient method is utilised, and the results from the

permutation multigroup analysis provide insights into the differences in path coefficients

between the Design and Construction groups, as shown in Table 4.33.

Table 4.33 — Permutation Multigroup Analysis: Path Coefficients

Permutation

o otghat o PN gy oo, Pemutstor
g 0.168 0.400 -0.232 0.005 0218 0.241 0.042
o 0.196 0.185 0.010 0.012 0210 0235 0.507
EO->SO  0.064 0.242 0178 0.006 0291 0.298 0.159
o 0.293 0.424 -0.131 0.005 0245 0258 0.191
TBL->EO  0.576 0.258 0.319 -0.006 0280  0.298 0.041
et 0.261 0.278 -0.018 -0.011 0295  0.248 0.485
TBL->SO  0.623 0.110 0.513 -0.003 0242 0253 0.002
s -0.152 0.063 0215 0.016 0329 0.291 0.151
DOXEC 0041 -0.072 0.114 0.015 0237 0277 0.242
DOXNC  oarT 0.131 0.045 0.004 0280  0.300 0.404

o DO — SBM: The path coefficient is significantly higher in the Construction group.

The permutation p-value (0.042) indicates a significant difference, suggesting that

the impact of DO on SBM is stronger in Construction than in Design.

o EO — SBM: The difference is minimal (0.010) and not statistically significant (p-

value = 0.507), indicating that EO has a similar impact on SBM across both groups.

o EO — SO: The significant difference (-0.178) suggests that EO influences SO more

strongly in Construction, but the p-value (0.159) indicates this difference is not

statistically significant.
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o SO — SBM: Although the path coefficient is higher in Construction, the difference (-
0.131) is not statistically significant (p-value = 0.191), indicating similar impacts

across the groups.

o TBL — EO: The large positive difference (0.319) coupled with a significant p-value
(0.041) suggests that the TBL has a stronger influence on EO in the Design group

compared to Construction.

e TBL — SBM: The difference is negligible (-0.018) and not statistically significant (p-

value = 0.485), indicating similar influences on SBM.

e  TBL — SO: The significant difference (0.513) and a very low p-value (0.002) indicate
that the TBL has a much stronger effect on SO in the Design group compared to

Construction.

o DO x TBL — SBM: The difference (-0.215) is not statistically significant (p-value =

0.151), indicating no strong interaction effect between DO and TBL on SBM.

o DO x EO — SBM: The small difference (0.114) and a p-value of 0.242 suggest no

significant interaction between DO and EO on SBM.

o DO x SO — SBM: The negligible difference (0.045) and a p-value of 0.404 indicate

no significant interaction effect.

The analysis reveals that there are significant differences in path coefficients
primarily for DO to SBM and TBL to SO, indicating that these relationships vary
meaningfully between the Design and Construction groups. Other relationships show
similar influences across groups, suggesting that while some aspects of digital and
sustainability strategies differ between groups, others remain consistent. This insight can
inform targeted strategies for leveraging digital technology and sustainability initiatives

within each group.
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4.4.5 Multigroup Path Coefficients

4.4.5.1 Path Coefficients

The parameter estimates (e.g., outer weights, outer loadings, and path coefficients)
derived from these subsamples are used to calculate standard errors for the estimates for
each group. With this information, t-values are computed to evaluate the significance of
each estimate. Table 4.34 presents the results of the path coefficients and structural

relationships.

Table 4.34 — Multigroup Path Coefficients

Original sample Sample mean :(t:l?:i:?:rji T statistics P values
(0) (M) (STDEV) (|O/STDEV])

Complete Data Set
DO -> SBM 0.239 0.238 0.064 3.73 0.000
EO -> SBM 0.178 0.179 0.063 2.824 0.002
EO -> SO 0.198 0.196 0.081 2.441 0.007
SO -> SBM 0.328 0.322 0.07 4.656 0.000
TBL -> EO 0.450 0.455 0.084 5.364 0.000
TBL -> SBM 0.245 0.250 0.079 3.106 0.001
TBL -> SO 0.415 0.418 0.074 5.607 0.000
Design and Planning (Design)
DO -> SBM 0.167 0.161 0.089 1.883 0.030
EO -> SBM 0.195 0.195 0.101 1.935 0.027
EO -> SO 0.064 0.056 0.115 0.554 0.290
SO -> SBM 0.293 0.274 0.11 2.647 0.004
TBL -> EO 0.576 0.579 0.085 6.816 0.000
TBL -> SBM 0.261 0.28 0.136 1.924 0.027
TBL -> SO 0.623 0.629 0.091 6.838 0.000
Construction and Project Management (Construction)
DO -> SBM 0.398 0.428 0.106 3.743 0.000
EO -> SBM 0.189 0.169 0.101 1.878 0.030
EO -> SO 0.242 0.24 0.188 1.287 0.099
SO -> SBM 0.422 0.432 0.099 4.285 0.000
TBL -> EO 0.258 0.289 0.184 1.403 0.080
TBL -> SBM 0.281 0.281 0.157 1.788 0.037
TBL -> SO 0.110 0.147 0.162 0.678 0.249
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The analysis reveals distinct path coefficients and significance levels between the

Design and Construction groups. In the Design group, most relationships are significant,

particularly the strong influence of TBL on both EO and SO. Key significant paths include

DO -> SBM, EO -> SBM, and SO -> SBM, demonstrating effective connections among

these constructs. In contrast, the Construction group shows significant paths for DO ->

SBM, EO -> SBM, and SO -> SBM, while EO -> SO and TBL -> SO are not significant.

These findings underscore the varying influences of constructs across the two groups,

suggesting that strategies for achieving sustainable BMI differ.

4.4.5.2 Mediation Effects

The mediator effects of EO and SO influences the nature of the relationship between the

TBL and SBM for each group as shown in Table 4.35.

Table 4.35 — Multigroup Specific Indirect Effects

Standard

Original Sample deviation T statistics P values

sample (O) mean (M) (STDEV) (|O/STDEV|)
Complete Data Set
TBL -> EO -> SO -> SBM 0.029 0.029 0.015 1.979 0.024
TBL -> SO -> SBM 0.136 0.134 0.037 3.644 0.000
TBL -> EO -> SBM 0.080 0.082 0.034 2.322 0.010
TBL -> EO -> SO 0.089 0.089 0.04 2.207 0.014
EO -> SO -> SBM 0.065 0.063 0.03 2193 0.014
Design and Planning (Design)
TBL -> EO -> SO -> SBM 0.029 0.029 0.015 1.979 0.024
TBL -> SO -> SBM 0.136 0.134 0.037 3.644 0.000
TBL -> EO -> SBM 0.080 0.082 0.034 2.322 0.010
TBL -> EO -> SO 0.089 0.089 0.04 2.207 0.014
EO -> SO -> SBM 0.065 0.063 0.03 2193 0.014
Construction and Project Management (Construction)
TBL -> EO -> SO -> SBM 0.029 0.029 0.015 1.979 0.024
TBL -> SO -> SBM 0.136 0.134 0.037 3.644 0.000
TBL -> EO -> SBM 0.080 0.082 0.034 2.322 0.010
TBL -> EO -> SO 0.089 0.089 0.04 2.207 0.014
EO -> SO -> SBM 0.065 0.063 0.03 2193 0.014
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In the Design group, significant paths include TBL -> SO -> SBM and TBL -> EO ->
SBM, indicating meaningful relationships. However, paths involving TBL -> EO -> SO ->
SBM and EO -> SO -> SBM are not significant. In the Construction group, all paths are
not significant, suggesting limited predictive power in these relationships. These findings
highlight the differing influences of constructs between the two groups, indicating that

strategies may need to be adjusted accordingly.

4.4.5.3 Multigroup Moderating Effect Analysis

The analysis of the moderating effects for each group is presented in Table 4.36. In the
Design group, the interaction between DO and SO shows a marginally significant effect
on SBM, while interactions with TBL and EO are not significant. Conversely, all
interactions in the Construction group lack significance, indicating limited predictive power.
These findings suggest some influence in the Design group, whereas the Construction
group reveals no significant interactions, emphasising the need for tailored strategies in

each context.

Table 4.36 — Multigroup Path Coefficients of Moderating

Standard

Original sample Sample mean deviation T statistics P values
(0) (M) (STDEV) (|O/STDEV|)

Complete Data Set
DO x TBL -> SBM -0.091 -0.088 0.088 1.035 0.150
DO x EO -> SBM 0.002 -0.004 0.07 0.026 0.490
DO x SO -> SBM 0.153 0.153 0.078 1.969 0.024
Design and Planning (Design)
DO x TBL -> SBM -0.151 -0.157 0.134 1.126 0.130
DO x EO -> SBM 0.041 0.034 0.114 0.362 0.359
DO x SO -> SBM 0.176 0.184 0.131 1.345 0.089
Construction and Project Management (Construction)
DO x TBL -> SBM 0.062 0.053 0.183 0.337 0.368
DO x EO -> SBM -0.071 -0.083 0.149 0.478 0.316
DO x SO -> SBM 0.132 0.076 0.107 1.238 0.108
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Notably, the marginally significant interaction between DO and SO in the Design
group mirrors the pattern observed in the complete dataset (Figure 4.8). As DO increases
from low to high, the angle between the lines and the horizontal axis rises, indicating a
steeper slope. This suggests that the positive relationship between SO and SBM
strengthens with higher levels of DO, demonstrating that the moderating variable

enhances the association between SO and SBM, shifting it from weak to strong.

Figure 4.8 — Design Group DO x SO Simple Slope Analysis

DO x SO

SBM

== DO at-1SD ==DO at Mean ==DO at +1SD

4.5 Concluding Remark

The structure of this Chapter consists of two major analytical blocks: base model analysis
and multigroup analysis. The first part examines the overall fit of the research model (first-
order and higher-order) for the measurement and structural models based on reflective
and formative first order constructs. Among other aspects, discriminant validity as well as
the collinearity of the model are also confirmed by the analysis.

Among the others, discriminant validity as well as collinearity of model are also
confirmed by the analysis. Structural path coefficient analysis provides very strong support

for most of the study’s hypothesised relationships.
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The second part of the second section performs a multigroup analysis comparing the
Design and Planning group (Design) to the Construction and Project Management group
(Construction). Substantial discrepancies among sustainable BMI appear to be indicated
between the two groups, however, the rather small sample size in the Construction group
may lead to the biased results. A more detailed discussion will be presented in Discussion
Chapter.

Findings from the Structural model reveal that the positive effect of TBL positively
influences both EO and SO, which in turn result in SBM Innovation. TBL demonstrates
direct effects on SO (0.415) and EO (0.450), and both mediators contribute significantly
to SBM (0.136 for SO and 0.080 for EO). The effects of DO are otherwise, except for the
interaction of DO x SO also not significantly affecting SBM (0.153). This evidence points
to the importance of DO in driving the development of sustainable business practices and
provides grounds for future investigation of the moderating role of DO. Summary of

hypotheses can be found in Table 4.37.

Table 4.37 — Hypothesis Testing Summary

Hypothesis Path Coefficient p-value Result

H1 TBL—SBM 0.245 0.001 Supported

H2 TBL—SO 0.415 0.000 Supported

H3 TBL—EO 0.450 0.000 Supported

H4 TBL—~SO—SBM 0.136 0.000 Supported

H5 TBL—EO—SBM 0.080 0.010 Supported

H6 EO—SO—SBM 0.065 0.014 Supported

H7 DO—SBM 0.239 0.000 Supported
H7a DOXTBL—SBM -0.091 0.150 Not Supported
H7b DOXEO—SBM 0.002 0.490 Not Supported
H7¢c DOXSO—SBM 0.153 0.024 Supported
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The findings from this chapter confirm the theoretical model developed in the
Literature Review chapter and lay the groundwork for the practical guidance presented in
the Discussion chapter. In general, the results highlight the strategic need to combine
digital capabilities with sustainability to promote innovation and long-term competitiveness

in the AEC sector.
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DISCUSSION

This Chapter synthesises the key empirical findings from the chapter on Analysis and
Results and interprets them within the context of established theoretical and conceptual
frameworks. It begins by discussing the core results, focusing on how TBL-aligned digital

traits influence SBM innovation in the AEC industry.

5.1 Discussion of Key Findings

This study investigated the impact of TBL traits on SBM, with EO and SO as mediating
mechanisms, and DO as a moderator. The findings from the structural equation modelling

and multigroup analysis provide several important insights.

5.1.1 TBL’s Influence on SBM (H1)

The results confirm that TBL traits have a significant positive effect on SBM (8 = 0.245, p
= 0.001), supporting H1. This supports the proposition that digital technologies such as
BIM, IoT, and Al—when aligned with sustainability goals—can drive innovation that
creates value across economic, environmental, and social dimensions (Bocken et al.,

2014; Elkington, 1997).

5.1.2 TBL’s Influence on SO and EO (H2, H3)

TBL traits positively influenced SO (8 = 0.415, p < 0.001) and EO (8 = 0.450, p < 0.001),
confirming H2 and H3. These results suggest that sustainability-aligned digital tools
cultivate a culture of innovation and stakeholder engagement (Claudy et al., 2016),

reinforcing the synergy between sustainability and entrepreneurship (Vrontis et al., 2022).
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5.1.3 Mediation Effects (H4, H5, H6)
The mediation analyses revealed significant indirect relationships, consistent with the
proposed theoretical model:

e TBL - SO — SBM (8=0.136, p < 0.001)

e TBL - EO — SBM (B8=0.080, p=0.010)

e EO — SO — SBM (B=0.065 p=0.014)

These findings support the layered mediation model, suggesting that the influence of
TBL-aligned digital traits on SBM is not purely direct. Instead, a significant part of this
relationship is statistically accounted for by the firm's internal EO and SO. This indicates
that EO and SO are crucial mechanisms through which the value of digital sustainability

initiatives is associated with innovative business models.

5.1.4 DO Direct and Moderating Effects (H7, H7a—H7c)

DO had a significant direct effect on SBM (8 = 0.239, p < 0.001), confirming H7. Among
the moderation effects, only the interaction between DO and SO was significant (8 = 0.153,
p = 0.024), suggesting that digital maturity strengthens the relationship between

sustainability culture and innovation (Verhoef et al., 2021).

5.1.5 Multigroup Analysis: Design vs. Construction
Multigroup comparisons revealed functional differences in how digital-sustainability
strategies manifest:
e TBL’s influence on EO and SO was significant for the Design group, but the model
lacked explanatory power for these constructs in the Construction group, indicating
a fundamental difference in strategic drivers.
e DO had a stronger effect on SBM in the Construction group
o Mediation effects were more pronounced among Design professionals, who focus

more on early-stage innovation.
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The MGA revealed meaningful differences between design and construction
professionals. For the Design group, TBL had a pronounced and significant effect on both
EO and SO, aligning with their strategic role in early-phase innovation. Critically, however,
the model failed to explain the drivers of EO and SO for the Construction subgroup,
showing very low R? values and negative Q? values, which indicates a lack of predictive
relevance. This suggests that for construction professionals, firm-level strategic
orientations may be overshadowed by more immediate, project-specific operational
pressures such as budget adherence, scheduling, and site logistics.

In contrast, DO had a greater effect on SBM in the Construction group; this indicates
that while broad strategic orientations may be less salient for them, the practical,
operational integration of digital tools is directly linked to downstream innovation.
Mediation effects were also stronger for Design professionals, suggesting a more
integrated link between SO and innovation outcomes in design-led roles. These findings
highlight the need for tailored transformation strategies across AEC functions and flag the
specific drivers of strategic orientation within construction firms as a critical area for future

investigation.

5.2 Theoretical Contributions

This study makes several meaningful contributions to the theoretical discourse on DT,
sustainability, and BMI, particularly within the context of the AEC industry.

First, this study integrates sustainability principles—captured through the TBL
framework—into the DT academic discourse, where previous studies have often
separated technological advancement from environmental and social outcomes. By
empirically validating that digital traits aligned with TBL significantly influence SBM, this
study addresses a well-documented gap in the literature (e.g., Bocken et al. (2014),

Verhoef et al. (2021))
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Second, the study introduces a novel conceptual model that synthesises five core
constructs—TBL, EO, SO, DO, and SBM—into an integrated, higher-order structural
framework. This model enables a holistic understanding of how digital capabilities,
organisational values, and strategic orientations coalesce to drive sustainable innovation.
It contributes to the literature by operationalising these constructs using a combination of
reflective—reflective and reflective—formative measurement models, thus offering a
scalable and transferable framework for future empirical research.

Third, by highlighting the mediating roles of EO and SO in translating digital
sustainability traits into SBM, this study enriches theories related to innovation diffusion,
dynamic capabilities, and organisational transformation. It empirically demonstrates that
DT is not only a technological process but also a socio-organisational evolution shaped
by leadership, culture, and strategic intent. This aligns with and extends existing
frameworks on organisational readiness and change management (e.g., Teece (2018);
Claudy et al. (2016)).

Fourth, this study provides a sector-specific contribution by tailoring its framework to
the unique challenges of the AEC industry. The use of multigroup analysis (Design vs.
Construction) reveals that the influence of DO and SO varies significantly across
professional domains, thereby adding granularity to the understanding of transformation
processes in this complex, fragmented sector.

Fifth, this study contributes to the theoretical knowledge by providing a nuanced
understanding of how digital and sustainability strategies play out across different
organisational roles in the AEC sector. Contrary to the assumption of homogeneity
between design professionals (e.g., architects and engineers) and construction
professionals (e.g., site managers and contractors) in earlier studies, the multigroup
analysis suggests that the two groups imply different dynamics of DO, sustainability
engagement, and innovation outcomes. More specifically, TBL had more pronounced

effects on EO and SO for the design group, but DO exerted more impact on SBM
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Innovation for the construction group. These results offer new insights to the theories of
innovation diffusion and digital maturity by demonstrating that professional role mediates
the internalisation of digital capabilities and the leveraging of digital capabilities for
sustainable innovation.

This differentiated perspective contributes to role-based organisational change
theory and suggests the development of finer-grained frameworks that account for intra-

industry differences in digitalisation paths.

5.3 Practical Implications
The results of this study provide several practical implications for industrial professional,
firm leaders, and policymakers who are interested in deploying / scaling DT initiatives for
sustainability in the AEC context.

First, the study confirms that aligning digital technologies with sustainability
objectives significantly enhances BMI. AEC firms can use the validated TBL-aligned digital
traits—such as BIM-enabled cost reduction, Al-assisted safety improvements, and loT-
driven energy efficiency—as a strategic blueprint for operationalising sustainable
transformation.

Second, the strong mediating effects of EO and SO emphasise the critical role of
internal culture and leadership in achieving transformation. Firms should cultivate a
culture that embraces innovation and sustainability by promoting proactive, risk-tolerant
behaviour (EO), embedding sustainability into strategic planning and daily operations
(S0O), and designating digital champions to lead and support change initiatives (DO). This
underscores the importance of leadership training and cultural change programs
alongside technology implementation.

Third, the findings suggest that the success of DT is significantly moderated by the
organisation's DO, particularly in how it enhances the SO impact on SBM. Firms should

invest in:
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e Continuous digital upskilling programs
e Cross-functional collaboration platforms
e Role-specific training in technologies like BIM, digital twins, and Al

These initiatives not only enhance technical competence but also build the cultural
readiness necessary for a successful and sustainable DT.

Fourth, the study also highlights the influence of external factors such as regulatory
standards (e.g., ISO 19650) and client demand for green buildings. AEC firms can use
these insights to:

e Align innovation strategies with evolving compliance requirements
e Leverage sustainability as a market differentiator
e Build resilience by anticipating environmental and digital compliance landscapes

By aligning internal capabilities with external demands, AEC firms can strategically
position themselves as leaders in the digital sustainability transition.

Fifth, multigroup analysis shows that design professionals benefit more from TBL-
aligned innovation at the strategic and planning level, while construction professionals rely
more on executional digital tools. This suggests that transformation strategies should be
function-specific, with unique metrics, training, and support systems for different roles

within the value chain.

5.4 The 3P Model

In response to the increasing demand for integrating sustainability into DT strategies, this
study introduces a memorable and actionable strategic model—the 3P Model. Based on
the complex empirical findings, the model distils the essential organisational enablers for
the successful execution of SBM innovation in the AEC by Schaltegger et al. (2016). The
3P model (Figure 5.1) aims to be theoretically rigorous, yet informative, providing a

roadmap for how organisations can address the convergence of DT and sustainability.
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Figure 5.1 — Visual Representation of the 3P Model

PURPOSE PEOPLE PLATFORM

(Sustainability Orientation) (Entrepreneurial Orientation) (Digital Orientation)
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5.4.1 Empirical Support
The findings from pervious Chapter, Analysis and Results provide strong empirical
support for the 3P model:
e Sustainability Orientation (Purpose) was found to significantly mediate the
relationship between TBL and SBM (3 = 0.245, p < 0.001), confirming its central

role as a value-driven enabler of innovation.

o Entrepreneurial Orientation (People) also significantly influenced SO and SBM,
suggesting that a culture of innovation feeds into a sustainability mindset (EO —
SO: B = 0.198, p < 0.050; EO — SBM: B = 0.178, p < 0.010), supporting a

sequential path from EO to SO to SBM.

¢ Digital Orientation (Platform) was found to significantly moderate the relationship
between SO and SBM (3 = 0.328, p < 0.001), reinforcing the role of digital maturity

in scaling sustainability-driven innovation efforts.

5.4.2 Overview of the 3P Model
The 3P model identifies three critical enablers that drive SBM Innovation:
e Purpose — Represented by SO: Purpose reflects the organisation’s long-term
commitment to environmental and social value creation. It encompasses the
alignment of corporate values, mission, and operations with sustainability

principles (Claudy et al., 2016).
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o People — Represented by EO: People refer to the internal culture, leadership, and
capability to initiate and manage innovation. EO reflects a firm’s risk-taking,

proactiveness, and innovativeness (Covin and Slevin, 1989).

o Platform — Represented by DO: This model conceptualizes ‘Platform’ not merely
as technological infrastructure, but as the strategic readiness required to make it
effective. Therefore, it is represented by DO, which encompasses the vision,
commitment, and capability to transform disparate technologies such as BIM, Al,
and loT into a cohesive, value-generating business asset (Khin and Ho, 2019; Van
Zeebroeck et al., 2023).

Together, these three enablers form a pathway toward SBM, where Purpose
provides direction, People energise and mobilise the organisation, and Platform provides
the tools and structure for execution.

These results confirm that organisations with strong sustainability values,
entrepreneurial cultures, and digital capabilities are significantly more likely to innovate
their business models in alignment with Triple Bottom Line principles. This model reflects
a streamlined yet evidence-based pathway, grounded in the outcomes of this study and

relevant literature.

5.4.3 Strategic Implications
The 3P2SBMI model offers a clear and actionable framework for AEC firms seeking to
embed sustainability into DT strategies. The model can be used as a diagnostic tool,
strategic roadmap, or communication framework, making it highly adaptable across
organisational levels.

o For executives and managers, the model provides a lens to assess organisational

readiness across three critical dimensions.
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e for change agents and innovation leaders, it highlights where cultural and

strategic shifts are needed to enable SBM.

e For policymakers and industry bodies, it offers a foundation for designing

capability-building programs aligned with national sustainability goals.

5.4.4 Theoretical Contributions

The 3P model contributes to the literature by integrating organisational orientation theories
(Covin and Slevin, 1989; Lumpkin and Dess, 1996), SO (Claudy et al., 2016), and dynamic
capabilities theory (Teece, 2018) into a practical framework for SBM innovation. It
emphasises that technological tools alone do not drive innovation—they must be
supported by a shared purpose and empowered people. The 3P model offers a simplified
and actionable model that synthesises the essential enablers of SBM innovation in the
AEC context. Grounded in empirical evidence and aligned with contemporary theory,
provides a valuable guide for organisations seeking to align their DT with sustainability

imperatives in a coherent, strategic, and human-centric way.

5.5 TBL Digital Traits - Organisational Capability Matrix

To extend the theoretical contribution and practical relevance of this study, a strategic
typology through the intersection of two robust dimensions: TBL Digital Traits and
Organisational Capabilities which is here conceptualised as the combine strategic
presence of SO and EO. This 2x2 matrix (Figure 5.2) serves as both a diagnostic tool and
a strategic roadmap for classifying AEC firms based on their readiness to innovate

business models in support of TBL outcomes.
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Figure 5.2 — Proposed TBL Digital Traits - Organisational Capability Matrix
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Construction of the Matrix:
o TBL Digital Traits (TBL): Aggregated from DT items reflecting environmental,
social, and economic sustainability alignment (e.g., smart resource use, carbon

reduction, social impact).

e Organisational Capability (OC): Derived by averaging EO and SO scores,
capturing a firm’s internal culture, strategic orientation, and sustainability practices.

This typology is grounded in the empirical findings reported in Chapter Analysis and
Results, where both SO (f = 0.328, p < 0.001) and EO (B = 0.178, p < 0.01) were found
to be significant direct predictors of SBM innovation. Their individual contributions suggest
that firms require both a clear sustainability culture and a proactive, risk-taking approach
to effectively innovate their business models in response to digital and environmental

pressures.
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5.5.1

Quadrant Descriptions
Sustainable Innovators (High TBL, High OC)
Firms scoring high on both TBL and OC. These firms demonstrate integrated

digital-sustainability strategies and are best positioned for SBM innovation.

Tech-Efficiency Seekers (High TBL, Low OC)
Firms with strong digital TBL traits but weak internal sustainability cultures. Likely

to adopt green technologies without embedding sustainability in strategy or values.

Sustainability Reformers (Low TBL, High OC)
High internal orientation toward sustainability and entrepreneurship, but low TBL
digital maturity. These firms may lack the digital infrastructure to realise their

ambitions.

Conventional Operators (Low TBL, Low OC)
Low on both dimensions. These firms are the least prepared for sustainability

transitions and may be vulnerable to future regulatory or market shifts.

5.5.2 Strategic Use of the Matrix

For Practitioners:

Self-assessment: Firms can locate themselves in the matrix by evaluating their
current digital practices (aligned with TBL) and their strategic posture (OC).

Roadmap guidance: The matrix can help identify which capability dimension—
digital or strategic—needs development to move toward the “Strategic Innovator”

position.

For Researchers:

Typological classification: Researchers can segment AEC firms using mean

scores or composite indices of TBL digital traits and OC.
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e Comparative analysis: This typology can support comparative testing of SBM,

innovation performance, or ESG outcomes across strategic firm types.

5.6 The 3P2SBMI Framework

To translate the conceptual and empirical results in a practical roadmap, this section
introduces 3P2SBMI Evolutionary Framework (Figure 5,3) as a dynamic four-stage
process, which supports AEC firms diagnosing, positioning, and realigning their strategic
capabilities for SBM innovation. A model with the recognition that digital and sustainability
transformation is neither one-size-fits-all, nor a linear process with a clear starting and end
point, but as an interactive process.

DT is widely regarded as a continuous and iterative analysis of endogenous and
exogenous contingencies (Angelopoulos et al., 2023), and transformation success hinges
on endogenous indicators such as leadership, information quality, disciplined execution,
and technology readiness (Struijk et al., 2023). These insights support the underpinning
of the 3P model (People, Process, and Platform) on which this study is based for capability
assessment and targeted intervention (see Section 5.4). Therefore, the 3P2SBMI
framework provides a structured approach through which firms can iteratively develop and

align their internal systems to support scalable, sustainability-driven innovation.

5.6.1 Four Stages of 3P2SBMI Framework
The 3P2SBMI evolutionary framework consists of 4 stages, which together make a
closed-loop learning and improvement cycle customised to the transformation conditions

in the AEC industry.
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Figure 5.3 — 3P2SBMI Framework
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Stage 1: Internal Capability Assessment via the 3P Model
The process begins with 3P model for a diagnostic of the firm’s people, process and
platform (3P) capabilities, evaluated in relation to the firm’s strategic orientations — DO,
SO, and EO. This step identifies whether the foundational capabilities are in place to
support sustainable innovation.
o People: Leadership mindset, cross-functional collaboration, and digital literacy.
e Process: Innovation routines, ESG integration, and strategic agility.
¢ Platform: Digital infrastructure, data systems, and technology adaptability.
This assessment helps firms uncover capability gaps across the internal enablers

that are critical to effective digital and sustainability transformation.

Stage 2: Strategic Positioning via the TBL - OC Matrix
In this stage, the firm is positioned on the TBL - OC matrix (see Section 5.5). This
step evaluates how well internal capabilities are translating into external sustainability

performance, based on:
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o The extent to which digital tools and practices are aligned with Triple Bottom Line
(TBL) goals.
e The strength of OC operationalised through the combination of SO and EO.
This matrix classifies firms into one of four strategic profiles (e.g., Strategic
Innovators, Sustainability Reformers), providing a high-level view of the firm’s

transformation maturity.

Stage 3: Gap Identification and Misalignment Diagnosis

This stage compares the outcomes from Stage 1 and Stage 2 to identify
misalignments between internal capabilities and strategic outcomes. This allows firms to
diagnose whether performance gaps stem from executional weaknesses, governance

fragmentation, or lack of strategic alignment.

For example:
¢ Afirm may have advanced platforms but limited agility in processes or leadership
support, undermining its ability to deliver TBL value.
o Conversely, a firm with strong sustainability and entrepreneurial intent may lack
the digital infrastructure to scale or operationalise its goals.
This stage is vital for uncovering the root causes of underperformance in

transformation efforts.

Stage 4: Capability Re-alignment through 3P Interventions
In the final stage, the 3P model is re-applied as a targeted intervention framework to
close the gaps identified in Stage 3:
e Purpose: Redesign workflows to embed ESG criteria, improve innovation routines,

and enhance coordination.
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o People: Strengthen leadership, build digital and sustainability competencies, and
foster a transformation-driven culture.

e Platform: Upgrade or integrate digital tools to support data-driven sustainability
tracking, lifecycle analysis, and decision-making.

This stage reinforces the continuous and adaptive nature of transformation, enabling

firms to cycle back to Stage 1 and begin a new round of strategic capability development.

In conclusion, the 3P2SBMI Framework provides a structured, theory-based, and

action-oriented guideline for AEC enterprises endeavouring to develop the digital and

sustainability transformation capability. The 3P model is enriched and clarified by its

synthesis with a dynamic theory of transformation and strategic positioning and offers both

diagnostic and strategic insights. It enables companies to progress from ad hoc or one-

off initiatives to a structured and scalable approach to SBM innovation.

5.6.2 Implications for Researchers and Policy Makers
For Researchers:
e Provides a structured, empirically grounded framework for studying digital and
sustainability transformation processes.
¢ Enables longitudinal and comparative studies across firms, projects, or sectors.
e Offers a basis for quantitative model testing and mixed-method research on SBM
innovation and capability alignment.
e Bridges micro-level (organisational) and macro-level (industry/systemic)
transformation analysis.
For Policy Makers:
e Serves as a diagnostic tool to assess industry readiness for digital sustainability
transitions.
¢ Informs the design of policy interventions targeting human capital, process

innovation, and digital infrastructure.
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5.6.3

5.7

Supports national or regional strategies related to net-zero, circular economy, and
ESG compliance in the AEC industry.
Can be applied to public-private partnerships and funding programs aimed at

capability development.

Theoretical Contributions

Conceptualises DT as a continuous, iterative process aligned with Angelopoulos
et al. (2023).

Extends the 3P model (People, Process, Platform) as a practical application of
enablers.

Integrates internal capability assessment with external strategic positioning,
bridging the gap between organisational readiness and innovation outcomes.
Contributes to the SBMI literature by linking strategic orientations (DO, SO, EO)
to a staged transformation pathway.

Provides a scalable, adaptable framework that can inform future research on

sustainability-driven DT across industries.

Limitations

While the theoretical contribution and practical implication of this study are valuable and

important, there are some limitations of this study. Acknowledging these limitations

bolsters the transparency, replicability, and trustworthiness of the research and provides

a foundation for developing future research.

5.71

Methodological Limitations

This study employed a robust quantitative design; however, several methodological

limitations may affect the validity, reliability, and generalisability of the findings. These
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limitations pertain to aspects of research design, sampling strategy, measurement
techniques, and statistical procedures.

First, a cross-sectional survey design was used in the study, which was conducted
at one time point. Though this is fine for associating variables, it does not allow
establishing causality or time-series tracking of organisational transformation. For
example, although the findings indicate that EO and SO partially mediate the association
between TBL digital traits and SBM innovation, the causal sequence of such relationships
cannot be unambiguously established. Longitudinal or panel designs in future studies
should focus more on how these dynamics evolve and how the dynamics help sustain
each other over time.

Second, the dataset was only sampled from AEC practitioners practicing in the most
densely populated urban economy in Hong Kong with its unique governance regime,
maturity of technology, and sustainability requirements (e.g. BEAM Plus, ISO 19650). This
is valuable context which however may reduce the generalisability of findings to other
sites with divergent institutional, economic, or cultural settings. Digital maturity and SO
could be very different in other Western developed countries or rural construction markets.
Hence, further research is required to replicate this framework in other countries to test
its generalisability.

Third, the study adopted convenience (purposeful) sampling, focusing on AEC
professionals with mid to senior-level experience, including architects, construction
engineers, and predominantly BIM professionals. While this approach enhances
relevance and data quality, it may introduce selection bias. Respondents are likely more
aware of sustainability and digitalisation issues than average, which could lead to an
overestimation of correlations. Moreover, the sample may not sufficiently represent small
businesses, subcontractors, or other participants with low digital maturity. Employing a
more stratified or random sampling method could improve external validity. Additionally,

the use of a single, self-administered questionnaire for all variables at one point in time
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introduces potential CMB, which can inflate observed correlations and further affect the
robustness of the findings.

Fourth, the study is based on self-reported survey data of AEC professionals; thus,
it is vulnerable to biases such as social desirability bias or recall bias. Respondents may
unintentionally overstate claims about their organisation’s level of digital maturity or their
adherence to practices of sustainability to match what they perceive as desirable, biasing
the findings. Such a subjective perception of performance, instead of objective measuring
of performances, restricts the ability of the study to verify relationships between constructs.
A future area for consideration could involve triangulation of findings using objective
sources (e.g. organisational performance data, case studies) to increase the rigour.

Fifth, although the Kaiser criterion based on eigenvalues greater than 1 suggested
the retention of 10 components, this study employed a fixed-factor extraction of 13
components grounded in a strong theoretical framework. The rotated component matrix
revealed high factor loadings (primarily above 0.70) with minimal cross-loadings, and each
construct demonstrated clear empirical distinctiveness. As such, the decision to retain 13
factors is methodologically defensible (Fabrigar et al., 1999). Nevertheless, such an
approach should be also acknowledged as a methodological limitation of this study, and
future research with a larger and more diverse sample is recommended to further validate
the 13-factor structure and reinforce the model’s empirical foundations.

Finally, the study lies in the application of a two-stage approach in the PLS-SEM
analysis, whereby latent variable scores were generated from the initial model and
subsequently used as indicators to construct higher-order constructs. Although this
technique is consistent with established guidelines for handling complex hierarchical
models in PLS-SEM (Hair et al., 2022), it may be interpreted as a form of “second factor
analysis”. As such, this analytic sequence could introduce a degree of conceptual or
statistical disconnection between the first-order constructs and their higher-order

representations. Future research, therefore, could consider extracting and applying factor

Page 161



scores directly from the initial analysis, provided that this aligns with the theoretical

definition and measurement structure of the constructs involved.

5.7.2 Conceptual Limitations

Beyond methodological concerns, the study also faces conceptual limitations that relate
to theoretical assumptions and model design. These limitations highlight potential issues
in construct alignment, model directionality, and the dynamic nature of contextual
variables

First, the multigroup analysis revealed a key limitation. The model’s relatively weak
predictive power for the smaller Construction subgroup creates ambiguity, making it
unclear whether this reflects a genuine theoretical misspecification or a statistical artifact
due to low power. Future research must therefore use larger samples for this group while
also testing alternative models that account for the project-based drivers unique to the
construction function.

Second, another potential limitation concerns the conceptual proximity of the
independent and dependent constructs, all of which are grounded in the sustainability
domain— TBL, SO, and SBM innovation. While these constructs were carefully developed
and validated as theoretically and empirically distinct, their thematic alignment may give
rise to concerns about potential conceptual circularity. Future research could further
validate the construct structure and confirm the directionality of relationships.

Third, the model assumes alignment among the TBL dimensions—Profit, People,
and Planet—uwithout explicitly addressing real-world trade-offs. In practice, organizations
may implement digital innovations that improve environmental outcomes but come at a
financial cost or impact employment. This study does not directly account for such
tensions, which could limit the model’s practical applicability. Future research could

examine how firms manage these trade-offs in different strategic or industry contexts.
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Fourth, the framework assumes that all relationships between constructs are
unidirectional. Although some constructs were theoretically positioned to minimize
concerns about reverse causality, many of these relationships are likely to be reciprocal
in practice. For instance, the outcomes of SBM innovation could potentially reshape
organizational orientations and TBL traits. These reciprocal dynamics could not be
captured within the cross-sectional design. Future research could apply longitudinal or
systems thinking approaches to better capture these dynamic, iterative relationships.

Finally, while modelled as a contextual factor, DO may itself evolve as a result of
engaging in sustainability-driven digital innovation. This challenges its independence as
a moderator and relates to the broader concern that the model assumes one-way causal
paths, potentially overlooking dynamic feedback effects. Future research could consider

alternative model structures or longitudinal designs to capture these interdependencies.

5.8 Directions for Future Research

Based on the present results and the limitations outlined above, several prospects for
future research are proposed. These directions aim to enhance theoretical understanding,
improve methodological rigor, and strengthen the practical applicability of the 3P2SBMI
Framework.

First, future research should adopt longitudinal designs to capture the temporal
evolution of digital-sustainability transformation. This would allow scholars to examine
how firms move across the quadrants of the TBL-OC Matrix, how the 3P enablers develop
over time, and how SBM outcomes evolve in response to internal and external stimuli.
Process-based case studies could also uncover the organisational routines, leadership
decisions, and learning mechanisms that underpin successful transformation.

Second, while the current study used quantitative methods to validate structural
relationships, qualitative research can offer richer insights into the "how" and "why" behind

these relationships. For example, in-depth interviews with AEC leaders might reveal how
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sustainability values are communicated internally or how digital platforms are integrated
into everyday workflows. Ethnographic or action research could also be used to track real-
time implementation of SBM initiatives in project settings.

Third, replicating the study in other geographical regions (e.g., Europe, Southeast
Asia, Middle East) would test the cultural and institutional robustness of the 3P2SBMI
framework. Additionally, extending the research to other project-based industries—such
as infrastructure, oil and gas, or manufacturing—would determine whether the enablers
and typologies hold in different organisational ecosystems. Such comparative research
could reveal sector-specific drivers or inhibitors of digital-sustainability integration.

Fourth, must address the ambiguity in the multigroup analysis. The primary goal is
to determine if the model's failure for the smaller construction subgroup is a statistical
artifact or a substantive finding. This requires a dual approach: first, securing a larger
sample of construction professionals to ensure statistical validity, and second, testing
alternative models that incorporate the project-level drivers unique to the construction
function. This will clarify the model's limitations and help build more accurate theories for
the industry.

Fifth, while this study focused on EO and SO as mediators and DO as a moderator,
future research could explore alternative or complementary constructs, such as:

¢ Organisational Agility: The ability to rapidly adapt to digital or environmental
changes.

e Leadership Commitment: The role of top management advocacy in driving SBM.

e Collaborative Capabilities: How partnerships across the value chain influence
transformation.

e Sustainability Maturity Models: Integrating stage-based models to assess
progression.

These variables could deepen the understanding of multi-level influences on SBM

and refine the predictive power of the model.
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Finally, future work could focus on translating the 3P2SBMI Framework into practical
assessment instruments:
e Organisational self-diagnostic surveys
e Benchmarking tools for strategic positioning
e Maturity models for digital-sustainability alignment
Such instruments would be valuable for both research and industry application,

particularly if tested across multiple firms and validated statistically.

5.9 Conclusion

This study set out to explore the determinants of DT for SBM innovation in the AEC
industry. In response to escalating demands for environmental performance, client value,
and operational efficiency, the study sought to understand how AEC firms can align digital
technologies with sustainability goals to reconfigure their business models. The research
was guided by the overarching question: What are the key organisational and

technological determinants of DT that enable sustainable BMI in the AEC industry?

5.9.1 Revisiting the Four Key Objectives

1. To identify and evaluate technological determinants—such as BIM, Al/ML, loT,
and VR/AR—that facilitate or hinder DT in the AEC sector, particularly in relation
to sustainability goals.

2. To examine key organisational factors, including leadership commitment,
organisational culture, entrepreneurship, and workforce capabilities, that influence
the readiness and effectiveness of DT initiatives

3. To investigate the mechanisms through which DT enables SBM Innovation, with a
focus on how digital maturity interacts with organisational practices to reshape

business operations in the AEC context.

Page 165



4. To develop and validate a comprehensive conceptual framework that integrates
both technological and organisational determinants to guide AEC firms in aligning
DT with sustainability-driven innovation strategies.

Through a quantitative research approach, incorporating quantitative data collected
from 158 mid- to senior-level professionals in Hong Kong’s AEC sector, this research has
made meaningful progress in addressing the stated objectives. The findings contribute
valuable empirical insights to the academic literature on DT and sustainable BMI, while
also offering practical guidance for AEC firms navigating the complexities of technological

and sustainability-driven change.

5.9.2 Revisiting the Research Gaps
In addition to achieving the research objectives, this research also directly contributed to
addressing five specific research gaps identified in Literature Review Chapter. Below

review each gap and demonstrate how the findings of this study contribute to closing them.

5.9.2.1 Research Gap 1

Role of Emerging Technologies in Sustainable Business Model Innovation

This research supported that the digital traits of TBL-aligned technology including BIM,
loT and AI/ML and DT contribute to enhancing SBM innovation. Rather than considering
that digital tools are simply operational enablers, they can be seen to be driving innovation
that is aligned with TBL values, which benefits the environment, society and economy.
This contribution recasts emerging technologies as strategic enablers of sustainability-

deepening innovation, not in what they do, but in what they are for.

5.9.2.2 Research Gap 2

Interplay Between Digital Strategy, Corporate Entrepreneurship, and Sustainability

Practices
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The findings offer evidence that DO, EO and SO are not independently active, rather they
synergistically combine, interact and affect SBM. Independent roles for EO and SO as
mediators of TBL effects were identified and DO emerge both as a direct determinant of
SBM and a moderator of the SO — SBM relationship. Such findings contribute toward a
resource-based view of transformation, suggesting that digital strategies need to be
embedded within an entrepreneurial culture and value of sustainability to fully stimulate

innovation.

5.9.2.3Research Gap 3

Differences Between Architects and Construction Teams in DT and SBM

This study, using multi-group analysis, revealed significant differences between Design
and Construction professionals in their road maps to SBM. Designers showed higher
mediation through EO and SO, suggesting a larger involvement in strategic and radical
innovation. In contrast, Construction professionals exhibited relatively higher reliance on
DO for performance outcomes. These findings highlight the importance of tailoring role-
specific strategies for DT, addressing a gap in the literature that had hitherto considered

AEC sector as one homogeneous category.

5.9.2.4Research Gap 4

Integration of Sustainability Orientation with Entrepreneurial and Digital Orientations
Although the previous work usually investigated SO and EO separately, this paper
provides an integrated model that reveals the relationship between them to facilitate SBM.
The findings verify serial mediation of the relationship of TBL attributes via EO and SO
and confirm the differences in the strength of the relationships with DO. This integrated
view provides an enriched view on how values, capabilities and strategies co-evolve to
foster sustainable innovation, pushing forward theoretical debates on orientation

interactions in transformation processes.
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5.9.2.5Research Gap 5

Lack of a Comprehensive Framework for TBL-Aligned DT

This paper introduced and empirically tested a holistic model that connects digital traits
TBL-oriented with SBM mediated by EO, SO and DO. Through the integration of
reflective—formative together with higher-order modelling using PLS SEM, the model is
able to express both the structural complexity and strategic interrelations of DT. This
integrated framework offers a scalable and transferable approach for future research and
practice, directly addressing previous calls for systemic thinking in AEC sustainability
transitions. It advances beyond existing fragmented models by offering a cohesive and

empirically validated structure.

5.9.3 Strategic and Theoretical Contributions

The study introduced a simplified yet robust model—the 3P Pathway to SBM—which
identifies three core enablers: Purpose (SO), People (EO), and Platform (DO). This model
offers a clear and actionable framework for assessing and enhancing organisational
readiness for SBM. Additionally, a 2x2 TBL-OC Readiness Matrix was developed to
classify firms based on their strategic alignment and maturity, offering diagnostic and
comparative value for both researchers and practitioners.

These models were further integrated into the 3P2SBMI Framework, which connects
internal enablers with external strategic positioning. This integrative framework offers a
comprehensive roadmap for AEC firms seeking to align DT with sustainability outcomes
in a coherent and phased manner.

From a theoretical perspective, the study contributes to the literature on dynamic
capabilities, organisational readiness, and sustainability-oriented innovation by
demonstrating how digital, entrepreneurial, and sustainability orientations interact to

produce transformational outcomes. It also advances sector-specific knowledge by
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contextualising these dynamics within the project-based and multidisciplinary

environment of the AEC industry.

5.9.4 Implications for Practice and Policy
The findings offer actionable insights for industry leaders, consultants, and policymakers:
o AEC firms should assess their current orientation across the 3P dimensions and
strategically address capability gaps.
e Function-specific transformation strategies should be developed to reflect the
differing needs of design and construction roles.
e Policymakers and industry bodies can use the 3P2SBMI framework to design
capacity-building initiatives and regulatory incentives that promote digital-

sustainability alignment.

5.9.5 Reflections on Limitations and Future Research

This study has openly recognised its methodological and conceptual limitations and
potential sources of bias, such as selection bias, self-reporting, social desirability, CMB,
and the contextual specificity of Hong Kong’s AEC sector. While purposeful sampling and
a cross-sectional survey have provided valuable insights, these approaches may limit the
generalisability and causal interpretation of the results.

To address these concerns, the research implemented several strategies: engaging
multiple professional bodies for sampling, ensuring respondent anonymity, using neutral
and clearly worded questions, varying scale anchors and formats, and applying EFA and
VIF to assess and minimise CMB.

Looking ahead, future research should consider longitudinal or mixed-method
designs, integrate objective performance measures, and expand to broader and more
diverse samples across different regions and industry segments. By critically reflecting on

these limitations and setting out clear directions for future inquiry, this study increases
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transparency and lays a strong groundwork for further validation and extension of the
3P2SBMI framework in a variety of contexts.

In addition to methodological considerations, this study has also acknowledged
several conceptual limitations related to model structure, construct alignment, and
theoretical assumptions. These include the possibility of conceptual overlap between
sustainability-oriented constructs, the assumption of unidirectional relationships, and the
treatment of dynamic constructs like DO as static moderators. Addressing these
conceptual concerns, future research should explore reciprocal and feedback effects,
refine construct definitions to reduce thematic redundancy, and test alternative model
configurations using systems thinking or longitudinal approaches. By doing so, scholars
can further strengthen the theoretical robustness and practical relevance of the 3P2SBMI

framework across diverse organisational and sectoral contexts.

5.9.6 Visual Summary of Conclusions

To consolidate the key research objectives, findings, theoretical contributions, and
practical implications, the Figure 5.4 conceptual map provides a visual summary of the
study’s overall contributions. This figure visually summarises the research objectives,
addressed gaps, key findings, strategic models, and the resulting theoretical and practical
contributions. It offers a synthesised overview of the study’s scope and outcomes while

serving as a roadmap for future academic and industry applications.
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Figure 5.4 — Conceptual Map of Research Conclusions

RESEARCH OBJECTIVES (Chapter 1)

1. Examine technological determinants (e.g., BIM, Al, oT)

2. Explore organizational factors (e.g., EO, SO, leadership)
3. Investigate development of sustainable business models

4. Develop an integrated digital-sustainability framework

ad

ADDRESSED RESEARCH GAPS (Chapter 2)

Gap 1: Role of emergent technologies in SBM

Gap 2: Interaction of digital strategy, EO, and SO

Gap 3: Differences between design and construction practices
Gap 4: Relationship between SO with EO and DO

Gap 5: Lack of a Comprehensive Framework

<L

METHODOLOGY OVERVIEW (Chapter 3)

v Quantitative, hypothesis-driven research design

v Survey of AEC professionals in Hong Kong

v Constructs: TBL-Digital Traits, EO, SO, DO, and SBMI
v Analysis: Structural Equation Modeling (SEM)

v Tested direct, mediating, and moderating effects

<L

KEY FINDINGS (Chapter 4)

v TBL-aligned digital traits — SBMI

v EO and SO = mediators

v DO = direct + moderating role (SO — SBMI)
v Design vs. Construction = distinct pathways

<>

STRATEGIC FRAMEWORKS (Chapter 5)

3P Pathway to SBM - Purpose (SO), People (EO), Platform (DO)

TBL Digital Traits - Organisational Capability Matrix
3P2SBMI Framework

4 <

THEORETICAL CONTRIBUTIONS

V' Integration of sustainability into digital transformation theory
v Validation of EO, SO, DO as dynamic enablers of SBM
v Contextualization in the AEC industry
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PRACTICAL IMPLICATIONS

v Diagnostic tool for firm readiness (3P model)
v Role-specific strategies for Design vs. Construction
v Policy guidance for digital-sustainability alignment




5.9.7 Closing Reflection

This study set out to explore how DT can enable SBM innovation in the AEC industry.
Grounded in the Hong Kong context, it developed and validated a comprehensive
framework integrating technological traits (TBL), organisational capabilities (EO and SO),
and strategic intent (DO). The findings highlight the critical interplay between these factors
in shaping innovation outcomes and offer a clear roadmap for firms navigating digital-
sustainability transitions. The study contributes to theory and practice by demonstrating
that DT must be more than a technological upgrade—it must be purpose-driven, people-
enabled, and strategically integrated. The 3P Model, TBL-OC Matrix and 3P2SBMI
Framework provide actionable models for firms to assess, plan, and implement
transformation initiatives. As the AEC industry faces increasing pressure to respond to
climate change, resource constraints, and digital disruption, this study reinforces the
urgency of aligning sustainability and digital strategies. It also underscores the importance
of internal capabilities—entrepreneurial mindset, sustainability culture, and digital
readiness—as levers for long-term value creation. Ultimately, this study advances the
discourse on SBM innovation within project-based industries and offers a timely,
evidence-based foundation for future academic inquiry, industry transformation, and
policy design. In an era where sustainability is no longer optional and digitalisation is

inevitable, the integration of both is not just a strategic advantage—it is a necessity.
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APPENDIX A — QUESTIONNAIRE

Organisational Practices for Digital Transformation and
Sustainability in the AEC Industry

You are invited to participate in a confidential academic research study conducted
by a Doctor of Business Administration (DBA) candidate at Durham University
Business School (www.durham.ac.uk/business), under academic supervision.

The purpose of this survey is to explore Organisational Practices for Digital
Transformation and Sustainability in Hong Kong’s Architecture, Engineering, and
Construction (AEC) sector. There are no right or wrong answers. Please respond honestly
based on your knowledge and experience.

Your participation is voluntary, and you may withdraw at any time before submitting the
survey. Your responses will be treated with the strictest confidentiality and will
be anonymised and aggregated for analysis. No personally identifiable information (e.g.,
your name, email, or phone number) will be collected, and individual responses will not
be reported.

The survey should take approximately 10 to 15 minutes to complete.

If you have any questions about the research or your rights as a participant, please contact
the researcher, Mr. Tong, at s.y.tong@durham.ac.uk or call (852) 9388-1383.

Thank you for your time and valuable contribution to this study.

Part A - Digital Practices in Your Organisation

This section focuses on how your organisation uses digital technologies to support
environmental, social, and financial goals.

1. The extent to which BIM and Al technologies modify design accuracy and reduce rework
frequency.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll
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2. The degree to which BIM and Big Data analytics transform resource utilisation efficiency.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

3. How significantly 3D printing technology alters material waste levels in manufacturing
processes.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

4. The extent to which digital platforms improve collaboration among project stakeholders.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
¢ To a Minimal Extent
e NotatAll

5. How VR/AR and ML technologies impact safety incident rates and hazard identification.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

6. The extent to which digital skills development programs enhance employee competencies.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll
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7. How energy simulation tools influence the environmental footprint of project designs.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

8. The extent to which BIM, loT sensors, and digital twins impact energy and material usage.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

9. How digital asset management systems influence the operational lifespan of building
components?
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

Part B — Business Model in Your Organisation

Questions in this section explore how your company develops innovative and sustainable
ways of doing business.

1. Our customer base prioritises sustainability-focused projects.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

2. We have transformed offerings to reduce environmental/social impacts.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll
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3. We are recognised as a sustainable solutions leader.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

4. We have developed specialised sustainability innovation capabilities.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

5.  We continuously optimise operations for sustainability performance.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

6. We co-develop solutions through green technology partnerships.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

7. We mandate sustainability certification for suppliers.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll
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8. We generate significant revenue from sustainable offerings.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

9. Our cost structures emphasise long-term resource efficiency.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

Part C — Entrepreneurial Mindset in Your Company

These questions focus on how your company encourages innovation, takes risks, and
identifies new opportunities.

1. We actively introduce improvements and innovations in our business.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

2. Our business is creative in its methods of operation.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

3. Our business seeks out new ways to do things.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree
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4. We always try to take the initiative in every situation (e.g., against competitors, in projects
when working with others?

e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

5. Our business is creative in its methods of achieving sustainability goals.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

6. We seek out new ways to integrate sustainability into our operations.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

7. The term “risk taker” is considered a positive attribute for people in our business.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

8. People in our business are encouraged to take calculated risks with new ideas.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree
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9. Our business emphasises both exploration and experimentation for opportunities.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

Part D — Sustainability Focus in Your Company

This section looks at how committed your company is to sustainability and environmentally
responsible practices.

1. We consider environmental sustainability important.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

2. We consider social sustainability important.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

3. We consider sustainability criteria important for new projects.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

4. We consider measuring new projects’ progress on sustainability important.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree
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5. We value sustainability-type criteria as important for the future.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

6. We consider energy consumption and/or carbon emissions in our project work.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

7. We include sustainability in our project budget.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

8. We select suppliers and partners based on sustainability criteria.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

9. We use the triple bottom line (environmental, social, and financial factors) for project planning.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll
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Part E — Digital Vision and Strategy

This section examines how your company plans and executes the use of digital
technologies.

1. Our company digital transformation roadmap aligns with long-term business strategy.
e Strongly Agree

e Agree

e Somewhat Agree

e Neutral

e Somewhat Disagree
e Disagree

e Strongly Disagree

2. Our company digital goals are clearly communicated to all project partners.
e Strongly Agree

e Agree

e Somewhat Agree

e Neutral

e Somewhat Disagree
e Disagree

e Strongly Disagree

3. Our company has dedicated digital champions to drive digital initiatives.
e Strongly Agree

e Agree
e Somewhat Agree
e Neutral

e Somewhat Disagree
e Disagree
e Strongly Disagree

4. We enforce green digital standards (e.g., cloud-based BIM collaboration).
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

5. We invest in continuous upskilling for emerging AEC technologies.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll
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6. We cultivate innovation and transformation culture.
e To a Great Extent
e To a Significant Extent
e To a Considerable Extent
e To a Moderate Extent
e To a Small Extent
e To a Minimal Extent
e NotatAll

Part F — General Information
This section looks basic information about your company

1. What is the nature of your company’s work?

e Design and Planning (Architectural Design, Engineering, Urban Planning, Landscape

Architecture)
e Construction and Project Management (General Contracting,
Construction Management, Project Management, Building Inspection)

2. What is the size of your company?
e 1to 20 employees
e 211to 100 employees
e 101 to 200 employees
e Over 200 employees

3. What is your role in the company?
e CEO/COO/Managing Director

e Architect
e BIM Manager/Engineer/Consultant
e Other

Subcontracting,

4. How would you rate your company’s ability to use digital technologies for sustainability

throughout the project lifecycle?
e Very poor ability

e Poor ability

¢ Moderate ability

e Strong ability

o Exceptional ability

Thank You for Your Participation!

Thank you for taking the time to complete this survey. If you have any questions, feedback,
or would like to learn more about the findings of this research, please feel free to contact:

Mr. Tong
Email: s.y.tong@durham.ac.uk
Phone: (852) 9388-1383

Your input is greatly appreciated, and we thank you for your support.
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APPENDIX B — SUPPLEMENTARY DATA ANALYSIS

FROM SPSS

Table A1 — Convergent Validity (SPSS)

Factor Title Factor Loading CR AVE
SBM-ValueArch1 0.858
SBM-ValueArch2 0.842
SBM-ValueArch SBM-ValueArch3 0.832 0.909 0.713
SBM-ValueArch4 0.846
SBM-Valueoff1 0.845
SBM-Valueoff SBM-Valueoff2 0.874 0.899 0.748
SBM-Valueoff3 0.876
SBM-Revenue1 0.912
SBM-Revenue SBM-Revenue2 0.914 0.909 0.834
SBM-ValueArch 0.887
SBM SBM-Valueoff 0.755 0.901 0.503
SBM-Revenue 0.776
TBL-Profit1 0.902
TBL-Profit TBL-Profit2 0.915 0.932 0.82
TBL-Profit3 0.9
TBL-People1 0.899
TBL-People TBL-People2 0.914 0.928 0.811
TBL-People3 0.89
TBL-Planet1 0.911
TBL-Planet TBL-Planet2 0.93 0.947 0.856
TBL-Planet3 0.935
TBL-Profit 0.791
TBL TBL-People 0.827 0.921 0.566
TBL-Planet 0.858
EO-Inno1 0.908
EO-Inno EO-Inno2 0.88 0.922 0.797
EO-Inno3 0.89
EO-Pro1 0.919
EO-Pro EO-Pro2 0.89 0.937 0.831
EO-Pro3 0.926
EO-Risk1 0.886
EO-Risk EO-Risk2 0.872 0.911 0.774
EO-Risk3 0.881
EO-Inno 0.852
EO EO-Pro 0.757 0.901 0.504
EO-Risk 0.771
SO-Culture1 0.878
SO-Culture2 0.878
SO-Culture SO-Culture3 0.881 0.946 0.779
SO-Culture4 0.88
SO-Culture5 0.894
SO-Practices1 0.897
. SO-Practices2 0.909
SO-Practices SO-Practices3 0.899 0.947 0.817
SO-Practices4 0.91
SO-Culture 0.914
SO SO-Practices 0.872 0.94 0.637
DO-Vision1 0.907
DO-Vision DO-Vision2 0.915 0.934 0.826
DO-Vision3 0.904
DO-Strat1 0.918
DO-Strat DO-Strat2 0.913 0.937 0.833
DO-Strat3 0.907
DO-Vision 0.895
DO DO-Strat 0.897 0.923 0.665
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